
On the Stability of Prioritized Error-Based

Scheduling for Resource-Constrained

Networked Control Systems ⋆

Mohammad H. Mamduhi, Adam Molin, Sandra Hirche ∗

∗ Institute for Information-oriented Control, Technische Universität
München, Arcisstraße 21, D-80290 München, Germany (e-mail:
mamduhi@lsr.ei.tum.de, adam.molin@tum.de, hirche@tum.de).

Abstract: The efficient usage of scarce communication resources is a vital necessity in networked
control systems. This paper introduces a novel stochastic scheduling scheme for networked
control systems with shared access through dynamic priority assignment. The overall system
is assumed to consist of multiple control loops closed over a common communication network.
A p-powered prioritized error-based (PEB) scheduler decides which transmission requests have
the priority for channel access, and subsequently which controllers are updated with the actual
states. According to the protocol, the likelihood to allocate the resource to a subsystem increases
with a growing p-powered norm of its network-induced error. We show, under very mild
assumptions, that the described system scheduled by the PEB protocol is stochastically stable.
Moreover, numerical simulations demonstrate a significant reduction of the network-induced
error variance in comparison to the other scheduling protocols such as CSMA or round robin.
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1. INTRODUCTION

Networked Control Systems (NCS) are integrated systems
composed of a multitude of small-scale elements shar-
ing a resource-constrained communication channel. The
communication constraints urge the design of modified
scheduling policies to meet the real-time requirements
of the control tasks while operating the network in an
efficient manner. The Try-Once-Discard (TOD) protocol
introduced by Walsh et al. (2002), uses only the cur-
rent measurement data for transmission and immediately
discards data when the transmission fails. On the other
hand, the protocol hints the notion of prioritizing by
choosing the measurement with the largest discrepancy
between its actual value and its estimate at the controller.
Therein, the Maximal Allowable Transfer Interval (MATI)
discusses the stability of networked systems with deter-
ministic communication medium by denoting the upper
bound on the interval of two successive transmissions,
Walsh et al. (2002); Nesic and Teel (2004). Contention-
based protocols, like CSMA, are intrinsically stochastic; so
they do not allow to use the notion of MATI in general, as
the intervals between the transmissions usually can not be
uniformly bounded with probability one. In Tabbara and
Nesic (2008); Donkers et al. (2012); Antunes et al. (2009,
2012), stability of stochastic communication systems with
random packet dropouts is given. Therein, the stability
conditions for mean square stability and Lp stability-in-
expectation are derived via Lyapunov theory.

⋆ Research supported by the German Research Foundation (DFG)
within the Priority Program SPP 1305 ”Control Theory of Digitally
Networked Dynamical Systems”.

The novelty of this work is given by considering a stochas-
tic protocol in order to prioritize the channel access ac-
cording to an error-dependent probability measure. As the
errors are driven by the noise process, transmissions occur
randomly in an event-based fashion. The approach uses the
scarce resource of communicating more efficiently to stabi-
lize the system and decreases the mean variance of the er-
ror in comparison with the static protocols, such as round
robin and CSMA protocols. Moreover, the probabilistic
nature of the protocol facilitates an approximative decen-
tralized implementation through error-dependent back-off
exponents. The system under consideration requires novel
methods to analyze the asymptotic behavior of the NCS,
developed in this paper. Our contribution is to analyze
the stability properties of a networked system consisting
of multiple loops closed over a shared communication
channel by employing a stochastic scheduler with dynam-
ically assigned priorities. Inspired by the idea of error-
dependent intensity for transmission, Xu and Hespanha
(2006), we introduce a stochastic variant of the TOD pro-
tocol denoted as p-powered prioritized error-based (PEB)
protocol. The PEB protocol assigns to each subsystem
a priority according to the individual networked-induced
error. In particular, the probability of utilizing the resource
increases with the p-powered norm of the estimation error.
As stochastic disturbances are considered, we relax the no-
tion of stochastic stability to ergodicity with finite second
moment of the resulting Markov chain. Using drift criteria,
we show that the overall system is ergodic. The key idea
in the stability analysis, as is also discussed in Meyn and
Tweedie (1994), lies in considering the multiple time steps
drift operator to show the drift of the Lyapunov function is
negative. Numerical simulations illustrate the stability of
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the system scheduled by the proposed scheme with an in-
creased performance in terms of the average mean-squared
error compared to the round robin and CSMA schemes.
The simulations also show an improved performance with
increasing exponent p of the PEB protocol.

