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Abstract
A metric space for the study of large samples of spectral series of type

Ia supernovae is introduced. The method is built to be intrinsically

independent from dust extinction and estimates of the distance and its

validity is confirmed by checking a number of known relations. The

resulting metric space is ideal for a number of applications. Some are

investigated in detail: assess spectral series of models, calibrate near

infrared luminosity, and study the extinction-reddening relation.

Zusammenfassung

In der vorliegenden Dissertation wird ein metrischer Raum zur Unter-

suchung von großen Sätzen spektraler Serien von Typ-Ia-Supernovae

eingeführt. Diese Methode ist so konstruiert, dass sie unabhängig

von Extinktion durch Staub und einer Entfernungsabschätzung ist.

Die Gültigkeit der Methode wurde anhand mehrerer bereits bekan-

nter Relationen überprüft. Der gefundene metrische Raum eignet sich

für eine Vielzahl von Anwendungen, von denen einige genauer unter-

sucht wurden: die Bewertung von Modell-Spektralserien, die Kalibration

von Nah-Infrarot-Spektroskopie, und die Untersuchung der Extinktions-

Rotverschiebungs-Relation.
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Klauser, Rüdiger Pakmor, and Friedrich Roepke. Thank you Philipp Edelmann for all the

technical support and for being a good friend. I thank all the python, numpy, scipy and

scikit-learn communities for the high-quality free software they made available.

A big thank you to my parents, you always supported me by being incredibly proud

whether I was doing good or bad alike. Thanks to all my friends. I own you a lot.

Especially thank you Dominic, you have been there when I mostly needed you. And

thank you to my girlfriend Sara, I think about this thesis as our achievement.

xv





Chapter 1

Introduction

The aim of this thesis is to increase the understanding of Type Ia Supernovae (SNe Ia).

This class of supernovae are among the most luminous transients in our local Universe.

They hold a good degree of spectroscopic and photometric homogeneity. Their homogene-

ity allowed to use them as standard candles to measure the distance of remote galaxies

and to study the expansion flow of the Universe. This led to the Nobel Prize awarded

discovery of the Dark Energy, a mysterious repulsive fifth force that acts on the largest

scales.

In the next sections we introduce the spectroscopic and luminosity behavior of SN Ia

in the more general context of supernovae. We discuss the possible explosion scenarios

and progenitor systems. Then, we present the current observational efforts to unravel

their nature. Finally, we motivate and discuss the topic of the thesis, a statistically based

approach to study their spectra and to extract from them information concerning the

physics of the explosion.

1.1 The Observed Properties of Supernovae

SN Ia are not the only class of supernovae. The different subclasses are distinguished by

their spectroscopic and photometric behaviour. Fig. 1.1 shows the classic classification

scheme of SNe, based on the elements that show up in their optical spectra near maximum

light. Type II SNe show hydrogen in their optical spectra and Type I do not. Type I SNe

are named Ib if they show He lines. Finally, a SN is promoted to a Ia by the presence of

strong lines of intermediate mass elements (IME), such as Si, S, and Ca.

Fig. 1.2 shows the light curves of many different SN types. From this figure it is

evident that core-collapse SNe have a large diversity of maximum luminosity, rise time, and

behaviour during the declining phase. In contrast, light curves of SNe Ia are remarkably

uniform. Fig. 1.3 shows the light curves of a representative sample of SNe Ia. A careful

observer will notice that the fainter objects are also characterized by a quicker decline of

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The classification scheme of supernovae is based on maximum-light visible spec-

tra. Core-collapse SNe, originating from massive stars, offer a large diversity of spectro-

scopic characteristics (figure from http://supernova.lbl.gov/~dnkasen/tutorial/).

http://supernova.lbl.gov/~dnkasen/tutorial/
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Figure 1.2: The light curves of supernovae show a large diversity of characteristics (mag-

nitudes correspond to luminosity on a logarithmic scale). Type Ia are thought to be

thermonuclear explosion of white-dwarfs. All other types: collapse of a massive star to a

neutron star or a black hole (see also Sec. 1.2). The figure is taken from http://commons.

wikimedia.org/wiki/File:Comparative_supernova_type_light_curves.png.

their luminosity. This relation, first discovered by Barbon et al. (1973); Pskovskii (1977,

1984); Phillips (1993), is the basic ingredient that allows to “standardize” the luminosity

of these objects and to use them as indicators for relative distances. After the discovery

of a relation between their light curve shape and luminosity and of the luminosity-color

relation (e.g. Riess et al., 1996a; Tripp, 1998) they have served as “standardizable candles”

and distance indicators in cosmology.

SNe Ia spectra, albeit quite homogeneous, exhibit a non-negligible diversity of spectral

features (e.g. Benetti et al., 2005; Branch et al., 2006; Hachinger et al., 2006; Wang & Han,

2012). This diversity is clearly seen in Fig. 1.4, where we compare the typical subclasses

of SN Ia at maximum light. In this figure we also present the lines most commonly used

for classification and analysis.

From the selection of spectra shown in Fig. 1.4, it is already clear that within the

SN Ia class there is a large diversity in spectral properties. From top to bottom the SNe

are roughly ordered by luminosity. At the top are shown SN2000cx and SN1999aa, two

SNe belonging to the 1991T-like subclass, characterized by “hot” spectra, with an high

http://commons.wikimedia.org/wiki/File:Comparative_supernova_type_light_curves.png
http://commons.wikimedia.org/wiki/File:Comparative_supernova_type_light_curves.png


4 CHAPTER 1. INTRODUCTION

Figure 1.3: This is a representative sample of SNe Ia bolometric light curves. They are

very well behaved. The maximum luminosity clearly anti-correlates with the decline-rate

(figure from Contardo et al. (2000)).
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Figure 1.4: Spectra at maximum light of a selection of SN Ia. From the top, the first

two object are 1991T-like SNe; then we have a supernova with a high-velocity of Si (more

blueshifted features); SN1994D, the “prototypical” normal SN Ia; SN1991bg, that gave

the name to a class of faint SNe; SN2002cx, another class of faint SN Ia are named after it;

finally, the reddened SN 2007le, that without reddening would be very similar to SN2002cs.
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ionization, and the presence of strong Fe iii lines. The Si ii 6355 Å line is weaker than in

normal SN Ia and the Si ii 5972 Å is absent. Also, the Ca ii H&K line is usually weak

or absent. Supernovae with these spectral features are commonly called “SN1991T-like”

after the first event of this kind ever discovered. Then we have SN2002cs, a high-velocity

Si supernova, characterized by broad and blueshifted features of IME such as Si ii and

S ii lines. The next is SN1994D, the “prototypical” normal SN Ia where all the features

considered are visible at a “moderate” velocity. The last three are SNe significantly fainter

than the average, but for different reasons. SN1991bg and SN2002cx are the first discovered

representatives of two different classes of faint SN Ia. 1991bg-like SNe have “cold” spectra,

with normal velocities, and 2002cx-like SNe have very “hot” spectra, but with very low

velocities. SN2007le, on the other hand, is a SN intrinsically very similar to SN2002cs,

but with a significant amount of dust along the line of sight. This dust is responsible for

decreasing its luminosity and, absorbing more on the blue edge of the spectrum, changing

its color. The problem is even more complicated, because there are no sharp boundaries

between these classes, and there are many SNe with intermediate properties. This sample

selection is explicative of some of the typical problems of supernova spectroscopy, such as

irregular wavelength coverage and diverse signal-to-noise ratios. In addition, the spectrum

of a SN Ia varies heavily with time, and this variation contains valuable information about

the physics of the object. Studying their spectral differences is a promising way to shed

some light on questions regarding their nature.

Fig. 1.5 shows how the spectrum of a normal SN Ia changes with time. As the volume of

the ejecta expands, the density decreases and the gas become more and more transparent.

Progressively, the inner layers of the SN become “visible” and affect the characteristics

of the spectrum. This is why it is important to consider the information of the spectral

variability in spectroscopic analyses. The red area in Fig 1.5 is what is included in the

statistical analysis of the next chapters. We tried to make it as large as possible in the

wavelength and time domain, but at the same time we are limited by the incompleteness

of the data. Not all SNe are observed as well as SN2011fe, one of the closest SNe in a

quarter of a century.

1.2 The Explosion Mechanisms and Progenitors of Su-

pernovae

Type II, Type Ib and Ic SNe are known to be the final bursts of massive stars (> 8M�)

undergoing gravitational collapse of the core and, therefore, called core-collapse SNe. They

obtain their energy from the increase of gravitational binding of their final state: a neutron

star or a black hole. The large diversity in progenitor mass, progenitor type, and type of

the explosion is reflected in the large diversity of their spectra and light curves.

SN Ia, on the other hand, appear to be a rather homogeneous group, both photo-

metrically and spectroscopically. Albeit being relatively common, quite homogeneous and
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Figure 1.5: The figure shows the spectral evolution of the normal SN Ia, SN2011fe. The

evolution of the spectrum have been followed from two weeks before maximum up to a

hundred days after. The “square” delineated in red highlights the spectral variability that

we include in our statistical analysis (chapter 3).
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significantly bright (compared to other SN types), their precise nature is not clearly deter-

mined. Differently from other SN types, neither the progenitor nor a compact remnant

have ever been identified with certainty. This absence suggests that the progenitors are

rather faint and do not have the necessary mass to produce a compact remnant such as a

neutron star.

The more uniform behaviour of the light curves of SN Ia is easily explained if we assume

that the light comes from radioactive decay. The light curves first decline rapidly for a

few weeks, followed by a slower decline over several months to a year. These timescales

are driven by the radioactive heating of the beta decay chain of 56Ni and 56Co:

56Ni
τ=8.8days−−−−−−−→ e+, γ,56 Co

τ=110.7days−−−−−−−−→ e+, γ,56 Fe.

From a tenth up to one solar mass (M�) of 56Ni are synthesized during the explosion

of SNe Ia, and this drives the luminosity of the object. The fast rise time of these objects

suggest that the total mass of the ejecta is relatively uniform and quite small. White

dwarfs are stars that exhausted hydrogen and helium (apart from a thin superficial layer)

by nuclear burning. They self-sustain from gravitational collapse with the degeneracy

pressure of a fermion gas of electron. This sets an upper-limit on the possible mass of

these object called Chandrasekhar mass. This is ∼ 1.4M� for a C-O white-dwarf.

It is largely accepted that SNe Ia originate form the thermonuclear disruption of a

white dwarf, but apart from that, the exact nature of the progenitor and the mechanism

of the explosion are heavily discussed and uncertain (Hillebrandt et al., 2013). Many of

the observational characteristics of SN Ia can be naturally explained. Their uniformity,

the small mass of the ejecta, the absence of helium and hydrogen, the absence of a compact

remnant and of a bright progenitor. However, white dwarfs are thought to be stable and

slowly cool without without exploding. Hence, SNe Ia are the result of the disruption

of a white dwarf in a binary system, where the companion star is needed to trigger the

explosion. However, the nature of the companion star, whether it is another white dwarf

(Iben & Tutukov, 1984; Webbink, 1984) or a non-degenerate companion (Whelan & Iben,

1973; Nomoto, 1982) is still an open question. In these two scenarios, models differ from

each other by the amount of mass gathered by the primary white dwarf at the time of

explosion, the mode of thermonuclear combustion or the ignition mechanism (Hillebrandt

& Niemeyer, 2000; Wang & Han, 2012; Hillebrandt et al., 2013).

1.3 Observational Efforts

Also fueled by the important use of SN Ia for cosmology, SN Ia are not only intensely

studied theoretically, but are also heavily observed. There are many ongoing observa-

tional campaigns like the Nearby Supernova Factory (SNfactory, Aldering et al., 2002),

the Palomar Transient Factory (PTF, Rau et al., 2009) or the Public ESO Spectroscopic

Survey of Transient Objects1 (PESSTO, e.g. Maund et al., 2013) and a large number

1http://www.pessto.org

http://www.pessto.org
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of SN spectra collected by the CfA Supernova Data Archive (Blondin et al., 2012), the

CSP sample (Folatelli et al., 2013), the Berkeley sample (Silverman et al., 2012), and SN

catalogs as SUSPECT 2 and WISEREP (Yaron & Gal-Yam, 2012). The number of well-

observed SNe Ia has become large enough to allow for a quantitative statistical analysis

of their spectral and photometrical diversity. Likewise, the complexity and diversity of

synthetic spectra have increased (Hillebrandt et al., 2013), for the first time producing

enough synthetic data to allow a coherent comparison between theoretical predictions and

observations, although such a deep investigation is still to be reported.

1.4 Our current work: Statistical Methods for the Study

of Type Ia Supernovae

In order to explore the potential of detailed high-quality observations and extended mod-

elling, we aim at developing an enhanced framework where all information stored in a

particular data set can be automatically used to characterize a given synthetic spectrum.

This new metric space is constructed using an extended version of the Principal Compo-

nent Analysis (PCA) method. PCA has been successfully used to classify QSO spectra

(e.g. Boroson & Green, 1992; Francis et al., 1992; Yip et al., 2004; Suzuki, 2006), and it

has become a standard technique in that field. It is also widely used for studying galaxy

spectra (e.g. Connolly et al., 1995) and stellar spectra (e.g. Whitney, 1983; Bailer-Jones

et al., 1998). A non-linear extension of PCA has also been used to photometrically classify

SNe, in anticipation of the comparatively scarce spectroscopic resources to be faced by

future cosmological surveys (Ishida & de Souza, 2013). Standard linear PCA was applied

to SN Ia spectra recently by James et al. (2006) and Cormier & Davis (2011). Both papers

concluded that PCA can be useful to study the diversity among SN spectra once larger

samples become available.

In what follows, we will use an Expectation Maximization PCA (EMPCA) algorithm

as implemented by Bailey (2012), which is capable of handling missing data and mea-

surement uncertainties. The potential of information extraction enclosed in EMPCA is

enhanced by pre-processing filtering and derivative routines, as well as by the use of com-

plete spectral sequences in the construction of the initial data matrix. Once a stable

PC space is obtained, we use Partial Least Square (PLS) analysis to demonstrate that

the information it contains is not restricted to spectral indicators (velocities and pseudo-

equivalent widths) but, as expected, it also correlates with photometric features. The

outcomes from this analysis, applied to data from SNfactory, enable the construction of a

metric space where any given synthetic spectrum can be projected and automatically con-

fronted with real data. Systematic comparisons of models with observation are explored

(e.g. Diemer et al., 2013, comparing light curves). Here we approach the problem from a

new observation-driven perspective and we focus on spectral series.

2http://www.nhn.ou.edu/~suspect

http://www.nhn.ou.edu/~suspect
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This thesis is organized as follows: In section 2 we present details about all pre-

processing techniques and statistical methods used in building our framework. The method

is presented as a general data analysis technique which allows its application to any set

of spectral sequences. The connection with SN Ia data is presented in the following

sections. Chapter 3 describes the SNfactory data set, a data set built with public data,

and the additional spectroscopic and photometric features to be investigated through

the PLS algorithm. Results from the EMPCA analysis based on SNfactory data are

presented in chapter 4, and in section 4.4 we present the EMPCA analysis of a collection

of publicly available spectra. Chapter 5 presents the independently measured SNe Ia

features investigated in this work and the corresponding results from PLS are shown

in section 5.1. Chapter 6 studies in detail the major explosion mechanisms that are

considered as explanations of SN Ia. Chapter 7 extends the ideas of PLS regression to

predict light curves and color curves of SNe Ia. This allows to study extinction by dust

using an innovative point of view. The characteristics of extragalactic dust is one of the

open problem in astrophysics, and studies of SN Ia have been giving contrasting results.

Finally, our conclusions are delineated in section 8.



Chapter 2

The Method1

2.1 Filtering the Spectra

Before attempting any process of information extraction from spectral data, one must take

into account the high impact of random noise originating in the observational process.

Spectra are affected by noise arising from photon statistics, detectors, and calibration.

Ideally, we would like to extract the features filtering the noise without degrading the

signal.

2.1.1 Weighted Savitzky-Golay Filter

The Savitzky-Golay (SG) filter (Savitzky & Golay, 1964) is sometimes used to tackle this

issue (Bailey, 2012; Poznanski et al., 2010; Hügelmeyer et al., 2007). It uses a least-square

approach to fit a polynomial to neighbouring points within a fixed window around each

wavelength. In comparison with other smoothing methods (e.g. simply re-sampling the

data in larger wavelength bins), the SG filter, with an appropriate choice of parameters,

is more successful in preserving the shape of the peaks and valleys, even for weak spectral

features. The procedure is effective especially if the line broadening is significantly larger

than the size of the wavelength bin as is the case here. Ideally, the smoothing window

(polynomial degree) should be chosen such that it is not too small (large) to fail to filter

the noise at the same time that it is not too large (small) so weak features are completely

wiped away.

In this work, we wish not only to properly smooth a noisy spectrum, but we look for

a procedure that takes into account the uncertainties associated with each measurement.

Moreover, we should be able to calculate all the coefficients of the polynomial fit as well

as their covariance matrix. In order to fulfil these requirements, we substituted the least

square polynomial fit in the standard SG filter, by a weighted least square routine2, where

1Part of this chapter is published in Sasdelli et al. (2015)
2http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
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http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
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the quantity to be minimized is given by

S =

N∑

i=1

[
wi
(
F obs
λi
− gM(λi,βββ)

)]2
. (2.1)

Here, N is the number of data points included in a fixed window, F obs
λi

is the observed flux

at wavelength λi, gM is the polynomial of degree M, βββ is the vector of scalar coefficients

of g and wi is the weight assigned to F obs
λi

. The algorithm returns the best fit values and

covariance matrix for βββ at each wavelength. The width of the window is kept constant

in log(λ), which corresponds to a constant velocity broadening to allow for a reasonable

smoothing up to the minimum line broadening of the lines. Other types of smoothing

techniques significantly improve the results of our analysis. This matter is investigated in

some detail in the next subsection.

