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The realistic simulation of sound absorbing materials in a finite element calculation of a coupled
structure - fluid system is a complex matter. There exist two main approaches in the literature to
consider the interaction between the fluid and the structure. The first one is to model the physical
behavior of the absorbing liner by a special finite volume element which implements the
equation of motion of the absorbing material. While this may be the physically more correct
approach, it suffers the drawback, that often additional degrees of freedom have to be introduced
and that the measurement of the involved material parameters is complicated.

The second approach is to consider essentially the effects of the absorbing liner on the fluid
in form of a boundary condition. The effects on the structure are neglected apart from the fluid
pressure, which acts as a normal force on the structure, and an optional mass coating on the
structure. This has the advantage that the parameters describing the boundary condition can be
determined by measuring the effect of the absorbing liner on the fluid with microphones.

The most commonly used boundary condition is the normal incidence impedance boundary
condition [1]. As the name indicates, it is valid for sound incidence normal to the absorbing
surface. For other angles of incidence it leads to correct results only if the absorbing material is
point reacting. For bulk reacting materials the boundary condition according to Bliss [2] is better
suited. This boundary condition contains the impedance boundary condition as well as a
correction term which accounts for the effect of bulk reaction. If it is further extended by a fluid-
structure coupling term, it can be used for the development of an new finite element for the
realistic simulation of sound absorbing layers on the fluid-structure interface.
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Starting point is the weak formulation of the wave propagation equation after the transformation
to the frequency domain:
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where w is any C0-continous test function, p is the fluid pressure, vf is the velocity of air
particles, n is the unit vector normal to the fluid surface, c0 is the speed of sound, ρ0 is the density
of air, ω is the angular frequency, V the fluid volume, S the fluid surface and
∇ =� �  �: ( , , )∂ ∂ ∂ ∂ ∂ ∂  is the nabla operator. The first and the last term of (1) will lead to the
well known ‘mass’ matrix and ‘stiffness’ matrix1 of the fluid after the Galerkin discretisation.
The middle term (a) is an integral over the fluid boundary and is used to introduce the boundary
condition according to Bliss into the equation of motion:

� � � � � �� �
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The boundary condition is valid for thin layers of rigid porous sound absorbing material on a
rigid wall. Here Z is the normal incidence impedance, vf is the fluid velocity, and B is the bulk
reaction coefficient. The operator Δ

�

� �� ��: ( )= ∇ − ∇2  is the surface Laplacian. If the wall,
where the absorbing layer is fastened, is moving, it is reasonable to assume, that the absorbing
layer is moving with the same velocity. Therefore replacing the fluid velocity by the difference
between fluid vf and structure velocity (iωus) and solving for vf, we get:
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substituting (3) for � �
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�  in the middle term of (1) yields:
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Again the middle term (b) of eq.(4) needs a closer look. It contains second derivatives of the
pressure and therefore can not be approximated with C0-continous element shape functions
directly. This problem is solved by integrating (b) by parts:
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The curve-integral along the boundary C of the fluid surface is zero by definition, because a
closed surface has no boundary. Collecting all remaining terms together we get the following
weak formulation of the wave propagation equation for a fluid inside a bulk reacting moving
absorbing boundary:
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Now, setting � �  � � �  � ��
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( , , ) ( , , )= ∑ , where Nf and Ns are

the shape functions for the fluid pressure and displacements of the structure respectively and
performing the galerkin discretization we get a matrix equation for the fluid part of the coupled
equations of motion of the structure - fluid system:
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where uj are the displacements of the structural nodes and pi the sound pressures at the nodes of
the fluid. If the normal incidence impedance Z and the bulk reaction coefficient B are assumed to

                                                
1 These matrices don’t really have the units of mass and stiffness. They are called ‘mass-‘ and
‘stiffness’ matrix in imitation of the corresponding structural matrices.
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be constant over the entire finite element, then these two parameters can be pulled outside the
integrals, and we get the following matrices:
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where M and K are the mass matrix and the stiffness matrix of the fluid, DZ is responsible for the
normal incidence impedance behavior of the fluid boundary, DB is the bulk reaction correction
term and A describes the coupling between fluid surface nodes and structural nodes.