The remainder of this paper is structured as follows.
Problem statement is described in Section 2. Section 3
starts with some preliminaries of stochastic stability and
ergodicity, and then proceeds with the stability analyses.
The efficiency of the proposed approach is illustrated in
Section 4 by numerical simulations.

Notation. In this paper, the Euclidean norm is denoted
by ‖ · ‖2. The expectation and the conditional expectation
operators are denoted by E[·] and E[·|·], respectively. The
relationN (0, X) denotes a Gaussian random variable with
zero-mean and covariance matrix X . If not otherwise
stated, a state variable with superscript i indicates that
it belongs to subsystem i. For constant matrices though,
subscript i indicates the corresponding subsystem and
superscript n denotes the matrix power.

2. PROBLEM STATEMENT

We consider a networked system composed of N indepen-
dent heterogeneous subsystems which are coupled through
a shared communication channel. Each individual control
loop consists of a LTI stochastic plant P i, a stabilizing
state-feedback controller Ci, and a sensor Si. An event-
based scheduler situated at the communication channel
receives the data, in form of p-powered error norms, from
all the sensors and decides if the state is an event to
be scheduled for the channel utilization, as it is depicted
in Fig. 1, schematically. The process P i evolves by the
following difference equation

xik+1 = Aix
i
k +Biu

i
k + wi

k, (1)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , xik ∈ R
ni , and uik ∈

R
mi . The system noise wi

k ∈ R
ni is i.i.d. with wi

k ∼
N (0,Wi). For notational convenience, we assume that the
system noise is unity variance Gaussian distribution, but
the results hold for arbitrary positive definite Wi. Since,
the stability analysis is independent of initial states, xi0
might have any arbitrary but symmetric distribution with
bounded second moment. The scheduler output for the ith
subsystem at the time-step k is described by the binary
random variable δik ∈ {0, 1},

δik =

{

1 subsystem i is updated

0 subsystem i is blocked

This implies for the received signal, zk, at the controller

zik =

{

xik δik = 1

∅ δik = 0

It is assumed that the system data Ai, Bi, Wi, and
the distribution of x0 are known locally within each
subsystem. The control law γi is described by the causal
mappings of the past observations for each time step k,
i.e.,

uik = γik(Z
i
k) = −Li E

[

xik|Z
i
k

]

(2)

where Zi
k = {zi0, . . . , z

i
k} represents the observation his-

tory, and Li is the stabilizing feedback gain. This im-
plies that each control loop is stabilized with the con-

troller in (2) in case of the ideal communication. The con-
trollers are updated by an estimator, in case of a blocked
data transmission request, only if the closed-loop matrix
(Ai −BiLi) is Hurwitz, i.e.

E
[

xik|Z
i
k

]

=

{

xik δik = 1

(Ai −BiLi)E
[

xik−1|Z
i
k

]

δik = 0
(3)

with the initial condition E
[

xi0|Z
i
0

]

= 0. For each subsys-

tem i, the network-induced error state eik ∈ R
ni is defined

as eik = xik−E
[

xik|Z
i
k−1

]

and it evolves according to the
following difference equation

eik+1 =
(

1− δik
)

Aie
i
k + wi

k (4)

with the initial condition ei0 = xi0−E
[

xi0
]

. The augmented

state
[

xik, e
i
k

]

has a triangular dynamics, according to (1)-

(4), i.e. the system state xik do not affect the evolution
of the error state eik. Hence, showing the sequence of
error states ek is stochastically stable implies the overall
system’s stability. The p-powered prioritized error-based
(PEB) scheduling policy defines the probability that a
subsystem is granted the transmission chance at time k

P[δik = 1|ejk, j ∈ {1, . . . , N}] =
‖eik‖

p
2

∑N

j=1 ‖e
j
k‖

p
2

(5)

where p ≥ 2 is an integer. According to the PEB scheduling
scheme, the highest p-powered error norm has the channel
access priority, and all the other requests accompanied
with the lower priorities are more likely to be dropped.
As the scheduling policy is memoryless, the process is
repeated in every time step k according to (5). As the
resource-constrained network allows only one transmission
per time step, we have the following hard constraint with
probability 1 for every k ≥ 0 as

N
∑

i=1

δik = 1 (6)

It is straightforward to extend the approach to a different
number than one of allowed transmission per time step.

Remark 1. To implement the PEB policy approximately
in a decentralized fashion, it is envisioned that every
subsystem randomly determines its priority according to
a probability distribution depending on its own error. In
a wireless CSMA communication systems, the priority
could be reflected in the error-dependent distribution of
the backoff-time of each subsystem during one time step.
This implies that the mean back-off time of a subsystem
decreases with an increase of the error norm.

