
On the Effectiveness of Test Extraction without Overhead

Andreas Leitner1, Alexander Pretschner2∗, Stefan Mori1, Bertrand Meyer1, Manuel Oriol3
1Department of Computer Science, ETH Zürich, Switzerland

2Fraunhofer IESE and TU Kaiserslautern, Germany
3University of York, United Kingdom

Abstract

Developers write and execute ad-hoc tests as they imple-
ment software. While these tests reflect important insights
of the developers (e.g., which parts of the software need
testing and what inputs should be used), they are usually
not persistent and are easily forgotten. They cannot always
be re-executed automatically, for example to debug or to
test for regressions. Several methods that make such test
cases persistent and automatically executable have been
proposed. They rely on capturing state and/or events at run-
time and thus induce significant overhead or require spe-
cialized hardware. In previous work we proposed a method
that, in the event of a failure, extracts test cases solely from
the state at the time of the failure (and not from before
the failure). We call this method “failure-state extraction.”
Capturing the state only at the moment of failure reduces
the run-time overhead to zero, but comes at a cost: state ex-
tracted in this way cannot always be used to reproduce the
failure. This paper provides an experimental evaluation of
failure-state extraction. The results show that the method is
highly effective: in the experiment, 90% of all failures were
reproducible using failure-state extraction and thus could
be extracted without run-time overhead.

1 Introduction

The advent of unit testing frameworks such as xUnit has
largely facilitated—and encouraged—the definition of unit
and integration tests. One central feature of such frame-
works is that tests become first class citizens and, akin to
the code itself, managed entities. Among other things, this
approach makes regression testing a lot easier, even though
we start to see the problem that too many managed tests
impose special maintainability challenges in themselves.

Arguably not all developers use such management and
execution frameworks though; and even if they do, they may

∗This work was supported by the FhG Internal Programs under Grant
No. Attract 692166.

cast not all tests in them (the question of if they ought to do
this is outside the scope of this paper). Instead, in partic-
ular during early stages of development, there is a chance
that they interleave testing code with code that implements
the business logics, just to see if it works. Similarly, in in-
teractive applications, there is the possibility that there are
no dedicated driver components, but that the respective tests
are performed manually. In other words, developers may, in
addition to writing managed test cases, also “play around”
with the code. These unmanaged program executions tend
to evolve along with the code, and often rely on external
state (databases, configuration files) or user interactions that
are not made explicit and hence hinder reproduction of the
respective test cases.

Several methods that make such tests persistent have
been proposed. These methods work by repeatedly record-
ing program state (i.e., stack and heap) and/or events (e.g.,
interactive user input) [1, 9, 10, 5]. This repeated recording
during program execution induces run-time overhead.

In previous work [6] we proposed a method that does
not induce any run-time overhead: it captures program state
only when a failure occurs and not before. The goal is to
reproduce the failure by invoking the routines that are on
the stack at the time of the failure. Since only the failure
state is captured, the routines are invoked from this state,
rather than from the states from which they were originally
invoked. The problem with this approach is that state possi-
bly changes in-between routine invocation and the moment
of failure—invoking routines with the failure state may not
reproduce the failure.

This paper investigates the effectiveness of our approach
through experimental evaluation: despite its potential prob-
lem our technique reproduces 90% of all failures; capturing
state at invocation time increases reproducibility by 4 per-
cent points.

Problem We empirically study if zero-overhead test case
extraction is effective. We analyze if test cases that are ex-
tracted from a failure state—rather than from a state that
occurred before a failure state—can reproduce the failure.

heap at moment of failure

..

...

call routine 0
no failure
call routine 1

...

...

...

...

frame0

arg00

arg0n

stack

frame0

arg00

arg0n

stack

failure failure

frame0

frame1

arg10

arg00

arg0n

stack

frame0

frame1

arg10

arg00

arg0n

stack

arg1m

arg1m

heap at moment of failure

heap at moment of invocation heap at moment of invocation

.

Figure 1. Evolution of stack and heap. Top
row: moment of routine invocation (also con-
tent of shadow structures). Bottom row: mo-
ment of failure in routine 0 (left) or 1 (right).

Solution We asked 19 groups of 2-4 students each to im-
plement one of two projects in an Eiffel IDE that supports
automatic test case extraction. An analysis of the log files
of the IDE provided evidence as to how many failures are
reproducible. The results have been sketched above.

Contribution While we had described our test case ex-
traction tool prior to our experiment [6], we did not know
how effective it was. We are not aware of any studies that
investigate the quality of zero-overhead test case extraction.
§4 presents some related studies that do not discuss zero-
overhead test case extraction but do consider an efficient
and effective technique called second-chance. Our exper-
iments show that zero-overhead extraction is highly effec-
tive and that a hybrid approach that combines it with Second
Chance is a very promising approach to test case extraction.

Overview §2 provides the necessary background for test
case extraction. §3 describes our experiment, presents the
results, analyzes them, and highlights the threats to validity.
§4 puts our work in context, and §5 concludes.

2 Background

This section describes the two test case extraction vari-
ants compared in this paper: invocation-state extraction [1],
which invokes routines from the state that they were origi-
nally invoked from; and failure-state extraction [6], which
invokes routines from the state when the failure occurred.

