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Preface 

This work was prepared alongside the project “Method development for the use of parameters 

extracted from satellite data in the context of forest management planning and forest disaster 

management development (Methodenentwicklung zur Nutzung von Parametern aus Satellitendaten 

im Rahmen der forstlichen Betriebsplanung und des forstlichen Katastrophenmanagements)”, 

funded by the Space Directorate of the German Aerospace Agency (Raumfahrtmanagement des 

Deutschen Zentrums für Luft- und Raumfahrt, DLR) under Number 50 EE 0919. The project was 

developed in response to the Announcement of Opportunity to the call for “Innovative information 

products by synergistic usage of RapidEye and TerraSAR-X satellite data (Innovative 

Informationsprodukte durch synergetische Nutzung von RapidEye und TerraSAR-X 

Satellitendaten)”. 

The work investigates options for deriving information relevant to forest management from high 

resolution satellite data. Two approaches offered through leading optical remote sensing satellite 

technologies are investigated. The first is the hyperspectral approach, using the first operating 

system developed, the experimental Hyperion sensor. The second is the multispectral / multi-

seasonal approach utilizing the operational, commercially available RapidEye system. The intent 

of the investigation into the Hyperion data and the RapidEye data was to reveal the potential held 

by the planned next generation satellites for their application in forest management. The planned 

mission that will enhance spectral properties is the German Environmental Mapping and Analysis 

Program (EnMap). Sentinels satellites are the planned missions aiming to enhance the revisit 

capability, and these will increase the opportunity of acquiring multi-seasonal data. 
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Summary 

Forest management planning plays an important role in maintaining the long-term health of 

forests, one of the most economically important natural resources. Management planning is 

typically based on information obtained from terrestrial forest inventories, which are time-

consuming, cost-intensive and conducted over a span of at least ten years. In light of these 

challenges, decision makers at the strategic / tactical levels in the forestry field have become 

increasingly interested in obtaining forest information from remote sensing data. This information, 

referred to as forest parameters, can be obtained at the forest stands level, and should be sufficient 

to contribute to the decision support system (DSS) for forest enterprises. Based on the judgment of 

forest experts, the most important forest parameters related to forest management planning, to be 

delivered by remote sensing means, were identified. These parameters include: forest cover, forest 

types, forest changes and the forest tree species - the parameter that presents the greatest challenge 

to remote sensing. 

The focus of this work is to offer an operational solution, using the high spatial resolution (HSR) 

satellite data, to inform the strategic / tactical decision making process. Of the various optical 

satellite systems available, the HSR satellite data (5-30 m) are regarded as adequate for forest 

mapping at the stand level. Also, HSR data are cost effective, and offer an operational solution for 

forest enterprises to make strategic / tactical decisions. While the multispectral data from HSR 

satellite systems are well investigated, the enhancements of such data in terms of spectral and 

temporal resolutions have yet to be researched, due to the limited number of systems providing 

these data. The improvement of the data spectral and temporal resolution is at the forefront of HSR 

sensors development. The high spectral resolution data available for this study was the 

hyperspectral Hyperion data (about 200 spectral bands and 30 m spatial resolution). To date, the 

only system offering high temporal resolution (multi-seasonal) data is the RapidEye system (5 

spectral bands and 6.5 m spatial resolution), a system employed here.  

One shortcoming in research relating to HSR satellite data is a disagreement over forest 

definitions and functions among different stakeholders in forestry, and in the remote sensing 

community. In forest management, it is essential to establish proper definitions of all forest 

parameters, based on the requirements of the end users. Regarding the current state of knowledge, 

it is clear that further research is required for both the hyperspectral and the multi-seasonal 

approaches for operational forest inventory. In terms of the hyperspectral approach, research has 

been focused applying the Hyperion system only on the technical potentials and limitations of the 
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system. Another common issue is that research on multi-temporal optical data, offering operational 

means for forest monitoring, faces problems with clouds. Applying data of higher temporal 

resolution (multi-seasonal) to address this issue has yet to be investigated. Finally, for mapping the 

tree species parameter, neither the hyperspectral nor the active systems offer an operational 

solution, due to the cost constraints and limited coverage. Thus, the multi-seasonal approach 

remains as the only promising path towards offering an operational solution. This can be achieved 

by applying the ‘‘phenological fingerprint’’ concept, which uses the variation in phenology of the 

tree species. While a small number of studies have investigated this concept for tree species 

identification, key economic issues must also be addressed. Such issues include: the number of 

datasets that should be used, the appropriate seasons for data collection, and the influence of 

additional bands on mapping. 

The aim of this thesis was to investigate the potential of two approaches, provided by these two 

HSR systems for offering operational means, to extract the above listed parameters. The first is the 

mono-temporal hyperspectral approach, using the Hyperion system in the Mediterranean forest. 

The second is the multi-seasonal multispectral approach, using the RapidEye system in three 

Bavarian forests representing different growth regions. The outcomes of both approaches will 

inform which approach should be considered the most suitable for individual parameter extraction. 

Results should further contribute to the next generation hyperspectral satellite EnMap, as well as 

multi-seasonal satellites like the Sentinel missions. 

The investigations into the Hyperion data were carried out by applying a variety of classification 

methods including: pixel-based, spectral unmixing and object-based, to extract forest cover, types, 

and tree species. For the pixel-based method, Spectral Angel Mapper (SAM) classifier was applied, 

for the spectral unmixing Artificial Neural Network (ANN) was implemented, and for the object-

based the eCognition software was utilized. Conversely, investigations into the multi-seasonal 

RapidEye data were carried through with pixel-based and object-based methods. For the extraction 

of forest cover, type and forest changes, the object-based technique was used. The developed 

methods were found to be precise, timely computational efficient, and transferable to other test 

sites. For the forest change detection, additionally, a method was developed using the multi-

seasonal data available to solve the problem of the cloud cover. Finally, for extraction of the tree 

species parameter, the ‘‘Phenological fingerprint’’ concept was investigated. A strategy to classify 

combinations of multi-seasonal RapidEye data was developed in order to address the 

aforementioned aspects of key economic importance. 
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Results show that data provided by both systems were generally successful in extracting forest 

parameters. However, the multi-seasonal RapidEye data showed a greater potential than the 

hyperspectral Hyperion data for operational application. For the extracted parameters forest cover 

and type, the higher spatial resolution of RapidEye tended to be more important than the high 

spectral resolution of Hyperion. However, where the forest was highly structured and more diverse, 

a form expected of future forests, RapidEye data achieved a lower accuracy for detecting forest 

types. The multi-seasonal data were essential for detecting forest change, while the high frequency 

of the multi-seasonal data offered an operational approach to solving the problem of cloud cover. 

The tree species results show that the ‘‘phenological fingerprint’’ concept is essential for their 

identification. Multi-seasonal RapidEye data picked up many aspects of the phenological 

development over time, and had a high potential to separate tree species. In this study, we dealt 

with seven different species. The new red edge band in the RapidEye data was found to slightly 

increase the accuracy for tree species identification. Meanwhile, a mono-temporal Hyperion dataset 

catching one aspect of the “phenological fingerprint” had the ability to identify only two coniferous 

species, which happened to have high variation in spectral reflectance during the acquisition time. 

The multi-seasonal multispectral approach offered lower spectral resolution but higher spatial 

and temporal resolution than that of the mono-temporal hyperspectral approach. However, the 

RapidEye approach (either mono- or multi-seasonal) remains better suited for extracting the 

parameters forest cover, type, changes and tree species. The cost of the multi-seasonal multispectral 

approach will remain more affordable than the hyperspectral approach, taking into consideration 

the limited coverage of the hyperspectral systems. This trend is expected to continue with next 

generation hyperspectral EnMap satellite, as well as the multi-seasonal Sentinel satellites. To 

achieve greater success in forest inventory from the next generation satellites, a slight improvement 

in the spatial resolution is recommended, in order to meet the challenges presented by the highly 

structured forests of the future. Additionally, the multi-seasonal capability should remain key in 

development plans, in order to map the most challenging parameter, tree species. While the high 

quality spectral data from the hyperspectral approach can restrict the multi-seasonal capability, 

adding a few additional bands to the upcoming multispectral satellite can be of benefit for tree 

species identification. 
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Zusammenfassung 

Forstmanagement spielt eine wichtige Rolle bei der langfristigen Erhaltung der Vitalität von 

Wäldern, eine der ökonomisch wichtigsten natürlichen Ressourcen. Managementplanung baut 

typischerweise auf Informationen auf, die aus terrestrischer Waldinventur stammen, die zeit- und 

kostenintensiv sind und über eine Zeitpanne von mindestens 10 Jahren durchgeführt werden 

müssen. Im Hinblick auf diese Herausforderung interessieren sich Entscheidungsträger der 

strategischen / taktischen Ebene des Forstbetriebs verstärkt dafür, Waldinformationen durch 

Fernerkundung zu erlangen. Diese Waldparameter können auf der Waldbestandsebene gesammelt 

werden und sollten genügend zum Entscheidungs-Unterstützung-System (EUS) der Forstbetriebe 

beitragen. Basierend auf der Beurteilung von Forstexperten wurden die für Forstmanagement und 

-planung wichtigsten Forstparameter, die die Fernerkundung beitragen kann, identifiziert. Diese 

Parameter umfassen: Fläche, Typ und Veränderung des Waldes, sowie der Parameter, der die 

größte Herausforderung für die Fernerkundung darstellt, die Forstbaumarten. 

Der Schwerpunkt dieser Arbeit ist es, durch die Anwendung der Satellitensysteme von der hoch 

räumlichen Auflösungskategorien (HSR) operationelle Lösungen anzubieten, die für den EUS von 

Nutzen sind. Von den vielfältigen optischen Satellitensystemen, die verfügbar sind, werden die 

HSR-Satellitensysteme (5-30 m) als geeignet angesehen, den Forst auf der Bestandesebene zu 

erfassen. Des Weiteren sind HSR-Daten kosteneffizient und bieten eine operationelle Lösung bei 

der strategischen / taktischen Entscheidungsfindung in Forstbetriebenen. Während die 

Multispektraldaten von HSR-Satellitensystemen gut untersucht sind, müssen die in Bezug auf 

spektrale und zeitliche Auflösung weiterentwickelten Daten noch untersucht werden, da es wenige 

Systeme gibt, die diese Daten produzieren. Die Verbesserung der spektralen und zeitlichen 

Auflösung ist das Hauptanliegen der HSR-Sensorenentwicklung. Die Hochspektraldaten, die 

dieser Studie zur Verfügung standen, waren die hyperspektralen Hyperion-Daten (ca. 200 

Spektralbänder und 30 m räumliche Auflösung). Bis heute ist das RapidEye-System das einzige 

System, das zeitliche Hochauflösung anbietet. Dieses System wurde hier angewendet. 

Eine Unzulänglichkeit in der Forschung in Bezug auf HSR-Satellitendaten ist, dass es keine 

einheitlichen Forstdefinitionen und –funktionen zwischen verschiedenen Akteuren in den 

Forstwissenschaften und in der Fernerkundung gibt. Im Forstmanagement ist es grundlegend, 

geeignete Definitionen für alle Forstparameter zu etablieren, die auf den Anforderungen des 

Endnutzers basieren. Ausgehend von dem heutigen Wissensstand ist es klar, dass weitere 

Forschung notwendig ist sowohl für die hyperspektralen als auch die multisaisonalen 
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Anwendungen bei der operationellen Waldinventur. In Bezug auf die hyperspektrale Methode lag 

der Fokus der Forschung bezogen auf die Anwendung der Hyperiondaten lediglich auf den 

technischen Möglichkeiten und Grenzen des Systems. Ein weiteres allgemeines Problem ist, dass 

die Forschung an multitemporalen optischen Daten, die operationelle Mittel beim Forstmonitoring 

zur Verfügung stellen, Schwierigkeiten mit Wolken ausgesetzt ist. Um mit diesem Problem fertig 

zu werden, muss die Anwendung von Daten mit höherer zeitlicher Auflösung (multisaisonal) noch 

weitergehend untersucht werden. Letztendlich bieten weder die hyperspektralen noch die aktiven 

Systeme aufgrund von Kostenbeschränkungen und begrenzten Anwendungsmöglichkeiten eine 

operationelle Lösung zur Erfassung der Baumartenparameter. Daher verbleibt der multisaisonale 

Ansatz als die einzige Möglichkeit, eine operationelle Lösung anzubieten. Dies kann durch die 

Anwendung des Konzepts des ‘‘Phänologischen Fingerabdrucks’’ erreicht werden, welches die 

Variation in der Phänologie der Baumarten nutzt. Während eine kleine Anzahl an Studien dieses 

Konzept zur Identifizierung vom Baumarten untersucht hat, müssen auch entscheidende 

wirtschaftliche Aspekte berücksichtigt werden. Zu diesen Aspekten zählen: die Anzahl von 

Datensätze, die erhoben werden sollen, die richtige Jahreszeit für die Datenerhebung und der 

Einfluss von zusätzlichen Bändern auf die Identifizierung von Baumarten. 

Das Ziel dieser Doktorarbeit war es, das Potential zweier Ansätze zu ermitteln, die auf den 

beiden HSR-System basieren, um die oben genannten Parameter zu extrahieren. Der erste Ansatz 

ist der monotemporale hyperspektrale Ansatz, bei dem das Hyperion System im mediterranen Wald 

benutzt wird. Der zweite ist der multisaisonale multispektrale Ansatz, bei dem das RapidEye-

System, das in drei bayerischen Wäldern angewandt wird, die verschiedene Wachstumsregionen 

repräsentieren. Die Resultate beider Ansätze werden entscheiden, welcher von beiden als der am 

besten geeignete angesehen werden sollte bei der individuellen Parameterextraktion. Die 

Ergebnisse sollten darüber hinaus einen Beitrag leisten zu der nächsten Generation hyperspektraler 

Satelliten, wie z.B. EnMap und SPECTRA, sowie multisaisonaler Satelliten wie den Sentinel-

Satelliten. 

Die Untersuchungen zu den Hyperion Daten wurden unter Anwendung einer Vielzahl von 

Klassifikationsmethoden ausgeführt, welche umfassten: das pixelbasierte, das objektbasierte, und 

das spectral-unmixing-Verfahren zur Bestimmung der Waldfläche, der Typen und der Baumarten. 

Bei der pixelbasierte Methode wurde der Spectral Angel Mapper (SAM)-Algorithmus angewendet, 

bei dem spectral-unmixing-Verfahren wurde das Artificial Neural Network (ANN) verwendet, und 

für die objektbasierte Methode wurde die eCognition-Software benutzt. Im Falle der 

Untersuchungen zu den multisaisonalen RapidEye-Daten wurden pixel-und objektbasierte 
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Methoden durchgeführt. Bei der Ermittlung der Waldfläche, des Typs und der Waldveränderungen 

wurde die objektbasierte Technik benutzt. Die entwickelten Methoden stellten sich als präzise, 

schnell durchführbar und übertragbar auf andere Testgebiete heraus. Für die Erfassung der 

Waldveränderungen wurde eine zusätzliche Methode entwickelt, bei der die verfügbaren 

multisaisonalen Daten verwendet wurden, um das Problem mit der Wolkendecke zu lösen. Und 

schließlich wurde zur Extraktion der Baumartenparameter das ‘‘Phänologischer Fingerabdruck’’-

Konzept untersucht. Eine Strategie zur Klassifizierung von Kombinationen von multisaisonalen 

RapidEye-Daten wurde entwickelt, um die zuvor genannten Wirtschaftsaspekte zu 

berücksichtigen. 

Die Ergebnisse zeigen, dass beide Systeme im Allgemein erfolgreich waren bei der Extraktion 

von Forstparametern. Jedoch zeigten die multisaisonalen RapidEye-Daten ein größeres Potential 

als die monotemporalen hyperspektralen Hyperion-Daten für die operationelle Anwendung. Für 

die extrahierten Parameter Waldfläche und -typ war die höhere räumliche Auflösung von RapidEye 

tendenziell wichtiger als die hohe spektrale Auflösung von Hyperion. Allerdings erreichten die 

RapidEye-Daten eine geringere Genauigkeit bei der Erfassung des Waldtyps, wenn der Wald hoch 

strukturiert war und eine höhere Diversität aufwies, was von zukünftigen Wäldern verstärkt zu 

erwarten ist. Die multisaisonalen Daten waren essenziell, um Veränderungen im Wald zu 

detektieren, während die große Häufigkeit der multisaisonale Daten einen operationellen Ansatz 

lieferten, um das Problem der Wolkendecke zu lösen. Die Baumartenergebnisse zeigen, dass das 

‘‘Phänologische Fingerabdruck’’-Konzept grundlegend ist für die Identifizierung der Baumarten. 

Multisaisonale RapidEye-Daten nahmen viele Aspekte der phänologischen Entwicklung über die 

Zeit hinweg auf und hatten ein hohes Potenzial, die Baumarten zu differenzieren. In dieser Studie 

befassten wir uns mit sieben verschiedenen Arten. Es zeigte sich, dass das neue ‘‘red edge’’-Band 

in den RapidEye-Daten die Genauigkeit der Baumartenidentifizierung leicht erhöhte. Im Gegensatz 

dazu war es mit dem monotemporalen Hyperion-Datensatz, der einen Aspekt des ‘‘Phänologischen 

Fingerabdrucks’’ erfasste, lediglich möglich, zwei Nadelbaumarten zu identifizieren, die zufällig 

eine hohe Variation in ihrer Spektralreflexion aufwiesen während des Aufnahmezeitpunkts. 

Zusammenfassend lässt sich sagen, dass der multisaisonale Ansatz eine niedrigere 

Spektralauflösung bot, aber eine höhere räumliche und zeitliche Auflösung als der monotemporale 

hyperspektrale Ansatz. Allerdings eignet sich der multisaisonale RapidEye-Ansatz zur Extraktion 

der Parameter Walfläche, -typ und –veränderung sowie Baumarten. Die Kosten der multisaisonalen 

multispektralen Methode werden leichter zu decken sein als die der hyperspektralen Methode, 

wenn man die begrenzte Abdeckung des Hyperspektralsystems bedenkt. Es ist zu erwarten, dass 
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dieser Trend sich mit der nächsten Generation hyperspektraler Satelliten, EnMap und SPECTRA, 

sowie dem multisaisonalen Satelliten Sentinel, fortsetzen wird. Um größeren Erfolg bei der 

Waldinventur von der nächsten Generation Satelliten zu erreichen, wird eine leichte Verbesserung 

in der räumlichen Auflösung empfohlen, damit die Herausforderungen eines hoch strukturierten 

Waldes der nächsten Generation gemeistert werden können. Zusätzlich sollten die multisaisonalen 

Fähigkeiten im Fokus der Entwicklungspläne bleiben, damit der herausforderndste Parameter – 

Baumarten – erfasst werden kann. Während die qualitativ hochwertigen Spektraldaten des 

Hyperspektralansatzes als überflüssig angesehen werden können, könnte das Hinzufügen einiger 

zusätzlicher Bänder bei den zukünftigen Multispektralsatelliten bei der Identifizierung von 

Baumarten von Vorteil sein. 
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1 Introduction 

1.1 General background 

Forests are the most widely distributed vegetation ecosystem on the earth, accounting for 

approximately 31% of the global land cover (FAO, 2010), and serving as a significant store of 

CO2. Forest management planning plays an important role in maintaining the long-term health of 

forests, one of the most important natural resources for economy (Franklin, 2001). Following the 

idea of sustainability (Carlowitz, 1713, reprint 2013), since the end of the eighteenth century, forest 

management planning has arisen in German-speaking countries in form of fundamental forest 

management textbooks, planning techniques and theoretical forest models, and sustainable forest 

management (Knoke et al., 2010). Recently, the economic and environmental importance of forest 

resources has prompted forest management planning to take into consideration the strategic, tactical 

and operational levels of planning, such that the highest feasible utility is yielded (Holmgren and 

Thuresson, 1998).  

The forest management planning process defines the management goals and the measures to be 

taken for the next planning period, in Bavaria, Germany, usually being conducted over a span of at 

least ten years. Forest management planning is typically based on forest inventories (McRoberts 

and Tomppo, 2007). Forest inventory can be recorded using three categories of information 

including the spatial extent of forest cover, forest type, and biophysical and biochemical properties 

of the forest (Boyd and Danson, 2005). Traditional forest inventories are terrestrial observations 

relying on sample-based methods to collect up to 200 variables, including but not limited to: forest 

area, tree species, health conditions, growth, regeneration, removal, trends, forest height, and 

damages etc.. These terrestrial inventories are time-consuming and cost-intensive. Given these 

challenges, remote sensing has been presented as an alternative, or supplementary method to meet 

ongoing demands for forest resource information at extended spatial and temporal scales (Vohland 

et al., 2007).  

The idea of applying remote sensing in forest management planning activities was first revealed 

in the newspaper “Berliner Tagesblatt” in 1886. Its integration in operational forest management 

began with the use of aerial photography in the first half of the twentieth century. Traditionally, 

and up until the present day, remote sensing practices have consisted of the interpretation and 

analysis of aerial photography in order to facilitate the creation of forest inventory and monitoring 

practices, and make these tasks more efficient (Boyd and Danson, 2005; Knoke, 2012; McRoberts 
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and Tomppo, 2007). The evaluation of aerial photography is typically accomplished through the 

use of visual interpretation, with the aim of direct decision making. Additionally, orthophotos are 

often used for orientation in the forest, or as maps for delineating forest stands or damages. 

In the second half of the twentieth century, with the launch of the first Landsat satellite in 1972, 

space born remote sensing applications were revolutionized. Since then, numerous varieties of 

optical satellite systems have been launched into space. Optical satellite data have been routinely 

applied to forest management planning at different mapping scales, from local to global. There are 

many systems available for choosing the appropriated data type at the desired level of mapping, 

where selections are based on the system characteristic known as “the resolution”. Four resolution 

types are defined according to their “technical” characteristics: the spatial, the spectral, the 

radiometric and the temporal resolution. Satellites can be categorized based on their spatial 

resolution and the scale of their achievable end mapping scale, as outlined in Table 1. 

Table 1: Categories of the currently available optical remote sensing systems based on their spatial 
resolutions and the achievable mapping scale range, adapted after (Knoke, 2012) 

Spatial 

resolution 
Characteristic System example 

Mapping scale 

Better than 

500 – 5,000 m 
Global 

“Low resolution” 

Meteosat, NOAA AVHRR, 

Vegetation, etc. 
1 :1,000,000 

50 – 500 m 
Regional 

“Mid-resolution” 

Landsat MSS, WIFS, MERIS, 

MODIS. 
1:500,000 

5 – 30 m 
Regional 

“High resolution” 

Landsat TM und 7, Spot, IRS, Rapid 

Eye, etc. 
1:50,000 

1 – 4 m 
Stand level 

“Very high resolution” 
Ikonos, Quick Bird, WorldView, etc. 1:10,000 

< 1 m 
Local 

“Extreme high resolution” 

Digital Aerial images: VMS 

EXCEL© Cam, DMC, etc. 
1:500 

While the benefits of optical remote sensing systems are numerous, data costs (rule of thumb: 

the higher the resolution the higher the costs) and handling costs (down streaming, storage, 

computation time) serve as the limiting factors as to the chosen resolution for a given application. 

As space systems operated from satellites are usually designed for specific application profiles, a 

key emphasis is placed on the required resolution type. 

This research is focused on informing decision makers of forest enterprise at the strategic / 

tactical level (see Figure 1) and finding operational solutions. At this level, high resolution (HSR) 

satellite data can provide information needed for forest management planning towards inventory 

and monitoring (Holmgren and Thuresson, 1998). Remote sensing requires simultaneous imaging 

of the entire area managed by an enterprise in order to keep the assessment conditions comparable 

and the information detail available, at least at stand level. Optical data of HSR (5 – 30 m) satellite 
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category are adequate for forest mapping down to the forest stand level (De Kok et al., 1999). 

Moreover, satellite data at the HSR level is more cost effective and offers an operational solution 

for forest enterprises. While the options offered by HSR multispectral satellite systems have been 

widely investigated for about three decades, the improvements made by increasing the spectral 

and especially the temporal resolution are still in question and are addressed in this thesis.  

500-5,000 m 

Low resolution

50-500 m 

Mid-resolution

5-30 m 

High resolution

< 1 m

Extreme high resolution

To offer an operational option of providing 
information on the strategic / tactical decision level

Focus of the research

At forest stand level
Adequate for forest 

mapping 

DSS for forest 
enterprise

Contribute to

High spectral 

resolution

High temporal 

resolution

In front line of HSR 

sensor development

Hyperion

RapidEye

Available systems

Results

- Forest parameters -

Spatial resolution m 

& Characteristic

L
o
w
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o
st

H
ig

h
 c

o
st

To achieve information 

about forest

1-4 m

Very high resolution

 
Figure 1: Conceptual framework of the research 

The aforementioned HSR improvements are in the front line of optical satellite development. 