The evolution of the aggregate state ek ∈ R
n, which is

defined by

ek = [e1k, . . . , e
N
k ]T (7)

can be regarded as a time-homogeneous Markov chain,
because the scheduling policy defined in (5) is a Markov
policy depending on the values of ek. In the next section,
we will investigate the stability properties of the aforemen-
tioned Markov chain.

3. STABILITY ANALYSIS

This section presents the stability of the NCS with multi-
ple control loops coupled through a constrained resource,
at which the resource utilization is scheduled by the PEB
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Fig. 1. A NCS with a shared communication channel

policy. We start with a two-subsystem heterogeneous net-
work, and then extend the results for N subsystems. First,
some preliminaries are introduced to facilitate the discus-
sions.

3.1 Preliminaries

As the Markov chain defined in (7) evolves in R
n, we have

to deal with an uncountable state space. In this paper
we will adopt the analysis tools for stochastic stability of
Markov chains in uncountable state spaces as provided
in Meyn and Tweedie (1996), Chapter 14. The notion
of stability in uncountable state spaces are similar to of
countable state spaces but with several generalizations,
e.g. irreducibility becomes ψ-irreducibility, where ψ is a
non-trivial measure of the uncountable state space, or the
so-called small sets, which can be identified by the compact
sets in our problem. These sets take the role of the finite
sets in the countable Markov chains. The stability concept
used in this paper is given by the f -ergodicity defined in
the following.

Definition 1. (f -ergodicity). Let f ≥ 1 be a real-valued
function in R

n. A Markov chain ek is f -ergodic, if

(1) ek is positive Harris recurrent with invariant proba-
bility measure π

(2) E [π(f)] is finite, where π(f) =
∫

f(e)π(de)

(3) for every initial value e0, limk→∞ ‖P k(e0, ·)−π‖f = 0

The f -norm ‖ · ‖f for any signed measure ν is defined as

‖ν‖f = sup
|g|≤f

|ν(g)|

Remark 2. Later, we will choose f to be quadratic in order
to show that the stationary distribution of the Markov
chain has a finite bounded moment.

Definition 2. Let V be a real-valued function in R
n. The

drift operator ∆ is defined for any non-negative measur-
able function V as

∆V (ek) = E[V (ek+1)|ek]− V (ek), ek ∈ R
n. (8)

Theorem 1. (Aperiodic Ergodic Theorem). Let the Markov
chain {ek}k be ψ-irreducible and aperiodic and let f (e) ≥
1 be a real-valued function in R

n. If a small set D and a
non-negative real-valued function V exist such that

∆V (e) ≤ −f(e), e ∈ R
n\D (9)

and ∆V <∞ for e ∈ D, then {ek}k is f -ergodic.

Remark 3. Since we assume Gaussian additive noise with
Wi > 0, the transition kernel P (e, ·) at any state e of the
Markov chain ek has a positive density function. Then, the
Markov chain is ψ-irreducible and aperiodic. Analogously
as in the section 5.3.5 of Meyn and Tweedie (1996), it can
be concluded that all the compact sets are small.

3.2 Two-Subsystem Network

Consider two linear time-invariant control systems coupled
through the communication network, with the plants and
controllers given as (1) and (2). At each time k, the
scheduler is provided with the error norms ‖eik‖2. The
PEB scheduler likely selects the subsystem with the higher
relative error norm to access the channel and then the
corresponding controller is updated. In case of dismissed
transmission request, a state observer predicts the state
evolution. The stability analysis is performed based on the
drift conditions, but first we state the following lemma,
which facilitates finding the upper bounds for the drift.

Lemma 1. (Expected value of the ratio a
b
). Suppose a and

b 6= 0 are two dependent random variables, then

E

[a

b
|b6=0

]

=E [a]E

[

1

b

]

+

∞
∑

i=1

(−1)i
E

[

(a−E [a]) (b−E [b])
i
]

E [b]
i+1

Proof. See Rice (2008).

The following theorem incurs the stability of the two-
subsystem NCS employing the p-powered PEB allocating
strategy, to

Theorem 2. Consider a NCS consists of two stochastic LTI
control loops coupled through a communication channel
constrained by (6), and with the stabilizing controllers γi

as defined in (2). Then, if the channel access is scheduled
as introduced in (5), then the time-homogeneous Markov
chain in (7) is f -ergodic and has finite second moment.

