Preliminary version; Special Issue on Specification Based Testing,
Journal on Software Testing, Validation, and Reliability 10(4):229-248, 12/2000

Specification Based Test Sequence Generation
with Propositional Logic

G. Wimmel, H. Lotzbeyer, A. Pretschner, and O. Slotosch
Institut fir Informatik, Technische Universitat Miinchen
Arcisstrafle 21, 80290 Miinchen, Germany

www4.in.tum. de/”{wimmel ,loetzbey,pretschn, slotosch}

Abstract

In the domain of concurrent reactive systems, much work has been devoted
to (semi-) automatically validating a system’s correctness. A novel approach
to the automated generation of test sequences is presented. It may be used
for both glass box testing a specification and black box testing an imple-
mentation (SW/HW). Finite system models specified within the CASE tool
AvutoFocus as well as user-friendly test case specifications are automatically
translated into propositional logic and fed into the propositional solver SATO.
Results are interpreted as I/O traces (test sequences) of the system, and may
be displayed as message sequence charts. A small example illustrates the ba-
sic ideas as well as the method’s advantages and shortcomings. The testing
process is integrated into an overall development process. Main contributions
include the implementation of a tool for graphical specification of test cases
and the description of an efficient method to fully automatically compute test
sequences as well as its integration into the same CASE tool.

Keywords. Automatic Test Case Generation, Reactive Systems, Proposi-
tional Logic, CASE, Message Sequence Charts, Validation

1 Introduction

A typical development process for reliable concurrent reactive systems consists of
possibly cyclic iterations of requirements analysis, system design, implementation,
and validation. Such a development process should support validated transitions
from requirement, specifications to system models and from abstract design specifi-
cations to detailed implementations. There are two common methods of validation,
namely verification and testing (simulation). Verification, understood as establish-
ing logical implication, ensures — with mathematical rigor — a model’s correctness,
whereas testing usually is restricted to exemplary system runs. In the face of com-
plexity as well as acceptance problems in industry as encountered by verification
techniques such as model checking and theorem proving [25], the increasing indus-
trial need for testing becomes understandable.

Testing can be applied to both system models (glass box) and actual implemen-
tations (hardware with generated code, black box). A test case specification is the

formalization of some test purpose (e.g., possibly partial I/O traces where certain
input as well as output values can be specified, reachability of a set of states, firing
conditions for sets of transitions, etc.; see [18] for a precise terminological frame-
work). A test sequence is an I/O trace that satisfies a given test case specification.
Specification of test cases is done during design or, possibly interactively (rapid pro-
totyping), during the validation phase. Testing a system (i.e., simulating it under
certain user-defined constraints) also helps the system designer to better understand
and debug it.

Overview. This paper presents an approach to generating test sequences on the
grounds of the system’s semantics in terms of propositional logic. Its remainder
is organized as follows. Section 2 describes the CASE tool AuToFocus that has
been used for the specification of different views on system models as well as test
cases. Inspired by the work of Biere et al. on bounded model checking [4], section 3
describes the automated translation of AUTOFOCUS specifications into propositional
logic. The solver SATO [31], based on the Davis-Putnam approach to satisfiability
in propositional logic, is then used for determining test sequences. These sequences
can be displayed graphically as a time-synchronous variant of Message Sequence
Charts (MSCs [14]). This approach to determining test sequences can be seen as a
special application of bounded model checking. However, a set of common test case
specifications can be formulated without referring to the Linear Time Logic (LTL)
which results in efficiency gains, and more importantly, in a user-friendly graphical
description of properties that can be used to specify test cases. On the other hand,
there are test case specifications that cannot be translated into pure LTL without
altering the model (and thus increasing its complexity; e.g., talking explicitly about
certain data driven transitions). The specification of an Automated Teller Machine
(ATM) illustrates the translation as well as the application of several model-based
test case specifications (section 4). The paper concludes with a description of related
work and a discussion of this new approach.

Contributions. The main contributions of this work may be summarized as fol-
lows. First, an automated translation of concurrent systems as well as certain classes
of test cases into propositional logics is presented. This translation is used for the
computation of test sequences by means of an efficient propositional solver (SATO).
Furthermore, it gives rise to automatically performed optimizations such as model
slicing. As expected, the use of a specialized solver for a subclass of all testing prob-
lems yields more efficient results than traditional general-purpose approaches (e.g.,
general (bounded) model checking). Second, a tool-supported intuitive graphical
specification of test cases is discussed and used in connection with the above trans-
lation. It is shown how Message Sequence Charts can be used for various classes of
test cases and argued why, for these classes, they might be a superior language for
the specification of such test cases.

2 Modeling with AuToFocus

AutoFocus [12, 13] is a tool for graphically specifying embedded systems on the
grounds of a simple, formally defined semantics. It supports different views on the

system model: structure, behavior, interaction, and data type view. Each view
concentrates on a fixed part of the specified model.

Structural view: SSDs. In AuToFocus, a distributed system is a network of
components, possibly connected one to another, and communicating via so-called
channels. The partners of all interactions are components which are specified in Sys-
tem Structure Diagrams (SSDs). Figure 1 shows a typical SSD. In this static view of
the system and its environment, rectangles represent components and directed lines
visualize channels between them. Both of them are labeled with a name. Channels
are typed and directed, and they are connected to components at special entry and
exit points, so called ports. Ports are visualized by filled and empty circles drawn on
the outline (the interface) of a component. As SSDs can be hierarchically refined,
ports may be connected to the inside of a component. Accordingly, ports which are
not related to a component are meant to be part of unspecified components which
define the outside world and thus the component’s interface to its environment.

Behavioral view: STDs. The behavior of an AUTOFOCUS component is de-
scribed by a State Transition Diagram (STD). Figure 2 shows typical STDs. Initial
states are marked with a black dot. An STD consists of a set of control states, tran-
sitions and local variables. The set of local variables builds the automaton’s data
state. Hence, the internal state of a component consists of the automaton’s control
as well as its data state.

A transition can be complemented with several annotations: a label, a pre-
condition, input statements, output statements and a postcondition, separated by
colons. The precondition is a boolean expression that can refer to local variables and
transition variables. Transition variables are bound by input statements, and their
life-cycle is restricted to one execution of the transition. Input statements consist
of a channel name followed by a question mark and a pattern. An output state-
ment is a channel name and an expression separated by an exclamation mark. The
expression on the output statement can refer to both local and transition variables.

A transition can fire if the precondition holds and the patterns on the input
statements match the values read from the input. After execution of the transition
the values in the output statements are copied to the appropriate ports and the local
variables are set according to the postcondition. Actually the postcondition consists
of a set of actions that assign new values to local variables, i.e., the assignments set
the automaton’s new data state.