2.1.2 Improving the Filtering

The filtering is one of the crucial parts of our approach and in the literature there are more

advanced techniques to filter the noise than a simple SG-filter (Savitzky & Golay, 1964).

A well known way to improve low band-pass filters is to iterate the filtering a number of

times (Kaiser & Hamming, 1977). To obtain a similar minimum band-pass the parameters

of each iteration have to be looser. With this filtering we improved the rejection of the

noise and at the same time obtained sharper spectral features to be fed into the PCA

algorithm. This is a very simple approach and it proved to be very effective on spectra.

With a larger number of iterations the window of filtering needs to be reduced in order to

have a comparable effective window.

Once the impact of noise is reduced, we proceed to the construction of a framework

capable of extracting information from a large data set, while minimizing the number of

random variables to be dealt with.

2.2 Expectation Maximization Principal Component

Analysis

Principal Component Analysis (PCA) is a dimensionality reduction method used to de-

scribe an initially multivariate data set using a smaller number of uncorrelated parameters

(principal components — PC). It transforms the original high-dimensional space through

a rotation of its axes. The first new axis (or PC) is aligned with the direction of largest

variance in the data. The second PC should also maximize the variance, subject to being

orthogonal to the first, and so on. Mathematically, these directions can be more easily

determined through the covariance matrix,

Σii′ =

∑k=N
k=1 (Xk

i −Xi)(X
k
i′ −Xi′)

N
, (2.2)
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where Xi is the mean of all fluxes measured at wavelength i and N is the total number

of objects (for a complete review, see Jollife, 2002). Hereafter, we will always refer to the

initial data as the mean subtracted terms in Eq. 2.2 (the centralized version of all points

in the initial data set).

Once Σ is diagonalized the PCs are given by its eigenvectors, with the first PC cor-

responding to the one with the largest associated eigenvalue, and so on. We are now

able to fairly reconstruct a given spectrum from the original data set using only M PCs

(M � N),

FFF rec ≈XXX +

M∑

j=1

cjPPP j , (2.3)

with XXX representing the mean of all spectra, PPP j the j-th PC and cj the j-th scalar whose

values must be determined from fitting FFF rec to the measured flux. Geometrically, cj

represents the projection of the measured spectrum on PPP j . PCA is just a basis change.

Using all the N components the reconstruction becomes identical to the original data.

The point is that the new basis captures a large fraction of the variance in a small number

of components (M). For the purpose of this work, the determination of the “optimal”

M is not a crucial point. A deeper discussion and other important applications of PCA

for reconstruction in astronomy can be found in Ishida & de Souza (2011); Ishida et al.

(2011); Benitez-Herrera et al. (2012, 2013) and references therein.

If a particular measurement is missing, or is not reliable enough to be considered on

the same basis as the other more accurate ones, it is possible to reconstruct it from the

nearest ones. Here we chose a different approach, taking advantage of a technique able

to deal with missing elements in the initial data matrix: an expectation maximisation

algorithm of PCA, first developed by Roweis (1998). We use an extended version of it,

which can deal with non-uniform errors in the known components (Dempster et al., 1977;

Bailey, 2012).

Reversing the line of thought which leads us to equation 2.3, we can think of the PCs

as the vectors which minimize χ2 =
∑N
k=1

[
XXXk −FFF rec

]2
. In the presence of measurement

errors, one can add a k×i weight matrix, W, which controls the degree of influence of each

flux measurement (for object k at wavelength i) in the determination of the components,

χ2 =

N∑

k=1

Wk
[
XXXk −FFF rec

]2
. (2.4)

The above expression presents the challenge of diagonalizing a possibly very large matrix

with a non-negligible number of null elements. Within EMPCA, this problem is tackled

through the use of an Expectation Maximization algorithm (explained in detail in section

5.3 of Bailey, 2012).

This method allows us to perform PCA on real data by giving higher weight to points

with lower noise. Moreover, missing components in the input data are handled easily by

assigning them a weight equal to zero. Using the SG filter and EMPCA, we are able to
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Algorithm 1 Expectation Maximization algorithm

1. V← random orthonormal basis of dimension i×M

2. repeat until convergence (i.e. the basis V does not

vary significantly with new iterations):

(a) calculate the projections of all spectra on the basis

V (E-step)

(b) using these coefficient values, find a new estimate

of the basis V which minimizes equation 2.4 (M-step)

(c) normalize the columns of V to unit length

3. return V as the EMPCA calculation of the first

M eigenvectors of the basis P

translate a set of spectra from wavelength to PC parameter space, with the SG filtering

being crucial to ensure stability of the EMPCA results. In the absence of such filtering

the EMPCA procedure does not converge to a stable solution.

2.3 Error Budget

The propagation of the errors from the spectra to the projections is not included in the

EMPCA framework. For standard PCA, the error in the determination of each eigenvec-

tor is inversely proportional to the corresponding eigenvalue (Jollife, 2002). In EMPCA

however, we need to deal with three main sources of error when analysing the geometri-

cal distribution of our data in PC space. First, the iterative nature of the EM algorithm

prevents us from obtaining the complete eigensystem and leads to uncertainty in the deter-

mination of the PC themselves. Beyond that, in the presence of missing data, computing

the eigenvalues can be complicated, as it would require defining the total covariance based

on an incomplete data sample. Second, once the PCs are given, we need to tackle prop-

erly the potential variance in their projections due to missing elements in the data vectors.

Third, there is the contribution to the variance of the projections due to noise.

The determination of the PCs in EMPCA starts with a random first guess. It rapidly

converges to an approximate final solution, but continues to fluctuate weakly even after

many more iterations. The output PC vectors also vary slightly for different choices of the

initial random seed. Despite the small influence of these features on the overall behaviour

of our results, we took them into account by running the EMPCA algorithm for 100

different seeds during 500 iterations each. The resulting sets of vectors were then used to

estimate the uncertainty in the projections in PCs space. A small value of these variances
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can be interpreted as evidence that the input data quality is high enough to allow a stable

determination of the PCs.

The errors in the projections due to missing measurements in the projected vector

were calculated assuming that the eigenvectors are well determined, using the approach of

Nelson et al. (2006). The propagation of the errors is due to the operation of projecting a

non-complete spectrum on the PC space. The approach involves the inversion of subma-

trices of the covariance matrix, whose dimension is much larger than the sample size. An

estimate of this matrix was achieved by completing the observed data with the PCA re-

constructions. Then, we computed the estimator for the covariance of the completed data

as described by Ledoit & Wolf (2004). With the covariance matrix and the eigenvectors

we computed the error in the projection due to missing data for each object, as described

by Nelson (2002), section 3.2.1 and Nelson et al. (2006).

The errors on the projections due to measurement noise were computed using a Monte

Carlo approach. Each spectrum is submitted to the SG filter and a random noise based

on the original error amplitude is added to the smoothed spectrum. The new noisified

spectrum is again submitted to the filtering process and its corresponding projection in

PC space are computed. The procedure is repeated 25 times. This allowed us to assess,

in an empirical approach, the variance in the projections due to different magnitudes and

covariances among the measurement errors.

2.4 Optimizing Information Extraction

After the smoothing described in section 2.1, we are left with a well behaved representa-

tion of the measured spectra. Mathematically, this would be enough to feed the EMPCA

algorithm and perform the exercise of looking for patterns/subgroups in PCs space (e.g.

Whitney, 1983; Francis et al., 1992; Connolly et al., 1995). However, astronomical spectra

commonly also present uncertainties in large wavelength modes due to reddening, cali-

bration problems, and on the absolute flux itself due to poor estimates of the distance

of nearby galaxies. They can also present uncertainties on small wavelength modes due

to CCD fringing at higher wavelengths, discontinuities in the overlapping region between

spectra obtained with different spectrographs, or poor subtraction of telluric lines. In this

context, our goal is to optimize the power of information extraction as much as possible,

getting rid of any recognizable additional noise and enhancing intrinsic spectral features

which we know to be relevant for individual object characterization.

2.4.1 Derivative Spectroscopy

Although we are aware that it is not possible to completely remove the effect of extinction

in measured spectra, we can make it easier to handle by, first, using the logarithm of the

flux as our initial data. As an example, consider a general reddening law:
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Flog = log10 F
obs
λ = log10 F

intr
λ − 0.4

Aλ
AV

RV EB−V , (2.5)

where F obs
λ , F intr

λ and Aλ are the observed flux, intrinsic flux and extinction at wavelength

λ, respectively. AV represents the extinction in the V -band and RV = AV /EB−V , and

Aλ/AV is traditionally used to characterize the dust responsible for the extinction. From

this expression we realize that in terms of Flog, reddening becomes a linear relation in the

extinction parameter EB−V . Moreover, two objects following the same extinction law but

subjected to different amounts of reddening will differ only by a multiplicative constant.

We would also like to take full advantage of the PCA dimensionality reduction power by

equally weighting the information contained in weak/strong spectral lines. The presence

of strong lines naturally dominates the variance (and consequently all results from PCA)

of any given spectra data set. They are crucial for the initial classification, but in a

second order analysis they may obscure important information contained in weak spectral

features, which are more sensible to the conditions of the material because usually they

are not saturated. It is important to emphasize that PCA itself is an excellent framework

to study a “forest” of weak lines since this kind of study demands the parallel analysis of

many of them.

We independently rediscovered a technique used in chemistry since Morrey (1968),

which consists of beginning the analysis from the derivative of each spectrum over the

wavelength, which in our case translates to ∂Flog/∂λ, hereafter dFlog. This approach

presents a few important improvements over the standard scenario for spectra analysis

with PCA:

• Weak lines are emphasized. PCA on the derivative accounts for variance in the slope

instead of variance in the flux, which also enhances the importance of the velocity

of lines.

• It does not depend on errors in distances or on small calibration errors of each

spectrum, since a change in any of these adds a constant to Flog but leaves its

derivative unchanged.

• It is only mildly dependent on reddening and large but smooth calibration errors,

since these add a function to Flog which is weakly dependent on wavelength (section

4).

2.4.2 Complete Spectral Sequences

The procedure described up to now can be applied to any data set composed of at least one

spectrum per object. In a few cases however, mainly concerning transients, a specific data

set will contain a sequence of spectra for each of its objects, taken at different epochs.

When this is the case, we could, in principle, restrict ourselves to a single important

epoch which would mean wasting a large part of the available information. Such a time-

focused analysis would have no means of recognizing distinct evolutionary tracks for two
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objects which happen to present similar features at the chosen epoch. Similarly, it would

overestimate the distinction among two sources sharing almost identical spectral time

evolution if they are submitted to external effects which are mainly detected at the time

of observation (such as noise, or bad atmospheric subtraction).

Alternatively, one could compare results from the analysis of spectra taken at different

epochs and follow the different PC space configurations over time. Although this naively

seems a good option, it poses some difficult technical problems. Comparing PCA results

from two different matrices would require spectra for all sources taken at exactly the same

epochs (or within the same epoch bin) in order to have enough statistics to justify a PCA

in each one of them. As this is not the case for current data sets, we chose to analyse all

available spectra in a single PC space by concatenating subsequent spectra in each line of

the initial data matrix. In this context, if one particular object is missing one spectrum the

corresponding slots for those measurements are assigned a zero weight, and the EMPCA

algorithm still uses the available data in the determination of the complete PC space.

2.5 The Partial Least Square Analysis

We now have a few techniques enabling us to translate the measured spectra from wave-

length into PC parameter space. This new optimized space summarizes the information

contained in the original data, grouping objects similar to each other and providing a low-

dimensional basis from which we can reconstruct the main aspects of observed spectra.

However, given that the PC space represents the essential information contained in each

spectral sequence, it should be possible to obtain additional information from the PCs.

It is reasonable to assume the existence of correlations between physical characteristics

and a space that represents all spectral features, and in such case we would be able to

associate known physical characteristics to the parameters found with EMPCA. In this

context, we could easily recognize a missing or unexpected element in synthetic spectra.

In this sub-section we show that the PLS analysis is suited for this task.

The Partial Least Squares analysis (PLS, also known as Projection to Latent Struc-

tures) is a technique used to find hidden relations between two groups of variables, orig-

inally developed by Wold (1982); Wold et al. (1984). The underlying hypothesis behind

PLS is that all observed data are generated by a small number of latent variables, not

directly observed or measured. It searches for traces of these latent structures which may

be present in different parameter spaces.

We can roughly think of PLS as a combined principal component search. Suppose we

have two independent sets of variables, {X ,Y}, which result from measurements performed

on the same objects. For example, X can be a set of spectra and Y the set of independently

measured photometric properties of the same objects. If we apply PCA to each one of these

sets individually, we would obtain two distinct groups of PCs and their corresponding data

projections, but the PCs of X would bare no information about the PCs, or projections,

of Y, and vice versa. The goal of PLS is to determine directions within X and Y that
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maximize the covariance between their projected data. Once the directions are known,

from measurements of a new object in X we can estimate its projections and predict the

values for variables in Y.

In this work, we look for relations between a 1-dimensional parameter space Y and the

M -dimensional PC space coming from EMPCA. Mathematically, we are searching for the

direction eee (
∑
i e

2
i = 1) that maximizes

Cov(eeeX, Y ) =

∑N
k=1 (Y k − Y )

∑
i (Xk

i −Xi)ei
N

, (2.6)

where N is the number of objects and Xj and Y are means:

Xj =

∑N
k=1X

k
j

N
, Y =

∑N
k=1 Y

k

N
.

The corresponding correlation is the covariance weighted by the variances:

Corr(ei) =
Cov(ei)

σ(
∑
iXiei)σ(Y )

,

where

[σ(
∑

i

Xiei)]
2 =

∑N
k=1 (

∑
i (Xk

i −Xi)ei)
2

N
,

[σ(Y )]2 =

∑N
k=1 (Y k − Y )

N
.

PLS does not maximize the correlation, as the standard least square linear regression

does, because that would assign the same weight to all directions in X . Instead, it max-

imizes the covariance, which gives more weight to directions in X with larger variance

(first PCs) and avoids overfitting problems. In this work, we use the PLS algorithm as

implemented by the scikit-learn statistical suite (Pedregosa et al., 2011).

In principle it is possible to apply PLS before the PCA dimensionality reduction.

However, given the large dimension of the original spectral sequence data, that would

barely simplify the traditional approach. Moreover the EMPCA method allows us to deal

with missing components and diverse weights, and consequently apply the method to many

more spectra without discarding incomplete or significantly noisy data.
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Applications1

In this section we apply the previously explained framework to SN Ia spectra from the

SNfactory collaboration (section 3.1) and to a database of publicly available spectra (sec-

tion 3.2.

3.1 The Nearby Supernova Factory

The SNfactory is an experiment carried out using the University of Hawaii 2.2m telescope,

mounted at Mauna Kea. Its goal is to obtain a sample of well observed SNe Ia in order to

improve the measurements of cosmological parameters (Aldering et al., 2002; Copin et al.,

2006). Spectra are acquired through a two-channel Supernova Integral Field Spectrograph

(SNIFS, Lantz et al., 2004), which simultaneously covers channels B (3200-5200 Å) and R

(5100-10000 Å). Discovery is largely automated using images from the JPL’s Near Earth

Asteroid Tracker (NEAT) and from the QUasar Equatorial Survey Team with quantitative

and traceable selection of SN candidates (Bailey et al., 2007). This removes biases induced

by the reliance on existing galaxy catalogs. Precise calibration is carried out in order to

ensure agreement with high-redshift SNe (Buton et al., 2013). The spectra are deredshifted

with independently measured host galaxies redshifts (Childress et al., 2013). Telluric lines

are properly removed and Milky Way extinction corrections are applied to all spectra

(Schlegel et al., 1998). Each supernova is followed from before B−band maximum up

to 40 − 45 days after peak, resulting in 10-15 flux-calibrated low resolution spectra for

each object. Most of the observed SNe are at the low-redshift end of the smooth Hubble

flow (0.03 < z < 0.08), which enables a small error in the determination of distance from

peculiar velocities while still being well within the homologous expansion regime.

Consequently, SNfactory provides a considerably large and relatively homogeneous

data set of SNe Ia spectra (151 SNe and 2323 spectra at the time of this analysis), ideal

for the study of second-order features as the one proposed here. Since all spectra are

1Part of this chapter is published in Sasdelli et al. (2015)
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obtained with the same instrument, resolution and host subtraction routine, the data

set is homogeneous enough to allow for intrinsic astrophysical features to produce non-

negligible effects in PCA results. In what follows, we shall directly probe this argument

by correlating the remaining variance in flux measurements with specific photometric and

spectroscopic SN features (section 5.1).

It is important to emphasize that we chose the SNfactory as a first test of these tools

because the outcome would certainly be less obvious if obtained from a less homogeneous

sample. However, due to the incorporation of the SG filtering and the use of dFlog, the

method is flexible enough to be applied to a much more diverse SNe Ia data (e.g. Blondin

et al., 2012; Silverman et al., 2012).

Data Treatment

The processed portion of the data set contains 151 SNe Ia (2323 spectra) from which we

selected objects with at least one spectrum before, one after B−band maximum and a

minimum of three observed epochs between −10 and +10 days around B-band maximum.