Proof. We introduce the non-negative measurable func-
tion V (ek) =

∑

i=1,2 ‖e
i
k‖

p
2 as a mapping from R

n1+n2

to R. It suffices to analyze the stability over the two
consecutive time-steps, i.e. [k, k + 1]. The error evolution
can be written over the two time-step horizon as

eik+2=
(

1−δik+1

)(

1−δik
)

A2
i e

i
k+

(

1−δik+1

)

Aiw
i
k+w

i
k+1.

Hence,

E[V (ek+2) |ek] =
∑

i=1,2

E
[

‖eik+2‖
p
2|ek

]

=

∑

i=1,2

E
[

‖
(

1−δik+1

)

Ai

[(

1−δik
)

Aie
i
k+w

i
k

]

+wi
k+1‖

p
2|ek

]

The triangle inequality incurs

‖eik+2‖
p
2 ≤

(

‖A2
i e

i
k‖2 + ‖Aiw

i
k‖2 + ‖wi

k+1‖2
)p

= ‖A2
i e

i
k‖

p
2 + ‖Aiw

i
k‖

p
2 + ‖wi

k+1‖
p
2 + φ+

(

eik, w
i
k, w

i
k+1

)

where E
[

φ+
(

eik, w
i
k, w

i
k+1

)

|ek
]

≥ 0 is bounded due to the
p-moment boundedness of the Gaussian noise processes,
and statistical independence of ek, wk, and wk+1. The
boundedness of φ+ is preserved even if eik becomes very
large, since the corresponding subsystem, with the proba-
bility highly close to one, will be reseted, i.e. δik+1 = 1.
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The second-order drift operator is then specified as

∆2V (ek)

≤
∑

i=1,2

E
[

‖
(

1− δik+1

) (

1− δik
)

A2
i e

i
k‖

p
2|ek

]

+
∑

i=1,2

E
[

‖
(

1− δik+1

)

Aiw
i
k‖

p
2|ek

]

+
∑

i=1,2

E
[

‖wi
k+1‖

p
2

]

+ E
[

φ+(ek, wk, wk+1) |ek
]

−
∑

i=1,2

‖eik‖
p
2

Since, the system noise is unity variance Gaussian distri-
bution, the Euclidean norm ‖wi

k+1‖2 has a chi distribution

with ni degrees of freedom which implies that E
[

‖wi
k+1‖

p
2

]

is bounded. At time-step k, one of the subsystems surely
transmits, suppose the 1st, i.e. δ1k = 1, therefore δ2k = 0.
Then, the drift operator can be simplified as follows,

∆2V (ek)

≤ E
[

‖
(

1− δ2k+1

)

A2
2e

2
k +

(

1− δ2k+1

)

A2w
2
k‖

p
2|ek

]

+ E
[

‖
(

1− δ1k+1

)

A1w
1
k‖

p
2|ek

]

+
∑

i=1,2

E
[

‖wi
k+1‖

p
2

]

−
∑

i=1,2

‖eik‖
p
2 + E

[

φ+(ek, wk, wk+1) |ek
]

= E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

p
2|ek

]

+ ξ+ −
∑

i=1,2

‖eik‖
p
2

where, ξ+ = E
[

‖
(

1− δ1k+1

)

A1w
1
k‖

p
2|ek

]

+ E [φ+|ek] +
∑

i=1,2 E
[

‖wi
k+1‖

p
2

]

. We introduce the complementary bi-

nary random variable d ∈ {1, 2} as

d =

{

1 ‖e2k+1‖
p
2 ≤ ε2 < M

2 ‖e2k+1‖
p
2 > ε2

(10)

where, ε2 > 0, and d occurs with probabilities P [d = 1|ek] =
ε and P [d = 2|ek] = 1 − ε, with ε ∈ [0, 1]. Employing the
law of iterated expectation

E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

p
2|ek

]

= E
[

E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

p
2|ek, d

]

|ek
]

= P (d = 1|ek) .E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

p
2|ek, d = 1

]

+ P (d = 2|ek) .E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

p
2|ek, d = 2

]

≤ εε2‖A2‖
p
2 + (1− ε)E2

[(

1− δ2k+1

)

‖A2e
2
k+1‖

p
2|ek

]

where we denote E [·|ek, d = 2] = E2 [·|ek] for the sake of
abbreviation. Furthermore, P

(

‖e2k+1‖
p
2 > ε2|d = 2

)

= 1,
so the following conservative inequality concludes

E2

[

1

‖e1k+1‖
p
2 + ‖e2k+1‖

p
2

|ek

]

≤ E2

[

1

‖e2k+1‖
p
2

|ek

]

≤ ε−1
2

(11)

Then, Lemma 1 assures

E2

[

1− δ2k+1|ek
]