Communication semantics. AUTOFOCUS components have a common global
clock, i.e., they all perform their computations simultaneously. The cycle of a com-
posed system consists of two steps: First each component reads the values on its
input ports and computes new values for local variables and output ports. After the
clock tick, the new values are copied to the output ports where they can be accessed
immediately via the input ports of connected components and the cycle is repeated.
This results in a time-synchronous communication scheme with buffer size 1.

Interaction view: MSCs. Message Sequence Charts (MSCs) are used to describe
the interaction of components. In contrast to Message Sequence Charts as defined

in [14], AuToFocus MSCs refer to time-synchronous systems. In the following,
the term MSC always denotes these time-synchronous sequence charts. Progress of
time is explicitly modeled by ticks which are represented by dashed lines. All actions
between two successive ticks are considered to occur simultaneously, i.e., the order
of these actions is meaningless. An action in an MSC describes a message that is
sent via a channel from one component to another. This is denoted by a horizontal
arrow from the source to the destination component. Internal messages between
two components are annotated with the channel and the contents of the message
separated by a dot. Annotations on external messages do not refer to channels but
rather to external ports of the component. To illustrate this fact, the port name and
the message value are delimited by ! (send) or 7 (receive) in analogy to transition
annotations in STDs.

Note that it does not take any time to transfer messages. Time is consumed dur-
ing the ticks, when the computations of all components are performed synchronously.
As a consequence, the output values cannot depend on the input values of the same
time slice and each component always needs a tick for the computation of new output
values. Figure 4 shows typical exemplary system runs.

Datatype view: DTDs. For the specification of user defined data types and
functions AUTOFOCUS provides DTDs. The definitions in DTDs are written in a
Gofer-like functional style. Table 1 contains an example.

Example. A simple ATM system (Fig. 1) will serve as an example for model-
ing, translation, and testing. The system consists of three components: a timer,
a central data base, and a till component (the actual ATM). Channel user serves

local Int t=0;

set:Int

timeout:Signal

request: Transaction
user:Input

reaction:Output answer:Message

local Card Current=Invalid,
local Int CurrentPIN=0

Figure 1: System structure

as the ATM’s input interface; a Card may be entered into the Slot, a function key
FunKey with some associated Action may be pressed, or a PIN (an Integer) may be
entered. Table 1 shows the associated data types. Users get the system’s reaction
via channel reaction (request for action, issuing money, displaying the balance). The
timer component ensures that after a certain time the card is returned (e.g., in case

4

Signal = Present

Card = Invalid | Valid(getPIN:Int, Acc:Int)
Action = Withdraw(Int) | ViewBalance

Input = Slot(Card) | FunKey(Action) | PIN(Int)
Transaction = TA(Action, acc:Int, pin:Int)

Message = NoMoney | Money(amt:Int) | Balance

Output = enterPIN | enterCard | enterAction | timeoutError(Card)
| byebye(money:Int, Card) | ViewBal(Card) | errorWrongPIN

Table 1: Data types in the ATM model

something went wrong). Finally, the central database gets a request from the Till
component on channel request and reacts accordingly (e.g., transmit balance, issue
money, etc., see Table 1 for details). The system’s behavior is depicted in Fig. 2.
Note that a pattern matching expression inputChannel? without a pattern after the
question mark requires inputChannel not to carry any value. This is different from
inputChannel?X which allows inputChannel to carry an arbitrary value. Also note
that in this simple example, no accounts are maintained, and whenever a valid card
is entered, any amount of money may be withdrawn. Furthermore, a reaction View-
Bal(Card) indicates that some balance is displayed and that the card is returned.
For simplicity’s sake, the specification allows a user to enter new cards before a
card is returned. This could be avoided by adding an extra variable that stores if
a card has been entered (and rejecting subsequent ones). If in this model channel
user carries a value of type Card even though there already is a card in the system,
the second card might be thought as being immediately rejected.

3 Encoding into Propositional Logic

Once each component of an AUTOFOCUS system model has been assigned an STD,
the behavior of the system — as given by its possible I/O traces — is completely
specified. A test sequence is an executable /O trace satisfying a certain test case
specification. The presented approach to determining test sequences consists of
translating a system specification into a propositional formula describing all its pos-
sible executions of a certain length, given as a sequence of global system states.
Likewise, test case specifications are translated into a predicate over execution se-
quences. A solution to the conjunction of these two propositional formulas is then
computed using standard satisfiability solvers such as SATO [31] and results in an
execution sequence satisfying the test case specification. From this execution se-
quence one easily derives a test sequence by extracting messages on the channels
from the global system state at each step. The presented determination of test
sequences has been developed in analogy, as simplification and complement to the
bounded model checking algorithm proposed in [4].

Translating the specification. The AuTOFOCUS system model is translated
into a Kripke structure that consists of a global state space (propositional variables),
and two propositional formulas I(s) and T'(s, s') describing the initial states of the

[) Ready
A

Al=P:Request?TA(Withdraw(M),A,P):
n>0:set?n:t=n-1 t==0:set?: answer!NoMoney:
timeout!Present:
A4 OR :Request?TA(ViewBalance,A,P):

answer!Balance: I
Counting OR A==P:Request?TA(Withdraw(M),A,P):
answer!Money(M):
t>0:set?::t=t-1 (b) Central

OR n>0:set?n::t=n-1 (a) Timer
Current!=Invalid && p!=getPIN(Current):
:user?:reactionlenterCard: WAITING .) user?PIN(p):reaction!errorwWrongPIN:
OR not(is_Slot(K)):user?K:reaction!enterCard: ‘user?Slot(X): CurrentPIN=p

reaction!enterPIN;set!2:Current=X;

‘timeout?Present:
reaction!timeoutError(Current):
Current=Invalid

:answer?Money(M):
reaction!byebye(M,Current):
Current=Invalid
OR :answer?NoMoney:
reaction!byebye(0,Current):
Current=Invalid
OR :answer?Balance:
reaction!ViewBal(Current):
Current=Invalid
OR :timeout?Present: TIMEOUT1

reaction!timeoutError(Current),
Current=Invalid (ActionEntered
ALTERNATIVELY:

Current!=Invalid

&& p==getPIN(Current):
user?PIN(p):
reactionlenterAction;set!2:
CurrentPIN=p

(PINentered

‘timeout?Pre
reaction!timeoutl
Current=Invalid

:answer?A:reaction'm20o(A,Current):Current=Invalid :user?Fuaney(Act): i
OR :timeout?Present:reaction!timeoutError(Current):Current=Invalid Request!TA(Act,Acc(Current),CurrentPIN);set!3: i
where m2o(Balance,C)=ViewBal(C) (c) Till

| m2o(NoMoney,C)=byebye(0,C)
| m2o(Money(M),C)=byebye(M,C)

Figure 2: Component Behavior

system and its transition relation (i.e., possible successor states in the following clock
cycle depending on the current state). Execution sequences of a fixed length can then
be characterized with the help of these two formulas. In the following paragraphs,
the translation of an AUTOFOCUS system model into a Kripke structure is explained
by showing how to determine its global state space and the formulas I and 7" for
initial states and the transition relation.

