An embedded interface finite element method for
fluid-structure-fracture interaction

Sudhakar Yogaraj

Bericht Nr. 28 (2015)
Lehrstuhl fiir Numerische Mechanik
Professor Dr.-Ing. Wolfgang A. Wall

Technische Universitat Miinchen



Berichte kénnen bezogen werden tiber:

Lehrstuhl fir Numerische Mechanik
Technische Universitat Minchen

j:/i/ | :I\:\:\Li\* Boltzmannstrasse 15
7L// //7/17‘7\7\\7\\7\\ D-85747 Garching bei Miinchen
& ) ] T TV N VN http://www.nm.mw.tum.de

Alle Rechte, insbesondere das der Ubersetzung in andere Sprachen, vorbehalten. Ohne Genehmi-
gung des Autors ist es nicht gestattet, dieses Buch ganz oder teilweise auf photomechanischem,
elektronischem oder sonstigem Wege zu kommerziellen Zwecken zu vervielfdltigen.

All rights reserved. In particular the Tight to translate the text of this thesis into another language
is reserved. No part of the material protected by this copyright notice may be reproduced or utilized
in any form or by any means, electronic or mechanical, including photocopying, recording or by
any other information storage and retrieval system, without written permission of the author.



TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fir Numerische Mechanik

An embedded interface finite element method for
fluid-structure-fracture interaction

Sudhakar Yogaraj

Vollstandiger Abdruck der von der Fakultdt fiir Maschinenwesen der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genechmigten Dissertation.

Vorsitzender: Univ.-Prof. dr. ir. Daniel J. Rixen

Priifer der Dissertation:
1.  Univ.-Prof. Dr.-Ing. Wolfgang A. Wall
2. Prof. Nicolas Moés, Ph.D.

Ecole Centrale de Nantes, France

Die Dissertation wurde am 2. April 2015 bei der Technischen Universitit Miinchen eingereicht
und durch die Fakultét fiir Maschinenwesen am 25. Juni 2015 angenommen.






Abstract

The vast majority of the computational methodologies developed to model the fluid-structure
interaction (FSI) assume that when the structure interacts with the fluid, it deforms completely
within the elastic limit. They preclude not only any plastic deformation but also the failure
by fracture. In a variety of natural phenomena and engineering applications, the fluid-induced
loads on the structure are large enough to enable the initiation and propagation of cracks, which
may ultimately result in catastrophic failure of the structure. This occurrence is termed as fluid-
structure-fracture interaction (FSFI), and the present work is focused on devising an embedded
interface finite element method (EIM) to model such coupled multiphysics phenomena.

The contributions of the current thesis are three-fold. First, on the structural part, a mesh
refitting approach is devised to simulate the fracture of nonlinear hyperelastic materials. Then,
on the fluid part, accurate and robust numerical integration methods are developed to enhance
the robustness of EIMs. Finally, on the coupling part, the interaction of fluid flow with cracking
structures is modeled using a strongly coupled partitioned approach.

The first step of extending FSI methods to handle FSFI is to equip the structural analysis
with a fracture mechanics solver. In this work, a mesh refitting approach is developed to simulate
brittle fracture of an isotropic homogeneous hyperelastic material. A two step mesh-modification
algorithm is utilized to deal with the topology change introduced in the structural domain due to
the crack propagation. First, the nodes are repositioned in such a way that the crack propagates
along an existing edge in the new mesh. Then, if necessary, the element connectivity is locally
modified in order to preserve the mesh quality. The excellent performance of this method is
demonstrated by simulating crack propagation examples of varying complexity and comparing
the results with those available in the literature.

One of the crucial steps that dictates the accuracy and robustness of EIMs, while solving the
Navier-Stokes equations, is the accuracy of weak form integration, which gained least attention in
the literature. The embedded interface cuts a few elements of the mesh, and on these cut elements
the integration needs to be performed over the arbitrary polyhedral shaped cells resulting from the
interface crossing. The most widely used volume decomposition based methods lack robustness
i.e., they fail at certain critical cut configurations and the simulation crashes. To address this
issue, two new numerical integration strategies, namely the generalized moment fitting method
and the direct divergence method are developed in this work. Both methods are designed to
work in situations, where the integrand is not explicitly prespecified. This is essential for their
applications in FEM. Moreover, they can handle convex as well as concave shaped polyhedra.
Numerical examples demonstrate that the direct divergence method is the most accurate and
posses superior robustness characteristics when compared to all other available methods.

Having dealt with fracture and the robustness of EIM, in the final step, a coupling approach
is developed to model the fluid-structure-fracture interaction. Since the objective is to use the
existing methodologies for fracture and fluid field, and because this work considers highly flexible
structures, a strongly coupled partitioned approach is utilized. The method involves Dirichlet-
Neumann partitioning and the coupling is achieved using fixed-point iterative methods employing
Aitken’s A? relaxation as convergence accelerator. Numerical examples involving complete frac-
ture of the structure due to fluid loads are solved using this method.

In short, this thesis presents a first step towards extending the numerical modeling of FSI to
the next level by introducing two essential features: possibility of crack initiation and propagation
within the structure due to fluid loads, and the mutual interaction of crack surfaces with the fluid
entering the crack. Numerical example involving a structure breaking completely into two parts,
of which one is carried away by the flow is presented in this thesis.
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1 Introduction

When a fluid flows past/within a structure, loads exerted by the fluid tend to change the configu-
ration of the structure by inducing deformations and/or displacements. This change in structural
configuration, in-turn, influences the dynamics of the fluid flow. The aforementioned intrinsic
two-way communication between the structure and the fluid with which it is in contact with, is
termed as fluid-structure interaction (FSI).

FSI is ubiquitous both in nature and in man-made engineering structures. Plant aerodynamics,
animal locomotion, and flow of air, blood, lymph, and cerebrospinal fluid through the correspond-
ing flexible biological structures are a few natural phenomena that are highly influenced by FSI;
representative examples of man-made engineering structures where FSI analysis is inevitable are
airplane wing flutter, energy extraction from rotary/oscillatory structures, wind induced vibration
of tall buildings, and vibration of compressor and turbine blades of gas turbine engines. In short,
in plethora of natural phenomena and in engineering applications, the presence of fluid-structure
interaction is a rule rather than an exception.

The fluid induced loads on the structure can in many instances deflect the structure within the
elastic limit, and in some cases introduce permanent plastic deformation. In other applications
the fluid loads are so high that they subsequently lead to the initiation and propagation of crack,
which may result in ultimate failure of the structure. This phenomenon in which the fluid loads
result in crack propagation, in addition to deflection of the structure, is termed in this thesis as
fluid-structure-fracture interaction (FSFTI).

The coupled nonlinear governing partial differential equations, together with the associated
complex geometry make it impossible to obtain analytical solutions in practically relevant FSI
configurations. Moreover, conducting careful laboratory experiments are extremely expensive
and also are limited in their scope. Therefore in order to understand the fundamental physical
processes involved in nature and to design better engineering products, computational modeling
of FSI in the aforementioned topics is an ideal choice because of its cost-effectiveness and the
level of details one can obtain from simulations. This thesis takes the numerical modeling of FSI
to the next step by introducing the possibility of fracture within the structure due to the fluid
induced loads. In order to achieve this, the mere computation of the structural deflection in FSI
analyses should be extended to include catastrophic failure by fracture. To be more precise, the
aims here are to

e enable the possibility of crack initiation and propagation within the structure due to fluid
loads

e model the mutual interaction of crack surfaces and the fluid entering the crack opening

These are achieved in this work by developing an embedded interface finite element methodology
to handle fluid-structure-fracture interaction, which combines the knowledge from three different
fields: structural mechanics, fluid dynamics and fracture mechanics.



1 Introduction

1.1 Background and motivation

Owing to the fact that a variety of rich physical phenomena are governed by FSI, and due to
their strong engineering relevance, FSI has gained great attention in the past decades. Several
researchers have studied FSI using experimental methods as well as numerical approaches. Almost
all of the existing studies assume that the structure is ideal without any imperfections. In addition,
they invoke the assumption that due to the fluid loading, the structure deforms within the elastic
limit; any permanent/plastic deformation and failure by fracture are precluded. Studies under
these assumptions aim to analyze, in a coupled manner, the elastic deflections of the structure due
to fluid flow and the corresponding changes in fluid flow owing to the deflection of the structure.

FSI analyses under the assumption that the structure always deflects within the elastic limit
are very useful in a variety of circumstances. For instance, consider an example of fluid flow
over an airplane wing. Due to the fluid loading the wing may bend, and this bending deflection
affects the fluid flow characteristics. The coupled analysis in such cases is focused on confirming
the following two: (a) structural stresses, owing to the deflection induced by the fluid loading, is
within the design limits, and (b) even after the structural deformation, the fluid flow around the
wing generates sufficient lift force to keep the airplane aloft.

The majority of the engineering structures and components contain preexisting flaws: internal
voids, micro-cracks, inclusion, and second phase particles. These flaws are introduced either in
the course of the manufacturing process, or they develop during the duration of their service
period. The destructive influence of these preexisting flaws on the strength of the material is
known even from the time of Leonardo da Vinci, who conducted experiments on iron wires,
and concluded that the strength of wires varied inversely with its length. Longer wire posses
lower strength because due to larger volume, larger is the possibility of containing flaws than the
shorter ones. These flaws elevated the stresses experienced by the structure which can be high
enough to induce plastic deformation, enable crack initiation and ultimately lead to failure at
lower applied stresses. In other words, in the presence of these flaws, the structure fails at much
lower applied stress than the material strength, even if the loading is within the elastic regime.
Owing to their considerable importance, it is now widely accepted that the crack propagation
must be considered both during the design and the analysis phase of any engineering structure.
Though fracture analysis has become a usual practice in a pure structural analysis, the presence of
preexisting flaws and the possibility of fracture are completely ignored in a coupled fluid-structure
interaction analysis.

A few natural phenomena and potential engineering applications in which FSFI analysis is
inevitable are illustrated in figure 1.1. Detachment of biofilms [1-4] and breakage of wave-swept
microalgae [5—8] are two important biological examples, wherein the life-time of the organisms
involved are dictated by the fracture induced due to the fluid loads acting on them. Moreover,
FSFI finds widespread applications in engineering structures. For example, the failure of fluid
carrying pipes is one of the major safety threats to nuclear powerplants and natural gas trans-
mission pipelines. Such scenarios in engineering are very important not only for their scientific
relevance but also for the fact that these fracture failures can lead to loss of many human lives.
Due to this fact, there have already been a few studies that aim to analyze FSFI in pipeline
fracture [9-15] and to model warhead detonation [16,17].

Despite the availability of several FSFI studies focused on nuclear and military purposes, the
biological applications have not been addressed before, to the best of our knowledge. Moreover,
the computational methods developed to address the aforementioned engineering applications
cannot be used in biological problems because of the different physics involved. This issue is
addressed clearly in section 1.3. The primary objective of this thesis is to develop an embedded
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Applications in nature

Detachment

Detachment of biofilms Breakage of wave-swept microalgae

Applications in engineering

Moxnes et al (2014)

Detonation of warheads

Figure 1.1: A few applications of fluid-structure-fracture interaction in nature and in man made
engineering structures

interface finite element method to model FSFI in biological applications. The present work is
motivated by our interest in characterizing fluid dynamic behavior of biofilm streamers [18-20].
This work can be considered as the first step towards the modeling of biofilm separation and
other biological applications. It is worthwhile to mention that slow crack propagation within
the structure is a common characteristic in such applications. This means that the fracture can
be modeled as a quasi-static process. Some other physical processes where dynamic effects are
important are listed in section 1.3.2.

1.2 Problem definition

The previous section explained how the preexisting flaws reduce the material strength, and it has
been said that this study aims at introducing the influence of these flaws into FSI analysis. For
brevity, the objective of this thesis is explained further in this section.

Consider a fluid domain 2/ within which a structural obstacle Q° is embedded (figure 1.2a). Let
the preexisting imperfection within the structure is denoted as I'“; in figure 1.2a, the structure
is shown to encompass a sharp notch. In a pure coupled FSI problem that does not consider
the influence of any flaws, both the fluid and the structure exchange information through the
common interface I = (' UT°), and the structure exhibits elastic deformation owing to the
fluid loading.
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Qf Qf

I‘S

(a) Initial configuration (b) Final configuration

Figure 1.2: A schematic illustration of initial and final configurations of a fluid-structure-fracture
interaction problem. (a) Initial configuration showing preexisting flaws in structure. (b) Final
configuration with complete fracture. Crack path is shown as dotted lines

In contrast, FSFI analyses give rise to two possible scenarios.

No crack growth: The loading conditions are such that the structure experiences very low stress
values, and it undergoes elastic deformation. This case can be modeled using the existing pure
FSI solvers.

Fracture: In this case, in addition to elastic deformation, fracture can occur within the structure.
Even when the stresses are completely within the elastic regime in other parts of the structure,
the presence of the flaws enhances the stresses in their vicinity to a very high value. Peak stresses
act at the blue point marked in figure 1.2a. Due to this high value, cracks can start growing
from this notch, and the structure may even fracture i.e, completely break into two (figure 1.2b).
In this configuration, both the structure and the fluid-structure interface are completely broken
into two, and the fluid can flow through the crack. This work aims at simulating both the crack
propagation, and the fluid entering the crack, in addition to simulating the usual fluid-structure
interaction effects. This work though assumes clearly defined crack initiation points (blue dot in
figure 1.2), no prior knowledge on the crack path through the structure is assumed.

1.3 Overview of related research

Research works that consider the influence of fluid-induced forces on the crack propagation within
the structure are recalled here. This is mandatory to understand the current developments in
this field, and more importantly to clearly identify how our work is different from others. The
following text reviews the salient features of the existing methods, and explains why they are not
suitable for modeling the biological applications listed in figure 1.1.

1.3.1 Hydraulic fracture

Hydraulic fracture is the process in which the hydraulic loading i.e., pressure induced by the
fluid within the fracture is responsible for the initiation and subsequent propagation of fracture.
In nature, this phenomenon is observed in propagation of water-containing crevasses through
glaciers and the transport of magma through earth’s crust in fissures. Such hydraulic fracture
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is deliberately created in engineering, and finds applications in mining, petroleum engineering,
waste disposal, and remediation of contaminated soils.

Traditionally, in this class of problems, the fluid flow within the crack opening is modeled as
flow between two parallel plates [21,22]. Under such assumptions, the Navier-Stokes equations
are simplified into a “local cubic law” in which flow unsteadiness, inertial forces, and velocity
components perpendicular to crack surfaces are neglected. It is called cubic law, owing to the
fact that the volume flow rate is proportional to the cube of aperture. Recent studies [23-25]
have questioned the validity of this simplified flow model, and concluded that inertial forces can
significantly influence the internal flow field and flow rate within the crack. In order to include
the influence of inertial effects, the complete Navier-Stokes equations must be solved.

1.3.2 Detonation and fragmentation studies

This class of studies addresses the interaction of the structure and the pressure & detonation
waves traveling through the fluid. The fluid flow is assumed to be compressible and inviscid,
hence Euler equations govern its behavior. The crack propagation within the material is modeled
using cohesive elements. Importantly, since the structure is subjected to impact loads due to the
traveling waves, dynamic effects must be included in the fracture modeling. Rupture of thin-
walled tubes subjected to detonation waves traveling through the fluid contained in the pipe is
the widely simulated example [9-11,13-15]. Plastic and viscoplastic effects of the structure are
also included in the modeling. This tube-rupture problem represents a motivation to study the
accidents occurring in the cooling system of nuclear power plants, and in underwater implosions.
The study of Wang [13] reports also the simulation of two-phase flow in this example. A novel
meshless method is recently proposed to model such scenarios [12]. The speciality of this method
is its ability to handle both FSI and FSI-crack interaction with minimal modifications.

Another interesting application for this class of problems is to model the pressure waves gen-
erated from the explosives, and the subsequent fragmentation of the surrounding structure.
Specifically, detonation and fragmentation of rocket warheads [16] and blast environment due
to explosives [26] are studied to understand the internal blast damage and fragment dispersion
effects.

1.3.3 Inapplicability of existing methods to current problem class

Having reviewed the existing methods in the aforementioned text, the reasons why these methods
cannot be used for biological applications presented in figure 1.1 are briefed here.

In hydraulic fracture theory, the fluid flow around the structure and the mutual interaction
between fluid and structure are not considered. It is assumed that the structure is completely
rigid, and the loads exerted by the fluid that fills the crack opening is the only source of stresses
and fracture. This does not fit into our needs since the aim here is at simulating structures whose
movement is governed by the fluid flow around them and FSI is important. In our problem class
of interest, the crack propagates not only due to fluid loading, but also due to structural stresses
induced by overall FSI.

In detonation and fragmentation studies, the fluid viscosity is neglected and the focus is on
resolving the compressible waves traveling through the fluid. Moreover, since the objective is on
modeling the influence of such waves or impact loading on the structure, the dynamic effects are
very important. In this case, the crack propagates through the material at very high velocities and
all the physically relevant events take place within micro-seconds. In order to model fluid forces
induced material failure in biological applications, the present work focuses on coupling viscous
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incompressible fluids with the structure, and to enable quasi-static brittle crack propagation
within the structure.

It is clear that neither hydraulic fracture nor detonation and fragmentation studies are suitable
for addressing the present problem class of interest, and the development of a new framework
to model fluid-structure-fracture interaction is mandatory. This is accomplished in this work by
devising an embedded interface finite element method to simulate FSFI, and the following section
explains the reasons behind this choice.

1.4 Why embedded interface finite element methods?

The discretization in a mesh-based numerical approach, i.e., the process of converting the gov-
erning (usually partial) differential equations into a system of algebraic equations that can be
easily handled by a computer, can be achieved using either finite difference, finite element or
finite volume methods. Among these, the finite element method has evolved into one of the most
powerful methods devised so far. The reasons for this are, among many others, the ability to
handle complex geometries, consistent treatment of differential-type boundary conditions, and
strong mathematical foundation.

Consider the problem of simulating fluid flow over an arbitrary body. In contrast to meshless
methods, either a body-fitted grid or a non-body-fitted grid is used to arrive at an approximate
solution of the governing equations in a mesh-based FEM. The present work interchangeably
uses the terms “fixed grid method” and “embedded interface method” to denote the class of
methods that utilize a non-body-fitted grid framework. In this section, the salient features of
both body-fitted and embedded interface methods are described to provide an explanation for
why embedded interface methods are opted in this work.

[ \ / | [ \ ’/, | | \ //\ (
N1 ||| x| || — |
|/ - \ | | - | | : \ |
:I\\ // T j//[ “\ T \J\I\///{/ “\ T /il/\//{//
[\ [T [\ T —
1924 s v B | 0 s R B | >
Vo U N TN V7V N
\
(a) Conventional ALE based method
Qf Qf Qf

a | N N\

( \LF ( I ( r

\ ) \ \

Ny | A - -
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Figure 1.3: Illustration of how ALE based and embedded interface methods handle interface
movement. The shaded region represents the domain (©f) over which fluid equations are solved.
I'* denotes the embedded interface.



1.4 Why embedded interface finite element methods?

In a conventional computational approach, a body-fitted structured or unstructured mesh is
generated over the fluid part of the domain (figure 1.3a), and the governing equations are dis-
cretized and solved directly over this mesh. The major advantage of the method is the straight-
forward implementation of boundary conditions on the interface, and the fact that a solver of
adequate accuracy can be designed for a quality mesh. However, generating a high quality mesh
can be a daunting task, and sometimes even impossible if the geometry of the interface is highly
complex. In certain cases, even after resorting to a multiblock grid generation approach, the
appearance of poor quality elements is inevitable. The mesh generation process is highly time
consuming, involves a lot of human intervention, and moreover the presence of low quality ele-
ments adversely affect the stability and convergence characteristics of the solver [27].

The problems experienced by these methods are elevated, when one attempts to perform simu-
lations involving moving or deforming interfaces. Arbitrary Lagrangian Eulerian (ALE) methods
are most widely employed to deal with moving interfaces in commercial and research codes. Such
methods involve the following two steps:

e An automatic procedure to update the mesh points from one-step to another, in order to
accommodate the movement of the interface and to maintain the “body fittedness” of the
mesh in the new time step. Since the mesh is generated only on the fluid part of the domain,
and the domain occupied by the fluid continuously changes with time, this step ensures that
at any instant, the fluid domain is covered with a valid body-fitted mesh (compare the mesh
at different interface positions in figure 1.3a).

e Projection of the solution from old mesh to the new one. The procedure should be accurate
enough not to introduce large errors which deteriorate the solution.

The mesh movement is usually achieved by solving an auxiliary problem to decide the displace-
ment of each node in the mesh. The major objective in this step is to preserve the quality of the
updated mesh. These methods suffer to preserve the mesh quality unless the problem deals only
with small interface deformations; the failure of such methods while handling large deformation
FSI is very clearly documented in a recent work [28]. While handling large deformation problems,
they introduce excessive element shearing and mesh tangling, and these degenerated elements
negatively impact the stability and convergence of the solver. In order to address these issues,
ALE based methods resort to remeshing strategies to avoid generating highly distorted elements.
Remeshing strategies are extremely costly and introduce a lot of complications in the software
design.

In short, the aforementioned two steps, especially when the interface exhibits large motions,
negatively affect the accuracy, robustness as well as the computational cost of the method.

This work utilizes fixed grid methods in which the entire simulation is performed on a fixed
(usually Cartesian) mesh irrespective of the shape or orientation of the interface. Unlike conven-
tional methods, the mesh is generated both on the fluid domain and on the inner portion of the
interface; the elements of the mesh that fall completely within the fluid domain, and that are
cut by the interface are identified, and the governing equations are discretized and solved only
on these elements (figure 1.3b). This greatly simplifies the mesh generation process. Moreover,
handling the movement of the interface in fixed grid methods is relatively simple. From mesh
modification perspective, no additional procedure is mandatory, as the interface simply moves
within the fluid mesh without disturbing the mesh. In contrast to body-fitted methods, fixed grid
methods do not require the projection of the whole solution field from one-step to another. Only
the nodes that were located within the solid domain in the previous step, and are thrown into the
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fluid domain at the current time step due to the movement of the interface need special treat-
ment. Owing to these advantages, fixed grid methods are best suited for simulations involving
either a complex or moving interface and also the only practical choice for simulating problems
involving topology changes.

The above text highlighted the problems associated with ALE methods while handling “smooth”
large displacements. Even in these cases, ALE methods require a few remeshing steps during the
simulation. “smooth” deformation implies the instances where the interface does not exhibit
abrupt movement or topological changes. The problem class of interest in this thesis, FSI with
cracking structures, induces topology change of the fluid domain each time the crack propagates
within the structure (figure 1.4). Moreover, even the state of the art ALE methods cannot handle
the thin fluid opening introduced due to crack faces moving apart. When ALE methods are used
to deal with such problems, remeshing must be performed at each crack propagation step, and
hence not a practical approach to be used. Fixed grid methods, as already stated above, are
therefore the ideal choice for the present work.

Qf Qf

crack introduced thin opening

(a) Initial configuration (b) Configuration after crack propagation
Figure 1.4: Topology change introduced by the crack propoagation

All of the aforementioned advantages of fixed grid methods stem from the fact that they do not
require a body-fitted grid. This feature, in addition to the advantages, brings several challenges to
the solver part that are briefed here. The boundary condition enforcement is not straightforward
since FE nodes are not available on the interface. The discretization in the vicinity of the interface
must be modified to incorporate the boundary conditions. Since the interface cuts through the
fluid mesh in an arbitrary manner, ensuring the robustness of the method is a daunting task.
To be specific, convective stabilization and numerical integration of weak forms are challenging
in peculiar interface cut situations. One focus of this thesis is to develop accurate weak form
integration methods that are addressed in chapter 3. In the same chapter it is briefly pointed out
how other challenges are tackled.

1.5 Objectives and accomplishments

The overall purpose of the present thesis is the development of a computational methodology to
model fluid-structure interaction in the presence of cracking structures. This is very challenging,
and in order to enable systematic developments, the overall purpose is broken into three separate
objectives. These objectives and a brief note on how they are accomplished are stated as follows.

1. Fracture: The first step is to equip the structural analysis with a fracture mechanics solver.
In this work, a mesh refitting approach is developed to simulate single and multiple crack
propagation through an isotropic homogeneous hyperelastic material. Each time when the
crack propagates, it induces topology change in the structural domain. In order to deal with
this, the initial mesh covering the structure must be adjusted continuously. The majority of
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the existing methods utilize adaptive remeshing strategies to deal with this issue. However,
for practial reasons related to the computational costs associated with FSI simulations,
adaptive methods are avoided in this work. Instead, a two step mesh-modification algorithm
is proposed; in the first step, the computational nodes are repositioned in such a way that
the crack in the new mesh propagates along an existing edge in the mesh, and in the
next step, if necessary, the element connectivity is modified to enable arbitrary crack paths
through the mesh. The excellent performance of this method is confirmed by simulating
crack propagation examples of varying complexity and comparing the results with those
available in literature.

2. Robust numerical integration in embedded interface methods to handle fluid
formulations: Fixed grid methods bring in several challenges, in addition to their ad-
vantages, as pointed out in the previous section. One of the crucial step that dictates the
accuracy and robustness of such methods is the accuracy of weak form integration. In
contrast to body-fitted methods (figure 1.3a), the interfaces in fixed grid methods are not
aligned along the edges of the background mesh (figure 1.3b) i.e., the interface cuts the
background mesh’s elements in an arbitrary manner. Over these cut elements the weak
form must be integrated in the region that is located within the fluid part. This requires
accurate numerical integration strategies that work for arbitrary volumes. The most widely
used volume decomposition based methods lack robustness i.e., they fail at certain cut con-
figurations and the simulation crashes. To address this issue, two new numerical integration
strategies, namely the generalized moment fitting method and the direct divergence method
are constructed in this work. Numerical examples demonstrate that the direct divergence
method is the most accurate of all the available methods, and posses superior robustness
characteristics.

3. Fluid-structure-fracture interaction: Having dealt with fracture and the robustness of
fluid formulations, a coupling approach is developed to model the fluid-structure-fracture
interaction. As stated before, this enables the possibility of simulating fracture within the
structure owing to the FSI loads. Since the objective is to use the existing methodologies
for fracture and fluid field, and because this work considers highly flexible structures, a
strongly coupled partitioned approach is utilized. Numerical examples involving complete
fracture of the structure due to FSI loads are solved using this method.

All the methods devised to accomplish the aforementioned objectives are implemented in BACI,
the FEM multiphysics solver developed at our institute. BACI is written in C++, and it makes
use of the Trilinos open-source libraries [29] developed at Sandia National Laboratories. This
work makes use of the already existing and well validated fluid- and structural-solvers, and
implementation of the new methods devised are realized by implementing them in-accordance
with the BACI coding style.

1.6 Structure of the thesis

The organization of this thesis follows a similar structure to the objectives presented in the
previous section. Each chapter addresses different physical fields involved in the development
of fluid-structure-fracture interaction, and every chapter is designed to be self-content to the
best of my efforts; this means that from fundamental concepts and the associated governing
equations, to the complete numerical methodology and implementation aspects of a physical
problem are completely addressed within the corresponding chapter. In few necessary places,



1 Introduction

additional computational procedures necessary for implementation of the illustrated numerical
method are pushed to the appendices.

In the presentation of the thesis, it is assumed that the reader is familiar with the fundamentals
of linear and nonlinear FE methods, and the related continuum mechanics concepts. Only the
necessary details that are highly relevant for the description of the proposed methodologies are
briefly reviewed at the corresponding places. The remainder of this thesis is structured as follows.

Chapter 2 is devoted to the numerical modeling of fracture in homogeneous, isotropic, hy-
perelastic materials. It first starts with a review of microscopic physical events associated with
fracture, and then moves on to briefly explain how macroscopic theory of fracture mechanics has
evolved. This chapter, then, succinctly details the governing equations together with the relevant
continuum concepts. After that, a short review of the existing computational methodologies to
model a sharp crack is presented. Then, the mesh refitting method proposed in this work is dis-
cussed in detail together with the necessary implementation details. Finally, a range of numerical
examples are presented to study the accuracy of crack propagation.

Accurate and robust numerical integration methods over arbitrary polyhedra developed in this
thesis for embedded interface methods are presented in chapter 3. This chapter is concerned
with the solution of fluid flow using embedded interface methods (EIM). It starts with the strong
form of the Navier-Stokes equations, and then proceeds to present the associated weak form
using stabilized EIM. The challenges and importance of accurate weak form integration in EIM
are detailed, and the drawbacks of existing methods are reviewed. Then, the two numerical
integration methods developed in this thesis, namely the moment fitting and direct divergence
methods are discussed in detail. This chapter ends with several numerical examples that study
the accuracy, robustness and computational efficiency of different integration schemes.

How the crack propagation method and the fluid solver described in the previous two chapters
are coupled to devise a fluid-structure-fracture interaction methodology, is the focus of chapter
4. This chapter begins with the comparison of monolithic and partitioned coupling schemes, and
explains why the partitioned approach is chosen for this work. Then, the governing equations
for both fluid and structure, together with the coupling conditions are presented. After this, the
strongly coupled partitioned coupling algorithm to simulate fluid-structure-fracture interaction
is described. Finally, some numerical examples of increasing complexity are illustrated to demon-
strate the applicability of the devised coupling scheme to solve complete fracture of structure due
to the fluid loading.

The final part of this thesis, chapter 5, summarizes the salient points of the present work; the
accomplishments and the major results are recalled. Moreover, several potential extensions are
proposed to enhance the present formulations and algorithms to be directly used in biological
fluid-structure-fracture interaction applications envisioned.

When dealing with crack propagation in linear elastic materials, a few computational steps
involved in the crack propagation algorithm described in chapter 2 can be simplified. This al-
ternative procedure which is applicable only to model fracture in linear elastic materials under
small strain assumptions is presented in Appendix A.

For completeness, the procedure of finding the equation of plane for a simple polygon and the
method of computing correct normal on polyhedra are presented in Appendix B. These are useful
when implementing the numerical integration techniques presented in chapter 3.
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Fracture is, in general, an undesirable phenomenon in man-made engineering structures. When a
crack is nucleated within a structure, it does not necessarily mean that the structure is fractured
and that it is no more useful. A real-world structure, in practice, can accommodate thousands or
even millions of cracks within its safe operating regime [30], and only those located at the highly
strained regions are potential sources of fracture initiators. A structure is said to be fractured,
only when the cracks are grown within the structure to an extent that it considerably affects the
strength or stiffness of the material. Hence, as far as structural safety is concerned, assessing the
onset of fracture is of paramount importance in wide range of engineering disciplines.

As in many fields of engineering, computational modeling became indispensable in fracture
mechanics, owing to the cost effectiveness and the level of details one can obtain from the sim-
ulations. It has already been stated that this work is a first step towards the simulation of
fluid-structure-fracture interaction in biological applications. It is assumed that the material in-
volved in such applications is nonlinear elastic and brittle. This is a valid assumption because
most of the biological materials exhibit large deformation, with little ductility [31]. This means
that the dissipation takes place only in the crack tip vicinity and the bulk dissipation can be
neglected.

This chapter describes a nonlinear FE methodology to model the propagation of through-
thickness cracks within a homogeneous, isotropic, hyperelastic material. The current chapter
first succinctly reviews the microscopic physical processes associated with the crack propagation.
Then, it recalls how the macroscopic theory of fracture mechanics has evolved. It proceeds,
then, to present the governing equations of structural mechanics, together with the associated
continuum mechanics concepts. Thereafter, this chapter summarizes the existing computational
strategies for fracture mechanics, before addressing in detail the computational methodology
developed in this work. The last part of this chapter includes various numerical test cases that
analyze the accuracy of the proposed method.

2.1 Microscopic fracture processes

The physically relevant microstructural events associated with the fracture process are explained
succinctly in this section. Irrespective of the size or the nature of the material, a small region in
the neighborhood of the crack tip, known as the process region, encompasses all the microscopic
processes of crack propagation. This region is subjected to very high stresses. The constitutive law
that is applicable in other parts of the material is not suitable for the process region. Moreover,
it is not amenable for continuum description.

Nucleation and growth of micro-separations within the process region is the significant process
of crack growth. Micro-separation implies decohesion at the micro-structural level. What kind of
micro-separations drive the crack growth depends on several factors.

Depending on the amount of plastic flow in the process region and the energy required for the
propagation, the process of crack growth can be classified into either brittle or ductile fracture.
For a more detailed explanation, one can refer to the well-known literatures [30, 32, 33].

