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Preface

This work was prepared alongside the project “Method development for the use of parameters
extracted from satellite data in the context of forest management planning and forest disaster
management development (Methodenentwicklung zur Nutzung von Parametern aus Satellitendaten
im Rahmen der forstlichen Betriebsplanung und des forstlichen Katastrophenmanagements)”,
funded by the Space Directorate of the German Aerospace Agency (Raumfahrtmanagement des
Deutschen Zentrums fur Luft- und Raumfahrt, DLR) under Number 50 EE 0919. The project was
developed in response to the Announcement of Opportunity to the call for “Innovative information
products by synergistic usage of RapidEye and TerraSAR-X satellite data (Innovative
Informationsprodukte durch synergetische Nutzung von RapidEye und TerraSAR-X
Satellitendaten)”.

The work investigates options for deriving information relevant to forest management from high
resolution satellite data. Two approaches offered through leading optical remote sensing satellite
technologies are investigated. The first is the hyperspectral approach, using the first operating
system developed, the experimental Hyperion sensor. The second is the multispectral / multi-
seasonal approach utilizing the operational, commercially available RapidEye system. The intent
of the investigation into the Hyperion data and the RapidEye data was to reveal the potential held
by the planned next generation satellites for their application in forest management. The planned
mission that will enhance spectral properties is the German Environmental Mapping and Analysis
Program (EnMap). Sentinels satellites are the planned missions aiming to enhance the revisit

capability, and these will increase the opportunity of acquiring multi-seasonal data.
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Summary

Summary

Forest management planning plays an important role in maintaining the long-term health of
forests, one of the most economically important natural resources. Management planning is
typically based on information obtained from terrestrial forest inventories, which are time-
consuming, cost-intensive and conducted over a span of at least ten years. In light of these
challenges, decision makers at the strategic / tactical levels in the forestry field have become
increasingly interested in obtaining forest information from remote sensing data. This information,
referred to as forest parameters, can be obtained at the forest stands level, and should be sufficient
to contribute to the decision support system (DSS) for forest enterprises. Based on the judgment of
forest experts, the most important forest parameters related to forest management planning, to be
delivered by remote sensing means, were identified. These parameters include: forest cover, forest
types, forest changes and the forest tree species - the parameter that presents the greatest challenge

to remote sensing.

The focus of this work is to offer an operational solution, using the high spatial resolution (HSR)
satellite data, to inform the strategic / tactical decision making process. Of the various optical
satellite systems available, the HSR satellite data (5-30 m) are regarded as adequate for forest
mapping at the stand level. Also, HSR data are cost effective, and offer an operational solution for
forest enterprises to make strategic / tactical decisions. While the multispectral data from HSR
satellite systems are well investigated, the enhancements of such data in terms of spectral and
temporal resolutions have yet to be researched, due to the limited number of systems providing
these data. The improvement of the data spectral and temporal resolution is at the forefront of HSR
sensors development. The high spectral resolution data available for this study was the
hyperspectral Hyperion data (about 200 spectral bands and 30 m spatial resolution). To date, the
only system offering high temporal resolution (multi-seasonal) data is the RapidEye system (5

spectral bands and 6.5 m spatial resolution), a system employed here.

One shortcoming in research relating to HSR satellite data is a disagreement over forest
definitions and functions among different stakeholders in forestry, and in the remote sensing
community. In forest management, it is essential to establish proper definitions of all forest
parameters, based on the requirements of the end users. Regarding the current state of knowledge,
it is clear that further research is required for both the hyperspectral and the multi-seasonal
approaches for operational forest inventory. In terms of the hyperspectral approach, research has
been focused applying the Hyperion system only on the technical potentials and limitations of the
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system. Another common issue is that research on multi-temporal optical data, offering operational
means for forest monitoring, faces problems with clouds. Applying data of higher temporal
resolution (multi-seasonal) to address this issue has yet to be investigated. Finally, for mapping the
tree species parameter, neither the hyperspectral nor the active systems offer an operational
solution, due to the cost constraints and limited coverage. Thus, the multi-seasonal approach
remains as the only promising path towards offering an operational solution. This can be achieved
by applying the ‘‘phenological fingerprint’” concept, which uses the variation in phenology of the
tree species. While a small number of studies have investigated this concept for tree species
identification, key economic issues must also be addressed. Such issues include: the number of
datasets that should be used, the appropriate seasons for data collection, and the influence of

additional bands on mapping.

The aim of this thesis was to investigate the potential of two approaches, provided by these two
HSR systems for offering operational means, to extract the above listed parameters. The first is the
mono-temporal hyperspectral approach, using the Hyperion system in the Mediterranean forest.
The second is the multi-seasonal multispectral approach, using the RapidEye system in three
Bavarian forests representing different growth regions. The outcomes of both approaches will
inform which approach should be considered the most suitable for individual parameter extraction.
Results should further contribute to the next generation hyperspectral satellite EnMap, as well as

multi-seasonal satellites like the Sentinel missions.

The investigations into the Hyperion data were carried out by applying a variety of classification
methods including: pixel-based, spectral unmixing and object-based, to extract forest cover, types,
and tree species. For the pixel-based method, Spectral Angel Mapper (SAM) classifier was applied,
for the spectral unmixing Artificial Neural Network (ANN) was implemented, and for the object-
based the eCognition software was utilized. Conversely, investigations into the multi-seasonal
RapidEye data were carried through with pixel-based and object-based methods. For the extraction
of forest cover, type and forest changes, the object-based technique was used. The developed
methods were found to be precise, timely computational efficient, and transferable to other test
sites. For the forest change detection, additionally, a method was developed using the multi-
seasonal data available to solve the problem of the cloud cover. Finally, for extraction of the tree
species parameter, the ‘‘Phenological fingerprint’’ concept was investigated. A strategy to classify
combinations of multi-seasonal RapidEye data was developed in order to address the

aforementioned aspects of key economic importance.
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Results show that data provided by both systems were generally successful in extracting forest
parameters. However, the multi-seasonal RapidEye data showed a greater potential than the
hyperspectral Hyperion data for operational application. For the extracted parameters forest cover
and type, the higher spatial resolution of RapidEye tended to be more important than the high
spectral resolution of Hyperion. However, where the forest was highly structured and more diverse,
a form expected of future forests, RapidEye data achieved a lower accuracy for detecting forest
types. The multi-seasonal data were essential for detecting forest change, while the high frequency
of the multi-seasonal data offered an operational approach to solving the problem of cloud cover.
The tree species results show that the ‘‘phenological fingerprint’’ concept is essential for their
identification. Multi-seasonal RapidEye data picked up many aspects of the phenological
development over time, and had a high potential to separate tree species. In this study, we dealt
with seven different species. The new red edge band in the RapidEye data was found to slightly
increase the accuracy for tree species identification. Meanwhile, a mono-temporal Hyperion dataset
catching one aspect of the “phenological fingerprint” had the ability to identify only two coniferous

species, which happened to have high variation in spectral reflectance during the acquisition time.

The multi-seasonal multispectral approach offered lower spectral resolution but higher spatial
and temporal resolution than that of the mono-temporal hyperspectral approach. However, the
RapidEye approach (either mono- or multi-seasonal) remains better suited for extracting the
parameters forest cover, type, changes and tree species. The cost of the multi-seasonal multispectral
approach will remain more affordable than the hyperspectral approach, taking into consideration
the limited coverage of the hyperspectral systems. This trend is expected to continue with next
generation hyperspectral EnMap satellite, as well as the multi-seasonal Sentinel satellites. To
achieve greater success in forest inventory from the next generation satellites, a slight improvement
in the spatial resolution is recommended, in order to meet the challenges presented by the highly
structured forests of the future. Additionally, the multi-seasonal capability should remain key in
development plans, in order to map the most challenging parameter, tree species. While the high
quality spectral data from the hyperspectral approach can restrict the multi-seasonal capability,
adding a few additional bands to the upcoming multispectral satellite can be of benefit for tree

species identification.
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Zusammenfassung

Forstmanagement spielt eine wichtige Rolle bei der langfristigen Erhaltung der Vitalitat von
Waldern, eine der 6konomisch wichtigsten naturlichen Ressourcen. Managementplanung baut
typischerweise auf Informationen auf, die aus terrestrischer Waldinventur stammen, die zeit- und
kostenintensiv sind und tber eine Zeitpanne von mindestens 10 Jahren durchgefiihrt werden
mussen. Im Hinblick auf diese Herausforderung interessieren sich Entscheidungstrédger der
strategischen / taktischen Ebene des Forstbetriebs verstarkt dafur, Waldinformationen durch
Fernerkundung zu erlangen. Diese Waldparameter konnen auf der Waldbestandsebene gesammelt
werden und sollten geniigend zum Entscheidungs-Unterstiitzung-System (EUS) der Forstbetriebe
beitragen. Basierend auf der Beurteilung von Forstexperten wurden die fiir Forstmanagement und
-planung wichtigsten Forstparameter, die die Fernerkundung beitragen kann, identifiziert. Diese
Parameter umfassen: Flache, Typ und Verénderung des Waldes, sowie der Parameter, der die
grolte Herausforderung fiir die Fernerkundung darstellt, die Forstbaumarten.

Der Schwerpunkt dieser Arbeit ist es, durch die Anwendung der Satellitensysteme von der hoch
raumlichen Auflésungskategorien (HSR) operationelle Lésungen anzubieten, die flir den EUS von
Nutzen sind. Von den vielfaltigen optischen Satellitensystemen, die verfuigbar sind, werden die
HSR-Satellitensysteme (5-30 m) als geeignet angesehen, den Forst auf der Bestandesebene zu
erfassen. Des Weiteren sind HSR-Daten kosteneffizient und bieten eine operationelle Losung bei
der strategischen / taktischen Entscheidungsfindung in Forstbetriebenen. Wéhrend die
Multispektraldaten von HSR-Satellitensystemen gut untersucht sind, missen die in Bezug auf
spektrale und zeitliche Aufldsung weiterentwickelten Daten noch untersucht werden, da es wenige
Systeme gibt, die diese Daten produzieren. Die Verbesserung der spektralen und zeitlichen
Auflésung ist das Hauptanliegen der HSR-Sensorenentwicklung. Die Hochspektraldaten, die
dieser Studie zur Verfigung standen, waren die hyperspektralen Hyperion-Daten (ca. 200
Spektralbander und 30 m rdumliche Aufldsung). Bis heute ist das RapidEye-System das einzige

System, das zeitliche Hochauflosung anbietet. Dieses System wurde hier angewendet.

Eine Unzulénglichkeit in der Forschung in Bezug auf HSR-Satellitendaten ist, dass es keine
einheitlichen Forstdefinitionen und —funktionen zwischen verschiedenen Akteuren in den
Forstwissenschaften und in der Fernerkundung gibt. Im Forstmanagement ist es grundlegend,
geeignete Definitionen fir alle Forstparameter zu etablieren, die auf den Anforderungen des
Endnutzers basieren. Ausgehend von dem heutigen Wissensstand ist es klar, dass weitere

Forschung notwendig ist sowohl fir die hyperspektralen als auch die multisaisonalen
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Anwendungen bei der operationellen Waldinventur. In Bezug auf die hyperspektrale Methode lag
der Fokus der Forschung bezogen auf die Anwendung der Hyperiondaten lediglich auf den
technischen Mdglichkeiten und Grenzen des Systems. Ein weiteres allgemeines Problem ist, dass
die Forschung an multitemporalen optischen Daten, die operationelle Mittel beim Forstmonitoring
zur Verfugung stellen, Schwierigkeiten mit Wolken ausgesetzt ist. Um mit diesem Problem fertig
zu werden, muss die Anwendung von Daten mit héherer zeitlicher Auflésung (multisaisonal) noch
weitergehend untersucht werden. Letztendlich bieten weder die hyperspektralen noch die aktiven
Systeme aufgrund von Kostenbeschrdnkungen und begrenzten Anwendungsmdglichkeiten eine
operationelle Lésung zur Erfassung der Baumartenparameter. Daher verbleibt der multisaisonale
Ansatz als die einzige Mdglichkeit, eine operationelle Losung anzubieten. Dies kann durch die
Anwendung des Konzepts des ‘‘Phinologischen Fingerabdrucks’’ erreicht werden, welches die
Variation in der Phanologie der Baumarten nutzt. Wéhrend eine kleine Anzahl an Studien dieses
Konzept zur Identifizierung vom Baumarten untersucht hat, mussen auch entscheidende
wirtschaftliche Aspekte beriicksichtigt werden. Zu diesen Aspekten z&hlen: die Anzahl von
Datensatze, die erhoben werden sollen, die richtige Jahreszeit fur die Datenerhebung und der

Einfluss von zusatzlichen Bandern auf die Identifizierung von Baumarten.

Das Ziel dieser Doktorarbeit war es, das Potential zweier Ansdtze zu ermitteln, die auf den
beiden HSR-System basieren, um die oben genannten Parameter zu extrahieren. Der erste Ansatz
ist der monotemporale hyperspektrale Ansatz, bei dem das Hyperion System im mediterranen Wald
benutzt wird. Der zweite ist der multisaisonale multispektrale Ansatz, bei dem das RapidEye-
System, das in drei bayerischen Wéldern angewandt wird, die verschiedene Wachstumsregionen
représentieren. Die Resultate beider Ansétze werden entscheiden, welcher von beiden als der am
besten geeignete angesehen werden sollte bei der individuellen Parameterextraktion. Die
Ergebnisse sollten darlber hinaus einen Beitrag leisten zu der ndchsten Generation hyperspektraler
Satelliten, wie z.B. EnMap und SPECTRA, sowie multisaisonaler Satelliten wie den Sentinel-

Satelliten.

Die Untersuchungen zu den Hyperion Daten wurden unter Anwendung einer Vielzahl von
Klassifikationsmethoden ausgefiihrt, welche umfassten: das pixelbasierte, das objektbasierte, und
das spectral-unmixing-Verfahren zur Bestimmung der Waldfl&che, der Typen und der Baumarten.
Bei der pixelbasierte Methode wurde der Spectral Angel Mapper (SAM)-Algorithmus angewendet,
bei dem spectral-unmixing-Verfahren wurde das Artificial Neural Network (ANN) verwendet, und
fur die objektbasierte Methode wurde die eCognition-Software benutzt. Im Falle der

Untersuchungen zu den multisaisonalen RapidEye-Daten wurden pixel-und objektbasierte
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Methoden durchgefiihrt. Bei der Ermittlung der Waldflache, des Typs und der Waldverédnderungen
wurde die objektbasierte Technik benutzt. Die entwickelten Methoden stellten sich als prazise,
schnell durchfihrbar und Ubertragbar auf andere Testgebiete heraus. Fur die Erfassung der
Waldveranderungen wurde eine zusétzliche Methode entwickelt, bei der die verfugbaren
multisaisonalen Daten verwendet wurden, um das Problem mit der Wolkendecke zu Iésen. Und
schliellich wurde zur Extraktion der Baumartenparameter das ‘‘Phénologischer Fingerabdruck’’-
Konzept untersucht. Eine Strategie zur Klassifizierung von Kombinationen von multisaisonalen
RapidEye-Daten wurde entwickelt, um die zuvor genannten Wirtschaftsaspekte zu

berucksichtigen.

Die Ergebnisse zeigen, dass beide Systeme im Allgemein erfolgreich waren bei der Extraktion
von Forstparametern. Jedoch zeigten die multisaisonalen RapidEye-Daten ein groReres Potential
als die monotemporalen hyperspektralen Hyperion-Daten fir die operationelle Anwendung. Fur
die extrahierten Parameter Waldflache und -typ war die hdhere raumliche Auflésung von RapidEye
tendenziell wichtiger als die hohe spektrale Auflésung von Hyperion. Allerdings erreichten die
RapidEye-Daten eine geringere Genauigkeit bei der Erfassung des Waldtyps, wenn der Wald hoch
strukturiert war und eine hoéhere Diversitat aufwies, was von zukinftigen Waldern verstéarkt zu
erwarten ist. Die multisaisonalen Daten waren essenziell, um Veranderungen im Wald zu
detektieren, wahrend die groRe Haufigkeit der multisaisonale Daten einen operationellen Ansatz
lieferten, um das Problem der Wolkendecke zu l6sen. Die Baumartenergebnisse zeigen, dass das
“‘Phanologische Fingerabdruck’’-Konzept grundlegend ist fir die Identifizierung der Baumarten.
Multisaisonale RapidEye-Daten nahmen viele Aspekte der phanologischen Entwicklung tber die
Zeit hinweg auf und hatten ein hohes Potenzial, die Baumarten zu differenzieren. In dieser Studie
befassten wir uns mit sieben verschiedenen Arten. Es zeigte sich, dass das neue ‘‘red edge’’-Band
in den RapidEye-Daten die Genauigkeit der Baumartenidentifizierung leicht erhéhte. Im Gegensatz
dazu war es mit dem monotemporalen Hyperion-Datensatz, der einen Aspekt des ‘‘Phanologischen
Fingerabdrucks’’ erfasste, lediglich mdglich, zwei Nadelbaumarten zu identifizieren, die zufillig

eine hohe Variation in ihrer Spektralreflexion aufwiesen wahrend des Aufnahmezeitpunkts.

Zusammenfassend l&sst sich sagen, dass der multisaisonale Ansatz eine niedrigere
Spektralauflosung bot, aber eine hthere rdumliche und zeitliche Auflésung als der monotemporale
hyperspektrale Ansatz. Allerdings eignet sich der multisaisonale RapidEye-Ansatz zur Extraktion
der Parameter Walflache, -typ und —veranderung sowie Baumarten. Die Kosten der multisaisonalen
multispektralen Methode werden leichter zu decken sein als die der hyperspektralen Methode,
wenn man die begrenzte Abdeckung des Hyperspektralsystems bedenkt. Es ist zu erwarten, dass
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dieser Trend sich mit der n&chsten Generation hyperspektraler Satelliten, EnMap und SPECTRA,
sowie dem multisaisonalen Satelliten Sentinel, fortsetzen wird. Um grolieren Erfolg bei der
Waldinventur von der ndchsten Generation Satelliten zu erreichen, wird eine leichte Verbesserung
in der raumlichen Auflésung empfohlen, damit die Herausforderungen eines hoch strukturierten
Waldes der ndchsten Generation gemeistert werden kénnen. Zusétzlich sollten die multisaisonalen
Fahigkeiten im Fokus der Entwicklungspléne bleiben, damit der herausforderndste Parameter —
Baumarten — erfasst werden kann. Wéhrend die qualitativ hochwertigen Spektraldaten des
Hyperspektralansatzes als tberflissig angesehen werden kdnnen, kénnte das Hinzuftigen einiger
zusétzlicher Bé&nder bei den zukinftigen Multispektralsatelliten bei der Identifizierung von
Baumarten von Vorteil sein.
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1 Introduction

1.1 General background

Forests are the most widely distributed vegetation ecosystem on the earth, accounting for
approximately 31% of the global land cover (FAO, 2010), and serving as a significant store of
CO2. Forest management planning plays an important role in maintaining the long-term health of
forests, one of the most important natural resources for economy (Franklin, 2001). Following the
idea of sustainability (Carlowitz, 1713, reprint 2013), since the end of the eighteenth century, forest
management planning has arisen in German-speaking countries in form of fundamental forest
management textbooks, planning techniques and theoretical forest models, and sustainable forest
management (Knoke et al., 2010). Recently, the economic and environmental importance of forest
resources has prompted forest management planning to take into consideration the strategic, tactical
and operational levels of planning, such that the highest feasible utility is yielded (Holmgren and
Thuresson, 1998).

The forest management planning process defines the management goals and the measures to be
taken for the next planning period, in Bavaria, Germany, usually being conducted over a span of at
least ten years. Forest management planning is typically based on forest inventories (McRoberts
and Tomppo, 2007). Forest inventory can be recorded using three categories of information
including the spatial extent of forest cover, forest type, and biophysical and biochemical properties
of the forest (Boyd and Danson, 2005). Traditional forest inventories are terrestrial observations
relying on sample-based methods to collect up to 200 variables, including but not limited to: forest
area, tree species, health conditions, growth, regeneration, removal, trends, forest height, and
damages etc.. These terrestrial inventories are time-consuming and cost-intensive. Given these
challenges, remote sensing has been presented as an alternative, or supplementary method to meet
ongoing demands for forest resource information at extended spatial and temporal scales (Vohland
et al., 2007).

The idea of applying remote sensing in forest management planning activities was first revealed
in the newspaper “Berliner Tagesblatt” in 1886. Its integration in operational forest management
began with the use of aerial photography in the first half of the twentieth century. Traditionally,
and up until the present day, remote sensing practices have consisted of the interpretation and
analysis of aerial photography in order to facilitate the creation of forest inventory and monitoring

practices, and make these tasks more efficient (Boyd and Danson, 2005; Knoke, 2012; McRoberts
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and Tomppo, 2007). The evaluation of aerial photography is typically accomplished through the
use of visual interpretation, with the aim of direct decision making. Additionally, orthophotos are

often used for orientation in the forest, or as maps for delineating forest stands or damages.

In the second half of the twentieth century, with the launch of the first Landsat satellite in 1972,
space born remote sensing applications were revolutionized. Since then, numerous varieties of
optical satellite systems have been launched into space. Optical satellite data have been routinely
applied to forest management planning at different mapping scales, from local to global. There are
many systems available for choosing the appropriated data type at the desired level of mapping,
where selections are based on the system characteristic known as “the resolution”. Four resolution
types are defined according to their “technical” characteristics: the spatial, the spectral, the
radiometric and the temporal resolution. Satellites can be categorized based on their spatial
resolution and the scale of their achievable end mapping scale, as outlined in Table 1.

Table 1: Categories of the currently available optical remote sensing systems based on their spatial
resolutions and the achievable mapping scale range, adapted after (Knoke, 2012)

ressg?ljit?clm Characteristic System example M;&?;?%ﬁgﬁle
500-5,000m 50T tuton Vegetation ete. 1:1,000000
50-500m Bl\e/lgg:j?rr]:slolution” II\_/IagcljDSIaSt.MSS, WIFS, MERTS, 1:500,000
1-4m Eg:&lﬁi\gehl resolution” Ikonos, Quick Bird, WorldView, etc. 1:10,000
<1m Local Digital Aerial images: VMS 1500

“Extreme high resolution” EXCEL®© Cam, DMC, etc.

While the benefits of optical remote sensing systems are numerous, data costs (rule of thumb:
the higher the resolution the higher the costs) and handling costs (down streaming, storage,
computation time) serve as the limiting factors as to the chosen resolution for a given application.
As space systems operated from satellites are usually designed for specific application profiles, a

key emphasis is placed on the required resolution type.

This research is focused on informing decision makers of forest enterprise at the strategic /
tactical level (see Figure 1) and finding operational solutions. At this level, high resolution (HSR)
satellite data can provide information needed for forest management planning towards inventory
and monitoring (Holmgren and Thuresson, 1998). Remote sensing requires simultaneous imaging
of the entire area managed by an enterprise in order to keep the assessment conditions comparable

and the information detail available, at least at stand level. Optical data of HSR (5 — 30 m) satellite
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category are adequate for forest mapping down to the forest stand level (De Kok et al., 1999).
Moreover, satellite data at the HSR level is more cost effective and offers an operational solution
for forest enterprises. While the options offered by HSR multispectral satellite systems have been
widely investigated for about three decades, the improvements made by increasing the spectral

and especially the temporal resolution are still in question and are addressed in this thesis.

Spatial resolution m
& Characteristic Focus of the research
% 0
Sl 500-5,000 m | To offer an operational option of providing
g : Low resolution | information on the strategic / tactical decision level
- | 5
| 50-500 m | To achieve information
| Mid-resolution | about forest
| I v
| 5-30 m [ Adequate for forest
: High resolution || mapping At forest stand level
[
: 1-4m : l ContriLute to
I'| Very high resolution | | In front line of HSR i
Z| | sensor development
= <lm | DSS for forest
2! Extreme high resolution| | I enterprise
Tl T .
C - - _—__ —— Available systems
r—--- - - —-—-—-—-—- a
I I
High spectral | | . I
resolution : Hyperion '
' Results
I
| | - Forest parameters -
High temporal | | . |
> : RapidE
resolution | apidEye [
L ————————_—_ I

Figure 1. Conceptual framework of the research

The aforementioned HSR improvements are in the front line of optical satellite development.
Therefore, research to enhance the spectral resolution or the multi-date! acquisition capabilities
of current and next generation space-borne sensors remains ongoing. The hyperspectral Hyperion
sensor is the space-borne sensor available for this work of the HSR family, which offers detailed
spectral resolution data. Meanwhile, the only space-borne system of the HSR family offering high
revisiting frequency so far is the RapidEye constellation system (status February 2015). The
Hyperion sensor on board NASA Earth Observation 1 (EO-1) satellite was launched into space in

the year 2000. The sensor covers both the visible near-infrared (VIS / NIR) and the shortwave-

! The term multi-date data can refer to multi-temporal or multi-seasonal data. In this work, the term of multi-
seasonal data refers to a dataset from different growing seasons (phenological phases) from a single year, or multiple
successive years. Meanwhile, the term of multi-temporal data refers to a dataset from different years but from similar
growing seasons.
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infrared (SWIR) spectrum (400-2500 nm) collected in about 200 spectral bands, at a ground spatial
resolution of 30 m. Following this, the RapidEye constellation, consisting of 5 identical sensors,
was launched into space in 2008. Each RapidEye sensor collects five spectral bands (VIS / NIR)
and is capable of data acquisition every 2-3 days. The data collected has a pixel size of 6.5 m

(resampled to 5 m) and a swath width of 75 km.

The spectral signature is considered to be the data characteristic with the highest information
content for identification and status assessment of the Earth’s surfaces. The attempt to increase the
spectral resolution of optical systems is driven by the idea to redraw the spectral signature of Earth
surfaces as accurately as possible, in order to make the entire spectral diagnostic option via satellite
data available. For this reason, we are looking forward to the German EnMap hyperspectral system,
which originally was to be launched in 2011, before technical challenges prompted a rescheduling
to March 2018. Instead, the hyperspectral datasets of the experimental Hyperion system were
analyzed in this work, which offer similar specifications of the spectral and spatial resolutions to
the EnMap.

Many studies, investigating the spectral option, showed the limitations of spectral signatures in
determining diagnostic characteristics of vegetation (Davranche et al., 2010; Eckert and
Kneubihler, 2004; George et al., 2014; Mickelson et al., 1998; Pengra et al., 2007; Reese et al.,
2002; Schriever and Congalton, 1995; Stoffels et al., 2012; Townsend and Walsh, 2001; Wolter et
al., 1995). These studies indicated that imaging differing phenological stages may not only be a
complementary solution, but also a precise indicator for the identification of tree species, at a
minimum. For the first time, the RapidEye system, an operational system of the high resolution
HSR category, allows for the investigation of the option of multi-seasonal image analysis (more
details in section 3.2.1.2). Primarily seen as a system supporting precision agriculture, the EUS-
FH project (Schneider, 2013) investigated the success of multi-seasonal RapidEye time series in
forest species identification. Therefore, we are looking forward to the Sentinels satellites, the
planned missions aiming to enhance the revisit capability, which will increase the opportunity of
acquiring multi-seasonal data. There are seven Sentinel missions, each consisting of two satellites,

and the first satellite of Sentinel-1 was launched on 3 April 2014.

Foresters conducting fieldwork expect remote sensing data to fulfill the needs of forest
management planning in practice. In a study (Felbermeier et al., 2010) aimed at determining
foresters’ requirements of remote sensing application in forest management planning, the most
important forest parameters were found to be tree species, forest area, forest boundary, and

damages (changes) inflicted on forest. Forest cover and damages thereby appear as the most

11
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essential parameters since they incorporate the forest area, boundary and gaps all together.
Additionally, forest tree species has been, and continues to be, representing the frontline in forest
related remote sensing research, and remains the most challenging task for the remote sensing
community. Furthermore, tree species mapping has been identified as necessary in assisting
remotely sensed data to achieve its full potential in forest inventory and monitoring. Moreover, tree
species mapping are basic information necessary to control biotic pests, a major threat to forests

caused by global warming which threatens tree species specifically.

However, research to date has been met with limitations in achieving these parameters. These

limitations can be summarized in three main points:

First, a fixed definition for forest cover is yet to be assigned, despite having thirty years’
experience in mapping and monitoring forest cover from satellite (Bennett, 2001). Similarly, there
remains no unified definition of forest among all European countries (Pulla et al., 2013; Schneider
et al., 2013). There still exists a disagreement as to the appropriate forest definition between the
remote sensing community, who have been mapping wood land as a forest, and the foresters, who

hold other expectations.

Second, although the detection of damages and changes in forests have been intensively
investigated, the search for an operational solution is still underway. Typically, multi-date satellite
optical data can offer an operational solution for forest change and damage detection, though clouds
and haze challenge the optical systems (Nagendra et al., 2013). Given these challenges, one
recommendation for further research is to collect data more frequently over time (multi-seasonal)

in order to increase the likelihood of overcoming issues with clouds (Duveiller et al., 2008).

A third limitation remains as no operational solution has been determined for tree species
identification to date. Many studies proposed that the increase of the spatial, spectral and the
radiometric resolutions will be the key to achieving better tree species identification (Boyd and
Danson, 2005; Salajanu D. and Olson C. E., 2001; van Ardet and Wynne, 2001). Using multi-
seasonal data may increase the chance of better identifying forest species (Wolter et al., 1995). This
is attributed to the spectral variations between the different classes in different seasons or
phenological phases, referred to as the ‘‘phenological fingerprint’’. The search for the optimal
operational method of tree species is still underway, with uncertainty over whether to use the
hyperspectral or the multi-seasonal approach. Investigation into the ‘‘phenological fingerprint’’
concept is still very limited and many economically important questions need to be answered (see

section 1.2; objective 4).
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1.2 Aim and hypotheses of research

The aim of this thesis is to compare two approaches, offered by leading optical satellite sensor
technologies, in order to deliver operational solution for forest parameters determination. The first
is the hyperspectral mono-temporal approach using Hyperion data, and the second is the
multispectral multi-seasonal approach using RapidEye data. According to the foresters’
requirements for application in forest management planning (Felbermeier et al., 2010), the targeted

parameters to be extracted are:
1- Forest cover and forest type
2- Forest changes (only applying the multi-seasonal approach)
3- Forest tree species.

Working with different sensor types in differing geographical regions, the comparison is
conducted on behalf of the extraction success of parameters required by operational forest
management at the strategic / tactical decision level of an enterprise. An overview about the

workflow is given in Figure 2.

The investigation into the hyperspectral Hyperion approach is carried out in Anopoli, a forested
region representative of the Mediterranean. Anopoli is located on the island of Crete in the
Mediterranean Sea, and holds the most extensive remains of Crete’s coniferous forest. In contrast,
the investigation into the multispectral multi-seasonal RapidEye approach is carried out in three
forest growth regions in Bavaria. The first of these sites is the Bavarian Forest National Park
(BFNP), the first and one of the biggest national parks in Germany located in the growth region
Innerer Bayerischer Wald, (Wuchsbezirk (WB) 11.3). The second is the Freising forest located in
the growth region Oberbayerisches Tertiarhigelland (WB 12.8). The last site is Traunsteiner
Stadtwald located in the growth region Ostliche kalkalpine Jungmorane (WB 14.4 / 3), which
neighbors the Alps. To compensate for the lower radiometric resolution of the less technically
advanced Hyperion (generation of the mid-1990s techniques, more details in section 3.2.1.1),
Hyperion data from the Crete island in the Mediterranean were investigated, registered at better
illumination conditions and less affected by aerosols than the compared RapidEye data from

Bavaria.

13



Introduction

Multi-seasonal
Hyperspectral approach multispectral approach
| |
Hyperion RapidEye
Forest pérameter Forest pé\rameter

extraction extraction

Objective 1 Objective 2

Publication 1 Publication 2

Obijective 4
Publication 4

oetentons s apame”
Publication 3 | database updat :

Figure 2: The general direction, objectives and publications of the thesis

The outcomes of both approaches will inform us as to which method should be considered as
most suitable for each parameter extraction. In this pursuit, the following objectives were defined

(see also Figure 2):

Objective 1: To investigate various analysis techniques applied to the single Hyperion data to
extract the following parameters: forest cover, types and tree species. The results should
contribute to further investigations regarding the multi-seasonal multispectral RapidEye

data approach (section 4.3)

Objective 2: To investigate methods development using mono-temporal RapidEye data for forest
type and cover mapping in the three Bavarian test sites. The necessary characteristics of
this method include the delivery of precise results, quick implementation, and easy

transferablility into any of the test sites (section 4.4)

Objective 3: To investigate an operational solution using multi-seasonal RapidEye data for forest

database annual updates. The solution should overcome the issue of clouds and visibility
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and be transferable to defferent test sites. Furthermore, the solution should offer the ability

to quickly respond to sudden changes at a reasonable cost (section 4.5.1)

Objective 4: To investigate the success of multi-seasonal RapidEye data in applying the
“‘phenological fingerprint’’> concept in order to determine forest tree species
(section 4.5.2). The investigation should answer questions of key economic importance.

These questions include:

e How many datasets from various phenological phases are needed to obtain the most accurate

results?
e How does using additional bands or indices influence tree species identification?
e |s there a phenological phase with high potential for identifying a specific tree species?
e Which phenological phase is the most promising to identify all tree species?

Questions about the possible outcomes triggered three main hypotheses that will be tested in this
research, and will be addressed in the general discussion. The main question raise here is, which
approach could be used to achieve more information about these parameters? The hyperspectral
approach utilizes Hyperion data which has very rich spectral information (200 bands), while the
multi-seasonal multispectral approach utilizes RapidEye data which has poor spectral information
(only 5 bands). Although RapidEye data are collected over a time span that includes variations in
vegetation phenology, their spectral resolution is poor in comparison to the Hyperion data. Given
these traits, the normative assumption is that the Hyperion data will surpass the RapidEye data,

giving rise to the first hypothesis of this work:

Hi: Hyperspectral resolution outperforms multi-spectral high temporal resolution in

determining forest parameters.

With a focus on identifying forest depletion arising from standard management practices and
unexpected events such as storms, the forest cover database updates rely on aerial image surveys
that take place once every three years covering all of Bavaria, and annually for the BENP. Applying
satellite optical data is still problematic due to the cloud cover problem, especially in Mid-Europe.
This leads to the second hypothesis in this work:

H>: The multi-seasonal RapidEye data evaluation approach does not meet the requirements for

annual forest database updates.
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Tree species is both the most important and the most challenging parameter to be extracted, and
to date no sensor has been able to offer an operational solution for tree species mapping. Still,
multi-seasonal multispectral RapidEye system offers data from various phenological phases, and
could have the potential to increase the separability between the tree species. RapidEye data,
however, have only five bands which may not contribute to the success of the ‘‘phenological
fingerprint’” principle. Accordingly, the third and most important Hypothesis to be tested here is:

Hs: Applying the ‘‘phenological fingerprint’’ concept using the multi-seasonal RapidEye data

does not improve the identification success of forest tree species significantly.

1.3 Embedded original publications and author’s contributions

This thesis includes four publications (Figure 2) and covers investigations into both
hyperspectral and multi-seasonal approaches. The titles, short summaries and author’s

contributions of the publications are the following:

First publication: Elatawneh A., Kalaitzidis C., Petropoulos G. P., Schneider T.
2012. Evaluation of diverse classification approaches for land use / cover mapping in a
Mediterranean region utilizing Hyperion data. International Journal of Digital Earth. doi
10.1080/17538947.2012.671378

This work investigates the extraction of the forest parameters in Anopoli using hyperspectral
Hyperion data. Here, extraction of the forest parameters from remote sensing data is based on image
classification. The techniques which classify each pixel in the remote sensing data as an individual
unit are called pixel-based techniques, while those that classify groups of pixels as one unit are
called object-based techniques. Moreover, the techniques which break the pixels down to define
the surface material fractions are called spectral unmixing. The pixel-based, spectral unmixing, and
object-based classification techniques are applied to the Hyperion data for extracting the required
forest parameters.

Author contributions: This publication was written by Alata Elatawneh with a simultaneous
contribution by George Petropoulos. All data collection, preparation and analysis were done by
Alata Elatawneh under the supervision of Chariton Kalaitzidis. The research approach was
developed by Alata Elatawneh and Thomas Schneider. The research coordination and revision of

work structure was done by Thomas Schneider.

Second publication: Schneider T., Elatawneh A., Rahlf J., Kindu M., Rappl A., Thiele A., Boldt
M., Hinz S. 2013 Parameter Determination by RapidEye and TerraSAR-X Data: A Step Toward a
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Remote Sensing Based Inventory, Monitoring and Fast Reaction System on Forest Enterprise
Level; In: Krisp JM, Meng L, Pail R, Stilla U, eds. 2013. Lecture Notes in Geoinformation and
Cartography. Berlin, Heidelberg: Springer Berlin Heidelberg, S. 81-107

This publication investigates the extraction of the parameters forest cover, type, and gaps in the
Bavarian test sites. The publication investigated the use of the multi-seasonal RapidEye data and
the radar data from the active sensor Terra-SAR-X, although this accumulative thesis includes only
the RapidEye data analysis section. The methods developed in this publication for the forest cover,

types and gaps extraction will be further improved, as presented in section 4.3.

Author contributions: This publication was written by Thomas Schneider, Alata Elatawneh,
Adelheid Rappl (now Wallner), and Antje Thiele with contribution by Johannes Ralf and Mengistie
Kindu. RapidEye data analysis was done by Alata Elatawneh, and related geospatial data collection
and preparation was conducted by Adelheid Rappl. TerraSAR-X data analysis were done by Antje
Thiele and Markus Boldt. The research coordination and major revision of the work was done by
Thomas Schneider and Stefan Hinz.

Third publication: Elatawneh A., Wallner A., Manakos I., Schneider T., Knoke T. 2014. Forest
Cover Database Updates Using Multi-Seasonal RapidEye Data—Storm Event Assessment in the
Bavarian Forest National Park. Forests. 5: 1284-1303.

This publication investigates the extraction of the forest changes parameter, or in other words,
the continuous updating of forest cover database using multi-seasonal RapidEye data. The method
is developed to be applicable in various areas and is designed to be easily applied. The intention
behind using multi-seasonal RapidEye data is to detect changes caused by regular management and
sudden events, such as storms, in Bavaria. It demonstrates the success of using multi-seasonal

RapidEye data, and its benefits in comparison to the aerial images.

Author contributions: The paper was written by Alata Elatawneh with a contribution by loannis
Manakos. Geospatial data collection and preparation was done by Adelheid Wallner. The research
approach was developed by Alata Elatawneh and Thomas Schneider. The research coordination
and significant contribution to the discussion was done by Thomas Knoke.

Fourth paper: Elatawneh A., Rappl A., Rehush N., Schneider T., Knoke T. 2013. Forest tree
species identification using phenological stages and RapidEye data: a case study in the forest of
Freising. In book: From the Basics to the Service, Editors: Erik Borg, Holger Daedelow, Ryan
Johnson, Publisher: GITO Verlag, pp.21-38. ISBN: 978-3-95545-022-1
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Here, the extraction of the most challenging forest parameter, tree species, is investigated using
multi-seasonal RapidEye data. The method is developed and tested in the Freising test site, and
RapidEye data from all seasons over three years are collected. The intention is to check the potential

of using data from different growing seasons to increase the separability between the tree species.

Author contributions: The paper was written by Alata Elatawneh with contribution by Adelheid
Rappl (now Wallner). Geospatial data collection and preparation was done by Adelheid Rappl (now
Wallner). RapidEye data preprocessing was carried out by Natalia Rehush. The research approach
was developed by Alata Elatawneh and Thomas Schneider. The research coordination and

significant contribution to the discussion was done by Thomas Knoke.
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2 Literature reviews

2.1 Hyperion data and forest mapping

Hyperspectral remote sensing is a rich source of spectral data that provides potential information
on several vegetation variables relating to the biophysical, physiological or biochemical
characteristics (Hansen and Schjoerring, 2003). The Hyperion hyperspectral sensor was launched
in late 2000 as the first high spatial resolution hyperspectral sensor on board EO-1 satellite. This
presented the opportunity to investigate the use of Hyperion data for applications related to work
in land use / land cover classification and forest studies. This section will summarize the findings
of the studies that compared Hyperion data with other hyperspectral data, or with multispectral
satellite data. It will also summarize the potential benefits and challenges of using Hyperion data,

in addition to highlighting the importance of the acquisition date.