Global state space. The global state space of a system specified in AUTOFOoCUS
is given by the cross product of the control and data states of all its components
and the current data values on the channels. Communication is modeled by treating
channels as shared variables that can be written by one component and read by all
connected components. AuTOFocuUS allows for complex hierarchical data types for
local variables as well as channel types. Under the assumption that the specification
only uses finite data types, all these data types can be mapped to bit fields of
finite length. The mapping preserves the structure of the hierarchical data types in
order to increase efficiency and to keep the size of the resulting formula small when
operations on these data types have to be translated into operations on bit fields.
In the ATM example, the state space is (incompletely) specified by:

Y ATMSystem = it X XTimer X Lcentral X 2LChannels

Yy = YTill.ControlState X 2Till.Current X 2Till.CurrentPIN

EChannels = Euser X Ereaction X Eset X Etimeout X Erequest X Eanswer
Y.Till.ControlState = IB X 1B

YTill.Current = IBxIBxIBxIBxIB

The state space for the control state of component Till consists of four states
which can be represented by two bits. Values of the local variable Till.Current of
data type Card are represented by a bit field of length five. Fig. 3 shows how the
data type Card is mapped to such a bit field. The rightmost bit acts as a tag and
indicates the alternative (i.e. Invalid or Valid) the current value belongs to. In case
of alternative Valid, there are two arguments which prefix the tag. Note that in
the general case arguments can be hierarchical data types themselves, as long as
the data type definition is not recursive. Operations that manipulate hierarchical
data types are then automatically converted into operations on the corresponding
bit fields. Every component of Ychanners is encoded in an analogous way.

Since models have to be finite, natural numbers have to be restricted to a max-
imum value, maxInt. The timer’s local variable ¢, for instance, then ranges from 0
to maxInt. For a detailed description of the translation, see [30]. For a particular

Invalid 0 0

Valid PI' N Acc 1

4 3 2 1 0

Figure 3: Encoding of data type Card (maxInt=3)

global state s € X armsystem, the projection operator 7 is used to refer to the values
of the local variables, control states and channels. 7rii.current (), for instance, refers
to the five bits corresponding to the value of Till.Current, and 7rii.curent, (S) refers to
the second rightmost bit of this bit field.

Now I(s) for the initial states and T(s,s’) for the transition relation can be
formalized. I and T will be propositional terms, and thus have to be defined on the
single bits of s or &', respectively.

Initial states. The initial state of a system specified with AuTOFOCUS is deter-
mined by the initial control states of its automata as well as initial values for local
variables, if defined. In addition, all output channels of the components must be
cleared (for this purpose, there is a special value NoVal for the data type of each
channel). Input channels or local variables without an initial value can have arbi-
trary values. For an AUTOFOCUS system model, I(s) hence consists of a conjunction
of propositional terms stating that the bits of s for which an initial value is specified
are set to this value.

For instance, in the ATM example the local variable Current in the Till com-
ponent (storing the current card inserted into the machine) must have the initial
value Invalid. In addition, the control state of this component must be Ready. As
Invalid is mapped to Invalid® = (0,0,0,0,0) and Ready is mapped to the bit sequence

7

Ready” = (0,0) (superscript B denotes the Boolean representation), Iatmsystem(S)
starts with

IATMSystem (5) = (7TTiII.Currento (3) = O) JANIA (7TTiII.Current4 (S) = 0)/\
(70Till.ControlStateo (8) € 0) A (7rTill.ControlState; (8) < 0) A

Transition relation for a single component. The transition relation T'(s, s')
is given by the conjunction of the transition relations of the system components. As
described above, the behavior of each component C'in an AUTOFOCUS system model
is specified by a state transition diagram. With Transitions(C) denoting the set of
component C’s transitions, the idea is to translate all transitions ¢ € Transitions(C')
of its STD into propositional formulas, T¢ (s, s'). These are satisfied if the transition
can fire in the current global state s, and the effect of the transition’s firing is reflected
by the successor state s’. T, are conjunctions of pattern matching conditions for
the input statements, preconditions, output statements and postconditions.

Annotations of the AUTOFOCUS transitions can contain user-defined functions,
arithmetic operations and operations on hierarchical AUTOFOCUS data types. [22]
shows how pattern matching is performed. User-defined functions (e.g., bottom left
of Fig. 2) are eliminated by replacing them with their definitions (note that this is
only possible for non-recursive function definitions), and then operations on data
types are replaced by predicates on the corresponding bit fields (see [30] for details).
For example, the expression a < b has to be translated into a predicate defined on
the bits of @ and b and that is satisfied if @ < b. The translation is similar to the
usual implementation in hardware [3].

The propositional formulas corresponding to the transitions can get fairly com-
plex. One of the simplest transitions in the ATM example is the transition! labeled
WAITING in Fig. 2 (c) that requests a card if there is no input from the user. It is
translated as follows:

S, 5,) = (WTIII.ControIState(s) = ReadyB)/\

TTill.Controtstate (') = Ready”)A

WChanneIs.user(s) = NOVa|B) A (7TChanneIs.reaction (5,) = enterCardB)/\

il Current (8') = TTitl.Current (8)) A (TTin.CurrentPiN(8") = TTil.Currentpin (8)) A
('ﬂ'ChanneIs.request (SI) = NOVa|B) A (WChanneIs.set(Sl) = NOVa|B)

The first subterms correspond to precondition and action. Tchannels.reaction (8') 18
used rather than Tchannels.reaction (§) because the message written to the port can only
be read in the following clock cycle (Sec. 2), and the last four subterms make sure
that the local variables Current and CurrentPIN keep their values and the unused
output ports are cleared. For notational convenience, = is used as equality on bit
fields, and Ready”, NoVal? and enterCard® are constants representing the value of
the bit field this constant was mapped to (e.g., Ready” = (0,0)). All subterms
must still be converted to propositional formulas which is straightforward in case
of the operator =: The first subterm is translated into (i controistates (5) < 0) A
(T rin.Controistate? (5) < 0).