The epoch B-band maximum was determined from the SALT2 light curve fitter (Guy et al.,

2007) applied on magnitudes obtained from integrating BV R top-hat filters (Pereira et al.,

2013). Applying such requirements reduced our sample to 119 SNe and 764 spectra. In

the sample the decline in magnitudes in 15 days after the maximum is within 0.7 and 1.7,

the B−V color within −0.16 and 0.40. The redshifts of the SNe are within 0.007 and 0.12.

Plots showing the distributions of these parameters in the SNfactory sample are shown by

Chotard et al. (2011a) and by Childress et al. (2013).

Each spectrum was smoothed by means of the weighted SG filter (section 2.1), using a

third order polynomial (M=3), and a 6000 km/s-wide window as filter parameters. Those

values were chosen by visually inspecting some smoothed spectra; potentially, the choice

of different values may provide further improvements. It is also important to emphasize

that this filtering technique performs satisfactorily up to a certain threshold and starts to

saturate for very noisy spectra. In this context, the uniformity and quality of SNfactory

data allow us to apply the filtering without the need to discard spectra due to poor data

quality.

Figure 3.1 is an example of how a measured spectrum is transformed at different

stages of the pre-processing treatment. The top panel shows the measurements from

the standard SNfactory reduction pipeline (blue-full) and the corresponding spectra after

the SG filtering (green-dashed). The bottom panel presents the derivative of the same

spectrum (red-dashed) and its centred counterpart (yellow-full), that is the difference

between the derivative and the mean derivative. The mean derivative is the mean of all

SNe. This last product of the spectra preparation was used as input to build the initial

data matrix. In both panels, functions are artificially displaced along the vertical axis in

order to improve clarity.

Once all preparations are done, each row in the data matrix is constructed by grouping

into bins measurements taken in 2 days within each other. Thus, a SN with no missing
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Figure 3.1: Multiple steps in data treatment. Both panels show data from SNF20080626-

002, taken at −0.65 days relative to B−band maximum brightness. In each panel we

artificially shifted the curves along the vertical axis for didactic reasons. Top: Flog mea-

surements before (blue-full) and after (green-dotted) going through the SG filtering. Bot-

tom: dFlog (red-dashed) and center derivative, dFlog − dFlog (yellow-full).
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Figure 3.2: Representation of the input data matrix. Different rows correspond to different

SNe. Each column shows centered dFlog, from spectra collected between −10 and +10

days relative to B−band maximum brightness (from left to right), within each 2 day epoch

window. Each curve runs over 3300Å≤ λ ≤ 9000 Å, written in wavelength bins of 20Å.

The rectangle on top is the blown-up of the bottom-left corner of the data.
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spectrum is represented by a row in the data matrix constructed from the concatenation

of 10 spectra. The first was taken between −10 and −8 days, the second between −8 and

−6 days, and so on. When a spectrum is missing, its corresponding matrix elements are

left empty, and if more than one measurement exists within the same epoch bin, the mean

spectrum is used as a representation of that SN in that bin. The choice of the parameters

for the binning is inspired by the method of abundance tomography (Stehle et al., 2005;

Mazzali et al., 2008). Using the SNfactory data, −10 days is as early as possible to have

a rich sample. After +10 days the quality of the spectra generated by radiation transport

codes not including forbidden line transitions starts to decrease (e.g. Sasdelli et al., 2014,

for a study of the SN 1991T).

As with the SG filter parameters, the size of the epoch bin can be adapted according

to the characteristics of each data set. For SNfactory, a two-day binning is a reasonable

compromise, given that SN Ia spectra are quite homogeneous within this time frame and

the data set is complete enough to provide a final matrix with more existing than missing

spectra (in this configuration, we achieve 53% coverage). When transferring this procedure

to another data set, one should keep in mind that an epoch bin should be small enough

to guarantee that spectral variations between different objects within that bin are not

due to time evolution. At the same time, the bins must be large enough to accommodate

uncertainties in the determination of the epoch for each spectrum and allow a not too

sparse initial data matrix.

Figure 3.2 illustrates the overall shape of the final data matrix. Each spectrum was

sampled every 20Å (wavelength gap between two columns for the same spectra). Our

results show that this choice has negligible effects on the analysis and saves computational

time.

In order to properly populate the weight matrix, errors coming from the flux mea-

surements need to be propagated through the filtering process. Since the complete error

covariance matrix of each spectrum is not used in the EMPCA code from Bailey (2012), we

are computing only its diagonal terms. The weighted polynomial fit described in section

2.1 represents the smoothed spectrum at each wavelength as

F obs
λ → g3(λ, β) = β0 + β1(λ− λ0) + β2(λ− λ0)2 + β3(λ− λ0)3, (3.1)

where λ0 is the central wavelength for each window. Given that each polynomial fit is

used to determine the smoothed flux only at λ = λ0, this implies that for each wavelength:

Flog = log10 F
obs
λ

∣∣∣∣
λ=λ0

= log10 β0, (3.2)

dFlog =
d log10 F

obs
λ

dλ

∣∣∣∣
λ=λ0

=
β1

β0 ln 10
, (3.3)
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finally propagating the errors:

δFlog =
δβ0

β0 ln 10
, (3.4)

δdFlog =

∣∣∣∣
β1

β0 ln 10

∣∣∣∣

√
δβ2

0

β2
0

+
δβ2

1

β2
1

− 2cov(β0, β1)

β0β1
, (3.5)

where δβi denotes the uncertainty associated with the determination of parameter βi and

the covariance between the first two parameters is represented by cov(β0, β1) . The weight

matrix elements are then defined as wi = δF−2
log or wi = δdF−2

log for the logarithm and

derivative cases, respectively.

There are a few supernovae within the SNfactory set whose errors are an order of

magnitude smaller than the ones of the bulk of the data. This happens for bright SNe,

where the number of counts is high and the Poisson error small. For example SN 2007le,

being one of the nearest supernovae in the sample, has errors much smaller than most

of the other objects. If the EMPCA is carried out with errors as they come out of the

SG filter, it would overweight the two or three supernovae with the smallest errors and

the first components would point in the direction of these few objects. This behaviour of

EMPCA in the presence of few objects with a noise much lower than the rest of the sample

is also highlighted by Bailey (2012, section 8.3). To overcome this problem, we artificially

decreased the weight of 52 SNe (42% of the sample) in order to have no SN with a weight

larger than 90 times the sum of the weights of the other objects. Results are not biased

towards these objects and the PC space is stable as long as their number is kept between

∼ 25% and ∼ 75% of the total data set. We also performed the analysis without changing

the initial weights, but removing the 8 SNe with lowest noise from the initial sample.

The test returned the same results, demonstrating the low sensitivity of this procedure

regarding the method used for down-weighting. Once the PC space is determined, the

spectra are not downweighted to obtain the projections.

3.2 Publicly Available Spectra

In this section we make use of the set of techniques developed in in the previous chapters for

the study of SN Ia spectral time series and photometry and we apply them to a database

of public data. Publicly available SNe include a large number of very nearby ones with

well observed low noise spectra. These publicly available data have a larger diversity in

properties than what was observed by SNfactory and a large diversity in spectral properties

is important for the comparison with models. In fact, the modelled explosion scenarios

that we will discuss could be the explanation for normal SN Ia or for peculiar objects.

Finally, among the public data there is a large number of well observed early spectra

(earlier than a week before B-max). The early behaviour, on the other hand, is crucial to

constrain models and, in addition the radiation transport codes used for the modeling work

better for the early phases. Therefore, in order to construct a metric space for such an
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analysis we collected a large sample of SN Ia spectra publicly available in literature. The

sources are the CfA spectroscopic release (Blondin et al., 2012), the Berkeley Supernova

Program (Silverman et al., 2012), the Carnegie Supernova Project (CSP, Folatelli et al.,

2013). We are also using SN catalogs as SUSPECT 2 and WISEREP (Yaron & Gal-Yam,

2012). The spectra have been de-redshifted by using the heliocentric redshifts tabulated

in Blondin et al. (2012) (CSP spectra are published in rest frame).

The photometry and the B − V colors are collected from Hicken et al. (2009). They

obtained them from light-curve fitting using MLCS2k2 (Jha et al., 2007). The observed

photometry is obtained by filters in the observer frame (the observatory). The values in

the object rest frame, typically redshifted due to the cosmic expansion, need to be obtained

from the observed ones with interpolations that are called K-corrections (e.g Nugent et al.,

2002). The photometry and colors were K-corrected, corrected for Milky Way extinction,

and corrected for time dilation. The host-galaxy extinction was not removed. The CSP

photometry comes from Stritzinger et al. (2011).

To estimate the distance of nearby galaxies from the measured redshift it is usually

impossible to know the proper motion of the galaxy in question. But also our solar sys-

tem has a non negligible proper motion, compared to the Cosmic Microwave Background

(CMB). The proper motion of our solar system is well known and can be taken into ac-

count. This is usually done correcting the observed redshift by the projection of the proper

motion of the Sun along the direction of the considered galaxy. This is called CMB cen-

tered redshift, i.e. the redshift that we would observe if we were in the CMB rest frame.

The B-band photometry is transformed into absolute magnitudes using the CMB centered

redshift measurements from Hicken et al. (2009). The error of the absolute magnitude is

computed adding in quadrature an error due to the peculiar motion of the host galaxy.

We assume a standard deviation of 500 km s−1 for this peculiar velocity (Hawkins et al.,

2003).

Data Treatment of the Public Data

As for the SNfactory data set, the input matrix for the analysis is constructed treating

every supernova as an individual observation and treating the spectra at different epochs

as different observables. The input vectors of this matrix are constructed concatenating

spectra at different epochs in the spectral series. The EMPCA code from Bailey (2012)

deals automatically with missing epochs and/or missing wavelength ranges in the data.

The derivative analysis frees us from the need of flux calibrated spectra with known dis-

tances, and the large number of well observed low noise nearby SNe allows us to increase

the included range of epochs. We now include spectra from −12.5 days up to +17.5 days

from B-maximum. The spectral coverage of CfA supernovae, by number the largest of

the sample, is usually limited to below ∼ 7000Å. This restricts our current analysis to a

spectral range between ∼ 3500Å and ∼ 7000Å. This is not an issue, however, since all the

2http://www.nhn.ou.edu/~suspect

http://www.nhn.ou.edu/~suspect
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information red-ward of 7000Å (mostly in the IR triplet of Ca ii) is also present in the

included wavelength range.



Chapter 4

Principal Components

Interpretation and Metric

Space Comparison1

We present below, side by side, results from the application of the EMPCA to SNfactory

data, with matrices built from Flog and dFlog (Figures 4.1 and 4.2, and Figures 4.3, 4.4 and 4.5).

Hereafter, the PCs derived from a data matrix based on Flog will be referred to as PCiFlog ,

with i denoting the PC number. Alternatively, PCs calculated from a matrix based on

derivatives will be simply called PCi. This direct comparison allows the reader to clearly

recognize the differences and advantages in using the derivatives, which is a crucial step

for the subsequent PLS analysis presented in section 5.1.

4.1 Principal Components

Figures 4.1 and 4.2 show the behaviour (first panel) and the contribution to the recon-

structed spectra (second to fourth panels) of the first three eigenvectors for analyses based

on Flog and dFlog, respectively. In both figures, the first panel displays the functional form

of the PCs themselves, while the remaining panels show the effect we can achieve in the

final reconstruction by increasing the weight assigned to each PC within the boundaries

allowed by the data. The reconstructions presented here are non-cumulative. In other

words, the gray region in each panel represents features which arise when combining the

mean spectrum with each PC separately. From this, we see that the first eigenvector

computed from Flog (Figure 4.1) leads to a slow variation with wavelength in the recon-

structed result. Its influence can be easily associated with a constant that allows a rigid

translation in flux, although is also carries some discrete wavelength dependent features.

1Part of this chapter is published in Sasdelli et al. (2015)
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Figure 4.1: First panel shows the first

three eigenvectors obtained from the anal-

ysis on Flog. The second to fourth pan-

els illustrate the main spectral features

tracked by PC1, PC2 and PC3. All panels

correspond to a spectrum taken between

−6 and −4 days relative to B-band max-

imum. Blue lines denote the mean spec-

trum. Gray regions were obtained by re-

constructing the spectrum with only 1 PC

and varying the scalar coefficient within

the 1σ range given by the data. The PC2

and PC3 bare similarities with the Si and

Ca components found by Chotard (2011).
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a data matrix based on dFlog.
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Also, it clearly describes a much larger variance than the next two components (larger area

covered by the gray region, second panel of Figure 4.1). The first PC is largely influenced

by dust, with its long wavelength behaviour being consistent with a Cardelli et al. (1989)

reddening law, the dust typical of the Milky Way. However, significant contributions to

the flux and to the slope of this eigenvector due to absolute magnitude and intrinsic color

variations are likely. The mixing of intrinsic and extrinsic properties is avoided by the

PCA based on the derivative. For dFlog (Figure 4.2, panels 2–4) one can notice that an

important role is assigned to small scale variations. Moreover, the variance covered by

the first PC is comparable to that of the others. This is a direct consequence of our

choice of removing the overall flux information from the input data through the use of

the derivative. In this analysis, the first three PCs show variations of pseudo-equivalent

widths (pEW) and velocities of many lines, some of which are studied in more detail in

section 5.1.

4.2 Metric Spaces

The projection of SNfactory data in a 2-dimensional PC space, obtained from Flog, is

displayed in Figure 4.3. Individual objects are coloured following the classification scheme

defined by Wang et al. (2009), where high-velocity SNe are those whose velocity of the

Si ii 6355 Å is more than 3σ above its mean value. In what follows, we consider the

mean +3σ equal to 12200 km s−1, as computed by Blondin et al. (2012). We also high-

lighted a few 91T-like SNe (red stars), following the classification used by Scalzo et al.

(2012). 1999aa-like SNe are not highlighted as 91T-like. Crosses correspond to 1σ un-

certainties due to random seed variation and ellipses represent the 1σ errors coming from

missing data in the projected spectral sequence and measurement noise added in quadra-

ture. After exploring a large range of the MC parameters, our results show that 25

realizations were more than enough to the secure stability of the error bars.

Figure 4.3 can be considered to be an alternative visualization of the same effect as

presented in Figure 4.1: the first PC obviously contains a larger part of the total variance,

and consequently the interpretation of the subsequent PCs is obscured. In this context,

although we can identify a certain clustering of 91T-like SN in larger values of PC1,

contamination is still significant, and an attempt to separate the set according to these

features would certainly present important drawbacks. This high level of contamination

is mainly due to reddening. This is shown clearly by the variation of the projections of

SNF20080720-001 after a reddening correction of up to E(B − V ) = 0.4 with a Cardelli

et al. (1989) law (magenta line in Figure 4.3). This object has an observed B − V color

of ∼ 0.4, one of the reddest SNe in the SNfactory sample. Figure 4.4 shows the analogous

situation for PC2 × PC3 parameter space. The magenta line corresponds to the reddening

effect still present in the second and third PC in flux space, showing that the PCA in fluxes

is not able to isolate the effect of reddening in the first PC.

Figure 4.5 shows how this situation changes when the analysis is based on dFlog. The
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Figure 4.3: Projections of SNfactory data on the first two PCs for an analysis based on

Flog. Each point represents a supernova, colored according to the spectral classification of

Wang et al. (2009). A few 91T-like SNe are also highlighted. The crosses correspond to

1σ errors coming from random seed variation and the ellipses denote 1σ uncertainties due

to missing data and measurement noise. The magenta line shows the effect of reddening

on the projection of the SN SNF20080720-001, which presents an observed B−V color of

∼ 0.4 mag.

crosses due to the instability of the EMPCA algorithm are completely negligible, the

ellipses due to noise and missing components are large only for a few very noisy SNe. The

slowly declining 91T-like SNe (red stars) are at the bottom edge of the diagram, clearly

separated from the high-velocity ones on the right (yellow squares). The spectroscopically

normal SNe (blue triangles) are spread throughout the parameter space, indicating a larger

intrinsic variability between these objects. Visually inspecting spectra from the SNe in

the upper-left corner, we also realize that this space is occupied by fast declining SNe

with cooler spectra showing a lower ionization ratio. According to the projections in our

metric space there are no clear separations that justify the definition of subclasses. SNe Ia,

accordingly to spectral features, look like a continuous distribution of objects. In other

words, there is no clear separation in velocity or EW of lines which justifies or objectively

indicates a threshold for defining a subclass, although there are undoubtedly fundamental

differences between objects in the extremes. For example, 91T-like SNe show a “bridge”

of objects that connects them with the bulk of normal ones. The same is true for the ones

with a high velocity of Si.

The marginal effect coming from reddening in this context is illustrated by the magenta

line in Figure 4.5. As in Figure 4.3, it represents the translation in PC space experienced

by SN SNF20080720-001 when a 0.4 mag reddening correction is applied. Comparing

the magenta lines in both figures demonstrates the power of the derivative analysis in

minimizing the effect of dust in the PC space. Although this is one of the most reddened
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Figure 4.5: The figure shows the scatter plot of the first two components of the PCA

analysis for dFlog. The tiny magenta line shows the negligible effect of reddening on the

values of the PCs. Three classes of SN Ia are highlighted: normals, 1991T-like, and those

with high velocity of Si.

SNe, the change in the PCs is merely marginal. The same trend is observed for all the

other objects in this sample.

