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Abstract

English

The field of multivariate statistics analyzes the joint behavior of several variables; this goes beyond an
isolated analysis of every variable on its own. A key focus of investigation are dependence effects, for
example: does stock A tend to gain or lose as stock B gains?

This dissertation presents Bayesian strategies to model statistical dependence in medium and high di-
mensions. The first part develops novel and powerful model selection strategies for regular vine copulas.
These are very computationally intensive, however, so that application of these methods is restricted to
problems of medium dimensionality (up to 10 or 20 variables). The second part develops a method
to enable on-line analysis of high-dimensional time series (up to hundreds or thousands of variables)
facilitated by sparse modeling and massively parallel computing on GPUs.

Extensive real-data examples and case studies illustrate application of our models and methods, and ver-
ify their suitability for application in practice. These case studies calculate portfolio risk and investment
decisions using our novel models and historical price data on different stocks.

Deutsch

In der multivariaten Statistik werden das gemeinsame Verhalten mehrerer Variablen untersucht; dies ist
im Unterschied zu einer isolierten Betrachtung jeder Variable. Insbesondere werden hier Abhängigkeits-
effekte betrachtet, zum Beispiel: steigt oder fällt der Kurs von Aktie A, wenn der Kurs von Aktie B steigt?

Diese Dissertation präsentiert Bayesianische Lösungsansätze zur Modellierung statistischer Abhängig-
keiten in mittleren und hohen Dimensionen. Der erste Teil entwickelt neue und leistungsfähigere Ver-
fahren zur Modellwahl von Regular Vine Copulas, welche jedoch so rechenaufwändig sind, dass die
Anwendung auf Probleme von mittlerer Dimension (bis ca. 10 oder 20 Variablen) beschränkt ist. Der
zweite Teil entwickelt ein Verfahren zur Echtzeit Analyse hochdimensionaler dynamischer Zeitreihen (bis
zu hunderten oder tausenden von Variablen). Dies wird durch statistische Methoden zur Reduktion der
Modell Komplexität und den Einsatz massiv parallelisierter Rechnung auf Grafikkarten ermöglicht.

An die methodische Herleitung der entwickelten Modelle und Methoden anschließend werden diese in
ausführlichen Anwendungsbeispielen illustriert und auf ihre Praxis Tauglichkeit untersucht. In diesen
Anwendungen berechnen wir Portfolio Risiken und Investment Entscheidungen auf Grundlage unserer
neuen Modelle und Verfahren, und unter Verwendung historischer Kursdaten von verschiedenen Aktien.
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Chapter 1

A Review of Dependence Modeling
with Regular Vine Copulas and Current
Techniques for Inference and Model
Selection

1.1 Introduction

Copula modeling provides great flexibility in defining multivariate distributions that describe available
data well, because the marginal models F1, . . . , Fd are not required to be from the same family or to share
any characteristics, and the copula, too, can be selected to best describe the data. This contrasts with
most multivariate models, which do not allow much customization of either marginal or dependence
characteristics. Specifically, Sklar [1959] showed that any multivariate distribution X = (X1, . . . , Xd) ∼
F1:d can be separated into a copula distribution C, which only models the joint multivariate dependence
structure, and the marginal distributions X1 ∼ F1, . . . , Xd ∼ Fd,

F1:d (x) = C (F1 (x1) , . . . , Fd (xd)) , x ∈ Rd.

Furthermore, the combination of any copula C with any set of marginal distributions F1, . . . , Fd results in
a valid multivariate distribution. Copulas are discussed extensively in numerous textbooks [e.g. Nelsen,
2006, McNeil et al., 2005, Kurowicka and Cooke, 2006, Kurowicka and Joe, 2010, Joe, 2001, 2014, Mai
and Scherer, 2012], with additional textbooks specifically on use of copulas in finance [e.g. Cherubini
et al., 2004, 2011, Mai and Scherer, 2014].

Even though Sklar [1959]’s work dates back to 1959, most research on copulas is much more recent.
Applications of copulas cover the entire spectrum of multivariate modeling, and examples include gen-
eral multivariate time series [Chen and Fan, 2006b,a, Heinen and Rengifo, 2007, Lee and Long, 2009,
Patton, 2009, Ausin and Lopes, 2010], hydrological engineering [Zhang and Singh, 2006, Grimaldi and
Serinaldi, 2006, Chen et al., 2013, Madadgar and Moradkhani, 2013] and weather [Zhang and Singh,
2007, Renard and Lang, 2007, Cong and Brady, 2012, Erhardt et al., 2015a,b], energy price and demand
[Gregoire et al., 2008, Smith et al., 2010], financial data [van den Goorbergh et al., 2005, Jondeau
and Rockinger, 2006, Hu, 2006, Rodriguez, 2007, Bartram et al., 2007, Zhang and Guegan, 2008, Aas
et al., 2009, Min and Czado, 2010, 2011, 2014, Patton, 2006, Hofert and Scherer, 2011, Brechmann
et al., 2012, Dißmann et al., 2013, Boubaker and Sghaier, 2013, Gruber and Czado, 2015b,a], insurance
[Frees and Wang, 2006, Sun et al., 2008, Yang et al., 2011, Krämer et al., 2013], marketing [Danaher
and Smith, 2011], and many others.

Pair copula constructions are motivated by the observation that “one cannot just write down a parametric
family of functions with the right boundary properties and expect them to satisfy the rectangle condition
of a multivariate cdf” [Joe, 2001, Chapter 4, p. 83]. Instead, one combines several bivariate copulas,
which are studied extensively and of which many exist, in a well-structured way that guarantees to

3



4 CHAPTER 1. REVIEW OF REGULAR VINE COPULAS AND SELECTION STRATEGIES

result in a valid multivariate copula distribution [Joe, 1996, Bedford and Cooke, 2001]. This review
covers basic concepts of bivariate dependence (Section 1.2) and popular bivariate copulas (Section 1.3),
then presents a comprehensive and concise model specification of regular vine pair copula constructions
(Section 1.4), and reviews current inference and model selection techniques (Section 1.5). This review
has a stronger focus on bivariate dependence modeling methodology than Czado et al. [2013]’s earlier
review, and also includes Gruber and Czado [2015b,a]’s Bayesian selection methods.

1.2 Measures of Bivariate Dependence

This section introduces several measures of bivariate statistical dependence that are commonly used
in applications of pair copula constructions. We focus on measures of strength of association and tail-
dependence; these bivariate dependence characteristics have very intuitive interpretations and are highly
relevant in many applications. The measures discussed here are a key selection of the many discussed in
[Joe, 2001, Chapter 2], and the equations below follow said reference.

Assume for the remainder of this section that a pair of random variable (X,Y ) follows some general
bivariate distribution F with marginal distributions X ∼ F1 and Y ∼ F2. Furthermore, define U =
F1(X), V = F2(Y ), and denote the associated copula of F by C, so (U, V ) ∼ C.

1.2.1 Measures of Association

Measures of association quantify some aspects of strength of dependence. While Pearson’s correlation co-
efficient ρ is probably the most well-known and most widely used one, rank correlation coefficients such
as Spearman’s ρ and Kendall’s τ have properties that make them more suitable to quantify association in
general analyses.

Pearson’s ρ. Pearson’s correlation coefficient ρ ∈ [−1, 1] is likely the most well-known measure of
dependence. Defined as ρ = Cov(X,Y )/

√
Var(X)Var(Y ), Pearson’s ρ measures linear dependence be-

tween X and Y . Pearson’s correlation can be interpreted as the slope of the regression line of X and Y .
Pearson’s ρ between copula variables U and V is ρ = 12

∫ ∫
uvdC(u, v)− 3.

It is easily demonstrated that the emphasis of linear dependence is important: suppose U ∼ U(0, 1) and
V = 2|U − 0.5|. It is trivial to show that U and V are not independent; indeed, conditional on U , V
can only take one value! However, Pearson’s ρ of U and V is zero, which also conveniently shows that
uncorrelatedness does not guarantee independence. These shortcomings motivate investigation of better
dependence measures.

Spearman’s ρ. Spearman’s ρ ∈ [−1, 1] between X and Y is a measure of monotone dependence that
is defined as Pearson’s ρ between the ranked variables F1(X) and F2(Y ); it can be calculated as ρ =
12
∫
x

∫
y
F1(x)F2(y)dF (x, y)− 3. Spearman’s ρ is invariant under strictly monotone transformations of X

and Y , and it takes the limits if and only if one of U and V is an increasing or decreasing transform of
the other. These properties set it apart from Pearson’s ρ, for which neither holds. Spearman’s ρ between
two copula variables U and V is ρ = 12

∫ ∫
uvdC(u, v)− 3.