At each clock tick one of the transitions in an STD fires, yielding the succes-
sor state. The only exception occurs if no transition can fire. In AuTOoFocus

TTiII,WAITING

N N N /N

!The formula only refers to the first disjunct of the transition.

system models it is usually assumed that in this case, the system remains in its
current state, and output channels are cleared. This can be seen as an additional
“idle transition” idle for each state that fires if the negation of all preconditions
and input patterns of the other transitions is true (see [17] for details). Thus,
the transition relation T¢(s,s’) of a component described by an STD is given
by the disjunction of all T¢; and the idle transitions. For the ATM example,

Trin(s, s') = V Tring(s,8") V Trinjae(s, s'). Note that Trinjqie(s, s’) denotes
t€Transitions(Till)
the disjunction of idle transitions for each state in Till.

Transition relation for an SSD containing multiple components. As com-
munication between components in a system structure diagram is modeled by shar-
ing variables for the channels, the transition relation 7'(s, s') for a system containing
multiple components is simply the conjunction of all components’ transition rela-
tions: TATMSystem (8, Sl) = TTi||(S, SI) N TTimer(Sa Sl) A TCentraI (8, Sl).

Unfolding the transition relation. Now that propositional formulas for I and
T have been defined, all possible execution sequences of a certain fixed but arbitrary
maximum length k£ + 1 are given by the set of solutions to the propositional formula

k-1
U = Iatmsystem(50) A A Tatmsystem(Si, Si+1), a result of unfolding the transition re-
=0

1=
lation, as explained in [4].
U contains k + 1 references s; to the global system state, referring to the steps

of the execution sequence. For sy, s1,...,S; to be a valid execution sequence, sg
must be an initial state, and (s, s1), ($1, S2), - . . must be elements of the transition
relation.

Determining a test sequence. Test case specifications (for example, the re-
quirement that a certain control state be reached in one automaton, or a certain
sequence of transitions be executed) are also translated automatically into predicates
over control states, local variables and channels at different steps of an execution
sequence (note that it is not distinguished between a predicate and its characteristic
function.) This is subject of the following section. Let ®; denote such a predicate
and ¥ the specification as a propositional formula (actually, the bounded model,
since its maximal execution is restricted to length k + 1). The execution sequences
satisfying the test case specification are then described by the propositional formula
U A ;. U AP, is translated into conjunctive normal form, and a solution is com-
puted by means of a standard satisfiability solver, e.g. SATO [31]. The bit fields
the state space at different steps consists of are automatically mapped back to the
underlying AuToFoCUs data types, and, by extracting the values of the message
channels, the solution is converted into an I/O trace (MSC) representing the desired
test sequence.

4 Testing

With the above translation it is possible to determine test sequences for arbitrary
test case specifications given as a predicate over a finite execution sequence. In
this section it is shown how system testing can be supported. To this end, three

important classes of test cases are examined by referring to the ATM example. These
include (partial) I/O traces, sequences of transitions, and sequences of states. Test
sequences are generated fully automatically by making SATO solve ¥ A ®; where ¥
is the formula describing the (bounded) model and ®; is a test case specification.
Results are then translated back into I/O traces (depicted as MSCs).

Partial I/O traces. One possible test case specification is based on partially
specified I/O behavior of a system. If no negations are used, such partial I/O traces
can be graphically represented by MSCs. An MSC defining a use case normally does
not show the complete input and output behavior of the system at each step, but only
particular relevant aspects of it. By means of the translation to propositional logic
and SATO’s solving capabilities, an example for a complete I/O trace corresponding
to the behavior described by the use case is computed. Such an I/O trace can then
be used to test the implementation. It is possible to use free variables within the test
case specification, bindings for which are computed by SATO and then re-translated
into AuTOFoOcCuUs data type values. The system tester thus draws an MSC which
is automatically translated into propositional logic and fed into SATO; the solver’s
results are then translated back into MSCs the tester can analyze.

Ezxample. Two cases are considered: Is there a behavior where money can be
withdrawn at all ($;)? Is it possible to withdraw money without having entered a
card (®2)?

k

¢, = __/O(WChannels.reaction (sz) = byebye(l\/l, C)B) A MEB 3_’5 0B
k-1

¢, = VO(OWChanneIs.user(sj) % SlOt(X)B/\
i=0 j=

T Channels.reaction (Sz) = byebye(l\/l, C)B) A MB ;7é 0B

Figure 4 shows the test case specification (a) as well as a computed completed
test case (I/O sequence, (b)) as an MSC. Even though the focus of this kind of
application is on black box testing an implementation, it can clearly be used for
white box testing a specification. Note that there are certain computed inputs that
do not affect the system’s behavior (e.g., the second FunKey event). This is due
to the fact that input channels in reactive systems generally can carry any value.
However, it is not clear if their appearance in a test case is necessarily superfluous:
they may exactly lead to an unexpected behavior of the implementation.

Table 2 shows performance characteristics of the computation (with £ maximum
length of the test sequence, maximum integer value 5, measured on a SUN Ultra-
Sparc with 1 GB memory, 400 MHz. The symbolic model checker SMV [26] takes
40.07 s for the same example.) Note that memory and time statistics exhibit a great
variance (up to 500%); this is due to SATO’s random choosing of the next literals to
be evaluated. Shown values are averages. For the test case specification ®,, neither
SATO (with bound up to £ = 20) nor SMV found a test sequence, so the specified
behavior is impossible.

Execution of transitions. Test cases can also be specified with the help of tran-
sitions in the automata of the AuTOFOCUS system model. This is useful for testing
if the implementation’s behavior is as expected when the corresponding transitions
are executed. In addition, it is possible to deploy such test cases in the white box
testing process of a specification. Test cases can be specified by (possibly partial)

10

Central

] () LTiu ’ Timer
,,,,,,,,,,,,,,,,,,,,, 0-*

MI=0 user?Msg(Slot(Valid(1,1)))
A S bbbl Vo

reaction!byebye(M,C4drd)

\

edction!Msg(enterPI)

set.Msg(2)

user?Msg(PIN(1))
Till Timer Central

reacfion!Msg(enterActign)
user?Msg(Slot(Valid(0,0))) -
Lt user?Msg(FunKey(Withdraw(2)))

—_—

regction!Msg(enterPIN)

- set.Msg(2) _ |

set.Msg(:

2) |

Request|Msg(TA(Withdraw(2),1,1))

set.Msg(3) -
user?Msg(FunKey(Withdraw(0))) user?Msg(FunKey(Withdraw(2)))
reaction!Msg(enterActign) R e
set.Msg(2) - answer.Msg(Money(p))

Request{Msg(TA(Withdraw(0),0,0))

setMsg® .| [- - - - - K- - - —-F- - - - - ----

Figure 4: Test case specification (a), satisfying test sequence (b), test sequence that
reaches state ActionEntered (c)

transition sequences. One could, for instance, require that at the beginning of a sys-
tem execution a certain transition sequence be fired and at some later step, another
transition be fired. This technique also allows for explicitly covering certain sub-
graphs of an automaton. Without altering the system model, this kind of properties
cannot be checked with SMV (this is why no comparative numbers are given).