���������	�
��. The matrices M and K can be calculated with almost every FE-program. The
other three matrices DZ, DB and A result from the coupling equation. The most straight forward
finite element implementation of these matrices would be a triangular or square coupling element
with fluid nodes on the one side and coincident structure nodes on the other side. This approach
was not followed, because
1. it would lead to a loss of flexibility, because many coupled fluid-structure problems use

meshes with non-coincident nodes at the interface and
2. there are FE-codes available, which are capable of computing the coupling matrix A for non-
coincident meshes.
The remaining two damping matrices DZ and DB only depend on fluid surface nodes. The finite
elements they result from could be called ‘fluid surface elements’, accordingly. A triangular and
a quadrilateral isoparametric fluid surface element was implemented using linear i.e. C0-
continous shape functions and a Gauss integration of order 3 for the quadrilateral element. The
triangular element is simple enough to do an exact integration.
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A finite element model of an impedance tube was used to investigate the correctness of the
derived fluid surface element. It consists of a 3-dimensional model of a rectangular fluid volume
(fig. 1) which is harmonically exited on one end by a piston (spring-mass-system) which is
moving under the influence of a dynamic force with constant amplitude.
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impedance boundary condition was examined. For this purpose the boundary of the fluid volume
opposite to the piston was equipped with a layer of fluid surface elements. Various boundary
conditions were studied by variation of the parameter Z while B was set to zero:
• The rigid wall (or natural) boundary condition. The normal velocity of the fluid is zero at the

surface. This is equivalent to solving eq. (1) without the middle term (a). One can achieve the
same effect by choosing Z→ ∞ (respectively a very big number).

• The ‘open tube’ boundary condition. The sound pressure is zero at the near end. The classical
way of accomplishing that, is to choose shape functions that fulfil this boundary condition
automatically. In the finite element context this means that the pressure nodes at the fluid
surface are constrained to zero, and the matrix equation (7) is reduced by the surface nodes.
This can be simulated by choosing Z→ 0 (respectively a very small number). The effect is that
of a penalty term in eq. (4) which forces the sound pressures at the boundary to zero.

• The ‘adapted’ boundary condition occurs when the wall impedance Z equals the characteristic
impedance ρ0c of the fluid. In this case plane waves will not be reflected from the near end of
the tube but fully absorbed, resulting in propagating waves.

All these boundary conditions can be modeled with high accuracy by choosing the normal
incidence impedance of the fluid surface elements properly.

In a next step the top and bottom side of the tube was supplied with a bulk reacting porous sound
absorber (fig. 1). Its normal incidence impedance and bulk reaction coefficient were derived from
the theory of Bliss and are shown in figure 2. Then the frequency response functions for the
sound pressures at the piston and at the opposite end were calculated (fig. 3b). For comparison in
figure 3(a) the same calculation was done but without considering the bulk reaction effects by
setting B to zero. The additional damping of the sound waves caused by the bulk reaction effects
is quite significant especially for high frequencies. In figure 4 the magnitude of the simulated
sound pressure field on the middle axis of the tube is depicted for a frequency of 600 Hz. The
calculated field corresponds very well with the theoretical results obtained by Bliss.

(a) (b)
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A practical application of the derived finite element is shown in figure 5. The fluid surface
element has been used to model the sound absorption treatment in the passenger compartment of
a BMW luxury sedan.  The finite element model of the car consists of a structural part (fig. 5a)
with approximately 110.000 shell-, bar-, mass- and spring- elements and a fluid part with 8800
fluid volume elements. Figure 5b) shows a section of the surface of the fluid volume, where
various absorption panels of different thickness’ (roof, floor, back seats, fire wall etc.) are
marked by shaded areas. At the white areas of the fluid surface (mainly where the car windows
are located) the rigid wall boundary condition (B=0, Z→ ∞ ) was used.

The car body was exited by a constant force of 1 N in the frequency range from 20 Hz -
200 Hz at one of the engine mounts, and the sound pressure at the drivers ear was calculated
(fig. 6). For comparison the same calculation was done without absorption panels. As expected,
the peaks of the sound pressure are higher, more narrow and shifted to higher frequencies, as
compared with the absorption case.
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The developed finite fluid surface element based on the bulk reaction theory of Bliss is an
extension to the commonly used normal incidence impedance boundary condition. It improves
the calculation of sound absorption effects on the fluid caused by bulk reacting porous sound
absorbers. The improvement can be significant, especially for thin layers and lateral incidence,
when the bulk reaction is the dominant damping effect.
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and for providing the finite element model of the BMW sedan.
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