Therefore, research to enhance the spectral resolution or the multi-date1 acquisition capabilities 

of current and next generation space-borne sensors remains ongoing. The hyperspectral Hyperion 

sensor is the space-borne sensor available for this work of the HSR family, which offers detailed 

spectral resolution data. Meanwhile, the only space-borne system of the HSR family offering high 

revisiting frequency so far is the RapidEye constellation system (status February 2015). The 

Hyperion sensor on board NASA Earth Observation 1 (EO-1) satellite was launched into space in 

the year 2000. The sensor covers both the visible near-infrared (VIS / NIR) and the shortwave-

                                                 

1 The term multi-date data can refer to multi-temporal or multi-seasonal data. In this work, the term of multi-

seasonal data refers to a dataset from different growing seasons (phenological phases) from a single year, or multiple 

successive years. Meanwhile, the term of multi-temporal data refers to a dataset from different years but from similar 

growing seasons. 
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infrared (SWIR) spectrum (400-2500 nm) collected in about 200 spectral bands, at a ground spatial 

resolution of 30 m. Following this, the RapidEye constellation, consisting of 5 identical sensors, 

was launched into space in 2008. Each RapidEye sensor collects five spectral bands (VIS / NIR) 

and is capable of data acquisition every 2-3 days. The data collected has a pixel size of 6.5 m 

(resampled to 5 m) and a swath width of 75 km. 

The spectral signature is considered to be the data characteristic with the highest information 

content for identification and status assessment of the Earth’s surfaces. The attempt to increase the 

spectral resolution of optical systems is driven by the idea to redraw the spectral signature of Earth 

surfaces as accurately as possible, in order to make the entire spectral diagnostic option via satellite 

data available. For this reason, we are looking forward to the German EnMap hyperspectral system, 

which originally was to be launched in 2011, before technical challenges prompted a rescheduling 

to March 2018. Instead, the hyperspectral datasets of the experimental Hyperion system were 

analyzed in this work, which offer similar specifications of the spectral and spatial resolutions to 

the EnMap. 

Many studies, investigating the spectral option, showed the limitations of spectral signatures in 

determining diagnostic characteristics of vegetation (Davranche et al., 2010; Eckert and 

Kneubühler, 2004; George et al., 2014; Mickelson et al., 1998; Pengra et al., 2007; Reese et al., 

2002; Schriever and Congalton, 1995; Stoffels et al., 2012; Townsend and Walsh, 2001; Wolter et 

al., 1995). These studies indicated that imaging differing phenological stages may not only be a 

complementary solution, but also a precise indicator for the identification of tree species, at a 

minimum. For the first time, the RapidEye system, an operational system of the high resolution 

HSR category, allows for the investigation of the option of multi-seasonal image analysis (more 

details in section 3.2.1.2). Primarily seen as a system supporting precision agriculture, the EUS-

FH project (Schneider, 2013) investigated the success of multi-seasonal RapidEye time series in 

forest species identification. Therefore, we are looking forward to the Sentinels satellites, the 

planned missions aiming to enhance the revisit capability, which will increase the opportunity of 

acquiring multi-seasonal data. There are seven Sentinel missions, each consisting of two satellites, 

and the first satellite of Sentinel-1 was launched on 3 April 2014. 

Foresters conducting fieldwork expect remote sensing data to fulfill the needs of forest 

management planning in practice. In a study (Felbermeier et al., 2010) aimed at determining 

foresters’ requirements of remote sensing application in forest management planning, the most 

important forest parameters were found to be tree species, forest area, forest boundary, and 

damages (changes) inflicted on forest. Forest cover and damages thereby appear as the most 
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essential parameters since they incorporate the forest area, boundary and gaps all together. 

Additionally, forest tree species has been, and continues to be, representing the frontline in forest 

related remote sensing research, and remains the most challenging task for the remote sensing 

community. Furthermore, tree species mapping has been identified as necessary in assisting 

remotely sensed data to achieve its full potential in forest inventory and monitoring. Moreover, tree 

species mapping are basic information necessary to control biotic pests, a major threat to forests 

caused by global warming which threatens tree species specifically. 

However, research to date has been met with limitations in achieving these parameters. These 

limitations can be summarized in three main points:  

First, a fixed definition for forest cover is yet to be assigned, despite having thirty years’ 

experience in mapping and monitoring forest cover from satellite (Bennett, 2001). Similarly, there 

remains no unified definition of forest among all European countries (Pulla et al., 2013; Schneider 

et al., 2013). There still exists a disagreement as to the appropriate forest definition between the 

remote sensing community, who have been mapping wood land as a forest, and the foresters, who 

hold other expectations. 

Second, although the detection of damages and changes in forests have been intensively 

investigated, the search for an operational solution is still underway. Typically, multi-date satellite 

optical data can offer an operational solution for forest change and damage detection, though clouds 

and haze challenge the optical systems (Nagendra et al., 2013). Given these challenges, one 

recommendation for further research is to collect data more frequently over time (multi-seasonal) 

in order to increase the likelihood of overcoming issues with clouds (Duveiller et al., 2008). 

A third limitation remains as no operational solution has been determined for tree species 

identification to date. Many studies proposed that the increase of the spatial, spectral and the 

radiometric resolutions will be the key to achieving better tree species identification (Boyd and 

Danson, 2005; Salajanu D. and Olson C. E., 2001; van Ardet and Wynne, 2001). Using multi-

seasonal data may increase the chance of better identifying forest species (Wolter et al., 1995). This 

is attributed to the spectral variations between the different classes in different seasons or 

phenological phases, referred to as the ‘‘phenological fingerprint’’. The search for the optimal 

operational method of tree species is still underway, with uncertainty over whether to use the 

hyperspectral or the multi-seasonal approach. Investigation into the ‘‘phenological fingerprint’’ 

concept is still very limited and many economically important questions need to be answered (see 

section 1.2; objective 4).  
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1.2 Aim and hypotheses of research 

The aim of this thesis is to compare two approaches, offered by leading optical satellite sensor 

technologies, in order to deliver operational solution for forest parameters determination. The first 

is the hyperspectral mono-temporal approach using Hyperion data, and the second is the 

multispectral multi-seasonal approach using RapidEye data. According to the foresters’ 

requirements for application in forest management planning (Felbermeier et al., 2010), the targeted 

parameters to be extracted are: 

1- Forest cover and forest type 

2- Forest changes (only applying the multi-seasonal approach) 

3- Forest tree species. 

Working with different sensor types in differing geographical regions, the comparison is 

conducted on behalf of the extraction success of parameters required by operational forest 

management at the strategic / tactical decision level of an enterprise. An overview about the 

workflow is given in Figure 2.  

The investigation into the hyperspectral Hyperion approach is carried out in Anopoli, a forested 

region representative of the Mediterranean. Anopoli is located on the island of Crete in the 

Mediterranean Sea, and holds the most extensive remains of Crete’s coniferous forest. In contrast, 

the investigation into the multispectral multi-seasonal RapidEye approach is carried out in three 

forest growth regions in Bavaria. The first of these sites is the Bavarian Forest National Park 

(BFNP), the first and one of the biggest national parks in Germany located in the growth region 

Innerer Bayerischer Wald, (Wuchsbezirk (WB) 11.3). The second is the Freising forest located in 

the growth region Oberbayerisches Tertiärhügelland (WB 12.8). The last site is Traunsteiner 

Stadtwald located in the growth region Östliche kalkalpine Jungmoräne (WB 14.4 / 3), which 

neighbors the Alps. To compensate for the lower radiometric resolution of the less technically 

advanced Hyperion (generation of the mid-1990s techniques, more details in section 3.2.1.1), 

Hyperion data from the Crete island in the Mediterranean were investigated, registered at better 

illumination conditions and less affected by aerosols than the compared RapidEye data from 

Bavaria. 
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Figure 2: The general direction, objectives and publications of the thesis 

The outcomes of both approaches will inform us as to which method should be considered as 

most suitable for each parameter extraction. In this pursuit, the following objectives were defined 

(see also Figure 2): 

Objective 1: To investigate various analysis techniques applied to the single Hyperion data to 

extract the following parameters: forest cover, types and tree species. The results should 

contribute to further investigations regarding the multi-seasonal multispectral RapidEye 

data approach (section 4.3) 

Objective 2: To investigate methods development using mono-temporal RapidEye data for forest 

type and cover mapping in the three Bavarian test sites. The necessary characteristics of 

this method include the delivery of precise results, quick implementation, and easy 

transferablility into any of the test sites (section 4.4) 

Objective 3: To investigate an operational solution using multi-seasonal RapidEye data for forest 

database annual updates. The solution should overcome the issue of clouds and visibility 
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and be transferable to defferent test sites. Furthermore, the solution should offer the ability 

to quickly respond to sudden changes at a reasonable cost (section 4.5.1) 

Objective 4: To investigate the success of multi-seasonal RapidEye data in applying the 

‘‘phenological fingerprint’’ concept in order to determine forest tree species 

(section 4.5.2). The investigation should answer questions of key economic importance. 

These questions include: 

 How many datasets from various phenological phases are needed to obtain the most accurate 

results? 

 How does using additional bands or indices influence tree species identification? 

 Is there a phenological phase with high potential for identifying a specific tree species? 

 Which phenological phase is the most promising to identify all tree species? 

Questions about the possible outcomes triggered three main hypotheses that will be tested in this 

research, and will be addressed in the general discussion. The main question raise here is, which 

approach could be used to achieve more information about these parameters? The hyperspectral 

approach utilizes Hyperion data which has very rich spectral information (200 bands), while the 

multi-seasonal multispectral approach utilizes RapidEye data which has poor spectral information 

(only 5 bands). Although RapidEye data are collected over a time span that includes variations in 

vegetation phenology, their spectral resolution is poor in comparison to the Hyperion data. Given 

these traits, the normative assumption is that the Hyperion data will surpass the RapidEye data, 

giving rise to the first hypothesis of this work: 

H1: Hyperspectral resolution outperforms multi-spectral high temporal resolution in 

determining forest parameters. 

With a focus on identifying forest depletion arising from standard management practices and 

unexpected events such as storms, the forest cover database updates rely on aerial image surveys 

that take place once every three years covering all of Bavaria, and annually for the BFNP. Applying 

satellite optical data is still problematic due to the cloud cover problem, especially in Mid-Europe. 

This leads to the second hypothesis in this work: 

H2: The multi-seasonal RapidEye data evaluation approach does not meet the requirements for 

annual forest database updates. 
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Tree species is both the most important and the most challenging parameter to be extracted, and 

to date no sensor has been able to offer an operational solution for tree species mapping. Still, 

multi-seasonal multispectral RapidEye system offers data from various phenological phases, and 

could have the potential to increase the separability between the tree species. RapidEye data, 

however, have only five bands which may not contribute to the success of the ‘‘phenological 

fingerprint’’ principle. Accordingly, the third and most important Hypothesis to be tested here is: 

H3: Applying the ‘‘phenological fingerprint’’ concept using the multi-seasonal RapidEye data 

does not improve the identification success of forest tree species significantly. 

1.3 Embedded original publications and author’s contributions 

This thesis includes four publications (Figure 2) and covers investigations into both 

hyperspectral and multi-seasonal approaches. The titles, short summaries and author’s 

contributions of the publications are the following: 

First publication: Elatawneh A., Kalaitzidis C., Petropoulos G. P., Schneider T. 

2012. Evaluation of diverse classification approaches for land use / cover mapping in a 

Mediterranean region utilizing Hyperion data. International Journal of Digital Earth. doi 

10.1080/17538947.2012.671378 

This work investigates the extraction of the forest parameters in Anopoli using hyperspectral 

Hyperion data. Here, extraction of the forest parameters from remote sensing data is based on image 

classification. The techniques which classify each pixel in the remote sensing data as an individual 

unit are called pixel-based techniques, while those that classify groups of pixels as one unit are 

called object-based techniques. Moreover, the techniques which break the pixels down to define 

the surface material fractions are called spectral unmixing. The pixel-based, spectral unmixing, and 

object-based classification techniques are applied to the Hyperion data for extracting the required 

forest parameters.  

Author contributions: This publication was written by Alata Elatawneh with a simultaneous 

contribution by George Petropoulos. All data collection, preparation and analysis were done by 

Alata Elatawneh under the supervision of Chariton Kalaitzidis. The research approach was 

developed by Alata Elatawneh and Thomas Schneider. The research coordination and revision of 

work structure was done by Thomas Schneider. 

Second publication: Schneider T., Elatawneh A., Rahlf J., Kindu M., Rappl A., Thiele A., Boldt 

M., Hinz S. 2013 Parameter Determination by RapidEye and TerraSAR-X Data: A Step Toward a 
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Remote Sensing Based Inventory, Monitoring and Fast Reaction System on Forest Enterprise 

Level; In: Krisp JM, Meng L, Pail R, Stilla U, eds. 2013. Lecture Notes in Geoinformation and 

Cartography. Berlin, Heidelberg: Springer Berlin Heidelberg, S. 81-107 

This publication investigates the extraction of the parameters forest cover, type, and gaps in the 

Bavarian test sites. The publication investigated the use of the multi-seasonal RapidEye data and 

the radar data from the active sensor Terra-SAR-X, although this accumulative thesis includes only 

the RapidEye data analysis section. The methods developed in this publication for the forest cover, 

types and gaps extraction will be further improved, as presented in section 4.3. 

Author contributions: This publication was written by Thomas Schneider, Alata Elatawneh, 

Adelheid Rappl (now Wallner), and Antje Thiele with contribution by Johannes Ralf and Mengistie 

Kindu. RapidEye data analysis was done by Alata Elatawneh, and related geospatial data collection 

and preparation was conducted by Adelheid Rappl. TerraSAR-X data analysis were done by Antje 

Thiele and Markus Boldt. The research coordination and major revision of the work was done by 

Thomas Schneider and Stefan Hinz. 

Third publication: Elatawneh A., Wallner A., Manakos I., Schneider T., Knoke T. 2014. Forest 

Cover Database Updates Using Multi-Seasonal RapidEye Data—Storm Event Assessment in the 

Bavarian Forest National Park. Forests. 5: 1284-1303. 

This publication investigates the extraction of the forest changes parameter, or in other words, 

the continuous updating of forest cover database using multi-seasonal RapidEye data. The method 

is developed to be applicable in various areas and is designed to be easily applied. The intention 

behind using multi-seasonal RapidEye data is to detect changes caused by regular management and 

sudden events, such as storms, in Bavaria. It demonstrates the success of using multi-seasonal 

RapidEye data, and its benefits in comparison to the aerial images. 

Author contributions: The paper was written by Alata Elatawneh with a contribution by Ioannis 

Manakos. Geospatial data collection and preparation was done by Adelheid Wallner. The research 

approach was developed by Alata Elatawneh and Thomas Schneider. The research coordination 

and significant contribution to the discussion was done by Thomas Knoke. 

Fourth paper: Elatawneh A., Rappl A., Rehush N., Schneider T., Knoke T. 2013. Forest tree 

species identification using phenological stages and RapidEye data: a case study in the forest of 

Freising. In book: From the Basics to the Service, Editors: Erik Borg, Holger Daedelow, Ryan 

Johnson, Publisher: GITO Verlag, pp.21–38. ISBN: 978-3-95545-022-1 
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Here, the extraction of the most challenging forest parameter, tree species, is investigated using 

multi-seasonal RapidEye data. The method is developed and tested in the Freising test site, and 

RapidEye data from all seasons over three years are collected. The intention is to check the potential 

of using data from different growing seasons to increase the separability between the tree species. 

Author contributions: The paper was written by Alata Elatawneh with contribution by Adelheid 

Rappl (now Wallner). Geospatial data collection and preparation was done by Adelheid Rappl (now 

Wallner). RapidEye data preprocessing was carried out by Natalia Rehush. The research approach 

was developed by Alata Elatawneh and Thomas Schneider. The research coordination and 

significant contribution to the discussion was done by Thomas Knoke. 
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2 Literature reviews 

2.1 Hyperion data and forest mapping 

Hyperspectral remote sensing is a rich source of spectral data that provides potential information 

on several vegetation variables relating to the biophysical, physiological or biochemical 

characteristics (Hansen and Schjoerring, 2003). The Hyperion hyperspectral sensor was launched 

in late 2000 as the first high spatial resolution hyperspectral sensor on board EO-1 satellite. This 

presented the opportunity to investigate the use of Hyperion data for applications related to work 

in land use / land cover classification and forest studies. This section will summarize the findings 

of the studies that compared Hyperion data with other hyperspectral data, or with multispectral 

satellite data. It will also summarize the potential benefits and challenges of using Hyperion data, 

in addition to highlighting the importance of the acquisition date. 

Hyperion data has often been compared to multispectral Advanced Land Imager (ALI), the 

Enhanced Thematic Mapper plus (ETM+) data for land cover and forest studies, and in 

investigations intended to demonstrate the abilities of the so far unique Hyperion sensor. Xu and 

Gong (1984) compared Hyperion data with ALI data for land use / land cover mapping including 

forest cover. They conclude that Hyperion had no significant improvement on mapping level I 

(Anderson et al., 1976) relative to current study forest cover, while only slight improvement was 

achieved by Hyperion on mapping level II forest types. Conversely, list of studies reveal that 

Hyperion outperformed ALI, while ALI achieved better results than ETM+. Of this list is a study 

conducted in Canada (Goodenough et al., 2003), where Hyperion data provided better results than 

those of the ALI and ETM+ multispectral data for classification of land cover and forest tree 

species, as attributed to the great dimensionality of Hyperion spectra. Another study in the 

Himalayas (George et al., 2014) compared Hyperion data with Landsat ETM+ when mapping tree 

species, and concludes the outperformance of Hyperion was due to the narrow spectral bands, 

which increase the variations between the tree species. Additionally, Thenkabail et al., (2004) 

compared Hyperion data with the high spatial resolution IKONOS and high spatial resolution 

multispectral ALI, and ETM+ data for the classification of 9 forest classes in Cameroon. Here, 

results indicate that Hyperion outperformed other data because of its rich spectral information, even 

in comparison to the high quality spatial resolution data of IKONOS. 

In general, all previously mentioned studies focused on the spectral capability of the Hyperion 

data. However, two specific studies (Goodenough et al., 2003; Thenkabail et al., 2004) pointed out 
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that spatial characteristics of the sensor should be investigated in the future. This recommendation 

was supported by a third study (Walsh et al., 2008) which utilized high spatial resolution QuickBird 

images to help analyze Hyperion data for invasive species mapping. The authors here proposed 

that data fusion between these two data type will increase mapping efficiency (Walsh et al., 2008). 

In addition to high spectral resolution, the use of Hyperion data holds further potential with its 

broad scale of data coverage and the higher frequency of data acquisition, making it applicable to 

real world problems (Pengra et al., 2007; Petropoulos et al., 2012a). Furthermore, the low cost of 

Hyperion data in comparison to airborne hyperspectral data has been highlighted (Pignatti et al., 

2009). Moreover, using Hyperion data showed a possibility for retrieving biophysical and 

biochemical variations as a result of variations in LAI (Eckert and Kneubühler, 2004). 

Disadvantages of the Hyperion data have also been reported. The main issue with this technique 

is that space-borne hyperspectral sensors receive low reflected energy from the Earth surface even 

at 30 m spatial resolution. This decreases the variation in spectra between various surfaces (Pengra 

et al., 2007). As a result, the signal to noise ratio (SNR) is increased. Meanwhile, a relatively low 

spatial resolution combined with small pattern targeted classes (Eckert and Kneubühler, 2004) or 

low density of class cover (Walsh et al., 2008) often produces mixed pixels which increases the 

confusion between classes. It was also found that, mixed pixels used within training areas as 

samples for classification will decrease the accuracy of the samples and consequently decrease the 

achieved result accuracy (Carpenter et al., 1999; Pignatti et al., 2009; Walsh et al., 2008). 

Finally, a very important point regarding the acquisition time of the Hyperion data selected for 

the analysis must be made. While all previously mentioned studies utilized Hyperion dataset for 

vegetation and forest analysis, only few highlight the importance of the acquisition date. George et 

al., (2014) stated that the data was intentionally selected in April because of higher phenological 

variations between tree species, and the high solar illumination achieved high SNR at that time. 

Pengra et al., (2007) selected the data in September, for the pronounced spectral variation between 

their targeted invasive species and other wetland classes, assisting them in their mapping efforts. 

Conversely Eckert and Kneubühler (2004) addressed the late phenological phase at the time of data 

acquisition, and the low observed spectral variation among the agricultural fields in the test areas 

as one of the reasons for obtaining low accuracy. However, collecting optical satellite data at any 

preferred time is made challenging due to many factors including but not limited to cloud free 

coverage, solar illumination, research area location, or time restrictions of field campaigns. These 

factors may significantly decrease the time span for data acquisition, perhaps explaining why other 
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studies were restricted to unsuitable acquisition dates, such as in December, for forest classification 

(Pignatti et al., 2009). 

All in all, investigations into using Hyperion data for forest applications are very limited. Studies 

have focused primarily on comparing Hyperion with other multispectral sensors, as well as the 

potential benefits and limitations of the sensor characteristics. However, investigations into the 

Hyperion system’s potential operational applications, such as extracting forest attributes, are 

limited. Goodenough et al., (2003) is the only study that states tree species identification with an 

accuracy over 80% would be considered operational. However, the study did not take into 

consideration all the limiting factors influencing the creation of an operational approach. However, 

the investigation into Hyperion’s potential for operational applications in forestry should take into 

account a range of limiting factors including: spatial resolution, temporal resolution, the SNR, area 

coverage and cost. 

2.2 Multi-seasonal data of forest mapping and monitoring 

The evolution of space-borne remote sensing has produced numerous satellites providing ever-

increasing quantities of multi-date data. The temporal component offered by such data has the 

potential to produce complex information that can be further used in applications such as 

environmental monitoring and land cover dynamics (Bruzzone et al., 2003). Since the launch of 

the Landsat satellite family in 1972, the use of multi-date data has been investigated for forest 

inventory recordings including forest cover mapping, monitoring, and tree species identification. 

As previously mentioned, multi-date data include multi-temporal and multi-seasonal data. Studies 

show that even single date data can be successful in mapping forest cover and types, however, 

mapping success can be increased using multi-seasonal data. Meanwhile, forest cover monitoring 

depends on multi-date images. Achieving forest tree species identification, a leading goal of forest 

related remote sensing research, has been and remains to be a challenging task. There have been 

no operational options offered in the literature, despite breakthroughs in active sensors (LIDAR, 

RADAR) and optical passive system (multispectral, hyperspectral). This is due to the cost and 

limited coverage of the active and hyperspectral sensors, leaving multi-seasonal data as the only 

promising approach towards offering operational tree species mapping. There have been few 

studies directed towards tree species mapping with a multi-seasonal approach, despite the fact that 

this topic relates to many key research questions of economic importance. 

In general, remote sensing of forest mapping depends on land cover classification, in particular 

separating forest from non-forest cover (Boyd and Danson, 2005). In a review of multispectral data 
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applications, Holmgren and Thuresson (1998) showed that most studies followed the classification 

scheme for forest cover mapping proposed by Anderson et al., (1976). Anderson’s classification 

scheme includes many levels, where forest cover belongs to Level I, forest types (coniferous, 

deciduous, and mixed forest) belong to Level II, and forest tree species belong to Level III.  

Using high spatial resolution sensors (e.g. Landsat, SPOT), studies have successfully classified 

forest cover, ranging from regeneration forests to mature forests. Although results suggest that 

single data can map forest cover precisely, multi-date data proved to help in overcoming problems 

associated with clouds (Nagendra et al., 2013). Additionally, multi-seasonal data have the potential 

to increase the forest types mapping success, especially when using data collected in spring or 

autumn (Borry et al., 1993; Schriever and Congalton, 1995). Walsh (1980) showed that data from 

mid-autumn achieved better forest type results than summer data due to the phenological variation 

and the low sun angle, which help to detect gaps. Conversely, using data from early summer data 

has also been recommended because of the high sun angle (Holmgren and Thuresson, 1998). Others 

addressed the issues of rugged terrain and mixed forest as problems which decreased the quality of 

the achieved results (Dorren et al., 2003; Reese et al., 2002). 