Test case specifications involving transitions can also be specified using MSCs,
provided they are extended by additional symbols representing the execution of a
certain transition. This (and the exact semantics of such symbols) is subject of on-
going research. In addition, the tester can select transitions or transition sequences
directly in AuToFocus, which provides a very intuitive and interactive way of sys-
tem testing. Finally, one can also automatically compute a transition tour covering
all or some of the transitions of a certain automaton using established graph algo-
rithms (see [28]). The test sequence determination will then tell if the transition
tour is executable, and if so, will give as a result a corresponding I/O behavior of
the system.

Ezxample. Figure 5 (c) shows a computed test sequence for the (graphical)
specification “transition TIMEOUT1 must be fired at some step of the execution”

k-1
(®5 = V Trinmimeouti(Si, Si+1)), It also exhibits two test cases for two complete
i=0

transition cycles (full transition coverage) with (a) and without (b) transition TIME-
OUT1. This is a good example for how testing helps detecting errors in a specifica-
tion. When trying to find a sequence that covers all transitions, one quickly discovers

11

k | CNF clauses | SATO time [s] | KByte
5 | 6600 0.23 225
10 | 13075 1.61 479
15 | 19550 5.63 703
20 | 26025 53.95 927

Table 2: Performance: Withdrawing Money (Fig. 4 (a, b))

that TIMEOUT1 should never fire? for the central database immediately reacts once
it received a request. However, if solely transition TIMEOUT1 is to be tested, the
system discovers a run where TIMEOUT1 does indeed fire (Fig. 5 (c¢)): The timer
is set to 2 during transition to state PINEntered. Two ticks later, the user requests
an action (ViewBalance). As a result, the transition to ActionEntered is taken, but
at the same time, a timeout occurs, just before the timer is reset to 3. This causes
TIMEOUT1 to fire. The problem is that the system model simply is wrong (simple
modifications to the model could avoid such a case). This kind of “race conditions”
often occur because modelers do not pay enough attention — in this case, the prob-
lem is due to the fact that the presented model is an abstraction of a much more
complicated system [30], and the abstraction was not chosen carefully enough. Ta-
ble 3 shows performance data for the transition tour (length 18) without TIMEOUT1
for different maximal integer values. Table 4 shows performance characteristics for
computation of a test case where TIMEOQUT1 is eventually fired.

Note that there is room for optimization. As described in chapter 3, the for-
mula ¥ used to model all possible bounded executions of the system contains the
disjunction of subterms for all transitions in the components. To find I/O data for
a transition sequence, in each step of unfolding all transitions of the component
that do not occur in the specified transition sequence can be omitted (“slicing the
model”). This results in considerable performance gains (compare the performance
data for the 18-step transition tour in table 3 with the results in table 2). This
optimization is performed automatically and is inherent to the translation scheme.

maxint | CNF clauses | SATO time [s] | KByte
3 5671 0.25 224
d 7214 0.25 289
15 9833 0.25 383
63 14508 0.27 043
1023 25166 0.53 895
8191 27615 0.55 960

Table 3: Performance: Transition tour without TIMEOUT1 (Fig. 5 (a))

2For reasons of clarity, transitions between the same states have been connected by OR in
Figure 2. In AuToFocus, they are represented as different transitions, i.e., TIMEOUT1 is the last
of the four transitions leading from ActionEntered to Ready.

12

user?Msg(PIN(2))

reactip

user?Msg(PIN(2))

user?Msg(Slot(Valid(0,4
—_—

reaci

user?Msg(PIN(4))

reaction!Ms;

user?Msg(Slot(Valid(0,q
[—

red

reac

user?Msg(Slot(Valid(3,d
—_—

a

user?Msg(Slot(Valid(0,d
—_—

reg

reaci

user?Msg(FunKey(Withdraw(0)))
—

‘ Timer ‘ Central
reagtion!Msg(enterCard) -
reagtion!Msg(enterCard) -

)
redction!Msg(enterPIN) -
set.Msg(2) _ |
reacti ‘n!l\gg(grroTWr;n'ElN)i - 17
n!Msg(errorwrongPIN) -
reactipn!Msg(errorwrongPIN) -
tipeout.Msg(Presen
reaction!Msg(timeoutError(Valifl(5,5))) -
)
reaclioaMsig(eimeﬁl 7 I 17
-
set.Msg(2) _ |
ion!Msg(enterActign) -
set.Msg(2) _ |
)
)
timeout.Msg(Presen
(timeoutError(Valifi(0,4))) .
)
ction!Msg(enterPIN)) .
-
setMsg(2)
ion!Msg(enterActign) .
-
)
setMsg(2)
Msg(TA(ViewBalance,0,0))
set.Msg(3) _ |
tipeout.Msg(Presen
reaction!Msg(timeoutError(Valifi(0,0))) -
éwer.Msg(Balance) o
)
ction!Msg(enterPIN) -
set.Msg(2) _ |
ion!Msg(enterActign) -
set.Msg(2)
Msg(TA(Withdraw(0),0,0))
set.Msg(3)
swer.Msg(Money(p))
fisg(byebye(0,Valid(0,0))) -

Figure 5: Executions with full coverage with (a) and without (b) transition TIME-

(b) ‘ Till ‘ ‘ Timer ‘ Central ‘
reaftion!Msg(enterCard) -
user?Msg(PlN(Oz) =
T reaftonmMsgeentercaf) [
user?Msg(Slot(Valid(4,d))) o
—_—
regction!Msg(enterPIN) -
setMsg(2) _ o
user?Msg(PIN(2)) o
reactipn!Msg(errorWrongPIN) -
user?Msg(PlN(Zz) o
77 7 Treactbnmsgerorwrondeyy T [T T T -
user?Msg(PIN(2)) o
" reacipnMsgemorwrondpyy [T
tineout.Msg(Presen{)
reaction!Msg(timeoutError(Valif(4,0))) -
user?Msg(Slot(Valid(0,5)))
—
regction!Msg(enterPIN) o
user?Msg(PIN(Q)) -
setMsg(2)
T 7r§ac5n!ﬁsg?en?erA?u :) T T T 17
set.Msg(2) _ | o
fseT?M;g(aN(Ez) 7777777777777777
timeout.Msg(Present)
reaction!Msg(timeoutError(Valifl(0,5))) -
user?Msg(Slot(Valid(0,4)))
—_—
T 7 7 7 TredctionisgenterPiy — — T T [T T T 7
set.Msg(2) _ | o
user?Msg(PIN(Q) o
reacfion!Msg(enterActign) o
set.Msg(2) _ | o
user?Msg(FunKey(ViewBplance))
e
RequestiMsg(TA(ViewBalanhce,4,0)) o
set.Msg(3) _ |
answer.Msg(Balancg)
T 7re§ctia1!l sg(T/ieEBaT(VeEd 0,4)5 T T 17
©) Till ‘ Timer Central
reagtion!Msg(enterCard) -
user?Msg(Slot(Valid(0,2)))
regction!Msg(enterPIN) _
set.Msg(2) o
Ese??M;g(aN(B I
user?Msg(Slot(Invalid))
—
reacfion!Msg(enterActign) -
set.Msg(2) o
Ese?’Mgg(aN(E I
user?Msg(FunKey(ViewBpalance))
timeout.Msg(Presen
-
Request|Msg(TA(ViewBalance,2,0))
set.Msg(3)
]
user?Msg(FunKey(Withdraw(1)))
— b
reaction!Msg(timeoutError(Valifi(0,2))) -
answer.Msg(Balancg)
user?Msg(Slot(Invalid))
—_—
T redcionvsgenerPiy [T
-
set.Msg(2)
"