2.1 Invocation-State Extraction

The runtime system of a computer system maintains a
stack and a heap. The stack consists of frames that are

pushed whenever a routine is invoked. When a routine re-
turns control to the calling routine, the topmost frame is re-
moved. Frames include the address of the code, arguments
(including the object on which the routine is to be executed),
values or pointers to values of local variables, and a return
address. The heap consists of all dynamically created data
structures. Heap elements can be referenced by stack ele-
ments, and we will consider only those parts of the heap that
are indeed referenced by a stack element. As an example,
the upper left part of Figure 1 shows the stack at the time
the main routine (routine 0) is invoked. In the example, this
routine takes n arguments, or n+1 arguments if we include
the object on which routine 0 is executed.

The idea of run-time test extraction is to maintain a copy
of the stack, a so-called shadow, by taking a snapshot of the
respective frame (not the entire stack) whenever a routine is
invoked. When a routine completes execution, the frame is
popped, and its shadow deleted. Maintaining the shadows
is the major reason for the overhead of test case extraction:
upon every routine invocation, we essentially have to mimic
what the highly optimized runtime system does. In addition,
whenever a routine is invoked, we have to maintain a copy
of those elements of the heap that are referenced by the cor-
responding stack frame. This can be achieved by deep or
shallow copying. Several variants that differ in how much
state they copy have been proposed by Artzi et al. [1].

Note that implementations of this approach take a snap-
shot of a stack frame when a routine is invoked, as opposed
to when the failure occurs. We hence refer to this kind of
test case extraction as invocation-state extraction.

In Figure 1, the upper row shows on its left the heap at
the moment of invoking routine 0, and thus the correspond-
ing shadow. On the right, we see the state of the heap at
the moment of invoking routine 1. The black heap elements
are those that are referenced by the shadow stack frame for
routine 1. Note that on the right, there is one element that
is referenced both by an argument of routine 0 and an argu-
ment of routine 1, and it might well be that this element was
altered in-between the invocations of routines 0 and 1. This
does not pose any problem, however, because the shadow
that corresponds to routine 0 is a snapshot of this element at
the moment of invoking routine 0—exactly the state that is
depicted on the left.

If a routine does not terminate normally (e.g, by throw-
ing an exception) all existing shadows (i.e., as many as there
are frames on the stack) together with their copies of the rel-
evant heap elements are serialized. One, some or all shadow
frames are serialized: all relevant objects in one shadow
frame (i.e., routine arguments) are turned into a piece of
code that can directly be used to reconstruct these objects.
A test deserializes the objects and invokes the routine to
which the frame corresponds. One might think that test ex-
traction could be done by simply serializing any element of

the shadow stack. This is in general not the case, however.
Interactive applications depend on (non-deterministic)

external events that are sent to the program by the operat-
ing system, external processes, or an interactive user. These
events pose a problem for state-based test case extraction
(all test extraction methods studied in this paper are state-
based), because state-based test cases are unable to repre-
sent and hence re-trigger these events. The test extractor in-
creases the chances to reproduce a failure by creating a test
out of each shadow frame. There is a chance that the upper
elements of the stack correspond to routine invocations that
did not interact with external events, and are hence more
likely to lead to tests that reproduce the failure. Generally
speaking, upper-level frames will lead to tests that corre-
spond to unit tests, whereas lower-level frames will lead to
tests that correspond to integration or system-level tests.

To reduce the run-time overhead of invocation-state ex-
traction, Artzi et al. proposed an optimization called Second
Chance [1]. It improves the performance of invocation-state
extraction, but depends on a failure to occur at least twice.
Initially, no shadow stack frames are saved at all. When
a failure occurs for the first time, the extractor marks the
routines on the stack at this moment as observed. From
this point onward, whenever the program invokes an ob-
served routine, the extractor saves a shadow stack frame
for it. When the failure occurs a second time, just as with
normal invocation-state extraction, the extractor creates test
cases using the shadow stack. Second Chance extractors
hence record considerably fewer routine invocations. Artzi
et al. [1] showed that this significantly reduces the overhead
of invocation-state extraction. It does require a failure to
occur twice though.

The performance overhead of invocation-state extrac-
tion is considerable. With full monitoring and deep copy-
ing enabled, Artzi et al. [1] found it to induce 12,000%
to >638,000% overhead over normal execution with deep
copying. In that same study, monitoring only a subset of the
routines and relaxing the deep-copy requirement reduces
the overhead to roughly 15-65%. Second Chance reduces
the overhead to 0-2%.

2.2 Failure-State Extraction

The approach we proposed earlier [6] does not maintain
a shadow at all, thus reducing run-time overhead to zero. In
this approach, the extractor waits for an exception to occur.
When this happens, it creates test cases from the current
state of the stack and heap only. Since this kind of extractor
does not need to maintain a shadow stack, it does not slow
down the execution of the program under test. We refer to
this approach as failure-state extraction.

Failure-state extraction requires some control over the
runtime system: a) it needs to be notified when an excep-

tion is thrown and b) it must access stack and heap when
notified. We propose to use test extraction during devel-
opment, when developers run their programs via a debug-
ger. Debuggers provide everything failure-state extraction
requires. They stop in the event of an exception and display
the state of both stack and heap. To implement a failure-
state extractor one can change the debugger so that it noti-
fies the extractor when an exception happens and then have
the extractor serialize stack and heap using the facilities of
the debugger to display stack and heap.