Hyperion data has often been compared to multispectral Advanced Land Imager (ALI), the
Enhanced Thematic Mapper plus (ETM+) data for land cover and forest studies, and in
investigations intended to demonstrate the abilities of the so far unique Hyperion sensor. Xu and
Gong (1984) compared Hyperion data with ALI data for land use / land cover mapping including
forest cover. They conclude that Hyperion had no significant improvement on mapping level |
(Anderson et al., 1976) relative to current study forest cover, while only slight improvement was
achieved by Hyperion on mapping level Il forest types. Conversely, list of studies reveal that
Hyperion outperformed ALI, while ALI achieved better results than ETM+. Of this list is a study
conducted in Canada (Goodenough et al., 2003), where Hyperion data provided better results than
those of the ALI and ETM+ multispectral data for classification of land cover and forest tree
species, as attributed to the great dimensionality of Hyperion spectra. Another study in the
Himalayas (George et al., 2014) compared Hyperion data with Landsat ETM+ when mapping tree
species, and concludes the outperformance of Hyperion was due to the narrow spectral bands,
which increase the variations between the tree species. Additionally, Thenkabail et al., (2004)
compared Hyperion data with the high spatial resolution IKONOS and high spatial resolution
multispectral ALI, and ETM+ data for the classification of 9 forest classes in Cameroon. Here,
results indicate that Hyperion outperformed other data because of its rich spectral information, even
in comparison to the high quality spatial resolution data of IKONOS.

In general, all previously mentioned studies focused on the spectral capability of the Hyperion

data. However, two specific studies (Goodenough et al., 2003; Thenkabail et al., 2004) pointed out
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that spatial characteristics of the sensor should be investigated in the future. This recommendation
was supported by a third study (Walsh et al., 2008) which utilized high spatial resolution QuickBird
images to help analyze Hyperion data for invasive species mapping. The authors here proposed

that data fusion between these two data type will increase mapping efficiency (Walsh et al., 2008).

In addition to high spectral resolution, the use of Hyperion data holds further potential with its
broad scale of data coverage and the higher frequency of data acquisition, making it applicable to
real world problems (Pengra et al., 2007; Petropoulos et al., 2012a). Furthermore, the low cost of
Hyperion data in comparison to airborne hyperspectral data has been highlighted (Pignatti et al.,
2009). Moreover, using Hyperion data showed a possibility for retrieving biophysical and
biochemical variations as a result of variations in LAI (Eckert and Kneubiihler, 2004).

Disadvantages of the Hyperion data have also been reported. The main issue with this technique
is that space-borne hyperspectral sensors receive low reflected energy from the Earth surface even
at 30 m spatial resolution. This decreases the variation in spectra between various surfaces (Pengra
et al., 2007). As a result, the signal to noise ratio (SNR) is increased. Meanwhile, a relatively low
spatial resolution combined with small pattern targeted classes (Eckert and Kneubdihler, 2004) or
low density of class cover (Walsh et al., 2008) often produces mixed pixels which increases the
confusion between classes. It was also found that, mixed pixels used within training areas as
samples for classification will decrease the accuracy of the samples and consequently decrease the
achieved result accuracy (Carpenter et al., 1999; Pignatti et al., 2009; Walsh et al., 2008).

Finally, a very important point regarding the acquisition time of the Hyperion data selected for
the analysis must be made. While all previously mentioned studies utilized Hyperion dataset for
vegetation and forest analysis, only few highlight the importance of the acquisition date. George et
al., (2014) stated that the data was intentionally selected in April because of higher phenological
variations between tree species, and the high solar illumination achieved high SNR at that time.
Pengra et al., (2007) selected the data in September, for the pronounced spectral variation between
their targeted invasive species and other wetland classes, assisting them in their mapping efforts.
Conversely Eckert and Kneubuihler (2004) addressed the late phenological phase at the time of data
acquisition, and the low observed spectral variation among the agricultural fields in the test areas
as one of the reasons for obtaining low accuracy. However, collecting optical satellite data at any
preferred time is made challenging due to many factors including but not limited to cloud free
coverage, solar illumination, research area location, or time restrictions of field campaigns. These

factors may significantly decrease the time span for data acquisition, perhaps explaining why other
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studies were restricted to unsuitable acquisition dates, such as in December, for forest classification
(Pignatti et al., 2009).

Allinall, investigations into using Hyperion data for forest applications are very limited. Studies
have focused primarily on comparing Hyperion with other multispectral sensors, as well as the
potential benefits and limitations of the sensor characteristics. However, investigations into the
Hyperion system’s potential operational applications, such as extracting forest attributes, are
limited. Goodenough et al., (2003) is the only study that states tree species identification with an
accuracy over 80% would be considered operational. However, the study did not take into
consideration all the limiting factors influencing the creation of an operational approach. However,
the investigation into Hyperion’s potential for operational applications in forestry should take into
account a range of limiting factors including: spatial resolution, temporal resolution, the SNR, area

coverage and cost.

2.2 Multi-seasonal data of forest mapping and monitoring

The evolution of space-borne remote sensing has produced numerous satellites providing ever-
increasing quantities of multi-date data. The temporal component offered by such data has the
potential to produce complex information that can be further used in applications such as
environmental monitoring and land cover dynamics (Bruzzone et al., 2003). Since the launch of
the Landsat satellite family in 1972, the use of multi-date data has been investigated for forest
inventory recordings including forest cover mapping, monitoring, and tree species identification.
As previously mentioned, multi-date data include multi-temporal and multi-seasonal data. Studies
show that even single date data can be successful in mapping forest cover and types, however,
mapping success can be increased using multi-seasonal data. Meanwhile, forest cover monitoring
depends on multi-date images. Achieving forest tree species identification, a leading goal of forest
related remote sensing research, has been and remains to be a challenging task. There have been
no operational options offered in the literature, despite breakthroughs in active sensors (LIDAR,
RADAR) and optical passive system (multispectral, hyperspectral). This is due to the cost and
limited coverage of the active and hyperspectral sensors, leaving multi-seasonal data as the only
promising approach towards offering operational tree species mapping. There have been few
studies directed towards tree species mapping with a multi-seasonal approach, despite the fact that

this topic relates to many key research questions of economic importance.

In general, remote sensing of forest mapping depends on land cover classification, in particular

separating forest from non-forest cover (Boyd and Danson, 2005). In a review of multispectral data
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applications, Holmgren and Thuresson (1998) showed that most studies followed the classification
scheme for forest cover mapping proposed by Anderson et al., (1976). Anderson’s classification
scheme includes many levels, where forest cover belongs to Level I, forest types (coniferous,

deciduous, and mixed forest) belong to Level I, and forest tree species belong to Level IlI.

Using high spatial resolution sensors (e.g. Landsat, SPOT), studies have successfully classified
forest cover, ranging from regeneration forests to mature forests. Although results suggest that
single data can map forest cover precisely, multi-date data proved to help in overcoming problems
associated with clouds (Nagendra et al., 2013). Additionally, multi-seasonal data have the potential
to increase the forest types mapping success, especially when using data collected in spring or
autumn (Borry et al., 1993; Schriever and Congalton, 1995). Walsh (1980) showed that data from
mid-autumn achieved better forest type results than summer data due to the phenological variation
and the low sun angle, which help to detect gaps. Conversely, using data from early summer data
has also been recommended because of the high sun angle (Holmgren and Thuresson, 1998). Others
addressed the issues of rugged terrain and mixed forest as problems which decreased the quality of
the achieved results (Dorren et al., 2003; Reese et al., 2002).

Vegetation applications, including detecting forest changes, have been developed and used in
the last three decades (Chen et al., 2012; Coppin et al., 2004; Lu et al., 2004). Studies focusing on
the high resolution sensors such as: Landsat and SPOT (Carvalho et al., 2001; Desclée et al., 2006;
Duveiller et al., 2008; McDermid et al., 2003; McDermid et al., 2008; Willhauck et al., 2000), dealt
with forest loss and disturbance monitoring (biotic and abiotic), and obtained appropriated results.
None of the above studies overcame the problem with clouds, despite having identified this
problem as the main obstacle with the use of optical data. In a study estimating the deforestation
rate in central Africa, (Duveiller et al., 2008) concluded that the cloud problem is the only obstacle
standing in the way of considering their method operational. As a solution, they recommended
using more frequent multi-date data or using data from active sensors (Duveiller et al., 2008;
Nagendra et al., 2013). While active sensors fusion with optical data showed the ability to detect
changes (Rappl et al., 2012; Thiele et al., 2012), their high cost and small operating area restrict

their present contributions at the operational level.

Forest tree species mapping using multi-seasonal remote sensing data has been investigated in
many studies. The approach used most often for forest tree species mapping was typically based
on the “phenological fingerprint” hypothesis, which assumes that phenological developments of
different tree species shows distinct shifts in appearance, which can be explored for classification.

Past research has investigated various topics such as: the influence of using datasets from different
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seasons, and the most appropriate data collection seasons to achieve the best tree species
separability. Limited research has been conducted to investigate the quality of tree species
identification results through the increase of dataset numbers or the collection of datasets in

different seasons.

Studies investigating the multi-seasonal data for tree species identification utilized mainly
Landsat data (Mickelson et al., 1998; Reese et al., 2002; Schriever and Congalton, 1995; Townsend
and Walsh, 2001; Wolter et al., 1995), SPOT data (Stoffels et al., 2012) and ASTER data
(Davranche et al., 2010). A range of two to eight datasets has been used, and the results declared
that combining all data together achieved higher accuracy than using a single dataset. However,
none of these studies focused on the effects of an increased number of dataset combinations on the

accuracy.

Two other studies using only very high spatial resolution airborne data investigated the effect
of increasing the number of datasets on accuracy. First, Key et al., (2001) investigated nine aerial
photos for tree species classification, and reported the highest accuracy by using all bands and five
to six images, out of a possible nine. The second study by Hill et al., (2010) investigated all possible
combinations of five multispectral airborne sensor ATM datasets (2 m spatial resolution). Their
results reported that the highest accuracy was achieved when a combination of three datasets out
of five were used. However, the authors reported that the quality of the data is far more important

than quantity of data, in terms of capturing the highest variation in phenology between species.

Determination of the best season for data collection in pursuit of species separation was also
researched, and different results were reported. Researchers consistently reported that autumn has
a high potential as a successful season for data collection because of phenological conditions (Hill
et al., 2010; Schriever and Congalton, 1995; Wolter et al., 1995). Others show that in addition to
autumn, spring (Mickelson et al., 1998) or summer (Reese et al., 2002) show potential for species

determination.

It is key to identify the season most suitable for data collection in order to potentially identify a
specific tree species, and for this reason some studies have investigated this issue Table 2. Hill et
al., (2010) noted that data from early spring, collected during times where deciduous trees were
leafless, were helpful in detecting silver birch and European oak. This was due to the reflectance
of the understory vegetation related to these species. However, their second data collection period
was in late May when no phenological differences were captured. Therefore, they recommended
the end of April as an ideal acquisition time when different timing of budburst and leaf unfolding

between silver birch, European oak and elm is higher. The authors also revealed that data collected
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at the end of September had a high potential to detect field maple as a result of the full autumn
coloring of this species. Data collected at the end of October were shown to have little potential to
separate European oak, but data collection in mid- or late November to detect oak were
recommended, when autumn coloring is reached.

Table 2: Some studies that investigated the season most suitable for data collection in order to identify a
specific tree species and their findings

Study reference, Date of Species to be -
) L Finding
region acquisition detected
Silver birch Deciduous trees were leafless,
Mid-March ’ understory vegetation had

European oak distinct spectra

Silver birch, There were no phenological
Late May .

European oak differences

Hill et al., (2010) Recommended  Silver birch, Time difference of budburst and
L AR late April European oak, elm leaf unfolding
Cambridgeshire,
. Maple reached full autumn

Estern England Late September  Field maple coloring

Data had little potential to

Late October European oak
separate oak

Recommended .
: Oak autumn coloring was
mid- or late European oak
reached
November

Schriever and

Congalton (1995), American beech, red
Southeastern New Late October oak, red maple
Hampshire, USA

Data had high potential, because
red maple trees lost their leaves
prior to the other two species

Red oak was the only deciduous
species still holding their leaves
Black ash was the only leafless

Mid-October Red oak

Wolter et al., Mid-September Black ash deciduous species
(1995), i
ot Mid-May Trembling aspen Data could catch trembling aspen

leaves unfolding

American larch was the only
Late February ~ American larch coniferous species without
needles

Wisconsin, USA

Schriever and Congalton (1995) also found that data collected in October achieved the highest
success for identification of American beech, red oak and red maple. However, they indicate that
this success might have been due to the fact that maple trees lose their leaves prior to other species.
Additionally, Wolter et al., (1995) point out the benefits of using Landsat data collected in mid-
October to separate red oaks, because they were the only deciduous species still holding their
leaves. For black ash separation, data collection appeared promising during mid-September given
that these were the only leafless deciduous species at that time. Data collected in mid-May were
found to highlight trembling aspen leaf flush. Finally, data collected at the end of February were

used to separate American larch from other coniferous species, because it was identified as the only
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coniferous species without needles. On the other hand, the authors pointed out that it is difficult to
identify sugar maple using only one dataset collected either in autumn (September, October) or
spring (May), because of the similarity in autumn leaf coloring timing with aspen. These studies
demonstrate the suitability of a specific season for only few tree species and a limited number of

phenological phases due to limitations in the amount of data collected.

Many other obstacles for analyzing multi-seasonal data to map tree species have been reported.
Problems include phenological variations of the same tree species within the same area based on
the aspect, altitude, or existence of water source, which can delay the autumn leaf coloring and fall.
Also, the phenological phases are shifting from one year to another based on the weather
conditions. Furthermore, data collected over a long time span may include changes attributed to
reasons beyond phenological condition. Cloud cover is also often connected with active
development of the phenological phase. An additional factor is the understory, which can be a good
indicator for a tree species, but can be problematic by increasing the confusion between the tree
species (Hill et al., 2010; Wolter et al., 1995). Additional problems associated with of multi-

seasonal analysis techniques are presented in section 2.3.2.

2.3 Techniques for analyzing HSR optical data in forest applications

One of the most common applications of remote sensing for land cover and forest mapping is
the preparation of thematic maps using digital image classification (Foody, 2002). Classification
can be broken down into three main groups: pixel-based, sub-pixel-based, and object-based. These
techniques have been applied to multispectral data analysis and to hyperspectral data analysis for

forest mapping.

Pixel-based techniques can be unsupervised methods (i.e. ISODATA) or supervised methods
(i.e. Maximum Likelihood - ML, Mahalanobis Distance - MhD, minimum distance - MD, Nearest
Neighbor - NN, Support Vector Machines - SVM etc.). Unsupervised methods classify the pixels
based on statistics only, without any pre-defined training classes, while supervised methods classify
pixels based on pre-defined training classes. Unsupervised methods could be implemented with
remote sensing data in order to better understand its spectral dimensionality and information
content (Elatawneh et al., 2012; Walsh et al., 2008). Meanwhile, supervised methods are usually

implemented to achieve final mapping of remote sensing data.
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2.3.1 Techniques for analyzing Hyperion data

Hyperspectral data, offering high spectral resolution, have encouraged the adaptation of a series
of techniques in order to exploit their rich spectral information. To apply the supervised methods
used originally to analyze multispectral data for Hyperion data, spectral dimensionality reduction
(selection) is usually carried out. Many notable reduction techniques have been applied to Hyperion
data such as: minimum noise fraction (MNF), principal component analysis (PCA), and linear
discriminant analysis (LDA) (Goodenough et al., 2003; Nelson, 1984; Thenkabail et al., 2004).
The supervised algorithms ML, MhD, and MD have also been applied to Hyperion data for forest
mapping and classification, leading to the claim that the MD achieves the best results in comparison
to the others (Pignatti et al., 2009). Still, other studies have successfully applied ML (Goodenough
et al., 2003) and MhD (Nelson, 1984) to Hyperion data for the purpose of forest mapping and LU
/ LC classification. Other techniques that can deal with the full spectral feature of hyperspectral
data were developed, including Spectral Angle Mapper (SAM) (Kruse et al., 1993). SAM has often
been used with Hyperion data to map forest cover and tree species. While some studies applying
SAM to Hyperion data achieved better results in comparison to the other aforementioned
classifiers, (Berrichi et al., 2012; Pignatti et al., 2009), others pointed out its limitations in
comparison to support vector machine SVM (George et al., 2014) and object-based methods
(Eckert and Kneubdhler, 2004). Still, SAM classifier is highly insensitive to the illumination
variation effect, because the algorithm uses only the direction of the vector and not its length in

feature space.

Sub-pixel-based techniques are designed to determine the relative abundance of land features
that are depicted in remote sensing data based on the features’ spectral properties. Sub-pixel-based
techniques can be divided into linear spectral mixing (lordache et al., 2011) and non-linear spectral
mixing (i.e. artificial neural network — ANN Heylen et al., 2014). Both linear and non-linear
techniques have been applied to Hyperion data, yet studies reveal the non-linear technique
consistently outperforms the linear technique (Pengra et al., 2007; Petropoulos et al., 2012a; Walsh
et al., 2008).

Object-based techniques have recently become commonplace in the remote sensing community
for the purpose of digital image analysis (Baatz and Schépe, 2000). However, few studies have
applied object-based techniques to Hyperion data for forest mapping. A study (Eckert, 2006)
comparing object-based and SAM techniques showed that object-based achieved slightly better
results. However, this study concluded that the inaccuracy of the results provided by the object-
based technique was due to the low spatial resolution of the Hyperion data combined with the small
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structured land pattern in the test site. Another study (Petropoulos et al., 2012b) compared object-
based technique with SVM for land cover mapping, and also showed that object-based techniques
achieved better results. The strength and limitations of both results were discussed, and leading to
the finding that the main limitation of the SVM was the “‘salt and pepper’’ effect, resulting from
the small structured landscape and the 30 m pixel size of the system. A study in China (Wang et
al., 2010) applied object-based techniques to Hyperion data for land cover classification and
investigated the effect of the object size on the result accuracy. Researchers here compared the
results with the pixel-based technique, and concluded that the object-based technique outperformed

the pixel-based technique.

All in all, object-based techniques show more flexibility over traditional pixel-based techniques,
especially if the targeted class is of similar size or bigger than the pixel size of the analyzed data.
In addition, object-based techniques have the capability to support transferability, easy GIS
integration, and enhancement of the results through incorporation of additional features beyond
spectral properties (Blaschke, 2010). The above findings increase the visual appeal of object-based
approaches, making it a competitive paradigm for image analysis (Blaschke et al., 2014). Pixel-
based techniques require more careful training data regarding small areas, making their
transferability difficult. Also, concerning the spectral reflectance of the data, pixel-based
approaches are very suitable for small pattern classes, but have limited success in achieving the

desired results for large scale classes.

2.3.2 Techniques for analyzing multi-seasonal data

Many studies have used varieties of pixel-based techniques (unsupervised and supervised) to
classify forest cover classes. Since early 2000, object-based image analysis technique has been
applied to land cover and forest mapping research, and shows the potential to achieve more accurate
results than that of the pixel-based (De Kok et al., 1999; Eckert, 2006; Gao et al., 2007; Zhou et
al., 2008). Additionally, the results of OBIA were more realistic and represent current situations

better than the results of pixel-based techniques (Dorren et al., 2003).

Forest change detection applications have been based on using many pixel-based methods in the
last three decades (Coppin et al., 2004; Lu et al., 2004). Looking at the past decade, several methods
using object-based image analysis techniques have been adapted and used for detecting forest cover
changes (Carvalho et al., 2001; Duveiller et al., 2008; Eckert, 2006; Linke et al., 2009; McDermid
et al., 2008; Willhauck et al., 2000; Wulder et al., 2008). Object-based change detection (OBCD)

techniques have also shown advantages over pixel-based change detection techniques (Hussain et
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al., 2013). Chen et al., (2012) arranged OBCD methods into four groups: image-object, class-
object, multi-temporal-object and hybrid change detection. The implementation of these methods
have been discussed in previous studies (Desclée et al., 2006; Duveiller et al., 2008; Willhauck et
al., 2000), and hybrid methods performed better than others when detecting forest change. This can
be attributed to the insensitivity of this method to geometric registration errors, atmospheric
fluctuations, and differences in vegetation due to phenological stage (Carvalho et al., 2001). The
basic concept of the hybrid method is to initially obtain results of changes using any of the pixel-
based change detection algorithms, and then apply the object-based technique to enhance the results
(Walter, 2004). This way, the calculation time can be reduced by avoiding segmentation of the
whole image at the pixel level, while at the same time allowing for automation of the process.
Given these benefits, a method with such characteristics has been used by the government of Minas
Gerais in Brazil since 2003 (Chen et al., 2012).

Many methods have been developed for using multi-seasonal remotely sensed data in order to
conduct forest tree species mapping, with Maximum Likelihood (ML) being most commonly used.
The ML can be a powerful classifier, if the suitable reference data are available and the assumption
of having a multivariate normal distribution of spectral values of a thematic class holds (Stoffels et
al., 2012). The ML classifier has often been applied to forest studies and has proven to be preferable
over other classifiers such as minimum distance (MD), spectral angle mapper (SAM) and artificial
neural network (ANN) (Shafri et al., 2007; Thomasson et al., 1994). However, ML can be strongly
biased for small samples, and leading to incorrect classification when the data are multi-modal or
non-normally distributed (Wang et al., 2008). On the other hand, SAM has been successfully
applied to remote sensing data of high spectral dimension such as hyperspectral data, and has the

potential to perform well with the high spectral dimension of multi-seasonal data.

Many problems are typically associated with the analysis of the multi-date data because of the
increased complexity of the information compared with single-date data (Bruzzone et al., 2003).
Specifically, this includes the reduction of the geometric quality due to the geometric co-
registration errors between the images (Key et al., 2001), and an increase in the amount of training
data required to analyze the dataset (Key et al., 2001). Including further data from other seasons
provides additional information, but also can contain noise which leads to a slight reduction in the
result quality, referred to as the ‘‘Hughes effect’” (Hughes, 1968). In addition, there may be
differences in the illumination and observation of the canopy based on different sun angles during
each data take. Issues with these shadow effects can be reduced by using solely the sunlit crown

canopy, as reported in a series of studies (Immitzer et al., 2012; Waser et al., 2014). These studies
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used very high spatial resolution (0.5 m) Worldveiw-2 data for tree species classification, and
showed that choosing training data within the sunlit crown of the trees will definitely improve the

identification of single tree species.
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3 Test sites and datasets

3.1 Test sites

Four test sites were selected to investigate which type of satellite data is more suitable for
extracting the desired forest parameters. The first test site was Anopoli village in Crete,
representing a Mediterranean forest environment, where hyperspectral Hyperion data were
examined. The other three test sites were located in different growth regions within Bavaria as a
central European forest environment. Here, multispectral multi-seasonal RapidEye data were
examined. The Bavarian test sites were the Bavarian Forest National Park (BFNP) in a mountainous
region, along with Freising and Traunsteiner Stadtwald forest in hillside growth regions. It would
be preferable to have both data types acquired for the same test sites. However, this was not possible
because of the lack of cloud-free or proper acquisition timing of Hyperion data in the Bavarian test
sites, as well as the absence of free of charge RapidEye data in the Anopoli test site. Moreover,
Hyperion data were collected in Anopoli, in order to compensate for the lower radiometric

resolution of the Hyperion system as it was mentioned in section (1.2).

3.1.1 Anopoli

The test site of Anopoli is located on the southeastern Island of Crete in Greece (35°13°7”N,
24°5’5”E). The study site is located between the White Mountains (Lefka Ori) in the north,
extending down to the Libyan Sea in the south. The altitudes range from 0 m in the south up to
2,200 m in the north. The climate typical for the Mediterranean is characterized by hot, dry
summers and cool, wet winters, with a dry season starting in April and lasting until September. The
landscape formation is greatly affected by lasting grazing processes, which is followed by
deliberate fires and intensive tree-felling in the forest. The main vegetation cover types include a
phryganic ecosystem, coniferous forests, cultivated fields of varied plantations and some alpine
vegetation (junipers) at high altitudes.

The phrygana cover a relatively large area, located between sea level and moderate altitudes
(800 m). The dominant forest species here are pine (Pinus brutia), cypress (Cupressus
sempervirens), Cretan maple (Acer sempervirens) and Mediterranean oak (Quercus coccifera). The
spatial distribution of these species follows a vertical structure. For example, pines form pure stands
beginning at sea level and become much denser at altitudes of 400 m up to 700 m. Many pine trees
are infected by the Pine Processionary pest (Thaumatopoea pityocampa), and are mostly found at

the Anopoli plateau at an altitude of 700 m. Gradually, cypresses begin to appear, forming mixed
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stands amongst the pines, up to an altitude of 1,100 m. At this level and beyond to 1,500m,
cypresses are dominant, and in some areas form mixed stands with maple and oak. Many species
are found under the pine forest canopy such as Hypericum empetrifolia, Asparagus acutifolis and
Osyris alba. Meanwhile, at high altitudes, vegetation cover is scarcer and differs from low to
moderate altitudes with the presence of species such as Teucrium species. and Verbascum

spinosum.

3.1.2 Bavarian Forest National Park (BFNP)

The study site of the Bavarian Forest National Park (BFNP) is located in southeastern Germany
(49°03°53’°N, 13°21°57”’E) along the Czech Republic border. This is a mountainous area with
altitudes ranging between 600 and 1,450 m. The BENP was founded in 1970 as Germany’s first
national park, and was extended in 1997 to hold a total area of 240 km2. Only the northern part of
the park was chosen for the investigation, containing an area of 104km?, of which forest cover
made up approximately 9,300 ha on 19 April 2011. The test site is located in the growth region
called Innerer Bayerischer Wald (Wuchsbezirk (WB) 11.3). The landscape is divided into three
ecological zones - highlands, hillsides and valleys. In each zone, different compositions of tree
species are found. Based on the inventory results from 2002 to 2003 (Heurich and Neufanger,
2005), the tree species compositions in the dominant layer of the forest are distributed in each
ecological zone as follows: in the highlands, 90% Norway spruce (Picea abies), 2% beech (Fagus
sylvatica) and 8% other broadleaf trees; on hillsides, 58% Norway spruce, 3% fir (Abies alba), 34%
beech and 5% other broadleaf trees; in the valleys, 83% Norway spruce, 5% fir, 6% beech and 6%
other broadleaf trees.

Severe disturbance cycles of storms and bark beetle attacks began in the early 1990’s, and about
17,000 m® of wood was affected (Heurich, 2001). However, according to the philosophy of the
BFNP administration, no forest management activities are allowed in the core zone of the park.
Bark beetle management is allowed only in a small strip at altitudes between 500-800m, along

enclaves of the residential areas in the BFNP and its boundaries.

3.1.3 Freising forest

The Freising forest test site is located in the southern part of Bavaria, close to the city of Freising
(48°24°45°°N, 11°40°45’E). It has a total area of approximately 2,180 ha and is divided into the
Kranzberger and Thalhausener Forests. Its growth zone is located in the Bavarian Tertiary Hills,

which hold a great potential for holding a diverse variety of tree species. The Bavarian State
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Forestry group is responsible for the forest management of the test site. The forest is found in the
growth region of Oberbayerisches Tertiarhiigelland (WB 12.8). The main tree species and their
composition in the area are Norway spruce (Picea abies) 73%, European beech (Fagus sylvatica)
5%, European and Japanese Larch (Larix decidua Mill., Larix Kaempferi) 5%, Scots pine (Pinus
sylvestris L.) 4%, European oak (Quercus petraea) 3%, Douglas fir (Pseudotsuga menziesii M.F.)
2%, and Maple (Acer pseudoplatanus) 2%. The remaining 6% consist of various uncommon
coniferous and deciduous tree species. According to the management strategies, the forest structure

varies from even aged pure stands to uneven aged mixed stands.

3.1.4 Traunsteiner Stadtwald forest

The test site of Traunsteiner Stadtwald is situated on southeastern Bavaria within the
municipality of Traunstein (47°51°42°°N; 12°39°20°’E). The altitude in this area ranges from 660
m to 700 m and consists of plateaus and valleys. The forest cover is roughly 243 ha, and it is owned
by the city of Traunstein, but managed by the Chair for Forest Growth and Yield at the Technische
Universitit Miinchen. The forest belongs to the growth region Ostliche kalkalpine Jungmorine
(WB 14.4 / 3). The main tree species in the area are Norway spruce (Picea abies), European beech
(Fagus sylvatica) and European silver fir (Abies alba). The forest structure here varies from
homogeneous (e.g. even aged pure stands) to inhomogeneous (e.g. uneven-aged mixed stands). The

geology can be described as Swabian-Bavarian young moraine and molasse mountain spar.

3.2 Datasets

3.2.1 Satellite data

The two satellite data types that were investigated to achieve forest descriptors are the
hyperspectral data from the Hyperion sensor, and the multispectral multi-seasonal data from the

RapidEye satellite constellation.

3.2.1.1 Hyperion data

Hyperion satellite data over the test site of Anopoli were acquired on 23 May 2006, under a
visibility of 40 km and sun elevation of 65 degrees. The data were received as a full long scene
(185-km strip) and a swath width of 7 km. The data were of level 1R that includ radiometric at
sensor correction but no geometric correction. The Hyperion data were collected at Nadir, with
spatial resolution of 30 m and radiometric resolution of about 10 nanometers (nm). The data
consisted of 242 bands, of which 44 were not calibrated, in the visible Near Infrared VIS / NIR and
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Short-wavelength infrared SWIR. The VIS / NIR region has 70 bands (only 50 are calibrated);
while the SWIR region has 172 bands (only 148 are calibrated). The Hyperion data were by
provided the United State Geological Survey (USGS).

3.2.1.2 RapidEye data

The RapidEye is a constellation consisting of five satellites, and each satellite has on board one
of the five identical Jena Space Scanner JSS 56 sensors. Each sensor provides data consisting of
five channels: in the blue (440-510 nm), green (520-590 nm), red (630-680 nm), red edge (690-730
nm), and near infrared (760-880 nm) regions of spectrum.

Table 3: Number of the used RapidEye scenes of the level 3A (#), with the corresponding visibility in
kilometer (vs. km) and sun elevation in degree (s.e.°) in each of the Bavarian test sites

BFNP Freising Traunstein

Date # vs.km se.® # vs.km se.° # vs.km se.®
17.05.2009 1 26 61°
20.05.2009 1 60 62°

27.07.2009 1 70 60°

01.08.2009 1 16 60°
07.09.2009 1 40 48°
22.04.2010 1 30 54°

11.05.2010 1 15 60°
08.06.2010 1 30 64°

21.07.2010 1 30 62°

15.08.2010 1 75 56°

10.10.2010 1 30 35°

22.03.2011 1 45 42°

07.04.2011 1 75 47°

19.04.2011 2 28 52°

21.04.2011 1 19 54°
06.05.2011 1 25 58°

10.05.2011 1 35 60°
04.06.2011 1 25 64°

22.06.2011 1 35 64° 1 30 66°
28.06.2011 1 55 65°

10.07.2011 1 40 64°

12.07.2011 1 55 63° 1 24 64°
16.07.2011 1 45 63°

22.08.2011 2 30 53°

23.08.2011 1 30 53° 1 40 54°
03.09.2011 1 30 49°

25.09.2011 1 26 41°

01.10.2011 2 40 38° 1 27 39°
06.10.2011 1 35 36°

22.10.2011 1 18 30°

23.10.2011 1 23 31°
04.11.2011 1 8 26°
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Typically, data collection took place at Nadir, with a spatial resolution of 6.5 m (5 m resampled)
and a swath width of 75 km. The data were ordered as level 3A products for all test sites. The
RapidEye Ortho Product data of level 3A were provided with radiometric at sensor and geometric
corrections. The level 3A products are provided as individual 25km x 25 km tiles. All data were
provided by the RapidEye Science Archive (RESA) at the German Aerospace Center (DLR). Table
3 presents the acquisition dates and the RapidEye data values corresponding to visibility and sun

elevation in each test site in Bavaria.

3.2.2 Ancillary data

Ancillary data were those additions that helped support classification, such as by helping to
identify the end-members and in the preprocessing of the Satellite data including the Geometric
and the Atmospheric corrections. Also, the ancillary data were indispensable for the verification of

the results of the satellite data analysis.

3.2.2.1 QuickBird and aerial images

The QuickBird satellite image was acquired on 10.06.2003 over the test site of Anopoli. The
image was mainly used to help in identifying the end members and the reference data. The image
was of the “Ortho-Ready Standard Imagery” product (Standard2A), corrected geometrically and
radiometrically at the sensor. It consists of four bands: one panchromatic with 0.6 m spatial resolution

and three multispectral bands in the blue, green and red spectral region with 2.5 m spatial resolution.

Digital aerial images were acquired for all test sites in Bavaria, and were mainly used to help in
defining the reference data. The acquisition dates for the test sites were as follows: BFNP on
22.08.2011, Freising on 29.07.2009 and Traunstein Stadtwald on 25.04.2009. All images were
georectified, and have a spatial resolution of 0.2 m, and a radiometric resolution of 8 bit. The
images have three bands in the visible spectral region in all test sites, except those in the BFNP,
which have an additional band in the near infrared NIR. Each of the aerial images covers a ground
area of 1km x 1km, and all were delivered from the Bavarian State Office for Survey and

Geoinformation (Landesamt fur Vermessung und Geoinformation Bayern - LVG).

3.2.2.2 Field spectra

The field spectra were collected in 2007 and 2008 using an ASD FieldSpec® pro FR
spectroradiometer. Information about the instrument specification, field spectral data collection and
preparation can be found in Elatawneh et al., (2012). Training samples of the common land cover

classes in the area were collected and their spatial coordinates were determined using a GPS.
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Additionally, about 40 measurements of pure spectra of the vegetation and trees species were also
collected. The spectra were mainly used for the preprocessing of the Hyperion data, and specifically

for the spectral polishing.

3.2.2.3 Forest inventory data

Forest inventory data consist of parameters that describe the forest stand characteristics such as
tree species, Diameter at Breast Height (DBH), height, age and further management-related
features. In Bavaria, inventory data are typically collected within plots which are systematically
arranged in a 200 x 200 m (100 x 100 m in Traunsteiner Stadtwald) sample grid. Each plot consists
of three concentric circles where various information about the trees within these circles are
collected. The inner circle has an area of 31 m2 (3.15 m radius) wherein all trees including those
with a DBH smaller than 10 cm are measured. The intermediate circle has an area of 125 m? (6.31
m radius) in which all trees with a DBH ranging between 10 cm and 30 cm are recorded. The outer
circle has an area of 500 m? (12.62 m radius) wherein all trees with a DBH greater than 30 cm are
recorded. Forest inventory data were available for the Freising test sites from the last inventory
taken in 2001, and for the Traunsteiner Stadtwald forest test site from the inventory of the Chair
for Forest Growth and Yield at the Technische Universitat Miinchen taken in 2008.

3.2.2.4 Digital Elevation Models (DEMs)

The Digital Elevation Model (DEM) for the Anopoli test site was originally produced for the
Fireguard project (2004) initiated by the Joanneum Research Institute. The DEM had a spatial
resolution of 20 m, and was used for the orthorectification and the topographic correction of the
Hyperion data. The DEMs of the test sites in Bavaria were mainly produced by the LVG using
airborne Laser scanning data. The DEMs had a spatial resolution of 5 m and were mainly used for

the radiometric correction as described in section 4.2.

3.2.2.5 Forest tree species phenology

The data of the forest tree phenology were provided by the German weather service (Deutscher
Wetterdienst DWD) from the Durnast station in the Freising test site. The observations are collected
annually and includ the following phenological phases: May shoot, beginning of leaf / needle
unfolding, oak lammas growth, beginning of flowering, autumn coloring, and leaf / needle fall. The
observation program started as early as 1964 and continues until today, however, not all of the
phases have been recorded over the whole period. The observations are recorded by the Julian day

(the day of the year) as seen in Table 4, with the statistics of the observation ordered by the day of
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the occurrence. The tree species included in Table 4 are Norway spruce (Picea abies L.), Scots pine
(Pinus sylvestris L.), European larch (Larix decidua MILL.), European beech (Fagus sylvatica),
European oak (Quercus robur Mattuschka), and Norway maple (Acer platanoides). The details on
the phases are observed and collected by volunteers in an observation area with a radius of 1.5 to
2 km far from the main station. However, because all the tree species included in the program found
rarely all together within a small finite area, the radius can be extended to 5km, and the difference
in the altitude between the observed trees and the central station should be no more than £ 50 m.
In addition, the forest hollows, narrow valleys, and southern or northern hillsides should be
excluded from the observation areas. After the observation stage, the collected data are routinely
checked for their quality and plausibility. More details about the methodology of the observation
and data correction can be found in Buttler et al., (1991).

Table 4: The phenological phases from the Dirnast station in Freising show the different phenological
phases of the main forest tree species ordered ascendingly based on the average of the Julian day. Data
here show for each phenological phase the number of observations, the starting and ending year of

collecting the observations in addition to statistics including average, first and third quartiles (Q1, Q3),
minimum and maximum of the Julian day (see Figure 20)

Observation Start End .
N Count year  year Average Q1 Min. Max. Q3

Larch flowering begins 24 1965 1990 97 91 70 125 102
Larch needle unfolding begins 51 1964 2014 100 92 78 119 108
Maple flowering begins 51 1964 2014 102 96 85 119 109
Oak leaf unfolding begins 51 1964 2014 121 117 103 135 126
Beech leaf unfolding begins 51 1964 2014 122 118 103 135 128
Spruce May Shoot 51 1964 2014 127 123 112 140 131
Spruce flowering begins 5 1980 1990 132 127 125 145 137
Oak flowering begins 23 1965 1990 133 130 121 143 137
Pine May Shoot 48 1967 2014 134 130 120 148 138
Pine flowering begins 34 1980 2014 138 134 125 157 140
Oak lammas growth 20 1964 1986 173 167 153 199 178
Oak autumn coloring 50 1964 2013 284 281 270 299 288
Beech autumn coloring 50 1964 2013 287 284 276 299 289
Larch autumn coloring 23 1991 2013 296 295 283 304 299
Beech leaf fall 23 1991 2013 297 292 287 313 302
Oak leaf fall 23 1991 2013 298 292 284 324 302
Larch needle fall 23 1991 2013 310 307 298 322 314
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4 Forest parameter extraction

Forest parameter extraction in the Anapoli test site was based on analysis of the single
hyperspectral Hyperion data, and the following parameters were extracted: forest cover and forest
types (including forest tree species). Forest parameter extraction in the Bavarian test sites were
based on analysis of the multispectral RapidEye data and guided by a study outlining key
requirements (Felbermeier et al., 2010). While the targeted parameters forest cover, forest gaps,
and forest type were extracted from single RapidEye data, the parameters forest cover changes, and

forest tree species were extracted from multi-seasonal RapidEye data.

The first step was to define the parameters extracted, especially forest cover, based on the
accepted definition (section 4.1). Then, both satellite data, the Hyperion and the RapidEye, were
prepared and preprocessed using a variety of techniques including the application of geometric and
radiometric corrections (section 4.2). Next, the targeted forest parameters to be extracted from the
single hyperspectral Hyperion data were derived based on land cover LC classification
(section 4.3). The extraction of the targeted forest parameters using the RapidEye data is covered
in three sections. Section (4.4) explains the extraction of the targeted parameters forest cover and
types from the single RapidEye dataset. Section (4.5.1) goes on to show the development of an
operational method used to detect old forest growth losses, and continues with an assessment of
the method based on the fast respond, cost and transferability using the multi-seasonal RapidEye
data. Finally, section (4.5.2) focuses on the extraction of forest tree species based on the
phenological fingerprint concept using the multi-seasonal RapidEye data. This section also
includes an analysis strategy that addresses the economically important research question

mentioned in the introduction.

4.1 Forest parameter definitions

Forest cover definition varies depending on the country and the users who are interested in
forests. While the hyperspectral Hyperion approach was investigated in Anopoli, the multi-
seasonal RapidEye approach was applied in Bavaria. Given that this study has components nested
in different countries, it is important to explicitly define the forest parameters in question. For this

work, the targeted parameters were defined for each approach as follows:

Forest cover in Anopoli is defined as 10% crown cover, with a minimum height of 5 m, of an
area of 0.5 ha or strips of 30 m width, and not used for other purposes other than wood production.

Meanwhile, in Germany, forest cover is any area of ground covered by forest trees including forest

37



Forest parameter extraction

tracks, fire breaks, openings, clearings, and forest gaps (which can be used as timber yards or
feeding ground for games), in addition to any further areas linked to serve the forest. As forest gaps
are important units of the forest cover in Germany, it was decided that gaps ought to be classified
within the forest cover. This was recommended by foresters in the remote sensing user workshop
held on 14 February 2012 by the institute of forest management. The result of this workshop was
a recommended minimum area of 0.5 ha for the forest as well as for the gaps.

