The Walk Again Project: Brain-Controlled Exoskeleton Locomotion

A. Lin 1, D. Schwarz 2,3, R. Sellau 4, S. Shokur 1, R. Molli 1, F. Brasil 1, K. Fast 1, N.A. Peretti 1, A. Takigami 5,6, S. Gallo 7, K. Lyons 8, P. Mittendorfer 10, M.A. Lebedev 7,3, S. Joshi 1, G. Cheng 10,11, E. Morya 1, A. Rudolph 12, M.A.L. Nicolelis 1,2,11,13,14

1Edmund and Lily Safra International Institute of Neurosciences of Nata (ININ-ELS), Nata, Brazil, 2Dept. of Neurobiology, Duke Univ., Durham, NC, USA, 3Duke Center for Neuroengineering, Duke Univ., Durham, NC, USA, 4BBA France, Germaine Adventures in France, 5Alberto Santos Dumont Association (AASDAP), Sao Paulo, Brazil, 6Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil, 7Center for Neurotechnology, Northwestern University, Evanston, IL, USA, 8Army Medical University of Min Ho, South Korea, 9Institute for Advanced Brain Digital Innovation (AIBD), Japan, 10Institute of Heuristic Informatics of Sao Paulo, Sao Paulo, Brazil, 11Sloan-Kettering Institute for Cancer Research, New York, USA, 12Institute for Neurotechnology, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 13Tan, at California Davis, Sacramento, CA, USA, 14Dept. of Mechanical and Aerospace Engineering, University of California Davis, Sacramento, CA, USA, 15Institute for Cognitive Systems (ICS), Technical University Munich (TUM), Munich, Germany, 16Electrical Engineering and Information Technology, Technical University Munich (TUM), Munich, Germany, 17Compass State University, Fort Collins, Colorado, USA, 18Dept. of Biomedical Engineering, and 19Dept. of Psychology and Neuroscience, Duke Univ., Durham, NC, USA.

ABSTRACT

- We designed a robotic exoskeleton to restore locomotion in patients with complete spinal cord injuries.
- EEG and EMG were used as inputs for discrete state control.
- The user dictates high level state transitions while the exoskeleton performs low level control of movement and ensures stability and safety.

- Eight patients were trained for about 600 hours with this control scheme.
- The system was demonstrated at the 2014 FIFA World Cup by having a paralyzed individual deliver the opening kick.
- This was the first BMI demonstration in a large public setting.

The Exoskeleton

- Roughly 130,000 new spinal cord injuries (SCI) occur each year (http://www.campaignforcure.org).
- SCI increases the risk of premature death by a factor of 2 to 5, and socioeconomic participation.

Roughly 130,000 new spinal cord injuries (SCI) occur each year (http://www.campaignforcure.org).

References

- Introduction

 - The user dictates high level state transitions while the exoskeleton performs low level control of movement and ensures stability and safety.

 - Eight patients were trained for about 600 hours with this control scheme.

 - The system was demonstrated at the 2014 FIFA World Cup by having a paralyzed individual deliver the opening kick.

 - This was the first BMI demonstration in a large public setting.

Conclusion

Using our control scheme, a total of eight participants with spinal cord injury were able to brain-control the exoskeleton to walk, stop, and kick without the need of an external operator.

Our results indicate that BMI-based control of an exoskeleton can become a feasible assistive or rehabilitative tool for patients with SCI. By using this training paradigm, we were able to prepare all participants for use of the exoskeleton in a real world setting.

Acknowledgements

The authors would like to thank Alberto Santos Dumont Association for Research Support (AASDAP) and the 156 people involved in this project.

References

- We designed a robotic exoskeleton to restore locomotion in patients with complete spinal cord injuries.
- EEG and EMG were used as inputs for discrete state control.
- The user dictates high level state transitions while the exoskeleton performs low level control of movement and ensures stability and safety.

- Eight patients were trained for about 600 hours with this control scheme.
- The system was demonstrated at the 2014 FIFA World Cup by having a paralyzed individual deliver the opening kick.
- This was the first BMI demonstration in a large public setting.

The Exoskeleton

- Roughly 130,000 new spinal cord injuries (SCI) occur each year (http://www.campaignforcure.org).
- SCI increases the risk of premature death by a factor of 2 to 5, and socioeconomic participation.