11
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2.1.1 Brittle fracture

Brittle fracture is characterized by rapid propagation of a crack through the material, with
negligible plastic deformation before the failure occurs. Metals at low temperature, ceramics and
ice exhibit this type of fracture. The micromechanism of brittle fracture is the nucleation of
micro-cracks through cleavage; the atomic bonds are gradually broken along the fracture plane.
Cleavage fracture occurs when the energy required to separate atoms is lower than the energy
required to emit dislocations from crack tip as in ductile fracture [34].

(a) Transgranular cleavage (b) Intergranular cleavage

Figure 2.1: Brittle fracture

Micro-cracks can be formed at any point of high stress concentration. One possible mechanism
is that due to the combination of high stresses together with elastic anisotropy mismatch at the
grain vertices or junctions, micro-craks are nucleated by rupturing the atomic bonds [30]. This
type of fracture does not require the presence of any larger inhomogeneities of importance.

Cleavage propagation can either be transgranular or intergranular in nature. In the former,
the fracture extends through the grain along the path of least resistance (figure 2.1a), and in the
later, cracks travel along the grain boundaries (figure 2.1b).

2.1.2 Ductile fracture

Most materials at ambient temperatures exhibit ductile fracture behavior which is characterized
by significant plastic flow in the crack tip vicinity. The formation and the growth of voids in
the process region is the predominant physical mechanism associated with the crack growth in
ductile materials [30,35]. The events that lead to ductile fracture can be grouped into following
3 stages:

1. Nucleation of voids: When a ductile material is subjected to sufficiently large loads, due to
a combination of stiffness differences and geometric factors, stress concentrations develop at
inclusions and second-phase particles, after severe plastic low. Such concentrations become
high enough to nucleate micro-separations at particle-matrix interfaces (figure 2.2a). Once
initiated, these micro-separations propagate along the interface and voids are eventually
created by completely debonding the particles. Alternatively, voids may be formed due to
particle cracking.

2. Growth of voids: During continued loading, the plastic strain and hydrostatic forces in their
neighborhood enable the voids to grow. Simultaneously, the crack tip blunts as shown in
figure 2.2b.

12



2.2 Macroscopic description of fracture process

3. Coalescence: When voids grow further and further, they coalesce among themselves, and
with the existing crack tip. Eventually, the crack starts growing (figure 2.2c¢).

= O 00

(a) Void nucleation (b) Void growth (c) Coalescence
Figure 2.2: Ductile fracture

As long as these three processes take place within the process region, the crack grows contin-
uously within the material.

2.1.3 Ductile—brittle transition

A material that exhibits ductile behavior may become brittle when the conditions influencing the
material behavior such as temperature, particle shape and content, impurities at grain boundaries,
and grain size are changed. Ferritic steels, one of the most technologically important materials,
displays a large change in fracture toughness over a small temperature range. It behaves as a brit-
tle material at low temperatures, and fails by ductile fracture when temperature is increased. In
the transition region, both brittle and ductile micromechanisms co-exist. For example, in ferritic
steels, the plastic flow by means of void growth and coalescence may be abruptly interrupted by
unstable crack growth under cleavage as temperature is lowered [30]. This has serious practical
implications; one of the well-known failure event is the sinking of Titanic. The steel used to
construct the ship was ductile under ambient conditions, and became brittle when operated in
the cold waters of Atlantic. The impact with the iceberg resulted in crack initiation, rapid brittle
cleavage propagation, and subsequently lead to breakage.

The scales at which these microscopic fracture phenomena occur are not amenable for contin-
uum description. For example, in ductile fracture, the size of the largest preexisting void is so
small, about 1um or even smaller. If one assumes that the average distance between the disloca-
tions to be of the same order of magnitude, it is clearly evident that the continuum description
is inappropriate in such regions.

Summary of the physical processes in the vicinity of crack tip is included in this thesis solely
for the purpose of completeness, and to enable better understanding of the assumptions involved
in the computational method. No other parts of the thesis address any physical mechanism of
fracture process. Similar to the majority of other research works, the macroscopic crack tip param-
eters are used to study the evolution of crack within the material. The complete computational
methodology is explained in detail in the forthcoming texts in this chapter.

2.2 Macroscopic description of fracture process

The previous section has highlighted the complex physical processes associated with the crack
propagation. In general, in no field of engineering, such complex micro-structural details are di-
rectly taken into account: continuum assumption is invoked, and appropriate macroscopic theory

13
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is developed. This section provides a brief account of how the macroscopic fracture theory has
evolved. A more complete review of the historical development of fracture mechanics is described
in [33,36].

No structure is perfect, and some initial defects/flaws are always present. In the presence of
these flaws, the structure fails at much lower applied stress than the material strength, even if
it is operating completely within the elastic regime. This is primarily due to the fact that these
flaws act as stress concentration points, and elevate the stresses locally. Inglis analyzed the stress
concentration effect due to an elliptic flaw within an infinite structure (figure 2.3), and derived
the following expression for stress at the tip of the ellipse [37].

o =09 (1 + 2ba,> (2.1)

where og is the far-field applied stress, a and b are major and minor semi-axes, respectively. In
the limit of this elliptic flaw representing a sharp crack (a > b), 0 — oo. This is a paradox: owing
to the infinite stress, the structure fails at the application of even infinitesimal load. However,
real materials cannot develop infinite stresses, and yielding is expected to occur in a small zone,
called as process region, close to crack tip.
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Figure 2.3: Infinite structural domain with an elliptical flaw: (a) Geometry & loading and (b) Lo-
cal coordinate system at crack tip

In linear elastic fracture mechanics (LEFM), the following two important assumptions are made.

e Infinitesimally small process region. The process region around the crack tip is in-
finitesimally small in size when compared to the characteristic dimension of the structure
(usually crack length). This helps us to proceed with continuum description of the material
throughout the structure.

e Small scale yielding. Plastic flow is confined to a very small region near the crack tip.
This permits us to use the linear elastic constitutive equations even in the close vicinity of
crack tip.
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2.2 Macroscopic description of fracture process

The consequences of these assumptions make the analysis procedure simplified. However, when
the process region is neglected, the Inglis’ paradox prevails. Griffith eliminated this paradox
by resorting to an energy based fracture theory [38], instead of stress based analysis of Inglis.
His theory states that when strain energy change resulting from an incremental crack growth is
adequate to overcome the surface energy of the material, then fracture gets initiated. For problem
given in figure 2.3, the fracture stress is given by,

o = <2E%>é (2.2)

ma

where E and v, are the Young’s modulus and surface energy of the material, respectively.
Griffith predicted accurately the relationship between strength of the material and flaw size,
but only for ideally brittle materials like glass; the theory does not seem to work for metals. This
limitation primarily arises from the assumption that the work of fracture is derived only from
the surface energy of the material.
Irwin extended the energy theory of Griffith to metals by including the energy dissipation
associated with the plastic flow [39]. A similar extension has also been provided by Orowan [40].

Equation (2.2) is modified as,
1
2K 2
o = ( (fy; : %)) (2.3)

where 7, is the plastic work per unit area of created crack surface. It should be kept in mind that
though it considers plastic work, the global behavior of the material should be linear elastic.

In addition, Irwin has developed the following two concepts which are at the heart of fracture
mechanics:

1. Energy release rate
2. Stress intensity factor

He has restated Griffith’s energy theory in terms of a new quantity called energy release rate (G)
which quantifies energy available for an increment of crack extension [41].

_on
A

where 2A is the total surface area of crack, and II is the potential energy supplied by internal
strain energy and external forces. In other words, G is a measure of fracture driving force. The
fracture gets initiated when G reaches its critical value G.. At the instant of fracture G = G.; G,
quantifies the measure of resistance to fracture, termed as fracture toughness.

Another most important contribution of Irwin is that he brought forth the concept of crack
tip characterizing parameter [42], now known as stress intensity factor (K). He utilized the semi-
inverse approach proposed by Westergaard [43] to analyze the stresses and displacements ahead
of a sharp crack. A similar derivation has also been presented independently by Williams [44].
Stress field (oy;) in a cracked body exhibiting linear elastic behavior is given by,

G = (2.4)

_ K
N \27r

where r and ¢ are defined in figure 2.3b, f;; is a dimensionless function of §. It can be seen
that K is the single quantity that characterizes the stress field at the crack tip; it contains all

Oij fij(0) + higher order terms (2.5)
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the influence of geometry and loading conditions. Hence it can be used as a crack propagation
criterion; fracture occurs when K reaches its critical value, K = K.. Similar to G., K. is also a
measure of fracture toughness. One of the essential assumptions in LEFM is that the measures
of fracture toughness (K. and G.) are assumed to be size-independent geometry-independent
material properties.
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Figure 2.4: Three modes of loading a material that has a crack

The stress tensor can be decomposed into three modes of loading a crack can experience
(figure 2.4): model I loading tends to open the crack faces, whereas modes II and III represents
in-plane and anti-plane shearing. A cracked structure can experience any one of these loadings,
or mixture of these modes. In mixed mode problems, due to linear superposition principle, the
stress components are additive.

U;;]qtal = Ugj + O’ZI]I- + U%JI-I (2.6)
With the aforementioned contributions, one can conclude that the LEFM theory is well estab-
lished. However, LEFM is applicable only for ideally brittle materials; any significant plastic
deformation in the crack tip vicinity makes the LEFM based predictions invalid.

To alleviate the restrictions associated with LEFM, elastic-plastic fracture mechanics consid-
ers, among others, two important parameters: crack tip opening displacement (CTOD) [45] and
J—integral [46]. By idealizing elasto-plastic deformation as nonlinear elastic behavior, Rice [46]
has derived a contour integral that quantifies energy release rate for both linear and nonlinear
elastic materials. This path independent J—integral characterizes the complete crack tip condi-
tions in nonlinear materials [47,48]. For the crack tip coordinate system given in figure 2.3b, it

is expressed as,
7 —f (Wd - Tadds> 2.7)
B r; Y oz ’

where I'; represents a closed contour around the crack tip, T and d are traction vector and
displacement vector on I'; respectively, and W is the strain energy density. J—integral quan-
tifies energy release rate in nonlinear elastic materials. In case of elastic behavior, J = G. It
is an important quantity in nonlinear fracture mechanics, as the complete fracture behavior is
characterized by this single quantity.
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2.3 Governing equations

2.3 Governing equations

As already stated in section 2.1, from the physical perspective, the continuum model does not
hold within the process region around the crack tip, irrespective of whether it is a brittle or
a ductile material. However, as explained in the previous section, the assumptions involved in
LEFM, which are also used in nonlinear fracture mechanics, enable us to treat the entire material
as continuum, together with the possibility of using a single constitutive equation in all parts of
the structure. This section reviews the essential continuum mechanics concepts before stating the
governing equation of the structure. There exists a fairly large number of books on continuum
mechanics for example [49-52], those can be consulted for further understanding of the concepts
briefed here.

2.3.1 Kinematics

The present work employs the total Lagrangian approach for the structural field in which the
kinematic equation of motion of a continuum is described by

x = x(X,t) (2.8)

where x is the position of a point in current configuration i.e., the configuration of continuum at
current time ¢, and X denotes the position of a point in reference configuration at time tg. The
displacement of a material point from reference position to the position at time ¢, is described as

d*(X,t) = x(X,t) - X (2.9)

A material element dX at tg is, by virtue of motion, transformed into material element dx at
time ¢. The relation between dX and dx is given by

dx = FdX (2.10)
where F is the deformation gradient at X, which is given by
F=Vix=1+Vyd’® (2.11)

where I is the second-order identity tensor and V| represents the gradient operator with respect
to reference configuration X. F contains all the information about the deformation occurring
at X including the rigid body rotation. In order to quantify the stretch of material points, the
following result from the polar decomposition theorem is used. Since F is a real-valued tensor
with non-zero determinant, it can be decomposed as

F=R-U (2.12)

where R is the proper orthogonal tensor which contains information about rigid body rotation
(volume-preserving), and U is positive definite symmetric right-stretch tensor (volume-changing).
Since a differential element is considered to define F, rigid body displacements do not enter the
decomposition. Based on these, the right Cauchy-Green tensor is defined as

C=F' . F=U".U=U? (2.13)
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2 Structure & Fracture

In the above, the orthogonality of R is exploited. While F' describes mapping between infinitesimal
line elements, C describes mapping of their squares, i.e.,

dx - dx =dX - CdX (2.14)

The Green-Lagrange strain tensor (E) which is defined from C is the common choice of strain
measure in nonlinear solid mechanics, and is defined as,
1

E:%(FT-F—I>:§(C—I) (2.15)

It is to be mentioned that when material element exhibits pure rigid body motion E = 0.

2.3.2 Stress measure

The state of internal stresses within a continuum can be described by the traction vector field.
For any internal point P located on surface S whose normal vector is n, the traction vector is

given by
. Af
t(x,t,n) = Alilgo A (2.16)
where Af is the resultant force acting a small area AA (around P) located on S. From Cauchy

stress principle, the traction vector can be written as
t(x,t,n) =0 (x,t)-n (2.17)

In the above equation o is the Cauchy stress tensor, which represents the physical state of internal
stresses with diagonal and off-diagonal terms denoting normal and shear stresses respectively.
However, it is defined with respect to the current configuration which is a priori unknown. Several
alternative stress definitions exist in nonlinear continuum mechanics. However, since the Green-
Lagrange strain is used in this work, the stress measure should be its energy conjugate pair [50],
which is the second Piola-Kirchhoff stress tensor. It is defined completely in terms of the reference
configuration, and is stated in terms of F and o as follows.

S=(detF)F!.0.-F " (2.18)

2.3.3 Initial boundary value problem

Let the structure occupies domain Q2§ bounded by I'* at reference time ¢t = ¢y (figure 2.5). The
boundary I'* is divided into three non-overlapping portions such that I'* = I";, UT'3; UT'S in which
I'sy and I'y; are Dirichlet and Neumann portion of the boundary respectively, and I'} denotes the
crack surfaces which contains always two physical crack faces I'; = I';, UT'S_. The balance of
linear momentum equation is written as,

p*d” — Div (FS) = p*b® in Qf x (0,T) (2.19)
where zps is the density of structure, b® represents externally applied body force per unit mass,
d’ = dd—f;. T is the end time of the considered time interval, and Div(-) is the divergence operator

defined with respect to the material reference frame.
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2.3 Governing equations

Figure 2.5: A schematic representation of structural domain containing a crack

Since this is an evolutionary problem involving second order time derivative, initial conditions

must be specified on d°® and its first derivative d” = dg:
d®|=o = d§ on Q) (2.20a)
d’|—o=d; on Q (2.20b)

On the boundary of the domain, Dirichlet conditions are specified on I'},, Neumann conditions
are prescribed on I'}, and the crack surfaces are assumed to be traction-free.

S

d*=d onT% x (0,7) (2.21a)
(FS)-n®*=h" onT% x (0,7) (2.21b)
(FS) n“" =0 onI%, x(0,7) (2.21c)
(FS)-n“" =0 onT%_ x(0,7) (2.21d)

In order to close this system of equations, and to model the response of a specific material under
loading, constitutive equations are required which is explained below.

2.3.4 Constitutive equations

Constitutive equations relate the state of stress and the corresponding strain experienced by the
material. This work deals only with hyperelastic materials which is associated with the concept
of existence of the strain energy function (V). It is defined as follows

v

S=3E

(2.22)
In all the simulations presented in this thesis, the structure is modeled as Neo-Hookean material
that defines a nonlinear stress-strain relationship. The strain energy function for such material

is given as
S

s A
Uy = % (tr ©=3) = p'ln J + T (In J)? (2.23)
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2 Structure & Fracture

where J is the determinant of deformation gradient J = det F, A and p® are Lame’s constants
that are related to Young’s modulus (E?®) and Poisson’s ratio (v*) as

Esy?

A\ — T (2.24)
s __ E?
W= S (2.25)

Since the material is assumed to be isotropic and homogeneous, two material parameters are
sufficient to completely describe its behavior and these parameters are the same constants at
each point within the domain.

2.4 Overview of the existing computational methods

The present work focuses on the development of a mesh refitting approach to model crack prop-
agation through the material. Before explaining the proposed method, the salient points of the
widely used approaches in fracture mechanics are recalled briefly. The purpose of this section is
to explain the motivation behind the development of a new method instead of directly adapt-
ing an existing approach. Hence the literature review presented here is illustrative rather than
exhaustive.

The available approaches which sharply represent the cracks in an elastic structure are based
on either linear elastic fracture mechanics (LEFM) principles [53—-58] or cohesive zone concepts
[59-63]. The focus of the present work is on the lines of LEFM, and majority of the existing
computational methods in this category utilize either one of the following frameworks:

e Adaptive remeshing
e Enriched partition of unity

These methods are very powerful in their own right, and finds plethora of applications. How-
ever, implementing them in an existing (large scale) finite element (FE) package poses several
challenges. Moreover, these methods offer enormous challenges and complexities when one at-
tempts to couple them into fluid-structure interaction (FSI) modules.

Adaptive remeshing methods: As the name implies, these methods involve adaptively mod-
ifying the mesh, based on an error indicator. As one can expect, these methods highly refine
the mesh in the crack tip vicinity where the solution dictates the dynamics of crack propaga-
tion, and coarsen the mesh away from the crack tip. These methods make use of special data
structures [53, 54, 64], together with either a globally adaptive remeshing procedure or a local
mesh modification algorithm to accommodate crack propagation at arbitrary directions within
the computational domain. In globally adaptive remeshing procedure [55-57], each time when the
crack is extended, the complete structure is remeshed. In contrary, the local mesh modification
algorithms [58] modify the mesh locally near the crack tip region, and in locations that are far
from the crack tip, the mesh remains unchanged. The computational tools that are developed
based on both of the aforementioned methods are specifically designed to address fracture me-
chanics problems. These methods introduces several new nodes into the mesh, each time when
crack extends. As a result, they require mesh generation related algorithms to modify the mesh
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2.4 Overview of the existing computational methods

appropriately, and necessitates to ensure proper load balancing in a parallel simulation. How-
ever, usually in a general FE code which is generalized to address multiscale and multiphysics
problems, such fracture-specific and mesh-modification routines are not encouraged.

Enriched partition of unity methods (EPUM): These methods represent state of the art in
computational fracture mechanics, and gained maximum attention in recent years. They in-
clude extended finite element methods (XFEM) [65-68] and generalized finite element methods
(GFEM) [69,70], and these class of methods are originally developed with an objective to elim-
inate the adaptive remeshing and its associated complex and time-consuming operations. The
fundamental idea behind this method is to enrich the finite element solution space with additional
problem-specific enrichment functions. In crack propagation problems, the enrichment includes
a heaviside function to model the discontinuity across the crack surface, and the Westergaard
crack tip displacement functions to accurately represent the singular fields associated with the
crack tip. In this class of methods, the crack can propagate within the interior of an element,
in contrast to adaptive remeshing based methods in which the crack propagates only along the
mesh edges. Hence, this method makes it possible to simulate crack propagation without mod-
ifying the underlying discretization. Though these methods are demonstrated to be powerful,
the following points hamper their easier implementation into an existing structural mechanics
solver. The numerical integration of weak forms, which is taken for granted in standard FE
method, is still an active area of research in EPUM [71-77]. This is owing to the singularity of
the enrichment functions used over the elements that contains a crack tip. In addition, they are
not optimal for handling more than one crack. More importantly, EPUMs model the crack as a
surface of discontinuity. This means that the crack face opening is not explicitly modeled, and
hence additional complications arise while dealing with the fluid flow introduced traction forces
on the crack faces while modeling fluid-structure-fracture interaction. Some additional points on
this issue are presented in section 4.3.

Owing to the aforementioned general implementation issues and the specific difficulties associ-
ated with FSI coupling, neither EPUM nor adaptive remeshing methods are ideal for developing
fluid-structure-fracture interaction methods. In order to meet our requirements, a mesh refitting
procedure is developed to model mixed-mode crack propagation. The objective is not to devise a
method which is competitive to EPUM or adaptive remeshing method in terms of computational
efficiency or accuracy. Rather, the focus is on developing a crack propagation approach which
facilitates, with minimal implementation efforts, (1) to update the existing large scale structural
mechanics solver into a robust tool to handle single and multiple cracks, and (2) to couple the
crack propagation method with existing FSI approach to model fluid-structure-fracture interac-
tion. These objectives are accomplished by utilizing a mesh refitting procedure together with the
nodal releasing technique, the details of which are presented in the next section.

The present method shares a similarity with arbitrary Lagrangian Eulerian (ALE) based meth-
ods that it involves a mesh modification step. However, instead of describing the governing equa-
tions with respect to a moving mesh, the Lagrangian description is retained. Before explaining
the complete method, the ALE based methods for fracture mechanics are briefly recalled. The
use of ALE in computational fracture mechanics is not widespread. Only few studies employed
ALE to address crack propagation problems. In the following, a brief account of all the works
that relies on ALE formulation is provided.

Existing ALE based crack propagation methods: Though ALE formulations are widely used
in several solid mechanics applications (refer to [78] for an overview), less than a handful of
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researchers used ALE to handle fracture mechanics problems. The first use of ALE is described
in [79,80] to model dynamic crack propagation. The governing equations on a moving mesh, its
associated finite element weak form, and the computation of dynamic energy release rate and
stress intensity factors are explained in detail. The authors of these articles demonstrated the
capability of their method by simulating a few mode-I dynamic crack propagation, and comparing
them with analytical relations. In this work, the material separation is not explicitly modeled.
Moreover the existing Lagrangian FE code framework cannot be directly extended to include this
model. In order to achieve this, an ALE based method has been developed in [81] in which ALE
boundary conditions are consistently treated using a special procedure. The method is applied
to simulate both mode-I as well as mixed-mode dynamic crack propagation examples. Another
method that uses isoparametric mapping based mesh motion algorithm is presented in [82]. A self-
similar dynamic crack propagation problem in double cantilever beam is solved. The conclusion
of this work make a note that ALE methods are more robust, and can be a powerful alternative
to remeshing. For better understanding of dynamic crack growth in FRP composites, an ALE
based method together with a contact mechanics approach is developed in [83]. A very fine mesh
in the neighborhood of the crack tip is maintained throughout the simulation with the help of
remeshing procedure. This method is then used to study the interfacial debonding phenomenon in
FRP strengthened reinforced concrete beams. An attractive method that combines the advantages
of element free Galerkin (EFG) method and ALE is presented in [84]. This method moves a cloud
of nodes along with the crack tip, so that the vicinity of crack tip is always adequately resolved.
As EFG is a meshless method that does not require nodal connectivities, such implementation of
ALE to maintain high nodal density in the preferred region is accomplished effectively without
resorting to remeshing strategies (refer to [85] for complications involved in implementing such
a method in mesh-based FEM). An approach to transfer the solution over the moving mesh is
also detailed, and the method is successfully applied to simulate wave propagation and dynamic
crack propagation.

To summarize, neither a complex crack trajectory of single crack nor simple propagation of
multiple cracks within a material is modeled until now using ALE based methods. This is pre-
dominantly due to the fact that the mesh modification method used in ALE, in its classical
sense, cannot handle the mesh topology changes that are introduced by propagating a crack
through the FE mesh. Continual remeshing is mandatory to avoid mesh tangling problems. In
this work, this is avoided by using an additional step in the mesh refitting procedure that allows
to modify element connectivity locally to preserve the quality of mesh. The complete details of
the methodology is presented next.

2.5 The mesh refitting approach

One of the major reasons why devising a computational methodology to deal with fracture
mechanics is challenging is the fact that the crack propagates in arbitrary directions through
the material. If the dynamics of crack were known apriori, one can design an optimal mesh that
allows the propagation of a crack through a preexisting mesh at each instant. Since this is not
the usual case, the mesh has to be repeatedly modified to accommodate the advancement of
cracks within the FE mesh, if one does not use EPUM. In the present method, the mesh refitting
procedure is used to allow for the appropriate mesh modification, together with nodal releasing
approach.

The complete numerical methodology, together with the computer implementation aspects, of
the present approach to model crack propagation are presented in this section. The structural
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2.5 The mesh refitting approach

material is assumed to be homogeneous, isotropic and time- and rate-independent hyperelastic,
and it is assumed that the fracture behavior of the material is completely characterized by
J—integral.

Algorithm 1 Computational crack propagation procedure at each time step
Construct local coordinate system at crack tip
Compute vector J—integral
Check whether crack propagates or not, from crack propagation criterion
if Crack propagation criterion is not satisfied then
continue to the next time step
end if
Obtain direction of crack propagation from crack kinking criterion
Find the new crack tip nodes
Apply Mesh refitting procedure
Propagate the crack by nodal releasing technique
: Check whether crack has reached the end of the structure

_ =
—= O

The focus of the present work is to simulate through-thickness mixed-mode crack propagation
within a structure using brick elements. The current work is an extension of Tabiei & Wu [86]
which aims at implementation of crack module in DYNA3D FE package, and shares similarities
with Miehe & Giirses [54] in which a thermodynamically consistent method is proposed. Both
works do not involve a complete mesh modification step; rather only the nodes through which
the crack is predicted to propagate in the next time step are repositioned appropriately. Though
this approach works for relatively simpler examples, when the crack tip moves along a curved
path (refer section 2.6.3) or exhibits a complex trajectory (refer section 2.6.7), it does not lead
to satisfactory results. Moreover, the complex geometry related operations like deciding the new
crack tip nodes are not addressed in depth. These details are crucial for implementation of the
method. The method proposed in [54] was called as r— adaptive method, but in order to avoid
confusion with complex r—adaptive mesh redistribution methods [87,88], the present method is
labelled as mesh refitting approach. The following section presents the complete implementation
details of the present method.

At each time step, the governing equations are solved using nonlinear FE method. Then,
the solution obtained is used to perform crack propagation related operations as described in
Algorithm 1.

2.5.1 Solve the governing equations

The solution of structural dynamic equations using finite element methods is briefly recalled here.
For a more elaborate discussion of FEM, the reader can refer to the literature [50,89].

The first step in FE solution procedure is to derive the weak form associated with the governing
equations and boundary conditions. The strong form given in equation (2.19) is multiplied by
appropriate test functions (dd®) and are integrated over the structural domain to obtain weak
form which is stated as,

Find d® € W, such that for all 6d® € Vy, the following holds

(6d*, p°d”)qs + (Grad 6d°, FS)q: = (0d°, p°b)as + (6d°, h')ry, (2.26)
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where (.,.)qs and (.,.)rs mean the standard L?—inner product over the reference domain and
Neumann part of the boundary, respectively. The test function is denoted as 0d®, since the weak
form associated with the structural equations is a representation of the principle of virtual work,
with dd® being the virtual displacements.

The solution space and the test function space are defined as
Wy ={d* e H'(Q)) | d* =d’ on T%} (2.27)

Vy = {6d® € H'(QF) | 6d® = 0 on T%} (2.28)

In order to convert the above integral equations into a system of algebraic equations, FEM
discretizes the domain €2 into a number of non-overlapping simple shaped regions called elements.
Elements are defined by their nodes, and interpolation or shape functions (N) can be formed
over each element such that

Np,
a4y 9X, ) =3 N (X)d; (1) (2.29)
=1

where subscript .;, represents a discretized quantity, N, is the number of nodes in the considered
element (e), and d; is the nodal displacements. For structural mechanics problems, it is the usual
practice to use Bubnov-Galerkin methods in which the test functions §d°® are also interpolated
using the same shape functions. Moreover, the use of isoparametric concept enables us to use the
same functions to interpolate the geometry at reference and current configurations.

Plugging in the discrete approximation of displacement (equation (2.29)) and other relevant
quantities into the weak form given in equation(2.26), one arrives at the following semi-discrete
system of nonlinear differential equations.

M*d” + F{, (d°) —F5, =0 (2.30)

int

where M® is mass matrix, Fj,, represents nonlinear vector of internal forces, and Fg, is the

vector of external forces. For brevity the subscript - is omitted.

The above nonlinear differential equations are discretized in space but continuous in time.
The next step is to perform time discretization i.e., to replace the time derivatives by corre-
sponding discrete differentials. Among many available time integration methods [89], the implicit
generalized—a method introduced by Chung and Hulbert [90] is employed. This is based on
the well-known Newmark method [91] that allows expressing the quantities at time level ¢"+1
completely in terms of known quantities at t", i.e.,

v sn+1 v s,n+1 s.n Y- ﬁ 35,1 Y- /3 °315,1
d =—(d> -d") - —— — —Atd 2.31
BAl ( ) 3 25 (2:31)

css,n+1 1 +1 1 S, 1 — 2ﬂ SN
- sn+l _gsin) _ - A 2.32
d BAP (d a") 5ard op At (2:32)

where the parameters v € [0,1] and 3 € [O, %] characterize the method. Generalized—a method

shifts the evaluation from t"*! to the midpoints t"*1~f and t"*1=%» introduced in the method.

24



2.5 The mesh refitting approach

Quantities at these midpoints are defined by the following interpolation

ds,n—l—l—af — (1 o af)dsfﬂ‘i‘l + afdsvn (233&)
ds,nJrlfaf _ (1 - af)dS,nJrl + afd&n (233b)
gonttter (1— af)as’nH + aféis’” (2.33¢)

with parameters a ¢, o, € [0, 1]. The space and time discretized finite element weak form at the
intermediate points is written as follows

Med O (@) S ST — (2.34)
with 1
Foo = (1 —apFat + o F (2.35)

The parameters oy and o, enable us to control the amount of numerical dissipation introduced
in the scheme, which is an advantage when compared to the Newmark method.

In order to obtain the approximate solution using the FEM, the system of nonlinear algebraic
equations represented in equation (2.34) must be solved at each time step. In this thesis, the
Newton-Raphson method is utilized for this purpose. Equation(2.34) is recast into residual form
as follows.

e (@) = MR g (@) - R = (2.36)

ext

The Newton-Raphson method involves repeated linearization of the residual presented in equa-
tion (2.36), solution of the resulting linear system of equations, and updating the unknown field
variables until convergence is met. Using the Taylor series, the nonlinear residual is linearized at
the end of time step t"*! as

ors ds,nJrl
0((157”“) A ff1+1+h.o.t. (2.37)

)

re (dfflﬂ) =0=r° (df’nH) +

where 7 and ¢ + 1 denote iteration counter within the nonlinear solution loop. Neglecting the
higher order terms (h.o.t.), the linear system can be rewritten as

e (@ 41)

s,;n+1 s s,n+1
S| A = (a5 (2.38)

i+1

(2
The equation above represents a system of linear algebraic equations that can be solved to
obtain the incremental displacements (Adfflﬂ). After obtaining the incremental values, the
displacements are updated within the iterative procedure.

Ay =@y + AdE (2.39)
These iterative steps are successively carried out until a user-defined convergence criterion is met.
At this point the converged solutions for displacements are obtained.
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2.5.2 Perform computational crack propagation procedure

The solution obtained from the previous step by freezing the crack in the structure is used to
perform crack propagation procedure by computing vector J—integral. It involves eight discrete
steps, each of which are detailed below. Since the present work simulates only through-thickness
crack, for brevity, Quad and Tri elements are used to represent hexahedral and Wedge elements,
respectively.

Step 1: Construct local coordinate system at crack tip

To compute fracture mechanics quantities from FE solution, and to decompose these quantities
into their corresponding modes in a mixed-mode problem, it is essential to construct local coor-
dinate system (£,7) at the crack tip (x.) as shown in figure 2.6. Let (e; —e2) represents the base
vector in (§,7). In order to do so, elements that are attached to crack tip (shaded quadrilateral
areas in figure 2.6) are considered, and the nodes that are connected to x. and lying on the crack
surface (open circles in figure 2.6) are extracted. Then, the point x,, which is the middle point
of the nodes lying on the crack surface is defined. The base vectors are computed as follows. e

Figure 2.6: Construction of local coordinate system at crack tip. The shaded Quads represent
finite elements.

is given by,
Xe = Xm

e = (240)

% — Xm|

ey is directly obtained by computing normal to e; in right hand coordinate system.

Step 2: Compute vector J—integral

As already stated, J—integral quantifies the strength of singularity at the crack tip in nonlinear
elastic materials. Moreover, it is a single parameter that dictates whether the crack propagates or
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not, if at all it propagates in which direction it advances. Hence, it is essential to accurately eval-
uate the J—integral from the displacements and stresses obtained from FE solution of structural
equations.

