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• The key idea of Random Linear
Network Coding (RLNC) is to linearly
combine (“mix”) packets at the
intermediate nodes

Benefit:
A higher throughput compared to
routing can be achieved

Problem:
High error propagation due to linear
combination of packets

Error Control in Random Linear Network Coding [1]

• The rowspace of the transmitted packets is preserved by the linear
operations of the network
• Data can be transmitted by choosing a subspace and transmitting

a basis of the subspace
• Topology and combinations don’t have to be known by the

transmitter and the receiver ⇒ non-coherent coding
• Choosing subspaces that are separated with respect to a distance

metric allows to correct errors and erasures

The Channel Model

As channel model we use the operator channel from [1]. Denote by Fq
the finite field of order q and by Fqm its extension field of degree m.
Any element in Fqm can be represented by a length m vector over Fq.

Hnt−δ(V)⊕ EV U

• Input: nt-dimensional subspace V over Fq

• Hnt−δ(V) returns a random (nt − δ)-dimensional subspace of V
• γ-dimensional error space E (not contained in V)
• Output: (nr = nt − δ + γ)-dimensional subspace U over Fq
⇒ δ deletions and γ insertions

V ∩ U

V U

E

Subspace Distance

The subspace distance between two subspaces U and U ′ is defined as

ds(U ,U ′) = dim(U ⊕ U ′)− dim(U ∩ U ′)

Linearized Polynomials [2]

For any element a ∈ Fqm and any integer i let a[i] def= aqi be the
Frobenius power of a. A nonzero polynomial of the form

p(x) =
d∑

i=0
pi x [i]

with pi ∈ Fqm , pd 6= 0, is called a linearized polynomial of q-degree
degq(p(x)) = d .

Folded Subspace Codes

Let α be a primitive element of Fqm and let α0, α1, . . . , αn−1 be a
polynomial basis of Fn

q with n ≤ m. Let β be a primitive element of
Fqnt and let the representation of

(
β0, β1, . . . , βnt−1)T over Fq form

the identity matrix I ∈ Fnt×nt
q . Let h be a positive integer that divides

n and define nt = n
h . For fixed integers n, k, h, an h-folded subspace

code FSub[h; n, k] of dimension nt is defined as

β0 f (α0) f (α) . . . f (αh−1)

β1 f (αh) f (αh+1) . . . f (α2h−1)
...

...
...

...
...

βnt −1 f (α(nt −1)h) f (α(nt −1)h+1) . . . f (αnt h−1)

where f (x) is a linearized polynomial over Fqm with degq(f (x)) < k
and αh 7→ β.

Interpolation-Based Decoding

The interpolation-based decoding principle consists of an interpolation
step and a root-finding step. For the interpolation step, we search for
a nonzero (s + 1)-variate linearized polynomial of the form

Q (x , y1, . . . , ys) = Q0(x) + Q1(y1) + · · ·+ Qs(ys) (1)

which satisfies for all i ∈ [0, h − s], j ∈ [0, nr − 1] and s ≤ h:
• Q(xjα

i , yj,i , yj,i+1, . . . , yj,i+s−1) = 0,
• degq(Q0(x)) < d ,
• degq(Q`(y`)) < d − (k − 1), ∀` ∈ [1, s].

A non-zero Q (x , y1, . . . , ys) fulfilling the above interpolation
constraints exists if d ≥

⌈
nr (h−s+1)+s(k−1)+1

s+1

⌉
.

Theorem (Decoding Radius)
Let Q (x , y1, . . . , ys) 6= 0 fulfill the above interpolation constraints. If

γ + sδ < s
(

nt −
k − 1

h − s + 1

)
(2)

then
P(x) def= Q(x , f (x), f (αx), . . . , f (αs−1x)) = 0. (3)

Normalized Decoding Radius

The normalized decoding radius τf = γ+sδ
nt

of the approach is

τf < s
(

1− nt + hm
m(h − s + 1)R

)
.

Root-Finding step

The task of the root finding step is to find all polynomials f (x) with
degq(f (x)) < k such that

P(x) def= Q(x , f (x), f (αx), . . . , f (αs−1x)) = 0. (4)
This can be done by solving a linear system of equations in at most
O(k2) operations in Fqm .

List Decoding Approach

• In general, the root-finding system can be underdetermined
• In this case, we obtain a list of roots of (4), i.e., a list of possible

message polynomials
• This decoder is no polynomial-time list decoder but it provides

the basis of the list with quadratic complexity

Theorem (Average List Size for Subspace Codes)

Let FSub[h; n, k] be a constant dimension subspace code over Fqm and
let N = nt + hm be the dimension of the ambient vector space. Let
the number of insertions γ and deletions δ fulfill (2). The average list
size Lf (τ), i.e. the average number of codewords at subspace distance
at most τ = γ + sδ from a received nr -dimensional subspace satisfies

L(τ) < 1 + 16(τ2 +1)qmk+(nr−b nr −nt +τ
2 c)(nt+b nr −+τ

2 c−N).

Probabilistic Unique Decoding

• The average list size is one for most parameters
• This allows us to use the algorithm as a probabilistic unique

decoder which returns a unique solution or a decoding failure in
case the list size is larger than one

Theorem (Probabilistic Unique Decoding)
Consider an h-folded subspace code FSub[h; n, k]. Let µ ≥ 1 be an
integer. If

γ + sδ ≤ s(nt(h − s + 1)− (k − 1))− µ
h − s + 1 (5)

then we can find a unique solution f (x) satisfying (3) with probability
at least

1− k
( k

qm

)µ
requiring at most O(s2n2

r ) operations in Fqm .

The decoding radius can be adjusted by the choice of µ to control the
decoding radius vs. failure probability tradeoff.

Simulation Results
Consider a folded subspace code with parameters q =2, m =n =16,
h =4, nt =4, k =4 and s =3.

µ γ δ observed errors failure probability iterations
1 4 1 5.89 · 10−5 2.44 · 10−4 106

2 3 1 0 1.49 · 10−8 6 · 106

Performance Analysis

For a fair comparison we select the code parameters such that each
codeword contains the same number of symbols.
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Figure 1: The normalized decoding radius τf = γ+sδ
nt

vs. the rate R for h =10.

Comparison to other approaches
• The code by Mahdavifar and Vardy [3] only can correct errors for

very small rates
• The construction by Guruswami and Xing [4] achieves the best

decoding radius for all rates but puts out a very large list with
high probability

XXX The proposed code construction can correct insertions and
deletions for all code rates and returns a unique solution with high
probability, which is a major benefit for practical applications

Summary

• Interpolation-based decoding scheme for folded subspace codes
consisting of an interpolation step and a root-finding step
• Folded subspace codes are very resilient against insertions
• Upper bound on the average list size for subspace codes
• The scheme can be used as a probabilistic unique decoder that

outputs a unique solution with high probability
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