Forest type parameter refers to the main groups of forest tree species present, being either
coniferous or deciduous. In a managed forest where stand information is made available, forest
type per stand typically includes coniferous stands, deciduous stands, and mixed stands. The forest
stand is the minimum management unit, within which management planning is conducted. While
in Anopoli there are no forest management planning practices and the forest stands have not been
reported, in Bavaria, forest management planning is practiced routinely, at least in the state owned
forests. Therefore, in the Anopoli test site, forest types were simply defined as coniferous and
deciduous types. Forest types were also initially defined as coniferous and deciduous in Bavarian
forests, however, where additional forest stand information was available, the forest stand types
were further identified as coniferous stands, deciduous stands, and mixed stands. The forest type
per stand is determined based on the dominant tree group, and a threshold of 80% was

recommended by foresters in the remote sensing user workshop.

Forest change refers to the loss of trees within an area defined as forest based on the Bavarian
definition. These changes can be induced by standard forest management practices or calamities

such as bark beetle outbreaks or storms.

Finally, the tree species parameter includes the common, endemic or important forest tree
species in the study site. In Anopoli, the targeted tree species were the abundant coniferous species
such as pine and cypress, along with the deciduous species Mediterranean oak and, most
importantly, the Cretan endemic maple. Similarly, in the Bavarian test sites the targeted species
were among the abundant forest trees species, which are frequently found in the area of the
terrestrial forest inventory. Usually, these species are of economic importance due to their timber
value, or of management planning importance because they are suitable for adapting under climate

change conditions.

4.2 Satellite data preprocessing

Before the information extraction, remote sensing data are processed for preliminary

corrections. These corrections involve detecting and addressing any distortion, noise or degradation
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that may have occurred during image acquisition. Preprocessing includes checking for internal
errors, caused by sensor malfunctioning, which are systematic and predictable. Preprocessing also
includes reviewing for external errors which can be incurred by satellite instability, or atmospheric
and topographic conditions, which are unsystematic and dependent on time and location
(Campbell, 1996; Jensen, 1996).

The Hyperion data were collected by an experimental sensor and usually require additional
preprocessing beyond the standard for other satellite data. For this reason, essential preprocessing
steps were applied to the Hyperion data as described in Figure 3. The first step was to perform a
linear interpolation of all the sensor detectors, based on a common set of wavelengths, then the full
width at half-maximum values were averaged for each band. The second step involved the
elimination of non-calibrated and overlapping bands. Following this, the third step was to perform
a vertical striping to account for the darker stripes which appeared because of malfunctioning
detectors. Next, atmospheric correction was carried out by using FLAASH, implemented in the
ENVI software package. Spectral polishing was then executed by applying a running average filter
over nine adjacent channels, utilizing some of the field spectra, in order to smooth the spectral
reflectance. The fifth step involved the orthorectification of the Hyperion data, which was based
on the direct linear transformation (DLT) model implemented in ERDAS Imagine software
package. After that, a minimum noise fraction (MNF) transformation was applied to deal with the
visible-near infrared (VIS / NIR) and shortwave infrared (SWIR) data separately. As a final step,
an inverse MNF was used to the transformed Hyperion bands in order to reduce the uncorrelated
noise that was not reduced by the spectral polishing (Goodenough et al., 2003). The corrected
Hyperion data consisted of 157 bands, in which 49 bands were in the realm of VIS / NIR, and 108
bands in the SWIR regions (Elatawneh et al., 2012).
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Hyperion Linear interpolation to a Elimination of the
level 1R common set of wavelength —{ uncalibrated bands
242 bands 242 bands 196 bands
Orthorectification | Spectral polishing | Atmospheric correction
157 bands 157 bands 157 bands

A

Preprocessed Hyperion data
157 bands
VIS/NIR (49 bands)
SWIR (108 bands)

Minimum noise fraction
(MNF) and inverse MNF
157 bands

Figure 3: The preprocessing analysis steps applied to the Hyperion data, and the resulted number of bands
after each step

The essential preprocessing steps for the multi-seasonal RapidEye data are geometric
registration and atmospheric correction. The location uncertainty in RapidEye 3A level data could
reach a maximum value of 50 m (RapidEye AG, 2012). Therefore, the accuracy of level 3A data
was examined and, when necessary, improved by implementing co-registration with the reference
geo-database. The RapidEye data of level 1B were orthorectified by using a rational polynomial
function implemented in the PCl Geomatics software package. After geometric registration and
correction were applied to the data, an atmospheric correction was performed using the ATCOR 3
algorithm implemented in PCI Geomatics. The algorithm used the DEM and visibility to

compensate for topographic and atmospheric effects.
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4.3 Parameter extraction from single hyperspectral Hyperion data

4.3.1 Methods

Forest parameter extraction in the Anopoli site, using the hyperspectral Hyperion data, was
mainly based on land cover classification (Elatawneh et al., 2012, Publication 1 in Appendix). A
successful classification is highly dependent on the classification scheme (Jensen, 1996). The
classification scheme was developed based on the CORINE land cover, vegetation cover of the
area, and the Hyperion data’s ability to separate the land cover classes. After that, the Hyperion
data were classified using the pixel-based, sub-pixel-based and object-based techniques.
Subsequently, land cover results of forest related classes, the parameters forest cover, forest types,
and tree species were identified based on their definitions.

The methodology of the Hyperion data analysis is described in Figure 4. First off, the
classification scheme was defined based on the land cover map of the test site and the spectral
separability of the Hyperion data. To achieve that, the unsupervised IsoData classifier was applied
to the Hyperion data, and the result was intersected with the available vegetation thematic maps
and QuickBird image in the area, in order to define the classes. The classification scheme was
subsequently aligned to the CORINE land cover system proposed by the European Union for the
Mediterranean region (European Environmental Agency, 1995). However, the broadleaved trees

including Cretan maple and Mediterranean oak could not be separated into two single classes.
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Figure 4: The workflow followed for the Hyperion data classification in Anopoli test site

After the classification scheme in Table 5 was defined, end-members representing the different

classes were collected from the Hyperion data, based on the field training site and with the
assistance of QuickBird image. The selection of the end-members was carefully decided and

restricted to homogenous areas of consistent land cover. In total 550 samples, which represent the

classes in Table 5, were assigned as end-members and used for the classification.
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Next, pixel-based analysis was performed using SAM to classify the Hyperion data. The SAM
technique (Kruse et al., 1993) classifies the pixels based on the similarity of their spectra to the
reference spectra. The technique considers the reference and pixels spectra as vectors in
multidimensional space, where the dimension of the vectors is equal to the number of the spectral
bands. The similarity between the spectra of reference and data is based on the angle between their
vectors, where small angles are more similar in spectra. Each pixel is then classified as that
reference point of the most similar spectrum. SAM was applied to the corrected Hyperion image
(consists of 157 bands) using the training set of approximately 50 spectra per class, to achieve the

classification.

Table 5: Classification scheme was developed in Anopoli test site, adapted after (Elatawneh et al., 2012)

Class name Class description
(%2) - .
= Cypress trees Pinus brutia
2
- S Pine trees Cupressus sempervirens
g o
Q@ (%)
~ 3
S Broadleaved Cretan maple (Acer sempervirens)
o . .
S trees Mediterranean oak (Quercus coccifera)
&
Cultivated fields Mainly vineyards
Olive groves Olive plantations in Anopoli village
Rocks Large areas of rocks exist mainly at high altitude and at the coastline
S
3 Bare soil Bare soil, some stones exist occasionally
o
T Alpine vegetation  Juniper trees at high altitude
> Rarely coniferous trees distributed over bare soil mainly south of the

Sparse vegetation village and near by the sea

Low vegetation, mainly Sarcopoterium spinosum, Phlomis fruticosa,
Asphodelus albus, Urginea maritime, Coridothymus capitatus

Snow Present at high altitudes

Phrygana

Next, the sub-pixel-based application was performed by using ANN with the Hyperion data.
The ANN (Carpenter et al., 1999) is a machine learning technique which uses the spectral
properties of the data to perform nonlinear unmixing in order to determine the relative fractions of
land cover depicted in each pixel. The ANN assumes that the reflectance of a pixel is a nonlinear
combination of the reflectance of the land cover classes present in that pixel. The ANN (Figure 5)
establishes linkages between the input data (spectral bands) and the output data (land cover classes)

through a hidden layer consist of single or multiple nodes (hidden layers) (Lillesand and Kiefer,
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2000). The learning is carried out by adjusting the weights in the hidden layers to minimize the
difference between the inputs and outputs, and then the error is back-propagated through the
linkages. Weight adjustments are conducted repeatedly. Two parametric coefficients control the
learning process: the learning rate coefficient and the learning momentum coefficient. The learning
rate coefficient controls the magnitude of the adjustment of the weights, where a high value should
be avoided because this leads to an increase of the process speed, thus increasing the risk of
oscillation in the results. Meanwhile, the learning momentum coefficient encourages the magnitude
of the adjustment of the weights along a specific direction, and a high value allows a greater

learning rate coefficient to be set without risk of oscillations.

Input layer
(Spectral bands)

Hidden layer Qutput layer
(Classes)

=D

Figure 5: lllustration of the Artificial Neural Network (ANN) of image analysis

To apply the ANN to the Hyperion data, all corrected 157 bands were used as nodes in the input
layer. Only one hidden layer was used, as this was found to be sufficient for many learning purposes
(Carpenter et al., 1999). The learning rate and the learning momentum coefficient values were
assigned as 0.3 and 0.7, respectively. The training threshold contribution value of 0.9 and training
RMS error value of 0.1 were specified, and these values decided when the learning process should
stop. All land cover classes were assigned as output layers, and the results will include 11 maps,

each showing the percentage of specific land cover abundance.

The object-based analysis was applied to the Hyperion data using eCognition software (from
Trimble). Object-based analysis (Blaschke, 2005) included two processing steps; the segmentation
and the classification. The image segmentation process is able to automatically extract desired
objects representing the real land cover features. This process allows the production of many object

levels connected in a hierarchical manner, in which each object is aware of its adjacent objects,
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lower objects and upper objects. Objects can be created using bottom-up or top-down segmentation
approaches, and few parameters which should be defined, such as: scale, shape, compactness and
bands weights. The scale parameter indirectly controls the average object size, where a high value
produces big object, and vice versa. The shape criterion controls the influence of the data spectra
or color on the segmentation process, while the compactness criterion controls the objects’
geometry and the degree of their compactness or smoothness. The weights control the influence of
each single band in the segmentation, where the higher the weight of a band, the more it influences
on the objects formation. Subsequently, the classification process assigns each object to a certain
class according to its spectral and geometric properties, such as: mean and standard deviation
values of the bands and indices, texture, and hierarchal relations to the surrounding objects.
Classification can also be based on supervised Nearest Neighbor (NN) classifier, in which few

objects should be selected as samples to train the algorithm.

Before starting the object-based analysis of the Hyperion data, a variety of indices were first
generated to aid in the segmentation and classification process. To create these indices, many
combinations of the bands Blue (bands 11, 12, 13), Green (bands 18, 19, 20, 21), Red (bands 28,
29, 30), and NIR (bands 55, 56, 57, 58) were used. Here, the least noisy bands, and the best to assist

in Land cover separation, were eventually selected for the formulation of indices (see Table 6).

Table 6: Indices and weights were used for Hyperion data object segmentation

Index Index formulation Weight

NIR-Red band 56 (913 nm) — band 29 (s38 nm)

Blue-Green  band 12 (465 nm) — band 20 (s46 nm)

Red-Green  band 29 (3 nm) — band 20 (s46 nm)

B119-B133 band 119 (1336 nm) — band 133 (1477 nm)

NIR/Red  band 56 (913nm) / band 29 (638 nm)
SAVI (band 56 (913 nm) — band 29 (638 nm)) / (band 56 (913 nm) + band 29 (638 nm) +0.8) x 1.8
NDVI (band 56 (913 nm) — band 29 (638 nm)) / (band 56 (913 nm) + band 29 (638 nm))

SWIR VI (band 119 (1336 nmy — band 133 (1477 nmy) / (band 119 (1336 nm) + band 133 (1477 nm))

W W W R, R R, R R

New VI  (NDVI-SWIR_VI)/(NDVI + SWIR_VI)

The next step was to implement the segmentation and classification with the Hyperion,
following the workflow of the analysis as presented in Figure 6. To perform the segmentation of
the Hyperion data, parameter values were set as follows: scale parameter of 18, shape parameter of
0.1, and compactness of 0.6, based on try and error method. All Hyperion 157 corrected bands and

indices were used in the segmentation, where the bands 11, 33, 56, 110, and 191, as well as the
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indices NDVI, SWIR_VI, and New_VI were given each a weight of 3, while the rest of Hyperion
bands and indices were given each a weight of 1. The weight values selection was based on the

standard deviation values and the visual contrast of these bands.

Hyperion data
corrected

Segmentation

(Segmented image)

- \
—» Classify with New_VI —>\' Conifer fane
AN

Classify with
Red-Green

Cypress
A 4

Classify with SWIR_VI Pine

i

> NDVI Broadleaved

NIR-Red Cul_tlvated
fields

R NIR-Red 4><Olive groves

—» Classify with SWIR_VI > Rocks

h 4

S\

J

Bare soil

/

> Nearest Neighbor

Phrygana

—>» Classify with NDVI > DEM Alpine veg.)

not Rocks; not Bare soil {Sparse veg)

—» Classify with NIR-Red > Snow
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Figure 6: The workflow followed for the Hyperion data object-based classification in Anopoli, (see Table 7)

After the image segmentation, classification was performed based on membership functions and
the ‘NN’ classifier. Table 7 includes the values of the indices and features that were used to create
the membership functions. First, the conifer classes were successfully separated from other
vegetated land cover by using the ‘New_VI’. Then, to separate pine from cypresses, the index ‘Red-
Green’ was used, where the value of the feature in the pine class was higher than that in the cypresses

class.
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Table 7: Values of indices and features used for Hyperion data object-based classification in Anopoli, (see
Figure 6)

ID Class name Values of bands or indices used

< (0.121-0.123) New-VI and =] (0.117-0.119) Red-Green

S Cypress trees
= N (0.129-0.132) Red-Green
o § Dine trees 1 (0.124-0.126) New-Vi and =] (0.129-0.132) Red-Green
[«5]
LSL S (0.140-0.150) Red-Green
3
S = ] i a8 ] R
2 Broadieaved trees = (0.123-0.126) New-V1 and (0.108-0.110) SWIR-VI and
[&]
2 = 1(0.130-0.150) NDVI
B Ea
Cultivated fields (0.123-0.126) New-V1 and (0.108-0.110) SWIR-VI and
~1(0.2-0.201) NIR-Red
Olive groves Y (0.123-0.125) New-VI and = (0.104-0.11) SWIR-VI and
B (0.19-0.2) NIR-Red
g Rocks £ /0.095-0.1) swir-v
o . H
"g‘ Bare soil DI(O.0965—0.101) SWIR-VI %" Nearest Neighbor
Pz

Alpine vegetation T\ (0.119-0.121) NDVI and —| DEM

Ll (0.119-0.121) NDVI and “*™* not Rocks and

“*#** not Bare soil

Phrygana QI(O.097-0.115) SWIR-VIand ¥ Nearest Neighbor
Snow e (-0.02- -0.01) NIR-Red

Sparse vegetation

The classes broadleaved trees, cultivated field, and olive groves were also classified by using
the ‘New_V1I’ index. The ‘broadleaved species’ class was separated from the cultivated field and
olive grove by using the ‘NDVI’ index. Conversely, the classes cultivated field and olive grove
were distinguished by using ‘NIR-Red’ index. The classes rocks and bare soil were classified by
using the ‘SWIR_V/I’ feature, but since the bare soil class showed variable reflectance, the ‘Nearest
Neighbor’ classifier was additionally used. Moreover, the classes alpine vegetation and sparse
vegetation were classified by using the ‘NDV I, while the ‘DEM feature’ was additionally applied
in order to avoid the misclassification between the two classes. The features ‘not Rocks’ and ‘not
Bare soil’ were used with the sparse vegetation class to avoid the misclassification with the soil
and rocks land cover. The phrygana class was classified by using ‘SWIR_V1I’, however, to prevent

misclassification with the sparse vegetation and alpine vegetation classes, two samples were used
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with the ‘NN’ classifier. Finally, the snow class was easily classified by using ‘NIR-R” index, since

its value was negative for snow class.

The parameters forest cover (usually easily extracted), forest type (whose extraction is more
challenging), and the forest tree species (generally impossible to be extracted), were estimated from
the various classification results. The forest cover parameter was defined as the sum of the cypress,
pine, and broadleaved trees classes. Here, the 30 m spatial resolution of Hyperion data ensure that
any detected forest cover is in alignment with the definition of forest cover in the area. The forest
type parameter includes the coniferous type which is the sum of the cypress and pine classes, and
the deciduous type which is the same class of broadleaved trees. Alternatively, the forest tree
species parameter includes the single land cover classes of cypress and pine, in addition to the

broadleaved trees.

Accuracy assessments were next applied to the parameter results, using a probability sampling
design (Stehman and Czaplewski, 1998). The assessment was conducted via an error matrix based
on point sampling units. About 170 samples were collected in the field during the data collection
visits to the test site. In addition to that, 220 samples were obtained and their reference was
determined based on the QuickBird image interpretation. In total, 390 samples were used as

reference data to perform the accuracy assessment of each derived parameter.
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4.3.2 Results

The parameters forest cover, forest type, and tree species were derived from the land cover
classification by applying the classifiers SAM, ANN, and OBIA to the Hyperion data in Anopoli.
However, determination of tree species was not fully achieved; only the coniferous species of pine
and cypress were identified, while none of the classifiers succeeded in separating the Cretan maple
and Mediterranean oak. The parameters were extracted with varying accuracy values. Forest cover
achieved the highest accuracy, followed by the forest types, and finally the tree species achieved
the lowest accuracy (Table 8). The results were also highly dependent on the implemented
technique, for which OBIA outperformed ANN, except in the case of forest type parameter, where
ANN surpassed SAM.

Table 8: Overall accuracies of the extracted parameters in Anopoli

» Parameters  eorest cover % Forest types % Tree species %
Classifier

SAM 84 80 73
ANN 90 92 80
OBIA 95 90 87

The results of forest cover classification were significantly different depending on the method
used (Figure 7). The achieved accuracies in Table 8 show that OBIA outperformed the other
methods. When SAM was applied, an overall accuracy of 84% was achieved. Here, the forest cover
was mostly confused with cultivated fields, Phrygana, sparse vegetation, and the olive groves land
cover. The ANN achieved an overall accuracy of 90%, due to the decrease in the confusion with
cultivated fields, sparse vegetation and the olive groves, but the confusion with the Phrygana
remained high. Applying the OBIA obtained an overall accuracy of 95%, and notably reduced the
confusion between the forest cover and the other land cover classes. This shows that OBIA is the

most suitable technique for mapping the forest cover.
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Figure 7: Forest cover extracted using SAM, OBIA and ANN classification methods, and forest cover
reference samples in Anopoli

Forest type classifications showing the distribution of the coniferous and deciduous trees in the
area are presented in Figure 8. For the forest type’s distribution, SAM achieved the lowest overall
accuracy with a value of 80%, where the coniferous and deciduous classes were often mistakenly
interchanged. OBIA and ANN techniques obtained similar results, although ANN achieved the
highest accuracy and best described the density and distribution of each forest type. However,
results clearly demonstrate that the low spatial resolution of Hyperion lowered the accuracy score
even more strongly than the selected technique. High confusion was observed between the
coniferous and deciduous classes in areas of low forest density.
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Figure 8: Extracted forest types using SAM, OBIA and ANN, and forest type’s reference samples in Anopoli

The forest tree species parameter includes the mapping of the classes Cypress, Pine and

broadleaved trees, since, as previously mentioned, maple and oak could not be separated (Figure
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9). Overall accuracies illustrated in Table 8 show that OBIA outperformed ANN and SAM
techniques. The user and producer accuracies of each single class, obtained by using the three
techniques, are presented in Table 9.

Table 9: Producer and user accuracies of the single tree species in Anopoli, adapted after (Elatawneh et
al., 2012)

Used technique Accuracy Cypress Pine Broadleaved
User % 35 94 53
SAM Producer % 40 58 52
User % 71 70 79
ANN Producer % 40 74 70
User % 97 97 71
OBIA Producer % 83 68 82

The cypress class, derived using SAM technigue, achieved a low user accuracy of 35% because
of the high confusion between cypress and the non-forest classes of cultivated fields, Phrygana and
olive groves. On the other hand, the low producer accuracy of 40% for the cypress was also due to
its confusion with non-forest classes such as Phrygana and sparse vegetation. When applying the
ANN classifier, the confusion with the non-forest classes cultivated fields and olive groves was
eliminated, improving the user accuracy of the cypress to 71%. When applying OBIA, the
confusion between the cypresses with all other classes was minimized, and both its user and

producer accuracies were drastically improved.

Regarding the pine class, when the SAM technique was implemented, little confusion between
the pine and other classes occurred, and a very high user accuracy of 94% was achieved. As a result
of the pine confusion with the broadleaved classes, its producer accuracy was only 58%. When the
ANN was applied, the pine was slightly confused with the cypress and broadleaved classes, in
addition to the non-forest class of olive groves. When OBIA was applied, the confusion of other
classes with the pine dropped considerably, and a very high user accuracy of 97% was achieved.
Meanwhile, the confusion of the pine with the broadleaved classes caused low producer accuracy

to persist.
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Figure 9: Forest tree species parameter extracted using SAM, OBIA and ANN, and the tree species
reference samples in Anopoli

For the broadleaved class derived by the SAM classifier, low user and producer accuracies of
53% and 52%, respectively, were obtained, because of the confusion with the pine, cypress and the
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olive groves classes. However, when ANN was implemented, the confusion with the cypress, pine
and olive groves classes was reduced, and the accuracies of the broadleaved class were increased.
When OBIA was implemented, the confusion between the broadleaved classes and the cultivated
fields was increased, and the user accuracy again decreased to 71%. Confusion between the olive
groves, pine and cypress classes was minimized and a user accuracy of 82% was achieved for the
broadleaved class.

All in all, results show that forest cover was best mapped by applying the OBIA technique.
While forest types (coniferous and deciduous) were best separated by either OBIA or ANN
techniques, the low spatial resolution of the Hyperion data had its greatest effect on accuracy,
especially at low forest tree density. Tree species mapping success using Hyperion data was limited
since the deciduous oak and maple species could not be separated, regardless of the technique
applied to the rich Hyperion spectral data. Finally, the results of forest types and forest tree species
extracted by the pixel-based techniques (SAM and ANN) have slightly suffered from the so called
“‘salt and pepper”’ effect. Meanwhile, when OBIA was implemented, the forest types and tree

species results appeared not to be suffering from this effect.

4.3.3 Discussion

The results of the parameter extraction including forest cover, types and tree species, using the
hyperspectral Hyperion data in Anopoli, was mainly based on land cover classification, as
mentioned in section 4.3. The mapping and accuracy of the land cover classes, especially cypress,
pine and broadleaved trees by implementing SAM, ANN, and OBIA classifiers will be discussed
below.

Results show that SAM produced the lowest forest cover accuracy (84%) because of the
confusion between the forest cover, cypress class, with the non-forest classes cultivated field,
Phrygana, olive groves and sparse vegetation. One reason for this confusion was the similarity of
the reflectance of the low density non-forest classes usually found in the transition zones between
the cypress trees. Another reason was the combination of low density cypress trees with phryganic
vegetative species of the understory. These reasons, combined with the relatively low spatial
resolution of the Hyperion sensor (30 m), produced mixed pixels of similar reflectance to those of
the Phrygana land cover. These results confirm the findings of a study applying the SAM classifier
to Hyperion data in Switzerland (Eckert and Kneubdhler, 2004). Additionally, the low accuracy of
forest type (80%) was due to confusion between the cypresses with the broadleaved species,

occurring within regions of low-density deciduous trees, or transition zones where cypress and
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broadleaved trees overlapped. Furthermore, low overall accuracy of 73% was achieved for the tree
species parameter, as a result of the confusion between cypress and pine existed largely in areas
containing large cypresses, where these were confused with young pine trees given their similar
reflectance. Additionally, the confusion between the pine and broadleaved trees occurred where
the broadleaved trees are less dense or where the pine trees are very large as these trees also have
similar reflectance. This similarity in reflectance is attributed to the low radiometric resolution of
Hyperion (Pengra et al., 2007), which seems to be a challenge with any hyperspectral sensor on

board a satellite platform.

Results demonstrated that applying ANN reduced the confusion between cypress trees and the
classes cultivated field, olive groves and sparse vegetation. With this, forest cover accuracy was
improved (90%), although high rates of confusion with the phrygana persisted. The reduction in
the confusion is due to the ability of the ANN to extract the percentage of each land cover presented
within each pixel (Walsh et al., 2008). However, the percentage of Phryganic species as a
composite of the forest understory vegetation was often overestimated, leading to the
misclassification. Conversely, the confusion between the cypress trees and the broadleaved trees
was clearly reduced, which increased the accuracy of the forest type parameter (92%). The

remaining confusion between these two classes was related to low density broadleaved trees.

The ANN technique calculated the exact fractions of each class within the pixels and improved
the classification accuracy, however, OBIA achieved slightly better results than that of ANN. In
fact, both implemented pixel-based analyses, SAM and ANN, suffered greatly from the relatively
low spatial accuracy. This increased the confusion between the classes because of the similarity in
the spectral reflectance of the mixed pixel (Petropoulos et al., 2012a). The low spatial accuracy
also reduced the accuracy of the training sites, which led to the reduction of the accuracy. These
results support the findings of previous studies (Carpenter et al., 1999; Pengra et al., 2007; Pignatti
et al., 2009; Walsh et al., 2008), which applied SAM or ANN classifiers to Landsat and Hyperion
data, where the low spatial accuracy affected the end members’ accuracy. Applying SAM and ANN
also resulted in the ‘‘salt and pepper’’ effect, which can in turn lower the accuracy (Petropoulos et

al., 2012b).

Applying OBIA to the Hyperion data improved the extracted forest cover accuracy (95%) by
reducing the confusion between the cypress and non-forest classes. This is attributed to the
segmentation process occurring before the classification, which aggregates the pixels in objects
and overcomes within-class spectral variation (Wang et al., 2010), thus reducing the “salt and

pepper” effect. OBIA used additional features beyond the spectral properties of the Hyperion data
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which had a tendency to improve the classification, as recommended by studies focusing only on
spectral properties of Hyperion data (Goodenough et al., 2003; Thenkabail et al., 2004; Walsh et
al., 2008).

Despite these improvements using OBIA, confusion between pine and broadleaved trees still
occurred, which slightly decreased the forest type accuracy (90%) in comparison to ANN (92%).
Slight confusions also remained between various classes such as broadleaved and cultivated fields.
This occurred primarily in the transition zones, where many interspersed patches of various land
cover types were segmented into objects belonging to other land covers. Generally, applying OBIA
improved most of the individual classes’ accuracies, and the confusion was minimized between the
various land covers. This is because OBIA was not dependent upon the training sites exclusively,
but also upon the membership functions. It was therefore influenced by a lesser degree by the
accuracy of the training sites. However, at the periphery of the classes the results of OBIA were
still suffering from the confusion between the classes, apparently due to the low spatial resolution.
This shows that the overall success of OBIA in mapping single tree species, even using the
Hyperion 30 m spatial resolution, is coming from successive distribution of the coniferous tree

species in Anopoli.

In the end, none of the methods applied to the Hyperion data was able to separate the deciduous
tree species (including the Cretan maple and oak). This was attributed to the mixed characteristics
of the deciduous trees in the area, combined with the low spatial resolution of the Hyperion. In
summary, the low signal to noise ratio (SNR) combined with the overall low energy of the Hyperion
data. As well as, the acquisition date of 23 May 2006 (after the leaf unfolding phonological phase),
all decreased the spectral variation between the deciduous classes. The results here demonstrate the
importance of data acquisition during active phenological phases, confirming the findings of past
studies implemented Hyperion data (George et al., 2014; Pengra et al., 2007). In general, deciduous
tree species mapping is challenging, especially when using mono-temporal remote sensing data, as

discussed in a previous study (Mickelson et al., 1998).
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4.4 Parameter extraction from single multispectral RapidEye data

Methodology development led to the extraction of the parameters forest cover, forest gaps and
forest types following guidelines to ensure precision, timely computational efficiency, and
transferability to other test sites. The aim was to develop a method that can be applied to all test
sites of interest with a minimal need for adjustment. These parameters were initially extracted based
on the methods developed by Schneider et al., (2013) Publication 2 in Appendix). This method was
further developed, as will be described in section 4.4.1. It was proven that mono-temporal
RapidEye data can be sufficient to create a forest cover mask (Schneider et al., 2013). As such, a
forest mask was created from the first available RapidEye data, which was then used as a reference
for forest cover in subsequent analyses of forest types and gaps. Additionally, the reference forest
cover was used as a basis for the calculation of the changes in the forest cover as will be described
in section 4.5.1. The object-based image analysis implemented in eCognition from the company

Trimble was utilized for the extraction of these parameters.
4.4.1 Methods

4.4.1.1 Forest cover extraction

To extract the forest cover, image analysis in eCognition applied both the iterative processes of
segmentation and classification using the original band values, as well as additional indices. The
assignment of a suitable segmentation parameter for the applied "multiresolution segmentation™
based on many empirical trials. The weighting of the bands / indices considered was based on visual
analysis of the image contrast of the two classes of forest / non-forest, as well as the standard
deviation of the bands. The higher the contrast between forest and non-forest in a specific band,
the higher the weight value of that band should be. The final proposed and applied parameters for

the segmentation and classification processes are illustrated in Table 10.

After the image segmentation, a new index called Area index was developed and calculated
based on the area of the polygon enclosed between the reflectance of the red, red edge, NIR bands
and the value of the NDVI, which is depicted as the green area in Figure 10.
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Figure 10: lllustration shows the area encountered between the reflectance of the red, red edge, NIR and
the NDVI (in green color) which was calculated as the Area index

To calculate this area, the spectral reflectance was considered as a 2-dimensional plane, where
the x-axis represents the center wavelength of these bands, and the y-axis represents the reflectance

or value of these bands. Since the NDVI is an index calculated from the NIR and red bands:

NDVI = (NIR — Red) / (NIR + Red), its assumed wavelength was calculated as the average of
the red and NIR center wavelengths, specifically (652 nm + 805 nm) / 2 = 728 nm. Then the area
index (Al), or the area of the green polygon in Figure 10, was calculated based on its assigned

coordinates based on the Shoelace formula as described in the following equation:

Al = 652xpred edge—710xpred+710xpNIR—805%pred edge+805xpNDVI-728xpNIR+728%pred—652x pNDVI
= - ,

where p represent the reflectance value of the related band.

The rule set was then developed to perform classifications separating forest from non-forest
areas. In the first step, all classes belonging to the non-forest area such as water, urban areas and

infrastructure were masked using the Blue band and the Area index.

Optimization of the remaining unclassified objects of the forest class using the Area index and
the red edge band was next conducted. Following this, the classification of the classes forest and
non-forest was enhanced by using variant functions as seen in Table 10. By applying the
aforementioned steps, classification of more than 98% of the forest objects is automatically

achieved.

58



Forest parameter extraction

Table 10: The developed rule set for forest cover extraction

Process Class Rule set Function Values
Multiresolution segmentation
Parameters Scale =15/ Shape = 0.3/
Segmentation Compactness = 0.2
Blue=1/Green=7/Red=1/
Layer weight RE=9/NIR=8/NDVI=5/
Al =10
Classification (membership Mean blue ““—f] 0.18-0.28
Non-forest  function)
o
Classification Al —-' 75 - 85
Al il 80 - 85
Classification (membership
Forest function) Al L 240 - 290
RE ——-_\“ 13.5-14.5%
Non-forest Ass,lgr! class (Threshold Mean green > 0.53%
condition)
e . Assign class (Relations to .
gr:ﬁsasrzgé:;tela? Forest neighbor objects) Relative border to forest > 0.84
Non-Forest  Assign class (Geometry) Area (pixel) < 20 pixels
forest Assign Class. (Relations to Relative border to forest = 1
neighbor objects)
Forest and Manual editin Delete all the agricultural fields.
Non-forest g Include all the forest objects
Grow into all where NIR >
16.1% and relative area of forest
ol . . pixels in (3x3) > 0.5.
Forest Pixel-based object resizing Shrink using unclassified where
Border relative area of non-forest pixels
smoothing (3x3)<0.5
(Reshaping Grow into all where NIR >
object) 16.1% and relative area of forest
] ol . . pixels in (3x3) > 0.5.
Non-forest  Pixel-based object resizing Shrink using unclassified where
relative area of non-forest pixels
(3%x3)<0.5
Enhancement  Forest Merge region

Remove objects

Area (pixel) <200

However, classification enhancement is generally applied manually in order to reduce the

confusion between the forest and non-forest classes. Next, the borders of the forest mask were

smoothed using more spectral properties (NIR), and the forest mask was then unified. Due to the

sensitivity of the methods used to detect forest trees, even very small patches of forest trees were

detected and classified as forest. Therefore, all small objects which were less than 0.5 ha in area

were excluded according to the forest definition mentioned in section 4.1.

59



Forest parameter extraction

4.4.1.2 Forest types and gaps extraction

The approach was undertaken to extract forest type and gaps without stand borders, and to again
extract the forest types with stand borders. For the extraction of the forest types and gaps,
eCognition software was used, and the segmentation parameters were defined according to the
layers separability of the two classes, deciduous and coniferous. The final proposed and applied
parameters for the segmentation and classification processes are illustrated in Table 11. For the
forest type segmentation, a combination of two segmentation processes was used. The first was
Quadtree based segmentation, and the second was multiresolution segmentation. Combining
segmentation maintains desirable results while being faster than the exclusive use of

multiresolution segmentation.

After segmentation, the objects were classified as forest or non-forest using the produced forest
mask. The contrast split segmentation was then used to segment a second level, and classify the
sub-object of forest into deciduous, coniferous and gaps. The contrast split segmentation was
chosen because it combines aspects of both segmentation and classification, and it needs only two
parameters to be defined by the user (step size, image layer). This segmentation method is therefore

generally applicable to any test site or new dataset.

For the separate stand level classification, a new map (referred to as stand map) was produced
from the main map. The Quadtree based segmentation was applied to level 2 using the stand borders
to cut the classified objects of coniferous and deciduous areas into smaller fractions, in alignment
with stand borders. After that, a segmentation of a new level called stand was established over level
2 by applying multiresolution segmentation and using thematic layer stands. The created object
resembled perfectly the forest stands. Finally, the size of stand objects in the level stand were
classified based on the relative area of each forest type in the lower level. The relative area threshold
to classify stands into coniferous or deciduous was 80% or more. Thus stands with coniferous to

deciduous ratios of less than 80% were classified as mix stands.
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Table 11: The developed rule set for forest types and gaps extraction

Process Class Rule set Function  Values
Quadtree based
segmentation
Parameters Scale =100
Layer weights Blue = yes/ Green = yes/ Red = yes / RE =
Segmentation yes / NIR = yes / NDVI = yes / Al = yes
(Level 1) Multiresolution
segmentation At object level (merge only)
Parameters Scale = 60 / Shape = 0.3 / Compactness = 0.2
Layer weights Blu_e =1/Green=7/Red=1/Rededge =9
/Nir=8/NDVI=5/Al=10
Forest Assign class By thematic layer (Forest cover)
Classificati Non-forest Assign class Unclassified as non-forest
assification
(Level 1) Forest and Merge region
Non-forest
Class filter: forest
Step size: 100
Deciduous Contrast split Stepping typ.e - add
and . segmentation Image Iayer_. red Edge _
Segmentation Coniferous Class for bright o.bjects: de_c:lduous
and Class for dark objects: coniferous
<(:Il_aes\jg|;§1tlon Class filter: deciduous
Step size: 22
Gapsand  Contrast split Stepping type : add
Deciduous  segmentation Image layer : green
Class for bright objects: gaps
Class for dark objects: deciduous
Copy map

(for forest type per stand)

Copy map

Copy map from main (Stands map)

Segmentation
(level 2)

Quadtree based

; Stands map
segmentation
Parameters Scale =3
y Stands = Yes

weight

Segmentation
(Level stands)

Multiresolution
segmentation

Create above

Parameters

Scale = 50 / Shape = 0.1 / Compactness = 0.5

Layer weights

. All layers =0
Thematic layer Stands = Yes
usage
Stands Assign class By thematic layer (stands)
g:tgrr::jferous Assign class Relative area to sub-class coniferous >= 0.8
Classification Deciduous
(Level stands) stand Assign class Relative area to sub-class deciduous >= 0.8
Mixed Assign class Classified as stand
stand

61



Forest parameter extraction

4.4.1.3 Accuracy assessment

Accuracy assessment of the extracted parameters was carried out for the three test sites in
Bavaria. Sampling units were distributed systematically over grids in each test site. Based on the
area of each test site, the number of units used for the assessment was 849 in the BFNP, 618 in
Freising, and 320 in Traunsteiner Stadtwald test sites. The reference values of the samples were
assigned based on visual interpretation of the digital aerial images and field trips. Eventually, the
overall accuracies of the three forest covers in each test site were calculated (Congalton and Green,
1999). The overall accuracies of the forest types and gaps of each analyzed RapidEye data were
also calculated in each test site, taking into consideration the forest cover losses which took place
between 2009 and 2011.

4.4.2 Results

As previously mentioned (see section 4.4), for the determination of the forest cover even mono-
temporal datasets provide satisfying results. Such RapidEye data from April were used to extract
the forest cover in the Bavarian Forest National Park - BFNP test site, while, similar data from May
were used to extract the forest cover in Freising and Traunsteiner Stadtwald test sites. The accuracy
assessment of the forest cover parameters, extracted by using multispectral RapidEye data,
achieved overall accuracies of 99.1%, 94.7% and 98.1% for the test sites BFNP, Freising and
Traunstein, respectively. Also, the employed method succeeded in extracting the forest cover in
various test sites within different Bavarian growth regions. However, confusion was noticed

between the forest and non-forest land cover, primarily concerning fields in the Freising test site.

Overall accuracies of forest types and gaps extracted by each mono-temporal RapidEye dataset
in the Bavarian test sites are shown in Table 12. The results of the forest types and gaps extracted
for the three test sites are shown in Figure 11. Generally, the overall accuracies show that results
vary decidedly based on the test site. The average of the achieved overall accuracies in the BFNP
was the highest, followed by Freising, while the lowest values were found in the Traunsteiner
Stadtwald. Within the same test site, the results vary in their accuracy based on the acquisition date

of the analyzed image.

The results from most of the RapidEye data in the BFNP test site achieved overall accuracies
between 87.5% (except the 80.2% from 19 April 2011) and 91.8%. The overall accuracies of the
results in Freising were between 79.5% and 86.4%, and in Traunsteiner Stadtwald, overall
accuracies were between 62% and 69.2%. Additionally, all results were achieved by applying the
method developed here, which applied the same rule set with minimum adjustment.
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Table 12: Overall accuracies of forest types and gap classification in the three Bavarian test sites

Number Date % BFNP % Freising % Traunstein
1 17.05.2009 67.0
2 20.05.2009 84.8
3 27.07.2009 85.2
4 01.08.2009 44.8
5 07.09.2009 67.1
6 22.04.2010 80.7
7 11.05.2010 62.0
8 08.06.2010 86.2
9 21.07.2010 86.4
10 15.08.2010 84.9
11 10.10.2010 82.5
12 22.03.2011 81.5
13 07.04.2011 83.0
14 19.04.2011 80.2
15 21.04.2011 68.1
16 06.05.2011 83.0
17 10.05.2011 67.1
18 04.06.2011 82.2
19 22.06.2011 91.8 65.6
20 28.06.2011 85.1
21 10.07.2011 84.2
22 12.07.2011 91.8 66.6
23 16.07.2011 79.8
24 22.08.2011 88.9
25 23.08.2011 82.6 67.0
26 03.09.2011 83.7
27 25.09.2011 83.1
28 01.10.2011 87.5 69.2
29 06.10.2011 83.3
30 22.10.2011 814
31 23.10.2011 66.4
32 04.11.2011 79.5

Results of forest types per stand extracted for the three test sites are shown in Figure 12. The

forest stand is the smallest management unit in forest applications, and offers a reference that allows

further classification of the forest type into the third class, mixed forest. Results were delivered as

required by foresters, and they give an excellent overview about the forest stands’ tree group

structures. Regardless of the accuracy, results at the stand level of each dataset were correctly

classified.
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Figure 11: Examples of the classification results of forest cover, types and gaps using RapidEye data in the
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Figure 12: Examples of the classification results of forest stand type (coniferous, deciduous, mixed) using
RapidEye data in the Bavarian test sites
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4.4.3 Discussion

4.4.3.1 Forest cover parameter

The results of the extraction of forest cover parameter achieved by applying OBIA to
multispectral RapidEye data in Bavaria produced similar or higher accuracies than those produced
by applying OBIA to the hyperspectral Hyperion data. This demonstrates that the higher spatial
resolution of the RapidEye data can often compensate for the higher spectral resolution of the
Hyperion data concerning forest cover mapping. Furthermore, high accuracy results were achieved
in various test sites of different conditions. This was because of the method design, which was
intended to be transferable and able to identify the forest cover quickly and precisely. This was
ensured by using only the blue band, red edge band, and the area index in analysis. Here, the area
index helped with the precision of forest extraction, while using only a few bands makes the method
fast applicable and easily transferable to other test site. Only slight confusion between the forest
cover and non-forest land cover was noticed in the results. An important observation is that the
implemented OBIA method applied to high spatial resolution RapidEye data can be successfully
applied at the regional level. The potential of applying OBIA to SPOT data, similar to the
RapidEye, in order to extract forest cover has been reported (De Kok et al., 1999). The challenge
of applying optical HSR data to map forest cover at the regional level is due to the low frequency
of the data, combined with the cloud coverage (Nagendra et al., 2013). The advantages of using
RapidEye data, on the other hand, is that they can achieve the expected accurate mapping and
overcome the problem of the cloud coverage.