Roughly 130,000 new spinal cord injuries (SCI) occur each year (http://www.campaignforcure.org).

References

- Introduction

 - The user dictates high level state transitions while the exoskeleton performs low level control of movement and ensures stability and safety.

 - Eight patients were trained for about 600 hours with this control scheme.

 - The system was demonstrated at the 2014 FIFA World Cup by having a paralyzed individual deliver the opening kick.

 - This was the first BMI demonstration in a large public setting.

Conclusion

Using our control scheme, a total of eight participants with spinal cord injury were able to brain-control the exoskeleton to walk, stop, and kick without the need of an external operator.

Our results indicate that BMI-based control of an exoskeleton can become a feasible assistive or rehabilitative tool for patients with SCI. By using this training paradigm, we were able to prepare all participants for use of the exoskeleton in a real world setting.

Acknowledgements

The authors would like to thank Alberto Santos Dumont Association for Research Support (AASDAP) and the 156 people involved in this project.

References

- We designed a robotic exoskeleton to restore locomotion in patients with complete spinal cord injuries.
- EEG and EMG were used as inputs for discrete state control.
- The user dictates high level state transitions while the exoskeleton performs low level control of movement and ensures stability and safety.

- Eight patients were trained for about 600 hours with this control scheme.
- The system was demonstrated at the 2014 FIFA World Cup by having a paralyzed individual deliver the opening kick.
- This was the first BMI demonstration in a large public setting.

The Exoskeleton

- Roughly 130,000 new spinal cord injuries (SCI) occur each year (http://www.campaignforcure.org).
- SCI increases the risk of premature death by a factor of 2 to 5, and socioeconomic participation.

Roughly 130,000 new spinal cord injuries (SCI) occur each year (http://www.campaignforcure.org).

References

- Introduction

 - The user dictates high level state transitions while the exoskeleton performs low level control of movement and ensures stability and safety.

 - Eight patients were trained for about 600 hours with this control scheme.

 - The system was demonstrated at the 2014 FIFA World Cup by having a paralyzed individual deliver the opening kick.

 - This was the first BMI demonstration in a large public setting.

Conclusion

Using our control scheme, a total of eight participants with spinal cord injury were able to brain-control the exoskeleton to walk, stop, and kick without the need of an external operator.

Our results indicate that BMI-based control of an exoskeleton can become a feasible assistive or rehabilitative tool for patients with SCI. By using this training paradigm, we were able to prepare all participants for use of the exoskeleton in a real world setting.

Acknowledgements

The authors would like to thank Alberto Santos Dumont Association for Research Support (AASDAP) and the 156 people involved in this project.

References

- We designed a robotic exoskeleton to restore locomotion in patients with complete spinal cord injuries.
- EEG and EMG were used as inputs for discrete state control.
- The user dictates high level state transitions while the exoskeleton performs low level control of movement and ensures stability and safety.

- Eight patients were trained for about 600 hours with this control scheme.
- The system was demonstrated at the 2014 FIFA World Cup by having a paralyzed individual deliver the opening kick.
- This was the first BMI demonstration in a large public setting.

The Exoskeleton

- Roughly 130,000 new spinal cord injuries (SCI) occur each year (http://www.campaignforcure.org).
- SCI increases the risk of premature death by a factor of 2 to 5, and socioeconomic participation.

Roughly 130,000 new spinal cord injuries (SCI) occur each year (http://www.campaignforcure.org).

References

- Introduction

 - The user dictates high level state transitions while the exoskeleton performs low level control of movement and ensures stability and safety.

 - Eight patients were trained for about 600 hours with this control scheme.

 - The system was demonstrated at the 2014 FIFA World Cup by having a paralyzed individual deliver the opening kick.

 - This was the first BMI demonstration in a large public setting.

Conclusion

Using our control scheme, a total of eight participants with spinal cord injury were able to brain-control the exoskeleton to walk, stop, and kick without the need of an external operator.

Our results indicate that BMI-based control of an exoskeleton can become a feasible assistive or rehabilitative tool for patients with SCI. By using this training paradigm, we were able to prepare all participants for use of the exoskeleton in a real world setting.

Acknowledgements

The authors would like to thank Alberto Santos Dumont Association for Research Support (AASDAP) and the 156 people involved in this project.

References