Vegetation applications, including detecting forest changes, have been developed and used in 

the last three decades (Chen et al., 2012; Coppin et al., 2004; Lu et al., 2004). Studies focusing on 

the high resolution sensors such as: Landsat and SPOT (Carvalho et al., 2001; Desclée et al., 2006; 

Duveiller et al., 2008; McDermid et al., 2003; McDermid et al., 2008; Willhauck et al., 2000), dealt 

with forest loss and disturbance monitoring (biotic and abiotic), and obtained appropriated results. 

None of the above studies overcame the problem with clouds, despite having identified this 

problem as the main obstacle with the use of optical data. In a study estimating the deforestation 

rate in central Africa, (Duveiller et al., 2008) concluded that the cloud problem is the only obstacle 

standing in the way of considering their method operational. As a solution, they recommended 

using more frequent multi-date data or using data from active sensors (Duveiller et al., 2008; 

Nagendra et al., 2013). While active sensors fusion with optical data showed the ability to detect 

changes (Rappl et al., 2012; Thiele et al., 2012), their high cost and small operating area restrict 

their present contributions at the operational level.  

Forest tree species mapping using multi-seasonal remote sensing data has been investigated in 

many studies. The approach used most often for forest tree species mapping was typically based 

on the “phenological fingerprint” hypothesis, which assumes that phenological developments of 

different tree species shows distinct shifts in appearance, which can be explored for classification. 

Past research has investigated various topics such as: the influence of using datasets from different 
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seasons, and the most appropriate data collection seasons to achieve the best tree species 

separability. Limited research has been conducted to investigate the quality of tree species 

identification results through the increase of dataset numbers or the collection of datasets in 

different seasons. 

Studies investigating the multi-seasonal data for tree species identification utilized mainly 

Landsat data (Mickelson et al., 1998; Reese et al., 2002; Schriever and Congalton, 1995; Townsend 

and Walsh, 2001; Wolter et al., 1995), SPOT data (Stoffels et al., 2012) and ASTER data 

(Davranche et al., 2010). A range of two to eight datasets has been used, and the results declared 

that combining all data together achieved higher accuracy than using a single dataset. However, 

none of these studies focused on the effects of an increased number of dataset combinations on the 

accuracy. 

Two other studies using only very high spatial resolution airborne data investigated the effect 

of increasing the number of datasets on accuracy. First, Key et al., (2001) investigated nine aerial 

photos for tree species classification, and reported the highest accuracy by using all bands and five 

to six images, out of a possible nine. The second study by Hill et al., (2010) investigated all possible 

combinations of five multispectral airborne sensor ATM datasets (2 m spatial resolution). Their 

results reported that the highest accuracy was achieved when a combination of three datasets out 

of five were used. However, the authors reported that the quality of the data is far more important 

than quantity of data, in terms of capturing the highest variation in phenology between species.  

Determination of the best season for data collection in pursuit of species separation was also 

researched, and different results were reported. Researchers consistently reported that autumn has 

a high potential as a successful season for data collection because of phenological conditions (Hill 

et al., 2010; Schriever and Congalton, 1995; Wolter et al., 1995). Others show that in addition to 

autumn, spring (Mickelson et al., 1998) or summer (Reese et al., 2002) show potential for species 

determination. 

It is key to identify the season most suitable for data collection in order to potentially identify a 

specific tree species, and for this reason some studies have investigated this issue Table 2. Hill et 

al., (2010) noted that data from early spring, collected during times where deciduous trees were 

leafless, were helpful in detecting silver birch and European oak. This was due to the reflectance 

of the understory vegetation related to these species. However, their second data collection period 

was in late May when no phenological differences were captured. Therefore, they recommended 

the end of April as an ideal acquisition time when different timing of budburst and leaf unfolding 

between silver birch, European oak and elm is higher. The authors also revealed that data collected 
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at the end of September had a high potential to detect field maple as a result of the full autumn 

coloring of this species. Data collected at the end of October were shown to have little potential to 

separate European oak, but data collection in mid- or late November to detect oak were 

recommended, when autumn coloring is reached.  

Table 2: Some studies that investigated the season most suitable for data collection in order to identify a 
specific tree species and their findings 

Study reference, 

region 

Date of 

acquisition 

Species to be 

detected 
Finding 

Hill et al., (2010), 

Cambridgeshire, 

Estern England 

Mid-March 
Silver birch, 

European oak 

Deciduous trees were leafless, 

understory vegetation had 

distinct spectra 

Late May 
Silver birch, 

European oak 

There were no phenological 

differences 

Recommended 

late April 

Silver birch, 

European oak, elm 

Time difference of budburst and 

leaf unfolding 

Late September Field maple 
Maple reached full autumn 

coloring 

Late October European oak 
Data had little potential to 

separate oak 

Recommended 

mid- or late 

November 

European oak 
Oak autumn coloring was 

reached 

Schriever and 

Congalton (1995), 

Southeastern New 

Hampshire, USA 

Late October 
American beech, red 

oak, red maple 

Data had high potential, because 

red maple trees lost their leaves 

prior to the other two species 

Wolter et al., 

(1995), 

northwestern 

Wisconsin, USA 

Mid-October Red oak 
Red oak was the only deciduous 

species still holding their leaves 

Mid-September Black ash 
Black ash was the only leafless 

deciduous species 

Mid-May Trembling aspen 
Data could catch trembling aspen 

leaves unfolding 

Late February American larch 

American larch was the only 

coniferous species without 

needles 

Schriever and Congalton (1995) also found that data collected in October achieved the highest 

success for identification of American beech, red oak and red maple. However, they indicate that 

this success might have been due to the fact that maple trees lose their leaves prior to other species. 

Additionally, Wolter et al., (1995) point out the benefits of using Landsat data collected in mid-

October to separate red oaks, because they were the only deciduous species still holding their 

leaves. For black ash separation, data collection appeared promising during mid-September given 

that these were the only leafless deciduous species at that time. Data collected in mid-May were 

found to highlight trembling aspen leaf flush. Finally, data collected at the end of February were 

used to separate American larch from other coniferous species, because it was identified as the only 
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coniferous species without needles. On the other hand, the authors pointed out that it is difficult to 

identify sugar maple using only one dataset collected either in autumn (September, October) or 

spring (May), because of the similarity in autumn leaf coloring timing with aspen. These studies 

demonstrate the suitability of a specific season for only few tree species and a limited number of 

phenological phases due to limitations in the amount of data collected. 

Many other obstacles for analyzing multi-seasonal data to map tree species have been reported. 

Problems include phenological variations of the same tree species within the same area based on 

the aspect, altitude, or existence of water source, which can delay the autumn leaf coloring and fall. 

Also, the phenological phases are shifting from one year to another based on the weather 

conditions. Furthermore, data collected over a long time span may include changes attributed to 

reasons beyond phenological condition. Cloud cover is also often connected with active 

development of the phenological phase. An additional factor is the understory, which can be a good 

indicator for a tree species, but can be problematic by increasing the confusion between the tree 

species (Hill et al., 2010; Wolter et al., 1995). Additional problems associated with of multi-

seasonal analysis techniques are presented in section 2.3.2. 

2.3 Techniques for analyzing HSR optical data in forest applications 

One of the most common applications of remote sensing for land cover and forest mapping is 

the preparation of thematic maps using digital image classification (Foody, 2002). Classification 

can be broken down into three main groups: pixel-based, sub-pixel-based, and object-based. These 

techniques have been applied to multispectral data analysis and to hyperspectral data analysis for 

forest mapping. 

Pixel-based techniques can be unsupervised methods (i.e. ISODATA) or supervised methods 

(i.e. Maximum Likelihood - ML, Mahalanobis Distance - MhD, minimum distance - MD, Nearest 

Neighbor - NN, Support Vector Machines - SVM etc.). Unsupervised methods classify the pixels 

based on statistics only, without any pre-defined training classes, while supervised methods classify 

pixels based on pre-defined training classes. Unsupervised methods could be implemented with 

remote sensing data in order to better understand its spectral dimensionality and information 

content (Elatawneh et al., 2012; Walsh et al., 2008). Meanwhile, supervised methods are usually 

implemented to achieve final mapping of remote sensing data. 
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2.3.1 Techniques for analyzing Hyperion data 

Hyperspectral data, offering high spectral resolution, have encouraged the adaptation of a series 

of techniques in order to exploit their rich spectral information. To apply the supervised methods 

used originally to analyze multispectral data for Hyperion data, spectral dimensionality reduction 

(selection) is usually carried out. Many notable reduction techniques have been applied to Hyperion 

data such as: minimum noise fraction (MNF), principal component analysis (PCA), and linear 

discriminant analysis (LDA) (Goodenough et al., 2003; Nelson, 1984; Thenkabail et al., 2004). 

The supervised algorithms ML, MhD, and MD have also been applied to Hyperion data for forest 

mapping and classification, leading to the claim that the MD achieves the best results in comparison 

to the others (Pignatti et al., 2009). Still, other studies have successfully applied ML (Goodenough 

et al., 2003) and MhD (Nelson, 1984) to Hyperion data for the purpose of forest mapping and LU 

/ LC classification. Other techniques that can deal with the full spectral feature of hyperspectral 

data were developed, including Spectral Angle Mapper (SAM) (Kruse et al., 1993). SAM has often 

been used with Hyperion data to map forest cover and tree species. While some studies applying 

SAM to Hyperion data achieved better results in comparison to the other aforementioned 

classifiers, (Berrichi et al., 2012; Pignatti et al., 2009), others pointed out its limitations in 

comparison to support vector machine SVM (George et al., 2014) and object-based methods 

(Eckert and Kneubühler, 2004). Still, SAM classifier is highly insensitive to the illumination 

variation effect, because the algorithm uses only the direction of the vector and not its length in 

feature space. 

Sub-pixel-based techniques are designed to determine the relative abundance of land features 

that are depicted in remote sensing data based on the features’ spectral properties. Sub-pixel-based 

techniques can be divided into linear spectral mixing (Iordache et al., 2011) and non-linear spectral 

mixing (i.e. artificial neural network – ANN Heylen et al., 2014). Both linear and non-linear 

techniques have been applied to Hyperion data, yet studies reveal the non-linear technique 

consistently outperforms the linear technique (Pengra et al., 2007; Petropoulos et al., 2012a; Walsh 

et al., 2008).  

Object-based techniques have recently become commonplace in the remote sensing community 

for the purpose of digital image analysis (Baatz and Schäpe, 2000). However, few studies have 

applied object-based techniques to Hyperion data for forest mapping. A study (Eckert, 2006) 

comparing object-based and SAM techniques showed that object-based achieved slightly better 

results. However, this study concluded that the inaccuracy of the results provided by the object-

based technique was due to the low spatial resolution of the Hyperion data combined with the small 
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structured land pattern in the test site. Another study (Petropoulos et al., 2012b) compared object-

based technique with SVM for land cover mapping, and also showed that object-based techniques 

achieved better results. The strength and limitations of both results were discussed, and leading to 

the finding that the main limitation of the SVM was the ‘‘salt and pepper’’ effect, resulting from 

the small structured landscape and the 30 m pixel size of the system. A study in China (Wang et 

al., 2010) applied object-based techniques to Hyperion data for land cover classification and 

investigated the effect of the object size on the result accuracy. Researchers here compared the 

results with the pixel-based technique, and concluded that the object-based technique outperformed 

the pixel-based technique. 

All in all, object-based techniques show more flexibility over traditional pixel-based techniques, 

especially if the targeted class is of similar size or bigger than the pixel size of the analyzed data. 

In addition, object-based techniques have the capability to support transferability, easy GIS 

integration, and enhancement of the results through incorporation of additional features beyond 

spectral properties (Blaschke, 2010). The above findings increase the visual appeal of object-based 

approaches, making it a competitive paradigm for image analysis (Blaschke et al., 2014). Pixel-

based techniques require more careful training data regarding small areas, making their 

transferability difficult. Also, concerning the spectral reflectance of the data, pixel-based 

approaches are very suitable for small pattern classes, but have limited success in achieving the 

desired results for large scale classes. 

2.3.2 Techniques for analyzing multi-seasonal data 

Many studies have used varieties of pixel-based techniques (unsupervised and supervised) to 

classify forest cover classes. Since early 2000, object-based image analysis technique has been 

applied to land cover and forest mapping research, and shows the potential to achieve more accurate 

results than that of the pixel-based (De Kok et al., 1999; Eckert, 2006; Gao et al., 2007; Zhou et 

al., 2008). Additionally, the results of OBIA were more realistic and represent current situations 

better than the results of pixel-based techniques (Dorren et al., 2003). 

Forest change detection applications have been based on using many pixel-based methods in the 

last three decades (Coppin et al., 2004; Lu et al., 2004). Looking at the past decade, several methods 

using object-based image analysis techniques have been adapted and used for detecting forest cover 

changes (Carvalho et al., 2001; Duveiller et al., 2008; Eckert, 2006; Linke et al., 2009; McDermid 

et al., 2008; Willhauck et al., 2000; Wulder et al., 2008). Object-based change detection (OBCD) 

techniques have also shown advantages over pixel-based change detection techniques (Hussain et 
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al., 2013). Chen et al., (2012) arranged OBCD methods into four groups: image-object, class-

object, multi-temporal-object and hybrid change detection. The implementation of these methods 

have been discussed in previous studies (Desclée et al., 2006; Duveiller et al., 2008; Willhauck et 

al., 2000), and hybrid methods performed better than others when detecting forest change. This can 

be attributed to the insensitivity of this method to geometric registration errors, atmospheric 

fluctuations, and differences in vegetation due to phenological stage (Carvalho et al., 2001). The 

basic concept of the hybrid method is to initially obtain results of changes using any of the pixel-

based change detection algorithms, and then apply the object-based technique to enhance the results 

(Walter, 2004). This way, the calculation time can be reduced by avoiding segmentation of the 

whole image at the pixel level, while at the same time allowing for automation of the process. 

Given these benefits, a method with such characteristics has been used by the government of Minas 

Gerais in Brazil since 2003 (Chen et al., 2012). 

Many methods have been developed for using multi-seasonal remotely sensed data in order to 

conduct forest tree species mapping, with Maximum Likelihood (ML) being most commonly used. 

The ML can be a powerful classifier, if the suitable reference data are available and the assumption 

of having a multivariate normal distribution of spectral values of a thematic class holds (Stoffels et 

al., 2012). The ML classifier has often been applied to forest studies and has proven to be preferable 

over other classifiers such as minimum distance (MD), spectral angle mapper (SAM) and artificial 

neural network (ANN) (Shafri et al., 2007; Thomasson et al., 1994). However, ML can be strongly 

biased for small samples, and leading to incorrect classification when the data are multi-modal or 

non-normally distributed (Wang et al., 2008). On the other hand, SAM has been successfully 

applied to remote sensing data of high spectral dimension such as hyperspectral data, and has the 

potential to perform well with the high spectral dimension of multi-seasonal data. 

Many problems are typically associated with the analysis of the multi-date data because of the 

increased complexity of the information compared with single-date data (Bruzzone et al., 2003). 

Specifically, this includes the reduction of the geometric quality due to the geometric co-

registration errors between the images (Key et al., 2001), and an increase in the amount of training 

data required to analyze the dataset (Key et al., 2001). Including further data from other seasons 

provides additional information, but also can contain noise which leads to a slight reduction in the 

result quality, referred to as the ‘‘Hughes effect’’ (Hughes, 1968). In addition, there may be 

differences in the illumination and observation of the canopy based on different sun angles during 

each data take. Issues with these shadow effects can be reduced by using solely the sunlit crown 

canopy, as reported in a series of studies (Immitzer et al., 2012; Waser et al., 2014). These studies 
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used very high spatial resolution (0.5 m) Worldveiw-2 data for tree species classification, and 

showed that choosing training data within the sunlit crown of the trees will definitely improve the 

identification of single tree species. 
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3 Test sites and datasets 

3.1 Test sites 

Four test sites were selected to investigate which type of satellite data is more suitable for 

extracting the desired forest parameters. The first test site was Anopoli village in Crete, 

representing a Mediterranean forest environment, where hyperspectral Hyperion data were 

examined. The other three test sites were located in different growth regions within Bavaria as a 

central European forest environment. Here, multispectral multi-seasonal RapidEye data were 

examined. The Bavarian test sites were the Bavarian Forest National Park (BFNP) in a mountainous 

region, along with Freising and Traunsteiner Stadtwald forest in hillside growth regions. It would 

be preferable to have both data types acquired for the same test sites. However, this was not possible 

because of the lack of cloud-free or proper acquisition timing of Hyperion data in the Bavarian test 

sites, as well as the absence of free of charge RapidEye data in the Anopoli test site. Moreover, 

Hyperion data were collected in Anopoli, in order to compensate for the lower radiometric 

resolution of the Hyperion system as it was mentioned in section (1.2). 

3.1.1 Anopoli 

The test site of Anopoli is located on the southeastern Island of Crete in Greece (35°13’7”N, 

24°5’5”E). The study site is located between the White Mountains (Lefka Ori) in the north, 

extending down to the Libyan Sea in the south. The altitudes range from 0 m in the south up to 

2,200 m in the north. The climate typical for the Mediterranean is characterized by hot, dry 

summers and cool, wet winters, with a dry season starting in April and lasting until September. The 

landscape formation is greatly affected by lasting grazing processes, which is followed by 

deliberate fires and intensive tree-felling in the forest. The main vegetation cover types include a 

phryganic ecosystem, coniferous forests, cultivated fields of varied plantations and some alpine 

vegetation (junipers) at high altitudes.  

The phrygana cover a relatively large area, located between sea level and moderate altitudes 

(800 m). The dominant forest species here are pine (Pinus brutia), cypress (Cupressus 

sempervirens), Cretan maple (Acer sempervirens) and Mediterranean oak (Quercus coccifera). The 

spatial distribution of these species follows a vertical structure. For example, pines form pure stands 

beginning at sea level and become much denser at altitudes of 400 m up to 700 m. Many pine trees 

are infected by the Pine Processionary pest (Thaumatopoea pityocampa), and are mostly found at 

the Anopoli plateau at an altitude of 700 m. Gradually, cypresses begin to appear, forming mixed 
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stands amongst the pines, up to an altitude of 1,100 m. At this level and beyond to 1,500m, 

cypresses are dominant, and in some areas form mixed stands with maple and oak. Many species 

are found under the pine forest canopy such as Hypericum empetrifolia, Asparagus acutifolis and 

Osyris alba. Meanwhile, at high altitudes, vegetation cover is scarcer and differs from low to 

moderate altitudes with the presence of species such as Teucrium species. and Verbascum 

spinosum. 

3.1.2 Bavarian Forest National Park (BFNP) 

The study site of the Bavarian Forest National Park (BFNP) is located in southeastern Germany 

(49°03’53’’N, 13°21’57’’E) along the Czech Republic border. This is a mountainous area with 

altitudes ranging between 600 and 1,450 m. The BFNP was founded in 1970 as Germany’s first 

national park, and was extended in 1997 to hold a total area of 240 km2. Only the northern part of 

the park was chosen for the investigation, containing an area of 104km2, of which forest cover 

made up approximately 9,300 ha on 19 April 2011. The test site is located in the growth region 

called Innerer Bayerischer Wald (Wuchsbezirk (WB) 11.3). The landscape is divided into three 

ecological zones - highlands, hillsides and valleys. In each zone, different compositions of tree 

species are found. Based on the inventory results from 2002 to 2003 (Heurich and Neufanger, 

2005), the tree species compositions in the dominant layer of the forest are distributed in each 

ecological zone as follows: in the highlands, 90% Norway spruce (Picea abies), 2% beech (Fagus 

sylvatica) and 8% other broadleaf trees; on hillsides, 58% Norway spruce, 3% fir (Abies alba), 34% 

beech and 5% other broadleaf trees; in the valleys, 83% Norway spruce, 5% fir, 6% beech and 6% 

other broadleaf trees.  

Severe disturbance cycles of storms and bark beetle attacks began in the early 1990’s, and about 

17,000 m3 of wood was affected (Heurich, 2001). However, according to the philosophy of the 

BFNP administration, no forest management activities are allowed in the core zone of the park. 

Bark beetle management is allowed only in a small strip at altitudes between 500-800m, along 

enclaves of the residential areas in the BFNP and its boundaries. 

3.1.3 Freising forest 

The Freising forest test site is located in the southern part of Bavaria, close to the city of Freising 

(48°24’45’’N, 11°40’45’’E). It has a total area of approximately 2,180 ha and is divided into the 

Kranzberger and Thalhausener Forests. Its growth zone is located in the Bavarian Tertiary Hills, 

which hold a great potential for holding a diverse variety of tree species. The Bavarian State 
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Forestry group is responsible for the forest management of the test site. The forest is found in the 

growth region of Oberbayerisches Tertiärhügelland (WB 12.8). The main tree species and their 

composition in the area are Norway spruce (Picea abies) 73%, European beech (Fagus sylvatica) 

5%, European and Japanese Larch (Larix decidua Mill., Larix Kaempferi) 5%, Scots pine (Pinus 

sylvestris L.) 4%, European oak (Quercus petraea) 3%, Douglas fir (Pseudotsuga menziesii M.F.) 

2%, and Maple (Acer pseudoplatanus) 2%. The remaining 6% consist of various uncommon 

coniferous and deciduous tree species. According to the management strategies, the forest structure 

varies from even aged pure stands to uneven aged mixed stands. 

3.1.4 Traunsteiner Stadtwald forest 

The test site of Traunsteiner Stadtwald is situated on southeastern Bavaria within the 

municipality of Traunstein (47°51’42’’N; 12°39’20’’E). The altitude in this area ranges from 660 

m to 700 m and consists of plateaus and valleys. The forest cover is roughly 243 ha, and it is owned 

by the city of Traunstein, but managed by the Chair for Forest Growth and Yield at the Technische 

Universität München. The forest belongs to the growth region Östliche kalkalpine Jungmoräne 

(WB 14.4 / 3). The main tree species in the area are Norway spruce (Picea abies), European beech 

(Fagus sylvatica) and European silver fir (Abies alba). The forest structure here varies from 

homogeneous (e.g. even aged pure stands) to inhomogeneous (e.g. uneven-aged mixed stands). The 

geology can be described as Swabian-Bavarian young moraine and molasse mountain spar. 

3.2 Datasets 

3.2.1 Satellite data 

The two satellite data types that were investigated to achieve forest descriptors are the 

hyperspectral data from the Hyperion sensor, and the multispectral multi-seasonal data from the 

RapidEye satellite constellation. 

3.2.1.1 Hyperion data 

Hyperion satellite data over the test site of Anopoli were acquired on 23 May 2006, under a 

visibility of 40 km and sun elevation of 65 degrees. The data were received as a full long scene 

(185-km strip) and a swath width of 7 km. The data were of level 1R that includ radiometric at 

sensor correction but no geometric correction. The Hyperion data were collected at Nadir, with 

spatial resolution of 30 m and radiometric resolution of about 10 nanometers (nm). The data 

consisted of 242 bands, of which 44 were not calibrated, in the visible Near Infrared VIS / NIR and 
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Short-wavelength infrared SWIR. The VIS / NIR region has 70 bands (only 50 are calibrated); 

while the SWIR region has 172 bands (only 148 are calibrated). The Hyperion data were by 

provided the United State Geological Survey (USGS). 

3.2.1.2 RapidEye data 

The RapidEye is a constellation consisting of five satellites, and each satellite has on board one 

of the five identical Jena Space Scanner JSS 56 sensors. Each sensor provides data consisting of 

five channels: in the blue (440-510 nm), green (520-590 nm), red (630-680 nm), red edge (690-730 

nm), and near infrared (760-880 nm) regions of spectrum.  