4.4.3.2 Forest types and gaps

The forest type and gaps parameters extracted with the use of RapidEye data from different
phenological phases in the three Bavarian test sites achieved overall accuracies ranging between
60% and 90%. Aggregated results of forest types per stand were in high agreement with the reality,

while the accuracy of the results per stand were high enough to successfully classify each stand.

The variation in the accuracies appears to be based on the location of test sites within various
growth regions, considering forest structure and the phenological phase of the vegetation. The
average overall accuracies of the results was highest in the BFNP test site, where the dominant tree
species in the forest is Norway spruce, and coniferous and deciduous forest types are typically not
mixed. However, the result from 19 April 2011 in the BFNP was of the lowest accuracy, attributed

to the low solar elevation that reduced the illumination and lowered the energy reached at the
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RapidEye sensor during data acquisition. Another factor was the snow cover beneath the tree
stands, especially at high altitudes, which disturbed the data reflectance. In the Freising test site,
the average overall accuracy of all results from various datasets was less than that in the BFNP.
This was due to the mixed forest structure in Freising, which is more diverse than that in the BFNP.
This phenomenon was also identified by (Reese et al., 2002). The results in Freising varied
minimally, with the lowest results being those collected in early spring or late autumn, and 16 July
2011 as an exception. The low accuracy of the result from November 2011 was achieved mainly
because of the low solar elevation. Meanwhile, the low accuracy of the result from March 2011
was due to low solar elevation and snow cover. The lowest accuracies were achieved in
Traunsteiner Stadtwald because of the complex forest structure, which is mixed and consists of
multi-layer stands. Such forest structure approaches the model of *‘forest of tomorrow’’, which has
been promoted by management policies of the Bavarian forest administration. Additionally, the
area of Traunsteiner Stadtwald is more mountainous than the area of Freising, which subsequently
reduced the accuracy of the results. Similar effects were reported in a study (Dorren et al., 2003)
in the Austrian Alps, which applied pixel-based and OBIA to Landsat data for forest type mapping,
and the quality of both results was reduced by the mountainous terrain. Additionally, accuracy was
decreased by the low density of the forest type, which was likely attributable to the relatively low
spatial resolution (30 m) of the Landsat data. Generally, the RapidEye sensors acquiring multi-
seasonal data and covering an expansive area lay out the conditions in which one can define the
reasons for results variation based on the date and the growth region (Borry et al., 1993; Schriever
and Congalton, 1995). Results achieved in this study slightly outperformed the results that were
reported in previous studies utilizing SPOT and Landsat multispectral sensors of similar
characteristics to the RapidEye (Holmgren and Thuresson, 1998).

The primary success was the transferability of the applied method by applying OBIA to multi-
seasonal RapidEye in various test sites. This was accomplished by maintaining the developed rule
set in OBIA as simple as possible by limiting the number of parameters. It is of interest to mention
that the method was originally developed in the Freising test site, and then was transferred to the
BFNP and Traunsteiner Stadtwald sites. Achieving higher accuracy in the BFNP than in Freising
demonstrates that applying the method to an area with less complex forest structures can provide
realistic and consistent results. The BFNP region is a typical mountainous forest with a successive
growing structure, predominated by spruce trees. The region encompassing the Freising test site is
slightly more complicated and diverse than the BFNP, as Freising is located on flat terrain and still

has many stands that are heterogeneous in tree species and age. Finally, the forest in the test site of
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Traunsteiner Stadtwald is the most inhomogeneous and is highly mixed with many uneven-aged
trees.
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4.5 Parameter extraction from multi-seasonal multispectral RapidEye
data

Applying the multi-seasonal multispectral approach with RapidEye data, the targeted
parameters extracted in the Bavarian test sites, are forest changes and forest tree species. The
object-based image analysis implemented in eCognition from the company Trimble was utilized
for the extraction of forest changes parameter in section 4.5.1. Still, the forest tree species parameter

in section 4.5.2 was extracted using pixel-based analysis.
4.5.1 Forest tree cover monitoring

45.1.1 Methods

A robust method was developed to monitor forest cover, defined for the test sites of Bavaria and
using multi-seasonal RapidEye data (Elatawneh et al., 2014, Publication 3 in Appendix). The
method aimed to monitor forest tree cover area losses by taking advantage of the high revisiting
frequency of the RapidEye system, which nominally offers data uptake opportunities every 2 to 3
days. While the intention was to detect forest losses caused by standard management activities,
special attention was given to sudden changes induced by bark beetle and storms. The high
frequency of the RapidEye data plays a key role in overcoming any possible issues with cloud

coverage, and contributes to the ‘‘fast response’” capability in case of a storm or other calamities.

The development and assessment of this method was carried out in the BFNP test site over two
time periods. The first period extended between 19 April and 22 June / 12 July 2011, and detected
losses because of either bark beetle or regular management. The second period, between 22 June /
12 July and 22 August 2011, detected the losses caused by a storm that fell on 13 July. The success
of this method in detecting sudden changes due to storm or other calamities was assessed by
comparing the results to official storm damages survey of the BFENP administration. This survey
was based on visual interpretation of the forest cover losses using stereoscopic digital aerial images
also collected on 22 August 2011.

The strategy for mapping forest cover changes is based on using newly acquired RapidEye
scenes to continuously update forest cover databases. The seasonally detected changes should
contribute to the annual update of the forest cover database, which can serve as a basis to detect
changes between two years. Based on the most recent available RapidEye data, the forest cover
database was updated and assessed for the BFNP test site in the year 2011, as well as for the

Freising and Traunstein study sites from 2009 to 2011.
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45.1.1.1 Forest tree cover monitoring and cloud problem solving

The developed method applies hybrid approach change detection to multi-seasonal data (Figure
13). In the hybrid approach to change detection, the pixel-based extraction of initial changes is

accomplished using an image-differencing technique (Singh, 1989).
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Figure 13: Methodology followed for the detection of loss in forest cover in the Bavarian test sites

One must be cautious with these initial changes, as many of the differences detected are not real
changes in forest cover, but instead may be attributed to non-uniformly reflecting land cover types
(e.g. water bodies); weather conditions, such as clouds or dense fog; or seasonal changes caused
by plant phenology. These differences, which do not correspond to real forest changes, were

excluded using the object-based technique.
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In the object-based paradigm, the initial changes detected using pixel-based methods were used
as a thematic layer on which a multiresolution image segmentation process was then performed.
Following this, objects were initially classified as “change” based on the thematic layer
representing initial changes. The results were then refined, based on the criteria outlined in Table
13, in order to identify the areas where forest cover was lost. Many spectral features (e.g. Blue /
Green ratio, Brightness, NDVI) were calculated for each segment on each band for each of the
multi-seasonal images separately, to refine the results using carefully selected criteria (see Table
13). More details about this method and the used parameters are made available in (Elatawneh et
al., 2014, Publication 3 in Appendix).

Table 13: Criteria based on indices used for the extraction of forest cover loss in Bavaria

Period
N Stage 1- Stage 2

Blue / Green ratio (stage 1)
Forest present during stage 1 Brightness (stage 1)
NDVI (stage 1)
Blue / Green ratio (stage 2)
NDVI (stage 2)
Blue / Green ratio (before stage 1)
Brightness (before stage 1)
NDVI (before stage 1)
(In case of cloud present during stage 2) Blue / Green ratio (after stage 2)
Forest absent after stage 2 NDVI (after stage 2)

Forest absent during stage 2

(In case of cloud present during stage 1)
Forest present before stage 1

The first criterion excluded the changes that occurred outside the forest area, such as relating to
water bodies or agricultural fields. Criterion number two examined whether the areas where the
initial changes occurred were in fact still forested in the second stage. If this was found to be the
case, these changes were excluded from the forest change category and instead attributed to

seasonal changes due to forest plant phenology.

Where clouds were present in either stage, criterion number three applied stored RapidEye data
from before stage 1, while criterion number four used sequential RapidEye data from after stage 2
to compensate for the criterion number one and two, respectively. With this, the cloud problem was
nearly overcome, except that the data from after stage 2 were still cloudy. In this case, the final
decision regarding forest changes will be postponed until the next sequential data collections are
made available.

4.5.1.1.2 Investigating the success of RapidEye data in the case of the storm in the BFNP

Investigation of the RapidEye approach success was based on comparison between the

RapidEye data and the aerial images results, and included three aspects: the ‘‘fast response’’, the
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precision to detect the lost forest tree cover, and the costs. First, the fast response comparison
investigated the time needed after the storm to deliver mapping results about the forest tree area
losses. Second, the mapping ability outlines and analyzes the similarities and the differences
between the results from the RapidEye data analysis and the aerial images interpretation until 22
August 2011. Third, to compare costs associated with the two methods, three types of cost
determinants were included in the calculation: the cost of the raw data, the cost of the data
preprocessing and cost of data processing. To calculate the cost of the raw data, only data from the
stage 2 were included, because it was assumed that reference data would already be available. Four
RapidEye scenes are enough to cover the test site, while an additional four RapidEye tiles are
necessary to overcome the problem of the clouds, the required total of eight RapidEye images were
ordered at a cost of € 593 each (€ 4,744 in total). In comparison, one thousand aerial images are
necessary to cover the same area, at a cost of € 18 per image (€ 18,000 in total). The calculation of
the cost of data preprocessing and analysis was based on the cost per hour needed to accomplish
these tasks. Data preprocessing consisted of Geometric corrections and the atmospheric correction
of RapidEye data. The analysis of the data included the application of the developed method to the
RapidEye data, and the manual delineation of the changes from the aerial images. The hourly rate
was assigned to thirty five Euros / hour (€35 / h), according to the average wages outlined in the
2011 German payment scheme for workers with the relevant necessary skills.

45.1.1.3 Accuracy assessment

Assessment of the change detection performance was conducted via an error matrix in all
Bavarian test sites. Sampling unit polygons were used instead of pixels, given that pixels tend to
underestimate the accuracy of object-based results (Biging et al., 1998). Each polygon was of 60
m in diameter, and were distributed systematically over the test site. This size of the polygon was
based on the average size of the objects formed during the change detection process. The reference
values (change / no change) for these sampling units were assigned based on visual interpretation
of the RapidEye data and the aerial images. If any changes were detected within the sampling unit
polygon, it was assigned as change in the reference sample. The agreement between the results and
the reference values were then assessed for each polygon. The polygons were distributed over the
same grids used for the assessment of forest cover, type and gaps parameters (see section 4.4.1.3).
In total, 849 polygons in the BFNP, 618 polygons in Freising, and 320 polygons in Traunstein test
sites were used for the assessment. Out of this process yielded the users’, producers’, and overall

accuracies, along with the kappa coefficient (Congalton and Green, 1999; Foody, 2002).
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45.1.2 Results

As described in section 4.5.1.1, the strategy of monitoring changes in tree covered areas within
the forest cover relies on the high revisiting frequency of the RapidEye system. The following
sections present results gained with the developed workflow for forest cover monitoring
(section 4.5.1.2.1) and by applying the method to overcome the problems with scattered clouds in
such a monitoring context (section 4.5.1.2.2). The outcome of the workflow is a “change” layer for
the respective year which has been proposed to be used for updating the forest databases. The
success of a “fast response” case, here as the storm throw from 13 / 14 of July 2011 in the BFNP,
Is compared against the standard procedure of the BFNP administration. This standard procedure
is based on digital aerial images that were taken after that event in order to map the damages and
update the forest data base (section 4.5.1.2.3). The aforementioned examples are from the BFNP

study site. Section 4.5.1.2.4 summarizes the results for all investigated three Bavarian test sites.

45.1.2.1 Forest trees cover monitoring

Results of the developed method for forest tree cover loss detection carried out in the BFNP
during the first period - from 19 April to (22 June / 12 July) - are presented in Figure 14. The results
of forest cover loss during the second period - from (22 June / 12 July) to 22 August - are presented
in Figure 15. Results of lost forest cover are shown as polygons on top of the RapidEye images. As
can be detected in Figure 14, the areas within the polygons appear brighter in the June / July image
than they do in the April image due to the loss of forest tree cover. Similar results can be seen in
Figure 15, as the areas within the polygons are brighter in the August image than in the June / July
image. Both results depict accurate mapping of the losses during the first and second period.
Analysis reveals that about 157 ha of forest cover were lost during the first period, most of which
because of management against the bark beetle, as was made clear from the official results of the
BFNP administration. During the second period, about 235 ha of forest cover were lost, which was

attributed to the storm that occurred on 13 July.
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Figure 14: Example of some forest cover losses during the first period from 19 April to 22 June in the year
2011 in the BFNP (Elatawneh et al., 2014)
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igure 15: xample of some forest cover losses during the second period
in the BFNP (Elatawneh et al., 2014)

Additionally, Figure 16 shows the results from the analysis of the last available RapidEye image
from 01 October, which contributed to the final update in the year 2011. Similar to the previous
results, the areas within these polygons, which represent the forest cover losses, become brighter
in the 01 October image compared to those in the August image. The estimated forest cover loss
during the period from 22 August to 01 October was about 16 ha. In total, about 408 ha of forest

cover were lost within the BFNP test site during the year 2011.
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45.1.2.2 Solving the problem of cloud cover

The problem of cloud presence, the most challenging problem when using optical remote
sensing data for forest monitoring, was bypassed. Figure 17 shows an example from the BFNP
illustrating how the developed method used subsequent RapidEye data to overcome the problem

of scattered clouds.
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[ Initial changes due to clouds or lost forest Excluded changes due to clouds
1 Result of the lost forst cover

Figure 17: The initial analysis of the changes between one image from 22 June / 12 July (Left) and a second
image from 22 August (middle) show changes that were actually caused by either clouds or lost forest.
Subsequent data from the image collected on 1 October (right) allowed for the exclusion of those changes
due to clouds and kept the final results showing the actual losses in forest cover, by implementing the criteria
described in Table 13. The numbers 1, 2, and 4 represent the areas excluded using the first, second and
fourth criterion, respectively (Elatawneh et al., 2014)

Figure 17 (left and middle) illustrates the initial changes detected in the period from 22 June 2011
/12 July 12 to 22 August. Figure 17 (right) illustrates the final results of “forest loss™ as well as the
changes that were excluded after refinement by application of the criteria outlined in Table 13. During

the refining of the initial changes, the first criterion excluded objects which were not identified as
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forest on 22 June, while the second criterion excluded the objects which were still forest on 22
August. Because of cloud presence during the second period on 22 August, the fourth criterion
used data from the images collected on 01 October to exclude objects which were still forest. Thus,
only changes which represent actual loss of forest cover remained as illustrated in Figure 17 (right).
Finally, the forest cover detected at the end of the vegetation period (01 October) contributed to
the annual update of the forest database.

4.5.1.2.3 The success of the RapidEye approach in the BFNP

As described in section 4.5.1.1.2, comparisons between the RapidEye and aerial image results
were based on three aspects: the ‘‘fast response’’, precision of forest tree loss detection, and the
costs. Regarding the “‘fast response’’ aspect, after the storm event on 13 / 14 July 2011, the first
opportunity to collect RapidEye data was on 22 August 2011 due to cloud coverage and weather
conditions. Coincidently, the annual campaign of the aerial images also fell on 22 August 2011.
Results of forest tree losses using the RapidEye data were delivered about two weeks later, at the
beginning of September 2011, while the results obtained by interpreting aerial images were
delivered about eleven weeks later, at the end of November 2011. In fact, the aerial images
campaign including images acquisition, preprocessing and manual interpretation is typically a

time-consuming process.

Regarding the detection of forest tree losses, the comparison of the results between RapidEye
data analysis and aerial images interpretation, until 22 August, are presented in Figure 18. Based
on the analysis, 361 ha of forest loss were mapped identically in both results, indicating very high
agreement between both methods. However, there remain many differences between the two
outcomes, especially at the edges and within the mapped lost forest. The differences between the
two results were separated into two groups. First, the forest losses detected only using RapidEye
(31 ha, or 8% of all losses), and second, forest losses detected only using aerial images (12 ha, or
3% of all losses). The exploration of the losses detected solely by RapidEye data show that these
were actual losses in forest cover induced by either forest management or storm. On the other hand,
some of the losses detected solely by aerial images were not actual forest cover losses, at least not
during the period from 19 April to 22 August. Reasons and explanations of the differences of the

losses are analyzed in section 4.5.1.3 of the discussion.

Finally, the cost comparison between applying RapidEye data and the manual interpretation of
aerial images are presented in Table 14. The total cost of utilizing RapidEye data was about € 5,660,

and the cost of the visual interpretation of the aerial images was about € 22,200. The cost of the
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RapidEye data analysis was therefore only one fourth of the cost of the manual interpretation of

the aerial images.
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Figure 18: Example comparing the results of forest covers loss, until 22 August, when RapidEye data was
used with the official results of forest cover losses from aerial images interpretation. The upper two images
show the results in hollow polygons, and the lower image shows the results in solid polygons
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Table 14: Cost comparison of forest losses using RapidEye data analysis and aerial images interpretation
in BENP

Category RapidEye (Euros) Aerial images (Euros)

Raw data (8 images x €593) = 4,750 (1,000 images x €18) = 18,000
Preprocessing (10 WH x €35) =350 (40 WH x €35) = 1,400

Data analysis (16 WH x €35) =560 (80 WH x €35)= 2,800

Total 5,660 22,200
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4.5.1.2.4 Accuracy assessment of forest monitoring in all Bavarian test sites

Results of forest cover lost during the year 2011 in the BFNP, and during the period from 2009
to 2011in the Freising and Traunstein test sites, are presented in Figure 19. The results in Table 15
present the area of the forest cover losses in hectare (ha) in these test sites. As can be seen, the
losses of the forest cover during the year 2011 in the BFNP greatly exceeded those in Freising and
Traunstein. About 4% of the forest cover in the BFNP test site were lost only during the year 2011,
while about 0.8% and 1.2% of the forest cover in Freising and Traunsteiner Stadtwald test sites,

respectively, were lost over three years (from 2009 to 2011).

No forest cover loss results were available in the BFNP before 2011 due to the lack of proper
RapidEye data for the analysis. However, based on the official results from the BFNP
administration, during the year 2010 (until 22 August) about 360 ha of forest cover were lost
because of management against the bark beetle and the storm. The amount and the percentage of
the forest cover losses in the BFNP were much higher than that in Freising and Traunsteiner
Stadtwald. Still, annual results from Freising and Traunstein reveal continuous forest cover losses.

Table 15: Calculated forest loss in hectare (ha) and as a percentage of the forested area, by data and
method utilized, in the three Bavarian test sites

Period BENP Freising Traunstein
2009 - 0.00 1.54
2009 - 2010 - 4.40
2010 -- 1.88 1.22
2010 — 2011 - 2.02
2011 408 9.34 0.24
Total losses ( ha) 408 17.64 3
Total losses (%) 4% 0.8% 1.2%
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The accuracy assessments of the forest cover loss results in the Bavarian test sites are presented

in Table 16. Achieved overall accuracies were between 96.7% and 99.1%, which indicates that the
RapidEye data and the method utilized here returned high accuracies for forest cover losses
detection. In terms of the user and producer accuracies, similar patterns were observed in the three
test sites.

Table 16: Overall user and producer accuracies and kappa values of forest loss results in the Bavarian test
sites

Accuracies BFENP Freising Traunstein
User % 87.4 89.3 81.8

Producer % 88.9 96.2 90.0

Overall % 96.7 98.7 99.1
Kappa 0.86 0.92 0.85

The user accuracies in the test sites ranged between 81.8% and 89.3%, while the producer
accuracies ranged from 88.9% to 96.2%, indicating the overall success of the implemented method.
Still, a few areas were mistakenly identified as losses when no actual loss had occurred, and some

legitimate losses were not detected.
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4.5.1.3 Discussion

Applying the developed method to multi-seasonal RapidEye data in order to detect forest cover
losses in the Bavarian test sites achieved overall accuracies ranging between 96% and 99%. As
seen in Table 15, the results included slight changes that took place between two sequential
RapidEye data acquisitions, and succeeded in detecting changes that were caused by either sudden
changes or standard management practices. The method contributed to the “fast response’”’ strategy

and also succeeded in overcoming the problem of clouds.

The fast response was the primary success derived by this method, which implemented the
multi-seasonal RapidEye data within two weeks of the storm event, in comparison to the aerial
image interpretation, which took place eleven weeks later. A fast response such as this contributes
to the prevention of the following biotic calamities triggered by such a storm, and presents the
possibility of more promptly introducing precautionary measures, which is often more important
than the pure cost factor.

The developed method was transferred to various test sites of different topography and
vegetation regions, and successfully updated the forest information layer with each successive
RapidEye dataset. At the end of the year, the status of the forest database is updated, and, once
implemented, can be used for analysis of the annual changes. At the Freising and Traunsteiner
Stadtwald test sites, the continuous update process based on RapidEye data clearly reveals the
continuous forest cover loss over the year. Most losses can be attributed to management activities
including clearing following light storms, ice breaks, insect damages, etc. that took place from 2009
to 2011.

Results achieved here were generally consistent with the results of previous studies integrating
object-based image analysis (OBIA) in approaches detecting changes in forest cover. Those studies
applied OBIA to Landsat data (McDermid et al., 2003; McDermid et al., 2008), SPOT data
(Desclée et al., 2006) and a combination of SPOT and aerial images (Willhauck et al., 2000) for
forest change detection, reporting overall accuracies between 84% and 94%. However, these
studies have neither focused on sudden changes nor dealt with the problems presented by clouds.
To bypass the problem of cloud cover, these studies advocate collecting and analyzing optical data
more frequently. Other studies demonstrated the use of data from the active satellite systems, e.g.
TerraSAR-X, to overcome the problem of clouds (Rappl et al., 2012; Thiele et al., 2012). However,
the high cost and the small coverage of the active systems limit their implementation in the

operational forest loss detection. Here, the results of the multi-seasonal RapidEye data offered an
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alternative and operational solution to overcome the problem of the clouds. Such a problem
prevented the development of an operational method in a study in central Africa (Duveiller et al.,
2008).

In addition to findings regarding faster response rates, a comparison between the results of the
multi-seasonal RapidEye data analysis and the annual aerial images in the BFNP are also presented,
though each method falls into different frame conditions. The method followed uses the RapidEye
data analysis based on continuous forest observations, and the integration of each RapidEye dataset
that is made available. Meanwhile, the method involving visual interpretation of the stereoscopic
digital aerial images requires a special campaign which takes place once a year. The results from
RapidEye data provided a continuous monitoring over three time periods in the year 2011. These
detections were taken with increasing frequency as the forest change event approached, allowing
for a better understanding of the factors that caused the changes in the forest cover. For example,
during the first and third periods, about 157 ha and 16 ha, respectively, were lost within a period
of about a month. These losses in the BFNP were caused solely by regular management against the
bark beetles, which reveals the catastrophic sequences of the calamity. The concept of digital aerial
image interpretation was developed by experts who estimate the cause of changes based either on
the fallen trees or by comparison with the results from previous years. However, annual digital
aerial images are available only for the BFNP, while only triennial aerial images are available for

the rest of Bavaria, which presents a challenge in defining the causes of change.

When comparing the BFNP RapidEye data results and the digital aerial images interpretation,
few differences stood out. Those differences recorded were attributed to manual digitization, in
which the user will naturally delineate smooth borders rather than zigzag. Hence, the shape of the
objects that represent changes will be estimated rather than exactly delineated. Previous studies
(Heurich et al., 2010; Kautz et al., 2011) have discussed the consequences of manual digitizing,
explaining that users tend to overestimate the magnitude of fallen trees. Moreover, results show
that 8% of the object losses were detected solely using the RapidEye method, and only a few of
these objects were mistakenly identified as losses. These errors were due to phenological
differences from leaf-off to leaf-on, especially in the first period within deciduous stands, as this
change increased the spectral reflectance of the red edge band. As a mark of its success, only 3%
of the total losses were not detected by the RapidEye data. The lost objects were small, and were
usually surrounded by healthy coniferous stands, deciduous stands, or laid within a shadow. It was
therefore difficult to detect these objects by using the spectral information alone. Further to this,

many of these losses were detectable only at the center of the damage, meanwhile detection of the
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losses at the periphery was difficult. This can be explained by the complex structure of the forest
and the shade at the periphery, as previously reported (Carvalho et al., 2001). Finally, though the
results of the RapidEye data were not intended to entirely compensate for the results of the aerial
images, RapidEye results achieved 97% of the results of aerial images. Furthermore, the cost of the

RapidEye analysis was only 25% of the cost of the aerial image interpretation.
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4.5.2 Forest tree species

45.2.1 Methods

The approach taken to identify forest tree species applied the use of 20 multi-seasonal RapidEye
datasets, an approach developed in the Freising test site (Elatawneh et al., 2013, Publication 4 in
Appendix). The approach was based on the “phenological fingerprint” concept, accounting for the
long rotation period of forests which extends from 60 to 250 years. It was assumed that
accumulating information over successive years would not corrupt the result, but would instead
increase the reliability of the outcomes. The 20 analyzed datasets were acquired over three
vegetation periods from the years 2009 to 2011, in order to identify 7 tree species. The primary
research question was focused on tree species identification, with additional research questions
pertaining to economic issues. Recall the investigated research questions, mentioned previously in
section 1.2, as:

e How many datasets from various phenological phases are needed to obtain the most accurate

results?
e How does using additional bands or indices influence tree species identification?
e s there a phenological phase with high potential for identifying a specific tree species?
e Which phenological phase is the most promising to identify all tree species?

The workflow comprises first section 4.5.2.1.1, which includes the preparation of the
phenological fingerprint — achieved by combining the phenological phases’ attributes with the
RapidEye dataset acquisition. Next, section 4.5.2.1.2 includes the cross validation method used for
classification and validation of the RapidEye data. Finally, section 4.5.2.1.3 provides an overview
of the strategy that was followed to analyze the RapidEye data in order in pursuit of answers to the

aforementioned research questions.
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45.2.1.1 Forest phenological fingerprint and RapidEye data acquisition

The phenological fingerprint principle is based on the spectral reflectance variation between tree
species caused by the phenological phases timing, which will increase the separability among the
tree species. The box plot in Figure 20 shows the phenological phases in the Freising test site,
arranged in chronological ordered based on all phenological observations ranging from time

periods of 3 to 51 years (see also Table 4).

Julian day
60 100 140 180 220 260 300 340

Larch flowering begins —{1F—
Larch needle unfolding begins —
Maple flowering begins —1—
Oak Leaf unfolding begins —
Beech leaf unfolding begins —{
Spruce May Shoot —
Spruce flowering begins {1
Oak flowering begins —
Pine May Shoot —
Pine flowering begins —A+—
Oak lammas growth —

Phenological phase

Oak autumn coloring

—

Beech autumn coloring —

Larch autumn coloring —
Beech leaf fall I

Oak leaf fall —A

Larch needle fall —1+

Figure 20: Box plot showing the phenological phases’ occurrence by the day of the year (Julian day) of the
forest tree species at the Dirnast phenological station in Freising forest, based on all available observations
(see Table 4)

These historical phenological observations show that the phases’ leaf / needle unfolding, May
shooting and flowering usually occurred in the period from 100 to 140 of the Julian day (from early
to late spring). Larch needles were observed to have a tendency to unfold first, followed by the oak
about three weeks later, while the beech tends to unfold concurrently with the oak or a few days
later. Although maple unfolding was not observed at the test site, maple tends to unfold together
with the beech, around the end of April or the beginning of May (Schtt, 2006). This phenological
state can therefore serve as an excellent indicator for separating larch, oak, beech and maple. For
the coniferous species, the spruce May shoot tends to occur a week before the pine May shoot,

similarly, spruce flowering tends to happen a week earlier than pine flowering. Uniquely, the oak
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lammas growth, a second leaf unfolding, appears in early summer from mid-June until mid-July.

This property can increase the chance of separating oak from other species.

Autumn coloring and leaf fall usually occurred in the period from 280 to 310 Julian day, or from
mid- to late-autumn. Again, shifts in autumn coloring between oak, beech and larch can be very
helpful tools in improving mapping. Based on personal observations, maple autumn coloring tends
to take place first, followed by oak about two weeks later. While beech autumn coloring starts at
the same time as oak or a few days later, and the larch about a week or two weeks later. With the
passing of two more weeks, the oak and beech leaf fall begins, and the larch tends to starts losing
its needles. All in all, the differences of phenological timing will result in variation in the
pigmentation of the leaves between the various tree species, which can play an important role in

supporting the phenological fingerprint concept.

These phenological observations can, however, shift from one year to another. To address this
potential shift, observations from the individual years 2009, 2010, and 2011 where combined with
the RapidEye data acquisition to better clarify the overlap between the phenology and the RapidEye
data acquisition, (as seen in Figure 25 in page 94). Some of the phenological observations were not
available for the years 2009, 2010 and 2011, including those for the larch, spruce and oak time of
initial flowering, and the oak lammas growth. The chronological order of the single phenological
phases was not found to change in these three years, except for the beech autumn coloring which
tended to occur two weeks before oak autumn coloring in 2011. Such a shift in the beech autumn
coloring is expected to improve the mapping of this species. Although twenty RapidEye datasets
were available for this study, not all observations were acquired during the peak of the phenological
phases. This is significant as the images acquired during the peak of the phenological phases are

expected to achieve the best classification results.
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4.5.2.1.2 Classification and validation using the cross validation method

Identifying tree species, the primary goal, was carried out using image classification. A
successful classification requires a well-defined classification scheme and proper samples.
Therefore, the selection of the tree species samples was supported by the inventory data and our
field visits (Table 17). The sample selection was restricted to the brightest pixels of a collection of

homogeneous pixels, which were identified to belong to pure tree species.

Table 17: Tree species identified in the Freising test site

ID Tree Species Binomial name Species percent  # of samples

1 Norway spruce Picea abies (L.) 73% 212

2  Douglas fir Pseudotsuga menziesii (M.F.) 2% 32

3 Scots pine Pinus sylvestris (L.) 4% 34

o S Largeddie (L) a
European beech Fagus sylvatica 5% 153

6  European oak Quercus petraea (Mattuschka) 3% 38

7  Sycamore maple Acer pseudoplatanus 2% 36

The method of samples selection was adapted from previous studies, in which training samples
were selected solely from sunlit crown areas, in order to select the spectra of tree species from very
high spatial resolution data (Immitzer et al., 2012; Korpela et al., 2011). Sample selection within
bright pixels can reduce the illumination variances among the same tree species that were caused
by the shadow effect from the surroundings and the topography. To further minimize this effect,
the Spectral Angle Mapper (SAM) was implemented to perform the classification, as it is less
sensitive to illumination effects than other methods (Eckert and Kneubihler, 2004). Due to the
absence of recent inventory data, the samples were used for training and validation by applying 10-
fold Cross validation technique (Geisser, 1975; Stone, 1974; Waser et al., 2014). The 10-fold Cross
validation partitioned the samples into 10 subsets, using each subset in turn as training samples for
the classification, and the remaining data as validation points. The process was repeated 10 times,

with the 10 results being combined to produce one validation result.

4.5.2.1.3 RapidEye data analysis strategy for tree species identification

The strategy of the RapidEye data analysis included two main aspects: the classification of each
single dataset, and the classification of various combinations of the datasets. Investigation of the

most promising phenological phases for tree species identification, and the potential of each
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phenological phase to identify a specific tree species were based on the accuracy of the single
dataset classification. The higher the achieved overall accuracy of a dataset acquired in a specific
phenological phase, the more promising this phase for tree species identification. Similarly, the
higher the user and producer accuracies of a specific tree species from data acquired in a
phenological phase, the greater the potential this phase holds in identifying this specific tree

species.

In order to investigate the number of dataset combinations that achieve the most accurate tree
species identification, 20 RapidEye combinations were established from the RapidEye dataset.
First, the result accuracy for each of the 20 RapidEye datasets was evaluated, and then 20 data
combinations were established by choosing the best single-, two-, three-data, etc., until twenty-data
combination. Each combination was established by stacking up all bands from the combined
RapidEye data. After that, each combination of data was classified, and the results were assessed.
The method also investigated the potential of using the newly introduced red edge band to improve
the accuracy of tree species identification. Here, the same procedure and image combinations were
implemented, but with the absence of the red edge band. Moreover, the influence of adding indices

to the original dataset was investigated by applying the same procedure once more.

Additional indices beyond the NDVI index were developed and utilized, which was expected to
emphasize the differences among the spectral reflectance of the tree species, due to the fact that the
reflectance is often similar in many, but not all, bands. For this, slope difference indices were

developed, as in Figure 21, because they represent the ratio of reflectance between the bands.
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Figure 21: lllustration of the slope difference indices developed in this study

The developed slope indices are also expected to be less influenced by illumination variations,
thus enhancing the species differentiation. Those indices were generated by calculating the
difference in the slopes as shown in the following equations:

(p Green — p Blue) (p Red — p Green)
(A Green — A Blue) (A Red — A Green)

Slope difference 1 =

(p Red edge — p Red) ) (p Red — p Green)

1 iff 2= -
Slope difference (. Red edge — A Red) (A Red — A Green)

(p NIR — p Red edge) 0.5 (p Red edge — p Red)
(ONIR— ARededge) =~ (LRededge— ARed)

Slope difference 3 =

Where, the p represents the reflectance and the A represent the central wavelength of the
corresponding band. The indices were then enhanced by duplicating their values as illustrated in
the equations. It is important to mention that these slope difference indices can be highly dependent

on the quality of the radiometric correction.
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45.2.2 Results

4.5.2.2.1 Results of single and combined use of RapidEye data

Results of single and combined RapidEye dataset classifications for tree species identification
are presented in Table 18 and Figure 22. The results show that the increase in the amount of data
used in the analysis increases the overall accuracy. However, the increase in the accuracy quickly
improves at the beginning, then continues to improve at a decreasing rate. As Table 18
demonstrates, when the original bands and indices were used, one dataset achieved an overall
accuracy of 72.8%, while seven dataset combinations achieved an accuracy of 84.0%, for an
improved overall accuracy of about 11%. Using twenty dataset combinations achieved an overall
accuracy of 86.3%, which shows that using thirteen additional datasets improves the overall
accuracy by only about 2%.

Table 18: Overall accuracy of tree species identification with single and combined use of RapidEye data
from different dates (see Figure 22)

% - Overall (image combinations) accuracy
E K Overall %

“é Image dates S Season (zzijfggj)

Q = Original - Original
Eé S % bands 3vithout Original bangds +
= bands -

2 red edge indices
1 16.07.2011 197  Mid-summer 67.1 63.9 67.1 72.8
2 22042010 112  Early spring 63.2 73.0 73.7 77.3
3 04.06.2011 155 Early summer 59.7 77.3 77.6 80.1
4 07.04.2011 97 Early spring 59.7 78.8 78.7 81.4
5 10.07.2011 191  Mid-summer 59.1 78.6 79.4 82.4
6 27.07.2009 208 Mid-summer 58.7 78.9 81.3 83.2

7 22032011 81 Early spring 57.6 82.0 82.6 84.0
8 20.05.2009 140 Late spring 57.1 81.1 81.9 84.2
9 28.06.2011 179  Mid-summer 56.0 81.0 82.4 84.6
10 08.06.2010 159 Early summer 54.8 82.0 83.3 85.1
11 21.07.2010 202  Mid-summer 54.6 82.2 83.0 85.1
12 04.11.2011 308 Mid-autumn 53.8 83.5 83.9 85.9
13 22.10.2011 295  Mid-autumn 53.3 82.7 83.7 85.9
14 06.05.2011 126 Late spring 50.6 82.4 83.5 85.6
15 15.08.2010 227  Late summer 48.7 82.3 83.6 85.5
16 10.10.2010 283  early autumn 48.2 82.8 83.7 86.1
17 25.09.2011 268  early autumn 46.5 83.4 84.4 86.4
18 23.08.2011 235 Late summer 44.6 83.1 84.2 86.2
19 06.10.2011 279  early autumn 40.7 83.5 84.4 86.3
20 03.09.2011 246  Late summer 39.2 83.3 84.3 86.3

88



Forest parameter extraction

Similar results were also achieved when the original bands were used in the analysis, and also

when the original bands (without the red edge band) were used. Nonetheless, it is not only the

number of classified dataset that matters, but also the acquisition seasons of these datasets, as will

be shown in the sections 4.5.2.2.2 and 4.5.2.2.3.
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Figure 22: Overall accuracy of RapidEye data combination (see Table 18)

This investigation shows that the red edge has only a slight influence on the results, and the

average improvement in the overall accuracy when the red edge band was used, was about 1%.

Investigation of the influence of the utilized indices on the accuracy clearly demonstrates that

indices improved the overall accuracy by about 4% when few combinations were used. Meanwhile,

the average value of the improvement achieved by using the indices in the classification was about

2%.

For the investigation of the influences of the red edge band and the indices on the accuracy, it is

interesting to review false-colored composite images from three multi-seasonal dates by using these

indices and the red edge band presented in Figure 23. The images show high similarity among tree

species in the forest, and very high dissimilarity among the crops in the surrounding fields.
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Figure 23: False-colored composite imaes from three multi-seasonal dts 07 April, 23 August and 06
October 2011, by using a) red edge bands, b) NDVIs and c) slope difference 3 indices. They show very high
dissimilarity between the crops more than that between the tree species in the forest

The map in Figure 24 shows the distribution of the tree species identified in the Freising test
site, using the best 17 data combinations. According to the field visits and the forest management
maps from the forest administration in Bavaria, the results in the map describe very well the spatial
distribution of the tree species in the forest. Generally, the map of tree species distribution was also
similar to those from the latest inventory records from 2001, especially in the parts of the forest
where no dramatic changes took palace. Unfortunately, no inventory data has been collected since
2001, and therefore it was not sensible to perform the accuracy assessment using the old inventory

record.
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Figure 24: Map of tree species distribution using 17 RapidEye data combination in the Freising test site

Based on the accuracy assessment from the cross-validation procedure, Table 19 presents the

confusion matrix of the result utilizing the best 17 data combinations.

Table 19: Confusion matrix of the result of the cross validation analysis of the best 17 data combinations
(original bands + Indices)

Reference data

. User
Class. Spruce Douglas Pine Larch Oak Beech Maple Sum Acc. %
Spruce 1899 9 0 0 0 0 0 1908 99.5

Douglas 46 229 0 0 0 19 0 294 77.9

Pine 2 12 1033 53 37 18 15 1170 88.3
Larch 3 1 56 223 17 37 12 349 63.9
Oak 20 2 55 41 203 2 19 342 59.4
Beech 28 9 16 7 3 450 0 513 87.7
Maple 11 3 76 22 16 4 206 338 61.0
Sum 2009 265 1236 346 276 530 252 4914
Prod. Overall
Acc. % 94.5 86.4 83.6 64.5 73.6 84.9 81.8 Acc. % 86.4

The user accuracy for the individual classes ranges from 59% to 99%, while the producer
accuracy for the individual classes ranges from 64% to 94%. As can be seen, the individual
accuracies for the classes spruce, Douglas fir, pine, beech and maple increased when the number
of the analyzed RapidEye data increased. On the contrary, individual accuracies of larch and oak
decreased when the multi-seasonal data were analyzed. There was also confusion between larch
and oak, which was noticed in most of the results of the various data combinations. Although pine
tree species determination was improved, there was still confusion between the pine with the larch,

oak and maple classes, as presented in the results.
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4.5.2.2.2 Potential phenological phases for specific tree species identification

Results of using the potential phenological phase to identify specific tree species based on the
user and producer accuracy of each tree species RapidEye dataset are presented in Table 20. The
user accuracies represent the percentage of tree species that were correctly identified and separated
on a produced map. The producer accuracies represent the percentage of tree species on the ground
that were correctly identified. Therefore, the higher the values of both user and producer accuracy
of a specific tree species, the better the separability of this tree species from other species.