Kendall’s τ . Kendall’s τ ∈ [−1, 1] is also a measure of monotone dependence and it is defined as the
difference of the probability of two random concordant pairs and discordant pairs, τ = P ((X −X ′)(Y −
Y ′) > 0) − P ((X − X ′)(Y − Y ′) < 0), where (X,Y ) ∼ F and (X ′, Y ′) ∼ F are independent random
pairs. Kendall’s τ also satisfies invariance under strictly monotone transformations of X and Y , and it
also takes the limits if and only if one of X and Y is an increasing or decreasing transform of the other.
Kendall’s τ between two copula variables U and V is τ = 4

∫ ∫
C(u, v)dC(u, v)− 1.
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Copula Notation Parameters Kendall’s τ Tail-dependence
Independence I τ = 0 λL = λU = 0
Gaussian N ρ ∈ (−1, 1) τ = 2

π arcsin(ρ) λL = λU = 0

t T ρ ∈ (−1, 1) τ = 2
π arcsin(ρ) λL = λU = 2Tν+1

(
−
√

(ν + 1) 1−ρ
1+ρ

)
ν > 1

Clayton C δ ≥ 0 τ = δ
2+δ λL = 2−1/δ, λU = 0

Double Clayton I C or DC I δ ∈ R τ = δ
2+|δ| λL = 2−1/|δ|, λU = 0

Double Clayton II C or DC II δ ∈ R τ = − δ
2+|δ| λL = 0, λU = 2−1/|δ|

Gumbel G δ ≥ 1 τ = δ−1
δ λL = 0, λU = 2− 21/δ

Double Gumbel I G or DG I δ ∈ R τ = δ
1+|δ| λL = 0, λU = 2− 21/(1+|δ|)

Double Gumbel II G or DG II δ ∈ R τ = − δ
1+|δ| λL = 2− 21/(1+|δ|), λU = 0

Table 1.1: Candidate pair copula families for use in the pair copula construction, and their parameter
transformations.

1.2.2 Measures of Tail-Dependence

Measures of bivariate tail-dependence quantify the strength of dependence in the upper or lower-quadrant
tails of a bivariate distribution.

Upper tail-dependence coefficient λU . The upper tail-dependence coefficient is the conditional tail
probability λU = limu→1 P (U > u | V > u) = limu→1 P (V > u | U > u). It can be rewritten as
λU = limu→1 C(u, u)/(1 − u), where C(u, v) = 1 − u − v + C(u, v) is the survival function of a copula
C. If λU > 0, copula C is said to have upper tail-dependence; if λU = 0, C is said to have no upper
tail-dependence.

Lower tail-dependence coefficient λL. The lower tail-dependence coefficient is the conditional tail
probability λL = limu→0 P (U < u | V < u) = limu→0 P (V < u | U < u), and it can be rewritten as
λL − limu→0 C(u, u)/u. If λL > 0, copula C is said to have lower tail-dependence; if λL = 0, C is said to
have no lower tail-dependence.

1.3 Bivariate Copulas

Bivariate copulas are extensively studied in existing literature, see, for example [Joe, 2001, 2014, Nelsen,
2006]. Among the large variety of bivariate copulas, we select a few that cover the most important
dependence features: independence, negative dependence, positive dependence, tail-independence, tail-
dependence, symmetry and asymmetry.

The transformations between Kendall’s τ , the tail-dependence coefficients λL and λU , and the copula
parameters in Table 1.1 are taken from Brechmann and Schepsmeier [2013]; the copula density functions
below are taken from Gruber [2011]. Table 1.2 shows the pairs plots with normalized margins of several
different copulas at Kendall’s τ = 0.4 and τ = 0.75.

Independence copula. The independence copula describes two independent random variables U and
V . Its copula density function c(u, v) = 1 is constant for u ∈ [0, 1], v ∈ [0, 1]. The independence copula
has no upper or lower tail-dependence.

Gaussian copula. The Gaussian copula is symmetric, has no tail-dependence, and its density function
is

c(u, v; ρ) =
1√

1− ρ2
exp

(
−
ρ2
(
x2 + y2

)
− 2ρxy

2(1− ρ2)

)
, (1.1)
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Table 1.2: Pairs plots of several different bivariate copulas at Kendall’s τ = 0.4 and τ = 0.75.

where x = Φ−1(u) and y = Φ−1(v), and Φ−1 denotes the inverse of the cumulative distribution function
of the univariate standard normal distribution. The Gaussian copula’s correlation parameter ρ ∈ [−1, 1]
defines the strength and type of dependence: for ρ ∈ {−1, 1}, the Gaussian copula exhibits perfect
monotonic dependence; for ρ ∈ (−1, 0), it shows negative dependence; for ρ = 0, it simplifies to the
independence copula; and for ρ ∈ (0, 1), it shows positive dependence.

T copula. The T copula is symmetric, has upper and lower tail-dependence, and its density function is

c(u, v; ρ, ν) =

(
1 + x2+y2−2ρxy

ν(1−ρ2)

)− ν+2
2

2πtν(x)tν(y)
√

1− ρ2
, (1.2)

where x = T−1
ν (u) and y = T−1

ν (v), and T−1
ν and tν denote the inverse cumulative distribution function

and probability density function, respectively, of the T distribution with ν degrees of freedom. The T
copula has two parameters: correlation ρ ∈ [−1, 1] and degrees of freedom ν > 1.

Clayton copula. The Clayton copula is asymmetric, has lower tail-dependence, but no upper tail-
dependence, and its density function is

c(u, v; δ) = (1 + δ)(uv)−1−δ(u−δ + v−δ − 1)−
1
δ−2. (1.3)

The Clayton copula has one parameter, δ ≥ 0, and can only model non-negative monotone dependence.
For δ = 0, the Clayton copula simplifies to the independence copula; for δ > 0, the Clayton copula shows
positive dependence; and in the limit δ →∞, the Clayton copula shows perfect monotone dependence.

Gumbel copula. The Gumbel copula is asymmetric, has no lower tail-dependence, but has upper tail-
dependence, and its density function is

c(u, v; δ) = exp
(
x+ y − (xδ + yδ)

1
δ

)
(xδ + yδ)−2+ 2

δ (xy)δ−1
(

1 + (δ − 1)(xδ + yδ)−
1
δ

)
, (1.4)

where x = − log(u) and y = − log(v). The Gumbel copula has one parameter, δ ≥ 1, and can only model
non-negative monotone dependence. For δ = 1, the Gumbel copula simplifies to the independence
copula; for δ > 0, the Gumbel copula shows positive dependence; and in the limit δ → ∞, the Gumbel
copula shows perfect monotone dependence.

Double Clayton and Gumbel copulas. The Double Clayton and Double Gumbel copulas combine
different rotations of the regular Clayton and Gumbel copulas to also allow the modeling of negative
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dependence:

cDouble Clayton I(u1, u2; δ) =

{
cClayton(u1, u2; δ) if δ ≥ 0

cClayton(1− u1, u2;−δ) if δ < 0
(1.5)

cDouble Clayton II(u1, u2; δ) = cDouble Clayton I(u1, 1− u2; δ) (1.6)

cDouble Gumbel I(u1, u2; δ) =

{
cGumbel(u1, u2; δ + 1) if δ ≥ 0

cGumbel(1− u1, u2;−δ + 1) if δ < 0
(1.7)

cDouble Gumbel II(u1, u2; δ) = cDouble Gumbel I(u1, 1− u2; δ). (1.8)

In simplified notation, we may refer to the Double Clayton or Double Gumbel copula just as the Clayton
or Gumbel copula.

1.4 Regular Vine Copulas

1.4.1 Model Structure

Joe [1996] presented the first construction of a multivariate copula using (conditional) bivariate copulas,
and Bedford and Cooke [2001] developed a more general construction method of multivariate densities
and introduced regular vines to organize different pair copula constructions. Definitions 1.1–1.4 and
Theorem 1.1 follow Bedford and Cooke [2001].
Definition 1.1 (Regular Vine Tree Sequence). A set of linked trees V = (T1, T2, ..., Td−1) is a regular vine
on d elements if

1. T1 is a tree with nodes N1 = {1, ..., d} and a set of edges denoted by E1.

2. For k = 2, ..., d− 1, Tk is a tree with nodes Nk = Ek−1 and edge set Ek.

3. For k = 2, ..., d − 1, if a = {a1, a2} and b = {b1, b2} are two nodes in Nk connected by an edge, then
exactly one of the ai equals one of the bi (Proximity condition).