Table 3: Number of the used RapidEye scenes of the level 3A (#), with the corresponding visibility in 
kilometer (vs. km) and sun elevation in degree (s.e.°) in each of the Bavarian test sites 

 BFNP Freising Traunstein 

Date # vs. km s.e. ° # vs. km s.e. ° # vs. km s.e. ° 

17.05.2009       1 26 61° 

20.05.2009    1 60 62°    

27.07.2009    1 70 60°    

01.08.2009       1 16 60° 

07.09.2009       1 40 48° 

22.04.2010    1 30 54°    

11.05.2010       1 15 60° 

08.06.2010    1 30 64°    

21.07.2010    1 30 62°    

15.08.2010    1 75 56°    

10.10.2010    1 30 35°    

22.03.2011    1 45 42°    

07.04.2011    1 75 47°    

19.04.2011 2 28 52°       

21.04.2011       1 19 54° 

06.05.2011    1 25 58°    

10.05.2011       1 35 60° 

04.06.2011    1 25 64°    

22.06.2011 1 35 64°    1 30 66° 

28.06.2011    1 55 65°    

10.07.2011    1 40 64°    

12.07.2011 1 55 63°    1 24 64° 

16.07.2011    1 45 63°    

22.08.2011 2 30 53°       

23.08.2011    1 30 53° 1 40 54° 

03.09.2011    1 30 49°    

25.09.2011    1 26 41°    

01.10.2011 2 40 38°    1 27 39° 

06.10.2011    1 35 36°    

22.10.2011    1 18 30°    

23.10.2011       1 23 31° 

04.11.2011    1 8 26°    
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Typically, data collection took place at Nadir, with a spatial resolution of 6.5 m (5 m resampled) 

and a swath width of 75 km. The data were ordered as level 3A products for all test sites. The 

RapidEye Ortho Product data of level 3A were provided with radiometric at sensor and geometric 

corrections. The level 3A products are provided as individual 25km × 25 km tiles. All data were 

provided by the RapidEye Science Archive (RESA) at the German Aerospace Center (DLR). Table 

3 presents the acquisition dates and the RapidEye data values corresponding to visibility and sun 

elevation in each test site in Bavaria. 

3.2.2 Ancillary data 

Ancillary data were those additions that helped support classification, such as by helping to 

identify the end-members and in the preprocessing of the Satellite data including the Geometric 

and the Atmospheric corrections. Also, the ancillary data were indispensable for the verification of 

the results of the satellite data analysis. 

3.2.2.1 QuickBird and aerial images 

The QuickBird satellite image was acquired on 10.06.2003 over the test site of Anopoli. The 

image was mainly used to help in identifying the end members and the reference data. The image 

was of the “Ortho-Ready Standard Imagery” product (Standard2A), corrected geometrically and 

radiometrically at the sensor. It consists of four bands: one panchromatic with 0.6 m spatial resolution 

and three multispectral bands in the blue, green and red spectral region with 2.5 m spatial resolution. 

Digital aerial images were acquired for all test sites in Bavaria, and were mainly used to help in 

defining the reference data. The acquisition dates for the test sites were as follows: BFNP on 

22.08.2011, Freising on 29.07.2009 and Traunstein Stadtwald on 25.04.2009. All images were 

georectified, and have a spatial resolution of 0.2 m, and a radiometric resolution of 8 bit. The 

images have three bands in the visible spectral region in all test sites, except those in the BFNP, 

which have an additional band in the near infrared NIR. Each of the aerial images covers a ground 

area of 1km × 1km, and all were delivered from the Bavarian State Office for Survey and 

Geoinformation (Landesamt für Vermessung und Geoinformation Bayern - LVG). 

3.2.2.2 Field spectra 

The field spectra were collected in 2007 and 2008 using an ASD FieldSpec® pro FR 

spectroradiometer. Information about the instrument specification, field spectral data collection and 

preparation can be found in Elatawneh et al., (2012). Training samples of the common land cover 

classes in the area were collected and their spatial coordinates were determined using a GPS. 
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Additionally, about 40 measurements of pure spectra of the vegetation and trees species were also 

collected. The spectra were mainly used for the preprocessing of the Hyperion data, and specifically 

for the spectral polishing. 

3.2.2.3 Forest inventory data 

Forest inventory data consist of parameters that describe the forest stand characteristics such as 

tree species, Diameter at Breast Height (DBH), height, age and further management-related 

features. In Bavaria, inventory data are typically collected within plots which are systematically 

arranged in a 200 × 200 m (100 × 100 m in Traunsteiner Stadtwald) sample grid. Each plot consists 

of three concentric circles where various information about the trees within these circles are 

collected. The inner circle has an area of 31 m² (3.15 m radius) wherein all trees including those 

with a DBH smaller than 10 cm are measured. The intermediate circle has an area of 125 m² (6.31 

m radius) in which all trees with a DBH ranging between 10 cm and 30 cm are recorded. The outer 

circle has an area of 500 m² (12.62 m radius) wherein all trees with a DBH greater than 30 cm are 

recorded. Forest inventory data were available for the Freising test sites from the last inventory 

taken in 2001, and for the Traunsteiner Stadtwald forest test site from the inventory of the Chair 

for Forest Growth and Yield at the Technische Universität München taken in 2008.  

3.2.2.4 Digital Elevation Models (DEMs) 

The Digital Elevation Model (DEM) for the Anopoli test site was originally produced for the 

Fireguard project (2004) initiated by the Joanneum Research Institute. The DEM had a spatial 

resolution of 20 m, and was used for the orthorectification and the topographic correction of the 

Hyperion data. The DEMs of the test sites in Bavaria were mainly produced by the LVG using 

airborne Laser scanning data. The DEMs had a spatial resolution of 5 m and were mainly used for 

the radiometric correction as described in section 4.2. 

3.2.2.5 Forest tree species phenology 

The data of the forest tree phenology were provided by the German weather service (Deutscher 

Wetterdienst DWD) from the Dürnast station in the Freising test site. The observations are collected 

annually and includ the following phenological phases: May shoot, beginning of leaf / needle 

unfolding, oak lammas growth, beginning of flowering, autumn coloring, and leaf / needle fall. The 

observation program started as early as 1964 and continues until today, however, not all of the 

phases have been recorded over the whole period. The observations are recorded by the Julian day 

(the day of the year) as seen in Table 4, with the statistics of the observation ordered by the day of 

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCgQFjAB&url=http%3A%2F%2Fwww.wwk.forst.tu-muenchen.de%2F&ei=NfyeU_qSGYnF7Aa19YCwBA&usg=AFQjCNE9JNh959pvtRK7DPDb5rHIeUMtuw&sig2=DaaMTBDoe2D6wLpGe798rw
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCgQFjAB&url=http%3A%2F%2Fwww.wwk.forst.tu-muenchen.de%2F&ei=NfyeU_qSGYnF7Aa19YCwBA&usg=AFQjCNE9JNh959pvtRK7DPDb5rHIeUMtuw&sig2=DaaMTBDoe2D6wLpGe798rw
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the occurrence. The tree species included in Table 4 are Norway spruce (Picea abies L.), Scots pine 

(Pinus sylvestris L.), European larch (Larix decidua MILL.), European beech (Fagus sylvatica), 

European oak (Quercus robur Mattuschka), and Norway maple (Acer platanoides). The details on 

the phases are observed and collected by volunteers in an observation area with a radius of 1.5 to 

2 km far from the main station. However, because all the tree species included in the program found 

rarely all together within a small finite area, the radius can be extended to 5km, and the difference 

in the altitude between the observed trees and the central station should be no more than ± 50 m. 

In addition, the forest hollows, narrow valleys, and southern or northern hillsides should be 

excluded from the observation areas. After the observation stage, the collected data are routinely 

checked for their quality and plausibility. More details about the methodology of the observation 

and data correction can be found in Buttler et al., (1991). 

Table 4: The phenological phases from the Dürnast station in Freising show the different phenological 
phases of the main forest tree species ordered ascendingly based on the average of the Julian day. Data 
here show for each phenological phase the number of observations, the starting and ending year of 
collecting the observations in addition to statistics including average, first and third quartiles (Q1, Q3), 
minimum and maximum of the Julian day (see Figure 20) 

                          Observation  

Phase 
Count 

Start 

year 

End 

year 
Average Q1 Min. Max. Q3 

Larch flowering begins 24 1965 1990 97 91 70 125 102 

Larch needle unfolding begins 51 1964 2014 100 92 78 119 108 

Maple flowering begins 51 1964 2014 102 96 85 119 109 

Oak leaf unfolding begins 51 1964 2014 121 117 103 135 126 

Beech leaf unfolding begins 51 1964 2014 122 118 103 135 128 

Spruce May Shoot 51 1964 2014 127 123 112 140 131 

Spruce flowering begins 5 1980 1990 132 127 125 145 137 

Oak flowering begins 23 1965 1990 133 130 121 143 137 

Pine May Shoot 48 1967 2014 134 130 120 148 138 

Pine flowering begins 34 1980 2014 138 134 125 157 140 

Oak lammas growth 20 1964 1986 173 167 153 199 178 

Oak autumn coloring 50 1964 2013 284 281 270 299 288 

Beech autumn coloring 50 1964 2013 287 284 276 299 289 

Larch autumn coloring 23 1991 2013 296 295 283 304 299 

Beech leaf fall 23 1991 2013 297 292 287 313 302 

Oak leaf fall 23 1991 2013 298 292 284 324 302 

Larch needle fall 23 1991 2013 310 307 298 322 314 
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4 Forest parameter extraction 

Forest parameter extraction in the Anapoli test site was based on analysis of the single 

hyperspectral Hyperion data, and the following parameters were extracted: forest cover and forest 

types (including forest tree species). Forest parameter extraction in the Bavarian test sites were 

based on analysis of the multispectral RapidEye data and guided by a study outlining key 

requirements (Felbermeier et al., 2010). While the targeted parameters forest cover, forest gaps, 

and forest type were extracted from single RapidEye data, the parameters forest cover changes, and 

forest tree species were extracted from multi-seasonal RapidEye data. 

The first step was to define the parameters extracted, especially forest cover, based on the 

accepted definition (section 4.1). Then, both satellite data, the Hyperion and the RapidEye, were 

prepared and preprocessed using a variety of techniques including the application of geometric and 

radiometric corrections (section 4.2). Next, the targeted forest parameters to be extracted from the 

single hyperspectral Hyperion data were derived based on land cover LC classification 

(section 4.3). The extraction of the targeted forest parameters using the RapidEye data is covered 

in three sections. Section (4.4) explains the extraction of the targeted parameters forest cover and 

types from the single RapidEye dataset. Section (4.5.1) goes on to show the development of an 

operational method used to detect old forest growth losses, and continues with an assessment of 

the method based on the fast respond, cost and transferability using the multi-seasonal RapidEye 

data. Finally, section (4.5.2) focuses on the extraction of forest tree species based on the 

phenological fingerprint concept using the multi-seasonal RapidEye data. This section also 

includes an analysis strategy that addresses the economically important research question 

mentioned in the introduction. 

4.1 Forest parameter definitions 

Forest cover definition varies depending on the country and the users who are interested in 

forests. While the hyperspectral Hyperion approach was investigated in Anopoli, the multi-

seasonal RapidEye approach was applied in Bavaria. Given that this study has components nested 

in different countries, it is important to explicitly define the forest parameters in question. For this 

work, the targeted parameters were defined for each approach as follows: 

Forest cover in Anopoli is defined as 10% crown cover, with a minimum height of 5 m, of an 

area of 0.5 ha or strips of 30 m width, and not used for other purposes other than wood production. 

Meanwhile, in Germany, forest cover is any area of ground covered by forest trees including forest 
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tracks, fire breaks, openings, clearings, and forest gaps (which can be used as timber yards or 

feeding ground for games), in addition to any further areas linked to serve the forest. As forest gaps 

are important units of the forest cover in Germany, it was decided that gaps ought to be classified 

within the forest cover. This was recommended by foresters in the remote sensing user workshop 

held on 14 February 2012 by the institute of forest management. The result of this workshop was 

a recommended minimum area of 0.5 ha for the forest as well as for the gaps. 

Forest type parameter refers to the main groups of forest tree species present, being either 

coniferous or deciduous. In a managed forest where stand information is made available, forest 

type per stand typically includes coniferous stands, deciduous stands, and mixed stands. The forest 

stand is the minimum management unit, within which management planning is conducted. While 

in Anopoli there are no forest management planning practices and the forest stands have not been 

reported, in Bavaria, forest management planning is practiced routinely, at least in the state owned 

forests. Therefore, in the Anopoli test site, forest types were simply defined as coniferous and 

deciduous types. Forest types were also initially defined as coniferous and deciduous in Bavarian 

forests, however, where additional forest stand information was available, the forest stand types 

were further identified as coniferous stands, deciduous stands, and mixed stands. The forest type 

per stand is determined based on the dominant tree group, and a threshold of 80% was 

recommended by foresters in the remote sensing user workshop.  

Forest change refers to the loss of trees within an area defined as forest based on the Bavarian 

definition. These changes can be induced by standard forest management practices or calamities 

such as bark beetle outbreaks or storms.  

Finally, the tree species parameter includes the common, endemic or important forest tree 

species in the study site. In Anopoli, the targeted tree species were the abundant coniferous species 

such as pine and cypress, along with the deciduous species Mediterranean oak and, most 

importantly, the Cretan endemic maple. Similarly, in the Bavarian test sites the targeted species 

were among the abundant forest trees species, which are frequently found in the area of the 

terrestrial forest inventory. Usually, these species are of economic importance due to their timber 

value, or of management planning importance because they are suitable for adapting under climate 

change conditions. 

4.2 Satellite data preprocessing 

Before the information extraction, remote sensing data are processed for preliminary 

corrections. These corrections involve detecting and addressing any distortion, noise or degradation 
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that may have occurred during image acquisition. Preprocessing includes checking for internal 

errors, caused by sensor malfunctioning, which are systematic and predictable. Preprocessing also 

includes reviewing for external errors which can be incurred by satellite instability, or atmospheric 

and topographic conditions, which are unsystematic and dependent on time and location 

(Campbell, 1996; Jensen, 1996). 

The Hyperion data were collected by an experimental sensor and usually require additional 

preprocessing beyond the standard for other satellite data. For this reason, essential preprocessing 

steps were applied to the Hyperion data as described in Figure 3. The first step was to perform a 

linear interpolation of all the sensor detectors, based on a common set of wavelengths, then the full 

width at half-maximum values were averaged for each band. The second step involved the 

elimination of non-calibrated and overlapping bands. Following this, the third step was to perform 

a vertical striping to account for the darker stripes which appeared because of malfunctioning 

detectors. Next, atmospheric correction was carried out by using FLAASH, implemented in the 

ENVI software package. Spectral polishing was then executed by applying a running average filter 

over nine adjacent channels, utilizing some of the field spectra, in order to smooth the spectral 

reflectance. The fifth step involved the orthorectification of the Hyperion data, which was based 

on the direct linear transformation (DLT) model implemented in ERDAS Imagine software 

package. After that, a minimum noise fraction (MNF) transformation was applied to deal with the 

visible-near infrared (VIS / NIR) and shortwave infrared (SWIR) data separately. As a final step, 

an inverse MNF was used to the transformed Hyperion bands in order to reduce the uncorrelated 

noise that was not reduced by the spectral polishing (Goodenough et al., 2003). The corrected 

Hyperion data consisted of 157 bands, in which 49 bands were in the realm of VIS / NIR, and 108 

bands in the SWIR regions (Elatawneh et al., 2012). 
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Figure 3: The preprocessing analysis steps applied to the Hyperion data, and the resulted number of bands 
after each step 

The essential preprocessing steps for the multi-seasonal RapidEye data are geometric 

registration and atmospheric correction. The location uncertainty in RapidEye 3A level data could 

reach a maximum value of 50 m (RapidEye AG, 2012). Therefore, the accuracy of level 3A data 

was examined and, when necessary, improved by implementing co-registration with the reference 

geo-database. The RapidEye data of level 1B were orthorectified by using a rational polynomial 

function implemented in the PCI Geomatics software package. After geometric registration and 

correction were applied to the data, an atmospheric correction was performed using the ATCOR 3 

algorithm implemented in PCI Geomatics. The algorithm used the DEM and visibility to 

compensate for topographic and atmospheric effects. 
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4.3 Parameter extraction from single hyperspectral Hyperion data 

4.3.1 Methods 

Forest parameter extraction in the Anopoli site, using the hyperspectral Hyperion data, was 

mainly based on land cover classification (Elatawneh et al., 2012, Publication 1 in Appendix). A 

successful classification is highly dependent on the classification scheme (Jensen, 1996). The 

classification scheme was developed based on the CORINE land cover, vegetation cover of the 

area, and the Hyperion data’s ability to separate the land cover classes. After that, the Hyperion 

data were classified using the pixel-based, sub-pixel-based and object-based techniques. 

Subsequently, land cover results of forest related classes, the parameters forest cover, forest types, 

and tree species were identified based on their definitions.  

The methodology of the Hyperion data analysis is described in Figure 4. First off, the 

classification scheme was defined based on the land cover map of the test site and the spectral 

separability of the Hyperion data. To achieve that, the unsupervised IsoData classifier was applied 

to the Hyperion data, and the result was intersected with the available vegetation thematic maps 

and QuickBird image in the area, in order to define the classes. The classification scheme was 

subsequently aligned to the CORINE land cover system proposed by the European Union for the 

Mediterranean region (European Environmental Agency, 1995). However, the broadleaved trees 

including Cretan maple and Mediterranean oak could not be separated into two single classes. 
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Figure 4: The workflow followed for the Hyperion data classification in Anopoli test site 

After the classification scheme in Table 5 was defined, end-members representing the different 

classes were collected from the Hyperion data, based on the field training site and with the 

assistance of QuickBird image. The selection of the end-members was carefully decided and 

restricted to homogenous areas of consistent land cover. In total 550 samples, which represent the 

classes in Table 5, were assigned as end-members and used for the classification. 
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Next, pixel-based analysis was performed using SAM to classify the Hyperion data. The SAM 

technique (Kruse et al., 1993) classifies the pixels based on the similarity of their spectra to the 

reference spectra. The technique considers the reference and pixels spectra as vectors in 

multidimensional space, where the dimension of the vectors is equal to the number of the spectral 

bands. The similarity between the spectra of reference and data is based on the angle between their 

vectors, where small angles are more similar in spectra. Each pixel is then classified as that 

reference point of the most similar spectrum. SAM was applied to the corrected Hyperion image 

(consists of 157 bands) using the training set of approximately 50 spectra per class, to achieve the 

classification.  

Table 5: Classification scheme was developed in Anopoli test site, adapted after (Elatawneh et al., 2012) 

  Class name Class description 

F
o
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C
o

n
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e
r
o

u
s 

Cypress trees Pinus brutia 

Pine trees Cupressus sempervirens 

D
e
c
id

u
o

u
s 

Broadleaved 

trees 

Cretan maple (Acer sempervirens) 

Mediterranean oak (Quercus coccifera) 

N
o

n
-f

o
r
e
st

 

 

Cultivated fields Mainly vineyards 

Olive groves Olive plantations in Anopoli village  

Rocks Large areas of rocks exist mainly at high altitude and at the coastline 

Bare soil Bare soil, some stones exist occasionally 

Alpine vegetation Juniper trees at high altitude 

Sparse vegetation 
Rarely coniferous trees distributed over bare soil mainly south of the 

village and near by the sea 

Phrygana 
Low vegetation, mainly Sarcopoterium spinosum, Phlomis fruticosa, 

Asphodelus albus, Urginea maritime, Coridothymus capitatus 

Snow Present at high altitudes 

Next, the sub-pixel-based application was performed by using ANN with the Hyperion data. 

The ANN (Carpenter et al., 1999) is a machine learning technique which uses the spectral 

properties of the data to perform nonlinear unmixing in order to determine the relative fractions of 

land cover depicted in each pixel. The ANN assumes that the reflectance of a pixel is a nonlinear 

combination of the reflectance of the land cover classes present in that pixel. The ANN (Figure 5) 

establishes linkages between the input data (spectral bands) and the output data (land cover classes) 

through a hidden layer consist of single or multiple nodes (hidden layers) (Lillesand and Kiefer, 
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2000). The learning is carried out by adjusting the weights in the hidden layers to minimize the 

difference between the inputs and outputs, and then the error is back-propagated through the 

linkages. Weight adjustments are conducted repeatedly. Two parametric coefficients control the 

learning process: the learning rate coefficient and the learning momentum coefficient. The learning 

rate coefficient controls the magnitude of the adjustment of the weights, where a high value should 

be avoided because this leads to an increase of the process speed, thus increasing the risk of 

oscillation in the results. Meanwhile, the learning momentum coefficient encourages the magnitude 

of the adjustment of the weights along a specific direction, and a high value allows a greater 

learning rate coefficient to be set without risk of oscillations. 

 
Figure 5: Illustration of the Artificial Neural Network (ANN) of image analysis 

To apply the ANN to the Hyperion data, all corrected 157 bands were used as nodes in the input 

layer. Only one hidden layer was used, as this was found to be sufficient for many learning purposes 

(Carpenter et al., 1999). The learning rate and the learning momentum coefficient values were 

assigned as 0.3 and 0.7, respectively. The training threshold contribution value of 0.9 and training 

RMS error value of 0.1 were specified, and these values decided when the learning process should 

stop. All land cover classes were assigned as output layers, and the results will include 11 maps, 

each showing the percentage of specific land cover abundance.  

The object-based analysis was applied to the Hyperion data using eCognition software (from 

Trimble). Object-based analysis (Blaschke, 2005) included two processing steps; the segmentation 

and the classification. The image segmentation process is able to automatically extract desired 

objects representing the real land cover features. This process allows the production of many object 

levels connected in a hierarchical manner, in which each object is aware of its adjacent objects, 
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lower objects and upper objects. Objects can be created using bottom-up or top-down segmentation 

approaches, and few parameters which should be defined, such as: scale, shape, compactness and 

bands weights. The scale parameter indirectly controls the average object size, where a high value 

produces big object, and vice versa. The shape criterion controls the influence of the data spectra 

or color on the segmentation process, while the compactness criterion controls the objects’ 

geometry and the degree of their compactness or smoothness. The weights control the influence of 

each single band in the segmentation, where the higher the weight of a band, the more it influences 

on the objects formation. Subsequently, the classification process assigns each object to a certain 

class according to its spectral and geometric properties, such as: mean and standard deviation 

values of the bands and indices, texture, and hierarchal relations to the surrounding objects. 

Classification can also be based on supervised Nearest Neighbor (NN) classifier, in which few 

objects should be selected as samples to train the algorithm. 

Before starting the object-based analysis of the Hyperion data, a variety of indices were first 

generated to aid in the segmentation and classification process. To create these indices, many 

combinations of the bands Blue (bands 11, 12, 13), Green (bands 18, 19, 20, 21), Red (bands 28, 

29, 30), and NIR (bands 55, 56, 57, 58) were used. Here, the least noisy bands, and the best to assist 

in Land cover separation, were eventually selected for the formulation of indices (see Table 6).  

Table 6: Indices and weights were used for Hyperion data object segmentation 

Index Index formulation Weight 

NIR-Red band 56 (913 nm) – band 29 (638 nm) 1 

Blue-Green band 12 (465 nm) – band 20 (546 nm) 1 

Red-Green band 29 (638 nm) – band 20 (546 nm) 1 

B119-B133 band 119 (1336 nm) – band 133 (1477 nm) 1 

NIR / Red band 56 (913 nm) / band 29 (638 nm) 1 

SAVI (band 56 (913 nm) – band 29 (638 nm)) / (band 56 (913 nm) + band 29 (638 nm) +0.8) × 1.8 1 

NDVI (band 56 (913 nm) – band 29 (638 nm)) / (band 56 (913 nm) + band 29 (638 nm)) 3 

SWIR_VI (band 119 (1336 nm) – band 133 (1477 nm)) / (band 119 (1336 nm) + band 133 (1477 nm)) 3 

New_VI (NDVI – SWIR_VI) / (NDVI + SWIR_VI) 3 

The next step was to implement the segmentation and classification with the Hyperion, 

following the workflow of the analysis as presented in Figure 6. To perform the segmentation of 

the Hyperion data, parameter values were set as follows: scale parameter of 18, shape parameter of 

0.1, and compactness of 0.6, based on try and error method. All Hyperion 157 corrected bands and 

indices were used in the segmentation, where the bands 11, 33, 56, 110, and 191, as well as the 
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indices NDVI, SWIR_VI, and New_VI were given each a weight of 3, while the rest of Hyperion 

bands and indices were given each a weight of 1. The weight values selection was based on the 

standard deviation values and the visual contrast of these bands. 

Hyperion data 

corrected

Segmentation

Segmented image

Classify with New_VI Conifer

Classify with SWIR_VI

Classify with SWIR_VI

Classify with 

Red-Green

Cypress

Pine

NDVI

NIR-Red

NIR-Red

Broadleaved

Cultivated 

fields

Olive groves

Rocks

Nearest Neighbor Bare soil

Phrygana

Classify with NDVI Alpine veg.

Sparse veg.