It is important to keep in mind that this specific geometrical configuration in PC

space will always be related to the sample of objects used to construct it, and it is not

a “universal” space for SNe Ia. However, it is reasonable to expect that the addition of

more high-quality data leads to an asymptotic PC space configuration which summarizes

the similarities and differences within the SNe Ia sample used in its construction. Nev-

ertheless, with the SNfactory data at hand, we are already able to demonstrate that the

analysis is useful to look for correlations in the data, attack the problem of SN Ia spectra

characterization and search for outliers.

Although this “universal” PC space is merely an asymptotic state, we can have a hint

on how close it is to the ideal configuration. In other words, we can test the stability of a

given PC space through the successive application of the EMPCA algorithm to different



4.2. METRIC SPACES 33

subsets of the original data. This procedure is called Cross-Validation (CV) and it has

been used in many fields where the configuration of a given method depends on the initial

data set (Arlot & Celisse, 2010). Detailed results from a CV test are presented in Appendix

A.1, and these demonstrate the stability of the space presented in Figure 4.5.

After analysing the first pair of PCs and confirming the stability of the PC space,

we are left with an obvious question: how many PCs are necessary to describe the data

set and throw away a substantial part of the noise? In a standard PCA the fraction

of the total variance associated to each PC, or to a subset of them, can be estimated

through the cumulative percentage of total variance (Jollife, 2002; Ishida & de Souza, 2011;

Benitez-Herrera et al., 2013). Given that the eigenvalues associated with each eigenvector

constitute a measurement of the data variance along that PC direction, this means that

the ratio between the largest eigenvalue and the sum of all eigenvalues gives an estimative

of the percentage of variance (or information) described by the first PC. However, in the

EMPCA approach we do not have access to all eigenvalues at once, since the eigenvectors

are calculated one at a time through the EM algorithm. Nevertheless, we do expect that

only a handful of PCs will actually carry meaningful information and this hypothesis can

be tested with a small sub-sample of them.

We used the EMPCA approach to calculate the first six PCs and their corresponding

data set projections. From these, we determined the variance along each PC. By definition,

the first PC contains a larger fraction of the total variance than any other PC, so we used

it as a normalization factor. In this context, we can obtain an estimate of how much

information is stored in a certain PC, in comparison to that in the first one.

In Figures 4.6 and 4.7 we show the variances normalized to the first component for the

analysis on Flog and dFlog, respectively. Figure 4.6 shows the same result we have seen

in Figures 4.1 and 4.3, with most of the information concentrated in PC1Flog . From a

physical perspective, performing the analysis in this parameter space is challenging due to

extinction and intrinsic luminosity variations. Extinction effects are present in all the prin-

cipal components, making it difficult to disentangle two very different physical processes.

For example, in this context two similar SNe subjected to different amounts of reddening

would be distant from each other in the PC parameter space (as illustrated by the ma-

genta line in Figures 4.3 and 4.4). On the other hand, when using dFlog we concentrate

the investigation on spectral features which are crucial to SNe Ia characterization and

consequently a larger number of PCs are found to be significant. The derivative approach

removes the effect of reddening, a physical process that causes a large amount of variance

in the data, making it easier to train the PCA space. From Figure 4.7, it is clear that

PC2 to PC5 carries at least 20% of the variance in PC1 each and the fractions stabilized

for PC6. Thus, we conclude that 5 PCs are enough to describe most of the variance in

SNfactory.

In Figure 4.8 some of the reconstructions are directly shown. We present the original

spectra along with reconstructed ones using two and five PCs. The plot shows a few

SNe at maximum for clarity, but this behaviour holds for all epochs between −10 to +10
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the first 6 PCs from Flog data matrix. The
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tained from dFlog data matrix.

days. Here, the consequences of our choices in focusing on intrinsic features are obvious.

Although the overall spectral shape and most lines are very well recovered, the ratio

of fluxes at long wavelengths (color) is not. This is welcome and expected because the

derivative analysis does not give much weight to the mean slope of the spectra, making

the analysis independent of individual SNe reddening and reshapes the observed spectra

so to allow a fair comparison with synthetic models. The comparison in the derivative

space is shown in Appendix A.3.

4.3 High Velocity Features

The first two PCs contain a large part of the spectral variance in the SNfactory data.

This will be studied in detail in the subsequent sections. We highlight the significant role

played by the third PC shown in Figure 4.2, which tracks the variation of the so colled high

velocity features (HVFs) of Ca ii H&K and infrared lines without particularly affecting the

rest of the spectrum. This figure represents the eigenvectors in the epoch range between

−6 and −4 days relative to B-maximum, since the high-velocity part of these lines usually

disappears at later epochs.. The third PC, by construction uncorrelated with the first two,

seems to be mainly responsible for tracking variations of HVFs of Ca, thus, confirming that

HVFs of Ca are a property of the outer layers of the ejecta and they are not correlated with

the underlying structure (Mazzali et al., 2005). Such an effect can be achieved with an

asymmetric/clumpy outer layer of the ejecta convolved with line-of-sight effects (Tanaka

et al., 2006) and is a good indicator of the kind of astrophysical characteristics which can
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possibly be recognized also in synthetic spectra.

We want to investigate the behaviour of the HVF of the Ca ii lines in some more detail.

The high velocity component commonly appears in the features originating from two

groups of lines: the Ca ii H&K doublet in the blue part of the spectrum, and the Ca ii IR

triplet in the near-infrared. A subspace of our metric space encodes the information

to describe these lines. We want to characterize this subspace, find its orientation and

dimensionality. An easy way to do this is to compare the projections of the SNe in the

metric space after removing the Ca lines from their spectra. That is, we treat the parts

of the spectrum that show HVF of Ca as missing data. The new projections are different

from the original ones by a vector that lies inside our subspace. Figure 4.9 shows how much

the projections change in the first three components. The directions are strongly aligned,

suggesting that they belong to a 1D subspace. To quantify this and to check the shape of

this subspace of the 5 important dimensions we simply run PCA on these displacement

vectors. The variances of this PCA are shown in Figure 4.10. The first component largely

dominates over the others. This implies that the space is effectively 1D, and it means

that the additional information needed to completely describe the HVF of Ca ii is just

one parameter. Since this direction is very different from the first two components for

all the suepernovae in the PCA space, it means that the physical mechanism behind the

formation of the HVF of Ca ii is very different from and uncorrelated with what drives

the physics of the explosion. It is something that happens in the outermost layers of the

ejecta only and that is not related with the mechanisms that produce the big diversity

within the SN Ia class.

A possible explanation for the presence of the HVFs is interaction with circumstellar

material. H in the circumstellar gas increases the electron density in the material. This is

necessary to decraease the ionization state of the gas and to have a significant number of

Ca ii ions. Ca ii has some of the strongest lines in the astrophysical context and shows up

strongly in the spectra also in small quantities. In this picture the Ca lines would come

from the metallicity of typical H rich material.

Another promising possibility to explain the HVFs of Ca is the detonation of He in

an outer shell of the white dwarf. If this happens at the right density, it can produce an

external layer mostly composed of Ca. The He detonation proceeds in the alpha process up

to an element that is related to the density of the fuel. With the right density, about half

of the He is converted into Ca without a significant amount of lighter or heavier elements

of the alpha chain. He does not easily show up in the spectra, and it would not be easy

to detect it. The variability of this feature is largely uncorrelated with the behaviour of

the bulk of the explosion. This can be easily explained by differences in the mass of the

He layer, if the burning is triggered at densities within the range that produce abundant

Ca. It is not clear if an overabundance of Ca can explain the quick disappearence of the

HVFs of the lines in the post-maximum spectra. A significant electron density due to He

could lead to a quick change in the ionization state of Ca. In fact, the double detonation

scenario predicts the detonation of a He layer on the surface of the white dwarf. In this
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scenario the He detonation acts as the trigger of the explosion. This scenario is explained

in detail in chapter 6.

4.4 Spectral Series and EMPCA on the Publicly Avail-

able Spectra

We applied our methodology on SN Ia spectra publicly available at the time of writing.

The details of the database are described in section 3.2.

The metric space obtained from public data is very similar to the one obtained in our

previous section from SNfactory data. The metric space resulting from PCA has also a

low dimensionality. The output consists of just five significant components. Projecting the

supernovae on the first three principal components (Figs. 4.11 and 4.12) shows the groups

found in our previous section (Fig. 4.5). Normal SNe Ia are on the top-left side of the

cloud of points in Fig. 4.11, supernovae with high velocity photospheric Si ii 6355 Å have

a large first component, 1991T-like events have negative second and third components.

In the public sample we have also fainter supernovae. There is a significant number

of 1991bg-like ones, characterized by fast declining light curves, low luminosity and low

temperature of the spectra. At the bottom of Fig. 4.11, further apart than 1991T-like,

there are a number of supernovae left unclassified by Blondin et al. (2012). Many of them

are 2002cx-like. This is another elusive class of faint objects characterized by hot spectra

and very low line velocities. These faint SNe Ia are not well represented in the SNfactory

sample. The reconstruction of the original spectra are generally excellent. In Fig. 4.13 we

show the comparison between the reconstruction and the spectra of SN 2008Z, a SN with

a complete spectral coverage.
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Figure 4.9: The figure shows the displacement in the projections due to the HVF of Ca ii.

The circles are the original projections. The tip of the line shows the projection without

the information in the Ca lines.
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Figure 4.10: The figure shows the variances in the displacements shown in Figure 4.9.

The first component is dominant. The subspace encompassed by these displacements is

effectively 1D.
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Figure 4.11: Plot of the first two principal components for the SN Ia of our public sample.

The metric space obtained from the public SNe Ia clearly distinguishes the spectroscopic

subtypes (color coded). The classification is due to Blondin et al. (2012).
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Figure 4.12: Plot of the first and the third principal components for the SN Ia of our

public sample. This is a viewing angle on our metric space different from Fig. 4.11. The

classification is due to Blondin et al. (2012).
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Chapter 5

Comparison with Discrete

Observables1

In the context of the PLS we will now study correlations between the PC space and a

few other photometric and spectroscopic quantities. We present a closer look at each of

these characteristics and describe in more detail how to obtain such information from the

derivative PC space.

The absolute B-band magnitude at maximum is probably the most important quantity

for the characterization of SNe Ia. SNe Ia are standardizable candles because a high degree

of homogeneity in SN Ia absolute magnitudes can be achieved using simple transformations

based on parameters of their light curves. Given the crucial role played by these objects

in astronomy and cosmology, a handful of techniques have already been developed aiming

at properly standardizing them. The empirical relation between brightness and decline

rate demonstrated by (Phillips 1993) is considered to be one of the first standardization

techniques for SNe Ia. It is given in terms of ∆m15(B), which represents the decrease in

B-band magnitude at 15 days after maximum brightness. Brighter SNe tend to decline

more slowly and consequently present a lower value for ∆m15(B). This standardization

was substantially improved by introducing corrections based on broadband colors (Riess

et al., 1996b; Tripp, 1998; Phillips et al., 1999). Ostensibly such color corrections account

for extinction from dust, but most likely also contain a hidden color-luminosity correlation

intrinsic to the SNe Ia themselves.

For the purpose of comparing models with observations, any successful model should

obtain the correct SN Ia absolute magnitudes, and contain the brighter-broader relation.

However, in the derivative PCA space the overall flux scaling and broad-wavelength color

have been removed, and therefore they are not directly represented in the derivative PCA

space. Fortunately there are a number of spectroscopic indicators known to correlate with

overall lightcurve peak brightness, width, and color. For instance, Nugent et al. (1995)

1Part of this chapter is published in Sasdelli et al. (2015)

43
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found that the ratio between the depths of the Si ii 5972 Å and the Si ii 6355 Å lines

correlates with peak B-band absolute magnitude. The pseudo Equivalent Width (pEW) at

B-maximum of the Si ii 4000 Å line correlates very well with lightcurve width (Arsenijevic

et al., 2008; Bronder et al., 2008; Chotard et al., 2011a), as does that of Si ii 5972 Å

(Hachinger et al., 2006). There is also evidence that the velocity of the Si ii 6355 Å line is

correlated with the intrinsic SN color (Foley & Kasen, 2011). Since information related to

pseudo equivalent widths and velocities will exist, and possibly be enhanced by taking the

flux derivative with respect to wavelength, it is quite likely that the derivative PCA space

will retain the ability to differentiate between supernovae and models, having different

luminosities, light curve widths, and intrinsic colors. Here we apply PLS to explore the

presence of such correlations in our derivative PC space.

5.1 Measurement of Discrete Observables

We wish to measure the B-band magnitude at maximum and ∆m15(B) with the fewest

possible modeling assumptions. Therefore, we simply fit a third order polynomial to the B

magnitudes measured between −10 and +25 days from maximum using errors coming from

the noise of the spectra. The fit is evaluated at maximum and at +15 days after maximum

to obtain the peak B-band magnitude and ∆m15(B), respectively. Uncertainties come

from an error propagation of parameters from the polynomial fit. The V -magnitude at the

epoch of B-band maximum is recovered from an analogous fit run on the V -magnitudes.

The difference of the two magnitudes at B−maximum gives us the B − V color. The

input magnitudes are synthesized from our spectrophotometric time series, using the B

and V filter responses given by Bessell (1995). Absolute magnitudes considered here are

obtained from the observed apparent magnitudes at B-band maximum assuming Hubble-

flow distances, without any extinction corrections. The errors on the absolute magnitudes

are computed from the uncertainties in the light-curve fits and added in quadrature to

uncertainties due to peculiar velocity of the host galaxies of ∼ 500 km s−1 (Hawkins et al.,

2003).

As a point of comparison, we also performed light curve fits using the well-known

Spectral Adaptive Lightcurve Template, (SALT2; Guy et al. 2007) code. SALT2 employs

an internal model constructed using a linear PCA approach. The model is described by

stretch (x1) and color (c) parameters. The x1 parameter is analogous to ∆m15(B), while

c is analogous to B − V . Here the fits use magnitudes synthesized in the BV R top-hat

filters described in Pereira et al. (2013).

Here we focus on three key spectroscopic features: Si ii 6355 Å, Si ii 5972 Å, and

S ii 5640 Å. Technical details of the algorithm used to measure their spectroscopic pseudo

equivalent widths and velocities directly from the SNfactory spectra are presented in Ap-

pendix A.2. Since we do not possess a spectrum at maximum for all of our SNfactory

SNe, we determined velocities and pEWs for every available spectra within −7 days and

+7 days for each SN. These values were then used to perform a linear fit from which we
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PC1 PC2 PC3 PC4 PC5

D(Si ii 6355−vel) 0.74 0.58 0.13 0.24 0.21

D(S ii 5640−vel) 0.81 0.35 0.35 −0.21 0.24

D(Si ii 5972−pEW) −0.58 0.39 0.21 0.33 0.60

D(Si ii 6355−pEW) −0.12 0.64 −0.38 0.59 0.30

D(Bmag) 0.40 −0.63 0.49 −0.32 −0.32

D(Vmag) 0.49 −0.60 0.49 −0.21 −0.34

D(B − V ) 0.76 0.09 0.43 0.45 −0.13

D(c) 0.76 −0.06 −0.24 0.58 0.11

D(∆m15) −0.53 0.25 0.07 0.39 0.71

D(x1) 0.66 −0.45 −0.05 −0.26 −0.54

Table 5.1: Directions in PC space found by PLS. Each direction is defined as a linear

combination of the first 5 PCs whose coefficients are shown above (e.g., D(Si ii 6355−vel)

= 0.74×PC1 + 0.58×PC2 + 0.13×PC3 + 0.24×PC4 + 0.21×PC5).

derived the values at maximum and corresponding uncertainties. We required a minimum

of three successful measurements in this time window for the SN to be considered for the

fit. This method proved to be quite robust. However, it is not capable of distinguishing

the HVFs from the normal photospheric component when both are present. Thus, every

time we mention independently measured spectroscopic features, we are referring to the

velocity of a given line and not its HVFs counterparts.

5.2 Results from Partial Least Square

In section 4.2, we saw that five components are sufficient to address most of the variance

in the spectral features present in SNfactory data. Therefore, from now on we will work

in a 5D PC space and use PLS to establish correlations between these PCs and other in-

dependently measured parameters. Our goal is to demonstrate the potential encompassed

by our derivative PC space, which summarizes the evolution of spectral features of a large

SN Ia sample. Using the nomenclature of in section 2.5, the PLS technique was used to

find the direction in 5D PC space (X ) which best describes each one of the SNe features

cited in the previous section (1D - Y).

Figure 5.1 shows PLS results for the spectroscopic and photometric features discussed

in section 5.1, projected – for pedagogical reasons – onto the first 2 PCs. Each one of

these lines is obtained from a linear combination of the first 5 PCs, whose coefficients

are presented in Table 5.1. In this plot we see the first evidence of important physical

information present in the derivative PC space: the connection between the pEW of

Si ii 5972 Å and ∆m15(B). As expected from the studies of Nugent et al. (1995) and

Hachinger et al. (2006), the direction found by PLS for the pEW of this line is similar to
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Figure 5.1: The directions maximizing the covariance with various SN parameters derived

in a 5-dimensional space and projected into the plane formed by the first two principal

components. Gray points are the same as those shown in Figure 4.5. Directions correlated

with spectroscopic quantities are coloured in black (solid), photometric quantities in blue

(dashed), and results from the SALT2 fit in red (dash-dotted).
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Pearson coeff. σres

Si ii 6355−vel 0.85 612 km s−1

S ii 5640−vel 0.93 351 km s−1

Si ii 5972−pEW 0.85 4.9 Å

Si ii 6355−pEW 0.92 9.9 Å

∆m15 0.78 0.13

x1 0.74 0.60

Table 5.2: Pearson correlation coefficient for the linear fit between the directions found

by PLS and independently measured observables. σres corresponds to the mean residual

between the measured observables values and those determined through PLS. The Pearson

correlation coefficient is a measure of the strenght of a correlation and can vary between

−1, 0, and +1 (respectevely, perfect anti-correlation, no correlation, perfect correlation).

that of ∆m15(B) (i.e. opposite to −∆m15(B), Figure 5.1). The velocity of Si ii 6355 Å

is seen to correlate with color, as expected from the study of Foley & Kasen (2011).