Definition 1.2 (Conditioning Set, Conditioned Set). Let Ae be the complete union of an edge e = {a, b} ∈
Ek in tree Tk of a regular vine V,

Ae = {v ∈ N1 | ∃ei ∈ Ei, i = 1, . . . , k − 1, such that v ∈ e1 ∈ · · · ∈ ek−1 ∈ e} .

The conditioning set associated with edge e = {a, b} is D(e) := Aa ∩ Ab and the conditioned sets associated
with edge e are i(e) := Aa \D(e) and j(e) := Ab \D(e). Here, A \B := A ∩Bc and Bc is the complement
of B.

Bedford and Cooke [2001] showed that the conditioned sets are singletons and proved that a multivariate
copula density is obtained by using each edge of a regular vine as a pair copula factor in the pair copula
construction. The pair copula associated with an edge e, denoted ce(·, ·;θe;Be), describes the distribution
of the transformed variables ui(e)|D(e) and uj(e)|D(e) (see Definition 1.4). We will use the notation e and
i(e), j(e);D(e) interchangeably (Example: Figure 1.1).
Definition 1.3 (Regular Vine Copula). 1. Let V = (Tk = (Nk, Ek) | k = 1, . . . , d − 1) be a regular

vine on d elements. Be denotes the family and θe;Be denotes the parameter vector of the pair copula
ce(·, ·;θe;Be); e ∈ Tk ∈ V, which is associated with an edge e ∈ Ek of a regular vine tree Tk ∈ V.

2. We write Bk := {Be | e ∈ Ek} for the pair copula families of level k and θk := {θe;Be | e ∈ Ek} for
their parameters.

3. The regular vine pair copula construction up to level K ≤ d− 1, denoted by CK = (T1:K ,B1:K ,θ1:K),
consists of the regular vine trees T1:K = (T1, . . . , TK), pair copula families B1:K = (B1, . . . ,BK) and
parameters θ1:K = (θ1, . . . ,θK).

4. If K = d− 1, we write C for Cd−1, BV for B1:(d−1) and θV for θ1:(d−1).
Definition 1.4 (Density Function of a Regular Vine Copula). The density function of the level K-regular
vine copula CK , denoted by c(·; CK) : [0, 1]d → [0,∞), is

c(u; CK) =
∏

k=1:K

∏
e∈Ek

ce;Be
(
ui(e)|D(e), uj(e)|D(e);θe;Be

)
. (1.9)
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Figure 1.1: Six-dimensional regular vine copula.

Here the density argument ui(e)|D(e) is the value of a marginal copula distribution function,

ui(e)|D(e) := Ci(e)|D(e)(ui(e) | uD(e); C|D(e)|) =

∫ ui(e)

0

ci(e)|D(e)(t | uD(e); C|D(e)|) dt, (1.10)

where the conditional density function ci(e)|D(e)(· | ·; C|D(e)|) is obtained by integration and partial differen-
tiation of the level |D(e)|-copula density function c(·; C|D(e)|),

ci(e)|D(e)(u | uD(e); C|D(e)|) =
ci(e)∪D(e)(ui(e)∪D(e); C|D(e)|)

cD(e)(uD(e); C|D(e)|)
(1.11)

=

∂
∂ui(e)∪D(e)

∫ gi(e)∪D(e)(ui(e)∪D(e))

0
c(t; C|D(e)|) dt

∂
∂uD(e)

∫ gD(e)(uD(e))

0
c(t; C|D(e)|) dt

, (1.12)

where gJ(uJ) := (uj if j ∈ {J}; 1 otherwise) ∈ Rd for some set J ⊆ {1, . . . , d}. The same structure applies
to uj(e)|D(e).

If K < d − 1, the level K-regular vine copula CK is said to be truncated at level K [Brechmann et al.,
2012]. In the following, we will use of the terms regular vine copula and regular vine pair copula con-
struction interchangeably.
Theorem 1.1 (Regular Vine Copula Density is a Probability Density). For any K ≤ n − 1 (see Defini-
tion 1.3), the density function of the regular vine pair copula construction CK , c(·; CK) (see (1.9)), is an
n-variate probability density function on [0, 1]n.
Theorem 1.2 (Number of Regular Vines). There exist

d!

2
× 2(d−2

2 ) (1.13)

different regular vines on d dimensions.

Theorem 1.2 is due to Morales-Napoles [2011]; Table 1.3 illustrates the super-exponential growth of the
number of regular vines for dimensions d = 2, . . . , 10. In general, regular vine copulas that differ in the
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Dimension d # Regular Vines
2 1
3 3
4 24
5 480
6 23,040
7 2,580,480
8 660,602,880
9 3.8051e+11
10 4.8705e+14

Table 1.3: Number of regular vines on dimension d.

tree structure or in at least one pair copula family have different copula densities. Notable exceptions
from this rule include the multivariate Gaussian, Student’s t or Clayton copula, whose densities can be
represented by different pair copula constructions [Stöber et al., 2013].

1.4.2 Likelihoods

Definition 1.3 specifies regular vine copulas tree-by-tree, which motivates the following break down into
the likelihoods of individual trees and edges of a regular vine copula. All likelihoods are understood
given data U = (u1, . . . ,uT ) ∈ [0, 1]T×d.

The likelihood of level k depends only on the specification of the regular vine copula up to level k. The
likelihoods of edge e ∈ Ek and level k follow as

L(Be,θe | U) :=
∏
t=1:T

cBe(u
t
i(e)|D(e), u

t
j(e)|D(e);θe) and (1.14)

L(Tk,Bk,θk | U) :=
∏
e∈Ek

L(Be,θe | U), (1.15)

where the uti(e)|D(e) and utj(e)|D(e) are obtained by transforming the t-th observation ut as in (1.10). The
likelihood of a regular vine copula C is then calculated tree-by-tree

L(C | U) = L(V,BV ,θV | U) =
∏
Tk∈V

L(Tk,Bk,θk | U). (1.16)

1.4.3 Notation

Regular vines. For each level k, STPk denotes the set of all spanning trees with node set Nk that
satisfy the proximity condition for tree Tk = (Nk, Ek) (see Definition 1.1). Furthermore, B shall denote
the set of candidate pair copula families; in the remainder B consists of the pair copula families listed in
Table 1.1.

Pair copulas. We will refer to the pair copula families by their identifiers as introduced in Table 1.1,
and define the set of candidate pair copula families B = {I, N, T, DC I, DC II, DG I, DG II}. We will also
refer to the individual transformations by their degrees of rotation: rotating the first argument of the
copula density function yields the 90◦ rotation, c90(u1, u2) = c0(1 − u1, u2); the 180◦ rotation rotates
both arguments, c180(u, v) = c0(1− u1, 1− u2); and the 270◦ rotation rotates only the second argument,
c270(u, v) = c0(u1, 1 − u2). In some cases, we will amend the notations introduced in Table 1.1 by the
degree of rotation and value of Kendall’s τ ; for example, C180(0.7) will indicate the 180◦ rotation of the
Clayton copula with parameter δ such that Kendall’s τ = 0.7.
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Reference Dimension Use of Copula
Aas et al. [2009], Min
and Czado [2010]

4 Contemporaneous dependence of stock and bond indices

Min and Czado [2010,
2011]

5 Contemporaneous dependence of Euro swap rates

Min and Czado [2011] 6 Dependence of geometric dimensions of counterfeit bank
notes

Czado et al. [2013] 7 Dependence of concentration of chemicals in water
Gruber and Czado
[2015b,a]

9 Contemporaneous dependence of exchange-traded funds

Dißmann et al. [2013] 16 Contemporaneous dependence of stock, bond and com-
modity indices

Brechmann et al. [2012] 20 Contemporaneous dependence of foreign exchange rates
and several market indices

Smith et al. [2010] 24 Serial time dependence of intraday electricity loads

Table 1.4: Example of data sets that were analyzed using regular vine copula models.