With respect to the spatial configuration, the energy release rate along the direction of crack
is defined as,

od
J = wng —n-o-— | d 2.41
[ (wmcmo ) o (240

where ; is the integration contour, w is the strain energy stored per unit deformed volume, n
is the normal to contour «; and o is the Cauchy stress tensor. All these quantities are defined
in the current spatial configuration as shown in figure 2.7a. Since the current work employs total
Lagrangian formulation, it is convenient to express J—integral in the reference configuration
using pull-back operations. As shown in [92], it reads as

od

J=4 (WNE—N-P-_)dr (2.42)
r; = 0=

where I';, W, N are the corresponding quantities in reference configuration, P is the first Piola-

Kirchhoff stress tensor and (Z, H) denote the crack tip coordinate system in the reference con-

figuration.

(a) J-integral contour and associated notations in (b) Distribution of support function
reference and spatial configuration

Figure 2.7: J—integral: notation and distribution of support function

In FEM, the contour integrals are cumbersome to implement because the material variables are
available only at the Gauss points. Interpolating these variables over the desired contour presents
complications, in addition to introducing interpolation errors. Hence, several studies [93,94] have
proposed the idea of converting the contour integral into integration evaluated over a finite domain
around the crack tip by applying the divergence theorem. This procedure is straightforward to
implement, as it requires only the quantities at Gauss points within the elements falling over
the finite domain. The equivalent domain vector J—integral for finite strain problems is given
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as [92,95],
od’

J— /S <8X P- WI) Vo(q) dS (2.43)

where S is the domain enclosed by I';, and Vq(q) is the gradient of support function ¢ with
respect to the reference configuration.

In order to construct ¢, using nodal connectivity information, all the elements that are located
on n—layers around the crack tip (see figure 2.7b with n = 4) are considered. From this, the
elements connected to crack tip are deleted. Then, all the nodes that are falling on the outer
boundary of this element set are located, and among these nodes, the one which has the shortest
distance (rmin) from the crack tip is chosen. Then the support function is initialized to take a
value of unity at the inner layer of nodes, and drops smoothly to zero when the distance of a
node from crack tip is more than or equal to ry,. The distribution of ¢ within the integration
domain is given in figure 2.7b.

Step 3: Check crack propagation criterion

Crack propagation criterion determines whether the existing crack propagates through the struc-
ture under the current stress state. The crack propagation occurs when the driving force reaches
or exceeds the material resistance. The J—integral provides a measure of driving force for frac-
ture. The fracture toughness is the material’s resistance to crack propagation. As stated earlier,
critical values of J—integral quantifies the fracture toughness, which is assumed to be a material
property.

The present work makes use of the vector J— integral based crack propagation criterion pro-
posed by Ma & Korsunsky [96]. This criterion requires, first, the calculation of maximum strain
energy release rate, which is given by the magnitude of J—vector.

Graw =\ J? + J3 (2.44)

where J; and Jy are the strain energy release rate along the direction of e; and es respectively,
which are given by simple dot products J; =J -e; and Jy = J - es.
The crack extension under the given loading conditions occur, when G,,q, reaches the critical
value of J— integral
Gmaz > Je (2.45)

In the above expression, G4, represents the maximum available crack driving force and J, is
the measure of fracture toughness. When the above condition is met, the crack propagates along
the direction of G4z, which is given in the next step.

If the crack propagation criterion is not satisfied, then there is no need to perform the remaining
operations. The present time step is completed, then the algorithm moves to the next time step
to solve governing equations of the structure.

Step 4: Determine crack kinking criterion

The aforementioned crack propagation criterion decides only whether the current material state
enables the crack to propagate or not; it does not provide any information about the direction
of crack propagation. Hence, after confirming that crack propagates, the next logical step is
to determine along which direction it is going to advance through the material. Crack kinking
criterion provides us the direction of crack propagation.
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There are several methods put forward to determine the crack kinking direction, and the most
important methods are

e Maximum circumferential stress criterion [97]
e Minimum strain energy density criterion [98]
e Maximum energy release rate criterion (MERR) [96,99]

It is concluded in a comparative study [100] that the minimum strain energy density criterion
is less accurate, and the accuracy of maximum circumferential stress criterion and maximum
energy release rate criterion are equivalent in all the tests considered. For more information on
the details of these different methods, readers can refer to [100].

This work incorporates the maximum energy release rate criterion, proposed in [96], which is
consistent with the crack propagation criterion given in the last section. It is stated that the crack
propagates when G4, reaches or exceeds the characteristic fracture toughness of the material.
MERR predicts the crack propagation direction (6,) to be the direction of G4z, which is simply
given as

0, = tan~*! (‘]2> (2.46)
J1

It is to be remembered that 6, is measured with respect to the crack normal, as indicated in
figure 2.6. Moreover, in this work, the extent of crack propagation is always set to be the length
of one complete edge of an element.

Step 5: Find new crack tip nodes

Having computed the crack propagation direction from J, the next essential step is to determine
the new crack tip nodes—nodes in the FE mesh through which crack must be propagated. A
geometry based method is developed in this work to decide the new tip nodes; the complete
procedure is explained as follows, and an example situation is given in figure 2.8 to aid the
understanding of the procedure.

e current tip
o diagonal nodes
—-+» propagation vector

Figure 2.8: Procedure to find new crack tip nodes

The first step is to identify all the elements that are connected to the current tip node (fig-
ure 2.8). All the operations stated here are with respect to the current spatial configuration.
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Then the angle 6, is converted into ¢, that is measured with respect to the horizontal. Then it
is necessary to loop through all the edges of these elements to decide which edge contains the
new tip node. First, it involves identifying all the edges that contain the current tip nodes and
neglecting these edges (short dotted lines in figure). Then, the angle formed by the line joining
the current tip node to the edge nodes, and the crack propagation direction is calculated (¢; and
¢ in figure). If both ¢; and ¢o are more than 90°, then this edge is neglected (long dotted lines
in figure). The ordering of nodes in the edge does not influence the algorithm.

If ¢1 or ¢ is less than tol-zero (= 107° radians in all the simulations) that represents zero,
and if the corresponding node is not a diagonal node, then it is marked as the new tip node.
For the configuration shown in figure 2.8, ¢; represents diagonal node and if ¢y <tol-zero, the
crack propagates through an already existing edge in the mesh. In such a case, no additional
procedure like nodal repositioning or element splitting is required, as will be clarified later.

If the above condition is not met i.e., the crack does not propagate along an existing mesh, then
the focus will be on finding an edge that is intersected by the propagation vector. In order for
this, the following condition is checked: if the sign of both ¢ and ¢2 are the same, then the crack
propagation vector does not intersect this edge. Hence, this edge is neglected (thin continuous
lines in figure). If this condition is checked on all edges, one arrives at the edge intersected by
propagation vector (thick continuous line in figure). Either one of the nodes of this edge should
be the new crack tip node.

After getting the required intersecting edge, the next step is to check whether the crack prop-
agates along the diagonal. This is realized by the condition ¢; <diag-tol (=0.25 radians in
all the simulations). In this case, the diagonal node corresponding to ¢; is marked as new tip
node. Since the crack propagates through a diagonal of the element, this element must be split
along this diagonal to accommodate crack propagation through the mesh; in this step, only the
elements to be split, and the nodes along which they are split are marked. The actual splitting
operation is performed in the next step. Moreover, if ¢; is less than tol-zero, then no mesh
modification is needed. If not, the distance between the point at which the propagation vector
intersects the edge, and node is calculated (9,4 in figure) and this value will subsequently be
used as a boundary condition in the mesh refitting step.

If above check is not satisfied, the non-diagonal node is identified, and this is marked as the
new tip node. Moreover, the corresponding 0. is calculated for further nodal repositioning step.
It is worth mentioning that all the angles in this procedure are within [—7, 7] interval, and all
these new tip nodes with 6, # 0 are stored in R ge.

Step 6: Mesh refitting procedure

The necessity of performing mesh refitting step arises due to the fact that the crack does not
always propagate along the existing mesh surface. If this were the case, ¢o ~ 0 and hence 4. =~ 0
in figure 2.8, then this step would be absent. However, since the crack path is not known a priori,
it is not possible to design a mesh that satisfies this criterion, and a dynamic nodal repositioning
algorithm is mandatory. This means that at the end of this step, the mesh is refitted in such a
way that the crack propagates along an existing edge in the refitted mesh.

The mesh refitting procedure used in the present work involves two discrete operations listed
as follows.

1. Nodal repositioning

2. Splitting Hex into Wedge elements
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2.5 The mesh refitting approach

In the first step, the nodes are repositioned without touching the elements. This means that the
element topology—shape and total number of elements, or the connectivity between elements—
remains unchanged. The elements only deform due to the movement of the nodes.

There are diverse methods available to perform mesh movement within the domain. All these
methods solve a boundary value problem with conditions specified throughout the boundary of
the domain. These methods include

e Springs [101-104]

e Laplacian method [105]

Biharmonic equation [106,107]

Radial basis function method [108]

Elastostatic equation [109,110]

All of the aforementioned methods are developed in the context of arbitrary Lagrangian Eule-
rian (ALE) based FSI, where the fluid mesh is relaxed owing to the deformation of the structural
boundary. In this case, a high aspect ratio viscous mesh is used to resolve the boundary layer
around the structure, and these high aspect ratio elements pose a lot of challenge to the ALE ap-
proach. This phenomenon is highlighted in [111] where different methods of mesh motion schemes
are compared; it is concluded that biharmonic method is capable of dealing with viscous meshes
better than other alternatives at the expense of increased computational cost. However, in case
of fracture problems, such problematic high aspect ratio elements do not exist, and the mesh
movement in all the presented examples are amenable to elastostatics equations.

In the elastostatic approach, the mesh is treated as an elastic body, and the governing equations
of the mesh movement together with the boundary conditions are

V.o =0 on’ (2.47a)
d™ =0 on 90y (2.47Db)
d” = 6ale on Rale (2.47C)

where o™ is the Cauchy stress tensor, d” denotes the displacements at each node within the
mesh, Q° represents the whole structural domain, and 0. denotes the boundary for ALE
computations which is the closure of € including the crack surfaces: 9Qy. = I'y), UT'3 U TS,
Displacements at the new crack tip nodes are set to be 04 that is computed in the previous
step. It is to be mentioned that when d,;. = 0 at all the crack tip nodes, then the crack propagates
along the existing FE edge within a mesh, and the nodal repositioning step need not be performed.

The stress-strain relationship is given under the assumption of St.-Venant-Kirchhoff material,

o™ = \"tr (") I+ 2™ (2.48)

where A and p™ are Lame’s constants that characterizes the material, and the linear strain
measure is given by

€ = % (vd™ + (vda™)'| (2.49)

The weak form of equation (2.47), obtained after multiplying with the test functions dd" and
integrating over €2°, is written as

(6d™, ¥ - 0™ = 0 (2.50)
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2 Structure & Fracture

The above equation, with both material- and geometric-nonlinearity are neglected, renders a
linear system of equations that are solved using the Trilinos package [112] to obtain the mesh
displacement d™.

In problems which involve only very small mesh displacements, it is possible to formulate the
above equations to evaluate the stiffness matrix only once [113], and proceed with this stiffness
matrix throughout the simulation. However, in crack propagation simulations, in order to account
for change in mesh topology due to crack propagation, and to accommodate crack curvature as
in examples presented in section 2.6, the stiffness matrix associated with these equations are
formulated at each time step.

In the next step of mesh refitting procedure, the Hex elements that are marked to be split are
cut into two Wedge elements. This happens when the crack propagates very close to the diagonal
of a Hex element (figure 2.9a). As can be seen in figure 2.9a, the quad element is split along the
diagonal that has old and new tip nodes as its ends, In the present simulations, the hex elements
are split similarly into two wedges. This process does not involve introducing new nodes in to
the mesh. By comparing figure 2.8 and 2.9a, the effect of mesh refitting procedure is clear: the
new tip nodes are first moved to the desired location using the nodal repositioning step, and then
the Hex element is appropriately split into Wedge elements to enable crack propagation along the
diagonal. In short, the combination of nodal repositioning and element splitting ensure that after
the mesh modifications, the crack propagates along an edge in the new mesh.

One of the main reasons for the failure of ALE based methods in handling large deformation or
topology change is that such methods maintain their nodal connectivity during the entire simu-
lation. This splitting procedure alleviates this problem by enabling us to modify the connectivity
between the elements locally. This is an essential step without which the nodal repositioning
method cannot handle the change in mesh topology that is inherent to crack propagation prob-
lems, without resorting to complicated and time-consuming remeshing procedures.

After the nodes are repositioned, the field values at these new locations are simply interpolated
from the converged solution. Since the nodes move only small distances, this does not seems to
affect the solution significantly. However, this should be studied in the future.

Step 7: Nodal releasing technique

The two previous steps have enabled us to identify new tip nodes, and to move these nodes to
match the computed propagation angle. The material separation is not yet included within FE
procedure. In order to achieve this, and to form physical crack surfaces the crack propagation
leaves behind, the nodal releasing technique is used.

In order to represent the material separation, the element connectivity at the current tip node
must be modified; a duplicate node is created at the same location where current tip resides. Few
elements are released from the current tip node, and are assigned with new duplicate node. This,
in turn, generates new crack surfaces. In order not to destroy the FE mesh during this process, a
consistent way of determining which elements get duplicate nodes is used; the remaining elements
retain the current tip node.

In this procedure, two angles are defined: one is ¢, already defined in figure 2.8, and other
is the angle formed by the negative normal at crack tip to the horizontal (¢_,, in figure 2.9a).
Then, for each element, the angle (¢4) formed by the line connecting current tip to the centroid
of the element to the horizontal is computed. The element is released and gets the duplicate
node, if ¢4 ¢ [¢p, d—p]. In this process, all angles are in the interval [0,27). The elements that
retain the current tip node are shaded in figure 2.9a. After nodal releasing and modifying element
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e current tip

o new tip

= duplicated node
o element centroid
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Figure 2.9: Nodal release technique (a) splitting an element to allow crack propagation along
diagonal (b) modify connectivity locally near crack tip; the crack opening is shown only for
visualization. Legend is common for both figures

connectivity, the mesh close to the crack tip is plotted in figure 2.9b. The crack has propagated
through the mesh, and the material separation is introduced.

It is to be mentioned that the field values at the current tip nodes are copied to the newly
generated duplicate nodes to enable time integration at the next step.

Step 8: Check whether crack tip reached the boundary

When the tip of the propagating crack reaches the boundary of the structure, the configuration
resembles two completely different structures joined at a single point as shown in figure 2.10a. The
matrix resulting out of the FE discretization, in such cases, is ill-conditioned, and the simulation
eventually crashes. In order to avoid this, the configuration corresponding to this case is identified;
after performing crack propagation at each time step, it is checked whether the crack has reached
the boundary of the structure. To enable this, all the boundary nodes (including nodes falling on
initial crack surface) are explicitly identified at the beginning of the simulation, and every new
crack tip and duplicate nodes are added to this list. Once the crack tip has reached the boundary,
then the nodal release technique explained in the previous step is once again applied; a duplicate
node is created in the position of crack tip, and the connectivity information is modified to
separate the structure into two different bodies (figure 2.10b).

2.6 Numerical examples

Several examples of varying complexity are solved to demonstrate the effectiveness of the pro-
posed method. These examples exhibit single and mixed-mode behavior, involving mono- and
multimaterials. Whenever possible, the crack path obtained from the present method is com-
pared with experiments or results obtained from adaptive FEM or meshless methods. This is
necessary in order to closely examine the accuracy of the method.

Plane strain condition is assumed in all the examples. The load is increased smoothly from
zero to the given loading in order to eliminate any influence of inertia.

The first two examples consider stationary crack, and the quantities calculated are compared
with an XFEM study [92]. These examples consider highly nonlinear effects evident from the crack
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(a) (®)

Figure 2.10: Splitting a single structure into two different structures (a) crack tip reaches structure
surface (b)application of nodal release technique

tip blunting observed in the results. In addition to these two stationary crack examples, only one
simulation involving crack propagation through the material with high material nonlinearity is
solved. All the other examples focus on simulating the crack propagation examples presented in
the literature and to thoroughly compare the results from the present method to the reported
results.

2.6.1 Crack tip blunting

Consider a material, which is characterized by nonlinear elastic behavior, containing an initial
crack. When the material deforms, the crack surfaces move apart, and the initially sharp crack will
blunt significantly. In order to demonstrate this, a single edge notched specimen with dimensions
2 mm X 6 mm is considered. The crack occupies half-width as shown in figure 2.11a. The material
properties are £ = 0.4225 MPa and v = 0.3. The top surface is subjected to the fixed displacement
of 4 mm. These geometric configuration, material properties and boundary conditions are same
as the example given in the study of XFEM-based large strain crack analysis [92]. The only
difference is that the XFEM study considers incompressible materials, whereas the present work
deals with compressible one.

The deformed configuration of the structure is shown in figure 2.11b. As expected, the initial
sharp crack blunts due to the nonlinear elasticity. The vertical displacement of crack surface
nodes are plotted against their horizontal position in the reference state in figure 2.11c; the
values from the XFEM study [92] is also shown for the comparison. This matching between the
present results and XFEM clearly shows that the final configuration obtained from the proposed
method is accurate.

2.6.2 J—integral computation

In order to study the accuracy of J—integral evaluation in finite-strain nonlinear elastic condi-
tions, it is computed at different stretch levels for the example shown in the previous section.

The plot of J—integral against stretch ratio (A) is given in figure 2.12, where \ is defined as the
ratio of deformed length to the original length. The J—integral values are computed for different
Poisson’s ratio and are compared with results presented for incompressible material [92]. It can
be seen from the figure that as v is increased, the curve moves towards the reference value given
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Figure 2.11: Crack tip blunting. (a) Geometry. All dimensions are in mm (b) Deformed config-
uration (c¢) Plot of vertical displacement of crack surface nodes against their horizontal position
in reference state, and comparison with XFEM results [92].
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Figure 2.12: Computation of J—integral for different stretch ratios and comparison with XFEM
results [92].

at incompressibility limit i.e., v = 0.5. Hence, it can be concluded that the J—integral obtained
are in consistent with the reported results.

Having simulated a stationary crack, the remaining examples consider complex crack propaga-

tion through the structure. The comparison between the present results and the results obtained
from the literature demonstrates the accuracy of the method.

35



2 Structure & Fracture

2.6.3 Single edge notched beam with a hole

This simulation corresponds to the mixed-mode crack propagation in a single edge notched beam
that contains an off-centre circular hole. The geometry, loading, and material properties of the
simulation are illustrated in figure 2.13a. The beam is loaded at two points, and is supported from
below at two points. The experimental observation of crack propagation for this specimen has
been performed by [56], and several researchers (for example [114]) have studied this numerically.
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(a) Geometry, material parameters and loading condi-
tions (not to scale). All dimensions are in mm.
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(b) Crack tip trajectory comparison with experiments of Miranda et.
al. [56]

Figure 2.13: Single edge notched beam

The contours of displacement in x—direction at the end of simulation time is given in fig-
ure 2.13b, from which it is possible to identify the crack path from the discontinuous displacement
field. As can be clearly observed, the crack initially starts growing from the notch almost verti-
cally before taking a curved path. The crack is then attracted towards the hole, and subsequently
ends on the hole. These qualitative features are in very good agreement as reported in earlier
studies. In order to further asses the accuracy of the present simulation, the trace of the location
of crack tip is compared with the experimental results [56]. The comparison of crack paths is
plotted in figure 2.13b, and it can be seen clearly that the results obtained from the present
numerical simulation exactly matches with the experimentally reported crack tip trajectory.
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2.6 Numerical examples

2.6.4 Single edge cracked plate under mixed-mode loading

In this example, as shown in figure 2.14a(i), the plate which is fixed at the bottom edge, is
subjected to a far-field shear stress 7 = 1 on the top edge. The initial edge crack length is
half of the plate width, and upon loading, the crack takes a slightly curved path and reaches
the other end of the plate. The material parameters used in the simulation are also specified in
figure 2.14af(i).
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(b) Crack tip trajectory

Figure 2.14: Single edge crack plate under mixed mode loading.

Contours of displacement in y-direction after the crack reaches the other end of the plate
are displayed in figure 2.14a(ii). The crack surface is directly evident from the discontinuous
displacement field, and the crack path qualitatively resembles the expected behavior. In order
to provide detailed comparison, a zoomed view of crack path is plotted in figure 2.14b, and the
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result obtained from present simulation is compared with two other studies: one utilizes meshless
method [115], and another study based on adaptive FEM [57]. It can be seen that the predicted
crack tip trajectory matches very well with the results obtained from other two studies.

2.6.5 Crack growth from a fillet

This example considers the growth of crack from a fillet in a structural member. The complete
simulation setup is depicted in figure 2.15a. The configuration is inspired from the experimental
study of Sumi [116] who included the influence of the bending stiffness and the welding residual
stresses between the bottom beam and the structural member, on crack growth. In the present
simulations, the effect of residual stresses are neglected, and as in [100,117,118], the bending
stiffness of the structure is adjusted by varying the thickness of the bottom beam () shown
in figure 2.15a. Two thickness values of bottom beam considered are 15mm and 315mm; low
thickness value corresponding to a flexible bottom beam, and higher value represents a rigid
beam. The effect of this thickness value on crack path is reported. The material parameters
considered are Young’s modulus, £ = 200G Pa and Poisson ratio, v = 0.3.
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(a) Simulation setup (not to scale). Value of t; is set to 15 and 315 for (b) Crack tip trajectory

different cases. All dimensions are in mm

Figure 2.15: Crack growth from fillet

The crack tip trajectory is shown in figure 2.15b, for both values of bottom beam thickness.
When the beam is thin, the crack path takes a sharp curve immediately after the loading, and
the crack proceeds towards the bottom. In contrast, when the thickness of the bottom beam is
high, the crack grows almost straight and ends in the opposite fillet. These observations are in
consistent with both the experimental [116] as well as numerical [100,117,118] observations.

It is essential to mention that in the region containing the crack and the fillet, same mesh is
used for both simulations. This means that the different crack path predicted from the numerical
simulations are due solely to the influence of the change in bending stiffness, not due to the effect
of meshing pattern.
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2.6 Numerical examples

2.6.6 Crack deflection due to inclusion

Crack growth in the presence of an inclusion is studied in this example. This simulation tests
the applicability of the present method to multimaterial applications. Geometry, loading, and
boundary conditions are given in figure 2.16a; it is taken from [119]. The configuration consists of
a rectangular plate which contains an off-centre circular inclusion. The young’s modulus (Epjazc)
and Poisson ratio (v) of the plate are assumed to be 20MPa and 0.3 respectively. The objective
of this study is to check whether the method is capable of accurately predicting the influence of
this inclusion on crack propagation, which is already reported in [100,119].
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(a) (b)
Figure 2.16: Crack deflection due to inclusion (a)Geometry and loading conditions (b)crack path

The inclusion is characterized by the ratio of Young’s modulus of the plate to that of the
inclusion (r = Epate/Fina.). Two values are considered; » = 10 which means that Young’s
modulus of inclusion is 10 times lower than that of the plate which is referred to as “soft”
inclusion, and r = 0.1 that is referred as “hard” inclusion. The Poisson ratio is assumed to be
same as that of the plate.

The effect of inclusion on crack tip trajectory is shown in figure 2.16b. For soft inclusion, the
crack is attracted towards the side of inclusion; however, crack does not end in inclusion, as
reported in section 2.6.3. In case of hard inclusion, the crack deflects away from the inclusion.
These observations are in consistent with the already reported results [100,119].

2.6.7 Crack in a drilled plate

To demonstrate further the accuracy of the proposed method to simulate crack path, the ex-
ample given in [58] is considered. It reported the propagation of crack from initial notch in a
Polymethylmethacrylat (PMMA) beam which has three drilled holes. The study carried out both
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experimental and numerical tests, and observed a curvilinear crack propagation within the drilled
plate. The geometrical configuration, material properties, and the loading conditions are given in
figure 2.17(a). In this example, the stress/strain fields are influenced by the presence of holes in
the beam, and this provides interesting curvilinear crack tip trajectories. There are two simula-
tion cases considered based on the location of the initial notch. These are dictated by the choice
of a and b in figure 2.17(a) whose values are given in table 2.1 for simulation-1 and simulation-2.

Simulation «a b
1 50 1.5
2 6.0 1.0

Table 2.1: Geometric parameters defining notch location for Bittencourt’s drilled plate problem
shown in figure 2.17(a).

Interestingly, the crack path follows different trajectory based on the choice of a and b. The
crack paths from the present simulations, and the comparison with the experimental data pro-
vided in [58] are described as follows. Same mesh is used for both simulations.

Simulation-1: The location of initial notch is given by a = 5mm and b = 1.5mm. The crack is
initially attracted towards the bottom hole, propagates near this hole, and got deflected away to
end in the middle hole as shown in figure 2.17(b). This is in accordance with the experimental
results of [58], and other numerical studies [54,57,120]. Comparison with the experimental results
show that the present simulation produces very good results; even the crack deflection near the
bottom hole is predicted well in the simulation as can be directly seen from figure 2.17(b). This is
one of the very challenging validation test cases for fracture mechanics simulations, owing to the
complex crack tip trajectory involved. The developed methodology can be said to be accurate
as it produces results that are matching very well with the experimental values even for this
complex configuration.

Simulation-2: In this example, for which a = 6mm and b = 1mm, the crack is attracted towards
the middle hole, and directly ends in it (figure 2.17(c)). There are no crack deflections observed,
and this example is easier when compared to simulation 1. For this example as well, the results
match excellently with the experiment (figure 2.17(c)).

2.6.8 Four point beam with two notches

In order to test the performance of the present method to simulate multiple cracks in a structure,
four point bending beam with two preexisting notches, shown in figure 2.18a, is simulated. The
beam is supported from below at two points, and is loaded at two other points. The material
properties are also given in figure 2.18a. This example is proposed by Bocca et. al. [121] who
performed experiments on the structure, and also simulated them numerically. Of many variants
of the experiments by [121], this particular configuration is chosen.

The contours of x-direction displacement, at the end of simulation, is presented in figure 2.18b,
from which the two crack paths on the structure can be inferred. To demonstrate the accuracy
of simulation, the crack paths obtained from the present method are compared with the results
reported using a meshless method that incorporates crack tip singular fields as enrichments
[122]; results presented for the finest meshless node distribution is used for the comparison. The
comparison of crackpaths is plotted in figure 2.18c. It can be seen that for both crack tips,

40



2.6 Numerical examples

lP:lN
& i E=3GPa
= ‘; v=0.35
4 :
[a\]
10
[a\] 0 e

JLH
TH

10 10 >

(a) Geometry. All dimensions are in mm.

9 T T T T
Present
' 8 i Experim. ‘ i
7F O —
6 L i
| z 5t .
£

= 4F 1
3 F 4
2+ i
1+ i

ux 0 1 | |

-7.7e-9 2.67e-6 3 4 5 6 7

| . z(mm)
(b) Simulation-1
9 T T T
Present

8 L Experim. o |
7 F O .
6 | i
5 L i
4 i
3 F O .
2 | i
1k i

0 | | |

3 4 5 6 7

x(mm)

(c) Simulation-2

Figure 2.17: Bittencourt’s drilled plate problem. Experimental values for comparison are taken
from [58]
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(a) Geometry, material parameters and loading conditions (not to scale). All
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(¢) Comparison of crack tip trajectories

Figure 2.18: Four point bending beam with two notches

the tip trajectory obtained from the present simulations (simulation-1 and simulation-2 that are
explained below) matches very well with the reported value. In [122], the authors reported that
their results are in well agreement with the experimental values (comparison is not plotted). Since
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the present results matches with those of [122], it can be concluded that the proposed method
also compares well with experiments.
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Figure 2.19: Close-up view of mesh patterns for the simulation of four point bending beam with
two notches. For brevity, coarse version of actual meshes uses in the simulations are presented.

In this problem, two cracks grow simultaneously within the structure. Due to the complexity
of the considered simulation, the results can be very sensitive to the orientation of mesh near the
crack tip if the numerical methodology is not robust. In order to test the influence of mesh orien-
tation, two simulations, denoted as simulation-1 and simulation-2 in figure 2.18c, are performed.
Both simulations employ approximately same number of nodes and elements; only the orientation
of mesh with respect to crack surfaces are significantly different from each other. Moreover, on
purpose, unsymmetrical mesh over the domain with respect to crack surfaces are generated for
simulation-2 in order to obtain meaningful conclusions. For brevity, coarser version of meshes
used in these simulations are illustrated in figure 2.19. Figure 2.18c clearly demonstrates that de-
spite this difference, both simulations produce almost same crack tip trajectory. From this, it can
be concluded that the present methodology is robust enough to not get influenced significantly
by mesh orientation.

2.6.9 Nonlinear elastic plate with a hole

The above examples considered crack propagation with little material nonlinearity. This is evident
from the fact that the crack remains sharp even after several propagation steps. This example
considers crack propagation involving high material nonlinearity under large deformation. A small
off-centre hole is introduced in the geometric configuration considered in section 2.6.1, and this
simulation allows the crack to propagate through the material. The mechanical properties of
the material are £ = 1GPa, v = 0.3 and critical J—integral, J.=50 Jm~2. The top surface is
subjected to displacement of 0.5 mm. The geometric configuration of this example is presented
in figure 2.20a.

As with linear elastic examples, the loading (or the corresponding Dirichlet boundary condition
here) is increased very smoothly from the zero initial value so that the influence of inertia is
neglected. When the material starts deforming, as expected, the crack starts to blunt, and the
J—integral value starts to increase. When J reaches J., then the crack starts to propagate; the
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Figure 2.20: Plate with a hole. (a) Geometry (not to scale). All dimensions are in mm (b)
The configuration at which crack starts propagating (c) An intermediate configuration (d) Final
configuration
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deformed configuration of the structure at which the crack starts propagating is depicted in
figure 2.20b. Due to the presence of the hole, the crack slightly deflects upwards, as can be seen
from figure 2.20b and 2.20c. From all these plots, one can infer that the crack tip is always blunt
owing to the nonlinear stress-strain behavior.

2.7 Closure

The central focus of the current chapter was the development of a finite element methodology to
model mixed-mode crack propagation through homogeneous, isotropic, nonlinear elastic materials
undergoing finite strain deformations. The proposed method invoked the assumption that the
fracture is completely controlled by vector J—integral. It involves two steps: in the first step, the
governing equations of structure are solved using nonlinear FE method by freezing the crack in
the structure; in the next step, the solution obtained from the FE method is used to propagate
the crack based on maximum energy release rate criterion. Advancing the crack through a FE
mesh requires a continual change in topology of the mesh, which is achieved in this work by
utilizing a mesh refitting approach. This method, as the name suggests, refit the mesh at each
instant of crack advancement in such a way that the crack propagates through an existing mesh
edge in the modified mesh. The mesh movement strategies (for example used in ALE based
methods) usually result in mesh tangling issues when attempt to handle topology changes in the
mesh. This problem is circumvented in this work by splitting the hexahedral elements into wedge
elements in the crack tip neighborhood, which allows the possibility of local mesh connectivity
to be modified. This step is crucial to preserve the quality of mesh throughout the simulation,
without which the mesh movement methods will fail.

The accuracy of the methods was tested initially by simulating several examples of crack
propagation through linear elastic material under small strain conditions. The obtained results
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are compared with experimental and other available computational methods. The comparison
demonstrated that the present method accurately predicted the fracture behavior of all the
examples considered. Finally, the applicability of the method is presented for crack propagation
through nonlinear elastic materials under finite strain deformations.
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3 Fluid: Robust numerical integration in
embedded interface methods

The overall objective of this thesis is the development of a computational approach for fluid-
structure interaction in the presence of cracking structures. The previous chapter was centered
towards an FE approach for fracture mechanics. Now, the development of an accurate and robust
computational approach to solve flow around a moving obstacle is an essential prerequisite to
address fluid-structure-fracture interaction.

Despite several impressive advances in computational mechanics, solving the Navier-Stokes
equations around dynamically moving obstacles still offers a number of challenges. Some of the
problems are highlighted in section 1.4, and it was pointed out that fixed grid methods can
circumvent these problems. The focus of this chapter is to present a fixed grid embedded interface
approach developed in [123-126] to solve the Navier-Stokes equation in the presence of moving
interfaces. Emphasis is placed on the accurate numerical integration of the associated weak forms,
which is one of the crucial steps in dictating the accuracy of fixed grid methods.