Zero overhead comes at a potential cost, however. One
problem is that routines that are (transitively) invoked by
a routine r can alter the heap elements that correspond to
the arguments of that routine r. Reconsider Figure 1, top
right, that shows the heap at the time of invoking routine
1. We have seen that there is one object referenced by both
the first and the second frame. Assuming that this object
has changed in-between the invocations of routine 0 and 1,
and assuming that the failure occurs directly after starting
to execute routine 1, the serialization of the bottom frame
would yield an argument that does not correspond to the
original object that was provided as argument to routine 0.

Moreover, even if we consider only one frame at a time,
the heap elements pointed to by stack frames at the time of
failure are likely to differ from the heap elements pointed
to at the time of invoking the routine. The problem is,
once again, that routine executions can alter elements on
the heap, and these heap elements may be referenced by
the stack. Consider the bottom left of Figure 1 which de-
picts the moment of failure during execution of routine 0.
The grey elements have been created or modified since this
routine’s invocation. A failure-state test case extractor re-
alizes that routine 0 has crashed and serializes the current
stack frame, including a deep or shallow copy of its refer-
ence to the grey elements on the heap (the white element is
of course also copied). Executing the generated test on the
grey rather than the original objects with grey rather than
the original objects may or may not lead to the failure that
triggered test case extraction. Similarly, as more frames are
pushed on the stack and more routines are executed, many
heap objects may, at the time of failure, differ from the ob-
jects at the time of routine invocation. Figure 1, bottom
right, shows this for routine 1 with m arguments. The gen-
erated tests from stack and heap at the moment of failure
may or may not be able to reproduce the failure—some tests
will not lead to a failure at all, some will lead to a different
failure, and some will require external input.

The failure-state extractor invokes a routine using the
failure state, and not the state from the routines original in-
vocation. The failure state is only an approximation of the
invocation state. How often the difference between these
two states is relevant for test case extraction is the subject
of this paper.

2.3 Exceptions Modifying Control Flow

Test extractors produce tests when a failure in the form
of an exception occurs. However, programs also use excep-
tions to explicitly redirect control flow if there is no failure.
Since tests that reproduce this kind of exceptions do not re-
veal a failure, a test case extractor should not create tests for
it. A test case extractor can disambiguate the two kinds of
exceptions based on the fact that an exception which signals
a failure is not handled (and thus crashes the application),
while an exception which simply redirects control flow is
handled.

This approach does not work if programs handle failure-
signaling exceptions to fail gracefully. The extractor should
extract tests for such exceptions, but does not. To extract
tests for handled failure-signaling exceptions, that we as-
sume to be infrequent, the developer needs to mark the
places in the code where the programs handles such excep-
tions (e.g., via a routine call, which the test extractor recog-
nizes and intercepts at run time). The programs studied in
§3 did not use exceptions to redirect control flow, hence our
test extractor does not need to be able to disambiguate.

2.4 Reproducibility

This paper empirically studies how well failure-state ex-
traction reproduces failures. Recall that our setting is based
on a programmer who “plays around” with his code by writ-
ing ad-hoc tests with ad-hoc external data sources and ad-
hoc user interactions. At the time of a failure, we want to
generate a managed (e.g., xUnit-style) test case that repro-
duces the failure and that can be used for regression test-
ing. As explained, the extractor generates one test case from
each frame on the stack, but not necessarily every test case
will actually reproduce the failure. We consider two per-
spectives. We say a test case is reproducing if it can repro-
duce the failure that led to its generation. Conversely, we
say a failure is reproducible if there is at least one gener-
ated test case that can reproduce this failure. Arguably, for
a developer it is important that a test extractor reproduces
as many failures as possible. It seems less relevant whether
every extracted test case is reproducing.

In order to assess the reproducibility of a failure, we first
need to define the notion of failure. Failures are observable
differences between expected and actual behaviors. In our
context, failures come in the form of exceptions. Excep-
tions that signal runtime problems can either be contract vi-
olations (differences with the explicitly stated intended be-
havior) or other uncaught runtime problems that, because
they usually make the system halt, are likely not intended
either. Exceptions of this latter kind include null pointer
exceptions, divisions by zero, etc.

For reasons that will become apparent later, we want to

be able to distinguish between failures. A unique failure is
determined by the type of exception together with the loca-
tion in the program code where it was thrown. Assume that
a programmer triggers three failures while “playing around”
with the code. If two of these failures occur at the same line
of code and generate identical exceptions but the third is
different, there are two unique failures. In terms of test case
extraction, ideally all tests extracted from the stack frames
would lead to the same unique failure.

For reasons of expediency, we will only consider the
reproducibility of unique failures in our experiment. This
of course leads to the question if the abstraction is not too
coarse. After all, we are interested in test cases for debug-
ging purposes, not the failures themselves. As we will see
in §3.5, it is adequate for our purposes.

3 Experiment

We set out to answer the question of how many failures
can be reproduced by test case extracted from a failure state.
If a large proportion can be shown to be reproducible, this
would be evidence that the run-time overhead of maintain-
ing a shadow stack is not necessary.

3.1 Experimental Setup

We conducted a study with 59 6th semester students
from ETH Zurich who took the Software Engineering class
in 2008. The students were divided into 19 groups of 2-4
students. 10 groups had to complete an assignment involv-
ing a geneaology tree, and 9 different groups had to com-
plete an assignment involving V-Cards.1

1. The goal of the genealogy assignment was to imple-
ment a genealogy database. The database was to be
searched for properties such as closest common ances-
tor. The students had to write a library, and they were
provided with an application that used this library.