Interestingly, we also find a strong correlation of the velocity of S ii 5640 Å with color. In

terms of our PCs, we find that PC1 correlates best with indicators of color.

In Table 5.2 we present the correlations given by PLS for SNe features with each one

of the directions highlighted in Figure 5.1. The fact that many important SN features

have strong signatures in our new metric spaces gives us confidence that our framework

can help us to place better synthetic spectra in relation to their real data counterparts.

Next we examine these trends in more detail.

5.3 Spectroscopic Observables in Derivative Principal

Component Space

Figure 5.2 shows the correlation between the velocity of Si ii 6355 Å at maximum and

the corresponding direction found by PLS in PC space. From Table 5.1, we see that it

is highly correlated with PC1 and PC2 but not so much with PC3, PC4 and PC5. This

is still another angle on the HVFs discussed before: the velocity of Si ii is among the

persistent features of SNe Ia, and not correlated with the mechanism that gives rise to the

HVFs of Ca lines (section 4.3). The few outliers on the high-velocity side of Figure 5.2 are

due to strong HVFs of Si ii still present around maximum. Their velocity is not predicted

by the combination of components that predicts the photospheric velocity, suggesting also

that the HVF of Si ii is not correlated with the main physics of the explosion and follows

the more diverse behaviour of the outer layers.
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Figure 5.2: Correlation between PLS re-

sult and the Si ii 6355 Å velocity at B-

band maximum. The few outliers on the

high-velocity side are due to HVFs of Si

(see text).
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Figure 5.3: Same as Figure 5.2, but for the

S ii 5640 Å velocity at B-band maximum.
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Figure 5.4: Same as Figure 5.2, but for the

Si ii 5972 Å pEW at B-band maximum.
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Figure 5.5: Same as Figure 5.2, but for the

Si ii 6355 Å pEW.
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Our ability to describe the velocity of S ii 5640 Å using the 5D PC space is illustrated

in Figure 5.3. Given the weakness of this line, the quality of the fit is quite impressive

(Pearson correlation coefficient (PCC) is 0.93). This is not completely unexpected if one

realizes that this line is usually narrower than the saturated Si ii 6355 Å line, making a

better measure of the velocity possible. More generally, S ii lines are not affected by HV

features, which can complicate the measurement of the photospheric component. These

characteristics suggest that the velocity of S ii 5640 Å might present a viable alternative to

the Si ii 6355 Å line for classification purposes. The S ii lines form deep in the ejecta and

are good tracers of the photospheric velocity (Blondin et al., 2006). It is expected that for

objects with similar luminosities and rise times, a larger photospheric velocity corresponds

to a larger radius of the photosphere, a lower radiation temperature and, consequently, a

redder color. The ability to extract such an effect from our derivative PC space is very

promising as a tool for synthetic spectra characterization. Finally, we emphasize that,

although the PC space itself encompasses information regarding the entire time window

studied here (−10 to +10 days around B-band maximum), the directions obtained by PLS

are bounded by the epoch in which the corresponding spectral features were measured. In

this context, the correlations presented in Figs. 5.2 to 5.8 are only valid at maximum. An

analogous study aiming at a different epoch would require the determination of spectral

features at the epoch in question.

Figures 5.4 and 5.5 show the correlation obtained by PLS between the pseudo equiv-

alent widths of Si ii 5972 Å and of Si ii 6355 Å which are the basis of the Branch et al.

(2006) classification scheme. These have Pearson correlation coefficients of 0.85 and 0.92,

respectively. This is another indication that information used by others to differentiate

between SNe Ia strongly persists in the derivative PCA space.

5.4 Photometric Observables in Derivative Principal

Component Space

Having established correlations between spectroscopic luminosity and color indicators and

our 5D PC space, we expect to find correlations with B-band peak magnitudes and colors.

However, unlike the spectroscopic features discussed above, or the photometric ∆m15(B)

parameter, these are strongly affected by dust extinction and reddening. The information

on the amount of the extinction is not present in the dFlog space. This means that observed

colors and magnitudes cannot be completely reconstructed using this technique alone.

Nonetheless, it is of interest to examine these dust-polluted parameters since their intrinsic

behavior is critical for understanding SN Ia physics and standardization for cosmology.

This may also allow advances in separating the intrinsic color from dust contributions.

Figures 5.6 and 5.7 show the correlation between the directions in PC space and the

observed B and V absolute magnitudes, respectively. All points represent rest frame

magnitudes corrected for Milky Way but not for host-galaxy reddening. The well defined



50 CHAPTER 5. COMPARISON WITH DISCRETE OBSERVABLES

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08
D(Bmag)

−20.0

−19.5

−19.0

−18.5

−18.0

−17.5

−17.0

B
m

ag

Figure 5.6: Correlation between PLS re-

sult and the B-band magnitude. The red

points belong to SNe much redder than

others with the same spectral character-

istics.
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Figure 5.7: Same as Figure 5.6 for V -band

magnitude.
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Figure 5.8: Same as Figure 5.6 for the

B − V color. The red points belong to

significantly reddened supernovae (E(B −
V ) & 0.1), and the blue points represent

almost unreddened ones.
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Figure 5.9: Same as Figure 5.8 for SALT2

color parameter c.
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Figure 5.11: Same as Figure 5.10, but for

the x1 parameter of SALT2.

upper envelope situated below the green triangles in each plot suggests a locus potentially

dominated by SNe Ia with little extinction. The presence of a slope to this upper envelope

versus D(B) and D(V) is likely due to SNe Ia suffering little dust extinction. Because

D(B) and D(V) are largely free of the effects of extinction, this strongly suggests that the

derivative PC space contains information on the intrinsic luminosity of SNe Ia.

In an effort to find the approximate direction of the luminosity vector, we attempt

to isolate the least extincted SNe Ia under the assumption that brighter SNe Ia have

less extinction using an iterative rejection scheme. This type of approach is common

when attempting to establish intrinsic peak magnitudes for many SN Ia standardization

methods, however, it assumes that D(B) and D(V) impose a sufficient degree of order in the

relative SN Ia luminosities, which may be an oversimplification (e.g., Rigault et al. (2013)).

(The crispness of the upper envelope is encouraging in this regard.) We applied PLS to

the entire data set and then performed a linear fit between the observed magnitudes and

the output direction in PC space. Based on this linear fit, only supernovae brighter than

the linear fit, or fainter by less than 0.3 mag, are selected for the next iteration. PLS was

applied again to the chosen subset and the process was repeated until convergence. The

algorithm converged rapidly to a direction that represents the variation of the brightest

SNe Ia absolute magnitudes with D(B) or D(V). We found that the output direction in

PC space depends only weakly on the criteria used to reject SNe in each iteration. Blue

points in Figures 5.6 and 5.7 correspond to SNe selected in the final PLS iteration, the

blue line denotes the final linear fit, and red points represent rejected objects.

A similar procedure can be applied to color, using the assumption that the bluest
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SNe Ia suffer the least amount of reddening by dust. This assumption is only effective

if D(B-V) imposes a sufficient amount of homogeneity in the SNe Ia colors. Again, the

crispness of the blue end of the color envelope offers encouragement that this is a sensible

approach. Figure 5.8 shows the correlation between B − V color at maximum and the

direction in PC space found by the iterative process described above. As in previous plots,

each point corresponds to a color measurement without any attempt to correct for host

galaxy reddening. The surviving SNe (blue dots) represent objects whose reddening is

consistent with the locus of bluest objects to within their measurement errors. Figure 5.9

shows that the SALT2 c parameter has a similar behaviour. This was expected from the

existence of a correlation with B−V color at B-band maximum, however the c parameter

incorporates the color information at other epochs included in the SALT2 fit. Hence, c

corresponds to a more general measurement of the SN Ia color. Here again, because D(B-

V) and D(c) are largely free of the effects of extinction, this strongly suggests that the

derivative PC space contains information on the intrinsic color of SNe Ia.

Finally, Figure 5.10 illustrates the correlation between ∆m15(B) and the corresponding

PLS result in PC space. The Pearson correlation coefficient between these two quantities

is 0.78 (Tab. 2). Discrepancies frequently come from a wrong estimation of the decline

rate. Comparing the polynomial fit used to compute the ∆m15(B) with the SALT2 x1,

the later usually gives better results. The SALT2 fit takes into account all epochs in B, V

and R bands, obtaining a decline rate parameter quite consistent with the one suggested

by the EMPCA analysis (Figure 5.11) for most of the objects. This is also reflected in the

similar directions found to correlate with ∆m15(B) and x1 in Figure 5.1.

We emphasize that the correlations between directions in PC space and global pho-

tometric properties like x1 and ∆m15(B) represent yet another test of the information

encompassed in the metric space. As it was constructed from the entire spectral se-

quences, it is expected to reproduce such photometric observables even though they were

not inserted as features directly into the data matrix. This reinforces our statement that

important information is preserved throughout the entire process.

5.5 Infrared Light Curve Properties and Spectral Prop-

erties

We collected light curve characteristics published by the CSP collaboration. SN ejecta

have a lower opacity in the infrared than in the visible. This permits, with the study

of late infrared LCs, to investigate the inner structure of the ejecta. We investigate the

correlation between the secondary maximum and the spectral properties of the PCA space

with PLS regression.
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Figure 5.12: The figure shows the behaviour of the NIR light curve of the typical SN Ia

SN2007S in the H and in the J bands. The NIR light curves show a second peak at

∼ 30− 40 days from the first peak.
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5.5.1 Infrared Second Maximum

Infrared light curves of SN Ia have a double peaked structure with a second maximum

at around 30 days after the B-band maximum (see the normal SN Ia SN2007S in Fig.

5.12). Kasen (2006) explains the behaviour in the NIR as a combination of the structure

of the abundances and behaviour of the recombination. The NIR emission is explained

as redistribution of the more abundant blue/UV radiation by fluorescent emission by iron

group elements. In a given atomic species, the NIR emission comes from levels with

small energy differences between each other. Higher energy levels are generally numerous

and closely spaced. At high temperature, the occupation of the levels with large energy

increases. Hence, the fluorescence in the NIR of a given species increases with temperature.

On the other hand, at even higher temperatures, the species get highly ionized. Hence,

the emission in the NIR is strongest close to ionization fronts. The temperature in the

ejecta decreases at larger radii and with time. When the ionization front between doubly

and singly ionized species of Co and Fe reaches the iron group rich center the emission in

the NIR gets enhanced and this forms a second peak in the luminosity.

The luminosity and epoch of the first maximum is known to be fairly uniform among

SN Ia and has been proposed to be used as standard candle. The strength and epoch

of this secondary maximum is known to be uncorrelated with the intensity of the first

maximum of the light curve. Dhawan et al. (2015) show that the epoch and strength of

the secondary maximum correlate with ∆m15(B) and with the pEW of Si ii 5972 Å at

maximum. This suggests that these parameters are mainly driven by the mass of 56Ni. We

explore the correlation of the epoch of the secondary maximum with the PLS regression

techniques on the PCA spectral space.

The correlation of the epoch of the secondary maximum with the spectral properties of

the PCA space is quite strong (Figure 5.13). Late time infrared is driven by the structure

of the inner parts of the ejecta. This means that the variability of the inner parts of the

ejecta shows up in the spectra around maximum.

The direction that predicts the time of the second maximum is close to the direction

that predicts the pEW of Si ii 5972 Åat maximum.

5.5.2 Type Ia Supernovae are “Standardizable” Candles in the

Near Infrared

We investigate possible relations between the near infrared (NIR) maximum luminos-

ity and spectral properties. We again use PLS regression between the measured NIR

maximum magnitudes measured by Weyant et al. (2014) and our metric space for spec-

tra. The observed H-band magnitudes that we use come from template fitting using

Snoopy (Burns et al., 2011). The observed magnitudes have been transformed into ab-

solute magnitudes using the host galaxy redshift and assuming a Hubble constant of

H0 = 70 km s−1Mpc−1and Ωm = 0.27. Ωm has very little effect at the redshift of our ob-

servations (0.01 < z < 0.09), the assumption of H0 adds only a constant to the magnitudes
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Figure 5.13: The epoch since B-maximum of the secondary J-band maximum compared

with the prediction from the PCA space of spectra. The errors on the predictor are

computed by k-folding.
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without affecting our analysis. The error on the absolute magnitudes is computed adding

in quadrature the error on the observed magnitudes and the error due to the intrinsic mo-

tion of galaxies. As before, we assume 500km s−1for the peculiar velocity of the galaxies

(Hawkins et al., 2003). In the NIR bands reddening is known to give a small contribution

and we will not correct for it.

Kattner et al. (2012) showed that the absolute magnitudes in the NIR weakly correlate

with ∆m15(B). We show that there is a relation between spectral properties and NIR

magnitudes, in particular on the bright end of the diagram (Figure 5.14). The x-axis

shows the predictor of the absolute magnitude in the H-band found by PLS regression.

The space of the predictors are the PCA space of spectral series.

The luminosity of SN Ia in the infrared is not uniform, as previously suggested. In

particular the high luminosity part of the diagram shows a significant variability that

correlates with the spectral properties. This makes it challenging to use the NIR luminosity

directly as standard candles. On the other hand, the NIR luminosity can be “standardized”

using spectral information, as shown in figure 5.14.

The relation with our predictor space probably has a non-linear nature. The SNe

on the bright end of the diagram display a larger spread of luminosities and the dim

end shows a smaller variability. The spectroscopic properties that predict the H-band

luminosity are shown in Figure 5.15. Spectra are shifted on the y-axis proportionally to

the quantity that predicts the H-band luminosity. The spectra on the top are the ones

with the brightest NIR luminosity. Brighter SNe with “hotter” spectra are the ones with a

larger NIR luminosity. In Figure 5.15 we are restricted to SNe with the spectra at B-band

maximum, but our analysis is able to cope with sparse spectroscopy.

The direction that predicts the luminosity in the H-band is close to the direction that

predicts the pEW of Si ii 5972 Å at maximum. This can be shown by a simple inner product

using the metric defined by the covariance of our PCA space. The values of the inner

products of the predictor of the H-band and of the predictors of ∆m15(B) and Si ii 5972 Å

are, respectively, 0.86 and 0.90. This direction is close to the direction that predicts

∆m15(B), in agreement with (Kattner et al., 2012). These directions, albeit close, are not

equivalent and they are significantly separated from each other. This is unambiguously

shown by Fig. 5.16. The distribution of directions that PLS finds for each of these

quantities is clearly separated from the distributions inferred for every other. This means

that studying our metric space on spectra is not equivalent to study individual spectral

indicators. Our method is an alternative to spectral indicators that can systematically

study the correlations between spectral properties and light curve properties. From a

practical point of view, our metric space takes advantage of spectra in various epochs and

not only at maximum. This allows to not reduce the sample when a maximum spectrum

is not available.
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Figure 5.14: The observed absolute H-band maximum plotted against its best predictor

from PLS on the PCA space of spectra
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The two directions are similar, but significantly different. The distributions are sampled

with k-folding.



Chapter 6

Comparison with Models

Constructing models from first principles is currently the main strategy for modeling Type

Ia supernovae (SN Ia) (Hillebrandt & Niemeyer, 2000).

In doing so, one assumes a progenitor system and explosion scenario and simulates

nuclear burning and the explosion in detail. By varying the (physical) input parameters

different realizations of every scenario are obtained. Currently investigated models are

described in detail in a recent review by Hillebrandt et al. (2013). Since the progenitors

of SN Ia are not known, in most cases the various scenarios are simulated for a wide

range of reasonable parameter values in order to see if the observed diversity of SN Ia can

be explained (Sim et al., 2013; Seitenzahl et al., 2013; Fink et al., 2014). For example,

varying the initial mass in case of sub-Chandrasekhar mass double-detonation models

changes the predicted luminosity of the explosion (Kromer et al., 2010; Sim et al., 2010;

Moll & Woosley, 2013). Alternatively, in some cases specific realizations were studied as

possible explanations of unusual events (Pakmor et al., 2010; Kromer et al., 2013).

In a second step, one computes synthetic light curves and time sequences of spectra

for the models and compares them with observations. The production of the light from

the radioactive decay of 56Ni and 56Co is calculated and the propagation of photons and

their escape from the ejecta is computed, in 3-dimensions usually by means of Monte-

Carlo methods (Kasen et al., 2006; Kromer & Sim, 2009). However, this approach is

computationally expensive and so far only a small part of the parameter space of the

presently favored explosion scenarios was investigated. Moreover, it allows little freedom

to adjust the resulting synthetic observables to fit the observations. Finally, it is not

easy to use observations to guide the explosion modeling. In particular, it is difficult to

compare spectra from individual models with individual supernovae on a systematic and

quantitative level.