SnowClassify with NIR-Red

DEM 

not Rocks; not Bare soil 

 
Figure 6: The workflow followed for the Hyperion data object-based classification in Anopoli, (see Table 7) 

After the image segmentation, classification was performed based on membership functions and 

the ‘NN’ classifier. Table 7 includes the values of the indices and features that were used to create 

the membership functions. First, the conifer classes were successfully separated from other 

vegetated land cover by using the ‘New_VI’. Then, to separate pine from cypresses, the index ‘Red-

Green’ was used, where the value of the feature in the pine class was higher than that in the cypresses 

class.  
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Table 7: Values of indices and features used for Hyperion data object-based classification in Anopoli, (see 
Figure 6) 

ID  Class name Values of bands or indices used 

F
o

r
e
st

 

C
o

n
if

e
r
o

u
s Cypress trees 

(0.121-0.123) New-VI and (0.117-0.119) Red-Green 

                                                      (0.129-0.132) Red-Green 

Pine trees 
(0.124-0.126) New-VI and (0.129-0.132) Red-Green 

                                                      (0.140-0.150) Red-Green 

D
e
c
id

u
o

u
s 

Broadleaved trees 
(0.123-0.126) New-VI and (0.108-0.110) SWIR-VI and

(0.130-0.150) NDVI 

N
o

n
-f

o
r
e
st

 

 

Cultivated fields 
(0.123-0.126) New-VI and (0.108-0.110) SWIR-VI and

(0.2-0.201) NIR-Red 

Olive groves 
(0.123-0.125) New-VI and (0.104-0.11) SWIR-VI and

(0.19-0.2) NIR-Red 

Rocks (0.095-0.1) SWIR-VI 

Bare soil (0.0965-0.101) SWIR-VI  Nearest Neighbor 

Alpine vegetation (0.119-0.121) NDVI and DEM 

Sparse vegetation (0.119-0.121) NDVI and   not Rocks and  

not Bare soil 

Phrygana (0.097-0.115) SWIR-VI and  Nearest Neighbor 

Snow (-0.02- -0.01) NIR-Red 

The classes broadleaved trees, cultivated field, and olive groves were also classified by using 

the ‘New_VI’ index. The ‘broadleaved species’ class was separated from the cultivated field and 

olive grove by using the ‘NDVI’ index. Conversely, the classes cultivated field and olive grove 

were distinguished by using ‘NIR-Red’ index. The classes rocks and bare soil were classified by 

using the ‘SWIR_VI’ feature, but since the bare soil class showed variable reflectance, the ‘Nearest 

Neighbor’ classifier was additionally used. Moreover, the classes alpine vegetation and sparse 

vegetation were classified by using the ‘NDVI’, while the ‘DEM feature’ was additionally applied 

in order to avoid the misclassification between the two classes. The features ‘not Rocks’ and ‘not 

Bare soil’ were used with the sparse vegetation class to avoid the misclassification with the soil 

and rocks land cover. The phrygana class was classified by using ‘SWIR_VI’, however, to prevent 

misclassification with the sparse vegetation and alpine vegetation classes, two samples were used 
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with the ‘NN’ classifier. Finally, the snow class was easily classified by using ‘NIR-R’ index, since 

its value was negative for snow class. 

The parameters forest cover (usually easily extracted), forest type (whose extraction is more 

challenging), and the forest tree species (generally impossible to be extracted), were estimated from 

the various classification results. The forest cover parameter was defined as the sum of the cypress, 

pine, and broadleaved trees classes. Here, the 30 m spatial resolution of Hyperion data ensure that 

any detected forest cover is in alignment with the definition of forest cover in the area. The forest 

type parameter includes the coniferous type which is the sum of the cypress and pine classes, and 

the deciduous type which is the same class of broadleaved trees. Alternatively, the forest tree 

species parameter includes the single land cover classes of cypress and pine, in addition to the 

broadleaved trees.  

Accuracy assessments were next applied to the parameter results, using a probability sampling 

design (Stehman and Czaplewski, 1998). The assessment was conducted via an error matrix based 

on point sampling units. About 170 samples were collected in the field during the data collection 

visits to the test site. In addition to that, 220 samples were obtained and their reference was 

determined based on the QuickBird image interpretation. In total, 390 samples were used as 

reference data to perform the accuracy assessment of each derived parameter. 
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4.3.2 Results 

The parameters forest cover, forest type, and tree species were derived from the land cover 

classification by applying the classifiers SAM, ANN, and OBIA to the Hyperion data in Anopoli. 

However, determination of tree species was not fully achieved; only the coniferous species of pine 

and cypress were identified, while none of the classifiers succeeded in separating the Cretan maple 

and Mediterranean oak. The parameters were extracted with varying accuracy values. Forest cover 

achieved the highest accuracy, followed by the forest types, and finally the tree species achieved 

the lowest accuracy (Table 8). The results were also highly dependent on the implemented 

technique, for which OBIA outperformed ANN, except in the case of forest type parameter, where 

ANN surpassed SAM. 

Table 8: Overall accuracies of the extracted parameters in Anopoli 

Parameters 

Classifier 
Forest cover % Forest types % Tree species % 

SAM 84 80 73 

ANN 90 92 80 

OBIA 95 90 87 

The results of forest cover classification were significantly different depending on the method 

used (Figure 7). The achieved accuracies in Table 8 show that OBIA outperformed the other 

methods. When SAM was applied, an overall accuracy of 84% was achieved. Here, the forest cover 

was mostly confused with cultivated fields, Phrygana, sparse vegetation, and the olive groves land 

cover. The ANN achieved an overall accuracy of 90%, due to the decrease in the confusion with 

cultivated fields, sparse vegetation and the olive groves, but the confusion with the Phrygana 

remained high. Applying the OBIA obtained an overall accuracy of 95%, and notably reduced the 

confusion between the forest cover and the other land cover classes. This shows that OBIA is the 

most suitable technique for mapping the forest cover. 
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Figure 7: Forest cover extracted using SAM, OBIA and ANN classification methods, and forest cover 
reference samples in Anopoli 

Forest type classifications showing the distribution of the coniferous and deciduous trees in the 

area are presented in Figure 8. For the forest type’s distribution, SAM achieved the lowest overall 

accuracy with a value of 80%, where the coniferous and deciduous classes were often mistakenly 

interchanged. OBIA and ANN techniques obtained similar results, although ANN achieved the 

highest accuracy and best described the density and distribution of each forest type. However, 

results clearly demonstrate that the low spatial resolution of Hyperion lowered the accuracy score 

even more strongly than the selected technique. High confusion was observed between the 

coniferous and deciduous classes in areas of low forest density. 
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Figure 8: Extracted forest types using SAM, OBIA and ANN, and forest type’s reference samples in Anopoli 

The forest tree species parameter includes the mapping of the classes Cypress, Pine and 

broadleaved trees, since, as previously mentioned, maple and oak could not be separated (Figure 
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9). Overall accuracies illustrated in Table 8 show that OBIA outperformed ANN and SAM 

techniques. The user and producer accuracies of each single class, obtained by using the three 

techniques, are presented in Table 9.  

Table 9: Producer and user accuracies of the single tree species in Anopoli, adapted after (Elatawneh et 
al., 2012) 

Used technique Accuracy Cypress Pine Broadleaved 

SAM 
User % 35 94 53 

Producer % 40 58 52 

     

ANN 
User % 71 70 79 

Producer % 40 74 70 

     

OBIA 
User % 97 97 71 

Producer % 83 68 82 

The cypress class, derived using SAM technique, achieved a low user accuracy of 35% because 

of the high confusion between cypress and the non-forest classes of cultivated fields, Phrygana and 

olive groves. On the other hand, the low producer accuracy of 40% for the cypress was also due to 

its confusion with non-forest classes such as Phrygana and sparse vegetation. When applying the 

ANN classifier, the confusion with the non-forest classes cultivated fields and olive groves was 

eliminated, improving the user accuracy of the cypress to 71%. When applying OBIA, the 

confusion between the cypresses with all other classes was minimized, and both its user and 

producer accuracies were drastically improved. 

Regarding the pine class, when the SAM technique was implemented, little confusion between 

the pine and other classes occurred, and a very high user accuracy of 94% was achieved. As a result 

of the pine confusion with the broadleaved classes, its producer accuracy was only 58%. When the 

ANN was applied, the pine was slightly confused with the cypress and broadleaved classes, in 

addition to the non-forest class of olive groves. When OBIA was applied, the confusion of other 

classes with the pine dropped considerably, and a very high user accuracy of 97% was achieved. 

Meanwhile, the confusion of the pine with the broadleaved classes caused low producer accuracy 

to persist. 
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Figure 9: Forest tree species parameter extracted using SAM, OBIA and ANN, and the tree species 
reference samples in Anopoli 

For the broadleaved class derived by the SAM classifier, low user and producer accuracies of 

53% and 52%, respectively, were obtained, because of the confusion with the pine, cypress and the 
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olive groves classes. However, when ANN was implemented, the confusion with the cypress, pine 

and olive groves classes was reduced, and the accuracies of the broadleaved class were increased. 

When OBIA was implemented, the confusion between the broadleaved classes and the cultivated 

fields was increased, and the user accuracy again decreased to 71%. Confusion between the olive 

groves, pine and cypress classes was minimized and a user accuracy of 82% was achieved for the 

broadleaved class. 

All in all, results show that forest cover was best mapped by applying the OBIA technique. 

While forest types (coniferous and deciduous) were best separated by either OBIA or ANN 

techniques, the low spatial resolution of the Hyperion data had its greatest effect on accuracy, 

especially at low forest tree density. Tree species mapping success using Hyperion data was limited 

since the deciduous oak and maple species could not be separated, regardless of the technique 

applied to the rich Hyperion spectral data. Finally, the results of forest types and forest tree species 

extracted by the pixel-based techniques (SAM and ANN) have slightly suffered from the so called 

‘‘salt and pepper’’ effect. Meanwhile, when OBIA was implemented, the forest types and tree 

species results appeared not to be suffering from this effect. 

4.3.3 Discussion 

The results of the parameter extraction including forest cover, types and tree species, using the 

hyperspectral Hyperion data in Anopoli, was mainly based on land cover classification, as 

mentioned in section 4.3. The mapping and accuracy of the land cover classes, especially cypress, 

pine and broadleaved trees by implementing SAM, ANN, and OBIA classifiers will be discussed 

below. 

Results show that SAM produced the lowest forest cover accuracy (84%) because of the 

confusion between the forest cover, cypress class, with the non-forest classes cultivated field, 

Phrygana, olive groves and sparse vegetation. One reason for this confusion was the similarity of 

the reflectance of the low density non-forest classes usually found in the transition zones between 

the cypress trees. Another reason was the combination of low density cypress trees with phryganic 

vegetative species of the understory. These reasons, combined with the relatively low spatial 

resolution of the Hyperion sensor (30 m), produced mixed pixels of similar reflectance to those of 

the Phrygana land cover. These results confirm the findings of a study applying the SAM classifier 

to Hyperion data in Switzerland (Eckert and Kneubühler, 2004). Additionally, the low accuracy of 

forest type (80%) was due to confusion between the cypresses with the broadleaved species, 

occurring within regions of low-density deciduous trees, or transition zones where cypress and 
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broadleaved trees overlapped. Furthermore, low overall accuracy of 73% was achieved for the tree 

species parameter, as a result of the confusion between cypress and pine existed largely in areas 

containing large cypresses, where these were confused with young pine trees given their similar 

reflectance. Additionally, the confusion between the pine and broadleaved trees occurred where 

the broadleaved trees are less dense or where the pine trees are very large as these trees also have 

similar reflectance. This similarity in reflectance is attributed to the low radiometric resolution of 

Hyperion (Pengra et al., 2007), which seems to be a challenge with any hyperspectral sensor on 

board a satellite platform.  

Results demonstrated that applying ANN reduced the confusion between cypress trees and the 

classes cultivated field, olive groves and sparse vegetation. With this, forest cover accuracy was 

improved (90%), although high rates of confusion with the phrygana persisted. The reduction in 

the confusion is due to the ability of the ANN to extract the percentage of each land cover presented 

within each pixel (Walsh et al., 2008). However, the percentage of Phryganic species as a 

composite of the forest understory vegetation was often overestimated, leading to the 

misclassification. Conversely, the confusion between the cypress trees and the broadleaved trees 

was clearly reduced, which increased the accuracy of the forest type parameter (92%). The 

remaining confusion between these two classes was related to low density broadleaved trees. 

The ANN technique calculated the exact fractions of each class within the pixels and improved 

the classification accuracy, however, OBIA achieved slightly better results than that of ANN. In 

fact, both implemented pixel-based analyses, SAM and ANN, suffered greatly from the relatively 

low spatial accuracy. This increased the confusion between the classes because of the similarity in 

the spectral reflectance of the mixed pixel (Petropoulos et al., 2012a). The low spatial accuracy 

also reduced the accuracy of the training sites, which led to the reduction of the accuracy. These 

results support the findings of previous studies (Carpenter et al., 1999; Pengra et al., 2007; Pignatti 

et al., 2009; Walsh et al., 2008), which applied SAM or ANN classifiers to Landsat and Hyperion 

data, where the low spatial accuracy affected the end members’ accuracy. Applying SAM and ANN 

also resulted in the ‘‘salt and pepper’’ effect, which can in turn lower the accuracy (Petropoulos et 

al., 2012b).  

Applying OBIA to the Hyperion data improved the extracted forest cover accuracy (95%) by 

reducing the confusion between the cypress and non-forest classes. This is attributed to the 

segmentation process occurring before the classification, which aggregates the pixels in objects 

and overcomes within-class spectral variation (Wang et al., 2010), thus reducing the “salt and 

pepper” effect. OBIA used additional features beyond the spectral properties of the Hyperion data 
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which had a tendency to improve the classification, as recommended by studies focusing only on 

spectral properties of Hyperion data (Goodenough et al., 2003; Thenkabail et al., 2004; Walsh et 

al., 2008). 

Despite these improvements using OBIA, confusion between pine and broadleaved trees still 

occurred, which slightly decreased the forest type accuracy (90%) in comparison to ANN (92%). 

Slight confusions also remained between various classes such as broadleaved and cultivated fields. 

This occurred primarily in the transition zones, where many interspersed patches of various land 

cover types were segmented into objects belonging to other land covers. Generally, applying OBIA 

improved most of the individual classes’ accuracies, and the confusion was minimized between the 

various land covers. This is because OBIA was not dependent upon the training sites exclusively, 

but also upon the membership functions. It was therefore influenced by a lesser degree by the 

accuracy of the training sites. However, at the periphery of the classes the results of OBIA were 

still suffering from the confusion between the classes, apparently due to the low spatial resolution. 

This shows that the overall success of OBIA in mapping single tree species, even using the 

Hyperion 30 m spatial resolution, is coming from successive distribution of the coniferous tree 

species in Anopoli. 

In the end, none of the methods applied to the Hyperion data was able to separate the deciduous 

tree species (including the Cretan maple and oak). This was attributed to the mixed characteristics 

of the deciduous trees in the area, combined with the low spatial resolution of the Hyperion. In 

summary, the low signal to noise ratio (SNR) combined with the overall low energy of the Hyperion 

data. As well as, the acquisition date of 23 May 2006 (after the leaf unfolding phonological phase), 

all decreased the spectral variation between the deciduous classes. The results here demonstrate the 

importance of data acquisition during active phenological phases, confirming the findings of past 

studies implemented Hyperion data (George et al., 2014; Pengra et al., 2007). In general, deciduous 

tree species mapping is challenging, especially when using mono-temporal remote sensing data, as 

discussed in a previous study (Mickelson et al., 1998).  
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4.4 Parameter extraction from single multispectral RapidEye data 

Methodology development led to the extraction of the parameters forest cover, forest gaps and 

forest types following guidelines to ensure precision, timely computational efficiency, and 

transferability to other test sites. The aim was to develop a method that can be applied to all test 

sites of interest with a minimal need for adjustment. These parameters were initially extracted based 

on the methods developed by Schneider et al., (2013) Publication 2 in Appendix). This method was 

further developed, as will be described in section 4.4.1. It was proven that mono-temporal 

RapidEye data can be sufficient to create a forest cover mask (Schneider et al., 2013). As such, a 

forest mask was created from the first available RapidEye data, which was then used as a reference 

for forest cover in subsequent analyses of forest types and gaps. Additionally, the reference forest 

cover was used as a basis for the calculation of the changes in the forest cover as will be described 

in section 4.5.1. The object-based image analysis implemented in eCognition from the company 

Trimble was utilized for the extraction of these parameters. 

4.4.1 Methods 

4.4.1.1 Forest cover extraction  

To extract the forest cover, image analysis in eCognition applied both the iterative processes of 

segmentation and classification using the original band values, as well as additional indices. The 

assignment of a suitable segmentation parameter for the applied "multiresolution segmentation" 

based on many empirical trials. The weighting of the bands / indices considered was based on visual 

analysis of the image contrast of the two classes of forest / non-forest, as well as the standard 

deviation of the bands. The higher the contrast between forest and non-forest in a specific band, 

the higher the weight value of that band should be. The final proposed and applied parameters for 

the segmentation and classification processes are illustrated in Table 10. 

After the image segmentation, a new index called Area index was developed and calculated 

based on the area of the polygon enclosed between the reflectance of the red, red edge, NIR bands 

and the value of the NDVI, which is depicted as the green area in Figure 10.  
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Figure 10: Illustration shows the area encountered between the reflectance of the red, red edge, NIR and 
the NDVI (in green color) which was calculated as the Area index 

To calculate this area, the spectral reflectance was considered as a 2-dimensional plane, where 

the x-axis represents the center wavelength of these bands, and the y-axis represents the reflectance 

or value of these bands. Since the NDVI is an index calculated from the NIR and red bands: 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑) / (𝑁𝐼𝑅 + 𝑅𝑒𝑑), its assumed wavelength was calculated as the average of 

the red and NIR center wavelengths, specifically (652 nm + 805 nm) / 2 ≈ 728 nm. Then the area 

index (AI), or the area of the green polygon in Figure 10, was calculated based on its assigned 

coordinates based on the Shoelace formula as described in the following equation: 

𝐴𝐼 = |
652×red edge−710×red+710×NIR−805×red edge+805×NDVI−728×NIR+728×red−652× NDVI

2
|, 

where  represent the reflectance value of the related band.  

The rule set was then developed to perform classifications separating forest from non-forest 

areas. In the first step, all classes belonging to the non-forest area such as water, urban areas and 

infrastructure were masked using the Blue band and the Area index. 

Optimization of the remaining unclassified objects of the forest class using the Area index and 

the red edge band was next conducted. Following this, the classification of the classes forest and 

non-forest was enhanced by using variant functions as seen in Table 10. By applying the 

aforementioned steps, classification of more than 98% of the forest objects is automatically 

achieved.  
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Table 10: The developed rule set for forest cover extraction 

Process Class Rule set Function  Values 

Segmentation 

 
 

Multiresolution segmentation   

Parameters 
Scale = 15 / Shape = 0.3 / 

Compactness = 0.2 

Layer weight 

Blue = 1 / Green = 7 / Red = 1 / 

RE = 9 / NIR = 8 / NDVI = 5 / 

AI = 10 

Classification 

 

 

Non-forest 

Classification (membership 

function)  

 

Mean blue  0.18 - 0.28 

 

AI   75 - 85 

Forest 
Classification (membership 

function) 

AI   80 - 85 

AI  240 - 290  

RE  13.5 –14.5% 

Classification 

enhancement 

Non-forest 
Assign class (Threshold 

condition) 
Mean green > 0.53% 

Forest 
Assign class (Relations to 

neighbor objects) 
Relative border to forest > 0.84 

Non-Forest Assign class (Geometry) Area (pixel) < 20 pixels 

forest 
Assign class (Relations to 

neighbor objects) 
Relative border to forest = 1 

 
Forest and  

Non-forest 
Manual editing 

Delete all the agricultural fields.  

Include all the forest objects  

Border 

smoothing 

(Reshaping 

object) 

Forest Pixel-based object resizing 

Grow into all where NIR > 

16.1% and relative area of forest 

pixels in (3×3) > 0.5.  

Shrink using unclassified where 

relative area of non-forest pixels 

(3×3) < 0.5 

Non-forest Pixel-based object resizing 

Grow into all where NIR > 

16.1% and relative area of forest 

pixels in (3×3) > 0.5. 

Shrink using unclassified where 

relative area of non-forest pixels 

(3×3) < 0.5 

Enhancement Forest 
Merge region 

Remove objects 

 

Area (pixel) < 200 

However, classification enhancement is generally applied manually in order to reduce the 

confusion between the forest and non-forest classes. Next, the borders of the forest mask were 

smoothed using more spectral properties (NIR), and the forest mask was then unified. Due to the 

sensitivity of the methods used to detect forest trees, even very small patches of forest trees were 

detected and classified as forest. Therefore, all small objects which were less than 0.5 ha in area 

were excluded according to the forest definition mentioned in section 4.1. 
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4.4.1.2 Forest types and gaps extraction 

The approach was undertaken to extract forest type and gaps without stand borders, and to again 

extract the forest types with stand borders. For the extraction of the forest types and gaps, 

eCognition software was used, and the segmentation parameters were defined according to the 

layers separability of the two classes, deciduous and coniferous. The final proposed and applied 

parameters for the segmentation and classification processes are illustrated in Table 11. For the 

forest type segmentation, a combination of two segmentation processes was used. The first was 

Quadtree based segmentation, and the second was multiresolution segmentation. Combining 

segmentation maintains desirable results while being faster than the exclusive use of 

multiresolution segmentation.  

After segmentation, the objects were classified as forest or non-forest using the produced forest 

mask. The contrast split segmentation was then used to segment a second level, and classify the 

sub-object of forest into deciduous, coniferous and gaps. The contrast split segmentation was 

chosen because it combines aspects of both segmentation and classification, and it needs only two 

parameters to be defined by the user (step size, image layer). This segmentation method is therefore 

generally applicable to any test site or new dataset. 

For the separate stand level classification, a new map (referred to as stand map) was produced 

from the main map. The Quadtree based segmentation was applied to level 2 using the stand borders 

to cut the classified objects of coniferous and deciduous areas into smaller fractions, in alignment 

with stand borders. After that, a segmentation of a new level called stand was established over level 

2 by applying multiresolution segmentation and using thematic layer stands. The created object 

resembled perfectly the forest stands. Finally, the size of stand objects in the level stand were 

classified based on the relative area of each forest type in the lower level. The relative area threshold 

to classify stands into coniferous or deciduous was 80% or more. Thus stands with coniferous to 

deciduous ratios of less than 80% were classified as mix stands. 
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Table 11: The developed rule set for forest types and gaps extraction 

Process Class Rule set Function  Values 

Segmentation 

(Level 1) 
 

Quadtree based 

segmentation 
 

Parameters Scale = 100 

Layer weights 
Blue = yes / Green = yes / Red = yes / RE = 

yes / NIR = yes / NDVI = yes / AI = yes 

Multiresolution 

segmentation 

 

At object level (merge only) 

Parameters Scale = 60 / Shape = 0.3 / Compactness = 0.2 

Layer weights 
Blue = 1 / Green = 7 / Red = 1 / Red edge = 9 

/ Nir = 8 / NDVI = 5 / AI = 10 

Classification 

(Level 1) 

Forest Assign class  By thematic layer (Forest cover) 

Non-forest Assign class Unclassified as non-forest 

Forest and 

Non-forest 
Merge region  

Segmentation 

and 

classification 

(Level 2) 

Deciduous 

and 

Coniferous 

Contrast split 

segmentation 

Class filter: forest 

Step size: 100 

Stepping type : add 

Image layer : red Edge 

Class for bright objects: deciduous 

Class for dark objects: coniferous 

 

Gaps and 

Deciduous 

Contrast split 

segmentation 

Class filter: deciduous 

Step size: 22 

Stepping type : add 

Image layer : green 

Class for bright objects: gaps 

Class for dark objects: deciduous 

Copy map 

(for forest type per stand) 
Copy map Copy map from main (Stands map) 

Segmentation 

(level 2) 
 

Quadtree based 

segmentation 
Stands map 

Parameters Scale = 3 

Layer weights 

Thematic layer 

weight 

All layer = No 

Stands = Yes 

Segmentation 

(Level stands) 
 

Multiresolution 

segmentation 
Create above  

Parameters Scale = 50 / Shape = 0.1 / Compactness = 0.5 

Layer weights 

Thematic layer 

usage 

All layers = 0 

Stands = Yes 

Classification 

(Level stands) 

Stands Assign class By thematic layer (stands) 

Coniferous 

stand 
Assign class Relative area to sub-class coniferous >= 0.8 

Deciduous 

stand 
Assign class Relative area to sub-class deciduous >= 0.8 

Mixed 

stand 
Assign class Classified as stand 
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4.4.1.3 Accuracy assessment 

Accuracy assessment of the extracted parameters was carried out for the three test sites in 

Bavaria. Sampling units were distributed systematically over grids in each test site. Based on the 

area of each test site, the number of units used for the assessment was 849 in the BFNP, 618 in 

Freising, and 320 in Traunsteiner Stadtwald test sites. The reference values of the samples were 

assigned based on visual interpretation of the digital aerial images and field trips. Eventually, the 

overall accuracies of the three forest covers in each test site were calculated (Congalton and Green, 

1999). The overall accuracies of the forest types and gaps of each analyzed RapidEye data were 

also calculated in each test site, taking into consideration the forest cover losses which took place 

between 2009 and 2011. 