Pair copula parameters. In the remainder, all one-parameter pair copulas are parameterized in terms
of their Kendall’s τ , and the t copula is parameterized by its Kendall’s τ and the logarithm of its degrees
of freedom. This uniform parameterization makes it easier to compare different copulas’ parameters and
propose good parameter values when the pair copula families change. The notation for one-parameter
copulas is θe ≡ τe, and θe = (τe, log νe) for the t copula. The parameters of all pair copulas of the regular
vine copula are collectively referred to by θV .

1.4.4 Applications

Vine copulas are used to benefit a wide field of multivariate modeling. Vine copulas can be utilized in a
diverse set of applications, as illustrated by Table 1.4.

1.5 Inference and Model Selection of Vine Copulas

Current inference and model selection methods for regular vine copulas extend earlier methods on C-
vine and D-vine copulas, both of which are subclasses of regular vine copulas. This review aims to
provide more context to recent developments on model selection of regular vine copulas by highlighting
the similarities and differences between existing methods. Furthermore, this review can be seen as an
update of Czado et al. [2013]’s review, which did not yet include Gruber and Czado [2015a]’s new fully
Bayesian selection strategy (see Chapter 3 of this dissertation).

Inference methods for regular vine copulas can be organized into parameter estimation and model se-
lection, tree-by-tree sequential and simultaneous, and frequentist and Bayesian methods. We discuss
tree-by-tree and simultaneous methods separately to show that all existing methods are just variants of
these two different general approaches.

1.5.1 Sequential Tree-by-Tree Inference

All sequential methods select a vine copula and estimate its parameters one tree after the after. In the
first step, select tree T1 and the unconditional pair copulas of level k = 1, B1 (model selection only),
and estimate the parameters θ1. Subsequent steps, k = 2, . . . , d − 1, select tree Tk and the pair copulas
Bk (model selection only), and estimate the parameters θk. These steps are conditional on the selected
levels up to k − 1. Algorithm 1.1 shows pseudo code for the general tree-by-tree inference approach.
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Pseudo Code
Algorithm 1.1 (Tree-by-Tree Selection and Estimation).

1: for level k = 1, . . . , d− 1 do
2: For structure selection, select the regular vine tree of level k, T̂k.
3: For copula selection, select the pair copula families of level k, B̂k.
4: Estimate the parameters of level k, θ̂k.
5: end for
6: return the sequential estimate Ĉ = (V̂, B̂V , θ̂V), where V̂ = (T̂1, . . . , T̂d−1), B̂V = (B̂1, . . . , B̂d−1), and
θ̂V = (θ̂1, . . . , θ̂d−1).

Frequentist parameter estimation. Sequential tree-by-tree inference for vine copulas was first pro-
posed in [Aas et al., 2009]. While applicable to the general class of regular vine copulas, the original
work provides a detailed description of the tree-wise likelihoods for C-vine and D-vine copulas only, and
Dißmann et al. [2013] presented likelihood-based inference for the entire class of regular vine copulas.
Both papers suggest maximum likelihood estimation of the parameters of each copula e ∈ Ek individu-
ally (see (1.14) for the likelihood function), and suggest that sequential estimation can be used on its
own, or as a way to find starting values for full maximum likelihood estimation.

Frequentist model selection. Sequential tree-by-tree inference can be used for model selection similar
to parameter estimation. Dißmann et al. [2013] and Brechmann et al. [2012] propose such a scheme
for model selection of the regular vine V and pair copula families BV . For each level k = 1, . . . , d − 1,
Dißmann et al. [2013]’s method selects Tk as the maximum spanning tree that satisfies the proximity
condition for that level using the absolute value of each pair’s Kendall’s τ as the edge weights for op-
timization. Once tree Tk = (Nk, Ek) is selected, the pair copula families Bk are selected individually
for each edge e ∈ Ek, using AIC to select the most suitable from a set of candidate families B. Czado
et al. [2013] discuss modifications of Dißmann et al. [2013]’s selection strategy that use AIC or p-values
of goodness-of-fit tests as the edge weights for selecting the regular vine tree structure, and Brechmann
et al. [2012] proposes an extension of Dißmann et al. [2013]’s selection method for shrinkage modeling:
after completing the selection of level k = 1, . . . , d − 1, compare AIC or BIC of the level k-truncated
model to that of the level (k− 1)-truncated model; if the latter has a better AIC or BIC, end the selection
procedure and return the level (k − 1)-truncated model as the model estimate.

Bayesian model selection. Gruber and Czado [2015b]’s Bayesian selection strategy (see Chapter 2)
performs Bayesian posterior simulation from the joint posterior distribution of the the regular vine tree
Tk of level k, the pair copula families Bk of level k, and the parameters θ1:k of all levels up to k,
sequentially for each level k = 1, . . . , d − 1. The posterior simulation follows a reversible jump MCMC
scheme [Green, 1995] with Metropolis-Hastings updates of the parameters [Metropolis et al., 1953,
Hastings, 1970]. Parsimonious model estimates are obtained through a shrinkage prior that penalizes
additional parameters. This method is not strictly sequential, given that the parameters of previous levels
keep being updated; Algorithm 1.1 provides a mostly accurate depiction of Gruber and Czado [2015b]’s
selection method with the only caveat that line 4 estimates all parameters θ1:k.

1.5.2 Simultaneous Inference

Simultaneous selection of all levels massively increases the search space compared to sequential selec-
tion, see Table 1.5. Present literature only discusses Bayesian techniques for simultaneous selection of
all levels, most of which implement a reversible jump MCMC approach [Green, 1995] consisting of a
between-model move and within-model move as outlined in Algorithm 1.2.

Pseudo Code
Algorithm 1.2 (Joint Bayesian Selection and Estimation).

1: for iteration r = 1, . . . , R do
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Vine Search Space Vine Copula Search Space
Joint Stepwise Joint Stepwise

Dimension d Selection Selection Selection Selection
2 1 1 7 7
3 3 3 1,029 154
4 24 < 20 2,823,576 < 5,642
5 480 < 145 1.3559e+11 < 305,767
6 23,040 < 1,441 1.0938e+17 < 22,087,639
7 2,580,480 < 18,248 1.4413e+24 < 1.9994e+9
8 660,602,880 < 280,392 3.0387e+32 < 2.1789e+11
9 3.8051e+11 < 5,063,361 1.0090e+42 < 2.7791e+13
10 4.8705e+14 < 105,063,361 5.2118e+52 < 4.0632e+15

Table 1.5: Size of the search space for vines V and vine copulas (V,BV) with seven candidate families,
i.e., |B| = 7, by dimension d.

2: Perform a between-model move to update the current regular vine Vr−1 and/or pair copula families
Br−1
V , and parameters θr−1

V to obtain new states Vr, BrV , and θrV .
3: Perform a within-model move to update only the parameters θrV .
4: end for
5: return the posterior sample (C1, . . . , CR), where Cr = (Vi,BiV ,θ

r
V).

Frequentist parameter estimation. Joint maximum likelihood estimation of the parameter vector θV
is suggested for frequentist parameter estimation across all levels k = 1, . . . , d− 1 simultaneously in Aas
et al. [2009] and Dißmann et al. [2013].

Bayesian parameter estimation. Min and Czado [2010] discuss Bayesian inference for D-vine copulas
based on Metropolis-Hastings sampling [Metropolis et al., 1953, Hastings, 1970], and their proposed
algorithm estimates all parameters of the vine copula simultaneously. An extension of Min and Czado
[2010]’s Metropolis-Hastings method for Bayesian posterior inference of the parameters of a regular vine
copula is presented in Gruber [2011].

Origins of Bayesian model selection. Min and Czado [2011] and Smith et al. [2010] present com-
peting approaches to select the pair copula families of D-vine copulas. Min and Czado [2011] propose a
reversible jump MCMC sampler to decide between an independence copula or a non-independent cop-
ula for each pair e ∈

⋃
k=1:(d−1)Ek; Smith et al. [2010] propose Metropolis-Sampling on an extended

state space that combines the regular vine copula parameters with a model indicator matrix that iden-
tifies non-independent pairs. Both strategies operate simultaneously on all levels k = 1, . . . , d − 1 of a
vine copula to produce a Bayesian posterior sample that shows the posterior probability of (conditional)
independence for each pair.