Table 20: Overall user (u) and producer (p) accuracy of each tree species using single RapidEye data. The
highest (and close to the highest) accuracies of each tree species are shaded

Spruce  Douglas Pine Larch Oak Beech Maple
date u p u p u p u p u p u p u p
16.07.2011 83 79 37 35 60 56 44 61 83 79 32 31 31 44
22.042010 8 79 31 26 43 53 70 73 40 41 61 58 22 27
04.06.2011 76 75 42 37 54 48 58 58 23 31 58 59 47 51
07.042011 77 76 18 17 74 68 55 51 42 45 16 19 37 47
10.07.2011 76 77 33 34 41 40 68 67 30 32 52 46 34 41
27.07.2009 74 75 41 39 39 39 63 59 59 60 22 22 48 53
22.03.2011 73 75 37 37 62 59 22 28 58 57 45 38 41 42
20.05.2009 73 73 25 29 67 56 53 52 53 56 37 37 16 21
28.06.2011 69 72 24 20 56 52 39 41 48 49 58 56 41 47
08.06.2010 65 68 28 24 58 55 56 58 65 62 27 23 18 24
21072010 71 68 25 24 36 37 55 56 49 52 52 48 36 44
04112011 64 65 45 41 53 49 54 55 45 46 40 40 42 46
22102011 74 72 16 14 40 46 35 33 58 61 28 26 39 45
06.05.2011 64 69 33 29 57 51 45 41 38 40 35 32 33 41
15.08.2010 60 62 31 28 54 48 34 33 50 51 49 47 12 16
10.10.2010 68 65 25 23 42 41 40 40 38 39 37 39 20 28
25.09.2011 66 67 41 42 42 40 16 18 12 13 44 36 28 32
23.08.2011 50 58 53 45 24 23 41 38 19 20 48 43 35 36
06.10.2011 58 58 42 40 25 25 9 10 30 27 38 33 8 13
03.09.2011 55 60 36 30 33 30 26 27 28 28 31 28 14 17

NR R R RR R R R R e
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Based on the results outlined in Table 20, the data collection from 16 July 2011 took place about
two weeks after the phenological phase of oak lammas growth, which has the potential to separate
oak and spruce. Also, data collected on 22 April 2010, two weeks after the larch leaf unfolding,
successfully separated spruce and larch while partially separating beech. Although data, from early
summer, collected on 4 June 2011 was expected to shows limited potential in separating beech and
maple, but in fact these data were the most successful at separating these two species. Data from 7
April 2011, during the deciduous leafless season, had the highest potential to separate the pine
trees. Again, data from 10 July 2011 and 27 July 2009, collected after the oak lammas growth
period, present the potential to separate larch and maple, respectively. Similarly, data from 28 June
2011, a period that follows the oak lammas growth period by a few days, showed potential for
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separating the beech trees. Interestingly, results show that in general, data collected around the oak
lammas growth phenological phase have more potential to identify oak than other phases. Finally,

data collected on 23 August 2011 achieved the best identification for the Douglas fir.

4.5.2.2.3 Most promising periods for tree species identification

Results of the most promising phenological phases for tree species identification, based on the
overall accuracy of each RapidEye dataset, can be obtained from Table 18. Figure 25 also serves
as a visual illustration of the results, showing the Julian days of the phenological phases and of the
RapidEye data acquisition combined with each RapidEye order, based on the overall accuracy of
each. In general, results show that the most suitable acquisition time was found to be mid-summer,
early spring, early summer and mid- / late-autumn, or, in other words, around the peak of the

phenological phases, as expected.

As can be seen in autumn 2011, data collected after autumn coloring begins achieved much
better results than those collected in late summer, two weeks prior. On the contrary, the most
unsuitable time for acquisition for tree species identification seems to be late summer and early
autumn. However, it is noticed that the results of data acquired during the promising periods also
varied in their accuracy. Analysis in Figure 25 shows that data from 22 April 2010, which were
collected around the beginning of oak leaf unfolding (two weeks after the larch needle unfolding
has begun), achieved the second best accuracy. Similarly, the first and fifth best data were collected
about four and three weeks, respectively, after the estimated oak lammas growth. The ninth best
data were collected shortly after this phase. Also, the fourth best image from 07 April 2011 was
acquired directly after the beginning of the larch needle unfolding.
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Legend of phenological phases and RapidEye data acquisitions

? RapidEye data take
1 Larch needle unfolding begins 8 Oak autumn coloring
Early spring 2 Maple floweting begins Mid-autumn 9 Beech autumn coloring
3 Oak Leaf unfolding begins 10 Larch autumn coloring
4 Beech leaf unfolding begins 11 Beech leaf fall
5 Spruce May Shoot Late autumn 12 Oak leaf fall
Late spring i 13 Larch needle fal
= 6 Pine May Shoot arch needle
7 Pine flowering begins
- Estimated oak lammas growth

Figure 25: Julian day of the phenological observation and the single RapidEye data acquisition combined
with the RapidEye order (in red, see Table 18) based on each single scene overall accuracy, in the Freising
test site in the years 2009, 2010, and 2011
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4.5.2.3 Discussion

Investigations focused on tree species identification used twenty multispectral multi-seasonal
RapidEye datasets. However, as was presented in Figure 23, tree species identification is a
challenging task in comparison to other vegetation land cover, even when using multi-seasonal
data. Ongoing investigations have yet to answer various economically important research questions

related to forest tree species identification such as:

e How many datasets from various phenological phases are needed to obtain the most accurate

results?

Results have shown that using the multi-seasonal RapidEye data increased the overall accuracy
of tree species mapping. Interestingly, this result was sharply improved by using about seven
datasets, and adding more datasets led to marginal improvements. Thus, the use of seven datasets
in identifying tree species produced a similar success rate to that achieved using the entire dataset.
Nevertheless, it should be noted that those seven datasets were among the best data because they
were collected during phenological phases with high spectral variation between tree species, as will
be discuss later in this section. Similar trends in overall accuracy improvements were also noticed
when more aerial images were analyzed (Key et al., 2001). However, in this case the best achieved
overall accuracy occurred when only 17 datasets were used, and not by using the entire dataset. It
is important to note that increasing the amount of analyzed data can lead to a decrease in the
accuracy, which is known in the literature as ‘‘Hughes phenomenon’’, as reported by (Hill et al.,
2010; Key et al., 2001).

Previous studies have used multi-seasonal Landsat data (Wolter et al., 1995) and multi-seasonal
ASTER and SPOT data, of similar characteristics to RapidEye data (Davranche et al., 2010;
Stoffels et al., 2012). These studies did not investigate the number of datasets required to increase
the temporal resolution, due to the limited number of scenes. Regardless of the forest condition,
the implemented techniques, the number and types of tree species, and the assessment techniques
used, multi-seasonal RapidEye data consistently demonstrate their high potential for tree species
identification, when compared to sources used in previous studies. This leads to the following

question:
e How does using additional bands or indices influence tree species identification?

Regarding the influence of using the red edge band and the indices on the accuracy, average
improvements were about 1% and 4%, respectively. This 1% improvement was a result of using

the red edge band, coming from its sensitivity to the spectra differences between the coniferous
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and the deciduous tree groups. The red edge can be very sensitive to the spectra dissimilarity
between the crops in the fields (Conrad et al., 2012). However, reduced sensitivity to the spectra
differences between the tree species in the forest can be seen in Figure 23 A. Similarly, the indices,
including the NDVI and the slope difference, show higher dissimilarity between the crops in the
fields than between the tree species in the forest (Figure 23 B, C). As mentioned at the beginning
of this section, tree species identification remains a challenging task for remote sensing.

It was found that using data from different growing or phenological seasons will increase the
chance of separating tree species. This was revealed in the results of the multi-seasonal data
combination analysis when compared to the single data analysis. The increase in the overall
accuracy was due to the increase of the individual accuracies of spruce, Douglas fir, pine, and
maple. Meanwhile, the individual accuracies of the larch and oak appeared to decrease, and were
better identified using only one dataset from 22 April 2010 and 16 July 2011, respectively. The
similarities amongst the two species along most phenological phases increased the confusion
between them. However, this can be corrected using multi-seasonal data of phenological phases

with high variation between oak and larch, to better distinguish between these species.

In terms of the phenological phase autumn coloring, in the year 2011 there were obvious
differences between the species beech and oak (see Figure 25), and as a result, the confusion
between these two species was minimal. The confusion between pine and the larch, oak and maple
classes was reported because of the sparse pine stand structures, where pine stands are not typically
dense, and consist of rejuvenation understory of mainly oak and maple, which influences the
reflectance, thus increasing the confusion amongst these classes. This leads to the following

question:
e s there a phenological phase with high potential for identifying a specific tree species?

The results show that data collected during the phenological phases identified as most
promising, also have the highest potential for separating specific tree species. Data from 16 July
2011, collected a few weeks after the oak lammas growth, has the highest potential to separate oak
trees. This was because of the new oak leaves which had developed and were able to be detected.
Indeed, most data collected shortly after that phenological phase had the highest potential to
separate oaks. For spruce, separation was most successful on 16 July due to the low reflectance in
red edge and NIR, and on 22 April due to the distinct overall low reflectance. Data collected on 22
April 2010, two weeks after larch unfolding started, had the highest potential to separate larch and

beech, because larch was under leaf-on conditions while other deciduous species were leafless.
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While beech was still leafless, explained by the associated undergrowth, a distinct and consistent
signature was observed. Moreover, data from 4 June 2011 showed potential to separate beech and
maple, however, the achieved accuracy was still low and confusion between beech and maple was
still high. The reason for this was that the leaf unfolding phase for both species generally occurs
simultaneously. Pine was best detected on 7 April 2011, when larch and deciduous species were
all leafless. Again, this was because of the pine trees structure, which was not dense and mixed
with its undergrowth consisting of many young oak and maple trees. Additionally, data from 10
July 2011 show high potential to identify larch due to the observed high reflectance in red edge and
NIR. This can take place around the period of the highest concentration of chlorophyll in larch
needles (Nakaji et al., 2006). Data from 27 July 2011 had the potential to separate maple trees,
which can be explained by the higher reflectance in NIR of maple trees than that of deciduous
species, especially beech. Although the data from late summer generally held little promise for tree
species identification, these data showed potential to separate Douglas fir trees. This might be a
result of the shoot extension which tends to last until mid-summer in response to moisture stress
(Duryea and Landis, 1984).

In the end, it may be that the spectral variation among the tree species due to the phenological
state during data collection is higher in spring and summer than that in autumn. This finding is
critical and likely to be explained by several aspects, because the phenology does not fluctuate by
species only, but also caused by photoperiodism, air temperature, soil moisture and temperature,
and solar illumination (Key et al., 2001). Also, the spectral variations can occur for trees of the
same species, within the same forest stand, in the same year (Hill et al., 2010) and between the
different years (Figure 25). The next question posed is:

e Which phenological phase is the most promising to identify all tree species?

The most appropriate phenological seasons based on the single RapidEye data results were those
in spring or early summer, the peak time for leaf unfolding and flowering phenological phases’
activity. Conversely, the least appropriate times were late summer or early autumn because of the
absence of most phenological activities. Data collected in mid-autumn achieved better results than
the results achieved from late summer and early autumn data, because of autumn coloring and leaf
fall phenological phases. This was achieved despite the fact that the mid-autumn datasets (collected

on 22 October and 4 November 2011) had low solar elevation and low visibility.

An important finding was that the data collected around a specific phase in a season have more
potential to lead to separation among tree species than other data collected in the same season. This
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is explained by the maximized leaf-on and leaf-off situations between the tree species. For example,
the second best data were collected on 22 April 2010, around the beginning of the oak leaf
unfolding phase, and when oak, beech, and maple were still under leaf-off conditions, larch was
already under leaf-on condition. Also, the first and fifth best data were collected a few weeks after
the oak lammas growth, which increased the accuracy of oak, thus boosting the overall accuracy.
Additionally, the fourth best image from 07 April 2011 was acquired directly after the beginning
of the larch needle unfolding, when all deciduous species were still under leaf-off conditions, thus

increasing the separability between the deciduous and coniferous species.

Contradictory results of the most appropriate season for data acquisition have been reported;
some promote autumn (Schriever and Congalton, 1995; Wolter et al., 1995), while others state
spring and autumn (Mickelson et al., 1998), and others report summer and autumn (Reese et al.,
2002). However, these studies analyzed only one image from each season including spring,
summer, and autumn. Therefore, the variations in their results can be explained by the success of
data acquisition timing in the proper phenological phase, revealing the highest variations among
the species. However, in the developed concept these differentiations are not a problem given the
life span of the forest tree species. The results of the RapidEye data show that differentiating species
is not only a matter of which season is better, but rather when the highest variation amongst
phonological phases is observed across tree species. This key finding was delivered through the
high frequency analysis of the RapidEye data, which enabled more frequent detection than was

available from previous studies.
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5 General discussion

Two satellite system technologies are investigated on the basis of their performances in
providing user-defined parameters. The different design concepts may be summarized by 1) the
high spectral resolution of the Hyperion sensor and 2) the ability to produce high temporal
repetitions (2-3 days temporal resolution) with the RapidEye system. In terms of their limitations,
while the Hyperion system yields a poor signal to noise ratio, despite 30 m pixel spatial resolution,
the RapidEye system is limited to five spectral bands in the VIS and NIR region (silicon detector
range). This section provides a summary of the discussion relating to the hyperspectral Hyperion
data analysis, and the multi-seasonal multispectral analysis from RapidEye data. Following this,

examination of the presented hypotheses are provided based on the dissection of the result.

Results of the forest cover, forest type, and tree species parameters extracted by the
hyperspectral Hyperion data mostly revealed that OBIA outperformed the pixel-based techniques
ANN and SAM. However, ANN was successful in achieving higher accuracy than OBIA for forest
type extraction, as previously mentioned. The Hyperion data analysis allowed for the mapping of
coniferous tree species, however, it was not possible to further separate the deciduous tree species.
Low density of vegetation coverage was identified as a significant source of misinterpretations.
This finding is due to the similar spectral responses of leaves and herbaceous ground vegetation
and the mixed pixels of the 30 m spatial resolution of Hyperion. Additionally, the overall low
energy response of the Hyperion sensor, which decreases the differences between the spectral
reflectance of the different classes, reduced the accuracy. These reasons all lowered the training
site accuracy, which then affected the results of the pixel-based analysis. Here, the OBIA results

were the least affected since they depend also on membership functions.

Forest cover, forest type and gaps, forest monitoring, and tree species parameter extraction
held a high potential to be successfully determined using the multi-seasonal multispectral RapidEye
data. The primary success was the transferability of the developed methods in extracting forest
cover, types, and gaps, and for monitoring the forest losses. The high repetition frequency of multi-
seasonal RapidEye data assisted in applying a continuous monitoring of the forest cover, which in
turn helped to avoid problems with clouds. Moreover, the multi-seasonal data precisely detected
the phenological phases responsible for the best detection of tree species, and contributed to the
concept of the “phenological fingerprint” approach. Spatial resolution of the RapidEye sensor was
relatively appropriate for the parameter extraction, and the forest cover parameter was successfully
extracted with high accuracy (between 94% and 98%). Method transferability showed that forest
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types and gaps results were highly dependent on the topography and the forest structure of the test
site. Forest types per stand corresponded appropriately to reality when describing the dominant
type of each stand, which should be sufficient to meet foresters’ stand-level management needs.
The spectral information included in the RapidEye from various acquisitions dates shows slight
differences because of the phenology as well as the data quality, which is affected by weather

conditions and the solar angle during acquisition.

The hypotheses, mentioned in section 1.2, are examined in the following paragraph. The first
hypothesis, tested based on the results of the extracted parameters for forest cover, forest types and

forest tree species, using both the Hyperion and the RapidEye data, was:

Hi: Hyperspectral resolution outperforms multi-spectral high temporal resolution in

determining forest parameters.

This hypothesis is to be refuted, for reasons based on each extracted parameter, as described
below. The “forest cover” extracted by the Hyperion data achieved lower accuracy than that
achieved by RapidEye data, and was more often mistaken for non-forest land cover classes. The
relatively low spatial resolution (30 m) of the Hyperion data was the main reason for this result.
The investigations into either system used a single dataset, and the assessments of the achieved
results from either system were based on similar methodology. Moreover, the “forest type”
parameter was achieved with a higher accuracy using some single RapidEye datasets in the BFNP
than using the Hyperion data, because of the higher spatial resolution of RapidEye data. This
demonstrates that even with its high spectral resolution, the Hyperion data cannot compensate for
its relatively low spatial resolution. Finally, the “tree species” results clearly revealed that the
multi-seasonal RapidEye data outperformed the Hyperion data. With the results of the RapidEye
data, seven tree species, including both coniferous and deciduous species, were differentiated.
Meanwhile, results of the Hyperion data only succeeded in separating two coniferous species, and
could not separate the two deciduous species. Additionally, using multi-seasonal RapidEye data,
further investigations into the phenological fingerprint concept were made possible, which proved
to be essential for tree species identification. Hyperion single dataset therefore only has the

potential to pick up on small parts of the phenological development of the species.

The second hypothesis, tested based on the results of the annual forest cover database of the

three test sites in Bavaria, was:

H>: The multi-seasonal RapidEye data evaluation approach does not meet the requirements for

annual forest database updates.
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This hypothesis was partly refuted, because the method developed was successful only in
achieving annual updates of the forest tree cover. And RapidEye results could not achieve the same
level of details which is usually achieved by aerial images interpretation. With the developed
method, it was possible to monitor the forest cover continuously across the vegetation period. Using
recently acquired RapidEye data, changes related to management practice at a scale of about 0.01
ha or 4 RapidEye pixels, or larger, could be detected with high precision. By accumulating the
changes across the observation periods, the status of forest databases can be updated annually, more
or less automatically for the parameter under investigation. Additionally, the multi-seasonal
RapidEye data availability provided enough data to bypass the problem of partial cloud cover. All
in all, the results of the forest cover update for all three test sites in Bavaria achieved overall
accuracies of more than 96%. The method proved to be fast and cost effective. Under the same
event, time and site conditions in the BFNP, approximately 97% of the results detected by the
official aerial images survey were also detected using the RapidEye analysis. 8% of the losses were
detected solely by RapidEye, the cost of the RapidEye analysis was only 25% of the cost of the

aerial images analysis, and results were made available 9 weeks earlier.

The third and final hypothesis that was tested based on the result of the forest tree species

identification in Freising test site using multi-seasonal RapidEye data was:

Hs: Applying the ‘‘phenological fingerprint’’ concept using the multi-seasonal RapidEye data

does not improve the identification success of forest tree species significantly.

The hypothesis was refuted, as the ‘‘phenological fingerprint’’ concept proved to be essential
for tree species identification. Investigations showed that a single dataset may improve specific tree
species separability, while more datasets from various potential phenological phases are essential
to increase the chance of successful tree species identification. Investigations have also revealed
that there are specific seasons offering the highest potential for identification, primarily spring and
early summer. This is contrary to the expected time frame of spring and autumn. Mid-autumn
images still offered promise due to the coloring of leaves, which apparently achieved higher
accuracy than acquisitions taken at the end of summer. Although mid-autumn data were expected
to be more effective and significant in supporting species differentiation, low solar elevation, low
visibility and non-perfect timing for data acquisition reduced their potential. Other explanations for
this may be the special weathering conditions like storm events in autumn, defoliating all deciduous
trees and prohibiting the differentiation based on autumn coloring. The results show that both
seasonality and the timing of phenological phases (exhibiting maximum variation among tree

species) are important factors in pursuit of species identification.

101



Conclusions and outlooks

6 Conclusions and outlooks

This work investigated the potential of high spatial resolution (5 - 30 m) optical satellite data to
application for forest parameter extraction. Hyperspectral Hyperion data were applied in a
Mediterranean region, while multi-seasonal multispectral RapidEye data were applied in three
Bavarian regions. Generally, the forest parameters were extractable from the hyperspectral
Hyperion and multi-seasonal multispectral RapidEye data; however, based on the results some

advantages and limitations were revealed.

6.1 Main conclusion

The main conclusion of this work is that the multi-seasonal multispectral RapidEye data show
more potential for operational use than the hyperspectral Hyperion data when extracting forest
parameters. This conclusion applies only to these high spatial resolution HSR satellites and can be

supported by the following arguments relating to specific parameters:

e The forest cover parameter was extracted using single data collected from both systems.
Spatial resolution was found to hold a greater influence on accuracy than the spectral

resolution.

e The forest type parameter was extracted with single takes using RapidEye data, and, in some
cases produced higher accuracies than when using Hyperion data. Results were based on
topography and forest structure, and the low spatial resolution of the Hyperion sensor

significantly affected the results.

e Forest tree cover databases can be annually updated using multi-seasonal RapidEye data,
offering an operational continuous monitoring tool with a very high accuracy. Apparently,
such benefits can not be offered with Hyperion data.

e Forest tree species were successfully separated, and the ‘‘phenological fingerprint’’ concept
proved to be essential in separating tree species. All in all, the multi-season acquisition
capability of RapidEye captures more data during various phenological phases, supporting
tree species identification. The Hyperion dataset captures one phase of phenological
development, and, although combined with rich spectral information, this did not lead to

successful deciduous tree species separation.

The high spectral resolution of Hyperion data offers rich spectral information, which supports

the successful extraction of forest parameters. However, the low spatial resolution of the Hyperion
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sensor obscured this potential, at least in the highly structured Anapoli study site. Technically, the
design of high spectral resolution sensor results in a low spatial resolution, to compensate for the
low energy received by the narrow bands. Thus, the energy received at the Hyperion sensor was
very weak, and it is expected to be weak for the next generation of hyperspectral sensors of similar
characteristics, such as the German “EnMap” and the Italian “Spectra” as well. Conversely, the
multi-seasonal RapidEye data successfully updated the annual forest cover database. In addition to
that, the multi-seasonal data can contribute successfully to the ‘‘phenological fingerprint’” concept,
which is essential for the operational identification of tree species. This shows the potential of the
next generation ‘‘Sentinel’” ESA satellites, which have a revisit time of 6 days, along with the
potential of the German hyperspectral satellite ““EnMap’’ with a revisit time of 4 days, and can
provide multi-seasonal data. Additionally, investigations into the “phenological fingerprint” at a

target site, will assist in creating schedules for the most suitable timing of data acquisition.

Regarding the applied techniques, OBIA can be a strong tool for developing fast and transferable
methods for forest cover mapping and monitoring. OBIA offers geometrical, logical, and spectral
based features in addition to the integration of GIS data, which should contribute to achieving the
forest cover definitions similar to what foresters expect. This can significantly contribute to forest
cover mapping and monitoring, which are very important parameters, and yet are still not well
documented at the regional level in many developing countries, or at the global level. On the other
hand, the pixel-based technique is still necessary for tree species detection, especially the use of
high spatial resolution data (5 — 30 m) to detect single tree crowns. The pixel-based technique was
implemented here using SAM, however, other classifiers can be taken into consideration in the
future such as support vector machine (SVM) or random forest (RF).

6.2 Economic aspects

Offering operational solutions for forest enterprises to make strategic / tactical decisions appears
to be possible by utilizing HSR satellites data and taking into consideration system resolutions,
area coverage and cost. However, the increase in any of the resolution types including spatial,
spectral, radiometric and temporal resolution, will increase the cost. In this investigation, the multi-
seasonal multispectral approach offered lower spectral resolution but higher spatial and temporal
resolution than that of the mono-temporal hyperspectral approach. The cost of the multi-seasonal
multispectral approach will remain more affordable than the hyperspectral approach, taking into

consideration the limited coverage of the hyperspectral systems.
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For the parameters forest cover and forest type, the spatial resolution of the RapidEye (5 m) was
of key importance, especially in determining forest type. Meanwhile, the high spectral resolution
of the Hyperion did not improve the results. Therefore, investments into the multispectral data of

suitable spatial resolution (5 m or less) for these parameters should be considered as cost effective.

For the forest tree cover changes, the spatial resolution of the RapidEye data is sufficient, while
the use of multi-seasonal data is necessary. Collecting data more frequently will increase the cost,
but will offer an operational application for forest monitoring. This cost increase associated with
the use of frequent multi-seasonal data is justified as when these data are collected at a suitable
time, they will ensure the success of the ‘‘phenological fingerprint’” concept. This approach is the
only way to successfully offer operational tree species identification. Yet to consider the method
of the tree species identification operational at broader scales, well defined clusters including the
available tree species and their phenology, as well as training sites collection for each cluster, is

still required.

6.3 Outlook and future development

The conclusions of this study can assist in improving future space remote sensing development
for forest applications. There are three areas where investments can be made to potentially improve

optical. These are:
1- Multi-date capability of the sensor

There is no single optimal time for data acquisition that is able to capture all the variations
between tree species. This is due to the fact that for each specific tree species, distinguishing
features appear at different dates. High spatial resolution hyperspectral data are limited in their
ability to support tree species mapping if they are not collected during the proper phenological
phase. Therefore, multi-seasonal data for tree species identification appears to be integral. Further
research on this topic should focus on exploiting more phenological phases and multi-seasonal
biochemical reflectance characteristics. Also, investigation into the phenological fingerprint

concept for tree species identification in different Bavarian test sites should be conducted.
2- Few additional bands may be in short-wave infrared (SWIR)

In general, not all hyperspectral bands are suitable for analysis of forest parameters including
tree species identification, while some additional bands (especially in the SWIR region of the
spectrum) contribute to generating indices have the potential to increase accuracies. Additionally,

increasing the spectral resolution of the hyperspectral data will decrease the spatial and radiometric
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resolutions, which affects the results. Including the red edge additional band into analysis for tree
species identification, had a tendency to increase the achieved accuracy. Therefore, development
of new broad-band sensors with additional bands in the SWIR region or other regions sensitive to

the tree species should therefore be considered.
3- Slight improvement in the spatial resolution

Forest management planning policies shape the forests of tomorrow, which are expected to
become highly mixed and vertically structured. These forest types will form a challenge for the
remote sensing of forest inventory. Even the 5 m spatial resolution demonstrated some difficulties
in achieving appropriate accuracies of the forest type parameter, at least for the local / regional
levels. The need to complement optical data with elements such as terrestrial data, and data from
active sensors should be considered. Also, it would be worth investigating the fusion of the
Hyperion data of 30 m spatial resolution with the RapidEye data of 5 m spatial resolution for forest

parameter mapping. Improvements in the spatial resolution of the optical data is also recommended.
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Information on Earth’s land surface cover is commonly obtained through digital
image analysis of data acquired from remote sensing sensors. In this study, we
evaluated the use of diverse classification techniques in discriminating land use/
cover types in a typical Mediterrancan setting using Hyperion imagery. For this
purpose, the spectral angle mapper (SAM), the object-based and the non-linear
spectral unmixing based on artificial neural networks (ANNs) techniques were
applied. A further objective had been to investigate the effect of two approaches
for training sites selection in the SAM classification, namely of the pixel purity
index (PPI) and of the direct selection of training points from the Hyperion
imagery assisted by a QuickBird imagery and field-based training sites. Object-
based classification outperformed the other techniques with an overall accuracy
of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of
52%, very close to that of SAM (48%). SAM applied using the training sites
selected directly from the Hyperion imagery supported by the QuickBird image
and the field visits returned an increase accuracy by 16%. Yet, all techniques
appeared to suffer from the relatively low spatial resolution of the Hyperion
imagery, which affected the spectral separation among the land use/cover classes.

Keywords: Hyperion; Earth’s land use/cover mapping; digital image analysis;
spectral angle mapper; sub-pixel classification; artificial neural networks; Greece

1. Introduction

Information on land use/cover (LULC) is very important in many natural resource
applications. At local and regional scales, knowledge of both LULC forms a basic
dimension of recourses available to any political unit (Kavzoglu and Colkesen 2009).
Such thematic maps are also key inputs to environmental and land use planning at
local, regional, and national levels. At a larger scale, LULC information is of key
importance in delineating the broad patterns of climate and vegetation that form the
environmental context for human activities. Furthermore, LULC maps are also a
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valuable input in the development of conservation policies particularly so for
environmentally or ecologically protected areas and the restoration of native habitats,
as well as the monitoring of desertification and land degradation in regions such as
Mediterranean (Castillejo-Gonzalez ef al. 2009).

Remote sensing has been a convenient source of data for LULC thematic
mapping. A wide range of approaches have been developed for this purpose, with
image classification being the most widely used (Mathur and Foody 2008). A recent
overview of classification techniques used in remote sensing can be found in Lu and
Weng (2007). Three main groups of classification approaches can be distinguished,
namely: pixel-based, object-based, and sub-pixel techniques. Pixel-based techniques
employ the reflective characteristics of the land surface items in order to perform a
classification, by assigning pixels to land cover classes. Classifications using pixel-
based techniques can be achieved by either supervised or unsupervised classification
techniques. In object-based classification method, the basic processing units are
image objects or segments, consisting of neighboring spectrally similar pixels and not
just single pixels. On the other hand, sub-pixel classification techniques work at a
pixel level and aim to separate the image pixel into surface material fractions (Small
2001, Plaza et al. 2005, 2009).

The recent evolution of remote sensing technology has resulted in the develop-
ment of new multispectral, but also of hyperspectral remote sensing sensors.
Hyperspectral sensors are capable of recording spectral information regarding land
surface targets in numerous narrow continuous spectral bands. This allows these
systems to use specific spectral information recorded by selective channels of the
sensor accordingly to the characteristics of the specific problem under analysis
{Galvao et al 2005, Dalponte ef al 2009). A number of airborne and satellite
hyperspectral remote sensing systems have been launched in the recent years. The
Hyperion radiometer, onboard the Earth Observer-1 platform, placed in orbit
late November 2000 under NASA’s New Millennium Program, is one of the
most used satellite hyperspectral sensors. Hyperion is able to acquire spectral data
at the reflective part of the spectrum at 242 spectral bands in total and at ground
spatial resolution of 30 m. This sensor is regarded as the first ‘real’ space-borne
hyperspectral sensor, offering the capability of frequent data acquisition of high
spectral resolution from a satellite platform, at high spatial resolution.

Hyperion imagery has been the focus of LULC classification until today (Xu and
Gong 2007, Pignatti et al. 2009, Wang et al. 2009, White ef o/ 2010). Different pixel-
based classification algorithms have been combined with Hyperion data in various
applications requiring image classification (Galvao er al 2005, Wang et al. 2009).
Various spectral unmixing classification techniques have also been combined with
Hyperion data in land classification studies {e.g. Falcone and Gomez 2003,
Fahimnejad e al. 2007). A few researchers have also evaluated the potential of the
combined use of object-based classification with Hyperion (Eckert and Kneubiihler
2002, Wang ef al. 2009). Nevertheless, to our knowledge, not significant attention has
been paid so far to the assessment of the combined use of Hyperion with advanced
classification approaches, such as object-based classification, for LULC mapping
{Walsh ef @l 2008, Pignatti ef al. 2009, Wang ef al 2010).

Understandably, being able to appreciate the extent to which different classifica-
tion methods available today take advantage of the hyperspectral properties of
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Hyperion imagery would be of great importance. This would be even more
interesting if implemented over highly heterogeneous and topographically variable
areas such as in Mediterranean landscapes, given also the relevance of LULC to
desertification and land degradation (Castillejo-Gonzilez et al 2009).

In this context, the main objective of this study is to evaluate in a typical
Mediterranean setting the combined use of Hyperion imagery with the spectral angle
mapper (SAM) pixel-based, the object-based, and the non-linear unmixing
classification techniques. A further objective is to investigate the effect of two
approaches for training points selection in applying the SAM classifier to the
Hyperion imagery, namely of pixel purity index {PPI) and of the direct selection of
training points from the Hyperion imagery assisted by a QuickBird imagery and
field-collected training sites.

2. Study area

The study area is located in the island of Crete in Greece, specifically in the south-
eastern part of Chania prefecture (35°13"7" Latitude and 24°5°5"” Longitude). The
climate is typical Mediterranean, characterized by hot, dry summers and cool, wet
winters. Elevation of the area ranges from sea level to 2200 m in the north and most
of the surfaces have an inclination of at least 25 degrees, mostly with a south aspect.
The vegetation formations in the study site, as in the Mediterranean areas, are a
result of the lasting interaction between human and the environment. The main
vegetation cover types are phryganic ecosystems, coniferous and broad-leaved
forests, small-scale cultivations of various crops, few olive groves and vineyards
and some Alpine vegetation at high elevations.

3. Datasets description

Earth Observer-1 Hyperion imagery over the studied region was obtained from the
archive of the United States Geological Survey (USGS 2008). The imagery was
acquired on 23rd May 2006 and was received as a full long scene (185-km strip) and
at level 1 (L1R) processing, meaning that it was radiometrically but not
geometrically corrected. In addition, a QuickBird very high resolution imagery
acquired on 10th June 2003 and a Digital Elevation Model {DEM) had a spatial
resolution of 20 m, both available from a previous study, were also used. The
QuickBird imagery was already radiometrically and geometrically corrected, mapped
to a cartographic projection with an absolute accuracy of 23 m.

The data samples collected through fieldworks were conducted in the same period
of time of the Hyperion image acquisition on 16th, 17th, 21st, and 22nd March 2006
and 11th April 2006 and on 23rd May 2006. More field data were collected on 9th
and 16th November 2007, 7th December 2007, 6th, 10th, 12th May 2008, and
31st October 2008. In addition, approximately 40 measurements of pure spectra of
known vegetation types and land cover classes were collected during the field visits in
the year 2006 using Hand Held spectrometer, and in the years 2007 and 2008 using
an ASD FieldSpec® pro FR spectroradiometer (FieldSpec User’s Guide 2000).
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4. Methods

Land use/cover classification by applying different techniques was conducted for the
study area using the acquired Hyperion imagery. An overview of the overall
methodology followed is depicted in Figure 1.

4.1. Data pre-processing

Spectrum measurements in the field were collected in raw mode, coupled with
measurements from a Spectralon panel to be used as a reference. Two main pre-
processing steps were applied to the collected field spectra data, the conversion of the
raw digital number (DN) data to reflectance, using the Spectralon reference
measurements and the implementation of sensitivity drift elimination (FieldSpec
User’s Guide 2000). These spectra resulted from the pre-processing described earlier
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Figure 1. A flowchart summarizing the methodology followed in this study.
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were subsequently used in the Hyperion pre-processing, specifically the Hyperion
bands spectral polishing, as described next.

The first step in the Hyperion imagery pre-processing involved performing a
linear interpolation of all the sensor detectors. The result was a 242-band image, with
wavelengths representing the new common set of band centers, and averaged full-
width at half-maximum values for each band. The next step involved the elimination
of non-calibrated and the overlapping bands and performing a stripping correction
to the Hyperion imagery. Atmospheric correction was then applied to the Hyperion
imagery using FLAASH software (2006). FLAASH was developed by Spectral
Sciences, Inc. with the cooperation of the Air Force Research Laboratory, and it is
based on the Radiation Transport (RT) equation (Matthew et al 2003). Following
the atmospheric correction, spectral polishing was applied by applying a running
average filter over nine adjacent channels, by using some of the field spectra, in order
to reduce the spectral artifacts in the data (Beck 2003). This operation was also
performed using the FLAASH module.

The geometric model used for orthorectification of the Hyperion image was
based on the direct linear transformation (DLT) method (Imagine ERDAS 2001).
The Nearest Neighbor resampling method was used along with the available DEM to
perform the geometric correction, achieving a geometric accuracy of less than one
Hyperion pixel (30 m). Subsequently, the resulting image was reduced to a subset of
the study area, and a final pre-processing step, a minimum noise fraction (MNF) was
applied in order to reduce the uncorrelated, or at most, locally spatially correlated
noise, not addressed carlier by the spectral polishing approach. The MNF
transformation handled the visible-near infrared (VNIR) and shortwave infrared
{SWIR) data separately, since it was more efficient in managing the noise, due to its
different structure in the two data sets (Datt ¢f a/. 2003). The Hyperion final data-set
consisted of 157 bands, 49 in the VNIR and 108 in the SWIR regions. This was the
data-set that was used for the image classification using the different classification
approaches.

4.2. Hyperion classification
4.2.1. Hyperion pixel-based classification

The first step in performing the classification involved the definition of the
classification scheme (Table 1). The classification key was developed based on the
land cover map of Crete and the spectral seperability of the Hyperion data in
the area. In order to create land cover map could be potentially derived from the
Hyperion data in the area. Firstly unsupervised classifications (IsoData; K-Means)
were implemented to the Hyperion data, whereas the IsoData performed better.
Secondly the best result of the unsupervised IsoData classification was cross
intersected with the available thematic maps and high resolution images of the
area. By combing the CORINE land cover with the land cover map of the study area,
the classification key is aligned to the classification scheme proposed by the EU for
the Mediterranean (European Environmental Agency 1994).

Representative end-members of the different classes defined in the classification
scheme were collected for the application of the SAM on the Hyperion imagery.
Training points were collected directly on the Hyperion using two approaches. The
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Table 1. Classification key which was used in the present study.

Class description {for more details see Section 4.2.1.,

ID Class ‘Hyperion pixel-based classification”)
1  Rocks Large area of rocks cover mainly at high altitude and at the coastline
2 Cypress trees Cupressus sempervirens in the forest
3 Pine trees Pinus brutia in the forest
4 Cultivated field Cultivated fields mainly vineyards
5 Phrygana Low vegetation, mainly Sarcopoteriven spinosum, Phlomis fruticosa,
Asphodelus albus, Urginea maritime, Coridothymus capitatus
6 Sparse Rarely conifers trees distributed over bare ground mainly south the
vegetation village and near by the sea
7 Bare soil Bare soil, some stones exist occasionally
8 Snow Appears at high altitude
9  Alpine Juniper trees at high altitude
vegetation
10 Broadleaved Acer sempervirens, Quercus coecifera in the forest
trees
11 Olive groves Olive plantations in Anopoli village
12 Sea -

use of the PPI method and a method based on direct selection of well-defined
training sites from the Hyperion imagery, assisted by the QuickBird imagery and
field-collected training sites.

The PPI is computed by repeatedly projecting n-dimensional scatter plots on a
random unit vector, where the function records the extreme pixels that reside at the
edges of the vector unit (ENVI User’s Guide 2008). Collection of image-based end-
members was performed using the scatter-plots of MNF bands in combination with
the PPI technique, a method that has also been applied previously with hyperspectral
imagery {Falcone and Gomez 2005, Walsh et @/ 2008). The PPI function was
performed using only the MNF bands with the least noise, according to the MNF
results (Section 4.1.), resulting in nine VNIR and the four SWIR bands.
Two-dimensional scatter plots for the bands with the least noise were examined, to
help identify the pure end-member pixels using this method. Examples of collected
end-member spectra used to classify the Hyperion scene are presented in Figure 2.

In the second approach, end-members were obtained from Hyperion pixels
representing homogenous areas, which were derived from the previously collected
field training sites. In addition, the QuickBird imagery available for the region was
also used in identifying the land cover fraction beneath one Hyperion pixel. Training
sites were carefully determined and restricted to the most homogeneous regions with
consistent land-cover. A total of 550 Hyperion pixels representing the classes defined
in the classification key (Table 1) were identified as training data.

Pixel-based classification was performed on the Hyperion imagery using the
SAM (Kruse et al. 1993) algorithm. SAM performs the classification based on the
spectral similarity between image spectra and reference spectra. Reference spectra
can be generally taken either from laboratory or field measurements or can be
equally extracted directly from the remote sensing imagery: The method is based on
the assumption that an observed reflectance spectrum is a vector in a multi-
dimensional space, where the number of dimensions equals the number of spectral
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Figure 2. Examples of end-members’ spectra for the classification key in our study.
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bands. In SAM, spectral similarity is determined by calculating the angle between
reference spectra and satellite imagery spectra to be classified treating them as
vectors in n-dimensional space, where ‘n’ is equal to the number of spectral bands of
the sensor. In an n-dimensional multispectral space, a pixel vector has both
magnitude (length) and an angle measured with respect to the axes that defines
the coordinate system of the space (ENVI User’s Guide 2008). The angle (o) between
two vectors is independent of their lengths. The angle between an unknown spectrum
¢t to a reference spectrum r is computed by applying the following equation (e.g.
Shrestha ef al 2005):

—
1 a e b
o = cos , (1)
77|
which can be written as:
dohr;
cos™! = 2)

() () )

The resulting value, computed in radians, is assigned to the corresponding pixel in
the output SAM image. Small angles between the two spectrums indicate high
similarity and wide angles indicate low similarity, whereas pixels with an angle larger
than the tolerance level, the specified maximum angle threshold, are not classified
{Kruse et al 1993, Petropoulos ef al. 2010). The threshold angle value is essentially
expressing the maximum acceptable angle for the separation between the end-
member spectrum vector and the pixel vector in n-dimensional space defined by the
image (here the number of bands of each Hyperion image). Pixels with values higher
than this threshold value are not classified.