The current approach to test models against observations is mostly done by comparing

the light curves of groups of models with the known global properties of light curves of

SN Ia. One of the most important and best known of these properties is the Phillips rela-

tion, that is, the correlation between the decline rate of the light curve and the luminosity

59
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at peak (Phillips, 1993). Due to the relative simplicity of light curves of SNe Ia it is easy

to assess whether realizations of a given explosion scenario follow the Phillips relation

or not. However, comparing the global properties of spectra with model predictions is

a much harder challenge. Up to now it is done mostly qualitatively (’χ2 by eye’) on a

case-by-case basis, that is, by comparing a specific model from a given scenario with an

individual supernova (or a representative example of a particular class) (e.g. Röpke et al.,

2012). It is obvious that within this approach models cannot be tested against empirical

relations between different spectral properties and between spectra and light curves of real

supernova, which would be more constraining for the models.

Here we are using a different approach. In a first step we construct a ’metric space’ for

SN Ia spectral time series by means of a Principal Component Analysis (PCA) based on a

large sample of observed SN Ia (see chapter 2 and section 3.2, respectevely, for a description

of the method and of the database). With PCA is possible to discover correlations between

spectral properties (if they exist) and empirical relations between spectra and photometry

can be studied systematically with Partial Least Square regression (See chapter 5). Next,

the projections of synthetic spectra of models can be computed in the PCA space of the

data. It will be shown that this approach allows us to derive constraints for the models in

a more systematic way than was previously possible.

6.1 Explosion Scenarios

It is widely accepted that SNe Ia are the result of the thermonuclear explosion of a carbon-

oxygen white dwarf triggered by the interaction with a companion star. But beyond this

very little is known with certainty. In this section we briefly review the presently favored

scenarios (see also Hillebrandt et al. (2013) for a recent review).

Delayed Detonation

This explosion mechanism is usually proposed for single-degenerate systems where the

white dwarf explodes close to the Chandrasekhar mass (1.4M�) after accreting mass from a

non-degenerate companion, presumably through Roche-lobe overflow. The matter steadily

burns to carbon and oxygen on the surface of the white dwarf increasing its mass until

the density at the center is sufficient for the ignition of nuclear burning and a combustion

wave to form.

In this class of models it is assumed that in the beginning burning proceeds with a

flame speed lower than the speed of sound (deflagration) and incinerates the interior of

the star. This phase allows for the white dwarf to expand and decrease the density of the

unburned material, a necessary ingredient for the synthesis of intermediate mass elements

(IME). It is further assumed that in a next step a transition from a deflagration to a

detonation takes place somewhere in the star with a burning velocity now larger than the

speed of sound. Whether or not this happens in reality is heavily disputed (Woosley, 2007;
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Röpke, 2007; Aspden et al., 2010), but it cures several of the problems of pure-deflagration

models, i.e., these models can be brighter and have less unburned carbon and oxygen at

low velocity. In fact, after the transition the detonation front quickly burns most the

remaining fuel, partially to 56Ni and partially to IMEs. It is this property of the delayed

detonation models that brings Chandrasekhar-mass explosions closer to the observed light

curves and spectra of normal SN Ia than pure-deflagration models (Schmidt et al., 2010;

Poludnenko et al., 2011; Charignon & Chièze, 2013).

Sub-Chandrasekhar Mass Detonations

Sub-Chandrasekhar mass models, i.e., exploding white dwarfs with a mass lower than

MChan, are detonations ignited near the center of the white dwarf. In contrast to the

previous case, for these stars the density at the center is not high enough to self-ignite

carbon and oxygen but a trigger is needed. A possible mechanism is the so-called double-

detonation. A layer of helium-rich material on the surface of the white dwarf may detonate

first, for example after it was accreted from a companion (He-)star or during a merger

with the companion. The He-detonation will engulf the white dwarf sending shock waves

inward which will converge close to the center. Numerical simulations have shown (Fink

et al., 2010; Moll & Woosley, 2013) that in the converging shocks the temperature increases

sufficiently to trigger a secondary detonation in the C+O fuel. Burning at the lower density

of the sub-MChan white dwarf (as compared to the Chandrasekhar-mass case) produces

naturally a large amount of IME (that are seen in the ejecta), and the mass of the initial

white dwarf (setting its density) is an excellent parameter to drive the mass of 56Ni and

reproduce the variance in luminosity observed in SNe Ia (Sim et al., 2010).

Double-Degenerate Mergers

A scenario completely different from the previous ones is the merger of two sub-MChan

white dwarfs. The orbit of these objects slowly decays trough gravitational waves emission

until the two stars may merge. If this happens on a timescale shorter than the Hubble

time the binary may be a candidate for a SN Ia. The process of merging may trigger an

explosion in one or both of the stars immediately, or the less massive white dwarf may

get disrupted over a few orbits and a ’hot spot’ on the more massive primary triggers a

detonation there as in the double-detonation scenario of the previous subsection (Pakmor

et al., 2013). Also, as in the case of sub-MChan detonations, the mass of 56Ni is largely

determined by the mass of the primary white-dwarf, and the mass of the secondary and

the viewing angle could be additional parameters to explain the diversity within SNe Ia.

Alternatively, if the two white dwarfs have comparable masses both stars will get disrupted

by the interaction. The lower central density leads to a lower amount of 56Ni and to a

significantly lower luminosity. This was suggested as a scenario for the SN 1991bg-like

subluminous supernovae (Pakmor et al., 2010).
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Pure Deflagrations

This scenario applies for Chandrasekhar mass explosions of white dwarfs, but in this

case it is assumed that the transition to a detonation does not happen. Consequently,

for equivalent initial conditions, the burning is less complete than in the corresponding

delayed detonation models. The production of 56Ni is more limited and this limits the

maximum possible luminosity of the scenario. Hence this mechanism can be a possible

explanation for peculiar faint SN Ia only.

In contrast, the W7 model (Nomoto et al., 1984) is a parametrized 1D deflagration

model. In this model the burning proceeds faster than what happens in modern 3D

deflagrations and this allows for a more complete burning of the fuel. It is generally in

good agreement with normal SN Ia.

6.2 Models in the Principal Component Space

At our disposal we have series of 3D numerical simulations for all classes of models dis-

cussed in the previous section, to be compared with the observations. At first we will

check the general consistency of the spectra with observed SNe Ia. To do so, we will use

only the first part of our analysis, that is the PCA space. From the position of the models

in the 5D PCA space it is possible to find interesting clues about the spectral behaviour of

the models. Figs. 6.1 and 6.2 show where models lie in the projections on the first three

PCs, the most important ones to describe the observed spectra.

The model classes characterized by the variation of a single input parameter (the white

dwarf’s mass in case of sub-MChan model, the number of ignition spots in case of delayed

detonations and of deflagrations, the masses of the two white dwarfs in case of mergers)

show up in our PC space as chains of points describing curves in the 5D space. Along

these curves, the input parameter varies continuously leading to continuous variations of

the spectral properties. Most of these models lie well within the the space of observed

SNe Ia and cover a fair fraction of their diversity.

More specifically, the sub-MChan detonations in the range of masses 0.97÷ 1.15 draw

a curved line running clock wise when projected on the first two dimensions (Fig. 6.1)

that connects faint 1991bg-like supernovae with normals. The faint model with 0.88M�

marks the beginning of this line, and it is quite far away from most normal SN Ia. Its next

neighbors are faint 1991bg-like and 2002cx-like supernovae. This is not unexpected and is

a confirmation of the general behaviour of the sub-MChan models (Sim et al., 2013).

Delayed detonations models lie in a completely different part of the PC space. In these

delayed detonation models the initial condition that is varied is the number of ignition

spots (N). This affects the strength of the deflagration phase. In the beginning of the

deflagration phase the rate of nuclear burning is proportional to the surface of the burning

front. A small number of ignition spots means that burning is less complete when the

conditions for the transition to a detonation are met. This in turn implies less pre-
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Figure 6.1: The first two principal components of the data with the projections of the

analyzed models over-plotted. Most of the models are well inside the PC space determined

by the data. Model series are characterized by chains of points in a multidimensional space.

The grey dots represent observed SN Ia. The top-left diagram shows the position of W7 on

the low luminous edge of normal SN Ia and of the 3D deflagrations together with the faint

02cx-like SNe. The top-right diagram shows the series delayed detonation models with a

variable number of ignition spots (black) and models with the composition of N100 and a

progressively larger degree of mixing (0 to 9, cyan). The bottom-left diagram shows the

sub-Chandra detonations with different initial masses (yellow). The bottom-right panel

shows three merger models with different initial masses (magenta).
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Figure 6.2: The first and the third principal components of the data and of the models

over-plotted. The panels are the analogous of Fig. 6.1. deflagrations (top-left), delayed

detonation (top-right), sub-Chandra (bottom-left), mergers (bottom-right).
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expansion of the white dwarf and a more complete burning in the detonation phase with

a larger production of 56Ni. In the first two components the models draw a line that goes

from normal SNe with high photospheric line velocities (N1600) down to hot and bright

SNe (N1). This behaviour is also in line with what is expected from this class of models.

Klauser (B.A. Thesis, unpublished) created a series of models using N100 (Seitenzahl

et al., 2013) as a starting point. First, he constructed a completely stratified model

preserving the total masses of the elements present and the density profile. Then, starting

from this model he introduced progressively more mixing by convolving the abundances

with a Gaussian window. The density profile and the total masses of the different elements

were kept constant. This makes the model consistent with the total energy output. The

most mixed model has a mixing comparable to N100 but the others have a lower degree

of mixing than N100 and they add a component clearly orthogonal to the trend of the

delayed detonation models (Figs. 6.1 and 6.2). This finding shows that a mechanism which

suppresses mixing in some cases can potentially explain part of the remaining diversity of

SNe Ia spectra not matched by varying the number of ignition spots.

Unsurprisingly, the deflagration models stay in the part of the diagram that belongs

to the faint 02cx-like SNe (Fig. 6.1). A bit surprising, the prototypical parametrized

deflagration W7 model is not close to the bulk of the normal SN Ia but spectroscopically

rather agrees with their faint edge.

The two merger models with progenitors of different mass (Pakmor et al., 2012; Kromer

et al., 2013) are close to the center of the distribution. The faintest merger of white dwarfs

of equal masses (Pakmor et al., 2010) is more separated from the others and closer to 91bg-

likes. In fact, this model was designed to fit them.

Many of the scenarios, from a spectroscopic point of view only, could be good candi-

dates for SNe Ia. However, to have a good scenario for SNe Ia, it is important to reproduce

not only the right luminosity range, the luminosity-decline rate relation and the proper

rise time, but it is also important having consistency between spectral properties and pho-

tometric properties. We check this with the aid of PLS regression between the space of

spectral properties and a representative set of well studied photometric properties.

6.2.1 ∆m15(B)

The first relation against which we test the models is the correlation between spectral

properties and ∆m15(B). In particular, we study the empirical relation that we found

in section 5. This is the analogous to the relation between the ratio of the depth of the

Si ii 5972 Å and the Si ii 6355 Å lines and ∆m15(B) (Nugent et al., 1995), but studied

with the systematic approach of the PLS.

In Fig. 6.3 we show the correlation between the ∆m15(B) and the direction in the PCA

space that predicts it. It is found by PLS and by using public data only. This direction is

close to the direction that predicts the equivalent width of Si ii 5972 Å (Table 5.1).

The projections of models representative for the different scenarios are over-plotted.
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Figure 6.3: The observed ∆m15(B) relation of observed SN Ia light curves vs. the predic-

tions obtained by using PLS on the PCA space of spectra. The models are deflagrations

(top-left), delayed detonation (black) and modified-mixing models (cyan) (top-right), sub-

Chandra (bottom-left), mergers (bottom-right). Errors on the predictions come from

k-folding (Appendix A.1). The error on the observed ∆m15(B) of mergers and delayed-

detonation models comes from the variability due to line-of-sight effects.
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W7, the classical 1D deflagration model from Nomoto et al. (1984), agrees quite well

with the relation. In the interval between 0.97M� and 1.15M� the sub-Chandrasekhar

mass detonation models reproduce the faint part of the relation remarkably well. This is

not too surprising since it was shown in Sim et al. (2010) that they follow the Phillips-

relation. On the other hand, the relation explored in this section is of a different nature

and it is an additional constraint on the models. It is a relation between global spectral

properties (predicted ∆m15(B)) and light-curve decline (observed ∆m15(B)). Sub-MChan

detonations in the mass range 0.97 ÷ 1.15 follow nicely the observed relation (yellow

diamonds in Fig. 6.3).

In principle, the parameter space of the merger model is large but with the three

models available to date we can begin to explore it. The brightest merger is clearly below

the empirical relation. This means that, for the given spectral properties of the model,

its light curve evolution is too slow. In turn, this implies that the opacity of the model is

too large which slows down the evolution of the light curve. A likely explanation is that

the total mass is too large to reproduce the bulk of normal SNe Ia. This interpretation is

confirmed by the qualitatively similar merger model (0.9 and 0.76M�) which matches the

relationship much better. The equal-mass merger (0.9 and 0.9M�) lies also on the relation.

As discussed before, this relation is very different from the standard Phillips relation since

it connects the decline rate with a suitable combination of spectral properties.

Our delayed detonation models cluster in a single area of the empirical relation, but

do not show its observed trend. This means that a parameter different from the number

of ignition spots is necessary to reproduce the relation. Nevertheless, those models with

a number of ignition spots lower than ∼ 300 are well within the parameters of observed

SN Ia.

Finally, the models plotted as cyan diamonds in Fig. 6.3 have the total abundances of

the N100 delayed-detonation model modified by a parametrized degree of mixing (Klauser

B.A. Thesis, unpublished). In contrast to the other delayed-detonation models they do

follow the empirical relation and models with a low degree of mixing have larger predicted

and observed ∆m15(B). This may indicate that a mechanism that allows for more strati-

fied ejecta may be needed in order to reproduce the observed correlation between∆m15(B)

and spectral properties with this class of models.

6.2.2 B − V Color

Next we study the consistency of the B − V color of the models at B-band maximum

with the observations. The relation between color and spectral properties is similar to the

relation between color and velocity of Si ii 6355 Å (Foley & Kasen, 2011). Once again,

our approach allows for a systematic study of this property and it allows us to use all the

information present in the spectra at different epochs, and not only the behaviour of the

spectra at B-band maximum.

An important remark here is that in principle our analysis is valid for all SNe Ia. This
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Figure 6.4: The B − V color at B-max (without reddening corrections) and the B − V
color predicted from spectral properties using PCA and PLS. The models are deflagrations

(top-left), delayed detonation (black) and modified-mixing models (cyan) (top-right), sub-

Chandra (bottom-left), mergers (bottom-right). Errors on the predicted colors come from

k-folding (Appendix A.1) on the PLS regression analysis.
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includes spectroscopically normal ones, 1991T-likes, those with broad lines (Branch et al.,

2006), and others. But it is not possible to study their color without enough photometric

data. In particular the 1991bg-like events present in the sample do not have well enough

measured photometry to study their colors with our statistical approach. To quantify

which supernovae have a proper prediction of their color typing them is not necessary.

It is easy to describe the portion of the PCA space that contains supernovae with no

significant reddening by means of the PLS algorithm. This portion of the space includes

about 90% of the sample but does not include 1991bg-like and 2002cx-like SNe. With this

in mind, the empirical relation between intrinsic color and spectral properties that we find

holds for the bulk of SNe Ia, but not for most peculiar ones. Therefore the relation has to

hold for models proposed to describe the bulk of the SN Ia but not for rare objects.

Many of the models suffer from being too red compared to the observations (Fig. 6.4).

This systematic issue is well known and it may be due to approximations in the radiation

transport code. Here, we focus on the trend between intrinsic color and spectral properties

that holds for the majority of observed SNe Ia, but does not seem to be clearly reproduced

by any of the investigated explosion scenarios for which more than one realization exists.

The delayed detonation models, well known for having high photospheric velocities

(Sim et al., 2013), of course place themselves in the right side of the diagram, where

the intrinsic color is larger than ∼ 0.1. However, most of these models are still too red.

For example, N100, a representative delayed detonation model, is too red by ∼ 0.3 mag.

It is interesting to note that models with the same composition, but with an enforced

stratification, lie very well on the observed relation. The crucial difference in obtaining

the right color is most likely the stratification of the inner parts of the ejecta. These

modified models have stable iron at the center and 56Ni around it. This changes the way

the light is reprocessed and makes the color less red.

The sub-MChan models show a trend that is opposite to the one observed for normal

SNe Ia. Brighter models have IME at higher velocities and they are also bluer. These

trends seem to be a robust characteristic of this scenario. More massive progenitors will

naturally have higher kinetic energies and ejecta opaque up to higher velocities. At the

same time, more massive and brighter models are naturally going to be bluer. Among

normal SNe Ia, those with lower photospheric velocities can have both, larger or smaller

luminosity.

As previously discussed, there are not enough data available to study the color of

1991bg-like SNe with PLS regression. However, peculiar 1991bg-like supernovae are known

to have low photospheric velocities and to be intrinsically redder than normal ones. For

them, the sub-MChan models may be a viable scenario.

The color of the brightest considered merger model is quite right, just a bit too red,

and this is likely due to issues in the radiation transport and not in the scenario itself.