4.4.2 Results 

As previously mentioned (see section 4.4), for the determination of the forest cover even mono-

temporal datasets provide satisfying results. Such RapidEye data from April were used to extract 

the forest cover in the Bavarian Forest National Park - BFNP test site, while, similar data from May 

were used to extract the forest cover in Freising and Traunsteiner Stadtwald test sites. The accuracy 

assessment of the forest cover parameters, extracted by using multispectral RapidEye data, 

achieved overall accuracies of 99.1%, 94.7% and 98.1% for the test sites BFNP, Freising and 

Traunstein, respectively. Also, the employed method succeeded in extracting the forest cover in 

various test sites within different Bavarian growth regions. However, confusion was noticed 

between the forest and non-forest land cover, primarily concerning fields in the Freising test site. 

Overall accuracies of forest types and gaps extracted by each mono-temporal RapidEye dataset 

in the Bavarian test sites are shown in Table 12. The results of the forest types and gaps extracted 

for the three test sites are shown in Figure 11. Generally, the overall accuracies show that results 

vary decidedly based on the test site. The average of the achieved overall accuracies in the BFNP 

was the highest, followed by Freising, while the lowest values were found in the Traunsteiner 

Stadtwald. Within the same test site, the results vary in their accuracy based on the acquisition date 

of the analyzed image.  

The results from most of the RapidEye data in the BFNP test site achieved overall accuracies 

between 87.5% (except the 80.2% from 19 April 2011) and 91.8%. The overall accuracies of the 

results in Freising were between 79.5% and 86.4%, and in Traunsteiner Stadtwald, overall 

accuracies were between 62% and 69.2%. Additionally, all results were achieved by applying the 

method developed here, which applied the same rule set with minimum adjustment. 
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Table 12: Overall accuracies of forest types and gap classification in the three Bavarian test sites 

Number Date % BFNP % Freising % Traunstein   

1 17.05.2009   67.0 

2 20.05.2009  84.8  

3 27.07.2009  85.2  

4 01.08.2009   44.8 

5 07.09.2009   67.1 

6 22.04.2010  80.7  

7 11.05.2010   62.0 

8 08.06.2010  86.2  

9 21.07.2010  86.4  

10 15.08.2010  84.9  

11 10.10.2010  82.5  

12 22.03.2011  81.5  

13 07.04.2011  83.0  

14 19.04.2011 80.2   

15 21.04.2011   68.1 

16 06.05.2011  83.0  

17 10.05.2011   67.1 

18 04.06.2011  82.2  

19 22.06.2011 91.8  65.6 

20 28.06.2011  85.1  

21 10.07.2011  84.2  

22 12.07.2011 91.8  66.6 

23 16.07.2011  79.8  

24 22.08.2011 88.9   

25 23.08.2011  82.6 67.0 

26 03.09.2011  83.7  

27 25.09.2011  83.1  

28 01.10.2011 87.5  69.2 

29 06.10.2011  83.3  

30 22.10.2011  81.4  

31 23.10.2011   66.4 

32 04.11.2011  79.5  

Results of forest types per stand extracted for the three test sites are shown in Figure 12. The 

forest stand is the smallest management unit in forest applications, and offers a reference that allows 

further classification of the forest type into the third class, mixed forest. Results were delivered as 

required by foresters, and they give an excellent overview about the forest stands’ tree group 

structures. Regardless of the accuracy, results at the stand level of each dataset were correctly 

classified. 
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Figure 11: Examples of the classification results of forest cover, types and gaps using RapidEye data in the 
Bavarian test sites 

 
Figure 12: Examples of the classification results of forest stand type (coniferous, deciduous, mixed) using 
RapidEye data in the Bavarian test sites 
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4.4.3 Discussion 

4.4.3.1 Forest cover parameter 

The results of the extraction of forest cover parameter achieved by applying OBIA to 

multispectral RapidEye data in Bavaria produced similar or higher accuracies than those produced 

by applying OBIA to the hyperspectral Hyperion data. This demonstrates that the higher spatial 

resolution of the RapidEye data can often compensate for the higher spectral resolution of the 

Hyperion data concerning forest cover mapping. Furthermore, high accuracy results were achieved 

in various test sites of different conditions. This was because of the method design, which was 

intended to be transferable and able to identify the forest cover quickly and precisely. This was 

ensured by using only the blue band, red edge band, and the area index in analysis. Here, the area 

index helped with the precision of forest extraction, while using only a few bands makes the method 

fast applicable and easily transferable to other test site. Only slight confusion between the forest 

cover and non-forest land cover was noticed in the results. An important observation is that the 

implemented OBIA method applied to high spatial resolution RapidEye data can be successfully 

applied at the regional level. The potential of applying OBIA to SPOT data, similar to the 

RapidEye, in order to extract forest cover has been reported (De Kok et al., 1999). The challenge 

of applying optical HSR data to map forest cover at the regional level is due to the low frequency 

of the data, combined with the cloud coverage (Nagendra et al., 2013). The advantages of using 

RapidEye data, on the other hand, is that they can achieve the expected accurate mapping and 

overcome the problem of the cloud coverage. 

4.4.3.2 Forest types and gaps 

The forest type and gaps parameters extracted with the use of RapidEye data from different 

phenological phases in the three Bavarian test sites achieved overall accuracies ranging between 

60% and 90%. Aggregated results of forest types per stand were in high agreement with the reality, 

while the accuracy of the results per stand were high enough to successfully classify each stand.  

The variation in the accuracies appears to be based on the location of test sites within various 

growth regions, considering forest structure and the phenological phase of the vegetation. The 

average overall accuracies of the results was highest in the BFNP test site, where the dominant tree 

species in the forest is Norway spruce, and coniferous and deciduous forest types are typically not 

mixed. However, the result from 19 April 2011 in the BFNP was of the lowest accuracy, attributed 

to the low solar elevation that reduced the illumination and lowered the energy reached at the 
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RapidEye sensor during data acquisition. Another factor was the snow cover beneath the tree 

stands, especially at high altitudes, which disturbed the data reflectance. In the Freising test site, 

the average overall accuracy of all results from various datasets was less than that in the BFNP. 

This was due to the mixed forest structure in Freising, which is more diverse than that in the BFNP. 

This phenomenon was also identified by (Reese et al., 2002). The results in Freising varied 

minimally, with the lowest results being those collected in early spring or late autumn, and 16 July 

2011 as an exception. The low accuracy of the result from November 2011 was achieved mainly 

because of the low solar elevation. Meanwhile, the low accuracy of the result from March 2011 

was due to low solar elevation and snow cover. The lowest accuracies were achieved in 

Traunsteiner Stadtwald because of the complex forest structure, which is mixed and consists of 

multi-layer stands. Such forest structure approaches the model of ‘‘forest of tomorrow’’, which has 

been promoted by management policies of the Bavarian forest administration. Additionally, the 

area of Traunsteiner Stadtwald is more mountainous than the area of Freising, which subsequently 

reduced the accuracy of the results. Similar effects were reported in a study (Dorren et al., 2003) 

in the Austrian Alps, which applied pixel-based and OBIA to Landsat data for forest type mapping, 

and the quality of both results was reduced by the mountainous terrain. Additionally, accuracy was 

decreased by the low density of the forest type, which was likely attributable to the relatively low 

spatial resolution (30 m) of the Landsat data. Generally, the RapidEye sensors acquiring multi-

seasonal data and covering an expansive area lay out the conditions in which one can define the 

reasons for results variation based on the date and the growth region (Borry et al., 1993; Schriever 

and Congalton, 1995). Results achieved in this study slightly outperformed the results that were 

reported in previous studies utilizing SPOT and Landsat multispectral sensors of similar 

characteristics to the RapidEye (Holmgren and Thuresson, 1998). 

The primary success was the transferability of the applied method by applying OBIA to multi-

seasonal RapidEye in various test sites. This was accomplished by maintaining the developed rule 

set in OBIA as simple as possible by limiting the number of parameters. It is of interest to mention 

that the method was originally developed in the Freising test site, and then was transferred to the 

BFNP and Traunsteiner Stadtwald sites. Achieving higher accuracy in the BFNP than in Freising 

demonstrates that applying the method to an area with less complex forest structures can provide 

realistic and consistent results. The BFNP region is a typical mountainous forest with a successive 

growing structure, predominated by spruce trees. The region encompassing the Freising test site is 

slightly more complicated and diverse than the BFNP, as Freising is located on flat terrain and still 

has many stands that are heterogeneous in tree species and age. Finally, the forest in the test site of 
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Traunsteiner Stadtwald is the most inhomogeneous and is highly mixed with many uneven-aged 

trees.  
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4.5 Parameter extraction from multi-seasonal multispectral RapidEye 

data 

Applying the multi-seasonal multispectral approach with RapidEye data, the targeted 

parameters extracted in the Bavarian test sites, are forest changes and forest tree species. The 

object-based image analysis implemented in eCognition from the company Trimble was utilized 

for the extraction of forest changes parameter in section 4.5.1. Still, the forest tree species parameter 

in section 4.5.2 was extracted using pixel-based analysis. 

4.5.1 Forest tree cover monitoring 

4.5.1.1 Methods 

A robust method was developed to monitor forest cover, defined for the test sites of Bavaria and 

using multi-seasonal RapidEye data (Elatawneh et al., 2014, Publication 3 in Appendix). The 

method aimed to monitor forest tree cover area losses by taking advantage of the high revisiting 

frequency of the RapidEye system, which nominally offers data uptake opportunities every 2 to 3 

days. While the intention was to detect forest losses caused by standard management activities, 

special attention was given to sudden changes induced by bark beetle and storms. The high 

frequency of the RapidEye data plays a key role in overcoming any possible issues with cloud 

coverage, and contributes to the ‘‘fast response’’ capability in case of a storm or other calamities. 

The development and assessment of this method was carried out in the BFNP test site over two 

time periods. The first period extended between 19 April and 22 June / 12 July 2011, and detected 

losses because of either bark beetle or regular management. The second period, between 22 June / 

12 July and 22 August 2011, detected the losses caused by a storm that fell on 13 July. The success 

of this method in detecting sudden changes due to storm or other calamities was assessed by 

comparing the results to official storm damages survey of the BFNP administration. This survey 

was based on visual interpretation of the forest cover losses using stereoscopic digital aerial images 

also collected on 22 August 2011. 

The strategy for mapping forest cover changes is based on using newly acquired RapidEye 

scenes to continuously update forest cover databases. The seasonally detected changes should 

contribute to the annual update of the forest cover database, which can serve as a basis to detect 

changes between two years. Based on the most recent available RapidEye data, the forest cover 

database was updated and assessed for the BFNP test site in the year 2011, as well as for the 

Freising and Traunstein study sites from 2009 to 2011. 
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4.5.1.1.1 Forest tree cover monitoring and cloud problem solving 

The developed method applies hybrid approach change detection to multi-seasonal data (Figure 

13). In the hybrid approach to change detection, the pixel-based extraction of initial changes is 

accomplished using an image-differencing technique (Singh, 1989).  

RapidEye 

data
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data 
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Pixel-based image 

differencing 
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Initial changes 
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Figure 13: Methodology followed for the detection of loss in forest cover in the Bavarian test sites 

One must be cautious with these initial changes, as many of the differences detected are not real 

changes in forest cover, but instead may be attributed to non-uniformly reflecting land cover types 

(e.g. water bodies); weather conditions, such as clouds or dense fog; or seasonal changes caused 

by plant phenology. These differences, which do not correspond to real forest changes, were 

excluded using the object-based technique. 
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In the object-based paradigm, the initial changes detected using pixel-based methods were used 

as a thematic layer on which a multiresolution image segmentation process was then performed. 

Following this, objects were initially classified as “change” based on the thematic layer 

representing initial changes. The results were then refined, based on the criteria outlined in Table 

13, in order to identify the areas where forest cover was lost. Many spectral features (e.g. Blue / 

Green ratio, Brightness, NDVI) were calculated for each segment on each band for each of the 

multi-seasonal images separately, to refine the results using carefully selected criteria (see Table 

13). More details about this method and the used parameters are made available in (Elatawneh et 

al., 2014, Publication 3 in Appendix). 

Table 13: Criteria based on indices used for the extraction of forest cover loss in Bavaria 

                                          Period 

Criteria 
Stage 1– Stage 2 

Forest present during stage 1 

Blue / Green ratio (stage 1) 

Brightness (stage 1) 

NDVI (stage 1) 

Forest absent during stage 2 
Blue / Green ratio (stage 2) 

NDVI (stage 2) 

(In case of cloud present during stage 1) 

Forest present before stage 1 

Blue / Green ratio (before stage 1) 

Brightness (before stage 1) 

NDVI (before stage 1) 

(In case of cloud present during stage 2) 

Forest absent after stage 2 

Blue / Green ratio (after stage 2) 

NDVI (after stage 2) 

The first criterion excluded the changes that occurred outside the forest area, such as relating to 

water bodies or agricultural fields. Criterion number two examined whether the areas where the 

initial changes occurred were in fact still forested in the second stage. If this was found to be the 

case, these changes were excluded from the forest change category and instead attributed to 

seasonal changes due to forest plant phenology. 

Where clouds were present in either stage, criterion number three applied stored RapidEye data 

from before stage 1, while criterion number four used sequential RapidEye data from after stage 2 

to compensate for the criterion number one and two, respectively. With this, the cloud problem was 

nearly overcome, except that the data from after stage 2 were still cloudy. In this case, the final 

decision regarding forest changes will be postponed until the next sequential data collections are 

made available. 

4.5.1.1.2 Investigating the success of RapidEye data in the case of the storm in the BFNP 

Investigation of the RapidEye approach success was based on comparison between the 

RapidEye data and the aerial images results, and included three aspects: the ‘‘fast response’’, the 
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precision to detect the lost forest tree cover, and the costs. First, the fast response comparison 

investigated the time needed after the storm to deliver mapping results about the forest tree area 

losses. Second, the mapping ability outlines and analyzes the similarities and the differences 

between the results from the RapidEye data analysis and the aerial images interpretation until 22 

August 2011. Third, to compare costs associated with the two methods, three types of cost 

determinants were included in the calculation: the cost of the raw data, the cost of the data 

preprocessing and cost of data processing. To calculate the cost of the raw data, only data from the 

stage 2 were included, because it was assumed that reference data would already be available. Four 

RapidEye scenes are enough to cover the test site, while an additional four RapidEye tiles are 

necessary to overcome the problem of the clouds, the required total of eight RapidEye images were 

ordered at a cost of € 593 each (€ 4,744 in total). In comparison, one thousand aerial images are 

necessary to cover the same area, at a cost of € 18 per image (€ 18,000 in total). The calculation of 

the cost of data preprocessing and analysis was based on the cost per hour needed to accomplish 

these tasks. Data preprocessing consisted of Geometric corrections and the atmospheric correction 

of RapidEye data. The analysis of the data included the application of the developed method to the 

RapidEye data, and the manual delineation of the changes from the aerial images. The hourly rate 

was assigned to thirty five Euros / hour (€35 / h), according to the average wages outlined in the 

2011 German payment scheme for workers with the relevant necessary skills. 

4.5.1.1.3 Accuracy assessment 

Assessment of the change detection performance was conducted via an error matrix in all 

Bavarian test sites. Sampling unit polygons were used instead of pixels, given that pixels tend to 

underestimate the accuracy of object-based results (Biging et al., 1998). Each polygon was of 60 

m in diameter, and were distributed systematically over the test site. This size of the polygon was 

based on the average size of the objects formed during the change detection process. The reference 

values (change / no change) for these sampling units were assigned based on visual interpretation 

of the RapidEye data and the aerial images. If any changes were detected within the sampling unit 

polygon, it was assigned as change in the reference sample. The agreement between the results and 

the reference values were then assessed for each polygon. The polygons were distributed over the 

same grids used for the assessment of forest cover, type and gaps parameters (see section 4.4.1.3). 

In total, 849 polygons in the BFNP, 618 polygons in Freising, and 320 polygons in Traunstein test 

sites were used for the assessment. Out of this process yielded the users’, producers’, and overall 

accuracies, along with the kappa coefficient (Congalton and Green, 1999; Foody, 2002). 
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4.5.1.2 Results 

As described in section 4.5.1.1, the strategy of monitoring changes in tree covered areas within 

the forest cover relies on the high revisiting frequency of the RapidEye system. The following 

sections present results gained with the developed workflow for forest cover monitoring 

(section 4.5.1.2.1) and by applying the method to overcome the problems with scattered clouds in 

such a monitoring context (section 4.5.1.2.2). The outcome of the workflow is a “change” layer for 

the respective year which has been proposed to be used for updating the forest databases. The 

success of a “fast response” case, here as the storm throw from 13 / 14 of July 2011 in the BFNP, 

is compared against the standard procedure of the BFNP administration. This standard procedure 

is based on digital aerial images that were taken after that event in order to map the damages and 

update the forest data base (section 4.5.1.2.3). The aforementioned examples are from the BFNP 

study site. Section 4.5.1.2.4 summarizes the results for all investigated three Bavarian test sites. 

4.5.1.2.1 Forest trees cover monitoring  

Results of the developed method for forest tree cover loss detection carried out in the BFNP 

during the first period - from 19 April to (22 June / 12 July) - are presented in Figure 14. The results 

of forest cover loss during the second period - from (22 June / 12 July) to 22 August - are presented 

in Figure 15. Results of lost forest cover are shown as polygons on top of the RapidEye images. As 

can be detected in Figure 14, the areas within the polygons appear brighter in the June / July image 

than they do in the April image due to the loss of forest tree cover. Similar results can be seen in 

Figure 15, as the areas within the polygons are brighter in the August image than in the June / July 

image. Both results depict accurate mapping of the losses during the first and second period. 

Analysis reveals that about 157 ha of forest cover were lost during the first period, most of which 

because of management against the bark beetle, as was made clear from the official results of the 

BFNP administration. During the second period, about 235 ha of forest cover were lost, which was 

attributed to the storm that occurred on 13 July.  
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Figure 14: Example of some forest cover losses during the first period from 19 April to 22 June in the year 
2011 in the BFNP (Elatawneh et al., 2014) 

 
Figure 15: Example of some forest cover losses during the second period from 22 June to 22 August 2011 
in the BFNP (Elatawneh et al., 2014) 

Additionally, Figure 16 shows the results from the analysis of the last available RapidEye image 

from 01 October, which contributed to the final update in the year 2011. Similar to the previous 

results, the areas within these polygons, which represent the forest cover losses, become brighter 

in the 01 October image compared to those in the August image. The estimated forest cover loss 

during the period from 22 August to 01 October was about 16 ha. In total, about 408 ha of forest 

cover were lost within the BFNP test site during the year 2011. 
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Figure 16: Example of forest cover loss during the third and last period from 22 August to 01 October 2011in 
the BFNP 

4.5.1.2.2 Solving the problem of cloud cover 

The problem of cloud presence, the most challenging problem when using optical remote 

sensing data for forest monitoring, was bypassed. Figure 17 shows an example from the BFNP 

illustrating how the developed method used subsequent RapidEye data to overcome the problem 

of scattered clouds. 

 
Figure 17: The initial analysis of the changes between one image from 22 June / 12 July (Left) and a second 
image from 22 August (middle) show changes that were actually caused by either clouds or lost forest. 
Subsequent data from the image collected on 1 October (right) allowed for the exclusion of those changes 
due to clouds and kept the final results showing the actual losses in forest cover, by implementing the criteria 
described in Table 13. The numbers 1, 2, and 4 represent the areas excluded using the first, second and 
fourth criterion, respectively (Elatawneh et al., 2014) 

Figure 17 (left and middle) illustrates the initial changes detected in the period from 22 June 2011 

/ 12 July 12 to 22 August. Figure 17 (right) illustrates the final results of “forest loss” as well as the 

changes that were excluded after refinement by application of the criteria outlined in Table 13. During 

the refining of the initial changes, the first criterion excluded objects which were not identified as 
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forest on 22 June, while the second criterion excluded the objects which were still forest on 22 

August. Because of cloud presence during the second period on 22 August, the fourth criterion 

used data from the images collected on 01 October to exclude objects which were still forest. Thus, 

only changes which represent actual loss of forest cover remained as illustrated in Figure 17 (right). 

Finally, the forest cover detected at the end of the vegetation period (01 October) contributed to 

the annual update of the forest database. 

4.5.1.2.3 The success of the RapidEye approach in the BFNP 

As described in section 4.5.1.1.2, comparisons between the RapidEye and aerial image results 

were based on three aspects: the ‘‘fast response’’, precision of forest tree loss detection, and the 

costs. Regarding the ‘‘fast response’’ aspect, after the storm event on 13 / 14 July 2011, the first 

opportunity to collect RapidEye data was on 22 August 2011 due to cloud coverage and weather 

conditions. Coincidently, the annual campaign of the aerial images also fell on 22 August 2011. 

Results of forest tree losses using the RapidEye data were delivered about two weeks later, at the 

beginning of September 2011, while the results obtained by interpreting aerial images were 

delivered about eleven weeks later, at the end of November 2011. In fact, the aerial images 

campaign including images acquisition, preprocessing and manual interpretation is typically a 

time-consuming process. 

Regarding the detection of forest tree losses, the comparison of the results between RapidEye 

data analysis and aerial images interpretation, until 22 August, are presented in Figure 18. Based 

on the analysis, 361 ha of forest loss were mapped identically in both results, indicating very high 

agreement between both methods. However, there remain many differences between the two 

outcomes, especially at the edges and within the mapped lost forest. The differences between the 

two results were separated into two groups. First, the forest losses detected only using RapidEye 

(31 ha, or 8% of all losses), and second, forest losses detected only using aerial images (12 ha, or 

3% of all losses). The exploration of the losses detected solely by RapidEye data show that these 

were actual losses in forest cover induced by either forest management or storm. On the other hand, 

some of the losses detected solely by aerial images were not actual forest cover losses, at least not 

during the period from 19 April to 22 August. Reasons and explanations of the differences of the 

losses are analyzed in section 4.5.1.3 of the discussion.  

Finally, the cost comparison between applying RapidEye data and the manual interpretation of 

aerial images are presented in Table 14. The total cost of utilizing RapidEye data was about € 5,660, 

and the cost of the visual interpretation of the aerial images was about € 22,200. The cost of the 
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RapidEye data analysis was therefore only one fourth of the cost of the manual interpretation of 

the aerial images. 

 
Figure 18: Example comparing the results of forest covers loss, until 22 August, when RapidEye data was 
used with the official results of forest cover losses from aerial images interpretation. The upper two images 
show the results in hollow polygons, and the lower image shows the results in solid polygons 

Table 14: Cost comparison of forest losses using RapidEye data analysis and aerial images interpretation 
in BFNP 

Category  RapidEye (Euros)  Aerial images (Euros)  

Raw data  (8 images × €593) = 4,750  (1,000 images × €18) = 18,000  

Preprocessing  (10 WH × €35) = 350  (40 WH × €35) = 1,400  

Data analysis  (16 WH × €35) = 560  (80 WH × €35) = 2,800  

Total  5,660  22,200  
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4.5.1.2.4 Accuracy assessment of forest monitoring in all Bavarian test sites 

Results of forest cover lost during the year 2011 in the BFNP, and during the period from 2009 

to 2011in the Freising and Traunstein test sites, are presented in Figure 19. The results in Table 15 

present the area of the forest cover losses in hectare (ha) in these test sites. As can be seen, the 

losses of the forest cover during the year 2011 in the BFNP greatly exceeded those in Freising and 

Traunstein. About 4% of the forest cover in the BFNP test site were lost only during the year 2011, 

while about 0.8% and 1.2% of the forest cover in Freising and Traunsteiner Stadtwald test sites, 

respectively, were lost over three years (from 2009 to 2011).  

No forest cover loss results were available in the BFNP before 2011 due to the lack of proper 

RapidEye data for the analysis. However, based on the official results from the BFNP 

administration, during the year 2010 (until 22 August) about 360 ha of forest cover were lost 

because of management against the bark beetle and the storm. The amount and the percentage of 

the forest cover losses in the BFNP were much higher than that in Freising and Traunsteiner 

Stadtwald. Still, annual results from Freising and Traunstein reveal continuous forest cover losses. 