In this study, SAM was implemented on the Hyperion imagery separately for the
training sites collected by the two selection methods. This allowed the evaluation of
the effect of training points selection method on the SAM-based Hyperion imagery
classification accuracy. In both implementations, a training set of approximately
50 pixels per class was used. All 157 Hyperion bands were used in SAM
implementation with a value of 0.11 radians set as the maximum thresholding value
for all classes. This value was determined following numerous iterations of the
method, using variable thresholds and evaluation of the results in terms of
classification accuracy.

4.2.2. Hyperion object-based classification

In the object-based approach, image analysis consists of two main processing steps,
namely segmentation and classification (Figure 3). Following segmentation, the
resulting objects are intended to be used as primitive image segments, serving as
information carriers and building blocks for further classification, assigned to certain
classes according to their properties. Those include not just the spectral properties
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but also additional properties that describe the objects, such as mean value and
standard deviation of shape descriptors, texture, spatial, and hierarchal neighbor-
hood relations for the objects. The intention behind is always to create user-defined
meaningful objects. Object-based classification was conducted in e-Cognition.
Pre-defined Hyperion bands were used in performing the Hyperion image
segmentation. In addition, a range of Vegetation Indices (Thenkabail e al. 2000)
were computed from the original Hyperion bands and included as additional layers
in Hyperion image segmentation, in order to support the discrimination of the
LULC classes included in our classification scheme. Initially many indices were
computed and their use was examined in developing the object-based classification
such as: Soil Adjusted Vegetation Index (SAVI), Normalized Difference Vegetation
Index (NDVI), Blue-Green, Red-Green, NIR/Red, NIR-Red, Band,;s Band,s3
{Rouse ef al. 1974, Heute 1988). It is worth to mention here that various combination
of the bands Blue (Bands 11, 12, 13), Green {(Bands 18, 19, 20, 21), Red (Bands 28,
29, 30), and NIR (Bands, 55, 56, 57, 58) were used to formulate the pre-mentioned
indices. Finally, a few only were eventually used based on how they assisted in better
separating the LULC classes of our classification scheme, as a result of the
differences in their properties. Those Vegetation Index’s (VI’s) included the NIR-
Red (Bandsg Bandjs), Blue-Green (Bandia Bandjg), Red-Green (Bandye
Band,g), as well as the NDVI. The NDVI was calculated using bands 56 and 29:

Band,, — Band,,

NDVI = ,
Band,, + Band,,

(3)
Moreover, a simple difference between bands 119 and 133 in Short Wave Infra Red,
at wavelength 1335 and 1476 nm, respectively, was introduced and normalized using
the equation below and was subsequently added as an additional layer:

Band,;; — Band,,

SWIR_VI = ,
Band,, + Band,;

4

These two bands were chosen in the SWIR region, at either ends of the first major
water absorption feature, because they were the least noisy bands at either ends,
where the slope between these two points was meant to be used. In addition, to the
above indices, a new VI was introduced that was combing the NDVI and the
SWIR_VI, which was expressed as:

NewVI — NDVI — SWIR_VI , )
NDVI 4+ SWIR_VI

The computation of this new index from the combination of the two indices was
based on the rationale that their joint use can assist in better discriminating the forest
land cover from other land covers. For example, Gong et al. (2003) mentioned that
VIs constructed with bands in SWIR and NIR produce higher correlation with leaf
area index than those defined VIs that use red and NIR bands. This latter index was
also used in the Hyperion image segmentation, because the segmentation process
performed better when it was used, rather than when it was not.

In performing the image segmentation, apart from the specification of the layers
that are included in the segmenting the image, other input parameters also required
to be set. The first is the scale parameter, which is controlling the size of the objects,
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generally defined empirically by a try and error approach. Here following also this
approach, a value of 18 was used ensuring that the resulting objects were larger than
single-pixels, but still representing homogenous areas. Other homogeneity criterion
parameters were also set as follows: color 0.9, shape 0.1, smoothness 0.4, and
compactness 0.6. The Hyperion bands 11, 33, 56, 110, and 191 and the additional
layers NDVI, SWIR_VI, and New VI were given a weighting factor of 3, while the
remaining Hyperion bands and layers were given a factor of 1. Hyperion bands with
weighting of 3 were selected visually, based on high contrasts between the different
land-cover types presented in the scene, and also based on the standard deviation
values. The derivative image objects contained groups of homogenous pixels and in
certain cases individual pixel objects were created.

Following the image segmentation, object-based classification was performed. To
this end, the class hierarchy was created based on the same classification key used in
the pixel-based classification (Table 1). The rule set developed for the classification of
the objects resulted from the segmentation process employing fuzzy membership
functions, feature thresholds and class-related features. Initially, all classes were
identified from one segmentation level and subsequently certain classes were
combined according to their spectral properties in the class hierarchy. The image
was classified using both the nearest neighbor feature space classifier and member-
ship functions. For the first method, the algorithm was trained with the definition of
representative sample objects for each class. The membership functions were created
for those classes that could be easily classified by using discrete membership
functions. All functions were created according only to the spectral prosperities of
the classes.

Classes such as ‘sea’ and ‘snow’ could be easily classified by using membership
functions. The classes ‘rocks’ and ‘bare soil’ were classified also by using membership
functions, but since the ‘bare soil’ class had a variety in its reflectance, two samples
were taken and the Nearest Neighbor classifier was used. Similarly, the ‘Phrygana’
class was also classified using a membership function, but in order to prevent
misclassification with the ‘sparse vegetation’ and ‘alpine vegetation’ classes, two
samples were used with the Nearest Neighbor classifier. The ‘alpine vegetation’ class
was classified using membership function that used the mean of the NDVI ‘sparse
vegetation,” which was alse classified using a function and the ‘not bare soil” and ‘not
rocks’ functions. The ‘cultivated field, ‘olive groves, and ‘broadleaved species’
classes were classified by using membership functions. The ‘broadleaved species’ class
was separated from the ‘cultivated field’ and ‘olive grove’ using the NDVI feature in
a membership function in which it had a higher value for this feature. Finally the
‘pine’ and ‘cypresses’ classes were classified by using the new_WVI feature which
worked effectively in separating conifers trees from other species and vegetation
cover, due to the combination of the NIR and SWIR bands in creating this VI.

4.2.3. Hyperion sub-pixel classification

The procedure used to determine the relative abundance of materials depicted in
multispectral or hyperspectral remote sensing imagery based on the materials’
spectral characteristics is called ‘spectral unmixing’ (Settle and Drake 1993, Adams
et al 1995). In spectral unmixing it is assumed that reflectance of each image pixel is
a linear or a non-linecar combination of the reflectance of each material
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{*end-member’) present in any image pixel. In general, the number of end-members
must be less than the number of spectral bands in order to apply this process. Also,
all of the end-members present in the image should be employed {Kressler and
Steinnocher 1996, Pu ef al. 2008). The result of spectral unmixing is one image for
each end-member, with pixel values between zero and one, representing the fraction
of the original image attributed to the particular end-member. The results obtained
by this method are generally highly dependent on the input end-members.

In this study, a sub-pixel classification through spectral non-linear unmixing
algorithm employing an artificial neural network (ANN) method was applied since it
has been more suitable for the discrimination of more than 10 classes {Carpenter
et al 1999). A logistic activation function was used. Eleven end-members that
represent the classes excluding the sea class were extracted from well-defined training
sites and sequentially used for the supervised classification, as well as being used
initially for unmixing analysis as output nodes. The number of the nodes in the input
layer was set equal to 157, which was the number of the Hyperion bands used in the
classification. One hidden layer was used, as generally it has been shown that it
provides satisfactory classification results {e.g. Mas and Flores 2008, Pu e al. 2008,
Petropoulos et @l 2010). The training rate coefficient determined the magnitude of
the adjustment of the weights, and a value of 0.3 was specified. A training
momentum coefficient parameter value of 0.7 was specified and the training
threshold contribution value of 0.9 was used. The training RMS exit criterion
defines the RMS error value at which the training should stop and the parameter was
set at a value of 0.1. The result of non lincar unmixing of the Hyperion image using
the ANN classifier was 11 images, in which each image was related to one class.

4.3. Hyperion classification accuracy assessment

Error matrices have been computed to control the classification process and to
demonstrate the statistical classification success {Congalton and Green 1999).
Sufficient samples must generally be acquired to be able to adequately represent
confusion between classes and assess which classes are confused. It has been
suggested that a minimum of 50 samples of each class to be included in the error
matrix (Lillesand and Kiefer 1999). However, generally it is possible to calculate the
number of samples per category depending on the target standard error and the
presumed accuracy following equation (Crist and Deitner 2000):

pl —p)’ ©

52

where »n is the sample size, p is the desired accuracy and s is the standard error.
Applying Equation {6) with a presumed accuracy of 60% (p =0.6) results in the most
conservative estimate of sample size of about 30 samples per class needed to meet the
criterion of a standard error of 9%. Herein, for validation purposes 170 sampling
points were collected in total, based on the field visits conducted in our study region.
Subsequently, evenly distributed random points were generated and added to the
reference points group. Points of known reference, obtained based on the basis of our
intensive fieldwork at the study area and the QuickBird imagery visual interpreta-
tion, were added to the sampling points (220 points). The combination of the
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390 points were used for the accuracy assessment process. To ensure consistency in
the comparisons, the same validation points were used to assess all LULC results
from the implementation of the different classification techniques. Particularly for
the case of the sub-pixel classification, intersection between the sampling points and
11 fraction maps was calculated for each map. The result was 11 tables in which each
table illustrates the intersection for every sampling point with a percentage of the
particular land cover class. Then the confusion matrix was formed by considering
reference points occurring in the classified maps of percentage equal to or higher
than 60% as confused points.

5. Results and discussion
5.1. Hyperion pixel-based classification

Accuracy assessment for Hyperion pixel-based classification using the SAM classifier
and the PPI training sites selection technique, returned an overall classification
accuracy and kappa coefficient of 32% and 0.24, respectively. These results suggested
a generally poor agreement of the classification map derived with the reference data
(Table 2, Figure 4). When the training sites obtained from the QuickBird imagery
were used, both the overall accuracy and kappa increased to 48% and 0.41,
respectively (Table 2, Figure 5). Confusion between all classes in the error matrix was
also lower when training sets were selected using the latter method.

With regard to the accuracy of the individual classes, those were usually higher
when the training sites were selected from the Hyperion using the QuickBird imagery
and the training site, compared to when the PPI method was employed. When the
PPI method was used in SAM, individual classes’ accuracy ranged widely from 12%
to 82%, while when the second training sites selection method employed, those varied
between 13% and 100%. In both classifications, the highest class accuracy was
observed in the ‘snow’ class, due to its characteristic reflectance response (Table 2).
When the PPT method was used for training sites selection, the class with the lowest
individual classification accuracy was the ‘olive groves,” which was mostly confused
with the ‘phrygana’ class. Spectral confusion between the two classes was most
probably due to the scarce plantation pattern of the olives, resembling the density of
phrygana bushes. When the field-based training sites assisted by QuickBird imagery
were used in samples selection, the lowest accuracy was achieved for the ‘sparse
vegetation’ class. The latter was attributed mainly to the frequent confusion with the
‘phrygana’ and ‘alpine vegetation’ classes. Notably, when training sites
were identified the confusion between the °‘sparse vegetation’ with the ‘bare soil’
was reduced, in comparison with the training site selection with the PPT method, but
also increased the confusion between the ‘phrygana’ and the ‘alpine vegetation’
classes (Table 2). The lower classification accuracy of the individual classes can also
be partially attributed to the land cover characteristics that produced many mixed
pixels, and hence similar spectral reflectance among many pixels located in different
classes. Spectral variability between individual pixels belonging to one class is partly
attributed to different inclination and aspect of the surface, when those pixels are
scattered around the image.

The overall relatively low classification accuracy by the SAM can be partially
attributed to the spectral characteristics of the classified classes, which lead to the
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Table 2. Classification results from the Hyperion classification using all classification techniques.

Olive Overall
Classes Rocks Cypress Pine Cultivated Phrygana Sparse Bare soil Snow Alpine vg. Broad L. groves Accuracy
SAM techniques and the training sites selected using the pixel purity index (PPI) technique
User 035 0.29 0.26 0.26 0.37 0.27 0.23 0.69 0.53 0.41 0.12
Producer 0.35 024 0.21 0.22 0.50 0.31 0.26 0382 042 0.36 0.14
Overall accuracy 32%
Overall kappa 0.24
SAM classifier and training sites selected using QuickBird imagery and field-collected data
User 0.55 035 0.94 0.70 0.48 0.13 0.39 1.00 0.37 0.53 0.36
Producer 0.55 0.40 0.58 0.62 0.48 0.15 0.46 091 0.34 0.52 0.43
Overall accuracy 48%
Overall kappa 0.41
Non-linear spectral unmixing classification
User 0.80 0.71 0.70 0.89 0.38 1.00 0.41 0.65 0.30 0.79 0.32
Producer 0.39 0.40 0.74 0.46 0.71 0.08 0.40 1.00 0.32 0.70 0.57
Overall accuracy 52%
Overall kappa 0.46
Object-based classification
User 0.94 0.90 0.97 0.73 0.80 0.80 0.81 092 0.97 0.71 0.71
Producer 0.94 0283 0.68 0.86 0.77 0.92 0.86 1.00 0.84 0.82 0.89
Overall accuracy 83%
Overall kappa 0.81
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Figure 4. Hyperion pixel-based classification using training sites collected by the pixel purity
index (PPI) technique.

similar spectral reflectance among many classes in the test region. This results to
spectral confusion in pixels, leading potentially to classification errors for a spectral
class by this method (Shrestha e al. 2005). The confusion between the ‘phrygana’
class and the ‘sparse’ and ‘alpine’ vegetation mostly occurred in the areas with less
dense phryganic cover or where there were a lot of rocks amongst the phryganic
vegetation. Similarly, most of the confusion between the ‘broadleaved species’ class
and the conifers trees classes ‘pine trees’ and ‘cypress trees’ occurred in the areas
where less dense broadleaved trees were found.

One of the main disadvantages of SAM is that it does not consider the sub-pixel
value, which theoretically could significantly reduce possible mixing problems. The
PPI method is a mathematical technique that depends on the values of bands with
the least MNF, and also requires pure end-member spectra to be collected.
Identification of ‘pure’ pixels, containing representative spectral signatures for a
particular class, appears to be more efficient when visible interpretation of very high
spatial resolution data are available, compared to the automated PPI method. The
uncertainty behind the results of the PPI process appears to be more profound when
a high degree of ‘mixed’ pixels is present in the Hyperion image.

Falcone and Gomez (2005) used the PPI technique to extract end-members from
the Hyperion scene, using the SAM classifier for the classification of three
impervious surfaces and reported high classification accuracy results. In their study,
however, authors applied the PPI technique to collect 16 end-members representing
diverse land cover types, mostly different vegetation types. More recently, Binal and
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Figure 5. Hyperion pixel-based classification using training sites selected from Hyperion
imagery assisted by the QuickBird imagery and field-collected spectra.

Krishnayya (2009) applied SAM with Hyperion imagery using the PPI technique for
training sites selection for classifying tropical tree species in a region in India.
Authors reported an overall classification accuracy of approximately 60%. The latter
was attributed by the authors to the uniformity of the forest cover in the area, which
was reducing the effect of within-pixel spectral variability present in more
heterogeneous terrains.

5.2. Hyperion non-linear spectral unmixing assessment

Examples of the thematic LULC classes derived from the method implementation to
the Hyperion imagery are illustrated in Figure 6. The overall classification accuracy
of sub-pixel classification using the ANN algorithm was 52% (Table 2). Overall
accuracies of individual classes ranged from 8% to 100% with the highest individual
overall accuracy achieved in ‘snow’ class, and the lowest individual class accuracy
was with the ‘sparse vegetation,” due to the confusion with the ‘phrygana,’ ‘alpine
vegetation,” and ‘olives grooves’ classes. The most frequent confusion was observed
between the ‘phrygana’ class with the ‘cypresses,” ‘sparse vegetation,” ‘bare soil,” and
‘alpine vegetation’ classes, followed by confusion between ‘olive groves’ with
‘cultivated fields,” ‘phrygana,” and ‘alpine vegetation’ classes. Moreover, a noticeable
confusion appeared to exist in the ‘bare soil’ and ‘rocks’ classes used.
‘Alpine vegetation’ and ‘olive groves’ classes were overestimated in comparison to
the results returned for those classes by the implementation of the other classification
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Figure 6. Abundance images result from the spectral unmixing based on Artificial Neural
Network (ANN) analysis. Each of these images showed the percentage of that class estimated
from the method, where darker gray tones express higher percentage, while the lighter tones a
lower percentage.

techniques. A comparison with the SAM classification results (Table 2} reveals that
similar misclassification occurred. However, classification results obtained from
spectral unmixing are not directly comparable to those obtained by either pixel- or
object-based classifications also applied herein. Other studies exploring the
combined use of ANN classifier with Hyperion have also generally reported a
decrease of the overall classification accuracy and classes’ misclassification as a result
of the training sites accuracy {Carpenter ez al. 1999, Walsh er al. 2008). For example,
Pignatti er al (2009), using a linear unmixing classification approach, also
demonstrated the ability of Hyperion imagery for discriminating land cover types
in a highly complex natural ecosystem in Italy.

The higher overall classification accuracy of this method in comparison to the
SAM results reported earlier is most likely due to the fact that this method is
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assigning for each pixel values of the proportions of the end-members considered in
the classification key. The latter results to diminishing possible spectral mixing effects
between spectral similar classes, enhancing classification accuracy. A key advantage
of spectral unmixing in comparison to pixel-based classifiers such as SAM, is that
this provides more information regarding each class, in which the spatial extent of
each class is described in a separate image, allowing to describe the cover density of
each land cover class. What is more, the fraction images that are computed can be
directly related to biophysical characteristics and thus, can potentially assist in
improving classification accuracy (Lu et al. 2003). Specifically the incentive for using
ANN in the spectral unmixing used in this study has been based on the fact that it
has certain advantages in comparison to other techniques, since (1) it is able to learn
complex patterns, allowing them to perform well, particularly when the feature space
is complex and the source data has different statistical distributions, (2) it can easily
adapt to different types of data and input structures facilitating synergistic studies,
and (3) is able to perform supervised classification using less training data than the
maximum probability (Dwivedi ef al. 2004, Mas and Flores 2008).

5.3. Hyperion object-based classification

The object-based classification using the Hyperion imagery clearly outperformed
both the SAM pixel-based and the spectral unmixing classification, returning an
overall accuracy of 83% and a kappa coefficient of 0.81 (Table 2, Figure 7).
Individual classes’ overall accuracies ranged from 68% to 100%. Similar to the results
from the previous classification techniques, highest classification accuracy was
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Figure 7. The Hyperion object-based classification for our study site.
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achieved for ‘snow’ class, due to its distinct spectral response in comparison to that
of the other classes included in our classification scheme. The ‘alpine vegetation’ was
among the most accurately classified classes with 97% overall accuracy. The
confusion in the ‘alpine vegetation’ class was reduced, in comparison to the pixel-
based analyses, owing to the use of the membership functions in the classification
process. The main confusion in ‘pine trees’ was with the ‘broadleaved species’
particularly in the areas with large and dense pine trees. In addition to the ‘pine
trees,” the ‘rocks, ‘cypress trees,” ‘snow;” and ‘alpine vegetation® classes all had kappa
coefficient values higher than 0.88, also representing good agreement with the
reference data. The segmentation process that preceded the object-based classifica-
tion which also included the use of different vegetation indices as additional
segmentation layers significantly reduced the confusion among the classes, in
comparison to the pixel-based classification results obtained earlier. However, slight
misclassifications still occurred, particularly in the transition zones between classes.
In many cases interspersed patches between two classes were misclassified as a third
class, due to that segmentation delineated the object boundaries. This can be
attributed largely to the spatial resolution of Hyperion in combination to the
heterogeneity of the land cover in our study area. On the other hand, the confusion
between the ‘broadleaved species’ and the ‘cultivated field’ classes was due to
the membership function used to separate these two classes.

Our results are also in agreement with other studies comparing the performance
of object-based classification versus pixel-based algorithms (including SAM), using
however, multispectral imagery from sensors like QuickBird {Castillejo-Gonzalez
et al. 2009) and ASTER (Yan ef al 2006). Those studies have also reported object-
based method producing higher overall classification accuracy than pixel-based
methods. Wang ef ol (2009) explored the potential use of object-based classification
with Hyperion data for land cover mapping of a region in China, using eight classes
in the classification key, reporting an overall accuracy of 88.3% and a kappa
coefficient of 0.86.

All in all, the results showed that object-based classification combined with the
Hyperion imagery generally provided the most accurate classification in comparison
to all other techniques applied herein. Obviously, the segmentation process,
combined with contextual information coming from image ‘cbjects,” substantially
assisted the achievement of high accuracy classification results, outperforming the
other classification methods. Segmentation resulted in aggregating pixels into
objects, which also helped reducing the pixels” variability and thus the ‘salt and
pepper effect,” which is often more pronounced in pixel-based classification (Yan
et al. 2006). In object-based classification only adjacent spectrally similar pixels are
combined into a single object due to the low spectral variance on one hand and the
high variance with the neighboring objects on the other hand. Moreover, the scale,
compactness and shape parameters play important role in determining which pixels
and the number of those to be inherited in an object, hence producing more
meaningful pattern and distribution of the LC classes. Various investigators have
also underlined as a key advantage of the object-based over pixel-based classifica-
tion, the fact that, in addition to the spectral information, additional information on
image data (e.g. object size, object complexity, texture and spectral difference to
neighboring objects) is available, allowing more accurate mapping and achieving
higher classification accuracy {Benz ez al 2004, Fung e al. 2008).
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6. Conclusions

The main objective of our study had been to evaluate the combined use of different
land classification approaches with Hyperion hyperspectral imagery for performing
LULC classification of a region representative of a typical Mediterranean landscape
located in the island of Crete, in Greece. A further objective had been to investigate
the potential added-value of the use of very high spatial resolution QuickBird
imagery as well as of field-collected training samples for improving the LULC
mapping from Hyperion imagery classification. LULC was derived from the
Hyperion imagery using the SAM pixel-based technique, the object-based classifica-
tion, and the non-linear spectral unmixing based on ANN methods.

Hyperion imagery combined with SAM and the PPI technique to collect training
sites returned the lowest classification accuracy among all techniques (32%). When
SAM was implemented selecting training sites directly from the Hyperion imagery
with the assistance of the QuickBird imagery and the field-collected training samples,
overall classification accuracy was somewhat improved (48%). Non-linear spectral
unmixing classification applied using the ANN achieved a marginally higher overall
accuracy of 52%. Object-based classification produced the highest overall accuracy
of 83% in comparison to all other classification techniques applied herein. The latter
was attributed to the combined effect of the contextual information of image
‘objects’ developed from the image segmentation, and the rich spectral information
content of Hyperion imagery Yet, all classification techniques applied herein
appeared to suffer from the relatively low spatial and radiometric resolution of
Hyperion, which also affected the spectral separation among the different LULC
classes. However, the object-based technique was the least affected by these factors,
mainly due to the segmentation process and the availability of object-related
characteristics in addition to the spectral information. Finally, one could argue
that the difference in time period of Hyperion data, QuickBird data, and ground
spectral observation could be regarded as a major issue and may have caused some
inaccuracies in the classification accuracies obtained. With regard to this, we would
expect this factor could only have a small bearing as an error source, given that
minimal changes would have been expected to have occurred in vegetation types
phenology during this small period of time difference in the acquisition between the
different datasets.

As our results have been based on a single Hyperion imagery analysis, those can
be regarded as preliminary. Future work needs to be conducted in analogous and
dissimilar implementation conditions that will allow deriving conclusive results as to
the added value of Hyperion in LULC mapping when combined with advanced
classification approaches, such as those used in our study. The latter, can be of
particular importance from an operational perspective, as it can potentially allow
obtaining efficiently, cost-effectively, and un-destructively accurate LULC cartogra-
phy over large, often inaccessible otherwise regions.
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Abstract State forest administrations in Central Burope have to adapt to future
climatic and socioeconomic conditions. This results in new demands for up-to-date
and precise forest information—especially with regard to the increase of forest
damages by natural hazards. Remote Sensing techniques are appropriated for
delivering information in support of such tasks. We present details of a research
project that focuses on the demonstration of the potential of satellite data for forest
management planning and disaster management. Integrated in the over-all concept
of a decision support system (DSS) for the forest—wood chain (Entscheidungs-
Unterstiitzungs-System Forst-Holz, EUS-FH), the frame conditions for a ‘Remote
Sensing based Inventory and Monitoring System’ for the forest-wood chain are
developed. Particular focus is on investigations towards synergistic and comple-
mentary use of the two German satellite systems RapidEye and Terra SAR-X. The
comparison is done on base of the accuracy of parameter derivation with each of
the systems. The results deliver a couple of arguments for combined multispectral
and SAR data use for monitoring and fast response situations in case of sudden
calamities. But it reveals as well that the references against the results should be
compared and, at the end, which represents the data layers to be updated, do not
always fit from both, the semantic meaning e.g., the definition of ‘forest’ to
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cartographic differences, and the representation of object categories. Harmonisa-
tion of definitions and categories to be mapped is needed.

1 Introduction

Worldwide forest resources are affected by global change phenomena. In con-
nection, Central Europe state forest administrations have to adapt to future climatic
and socio-economic conditions. The Bavarian forest sector is faced with a situation
where climate change effects seem to destabilize forest ecosystems, the socio-
economic demands on the ressource “forest” are continuously increasing and
budgets for managing forests are cut. Significant biotic and abiotic calamity fre-
quency increases are atiributed to climate change. More than 30 % of the annual
waorkload of a forest enterprise in Bavaria is in response to such umpredictable
events. The different functions of a forest are more and more understood as social
benefits and claimed by the society in the sense of stakeholder rights. In addition,
national and intemational reporting duties are to be fulfilled by the owners and/or
governmental bodies. To cope with all these diverse tasks a decision support
system (DSS) (Entscheidungs-Unterstiitzungs-System Forst-Holz, EUS-FH) was
designed for the forest-wood chain. An assessment study performed to figure out
the needs of forest practiioners in forest management resulted in a list of
parameters. The highest relevance was assigned to the parameters forest area,
gaps, forest border length, forest changes, tree species groups, stand/tree height,
and forest densities. These parameters should be updated timely for a sound
decision support system (Felbermeier et al. 2010).

Amongst others, a major trigger of the activities toward such a DSS is the
improved quality of the new class of high-resolution satellite imagery. Hence, cur-
rent research and development deals with the opportunities of a ‘Remote Sensing
based Inventory and Monitoring System’ for the Bavarian forests. The concept is
based on the idea of integrating existing data offered by official sources such as: the
Bavarian Surveying and Geomformation Administration (LVG), the Bavarian State
Forest Administration and others along, with remote sensing data as the most actual
information layer. The geodatabases provide the ‘a-priori’ information used for
restricting the solutions of the image analysis process and the results are used to
update these databases. The system should be able to steer management operations
and especially to suppoert management decisions at the strategical/tactical level of a
forest enterprise. At the final stage, the information system should contribute to
facilitate the diverse national and international reporting duties as well.

This general approach became possible due the improved capabilities of the
new generation of high-resolution and fast-revisiting remote sensing satellite
systems {e.g., RapidEye, WorldView-2, TerraSAR-X, Cosmo-SkyMed soon
ESA’s Sentinels). The presented research is funded by the Federal Ministry of
Economics and Technology, within a program of the Space Agency of the German
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Aerospace Center (DLR). The program aims to promote the synergistic use of
optical and radar satellite data with special emphasis to the new German systems
RapidEye (RE) and TerraSAR-X (TS-X). Taking into consideration the high
revisit frequency and the large area covering capability of RE, an annunal update of
the forest databases for whole Bavaria is likely possible. The clouds and daytime
independent operation ability of the TS-X system should help, especially in the
calamity case to identify the affected areas. Such a fast response capability should
allow starting preventive measures within a short time and such reducing the
following damages and economic losses. Apart from these basic expectations, the
determination accuracy of forest parameters with each of the systems is in the
focus of the project. From multi-seasonal RE data, an improvement of tree species
differentiation is expected. While the prospect of high spatial resolution TS-X data
is an improvement in structure parameter determination such as heights, canopy
roughness, border and gaps or even single tree detection. Within the present
project stage, the under development system components should demonstrate the
continuous data flow required for the future operational system.

2 Previous Work

Forest mapping by remote sensing is done from the global to the local scale.
Systems, mapping scale and aims are different. Remote sensing as an operational
tool is established on the global and the local scale. On global scale, particular
parameters like the forest coverage and the derived variables such as: biomass,
LAT, CO;-sinks and radiation budget, etc. are of high interest. The target is either
the small scale documentation of forested areas or the derivation of input variables
for models; the scale is of 1:250.000 and less.

On local scale, very high resolution {VHR) systems are required. The data
usage is primarily for orientation (orthophoto) and in support of management
actions. Aerial photographs and since a couple of years LIDAR (Light Detection
and Ranging) are the most frequently used systems, followed by Quick Bird type
satellite data. Mapping scales in the range of 1:10.000 and larger are targeted.

In between, at the regional to continental level with typical mapping scales of
1:25.000—-1:250.000, the implementation of remote sensing methods in operational
applications is still missed, at least in Germany. The concept of the 3rd National
Federal Forest Inventory 2011/12 for Germany is not considering remote sensing
data as information source. Nevertheless, there are a couple of studies demon-
strating the potential of using the high resolution data type, e.g., for continental
mapping purposes (FIRS, Corine} but for national inventories (2nd National Forest
Inventory of Germany) or FAO’s AfriCover concept.

This section provides an overview on forest related information extraction
concepts and methods. First, a brief overview about standard Bavarian State forest
nventory concept is given, followed by optical and microwave based mapping
methods.
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2.1 Bavarian State Forest Inventory Concept

The Bavarian State forest administration inventory concept is based on a perma-
nent regular samiple point grid net. The inventories should provide an overview
over the area managed by an enterprise. The envisaged update frequency is of
about 10 vears, an expansion up to 12-15 years is not a singularity. Each inven-
tory point represents a forest area of 2-4 ha. The sample point area is differenti-
ating an inner circle of 31,25 m?, a mid-circle of 125 m® and an outer circle of
500 m”. Inside the inner circle all trees with a diameter breast height (dbh) <11 cm
are registered, in the mid circle trees with dbh between 11-29 cm and in the outer
circle all trees with dbh >29 cm. At least the parameter tree species, dbh, tree
height, crown closure, timber stock, stand structure are measured or registered and
the regeneration is estimated (Anonymous 2001; Knoke et al. 2012)

Typically, one year after an inventory the forest operations for the next period
are planned. For forest planning, orthophotos are used for steering the ground
survey. The produced management maps display the established new stand bor-
ders, forest operations planned for the next period, forest functions and special
treatment areas as well as single trees like standards, seed trees, clearing rests. Tree
species share per stand, age, condition, etc., are mentioned in the tabular records
and associated comments. Interim inventories for forest status assessment, wildlife
damages, vegetation status assessments, efc., are performed supplementary.

2.2 Forest Mapping by Very High Resolution Systems

Traditionally, in Bavarian forest, aerial photographs are used in support of
inventories, for management planning and monitoring. In most cases, aerial pho-
tographs are visually interpreted, in special cases by using 3D analyser for a map
output (Rall and Martin 2002; Heurich 2006). In practice, orthophotos are mostly
used for orientation and direct decision support in the field. Since a couple of years
digital analytical work stations are used to extract forest relevant parameter for
special cases like inventory and monitoring of Natura 2000 plots. As well as, for
forest status assessment and mountain forest monitoring (Seitz et al. 2011; Waser
et al. 2008). The LVG is covering the whole area of Bavaria with digital aerial
photographs every three vears.

Since about two decades, LIDAR systems are in the focus of forest research.
LIDAR is the most accurate system in tree height and crown size determination.
Ag full waveform system, a tomography like insight into forest canopies is pos-
sible, delivering information on the vertical structure of forests (Heurich 2006,
Reitberger et al. 2008a, b). Recent research presented solutions for single tree
identification even when crowns are interlaced (Reitberger et al., 2009). The 1 m,
2 m and 5 m grid digital terrain model (DTM) for Bavaria is based on LIDAR
data. An update of that data base is not planned at present.
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In the concept of the EUS-FH DSS, digital aerial photographs are used for base
inventories of the Bavarian forests. Forest heights are derived by difference
between the (VHR) LIDAR DTM and a digital surface model calculated from the
digital aerial photographs of the LVG. VHR satellite data of the QuickBird type
are not considered presently for forest parameter extraction by the Bavarian state
forest administration.

2.3 Mapping by High Resolution Optical Systems

In general, high resolution optical systems means, the 5-30 m ground resolution
category {e.g., Landsat type systems). The aims of forest related evaluations at this
interim scale might be structured into: classification of forest cover (area), esti-
mates of forest structure {tree species composition, age, height, etc.), forest change
detection and forest growth simulations (management tool).

The trend in data analysis is toward parameters assessment. While typical
classification results are strongly dependent on input data, classification method
and operator experience, parameters may vary in accuracy of determination but the
information is comparable. Further, a forest description on base of parameter is in
line with forest management data and such facilitate modeling approaches like
simulations of forest growth Pretzsch (2002) or calamity distribution dynaniics
{(Kautz et al. 2011).

The pixel sizes of the high resolution category data type do not allow single tree
detection and have always to be treated as mixed pixels. Fehlert (1984) by com-
puter simulation and Kenneweg et al. (1991} by empirical experiments proved that
in the range of the RapidEye ground resolution of 6,5 m a pixel wise classification
must fail because of the mixed pixel problem. Object oriented analysis methods
bypass this problem by using pixel aggregations as base objects for categorization
{deKok et al. 1999; Schneider et al. 2000, Tiede et al. 2006, Eckert 2006). Already
deKok et al. (1999) postulated, that for a monitoring system under Bavarian State
Forest conditions it may be sufficient to rely on high resolution data to detect
changes. Precondition is an established data and comparison base. Eckert (2006)
demonstrated for a test site in Argentina with forests of similar complex structure
like the ones we have to deal with in Mid-Europe, that high resolution data of
different origin {Aster, Landsat) are appropriated to extract forest parameters with
an acceptable accuracy for regional surveys. In Scandinavian countries, in Canada,
etc. with extensive forest management systems the usage of high resolution data is
standard.

In the present study, high resolution optical data are provided by Rapid Eye.
The data are limited on the visible (VIS) and Near Infrared (NIR) spectral range,
but firstly offer the option of multi-seasonal evaluations with a space operating
system. The option of repeated observations under slightly changing appearances
over the objects of interest is expected to bring advances in tree species identifi-
cation and parameter determination.
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2.4 Mapping by Microwave Systems

Synthetic Aperture Radar (SAR) remote sensing is an active imaging method
based on microwave signals, which is—in contrast to optical remote sensing—
independent of sun-illumination. Furthermore, the amplitade of the received sig-
nals is nearly free from atmospheric clutter {clouds, fog, etc.), so that SAR
facilitates mapping tasks also under worse weather conditions. The high resolution
of the new SAR satellite sensor generation (up to 1 m ground sampling distance)
and the possibility of obtaining repeat and single-pass interferometric SAR {In-
SAR) data from multiple images make this data attractive for the extraction of both
radiometric and geometric/structural parameters. Hence, SAR data are commonly
used for purposes of classification, elevation extraction, and change detection.

Approaches of classifying forest areas using SAR data utilizing the possibilities
of SAR polarimetry are given in Sato and Koike {2003) and Lee et al. (2003). The
combination of SAR image data with optical or hyperspectral image data and
Lidar data are investigated in Volden et al. {1998), Zhang et al. (2008), Hilbert
et al. (2010), and Ackermann et al. (2010). Other evaluations detecting forest areas
treat the analysis of SAR texture (Kourgli and Belhadj-Aissa 2009). In Kirscht and
Rinke (1998), a method of reconstructing the 2.5 dimensional structure of elevated
objects (e.g., buildings and vegetation like trees and forest) is described by uti-
lizing their radar shadow length in aithome SAR image data.

Lemp and Koch (2009), analyzed forest areas by using TerraSAR-X image data.
They focused on the problem of separating forest from grassland, which show similar
backscatter intensity and statistics dependent on surface roughness, incidence angle
and look direction. Furthermore, they state that an interferometric evaluation is
impossible since the TerraSAR-X data show high decorrelation in forest areas.
Therefore, a combined analysis of multi-frequency data (e.g., L-band and X-band
images)is recommended. This problem of nSAR and PollnS AR phase decorrelation
in repeat-pass datasets was also stated by Koch (2010), whereby for example, single-
pass interferometry, facilitated by the TanDEM-X mission, could solve this problem.

InDe Zan et al. (2009) multi-baseline InSAR data of thisnew TanDEM-X mission
were simulated to show the high potential for height extraction. Already with few
interferograms promising results of extracting height profiles in vegetated areas were
achieved. One further method extracting tree and forest heights is provided by SAR
tomography, for example by using airborne data (Reigber and Moreira 2060) or an
upcoming satellite mission (Cloude and Papathanassiou 2008).

In this study, we use first high resolution repeat-pass TerraSAR-X data alone.

3 Parameter Extraction from RE and TS-X Data

To comsider various growth conditions the study covers different growth regions of
Bavaria (Fig. 1).
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Fig. 1 Test site locations across the growth zones of Bavaria

The focus of the paper is on image analysis. The aim is to show which kind of
forest parameters are extractable from the electro-optical RE data and the
microwave TS-X data respectively and which accuracies are retrievable with each
of the systems (complementarities). Due to the fact that data take opportunities for
the first observation period 2009 fit neither the time frames nor the areas, the
present paper highlights solely examples demonstrating the approach. Accord-
ingly, the image analysis starts by independently processing the multi-spectral and
radar data.

Due to the high geometric and orbital accuracy and resolution of the data, the
prospect in our case is an improvement in forest structure parameter determination
like heights, canopy roughness, border and gaps or, in special cases, even single
tree detection. Improvements in tree species identification are expected by the
multi-seasonal imaging option of RE. The key in this case are the changes due to
phenology. The expectations are toward fingerprint like profiles of tree species
types.

The presented results have to be seen as the entrance step for tree species
differentiation. Solely the assessment of the first set of the above listed parameters
is addressed. Examples are shown for the assessment of the parameter forest area,
border length, gaps and forest tree groups ‘coniferouns’, ‘broadleaved” and ‘mixed’
as well as for forest height estimations and change detection options. These
parameters are controlled by the pixel size and may be considered as ‘stable’ or
‘static’, at least over the period of one season.
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Table 1 Geodata provided by Bavarian State authorities used for verification

Geodata Date Producer

ATKIS-Basis-DLM (Amtlich-Topographisch Kartographisches Informations 2009 LVG
System, official topographic-cartographic information system)

TN (Tatsédchliche Nutzung, land use data) 2010 LVG

FUK (Forstliche Ubersichtskarte, forest overview map) 2009 LWF

3.1 Hypotheses

Hypothesis 1: Forest management relevant parameters are derivable from Rapid-
Eye and TeraSAR-X data. The hypothesis is tested on base of multi-seasonal
RapidEye and TerraSAR-X data from up to five test sites in different growth
regions of Bavaria.

Hypothesis 2: The combination of both data sets improves the forest deternii-
nation. Each of the sensors has specific advantages in parameter extraction. The
hypothesis is tested by combining parameter derivable exclusively from each of
the sensors in a synergistic manner.

Hypothesis 3: The complementarities of the two sensor concepts facilitate fast
reactions in the disaster case. The hypothesis is tested in the frame of change
detection studies by comparing the potential of detecting structural changes with
both systems.

3.2 Data

3.2.1 Geodata

Geodata are provided by the Bavarian State Institute of Forestty (LWF), the
Bavarian Surveying and Geoinformation Administration (I.VG), and the Traun-
steiner Stadtwald community forest administration. The data layers used for first
verification purposes are listed in Table 1.

The ATKIS-Basis-DILM is a digitized land cover model based on the Bavarian
topographic map 1:25.000 with an accuracy of + 3 m (Katzur and Franke 2007).
It has the same information about land cover use as the map TN, which is based on
cadastral data and digital orthophotos. FUK is a product of the LWF and shows the
property pattern of state, private and municipal forests of Bavaria.