2. The goal of the other assignment was to implement
the v-card standard for electronic addresses. Students
were required to write both a library and an application
that uses this library.

On average, solutions to the genealogy assignment con-
sisted of 3284 lines of code and 11 classes while solutions
to the v-card assignment consisted on average of 3995 lines
of code and 34 classes. Table 1 conveys relevant statistics.
Students had one month to complete their assignment.

Both applications made use of external events as dis-
cussed in §2.1 through user interfaces and file access. Both
assignments involved a text-based user interface where the

1Assignments available from http://se.ethz.ch/people/
leitner/as.pdf.

Table 1. Statistics for project submissions
Genealogy V-Card

LOC # Classes LOC # Classes
min 2302 5 2998 32
avg 3284 11 3995 34
med 3183 8 3872 33
max 4886 26 5301 37
stdev 822 7 858.6 2

Table 2. Statistics for original (top) data and
its considered subset (bottom)

original data
criterion min avg med max stdev

per individual failure (total 714)
extracted tests 0 2.3 2 12 2.3
failure stack size 2 8.1 6 25 3.8

per unique failure (total 319)
individual failures 1 2.2 1 17 2.3
extracted tests 0 5.2 4 40 5.6

considered subset
criterion min avg med max stdev

per individual failure (total 411)
extracted tests 0 2.5 3 12 2.2
failure stack size 2 8.4 6 18 3.0

per unique failure (total 189)
individual failures 1 2.2 1 17 2.3
extracted tests 0 5.4 4 40 5.8

user interactively inputs text and both assignments con-
tained features that accessed the file system: the v-card as-
signment included functionality to read and write v-cards to
the file system, and the genealogy assignment included the
feature to load commands from a batch file.

We gave the students an integrated development environ-
ment, CDD EiffelStudio, which is equipped with a failure-
state extractor, and we included a logging mechanism for
information relevant to the experiment, including failures,
extracted test cases, and information on whether or not tests
were reproducing. Students were required and agreed to
commit these logs together with their program to a version
control system.

Overall, 714 individual failures were logged. This corre-
sponds to 319 unique failures as defined in §2.4. 1664 tests
were extracted, corresponding to an average of 2.3 tests per
individual failure. The failures aggregated as one unique
failure caused on average the extraction of 5.2 test cases.
Relevant statistics are shown in Table 2, top. The stack size
is not the same as the number of extracted test cases because
the test case extractor ignores four classes of stack frames.

Table 3. Reproduction results for original
data (depth-limited extractor)

original post-proc.
data subset

ind. failures 714 411
unique failures 319 189
– contract violations 209 (66%) 125 (66%)
– other exceptions 110 (34%) 64 (34%)
extracted tests 1664 1024
reproducing tests 390 (23%) 271 (27%)
repr. unique failures 139 (44%) 92 (49%)
– contract violations 85 (61%) 58 (63%)
– other exceptions 54 (39%) 34 (37%)

1. It ignores frames of calls from Eiffel to C, because the
test extractor cannot serialize the memory which these
C functions use.

2. It ignores frames of agents—roughly, the Eiffel coun-
terpart of delegates in C#, because our implementation
cannot handle them.

3. It ignores frames of routines from the base libraries,
since we did not expect developers to be interested in
such test cases.

4. It did not add redundant test cases. If (due to a previous
extraction) an identical test already existed, no new test
was generated.

An initial analysis revealed that 139 (or 44%) of the
unique failures were reproducible and that 390 (or 23%) of
the tests were reproducing. The middle column of Table 3
summarizes these numbers; the rows relating to contracts as
well as the rightmost column will be discussed below.

These rather low numbers made us analyze the results.
We realized that we had been too optimistic in terms of the
necessary depth of serializing heap structures when the fail-
ure occurred. We had worked with a maximum depth of
five consecutive links, and this turned out to be too low.
In the genealogy assignment, for instance, students were
happy to implement genealogies with more than four gen-
erations. Our analysis indicated that we could expect much
better results with more deeply serialized structures.

3.2 Failure-state Extraction without
Depth Limit

Consequently, we decided to manually regenerate the
failures and have the IDE re-extract the test cases, this time
with a sufficient depth of serialized heap structures.2 Note

2We distinguish between a “regenerated” failure, for which we manu-
ally re-ran the program in order to apply the unlimited depth test extractor
and a “reproduced” failure, which extracted test cases were able to repro-
duce. Regenerated failures can but need not necessarily be reproducible.

Table 4. Statistics for manually regenerated
failures (unlimited depth)

criterion min avg med max stdev
per individual failure (total 209)

extracted tests 0 2.5 3 11 1.8
failure stack size 2 6.8 6 17 2.2

per unique failure (total 97)
individual failures 0 2.1 2 13 1.8
extracted tests 0 5.5 5 17 3.9

that like the limited-depth extractor, this unlimited extractor
does not introduce any overhead during regular program ex-
ecution, but that it does of course introduce more overhead
at extraction time. Since the manual regeneration turned out
to be extremely labor-intensive, we could not post process
all failures. We restricted ourselves to 7 out of the 19 groups
and picked those groups that exhibited the most unique fail-
ures. 4 out of these 7 groups had implemented the geneal-
ogy assignment and 3 had implemented the v-card assign-
ment. These groups had triggered 411 out of the entirety of
714 individual failures. Correspondingly, they had triggered
189 out of all 319 unique failures.