This chapter is organized as follows. It first recalls the equations governing the dynamics of fluid
flow—the Navier-Stokes equations—together with the relevant continuum mechanics concepts.
Then it provides a short introduction to the embedded interface method used in this work.
This chapter then proceeds with the FE weak form associated with the Navier-Stokes equations;
stabilization and the weak enforcement of boundary conditions are detailed. This is followed by
the description of special time integration technique used to obtain accurate solutions in fixed
grid methods. One of the main contributions of the present thesis is the development of accurate
and robust techniques for weak form integration. In the next section, the existing numerical
integration methods are reviewed, and their deficiencies are recalled. After this, the two new
numerical integration methods developed in this thesis, namely the generalised moment fitting
method and the direct divergence method are explained in detail. Emphasis is placed on the
computer implementation of the proposed methods. In the final section of the chapter, several
numerical examples are solved to study the performance of integration strategies. These examples
demonstrate that the direct divergence method is the most accurate and robust one among all
the available methods.

3.1 Navier-Stokes equations: strong form

The governing equations of fluid dynamics are usually written in Eulerian frame of reference
because the fluid flow is always associated with large deformations. Let Qf be the domain oc-
cupied by the fluid which is bounded by its boundary I'/. Within this domain, an obstacle is
embedded, and the interface between the obstacle and the domain is denoted as I'*. The be-
havior of isothermal fluid flow within the domain is governed by the conservation equations for
mass and momentum; together they are referred to as Navier-Stokes equations. This work deals
with unsteady incompressible Newtonian fluid for which the conservation equations of mass and
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3 Fluid: Robust numerical integration in embedded interface methods

momentum are written as

V-ul =0 on Q x (0,T) (3.1a)
fDuf

P D — V.ol =p'bf on Qf x(0,T) (3.1b)

where u/ is the fluid velocity, p/ is the fluid density, o/ is the Cauchy stress tensor, and b/ is
externally applied body force per unit mass. In Eulerian frame of reference, the material derivative
of velocity is the sum of the local and convective parts as written below.

Du/  ouf
D—I; = % +ul - Vu! (3.2a)
=u/ +ul vu' (3.2b)
nf
r I
Qf |
T ;
[ e e

Figure 3.1: A schematic illustration of fluid domain. Shaded area represents embedded object.
Continuous and dotted boundaries denote Dirichlet and Neumann portions.

The Cauchy stress tensor is expressed as a sum of two parts, of which one is an isotropic tensor
and another is a function of the strain rate tensor e’

ol = —p/1+7(e) (3.3a)
1
with ef = 2 (Vul + (Vud)T| (3.3b)
where p/ is the dynamic pressure. For a Newtonian fluid, the tensor 7(ef) is the linear function

of €/, and is given as 7(e/) = 2u/ e/ where uf is the dynamic viscosity of fluid.
From the above expressions, the governing equations (3.1) can be rewritten as

V-ul =0 on Q x (0,T) (3.4a)
plal + plul - vul +Vp —2uV - €l = p/bS on QF x (0,T) (3.4b)
—_— ———
convection diffusion

The presence of convection terms in the above equation introduces a lot of additional complex-

ities, when compared to the structural equations presented in section 2.3. Achieving a stable
solution is very challenging, especially when the convection terms dominate the diffusion. This
issue will be addressed in section 3.3.
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3.2 Introduction to embedded interface methods

The aforementioned governing equations are specified together with proper initial and bound-
ary conditions. Velocity field throughout the domain is specified as initial conditions.

wll—g = ug on Of (3.5)

To define a well-posed problem the initial velocity field must be divergence-free i.e., V - u(’; =0.
Initial condition for pressure is not required as it has no associated evolution equation. In the
incompressible Navier-Stokes equations, the pressure acts as a Lagrange multiplier to enforce
incompressibility condition.

As shown in figure 3.1, the boundary of the domain I'/ is split into Fg and F{V that hold Dirich-
let and Neumann boundary conditions respectively. In addition, Dirichlet boundary conditions
are specified on the interface I'". The boundary conditions are stated as follows

uw =al/ onT4 x(0,T) (3.6a)
ol .nf =hf on F{V x (0,7) (3.6b)
uw =4’ onT! x(0,7) (3.6¢)

where @/ and @’ are the prescribed velocity values over their corresponding boundaries, hf is
the traction vector, and n/ is the unit outward pointing normal to the boundary.

3.2 Introduction to embedded interface methods

Conventional FEMs do not allow for the representation of discontinuous fields within an element;
a mesh that is aligned along any discontinuity is generated, and the numerical solution can be
obtained without any difficulties, using standard polynomial approximation spaces. However,
when the discontinuity surface, for example the interface I'* in figure 3.1, is dynamic, then these
methods require remeshing. The additional complications associated with such procedure are
already elaborated in section 1.4. In order to circumvent such complications, methods that do
not require an interface-fitted mesh have been developed in recent years. Such methods are termed
as embedded interface methods (EIM) which include immersed boundary [127,128], immersed
interface [129,130] and fictitious domain [131] methods. A common disadvantage of all these
methods is that they do not provide an accurate solution in the neighborhood of interface. This
shortcoming motivated Gerstenberger & Wall [123,124] to develop EIMs specifically suited for
FSI applications by enabling a sharp interface representation. These methods are later improved
by Schott & Wall [126].

As the interface is not directly accounted for in the mesh, its presence has to be explic-
itly introduced through modifications in the discretization of the governing equations. Differ-
ent EIMs are classified based on the nature of modifications through which the interface ef-
fects are included. The present work follows Schott & Wall [126], that uses cut element based
discretization approach, and employs Nitsche’s method to enforce boundary conditions on the
interface weakly. Let 7 denotes a non-interface fitted background mesh covering domain *
in which an interface I'V is embedded arbitrarily (figure 3.2). In this work, I'? is represented
by the trace mesh of an embedded mesh. The interest here is on the physical fluid domain
Q/ that is the area not enclosed by I'". Elements (K) that are partly or completely inside

QO are given by Qf = {K cTIKNQS # (Z)}. The set of elements cut by I'" are given by

Gp = {K € TI[KNT?#0}. T decomposes cut elements K € G, into a number of arbitrary
polyhedra, called as volume-cells (V). Such cells falling into the physical fluid domain are called
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Figure 3.2: Notation used for mesh and volume-cell description.

fluid volume-cells. Then, the physical fluid volume of an element (shaded polyhedra in figure 3.2)
is given as Qf( = {V C K nQf polyhedra |V; N V; =0 for i # j}. For non-cut fluid elements

K € Q7 \ Gj, the whole element is considered to be the volume-cell. Based on this notation, one
can write the whole physical domain as

o=Uok=U UV (3.7)

KeT KeT !
€ €l veal

Despite the volume-cell approximation, owing to the use of EIM, the interpolations within the
volume-cells are still carried out using the standard shape functions of the complete cut elements.
It is worthwhile to mention here that while handling thin-interfaces and some special cut situa-
tions, more than one set of degrees of freedom (DOF) may have to be assigned to a node. For
more details on this issue, refer to Schott & Wall [126] and Shahmiri [28].

3.3 Navier-Stokes equations: weak form

3.3.1 Time discretization

One-step-theta (OST) method is used for time integration, in which the acceleration a is defined
as a combination of the values at time level n and n + 1

un—i—l —aum

_ n+1 n
o =0a" (14 0)a (3.8)

where 0 is the parameter defining the behavior of OST, and At is the discrete time step. For
brevity, the superscript f is omitted from pressure, velocity and density.
The time-discretized Navier-Stokes equations, after applying OST scheme, can be written as
n+1 ) )
+pu-Vu+Vp—-V.-17-0b —6uhmt:O (3.9a)
V- u"t =0 (3.9b)

U

©
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3.3 Navier-Stokes equations: weak form

where © = At and u"* = 4w + At(1 — §)a™. For simplicity, the superscript f is omitted in
the above equation. More details on OST scheme can be found in several text books, including
Donea & Huerta [132].

3.3.2 Spatial discretization

This section presents the spatial discretization associated with the EIM, independent of the time
integration used. It is originally proposed by Schott and Wall [126], the extension of which is
also presented for two-phase flows [133] and to embed one mesh into another non-confirming
mesh [28,134].

For brevity, the complete weak form is split into five terms as described below.

Rys + R + Rembe + R??ZB = fns (3.10)

where Ryg and fyg are the terms arising from the discretization of Navier-Stokes equations,

154 p contains residual-based stabilization terms, Rempc includes the terms associated with

the weak enforcement of Dirichlet boundary conditions on the embedded interface, and Rg#’j B
are edge-based stabilization terms. This section provides a brief explanation for the source and
significance of each terms in the above equation.

Before proceeding to the weak form, it is essential to denote the appropriate function spaces

for velocity and pressure. The discrete trial and test function spaces for velocities are given as
3 3
U= {u e [CO(Qf)] culy € [Ql(K)] YW el VK €T |u=1a on rg} (3.11a)
3 3
u_ {v e [c"@N]" vl € [QK)]” W e VK €T [v=00n rg} (3.11D)

Since there is no Dirichlet boundary condition for pressure, the trial and test spaces are the
same, given as

Qr = {q € Q) : qlv € QUEK) YV € Q. VK € :r} (3.12)

where Q'(K) is the polynomial of order [ in each direction, defining the interpolation within an
element K.

Having defined the function spaces, the next step is to multiply the Navier-Stokes equations
with appropriate test functions, and integrate the product over the fluid domain. The resulting
weak form, after integration by parts, reads as: find (up,pp) € S}t x Q) such that for all (vp, gp) €

i x QF the equation Rys = fyg holds; where,

Rns = (vp, ptt) + (vn, pup, - Vuy) + (qn, V - up,)

(V) + (elon). 2pe(un)) (3.13)

fxs = (v, pb) + (v, h>rﬁj (3.14)
where (.,.) = (.,.)qrs is the usual L2-inner product defined over the physical fluid domain. This
means that for cut elements, this integral is defined only on the arbitrary polyhedral-shaped fluid
volume-cells which offers a lot of complications in the weak form integration as will be dealt with
in section 3.5. The above equation represents the unstabilized weak form without considering the
presence of the embedded interface. The forthcoming text explains the need and significance of
other terms in equation (3.10)
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3 Fluid: Robust numerical integration in embedded interface methods

Residual-based stabilization:

The need for stabilization in FEM for fluids arises due to two reasons: appearance of con-
vective terms in the governing equations because of the use of Eulerian reference frame, and the
incompressibility constraint. Since neither of these two are present in the structural equations
presented in the last chapter, stabilization was not needed. Here, the widely used residual based
stabilization is described [132,135-140] that contains the following three components.

rest

s7ap = (pun - Vo, marrarn) + (Va, taran) + (V- o, oren) (3.15)
SUPG PSPG LSIC

where 77, and r¢, are the residual of momentum and continuity equations respectively.
8uh
TMh = pﬁ + pup, - Vup + Vpp, —2uV - €(up) — pb (3.16a)
rch = V- Up (3.16b)

The corresponding stabilization parameters are defined as presented in [141,142]

1

T™M —
2
\/(Zpt) + puy, - Gpuy + Crp2G:G
1

(3.17a)

o= (3.17b)

T, Mtl‘(G)
where G = Zzzl (0€q/0xy) (0€q/0x;) utilizes the natural coordinate system & of the parent
element, At is the time step, Cr is set to be 36.0 and 144.0 for linear and quadratic hexahedral
elements respectively.

Unless the focus is on simulating creeping flows, the convection terms in the Navier-Stokes
equations (equation (3.4)) dominate the diffusion. In this case, the standard Galerkin methods
are inherently unstable, and lead to non-physical oscillations and wiggles in the solution field. The
role of streamline/upwind Petrov-Galerkin (SUPG) is to add, in a consistent manner, additional
dissipation or equivalently to introduce upwinding into the discretization without affecting the
solution accuracy.

Another source of instability arises from the incompressibility of Navier-Stokes equations: pres-
sure appears in momentum equations, but there is no evolution equation for pressure. It acts as a
Lagrangean multiplier to enforce incompressibility constraint. As a result of this, the discretized
matrix system will contain zero submatrix on the diagonal. Such a saddle-point system is solvable
only if the velocity and pressure solution spaces are chosen to satisfy the well-known inf-sup or
Ladyzhenskaya-Babuska-Brezzi (LBB) condition [143]. However, in our formulations, equal order
pressure and velocity interpolation functions are chosen, and circumvent the necessity of satisfy-
ing the LBB condition by introducing pressure stabilizing Petrov-Galerkin (PSPG) terms. While
convective instability dominates only at sufficiently high Reynolds number (Re), this instability
is present at all situations.

The least-squares incompressibility constraint (LSIC), as the name implies, is a stabilization
procedure of least-squares type. This term is adopted from Hansbo [144], and as shown by
Linke [145], this term provides an enhancement of discrete mass conservation.

The presence of second-order derivatives in the stabilization terms entail additional continuity
requirements. In order to avoid this problem, the stabilization terms are assumed to act only in
the interior of the elements.
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3.3 Navier-Stokes equations: weak form

Ryg and Rg%‘?fél p are present even in conventional FEMs for fluid flow. This means that until
now, the influence of I'* into the discretization is not introduced.

Weak enforcement of boundary conditions:

When Dirichlet boundary conditions are applied strongly, as in Fé, the trial functions sat-
isfy the Dirichlet conditions explicitly (equation (3.11)a), and the test functions vanish on FJ];
(equation (3.11)b). In contrast, since the interface I'* is not aligned with the background mesh,
the Dirichlet boundary conditions have to be enforced weakly. R,,pc describes additional terms
that are included in the weak form to enable weak imposition of boundary conditions on the
embedded interface I'.

RemBe = + (Vh, Ph - M)pi — (Un, 2pe(un) - n)p
J— . _ _i J— . . —_— _i
<Qh n,uy U>Fi <5 2pue(vp) - 1, up U>Fi

+2 2 <7“’vh’(uh_ﬁi)>mmv

K !
€Ghveql

(3.18)

where ' is the part of interface that lies in element K. The terms on the first line, called as
standard-consistency terms, result from the partial integration of pressure and viscous Galerkin
terms. They are retained because of non-vanishing test functions i.e., vj|r: # 0, and these terms
remain irrespective of the method of choice for weak boundary condition imposition.

This work, as proposed in [126], utilizes Nitsche’s method [146, 147], and the second line of
equation (3.18) are added to enforce u;, — u’ = 0 weakly on I'. It is possible to choose 3 = 1 or
0 = —1 without affecting the consistency. The anti-symmetric formulation with choice g = —1
results in suboptimal convergence or larger L2-errors [148,149], though it leads to better stability
behavior. Hence the symmetric variation with 3 = 1, also called as adjoint-consistent formulation,
is chosen.

The choice 8 = 1, unfortunately, leads to lack of coercivity and the terms described in the
last line of equation (3.18) are mandatory to account for this. Including this term ensures a
non-singular system of equations. The choice of stabilization parameter in this term is given
by [126,133,134]

Y := max (Yo, Yeonv, V) := Max (oz,uh[_( , 5 ) 120 A%

which takes into account a viscous part -, to balance the lack of coercivity, a convective part
Yeonv fOr convective instabilities, and a time dependent part ~; in case of unsteady simulations.
In the above formula, « is a stabilization parameter and hg is the characteristic element length
scale.

Alternative to Nitsche’s method, it is also possible to use interface Lagrange multiplier method
[150-152] or the boundary conditions can be weakly enforced by introducing an volumetric La-
grangean multiplier that involves an additional element-wise discontinuous flux field [124, 153,
154].

Edge-based stabilization

Shapes of the volume-cells obtained for an element depend on how the element is cut by
the interface. In a moving interface simulations, peculiar cut configurations can result in tiny
volume-cells as depicted in figure 3.2. Residual-based stabilization terms alone are not suffi-
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3 Fluid: Robust numerical integration in embedded interface methods

cient in such cases, since such terms involve integrals over the volume-cells. As the size of the
volume-cells reduces, the residual-based stabilization terms tend to zero, and hence additional
means of stabilization is needed to obtain oscillation-free solutions. This work makes use of edge-
based stabilization which involves adding terms to penalize the jumps of gradients across element
boundaries i.e., mesh edges in the interface region. It has three contributions as stated below.
d . .

Rg7ap = jap (Vn, un) + stream (Vn, wn) + jp (qn, vh) (3.20)
The term jgp (vh,up) overcomes the stability problems related to Nitsche’s method on cut
elements [155], and is defined as

for o) = Y [ (acru 1+ st ) D Do) [Dunlds— (3.21)
FeFqgi=1

where F contains all element surfaces shared by two volume-cells belonging to different elements,
say K1 and K, among which at least one is a cut element (figure 3.2). agp, and agp; imply
viscous and transient ghost-penalty parameters respectively, hr is the characteristic length scale
of element’s surface and [v] = v|x, — v|k, denotes jump in a quantity across the face shared by
two adjacent elements, and k is the highest polynomial degree in vy,.

Jstream (Vn, up) and jp, (qn, pr) are edge-based stabilization versions of SUPG and PSPG respec-
tively. Jstream (Un,up) controls convective instabilities, similar to SUPG. It involves penalizing
the jumps of velocity gradients along the edges [156-158], and is given as

Jstream ('vha 'u'h Z / ’YstreamhF [[V'Uh]] [[V'uh]]ds (3.22)
FeFg

where the convection stabilization parameter is defined as Vsiream = Qstream - P |un - nr|. To avoid
adding diffusion in the direction normal to the flow, the streamline nature of flow is taken into
consideration through the term |uj - np|.

In order to enable the use of inf-sup unstable pressure-velocity pairs, pressure gradient based
stabilization term j, (qn,pp) is introduced [155,159]

Jp (Gnson) = Y /thm [Dqn] : [D'pulds (3.23)
FeFg

where the pressure stabilization parameter is defined as,

< phe \7
o, pllal piE ) (3.24)

T = (hF T8 T 120A

The terms jstream (Vh,up) and jp (qn,pr) help to introduce physical information from fluid
domain to velocities and pressure at ghost nodes (see figure 3.2), respectively.

The stabilization parameters are chosen to be agpy = Qstream = p = 10 and agp; = 0.05
from error analysis presented in [126] and further extensive numerical experiments.

It is to be remarked that the use of edge-based stabilization requires additional data structure
to hold the information about the faces; moreover it increases the bandwidth of the resulting
matrix system which lead higher computational costs. However, in order to obtain robust and
accurate embedded interface formulations, such stabilization is mandatory.
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3.4 A note on time integration

3.4 A note on time integration

When the embedded interface moves within the background mesh from time step t" to t"*1,
there are few nodes that were in the solid domain at " will be injected to the fluid domain at
t"*1 (figure 3.3). These nodes, referred to as injected-nodes, offer some difficulties for the time
integration, since values of u"* given in equation (3.9) are not available at these nodes. This
section expresses two possible cases, and explains how these are dealt with.

< .
© &5 © ® Fluid nodes

————— B Ghost nodes

g

- — 3 D OlInjected-nodes
il s N N e O I R I S B (copy from ghost nodes)
OlInjected-nodes
a m Y .
= (semi-Lagrangean)
(a) Configuration at ¢" (b) Configuration at t"*!: case 1 (c) Configuration at t"*!: case 2

Figure 3.3: Interface movement and semi-Lagrangean time integration

Case 1: Interface does not cross one complete element. In this case, the extent of movement
of the interface is restricted not to cross one complete background element. The injected-nodes
here were the ghost nodes at " (figure 3.3), and uM* values are directly computed from the
solution available at ghost nodes.

Case 2: Interface traverses one or more complete elements. In this case, only for some of
the injected-nodes, the ghost values can be copied (figure 3.3). Others were completely within
the solid at ¢, and in order to construct u"* values for these nodes, the semi-Lagrangean time
integration proposed by Henke et. al. [160] is used. This procedure involves tracking back the
Lagrangean origin of these nodes at t"™ which, in principle, must be located in the fluid domain
at t". The field values at these Lagrangean origins are utilized to construct u* to perform time
integration using OST. For more details on the semi-Lagrangean method, refer to [160].

In both scenarios, the initial conditions for the ghost nodes at ¢"*! are constructed by solving
a small system of equations. This equation system is derived using equation (3.21), requiring that
the solution field is kink-free and continuous over the cut element. Once the history values are
constructed at all the nodes, the time integration using OST scheme can be carried out without
further difficulties.

3.5 Numerical integration of weak forms

In order to extract the stiffness matrix represented by the FE weak form given in equation (3.10),
it is essential to accurately evaluate all the integrals in these equations. In a standard FEM, this
integration is accomplished in a straightforward manner using the Gauss quadrature rule which
is stated as follows.

Gauss quadrature rule: Let f(x) be the integrand which is defined and continuous over €2,
and w(x) be the weight function, then the quadrature approximates the integral over € in the
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3 Fluid: Robust numerical integration in embedded interface methods

following form.
N
/Q w() f()dx ~ S wif(x;) (3.25)
=1

where x; and w; denote the location and the weights of quadrature points, respectively, and N
is the number of points necessary for the approximation to be sufficiently accurate.

In a standard FEM or in uncut elements in embedded interface methods, the integration
domain 2 = (Qf() is the whole element that has a predefined simple shape: either a hexahedron,
tetrahedron, pyramid, wedge or a prism. For these elements, the location x; and the weights w;
of the Gauss quadrature rule are readily available with which one can easily evaluate the weak
form integrals using equation (3.25).

In EIMs, the interface which is embedded within the non-body confirming FE mesh cuts
few elements of the background mesh and as a result split the element into two or more non-
overlapping arbitrary complex shaped polyhedra. As already stated, the elements that are cut
by the interface are called cut elements, and the polyhedra produced by the interface cut are
referred to as volume-cells. An example of such a cut configuration is illustrated in figure 3.4.
These cut elements offer significant difficulties: in order to extract the stiffness matrix for these
cut elements, the weak form has to be integrated over the polyhedral-shaped volume-cells. Gauss
quadrature can’t be used because such rules are available only for simple shaped volumes, not
for arbitrary polyhedra.

[CJCut elements
[JEmbedded interface

Volume cells

Figure 3.4: Interface cut and the resulting complex polyhedral shaped volume-cells for a small
embedded interface method example

Accuracy of the weak form integration over the cut elements largely influences the overall
solution accuracy in EIMs. Moreover, in transient FSI and multiphase flow problems, since the
interface changes its position and shape with time, the geometrical cutting operations and the
construction of integration method for the cut elements are performed at each time step. The
inapplicability of standard Gauss quadrature rule in the aforementioned situations, together with
the importance of accurate weak form integration have motivated the researchers to develop
various integration strategies that can be used directly in EIMs.

One of the essential points to be mentioned here is that in FE methods the integrand is not
available as an explicit mathematical function. It is constructed during the solution process, and
can be interpolated at any point within the domain. Hence, while developing integration methods
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3.5 Numerical integration of weak forms

aiming at weak form integration in FE methods, this has to be bear in mind. The following section
reviews the available methods which can handle integrands that are not explicitly prespecified.

3.5.1 Review of existing integration methods

A detailed review of the available numerical integration strategies used in the embedded interface
methods is presented here; emphasis is placed on robustness and accuracy of each methods. Only
the methods that are appealing for FEM implementation and are relevant to the present work are
reviewed here. The existing integration methods can be grouped into either one of the following
categories.

e Tessellation [65,66,123,161-163]

e Adaptive quadrature [164-170]

Conformal mapping [171,172]

Equivalent polynomial approach [173-175]

Moment fitting method [76,169, 170, 176-180]

Methods based on the divergence theorem [181-192]

Apart from these methods, there are different methods that smooth the discontinuity over a
distance [193-196], and other methods addressing how to deal with singular integrands [71-77].
Since the focus here is on sharp representation of the interface which is crucial for the accuracy
of FSI problems, and only the usual non-singular polynomial shape functions are used, they are
not reviewed here.

For the following discussion, let 2 represents the cut element, and R denotes a volume-cell.
RS and R* represent volume-cells that are located on physical fluid and solid part respectively.

3.5.1.1 Tessellation

The most widely used method for integration over the volume-cells is the tessellation approach
[65,66,123,161-163]. This approach involves a volume decomposition process in that the complex
shaped volume-cells are decomposed into a number of simple shaped subvolumes. The subvolumes
are referred to as integration-cells, and are generally of tetrahedral or hexahedral shaped for
which the Gauss quadrature rules are readily available. It is ensured that the integration-cells
are aligned along the interface so that the necessity to integrate a discontinuous function within
them is circumvented. Figure 3.5 shows a representative example of the tessellation process. These
integration-cells are used only to perform weak form integration over the volume-cells. It does
not affect the approximation property of FEM nor does it introduce additional nodal variables.
Moreover, since integration-cells are not used to form solution spaces, the aspect ratio of such
cells does not influence the solution accuracy [162].

The volume decomposition process associated with tessellation is very complicated to imple-
ment within the FE framework, and hence external packages such as qhull [197] or TetGen [198]
are often used to accomplish this. Once the volume decomposition is successfully carried out, the
integration rule for a volume-cell is constructed by collecting all the integration-cells that belong
to this volume-cell. This involves two mapping steps, as shown in equation (3.26).

F71
(&, D), 5 (X, W)x,, —— (X, )¢, (3.26)
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3 Fluid: Robust numerical integration in embedded interface methods

Tessellation

Figure 3.5: Tessellation approach. Red and blue shapes on the left figure indicate volume-cells,
and the green surface on the right shows the interface.

where &;, and x;, are the natural- and the physical-coordinate system of the integration-cells
respectively, and &, is the natural coordinate system of the corresponding cut element.

In the first mapping Fi, the quadrature rule available in the natural coordinate system of
integration-cells (%X, ) is mapped into the physical integration-cell coordinates, and is denoted
as (x,w). This integration rule is, using another mapping F2_1, transformed into the required
integration rule defined with respect to natural coordinate system of the background element.

Though tessellation is working well for many cases, the time required to split the volume-
cell into integration-cells is very high. Moreover, in several instances, the volume decomposition
process associated with tessellation breaks down for some complex cut configurations. In other
words, tessellation lacks robustness. This is particularly a big disadvantage, when simulating
moving or deforming interface problems, since the tessellation has to be performed at each time
step to account for the change in position or shape of the interface.

Tessellation seems to be the most intuitive method when one aims at integration over arbitrary
volumes. However, due to the complicated geometrical cutting operations, and the associated
robustness issues, it is not the ideal choice for weak form integration in EIMs. In fact, most of
the methods devised in the literature are centered towards eliminating the volume subdivision.

3.5.1.2 Adaptive quadrature

The adaptive quadrature method [164, 165,169, 170] also involves a decomposition process; but
instead of the volume-cells as in the tessellation, the cut elements are split into integration-
cells. As mentioned in [169], this method involves three steps: an approximate estimation of
local integration using a quadrature rule, computation of local integration error, and partition of
integration domain into smaller divisions of same shape. These steps are repeated until the error
in the integration is less than the predefined value. In other words, the decomposition is carried
out recursively until the given error criterion is met. Figure 3.6a illustrates an example in which
the elements cut by the interface are recursively split four times. The accuracy of these methods
are studied in depth in [165], in which the adaptive integration method is used in an XFEM
based n—phase flow computations. It has been shown that even in two-dimensional problems,
to obtain relative error in the order of 107%, more than 20,000 points is necessary. This method
is extremely expensive owing to the fact that the integration-cells, unlike tessellation, do not
confirm to the interface and hence an error is introduced into the integration. To keep this error
negligible, the size of the integration-cells is required to be very small and thus results in more
number of quadrature points than in the tessellation procedure.
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Figure 3.6: Adaptive quadrature (a) the splitting is performed upto 4 levels (b) 2 levels of adaptive
splitting and then confirming subcells are formed

A combination of tessellation and adaptive quadrature has been proposed in [199] for GFEM,
and in [166-168] for two-dimensional non-Newtonian flow simulations. This method is termed
as fast remeshing approach in [199] which consists of two steps described as follows. Adaptive
quadrature step: In this step, using quadtree subdivision algorithm, all Quad fluid elements that
are intersected by the interface are subdivided into many Quad subcells. Tessellation step: after
adaptive subdivision, all the quadrilateral (Quad) subcells that are intersected by the interface
are further triangulated in such a way that the resulting Tri elements are aligned along the
interface. So in this method, no discontinuous function is integrated over the subcells, and hence
this method is expected to be more efficient than the adaptive quadrature method. Figure 3.6b
depicts an example in which before performing tessellation step, the cut elements are recursively
split two times. However, extension of the method to 3D is not yet reported.

3.5.1.3 Conformal Mapping

Aimed at weak form integration on polygonal FEM, an integration method based on conformal
mappping is developed in [171]. Schwarz-Christoffel mapping is used to map a polygon into a
unit disk. The integration rule on a polygon is obtained by mapping the quadrature rule on the
unit disk to the polygon with the help of Schwarz-Christoffel inversion formula. This approach
is shown to be applicable for both convex and concave shaped polygons. The method proposed
in [171] is applied in XFEM based fracture mechanics simulations, to integrate the weak form
over the cut elements [172]. It is shown to be slightly more efficient than tessellation.

3.5.1.4 Equivalent polynomial approach

Ventura [173] has proposed a method which performs integration of both strongly and weakly
discontinuous functions over the cut elements without resorting to any volume decomposition
process. This is accomplished by replacing the discontinuous function by an equivalent polynomial
which, when integrated over the cut element, gives the value of integration of the discontinuous
function. To illustrate the essence of this method, consider a function H(x)- f(x), where H (x) is
a Heaviside step function which is discontinuous across the interface, and f(x) is a polynomial.
Though H(x) - f(x) is discontinuous on , it is continuous on both volume-cells, R/ and R°.
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The method aims at deriving an equivalent polynomial H (x) such that

/ H(x) - f(x)dx :/ H(x)- f(x)dx+ | H(x)- f(x)dx (3.27)
Q RS Rs

Since the modified integrand is a polynomial and is continuous over the whole cut element, the
standard Gauss integration rules can be used. In [173] equivalent polynomial is developed for both
weak and strong discontinuities when the interface crosses the element completely. It is shown
that the equivalent polynomial H(x) - f(x) has higher polynomial order than H(x) - f(x), and
hence higher order quadrature is required. This is not an issue when comparing the advantage
that the volume decomposition can altogether be neglected.

The method proposed in [173] is used to solve XFEM based plasticity computations in [174].
This study made use of linear elements in 2D and 3D. It demonstrates that despite the equivalent
polynomial approach requires much less integration points than tessellation, the convergence rate
remains unaffected for both elasticity and plasticity simulations. This study constructs the equiv-
alent polynomials using a numerical approach during which it assumes that the quadrature rules
for integration-cells are available. This is a disadvantage, because the fundamental motivation of
the equivalent polynomial approach is to eliminate the generation of integration-cells.

The main difficulty of extending [173] to tackle hexahedral elements is that when an interface
cuts such elements, the resulting volume-cells, Rf and R*, are arbitrary polyhedra. Hence an
analytical evaluation of r.h.s of equation (3.27) is impossible. In a recent work [175], this has
been addressed by replacing H(x) with its regularized version that is analytically integrated
over the whole cut element € to get r.h.s of equation (3.27). This method seems to be able to
construct quadrature rules over all element shapes when a straight interface completely intersects
the element.

3.5.1.5 Moment fitting method

The moment fitting method is a promising approach to construct quadrature schemes over com-
plex 2D and 3D shapes. In this method, the following equations, known as moment fitting equa-
tions [200-202] are solved to obtain quadrature point locations and weights.

¢1(x1)  di(x2) ... ¢i(xn) w) Jrw(x)¢1(x)dx
P2(x1)  ¢a(x2) ... da(xn) wo Jr w(x)d2(x)dx
: : = : (3.28)
om(x1) Pm(x2) ... Pm(xn) WN Jr w(X)m(x)dx
where x and w are the location of quadrature points and their weights respectively, {¢1, @2, ..., dm}

are the predefined base functions, IV is the number of quadrature points, and m is the number
of base functions. The base functions are chosen in such a way that with the combinations of
base functions, one can construct the integrand of interest. The fundamental idea behind the
method is that since the base functions are explicitly defined, it can be easily integrated over
the integration domain R to obtain the right hand side of equation (3.28). Once this is done,
since usually m # N, the resulting nonlinear equations are solved using Newton’s least squares
method to obtain quadrature point locations and their weights.

Moment fitting equations are solved to obtain quadrature rules over triangles and squares
to integrate polynomial degrees of upto 50 in [177]. The procedure utilizes a node elimination
algorithm to eliminate the integration points that are not highly contributing. It is reported that
the quadrature rules generated using this method have minimal number of integration points when
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compared to all other available works. This method has been extended to deal with arbitrary
convex and concave polygons [178]. The generated quadrature rules have desirable properties
of interiority of nodes and positivity of weights, and are used to construct mass and stiffness
matrices in a polygonal FEM. The method devised in [178] is used together with a special
transformation technique for the weak form integration in an XFEM based fracture mechanics
solver [76]. In all these works, nonlinear least squares problem is solved to obtain both quadrature
point position and their weights. Without explicitly referring to moment fitting equations, this
method is used in [176] to construct integration schemes over cut elements that posses strong
discontinuity. Quadrature rules are derived for triangular and tetrahedral elements to integrate
quadratic polynomials multiplied by a Heaviside or Dirac delta function.