3.2.2 RapidEye Data
The RapidEye satellite constellation consists of five satellites carrying on-board the

push broom sensor Jena Spaceborne Scanner JSS 56. Each sensor is capable of
collecting image data in five distinct bands of the electromagnetic spectrum: Blue
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Table 2 RE images of the five test sites for five different phenological stages

Test site\phenology 2nd 3rd 4th 5th 1st
Traunstein er Stadtwald  17.05.2009  29.07.200¢ 07.09.2009  23.09.2009* 11.05.2010
01.08.2008
Bayerischer Wald 23.05.2009 01.08.200% 01.09.2009 27.09.2009
15.08.200%
Freisinger Forst 20.05.2009  27.07.200% 22.09.2009*  22.04.2010
Oberammergau 20.05.2009  27.07.200% 20.10.2009*  29.04.2010
Iphofen/Steigerwald 17.06.2009 24.08.2009 23.09.2009* 15.04.2010

* images with large cloud coverage

{440—-510 nm), Green (520-590 nm), Red 630-680 nm), Red-Edge (690-730 nm)
and Near-Infrared (760-880 nm). The dynamic range is covering 12 Bit, the groumd
sampling distance 6,5 m, resampled to 5 m pixels. At 75 km swath width, this
comstellation offers large area coverage and a frequent revisit interval of 2-5 days.

Radiometric and geometric corrected level 3A data were ordered to cover each
test site at least five timies across the vegetation period from spring to autumn. The
delivered data sets for the 2009 vegetation period are listed in Table 2. The second
vegetation period to be analysed was planned for 2011.

3.2.3 TerraSAR-X Data

SAR data were provided by the German TerraSAR-X satellite system. Due to the
daylight independence and the nearly all-weather capability of radar systems the
acquisition chance depends more on system workload than on weather conditions.
The test site specific image parameters are sununarized in Table 3.

Hence, we focused first on the recording of repeat-pass images to allow InSAR
analysis and second on a temporal overlap with the RapidEye acquisitions to
support the fusion purpose. The SAR images are recorded in Spotlight Mode, in
HH polarization, with a wavelength of 31 mm (X-Band}. The incidence angle o
varies between 27 and 49 degree and the geometric slant range resolution is about
1.2 m. In addition to the 15 images of 2010, for change detection purpose, new
acquisitions in 2011 and 2012 are planned.

3.3 Methods and Results

3.3.1 Pre-processing of RapidEye Data

The multi-seasonal image analysis to be performed with the RE datasets requires a
precise georectification as well as an atmospheric correction at the highest possible
level. The accuracy of the geometric correction of the images was checked, and
most of the images were spatially matched together in each test site. However,

151



Appendix: Publication 2

G0 T. Schneider et al.

Table 3 Summary of test site specific TerraSAR-X image parameters

First acquisition ~ Repeat-pass interval 8 Orbit
Traunstein Stadtwald — 20.05.2010 11 days (2 img.} 30° Ascending
Bayerischer Wald 23.05.2010 11/22 days (4 img.) 42°/48°  De-fascending
Freisinger Forst 30.05.2010 11 days (2 img.} 49° Ascending
Oberammergau 02.06.2010 11 days (3 img.} 27°/33° De-/ascending
Iphofen/Steigerwald 16.06.2010 11 days (4 img.} 33° Ascending

some of the images that did not match were corrected by applying specific amount
of shift in both direction (easting and northing). The final achieved RMSE is below
0.8 pixel. The atmospheric correction was applied for all images in each test site,
by using ATCOR 3, implemented in PCI Geomatica 10.3.

3.3.2 Processing of RapidEye Data

To extract forest parameters from RE data an object-oriented analysis technique
was employed using eCognition Developer 8 program of the Trimble Company
(Baatz and Schipe 2000, Schneider et al. 2000). Two levels of segmentation were
created, the upper level to delineate the forest areas and the lower level to extract
the tree species groups. For the upper level of segmentation, scale parameter of 60
was chosen, while for the shape and compactness parameters 0.3 and 0.2
respectively. For the lower level, the parameters were set to 15 for scale, 0.2 for
shape and 0.6 for compactness. In addition, layer weights were set to 5 for the NIR,
3 for the red edge, green and blue bands, and 1 for the red band.

The second step is the classification of the created objects. The set of features
for classification was selected by the help of the feature space optimization tool
implemented in eCognition. The first step of the hierarchical classification rule set
was to separate the urban areas and the water bodies, by analyzing the NDVI and
NIR layers in the upper level. Then the forest areas were classified as described in
the following subsection. Afterwards, the lower level was segmented and classified
into deciduous, conifercus and mixed forest stands.

3.3.3 Parameter Extraction from RapidEye Data

Forest Boundaries (border length and area): Due to the different land use and owner-
ship of Bavarian landscape, the task to delineate the forest boundaries is of great
importance. Within the study we tried thatfore to figure out which phenological stage is
hest suited for a forest boundary determination and, second, which is the improvement
by a multi-seasonal analysis. Forest masks were created for each study area from each
mono-temporal dataset, as well as from the combination of all the images multi-
seasonal analysis. For the extraction of the forest areas in the mono-termiporal analysis
the layer of brightness, NDVI and the ratios Blue/Green were selected. While in the
multi-seasonal analysis the brightness and the ratios Green/Blue were used.
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Table 4 Error matrix of the RE multi-seasonal forest mask calculated with different GIS-layers
of different administrations in Bavaria

Error matrix Overall accuracy (%) KHAT
ATKIS-Basis-DLM 94.69 0.89
™ 8438 0.88
FUTK 91.35 0.82

Table 5 Overall accuracy of mono and multi-seasonal RE data takes evaluations for each
parameter, subset Freising test site

Parameters Overall accuracy
Mono-temporal seasons Multi-temporal (%)
22.04.2010 (%) 20.05.2009 (%) 27.07.2009 (%)

Forest area 95.15 90.86 94.56 54.69

Gaps 98.82 57.92 98.48 8511

Group of tree species 67.87 66.11 69.71 67.13

The first attemipt to verify the evaluation success on base of the forest man-
agement maps was not successful. Forest management maps are produced to
support production, are restricted on enterprise areas and differ in content, accu-
racy and actuality. Nevertheless, with regard to a future operational phase the
result assessment should be performed on basis of official map sources. Maps with
forest area layers are produced by different authorities. The maps finally used for
these comiparisons are listed in Table 4.

The result of the error matrix between ATKIS-Basis-DLM, TN and FUK
illustrate that the overall accuracy of ATKIS-Basis-DLM is the best, quite close
followed by TN. Fig. 2 shows the comparison of RE forest masks [a, b, c] of
different vegetation stages. The combined or multi-seasonal evalunation [d] deliv-
ered the most accurate forest mask [f]. A visual example of the fitting of the
produced RE masks with the ATKIS-layer is shown in examples [e, f].

Extraction of Gaps: There are two forest gap types to be considered. Permanent
unstocked areas e.g., wood storage and short term gaps due to clearance but
calamities (storm throw, bark beetle attack, etc.). Bspecially the detection of the last
category of gaps is of great importance for the DSS. The rule-sets developed for
forest area determination have been expanded for a gap assignment rule (...sur-
rounded by...). The evaluation of gap mapping success proved to be difficult. In
general, there are no records on temporary gaps after clearings or disasters. Identi-
fication and delineation of gaps is such producing a new information layer. The
results of the comparison against the ATKIS-Basis-DLM are displayed in Table 5.

Classification of Forest Types: The mono-temporal and multi-seasonal classi-
fication of the lower level of segmentation used the layers of Near-Infrared (NIR)
and NDVI for the separation between the coniferous and deciduous tree stands.
After first iteration, many objects were still unclassified due to the existence of the
mixed stands in the area. Visually, most of these objects were identified as mixed
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Fig. 2 Result of forest boundary extraction using RE image overlaid with mono and multi
temporal extracted boundaries: forest boundaries from the images with date 22.04.2010 (a),
20.05.2009 (b), 27.07.2009 (c), RE image form 27.07.2009 overlaid with mono and multi
temporal (d), RE image form 27.07.2009 overlaid with mono and multi temporal forest mask and
ATKIS-Layer (e), orthophoto overlaid with multi temporal boundaries and ATKIS-Layer (f)

forest or shaded areas. Eventually the shaded areas in the forest were classified by
using the NDVI layer value into mixed forest and streets in the forests that was
later on excluded from the forest area Fig. 3a.

As post classification step, the forest type classifications were grouped within
the state forest stands borders in GIS. Whereas, the classification result was tab-
ulated within the state forest stands borders using ‘tabulate area’ function in zonal
tool in Spatial Analyst Tools of ArcMap environment. The result was a detailed
description for each stand. Figure 3b shows the percentage of the deciduous and
coniferous trees within each stand.
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Fig. 3 Multi-temporal classification for the main tree species groups (a), and Forest stands with
the percentage of deciduous trees in each stand according to the forest management records (b).
Freising test site

The different group of tree species; coniferous, deciduous and mixed forest tree
groups were classified and compared with the ATKIS-Basis-DLM in an error
matrix.

3.3.4 Evaluation of Parameter Extraction Success

According to the results of the official GIS-layer assessment, the ATKIS-Basis-
DLM forest layer was chosen for verifying the performance of the mono- to multi-
seasonal forest mask and the accuracy of the parameter extraction (Table 4). For
this task an error matrix (Lillesand et al. 2004) was generated with a point raster
for the entire study area in Freising, with a point spacing of 50 m (total points
15928) (Straub et al. 2008). Table 5 gives an overview about the accuracy of the
parameter determination for each mono and the multi temporal dataset.

The overall accuracy for the parameter forest area shows the highest agreement
with the ATKIS-Basis-DLM forest layer for the image from the 22.04.2010
(Table 5). The generated multi-seasonal mask and the mask from the 27.07.2009
data show quite similar agreements. Only the mask from the 20.05.2009 data set
shows a 4 % lower agreement. These results demonstrate that even a mono-tem-
poral forest mask may be sufficient for forest non-forest delineation.
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The overall accuracy in Table 5 for all images shows a good result of gap
detection, especially the mult temporal dataset has an accuracy of 99.11 % with
the gaps of the ATKIS-Basis-DLM. Again, the multi temporal layer includes all
different vegetation spectral patterns, hence a more precise detection of the gaps is
possible.

First results of group of tree species classification have an overall accuracy
between 66.11 % and 69.71 %. The KHAT index {Congalton 1991) of the error
matrix has a value between 0.44 and 0.50. Several factors have an influence on the
classification for example different vegetation stages of the trees, training areas,
quality of the images and especially the verification data. Therefore, a better result
will be expected, if the comparison is done by mventory data.

3.3.5 TerraSAR-X Data Evaluation

In comparison to optical data analysis, our SAR image analysis takes advantage of
the higher geomefric resolution of the imagery and focuses in particular on
structural parameters. In the following subsection, the geocoding procedure is
described—the most important step for fusion and assessment. Subsequently,
several approaches of automatic extraction of forest parameters are described and
first results are shown.

3.3.6 Preprocessing of TerraSAR-X Data

The side looking SAR imaging principle leads to a projection of the recorded
intensity values in slant range geometry. For this reason, the image position of an
object is characterized, on one hand, by the azimuth position parallel to the flight
track and, on the other hand, by the range position representing the distance
between SAR sensor and object on ground. Due to this cylindrical geometry, the
SAR signature of objects is different to optical images, which are generally taken
in central perspective and/or parallel projection. Consequently, the appearance of
elevated objects is very different; a displacement towards the sensor’s nadir axis in
SAR images and reversed in optical data {Thiele et al. 2006). Therefore, the
requested fusion of the multi-sensor data, the assessment with GIS data, and the
fusion of satellite images taken from ascending and descending orbits require a
step of geocoding to achieve SAR information in world coordinate system. The
correct geocoding, also called orthorectification, of a pixel in a SAR image can be
determined based on the sensor carrier navigation data and the known distance
between sensor and corresponding ground points. And hence, a good Digital
Surface Model (DSM) including all elevated objects is required. Effects due to
even small deviations of the navigation data from the true sensor position and
missing height information in the elevation data are discussed in Thiele et al.
(2006).
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ATKIS Forest borders

Fig. 4 Result of geocoding using mean terrain height from SAR header (a}, SRTM heights (b},
DGMS5 (e), and DGM?2 (d). Freising test area, subset

For this study, height models of different quality level are available, the “scene
average height” extracted from the TSX metadata, SRTM data, a DGMS5 and a
DGM?2 of the LVG. Additionally, high quality navigation data are delivered by
DLR. The different results of geocoding overlaid with GIS information are shown
in Fig. 4. As can be seen, the orthorectification results are reasonably good. For
our purpose a high level of precision is requested, which can be better achieved by
the use of the DGM5 and DGM2.

3.3.7 Processing of TerraSAR-X Data

For the subsequent parameter extraction depending on the workflow, slant range as
well as ground range images are used. Radiometry based steps are done in slant
range geometry to avoid interpolation effects, high level steps and assessment
steps are accomplished in ground range geometry.

3.3.8 Parameter Extraction from TerraSAR-X Data

Extraction of Forest Boundaries: The signature of forest in the SAR images is
characterized by rather high average magnitude values, which is mainly caused by
volume scattering. Furthermore, side-looking geometry of the SAR system and the
height of the trees lead to the layover (I) phenomenon appearing at objects facing
towards the sensor and the shadow (s) phenomenon on object parts hidden for the
SeNsor.

For automatic segmentation and classification of forest areas, we select two
information layers, the magnitude and the local coefficient of variation (CoV). The
CoV layer exploits SAR image statistics, which is dominated by the speckle
effect—a multiplicative noise well known for all coherent imaging systems. In
detail, the CoV is the ratio of standard deviation and mean intensity in a local
neighbourhood <>(Eq. 1).
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Fig. 5 Input layers of forest boundary extraction in a subset of the Freising test area: magnitude
layer (a), CoV layer with window size 5 x 5 pixel (bh), 9 x 9 pixel (c), and 13 x 13 pixel (d)

~—— ATKIS Forest borders . Extracted Forest Boundaries

Fig. 6 Result of forest boundary extraction of a subset of the Freising test area: SAR magnitude
image overlaid with extracted boundaries (a), orthophoto overlaid with ATKIS layer (b), and
orthophoto overlaid with extracted boundaries and ATKIS layer (c)

(e}
CoV 3 (1)

The local CoV is a good feature to distinguish between homogeneous and
heterogeneous areas in SAR images with respect to the chosen window size (local
neighbourhood). Different window sizes (see Fig. 5) are tested to differentiate
between homogeneous vegetation (e.g., fields and grassland) and heterogeneous
forest areas.

The results are given in Fig. 6 showing an overlay of orthophoto and GIS layer.
The visual assessment shows a good overlap between SAR boundaries and ATKIS
layer. Differences are visible in the level of detail, in the classification of enclosed
grassland, and the misclassification of some Agricultural land. An improvement is
expected by decreasing segmentation level, which is currently limited by image
size.
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Fig. 7 Magnitude signature of deciduous trees and conifers and red marked slant range profile
(a), slant range magnitude profile crossing deciduous trees and conifers (b}, and scheme of
backscattering situation for given profile (c). Bavarian Forest test area

Extraction of Forest Heights: The extraction of forest heights focused on the
analysis of the already mentioned layover and shadow areas at forest borders.
Similar to optical data, where the illumination by sun leads to the shadow, also the
length of radar shadow sy, contains information of object height. Furthermore,
the length of the layover phenomenon (Bamler 2000) /1, leads to a nearly similar
relation between incidence angle & and object height h (see Eq. 2), which allows in
some cases a redundant estimation of the object height.

B = Sgpant - cOs 0 and h= biteax (2)
cosf

Next to the “simple” height estimation, more complex height relations can be
analyzed due to growing situations visualized in Fig. 7. Deciduous trees in near
range appear bright in the magnitude profile due to the high volume scattering.
Behind them, a short shadow part can be observed caused by the height difference
between deciduous trees and following conifers. Subsequently, the lower volume
scattering of conifers leads to lower magnitude values in the slant range profile.
The shadow area afterwards corresponds to the conifer height. With the assump-
tion of nearly homogenous height distribution in small areas of same tree species,
for this example the extraction of conifer and deciduous tree height is possible. Of
course, competitive effects such as gaps, stands, clear-cut rests, or spurious shadow
areas hamper height extraction by this method.

Besides this theoretical description of height extraction, our initial work
focused on the comparison of layover and shadow measurements. Therefore,
manual slant range measurements are accomplished in a forest area covered from
ascending and descending orbit to achieve the mentioned redundant estimations.
Furthermore, temporally correlated field measurements were realized. A magni-
tude image marked with the calculated tree heights is shown in Fig. 8. In Table 6,
the estimated and the measured heights are listed.

The measurements based on the layover areas (I} show higher differences to
the ground truth measurements than the ones based on shadow areas (s). In most
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Fig. 8 SAR magnitude
image with marked locations
of height estimation,
Bavarian Forest

Table§ Summery of.height Height Descending Ascending Ground
estimation by manual image orbit orbit reference
based and field measurements
hy 25 m (f) 26 m (s) appr. 30 m
hy 27 m (D) 29 m (s) aprx. 30 m
hy 18 m (5) - aprx. 30 m
hy 28 m () 27 m () 325 m
hs - 15 m (s) 20.5 m
hg 13 m (s) 26 m (D) 21-32 m
b 28 m () 32m (D 30.5-325 m
hg 13 m (s) 14 m (D 155 m
he 15 m (s) 18 m (s) 204-24.6 m
hig 25 m (D) 28 m () 30.5 m
dth - 10 m (S) -

cases, heights extracted from SAR images are underestimated, which can be
contributed to the partial penetration of the tree crowns at the very top. A rigorous
assessment between extracted and real measured height values is difficult. This is
due to spurious shadow areas in the SAR images and large height variations at the
real forest boundary. Nonetheless, the values of hyg, hyy, and dh,g, show that the
concept of combining relative heights (Fig. 7) fits quite well for this example. The
implementation of a semi-automated and fully automated approach for forest
height extraction is in process.

Estimation of Forest Density: In addition to the boundaries and the heights, the
forest density is also an important parameter to describe forest characteristics.
Forest density is related to stand age and gap occurrence. Next to the CoV layer,
also a shadow layer, an intermediate result of the forest boundary extraction, is
useful for this estimation. Especially, shadow areas enclosed from forest regions
are a measure of gappy forest areas. As older the forest as more gaps occur and as
rougher the surface appearance. Based on pyramid like changing of the segmen-
tation level, the discrimination between open space, glades, gaps and gappy
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Fig. 9 Input layers of classification; coefficient of variation (a), SAR magnitude (b),
interferometric coherence (c), result of CoVAmCoh layer stacking (d}. Freising test area, subset

growth could be possible. Implementations toward density determinations for gap
detection and age estimates are still in process.

Classification of Forest Types: The classification of different forest types is an
additional task of this project. As first goal, discrimination into three classes—
deciduous, conifer and mixed forest is envisioned. Therefore, three information
layers are investigated, the CoV, the amplitude and the coherence. The local
coherence Coh describes the correlation between two repeat-pass SAR images (S,
and S,), whereby high Cok values { ~ 1) indicate coherent areas (e.g., urban area) and
low Coh values ( ~0) independent signals due to high variation (e.g., vegetation).

<S1 SE)
(s1)-(83)

A reasonable way to visualize the contained information is the CoVAmCoh-
Analysis presented in Schulz et al. (2009). The three input layers shown in Fig. 9 are
arranged like RGB layers, with CoV asred, amplitude as green and Coh as blue layer.

The additive colour mixing emphasizes local features, for example, changes
appear yellow, deciduous trees bright green, and fallow land blue. The eCognition
software is a useful tool for multi-resolution segmentation. It is also useful for the
fuzzy classification of the data based on suitable membership functions adapted to
the three classes (deciduous, conifer and mixed forest).

Coh =

(3)

4 Integration of RE and TS-X Evaluations

The integration of synergistic and complementarities options from both data types
are considered of major importance for the DSS. Forest characterisation and
change detection are presented as examples.

In Table 7 the ability of forest parameter determination of the two systems are
weighted against the success of the most precise remote sensing method for this
parameter. Solely, for the diameter at breast height (dbh), one if not the most
important parameter in practice, no reference RS system is available, and a RS
data based evaluation is not possible.
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Table 7 Forest parameter determination accuracy at the local to regional scale from the RE and
TS-X in comparison to competing Earth Observation systems. As reference the system with the
best performance is given (+++)}

RS system type/ RapidEye TS8- World Hyperspec. Aerial photogr. LIDAR
parameter X View-2 Scanner (LVG)
Forest area ++ ++ ++ +++ +++
Border length ++ ++ ++ +++ +++
Stand height - + + + ++ (st} +4++
Gap + =+t ++ +++ +++
Single tree + + + + ++ +++
Crown diameter — + + + ++ ++
Dbh - - — - - +
Stand structure  +++ + +++ +++ 4+
Conif./broadl. +++ + +++ +++ +++ +++
Broadl. species  ++ - ++ +++ ++ +
Conif. species + - + +++ ++ ++
Timber volume £ + + + ++ +++
Age + + + + ++ +++
Repetition +++ +++ =+ + -
frequency
Data take + +++ + + + +++
restrictions
Area coverage +++ ++ =+ - + -
Data evaluation  +++ + + + ++ +
costs
Information costs  +++ + + ++ +—+ +

+++—reference, ++—good, +—fairly good, +—estimate, — not possible; dbh = diameter at
breast height; data evaluation costs = work load for data analysis per unit area; Information
costs = quality of information weighted against are coverage; st = stereoscopic analysis
required; LVG = data of the regular Bavarian State survey; area coverage = annual is set as
reference

The analysis of Table 7 lets us easily identify the synergy potential between
TS-X and RE. While the advantages of RE are in species differentiation, area
coverage and costs, TS-X is adding information on stand height, gap detection,
single tree detection (in some cases) and has no data take restrictions in the
EIErgency case.

The complementarities are given for the parameters area, border length and gap
detection, all of them parameters describing static structure elements. The
simultaneous data take and evaluation of that data during the development phase
allow to determine the assessment accuracy and to use that information in case
only one data set is available (disaster scenario).

With regard to change detection, the high repetition frequencies of the two
systems are the key properties, allowing the immediate detection after occurrence.
In case of TS-X repeat-pass data allows the detection of changes, e.g., by evalu-
ating the already mentioned coherence, which is a measure initially introduced to
assess the quality of the phase stability of an interferogram. Since coherence is a
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[ coniferous Forest [l Deciduous Forest

detected changes

Fig. 10 Example of an information flow in the sense of the DSS for the forest-wood chain under
development demonstrated for a subset of the Bavarian Forest test area. Aerial image from 2000
documenting the initial stage (a), aerial documenting damages after a storm event (b), RapidEye
image May 2009 still reproducing the situation from 2001 (c), RapidEye image classification
August 2009 (d), RapidEye image August 2009 with border line of changes compared to the
situation in May (e), and TerraSAR-X proving no changes since August 2009 (f)

very sensitive measure (see Fig. 9c), considerable noise is expected making it
necessary to rely on segment-based approaches for classification. A priori infor-
mation seems essential.

For RE changes related to shifts in phenologic development are investigated
with the aim of tree species differentiation (instable parameter behaviour). The
static parameters area, gaps, border length, tree species group distribution, etc. are
accessible from each data take.

Within the DSS for the forest wood chain, the advantages of both system types
are combined. For establishing the data base, the information is extracted from
both systems (synergy). In the fast response case, the complementarities of
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information provision are used to get information about the event. The extracted
information is cross checked with the established data base.

Figure 10 demonstrates the information flow within the DSS. Aerial photo-
graphs of the regular three year cycle of the Bavarian State survey are used to cross
check and update existing forest data bases (10a). In the following winter season
2000/01 a storm event damaged large areas. According to the concepts of the DSS,
satellite data should be analysed to decide whether a supplementary very high
resolution data take is necessary for steering clearing measures. In our example
from the Bavarian Forest test site, aerial photographs were taken in 2001 (10b) for
bark beetle monitoring reasons. The damages of the storm throw from winter
2000/01 are still well displayed by the RE image from May 2009. The multi-
seasonal classification is used to crosscheck and update the forest management
records {c, d). Changes occurring between May and August 2009 are easily to be
identified by an automatic change detection proceeding (e). Once the data base is
regularly updated even in a fast response case under cloudy sky conditions the
affected areas are detectable by SAR systems, in our example by TS-X ().

5 Discussion

Despite that the presented results are stated as preliminary, it is possible to give
some statements and to give an estimate of the success.

Hypothesis 1: Forest management relevant parameters ave derivable from
Rapid Eve and TeraSAR-X data. Hypothesis was tested on base of multi-seasonal
RapidEye and TerraSAR-X data. It was examined in up to five test sites of dif-
ferent growth regions characteristics in Bavaria, and it is likely to be stated as
confirmed. The parameter derivation success is not as high as in case of the
reference systems for that parameter (Table 7). However, results are sufficient to
support the aims of the envisaged DSS for the forest-wood chain. These findings
are in line with the findings of deKok et al. (1999).

Hypothesis 2: The combination of both data sets improves the forest determi-
nation. The investigations confirmed the hypothesis validity. Specific advantages
in parameter extraction using data from both sensors are contributing to a more
precise determination of the forest characterisation. As shown in Table 7, espe-
cially in case of gap detection and height estimates, TS-X is delivering more
accurate results than RE. While RE is contributing with a better stand structure
description, at present confirmed solely at the tree species group level, but with a
prospect of tree species differentiation. Nevertheless, because it was not possible to
evaluate the data sets taken at the same period of time, this hypothesis needs to be
further investigated before it is categorized as ‘proved’.

Hypothesis 3: The complementarities of the two sensor concepis facilitate fast
reactions in the disaster case. The concepts leading to hypothesis 3 assume that
even small changes are detectable, once the data base is established and regularly
updated by evaluating the same RS data type sets. Change detection is required,
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either to compare the changes over years or in case of a clearly defined situation of
a sudden event like a storm throw or a biotic calamity. In the concept of the DSS
for the forest wood chain, such a calamity should be detectable by both sensor
types. The microwave sensor can detect at any daytime or under any cloud cov-
erage condition, while the optical sensor, which definitely requires clear sky
conditions, is therefore not as flexible. On the other hand, systems like RE or later,
ESA’s Sentinel, are promising a high temporal repetition frequency and will be
used to analyse the event further.

Whether the event was of a category that made it necessary to have a very high
resolution imaging campaign is decided after crosschecking the classification
results with the data base records. Once such an event is categorized as disastrous
and the clearing urgency is high to very high, an additional data take with very
high resolution systems like aerial photographs or LIDAR may be a cost efficient
logistic option for steering the operations.

A data flow test confirming the hypothesis was performed with the presented
change detection study at a test site in the Bavarian Forest (Fig. 10). A test case
did not occurred during the reported period such the hypothesis cannot be finally
confirmed.

Worth to be discussed are other findings of the study highlighting integration
needs and bottlenecks of different nature affecting the success of the integration in
the frame of the envisaged DSS. We will restrict the discussion on differences in
recording the retrieved parameter and on pointing on the need of harmonisation of
definitions.

In case of the tree species group differentiation task, forest management data
bases are the only ones offering the required level of detail. Such data bases exist
solely for forest areas with an administration, what applies on state forests,
community forests and big private forest areas. One third of the Bavarian forests,
about 800.000 ha belong to the ‘small private forest’ category and are covering
areas not larger than 30 ha each. For such type of forests, the proposed system will
be able to offer a consistent data base, of course not with that level of detail as for
then the state forests with regular ground based inventories. However, even in case
of the state forests and community forests with state of the art data bases the
system under development will be of advantage. Such the records of the Bavarian
State forest management data base are giving solely the percentage of forest tree
species per stand, but not the position. The trend in forest planning is to larger and
even larger stands and longer inventory cycles. The object based classification
applied for this study is deciding per object. One object is defined by homogeneity
criteria and is in general associated to a tree species type of comparable age. The
percentage per stand is calculated by summing up the objects belonging to the
respective stand. The position of each object is exactly known. This is a big
advantage compared to the forest management records. Growth simulators are
more and more used as planning instruments in forest management, allowing
assessing different altematives and their consequences. Especially growth simu-
lators acting on base of competition models like SILVA (Pretzsch et al. 2002) will
take advantage from this additional information in the future.
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The need of harmonisation became already obvious at a very basic stage of the
discussion: Which is the appropriated and generally accepted definition of “forest’,
or, on the practical side, which “official” forest layer should be used to compare the
results? Even in the same county, in our case Bavaria, different authorities and
administrations e.g., for forestry, nature conservation, the Bavarian State survey,
etc., established their own data bases using different definitions for “forest’. Fol-
lowing the most intuitive idea to use the forest management maps, the sources on
which the decisions in forestry are based on, one must fail because the forest
border is defined by the stem position. Remote sensing data derived results are
crown projection controlled. For old growth broadleaved forest, this simple dif-
ference may introduce a positioning error for forest borderline determination of
10 m and more once that map is used as reference for validating RS derived
results. Of course, this has consequences for forest area determination as well.
Some other official sources like ATKIS do not consider the forest management
road network. The dense Bavarian State forests road network must be subtracted
before this data set is used as reference.

The discussion may be continued on different other topics. The study clearly
reveals that there are many ‘interface’ problems to be solved until an operational
solution may become possible. These problems do not directly touch the remote
sensing and data evaluation context.

6 Conclusion and Outlook

The results presented above show the current state of implementation and are thus
preliminary in some sense. The extracted parameters indicate the potential of
Remote Sensing to support the forest-wood chain but their values should be
considered as an initial feasibility test after putting together all the relevant
imagery and geodata needed for the analysis. Nevertheless, it is possible to derive
some conclusions about the concept itself and about the remote sensing data
investigated as well.

The optical RapidEye data belong to the high (5-30 m), the SAR TerraSAR-X
data are on the transition to the very high {0.5-5 m) spatial resolution class.
Different to LIDAR or digital aerial photography techniques single tree observa-
tions are not possible. Exceptions are solitary trees or standards left for seed
production or shading. After the presented first results we are far away from
claiming a ready to use solution for practice, However, the results deliver a couple
of arguments for the combined use of multispectral and SAR data for monitoring
and fast response situations like sudden calamities.

The concept seems appropriate to deliver management relevant information
useful for interim inventories. Such interim inventories are not intended to deliver
all detailed information of a regular inventory cycle. However, they should help to
give an overview about the main parameter, such as:
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* Tree species distribution {(e.g., coniferous/broadleaved/mixed)

¢ Changes in area coverage (e.g., the conversion of stands after felling or as result
of calamities}

» Management measures

¢ Information on stand structure parameters (e.g., number and position of stan-
dards, gaps and tree type mixture—single tree mixture, group wise)

+ Information needed for the strategically/tactical planning level of a forest
enterprise.

Most, if not all, of these information are retrievable more or less automatically
from data sets like those offered by a combination of microwave and multispectral
data. Again, not necessarily with a quality as that required for decision making, but
surely with a sufficient accuracy for decision support and fast response actions!

In the context of global change phenomena, especially the observed increase of
frequency and intensity of calamities, the presented combination of microwave
and optical systems of the very high to high category seems well appropriated for
fast reaction emergency systems all over the world. While the microwave system
is delivering the first information about the extent of an event, without being
hindered by clouds or daytime, the optical system will deliver the details needed
for reconditioning logistics in forestry. A basic point in this context is an already
existing GIS data base of the forests, allowing the fast assessment of the changes.

Still an open question is how to conmect the results with existing concepts and
especially the task of harmonisation of definitions hindering an integration of
remote sensing derived information in practice.
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Abstract: This study is a part of a research program that investigates the potential of
RapidEye (RE) satellite data for timely updates of forest cover databases to reflect both
regular management activities and sudden changes due to bark beetle and storms. Applied
here in the Bavarian Forest National Park (BFNP) in southeastern Germany, this approach
detected even small changes between two data takes, thus, facilitating documentation of
regular management activities. In the case of a sudden event, forest cover databases also
serve as a baseline for damage assessment. A storm event, which oceurred on 13 July,
2011, provided the opportunity to assess the effectiveness of multi-seasonal RE data for
rapid damage assessment. Images of sufficient quality (<20% cloud cover) acquired one
day before the storm event were used as a baseline. Persistent cloud cover meant that the
first “after event” image of sufficient quality was acquired six weeks later, on 22 August,
2011. Aerial images (AI) for the official damage assessment done by the BFNP
administration were acquired on that same day. The RE analysis for damage assessment
was completed two weeks after the post-event data take with an overall accuracy of 96%
and a kappa coefficient of 0.86. In contrast, the official aerial image survey from the BFNP
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was first released in late November, eleven weeks later. Comparison of the results from the
two analyses showed a difference in the detected amount of forest cover loss of only 3%.
The estimated cost of the RE approach was four times less than that of the standard digital
Al procedure employed by the BFNP.

Keywords: forest cover monitoring; multi-seasonal, RapidEye; aerial images; storm damage

1. Introduction

In Central Europe, the most important natural disturbances in forests are storm events [1,2].
Disastrous events of, at least, “regional” dimensions have the potential to destabilize the timber market
and trigger subsequent biotic calamities. Such event sequences occurred in 1991 and 1999 following
the storms “Vivian/Wiebke” and “Lothar” in Southern and Southwestern Germany respectively.
The most common biotic calamity following such a storm event is an extreme increase in propagation
of the European spruce bark beetle (Ips typographus [L.]) [2-5]. Forest area depletion must be
recorded and spatially located in order to delineate drivers, pressures, threats and impacts, and to issue
warning signals and take mitigation actions wherever appropriate [6]. However, this requires baseline
data on forest cover, generally acquired from forest management databases. Currently, forest
management databases are available only for the state forests in Germany and for some community
forests (less than 40% of the forests in Bavaria). The update cycles for these databases can be as long
as 10 years. Increasing frequency and magnitude of disastrous events during recent decades has
revealed the need for shorter update cycles for such databases. At present, in Bavaria, about 30 to 40%
of the annual workload of a forest enterprise is in response to unpredictable hazardous events [7].
In order to prevent follow-on calamities like those described above, it is important to immediately
clear affected areas, which in turn requires reliable information about the site, its accessibility, existing
nearby facilities, availability of resources, and administration constraints on management of the
affected area, such as restrictions which are meant to protect sites of cultural and natural importance.

To tackle some of these challenges, a Decision Support System (DSS) (Entscheidungs-Unterstiitzungs-
System Forst-Holz, EUS-FH) project was designed for the forest-wood chain in Bavaria, which at the
same time enables the fulfillment of both national and international reporting duties. EUS-FH contains
a database-updating module that is based on remote sensing (RS) data [7]. This module, known as the
“Remote Sensing-based Inventory and Monitoring System” (RS-IMS), is based on the idea of
integrating existing data from official sources, such as the Bavarian Surveying and Geoinformation
Administration (LVG), the Bavarian State Forest Administration, the Bavarian State Research Institute
of Forestry, community forests, and National Parks like the Bavarian Forest National Park (BFNP)
with RS data in order to update existing knowledge and to support trend analysis. The development of
the EUS-FH was prompted by the launch of the German satellite systems TerraSAR-X (TS-X) and
RapidEye (RE). The spatial resolutions of both systems fulfill the requirements of a 1:10,000 mapping
scale [8], while the high acquisition frequency of two to three days [9] allows for operational and near

real-time application of the data acquired.

175



Appendix: Publication 3

Forests 2014, 5 1286

Within the RS-IMS, special attention is given to detecting sudden canopy losses due to either
natural or human-induced events. Using active sensors, changes due to both regular management and
sudden events can be assessed within a short time, even under the cloud regime common in central
Europe, where images with less than 20% cloud cover are rarely acquired. Recent studies, such as
those by Rappl et al. [10], and Thiele er al. [11], have utilized data from the active sensor,
TerraSAR-X, for the same area referenced in this study to assess the potential of these data for rapid
mapping of windstorm events. However, these studies were more experimental than operational due to
the small area coverage and high cost of the TerraSAR-X data.

A windstorm, which occurred between late night 13 July, 2011, and early morning 14 July, 2011, in
the northern part of the BFNP, was the trigger for this study. A few months later, about 70,000 m* of
timber was thrown down by the storm [12]. Thus, the conditions for a “regional” event were fulfilled.
The processing chain within the ‘Remote Sensing based Inventory and Monitoring System’ (e.g., EUS-FH)
is based on object-based change detection (OBCD) techniques, which have demonstrated advantages
over pixel-based change detection techniques [13]. Chen ef al. [14] classified OBCD methods into four
groups: image-object, class-object, multitemporal-object, and hybrid change detection. The advantages
and disadvantages of implementing these methods have been discussed in previous studies [15-17] in
which hybrid methods performed better than others for forest change detection. OBCD has been used
in several forest studies undertaken in the last decade to describe forest dynamics due to both biotic
and abiotic disturbances. These studies have used Landsat [17-20] and SPOT images [15,16], as well
as data from very high spatial resolution sensors, such as QuickBird and aerial images (AI) [4,21].
The topics addressed in these studies were as diverse as forest loss and disturbance monitoring, the
potential and limitations of the techniques used, and the contribution of the results to further ecological
analysis. However, while these studies utilized multi-annual images to perform annual updates of the
forest status, they did not make use of multi-seasonal data, as was done in the study presented here. In
addition, the problem of cloud presence was either avoided completely by working with cloud-free
data [16], or the use of either more frequent optical data or data from active sensors to enhance the
results where clouds exist was recommended [17]. In contrast, multiseasonal RE data (acquired
every 45 days) are now available for the whole of Germany, according to the agreement between the
German Federal Ministry of Economics and Technology (BMW1i) and the RapidEye data provider.

In the study presented here, an innovative hybrid change detection technique was applied to
multi-seasonal RE images to update an existing forest cover database. A new approach was developed
to overcome the problem of partial cloud cover by using substitute data from subsequent data takes.
This method was implemented on data from two different periods.

- The first period, between 19 April, 2011, and 22 June/12 July, 2011, helped to update the forest
cover figures obtained from the most recent forest inventory for the area, which was done in
order to document changes due to regular management practices.

- The second period, between 22 June/12 July, 2011 and 22 August, 2011, was after the
above-mentioned storm event had occurred. This helped to demonstrate the evaluation chain for
sudden catastrophic events by applying the same method.

The results of both periods were then compared to the results of the annual official Al survey from
2011, which was obtained from the BFNP. Finally, the costs of using each of the data sources and
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associated methods were estimated and compared in order to assess their relative potential for
operational use.

2. Experimental Section
2.1. Study Area

The study site is located in the northern part of the BFNP in southeastern Germany (49°03°53” N,
13°21’57” E) along the border with the Czech Republic (Figure 1). Together, the BFNP and the
Sumava National Park in the southwestern part of the Czech Republic cover an area of 940 km* and
form the most extensive protected forest in Central Europe. The BFNP is located in a mountainous
region, with elevations ranging between 600 m and 1450 m. The BFNP was founded in 1970 as
Germany’s first national park with an area of 130 km?. In 1997, the park was extended to include a
total area of 240 km?. Its landscape can be divided into three ecological zones—highlands, hillsides,
and valleys. In each zone, different compositions of tree species are located. Based on inventory results
from 2002 to 2003, Heurich and Neufanger [22] calculated the following tree species compositions for
the dominant layer of the forest in each of these ecological zones: (a) In the highlands—90% Norway
spruce (Picea abies), 2% beech (Fagus sylvatica), and 8% other broadleaf trees; (b) on hillsides—58%
Norway spruce, 3% fir (4Abies alba), 34% beech, and 5% other broadleaf trees; and (c) in the valleys—83%
Norway spruce, 5% fir, 6% beech, and 6% other broadleaf trees. Thus, the main species in all of the
ecological zones in the study area is Norway spruce, which is highly susceptible to damage due
to calamities.

Figure 1. Location of the Bavarian Forest National Park.
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Severe disturbance cycles have been documented in the forest in the Bavarian Forest National Park
(BFNP) since 1868 [23]. However, the frequency of disturbances has been increasing since 1983 and
peaked at the beginning of the 1990s when about 17,000 m® of wood was affected [24]. As a reaction
to the forest disease diseussion, which began in the 1980s and was triggered by the aforementioned
disturbance cycle in the BFNP, annual inventories using aerial photography have been performed
since 1988 [4]. At present in the BFNP, in the case of an unpredictable event like storm break, fire, or
biotic infestation, Al interpretation is always used to investigate the changes. The minimum mapping
unit used in previous studies of this kind in the BFNP [4,5,25] has always been a patch of at least 5 trees.
No reports have been issued describing the results of these analyses, but all changes have been
documented in the annual updates. Despite the fact that automated approaches to change detection
have been tested [4], visual interpretation is still considered the most reliable approach and is still
officially used in the BFNP [25].