Table 15: Calculated forest loss in hectare (ha) and as a percentage of the forested area, by data and 
method utilized, in the three Bavarian test sites 

Period BFNP Freising Traunstein 

2009 -- 0.00 1.54 

2009 – 2010 -- 4.40 

1.22 2010 -- 1.88 

2010 – 2011 -- 2.02 

2011 408 9.34 0.24 

Total losses ( ha ) 408 17.64 3 

Total losses ( % ) 4% 0.8% 1.2% 
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Figure 19: Total forest cover losses during the period from 2009 to 2011 in the BFNP, Freising and 
Traunstein test sites based on the available RapidEye data 

The accuracy assessments of the forest cover loss results in the Bavarian test sites are presented 

in Table 16. Achieved overall accuracies were between 96.7% and 99.1%, which indicates that the 

RapidEye data and the method utilized here returned high accuracies for forest cover losses 

detection. In terms of the user and producer accuracies, similar patterns were observed in the three 

test sites.  

Table 16: Overall user and producer accuracies and kappa values of forest loss results in the Bavarian test 
sites 

Accuracies BFNP Freising Traunstein 

User % 87.4 89.3 81.8 

Producer % 88.9 96.2 90.0 

Overall % 96.7 98.7 99.1 

Kappa 0.86 0.92 0.85 

The user accuracies in the test sites ranged between 81.8% and 89.3%, while the producer 

accuracies ranged from 88.9% to 96.2%, indicating the overall success of the implemented method. 

Still, a few areas were mistakenly identified as losses when no actual loss had occurred, and some 

legitimate losses were not detected. 
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4.5.1.3 Discussion 

Applying the developed method to multi-seasonal RapidEye data in order to detect forest cover 

losses in the Bavarian test sites achieved overall accuracies ranging between 96% and 99%. As 

seen in Table 15, the results included slight changes that took place between two sequential 

RapidEye data acquisitions, and succeeded in detecting changes that were caused by either sudden 

changes or standard management practices. The method contributed to the ‘‘fast response’’ strategy 

and also succeeded in overcoming the problem of clouds. 

The fast response was the primary success derived by this method, which implemented the 

multi-seasonal RapidEye data within two weeks of the storm event, in comparison to the aerial 

image interpretation, which took place eleven weeks later. A fast response such as this contributes 

to the prevention of the following biotic calamities triggered by such a storm, and presents the 

possibility of more promptly introducing precautionary measures, which is often more important 

than the pure cost factor. 

The developed method was transferred to various test sites of different topography and 

vegetation regions, and successfully updated the forest information layer with each successive 

RapidEye dataset. At the end of the year, the status of the forest database is updated, and, once 

implemented, can be used for analysis of the annual changes. At the Freising and Traunsteiner 

Stadtwald test sites, the continuous update process based on RapidEye data clearly reveals the 

continuous forest cover loss over the year. Most losses can be attributed to management activities 

including clearing following light storms, ice breaks, insect damages, etc. that took place from 2009 

to 2011. 

Results achieved here were generally consistent with the results of previous studies integrating 

object-based image analysis (OBIA) in approaches detecting changes in forest cover. Those studies 

applied OBIA to Landsat data (McDermid et al., 2003; McDermid et al., 2008), SPOT data 

(Desclée et al., 2006) and a combination of SPOT and aerial images (Willhauck et al., 2000) for 

forest change detection, reporting overall accuracies between 84% and 94%. However, these 

studies have neither focused on sudden changes nor dealt with the problems presented by clouds. 

To bypass the problem of cloud cover, these studies advocate collecting and analyzing optical data 

more frequently. Other studies demonstrated the use of data from the active satellite systems, e.g. 

TerraSAR-X, to overcome the problem of clouds (Rappl et al., 2012; Thiele et al., 2012). However, 

the high cost and the small coverage of the active systems limit their implementation in the 

operational forest loss detection. Here, the results of the multi-seasonal RapidEye data offered an 
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alternative and operational solution to overcome the problem of the clouds. Such a problem 

prevented the development of an operational method in a study in central Africa (Duveiller et al., 

2008).  

In addition to findings regarding faster response rates, a comparison between the results of the 

multi-seasonal RapidEye data analysis and the annual aerial images in the BFNP are also presented, 

though each method falls into different frame conditions. The method followed uses the RapidEye 

data analysis based on continuous forest observations, and the integration of each RapidEye dataset 

that is made available. Meanwhile, the method involving visual interpretation of the stereoscopic 

digital aerial images requires a special campaign which takes place once a year. The results from 

RapidEye data provided a continuous monitoring over three time periods in the year 2011. These 

detections were taken with increasing frequency as the forest change event approached, allowing 

for a better understanding of the factors that caused the changes in the forest cover. For example, 

during the first and third periods, about 157 ha and 16 ha, respectively, were lost within a period 

of about a month. These losses in the BFNP were caused solely by regular management against the 

bark beetles, which reveals the catastrophic sequences of the calamity. The concept of digital aerial 

image interpretation was developed by experts who estimate the cause of changes based either on 

the fallen trees or by comparison with the results from previous years. However, annual digital 

aerial images are available only for the BFNP, while only triennial aerial images are available for 

the rest of Bavaria, which presents a challenge in defining the causes of change. 

When comparing the BFNP RapidEye data results and the digital aerial images interpretation, 

few differences stood out. Those differences recorded were attributed to manual digitization, in 

which the user will naturally delineate smooth borders rather than zigzag. Hence, the shape of the 

objects that represent changes will be estimated rather than exactly delineated. Previous studies 

(Heurich et al., 2010; Kautz et al., 2011) have discussed the consequences of manual digitizing, 

explaining that users tend to overestimate the magnitude of fallen trees. Moreover, results show 

that 8% of the object losses were detected solely using the RapidEye method, and only a few of 

these objects were mistakenly identified as losses. These errors were due to phenological 

differences from leaf-off to leaf-on, especially in the first period within deciduous stands, as this 

change increased the spectral reflectance of the red edge band. As a mark of its success, only 3% 

of the total losses were not detected by the RapidEye data. The lost objects were small, and were 

usually surrounded by healthy coniferous stands, deciduous stands, or laid within a shadow. It was 

therefore difficult to detect these objects by using the spectral information alone. Further to this, 

many of these losses were detectable only at the center of the damage, meanwhile detection of the 
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losses at the periphery was difficult. This can be explained by the complex structure of the forest 

and the shade at the periphery, as previously reported (Carvalho et al., 2001). Finally, though the 

results of the RapidEye data were not intended to entirely compensate for the results of the aerial 

images, RapidEye results achieved 97% of the results of aerial images. Furthermore, the cost of the 

RapidEye analysis was only 25% of the cost of the aerial image interpretation. 
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4.5.2 Forest tree species  

4.5.2.1 Methods 

The approach taken to identify forest tree species applied the use of 20 multi-seasonal RapidEye 

datasets, an approach developed in the Freising test site (Elatawneh et al., 2013, Publication 4 in 

Appendix). The approach was based on the “phenological fingerprint” concept, accounting for the 

long rotation period of forests which extends from 60 to 250 years. It was assumed that 

accumulating information over successive years would not corrupt the result, but would instead 

increase the reliability of the outcomes. The 20 analyzed datasets were acquired over three 

vegetation periods from the years 2009 to 2011, in order to identify 7 tree species. The primary 

research question was focused on tree species identification, with additional research questions 

pertaining to economic issues. Recall the investigated research questions, mentioned previously in 

section 1.2, as: 

 How many datasets from various phenological phases are needed to obtain the most accurate 

results? 

 How does using additional bands or indices influence tree species identification? 

 Is there a phenological phase with high potential for identifying a specific tree species? 

 Which phenological phase is the most promising to identify all tree species? 

The workflow comprises first section 4.5.2.1.1, which includes the preparation of the 

phenological fingerprint – achieved by combining the phenological phases’ attributes with the 

RapidEye dataset acquisition. Next, section 4.5.2.1.2 includes the cross validation method used for 

classification and validation of the RapidEye data. Finally, section 4.5.2.1.3 provides an overview 

of the strategy that was followed to analyze the RapidEye data in order in pursuit of answers to the 

aforementioned research questions.  
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4.5.2.1.1 Forest phenological fingerprint and RapidEye data acquisition 

The phenological fingerprint principle is based on the spectral reflectance variation between tree 

species caused by the phenological phases timing, which will increase the separability among the 

tree species. The box plot in Figure 20 shows the phenological phases in the Freising test site, 

arranged in chronological ordered based on all phenological observations ranging from time 

periods of 3 to 51 years (see also Table 4).  

 
Figure 20: Box plot showing the phenological phases’ occurrence by the day of the year (Julian day) of the 
forest tree species at the Dürnast phenological station in Freising forest, based on all available observations 
(see Table 4) 

These historical phenological observations show that the phases’ leaf / needle unfolding, May 

shooting and flowering usually occurred in the period from 100 to 140 of the Julian day (from early 

to late spring). Larch needles were observed to have a tendency to unfold first, followed by the oak 

about three weeks later, while the beech tends to unfold concurrently with the oak or a few days 

later. Although maple unfolding was not observed at the test site, maple tends to unfold together 

with the beech, around the end of April or the beginning of May (Schütt, 2006). This phenological 

state can therefore serve as an excellent indicator for separating larch, oak, beech and maple. For 

the coniferous species, the spruce May shoot tends to occur a week before the pine May shoot, 

similarly, spruce flowering tends to happen a week earlier than pine flowering. Uniquely, the oak 
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lammas growth, a second leaf unfolding, appears in early summer from mid-June until mid-July. 

This property can increase the chance of separating oak from other species. 

Autumn coloring and leaf fall usually occurred in the period from 280 to 310 Julian day, or from 

mid- to late-autumn. Again, shifts in autumn coloring between oak, beech and larch can be very 

helpful tools in improving mapping. Based on personal observations, maple autumn coloring tends 

to take place first, followed by oak about two weeks later. While beech autumn coloring starts at 

the same time as oak or a few days later, and the larch about a week or two weeks later. With the 

passing of two more weeks, the oak and beech leaf fall begins, and the larch tends to starts losing 

its needles. All in all, the differences of phenological timing will result in variation in the 

pigmentation of the leaves between the various tree species, which can play an important role in 

supporting the phenological fingerprint concept.  

These phenological observations can, however, shift from one year to another. To address this 

potential shift, observations from the individual years 2009, 2010, and 2011 where combined with 

the RapidEye data acquisition to better clarify the overlap between the phenology and the RapidEye 

data acquisition, (as seen in Figure 25 in page 94). Some of the phenological observations were not 

available for the years 2009, 2010 and 2011, including those for the larch, spruce and oak time of 

initial flowering, and the oak lammas growth. The chronological order of the single phenological 

phases was not found to change in these three years, except for the beech autumn coloring which 

tended to occur two weeks before oak autumn coloring in 2011. Such a shift in the beech autumn 

coloring is expected to improve the mapping of this species. Although twenty RapidEye datasets 

were available for this study, not all observations were acquired during the peak of the phenological 

phases. This is significant as the images acquired during the peak of the phenological phases are 

expected to achieve the best classification results. 
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4.5.2.1.2 Classification and validation using the cross validation method 

Identifying tree species, the primary goal, was carried out using image classification. A 

successful classification requires a well-defined classification scheme and proper samples. 

Therefore, the selection of the tree species samples was supported by the inventory data and our 

field visits (Table 17). The sample selection was restricted to the brightest pixels of a collection of 

homogeneous pixels, which were identified to belong to pure tree species.  

Table 17: Tree species identified in the Freising test site 

ID Tree Species Binomial name  Species percent # of samples 

1 Norway spruce Picea abies (L.)  73% 212 

2 Douglas fir Pseudotsuga menziesii (M.F.) 2% 32 

3 Scots pine Pinus sylvestris (L.) 4% 34 

4 
European larch 

Japanese larch 

Larix decidua (MILL.) 

 Larix kaempferi 
5% 41 

5 European beech Fagus sylvatica 5% 153 

6 European oak Quercus petraea (Mattuschka) 3% 38 

7 Sycamore maple Acer pseudoplatanus 2% 36 

The method of samples selection was adapted from previous studies, in which training samples 

were selected solely from sunlit crown areas, in order to select the spectra of tree species from very 

high spatial resolution data (Immitzer et al., 2012; Korpela et al., 2011). Sample selection within 

bright pixels can reduce the illumination variances among the same tree species that were caused 

by the shadow effect from the surroundings and the topography. To further minimize this effect, 

the Spectral Angle Mapper (SAM) was implemented to perform the classification, as it is less 

sensitive to illumination effects than other methods (Eckert and Kneubühler, 2004). Due to the 

absence of recent inventory data, the samples were used for training and validation by applying 10-

fold Cross validation technique (Geisser, 1975; Stone, 1974; Waser et al., 2014). The 10-fold Cross 

validation partitioned the samples into 10 subsets, using each subset in turn as training samples for 

the classification, and the remaining data as validation points. The process was repeated 10 times, 

with the 10 results being combined to produce one validation result. 

4.5.2.1.3 RapidEye data analysis strategy for tree species identification 

The strategy of the RapidEye data analysis included two main aspects: the classification of each 

single dataset, and the classification of various combinations of the datasets. Investigation of the 

most promising phenological phases for tree species identification, and the potential of each 
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phenological phase to identify a specific tree species were based on the accuracy of the single 

dataset classification. The higher the achieved overall accuracy of a dataset acquired in a specific 

phenological phase, the more promising this phase for tree species identification. Similarly, the 

higher the user and producer accuracies of a specific tree species from data acquired in a 

phenological phase, the greater the potential this phase holds in identifying this specific tree 

species. 

In order to investigate the number of dataset combinations that achieve the most accurate tree 

species identification, 20 RapidEye combinations were established from the RapidEye dataset. 

First, the result accuracy for each of the 20 RapidEye datasets was evaluated, and then 20 data 

combinations were established by choosing the best single-, two-, three-data, etc., until twenty-data 

combination. Each combination was established by stacking up all bands from the combined 

RapidEye data. After that, each combination of data was classified, and the results were assessed. 

The method also investigated the potential of using the newly introduced red edge band to improve 

the accuracy of tree species identification. Here, the same procedure and image combinations were 

implemented, but with the absence of the red edge band. Moreover, the influence of adding indices 

to the original dataset was investigated by applying the same procedure once more. 

Additional indices beyond the NDVI index were developed and utilized, which was expected to 

emphasize the differences among the spectral reflectance of the tree species, due to the fact that the 

reflectance is often similar in many, but not all, bands. For this, slope difference indices were 

developed, as in Figure 21, because they represent the ratio of reflectance between the bands. 
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Figure 21: Illustration of the slope difference indices developed in this study 

The developed slope indices are also expected to be less influenced by illumination variations, 

thus enhancing the species differentiation. Those indices were generated by calculating the 

difference in the slopes as shown in the following equations: 

Slope difference 1 =  
( Green −  Blue)

( Green −  Blue)
− 

( Red −  Green)

( Red −  Green)
 

Slope difference 2 =  
( Red edge −  Red)

( Red edge −   Red)
− 2 

( Red −  Green)

( Red −  Green)
 

Slope difference 3 =  
( NIR −  Red edge)

( NIR −   Red edge)
− 0.5 

( Red edge −  Red)

( Red edge −   Red)
 . 

Where, the  represents the reflectance and the  represent the central wavelength of the 

corresponding band. The indices were then enhanced by duplicating their values as illustrated in 

the equations. It is important to mention that these slope difference indices can be highly dependent 

on the quality of the radiometric correction. 
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4.5.2.2 Results 

4.5.2.2.1 Results of single and combined use of RapidEye data 

Results of single and combined RapidEye dataset classifications for tree species identification 

are presented in Table 18 and Figure 22. The results show that the increase in the amount of data 

used in the analysis increases the overall accuracy. However, the increase in the accuracy quickly 

improves at the beginning, then continues to improve at a decreasing rate. As Table 18 

demonstrates, when the original bands and indices were used, one dataset achieved an overall 

accuracy of 72.8%, while seven dataset combinations achieved an accuracy of 84.0%, for an 

improved overall accuracy of about 11%. Using twenty dataset combinations achieved an overall 

accuracy of 86.3%, which shows that using thirteen additional datasets improves the overall 

accuracy by only about 2%. 

Table 18: Overall accuracy of tree species identification with single and combined use of RapidEye data 
from different dates (see Figure 22) 
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Season 

Overall 

(one scene) 

accuracy 

% 

Overall (image combinations) accuracy 

%  

Original 

bands without 

red edge 

Original 

bands 

Original 

bands + 

indices 

1  16.07.2011  197 Mid-summer 67.1 63.9 67.1 72.8 

2  22.04.2010 112 Early spring 63.2 73.0 73.7 77.3 

3  04.06.2011 155 Early summer 59.7 77.3 77.6 80.1 

4  07.04.2011 97 Early spring 59.7 78.8 78.7 81.4 

5  10.07.2011 191 Mid-summer 59.1 78.6 79.4 82.4 

6  27.07.2009 208 Mid-summer 58.7 78.9 81.3 83.2 

7  22.03.2011 81 Early spring 57.6 82.0 82.6 84.0 

8  20.05.2009 140 Late spring 57.1 81.1 81.9 84.2 

9  28.06.2011 179 Mid-summer 56.0 81.0 82.4 84.6 

10  08.06.2010 159 Early summer 54.8 82.0 83.3 85.1 

11  21.07.2010 202 Mid-summer 54.6 82.2 83.0 85.1 

12  04.11.2011 308 Mid-autumn 53.8 83.5 83.9 85.9 

13  22.10.2011 295 Mid-autumn 53.3 82.7 83.7 85.9 

14  06.05.2011 126 Late spring 50.6 82.4 83.5 85.6 

15  15.08.2010 227 Late summer 48.7 82.3 83.6 85.5 

16  10.10.2010 283 early autumn 48.2 82.8 83.7 86.1 

17  25.09.2011 268 early autumn 46.5 83.4 84.4 86.4 

18  23.08.2011 235 Late summer 44.6 83.1 84.2 86.2 

19  06.10.2011 279 early autumn 40.7 83.5 84.4 86.3 

20  03.09.2011 246 Late summer 39.2 83.3 84.3 86.3 
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Similar results were also achieved when the original bands were used in the analysis, and also 

when the original bands (without the red edge band) were used. Nonetheless, it is not only the 

number of classified dataset that matters, but also the acquisition seasons of these datasets, as will 

be shown in the sections 4.5.2.2.2 and 4.5.2.2.3. 

  
Figure 22: Overall accuracy of RapidEye data combination (see Table 18) 

This investigation shows that the red edge has only a slight influence on the results, and the 

average improvement in the overall accuracy when the red edge band was used, was about 1%. 

Investigation of the influence of the utilized indices on the accuracy clearly demonstrates that 

indices improved the overall accuracy by about 4% when few combinations were used. Meanwhile, 

the average value of the improvement achieved by using the indices in the classification was about 

2%. 

For the investigation of the influences of the red edge band and the indices on the accuracy, it is 

interesting to review false-colored composite images from three multi-seasonal dates by using these 

indices and the red edge band presented in Figure 23. The images show high similarity among tree 

species in the forest, and very high dissimilarity among the crops in the surrounding fields.  
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Figure 23: False-colored composite images from three multi-seasonal dates 07 April, 23 August and 06 
October 2011, by using a) red edge bands, b) NDVIs and c) slope difference 3 indices. They show very high 
dissimilarity between the crops more than that between the tree species in the forest 

The map in Figure 24 shows the distribution of the tree species identified in the Freising test 

site, using the best 17 data combinations. According to the field visits and the forest management 

maps from the forest administration in Bavaria, the results in the map describe very well the spatial 

distribution of the tree species in the forest. Generally, the map of tree species distribution was also 

similar to those from the latest inventory records from 2001, especially in the parts of the forest 

where no dramatic changes took palace. Unfortunately, no inventory data has been collected since 

2001, and therefore it was not sensible to perform the accuracy assessment using the old inventory 

record.  
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Figure 24: Map of tree species distribution using 17 RapidEye data combination in the Freising test site 

Based on the accuracy assessment from the cross-validation procedure, Table 19 presents the 

confusion matrix of the result utilizing the best 17 data combinations.  

Table 19: Confusion matrix of the result of the cross validation analysis of the best 17 data combinations 
(original bands + Indices) 

 Reference data  

Class. Spruce Douglas Pine Larch Oak Beech Maple Sum 
User 

Acc. % 

Spruce 1899 9 0 0 0 0 0 1908 99.5 

Douglas 46 229 0 0 0 19 0 294 77.9 

Pine 2 12 1033 53 37 18 15 1170 88.3 

Larch 3 1 56 223 17 37 12 349 63.9 

Oak 20 2 55 41 203 2 19 342 59.4 

Beech 28 9 16 7 3 450 0 513 87.7 

Maple 11 3 76 22 16 4 206 338 61.0 

Sum 2009 265 1236 346 276 530 252 4914  

Prod. 

Acc. % 
94.5 86.4 83.6 64.5 73.6 84.9 81.8 

Overall 

Acc. % 
86.4 

The user accuracy for the individual classes ranges from 59% to 99%, while the producer 

accuracy for the individual classes ranges from 64% to 94%. As can be seen, the individual 

accuracies for the classes spruce, Douglas fir, pine, beech and maple increased when the number 

of the analyzed RapidEye data increased. On the contrary, individual accuracies of larch and oak 

decreased when the multi-seasonal data were analyzed. There was also confusion between larch 

and oak, which was noticed in most of the results of the various data combinations. Although pine 

tree species determination was improved, there was still confusion between the pine with the larch, 

oak and maple classes, as presented in the results. 
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4.5.2.2.2 Potential phenological phases for specific tree species identification 

Results of using the potential phenological phase to identify specific tree species based on the 

user and producer accuracy of each tree species RapidEye dataset are presented in Table 20. The 

user accuracies represent the percentage of tree species that were correctly identified and separated 

on a produced map. The producer accuracies represent the percentage of tree species on the ground 

that were correctly identified. Therefore, the higher the values of both user and producer accuracy 

of a specific tree species, the better the separability of this tree species from other species. 

Table 20: Overall user (u) and producer (p) accuracy of each tree species using single RapidEye data. The 
highest (and close to the highest) accuracies of each tree species are shaded 

 
 Spruce Douglas Pine Larch Oak Beech Maple 

date u p u p u p u p u p u p u p 

1 16.07.2011 83 79 37 35 60 56 44 61 83 79 32 31 31 44 

2 22.04.2010 83 79 31 26 43 53 70 73 40 41 61 58 22 27 

3 04.06.2011 76 75 42 37 54 48 58 58 23 31 58 59 47 51 

4 07.04.2011 77 76 18 17 74 68 55 51 42 45 16 19 37 47 

5 10.07.2011 76 77 33 34 41 40 68 67 30 32 52 46 34 41 

6 27.07.2009 74 75 41 39 39 39 63 59 59 60 22 22 48 53 

7 22.03.2011 73 75 37 37 62 59 22 28 58 57 45 38 41 42 

8 20.05.2009 73 73 25 29 67 56 53 52 53 56 37 37 16 21 

9 28.06.2011 69 72 24 20 56 52 39 41 48 49 58 56 41 47 

10 08.06.2010 65 68 28 24 58 55 56 58 65 62 27 23 18 24 

11 21.07.2010 71 68 25 24 36 37 55 56 49 52 52 48 36 44 

12 04.11.2011 64 65 45 41 53 49 54 55 45 46 40 40 42 46 

13 22.10.2011 74 72 16 14 40 46 35 33 58 61 28 26 39 45 

14 06.05.2011 64 69 33 29 57 51 45 41 38 40 35 32 33 41 

15 15.08.2010 60 62 31 28 54 48 34 33 50 51 49 47 12 16 

16 10.10.2010 68 65 25 23 42 41 40 40 38 39 37 39 20 28 

17 25.09.2011 66 67 41 42 42 40 16 18 12 13 44 36 28 32 

18 23.08.2011 50 58 53 45 24 23 41 38 19 20 48 43 35 36 

19 06.10.2011 58 58 42 40 25 25 9 10 30 27 38 33 8 13 

20 03.09.2011 55 60 36 30 33 30 26 27 28 28 31 28 14 17 

Based on the results outlined in Table 20, the data collection from 16 July 2011 took place about 

two weeks after the phenological phase of oak lammas growth, which has the potential to separate 

oak and spruce. Also, data collected on 22 April 2010, two weeks after the larch leaf unfolding, 

successfully separated spruce and larch while partially separating beech. Although data, from early 

summer, collected on 4 June 2011 was expected to shows limited potential in separating beech and 

maple, but in fact these data were the most successful at separating these two species. Data from 7 

April 2011, during the deciduous leafless season, had the highest potential to separate the pine 

trees. Again, data from 10 July 2011 and 27 July 2009, collected after the oak lammas growth 

period, present the potential to separate larch and maple, respectively. Similarly, data from 28 June 

2011, a period that follows the oak lammas growth period by a few days, showed potential for 



Forest parameter extraction 

93 

separating the beech trees. Interestingly, results show that in general, data collected around the oak 

lammas growth phenological phase have more potential to identify oak than other phases. Finally, 

data collected on 23 August 2011 achieved the best identification for the Douglas fir. 