The first use of moment fitting equations in 3D is reported in [169], wherein the base functions
are integrated using Lasserre’s method [203,204]. The location of integration points are fixed
by distribution of points within the domain of interest, and the weights are obtained by solving
the linear system of equations. The resulting quadrature is applied to integrate polynomials over
irregular volumes. Owing to the use of Lasserre’s method, the applicability of this procedure is
limited to convex volumes. This method is used in [179] with application to magneto-mechanical
problems, where a procedure is used to ensure that all volume-cells are convex shaped.

3.5.1.6 Methods based on the divergence theorem

Various researchers have used the divergence theorem of multivariable calculus, stated as follows,
to perform integration over arbitrary polygons and polyhedra. Let R be the region in R? bounded
by the closed surface S. Let fi denote the outward pointing unit normal of R on S then, the
divergence theorem states that, for any vector field F defined on R

/ V.FdV = / F-f dA (3.29)
R S

As is evident from equation (3.29), this theorem can be used to simplify the domain integral to
integral along the boundaries of the domain that can be easily evaluated. In order to directly uti-
lize this theorem, almost all the available methods of this kind either assume that the integrand of
interest is predefined [181-186], or rely on symbolic computations to integrate generalized func-
tions [187,188]. There are severe arguments against using methods based on these assumptions
in a general finite element framework, since

e the integrand is not explicitly available in FEM (but can be computed at any point within
the domain of interest)

e the FE framework targets large scale problems, and coupling such efficiently tuned codes
(usually written in C++) with symbolic computation packages significantly slows down the
execution speed.

In recent works [189,191], aimed at efficient integration in boundary element methods, the
researchers eliminate the symbolic computation by using radial basis functions or Gauss quadra-
ture. A similar procedure for 2D polygons is described also in [190]. However, [189, 190] deal
only with polygons, and in [191] the method is used for integration over simple volumes only.
These references do not address the integration over complex volumes, and more importantly the
efficiency of these methods is not reported. For a coherent presentation, detailed explanation of
these methods is shifted to section 3.5.3.1.
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In summary, each of the aforementioned available methods has its own shortcomings: the
volume decomposition process involved in tessellation is highly complicated to implement and
usually lacks robustness, the adaptive quadrature is extremely expensive, the conformal mapping
is currently available only for two-dimensional computations, the equivalent polynomial approach
have not yet been demonstrated to handle arbitrary cut configurations, moment fitting methods
are able to handle only convex shapes, and the existing methods based on the divergence theorem
cannot be used in a general FEM framework.

In this work, two new integration methods aiming for robust and accurate integration over
arbitrary polyhedra are proposed. In the first, the moment fitting method proposed in [169] is
extended to deal with both convex and concave volumes. Then, another approach is proposed
in which the divergence theorem is used directly to integrate the FE weak form. The necessity
of symbolic computation is eliminated with the help of one-dimensional Gauss quadrature, and
hence the method can be used in a general FE framework. The following text details these two
methods.

Throughout the present work it is assumed that the volume-cells are bounded by plane surfaces
which are in turn bounded by straight lines. This is not a severe limitation because most of the
time the geometry in FEM is approximated by straight line segments. An extension of the method
to higher order interpolation functions or isogeometric analysis can be easily pursued in the future.

3.5.2 Generalized moment fitting method

This section presents a new integration method in which the moment fitting equations are solved
to construct quadrature rule over arbitrary polyhedra. The method is the extension of [169], and
is generalized in the sense that it can tackle both convex as well as concave shapes using a single
algorithm; it does not even require to decide whether the volume of interest is convex or concave.
The material presented in this section is based on [180)].

Quadrature schemes to integrate 6" order polynomial are constructed, hence the base functions
consist of all the monomials until order 6, i.e. ¢ = {x'y2* i + j + k < 6}. In total, there are
84 base functions. Similar to [169], the position of the integration points are predefined, and
the resulting equation system arising from equation (3.28) is solved using a linear least squares
method. The complete description of the quadrature construction method necessitates a detailed
explanation for the following three steps: integration of predefined base functions, distribution of
quadrature points over arbitrary polyhedra, and the solution of the resulting algebraic system of
equations using a linear least squares method.

The details of these 3 steps, together with computer implementation aspects are presented in
the forthcoming text.

3.5.2.1 Integration of base functions

In the present formulation, the divergence theorem of multivariable calculus is used to integrate
the base functions within the complex convex/concave volumes over which the quadrature is
constructed. This step is essential to compute the r.h.s. of equation (3.28).

The integration of a polynomial, using the divergence theorem, over three dimensional regions
is explained in [183,188]. Following a similar methodology, the integration of the base function
over R involves three steps. In the first step, the divergence theorem is applied to convert the
volume integral into surface integrals. Next, the surfaces of the volume which lie in an arbitrarily
oriented plane are projected into the appropriate coordinate plane. Finally, the surface integral
is reduced to a contour integral by applying the divergence theorem once again. The values of
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Step 1: Conversion of a volume integral to surface integrals
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Figure 3.7: Integration of a base function using the divergence theorem

the contour integral in this step are evaluated by using the traditional one dimensional Gaussian
quadrature rules. These steps are explained in detail in this section, and an example of base
function integration over a representative volume-cell is illustrated in Figure 3.7.

Step 1: Conversion of volume integral to surface integrals

The integral over the volume-cell is decomposed into a sum of integrals over its facets using
the well-known divergence theorem stated in equation (3.29). Since, the integrand of interest is
a scalar function, it is necessary to construct an equivalent vector field so that the divergence
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theorem can be directly used. This is a very simple and straightforward step. In the example
presented in Figure 3.7, it is of interest to evaluate [ 1 dV over the volume denoted by R. To
convert the volume integral to surface integrals using equation (3.29), a vector field F is to be
found such that V - F = 1. As stated in [183], there can be a number of possible choices for F
which includes {z,0,0}, {0,y,0}, {0,0, z}. Then, the divergence theorem leads to

/ 1dV = / xng dA = / yny dA = / zn, dA (3.30)
R S S S

Among all possible choices of F, the above three are advantageous because two of its compo-
nents are zero, and hence the dot product with the normal vector gives only one term. In our
implementation, the F whose x—component is non-zero is always used. This implies that only the
surfaces whose normal component in x—direction is non-zero are considered for the integration
process. For the example shown in Figure 3.7, the surface integration is to be performed only on
the shaded surfaces (S; and Sy) because on the remaining surfaces n, = 0. In general, for the
volume-cells produced in EIM, four surfaces are excluded from the surface integration (because
generally hexahedral elements are used in the background mesh, and the integration is carried
out in element local coordinate system). This feature helps to reduce the computational cost of
the quadrature construction.

Step 2: Projection of arbitrarily oriented plane to coordinate plane
The facets of the volume-cell are arbitrarily oriented in x —y — z space. If the surface integral
is evaluated over these facets directly, a complicated procedure of the change of variables needs
to be performed. In the next step, to avoid the process of change of variables, the surface integral
over the arbitrary plane is projected into integral over a coordinate plane with the help of the
following theorem.
Let § be a surface in * — y — 2z space which is contained in the plane azx 4 by + ¢z = d whose
normal is fi. Let S, be the projection of S into the y — z plane, then

1

/Sf(ac,y, z) dA f(h(y,2),y,z) dydz (3.31)

where,
d—by —cz
h(y, z) = 75 =g+ a1y + asz (3.32)

In the example presented in Figure 3.7, both the surfaces (S; and Sz) should be projected into
the y — z plane by applying the above theorem. After applying equations (3.31) and (3.32),
equation (3.30) becomes, for surface S;,

1
/ (xng);dA; = H/ (g + a1y + aoz)nidydz
Si Miz| JSia (3.33)
= j:/s (a0 + a1y + aoz)dydz

This step requires to find only the equation of plane which contains the arbitrarily oriented facets.
The procedure used to find the equation of plane is described in Appendix B.

Step 3: Conversion of surface integral to contour integrals

In the final step, the divergence theorem is applied again to reduce the surface integral into
a contour integral. Let S, be the surface bounded by a closed contour C and m be the outward
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pointing normal to S, along C, then for any vector field H,
/ V. HdA= }{ Hoh dl (3.34)
Sz C

The vector field equivalent to the scalar integrand can be found by the same procedure explained
in step 1. For our example, applying the above theorem to equation (3.33), it becomes

1
/ (oo + oy + anz)dydz = 75 (ovoy + §oz1y2 + apyz)mydl (3.35)

T

As shown in Figure 3.7, the contour integration is performed only along the lines for which
my # 0. The contour integral in equation (3.34) can be estimated using the well known Gauss
quadrature rule in one dimension.

In steps 1 and 3 of the above procedure, the normal to the facets (fi) and contours () are com-
puted, respectively. A key point to be noted is that the divergence theorem yields correct results
only if these normal vectors are outward pointing to the considered volume-cell. In Appendix B,
the method for ensuring this requirement in EIM simulations is explained.

The following important point must be noted regarding the Gauss quadrature used to perform
contour integration. If Fj is the base function to be integrated over the volume, when applying
the divergence theorem another function F3 is integrated along the contours of the volume. For
instance, in the example explained above, to obtain the integral value of 1 over the volume-
cell, an equivalent function (agy + %alyQ + aayz)m, is integrated along the contours. It is very
straightforward to see that the polynomial order of F5 is more than that of F; by 2. It should
be made sure that the Gauss quadrature rule used for the contour integral is accurate enough to
integrate Fs. As already stated, the maximum polynomial order of base functions considered in
the present work is 6, and hence the Gaussian rule used in contour integration should be able to
integrate polynomials of order 8.

The use of the divergence theorem to estimate the volume integral requires that the integrand of
interest (1) must be known explicitly. In such cases, the equivalent function (F2) to be integrated
along the contours can be derived, and the divergence theorem can be directly applied. However,
in FEM simulations the integrand is not known explicitly, but it can be evaluated at any point
within the volume-cell. So a quadrature rule which is capable of numerically estimating the
integral value in such situations is needed. As already discussed, using moment fitting equations,
one can arrive at such quadrature rules. With the help of this base function integration, r.h.s.
of equation (3.28) can be evaluated. Since the base functions are predefined, if the position of
quadrature points are known, then one can also compute the coefficient matrix associated with
equation (3.28). In this work, similar to [169], it is assumed that the integration points’ locations
are predefined. This requires an algorithm to distribute points within the arbitrary polyhedral
shaped volume-cells, which is the focus of the next section.

3.5.2.2 Quadrature point distribution

Attempts to solve for quadrature point locations over non-convex regions resulted in points
placed outside the domain even in two dimensions [190,205]. In these references, it was made
sure that all the points lie within the bounding box constructed over the region of interest, and
it was assumed that the integrand is continuous inside the bounding box. Such a flexibility is not
available in FEM simulations because the shape functions are defined only inside the element and
also they are discontinuous across the interface in the cut elements. Hence, it is mandatory that
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all the quadrature points are strictly positioned inside the volume-cell. To avoid the problem of
outside lying quadrature points, as in [169], the points are distributed within the volume and the
corresponding weights are calculated after solving the moment fitting equations.

The distribution of points within a concave volume is not straightforward. An easy brute force
method is to construct a bounding box over the arbitrary volume, distribute points uniformly
within the box, and decide whether the points lie within the volume-cell. This procedure, though
very simple to implement, is prohibitively expensive when the volume-cell contains very thin
regions in two of its dimensions. An example of such a shape is shown in Figure 3.8. It can be
seen that the bounding box contains a large region outside the volume-cell and when points are
distributed and checked, only few points lie inside the volume-cell. As can be seen from Figure 3.8,
out of 100 points only 5 are inside the volume. This results in unacceptably large computational
time to arrive at a reasonable number of points within the volume-cell.

Figure 3.8: Distribution of quadrature points within the bounding box. Shaded area shows the
region of interest and the dotted line marks the bounding box

An efficient method for point distribution is the use of barycentric or mean-value coordinates.
Though these coordinates are well defined and widely used for convex volumes, their general-
ization to concave shapes in three dimensions is still lacking. The recently proposed maximum
entropy coordinates are applicable for concave volumes, but they necessitate to solve a con-
strained optimization problem for each volume to get the coordinates [206] and the procedure
has to be carried out at every time step for each volume in case of moving boundary simulations.
Such complicated algorithms for the distribution of points can adversely affect the robustness of
the quadrature construction scheme. To this end, a very simple yet efficient strategy is proposed
for quadrature point distribution inside the concave volumes whose performance does not depend
on the complexity of the volume-cell.

The present method makes use of ray tracing to distribute the points within the volume-
cell. This method neither requires to find whether a point lies inside the volume-cell (as it is
guaranteed to be) nor uses any special coordinate system. The volume under consideration is cut
with a number of plane surfaces (Algorithm 2), and the quadrature points are distributed over
the intersection regions between the plane surface and the volume (Algorithm 3).

As explained in Algorithm 2, the point distribution starts with the construction of a bounding
box over the volume-cell under consideration. The corner points of the bounding box are denoted
by (Zmins Ymin, Zmin) a0d (Tmaz, Ymazs Zmaz) as shown in Figure 3.9a. The next step is to find
the bounding planes (denoted as z;— and zy— planes in algorithm 2) of the volume. For this, at
first the intersection region between the volume and the plane z; = 2y + €Az is found. If the
intersection area is significant (at least 1% of the area of bounding box at this plane), then this
z1—plane is termed as bounding plane 1 (Figure 3.9b), and quadrature points are distributed
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Algorithm 2 Distribution of quadrature points within the considered volume-cell

NN NN NNRDND NN R R o s
B A M S BRI TR S

Construct the bounding box with corner points (Zmin, Ymins Zmin) and (Tmazs Ymazs Zmaz);
AT = Tiaz — Tmin; AY = Ymaz — Ymini D2 = Zmaz — Zmin; € = 0.01;
T1 = Tmin — GAZ‘;
Y1 = Ymin + €AY; YN = Ymaz — €AY;
21 = Zmin + €AZ; ZN = Zmas — €A%;
while z; < zy do
Distribute quadrature points within z; plane (Algorithm 3);
if number of quadrature points > 0 then
Break;
else
21 = 21 + €Az
end if

. end while
: while zy > z; do

Distribute quadrature points within zy plane (Algorithm 3);
if number of quadrature points > 0 then
Break;
else
zZN = zn — €Az;
end if

: end while
. if (zy — 21) > €Az then

for i=2 to N-1 do
zi = zi1 + [
Distribute quadrature points within z; plane (Algorithm 3);
end for
else
Neglect this too small volume-cell;

. end if
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Figure 3.9: Bounding box and cut planes defined for a volume-cell

within the intersection area. Otherwise, the value of z; is moved within the volume in steps of
€Az until it intersects the volume with significant area. A similar procedure is used to identify the
bounding plane 2 with initial choice of zy = 2z — €Az. Once the bounding planes (z = z; and
z = zy) are identified, specified number of intermediate planes are generated and the quadrature
points are distributed over the corresponding intersection areas. The definition of bounding planes
implies that the region of volume lying outside these bounding planes is negligible, and is not
considered while distributing the points. However, it is to be noted that the bounding planes
are used only during the distribution of quadrature points. For the actual integration of base
functions, exact geometrical details of the volume are used.

eIntersection points

) Bounding line 2 z

=Quadrature points

Intermediate
lines

To Bounding line 1 xp

Figure 3.10: Distribution of quadrature points on the intersection region between the volume-cell
and the cut plane

The procedure to decide whether the intersection area is significant and the strategy of dis-
tributing quadrature points within the intersection area are explained in algorithm 3 and are
schematically shown in Figure 3.10. Ray tracing is used to distribute points in the considered
plane. As a first step, the bounding lines are identified in the plane. For this, a ray is shot along
the x—direction at y; = ymin + €Ay, and intersection points of the ray with the facets of the
volume are identified. If the intersection length, for example (2, — z,) for the bounding line 1 in
Figure 3.10, is higher than 1% of the box’s dimension in z—direction, the quadrature points are
generated on the intersection length. Otherwise y; is increased in steps of eAy until it encounters
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significant intersection length. Using a similar procedure, bounding line 2 is identified. When
multiple intersection points are obtained, as in bounding line 2 in Figure 3.10, the quadrature
points should be distributed only in the regions which lie inside the volume. Once the bounding
lines are obtained, a number of rays in between them are generated, and the points are dis-
tributed over the intersection length. This completes the distribution of points in the intersection
region. When this step is repeated for all the intersection region, the required quadrature points’
distribution within the volume is obtained.

Algorithm 3 Distribution of quadrature points within the considered z;—plane

1: Input: x1, y1, YN, 2
2: OQutput: quadrature points in the z;—plane
3: while y; < yny do
4:  Shoot a ray along z—direction from (z1,y1, 2);
5. Find the intersection length (L;pn.);
6: if L;; > eAx then
7 Distribute quadrature points within the intersection length;
8: Break;
9: else
10: Y1 = Y1 + €Ay;
11:  end if
12: end while
13: while yy < y; do
14:  Shoot a ray along x—direction from (z1,yn, 2;);
15:  Find the intersection length (Lj,t);
16: if L > eAx then
17: Distribute quadrature points within the intersection length;
18: Break;
19: else
20: yn = yn — €Ay;
21:  end if
22: end while
23: if (yN - yl) > €Ay then
24:  for j=2 to N-1 do
25: yj = yj—1 + A=
26: Shoot a ray along z—direction from (z1,y;, 2);
27: Find the intersection length (Ljn.);
28: if Lt > eAx then
29: Distribute quadrature points within the intersection length;
30: end if
31: end for
32: else
33:  Return zero quadrature points;
34: end if

Some representative volume-cells over which quadrature points distributions are performed are
shown in Figures 3.20 and 3.25. It is worthwhile to mention that differences in time taken between
distributing the points within such complex volumes and within simple shapes such as a cube are
negligible. This fact proves that the algorithm for distributing the quadrature points within the
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volume is very efficient. The complexity of volumes it can handle demonstrates that the algorithm
is robust. Such a performance is expected owing to the fact that all the steps in the algorithm
involves straightforward algebraic calculations; there are no complex or time-consuming iterative
steps involved at any stage of the algorithm.

3.5.2.3 Solution of equation system

Once a method of base function integration, and a strategy to distribute points within any
arbitrary polyhedron are devised, the coefficient matrix and r.h.s. associated with equation (3.28)
can be evaluated, which is given in the following form.

Aw =b (3.36)

from which one solves for quadrature weights, w. The above equation generally represents an
over-determined system, since the number of quadrature points is more than the number of base
functions. In order to solve this, a linear least squares method is used, which modifies the above
system as

(ATAyw=ATb (3.37)

where AT A is a dense (non-sparse) square matrix. The inverse of AT A is computed using Epetra
package of Trilinos [112], which uses LAPACK libraries [207] to perform LU-decomposition.
Having obtained the position and weights of quadrature points, the FE weak form can be
integrated over the volume-cells using equation (3.25).
As discussed in section 3.6.2, with the help of appropriate numerical examples, this method
is shown to be more robust than tessellation, but in certain cut configurations it can be less
accurate. The next section presents an integration approach which is robust as well as accurate.

3.5.3 Direct divergence method

The previous section explained how to use the divergence theorem to integrate explicitly specified
functions over arbitrary polyhedra. In order to use such a procedure to deal with unspecified
functions, some researchers [187,188] utilized symbolic computations. It has already been pointed
out in section 3.5.1.6 that this presents difficulties to implement in a general FE framework. In
this section, an accurate, robust, efficient and easy-to-implement method is presented for the
numerical integration of polynomials that are not explicitly prespecified, over arbitrarily complex
shaped polyhedra. Our method involves the application of the divergence theorem to convert the
volume integral to surface integrals over the facets of the polyhedra. The need for symbolic
computation is eliminated by using one-dimensional Gauss quadrature rule, as in [190,191]. The
material presented in this section is based on [192].

3.5.3.1 Integration over polygons

Though the main objective of this work is the integration of polynomials over complex 3D poly-
hedra, for brevity, the method is first explained for 2D polygons. As already stated, this method
makes use of the divergence theorem to convert the domain integral into boundary integral.

Since our integrand (F) is a scalar polynomial function, to utilize the divergence theorem
(equation (3.29)), it should be expressed as the divergence of a vector. This is very straightforward
[180,183], and can be written as

V.-F=F (3.38)
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3.5 Numerical integration of weak forms

It can be assumed without losing generality that
F = G(x)i + 07 + Ok (3.39)

where 7, j and k are unit normal vector along x-, y- and z-directions, respectively. It follows
directly from equation (3.38) and equation (3.39) that,

G(x) = /ﬂ " Fda (3.40)

where x is a reference point, which is explained later in this section. By substituting equa-
tions (3.38) and (3.39) into equation (3.29), one get

/R FdR = /S G(x)n, dS (3.41)

where, n, is the component of n along xz—direction. Thus, the domain integral is converted to
a surface integral. Prior to the evaluation of this surface integral, one needs to perform the line
integral given by equation (3.40) to compute G(x) on S. In short, the problem of evaluating the
domain integral is converted into performing two separate integrations: one over the surfaces of
the domain (equation (3.41)) and one line integration (equation (3.40)). It is shown here that
these two integrals can be computed easily and accurately.

It is to be recalled that the scope of the present work is to deal with F that are not explicitly
available, but are constructed during the solution process, as in typical finite element simulations.
In such cases, the evaluation of G(x) using equation (3.40) is usually achieved by using symbolic
computation [187,188]. In order to eliminate symbolic computations, the one dimensional Gauss
quadrature rule is used to compute G(x).

Consider the integration of a 5! order polynomial over the shaded polygon shown in Fig-
ure 3.11a. In EIM simulations, this can arise when the background element shown in the dotted
line is cut by the interface (continuous line). The integration procedure explained in [189-191]
can be interpreted as follows. First the domain integral is converted into integration over the
boundaries of the domain using the divergence theorem. Since, the boundaries of the polygon are
its edges, the application of the divergence theorem yields,

Neg
/R FdR = ; [E 1- G(x)n.dE; (3.42)

where F; denotes the i*" edge of the polygon, and N4 is the total number of edges that defines
the polygon (in the present example shown in Figure 3.11a, Ny = 5). The integration over the
edges can be performed using the one dimensional Gauss quadrature rule by mapping this rule
over the edges of the polygon (Figures 3.11b and 3.11c). If G(x) is available at all these edge
Gauss points, equation (3.42) can be directly evaluated.

To compute G(x) at any point X;, equation (3.40) is represented as,
X
G(X;) = / Fdx (3.43)
K

where k is a reference point chosen as shown in Figure 3.11b. All these edge Gauss points are
connected to k via an imaginary line, and the integral in equation (3.43) is evaluated along this
imaginary line by using a more complicated radial integration [189], or by using Gauss quadrature
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(c) choice of & in [190]

Figure 3.11: Integration over polygons as explained in [189-191]

once again [191]. In these works, & is the same for all edge Gauss points. The approach presented
in [190] is different; the edge Gauss points are projected over one of the diagonals of the polygon
as shown in Figure 3.11c. Every edge point has its own k, contrary to [189,191]. Along the line
connecting the edge point and its s, equation (3.43) is integrated to evaluate G(x). The present
method, for 2D polygons, is similar to [190]. However, instead of choosing a diagonal, the present
method chooses one of the edges of the polygon to get k for edge Gauss points. The complete
procedure of the present method is explained below.

The present method of integration begins by listing the edges of the polygon for which n, # 0.
These edges are named as integration edges (Figure 3.12a). It can be seen from equation (3.42)
that only edges with n, # 0 give non-zero integral values, and hence only integration edges are
considered further in our method. In the next step, the reference line which is defined as an
infinite line that passes along one of the integration edges, is marked (Figure 3.12b). The role of
this reference line will be explained in the subsequent steps. The edge that coincides with the
reference line is no more an integration edge. Then, the one dimensional Gauss quadrature rule
is mapped to the remaining integration edges (Figure 3.12c); these points are named as main
Gauss points. Let (X, W) denote the location and weight of these points. As explained in the
above paragraph, to evaluate the domain integral using equation (3.42), the value of G(x) is
required at all these main Gauss points. In order to compute G(x), all the main Gauss points are
projected onto the reference line as shown in Figure 3.12d. These projected points are chosen as
k in equation (3.43), and similar to [190],  is different for each main Gauss point. In the next
step, the one dimensional Gauss quadrature rule is mapped again, but now over each interval
between  and X. These quadrature points are denote as internal Gauss points (Figure 3.12e).
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Figure 3.12: Integration over a polygon using direct divergence method. Legend shown in (a) is
applicable for all the subfigures.

Now each main Gauss point has its own internal Gauss rule denoted as (x,w), which is used to
evaluate G(x).
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Evaluation of G(x) at every main Gauss point is achieved by expressing equation (3.43) in
terms of the internal Gauss rule

NI;

G(Xi) =D F(xij)wi; (3.44)

J=1

where NI; is the number of internal Gauss points available for the considered main Gauss point
X.

Once G(x) is evaluated at all main Gauss points, the domain integral is computed by evaluating
the right hand side of equation (3.41) as,

NM
Ir =) G(Xi)n.(Xy)W; (3.45)
=1

where N M is the total number of main Gauss points. All the steps involved in the integration
over a polygon, with the computer implementation perspective, are summarized in algorithm 4.

Owing to the choice of the reference line in the present method, the integration edge that
coincides with the reference line is eliminated from the calculations. This results in a reduced
number of integration points when compared to [189-191]. In the present example, since the 4
point Gauss rule is used on the integration edges, and every edge point has a 3 point internal
Gauss rule, totally 16 points are eliminated when using the present method. Moreover, when
the polygon is concave, it is sometimes possible that more than one edge may coincide with the
reference line, in which case the present method is even more efficient. Unlike other methods, the
internal Gauss rule is always mapped along a horizontal line in our method. Hence, it is necessary
only to map the x—component of the internal Gauss rule; y— and z— components are equal to
the considered main Gauss point.

Algorithm 4 Integration over {polygons}[polyhedra]

Identify and store the integration {edges}[facets];
Select the reference {line} [plane];
Delete the {edges}[facets| falling on reference {line}|plane] from integration {edges}[facets];
[Split the integration facets into Tri and Quad cells when necessary]
Distribute main Gauss points (X, W) on all integration {edges}|[facets];
Ir = 0;
for i=1 to number of main Gauss points do

Project X; onto the reference {line}[facet] to get k;

Distribute internal Gauss points (x,w) between X; and &;

g(Xi)=0

for j=1 to number of internal Gauss points of X; do

G(Xi) = G(Xi) + F(xij)wi;

end for

Ir = Ir + G(X;)n, (X ) Wi
: end for

e e
AR el

There are two questions that need further clarification regarding the present method.

e Can the reference line be chosen along any of the integration edges?
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3.5 Numerical integration of weak forms

e How to choose the quadrature order for internal and edge Gauss points when the polynomial
order of F is known?

Choice of reference line: The polygon considered in the present example is formed when an
interface cuts the background quadrilateral element (Figure 3.11a). It can be seen that the edges
of the polygon are formed either from the interface or from the background element edges. When
the reference line is chosen along an edge formed by the interface, it is sometimes possible that
more than one edge can coincide with the reference line (as will be shown in section 3.6.2) which
results in a reduced number of integration points. Hence, in our simulations, whenever possible,
the reference line is set to coincide with one of the interface edges. However, while doing so,
in certain cases, some of the internal Gauss points may fall outside the background element
(Figure 3.12f). This is undesirable in FEM simulations, since the shape functions, and hence the
integrands of the weak form, are defined only within the element. In such cases, as shown in
Figure 3.12¢ (in general for any polygon formed after interface cut in EIM) when an edge formed
by the background element is chosen as the reference edge, all internal points are within the
background element. In very rare cases, for example when the element is cut by more than one
interface, neither of these options is possible. In such case, an imaginary line with x = W
is chosen as the reference line; where x4, and .,;, are the maximum and minimum value of
x—coordinate over the whole polygon. Instead, it is possible to choose the longest diagonal as
suggested in [190]. However, this possibility is not adopted because its extension to 3D is not clear.
This problem is specific to FEM simulations; when the present method is used for integration of
a polynomial in other applications, the reference line can coincide with any edge.

Order of quadrature rules: As stated above, the internal Gauss points are used to integrate F
(equation (3.44)), and the main points are used to integrate G(x) (equation (3.45)). Since G(x)
is computed by integrating F, the polynomial order of G(x) is increased by one. Hence the order
of the the main Gauss rule should be sufficient enough to integrate G(x). This is the reason why
3-point Gauss rule is used for internal points, and 4-point Gauss rule is used for the main points
in our example, to integrate a 5 order polynomial.

3.5.3.2 Integration over polyhedra

In this section, the direct divergence method is explained for performing integration over arbitrary
polyhedra. The polyhedra are defined by their facets, the same way as the polygons are built by
their edges. Application of the divergence theorem converts the domain integral into integrals
evaluated over the facets

Ny
/R FdR = ; /F GxnadF (3.46)

where F; denotes the it facet of the polyhedra, and N ¢ is the total number of facets.

The procedure is very similar to the one described for polygons. All operations are carried out
on the facets of the polyhedra, like on the edges of the polygon. However, here an additional step
of splitting the facets into triangular and quadrilateral cells is involved, as explained below.

Various steps involved in the integration over polyhedra are illustrated in Figure 3.13, and
are also explained in Algorithm 4. The method begins with identification of integration facets,
facets for which n, # 0 (Figure 3.13a). Then, the reference plane that coincides with one of the
integration facets is chosen (Figure 3.13b). The facet that is in the reference plane is no more
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an integration facet. To integrate equation (3.46), it is necessary to map quadrature points over
the integration facets. The facets of the polyhedra are simple polygons with arbitrary number
of vertices, but the quadrature rules are available only for triangle and quadrilateral. Hence,
the integration facets, which are arbitrary polygons, are split into a number of triangular and
quadrilateral cells (Figure 3.13c). Detailed explanation of the splitting procedure is given in the
next section. Over each of these cells, the quadrature rules are mapped (Figure 3.13d), and these
points are denoted as the main Gauss points (X, W). After this, the main Gauss points are pro-
jected onto the reference plane (Figure 3.13e). Then, internal Gauss points (x,w) are distributed
along the lines connecting the main Gauss points to the projected points (Figure 3.13f).

After obtaining the Gauss points, the required integral is evaluated using equations (3.44) and
(3.45). The procedure of obtaining the main and internal quadrature points are referred to as
“quadrature construction” or “construction of integration scheme” in this thesis. The method of
obtaining the reference plane, and how to choose the order of internal and main Gauss points
have already been described in the previous section.

Shape of the 6" order polynomial 10" order polynomial
eliminated facet main® | internal | total | main® | internal | total
Triangle 13 13 x4 65 27 27 X 6 189
Quadrilateral 16 16 x 4 80 36 36 X 6 252

Arbitrary polygon® | 3 x 13 | 39 x 4 195 | 3 x27 | 81 x6 | 567

a7th order quadrature

11" order quadrature
“which is split at least into 3 triangles, so minimal number of reduction in points is reported

Table 3.1: Reduction in number of integration points for present method when compared to
[190,191] to integrate 6 and 10" order polynomials over a polyhedron due to elimination of
one facet

The advantage of using the present method, when compared to other methods based on the
divergence theorem [190,191], is that the facet that is on the reference plane is eliminated from the
computation. This results in a reduced number of integration points as shown in Table 3.1. When
a triangular facet is eliminated, and if a 6" order polynomial is integrated over the polyhedra,
then the facet would have had 13 main Gauss points (As pointed out in the last section, the
quadrature order used for main Gauss points is more than the polynomial order of F by 1). Each
of these points holds 4 internal points, and hence 65 points are eliminated when using the present
method. When a quadrilateral is eliminated, reduction in the number of Gauss points will raise to
80. The method is more advantageous when the eliminated facet is an arbitrary shaped polygon
that will be split into a minimum of 3 triangles to map the main Gauss points; so the effect is
equivalent to eliminating 3 triangular facets which will results in a reduction of 195 points. The
reduction in Gauss points increases rapidly when the order of polynomial is increased. This can
be seen from Table 3.1 by comparing the numbers for 10" order and 6" order polynomials. In
EIM simulations, it is possible that more than one facet may coincide with the reference plane as
will be shown in section 3.6.2. In such cases, the present method is even more efficient because all
these facets will be eliminated from the calculations. In order to compare the numbers presented
in Table 3.1 with the total number of integration points for a polyhedron, consider a polyhedron
with NIF number of integration facets, out of which NVE number of facets coincide with the
reference plane. If one assumes that all the integration facets have the same shape, the percentage
reduction in total number of integration points is % x 100%. Another advantage is that facet
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Figure 3.13: Integration over a polyhedron using direct divergence method. Legend shown in (a)

is applicable for all the subfigures.

splitting is used to enable the mapping of main Gauss points over the integration facets as shown
77
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the next section). The implication of these advantages on the computational efficiency of EIM
simulations is quantified in section 3.6.7.