Current Bayesian model selection. Modern Bayesian model selection of regular vine copulas is dis-
cussed in Gruber and Czado [2015a] (see Chapter 3). We present two fully Bayesian strategies: one to
select the pair copula families BV of all levels simultaneously, and another to jointly select the regular
vine V and the pair copula families BV simultaneously across all levels. The former strategy is a major
extension of Min and Czado [2011]’s selection method that applies to full class of regular vine copu-
las, enables selection among several candidate pair copula families B (Min and Czado [2011], Smith
et al. [2010]’s methods can only select between the independence copula and one global alternative),
and introduces a variable-strength shrinkage prior to induce selection of parsimonious models; the lat-
ter strategy is the first to enable selection of the regular vine V simultaneously across all levels. Rapid
convergence to high posterior density regions is achieved through dynamic likelihood-based proposal
distributions. Furthermore, we propose an approximating score of the likelihood of regular vine tree
structures V that is used to generate proposals of V through importance resampling.



1.6. DISCUSSION 13

Scenario 1 2 X1-T6 X2-T8 X3-T9
Dimension d = 6 d = 10

Seq. frequentist selection 2883 2677 1450 1339 1618
Seq. Bayesian selection 3053 2916 n/a n/a n/a
Fully Bayesian selection (II) 3697 3226 1477 1498 1729

Table 1.6: Average log-likelihoods of models selected by different selection strategies.

1.5.3 Comparison of Selection Performance

Gruber and Czado [2015b,a] (see Chapters 2 and 3) present extensive simulation studies to quantify the
performance of the three major selection methods for regular vine copulas with unknown regular vines
V: Dißmann et al. [2013]’s sequential frequentist selection, Gruber and Czado [2015b]’s sequential
Bayesian selection, and Gruber and Czado [2015a]’s fully Bayesian selection.

Table 1.6 restates their most significant results: Scenarios 1 and 2 from their simulation studies in d = 6
dimensions using sample size n = 500 simulation data, and Scenarios X1-T6, X2-T8 and X3-T9 from
the simulation study in d = 10 dimension using sample size n = 200 simulation data of Gruber and
Czado [2015a]. The selected scenarios are these that have the fewest independence pairs, which gives
the simulation data the most complex dependence structure, and the data are from 50 independent
replications of each simulation. Across all selected scenarios, fully Bayesian selection performs best,
followed by sequential Bayesian selection, and sequential frequentist selection.

Simultaneous vs. sequential selection. Simultaneous selection performs substantially better than
any of the two sequential selection methods. In heavily truncated scenarios (X1-T2, X2-T3, X3-T2, X3-
T3 of Gruber and Czado [2015a]), simultaneous selection becomes less efficient, because it searches
a much bigger model space than is necessary; if hard truncation is desired by the modeler, theoretical
considerations suggest that it should be beneficial to run simultaneous selection on the truncated model
space, but there are no simulation results yet.

Sequential Bayesian vs. frequentist selection. The six-dimensional analysis shows that sequential
Bayesian selection performs better than sequential frequentist selection. Furthermore, this is confirmed
in Gruber and Czado [2015b]’s test of the detection of sparsity patterns through independence pairs in
Scenario 3: their sequential Bayesian selection method selects, on average, only 0.9 out of 10 indepen-
dence pairs as non-independent, while Dißmann et al. [2013]’s sequential frequentist method selects, on
average, 3.3 pairs as non-independent.

Computation time. Dißmann et al. [2013]’s sequential frequentist selection is substantially faster than
either Bayesian method. In Gruber and Czado [2015b]’s 6-dimensional simulation study, the frequentist
method could be completed within several seconds, while sequential Bayesian selection took about 10
hours to complete. Fully Bayesian selection offers a dramatic reduction in computing time by only
simulating one MCMC sampling chain instead of one for each level k = 1, . . . , d − 1. In Gruber and
Czado [2015a]’s study (see Chapter 3), fully Bayesian simulation completes in about 2 hours.

1.6 Discussion

Regular vine pair copula constructions are a very flexible class of multivariate dependence models. In
spite of the model’s recent development, it has been quickly embraced by researchers from many areas
that work to develop inference and sampling methodology to enable widespread application.

The much-praised flexibility of pair copula constructions makes model selection a challenge. Initial
research focused on C-vine and D-vine copulas, while more recent research generalized these findings to
apply to, and developed new methods for, the entire class of regular vine copulas. This survey organizes
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these selection methods along algorithmic-conceptual lines to point out similarities and differences in
strategy and performance of proposed methods.

Most researchers wishing to use regular vine copulas need a fully autonomous model selection strategy
that can select the regular vine V, and does not require the modeler to specify it. This leaves the choice
between sequential frequentist selection [Dißmann et al., 2013, Brechmann et al., 2012], sequential
Bayesian selection [Gruber and Czado, 2015b], and simultaneous Bayesian selection [Gruber and Czado,
2015a]. A comparison of these three methods suggests that the most recent, Gruber and Czado [2015a]’s
fully Bayesian method, is also the most capable. By selecting all levels simultaneously, this strategy avoids
selection bias found in sequential methods.

Furthermore, Gruber and Czado [2015a]’s fully Bayesian method achieves superior results, and is sub-
stantially faster than Gruber and Czado [2015b]’s sequential Bayesian strategy. In practice, researchers
will most likely choose between almost instantaneous sequential frequentist selection, or more accurate,
but also slower, fully Bayesian selection.



Chapter 2

Sequential Bayesian Selection

The contents of this chapter have already been published in Gruber and Czado [2015b]. This chapter is
a lightly edited reproduction of selected contents of the accepted manuscript.

2.1 Bayesian Estimation of Regular Vine Copulas Using Reversible
Jump MCMC

Bayesian selection of regular vine copulas aims at estimating the joint posterior distribution of the regular
vine V, pair copula families BV and parameters θV .

The multi-layered composition of a regular vine copula and its density function makes analytical in-
ference infeasible. Instead, we use reversible jump MCMC [Green, 1995], which is an extension the
Metropolis–Hastings algorithm [Metropolis et al., 1953, Hastings, 1970] to include the selection of mod-
els with different numbers of parameters in the scope of inference, as a simulation-based approach to
estimate the posterior distribution. Convergence of the sampling chain to the target distribution, here to
the posterior distribution, is theoretically established under regularity conditions.

2.1.1 General Tree-by-Tree Model Selection

Our tree-by-tree model selection strategy first estimates the first level of the regular vine copula, which
consists of tree T1 = (N1, E1) and the pair copula families B1 with parameters θ1. For each higher level
k = 2, . . . , d− 1, the density factorization Tk = (Nk, Ek) and pair copula families Bk with parameters θk
are selected conditionally on the estimates of the lower levels (T1,B1,θ1) to (Tk−1,Bk−1,θk−1), which
remain unchanged from the previous steps.

Motivation of tree-by-tree estimation. In the context of model selection for regular vine copulas,
sequential approaches exhibit distinct strengths that make them more tractable than joint approaches.

Sequential approaches are much faster than joint approaches, as they break the overall problem into a
sequence of smaller problems that can be solved more quickly. Table 1.5 shows the enormous reduction
of the regular vine search space, if a sequential procedure is followed. The entries of Table 1.5 follow
Morales-Napoles [2011]’s calculation of the number of vines and use the sum of the number of spanning
trees with k nodes,

∑d
k=2 k

k−2, as an upper bound of the size of the sequential search space. Here the
number of spanning trees is calculated using Cayley [1889]’s formula. Furthermore, the reduced number
of model alternatives improves the convergence behavior of MCMC samplers as it allows for a quicker
exploration of the search space.

Furthermore, a tree-by-tree approach avoids a regular vine copula-specific model identification issue. Dif-
ferent regular vine copulas can be representatives of the same multivariate copula, the most prominent
example of which is the multivariate Gaussian copula [Kurowicka and Cooke, 2006]. The tree-by-tree

15
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approach is characterized by leaving previously selected trees unchanged and modifying only one tree
at a time. Under the tree-by-tree paradigm, there is only one scenario in which the copula of the current
state and proposed state are the same with a non-zero probability: all pair copulas—those on all previ-
ously selected trees and those on the current tree—are either Gaussian or independent. These states can
be easily detected and collapsed into one state.

Priors. Following our tree-by-tree estimation approach, the priors are specified for each level k =
1, . . . , d − 1. Given that the proximity condition restricts which trees Tk are allowed for a level k > 1,
these priors are inherently conditional on the selection on the previous trees T1, . . . , Tk−1.

We choose a noninformative yet proper prior over the set STPk of all spanning trees that satisfy the
proximity condition for level k for tree Tk, a sparsity-enforcing prior for the pair copula families Bk and
proper noninformative priors for the parameters θk. We combine flat (−1, 1)-priors for the Kendall’s τ
parameters with flat (0, log(30))-priors for the logarithm of the degrees of freedom ν of Student’s t pair
copulas.