There is some evidence that the 7 groups are representa-
tive of all 19 (Table 3, rightmost column). In terms of repro-
ducibility, using the depth-limited test case extractor, 49%
of all unique failures from the 7 groups are reproducible.
This is comparable to the 44% of reproducible failures from
all groups. Conversely, the percentage of reproducing tests,
27%, seems sufficiently close to the original 23%. More-
over, the statistics for stack sizes, number of extracted tests,
and the number of individual failures that correspond to one
unique failure are very close to the statistics of the original
data set, as shown in Table 2, bottom.

Recall from §2.4 that our primary interest is in determin-
ing how many failures can be reproduced rather than in how
many test cases reproduce the failure from which they were
extracted. This allowed us to reduce the number of fail-
ures we had to manually regenerate: it is safe to assume
that all failures reproducible with the depth-limited extrac-
tor (92 out of 189) are also reproducible with the unlimited
extractor. As a consequence, we only needed to manually
regenerate those failures that were not reproducible with the
depth-limited extractor—because of our assumption we al-
ready knew that they were reproducible with the unlimited
extractor. This left only 97 unique failures that we had to
manually regenerate. These correspond to 210 individual
failures. We proceded as follows.

1. For every unique failure, we determined its first occur-
rence in the log files.

2. We retrieved the version of the program that was com-

Table 5. Regeneration results for post-
processed data

manually not
regenerated regen. both

ind. failures 209 201 410
unique failures 97 92 189
extracted tests 530 602 1132
reproducing tests 148 271 419
% repr. tests 28 45 37
repr. unique failures 78 92 170
% repr. unique f. 80 100 90

mitted to the version control system as close as possi-
ble to the date and time of the occurrence of this fail-
ure.

3. We ran the program and provided input that we thought
would reproduce the failure. This task was rendered
feasible with the information from the stack trace of
the failure that we were trying to regenerate.

4. When we were able to manually regenerate a failure,
we ensured that the failure was similar to the one we
were after by applying it to the depth-limited failure-
state extractor. We considered the failures equal only
if the depth-limited failure-state extractor indeed failed
to extract reproducing test cases for the regenerated
failure. Otherwise, we searched for different inputs
until we could regenerate the exception.

Each previously non-reproducible failure was regener-
ated (at least) twice: once applying the limited extractor,
and once applying the unlimited extractor. The regeneration
of non-reproducible failures resulted in a total of 209 indi-
vidual failures and 530 new test cases out of which 148, or
28%, reproduced the failure they were extracted from, with
an average 2.5 tests extracted per individual failure and an
average 5.5 tests available per unique failure. Table 4 shows
relevant statistics for the manually regenerated failures and
the corresponding tests. Note that it does not include the
failures we did not have to regenerate because there was no
problem with the depth limit when copying heap structures
(see Table 5 below). Also note that the minimum number
of failures per unique failure is zero. This captures the fact
that we did not succeed in regenerating all unique failures,
which was the case for 12 of them. We counted these unique
failures as non-reproducible, thus introducing a slight neg-
ative bias against failure-state extraction.

We have argued that for developers it is important
whether a failure is reproduced, not by how many tests it
is reproduced. We found that out of the 97 failures that we
had to regenerate (because of the limited extractor), 78, or
80%, were reproducible with the failure-state extractor, i.e.,

422 extracted tests

209 ind. failures
530 extracted tests

all UF (319)

considered UF (189)

UF with >0
reproducing
tests from depth−lim.

1664 extracted tests
714 ind. failures

210 ind. failures

201 ind. failures
602 extracted tests

extractor (92)

regenerated
manually

incl. 12 UF we could
not re−generate

UF (97)

1024 extracted tests
411 ind. failures

1132 extracted tests
410 ind. failures

Figure 2. Distribution of unique failures (UF). Left: original, non-post-processed values (depth-
limited extraction). Right: values after post-processing (unlimited depth).

there was at least one extracted test case that could repro-
duce it. The second column of Table 5 shows relevant data
(it is pure coincidence that we manually regenerated 209 in-
dividual failures, a number that is close to the 210 individual
failures triggered with the depth-limited extractor).

Figure 2 shows how the unique failures relate to each
other. Numbers on the left relate to the original data ob-
tained with the limited-depth test case extractor. Numbers
to the right relate to the subset that we post-processed with
the depth-limited extractor.

Note that the above considers only those failures that
were irreproducible with the depth-limited failure-state ex-
tractor. Since we assume that any failure reproduced by the
limited failure-state extractor is also reproduced by the un-
limited failure-state extractor, we can combine the numbers
to learn how the unlimited failure-state extractor performs
on all failures of the selected 7 groups: 92 failures were
reproduced by the limited extractor and 78 by the unlim-
ited extractor, leaving 19 non-reproduced by either (Table 5,
third column). Hence, in our experiment that is restricted
to 7 out of the 19 groups of student programmers, the
unlimited failure-state extractor reproduced 170 out of
189 unique failures, or 90%.