≤
2

p

2 Γ
(

p+n1

2

)

ε2Γ
(

n1

2

)

−
∞
∑

iOdd=1

(i+ 1)!
(

2σ̄2
)( i

2 )

(

i+1
2

)

!2i+1
(

E [‖w1
k‖

p
2] + E

[

‖e2k+1‖
p
2

])i+1 = c2

where, Γ represents the Gamma function, and σ̄2 is
Var

[

‖w1
k‖

p
2

]

. Superposing both upper bounds for d ∈
{1, 2} provides the aggregate bound on E [V (ek+2) |ek]

E [V (ek+2) |ek]

≤ (1−ε)E2

[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

p
2|ek

]

+εε2‖A2‖
p
2 + ξ+

= (1−ε)E2

[(

1− δ2k+1

)

|ek
]

.E2

[

‖A2e
2
k+1‖

p
2|ek

]

+ ξ+2

≤ (1−ε) c2 E2

[

‖A2e
2
k+1‖

p
2|ek

]

+ ξ+2

= (1−ε) c2‖A2‖
p
2 E2

[

‖A2e
2
k+w

2
k‖

p
2|ek

]

+ ξ+2

≤ (1−ε) c2
[

(‖A2‖
p
2)

2
‖e2k‖

p
2 + ‖A2‖

p
2 E2

[

‖w2
k‖

p
2

]

]

+ ξ+3

≤ (1−ε) c2 (‖A2‖
p
2)

2
∑

i=1,2

‖eik‖
p
2 + ξ+4

where, the second inequality is ensured through the in-
dependence of δ2k+1 and e2k+1. Moreover, ξ+2 = ξ+ +

εε2‖A2‖
p
2, ξ

+
3 = ξ+2 + (1−ε) c2‖A2‖

p
2 E2

[

φ+
(

e2k, w
2
k

)

|ek
]

and ξ+4 = ξ+3 + (1−ε) c2‖A2‖
p
2 E2

[

‖w2
k‖

p
2

]

.

Then the drift operator is upper bounded as

∆2V (ek) ≤
[

(1−ε) c2 (‖A2‖
p
2)

2
− 1

]

∑

i=1,2

‖eik‖
p
2 + ξ+4

Define f(e) = ǫ
∑

i=1,2 ‖e
i
k‖

p
2 − ξ+4 , ǫ > 0. Then showing

[

(1−ε) c2 (‖A2‖
p
2)

2
− 1

]

≤ −ǫ implies ∆2V (ek) ≤ −f(e)

and the stochastic stability of the Markov chain is evident.
According to the Theorem 1, we can find the appropriate
ǫ and a compact set D such that for all e /∈ D

(1−ε) c2 ≤
1

(‖A2‖
p
2)

2 (12)

It guarantees E
[(

1− δ2k+1

)

|ek
]

≤ 1

(1−ε)(‖A2‖
p

2)
2 and the

proof immediately follows.

Remark 4. Although, the conservativeness of the upper
bound in (11) is evident in case of large ‖e1k+1‖

p
2, it is not

troublesome, since for now we merely care about stability.
For performance analysis, less conservative bounds can be
employed by the available literatures, e.g. Lew (1976).

Figure 2 illustrates how the PEB scheduling policy al-
locates the communication resource for a two-subsystem
NCS. At time k, the relative error norm of the first
subsystem exceeds the second subsystem, thus the first
subsystem will likely be awarded the channel access. If so,
the first subsystem’s error is then reseted, i.e. ‖e1k+1‖2 =

‖w1
k‖2. The second subsystem request for transmission

is blocked, and the corresponding error magnified by
‖e2k+1‖2 = ‖A2e

2
k + w2

k‖2. Clearly, if the system noise has

a finite variance σ2, then the amplified error e2k+1 can be
kept inside the convex set by enlarging the threshold M2 .
Moreover, even if the error goes out of the safe region
at a certain time-step, it will be reseted in the most
forthcoming time-step and the evolution would back inside
the convex set.

3.3 N -Subsystem Network

In this section the stability of the depicted NCS with
arbitrary finite number of heterogeneous subsystems will
be presented. We first state the following essential lemma.
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M1

‖e1‖2

M2

‖e1k‖2

‖A2e
2
k‖2 ‖e2k‖2

‖e2‖2

σ
2 ∑

‖ei
k
‖

Fig. 2. PEB scheduling for a two-subsystem network.