π(Tk) ∝ discrete Uniform(STPk),

π(Bk | Tk) =
exp(−λdk)∑|Ek|

i=1

∑2
d=0 exp(−λd)

∝ exp(−λdk),

π(θe | Tk,Be) ∝

{
Uniform(−1,1)(τe) if Be is a single parameter copula

Uniform(−1,1)(τe) ·
1(1,30)(νe)·log(νe)∫ 30

1
log(x)dx

if Be is the Student’s t copula
,

where dk denotes the dimension of the parameter vector θk = (θe;Be | e ∈ Ek) of the pair copula families
Bk of level k. Analogously, de denotes the dimension of the parameter vector of the pair copula family
Be of edge e ∈ Ek and it holds that dk =

∑
e∈Ek de. Our prior on the pair copula families Bk depends

solely on the size dk of their parameter vectors θk; if Be is the independence copula, it holds that de = 0.

The prior density π of state (Tk = (Nk, Ek),Bk,θk) results as

π(Tk,Bk,θk) ∝
∏
e∈Ek

exp(−λde)π(θe | Tk,Be). (2.1)

This prior gives the posterior distribution the following form:

p(Tk,Bk,θk | U) ∝ π(θk | Tk,Bk) · exp (`(Tk,Bk,θk | U)− λdk)

∝∼ exp (`(Tk,Bk,θk | U)− λdk) ,

where ` denotes the log likelihood function and ∝∼ means “approximately proportional.” At λ = 0, no
shrinkage occurs and the posterior mode estimate of level k will approximate that level’s maximum
likelihood estimate, while at λ = 1, the posterior mode estimate of level k will approximately minimize
the Akaike Information Criterion (AIC).

Posterior distribution. The posterior distribution of level k given observed data U factorizes into the
likelihood L and prior density π:

p(Tk,Bk,θk | U) ∝ L(Tk,Bk,θk | U) · π(Tk,Bk,θk).

The tree-by-tree procedure requires the Bayesian posterior sample of each tree to be collapsed into a
single model estimate. We choose the empirical mode of the sampled models (Tk,Bk) as the model
estimate, given that we chose our priors for their effects on the posterior mode. The parameters are set
to the means of the MCMC posterior iterates of the selected model. Other centrality estimates may be
used as well.

Implementation. At each iteration r = 1, . . . , R, the sampling mechanism performs a within-model
move and a between-models move. The within-model move updates all parameters θ1:k of the regular
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vine copula, but leaves the pair copula families B1:k and tree structure T1:k unchanged. The between-
models move operates only on level k and updates the tree structure Tk, pair copula families Bk along
with the parameters θk.

The between-models move is implemented as a 50:50 mixture of two mutually exclusive, collectively
exhaustive (MECE) sub-routines: with a 50% probability, a local between-models move updates only the
pair copula families Bk but leaves the tree structure Tk unchanged (Algorithm 2.2). With the remaining
50% probability, a global between-models move updates the tree structure Tk along with the pair copula
families Bk (Algorithm 2.3). Algorithm 2.2 guarantees that the proposal state differs in at least one pair
copula family from the current state; Algorithm 2.3 guarantees that the proposal state differs in at least
one edge of tree Tk from the current state. This makes the proposals of the two sub-routines mutually
exclusive and gives the acceptance probability a tractable analytical form that can be easily evaluated.

The between-models move is into two sub-routines, because this allows an intuitive interpretation of a
local search (Algorithm 2.2) and a global search (Algorithm 2.3) as well as optimizes the computational
cost of these updates by containing between-models moves that leave the tree structure unchanged to a
dedicated sub-routine.
Algorithm 2.1 (Tree-by-Tree Bayesian Model Selection).

1: for each level k = 1, . . . , d− 1 do
2: Choose starting values: set tree Tk = (Nk, Ek) to an arbitrary tree that fulfills the proximity condition

for level k; set all pair copula families Bk of level k to the independence copula, i.e., ce(·, ·) = 1 for
e ∈ Ek and set the parameter vector θk of level k to an empty vector.

3: for each MCMC iteration r = 1, . . . , R do
4: Perform a within-model move: update all parameters θ1:k. Obtain θr,NEW

1:k through a Metropolis–
Hastings step with random walk proposals:

(T rk ,Brk,θ
r
1:k) = (T r−1

k ,Br−1
k ,θr,NEW

1:k ).

5: Perform a between-models move: update the tree structure Tk along with, or only, the pair copula
families Bk and parameters θk (Algorithms 2.2, 2.3):

(T rk ,Brk,θ
r
k) = (T r,NEW

k ,Br,NEW
k ,θr,NEW

k ).

6: end for
7: Set the level k-estimate (T̂k, B̂k, θ̂k) to the empirical mode of the posterior sample ((T rk ,Brk,θ

r
k), r = 1, . . . , R):

• Set T̂k and B̂k to the most frequently sampled combination of Tk and Bk in ((T rk ,Brk), r = 1, . . . , R).

• Set θ̂k to the sample mean of
(
θrk, r ∈ {1, . . . , R} with T rk = T̂k and Brk = B̂k

)
.

8: For all levels l = 1, . . . , k − 1, update θ̂l and set it to the sample mean of(
θrl , r ∈ {1, . . . , R} with T rk = T̂k and Brk = B̂k

)
.

9: end for
10: return the stepwise Bayesian model estimate (V̂, B̂V , θ̂V), where V̂ = (T̂1, . . . , T̂d−1), B̂V = (B̂1, . . . , B̂d−1),

and θ̂V = (θ̂1, . . . , θ̂d−1).

2.1.2 Update of the Pair Copulas of Level k

This section describes a sub-routine of Algorithm 2.1 to update the pair copula families Bk and pa-
rameters θk of level k of a regular vine copula. This updating step leaves the density factorization V
unchanged.

This sub-routine first selects how many pair copulas will be updated (Line 1 of Algorithm 2.2) and then
randomly selects which pair copulas will be updated—denoted by E ⊆ Ek in the remainder (Line 2).
Next, it generates a proposal that updates the selected pair copulas (Lines 3–9), and, lastly, accepts or
rejects the proposal based on a Metropolis–Hastings updating rules (Line 10).

The proposal step (Lines 3–9) iterates through all selected pair copulas e ∈ E. It first estimates the
parameters θe;B∗e of each candidate pair copula family B∗e ∈ B \ Bre , where the estimates are denoted by
θ̂e;B∗e . The likelihoods of the different candidate copulas, L(B∗e , θ̂e;B∗e | U), are then used as the proposal
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probability weights of the respective copula families: qB(Bre → B∗e) ∝ L(B∗e , θ̂e;B∗e | U). After selecting
a pair copula family, the proposal parameters θ∗e are drawn from a normal distribution centered at the
parameter estimate θ̂e;B∗e . The proposal distribution qN from which N is drawn (Line 1), the parameter
estimation procedure (Line 4) and the covariance matrix Σ of the parameters’ proposal distribution
(Line 6) are MCMC tuning parameters.

Pair copula families that can model only positive or negative Kendall’s τ ’s such as the Clayton copula or
Gumbel copula are extended to cover the entire range [−1, 1]. This is implemented by replacing the first
argument u1 of the copula density function c(u1, u2) by 1 − u1 whenever the dependence parameter τ
changes signs.

As this sub-routine and the one from Section 2.1.3 produce non-overlapping proposals, the acceptance
probability follows as

α =
L(T rk ,B∗k,θ

∗
k | U)

L(T rk ,Brk,θ
r
k | U)

· π(T rk ,B∗k,θ
∗
k)

π(T rk ,Brk,θ
r
k)
·
∏
e∈E

qB(B∗e → Bre) · φ(θ̂e;Bre ,Σ)(θ
r
e)

qB(Bre → B∗e) · φ(θ̂e;B∗e ,Σ)(θ
∗
e)

, (2.2)

where φµ,Σ(·) denotes the density function of the truncated multivariate normal distribution with mean
µ and covariance matrix Σ; the truncation is assumed at the bounds of the respective parameters. Both
the numerator and denominator of the acceptance probability contain qN (N) as a factor that cancels out
and does not appear in Equation 2.2, given that the return move of any update must change the same
number N of pair copulas as the outbound move.
Algorithm 2.2 (Between-Models Move to Update the Pair Copula Families Bk and Parameters θk).
This is for the r-th iteration of line 5 of Algorithm 2.1.