The philosophy of the BFNP administration allows no forest management activities in the core zone
of the park. However, some small, private residential areas and agricultural fields still exist within
the park boundaries. Bark beetle management is allowed within the park itself only in a small strip
of 500-800 m along the boundaries of these areas and along the external boundaries of the park.
A monitoring and management system has been established to observe calamity development and

prevent further bark beetle breakouts in the extended zone.
2.2. Data Sets
2.2.1. RapidEye Data

RE data were the primary data used for this analysis. These data consist of five channels: one each
in the blue, green, red, red edge, and near infrared regions of the spectrum. Typically, the data are
collected at nadir, with a spatial resolution of 6.5 m (5 m resampled) and a swath width of 75 km.
The data were ordered as level 3A products and provided by the RapidEye Science Archive (RESA) at
the German Aerospace Center (DLR). Even at the nominal repetition time of the RE system of 2-3 days,
only three scenes acquired during the period between April and October, 2011, fulfilled the maximum
20% cloud cover condition we set for this analysis; the first of these images was acquired on 19 April,
2011, the second on 22 August, and the third on 1 October. To cover the main growing season from
May to July, two additional scenes, namely one from 22 June and one from 12 July, were combined to

produce a dataset meeting the cloud coverage restrictions.
2.2.2. Ancillary Data

Reference data containing information about the losses in forest cover in the year 2011 were
obtained from the BFNP administration and compared to the results of the data analysis performed
here. Each year, flight campaigns are performed by the park administration to acquire color-infrared
images (CIR), which are then used to update the databases of the BFNP [4]. Any changes in forest
extent or condition are identified using visual image interpretation. For the analysis of changes that
occurred in 2011, five change classes were defined, of which four described the effects of bark beetles,
and one those of the storm. The change classes due to the bark beetle were referred to as standing
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deadwood, groups of standing deadwood (max. 5 trees), cleared area of deadwood, and area of
hand-debarked deadwood [25]. All of the classes described were delineated by hand using stereoscopic
image interpretation. In 2011, the flight campaign was initiated by the storm event on 13 and 14 July,
2011. The first date after this event when cloud cover was sufficiently low to allow imaging was
22 August.

2.3. Methodology
2.3.1. Data Preprocessing and Preparation

The mapping accuracy of change detection using remote sensing systems is affected by the
following factors: spatial scale, sensor viewing geometry, image geometric accuracy, and radiometric
normalization [14]. All of the RE images used in this study were collected with the nominal 0°
pointing geometry, resampled to 3 m pixels, and were ordered preprocessed to level 3A. The geometric
accuracy of RE level 3A data ranges from less than one pixel to six pixels (5 m-30 m) [9].
The geometric accuracy of the data as acquired was examined and, when necessary, improved using
co-registration to the available geo-databases, using ENVI 4.3. As is essential for multi-seasonal data
evaluation, a combined atmospheric/topographic correction was performed using ATCOR 3 implemented

in PCI Geomatica software. Thus, the resulting data set represents actual reflectance.
2.3.2. Detection of Forest Cover Loss

The basic concept of the method applied is to initially obtain change results using any of the various
commonly used pixel-based change detection algorithms, and then apply the object-based technique to
enhance the results [26]. In this way, the calculation time can be reduced by avoiding segmentation of
the whole image, while at the same time allowing for automation of the process. The processing chain
that was developed to aid in the annual update of forest databases compares any new data set with a
previous one by applying a pixel-based technique, and a simple image-differencing algorithm ([27]
and Figure 2). This algorithm computes the differences between the two images by subtracting the
pixel values from the initial state image from those of the next state image. The closer the acquisition
date of the later image data to a change event, the higher the spectral contrast and, thus, the better the
ability to detect resulting changes. The result of this process is a difference image for each band of data
representing the changes between the two state images, in which positive values identify pixels that

became brighter, and negative values identify pixels with lower reflectance values Equation (1).

[Ax) = x;(6,)—x, (1,)] (0
where xif. = the pixel value for band k; i and j are the x and y coordinates of each pixel; L~ the

acquisition date of the initial state image; L =the acquisition date of the second state image.

Equation (1) was solved for each RE band, as well as for a series of indices calculated from the raw
band data, such as brightness, blue/green ratio, and NDVIL. Afterwards, all resulting difference images
were assessed visually. This evaluation of the huge windthrow area showed very clearly that the red
edge band outperformed all other bands in quantifying the extent of the wind damage [28].
The results from the other bands and indices overestimated the losses in forest cover.
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Figure 2. Overall methodology followed for the detection of loss in forest cover in the
BFNP for the first period and second period.
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Losses in forest cover resulted in positive values, due to the increase of reflectance in all bands
(except the green band) in the second stage image. Therefore, only areas with positive values were
used for further analysis. This can be explained by the fact that forest has the lowest reflectance of any
vegetative land cover, and, thus, any losses in forest cover will result in brighter reflectance values [29].
However, the areas with positive values in the initial result included not only areas of lost forest cover,
but also areas where the changes in reflectance were due to clouds and their shadows, water bodies,
and variations in phenology—especially in fields surrounding the forests. In the next step, a difference
image representing all positive values was produced to be refined in the object-based environment.
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For the object-based analysis (OBIA), eCognition software from Trimble (formerly Definiens) was
used. A rule set, consisting of a batch of commands, was developed in eCognition for this study. The
multi-resolution segmentation algorithm, which allows for the integration of a geo-database into the
segmentation process and assigns weights to all bands, was used. In the segmentation process, the
difference image that represents all detected positive values was used to create objects based on its
borders. This was done to ensure that the exact extraction of the pixel-based change detection resulted
in the formation of objects. Additionally, a few parameters, such as scale parameter, shape, and
compactness, were estimated based on a trial and error iteration procedure (see Table 1). In the second
part of the process, all objects were initially classified as “change” or “no change” based on the
difference image representing positive values. The results were then refined in order to detect only the
areas where forest cover was lost between the two data takes. To be assigned as lost forest, an object
had to meet all of the following three criteria:

(I) Existence of forest during the first stage (first data take) or before the first stage, as derived
from additional RE data from previous image takes, in case of the presence of clouds during
first data take.

(I) Forest absence in the second stage (second data take).

(I1I) Forest absence after the second stage, in case of the presence of clouds during the second data
take, also derived from later RE data takes.

Table 1. Multi-resolution segmentation parameters used in eCognition.

Parameter First Period (April-June/July) Second Period (June/July—August)
Scale 20 20
Shape 0.1 0.1
Compactness 0.9 0.9
Bands weights All bands from Ap.ril and August, All bands from. April, Li&ugust and
the given weight was 1 October, the given weight was 1

The indices used to refine the results by these criteria are presented in Table 2. Criterion number
one excluded all changes that occurred outside the forest area, such as changes due to water bodies or
seasonal variations in plant phenology in nearby fields. Where clouds were present, criterion number
one used also previous RapidEye data from before stage 1 to check the existence of the forest.
Criterion number two examined whether the arcas where the changes occurred were actually still
forested in the second stage. If this was found to be the case, these changes were excluded from the
forest change category and instead attributed to seasonal changes due to forest plant phenology. Where
clouds were present in the second stage image, criterion number three safeguarded that the remaining
changes did not belong to forest cover, by using subsequent RE data from after the second stage. After
the application of all three criteria, objects that were still seen as changes in forest cover were assigned

as lost forest.
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Table 2. The indices used to create the three criteria used to extract the forest loss areas
(see Figure 2).

Criterion First Period (April-June/July) Second Period (June/July—August)
Blue/Gr tio (April
. ue . sen.atio ( _pr1 ) Blue/Green ratio (April)
Forest present before/during stage 1 Brightness (April) NDVI (April)
NDVI (April) P
Blue/Gr tio (June/Jul
Forest absent during stage 2 ue NI:\elrll zulr(:egls?;) uly) Blue/Green ratio (August)
Blue/Gr tio (August
Forest absent after stage 2 He NDef/IIl Ellzﬁstl)lgus ) NDVI (October)

2.3.3. Accuracy Assessment and Comparison with the Aerial Images Results

The change detection performance was assessed via an error matrix. Polygons were used as
sampling units rather than points, as points tend to underestimate the accuracy of object-based
results [30]. Each polygon was formed by centering a circle of 60 m in diameter on one corner of a
(350 x 350 m® cell size) grid. This diameter was based on the average size of the objects formed during
the change detection process. The reference values (change/no change) for these sampling units were
assigned based on visual interpretation of the three RE scenes from April to October, additionally
supported by interpretation of the aerial images from August. If any change was found within a
polygon, it was assigned to the change category. Then, the agreement between the change detection
results and the reference value was visually assessed for each polygon. In total, 849 polygons
distributed systematically over the study arca were used for the accuracy assessment. Out of this
process, the overall user and producer accuracies, as well as the kappa coefficient were
obtained [31,32]. This accuracy assessment process was carried out for the results from both the RE

and the aerial images, and the results were compared to one another.
2.3.4. Cost Comparison between RapidEye Data and Aerial Images

For the cost calculation, it was assumed that reference data would already be available before the
occurrence of a storm event and thus, only data from afier the storm event need be acquired. Three
main cost categories were taken into consideration: the price of the raw data, the cost of data
pre-processing and data analysis. The raw data cost was calculated based on the number of images
needed to cover the study arca. At least a thousand aerial images of the resolution regularly used by the
annual survey are necessary to cover this study area, at a cost of €18 per image, according to LVG.
While only four RE images are enough to cover the same area, an additional four images were needed
in this case to overcome the problem of cloud cover. Therefore, eight RE images were acquired, at a
cost of €593 each. The costs for preprocessing and data analysis were calculated based on the working
hours (WH) needed to complete them. An hourly rate of thirty-five Euros/hour (€35/h) was assumed,
based on the average gross/hour of the actual public payment scheme in 2011 for workers with
appropriate skills. Preprocessing steps included: Geometric correction, triangulation and atmospheric
correction (only for RE data). The data analysis consisted of visual interpretation for the aerial images,
and implementation of the hybrid method for the RE data, as described in this study.
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3. Results
3.1. Solving the Problem of Cloud Cover

In order to determine the amount of forest cover lost using the multi-seasonal RapidEye data, the
problem of cloud cover in the images had to be overcome. Figure 3 shows an example of how the
method handled the problem of cloud presence during the second image acquisition period (from 22
June/12 July to 22 August). The results of the initial changes are presented in Figure 3 (left and
middle), while Figure 3 (right) shows the final results for “lost forest” and the changes, which were
excluded after refinement by application of the three criteria.

Figure 3. Example of how additional data from an additional Rapid Eye (RE) image were
used to overcome the problem of the presence of clouds in two RE images used for change
detection analysis. Initial analysis of the changes between an image from 22 June/12 July
(left) and one from 22 August (middle) indicated differences, which were actually due to
either clouds or lost forest. Additional data from the image from 1 October (right)
facilitated the exclusion of those changes due to clouds and produced the final results
showing the actual losses in forest cover, by implementing (1) first criterion; (2) second

criterion; and (3) third criterion.
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In this example, the first criterion excluded the objects that were not forest on 22 June, and the
second criterion excluded the objects that were still forest on 22 August. However, few objects were
actually excluded until the third criterion was implemented. The third criterion used the data collected
on 1 October to exclude all objects still identified as forest. Thus, only the changes that represented an
actual loss of forest cover remained.

3.2. RapidEye Analysis and Accuracy Assessment

The change detection result in Figure 4 shows the amount of forest cover lost during the first period
from 19 April to 22 June/12 July. The polygons representing lost forest cover are shown overlaid on
top of the two RapidEye images from April and June. As can be seen, the areas within the polygons
appear to be darker in the April image than they do in the June image due to the loss of forest cover.
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Such a visual comparison shows that the method being tested here achieved relatively accurate
mapping of the losses. Most of these losses were probably due to management against bark beetle.
Based on the analysis, an area of about 157 ha of forest cover were lost during this period. The change
detection result in Figure 5 shows the amount of forest cover lost during the second period (from 22
June/12 July to 22 August). Visual comparison between the images from June and August shows that
the result accurately delineated the losses in forest cover, most of which were due to the catastrophic
wind storm that occurred in July. Based on this analysis, an estimated area of about 235 ha of forest
cover was lost during the second period.

Figure 4. Example of some of the forest cover losses during the first period of analysis
from 19 April to 22 June/12 July which were detected using RapidEye data.
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Figure 5. An example showing the forest cover losses during the second period of analysis
from 22 June/12 July to 22 August detected using RapidEye data.

| Left:
RE 22 June/12 July 2011

Right:
RE 22 August 2011

In total, an area of about 392 ha of forest cover was lost during the period from April to August
(Figure 6—Ileft). The statistics from the accuracy assessment are presented in Table 3. Overall, the
change detection method used here returned satisfactory results in terms of identifying the amount of
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forest cover lost, given a 5-m spatial resolution. With reference to the error matrix (Table 3), an overall
accuracy of 96.7% and a kappa of 0.86 were achieved—a result which indicates a high level of

agreement with the reference data.

Table 3. Error matrix for the change detection results using RapidEye data.

Reference
Change Detection RE Change No Change User’s Accuracy %
change 104 15 87.4
no change 13 17 98.2
producer's accuracy % 88.9 98.0 kappa 0.86

overall accuracy 96.7%

The user and producer accuracies for the “lost forest” class were 87.4% and 88.9% respectively,
indicating the overall success of the classification. In addition, the high producer’s accuracy indicates a
good degree of success in identifying most of the forest cover that was lost. However, a few losses
were not detected and a few objects were mistakenly identified as losses when no actual loss had
occurred. These errors were checked against the high-resolution aerial images as will be discussed later.

3.3. Accuracy Assessment of the Aerial Images

In order to assess the success of the results of the RapidEye data analysis in comparison to the
results of the aerial image interpretation, the accuracy assessment of the aerial image was
accomplished using the same method. The resulting forest cover losses, derived through on-screen
digitizing of the aerial images, are shown in Figure 6 (right).

Figure 6. An example showing total forest cover losses during the period from 19 April to

22 August detected using (left) analysis of RapidEye data and (right) visual interpretation
of aerial images.

Left:
! RapidEye

Right:

=3 Aerial images
Background data
RapidEye 2011-08-22

The accuracy assessment statistics are presented in Table 4. An overall accuracy of 98.1% and a
kappa of 0.92, and user and producer accuracies for the “lost forest” class of 100.0% and 86.3%
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respectively were achieved. A 100% user’s accuracy is expected from a visual interpretation of aerial
images. Based on aerial image interpretation, an area of about 373 ha of forest cover loss was estimated.

Table 4. Error matrix for the change detection results using Aerial images.

Reference
Change Detection Al Change  No Change User’s Accuracy %
change 102 0 100.0
no change 16 733 97.9
producer's accuracy % 86.4 100.0 kappa 0.92

overall accuracy 98.1%

3.4. Results and Cost Comparison between RapidEye and Aerial Images

The resulting maps of forest cover losses in the study area from both RapidEye data analysis and
aerial images are presented in Figure 7. Statistics showing the level of agreement in hectares between
the two results are depicted in Table 5. With reference to the intersection statistics, as observed, the
agreement between the two results was found to be very high, and 361 hectares of forest loss were
classified identically in both.

Figure 7. Example showing the forest cover losses that were detected only when using
aerial image interpretation, those which were detected only when RapidEye data was used
and those which were detected using both methods.
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A comparison of the map produced from the analysis of the RapidEye images with the one
produced using aerial image interpretation showed generally a very high similarity in the lost forest
patch shape and spatial distribution. However, there were some differences between the two outcomes.
Most of these differences were at the edges of patches and within the “lost forest™, as seen in Figure 7.

186



Appendix: Publication 3

Forests 2014, 5 1297

The differences between the two results were quantified and analyzed. Then. they were separated into
two groups—changes detected only using RapidEye (31 ha, or 8% of all losses) and changes detected
only using aerial images (12 ha, or 3% of all losses) (Table 5).

Table 5. Calculated forest losses by data and method utilized.

el AveaDetectel Area Detected Only by a Specific

Data Source . Dataset in Hectares and (% of Total
in Hectares . .
Area Detected Using This Method)
RapidEye 392 31 (8%)
Aerial images 373 12 (3%)
RapidEye and Aerial images 361

Visual comparison of the changes detected solely by RapidEye data with the reference data shows
clearly that these were actual changes in forest cover caused by either forest harvest or trees being
thrown by the storm (Figure 8). However, an examination of the changes detected only by the aerial
image analysis showed that some of these changes were not detectable using the RapidEye data, as will
be discussed later.

Figure 8. Two examples showing objects classified as “lost forest™ overlaid on a RapidEye
image from 19 April (left). a RapidEye image from 22 August (middle), and aerial images
from 22 August (right). In example A, forest cover losses that were detected solely by
RapidEye images are shown. In example B, the aerial image on the right clearly shows the
windthrown trees detected solely by the analysis using RapidEye data.

Example A

Example B

Changes detected by: [—_] Aerialimages [ RapidEye [N Aerial images and RapidEye

The costs of using RE and those associated with Al were estimated. The results of this comparison,
presented in Table 6, show that implementing the RE methodology cost €5,660, while the visual
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interpretation of the Al would have cost an estimated €22,200. This indicates that visual interpretation

of Al would cost about four times as much as the method using RE data.

Table 6. Cost comparison of change analysis using RapidEye data and aerial images.

Category RapidEye (Euros) Aerial Images (Furos)
Raw data (8 images x €593) = 4750 (1000 images = €18) = 18,000
Preprocessing (10 WH x €35) = 350 (40 WH x €35) = 1400
Data analysis (16 WH = €35) = 560 (80 WH = €35) = 2800
Total 5660 22,200

4. Discussion

Implementing this methodology using RapidEye data to detect changes in forest cover produced
accurate results, and even small changes in forest cover were detected. The results were comparable to
those produced using the official aerial images mapping provided by BFNP. The availability of
multi-seasonal RapidEye data enabled the detection of forest losses over two periods of time within
one year. This allowed for a better definition of the factors that caused the changes in forest cover.
As an illustration, during the first period alone, from April to June/July, a substantial area of about 157 ha
of forest cover was lost. This change was due solely to management undertaken as protection against
the bark beetle, which indicates the aggressiveness of the calamity. In contrast to RE data, aerial
images are only collected once a year in the special case of the BFNP and triennially in the rest of
Bavaria. This means, it is not feasible to acquire such timely information from aerial images given the
current image update frequency. Additionally, a predefined acquisition date is not possible for the
aerial image survey. In the BFNP, the survey typically takes place at the end of the vegetation period.
Another advantage, of using the multi-seasonal data, was its helpfulness in overcoming the problem of
clouds. In contrast, using less frequently acquired optical data is usually a challenge due to cloud and
haze presence [6,17].

The hybrid technique developed here employed multi-seasonal RapidEye data and provided rapid
mapping of forest cover losses with up to 96% accuracy. Comparable results, depending on the
resolution of the sensor, have been reported in the literature when object-based methods have been
used for forest cover change detection using image datasets from sensors of high spatial resolutions.
For example, Desclée ef al. [16] implemented OBCD with SPOT data for forest change detection and
achieved an overall accuracy of 93% and a kappa of 0.84. In addition, Duveiller ef al. [17] estimated
the deforestation in central Africa using Landsat data and OBCD with an overall accuracy of 91%.
McDermid ef al. [19] also used Landsat and OBCD in forest change detection and achieved an overall
accuracy of 84% and a kappa of 0.69. Moreover, some studies which have utilized a hybrid method
similar to that used here have achieved comparable results. In Canada, McDermid et al. [20] applied
the hybrid method to Landsat data and reported an overall accuracy of 93% and a kappa of 0.889.
Another study applied this method using a combination of SPOT data and aerial images and reported
an overall accuracy of 94% [15]. However, none of these studies focused on sudden changes; but
instead detected inter-annual changes over periods of three to 35 years. Additionally, they did not deal
with the problem of cloud presence, but rather, recommended either using more frequently acquired

optical data or active system observation.
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As an alternative solution using data from satellite sources to map the same storm event addressed
here, Rappl ef al. [10] and Thiele ef al. [11] demonstrated the use of data from the active satellite
system, TerraSAR-X, to overcome the problem of clouds. This also allowed for rapid mapping of the
remaining forest cover after the storm, and made comparison to pre-event forest cover estimates
derived from RapidEye data or aerial images feasible. Although their results offered rapid estimation
of the destruction, it was not possible to compare their results to ours, as there was no accuracy
assessment conducted. In addition, the relatively small area of coverage and high cost of the
TerraSAR-X data and aerial images remain an issue in using them more frequently, such as for
operational use.

Technically, juxtaposing the performance of the RapidEye change detection performed here against
that of the aerial images, some differences were detected. Some of these differences were due to the
influence of the user in aerial image interpretation, who will naturally try, during manual digitization,
to delineate objects that have smooth borders rather than zigzag ones. Moreover, in the manual
digitization procedure, many small patches, which do not represent actual forest cover losses, were
included in the “lost forest” class. The implications of manual delineation were discussed by
Heurich et al. [4], and Kautz et al. [5], and can be explained by the minimum size of the unit of interest,
which is a group of trees or even a stand, rather than a single tree. Our analysis of the differences
between the Al interpretation and the RapidEye analysis showed that the RapidEye approach was able
to detect solely many of the changes that occurred—about 8% of all losses. However, few objects of
those 8% were mistakenly identified as losses, this was due to differences in phenology between April
and June/July, and those objects were located mainly in deciduous stands. This can be explained by the
increase in the spectral reflectance in the red edge bands in this period due to the change from leaf-off
to leaf~on. Only 3% of all losses were not detected by RapidEye, and these were mainly due to the very
small extent of these changes, such as only a few single trees, which had fallen within a healthy stand.
Therefore, they were too fine to be detected using speetral information alone without actual visual
mterpretation of AL Another reason these changes were not found is that they were located among the
deciduous stands and shaded areas of the surrounding remaining trees; therefore they were difficult to
detect using spectral properties alone. Also, it might be that a few of the changes detected in the Al
interpretation occurred before April, 2011, and therefore, were not detectable in the RapidEye change
analysis. However, some of these changes were still easily detectable at the center of the damages but
not at the periphery. This was due to the complex structure at the periphery, which included thrown
trees and healthy standing ones. Similar results were found using Landsat data and the hybrid method
in Brazil [18], in which there were also a few objects which were mistakenly identified as losses, when
in fact, no actual loss had occurred. The majority of these mistakenly identified losses were due to
shaded areas among the tree crowns, especially in less dense forest stands.

From an operational point of view, the hybrid method implemented here allows flexibility and
adaptability to a subsequent data set. This ensures continuous monitoring supported by the high
temporal resolution of RapidEye data. Although the analysis of the RE data achieved fast and cost
effective results, 3% of the changes detected in the official Al survey were not detected using the RE
analysis. On the other hand, the RE data and analysis cost only 253% of that of the aerial image analysis.

Even though, RE results cannot be expected to fully achieve the results possible using aerial images,
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they can provide additional support for subjective and time-consuming visual interpretation of
aerial images.

3. Conclusions

This study investigated the feasibility of updating forest cover databases in cases of both regular
management activities and sudden events that cause changes in forest cover, such as bark beetle
attacks and storm events, by means of RE satellite data. Overall, the five-meter spatial resolution of
RapidEye data was suitable for performing detection of forest cover changes. Use of the RE data
achieved rapid and cost-effective results that were comparable to those obtained from aerial image
interpretation. The high temporal resolution of the RapidEye constellation was useful for the regular
forest cover updates on a seasonal basis. This shows the potential of the new high temporal resolution
satellites (e.g., Landsat 8 and Sentinels) for use in forest database updates. Hence, sudden changes may
be detected in very short period, and addressed efficiently using appropriate management techniques.
Local authorities and stakeholders may benefit from the outcomes of this study. The information
generated is invaluable to decision makers in planning initial clean-up operations following forest
disturbances due to storm events and biotic calamities, as well as in updating existing forest databases.

Although the work described here was restricted to forests in the BFNP, the motivation for the
study arose from the EUS-FH project goal [7]. The study found that RE mapped 97% of the changes
detected using AT interpretation at only 25% of the cost of Al interpretation. In addition, the annual AT
survey is available only for the BFNP, while surveys are done only once every three years for the rest
of Bavarian state. Moreover, multi-seasonal RE data (acquired every 45 days) are available for all of
Germany. Thus, we conclude that the generalization of the methodology presented here to the project’s

other test areas distributed throughout Bavaria appears to be a must.
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Tree species identification is a very important issue for forest management and planning. In
the recent three decades, many studies have investigated this topic using multispectral multi-
seasonal / temporal data. In this study we analyzed multi seasonal/temporal RapidEye images
from twenty dates for the purpose of tree species classification. The main objective of this
work was to investigate the effect of the temporal resolution on the accuracy, two specific
aims were; i) to investigate the influence of the RedFEdge band on the classification accuracy;
ii} to investigate the influence of the indices on the accuracy. Speciral Angle Mapper (SAM)
classifier and cross validation procedure were used for this purpose. The best overall
accuracy achieved was about 86% that separated seven tree species (Three deciduous and
four coniferous).increasing the temporal resolution has clearly improved the accuracy.
Ranking the images according to their impact on the accuracy, using the first seven dates, has
dramatically improved the accuracy, then the improvement slow down dfter the seventh date.
Using the RedFdge bands has improved the overall accuracy with 1% to 4%, while using
indices has additionally improved the overall accuracy with 2% to 4%.

1 Introduction

Forest management taking into the consideration the economic and the sustainable aspects
requires persistent inventory for the forest conditions (Stoffels et al. 2012). Management
planning and statistics assortment on enterprise level, as well as fulfillment of reporting duties
on national and international level are based on such inventories. A frequent upgrade of ten
years takes place for the national forest inventory In Germany, as well as for the Bavarian
State owned forests. Typically a regular sample grid is established in field to collect databases
attributes of various forest stand characteristics such as detailed species composition, age
information, timber volume and further management-relevant features. However, such
terrestrial inventories are cost-intensive and time-consuming.

In the recent decades multi-spectral Remote Sensing data appear as an attractive resource to
complement and optimize forest inventories (Holmgren & Thuresson 1998, Vohland et al.
2007). The Remote Sensing based inventory has been focusing on 1) The forest (timber) type
discrimination and 2) The estimation of biophysical and biochemical properties (Boyd &

1
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Danson 2005, Holmgren & Thuresson 1998). It is of great value, to use such parameters as
inputs for forest prognosis models, which offer an alternative solution for the forest
management planning of the next 10 to 20 year period. Especially, single tree competition
approaches like SILVA, used for management of Bavarian State Forest (Pretzsch et al. 2002),
take advantage of tree species information.

Still, tree species identification is a challenging task for the Remote sensing community.
Under Mid-European conditions tree species discrimination on base of high resolution (5-
30m) multi- to hyperspectral data failed with mono-temporal approaches. However, the
accuracy of these classifications can be enhanced using multi-seasonal data. This is because
the classifications of multi-seasonal data sets detect the temporal change in the spectral
response from different forest tree species types as a result of phenological activity (Bovd &
Danson 2005).

Many studies, since early 1980s, have tried and used multi-seasonal multispectral data to
benefit the phenology in order to enhance the tree species classification results. Sensors such
as Landsat (Dorren et al. 2003, Franco-Lopez et al. 2001; Mickelson Jr. et al. 1998; Reese et
al. 2002; Schriever & Congalton 1995; Townsend & Walsh 2001; Walsh 1980; Wolter 1995)
SPOT (Davranche et al. 2010) and ASTER (Stoffels et al. 2012) have been used for this
purpose. However, the previous studies have not focus on the evaluation of the increase of
temporal resolution, due to the limited number of scenes. The data from the upcoming
RapidEye satellite constellation with very high temporal resolution capability makes them
potentially ideal to be tested and used for phenological monitoring (Stoffels et al. 2012).

In this study our main objective is to evaluate the increase of the temporal resolution on the
tree species classification accuracy taking advantage from RapidEye time series. Two specific
aims of this paper are 1) the evaluation of the Red Edge band influence on the result accuracy
and 2) the evaluation of the indices influence on the accuracy.

2 Study Area and Materials
2.1 Study Area

The study area Kranzberger and Thalhausener Forest, in Freising (2178.9 ha) is located in the
southern part of Bavaria close to the city of Freising (Figure 1). It covers the growth zone of
the Bavarian Tertiary Hills, which is a high potential growing region for different tree species.
The annually mean temperature is 7.5°C and the annual mean precipitation rate is 800 mm,
with its maximum in summer time. The forest management of the study area belongs to the
Bavarian State Forestry. The composition of the different tree species is shown in Table 2.
Spruce is the main tree species and covers 60% of the area. The forest is managed with two
different strategies. On the one hand pure stands of tree species with same age and on the
other hand mixed stands with different layers of age.
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Figure 1: Freising forest study area in Bavaria, Germany.

2.2 Data set

2.21 Field observations

The field observation data used in this study to train and validate the tree species classification
were collected in the field during the years 2010 and 2011. The tree species communities
positions were recorded using hand held GPS, and by using digital aerial images (20 cm
spatial resolution) from the year 2009. However, many observations were not representative
and therefore, not taken into consideration. This is due to the invisibility of the tree crowns
which don’t reach the over story, this problem was also reported in few studies before (Key et
al. 2001) and (Waser et al. 2011). At the end 546 points were considered for this study (Table

1.

Table 1: Tree species samples in the study area, species proportion of tree species is based on the
terrestrial inventory from the Bavarian state forest from the year 2001:

Scientific name Common name Symbol Number of Species
samples proportion

Picea abies (L.) Norway Spruce Fi 212 73 %

Pseudotsuga menziesii Douglas fir Do 32 2%

(M.F.)

Pinus sylvestris (L.) Scots pine Ki 34 4%

Larix decidua (MILL.) European Larch La 41 5%

Larix kaempferi Japanese Larch

Fagus sylvatica Beech Bu 153 5%

Quercus petraea Oak Ei 38 3%

(Mattuschka)

Acer pseudoplatanus Maple Ba 36 2%
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2.2.2 RapidEye images

A total of 20 RapidEye images of Level 3A were provided by RESA, over a period of 3 year,
from may 2009 until November 2011. The images were at sensor radiometrically corrected
and geometrically corrected as well. However, the geometric correction is not good enough,
especially for the multi temporal image analysis, in which farther correction should be carried
on.

Table 2: The RapidEye images were used in this study:

1D Date time and sensor 1D Date time and sensor

1 2009-05-20T110408_RE4 11 2011-06-04T110442_REA1
2 2009-07-27T105426_RE"1 12 2011-06-28T110849_RE1
3 2010-04-22T105818_RE3 13 2011-07-10T111720_RES3
4 2010-06-08T110621_RE2 14 2011-07-16T110430_RES
5 2010-07-21T110853_RE2 15 2011-08-23T112009_RE4
6 2010-08-15T111131_RE3 16 2011-09-03T111442_RE1
7 2010-10-10T110933_RE2 17 2011-09-25T111227_RE4
8 2011-03-22T110819_RE3 18 2011-10-06T110644_REA1
9 2011-04-07T110454_RES 19 2011-10-22T112135_RE2
10 2011-05-06T111258_RES 20 2011-11-04T111457_RE1
3 Methods

3.1 Data preprocessing

For all RapidEye images the geometric correction was improved, and shifts in both easting
and northing directions were implemented if necessary. Moreover, Atmospheric correction
was carried out for all images, using ATCOR 3 implemented in the PCI Geomatica 10.3
environment. ATCOR 3 algorithm uses the Digital Elevation Model (DEM) to consider the
topographical effects on the spectral reflectance during the correction process, and eliminate
the errors due to the topography. More and more, the visibility at the exact acquisition time
for each image was also ordered from the Deutsche Wetter Dienst (DWD) and used in the
correction.

3.2 Image analysis

Typically, the assumption is that the same tree species have similar reflectance at the same
phenological stage. However, it’s often that the illumination among the same tree species is
different, due to the shadow effects from the surroundings and the topographical effects (even
after the topographic correction). The Spectral Angle Mapper (SAM) (Kruse et al. 1993) was
chosen to perform the classification because it is highly insensitive to illumination effects
since it uses only the direction of the vector and not its length (Eckert & Kneubiihler 2004,
Elatawneh et al. 2012a). Additionally, to further minimize these effects, for selection of

4
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samples we followed hints from Korpela et al. (2011)using Leica ADS40 very high resolution
(VHR) data and Immitzer et al. (2012) using WorldView-2 data, which selected solely sunlit
crown areas for picking the spectra of tree species to be used as training samples for
classification. In our case the brightest pixel of a collective of homogeneous pixel identified to
belong to a pure species tree group was selected as sample.

From our observation for the tree species reflectance we noticed that the reflectance is often
similar in many band but not all of them. Therefore, angle indices are (Figure 2) will

emphasize the differences among tree species, because they represent the reflectance ratios

among the individual reflectance of the bands.

Reflectance %

Wonm  S00mm  G0am  JOmm  S00nm

Red

) Angle 2

710

RedEdge

NIR

Figure 2: Angle indices illustration.

These indices are expected also to be less affected by the illumination variations and as a
result will improve the classification accuracy. For the calculation of these indices we
calculate the different in the slopes as explained in the following equations:

(Red — Green) (Green — Blue)

Angle 1= 2 102 30 v eee e equation 1
Angle 3 — (RedEdge — Red) 5 (Red — Green) tion 2
ngle 2 = = — 103 wn e e EQUALTON
(NIR — RedFdge) {(RedEdge — Red) ]
Angle 3 = R —0. = re e e e EQUALION 3

All indices were then enhanced by duplicating their values as seen in the equations. In
addition to, the NDVI was also considered and added to these indices.

(NIR — Red)

NDVI = NIR T Red ™"

o equation 4
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3.3 K-fold cross validation

The K-fold Cross validation technique (Geisser 19753, Stone 1974) is a strategy that partitions
the data randomly into a number of K-subsets, using each subset in turn as a training set for a
model production and the remaining data as a validation set. Then, the process is repeated k-
times, and the k results are either averaged or combined and produce one result. The
advantage of using this strategy is that all dataset are used for both training and validation.
For this study a 10-fold cross-validation strategy was used to carry out the classification.

3.4 Image combinations Selection and classification

To investigate the increase of the temporal resolution on the classification accuracy, 20
possible image combinations was selected. The first step was to evaluate the result accuracy
for each of all 20 dates (using only the original bands). The classification and evaluation were
carried out for each data using cross-validation strategy and Spectral Angle Mapper (SAM)
classifier.

Once the accuracies were evaluated, the 20 image combinations were established by choosing
the best single-, two-, three-dates, etc, until twenty-dates (table 3). Then cach image
combination was classified and the result was evaluated again using cross-validation strategy.

To investigate the RedEdge band influence on the classification, the same procedure and
image combinations were implemented, but with excluding the RedEdge band. The procedure
was implemented once more by adding the indices as additional band to evaluate the indices
influence on the accuracy as well.

4 Results

The general trends as seen in Table 3 and Figure 3 illustrate that with the increase of the
temporal resolution the overall accuracy also increase. However, this was the expected trend
of the results, as the increase in the data will increase the accuracy. But on the other hand, it
shows us that the trend in the increase is an inverse exponential function (IEF). On other
words, the result improves dramatically at the beginning then it improves slightly. An
important point here is revealed, which is satisfactory classification accuracy is achieved with
less than the entire data set, about seven to eight data set.

The results of the bands combination selection show that the scenes from the spring or early
phenological stage deliver in general better accuracy than scenes from the autumn. This is
explained by the low solar angle during autumn thus the radiometric quality of these images
was decreased. However, scenes from summer (e.g., first-, fifth-, and sixth-best images) were
among the best scenes as well. The quality of these images was the best of all scenes.
However, in this study it was not meant to investigate the effect of the quality on the achieved
accuracy, and this point will not be discussed.

Regarding the effect of the RedEdge band on the accuracy, figure 3 shows clearly that using
the RedEdge band has slightly improved the accuracy with about 1 %. However, it’s

noticeable that the RedEdge band does not improve the results using the image combinations
6
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of best 2-, 3- or 4-dates, but on the other hand, with the increase of the image combination it
produces better accuracy.

Table 3: Overall classification accuracy for the image combinations from different dates:

Number Overall Overall (image combinations) Accuracy
of (one scene) Al bands 4 bands All bands +
images Image Dates Accuracy % without RE Indices
1 2011-07-16T110430_RE5  67.07 67.07 63.92 72.81

2 2010-04-22T105818_RE3  63.15 73.71 73.02 77.25

3 2011-06-04T110442_RE1  59.73 77.61 77.29 80.12

4 2011-04-07T110454 RE5 59.67 7871 78.75 81.44

5 2011-07-10T111720_RE3  59.14 79.43 78.57 82.40

6 2009-07-27T105426_RE1  58.65 81.26 78.90 83.19

7 2011-03-22T110819_RE3  57.61 82.60 82.01 84.03

8 2009-05-20T110408_RE4 57.06 81.91 81.12 84.19

g 2011-06-28T110849 RE1 56.04 82.38 81.03 84.62

10 2010-06-08T110621_RE2 54.76 83.25 81.97 85.14

11 2010-07-21T110853_RE2 54.62 83.03 82.17 85.10

12 2011-11-04T111457_RE1  53.79 83.92 83.46 85.88

13 2011-10-22T112135_RE2 53.30 83.74 82.68 85.94

14 2011-05-06T111258_RE5  50.57 83.54 82.36 85.55

15 2010-08-15T111131_RE3  48.72 83.60 82.32 85.49

16 2010-10-10T110933 RE2  48.15 83.70 82.84 86.06

17 2011-09-25T111227_RE4  46.48 84.43 83.37 86.35

18 2011-08-23T112009_RE4 44.57 84.21 83.11 86.20

19 2011-10-06T110644 RE1 40.74 84.41 83.46 86.30

20 2011-09-03T111442_RE1  39.21 84.29 83.27 86.32

Indices were developed for this study has clearly improved the accuracy. The average
improvement in the accuracy using the first, second third and fourth best dates combinations
was about 4%, then the rate of the improvement was slightly decrease to 2% for the last best
combinations. However, using different or more indices could further improve the accuracy,
but for the study the introduced indices has been only considered.

The confusion matrix of the best result achieved from 17 image combination is shown in
Table 4. The producer accuracy for the individual classes ranges from about 64% to 94%. The
highest accuracy was achieved for the spruce class 94.52%, where most of the classes
achieved producer accuracy range between 82 and 86% namely Douglas fir, Pine, Beech and
Maple classes. The least two accuracy values were about 64% and 74% for the classes Larch
and Oak respectively. There was a highest amount of confusion with the Larch class was with
both Pine and Oak classes, however, similarity in the reflectance of the Larch was noticed
with these two classes in most of the phenological stages.
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5 Discussions
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Figure 3: overall accuracy for date combinations (see also Table 3).
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This study attempted to classify seven tree species (four coniferous and three deciduous) in a
typical mid-Europe forest area. Multi- seasonal/temporal RapidEye data (twenty scenes) have
been used for the purpose of this study. We evaluated the increase of the temporal resolution
on the accuracy of the classification. The results show that the temporal resolution has
increased the accuracy, however, satisfactory classification accuracy was achieved using less

than the entire images (about seven to eight images).

Table 4: Confusion matrix of the classification map using the best 17 dates (all bands + Indices):

Reference data

Class. Spruce Douglas Pine Larch Oak Beech Maple Sum Altj:ze':A,
Spruce 1899 9 0 0 0 0 0 1908  99.53
Douglas 46 229 0 0 0 19 0 294 77.89
Pine 2 12 1033 53 37 18 15 1170 88.29
Larch 56 223 17 37 12 349 63.90
Oak 20 55 41 203 2 19 342 5936
Beech 28 16 7 3 450 0 513 87.72
Maple 11 76 22 16 4 206 338 60.95
Sum 2009 265 1236 346 276 530 252 4914
AF:::_do'/o 9452 8642 8358 6445 7355 8491 8175 ?\Zir?,/" 86.35
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The effect of using the RedEdge band and indices was also evaluated in this work. The results
show that using the RedEdge band has slightly improve the accuracy within the range of 1%
to 4%, while using the indices has additionally improved the accuracy with 2% to more than
4% (see table 3).

The best overall accuracy of about 86% was achieved, using the best-17 image combination
with indices and the RedEdge bands. However, some interesting points were not investigated
here, (e.g.) to determine the best scenes (single and multiseasonal) for separating individual
tree species classes. This is the advantage of an multiannual / multiseasonal approach as given
by the investigated data set, compared to a multiseasonal approach with the ambition to
update forest management databases on an annual basis, the integration of additional
information from other sensor types, e.g. height information (Elatawneh et al. 2012b), etc.
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