In this work, the domain integral is converted into facet integrals by applying the divergence
theorem. Many of the available methods of this kind use the same theorem once again to convert
the facet integral into contour integrals. Though this is a possibility, it is avoided here because the
implementation would become more cumbersome. It is easy to imagine that in such a procedure,
three sets of Gauss rules should be handled (refer to figure 3.14) instead of two (internal and main)
as in the present method. More importantly, it wouldn’t be possible to make use of the optimal
Gauss rules that are available for triangular and quadrilateral regions in such case. This would
result in higher number of integration points, and would subsequently increase the computational
time.
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Figure 3.14: Three sets of integration rule if surface integral were converted to contour integral

Since the facets of polyhedra are simple polygons, facet splitting i.e., splitting the facet into
triangular and quadrilateral cells can be easily achieved, as explained in the next section.

3.5.3.3 Facet splitting

As explained above, when a facet of a polyhedron has more than 4 vertices, mapping the main
Gauss points over these facets is not straightforward. Such facets can be triangulated, the mapping
can be done over each of the resulting Tri. (In this section, the abbreviations Tri and Quad are used
for triangular cell and quadrilateral cell respectively.) However, as will be shown in the following
text, triangulation will result in a large number of main Gauss points, which may deteriorate
the efficiency of integration. To address this issue, this method uses a facet splitting procedure
that decomposes a facet into a combination of Quad and Tri, by always forming as many Quads
as possible. The following example explains why such a splitting procedure is advantageous over
triangulation.

Assume that we encounter a nonagon (a polygon with 9 sides) shown in Figure 3.15 as one
of the integration facets when performing integration over a polyhedron. When triangulated, it
results in 7 Tri (Figure 3.15a); for the same facet, facet splitting produces 3 Quad and 1 Tri
(Figure 3.15b). As explained in Figure 3.15, 91 and 61 main Gauss points are generated when
using triangulation and facet splitting, respectively. Moreover, in our integration method, each
main Gauss point holds NI number of internal Gauss points, so the total reduction in number
of integration points, when using facet splitting will be (91 — 61) * NI. This example clearly
demonstrates that it is more efficient to use facet splitting for the present method than the
conventional triangulation procedure.
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To integrate 7*" order polynomial To integrate 7" order polynomial
for each Tri 13 points for each Tri 13 points, Quad 16 points
In total 91 points In total 61 points

(a) Triangulation (b) Facet splitting

Figure 3.15: Comparison of number of main Gauss points when using triangulation and facet
splitting

Facets of the polyhedra resulting from EIM simulations are always simple polygons: the edges
of the facets intersect each other only at the vertices. In order to achieve the splitting of such
simple polygons into Tri and Quad, the well known earclipping method of triangulation [208,209]
is modified in such a way that whenever possible, the algorithm forms a Quad shaped ear.

(common point)

(common point)

Split cells are (4-5-6-7), (4-7-0-1),(4-1-2-3)  Split cells are (4-5-6-7), (4-7-0-1),(4-1-2-3)

(a) convex facet (b) facet with one reflex point

Figure 3.16: Simple facet splitting procedure for special shapes

Facet splitting is very simple for a convex facet, and for a facet with only one reflex vertex. (A
vertex is reflex, if the internal angle formed at the vertex is more than 180° as in Figure 3.16b.)
These facets are special facets. The first step is to choose a common point: if the facet is con-
vex, any vertex can be chosen; if not, the reflex vertex must be chosen (vertex-4 in Figure 3.16a
and 3.16b). Then, the first Quad cell is formed by connecting the common point with the sub-
sequent three vertices in order. This is shown in Figure 3.16, where the first cell is formed by
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connecting vertex-4, which is the common point, to the subsequent vertices 5, 6, and 7. The
subsequent cells are formed by connecting the common point (vertex-4), the last point of the
previous cell (vertex-7), and subsequent two vertices in order (vertices 0 and 1). The procedure
is repeated until all the vertices of the polygon are processed. It is to be noted that when the
number of vertices of the facet is an odd number, then the final cell is a Tri (Figure 3.15b). It
is taken for granted that, for these special facets, all the cells formed using the aforementioned
procedure lie completely within the facet i.e., these cells are the ears of the facet. If any of the
Quad formed is not convex (a Quad with no self-intersection can have only one reflex point), it
is split into two appropriate Tri. This is essential because quadrature rules are available only for
convex Quad, and such rules cannot be mapped to a Quad with reflex points.

When a facet has more than one reflex vertex, the procedure is not straightforward. In such
cases, it is necessary to form a Tri or Quad, and make sure no reflex vertices are located within
this cell. The complete procedure for splitting such facets is presented in Algorithm 5. The facet
is referred to as a polygon in the algorithm.

The algorithm first checks whether any two adjacent edges of the polygon are on the same
line. If so, then these edges are merged into one. This step is important to make sure that the
vertices of Tri formed during the splitting do not fall on a line. In the next step, the reflex points
of the polygon are identified. Once the above two steps are completed, Tri and Quad cells can
be constructed, and it can be checked whether they form the ears of the considered polygon.

To form the first cell, the first reflex point is chosen as the firstPt. secondPt is the next
polygonal point to firstPt. If secondPt is a reflex point, the resulting cell cannot be an ear; it
always falls outside the polygon as shown in Figure 3.17a. In such cases, the firstPt is shifted
to the secondPt, and this is repeated until the secondPt is a non-reflex point. Then, thirdPt
which is next polygonal point to secondPt in order is identified. (See lines 1 to 16 in algorithm 5)
At this point, there are two possibilities.

Possibility 1: thirdPt is a reflex point: If one attempts to create a Quad cell, it results in
either a concave Quad or a Quad with self intersecting edges. In order to avoid this, a Tri cell
is formed by connecting the three available points as shown in Figure 3.17b. If no reflex points
of the polygon are within this Tri, it forms an ear and is added directly to the splitcells that
holds all the Tri and Quad cells formed during the splitting process. Then, this Tri is deleted and
a new polygon is formed (compare Figures 3.17b and 3.17c¢). The whole procedure is repeated
for this new polygon. (Refer to lines 17-19 and 22-30 in algorithm 5)

Possibility 2: thirdPt is a non-reflex point: A Quad is formed by connecting firstPt, secondPt,
thirdPt and fourthPt (which is the next point to thirdPt) in cycle as shown in Figure 3.17c.
This Quad forms an ear, if none of the reflex points lie within this cell. If so, the algorithm
calls the routine SplitConcaveQuadCell. This routine checks whether the Quad is convex, in
which case it is directly added to splitcells; but if the Quad is non-convex, it is split into
two appropriate Tri and these are stored in splitcells. Then this Quad is deleted, and a new
polygon is formed (compare Figures 3.17c and 3.17d), as in the lines between 19-21 and 32-35 in
the algorithm.

If the Quad or Tri, as described above, is found not to be an ear, the algorithm moves all the
way to the beginning, to modify the firstPt, and repeat the whole procedure.

The splitting process is completed, when all the vertices of the original polygon are part of one
of the splitcells. From an implementation perspective, the algorithm ends after dealing with
one of the following cases.
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Algorithm 5 Splitting a simple polygon that has at least 2 concave vertices into Tri and Quad

cells
1: Merge adjacent edges falling along a same line;
2: Identify reflex vertices and store them in ptReflex;
3: num=number of polygon points; numReflex=number of reflex points;
4: while (splitDone==false) do
5. for i=0 to num-1 do
6: Clear the data in newCell;
7 if i==0 then
8: firstPt=ptReflex[0];
9: else
10: firstPt+4++;
11: end if
12: secondPt=next polygonal point to firstPt;
13: if secondPt is a reflex point then
14: continue;
15: end if
16: thirdPt=next polygonal point to secondPt;
17: if thirdPt is a reflex point then
18: newCell=TriCell(firstPt,secondPt,thirdPt);
19: else
20: fourthPt=next polygonal point to thirdPt;
21: newCell=QuadCell(firstPt,secondPt,thirdPt,fourthPt);
22: end if
23: if any reflex point is within newCell then
24: continue;
25: else
26: break;
27: end if
28: end for
29:  if newCell is a TriCell then
30: Add newCell to splitcells;
31: Delete secondPt from polygon;
32: else
33: SplitConcaveQuadCell(newCell);
34: Delete secondPt and thirdPt from polygon;
35:  end if
36:  Merge adjacent edges falling along a same line;
37 Compute reflex points of the new polygon;
38:  if num==3 then
39: Add polygon to splitcells;
40: splitDone=true;
41:  else if num==4 then
42: SplitConcaveQuadCell(polygon);
43: splitDone=true;
44:  else if numReflex<1 then
45 call SplitSpecialFacets(polygon);
46 splitDone=true;
47:  end if
48: end while
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1. Number of vertices in the new polygon is 3: In this case, the polygon is directly added to
splitcells as a Tri.

2. Number of vertices in the new polygon is 4: Here, SplitConcaveQuadCell routine is called.

3. There is only one or no reflex point in the new polygon: In this case, the procedure used
to split the special facets (as shown in Figure 3.16) is called.

This completes the facet splitting process. These final steps are explained in lines 38-47 in Algo-
rithm 5.

When a facet has num number of vertices and numReflex number of reflex points, and if
(num—numReflex)< 4, then no Quad can be created for such facets. An example is shown in
Figure 3.17e for which num=>5 and numReflex=2, and hence convex Quad cannot be produced.
Conventional earclipping procedure [208,209] is used to split such polygons into a number of Tri.

It is worth mentioning that the aspect ratio of the cells produced are not controlled in our
splitting procedure. Cells with high aspect ratio do not deteriorate the solution accuracy when the
present method is used for weak form integration in EIM. This is because the cells are used only
for integration purpose, and not for constructing any shape functions, as reported also in [162].

Note: In both moment fitting and direct divergence methods, while using the divergence the-
orem over the volume-cell, it is essential to make sure that the normal vector on each facets is
outward pointing. A procedure used to ensure this requirement is given in Appendix B.

3.6 Numerical examples

Through numerical examples, the characteristics of different integration schemes are analyzed
in this section. The considered integration schemes are tessellation, generalized moment fitting
method [180], and direct divergence method [192]. A simple fluid statics problem is used to clearly
demonstrate the need for accurate weak form integration in fluid simulations. Then, to study the
robustness, the methods are applied to generate quadrature schemes over complex polyhedra, and
the errors incurred in integrating a given polynomial functions are assessed. Before analyzing the
order of convergence through Beltrami flow, the accuracy of weak form integration is studied with
the help of a simple fluid flow example. Finally, simulations of flow past stationary and moving
interfaces are carried out to investigate the efficiency of integration schemes. Throughout this
section, the generalized moment fitting method is referred simply as moment fitting method.

All the three integration methods are implemented in BACI, and they use same libraries for
performing geometrical cutting operations. Moreover, all of them are optimized to the best of
our efforts so that the comparison of computational time presented here is meaningful.

3.6.1 Fluid statics example: Significance of accurate weak form integration

Tessellation method breaks down at several instances during our simulations as already stated
in section 3.5.1.1. It is possible to make the tessellation working, when the tolerances used in the
geometrical cutting operations are relaxed to a sufficient value. This means small volume-cells
are automatically neglected, and are not required to be split into tetrahedra. This is already
proposed in [66] when simulating fracture mechanics problems using XFEM. A question that
naturally arises now is: instead of developing different integration strategies, why not neglect
such small cells, and proceed with the slightly reduced accurate solution? Unfortunately, this is
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ereflex points
1P - firstPt
2P - secondPt
3P - thirdPt
4P - fourthPt

3P
1P
3P 2P
(a) secondPt is reflex: not a valid cell (b) thirdPt is reflex: only Tri is possible
4P
3P (common point)
1P 2P

(c) eliminated Tri ear and formation (d) eliminated Quad ear and application of special

of new Quad procedure because only one reflex point exists

(e) Quad not possible

Figure 3.17: Splitting a facet with more than one reflex point. 1P, 2P, 3P and 4P represents
firstPt, secondPt, thirdPt and fourthPt respectively. Shaded region is the facet, and the
hatched region is a Tri or Quad cell. Legend shown in (a) is applicable for all the subfigures.

not feasible in fluid flow simulations, as pressure is very sensitive to the accuracy of weak form
integration. The following example demonstrates the problem confronted when eliminating small
cells.
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(a) Coarse mesh (b) Fine mesh

Figure 3.18: Geometry and mesh details of fluid statics problem

Consider the background fluid mesh and the structural domain shown in figure 3.18. All velocity
components are set to zero over the boundaries of fluid domain, and a constant body force along
the downward vertical direction is applied to the fluid. With such conditions, the Navier-Stokes
equation is simplified to 5

P
oy Bo
This represents a fluid statics problem, where all velocity components are zero and pressure varies
only due to the addition of body forces. One can easily imagine that the pressure contours for
this problem should represent a pressure field varying linearly in y—direction. Two meshes shown
in figure 3.18 are considered: one coarse mesh and another fine mesh.

The pressure contours for both coarse and fine meshes, when using three different integration
strategies are presented in figure 3.19. On the coarse mesh, all three integration methods yield a
correct pressure field. However, on the fine grid, the tessellation procedure broke down initially. In
order to avoid the failure of volume decomposition associated with tessellation, the tolerance used
in the cut library is adjusted slowly until it worked. At this point, the small volume-cells produced
after interface cut are neglected in tessellation. Owing to these missing volume-cells, though they
are very small, the simulation does not represent a linearly varying pressure field accurately.
This can be seen from the plot corresponding to tessellation for fine mesh in figure 3.19, wherein
the region of inaccurate pressure field is marked with a dotted ellipse. It can be seen that both
moment fitting and direct divergence method result in correct pressure field. Since these methods
do not involve any volume decomposition, they can be used with tight tolerances, and hence no
volume-cells are neglected.

This example ensures that neglecting the small volume-cells that is usually followed in struc-
tural mechanics simulations, is not feasible in fluid flow simulations. Indeed, it confirms that the
development of accurate and robust integration methods is an essential prerequisite for developing
efficient EIMs.

In this work, the volume-cells produced after the interface cut, however small it may be, are not
neglected during the numerical integration. Though this is necessary to obtain non-oscillatory
pressure field in fluid flow simulations, such a small volume-cells lead to a very high condi-
tion number of the resulting matrices, and the solution may become unstable which results in
non-physical oscillations. To avoid this, the procedure of eliminating very small volume-cells is
advocated even for XFEM based two-phase fluid flow simulations in [210,211]. Detailed pressure

(3.47)
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field results are not reported in these studies to make conclusions regarding whether such approx-
imations results in pressure oscillations as observed in our simulations. In [163,168], an interesting
alternative is proposed to address this issue. When an element produces a very small volume-cell,
the background fluid mesh points are repositioned in such a way that the interface cut introduces
sufficiently large volume-cells in all the background cut elements. A Poisson equation is solved
to decide the movement of the mesh points. In the present work, the edge-based stabilized for-
mulations described in the previous sections automatically eliminate the ill-conditioning problem
associated with small volume-cells, as clearly analyzed in [126].

Tessellation Moment fitting Direct divergence
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Figure 3.19: Pressure contours of fluid statics problem in coarse and fine mesh

3.6.2 Integration over arbitrary polyhedra: Robustness

In EIMs, as already described, the interface cut produces highly complex polyhedra. Any method
developed for weak form integration in EIMs should be robust enough to handle such complex
shapes. In order to test the robustness of the considered methods, integration of a predefined
polynomial is performed over some selected polyhedra that are encountered in our simulations,
and study the accuracy of such integrations.

The polyhedra considered (P1 to P4) and the corresponding integration points’ distribution are
shown in figure 3.20. Plots corresponding to direct divergence method need further explanation:
the facet that coincides with the reference plane is marked in red color; as already stated in
section 3.5.3.2; all the facets that are falling on the reference plane will be eliminated from
the calculations, and these facets are marked as ‘E’; moreover, since the function evaluation
takes place only on internal Gauss points, they alone are included. For P3, when using direct
divergence method, some of the internal points fall outside the polyhedron (Figure 3.20c). This is
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Tessellation Momentfitting Directdivergence
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(b)Polyhedron-2(P2)
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(c)Polyhedron-3(P3)

(d)Polyhedron-4(P4)

Figure 3.20: Geometry of polyhedra and integration points’ distribution used to study the robust-
ness of different integration schemes. Left column corresponds to tessellation, middle is moment
fitting, and right column represents direct divergence method. Facet coincides with the reference
plane is marked in red. Facets that are eliminated from calculations are marked as 'E’.

not a problem because it is always ensured that all the points are inside the background element,
and hence the integrand of weak form is defined at these points also. Over these polyhedra, a
6" order polynomial p(x) = 2% + zy*z + 22y?2% + 20 is integrated. The number of integration
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points and the accuracy are reported in Tables 3.2 and 3.3, respectively. The term “similar” in
these tables refers to other methods based on the divergence theorem [190,191]. The differences
between these methods and the direct divergence method are already stated in section 3.5.3.2.

The number of integration points required to integrate p(x) are given in Table 3.2. The number
of tetrahedra generated after the volume decomposition process of tessellation is also marked
within parentheses. The quadrature rules for these tetrahedra are obtained from Intrepid library
of the Trilinos project [112]. For the direct divergence and similar methods, internal Gauss points
are used for comparison, since the function evaluation is carried out only on these points. Also,
the total (main+internal) number of Gauss points are marked within parentheses.

Polyhedron | Tessellation® | Moment fitting | Direct divergence® Similar?
P1 1248 (52 Tet) 756 752 (940) 1040 (1300)
P2 1032 (43 Tet) 1232 128 (160) 728 (910)
P3 48 (2 Tet) 125 220 (275) 312 (390)
P4 456 (19 Tet) 424 620 (775) 884 (1105)

“Number of integration points (number of tetrahedra after volume decomposition)
*Number of internal Gauss points (total number of integration points)

Table 3.2: Number of quadrature points generated by different integration schemes when per-
forming integration of a 6! order polynomial over polyhedra shown in Figure 3.20.

Table 3.2 indicates that for P1 and P2, the number of integration points required for the direct
divergence method is less than for the other methods. For P2, due to the choice of the reference
plane, 6 facets are eliminated from calculations since all of them lie on the reference plane (Fig-
ure 3.20b). As a result, for P2 the direct divergence method requires very few integration points
(Table 3.2). Elimination of more than one facet for P2 is possible only because the reference plane
coincides with a facet formed from the interface (refer to the discussion on the choice of reference
line in section 3.5.3.1). For P3 and P4, the direct divergence method results in more integration
points. The reason for this is explained as follows. P3 is a special shape that is composed of two
sliver tetrahedra. Since tessellation recognizes these special features, it is more efficient for P3.
For P4, only 1 out of 8 integration facets is eliminated due to the reference plane concept. This
is not sufficient enough to make the direct divergence method more efficient than tessellation. It
is to be mentioned that 1 out of 5, and 6 out of 8 integration facets are eliminated for P1 and
P2, respectively. As the ratio of number of eliminated facets to the total number of integration
facets is high, the direct divergence method requires less integration points than tessellation. In
general, when a polyhedron is simple shaped, as P4 or posses special geometrical features like P3,
tessellation requires a smaller number of integration points; when the considered volume-cell is
complex shapes, like P1 and P2, moment fitting and direct divergence outperforms tessellation.
For all the polyhedra considered here, the number of integration points from direct divergence
method is less than those from similar methods, for reasons stated in section 3.5.3.2. The influence
of this on the computational efficiency of EIM simulations are reported in section 3.6.7.

P4 in Figure 3.20 is very important, since it represents a typical polyhedron that is generally
encountered in EIM simulations. The fact that for P4, the direct divergence method requires
more points than tessellation and moment fitting affects the efficiency as will be shown in the
forthcoming sections.
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Accuracy of the quadrature rule is quantified by the quadrature error which is defined as

IQ—IQ‘

o (3.48)

€Q =

where I is the exact integral value of the considered polynomial over the volume, and Ig is
the value obtained from the considered method. The value of I is obtained by applying the
divergence theorem.

A comparison of eg produced when integrating p(x), given in Table 3.3, indicates that the
direct divergence method, tessellation and similar methods give the same level of accuracy. Even
for P3, for which the moment fitting struggles to construct efficient integration scheme, the error
from these methods is ~ 1071, It can be concluded that the direct divergence method is robust
since it can construct accurate integration schemes for all the complex polyhedra considered here.

Polyhedron | Tessellation Moment fitting | Direct divergence Similar
P1 3.7345 x 10712 | 1.5544 x 10~ | 3.7374 x 10~1? | 3.7380 x 10~ 12
P2 1.0472 x 1071 | 4.5992 x 10713 | 2.5132 x 1071 | 5.6548 x 10~ 1°
P3 1.7522 x 1071° | 4.4125 x 1079 | 6.3159 x 1071 | 6.3157 x 10~ 1°
P4 5.5618 x 10711 | 3.8046 x 10~ 11 | 1.8687 x 10713 | 8.8994 x 10~ 14

Table 3.3: Error produced in integrating p(x) using different integration schemes over the poly-
hedra shown in Figure 3.20

The number of integration points in tessellation is fixed by the number of integration-cells it
produces, and in direct divergence method, the number of points is dictated by the number of
facets. For a given volume-cell, the number of points has a unique value to integrate a polynomial
of certain degree. However, as already explained, the integration points in moment fitting method
are distributed, and the quadrature weights at the corresponding points are obtained. In such a
procedure, a question that naturally arises is “how to decide the number of quadrature points?”.
In all our moment fitting examples, the Lo-norm of eg is calculated for each base function,
and the number of quadrature points is increased until Loo-norm falls below 10710 for each base
function.

In order to better understand the behavior of moment fitting method with respect to number
of integration points, a few polynomials up to sixth order are integrated within the complex
volumes. The convergence plots of eg for the chosen polynomials with number of quadrature
points are shown in Figures 3.21. The constant term is used to check whether the volume of
the cell is predicted properly. It is very important to make sure that the quadrature is able
to integrate a constant term correctly. Otherwise it will be necessary to use a large number of
integration points for accurate calculations [74]. Figures 3.21 clearly shows that eg does not
reduce monotonically with increasing number of quadrature points. Importantly, for P3, even if
the number of points are increased to 5000, the error cannot be reduced below 1078, This may
be due to the fact that the moment fitting matrix may not be well-conditioned for the considered
number of, and distribution of quadrature points. Moreover, the quadrature points’ refinement is
achieved by simply increasing the number of cut planes and the number of points to be generated
in the intersection length in our point distribution algorithm, explained in section 3.5.2.2. This
means that the geometrical details of the volume are not considered, and hence the refinement
process is not optimal. Another reason which can be of minor influence is the following: there is an
error introduced in integrating each base function while solving the least squares problem. When
a polynomial is constructed as the combination of base functions, every term in the polynomial
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Figure 3.21: Convergence plot for known polynomials when using moment fitting methods

contributes to the total error. Depending upon the sign of error introduced in each term of the
polynomial, the error oscillates.

A recent study [212] points out the conditioning problem in moment fitting methods is due
to the use of monomials as base functions. In order to circumvent the problems, Gram-Schmidt
procedure is applied on the monomials, and the resulting orthogonal functions are used as base
functions, and this is shown to provide improved conditioning.

3.6.3 A simple test case : Accuracy

Having discussed the accuracy of integrating the known polynomials over the irregularly shaped
volumes to study the robustness, the next step is to analyze the accuracy of the stiffness matrix
computation, i.e., for the integration of the weak form of the governing equations. In order to
do this, a very simple fluid flow problem is considered for which the exact solution for velocities
(u,v and w) and pressure (p) are known.

The background mesh and the cut interface are shown in Figure 3.22. On all the surfaces of
the domain, a constant velocity boundary condition is applied. Same traction condition is given
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at the inlet and the outlet which are marked in Figure 3.22. Body force of appropriate magnitude
is applied, so as to keep the pressure constant throughout the domain. So for the considered
problem, the velocity and the pressure field are constant in the domain, and are confirming to
the boundary conditions applied. The interface cuts the background mesh and the same velocity
conditions as applied on the boundaries of the domain are imposed on the interface. Figure 3.22
also shows the tessellation of the volume-cells into integration-cells.

Figure 3.22: Geometry of the simple test case used to study the error in weak form integration.
The decomposition of cut elements into tetrahedra shown is performed only for Tessellation.

In this test case, the errors produced in the value of velocity and pressure at any node of a
cut element are direct measures of accuracy in integrating the weak form of the Navier-Stokes
equations. Such errors induced by different integration methods are given in Table 3.4. It can be
seen that the direct divergence method induces the least error on the computed flow quantities.
Since the geometry, mesh, and boundary conditions are the same, and only the method to perform
integration over the cut elements is changed, one can conclude that the direct divergence method
is more accurate when compared to the other two alternatives. Even for the pressure, the most
sensitive quantity, the direct divergence method gives error ~ 1071°.

Quantity | Tessellation | Moment fitting | Direct divergence
u 8.88x10716 [ 2.22x1010 <1078
v 9.19x10716 [ 6.87x10712 1.11x10717
w 5.01x10716 | 3.95x10 12 1.62x10717
D 1.23x10~13 |  5.96x107% 8.88x 10710

Table 3.4: Error introduced in velocity and pressure on a node of a cut element by different
integration methods

The error induced by moment fitting is larger than the other two integration methods, as
quantified in Table 3.4. The reason for this is clear from the discussion of previous section,
wherein it was shown that the moment fitting method achieves lowest accuracy when known
polynomials are integrated over the volume-cells. This is the cause of observed less accuracy in
weak form integration. Table 3.4 demonstrates also that the errors in pressure dominate, which
is no surprise because pressure is the most sensitive quantity. Though the errors produced in the
moment fitting method is higher than other methods, the error is small enough that it does not
affect the order of convergence of EIM, as will be shown using the next example.
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3.6.4 Beltrami flow : Order of convergence

The Beltrami flow is an ideal choice to study the influence of the quadrature error on the con-
vergence of FE solution because while deriving the analytical solution to the Beltrami flow, no
terms in the Navier-Stokes equations were eliminated [213].

The exact solution for the Beltrami problem is given by,

u(z,y,z) = —alesin(ay + dz) + e cos(ax + dy)] eVt (3.49a)
v(x,y,z) = —alesin(az + dz) + e cos(ay + dz)] e vt (3.49Db)
w(z,y,z) = —ale®sin(ax + dy) + e*cos(az + dx)] et (3.49¢)
2
p(x,y,z) = —% {62” + €2 + %% 4 2sin(ax + dy)cos(az + da)e® V)
+ 2sin(ay + dz)cos(ax + dy)e®*+?)
+ 2sin(az + dx)cos(ay + dz)ea(zﬂ!)} g2t (3.49d)

The initial and boundary conditions are obtained from the above equations. Following [213],
the constants are chosen as a = m/4 and d = 7/2. The time step used in the simulation is
At = 0.05. To reduce the mesh resolution requirements, a diffusion dominated flow with v = 1 is
simulated.
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a) Spherical domain (the embedded mesh) cuts b) Convergence plot
g

the background mesh in the cubical domain

Figure 3.23: Beltrami flow example

The simulation setup for Beltrami flow is shown in Figure 3.23a. A cube of length 2.5 serves
as the background mesh, and a sphere of unit diameter whose centre is at the origin is embedded
within the cube. The surface of the sphere represents the embedded interface. It is to be noted
that the spherical domain does not represent a solid body. It is just an embedded mesh that
contains the same fluid as in the cubical domain. The initial conditions are applied to both
cubical and spherical domains, and on the surfaces of the cube the boundary conditions from the
exact solutions are applied at each time step. At every time step, the solution over the cubical and
spherical domain are solved in a coupled manner. It is to be mentioned that, in addition to the
present work, the integration schemes presented in this thesis are also applicable for embedding
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an arbitrary fluid patch into a background mesh as discussed in [28]. This example uses such an
approach.

Several authors [214-216] have reported the effect of numerical integration on the accuracy of
FE solutions, among which [216] is important for us. In [216] it has been shown that when the
data of the problem has increased smoothness, not only the quantities computed from FEM, but
also any functional derived from these quantities should converge at optimal order. This can be
used as an accuracy test for our quadrature scheme. Since (u,p) € C*°(Q) for the Beltrami flow,
u,p and any derived functional should converge at second order for an appropriately accurate
quadrature scheme. In order to test this the following functional is defined,

G(u) = / sin(m)@dQ (3.50)
Q ox

and its convergence rate is checked. The convergence of u,p and G(u) with increasing number of
elements in each direction is shown in Figure 3.23b. It can be seen that both u and p in their Lo-
norm, and |G(u)—G(up)| converge almost with second order; where G(u) and G(uy,) are computed
from analytical and FE solution using equation (3.50), respectively. Since all three methods
converge at the same order and produced same error values, different integration methods are
not identified in figure 3.23b.

From the above analyses, it can be concluded that all the three integration methods are of
sufficiently accurate to be used for weak form integration in EIM.

Having discussed the robustness, accuracy, and convergence, the forthcoming sections report
the computational efficiency of the integration schemes.

3.6.5 Stationary interface simulations : Efficiency

As a next step, flow past stationary interfaces is simulated to study the computational efficiency
of different integration schemes. The interface shapes considered are a circular cylinder and a
star. Shape of the interfaces and mesh details are shown in Figure 3.24. The mesh is fine near
the interface and is coarsened away from it. The mesh contains one cell in the third dimension,
so that the interface cut produces polyhedra.

The reasons for choosing such interface shapes are as follows. Flow past a circular cylinder is
a widely used test case for validation of numerical schemes. Hence, the flow quantities computed
from our simulations can be compared with the available literature results. However, since the
circular cylinder has smooth geometry, it introduces only volumes with moderate complexity
over which integration needs to be performed. In order to study the integration methods in the
presence of highly complicated polyhedra, the star configuration is chosen. Some of the complex
polyhedra resulting from the interface cut for flow past the star are shown in Figure 3.25.

Simulations are carried out at Reynolds number, Re = UxD/v of 20; where Uy, is the free
stream velocity, v is the kinematic viscosity of the fluid, and D is the diameter for circular
cylinder and mean-diameter for the star (see Figure 3.24a). Unsteady simulations with At = 0.1
are performed for 1200 time steps. Though the time integration is carried out for 1200 steps,
because the interface is stationary in these examples, the geometrical cutting operations and the
construction of integration schemes are carried out only once.

Comparison of drag coefficient (Cp) for flow past the circular cylinder and the star are given in
Table 3.5. It can be seen that results obtained when using all the three integration methods match
very well with the reported literature values for the circular cylinder example. The important
point is that for both cases the direct divergence method produces exactly the same results as
the tessellation, while the results from moment fitting are slightly different. This is because the
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Figure 3.24: Mesh details for stationary interface simulations

Circular | Star
cylinder
Tritton [217] 2.22 -
Calhoun [218] 2.19 -
Russel and Wang [219] 2.13 -
Tessellation 2.1252 | 1.8749
Moment Fitting 2.1276 | 1.8754
Direct divergence 2.1252 | 1.8749

Table 3.5: Drag coefficient (Cp) for flow past the circular cylinder and star at Re = 20

error produced by the moment fitting method is larger than other methods, as explained in the
previous sections. Though results from moment fitting are slightly different, they also agree very
well with the reported values. The pressure field over the star after the simulation attained steady
state is pictured in Figure 3.26 which shows that the results are qualitatively similar.

The time required for the quadrature construction and for the total simulation are compared
in Tables 3.6 and 3.7, respectively. Table 3.6 indicates that moment fitting is the costliest for
quadrature construction. This is due to the fact that for the construction of quadrature rules using
the moment fitting method, a small system of linear algebraic equations (equation (3.28)) needs
to be solved for every volume-cell. The coefficient matrix associated with this system of equations
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(d) (e) ()

Figure 3.25: Some polyhedra generated when solving flow past the star. Integration points shown
are for direct divergence method.