1: Select how many pair copulas are updated: N ∼ qN (·); N ∈ {1, . . . , |Ek|}.
2: Select which pair copulas are updated: E ⊆ Ek with |E| = N .
3: for each selected pair copula e ∈ E do
4: For each candidate pair copula family Be ∈ B \ Bre estimate the copula parameter θe;Be given the

transformed data (ut=1:T
i(e)|D(e),u

t=1:T
j(e)|D(e)) and denote the parameter estimate by θ̂e;Be .

5: Draw a new copula family B∗e ∈ B \ Bre from the proposal distribution

qB(Bre → B∗e) ∝ L(B∗e , θ̂e;B∗e | U). (2.3)

6: Draw new parameters θ∗e ∼ N (θ̂e;B∗e ,Σ) from a normal distribution.
7: The proposal family for pair copula e ∈ E is B∗e and the proposal parameter is θ∗e.
8: end for
9: The proposal families for level k are B∗k and the proposal parameters are θ∗k, where

B∗k = (B∗e for e ∈ E and Bre for e ∈ Ek \ E)

θ∗k = (θ∗e for e ∈ E and θre for e ∈ Ek \ E).

10: Accept the proposal and set (T r,NEW
k ,Br,NEW

k ,θr,NEW
k ) = (T rk ,B∗k,θ

∗
k) with probability α (Eq. 2.2). If

rejected, set (T r,NEW
k ,Br,NEW

k ,θr,NEW
k ) = (T rk ,Brk,θ

r
k).

2.1.3 Joint Update of the Regular Vine and Pair Copulas of Level k

This section presents a sub-routine of Algorithm 2.1 to update the regular vine at level k—that is, tree
Tk—and the pair copula families Bk and parameters θk of that level. Definition 1.1 requires that the
lower level trees T1, . . . , Tk−1 of the regular vine are specified before tree Tk is estimated.

Algorithm 2.3 describes our joint update procedure of tree Tk = (Nk, Ek) and the corresponding pair
copula families Bk and parameters θk. We denote the set of all spanning trees with node set Nk that
satisfy the proximity condition by STPk. The cardinality of this set is computed using Kirchhoff’s matrix
tree theorem [Kirchhoff, 1847] to obtain the normalizing constants of the proposal and prior distribu-
tions. In a first step, this sub-routine draws a new spanning tree T ∗k = (Nk, E

∗
k) ∈ STPk \ T rk from the

proposal distribution qT (T rk → T ∗k ) ∝ p|E∗k∩Erk| ·(1−p)|E∗k\Erk| (Line 1); this is just a random walk distribu-
tion on the set of allowable regular vine trees of level k! Then, the algorithm generates a proposal for the
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pair copula families B∗k and parameters θ∗k of this level as in Algorithm 2.2 (Lines 3–9 in Algorithm 2.2;
Lines 2–8 in Algorithm 2.3). The only difference is that all pair copula families in B are permissible
candidates here and the edges e are different. We use the notation qB(B∗e) instead of qB(Bre → B∗e) to
indicate the slightly different proposal distributions. The entire proposal for level k of the regular vine
copula consists of a new tree T ∗k , pair copula families B∗k and parameters θ∗k, and is accepted or rejected
based on Metropolis–Hastings updating rules (Line 9).

This sub-routine has three MCMC tuning parameters. The first is the parameter p of the proposal dis-
tribution for tree Tk: values p > 0.5 make tree proposals T ∗k similar to the current tree T rk more likely
than proposals that are less similar to the current state. The situation is reversed for values p < 0.5. The
second tuning parameter is the choice of the estimation procedure for the pair copula parameter vectors
(Line 3) and the last is the covariance matrix Σ of the proposal distribution of the parameters (Line 5).

The proposal mechanism of this update routine guarantees that the proposed regular vine tree T ∗k is
different from the current state Tk. This ensures that the proposals of this sub-routine and the one of
Section 2.1.2 are mutually exclusive. Furthermore, the proposal probability of the reverse move from
tree T ∗k to Tk is the same as the proposal probability of the away move, given that the number of shared
edges as well as differing edges is the same. As a result, the acceptance probability of a proposal of this
algorithm can be easily obtained as

α =
L(T ∗k ,B∗k,θ

∗
k | U)

L(T rk ,Brk,θ
r
k | U)

· π(T ∗k ,B∗k,θ
∗
k)

π(T rk ,Brk,θ
r
k)
·

∏
e∈Erk

qB(Bre) · φ(θ̂e;Bre ,Σ)(θ
r
e)∏

e∈E∗k
qB(B∗e) · φ(θ̂e;B∗e ,Σ)(θ

∗
e)

. (2.4)

Algorithm 2.3 (Between-Models Move for a Joint Update of Tree Tk = (Nk, Ek) and the Pair Copula
Families Bk and Parameters θk).
This is for the r-th iteration of line 5 of Algorithm 2.1.

1: Draw a new spanning tree T ∗k = (Nk, E
∗
k) ∈ STPk \ T rk that satisfies the proximity condition from the

proposal distribution
qT (T rk → T ∗k ) ∝ p|E

∗
k∩E

r
k| · (1− p)|E

∗
k\E

r
k|. (2.5)

2: for each pair copula e ∈ E∗k do
3: For each candidate pair copula family Be ∈ B estimate the copula parameter θe;Be given the trans-

formed data (ut=1:T
i(e)|D(e),u

t=1:T
j(e)|D(e)) and denote the parameter estimate by θ̂e;Be .

4: Draw a new copula family B∗e ∈ B from the proposal distribution

qB(B∗e) ∝ L(B∗e , θ̂e;B∗e | U). (2.6)

5: Draw new parameters θ∗e ∼ N (θ̂e;B∗e ,Σ) from a normal distribution.
6: The proposal family for pair copula e ∈ E∗k is B∗e and has proposal parameter θ∗e.
7: end for
8: The proposal state is (T ∗k ,B∗k,θ

∗
k), where

B∗k = (B∗e | e ∈ E∗k) and θ∗k = (θ∗e | e ∈ E∗k).

9: Accept the proposal and set (T r,NEW
k ,Br,NEW

k ,θr,NEW
k ) = (T ∗k ,B∗k,θ

∗
k) with probability α (Eq. 2.4). If

rejected, set (T r,NEW
k ,Br,NEW

k ,θr,NEW
k ) = (T rk ,Brk,θ

r
k).

2.1.4 Implementation in C++

The model selection algorithms presented in this section are implemented in a proprietary C++ software
package. As the computational cost of evaluating the likelihood and calculating parameter estimates
increases linearly with the number of observations in the data set, these tasks are parallelized onto
multiple CPU cores using OpenMP to help reduce overall computing time. Furthermore, our software
package relies heavily on the tools and functionality provided by the boost [Boost Community, 2014]
and CppAD [COIN-OR Foundation, 2014] libraries: the boost library contains a function that generates
random spanning trees from a product probability distribution based on edge weights, which we employ
in our implementation of Algorithm 2.3; the CppAD library allows for automatic differentiation, which
we use for parameter estimation.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
c1,2 N(0.59) c1,2 T(0.54, 5) c1,2 N(0.41) c1,2 N(0.41)
c2,3 C(0.71) c1,3 C90(-0.67) c2,3 C(0.50) c2,3 N(0.49)
c3,4 C180(0.80) c1,4 C180(0.64) c3,4 C180(0.50) c2,4 N(-0.33)
c3,5 N(-0.71) c1,5 N(-0.59) c3,5 N(-0.33) c3,5 N(-0.26)
c3,6 T(0.65, 3) c1,6 T(0.54, 6) c3,6 T(0.49, 5) c3,6 N(0.13)
c1,3|2 G(0.75) c2,3|1 G(0.71) c1,3|2 N(0.59)
c2,4|3 N(0.41) c2,4|1 G270(-0.71) c2,5|3 N(0.13)
c2,5|3 C270(-0.60) c2,5|1 C270(-0.60) c3,4|2 N(0.41)
c2,6|3 N(-0.37) c2,6|1 N(-0.45) c5,6|3 N(-0.33)
c1,4|2,3 T(0.26, 5) c3,4|1,2 T(0.30, 8) c1,5|2,3 N(0.26)
c1,5|2,3 N(-0.26) c3,5|1,2 N(-0.30) c2,6|3,5 N(-0.41)
c1,6|2,3 C90(-0.56) c3,6|1,2 C90(-0.43) c4,5|2,3 N(0.19)
c4,6|1,2,3 N(0.13) c4,5|1,2,3 N(0.19) c1,6|2,3,5 N(0.49)
c5,6|1,2,3 C(0.20) c4,6|1,2,3 C(0.43) c4,6|2,3,5 N(0.41)
c4,5|1,2,3,6 G180(0.52) c5,6|1,2,3,4 G180(0.50) c1,4|2,3,5,6 N(-0.33)
17 parameters 18 parameters 6 parameters 15 parameters

Table 2.1: The vine copulas used in the simulation study. The parameters shown are the Kendall’s τ and
the degrees of freedom ν.

