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Motivation

Source

e The key idea of Random Linear
Network Coding (RLNC) is to linearly
combine (“mix") packets at the
intermediate nodes

A higher throughput compared to
B routing can be achieved
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Problem:

High error propagation due to linear
combination of packets

Destinations

Error Control in Random Linear Network Coding [1]

e The rowspace of the transmitted packets is preserved by the linear
operations of the network

e Data can be transmitted by choosing a subspace and transmitting
a basis of the subspace

e Topology and combinations don’t have to be known by the
transmitter and the receiver = non-coherent coding

e Choosing subspaces that are separated with respect to a distance
metric allows to correct errors and erasures
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The Channel Model

As channel model we use the operator channel from [1]. Denote by F,
the finite field of order g and by Fgm its extension field of degree m.
Any element in Fgm can be represented by a length m vector over .

V u
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Input: n;-dimensional subspace V over I,

Hn,—s5(V) returns a random (n; — §)-dimensional subspace of V

e y-dimensional error space £ (not contained in V)

Output: (n, = n; — § + )-dimensional subspace U over F,
= 4 deletions and -~y insertions
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Subspace Distance

Linearized Polynomials [2]

: . N def i
For any element a € Fgm and any integer i let all € 59" be the

Frobenius power of a. A nonzero polynomial of the form

d
p(x) = > pixd?
i=0

with p; € Fgm, pg # 0, is called a linearized polynomial of g-degree
deg(p(x)) = d.
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Folded Subspace Codes
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Let o be a primitive element of Fym and let alal,...,a" 1 bea
polynomial basis of Fg with n < m. Let 8 be a primitive element of

Fqn and let the representation of (3%, 8%,. .. ,ﬁ”f_l)Tover F, form
the identity matrix | € Fgr*"™. Let h be a positive integer that divides
n and define n; = 7. For fixed integers n, k, h, an h-folded subspace
code FSub|h; n, k] of dimension n; is defined as

] -
(| ey | ey Fa™L)
{ﬁn;_l M poaTIS M f(aw'_l)m)}

where f(x) is a linearized polynomial over Fqm with deg,(f(x)) < k
and o — 3.

Interpolation-Based Decoding

The interpolation-based decoding principle consists of an interpolation
step and a root-finding step. For the interpolation step, we search for
a nonzero (s + 1)-variate linearized polynomial of the form

QX ¥1,-++,¥s) = Qo(x) + Qu(y1) + - + Qs(ys) (1)

which satisfies for all / € [0,h —s],j € [0,n, — 1] and s < h:
o Qs yjis Yjit1s- -+ Yjivs—1) =0,
° degq(Qo(x)) < d,
o deg (Qu(yr)) <d—(k—1), VL e[l,s]

, ¥s) fulfilling the above interpolation

nr(h—s+1)+s(k—1)+1
s+1 .

A non-zero Q(x, y1,. ..

constraints exists if d > [

Theorem (Decoding Radius)

Let Q(x,y1,...,¥s) # 0 fulfill the above interpolation constraints. If
k—1
7+s5<s<nt—m) (2)
then
P(x) & Q(x, f(x), f(ax), ..., F(a*1x)) = 0. (3)

Normalized Decoding Radius

The normalized decoding radius 7 = %5 of the approach is

Root-Finding step
The task of the root finding step is to find all polynomials f(x) with

deg,(f(x)) < k such that

P(x) & Q(x, f(x), f(ax),..., f(a® 1x)) = 0. (4)
This can be done by solving a linear system of equations in at most
O(k?) operations in Fgm.
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List Decoding Approach

e In general, the root-finding system can be underdetermined
e In this case, we obtain a list of roots of (4), i.e., a list of possible
message polynomials

e This decoder is no polynomial-time list decoder but it provides
the basis of the list with quadratic complexity

Theorem (Average List Size for Subspace Codes)

Let FSub[h; n, k] be a constant dimension subspace code over Fgm and
let N = n; + hm be the dimension of the ambient vector space. Let
the number of insertions v and deletions § fulfill (2). The average list
size L¢(7), i.e. the average number of codewords at subspace distance
at most T = vy + s from a received n.-dimensional subspace satisfies

Z(T) <1+ 16(%+1)qu+(n'_LW])("H-L%J—N)‘

Probabilistic Unique Decoding

e The average list size is one for most parameters

e This allows us to use the algorithm as a probabilistic unique
decoder which returns a unique solution or a decoding failure in
case the list size is larger than one

Theorem (Probabilistic Unique Decoding)

Consider an h-folded subspace code FSub[h; n, k]. Let > 1 be an
integer. If
h—s+1

then we can find a unique solution f(x) satisfying (3) with probability

at least L \B
1— K (_)
gm

requiring at most O(s®>n?) operations in T gm.

¥ +56 < >

The decoding radius can be adjusted by the choice of i to control the
decoding radius vs. failure probability tradeoff.
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Simulation Results

Consider a folded subspace code with parameters g=2, m=n=16,
h=4, n;=4, k=4 and s=3.

Performance Analysis

For a fair comparison we select the code parameters such that each
codeword contains the same number of symbols.
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Kétter-Kschischang [1]
—— Mahdavifar-Vardy [3]

gl Guruswami-Xing [4] i
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Figure 1: The normalized decoding radius T,c:nﬁt‘S vs. the rate R for h=10.

Comparison to other approaches

e The code by Mahdavifar and Vardy [3] only can correct errors for
very small rates

e The construction by Guruswami and Xing [4] achieves the best
decoding radius for all rates but puts out a very large list with
high probability

v" The proposed code construction can correct insertions and
deletions for all code rates and returns a unique solution with high
probability, which is a major benefit for practical applications

N
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Summary

e Interpolation-based decoding scheme for folded subspace codes
consisting of an interpolation step and a root-finding step

e Folded subspace codes are very resilient against insertions
e Upper bound on the average list size for subspace codes

e The scheme can be used as a probabilistic unique decoder that
outputs a unique solution with high probability

v

References

[1] R. Koétter and F. R. Kschischang, “Coding for Errors and Erasures in Random
Network Coding,” IEEE Trans. Inf. Theory, vol. 54, no. 8, Jul. 2008.

[2] @. Ore, “On a Special Class of Polynomials,” Trans. Amer. Math. Soc.,
vol. 35, pp. 559-584, 1933.

[3] H. Mahdavifar and A. Vardy, “List-Decoding of Subspace Codes and
Rank-Metric Codes up to Singleton Bound,” in IEEE Trans. Int. Symp. Inf.
Theory, Jul. 2012, pp. 1488-1492.

. /s : 0 | observed errors | failure probability | iterations
The subspace distance between two subspaces I/ and U’ is defined as ne - hm l:[L ‘ Z ‘ . ‘ T ‘ . 44P. e Yy ‘ o6 4] V. Guruswami and C. Xing, “List Decoding Reed—Solomon,
d Z,{,Z,{’ =dimU aoU") —dimUnNnU’ TF <S (1 — —R) . ’ ’ _ Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound,”
S( ) ( v ) ( ) m(h — s+ 1) 2131 0 1.49-10 8 6 106 Electr. Collog. Comp. Complexity, vol. 19, no. 146, 2012.
é Unterstiitzt von / Supported by \L /
24
® -
=

o ¢ Institute for

Communications Engineering

Alexander von Humbdldt

Stiftung/Foundation

Technische Universitat Munchen