OUT1; Execution with transition TIMEOUT1 (c)

k | CNF clauses | SATO time [s] | KByte
5 | 6358 0.23 255
10 | 12998 0.45 479
15 | 19438 4.64 703
20 | 25878 37.26 895

Table 4: Performance: Transition TIMEOUT1 (Fig. 5 (c))

Reachability of states. As a last example, one can specify particular control
states (or sequences thereof) to be reached. Applications include putting a system
into an error state (rather than observing the transitions’ outputs), to check reach-
ability conditions, or to perform consistency checks (“is it possible to enter state
ActionEntered without having entered a card?”?). Such test cases can again be spec-
ified using MSCs (with the help of condition boxes) or graphically by clicking on
the states.

Ezample. Figure 4 (c) shows a test case for the specification that requires the sys-
tem to reach state ActionEntered (®4 = \/*_,(7Tin.Controistate (5i) = ActionEntered”)).

Remarks. (1) Obviously, problems occur if the system model is nondeterminis-
tic, and a computed I/O trace does not correspond to the implementation’s actual
behavior even though it is correct. However, a restriction to deterministic models
seems suitable since such models are usually easier to understand.

(2) There is a close relationship to bounded model checking [4]. Bounded model
checking restricts model checking to executions of a certain maximum length and
results in remarkable efficiency gains over classical model checking. However, unlike
counter examples for general LTL formulas, which can contain loops, test sequences
are always finite. Therefore, for the purpose of determining a test sequence for a
given test case specification, the mere unfolding of the transition relation to the
intended length of the test sequence is sufficient. In addition, as test sequences are
finite, test cases can always be specified using predicates over state variables (control
states, local variables, and channels) at the different execution steps (0..k). Since
there is no need for an elaborate translation of general LTL specifications and infinite
execution sequences into propositional formulas as in bounded model checking, these
formulas become much simpler and thus test sequences can be determined more
efficiently. Furthermore, without altering system models, LTL does not allow for
explicit statements about transitions. This does not mean that LTL formulas are
not appropriate for testing purposes. However, they may increase complexity and
are not as easily understood by the tester as graphical specifications.

(3) The translation of AUTOFOCUS system models and test case specifications
into propositional formulas is fully automatic and integrated into the AuToFOCUS
CASE tool. Test cases can be specified in the tool by MSCs representing partial
I/O traces, or by selecting transitions or control states (or sequences thereof). The
computed test sequences are immediately translated back into MSCs that can be
displayed graphically.

3‘1’51 = Vi-c:() (/\;;B 7TCh:-.mn(-_‘Is.user(si) ;_'—é SIOt(X)B A TTill.State (51) = ActionEnteredB)

14

(4) The given translation of AUTOFOCUS system models into propositional logic
can also be used for classical symbolic model checking: a Kripke structure consist-
ing of a boolean state space and the propositional formulas I(s) and T'(s, s'), are
exactly the input for a symbolic model checking algorithm. Actually, AuTOFOCUS
supports SMV model checking, bounded model checking and test sequence genera-
tion using SATO — all based on the same translation. The only overhead involved
by translating the specification into the SATO input format is that the transition
relation must be unfolded and then converted into conjunctive normal form, which
is negligible considering the complexity of the SAT solving algorithm.

5 Related Work

This section sets the presented work in context with other approaches such as model
checking, bounded model checking, and techniques based on a constrained enumer-
ation of test sequences. In addition, the use of MSCs for the specification of test
cases is discussed. Finally, some relevant references are cited.

Generating test sequences. The use of propositionally encoded specifications
with a certain bound is similar to bounded model checking, but the method presented
above exhibits some differences. Its intention is not a full coverage of a linear logic
(e.g., LTL) but rather a subset that turns out to be (a) conveniently representable
by MSCs and (b) more efficiently solvable. In addition, firing of transitions can be
expressed, which is impossible using LTL formulas without altering the model. As
it is related to bounded model checking, determining test sequences using SATO
is more efficient than determining test sequences using SMV for the same reasons
for which bounded model checking is in some cases superior to symbolic model
checking using BDDs (see [4]): building the BDDs representing the system model
is expensive as the size of the BDD corresponding to a formula is dependent on the
size of the BDDs corresponding to its subformulas — whereas a system representation
as a propositional formula can always be determined in polynomial time. However,
the advantage of bounded model checking (and thus of the presented approach)
diminishes when longer execution sequences are to be considered, as the complexity
of the Davis-Putnam-algorithm used by SATO is exponential in the size of the
formula.

The knowledge of the structure of the system (communicating automata) also
allows for optimizations such as model slicing: for instance, when computing input
data for a certain transition tour, possible traces of the model are restricted to this
very transition tour. This yields considerable performance gains, as explained in
section 4.

The possibility to use counter examples from model checkers for testing purposes
is widely recognized. In Uppaal [16], for instance, these traces can be fed into the
tool’s simulation environment and used for debugging. The difference with the
approach presented in this paper is the use of a full model checker with its inherent
performance problems.