(a) Tessellation (b) Moment fitting (c) Direct divergence

Figure 3.26: Steady state pressure field over flow past the star at Re = 20

is always a full (non-sparse) matrix. It is obvious that solving such a system is time consuming.
Tessellation involves a volume splitting process which, though is complicated to implement, is
faster than moment fitting method. Direct divergence method outperforms the other two in
quadrature construction time, since it involves only some mapping operations on Gauss points
over triangles, quadrilaterals and lines, and it requires the rather simple facet splitting procedure.
Both these mapping and facet splitting are performed very quickly when compared to the matrix
inversion of moment fitting and volume splitting of tessellation. This is why direct divergence
method is faster than the other two; it is more than 8 and 78 times faster than tessellation and
moment fitting, respectively for circular cylinder example. The ratios go to 36 and 51 for the star
problem.

As far as the total simulation time is concerned, moment fitting is the most efficient for station-
ary interface problems (Table 3.7). It is directly evident from Table 3.7 that the direct divergence
method is almost as efficient as tessellation. Detailed discussion on total simulation time is given
in the next section.
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no. of quadrature | Tessellation | Moment Fitting | Direct divergence
construction
Stationary cylinder 1 0.4003 3.78 0.048
Stationary star 1 8.422 11.97 0.2312
Accelerating airfoil 160 330.65 1.056 x 107 42.992
Oscillating hemisphere 100 925.71 6424.69 105.47

Table 3.6: Comparison of quadrature construction time in seconds

no. of Tessellation | Moment Fitting | Direct divergence
time steps
Stationary cylinder 1200 1.486 x 10* 1.310 x 10* 1.487 x 107
Stationary star 1200 10.35 x 10* 9.407 x 10* 10.72 x 107
Accelerating airfoil 160 1.606 x 10* 2.576 x 10* 2.130 x 10%
Oscillating hemisphere 100 12.85 x 10% 13.41 x 10* 14.49 x 10%

Table 3.7: Comparison of total simulation time in seconds

3.6.6 Moving interface simulations: Efficiency

Results of the previous section prove that for stationary interface simulations, the proposed
method is as accurate and almost as efficient as tessellation. In FSI, one problem class of our
interest, the interface changes its shape and position at every time step. This requires the geo-
metrical cutting and the construction of integration schemes to be performed at each time step.
To test the efficiency of integration methods in such situations, two simulations are performed:
flow over a rapidly accelerating airfoil, and an inline oscillating hemisphere. The former serves
as a validation study for moving interface simulations, and the later is a full three-dimensional
simulation, as opposed to the cases reported in the previous section wherein there is only one
cell in the third dimension.

The first moving interface example considered is the flow field around rapidly accelerated
airfoil in a still fluid, as described in [220]. The NACA0012 airfoil is used in our simulations.
It accelerates from rest to a constant velocity, U = 1, and then it traverses with this constant
velocity. Throughout the simulation, the airfoil maintains a constant angle of attack of 35°. The
unsteady displacement of the airfoil is given as follows,

for0<r<7, (3.51a)

(3.51D)

for 7 > 7,
where 7 = % is the non-dimensional time, 7, = 0.8 is the acceleration duration, c is the chord
length of the airfoil. Reynolds number, the non-dimensional number that characterizes the flow
field, Re = Y< is set to be 100, where v is the kinematic viscosity of fluid. The computational
domain is taken to be 24¢ x 20¢, where c is the chord length of the airfoil. The complete subdomain
within which the airfoil traverses is discretized with a very fine mesh, and a coarse mesh is used
away from this region. The time step used in the simulation is A7 = 0.02.

The evolution of vorticity field around the airfoil at different instances of time is illustrated
in figure 3.27. It can be seen that negative vorticity is generated around leading-edge and the
upper surface, whereas positive vorticity is generated over the bottom surface and the trailing-
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Figure 3.27: Evolution of vorticity field around airfoil

edge region. As the airfoil starts moving, over the period of time, the positive vorticity is shed
from the trailing edge to the wake region. These qualitative features agree very well with the
observations reported in [220].
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Figure 3.28: Comparison of drag and lift coeflicients for rapidly accelerated airfoil

The simulation is also validated by computing the drag and lift coefficients, and comparing
them with the results provided in [220]. The drag and lift coefficients are defined as follows,
2[D(7) — La(7)].

psU?%ch

2L(7)

Cp(r) = i

Cr(7) (3.52)

where L(7) and D(7) are the lift and drag forces acting on the airfoil, p; is the density of fluid, b
is the thickness of the airfoil in the direction perpendicular to the paper, and I,(7) is the inertial
force due to the acceleration of the airfoil, which is defined as follows

1,(1) = pShba(r) (3.53)
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3.6 Numerical examples

where p is the density of airfoil; since the buoyancy effects are not considered, p = py. S is the
area of airfoil section; this is approximated by the area of ellipse having major and minor axes
equal to the chord length and thickness of the foil. a(7) is the acceleration. During the constant
velocity translation part, I,(7) = 0. The time evolution of lift and drag coefficients is shown in
figure 3.28. Lift and drag start raising during the acceleration phase, and reach their peak values.
After this, they fall down, and settle almost to a constant value during the constant velocity
translation phase. It can be seen that the results produced from the simulations when using
different integration schemes falls over a single line, and they are matching very well with the
reported unsteady drag and lift coefficients [220].

In the second example, the hemisphere oscillates with velocity, u(t) = —U,,cos(27 ft), where U,,
is the maximum velocity and f is the frequency of oscillation. The non-dimensional parameters,
Reynolds number Re = U,,,D/v and Keulegan-Carpenter number KC' = U,,/fD are set to be
10 and 5, respectively. To define the parameters at these values, U,, =1, D = 1, v = 0.1 and
f = 0.2 are chosen. One cycle of oscillation is simulated i.e, until total time T' = 5 with time step

At = 0.05.

NS

o
3

%
N\
()
0+J 1%0
A
1

a
vesas
tﬁLI

i

i
/
7

Ly
-
(s

W,
3

L
N
5
S
0
H

o

75 7

o

N
ﬁ‘rgsc.

X
AR
{3‘

o
%‘f R

D

{\X
5
-

I s
AR
u’tL'L’
LI

7%
&

T
IV Saas
HerE

N

Figure 3.29: Background and embedded grid for flow past the oscillating hemisphere

This examples is solved using embedded mesh approach [28,221]. A structured grid is generated
over the hemisphere by defining a larger hemispherical domain as shown in Figure 3.29. This
grid, called as embedded domain, is embedded within the background domain discretized with a
Cartesian grid. Both background and embedded domains are solved in a coupled manner using
the procedure explained in [28,221]. This requires integration over polyhedral cells created at the
intersection of both meshes. No slip boundary condition is applied on all but the bottom surface
of the background domain.

At all time steps of the simulation, the solution computed using different integration methods
are the same. In order to show this, the pressure field over the surface of the embedded interface is
plotted at ¢t = 2.5 in Figure 3.30. The quantities computed over the interface are directly affected
by the error introduced by the integration methods, and since pressure is the most sensitive
quantity in flow simulations, it can be concluded that the choice of integration method does not
affect the solution accuracy for this problem.

The quadrature construction time and total simulation time are given in Table 3.6 and 3.7,
respectively. As far as the quadrature construction time is concerned, all three methods behave
the same way as in stationary interface simulations: the direct divergence method is the fastest

97



3 Fluid: Robust numerical integration in embedded interface methods
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Figure 3.30: Pressure distribution over the embedded interface at t = 2.5 for flow past the
oscillating hemisphere when using different integration methods

and the moment fitting method is the slowest, for reasons stated above. For this moving interface
problem, moment fitting method does not outperform tessellation in total simulation time. This
is because the quadrature construction is carried out at each time step, and the fact that the
moment fitting takes longer for quadrature construction slows down its performance. The direct
divergence method is 32.6% slower than tessellation and is 17.3% faster than moment fitting for
airfoil problem; for hemisphere simulation, it is 12.7% and 8.05% slower than tessellation and
moment fitting, respectively. The simulations reported here, and also the majority of the real
world applications, involve a number of simple and complex polyhedra over which integration
needs to be performed. For all the simple shapes, tessellation is more efficient than the direct
divergence method as already shown for P4 in section 3.6.2. This is the reason why, though
the direct divergence method outperforms tessellation in quadrature construction time, it is in
many cases not more efficient in terms of the total simulation time. Direct divergence method is
favorable when used for more complex polyhedral shapes.

Though, the direct divergence method is slightly slower, it excels through its superior robustness
properties as it works for polyhedra of arbitrary complexity. From our experience, tessellation
breaks down at times, and due to this the simulation crashes; as already stated in section 3.6.2,
moment fitting is not accurate enough for certain polyhedra. The direct divergence method
never breaks down, and it is accurate for any polyhedra. More importantly, it is much easier for
computer implementation than tessellation and moment fitting.

3.6.7 Comparison with other methods based on the divergence theorem

Having discussed the efficiency of tessellation, moment fitting and the direct divergence method
in the previous sections, it is very clear that the direct divergence method has superior accuracy
and robustness properties than other reported methods. Hence, it is the preferred method in all
our simulations. Having concluded on the choice of the integration method, it is now worthwhile
to compare the efficiency of our direct divergence method with other methods based on the
divergence theorem [190,191] (referred to as similar methods).

As explained already in section 3.5.3.2, the present method is different from “similar methods”
in the following aspects:

1. The concept of reference plane

2. Facet splitting instead of triangulation
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The influence of these differences are given in Table 3.8. It shows that the present method is
more efficient than similar methods, both in terms of quadrature construction time and total
simulation time. The reasons for this are explained below.

Quadrature construction (s) Simulation time (s)
Present Similar Present Similar
Stationary cylinder 0.0480 0.0666 1.487 x 10* | 1.654 x 107
Stationary star 0.2312 0.3005 10.72 x 10* | 11.59 x 10*
Accelerating airfoil 42.992 90.522 2.130 x 10 | 3.896 x 107
Oscillating hemisphere | 105.47 149.86 14.49 x 10% | 15.88 x 107

Table 3.8: Comparison of computational time for the quadrature construction and total simulation
time for the present and similar methods

Due to the introduction of a reference plane in the direct divergence method, one or more
facets that are on this plane are eliminated from the calculations. This means that on these
facets, the following operations with regard to quadrature construction are eliminated: facet
splitting, mapping main points to these facets, and obtaining internal Gauss points for these
(unavailable) main Gauss points. Hence, the concept of reference plane leads to reduction in
quadrature construction time. Moreover, elimination of these facets results in a reduced number of
integration points as quantified in Table 3.1 and section 3.6.2, and as a result the total simulation
time is reduced.

As explained in Figure 3.15 and the corresponding text in section 3.5.3.3, when using facet
splitting, the number of integration points is smaller than when using triangulation procedure.
This will obviously lead to increased computational efficiency, as shown in Table 3.8.

Present | Similar
Stationary cylinder 0.06 11.31
Stationary star 3.57 11.98
Accelerating airfoil 32.63 142.6
Oscillating hemisphere | 12.76 23.58

Table 3.9: Percentage increase in total simulation time when compared to tessellation

The percentage increase in total simulation time when compared to tessellation is quantified
in Table 3.9. This Table shows that the modifications proposed in this work take the integration
methods based on the divergence theorem one step closer to the tessellation.

Accuracy of the results produced by the direct divergence method and similar methods are
exactly the same, because the above two modifications do not introduce any change in the
underlying principle on which these methods operate. However, the modifications proposed in this
paper leads to significant reduction in computational cost when compared to similar methods.

Note 1 In addition to the above said two modifications, the use of Gauss-Lobatto rules is con-
sidered to distribute main Gauss points on the integration facets. The number of integration
points for triangle and quadrilateral in Lobatto rule are greater than those in the Gauss quadra-
ture. The idea was that since some of the integration points in Lobatto rules are located on the
edges, adjacent facets or adjacent cells generated from facet splitting can share these edge located
points which would perhaps result in a reduced number of integration points. However, initial
comparison over a few polyhedra indicated that the number of integration points is greater when
using Lobatto rules than for Gauss quadrature.
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Note 2 Integration of non-polynomials over polygons using the divergence theorem based
method is presented in [190]. It has also been reported that their method works without any
problems even for polynomials of degree in hundreds. Since the direct divergence method shares
some ideas from [190], it is expected to exhibit similar behavior. Moreover, stability and error
estimates are also derived for divergence theorem based methods in [190] for integration over
polygons.

3.7 Closure

This chapter presented the mathematical formulations and the associated FE weak form of the
Navier-Stokes equations discretized using an embedded interface method. The specific focus of
the chapter was the accurate and robust numerical integration of weak forms over the elements
that are cut by the interface. Existing numerical integration methods were reviewed and the
shortcomings for each methods were identified. In order to circumvent the robustness issues
associated with the existing methods, two new methodologies have been developed in this work:
generalized moment fitting method and direct divergence method.

In the generalized moment fitting method, quadrature rules were developed to integrate poly-
nomials over arbitrary polyhedra. The method is generalized in the sense that it is applicable
for both convex and concave shapes. An efficient point distribution strategy was proposed and
the quadrature weights at the corresponding points were obtained by solving the moment fitting
equations. The integration of base functions in the moment fitting equations was accomplished
with the help of the divergence theorem. Though the method works well in most instances, for
a few polyhedral shapes it produced less accurate quadrature schemes. One of the main features
of this methods is that the base functions can be chosen arbitrarily, and the quadrature rule is
fit to integrate these base functions accurately. This could be very helpful in meshless methods,
another class of methods that experiences problems with weak form integration. The problem in
meshless methods stems from the fact that the integrands associated with the weak forms are not
polynomials; they involve trigonometric or even exponential functions [118,222-224]. An inter-
esting study would be to choose appropriate base functions, and check if the resulting quadrature
rule obtained from moment fitting equations can eliminate the weak form integration problem in
meshless methods.

The direct divergence method, as the name implies, utilizes the divergence theorem to integrate
the weak form integrand in FEM. It is more robust and accurate than other methods, and it
is presented in a form that can be directly implemented in a large scale FE package. This
method neither requires a complicated volume decomposition nor involves new mathematical
formulations. It utilizes the divergence theorem, and the quadrature rules available for a line,
triangle and quadrilateral to derive quadrature scheme for complex polyhedra. Contrary to the
majority of existing methods of this kind, the direct divergence method does neither assume that
the integrand is known nor does it involve symbolic computations. Hence it is extremely easy to
implement. In our computations, it has never failed even in the instances where the tessellation
method broke down, and hence it is the preferred integration method in all the computations
presented in the next chapter.

The proposed integration methods are capable of evaluating integrals of polynomials over
arbitrary complex shaped polyhedra accurately, and are generalized in a sense that they do not
make use of any concepts specific to FEM. Owing to this fact, it is not only useful in embedded
interface methods, but can also be utilized in polygonal and polyhedral finite element methods
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[186,188,225-228], level set based methods [229-232], electronic structure calculations [233,234],
aerospace applications [235-237], computational geometry [181-183] etc.
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4 Fluid-structure-fracture interaction

The main focus of this thesis is to introduce the possibility of fracture within the structure in
FSI modeling. As a prerequisite to achieve this, a mesh refitting based fracture mechanics solver
is devised in chapter 2, and the embedded interface finite element method to resolve fluid flow
around moving interfaces is already described in chapter 3. The only question that remains to be
answered is: how are these fluid and structure fields appropriately coupled to model FSFI effects?
The answer to this question is precisely the focus of this chapter, to detail the partitioned coupling
strategy used in this work.

This chapter is organized as follows. It begins with the summary of monolithic and partitioned
coupling schemes, and explains why the partitioned approach is chosen for this work. Then, the
governing equations for fluid and structure, together with the coupling conditions are presented.
After this, the strongly coupled partitioned approach to simulate fluid-structure-fracture inter-
action is described. Dirichlet-Neumann partitioning is used in this work together with Aitken’s
A? method as convergence accelerator. Some numerical examples of increasing complexity are
illustrated to demonstrate the applicability of the devised coupling scheme to solve complete
fracture of structure due to the fluid loading. Finally, some unsolved issues of the present method
are detailed.

4.1 Partitioned vs. Monolithic coupling

The numerical methodologies used to solve FSI problems, based on how the fluid and structure
are coupled, are broadly classified into two classes: monolithic and partitioned schemes. For a
detailed overview of further classifications, refer to [238]. The following text summarizes the
advantages and shortcomings of monolithic and partitioned approaches, and explains why the
partitioned coupling is preferred in this work.

In the monolithic approach, the governing equations of fluid and structure are solved simulta-
neously within a unified algorithm. The conditions that are to be enforced at the interface are
treated implicitly. The main advantages of this approach are that it provides more accurate solu-
tions and is numerically very stable. The major drawback is that the cost of solving the coupled
system of equations is very high. Moreover, it involves very high initial development costs as the
existing solvers for the fluid and structure part cannot be utilized.

In contrary, the two subproblems, fluid and structure, are treated separately using the re-
spective numerical schemes in the partitioned approach. The communication between the two
subproblems is achieved explicitly with the help of interfacial conditions. The major drawback
of this approach is its lack of stability: even when the numerical methodologies used for both
fluid and structure are stable and convergent, the resulting coupling scheme using this approach
may be unstable. However, the partitioned approach offers a number of advantages. Primarily
the already existing well-validated numerical methodologies for each field can be directly used.
Moreover, it is possible to use different discretization strategies for each subproblem; but here,
the finite element method is used for both fluid and structure. In addition, the use of partitioned
strategy enables one to use different time step sizes for each subproblem.
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Since the objective of the present work is to reuse the existing solution methods for fracture
mechanics developed in chapter 2 and for fluid problems described in chapter 3, the partitioned
approach is utilized to solve the coupled fluid-structure-fracture problem.

The partitioned approach is classified further into loosely coupled and strongly coupled ap-
proaches. In the former, the structure and the fluid governing equations are solved only once at
each time step; it does not involve any iterative process. Since the interface conditions are not
satisfied exactly, this scheme introduces interface errors which are accumulated over the subse-
quent time steps. Despite this drawback, this method is shown to be sufficiently accurate while
dealing with compressible flows and for incompressible flows interacting with very stiff structures
(for example aeroelasticity problems) [239-242]. However, the loosely coupled methods are not
applicable for incompressible flows interacting with highly flexible structures; an instability called
‘artificial added mass effect’ appears and the simulations blow-up [110,243-247]. The strongly
coupled schemes involve an iterative process in which the fluid and structure fields are solved
several times within a time step until the coupling conditions are satisfied. This scheme leads to
solution equivalent to monolithic approaches, and can handle the interaction of incompressible
flows with light weight structures. Hence, strongly coupled partitioned schemes are preferred in
this work.

4.2 Problem definition

The complete definition of the coupled fluid-structure-fracture interaction problem consists of
description of fluid and solid fields together with appropriate coupling conditions at the shared
FSFI interface. In addition, this work assumes the points from which the crack starts propagating
within the structure are predefined. An example FSFI configuration is illustrated in figure 4.1.
A solid object ©° is enclosed by the fluid domain Qf, which is covered with a Cartesian mesh.
The shared interface I'" = I'© UT*\I', defines the FSFI interface, where I'* is the boundary of
Q5. Moreover, the blue dot on I'“ denote the point of stress concentration, and hence a crack can
propagate from this point. This work, though assumes the location from which crack starts to
propagate, the crack path within the structure is assumed to be unknown a priori.

For completeness, this section recalls the already presented governing equations for fluid and
structure, and describes the coupling conditions to be enforced on the FSFI interface.

4.2.1 Structure

The dynamic equilibrium of the structure, in the Lagrangian frame of reference, stated with
respect to the reference configuration reads as,

p*d” — Div (FS) = p°b® in Q x (0,7) (4.1)

where p® is the density of the structure, d’ represents the second time derivative of displacements,
F and S are the deformation gradient and second Piola-Kirchhoff stress tensor respectively. b®
is the external body force per unit mass and T is the end of considered time interval. For more
details on these equations, the reader may refer to section 2.3.
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Figure 4.1: Notations used in FSFI coupling. Q/ and Q° denote fluid and structural domain
respectively. Thick red lines represents the preexisting notch and the blue dot denotes the point
of peak stresses from which fracture gets initiated.

In order to solve the system, initial conditions on displacements d® and its first derivative da’
are specified together with the appropriate boundary conditions.

d’|l;—p =dj in Q (4.2a

d’|i—o =dp in (4.2b

d*=d” onT% x(0,7) (4.2¢

(FS)-n* =h} onT% x (0,T) (4.2d

where 1_1} defines the traction applied on the interface. It contains a subscript f to denote that
this is not a user-defined value, but this traction is obtained from the fluid solution.

Crack propagation studies reported in chapter 2 assumed that the crack surfaces are traction-
free. This is not the case in FSFI simulations as the crack surfaces experience traction from the
fluid loads. This has implications on the procedure of estimating the vector J—integral as will be
explained in section 4.3.

4.2.2 Fluid

The flow of an incompressible isothermal viscous fluid is governed by conservation of mass and
momentum. In the Eulerian frame of reference, they are given by,

V-ul =0 in Q/ x (0,7) (4.3a)
ool + plul vl +vpl —2uv €l = b in QF % (0,7) (4.3b)

where uf, pf, pf and b/ are the fluid velocity, density, pressure and externally applied body force
respectively. The strain rate tensor is given by €/ = 3[Vu/ + (Vau/)T].

105



4 Fluid-structure-fracture interaction

The governing equations are complemented by the following appropriate initial and boundary
conditions,

ul =g = ug in Qf (4.4a
uw =al onT4 x(0,T) (

o/ -nf =h/ onTf x(0,T) (4.4c
w =4l onT? x(0,7) (4.4d

Here, the fluid velocity condition applied at the interface u is dictated by the movement of the
structure, and hence the subscript s.

4.2.3 Interface

FSI is a surface coupled problem: the different fields involved here, fluid and structure, interact
through the interface surface I'. It is clearly evident from equations (4.2d) and (4.4d) that
the interface conditions to be applied on one field is dictated by the behavior of other field.
The appropriate interface conditions, which include a kinematic and a dynamic condition, are
enforced to ensure proper coupling of fluid and structure.

Kinematic condition: This enforces the no-slip condition on I'?. The kinematic condition arises
from two physical constraints. Firstly, there can be no flow of fluid across the interface, which
requires that the normal velocity components of fluid and structure must match at the interface.
Secondly, since the present work deals with viscous fluids, the fluid cannot slip at the interface;
in other words, the tangential movement of fluid must match that of the structure. These two
constraints can be combined to state that the velocity of fluid and structure must be equal at

the interface.
_od?

ot

ul

on T x (0,T) (4.5)

Dynamic condition: This ensures the force equilibrium at the interface, by requiring the surface
traction from both fields to be equal

ol -nf =—0° n (4.6)

The opposite sign is introduced to take into account for the fact that the normal vector for fluid
and structure are acting in opposite directions (figure 4.1)

4.3 The strongly coupled partitioned approach

The coupling algorithm presented here is originally developed in [244,248,249] for FSI problems,
and it is extended here to handle the FSFI. The method involves Dirichlet-Neumann partitioning
and the coupling is achieved using fixed-point iterative methods employing Aitken’s A? relaxation
as convergence accelerator. The name Dirichlet-Neumann partitioning is derived from the nature
of coupling: the Dirichlet condition for the fluid velocity on the interface is dictated by the
deformation of the structure (equation (4.4d)), and the Neumann condition for the structure is
given by the fluid loads acting on it (equation (4.2d)).

The complete coupling strategy when moving from time level t” to t"*! is described in Al-
gorithm 6, and figure 4.2 is used to aid the understanding of the steps involved. For brevity,
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0f Qf Qf
I 10" T
\' T
o Current tip node
oNew tip node
mDuplicate node
(a) Configuration at the beginning  (b) Configuration at the end of ¢" (c) After performing one inner
of t" iteration at t"*!

Figure 4.2: Fluid-structure-fracture interaction and the associated interface update. In (b) the
crack opening is shown only for the visualization. Physically the crack faces are not moved
apart at this instant.

the field quantities associated with inner iterations are marked without time level, for example
di, actually implies d’lf 1 The method begins with initializing all field variables, and then it
involves a predictor for interface forces. Here, it is simply set to be the converged value from ¢".
The predictor does not have a strong influence in the present work as it employs strong coupling.
However, the choice of predictor decides the temporal accuracy and moreover it dictates the onset
of artificial added mass instabilities in loosely coupled partitioned schemes [247].

Structure

The next step is to solve the structural governing equations. The nonlinear system of equations
resulting from the FE weak form can be written as

F*(d°) =0 (4.7)
Let the matrix form resulting from the linearization of the above equations be given as,
Asd® =f (4.8)

The right hand side is conveniently split into two components. The interface forces f* are dictated
by the fluid solution as given in the next subsection. f* accounts for any other external forces
like body force. The above system is solved to obtain the structural displacements dj, at current
iteration level, from which the interface displacements d}, are extracted. It is to be mentioned
that the structure uses interface-fitted mesh (interface is embedded only in the fluid domain),
and hence structural FE nodes are located on the interface, from which d, is obtained.

In order to enable the coupling, this interface displacement has to be transferred to the fluid
system. This is achieved here in two steps. First, dgt is used to move the interface within the
fluid domain. The interface movement implies different cut configurations in the fluid domain
(see figure 3.2) according to the position of I'". In the second step, the interface velocity to be

enforced (@! in equation (4.4d)) is extracted from d’ as follows.

L, di—dl,
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The above interpolation is only first order accurate. It is possible to design second order accurate
schemes based on the trapezoidal rule. However, since such schemes are shown to be oscillatory
[247], they are not used in this work.

Algorithm 6 Strongly coupled Dirichlet-Neumann partitioned algorithm
1: Initialize field variables: 6 =d""; d = d>™; ug =ulm pé = pfm
2: Predict interface forces: fy = "
3: Set iteration count, it=0 and converged=false
4: while (converged==false) do
it++
Solve structural equations F* (d*) = 0 to get interface displacements d’,
Update the interface location by displacing it with diit
Compute interface velocity ul, from di, using equation (4.9)

Solve fluid equations F/ (gf ) =0 to get u{t and p’ict

10:  Compute interface forces f;, from the fluid solution using equation (4.13)
11:  if Convergence criterion satisfied then

12: Update solution fields:

13: d" = diy; AP = dg;

14: ol = ﬁﬁ u/ntl = u{t; pf’n+1 = p]ictQ

15: converged=true

16: else

17: Compute relaxation parameter w;y using equation (4.16)
18: Relax interface forces fi, = wiof;, + (1 — wie)flyy

19:  end if

20: end while
21: Perform crack propagation steps given in Algorithm 1 of Chapter 2
22: Copy the values at new interface nodes appropriately

Fluid

The next step is to solve the governing equations of the fluid. The nonlinear system of equations
resulting from the discretization of the Navier-Stokes equations can be written as

F/ (u) =0 (4.10)

where u/ contains both pressure and velocity unknowns. Let the matrix form of the discretized
fluid equations be given as,
Alu/ =1/ (4.11)
It is to be mentioned that the above equation uses the interface velocity condition obtained from
equation (4.9), and is solved to get u{t and p{t.
The fluid solution is used to extract the interface forces. In the weak form of the structural
equations, f' as introduced in equation (4.8) is calculated as

f = [ 9d*(* -n*)dr (4.12)
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The (%) denotes forces before performing relaxation. After applying the dynamic interface condi-
tion (equation (4.6)), the above equation can be rewritten as follows.

f=— [ s6d%a! n/ydl = — [ 6a*(—p/1+ 24/ €l - nfdr (4.13)
I I

® - / ® Fluid nodes

= Interface node j
O Interface Gauss points

Figure 4.3: Illustration used to explain the calculation of consistent interface traction.

Interface forces are evaluated using the consistent force transfer method [102]. Let K*® denote
a finite element in the structural domain which contains a part of the interface, i.e., K*NIT"? # 0.
Consider the fluid element K7 that is intersected by the interface segment (figure 4.3). In terms
of a matrix system, the contribution of the aforementioned term to node j of the interface
element (e) can be written as

ﬁ’(e) _ _/‘ Nj(e)(_pfl +2ulel) -nfdr (4.14)
1“7,

where N; is the shape functions defined on the interface elements. This term is directly evalu-
ated using the Gauss-quadrature rule defined on the interface elements. It involves interpolating
the velocity and pressure available at the fluid nodes to the Gauss points and corresponding
multiplication of integration weights.

The solution is said to be converged if ||rt,|| < ¢, where the interface residual ¢, is given by

rit = IJ - fiit—1 (4.15)

1

If convergence is achieved, the field values are updated, and the algorithm goes to the next
time step. If not, then the dynamic relaxation parameter wiy is computed using Aitken’s A2
method [250]. The relaxation parameter is given by,

Wit = —Wit-1

i T (i i
(rig-1) (rig —Tiey) (4.16)

|r§.t - I'iit—1 ‘2

For more details on this method, the reader can refer to [249]. Then, the interface forces are
updated using this relaxation parameter.

fgt = Witﬁt + (1 - wit)fgt-1 (4.17)
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The fluid and structural equations enforcing the coupling conditions are solved iteratively until
the specified convergence criterion is met.

Fracture

After the converged solutions for fluid and structural fields are obtained, the crack propagation
steps presented in Algorithm 1 of Chapter 2 are carried out. This involves the computation of
vector J—integral, checking whether crack propagation criterion is satisfied, and appropriately
modifying the mesh to accommodate crack propagation through the structural domain. All these
steps are elaborated in detail in section 2.5.

The computation of the J—integral requires further discussion. In Chapter 2 it was assumed
that the crack surfaces are traction-free. However, in FSFI, the crack surfaces are subjected to
pressure and viscous forces due to their interaction with the fluid. In such a case, an additional
term needs to be added to equation (2.43). The vector J—integral becomes,

J = /S ((g)T P — WI) -Vol(q) dS — /73 (%f)T - tqdy (4.18)

where 7 is the part of crack surface falling on the J—integral domain, P is the first-Piola
Kirchhoff stress tensor, W is the strain energy per unit volume, ¢ is the support function, and
t¢ is the externally applied traction acting on the crack surfaces, here t© = —o/ - nf. The first
term already appears in equation (2.43), and the second term accounts for the external traction
on the crack faces. After applying the dynamic coupling conditions and performing a pull-back
operation on the second term, the vector J—integral can be established as,

ods T od? T i

where N? is the unit normal vector to the structural domain in reference configuration. One can
refer to step 2 of section 2.5.2 for more details on the computation of J.

If the J—based crack propagation criterion (step 3 in section 2.5.2) is satisfied, the crack
advances through the structural domain. Since the interface discretization in the present work is
given by the trace mesh of the structural mesh, it is rebuilt after each crack propagation step. The
rebuilding of the interface introduces two sets of new nodes, marked as duplicate and new crack
tip nodes in figure 4.2(b). At these new nodes, the field values must be initialized appropriately.
As far as d*"*! is concerned, the values at these new nodes are set from the corresponding nodal
values of the structural discretization. For interface forces f7"*1, the values at the duplicated
nodes are copied from the current crack tip nodes, and f#"*1 = 0 at the new tip nodes. This
is because of the following reason. At the instant of crack propagation, the old crack tip and
the duplicated nodes are at the same location. Though the crack has propagated through the
structure and the new crack surfaces are created, these surfaces have not yet moved relative to
each other. This means that there is no opening for the fluid to fill. Moreover, the new crack tip
node has not yet come into contact with the fluid flow, and hence the interface force is set to zero.
This is the reason why in figure 4.2(b), the triangular region in the area of old and new crack
tip nodes are not marked as fluid domain. However, in the next step, when structural equations
are solved, the crack faces move relative to each other and the fluid starts to fill this opening
(figure 4.2(c)). This work assumes that once the crack is propagated, the opening introduced is
immediately filled with fluid. It means there is no fluid-lag as in hydraulic fracture.
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This interface rebuilding process, and the subsequent geometrical cutting operations will be
highly cumbersome when XFEM is used for crack propagation. This is because in XFEM, the
crack is not aligned along the element edges and hence the trace mesh of the structural domain
cannot be used directly as the interface discretization. Hence, XFEM is not preferred in this work
for fracture.

4.4 Numerical examples

In this section, selected numerical examples of increasing complexity are presented to evaluate the
performance of the proposed fluid-structure-fracture coupling algorithm. In the beginning, two
simple examples are introduced to demonstrate the interface update procedure explained in the
previous section and to check whether the simulation produces meaningful results even after the
structure is completely broken into two distinct parts. After this, a thin filament undergoing FSFI
is studied to present flow features within the crack opening area. Finally, a bending structure
example is solved, in which after the complete fracture of the structure, one portion is allowed
to undergo rigid body motion and gets convected by the flow.