3.3 Invocation-state Extraction

To find out how much more effective invocation-state
test extraction is when compared to the far more efficient
failure-state extraction, we iterated on the approach de-
scribed in § 3.2. As discussed above, we manually re-
generated the unique failures for which the limited depth
extractor did not extract a reproducing test (making sure
the exception is similar in nature to the original one) and
then used an invocation-state extractor to produce new test
cases. For fair comparison, we considered the same 7 out
of 19 groups of student programmers. We assumed (1)
that any failure reproducible by the unlimited failure-state
extractor was also reproducible by the invocation-state ex-
tractor and, once more, (2) that any failure reproducible by
the limited failure-state extractor was also reproducible by
the unlimited failure-state extractor. As a consequence, we
used the invocation-state extractor to reproduce only those
19 unique failures that were not reproducible with the un-
limited failure-state extractor. The right column of Table 6

Table 6. Regeneration results by type of ex-
ception (post-processed)

failure-state invocation-state
extraction extraction

unique failures 189 189
– contract violations 125 (66%) 125 (66%)
– other exceptions 64 (34%) 64 (34%)
repr. unique failures 170 (90%) 177 (94%)
– contract violations 112 (90%) 118 (94%)
– other exceptions 58 (91%) 59 (92%)

shows the results. Applying the invocation-state extrac-
tor to these remaining 19 unique failures rendered an-
other 7 reproducible, or 3.7 percent points. Overall, test
case extraction could hence reproduce 177 unique failures,
or 94%. Incidentally, the 12 missing unique failures are ex-
actly those that we could not reproduce manually, and for
which the invocation-state extractor could equally not be
applied. For these 12 unique failures, we do not know if
invocation-state extraction, failure-state extraction, both, or
none would be able to generate reproducing tests.

3.4 Contract vs. other Runtime Failures

The failures considered in this paper stem from programs
annotated with contracts. The following discusses whether
the results can be generalized to programs that do not con-
tain such specification annotations. The failures studied can
be divided into two groups. Contract violations correspond
to failures that stem from contract violations (i.e. precon-
dition violations, assert violations). Such failures only oc-
cur in programs with assertion annotations. Other viola-
tions stem from other types of runtime-violations (i.e. null
pointer dereferences). Such failures occur also in programs
without assertion annotations.

Table 6 shows the reproducibility of contract violations
and violations due to normal exception separately. The 189
unique failures processed with the unlimited failure-state
extractor can be divided into 125 contract violations and
64 other violations. The failure-state extractor reproduced
90% of the contract violations and 91% of the other vio-

lations (see Table 3 for respective statistics of the original
data set). The invocation-state extractor reproduced 94% of
all contract violations and also 92% of all other violations.
For both test case extractors the difference between contract
failures and other failures is less than 3%. In our experi-
ment, there is no difference between failures that are a
result of contract violations and other exceptions.

3.5 Unique Failures

Unique failures (§2.4) group exceptions that (1) indicate
the same runtime problem (e.g., precondition violation vio-
lation or division-by-zero) and (2) have been triggered by
the same line of code. The idea is that unique failures
group failures with similar properties. Two failures stem-
ming from different faults are likely to have different prop-
erties. When grouped by kind and location, it is technically
possible that two failures that stem from distinct faults are
grouped together. For example, assume a routine a which
takes an argument, that must not be null. Two distinct rou-
tines may each invoke a with null as argument. There are
two faults, one in each calling routine, but the two failures
are put into the same group. The fact that the source code
from our experiment was annotated with contracts in the
form of preconditions, postconditions and invariants lowers
the chances of such a scenario. Routines that do not accept,
say, null arguments often state this in their precondition. We
considered precondition violations to be triggered from the
calling routine. Hence the two failures from the above ex-
ample would end up in two distinct groups.

While contracts help they do not remove the chance that
two failures with dissimilar properties are put into the same
group. We studied the relevance of this potential issue by
considering the following criteria. Unique exceptions are
equivalence classes. In our context, two members of the
same equivalence class should lead to qualitatively similar
test cases. To capture this fuzzy notion of qualitative sim-
ilarity, we considered the following criteria. We consider
two tests to be qualitatively similar if (1) the failure stacks
of the corresponding individual exceptions have the same
height; and (2) two frames of the failure stacks of the corre-
sponding individual exceptions at the same vertical position
correspond to the same routine—routine arguments are not
considered; and (3) the tests generated from two frames at
the same vertical position in the failure stack of the corre-
sponding individual exceptions either both pass or fail.

These criteria capture the intuition of similar tests. Crite-
ria (1) and (2) approximate that the control flow of the pro-
gram execution until the failures are similar, and criterion
(3) very roughly approximates that the data flow problems
in the two executions are similar.

In our experiments, a large majority—277 out of 319, or
87%—of the unique exceptions satisfies these three crite-

ria (the first and second criterion together are satisfied by
89%). In other words, there is some evidence that in our
experiment, the kind and location of a raised exception
are good determinants for equivalence classes because
these two criteria relate to the nature of the generated
test cases rather than the exceptions themselves.

3.6 Interpretation and Consequences

Out of the 189 considered unique failures, we could not
manually reproduce 12. The unlimited failure-state extrac-
tor generated 170 reproducing tests. Invocation-state ex-
traction led to another 7 reproducing tests. Our results do
not depend on whether or not contract violations or other
exceptions occur. Due to the problem with limited depth of
copying heap structures, we had to group individual failures
into classes, so-called unique failures, and we have argued
that the simple definition of these classes can be justified.
Failure-state test case extraction is both effective and effi-
cient.

We conjecture but do not know for sure if the 12 unique
failures that we could not regenerate—and for which we do
not know if any of the extractors would be able to generate
reproducing tests—were not reproducible because of exter-
nal events.