Other approaches to validating systems (computing test sequences) include model
checking-on-the-fly (e.g., [21, 8]) or constraint solving techniques [6, 17, 18]. In con-
trast to (unbounded) model checking, they share the commonality of not building
the entire state space before checking whether or not a property holds. Instead,

15

the search tree is pruned in an ad-hoc (on-the-fly) or a-priori manner (constraints).
Model checking-on-the-fly suffers from a lack of efficient representations such as
BDDs (but is, in some cases, more efficient). Constraint solving techniques are
heavily dependent on the availability of efficient constraint solvers (which, on the
basis of Constraint Handling Rules in Constraint Logic Programming, are the sub-
ject of ongoing work [17]). These approaches are rather explorative. Unless one
considers the mere presence of backtracking in resolution procedures as an indica-
tion for their explorative nature, the presented approach is not: Its idea consists of
conjugating a property with the (possibly abstracted) system and to find a solution
to this formula. It is thus fundamentally different, even though determining the sat-
isfiability of propositional formulae surely is a kind of constraint solving. Constraint
solving techniques (over domains other than the Booleans) surely are a promising
approach to system validation [18].

In this context, another approach is worth mentioning. It consists of using
automata that encode properties to be tested (e.g., [16]). These automata are run
in parallel with the system under test, and they enter an error state when the
property is violated. They are hence similar to model checking-on-the-fly. Note
that the automata are actually run and not, as in the case of the automata-theoretic
interpretation of model checking, intersected after complementation of one of them
and checked for emptiness [29].

Specifying test cases. In terms of representation, automata are a good choice
when general properties are to be tested. However, when sequences of transitions,
sequences of states or component interactions, i.e., partial I/O traces, form the ma-
jor part of the property to be tested, they seem to be more complicated than MSCs.
Typical test purposes include bounded liveness properties that require a notion of
final states in (Biichi) automata which renders them more complex. Particularly for
the first kind of test case specifications, Sequence Charts seem to be more appro-
priate. Note that this argumentation is about (intuitive) representation rather than
expressivity. This motivates the following discussion on specification languages for
test cases.

MSCs explicitly visualize the progress of time in a sequential manner and al-
low for a simple specification of bounded liveness properties (for they are bounded
by definition). They describe exemplary component interactions, and are usually
deployed to specify use cases that show a certain required behavior of the system
model or its implementation, respectively. Condition boxes in MSCs can be used
to specify system states [15, 11] - a fact that is used in work on their translation
into automata [15]. The incorporation of special symbols for transitions into MSCs
is the subject of ongoing work. Note that this does not advocate the integration of
MSCs and automata into a new kind of language for the specification of systems,
but rather for the specification of test cases. In terms of system specification, a clear
distinction between behavior and interaction view seems to be reasonable.

The specification of properties also necessitates a construct for negation. If
negation is to be used on levels of the property other than the outmost one (i.e.,
“the following property should not hold”), there is a need for describing “partial”
negation within MSCs which is the subject of ongoing work. In addition, for the
specification of test cases, the specification of iteration is needed within MSCs (e.g.,
Fig. 4).

16

One problem with these extensions is the formal definition of their semantics
which, in case of negation, turns out to be far from being trivial. Another compli-
cation arises from the fact that there are different interpretations of MSCs. Two
subsequent messages (arrows) in a diagram may mean “nothing but these two mes-
sages occur within the specified time in the specified order”, or they may mean “the
partial I/O behavior in question must contain the two specified messages in their
specified order”. It seems to be reasonable to admit both interpretations.

Summarizing, the authors consider MSCs as an appropriate, intuitive means for
test case specifications in cases where I/O behavior is to be tested. This necessitates
constructs for iteration (e.g., Fig. 4). Furthermore, for sequences of states or transi-
tions, MSCs seem to be a good choice, provided that constructs for states (condition
boxes) or transitions (special arrows) are supported.

The presented approach to compute test sequences actually uses a more general
form of specifying test cases, a predicate defined over the steps of a finite execution
sequence. MSCs can easily be translated into such a predicate, but so can other
ways of specifying test case, like selecting states or transitions interactively in the
tool.

General comments. The derivation of test cases is a particularly difficult and
challenging problem, and there are many approaches to solving it. The following
brief summary is necessarily incomplete; no work on regression testing, integration
testing, test management, or hardware testing is cited.

The classification tree method [10] offers tool support, helps in manually design-
ing test cases and is applied in industry. [24], for instance, explores automatic test
case generation with Z and this method that might also be applied to the approach
presented in this paper. [20] discusses criteria for the generation of test cases. [1] de-
scribes assessment techniques for specification based testing. By their very nature,
both references are applicable to all methods of generating test sequences. There
are several formalizations of testing: for (extended) finite state [28, 23], for algebraic
specifications [7], and for general labeled transition systems [5, 27].

MSCs as a language for test case specifications are described in [9]. The focus is
on telecommunication. [17, 6] advocate the use of Constraint Logic Programming
for software validation for reactive systems. [19] may serve as an example for the
use of Prolog for testing purposes, based on the structured object-oriented formal
language (SOFL). [2] uses counterexamples of a model checker in combination with
abstractions and mutation analysis as the basis for the generation of test cases. Their
approach is different from the presented one in that there is no use of specialized
solvers for a special class of test cases. Furthermore, the analysis of mutations is not
part of the presented work. [4] contains many ideas that have been adopted to the
above translation of specifications into propositional logic. Finally, [30] describes
many aspects of this work in more detail.

6 Conclusion

In this paper, an approach to automatically determining test sequences from a finite
system specification by translating an AUTOFOCUS model and test case specifica-
tions into propositional logic has been presented. AUTOFOCUS supports graphical
system models, a simple semantics that does not lead to an explosion of generated

17

formulas, and can therefore be used to formulate test cases in an appropriate way.
The presented method provides support for both white box testing strategies on
AutoFocus models and the derivation of correct test cases for arbitrary imple-
mentations.

Test designers do not need to deal with specifications in temporal logic that are
hard to understand. It suffices to point out interesting test cases in terms of Au-
TOFOCUS’ graphical description techniques (by the use of MSCs, state definitions,
or by clicking on transitions). This is possible because of the restriction to test case
specifications that include partial I/O traces, sequences of transitions, and sequences
of states. The use of the presented method seems particularly suited to handle these
classes (for they do not interfere right from the beginning with the idea of just re-
garding system runs of a fixed length - the validity of safety properties, for instance,
may be approximated with this method, but it is counterintuitive to check them
only for short finite runs). It is not intended to test arbitrary formulae specified in
a temporal logics. In particular, the approach will exhibit problems with large-scale
problems for the same reasons as other approaches: state space explosion. Classical
abstraction techniques such as more elaborate slicing or the abstraction of integer
values into a small number of “equivalence” classes can alleviate this problem. This
is the subject of ongoing work.

The presented method does not support recursive data type or function defini-
tions (on transitions; see [17] for a possible solution on the basis of Constraint Logic
Programming). Obviously there is a strong need for further evaluation of the pro-
duced test cases. Just a few examples have been presented, but the full strength of
the method must be evaluated with an experiment of bigger size and not necessarily
correct implementations.