Lemma 2. Suppose that δik = 1 for some k and i. If there

exists a subsystem j 6= i such that ‖ejk+n‖
p
2 > Mj, then

the probability that δik+n = 1 is upper bounded by

P[δik+n = 1|‖ejk+n‖
p
2 > Mj , δ

i
k = 1] ≤

∑n−1
k=0 nj‖A

k
j ‖

p
2

Mj

Proof. Taking the definition of PEB in (5) and having

P[δik+n = 1|‖ejk+n‖
p
2 > Mj, δ

i
k = 1]

= E[P[δik+n = 1|ek]|‖e
j
k+n‖

p
2 > Mj , δ

i
k = 1],

the result follows immediately.

Remark 5. Lemma 2 implies that the probability of two
subsequent transmissions of the same subsystem within a
fixed interval can be made arbitrarily small by choosing
Mj , accordingly.

Theorem 3. Let a NCS consists of N arbitrary finite het-
erogeneous stochastic LTI control loops sharing a commu-
nication channel subject to the constraint in (6). Suppose
that the stabilizing controller γi is given as (2). Then, the
Markov chain ek in (7), is f -ergodic and has finite second
moment, if the channel access is scheduled according to
the p-powered PEB scheme introduced in (5).

Proof. As in Def. 2, introduce the quadratic function

V (ek) =
∑N

i=1 ‖e
i
k‖

2
2, and the Nth-order drift operator

∆NV (ek) = E [V (ek+N ) |ek] − V (ek). The expectation of
the drift forN time-steps later, i.e. k+N , will be calculated
as

E [V (ek+N ) |ek] =
N
∑

i=1

E

∥

∥

∥

∥

∥

∥

N−1
∏
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i
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∥
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2

+

N
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AN−1
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∥

∥

∥

2

2

+ . . .

+

N
∑

i=1

E
∥

∥

(

1− δik+j

)

Aiw
i
k+N−2

∥

∥

2

2
+

N
∑

i=1

E
∥

∥wi
k+N−1

∥

∥

2

2

Here, we divide all the possible situations into three
complementary cases in terms of transmission ordering
and size of error, as follows

(1) Every subsystem i ∈ [1, . . . , N ] transmits merely once
during the N time-step period, with the arbitrary size
of error at each time-step.

(2) For every i ∈ [1, . . . , N ], there exists a time step
k′ ∈ [k, k +N − 1] s.t. ‖eik′‖22 < Mi for all δ

i
k′ = 0.

(3) There exists a set of subsystems m s.t. for all i ∈ m,
‖eik′‖22 takes arbitrary values for some time-steps k′ ∈
[k, k +N − 1] and for δik′ = 0.

Each of the cases can happen during the N time-step

period with probability Pi ∈ [0, 1], and
∑3

i=1 Pi = 1.
Note that, unlike the first case at which all the subsystems
eventually transmit during the N time-step period, in the
second and third cases, not all the subsystems necessarily
transmit, i.e. there might be some subsystems i s.t. δik′ = 0
for all k′ ∈ [k, k +N − 1]. On the other hand, the first case
places no boundary on the error size, unlike the second
case. The point in the third case is that the drift does
not need to be necessarily negative since the occurrence
probability can be made arbitrarily close to zero.

The first case ensures that every subsystem i, is assigned
with a time-step k + j with j ∈ [0, . . . , N − 1], s.t. δik+j =
1. Therefore, the ill-effects of possibly unbounded error
eik would be eliminated, since the corresponding expres-

sion
∑N

i=1 E

∥

∥

∥

∏N−1
j=0

(

1− δik+j

)

AN
i e

i
k

∥

∥

∥

2

2
is then vanished.

Eventually, showing that the Nth order drift is negative is
trivial according to the Theorem 1, by finding the appro-
priate ǫ and the compact set D.

For the second case, we divide the subsystems into two
complementary sets. The set s1 consists of the m̄ subsys-
tems which are granted the resource access at least once,
and the set s2 contains the m = N − m̄ subsystems which
have not transmitted at all. Hence, the scheduler variable
δi∈s1
k+j = 1 at least for one j, and δi∈s2

k+j = 0 for all j where

j∈{0, 1, . . . , N−2}. Then

E [V (ek+n) |ek]

≤
∑

i∈s2

[

E ‖
(

1− δik+N−1

)

Aie
i
k+N−1‖

2
2|ek

]

+ ξ+

where, ξ+ stands for the sum of the bounded terms, for
abbreviation. Introduce the binary variable di ∈ {1, 2}

di =

{

1 ‖eik+N−1‖
2
2 ≤ εi < Mi

2 ‖eik+N−1‖
2
2 > εi

(13)

with P (di = 1|ek) = ε and P (di = 2|ek) = 1−ε. Thus, the
law of iterated espectation incurs