In all the examples, the velocity is increased from zero to the given value using a smooth
cosine profile. This serves two purposes: to obtain better convergence of flow solver and to apply
smoothly varying load on the structure for enabling quasi-static crack propagation. The response
of the structure under loading is modeled using the Neo-Hookean constitutive relations given in
section 2.3.4. The critical J—integral (J.) is assumed a very low value here, because in reality
under static conditions the materials fail under fatigue. This means that the material withstands
a large number of repeated cyclic loading before failure. Since it is assumed here that the failure
occur with monotonically increasing load, a small value of J. is assumed to enable the crack
propagation through the material under given setting.

4.4.1 Failure of a structure supporting a static fluid

This simple test case is solved to check the implementation of the interface rebuilding process
described in figure 4.2. The configuration is depicted in figure 4.4a, and it is the same as the fluid
statics test case presented in section 3.6.1.

The structural domain in this example can be assumed to consist of two parts that are joint
together with a weak adhesive along the dotted line. It contains a sharp notch (blue dot in
figure 4.4a), which acts as the point of stress concentration and the crack gets initiated from
this point. This structural domain supports a static fluid as shown in figure 4.4a. The fluid is
subjected to a constant body force acting along the vertical downward direction. The velocities
on the left and right boundaries of fluid domain are set to zero, and on the top boundary a
“do-nothing” boundary condition is specified. This is because, when the structure fractures,
the volume occupied by the fluid domain increases slightly. Since this is an incompressible flow
simulation, in order to compensate for the change in volume, an equivalent amount of fluid should
enter the domain. This is the reason why Dirichlet condition is not applied on the top boundary.
As the initial condition, all velocities are set to zero throughout the domain.

Though the interface exhibits movement due to the fluid pressure, the interface velocity at all
instances is set to zero. This make the present simulation to represent a fluid-statics example,
despite the small amount of fluid flow entering the top boundary. In such a case, the fluid
pressure increases linearly with the depth, and this imparts loading on the structure. As expected,
stress concentration develops at the sharp notch, which leads to crack propagation through the
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Figure 4.4: Failure of the structure supporting static fluid. (a) Simulation setup.
(b)-(d) Palettes of pressure distribution over various stages of the crack propagation.

structure. In this example, critical J—integral is set to a very small value that allows crack
propagation under given loading.

The results of the coupled fluid-structure-fracture modeling on this configuration are presented
in figure 4.4(b-d). Owing to the fluid loading, crack starts propagating from the sharp notch.
Because of the symmetry of the geometry and loading, the crack propagates vertically downwards.
Further loading causes the relative movement of crack faces introducing an opening, and this
opening is filled by the fluid. Since there are no external forces acting on the structure, it is clear
that the fluid pressure interacting with the crack surfaces assist in opening of the crack surfaces.
Moreover, it is directly evident from figure 4.4(b-d) that the linear variation of pressure with
respect to depth is maintained at all instances, as expected for the fluid-statics problem.

4.4.2 Breaking fluid channel due to external loads

The last section presented an example in which the fluid pressure interacts with the structure,
and drives the crack propagation through it. However, the simulation was highly simplified to
represent a fluid statics problem. Moreover, the complete fracture of the structure was not mod-
eled and the interface velocity was set to zero at all instances. The current example presents the
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breakage of a fluid carrying channel subjected to external loading. Contrary to the previous test
case, the interface velocity is dictated by the structural movement in this example. The objec-
tive here is to check whether the FSFI algorithm presents any difficulty when the structure is
completely broken into two. The flow field characteristics associated with FSFI are not discussed

here, but are delayed to the next two examples.
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Figure 4.5: Computational setup for breaking channel example

The configuration of the current example is presented in figure 4.5. It involves solving the flow
through a channel. The bottom wall and a large portion of the top wall are completely rigid,
and only a region of the top wall is allowed to deform. This flexible region of the top wall is
subjected to an external load as shown in figure 4.5. The bottom wall of the channel is not a part
of FSFI interface; a mesh confirming to this wall is generated and a no-slip boundary condition
is enforced strongly. Only the top wall represents the complete FSFI interface.

Figure 4.6: Pallete of u, and velocity vectors after the channel fractured completely
A parabolic fluid velocity profile is given at the inflow with umax = 1, and the fluid prop-

erties are p/ = 1kg/m?, uf = 0.01Ns/m?. The material properties of the channel wall are:
E* = 10000Pa, v* = 0.3 and p® = 50kg/m?>.
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The flexible portion of the top wall starts deforming and the deformation increases until the
magnitude of J—integral reaches J.. Once this condition is met, crack starts propagating from
the notch. The crack advances through the structure continuously until it fractures completely.
The velocity vectors are presented in figure 4.6, after the complete fracture of the structure. It
can be seen that the FSFI algorithm proposed here works without any problems even after the
structural domain and the interface are split into two.

The previous and the present examples, though involve FSFT effects, the detailed flow features
near the crack surfaces are not discussed. In order to do so, the following two examples are solved
to detail the flow field characteristics in the region of crack opening at various levels of crack
propagation.

4.4.3 A filament fixed at both ends subjected to fluid loading

The last section presented the breaking channel example, in which the crack surfaces and the
fluid flow interacted with each other. However, the fracture is not the result of the fluid loads
acting on them but is induced by externally applied forces on the top surface of the pipe. In order
to represent the capabilities of the present method to simulate fracture within the structure due
to fluid loading, a thin filament subjected to fluid flow is considered.
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Figure 4.7: Computational setup for filament fracture example

The complete configuration is shown in figure 4.7. The filament, as in the other examples,
contain a notch, which serves as the stress concentration point and the point of crack initiation.
The notch geometry is symmetric with respect to the filament along the direction of the flow. It
is fixed on top and bottom to arrest rigid body motion after the filament fracture. The material
properties of the filament are: E* = 5000Pa, v* = 0.3, p* = 10kg/m? and J. = 0.2N/m. On the
fluid domain, a parabolic inflow velocity profile with umax = 1 is specified at the inlet. The top
and bottom are no-slip boundaries. The fluid properties used in the simulation are pf = 1kg/m?,
u/ =0.01Ns /m?2. This corresponds to Reynolds number of Re = 100, where the length scale is
the height of the filament.

Owing to the interaction with the fluid flow, the filament starts to bend from its initial con-
figuration. As the flow velocity is increased smoothly, the bending and hence the magnitude of
vector J—integral also increases smoothly. Once |J| reaches its critical value J. the two necessary
conditions of crack propagation are satisfied: there is adequate strain energy available in the
material to form new crack surfaces and sufficient stresses are acting on the notch. Hence the
crack starts growing in the filament. Once new crack surfaces are formed, the subsequent loading
will move these crack faces apart and introduces an additional area in the fluid domain. This
sudden opening introduces low pressure zone within the crack region, and the fluid rush into the

114



4.4 Numerical examples

pes

()

Figure 4.8: Results of filament fracture example. (a) Closeup view of pressure palettes and
velocity vectors in the crack opening. (b) Closeup view of mesh in the crack region. (c) Palettes
of u, and velocity vectors after the filament completely broke into two and attain steady state.

opening, owing to the pressure difference. This can be seen clearly from figure 4.8a, which shows
the zoomed view of pressure palette and velocity vectors for several levels of crack opening in
the vicinity of crack surfaces. In order to capture this phenomenon, a fine mesh is used in the
opening region as depicted in figure 4.8b.
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Figure 4.9: Interface traction acting on the crack surfaces.
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The crack continuously advances through the filament owing to the fluid loads acting on it,
and ultimately result in complete fracture of the filament i.e, the filament breaks completely into
two. From this point, the problem is a pure FSI problem, and the filament continue to deflect
due to the fluid forces until both the fluid and structure reach the steady state conditions. The
palette of u, at this steady state condition is plotted in figure 4.8c.

Another interesting question is: How does the fluid flow entering the crack opening region
influence the subsequent behavior of the structure? In order to answer this question, the interface
traction acting on the crack faces, imparted by the fluid flow are plotted in figure 4.9. Instead
of assisting the crack faces to open further, the traction on the crack surfaces tend to bring the
crack faces together. The reason for this is that the crack opening area is the low pressure region,
and since the pressure dominates viscous effects at the considered Reynolds number of 100, the
interface traction tries to close the crack faces. However, the fluid induced loads on all other parts
of the interface are assisting the crack faces to open. Since the crack surfaces are a small part of
the complete interface, the crack faces continue to open until the entire structure is fractured.

4.4.4 Fracture of a bending structure

The numerical examples presented in the previous sections have demonstrated the ability of the
present method to model FSFI. However, they are simplified in the following two aspects. First,
due to the symmetry of loading and boundary conditions, the crack propagation is of single mode.
This is identified by the fact that the crack propagates either vertically or horizontally. Second,
the Dirichlet boundary conditions were specified on the structural domain such that after the
structure is broken completely into two, both parts are avoided to have rigid body motion. In
this section, the bending structure example is presented which introduces both of these complex
phenomena, which were not addressed in the previous examples, into the computation.
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Figure 4.10: Geometry and boundary conditions for bending structure test case.

The computational setup for the present simulation is depicted in figure 4.10. A structure
having a notch is set to face the fluid flow in this example. It is fixed at the bottom and over
the portion of the left surface as can be seen in figure 4.10. Due to this non-symmetric bound-
ary conditions, mixed-mode crack propagation is expected to occur through the structure. The
material parameters are given as, E° = 5000Pa, v* = 0.3, p* = 10kg/m? and J. = 0.2N/m. On
the fluid domain, the top and bottom surfaces are no-slip boundaries, and a parabolic velocity
profile with umax = 1 is specified on the left boundary. The density and the dynamic viscosity
of the fluid are set to be p/ = 1kg/m3 and p/ = 0.01Ns/m?2. This corresponds to the Reynolds
number of Re = 100, where the length scale is the height of the structure.
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Figure 4.11: Mixed-mode crack propagation path through the bending structure and the
corresponding fluid flow behavior. Trace of all nodal positions in reference coordinate system
through which the crack tip moves are plotted to denote the crack path.

The structure starts bending, when the fluid flows past it. The bending deflection induces
stress concentration at the notch tip and |J| starts raising with increasing deflection. As in other
examples, once |J| = J,, since the crack propagation criterion is satisfied, crack starts propagating
through the structure. However, unlike other examples, the notch is subjected to unsymmetrical
structural boundary conditions and fluid loading. Hence a mixed-mode crack propagation occurs
in this example. The crack propagates continuously until the structure is completely broken into
two. The crack path and the associated fluid flow through the crack opening are illustrated in
figure 4.11. The crack starts at the notch, and takes a slightly curved path and reaches the other
end of the structure. The behavior of the structure is in some sense similar to the fracture test
case presented in section 2.6.4, which considers the single edge cracked plate under mixed-mode
loading. The crack path obtained from this example is consistent with the results in presented
in section 2.6.4.

When the crack faces move apart, the low pressure region is formed inside the crack opening.
This low pressure region creates sufficient driving force to attract the flow through the opening.
The flow fields at various levels of crack propagation are depicted in figure 4.11. The interface
forces behave the same way as in the previous example.

The crack traverses completely through the structure and split it into two separate portions.
As can be seen from figure 4.10 that the structure is fixed only on the regions below the notch
and once it is completely broken, the top portion is fully free to exhibit rigid body motion. This
is the special feature of this example that after complete fracture, one portion is carried away by
the flow. Figure 4.12 plots, at a few instances, the location of the structure when it is exhibiting
rigid body motion and the corresponding palette of u,.

The present example involves a number of complex phenomena: mixed-mode crack propagation
through the structure, fluid starts to fill the crack opening, complete fracture of the structure
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Figure 4.12: Fracture of the bending structure: Palettes of u, when one part after fracture gets
convected by the flow.

into two pieces of which one is carried away by the flow. It can be seen from the presented results
that the present method is capable of capturing all these phenomena.
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4.5 Unsolved issues

The examples presented in the previous section have demonstrated the capabilities of the current
method to simulate fluid-structure-fracture interaction. The present method is clearly an im-
provement over the existing FSI solvers that assume that the structure deforms only within the
elastic limit. However, the solutions presented in the previous examples contain two important
issues that are yet to be addressed. In order to explain them, the close up view of pressure palettes
near the crack opening for filament fracture problem are considered as shown in figure 4.13.

The first issue is concerned with the temporal pressure oscillations observed in the solution
immediately after the complete separation of the structure. The reason for these oscillations are
explained as follows. When the crack opens, the sudden movement of the crack faces introduces
an opening and the pressure values inside this opening take very low values. Consider the pressure
field just before the body completely breaks into two (figure 4.13a). Inside the crack surfaces, the
pressure values are very low, and in the neighborhood region that is facing the flow, the pressure
values are very close to stagnation pressure, which is the highest pressure in the fluid domain.
These two regions are separated by the portion of the structure which is yet to be fractured.
When the body breaks into two, these two regions are merged (figure 4.13b). This introduces
a very strong local pressure gradient within the fluid domain. This strong local gradient causes
the temporal pressure oscillations within the domain after the body completely breaks into two.
How to suppress these oscillations are not clear now, and needs further attention.

The spatial oscillations of fluid solution in the region of crack surfaces is the second issue
(figure 4.13b). At present, the reason for this oscillations is not clear. One factor that influences
this could be the use of the semi-Lagrangian time integration described in section 3.4. Since the
present study employs very fine mesh in the neighborhood of crack opening, many times the
interface crosses many elements in one time step. In such cases, it has been observed in pure fluid
simulations that the smoothness of the solution is negatively affected. Moreover, this special time
integration involves tracing back the Lagrangian origin of the current node at the previous time
step. Though physically the Lagrangian origin of a node located in the fluid domain at current
time step must be in the fluid domain at the previous time step, in the discrete setting, this
is not always achieved. This means there are some fluid nodes for which the Lagrangian origin
is located within the structural domain. For these nodes, the velocity values are simply set to
zero, which also introduces some error in the solution. However, to what extent this error in time
integration affects the solution accuracy is not yet clear and requires further investigation.
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Figure 4.13: Pressure palettes near the crack surfaces for filament fracture problem.
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4.6 Closure

This chapter detailed the coupling method used in the proposed fluid-structure-fracture interac-
tion solver. Since the objective of the present work is to reuse the crack propagation approach
developed in chapter 2 for fracture and the embedded interface fluid formulations described in
chapter 3, the partitioned scheme is chosen for the coupling. The governing equations of fluid and
structure together with the interface coupling conditions are recalled in this chapter, before pre-
senting the coupling algorithm. The proposed FSFI method uses the strongly coupled partitioned
scheme with Aitken’s A? method as the convergence accelerator. The interface rebuilding process
and the computation of vector J—integral for loaded crack surfaces were emphasized. Simula-
tions of varying complexity were presented to demonstrate the ability of the proposed method to
capture FSFI effects. The most complex examples involved the fracture of a bending structure
subjected to fluid loads. This involved a number of complex phenomena: it induces mixed-mode
crack propagation through the structure, fluid starts to fill the crack opening, complete fracture
of the structure into two pieces of which one is carried away by the flow. Finally, some unsolved
issues in the current method were described.
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5.1 Summary

The central focus of this thesis is the development of a computational methodology for simulat-
ing fluid-structure-fracture interaction (FSFI) phenomena. Precisely, this work is aimed towards
modeling the quasi-static fracture of hyperelastic structures due to the fluid loads acting on them,
in scenarios where the structure exhibits large deformation and the fluid-structure interaction
(FSI) effects are significant. The present study has invoked the assumption that the fracture is
brittle, and the fluid flow is modeled as incompressible.

FSI has gained great attention in the past decades because of its importance in a variety of
natural phenomena and engineering applications. Almost all of the existing FSI studies assume
that the structure deforms completely within the elastic limit, which precludes any plastic defor-
mation and failure by fracture. Though studies under this assumption are very useful in a number
of practical applications, there are scenarios in which the FSI loads acting on the structure reach
a very high level and subsequently lead to fracture. This phenomenon in which the fluid loads
result in crack propagation, in addition to deflection of the structure, is termed in this thesis
as fluid-structure-fracture interaction. The present work is focused on developing an embedded
interface finite element method to simulate FSFI.

The contributions of this thesis are three-fold. First, on the structure part, a mesh refitting
approach is devised to simulate the quasi-static brittle fracture within nonlinear hyperelastic
materials. Then, on the fluid part, accurate and robust numerical integration methods are de-
veloped for enhancing the robustness of embedded interface methods (EIM) to handle fluid flow
past arbitrarily moving/deforming bodies. Finally, on the coupling part, the interaction of fluid
flow with cracking structures is modeled using a strongly coupled partitioned approach. In the
following, the aforementioned contributions are detailed.

The first step in the development of a computational methodology to handle FSFI is to equip
the structural analysis with a fracture mechanics solver. In this work, a mesh refitting approach
is developed to simulate single and multiple crack propagation through an isotropic homogeneous
hyperelastic material. Each time when the crack propagates, it induces topology change in the
structural domain. In order to deal with this, the initial mesh covering the structure must be
adjusted continuously. The majority of the existing methods utilize adaptive remeshing strategies
to deal with this issue. However, for practical reasons related to the computational costs associated
with FSFI simulations, adaptive methods are not preferred in this work. Instead, a two step mesh-
modification algorithm is proposed. In the first step, the computational nodes are repositioned
in such a way that the crack in the new mesh propagates along an existing edge in the mesh. In
the next step, if necessary, the element connectivity is modified locally to enable arbitrary crack
paths through the mesh. The excellent performance of this method is demonstrated by simulating
crack propagation examples of varying complexity and comparing the results with those available
in the literature.

One of the crucial steps that dictates the accuracy and robustness of EIMs is the accuracy
of weak form integration. In contrast to the conventional body-fitted methods, the interfaces in
EIMs are not aligned along the edges of the background mesh i.e., the interface cuts the elements
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of the background mesh in an arbitrary manner. Over these cut elements the weak form must be
integrated in the region that is located within the fluid part. This requires accurate numerical
integration strategies that work for arbitrary shaped volumes. The most widely used volume
decomposition based methods lack robustness i.e., they fail at certain cut configurations and
the simulation crashes. To address this issue, two new numerical integration strategies, namely
the generalized moment fitting method and the direct divergence method are constructed in this
work. In the first method, generalized quadrature rules are developed to integrate polynomials
over arbitrary polyhedra. An efficient point distribution strategy is proposed and the quadrature
weights at the corresponding points are obtained by solving the moment fitting equations. In the
direct divergence method, as the name implies, the divergence theorem of multivariable calculus
is used. Both methods are designed to work in situations, where the integrand is not explicitly
prespecified, which is essential for their applications in finite element methods. Moreover, they
can handle convex as well as concave shaped polyhedra. Numerical examples demonstrate that
the direct divergence method is the most accurate and posses superior robustness characteristics
when compared to all other available methods.

Having dealt with fracture and the robustness of fluid formulations, a coupling approach is
developed to model the fluid-structure-fracture interaction in the final step. As stated before, this
enables the possibility of simulating fracture within the structure owing to the FSI loads. Since
the objective is to use the existing methodologies for fracture and fluid field, and because this
work considers highly flexible structures, a strongly coupled partitioned approach is utilized. The
simple Dirichlet-Neumann partitioning, in which the Dirichlet condition for the fluid velocity on
the interface is dictated by the deformation of the structure, and the Neumann condition for the
interface traction is given by the fluid loads acting on it, is used to couple the structure and fluid
fields. The convergence is accelerated using dynamic relaxation employing Aitken’s A% method.
Numerical examples demonstrate that the developed method can handle complete fracture of the
structure due to fluid induced FSI loads. An Example involving a structure breaking completely
into two, of which one part is carried away by the flow is also presented.

In short, this thesis has taken the numerical modeling of FSI to the next step by introducing
the possibility of fracture within the structure due to the fluid induced FSI loads. To be more
precise, the aims are to

e enable the possibility of crack initiation and propagation within the structure due to FSI
loads

e model the mutual interaction of crack surfaces and the fluid entering the crack opening

These aims are achieved by developing an embedded interface finite element methodology to
handle fluid-structure-fracture interaction which combines the knowledge from three different
fields: structural mechanics, fluid dynamics and fracture mechanics.

5.2 QOutlook

As already mentioned in several places within the thesis, the present work is the first step towards
modeling FSFT in biological applications. In order to enable the proposed method to deal with
practical scenarios, the following essential extensions need to be considered.

The first issues to be addressed are the temporal pressure oscillations observed in the domain
when the interface completely broke into two, and the spatial oscillations in field variables ap-
pearing in the crack opening region. The reasons for these oscillations are explained in section 4.5.
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The most important future work is to carry out detailed investigations on how to suppress these
oscillations.

The computational methodology developed in this thesis is applicable only for structures that
fail by monotonically increasing load. The majority of the structures in engineering and nature
fail by fatigue. The failure occurs when they are subjected to a large number of repeated loading
cycles even when the maximum stress experienced is far below the strength of the material. In
order to apply the proposed method to real biological applications, the possibility of modeling
fatigue failure must be introduced in the fracture module. While progressive failure due to fatigue
occurs, the crack faces move apart and come together owing to the cyclic loadings. This means
that in each loading cycle the crack faces come into contact with each other which necessitates
the use of computational contact mechanics [251].

The present work is limited to the fracture of time-independent rate-independent hyperelastic
materials. However, almost all of the biological materials are viscoelastic in nature. In such
materials, the stresses experienced are dependent on the rate of loading. Hence, in order to
broaden the applicability of the proposed method, the fracture of viscoelastic materials should
be included.

Another possibility is to extend the presented strongly coupled partitioned FSFI method to a
monolithic framework. In biological applications, the density of the structure is equal to that of
the fluid. In such cases, an increased number of inner iterations is required for the convergence of
the strongly coupled schemes or even convergence may not be obtained. This is observed for the
bending structure example presented in section 4.4.4. In order to avoid this, the whole problem
can be recast into the monolithic framework [125,252], in which the governing equations of fluid
and structure are solved simultaneously within a unified algorithm. The conditions that are to
be enforced at the interface are treated implicitly, which results in more accurate and stable
computational approach.

The aforementioned potential extensions enable the proposed methodology to be useful to
model FSFI in practical applications. In addition, the computational methodologies for fracture
and the numerical integration techniques developed in this thesis can be enhanced for general
applications.

The mesh refitting crack propagation approach provides a valuable basis for further research
and development in fracture mechanics, and the following future improvements of this method
are possible.

Though the mesh refitting approach assumes that the crack path is a priori unknown, a preex-
isting notch or a crack is assumed to exist. This notch or crack provides a clearly defined point of
stress concentration and the crack starts propagating from this point. In other words, the crack
initiation is not modeled in this work, only the propagation of a preexisting flaw is simulated. The
proposed approach can be extended to model crack initiation using cohesive elements [59-63].
These elements are added at the interface between each neighboring finite elements, the response
of which are given by the traction-separation law. When the structure is subjected to sufficient
external loads, these cohesive elements break and give rise to crack within the material.

Despite significant advances in fracture mechanics, the computational modeling of rubber-like
materials still remains as an open problem. The present method utilizes a nonlinear compressible
hyperelastic material and the comparison of present results are consistent with those reported
for rubber-like incompressible materials [92]. Moreover, section 2.6.9 reports crack propagation
through the material that experiences large strain to such an extent that the crack tip is always
blunt. Not many existing computational methods can model the crack propagation in such sce-
narios. A valuable extension is to include an incompressible material model within this approach
to enable the mesh refitting method capable of modeling the fracture in rubber-like materials.
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Brittle fracture is the focus of the present work. This inherently assumes that all the dissipative
effects are confined to a very small region in the vicinity of crack tip and hence are neglected. The
majority of the materials used in engineering applications are ductile, in which the bulk plastic
dissipative effects are significant. An interesting extension of the present work is to combine the
mesh refitting method with the approach developed at our institute [253] to model plasticity in
finite strain region. This will enable the applicability of crack propagation approach to deal with
ductile fracture.

The numerical integration methods developed in this thesis, namely the generalized moment
fitting and the direct divergence methods, are applicable only for linear polyhedra. Each facet
of the polyhedra is assumed to be a plane surface which is in turn bounded by straight lines. In
order to deal with warped fluid elements in the embedded interface methods, these integration
schemes need to be extended to perform integration over volumes that are bounded by curved
surfaces. Another potential application of such an extension is the multiphase flow problems
with higher order levelset formulations. However, before attempting to extend the numerical
integration methods, the algorithm used to perform geometrical cutting operations has to be
enhanced to deal with curved surfaces.
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When one simulates fracture problems using linear FEM, steps 2—4 given in the mesh refit-
ting procedure (section 2.5.2) can be replaced with the following simpler steps. This alternative
procedure involves displacement correlation technique to compute stress intensity factor, and
corresponding crack kinking and crack propagation criterion.

Step 3: Stress intensity factor computation

As already stated in section 2.2, stress, strain, displacement, and crack propagation direction are
all decided by a single parameter in LEFM theory. This single crack tip characterizing parameter
is termed as stress intensity factor (SIF). SIF quantifies the strength of singularity at the crack
tip, and the extraction of SIF from FE data is essential to decide whether the crack propagates
or not, if at all it propagates in which direction it advances.

There are a number of available methods used to estimate SIF from finite element solution, of
which the displacement correlation technique (DCT) [56,58,254-256] is the most simple method.
Displacement correlation technique directly interpolates the nodal displacements obtained from
FE solution to obtain SIF. These methods are extremely easy to implement as no additional
procedure is mandatory. Though they require sufficiently fine mesh in the crack tip vicinity [58],
they are still used by several researchers and as noted in [256] most commercial FE codes uses
this technique. Moreover, this method does not require any extra-work in case when crack faces
are applied with external traction. This is very important since in case of fluid-structure-crack
interaction, owing to the fluid loading, traction is always applied on the crack faces.

The stress intensity factors are given by [86],

E T

K1 = m\/ o (dtnodeQ - dtnodel) (A.la)
E T

Ky = m\/ o (dnpoger = Drrroger) (A.1b)

where 7 is the distance between tip node and node 1 (or 2), E is the Young’s modulus, v is
Poisson’s ratio, d; and d,, are displacement components along the direction ¢ and n given in
figure A.1. k is given by,

o { 3—4v plane strain (A.2)

3—v
S plane stress
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Figure A.1: Displacement correlation technique

Step 4: Check crack propagation criterion

After extracting the SIFs, the next step is to decide whether crack propagates or not. This can
be done using the SIF-based mixed-mode criterion, expressed as

K >O‘ ( K1 )5
+ =1 A3
<K1c Kige (A-3)
where Ki. and K7, denote the critical SIFs in corresponding modes. The critical values are called

fracture toughness, and in LEFM, they are considered to be material properties. These values
are specified as input to the simulation.

The constant parameters o and (§ should be determined empirically for each configuration.
However, since it is not feasible in practice, we use o = 2 and § = 2 which leads to the well-
known criterion proposed in [257]. If the crack propagation criterion is not satisfied, then the
crack does not propagate at this time step, all the remaining operations are not performed and
the algorithm goes to step 1 of next time level.

Step 5: Determine crack kinking criterion

The next step involves the computation of crack kinking angle using maximum circumferential
stress criterion (MCSC). In this criterion, the crack propagates in the direction in which the
circumferential stress is maximum in the region close to crack tip. It is proposed by Erdogan [97]
for 2D mixed-mode fracture problems, and subsequently extended to 3D configuration. The
following derivation follows from [56]. The stresses at the crack tip for mixed-mode problems are
given by adding the stresses corresponding to individual modes that are written as,

1

oy = o cosg {Kl <1 + sin? Z) + gKH sin§ — 2K7p tang (A.4a)
1 0 50 3 .

09 = 72#7" Cos B {KI Cos 57 QKH S 9] (A.4b)
1 7 :

Tpp = ——— cos = [Kysin 0 + Kij (3cos§ — 1)] (A.4c)

24/ 27r 2

The above equations are valid for both plane stress and plane strain problems. As per MCSC,
the crack tends to propagate along the plane on which oy is maximum, i.e., 79 = 0. Equating
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79 = 0 from equation A.4c,
0 .
cos 5 [Kisin€ + Ky (3cosf —1)] =0 (A.5)
The above equation has two solutions: one trivial solution cos% = 0, and hence 8 = +m, and

a non-trivial solution for which Kysinf + Ky (3cosf — 1) = 0. Solving this equation for 6 and
denoting the resulting value as 6, the propagaing angle, yields the following expression [258]

2
_ K 1 K
2tan~! | AL — 1/ (£2) +8)  for Kn>0
6, = . (A.6)
2tan~t ( fk + 1 /(£L) +8)  for Ku<0

This formula is not well suited for numerical simulations because when Kfip is very close to zero, it
leads to very high values. Mi [R] has alleviated this problem by devising a different expression for
the mixed-mode crack propagation that takes into account different signs of Ki1. It is expressed

as follows [86].
_ —2Kq
0, = 2tan~" A7
P (KI + \/(K1)2 + 8(KH)2> ( )

This criterion provides existence of limiting crack propagation angle: for mode I problems K11 = 0,
so 6, = 0 which means that the crack advances along the crack line; for mode II cases, K1 = 0,
and 6, = £70.53° depending on the sign of Kij.

This procedure is tested to solve all the linear problems presented in section 2.6, and produces
results that are matching with J—integral approach. However, owing to the use of displacement
correlation technique, this procedure requires higher mesh density at the crack tip.
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B Implementation aspects of numerical
integration techniques

B.1 Computation of normal of a polyhedron

While using the divergence theorem in moment fitting and direct divergence methods, it is nec-
essary to make sure the direction of normals calculated for every facet of the volume-cells are
outward pointing. The procedure to handle this issue in FEM simulations is explained here. Con-
sider a very simple configuration in which a hexahedral element is cut by a triangulated interface
as shown in Figure B.1, and it is of interest to construct a quadrature rule for the volume-cell
QF. The facets of the volume-cell are either formed from the sides of the hexahedral element
(known as regular facets), or formed by the cut interface (called as cut facets). The boundary of
the cut facets is drawn with a thick line in Figure B.1. For the regular facets, there is always a
corresponding parent side from the hexahedral element. In FEM simulations, the nodes of any
side of an element are numbered to give outward normals. By calculating the normal of a regular
facet, and comparing it with the corresponding parent side’s normal, it can be decided whether
the regular facet’s normal is outward pointing or not. For the cut facets, the normal vector of
the interface is used as the reference. The interface is generally represented as a triangulated
surface. In any simulation, the direction of normal vector to these triangulated facets are known.
For example, let us assume that the configuration shown in Figure B.1 arises in a simulation
of fluid flow over a solid body, and the triangulated interface represents the surface of the solid
object. In such cases, the normal vector calculated at the triangulated interface is always pointing
towards the fluid side (towards Q7 side). Hence for the cut facet considered in this example, if
the normal to the facet and the interface normal are pointing in the opposite direction then the
cut facet’s normal is outward pointing, and vice versa. When the interface is represented with a
level set function instead of a triangulated surface, the direction of the normal to this level set
side is always known and can be used as the reference. For any facet, if the normal vector is not
outward pointing, the sign of the corresponding surface integral value is changed to account for
this issue.

B.2 Computation of normals and equation of plane for a simple
polygon

The surfaces of a regular finite element is a regular shaped convex shape, for which the usual
3-point method for calculation of normal vector works fine. However, when constructing the
integration schemes using moment fitting and the direct divergence methods, it is essential to
calculate the normal (or equation of plane) of facets of the volume-cells. Such facets can be
concave in shape, in addition to having collinear points. In such instance, the 3-point method
fails. In order to compute correct normal vector and equation of plane of facets of the volume-cells,
which is crucial for constructing accurate integration schemes, we use Newell’s method which is
applicable even for concave shaped polygons having collinear points [259].
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Ninter face y

O+
Fluid

!
1

Triangulated interface

Figure B.1: Method to ensure the outward normal for every facet of a volume-cell

Let the facet has n number of vertices that are denoted as vy, vo, v3 ... v, in cyclic order. The
vertex v; is given by its Cartesian coordinates v; = (z;, s, 2;). Let P denotes middle point of the
polygon, given as,

1M
i=1

The equation of plane is denoted as Az + By + Cz = D. The coefficients of this equations are
given as following,

A= Z — Yie1) (2 + ziw1) (B.2a)
B = Z — zig1)(Ti + Tig1) (B.2b)
C= Z — @ig1) (i + Yie1) (B.-2¢)
D= P.N (B.2d)

where N = (A, B,C). If fac = v/ A% + B? + C?, then the normal vector, in Cartesian coordinate
system, is given by

A . BA. C'A

= %Z + % fCLC (B3)

=33
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