Another improvement in the testing process is the use of an appropriate graph-
ical language for test case specifications. MSCs seem to be a reasonable choice [9],
notwithstanding some modifications are desirable, e.g., expressing the absence of
particular signals (negated transitions). In addition, the interactive graphical spec-
ification of test cases (e.g. by clicking on states or transitions) helps in debugging
the system model. The current implementation does not support general condition
boxes for the specification of test cases. Besides, the implementation only supports
computation of one single test sequence. It might be desirable to get all or some
other test sequences — only a slight modification to the implementation. Future work
also includes the handling of hierarchical STDs, the determination of other typical
relevant test case specifications (e.g., reachability analyses for optimization), and an
assessment of the created test sequences by means of known or new metrics.

Acknowledgment. The authors would like to thank Alexander B. Schmidt and
Thomas Stauner as well as the anonymous referees for helpful comments on this

paper.

References

[1] S. Allen and M. Woodward. Assessing the Quality of Specification-based Testing.
In S. Bologna and G.Bucci, editors, Proc. 3rd Intl. Conf. on Achieving Quality in

18

2]

[3]
[4]

[5]

[6]

[7]

8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

Software (AQuIS ’96), pages 341-354, Florence, Italy, 1996.

P. Ammann and P. Black. Abstracting Formal Specifications to Generate Soft-
ware Tests via Model Checking. In Proc. 18th Digital Avionics Systems Conference
(DASC’99), volume 2, pages 10.A.6.1-10, St. Louis, MO, October 1999. IEEE.

T. C. Bartee. Computer Architecture and Logic Design. McGraw-Hill, Inc., 1991.
A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In W. Cleaveland, editor, Proc. TACAS/ETAPS’99, LNAI 1249, pages 193
207, 1999.

E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sabnani,
editors, Proc. 8th Intl. Conf. on Protocol Specification, Testing, and Verification,
pages 63-74, 1988.

A. Ciarlini and T. Frihwirth. Using Constraint Logic Programming for Software Val-
idation. In 5th workshop on the German-Brazilian Bilateral Programme for Scientific
and Technological Cooperation, Konigswinter, Germany, March 1999.

M. Gaudel. Testing can be formal, too. In P. Mosses, M. Nielsen, and
M. Schwartzbach, editors, Proc. Intl. Conf. on Theory and Practice of Software De-
velopment (TAPSOFT’95), LNCS 915, pages 82-96, Aarhus, Denmark, May 1995.
R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification
of linear temporal logic. In Proc. 15th Workshop on Protocol Specification, Testing,
and Verification, Warsaw, June 1995.

J. Grabowski. Test Case Generation and Test Case Specification with Message Se-
quence Charts. PhD thesis, Universitat Bern, 1994.

M. Grochtmann and K.Grimm. Classification trees for partition testing. Software
Testing, Verification, and Reliability, 3:63—82, 1993.

R. Grosu, I. Kriiger, and T. Stauner. Hybrid Sequence Charts. In Proc. 8rd IEEE Intl.
Symp. on Object-oriented Real-time distributed Computing (ISORC 2000). IEEE,
2000.

F. Huber, S. Molterer, A. Rausch, B. Schatz, M. Sihling, and O. Slotosch. Tool sup-
ported specification and simulation of distributed systems. In B. Kramer, N. Uchihira,
P. Croll, and S. Russo, editors, Proc. Intl. Symp. on Software Engineering for Parallel
and Distributed Systems, pages 155-164. IEEE, 1998.

F. Huber, S. Molterer, B. Schatz, O. Slotosch, and A. Vilbig. Traffic Lights - An
AutoFocus Case Study. In 1998 Intl. Conf. on Application of Concurrency to System
Design, pages 282-294. IEEE Computer Society, 1998.

ITU. ITU-T Recommendation Z.120: Message Sequence Charts (MSC), November
1999.

I. Kriiger. Distributed Systems Design with Message Sequence Charts. PhD thesis,
Munich University of Technology, 2000.

K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Springer International
Journal of Software Tools for Technology Transfer, 1(1+2), 1997.

H. Lotzbeyer and A. Pretschner. AutoFocus on Constraint Logic Programming.
In Proc. (Constraint) Logic Programming and Software Engineering (LPSE’2000),
London, July 2000.

H. Lotzbeyer and A. Pretschner. Testing Concurrent Reactive Systems with Con-
straint Logic Programming. In Proc. 2nd workshop on Rule-Based Constraint Rea-
soning and Programming, Singapore, September 2000.

J. Offutt and S. Liu. Generating test data from SOFL specifications. J. of Systems
and Software, 49(1):49-62, December 1999.

J. Offutt, Y. Xiong, and S. Liu. Criteria for generating specification-based tests. In
Proc. 5th IEEE Intl. Conf. on Engineering of Complex Computer Systems (ICECCS
’99), Las Vegas, USA, October 1999.

19

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

[31]

D. Peled and W. Penczek. Using Asynchronous Biichi Automata for Efficient Model-
Checking of Concurrent Systems. In Proc. 15th Workshop on Protocol Specification,
Testing, and Verification, Warsaw, June 1995.

J. Philipps and O. Slotosch. The quest for correct systems: Model checking of di-
agrams and datatypes. In Proc. IEEE Asian Pacific Software Engineering Conf.
(APSEC’99), pages 449-458, 1999.

S. Sadeghipour and H. Singh. Test strategies on the basis of extended finite state
machines, 1998. Report FT3/SM-98-04, Daimler-Benz AG.

H. Singh, M. Conrad, and S. Sadeghipour. Test case design based on Z and the
Classification-Tree Method. In Proc. Workshop “Tool Support for System Develop-
ment and Verification, Bremen, Germany, 1996.

O. Slotosch. Quest: Overview over the Project. In D. Hutter, W. Stephan,
P. Traverso, and M. Ullmann, editors, Applied Formal Methods - FM-Trends 98,
pages 346-350. Springer LNCS 1641, 1998.

SMV. http://www.cs.cmu.edu/ “modelcheck/.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103-120, 1996.

H. Ural. Formal methods for test sequence generation. Computer Communications,
15(5):311-325, June 1992.

M. Vardi and P. Wolter. An automata-theoretic approach to automatic program
verification. In Proc. 1st IEEE Symp. on Logic in Computer science, pages 332-334,
boston, 1986.

G. Wimmel. Specification Based Determination of Test Sequences in Embedded
Systems. Master’s thesis, Technische Universitidt Minchen, 2000.

H. Zhang. SATO: An efficient propositional prover. In W. McCune, editor, Proc. 1/th
Intl. Conf. on Automated deduction, LNAT 1249, pages 272-275. Springer, July 13-17
1997.

20