4.5.2.2.3 Most promising periods for tree species identification 

Results of the most promising phenological phases for tree species identification, based on the 

overall accuracy of each RapidEye dataset, can be obtained from Table 18. Figure 25 also serves 

as a visual illustration of the results, showing the Julian days of the phenological phases and of the 

RapidEye data acquisition combined with each RapidEye order, based on the overall accuracy of 

each. In general, results show that the most suitable acquisition time was found to be mid-summer, 

early spring, early summer and mid- / late-autumn, or, in other words, around the peak of the 

phenological phases, as expected. 

As can be seen in autumn 2011, data collected after autumn coloring begins achieved much 

better results than those collected in late summer, two weeks prior. On the contrary, the most 

unsuitable time for acquisition for tree species identification seems to be late summer and early 

autumn. However, it is noticed that the results of data acquired during the promising periods also 

varied in their accuracy. Analysis in Figure 25 shows that data from 22 April 2010, which were 

collected around the beginning of oak leaf unfolding (two weeks after the larch needle unfolding 

has begun), achieved the second best accuracy. Similarly, the first and fifth best data were collected 

about four and three weeks, respectively, after the estimated oak lammas growth. The ninth best 

data were collected shortly after this phase. Also, the fourth best image from 07 April 2011 was 

acquired directly after the beginning of the larch needle unfolding. 
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Figure 25: Julian day of the phenological observation and the single RapidEye data acquisition combined 
with the RapidEye order (in red, see Table 18) based on each single scene overall accuracy, in the Freising 
test site in the years 2009, 2010, and 2011 

  



Forest parameter extraction 

95 

4.5.2.3 Discussion 

Investigations focused on tree species identification used twenty multispectral multi-seasonal 

RapidEye datasets. However, as was presented in Figure 23, tree species identification is a 

challenging task in comparison to other vegetation land cover, even when using multi-seasonal 

data. Ongoing investigations have yet to answer various economically important research questions 

related to forest tree species identification such as: 

 How many datasets from various phenological phases are needed to obtain the most accurate 

results? 

Results have shown that using the multi-seasonal RapidEye data increased the overall accuracy 

of tree species mapping. Interestingly, this result was sharply improved by using about seven 

datasets, and adding more datasets led to marginal improvements. Thus, the use of seven datasets 

in identifying tree species produced a similar success rate to that achieved using the entire dataset. 

Nevertheless, it should be noted that those seven datasets were among the best data because they 

were collected during phenological phases with high spectral variation between tree species, as will 

be discuss later in this section. Similar trends in overall accuracy improvements were also noticed 

when more aerial images were analyzed (Key et al., 2001). However, in this case the best achieved 

overall accuracy occurred when only 17 datasets were used, and not by using the entire dataset. It 

is important to note that increasing the amount of analyzed data can lead to a decrease in the 

accuracy, which is known in the literature as ‘‘Hughes phenomenon’’, as reported by (Hill et al., 

2010; Key et al., 2001). 

Previous studies have used multi-seasonal Landsat data (Wolter et al., 1995) and multi-seasonal 

ASTER and SPOT data, of similar characteristics to RapidEye data (Davranche et al., 2010; 

Stoffels et al., 2012). These studies did not investigate the number of datasets required to increase 

the temporal resolution, due to the limited number of scenes. Regardless of the forest condition, 

the implemented techniques, the number and types of tree species, and the assessment techniques 

used, multi-seasonal RapidEye data consistently demonstrate their high potential for tree species 

identification, when compared to sources used in previous studies. This leads to the following 

question: 

 How does using additional bands or indices influence tree species identification? 

Regarding the influence of using the red edge band and the indices on the accuracy, average 

improvements were about 1% and 4%, respectively. This 1% improvement was a result of using 

the red edge band, coming from its sensitivity to the spectra differences between the coniferous 
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and the deciduous tree groups. The red edge can be very sensitive to the spectra dissimilarity 

between the crops in the fields (Conrad et al., 2012). However, reduced sensitivity to the spectra 

differences between the tree species in the forest can be seen in Figure 23 A. Similarly, the indices, 

including the NDVI and the slope difference, show higher dissimilarity between the crops in the 

fields than between the tree species in the forest (Figure 23 B, C). As mentioned at the beginning 

of this section, tree species identification remains a challenging task for remote sensing.  

It was found that using data from different growing or phenological seasons will increase the 

chance of separating tree species. This was revealed in the results of the multi-seasonal data 

combination analysis when compared to the single data analysis. The increase in the overall 

accuracy was due to the increase of the individual accuracies of spruce, Douglas fir, pine, and 

maple. Meanwhile, the individual accuracies of the larch and oak appeared to decrease, and were 

better identified using only one dataset from 22 April 2010 and 16 July 2011, respectively. The 

similarities amongst the two species along most phenological phases increased the confusion 

between them. However, this can be corrected using multi-seasonal data of phenological phases 

with high variation between oak and larch, to better distinguish between these species. 

In terms of the phenological phase autumn coloring, in the year 2011 there were obvious 

differences between the species beech and oak (see Figure 25), and as a result, the confusion 

between these two species was minimal. The confusion between pine and the larch, oak and maple 

classes was reported because of the sparse pine stand structures, where pine stands are not typically 

dense, and consist of rejuvenation understory of mainly oak and maple, which influences the 

reflectance, thus increasing the confusion amongst these classes. This leads to the following 

question: 

 Is there a phenological phase with high potential for identifying a specific tree species? 

The results show that data collected during the phenological phases identified as most 

promising, also have the highest potential for separating specific tree species. Data from 16 July 

2011, collected a few weeks after the oak lammas growth, has the highest potential to separate oak 

trees. This was because of the new oak leaves which had developed and were able to be detected. 

Indeed, most data collected shortly after that phenological phase had the highest potential to 

separate oaks. For spruce, separation was most successful on 16 July due to the low reflectance in 

red edge and NIR, and on 22 April due to the distinct overall low reflectance. Data collected on 22 

April 2010, two weeks after larch unfolding started, had the highest potential to separate larch and 

beech, because larch was under leaf-on conditions while other deciduous species were leafless. 
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While beech was still leafless, explained by the associated undergrowth, a distinct and consistent 

signature was observed. Moreover, data from 4 June 2011 showed potential to separate beech and 

maple, however, the achieved accuracy was still low and confusion between beech and maple was 

still high. The reason for this was that the leaf unfolding phase for both species generally occurs 

simultaneously. Pine was best detected on 7 April 2011, when larch and deciduous species were 

all leafless. Again, this was because of the pine trees structure, which was not dense and mixed 

with its undergrowth consisting of many young oak and maple trees. Additionally, data from 10 

July 2011 show high potential to identify larch due to the observed high reflectance in red edge and 

NIR. This can take place around the period of the highest concentration of chlorophyll in larch 

needles (Nakaji et al., 2006). Data from 27 July 2011 had the potential to separate maple trees, 

which can be explained by the higher reflectance in NIR of maple trees than that of deciduous 

species, especially beech. Although the data from late summer generally held little promise for tree 

species identification, these data showed potential to separate Douglas fir trees. This might be a 

result of the shoot extension which tends to last until mid-summer in response to moisture stress 

(Duryea and Landis, 1984). 

In the end, it may be that the spectral variation among the tree species due to the phenological 

state during data collection is higher in spring and summer than that in autumn. This finding is 

critical and likely to be explained by several aspects, because the phenology does not fluctuate by 

species only, but also caused by photoperiodism, air temperature, soil moisture and temperature, 

and solar illumination (Key et al., 2001). Also, the spectral variations can occur for trees of the 

same species, within the same forest stand, in the same year (Hill et al., 2010) and between the 

different years (Figure 25). The next question posed is: 

 Which phenological phase is the most promising to identify all tree species? 

The most appropriate phenological seasons based on the single RapidEye data results were those 

in spring or early summer, the peak time for leaf unfolding and flowering phenological phases’ 

activity. Conversely, the least appropriate times were late summer or early autumn because of the 

absence of most phenological activities. Data collected in mid-autumn achieved better results than 

the results achieved from late summer and early autumn data, because of autumn coloring and leaf 

fall phenological phases. This was achieved despite the fact that the mid-autumn datasets (collected 

on 22 October and 4 November 2011) had low solar elevation and low visibility. 

An important finding was that the data collected around a specific phase in a season have more 

potential to lead to separation among tree species than other data collected in the same season. This 
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is explained by the maximized leaf-on and leaf-off situations between the tree species. For example, 

the second best data were collected on 22 April 2010, around the beginning of the oak leaf 

unfolding phase, and when oak, beech, and maple were still under leaf-off conditions, larch was 

already under leaf-on condition. Also, the first and fifth best data were collected a few weeks after 

the oak lammas growth, which increased the accuracy of oak, thus boosting the overall accuracy. 

Additionally, the fourth best image from 07 April 2011 was acquired directly after the beginning 

of the larch needle unfolding, when all deciduous species were still under leaf-off conditions, thus 

increasing the separability between the deciduous and coniferous species. 

Contradictory results of the most appropriate season for data acquisition have been reported; 

some promote autumn (Schriever and Congalton, 1995; Wolter et al., 1995), while others state 

spring and autumn (Mickelson et al., 1998), and others report summer and autumn (Reese et al., 

2002). However, these studies analyzed only one image from each season including spring, 

summer, and autumn. Therefore, the variations in their results can be explained by the success of 

data acquisition timing in the proper phenological phase, revealing the highest variations among 

the species. However, in the developed concept these differentiations are not a problem given the 

life span of the forest tree species. The results of the RapidEye data show that differentiating species 

is not only a matter of which season is better, but rather when the highest variation amongst 

phonological phases is observed across tree species. This key finding was delivered through the 

high frequency analysis of the RapidEye data, which enabled more frequent detection than was 

available from previous studies.  

 



General discussion 

99 

5 General discussion 

Two satellite system technologies are investigated on the basis of their performances in 

providing user-defined parameters. The different design concepts may be summarized by 1) the 

high spectral resolution of the Hyperion sensor and 2) the ability to produce high temporal 

repetitions (2-3 days temporal resolution) with the RapidEye system. In terms of their limitations, 

while the Hyperion system yields a poor signal to noise ratio, despite 30 m pixel spatial resolution, 

the RapidEye system is limited to five spectral bands in the VIS and NIR region (silicon detector 

range). This section provides a summary of the discussion relating to the hyperspectral Hyperion 

data analysis, and the multi-seasonal multispectral analysis from RapidEye data. Following this, 

examination of the presented hypotheses are provided based on the dissection of the result. 

Results of the forest cover, forest type, and tree species parameters extracted by the 

hyperspectral Hyperion data mostly revealed that OBIA outperformed the pixel-based techniques 

ANN and SAM. However, ANN was successful in achieving higher accuracy than OBIA for forest 

type extraction, as previously mentioned. The Hyperion data analysis allowed for the mapping of 

coniferous tree species, however, it was not possible to further separate the deciduous tree species. 

Low density of vegetation coverage was identified as a significant source of misinterpretations. 

This finding is due to the similar spectral responses of leaves and herbaceous ground vegetation 

and the mixed pixels of the 30 m spatial resolution of Hyperion. Additionally, the overall low 

energy response of the Hyperion sensor, which decreases the differences between the spectral 

reflectance of the different classes, reduced the accuracy. These reasons all lowered the training 

site accuracy, which then affected the results of the pixel-based analysis. Here, the OBIA results 

were the least affected since they depend also on membership functions. 

Forest cover, forest type and gaps, forest monitoring, and tree species parameter extraction  

held a high potential to be successfully determined using the multi-seasonal multispectral RapidEye 

data. The primary success was the transferability of the developed methods in extracting forest 

cover, types, and gaps, and for monitoring the forest losses. The high repetition frequency of multi-

seasonal RapidEye data assisted in applying a continuous monitoring of the forest cover, which in 

turn helped to avoid problems with clouds. Moreover, the multi-seasonal data precisely detected 

the phenological phases responsible for the best detection of tree species, and contributed to the 

concept of the “phenological fingerprint” approach. Spatial resolution of the RapidEye sensor was 

relatively appropriate for the parameter extraction, and the forest cover parameter was successfully 

extracted with high accuracy (between 94% and 98%). Method transferability showed that forest 



General discussion 

100 

types and gaps results were highly dependent on the topography and the forest structure of the test 

site. Forest types per stand corresponded appropriately to reality when describing the dominant 

type of each stand, which should be sufficient to meet foresters’ stand-level management needs. 

The spectral information included in the RapidEye from various acquisitions dates shows slight 

differences because of the phenology as well as the data quality, which is affected by weather 

conditions and the solar angle during acquisition. 

The hypotheses, mentioned in section 1.2, are examined in the following paragraph. The first 

hypothesis, tested based on the results of the extracted parameters for forest cover, forest types and 

forest tree species, using both the Hyperion and the RapidEye data, was: 

H1: Hyperspectral resolution outperforms multi-spectral high temporal resolution in 

determining forest parameters. 

This hypothesis is to be refuted, for reasons based on each extracted parameter, as described 

below. The “forest cover” extracted by the Hyperion data achieved lower accuracy than that 

achieved by RapidEye data, and was more often mistaken for non-forest land cover classes. The 

relatively low spatial resolution (30 m) of the Hyperion data was the main reason for this result. 

The investigations into either system used a single dataset, and the assessments of the achieved 

results from either system were based on similar methodology. Moreover, the “forest type” 

parameter was achieved with a higher accuracy using some single RapidEye datasets in the BFNP 

than using the Hyperion data, because of the higher spatial resolution of RapidEye data. This 

demonstrates that even with its high spectral resolution, the Hyperion data cannot compensate for 

its relatively low spatial resolution. Finally, the “tree species” results clearly revealed that the 

multi-seasonal RapidEye data outperformed the Hyperion data. With the results of the RapidEye 

data, seven tree species, including both coniferous and deciduous species, were differentiated. 

Meanwhile, results of the Hyperion data only succeeded in separating two coniferous species, and 

could not separate the two deciduous species. Additionally, using multi-seasonal RapidEye data, 

further investigations into the phenological fingerprint concept were made possible, which proved 

to be essential for tree species identification. Hyperion single dataset therefore only has the 

potential to pick up on small parts of the phenological development of the species. 

The second hypothesis, tested based on the results of the annual forest cover database of the 

three test sites in Bavaria, was: 

H2: The multi-seasonal RapidEye data evaluation approach does not meet the requirements for 

annual forest database updates. 
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This hypothesis was partly refuted, because the method developed was successful only in 

achieving annual updates of the forest tree cover. And RapidEye results could not achieve the same 

level of details which is usually achieved by aerial images interpretation. With the developed 

method, it was possible to monitor the forest cover continuously across the vegetation period. Using 

recently acquired RapidEye data, changes related to management practice at a scale of about 0.01 

ha or 4 RapidEye pixels, or larger, could be detected with high precision. By accumulating the 

changes across the observation periods, the status of forest databases can be updated annually, more 

or less automatically for the parameter under investigation. Additionally, the multi-seasonal 

RapidEye data availability provided enough data to bypass the problem of partial cloud cover. All 

in all, the results of the forest cover update for all three test sites in Bavaria achieved overall 

accuracies of more than 96%. The method proved to be fast and cost effective. Under the same 

event, time and site conditions in the BFNP, approximately 97% of the results detected by the 

official aerial images survey were also detected using the RapidEye analysis. 8% of the losses were 

detected solely by RapidEye, the cost of the RapidEye analysis was only 25% of the cost of the 

aerial images analysis, and results were made available 9 weeks earlier. 

The third and final hypothesis that was tested based on the result of the forest tree species 

identification in Freising test site using multi-seasonal RapidEye data was: 

H3: Applying the ‘‘phenological fingerprint’’ concept using the multi-seasonal RapidEye data 

does not improve the identification success of forest tree species significantly. 

The hypothesis was refuted, as the ‘‘phenological fingerprint’’ concept proved to be essential 

for tree species identification. Investigations showed that a single dataset may improve specific tree 

species separability, while more datasets from various potential phenological phases are essential 

to increase the chance of successful tree species identification. Investigations have also revealed 

that there are specific seasons offering the highest potential for identification, primarily spring and 

early summer. This is contrary to the expected time frame of spring and autumn. Mid-autumn 

images still offered promise due to the coloring of leaves, which apparently achieved higher 

accuracy than acquisitions taken at the end of summer. Although mid-autumn data were expected 

to be more effective and significant in supporting species differentiation, low solar elevation, low 

visibility and non-perfect timing for data acquisition reduced their potential. Other explanations for 

this may be the special weathering conditions like storm events in autumn, defoliating all deciduous 

trees and prohibiting the differentiation based on autumn coloring. The results show that both 

seasonality and the timing of phenological phases (exhibiting maximum variation among tree 

species) are important factors in pursuit of species identification.  
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6 Conclusions and outlooks 

This work investigated the potential of high spatial resolution (5 - 30 m) optical satellite data to 

application for forest parameter extraction. Hyperspectral Hyperion data were applied in a 

Mediterranean region, while multi-seasonal multispectral RapidEye data were applied in three 

Bavarian regions. Generally, the forest parameters were extractable from the hyperspectral 

Hyperion and multi-seasonal multispectral RapidEye data; however, based on the results some 

advantages and limitations were revealed. 

6.1 Main conclusion 

The main conclusion of this work is that the multi-seasonal multispectral RapidEye data show 

more potential for operational use than the hyperspectral Hyperion data when extracting forest 

parameters. This conclusion applies only to these high spatial resolution HSR satellites and can be 

supported by the following arguments relating to specific parameters: 

 The forest cover parameter was extracted using single data collected from both systems. 

Spatial resolution was found to hold a greater influence on accuracy than the spectral 

resolution.  

 The forest type parameter was extracted with single takes using RapidEye data, and, in some 

cases produced higher accuracies than when using Hyperion data. Results were based on 

topography and forest structure, and the low spatial resolution of the Hyperion sensor 

significantly affected the results. 

 Forest tree cover databases can be annually updated using multi-seasonal RapidEye data, 

offering an operational continuous monitoring tool with a very high accuracy. Apparently, 

such benefits can not be offered with Hyperion data. 

 Forest tree species were successfully separated, and the ‘‘phenological fingerprint’’ concept 

proved to be essential in separating tree species. All in all, the multi-season acquisition 

capability of RapidEye captures more data during various phenological phases, supporting 

tree species identification. The Hyperion dataset captures one phase of phenological 

development, and, although combined with rich spectral information, this did not lead to 

successful deciduous tree species separation. 

The high spectral resolution of Hyperion data offers rich spectral information, which supports 

the successful extraction of forest parameters. However, the low spatial resolution of the Hyperion 
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sensor obscured this potential, at least in the highly structured Anapoli study site. Technically, the 

design of high spectral resolution sensor results in a low spatial resolution, to compensate for the 

low energy received by the narrow bands. Thus, the energy received at the Hyperion sensor was 

very weak, and it is expected to be weak for the next generation of hyperspectral sensors of similar 

characteristics, such as the German “EnMap” and the Italian “Spectra” as well. Conversely, the 

multi-seasonal RapidEye data successfully updated the annual forest cover database. In addition to 

that, the multi-seasonal data can contribute successfully to the ‘‘phenological fingerprint’’ concept, 

which is essential for the operational identification of tree species. This shows the potential of the 

next generation ‘‘Sentinel’’ ESA satellites, which have a revisit time of 6 days, along with the 

potential of the German hyperspectral satellite ‘‘EnMap’’ with a revisit time of 4 days, and can 

provide multi-seasonal data. Additionally, investigations into the “phenological fingerprint” at a 

target site, will assist in creating schedules for the most suitable timing of data acquisition. 

Regarding the applied techniques, OBIA can be a strong tool for developing fast and transferable 

methods for forest cover mapping and monitoring. OBIA offers geometrical, logical, and spectral 

based features in addition to the integration of GIS data, which should contribute to achieving the 

forest cover definitions similar to what foresters expect. This can significantly contribute to forest 

cover mapping and monitoring, which are very important parameters, and yet are still not well 

documented at the regional level in many developing countries, or at the global level. On the other 

hand, the pixel-based technique is still necessary for tree species detection, especially the use of 

high spatial resolution data (5 – 30 m) to detect single tree crowns. The pixel-based technique was 

implemented here using SAM, however, other classifiers can be taken into consideration in the 

future such as support vector machine (SVM) or random forest (RF). 

6.2 Economic aspects 

Offering operational solutions for forest enterprises to make strategic / tactical decisions appears 

to be possible by utilizing HSR satellites data and taking into consideration system resolutions, 

area coverage and cost. However, the increase in any of the resolution types including spatial, 

spectral, radiometric and temporal resolution, will increase the cost. In this investigation, the multi-

seasonal multispectral approach offered lower spectral resolution but higher spatial and temporal 

resolution than that of the mono-temporal hyperspectral approach. The cost of the multi-seasonal 

multispectral approach will remain more affordable than the hyperspectral approach, taking into 

consideration the limited coverage of the hyperspectral systems. 
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For the parameters forest cover and forest type, the spatial resolution of the RapidEye (5 m) was 

of key importance, especially in determining forest type. Meanwhile, the high spectral resolution 

of the Hyperion did not improve the results. Therefore, investments into the multispectral data of 

suitable spatial resolution (5 m or less) for these parameters should be considered as cost effective. 

For the forest tree cover changes, the spatial resolution of the RapidEye data is sufficient, while 

the use of multi-seasonal data is necessary. Collecting data more frequently will increase the cost, 

but will offer an operational application for forest monitoring. This cost increase associated with 

the use of frequent multi-seasonal data is justified as when these data are collected at a suitable 

time, they will ensure the success of the ‘‘phenological fingerprint’’ concept. This approach is the 

only way to successfully offer operational tree species identification. Yet to consider the method 

of the tree species identification operational at broader scales, well defined clusters including the 

available tree species and their phenology, as well as training sites collection for each cluster, is 

still required. 

6.3 Outlook and future development 

The conclusions of this study can assist in improving future space remote sensing development 

for forest applications. There are three areas where investments can be made to potentially improve 

optical. These are: 

1- Multi-date capability of the sensor  

There is no single optimal time for data acquisition that is able to capture all the variations 

between tree species. This is due to the fact that for each specific tree species, distinguishing 

features appear at different dates. High spatial resolution hyperspectral data are limited in their 

ability to support tree species mapping if they are not collected during the proper phenological 

phase. Therefore, multi-seasonal data for tree species identification appears to be integral. Further 

research on this topic should focus on exploiting more phenological phases and multi-seasonal 

biochemical reflectance characteristics. Also, investigation into the phenological fingerprint 

concept for tree species identification in different Bavarian test sites should be conducted.  

2- Few additional bands may be in short-wave infrared (SWIR) 

In general, not all hyperspectral bands are suitable for analysis of forest parameters including 

tree species identification, while some additional bands (especially in the SWIR region of the 

spectrum) contribute to generating indices have the potential to increase accuracies. Additionally, 

increasing the spectral resolution of the hyperspectral data will decrease the spatial and radiometric 
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resolutions, which affects the results. Including the red edge additional band into analysis for tree 

species identification, had a tendency to increase the achieved accuracy. Therefore, development 

of new broad-band sensors with additional bands in the SWIR region or other regions sensitive to 

the tree species should therefore be considered. 

3- Slight improvement in the spatial resolution 

Forest management planning policies shape the forests of tomorrow, which are expected to 

become highly mixed and vertically structured. These forest types will form a challenge for the 

remote sensing of forest inventory. Even the 5 m spatial resolution demonstrated some difficulties 

in achieving appropriate accuracies of the forest type parameter, at least for the local / regional 

levels. The need to complement optical data with elements such as terrestrial data, and data from 

active sensors should be considered. Also, it would be worth investigating the fusion of the 

Hyperion data of 30 m spatial resolution with the RapidEye data of 5 m spatial resolution for forest 

parameter mapping. Improvements in the spatial resolution of the optical data is also recommended. 
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