Modulo the threats to validity discussed below our ex-
periments clearly indicate that the huge run-time overhead
of invocation-state extraction is not necessary. A mere ad-
ditional 4 percent points of reproducible failures will, in
most situations, not be worth several orders of magnitude
of slow-down.

A hybrid approach, based on a combination of failure-
state extraction and Second Chance (§2.1) combines the
benefits of both approach, however. If a failure occurs, the
failure-state extractor generates test cases (without impos-
ing run-time overhead). The IDE automatically executes
the new test cases. If the failure is reproduced by at least
one test case nothing else happens. If the failure is not re-
producible, the routines that were on the stack at the time
of the failure are marked as observed. The IDE turns on the
invocation-state extractor, but restricts it to routines marked
as observed. Whenever a routine marked as observed is en-
tered, its relevant state is captured. For other routines noth-
ing happens. If the failure that was not reproducible with
the failure-state extractor occurs a second time, the extrac-
tor uses the previously saved invocation states to generate
test cases. The resulting test cases are identical to the ones
generated by a pure invocation-state extractor, but because
of Second Chance the extractor requires much less over-
head. As soon as a failure is reproduced via a test case, the
routines previously marked as observed are unmarked. The
developer may also unmark routines manually.

3.7 Threats to Validity

The most obvious threat to the validity of a generaliza-
tion of our results lies in the restricted class of programs,
both in terms of their application domain and the language
that we used. State-based test extraction is (as discussed in
§2.1) restricted by external events. We do not know if our
results generalize to programs with more frequently occur-
ring external events. Another apparent threat is the size of
the programs used in the study. The two programs were
medium sized, and while they are not trivial, they are not
comparable to large multi-million line industrial projects.
The number and kind of failures occurring during develop-
ment of a small project may not be representative for large
projects.

Two threats stem from our manual regeneration of fail-
ures. First, we limited manual regeneration to 7 out of 19
groups. The failures of these groups might not be repre-
sentative of the failures of all 19. We assume that they are,
because (as shown in Table 3) the properties of the unpro-
cessed data of the 7 groups is similar to the properties of
all 19 groups. Second, the failures we regenerated might be
different from the original ones. To address this concern,
we thoroughly compared the failures we regenerated to the
original ones, as described in Section 3.2.

The conclusions drawn in this paper assume that for a
developer it is sufficient when a failure is reproduced even
by only a single test case. Not all test cases are equally
useful to the developer, however. Failures reproduced only
by tests useless to the developer should not be counted as
reproduced. For example, a test case might reproduce the
failure, but not execute the code containing the fault. A test
case could invoke a routine with a null argument, but this
routine is not supposed to handle null arguments. Since the
present study considers contracted programs, it is not af-
fected by this problem as much as if it would consider pro-
grams without contracts. In the studied programs, routines
not accepting null arguments often state this in their pre-
condition, which is checked before the routine is executed.
To avoid extracting useless tests our extractor did not create
test cases for routines that had their precondition violated.
In previous work [6], we describe how contracts influence
extraction in detail.

4 Related Work

Much research has gone into the direction of using cap-
ture and replay, which tries to replay program runs in gen-
eral. Most capture and replay techniques are based on
checkpointing the state of the system at certain intervals and
recording a log of non-deterministic events in-between the
intervals [3, 4, 7, 11]. These approaches try to replay arbi-
trary executions. Test case extraction, as presented in this

paper, focuses on the failing executions only.
Clause and Orso recently presented a system, which in

addition to the checkpointing and log-recording, minimizes
the log [2]. Test case extraction implicitly minimized the
number of instructions to replay: each extracted test only
executes one routine. Current extractors do not minimize
the state stored in test cases. We believe that approaches
like Delta Debugging [12] will yield promising results.

A novel capture and replay approach that logs the inter-
action of software components at user-defined borders has
been proposed independently by Orso et al. [9, 8] (Selective
Capture and Replay), Ernst [10] (Test Factoring), and El-
baum [5] (Test Carving). The technique works as follows:
a program is divided into two parts. During capture the in-
teractions (routine calls etc.) that cross the boundary are
logged. During replay one part of the program is replaced
by mock objects which are hard-coded to behave according
to the previous recording. The advantage of this method lies
in the freely definable border between the two parts. Most
programs have parts that interact little and parts that inter-
act frequently. By wisely choosing the border the amount
to record can be reduced significantly. We believe that this
work is orthogonal to ours. If sources of non-determinism
are found to be a problem for a given application, they can
be mocked out using Selective Capture and Replay, the rest
of the state can be extracted as proposed by our method.

ReCrash [1] which is based on our work on test case
extraction, observes production runs of programs and ex-
tracts test cases in the case of a failure. Similar to our
approach, they extract one test case per routine on the
stack. The authors of ReCrash experiment with a num-
ber of variations of the algorithm. The variations differ in
how much invocation-state is captured and how many rou-
tines are observed. The more often and the more state is
captured at routine invocation time, the more reliable, but
also the slower a variant becomes. They measured the slow
down on two popular open source applications (SVNKit
and Eclipse). Full failure-state extraction induces 12,000 to
>638,000% overhead. A more efficient variant that makes
a shallow copy of memory and depends on static analysis to
detected used fields reduces the overhead to 13% to 60%.
They also introduce a mechanism called Second Chance—
an extraction mechanism that requires a failure to occur at
least two times. In such cases the mechanism is both effi-
cient and effective. In contrast to our approach all of their
methods induce some run-time overhead, but they require
less control over the stack at the time of the failure.