However, the trend of the merger models with lower masses seems to be orthogonal to

the observed relation. The simulation of additional models with intermediate properties

is necessary to confirm this trend.
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6.2.3 B Magnitudes

In order to study the relation between spectral properties and absolute magnitudes we

need to have an estimate of the absolute magnitude, independent from the assumption of

a Phillips relation. Assuming a Hubble constant of 70 km s−1Mpc−1, we use the redshift

as a measure of distance. The error of the absolute magnitude is then the error on the

observed magnitude with an error due to the peculiar motions of the galaxies added in

quadrature. We do not attempt to perform any reddening correction. Similarly as in the

case of the colors, we can not study the faintest SNe Ia with statistical methods since we

do not have enough 1991bg-like and 2002cx-like supernovae in the smooth Hubble flow.

Sub-MChan models with initial masses between 0.97 and 1.15M� bridge the correct

range of luminosities of the bulk of SNe Ia. However, they are orthogonal to the empirical

relation between luminosity and spectral properties. The brightest representatives of the

SN Ia population are 1991T-like SNe. They are the extreme of the distribution of bright

SNe and are characterized by spectra with high temperature and very low photospheric

velocities, in contrast to what the sub-MChan models predict. SNe with a normal luminos-

ity show a diverse range of photospheric velocities that is correlated with color, but not

with luminosity as predicted by the sub-MChan models. To explain the variability shown

in the spectra a parameter other than the mass at explosion is needed in this scenario.

This parameter, for the same 56Ni mass, needs to increase the total mass of the ejecta

to slow down the time evolution. At the same time, it needs to increase stratification,

reducing the thickness of the layer rich in IMEs.

Delayed detonation models can also explain the appropriate range of luminosities easily

but, like the sub-MChan models they are mostly orthogonal to the observed relation. The

behaviour of models with limited mixing suggests that a mechanism to suppress the mixing

of the ejecta can possibly bring the delayed detonation models closer to the observations.

Models with high stratification in the ejecta go towards the right side of the diagram. In

order to explain the bright SN Ia a high stratification of the ejecta seems to be necessary.

This was noticed also by Sasdelli et al. (2014) from the modeling of the luminous SN 1991T.

A significant rotation of the progenitor may be a possibility to suppress the mixing and

to produce more stratified ejecta.

The W7 model is placed close to the relation. The modern 3D deflagration models,

on the other hand, are significantly fainter than the bulk of SN Ia, and can not be used

to explain them. Their luminosity, however, is compatible with some of the faint classes

such as 02cx-like SNe.

The brightest merger model lies nicely on the relation observed for the bulk of SNe Ia.

The lower mass models lie much lower than such a relation, and they cannot be an expla-

nation for it. However, they can explain fainter and rarer objects. To assess if this scenario

is a viable explanation for the majority of SN Ia, one has to explore the parameter space

close to the bright 1.1 and 0.9M� merger to see if the relations hold.
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Figure 6.5: The absolute B-band maximum without reddening corrections and the pre-

dicted Bmax using PCA and PLS. The models are deflagrations (top-left), delayed deto-

nation (black) and modified-mixing models (cyan) (top-right), sub-Chandra (bottom-left),

mergers (bottom-right). Errors on the predictors come from k-folding on the PLS regres-

sion analysis (Appendix A.1). (See Fig. 6.4)





Chapter 7

Multivariate Partial Least

Square as a Light Curve

Predictor

In this chapter we develop a tool to predict light curves from the information encoded in

the spectra. We build upon the work developed in the previous chapters.

From now on we will not use the spectrophotometric time series of SNfactory. The data

from SNfactory are very expensive to be obtained. A good tool should be able to exploit

the data obtained with the cheaper technique of slit spectroscopy and filter photometry.

In this chapter we will show that many of the results obtained by means of SNfactory data

can also be obtained from publicly available data described in section 3.2.

We have two types of data and we want to find the latent structures connecting them.

The first type of data are time series of spectra. The radiation transport physics that forms

the spectra is a complex phenomenon. A lot of information on the physical structure of the

ejecta is encoded in the features that show up in the spectra and in the time evolution of

these features. On the other hand, information about extinction due to dust along the line

of sight is not easy to extract from the spectra. This is due to the difficulty in calibrating

data obtained by slit spectroscopy. Also in the case of flux calibrated spectra, it is difficult

to separate the variability of intrinsic color and luminosity from the dust-extinction.

The second type of data available is broad-band photometry. The photometry can

be used to construct light curves of the SNe in different bands. The data are a more

indirect proxy of the spectral energy distribution of the object. Of course some of the

intrinsic variability that shows up in the spectra is encoded in the photometry too. After

all, photometry measures the flux in a frequency range defined by the filters. But not all

the variability of the spectra will clearly show up in the light curves because the effects

may get averaged out. On the other hand, extinction information is encoded in the light

curves. But also in this case it is difficult to disentangle the intrinsic variability, that has

73
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to correlate with spectral features, and the extrinsic variability due to dust extinction.

We use Partial Least Square regression to find the latent structures connecting these

two spaces and to predict the intrinsic component of the light curves from series of spectra.

As shown in chapter 2.2 the data compression of the spectral series is handled with

the help of the EMPCA. We need to transform the discrete time series of the photometry

to a continuous function. How this is done is the subject of the next section.

7.1 Interpolate the Photometry with Gaussian Pro-

cesses

We need a robust regression method to fit light curves and color curves. For the Partial

Least Square algorithm, we need light curves as a continuous quantity with associated

errors. These errors have to take into account the uncertainty of the observed photometry

and the sparsity of the data.

SN Ia photometry is typically interpolated with the help of light curve fitters. These

algorithms construct a parametrized template for SN Ia light curve. When fitting only B

and V bands, they usually employ only two parameters (e.g. SALT2 Guy et al., 2007).

The first accounts for the decline rate of the SN (e.g. ∆m15(B)), the second accounts for a

color correction using the observed color. This implicitly assumes that SN Ia light curves

are described by two parameters only. This is, of course, true as a first approximation,

and from only the light curves it is hard to extract many more parameters. But from the

study of the spectra it is clear that SN Ia are much more diverse, and we want to take

this diversity into account. For these reasons we do not want to use typical SN light

curve fitters. With these fitters the result of the fit depends not only on the data of the

SN under consideration, but also on the rest of the sample. Of course this makes sense if

one wants to calibrate the objects as good as possible, but it does not work if one wants

to study the relations between light curves and spectra.

A simple approach could be to obtain the light curves with the least square fit to a

polynomial. This introduces biases in the result. Arbitrary choices such as the degree of

the polynomial will affect the outcome.

A better approach is the use of a spline fit. This is equivalent to using a series of

polynomials smoothly connected together, but also this approach is inadequate for our

purposes because it does not give a time dependent uncertainty on the result of the fit.

We are using a powerful regression method based on Gaussian Processes (Rasmussen &

Williams, 2005). Gaussian Processes Regression is a more general approach to determine

the underlining function from a sparse set of data. The technique assumes that the data

are distributed with a Gaussian distribution with infinite dimensionality. In every epoch

the outcome of a measurement is assumed to follow a Gaussian distribution. Our set

of n photometric measurements can be seen as one realization of an n-variate Gaussian

distribution in an n-dimensional space. Now, two epochs close to each other are expected
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to be correlated. That is, the luminosity of our SN does not change much in a day.

Two observations at different epochs are related by a covariance function, k(t0, t1), that

encodes the relation between the magnitudes at f(t0) and f(t1). A safe assumption for

the structure of this covariance is:

k(ti, tj) = σ2
f exp

[
− (ti − tj)2

2τ2

]
+ σ2

nδij (7.1)

The first term means that the correlation is high for observations distant by less than

∼ τ and negligible when the time difference is larger, the second term accounts for the

noise. Without noise in the data the correlation between two realizations temporally very

close would be equally high to the covariance of an individual realization. Adding noise,

the covariance of a given measurement is larger by σ2
n. In practice, these coefficients

parametrize how slowly the underling function varies with time (τ), how big the total

standard deviation of the magnitudes (σf ) is, and how much uncertainty is due to the

noise of the individual measurements (σn). σf , σn, and τ are called hyperparameters of

the model. For a given set of hyperparameters, it is possible to produce a large number of

realizations that are likely to reproduce the observations. The average and the standard

deviation of these realizations will look like the fits in Figure 7.1. The quality of the fit,

however, will be heavily dependent on the choices of the hyperparameters of equation

7.1. For example, if σn is set to zero the fit will lie exactly on the photometry overfitting

the data. On the other hand, too large a τ will remove small scale variations from the

fit, flattening the peaks. The optimal hyperparameters are not chosen by hand but are

retrieved by a maximization of the probability p({σf , σn, τ}|obs) of having a certain set of

hyperparameters for the given observations.

The result of Gaussian Process Regression on the photometry of the SN 1999dq are

shown in Fig. 7.1. Now we have interpolated the luminosities and have sensible error

estimates for the fitted light curve. Most importantly, the fits are independent of the

behaviour of the other supernovae of the sample.

7.2 Multivariate Partial Least Square

We want to predict the light curves of SNe Ia from time series of spectra. A good tool for

this job is Partial Least Square regression. The principles of univariate PLS are explained

in 2.5, here we explain the multivariate version of the regression technique.

7.2.1 The Algorithm of Multivariate Partial Least Square

The goal of PLS regression is to predict the Y space from the X space to recover their

common structure. PLS finds the linear relations that allow to predict a set of quantities in

the Y space, called responses, from the space of predictors X . The underlying assumption

is that every component of the space of responses is a linear combination of the predictors.
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Figure 7.1: Light curve fitting in four bands of the SN 1999dq. The fit is the result of a

Gaussian Processes regression.
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Mathematically the relation can be written as:

X = TPT + residuals (7.2)

Y = UQT + residuals

where X is the training set of predictors. X has dimensions N×M where N is the number

of observations (the number of SNe) and M is the dimension of the predictor space X . In

our case M is the dimension of the PCA space built from spectra. The matrix Y is the

matrix of the training set of responses. It has dimensions N × L where L is the number

of epochs sampled from the light curve. T and U have dimensions M × n where n is the

dimensionality reduction of PLS, that is the number of components chosen to explain the

relation between the space X and the space Y.

T represents the projections on the latent structures defined by the matrix of the

weights W:

T = WX. (7.3)

The scores (T and U) have the property that they reproduce well X and Y, and the

x-scores (T) are good predictors of Y:

Y = TQT + residuals,

when the residuals of the prediction have to be small.

The relation between the two spaces is best explained by Fig. 7.2, from Wold et al.

(2001). The dimensionality of the initial space gets reduced to n, the dimension of the

space of the latent variables, by the matrix W (equation 7.3). In Fig. 7.2 n = 3. Then,

the matrix U is responsible to predict the space Y trough equation 7.2. In our case, the

“structure descriptors” are the spectral series and the “activity measures” are the light

curves. The variables are the coefficients of the PCA space of the spectra, the observations

are the different SNe, {t1, t2, t3} are the latent variables, Y is the matrix of the observed

light curves, M is the dimension of the range of epochs included in the light curves.

Multivariate PLS is particularly recommended when there is a high correlation between

the responses. This is the case for light curves.

The decompositions of X and Y are chosen to explain as much as possible of the

covariance between the two datasets.

A simple algorithm to compute the weight matrix (W) and the scores (T and U)

proceeds as shown in Algorithm 2. This algorithm is implemented in the scikit-learn

statistical suite (Pedregosa et al., 2011).

7.3 Predicting Light Curves and Color Curves from

the Spectra

In this section we use multivariate PLS regression to find correlations between photometry

and spectral properties. The spectral properties are described by the coefficients of the
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Figure 7.2: The relation between the space of predictors and the space of the responses

explained in a graphical form. In our case, the structure descriptors are the spectral

series and the activity measures are the light curves. In Wold’s example X and Y are,

respectively, descriptors of chemical structure and measurements of biological activity.

Algorithm 2 Partial Least Square algorithm

1. Assign X0 = X and Y0 = Y (first iteration)

2. repeat n times (the chosen dimensionality reduction)

Compute the SVD of the matrix XTnYn

Compute the first left singular vector (wn) of the matrix XTnYn.

Compute the first right singular vectors (vn) of the matrix XTnYn.

Compute the nth X-score: Tn = Xnwn

Compute the nth Y-score: Un = Ynvn

Deflate the X matrix: Xn + 1 = Xn − TnPTn . It is not necessary to deflate Y.
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PCA space constructed from spectral series (chapter 2.2). The coefficients from the PCA

encode the variance within Type Ia SNe spectral series in a handful of numbers. The good

quality of the reconstruction of the spectra prove that this decomposition encompasses the

variability of Type Ia spectra. This space, by construction, does not include reddening.

The intrinsic colors and absolute magnitudes are a function of the spectral series.

Physically, a given spectral serie is expected to have a unique possible intrinsic color and

luminosity behaviour. That is, the luminosity and color are expected to be a function of

the components of the PCA space constructed from the spectra. We use PLS regression to

extract this function. Using this approach, we make the implicit assumption of linearity.

That is, the intrinsic colors and absolute magnitudes are assumed to be a linear function

of the components of the PCA space of the spectra.

The observed colors are subject to reddening. To find the intrinsic color one has to find

the locus of the bluest SN for every point of the PCA space. We use an approach similar

to what was used in chapter 2.5 to select SNe with marginal reddening. In that case we

had only one parameter for the treshold of maximum reddening to select the SNe, here

we have more complicated color curves and light curves. Additionally, we are using public

available photometric data that have more diverse errors than SNfactory data. We select

supernovae for the PLS regression if they have a reddening lower than a given treshold

above the PLS prediction in at least a minimum range of epochs and with errors lower

than a given value in this range of epochs. The PLS algorithm and the selection is run a

number of times until the solution has converged. The supernovae in each iteration can

be selected or deselected. These tree parameters are validated through cross-validation.

7.3.1 Predicting the Light Curve from the Spectra

We apply the approach to the B-band light curves between −5 days and +35 days from

maximum. The aim is to predict the absolute magnitude curve using the spectra of the

supernova. This is done free from assumptions on reddening laws and extinction. First

of all the observed magnitudes need to be scaled to the reference frame. This is simply

achieved using the host-galaxy redshift and assuming a smooth Hubble flow. The observed

magnitude needs to be decreased by the distance modulus:

Mabs = Mobs − µ

where, assuming an homologous expansion for the Hubble flow:

µ = 5(log10(zc/H0) + 5)

The peculiar motion of the galaxies will add an error to this estimate. The error on the

absolute magnitudes due to the dispersion of the peculiar velocity σ(v) of the galaxies

becomes:

σµ = 5σ(v)/(ln(10)zc).
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Figure 7.3: The photometry of some SNe with also a good spectroscopic coverage are

shown. The curves are the corresponding prediction due to PLS regression.
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In Fig. 7.3 we show light curves of a few SNe with excellent photometric coverage. The

points are the original photometry, corrected for the Hubble flow, but with no attempts

to correct for reddening. The solid curves show the corresponding PLS predictions. The

colored area represents the uncertainty of the prediction calculated using k-folding. The

photometric data and the predictions match nicely. SN 2005kc, however, has a luminosity

significantly lower than is predicted. This can be explained by reddening of this individual

object. As was shown in Sec. 4.2, reddening does not influence the components of the

PCA space. A supernova with high reddening does not have a PLS prediction different

from a supernova with no reddening. From this we deduce that the mismatch between

the prediction and the observations comes from dust extinction. The difference between

the curve and the data is an estimate independent from assumptions on the nature of

the reddening law or amount of reddening. Clearly, this estimate can be calculated at

different epochs. Under the assumption that the amount of extinction does not vary with

time, we expect that the luminosity deficit of a supernova stays constant. We check it in

Fig. 7.4. It shows the extinction in the B band (E(B)) at maximum and at +10 days for

the supernovae in our sample. The extinctions are consistent between each other, which

implies that the extinction does not vary significantly after maximum, and confirms the

reliability of the method.

The Phillips-Relationship

Type Ia SNe luminosity is known to anti-correlate with the decline in luminosity after

maximum (Phillips, 1993). With the PLS regression we have an estimate for the B-

band peak luminosity independent from reddening assumptions. In Fig. 7.5 we show the

relation between our estimate and the ∆m15(B), the difference between the magnitude

at maximum and at +15 days. Many of the known characteristics of SN Ia show up

in this diagram. On the bottom right are the faint and fast declining 1991bg-like ones.

There are only a few objects of that kind in our sample, hence the errors on the predicted

magnitudes are large. Spectroscopically normal SNe show a wide range of luminosities and

decline rates. On the tip of the relation are the luminous 1991T-like SNe. An interesting

“outlier” of the Phillips relationship is the SN 2001by. It is the left-most point in the

figure, with a ∆m15(B)= 0.7 (the slowest of the sample). This SN is so extreme that is

was clearly recognized as an outlier by Krisciunas et al. (2011) as too faint for its decline

rate. Our analysis nicely confirms it and shows that such outliers are not uncommon.

With larger ∆m15(B) their intrinsically lower luminosity is hard to be distinguished from

reddening.

7.3.2 Predicting the Color Curve from the Spectra

In this section we apply the PLS regression method on B − V color curves. Differently

from magnitudes, the colors are not affected by the distance, and can usually be measured

precisely in nearby SNe. On the other hand, the intrinsic variance of colors is smaller than
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Figure 7.4: The figure shows the E(B) at maximum and at +10 days obtained by PLS

regression. A diagonal is overplotted as a reference.
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Figure 7.5: The Phillips relationship between the B-band luminosity at maximum pre-

dicted by PLS and the decline rate of the light curve. The different subclasses of SN Ia

are colored.
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Figure 7.6: The relation between the epoch of the B − V maximum in units of 30 days

(sBV , Burns et al., 2014) and its prediction from PLS regression performed on the PCA

space of spectral properties.

the variance in the magnitudes. This makes the regression task similarly complicated.