E
[

‖
(

1− δik+N−1

)

Aie
i
k+N−1‖

2
2|ek

]

= E
[

E
[

‖
(
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)

Aie
i
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2
2|ek, d

]

|ek
]

= P (di = 1|ek) .E1

[

‖
(

1− δik+N−1

)

Aie
i
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2
2|ek

]

+ P (di = 2|ek) .E2

[

‖
(
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)

Aie
i
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2
2|ek

]

≤ εiε‖Ai‖
2
2 + (1− ε)E2

[

‖
(

1− δik+N−1

)

Aie
i
k+N−1‖

2
2|ek

]

It readily follows from the policy definition in (5) that

E2

[

1− δik+N−1|ek
]

= E2

[

∑N

j 6=i ‖e
j
k+N−1‖

p
2

∑N

j=1 ‖e
j
k+N−1‖

p
2

|ek

]

(14)

Lemma 2 ensures that, with probability arbitrarily close to
one, all the subsystems in the set s1 have bounded errors,
then the following upper bound can easily be concluded
for p ≥ 2
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E2

[

1
∑N

j=1‖e
j
k+N−1‖

p
2

|ek

]

≤ E2

[

1
∑

j∈s2
‖ejk+N−1‖

p
2

|ek

]

≤
1

εi

The fact that a time-step k′ exists s.t. ‖eik′‖
p
2 < Mi and fur-

ther the discussions in Lemma 2, assure the boundedness of
∑N 6=i

j=1 E ‖ejk+N−1‖
p
2. Then, employing Lemma 1 provides

an upper bound for (14) as

E2

[

1− δik+N−1|ek
]

≤
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j 6=i E ‖ejk+N−1‖

p
2
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(i+ 1)!
(
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i+1
2
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E [b]
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where, σ′2 is Var
∑N

j 6=i

[

‖ejk+N−1‖
p
2 − E ‖ejk+N−1‖

p
2

]

, and

b =
∑N

i=1 ‖e
i
k+N−1‖

p
2. Summing up both bounds yields

the aggregate upper bound for the drift as follows

E [V (ek+N ) |ek]

≤ (1−ε)
∑

i∈s2

E2

[

‖
(

1− δik+N−1

)

Aie
i
k+N−1‖

2
2|ek

]

+ ξ+2

= (1−ε)
∑

i∈s2

E2

[(

1− δik+N−1

)

|ek
]

E2

[

‖Aie
i
k+N−1‖

2
2|ek

]

+ ξ+2

≤ (1−ε)
∑

i∈s2

c′i‖Ai‖
2
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2 E2
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V (ek)+ ξ+3

where, ξ+2 = ξ+ +
∑

i∈s2
εεi‖Ai‖22, and ξ+3 = ξ+2 +

E2

[

‖f
(

Ai, w
i
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‖22|ek
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, with f(Ai, w
i) = AN−2

i wi
k + . . . +

Aiw
i
k+N−3+w

i
k+N−2, which is a zero-mean Gaussian ran-

dom variable. TheNth order drift operator is subsequently
upper bounded as

∆NV (ek)

≤

[

(1− ε)
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c′i
(

‖Ai‖
2
2

)N
− 1

]

N
∑
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Define f(e) = ǫV (ek) − ξ+3 , ǫ > 0. Then, ∆NV (ek) ≤

−f(e), if
[

(1−ε)
∑

i∈s2
c′i
(

‖Ai‖22
)N

− 1
]

≤ −ǫV (ek), and

the stochastic stability of the Markov chain is definitive.
Based on the results in Theorem 1, appropriate ǫ and Mi

can be found s.t.

(1−ε)
∑

i∈s2

c′i
(

‖Ai‖
2
2

)N
≤ 1

The third case declares to have multiple subsystems with
unbounded errors ‖eik′‖22 for some time-steps k′. It is
sufficient to show that the drift is bounded and not
necessarily negative, since according to Lemma 2, the
probability that one subsystem does not transmit at all the
time-steps, and inevitably another subsystem transmits
multiple times, can be made arbitrarily small. Therefore,
the drift could be positive, but it should be bounded.
Considering (14), we may exclude the subsystems who

transmit at least once, i.e. j ∈ s1, because they have
bounded errors. Hence, (14) can be rewritten as

E2

[

1− δik+N−1|ek
]

= E2
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where, ǫ ∈ (0, 1) replaces the effect of excluded subsystems
j ∈ s1. Furthermore, eik+N−1 is a linear combination of the

independent zero-mean random variables ei0, w
i
0, . . . , w

i
k−1,

then it has a standard normal distribution with the
bounded variance Ak+N−1

i σ2
ei0

+
∑k+N−1

l=1 Ak−l
i . Thus,

‖eik+N−1‖2 has a central chi distribution. Since eik+N−1,
i ∈ {1, . . . , N}, are independent of each other, then

the expectation E
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i
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=
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=
(

2
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i=1 µi

)

i+1
2

i!!,

where µi is the pth moment of the chi distributed random
variable ‖eik+N−1‖2, and !! represents the odd factorial.