5 Conclusions and Future Work

Our work is based on the observation that developers test
their programs by “playing around” with it during develop-
ment. These implicit test cases are not managed and can not

be used for regression testing. Since they may rely on ex-
ternal data sources (user interfaces, configuration files, data
bases), reproducibility is a serious issue.

The problem of turning implicit into managed tests has
been tackled at various levels. External input can be inter-
cepted and serialized (capture-and-replay), and information
on a program’s execution state can be recorded and trans-
formed into test cases. The work described in this paper is
based on state-based extraction. There are several ways of
implementing this idea. One is to maintain a shadow copy
of those frames that are pushed on the stack of the runtime
system, together with a copy of the heap data structures that
are referenced by the stack. When a failure occurs, these
shadow frames are turned into test cases. One problem with
this approach is the huge run-time overhead. This run-time
overhead can be reduced to almost zero by waiting for a
second occurrence of the failure. After the first failure, only
relevant routines are monitored. However, this obviously re-
quires a failure to occur twice. In earlier work, we proposed
failure-state extraction where methods are invoked from the
state captured at the time of the failure and not with their
original invocation state. This extraction induces zero run-
time overhead, but the state it invokes methods from is not
necessarily able to reproduce the failure it aims to repro-
duce. This paper sets out to assess the effectiveness of our
approach.

The student experiment described in this paper showed
that zero-overhead failure-state extraction is capable of
reproducing 90% of the (unique) failures that occurred.
Invocation-state extraction leads to another 4 percent points
of reproducible failures at the cost of a significant run-time
overhead. Modulo the threats to validity that we carefully
discussed, in particular the influence of more frequently oc-
curring external events, our results suggest that the run-time
overhead of invocation-state extraction cannot be justified.
Note that the application domain of invocation-state and
failure-state extraction may be slightly different however:
since failure-state extraction requires access to the program
stack at the time of a failure (e.g. via a debugger), it may be
more suited in a development context whereas invocation-
state extraction may be more useful when the software is
deployed. Moreover, our results suggest that the combina-
tion of failure-state extraction with Second Chance appears
both efficient and effective, and we have hence implemented
it in our IDE.

At least two important questions remain to be studied.
How useful are extracted test cases for debugging a fault?
How useful are extracted test cases for regression testing?
Since the stack frames at the moment of routine invocation
correspond to argument values while failure-state frames
correspond to transformations of these values, we would
conjecture that invocation-state test extraction leads to tests
that are easier to understand.

References

[1] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software
failures reproducible by preserving object states. In ECOOP
2008 — Object-Oriented Programming, 22nd European Con-
ference, Paphos, Cyprus, July 9–11, 2008.

[2] J. Clause and A. Orso. A technique for enabling and sup-
porting debugging of field failures. In ICSE ’07: Proceed-
ings of the 29th international conference on Software Engi-
neering, pages 261–270, Washington, DC, USA, 2007. IEEE
Computer Society.

[3] D. A. S. de Oliveira, J. R. Crandall, G. Wassermann, S. F. Wu,
Z. Su, and F. T. Chong. Execrecorder: Vm-based full-system
replay for attack analysis and system recovery. In ASID ’06:
Proceedings of the 1st workshop on Architectural and system
support for improving software dependability, pages 66–71,
New York, NY, USA, 2006. ACM.

[4] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. Revirt: enabling intrusion analysis through
virtual-machine logging and replay. SIGOPS Oper. Syst. Rev.,
36(SI):211–224, 2002.

[5] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil. Carving
differential unit test cases from system test cases. In SIGSOFT
’06/FSE-14: Proceedings of the 14th ACM SIGSOFT inter-
national symposium on Foundations of software engineering,
pages 253–264, New York, NY, USA, 2006. ACM.

[6] A. Leitner, I. Ciupa, M. Oriol, B. Meyer, and A. Fiva. Con-
tract driven development = test driven development - writing
test-cases. In Proceedings of the 6th joint meeting of the Eu-
ropean Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE 2007), September 2007.

[7] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Contin-
uously recording program execution for deterministic replay
debugging. SIGARCH Comput. Archit. News, 33(2):284–295,
2005.

[8] A. Orso, S. Joshi, M. Burger, and A. Zeller. Isolating rele-
vant component interactions with JINSI. In Proceedings of
the Fourth International ICSE Workshop on Dynamic Analy-
sis (WODA 2006), pages 3–10, May 2006.

[9] A. Orso and B. Kennedy. Selective capture and replay of pro-
gram executions. In Proceedings of the Third International
ICSE Workshop on Dynamic Analysis (WODA 2005), pages
29–35, St. Louis, MO, USA, may 2005.

[10] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Auto-
matic test factoring for java. In ASE ’05: Proceedings of
the 20th IEEE/ACM international Conference on Automated
software engineering, pages 114–123, New York, NY, USA,
2005. ACM.

[11] M. Xu, R. Bodik, and M. D. Hill. A ”flight data recorder”
for enabling full-system multiprocessor deterministic replay.
SIGARCH Comput. Archit. News, 31(2):122–135, 2003.

[12] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software En-
gineering, SE-28(2):183–200, Feb. 2002.