First, we want to show that important characteristics of the B − V color curve are

retained in the PCA space of spectra. The time between the B maximum epoch and the

maximum in the B − V color curve is a reddening independent quantity that have been

suggested for SN Ia classification (Burns et al., 2014). This maximum happens usually

at about +30 days after maximum. This time (rescaled in units of 30 days by Burns

et al., 2014) is shown to correlate with the spectral properties encoded in our PCA space.

Simple univariate PLS regression between the PCA space and this color curve indicator

shows an excellent correlation (Fig. 7.6).

In sec. 5.3 we showed that the color at maximum has a correlation with spectral

properties. Here we generalized the approach with the help of multivariate PLS. Fig.

7.7 shows some observed color curves (points with errorbars) together the corresponding

predictions from the spectra using PLS. It is evident that the colors are quite uniform at

maximum, but they have a large spread of properties. SN 2005kc has clearly a significant
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Figure 7.7: The B−V color curves predicted from the spectra of a few SNe with excellent

photometric coverage are compared with the color curves predicted from the spectra by

means of PLS regression.

color excess in comparison with the prediction from its spectra. This is consistent with a

significant amount of reddening.

Similarly to before, we want to check that the PLS regression is catching the intrinsic

color variability. Under the assumption that the amount of reddening does not vary with

time, we check that the color excess attributed to dust is constant at different epochs.

Fig. 7.8 shows the color excess at maximum and at +10 days. The remarkable consis-

tency between the two quantities supports that PLS regression properly predicts the large

majority of intrinsic color variation and that the amount of reddening does not vary in

this range of epochs.

7.4 Studying the Extinction-Reddening Relation

The extinction due to dust affects more shorter wavelengths. This means that the increase

in the magnitude in the B band (E(B)) will be larger than the increase in the V band.
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Figure 7.8: The figure shows the E(B − V ) predicted by mulivariate PLS regression at

maximum and at +10 days. A diagonal is overplotted as a reference.
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Being a relative measurement, observing colors and measuring the color excess (E(B−V ))

is typically much easier than measuring the absolute magnitudes. Hence, usually the

relation between the extinction in these bands is parametrized as:

E(V ) = RV E(B − V ).

Typical values for RV measured in our galaxy vary between 2.1 and 5.8 with 3.1 being the

most common value (Cardelli et al., 1989; Draine, 2003).

Fig. 7.9 shows the color and magnitudes excess from the PLS reconstruction. The

relation is remarkably tight, which means that the value of RV is remarkably constant for

all SN Ia. This is an excellent news for the use of these object as distance indicators. To

calibrate SN Ia it is necessary to measure how much extinction is present in front of the

SN. And the only practical way of measuring the amount of dust at cosmological distances

is through the color excess. Having a constant RV is always implicitly assumed by light

curve fitters. Morover, frequently SN Ia are associated with a low RV (frequently < 2)

that does not show up in galactic reddening (e.g. Conley et al., 2007; Mandel et al., 2011).

This have been explained by peculiar environments around SN Ia (e.g. Goobar, 2008) or,

alternatively, as an indication of a peculiarity of the Milky Way dust. On the other hand,

techniques based on spectral features return values of RV much more similar to what is

typical in the Milky Way (Chotard et al., 2011b). The result of an orthogonal distance

regression fit to the relation of Fig. 7.9 returns an RV = 3.06 ± 0.24. This is perfectly

consistent with the prototypical extinction law (3.1) found in our galaxy.

Fig. 7.10 shows a zoom on the SNe with small reddening. The tightness of this part of

the correlation supports that the majority of the intrinsic color and luminosity variability

have been taken into account properly by the PLS method.

It is impossible to discriminate between spectroscopically different SNe by using only

light curves. However, two SNe with different spectral characteristics may have different

intrinsic luminosities and intrinsic colors. The similarities of the light curve and color curve

shapes may suggest that the differences are due to dust extinction. The ratio between this

“missing luminosity” and “color excess” happens to be significantly lower than what is

due to typical dust. This lead to low estimates for the RV of SNe Ia.

From a physical point of view, a normal RV for SNe Ia means that the dust in front

of the majority of these object is quite normal. This suggests that the majority of their

extinction is caused by simple interstellar dust in the host galaxy and it is not related to

the progenitor of the SN.
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Figure 7.9: The plot shows the relation between the extinction in B and the reddening in

B − V at maximum. The solid line shows the result of a fit of the relation. The dashed

line, as a reference, is the result of a low RV . The errors come from the measurement

errors and from statistical errors (k-folding) added in quadrature.
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Figure 7.10: The plot shows the same relation as in Fig. 7.9, zooming in at the part with
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Chapter 8

Conclusions and Outlook

We have developed a new framework which allows the simultaneous characterization of

large samples of spectra, forming an ideal ground for placing synthetic spectra among

the observed ones. Combining Expectation Maximization Principal Component Analysis

(EMPCA) and Partial Least Square (PLS) techniques, it defines a meaningful metric space

and correlates it to spectroscopic and photometric intrinsic properties of supernovae.

The algorithm is based on the derivative of the spectrum over wavelength, which

consequently assigns a larger weight to small scale features and, at the same time, makes

the results independent of distance measurements, reddening and spectra calibration. The

method allows an automatic exploration of information encoded in weak spectral features

from the weak lines themselves, not only through their correlation with stronger lines.

Moreover, the initial data matrix was forged to encode spectral evolution information

through the use of spectral sequences representing each object. This shows an easy way

to extract information from spectral evolution.

First, we applied the method to a large sample (∼ 120 SNe and ∼ 800 spectra) of

well observed Type Ia supernovae obtained by the SNfactory collaboration and to a large

sample of publicly available objects (∼ 230 SNe and ∼ 2100 spectra). We defined a low

dimensional parameter space using EMPCA and studied the spectral features covered by

each principal component separately. Results show that the high velocity features (HVFs)

of Ca ii H&K and infrared lines are uncorrelated with the properties of the rest of the

ejecta, consistent with Mazzali et al. (2005). This suggests that the outer layers of the

ejecta have variations partially unrelated to the inner structure. Surface layers do not

allow to draw conclusions on the explosion mechanism.

We confirmed many of the results of Cormier & Davis (2011). For example, the prop-

erties of 91T-like SNe form a continuum with normal SNe, PCA can be used to form a

continuum of spectral templates, and the first two PCs mainly describe the velocities of

the ejecta and equivalent widths of the lines. A larger data set and the innovative method

of analysing the derivative of the spectra allowed us to have a stable metric space without

arbitrarily removing peculiar objects from the sample.
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Once the PC space was defined, we applied the PLS algorithm in order to find direc-

tions in this low dimensional space which correlate with independently measured SNe Ia

characteristics. In other words, we used the PC space as a tool which enables the re-

construction of not only the observed spectra, but also as a substitute of the spectral

parameters often used to sub-classify SNe Ia. Among others, we investigated the velocity

and pseudo-equivalent width (pEW) of Si ii 5640 Å and Si ii 6355 Å lines, the B and V

magnitudes, the B − V colors, the ∆m15(B), and the SALT2 parameters c and x1. This

demonstrates that the PC space is physically meaningful and includes the information re-

covered from commonly used spectral indicators. Moreover, it clarifies the potential of this

framework to find missing or unexpected features in synthetic spectra. Our PLS results

confirm the well known correlation between the pEW of Si ii 5972 Å and the ∆m15(B) in

SNe Ia (Hachinger et al., 2006; Nugent et al., 1995).

The technique is not optimized to calibrate SN Ia. The observed color and magnitudes

cannot be directly reconstructed by this technique alone, because they are largely contam-

inated by extinction. We show that the intrinsic B − V color of SNe Ia is not constant

among different objects and correlates with the velocity of Si ii 6355 Å, as found also by

Foley & Kasen (2011). We showed that the velocity of the S ii 5640 Å can be used for the

same scope.

We build on the physically motivated assumption that the intrinsic light curve and

color curve variability are a function of the variability in spectral series. We proved the

applicability of the method to infrared light curves, both at maximum and few weeks

after maximum. We showed that SN Ia do not have a uniform luminosity in the infrared,

as thought by the majority of the community, but their luminosity correlates with the

properties of spectra in the visible. On one hand, this proves that our metric space

catches all the physically relevant variability of the bulk of SN Ia, on the other hand it

shows that it is an excellent tool to calibrate SN Ia for cosmology using the more uniform

infrared bands where dust extinction is largely irrelevant.

In the context of SN Ia , multivariate PLS, together with PCA, becomes a sharp tool

able to separate the intrinsic variability and the variability due to dust. This approach

can be valuable in a number of challenges, such as the study of the reddening law and its

possible variability and improving the calibration of SNe Ia luminosity by the use of their

spectra which, by definition, is a distance independent property. We started investigating

the RV dust parameter, the most commonly used parameter to characterize the type of

dust. Our results offers a solution for the tension between the range of observed values for

this parameter in the Milky-Way and the values inferred from SN Ia by the majority of

the literature. The majority of the extinction of SNe Ia is caused by normal dust, similar

to the typical Milky-Way dust. This suggests that most of the dust associated with SNe Ia

is of interstellar origin and not associated with the progenitor. Our approach can easily

be extended to other color bands and magnitudes in a broader wavelength range.

Now that we had the PCA trained on a large enough sample, we used our tool for

the direct comparison between synthetic and real SN Ia spectra. Projecting a synthetic
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spectral series in this PC space revealed its counterparts among the real data by an analysis

of its neighbours. Moreover, the relations discovered by PLS are strong tests models have

to pass. Given the challenge of performing a coherent statistical comparison between

synthetic and real spectra, our method is particularly efficient in characterizing large sets

of models built from different explosion scenarios. It is able to provide important insights

regarding the global properties of each explosion mechanism in order to favour or disfavour

them. Such a global analysis is also expected to be more robust against systematics in the

models than comparing them individually on a case-by-case basis with real SNe.

Much of the known behaviour of the models is recovered in our work. For example,

the pure deflagration models can be an explanation for faint SNe Ia. Similarly, also the

merger models with equal initial masses (0.9 − 0.9M�) are a good candidate for faint

SNe Ia. The sub-Chandrasekhar mass detonations and the delayed detonations, on the

other hand, are the best candidates for normal and bright SN Ia. In addition to what

was know before, our tool offers very stringent tests for those models that are candidates

for the bulk of SNe Ia, thanks to the abundant observational data. We found that the

relations between spectroscopic and photometric properties predicted by the sub-MChan

models do not follow the relations that are valid for the bulk of SN Ia. On the other

hand, sub-MChan models with masses lower than 0.97M� are excellent candidates for

the faint SN Ia, where such relations are reproduced. Some of the shortcomings of the

delayed detonation models as an explanation for the bulk of SNe Ia can be cured by a

mechanism which reduces mixing in the brightest models. We proposed rotation as a

possibility to achieve this result. A merger model with masses (1.1 − 0.9M�), proposed

as an explanation for the bulk of SNe Ia, evolves somewhat too slowly in relation to its

spectral properties. This suggests an ejecta mass that is somewhat too high. On the other

hand, it is positioned quite well in all of the other diagrams. An investigation of more

merger models is necessary to reach definitive conclusions for this promising scenario.

Once a large enough library of synthetic spectra will be available, our method can also

be used for the construction of a PC space based entirely on models and the projection of

real objects in it, providing a cross-check between the real and synthetic metric spaces. A

detailed study of such an application will be investigated in a future work.





Appendix A

A.1 Cross-Validation

We tested the stability of our PC space using a k-folding cross-validation (CV) algorithm.

The goal of any CV procedure is to ensure that results are statistically consistent and not

particular to a specific data set. At the same time, it tests for over-fitting. In our context,

this means that even when applied to a sub-sample of the original data (training sample),

the PC space configuration (Figure 4.5) must be recognizable. Moreover, the directions

found by PLS in this space must be able to predict the values of the discrete observables for

data not used in the EMPCA analysis (validation sample), using only their projections in

PC space. Such results are expected to have residuals of the same magnitude for training

and validation samples.

The number of foldings (k) denotes how the data will be divided between training

and validation samples. The original set is divided into k mutually exclusive sub-samples

and for each iteration one of these is stripped out of the original data set. The complete

EMPCA and PLS algorithm is then applied to the remaining data and a linear fit is

obtained characterizing the directions found by PLS and the discrete observables analysed

in section 5. This process is repeated for all k subsamples and results for the PC projection

and PLS analysis are stored in each iteration. The average displacement of each point

in the PC space, calculated over all iterations, gives us a measurement of how much the

stability of this space relies on individual data points. If the PC space configuration is

highly unstable for different subsets, it can be considered evidence of the need of a larger,

more representative, sample in order to safely draw conclusions. Analogously, an over-

fitting method can be recognized if the PLS analysis is not able to provide estimations of

the discrete observables for objects in the test sample, at least as accurately as it does for

the training sample.

Here we present results for k = 10 foldings, which is a standard first choice for many

CV procedures (Arlot & Celisse, 2010). However, we did perform the test for different

values of k, with results following the expected behaviour: the PC space becomes more

stable for larger values of k, the linear fits on the PLS results remain the same and the

ratio of residuals between training and validation sets remain close to unity (Table A.1).
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Figure A.1: Stability of PC space through k = 10 folding cross-validation. The color code

for the points are the same used in Figure 4.3. The gray ellipses denote mean and 1σ

variance for locations occupied by each data point throughout the 10 iterations.
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Figure A.2: Accuracy of PLS analysis in predicting the value of x1 for the validation

sample. Left panel: Results for one of the realizations. The red circles and green

diamonds correspond to the training and validation sets respectively. The blue line shows

the result from the linear fit applied to the training sample only. Right panel: Residuals

from training (red) and validation (green) samples shown on the left axis, and Pearson

correlation coefficient (PCC, in blue), shown in the right axis, for all 10 iterations. The

average ratio between validation and training sample residuals is ≈ 1.057.

The stability of the PC space in dFlog is shown in Figures A.1 and A.2. The color

code is the same used in Figure 4.3 and the gray ellipses represent the mean and 1σ

variance of the locations occupied by each data point in all the 9 realizations in which it

was part of the EMPCA. As an example, we show in the left panel of Figure A.2, the PLS

results regarding the determination of x1, in one of the iterations. This plot illustrates

how well the PLS is able to determine values of x1 for points in the validation sample

(green diamonds) in comparison with the variance present in the training sample (red

circles). A more quantitative approach to such results throughout all the CV process is

shown in the right panel of the same figure. Residuals from the determination of x1 for

training (red) and validation (green) samples, as well as the Pearson correlation coefficient

(blue) for different folds (k) are shown. The mean ratio between residuals from validation

and test samples was found to be very close to unity, verifying that our method is not

suffering from over-fitting in the determination of discrete observables. Similar tests were

performed for other observables and numerical results are shown in Table A.1.
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σres σres
ratio

training validation

Si ii 6355−vel 608 km s−1 642 km s−1 1.06

S ii 5640−vel 348 km s−1 362 km s−1 1.04

Si ii 5972−pEW 5.5Å 6.0Å 1.09

Si ii 6355−pEW 10.3Å 11.0Å 1.07

∆m15 0.13 0.15 1.10

x1 0.61 0.64 1.06

Table A.1: Residuals in estimation of observables from training and validation samples.

A.2 Line Velocities and Pseudo Equivalent Width Cal-

culations

The values for line velocities and pEW used in section 5 were calculated using the algo-

rithms described below.

In order to calculate the velocity of a line known to exist at an observed wavelength λ0,

we start by searching for local minimum around λ0. Once the local minimum is found, we

use its wavelength, the rest frame wavelength of the line and add relativistic corrections

to compute the velocity blueshift.

If the line does not exist, the search for local minimum will lead us to the next important

spectral feature and the final velocity value will be easy to recognize as wrong.

In computing the pEW, we need to determine the line tangent to the two nearest peaks

surrounding a given spectral feature (A.2). We begin from the point of minimum flux of

that feature (point A) and define two other points, along the flux function, to the left

(point B) and to the right (point C) of point A. The area between the line connecting

points B and C is calculated for successive small increments in the distances between A

and B. The algorithm continues to iterate until the area between line BC and the flux

function stop increasing. Once this maximum area is reached, B is kept fixed and the same

procedure is applied to successive small increments in the distance between A and C. The

calculation continues to alternate between increments in AB and AC until convergence.

Once the maximum area is determined, it is used to characterize the pEW.

A.3 The reconstructions in the derivative space

In Figure C.1 we show the same reconstructions presented in Figure 4.8 in the original

derivative space. We lack a physical intuition in observing this space and it is hard to recog-
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maximum light.

nise the behaviour of the classical spectral indicators. However, it clearly demonstrates the

ability of the derivative operation in minimizing reddening effects. It is instructive that the

mismatches in color, which appear in the first two objects in Figure 4.8 (SNF20071015-000

and SN2007kk), are not noticeable anymore.
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Software references

SciPy – scipy.org – is an extensive open source library of scientific tools.

scikit-learn – scikit-learn.org – is a free-software tool for data mining and data

analysis built on NumPy, SciPy and matplotlib (Pedregosa et al., 2011).

IPython – ipython.org – is a rich environment for interactive computing. Ideal for

data analysis (Pérez & Granger, 2007).

EMPCA – github.com/sbailey/empca – Weighted Expectation Maximization Prin-

cipal Component Analysis (Bailey, 2012).

matplotlib – matplotlib.org – is a 2D plotting library (Hunter, 2007).
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