According to Lemma 1, if a ≃ b
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a

]

−
∞
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]
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Now, if we define a =
∑j 6=i

j∈s2
‖ejk+N−1‖

p
2 and b =

∑
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‖ejk+N−1‖

p
2, due to the unboundedness of the error

values, the bound can be rewritten
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Therefore, the boundedness of E
[

∑

j∈s2
‖ejk+N−1‖

p
2|ek

]

is

immediately followed by the boundedness of the infinite
summation. Finally, we can find the finite upper bound
for the drift as

P (di = 2|ek) .E2
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2m
2 E2
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∑
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‖eik+N−1‖
2
2|ek

]

where, m is the number of subsystems in the set s2. Thus,
the drift is bounded, and the proof is complete.

4. NUMERICAL RESULTS

We simulate a networked system comprised of two classes
of subsystems - a stable and an unstable process - with
system parameters A1=1.25, B1=1 and A2=0.75, B2=1,
respectively. Each class of either stable or unstable systems
includes finite number of homogeneous subsystems. In
both classes, the state initiates with x10 = x20 = 0 and
the random disturbance is given by wi

k ∼ N (0, 1). We
assume a stabilizing deadbeat control law with Li = Ai

for i ∈ {1, 2} and a model-based observer is given by (3).
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Figure 3 compares the performance of the proposed PEB
protocol for different p powers with other scheduling pro-
tocols for N ∈{2, 4, 6, 8, 10} in terms of the mean variance
per subsystem of the estimation error eik induced by the
network. The means are calculated by their empirical
means through Monte Carlo simulations over a horizon
of 100 000. The lower bound is determined by relaxing the
initial problem to have no resource constraint, but instead
restrains the total average transmission rate per time step
to be 1. This can be calculated through a bilevel ap-
proach, discussed in Molin and Hirche (2013), and results
in an event-triggered scheduling strategy. The round robin
(RR) protocol is a time-triggered access scheme, where
subsystems update their controllers periodically with a
sampling period of N . The idealized carrier sense multi
access protocol considered operates in the same fashion as
the PEB protocol without prioritizing subsystems, i.e. the
probability of updating the controller is 1

N
at each time.

With an increasing number of subsystems sharing the
resource, the performance gap between the PEB scheduler
and the other protocols becomes more evident. At the
same time, the PEB scheduler deviates moderately from
the lower bound, which grows slowly with increasing N .
This suggests that the PEB protocol is more profitable
than the round robin protocol when the resource is scarce.

By increasing the power of p, the performance of the
scheduler improves, as the subsystems with higher errors
get more chance to utilize the channel. In case p→ ∞,
the transmission probability for the subsystem with the
highest error tends to one. As the simulations show,
the PEB scheduler is highly robust with respect to the
increasing number of subsystems, compared to the other
policies. Only for N = 2, the CSMA protocol results
in an acceptable performance. For N ≥ 6, the variance
of ek takes values of magnitude 1015 which suggest an
unbounded variance and therefore unstable evolution. This
is in accordance with theorem 2 in Molin and Hirche
(2013), where the stability condition is violated for N ≥ 6.
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Fig. 3. Comparison of the mean steady-state variance of
eik for various protocols and number of subsystems.

5. CONCLUSION

We propose a new stochastic scheduling scheme, the pri-
oritized error-based (PEB) protocol, which dynamically
assigns priorities for NCS comprised of finite number
of entities coupled through a scarce communication re-
source. The likelihood for utilizing the resource grows
proportional with the p-powered norm of the networked-
induced error of the subsystem. Provided with stabilizing
feedback controllers, we show the stability of the overall
networked system with the PEB scheduling scheme using
drift criteria. In presence of disturbances, the stochastic
stability is shown in terms of Markov chain ergodicity
and second-order moment boundedness. Numerical results
demonstrate the stability, which grows with increasing
exponent p, alongside a substantial performance improve-
ment in comparison with the other randomized protocols.
Performance analysis, and considering the physically cou-
pled systems to be scheduled with the proposed policy, are
of interest as future challenges.
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