2.2 Simulation Study

We present a simulation study that compare our sequentially Bayesian strategy with Dißmann et al.
[2013]’s frequentist model selection algorithm, the independence model and the maximum likelihood
estimate (MLE) of the multivariate Gaussian copula. The comparisons with the independence model and
Gaussian copula illustrate that vine copulas are relevant dependence models that significantly improve
model fit over simpler standard models, while the comparison with Dißmann’s vine copula estimates
highlights the improved model selection capabilities of our method.

Our simulation study uses copula data generated from four different six-dimensional vine copulas (Ta-
ble 2.1). These scenarios cover a wide range of dependence structures: the first two cover general cases
of multivariate dependence, while the third and fourth scenario are special cases to investigate detailed
characteristics of our model selection method. Scenario 3 consists of only one level, which means that all
variables are conditionally independent. It also means that the true model lies in the search space of the
first level of our selection procedure, so that this scenario can be used to validate our proposed scheme
empirically. Scenario 4 is has only Gaussian pair copulas, which makes it a vine copula-representation of
the multivariate Gaussian copula. As a result, this scenario allows for an isolated evaluation of the pair
copula family selection aspect of our method, given that the multivariate Gaussian copula results from
any vine density factorization V as long as all pair copula families are Gaussian.

We generate 100 data sets consisting of 500 independent samples from the respective copula distribution
of each scenario and allow the pair copula families listed in Section 1.3 as candidates.

2.2.1 Choice of the Benchmark Algorithm

The models selected by Dißmann et al. [2013]’s algorithm serve as a benchmark. This algorithm follows
a stepwise frequentist approach that selects each tree Tk, k = 1, . . . , 5 as the maximum spanning tree
using absolute values of Kendall’s τ of the variable pairs as edge weights. The pair copula families are
selected to optimize the AIC copula-by-copula and the parameters are set to their individual maximum
likelihood estimates.

Dißmann’s algorithm and ours share their tree-by-tree selection strategy. However, there are two major
differences between our approaches: firstly, Dißmann follows a heuristic scheme to select the tree struc-
ture V, while we follow a proper Bayesian selection scheme on each level k; secondly, Dißmann selects
the pair copula families on an edge-by-edge basis, whereas we place priors on the distribution of the pair
copula families across an entire level k to simultaneously select of all edges of that level.
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Algorithm Tuning Parameters

2.2 qN (N = k) = 1
3.5 log

(
1− 1−e−3.5

|Ek|e−3.5+k(1−e−3.5)

)
, where |Ek| denotes the

number of pair copulas of level k
2.2, 2.3 Parameter estimation is done by matching the Kendall’s τ parameter to

the sample Kendall’s τ . The degrees of freedom ν of a Student’s t pair
copula is maximum likelihood estimated on a discrete grid.

2.2, 2.3 Σ = 0.01252 for the Kendall’s τ of single-parameter copulas;

Σ =

(
0.01252 0

0 0.12

)
for the (τ, log ν) parameter vector of the Stu-

dent’s t copula
2.3 p = 0.667

Table 2.2: MCMC tuning parameters used in the simulation study and real data example.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Gruber > Dißmann (out of 100) 97 98 0 86
Gruber rel. loglik (in %) 81.0 84.9 100.6 100.3
Dißmann rel. loglik (in %) 76.6 77.6 101.3 100.1
Gaussian MLE rel. loglik (in %) 64.0 67.6 84.7 100.1
Independence rel. loglik (in %) 0 0 0 0

Table 2.3: Number of replications in which our algorithm’s estimate has a higher likelihood than Diß-
mann’s; average percentage of the true log likelihood of the estimated vine copulas, the multivariate
Gaussian copula and the independence model.

2.2.2 Configuration of Our Reversible Jump MCMC Sampler

We use the shrinkage prior introduced in Section 2.1.1 with shrinkage parameter λ = 1. The posterior
mode estimates of each level k will then be approximately AIC-optimal.

We use our reversible jump MCMC Algorithm 2.1 from Section 2.1 to generate R = 50,000 posterior sam-
ples for each level k = 1, . . . , 5 of the 6-dimensional regular vine copula. The MCMC tuning parameters
are summarized in Table 2.2. Furthermore, we apply a re-weighting on the proposal probabilities (2.3)
and (2.6) of the pair copula families in the sub-routines of Algorithms 2.2 and 2.3 to improve the mixing
behavior of the sampling chain. This is achieved by ensuring that the ratio of smallest and biggest the
proposal probabilities is bounded from below by 0.05,

minB∗∈B\Br qB(Br → B∗)
maxB∗∈B\Br qB(Br → B∗)

≥ 0.05 and
minB∗∈B qB(B∗)
maxB∗∈B qB(B∗)

≥ 0.05, respectively.

2.2.3 Evaluation of the Results

The results are based on 100 replications of the estimation procedures with independently generated
data sets of size 500 from the four scenarios and are summarized in Table 2.3. The fitting capabilities of
our algorithm and Dißmann et al. [2013]’s are measured by the log likelihood of the estimated models.
Knowing the underlying “true” models, we can also calculate the ratio of the estimated log likelihoods
and the true log likelihoods to evaluate how well the selection methods perform in absolute terms.
Figure 2.1 compares the performance of our Bayesian strategy with Dißmann’s heuristic: markers above
the diagonal line indicate replications in which our Bayesian model estimate has a higher likelihood than
Dißmann’s.

Scenarios 1, 2. The log likelihoods of the models selected by our algorithm average 81% and 85%
of the log likelihoods of the true models, Dißmann’s model estimates average 77% and 78%, and the
multivariate Gaussian copula averages 64% and 68%, respectively (Table 2.3). While neither Dißmann’s
method nor ours selects the correct tree T1 in any replication, these numbers still show that model fit is
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Figure 2.1: Comparison of relative log likelihoods of our method and Dißmann’s. The dashed lines
indicate the respective averages across all 100 replications.
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Posterior Model 29 30 31
Posterior probability (in %) 58.4 32.1 4.0
Average relative log likelihood (in %) 100.2 100.1 100.4
Number of parameters 5 5 6
Correct tree T1 yes yes yes

Table 2.4: Scenario 3, Replication 1. Histogram table of selected models with an empirical posterior
probability of at least 1%. The posterior probabilities and relative log likelihoods are quoted in percent-
age points.

improved significantly by our approach, and that Dißmann’s estimates are already more suitable models
than the multivariate Gaussian copula.

Figure 2.1 shows that within each scenario, the relative log likelihoods of our model selection proce-
dure are distributed much more narrowly about the mean compared with Dißmann’s. Furthermore,
in 97 (Scenario 1) and 98 (Scenario 2) out of 100 replications, our method’s estimates perform better
than Dißmann’s (Table 2.3). Together, this shows that our model selection strategy is more robust and
performs consistently better.

Scenario 3. The regular vine copula of Scenario 3 is truncated to the first level. As a result, the true
model lies in the search space of the first step of our tree-by-tree model selection procedure, which makes
this a test case to validate our implementation.

Our shrinkage prior effectively avoids over-fitting, given that, on average, only 0.8 of the 10 pair copulas
on levels k = 2:5 are selected as non-independence copulas, and in 43 out of 100 replications, all pair
copulas on levels k = 2:5 are selected as independence copulas. Furthermore, in all 100 replications, the
posterior mode estimate has the true model’s tree structure T1. Dißmann’s procedure is more prone to
over-fitting with, on average, 3.3 out of the 10 pair copulas on levels k = 2:5 being non-independence
copulas and only 2 out of 100 replications selecting all pair copulas as independence copulas.

The log likelihoods of the estimated models by our algorithm average 101% as do the log likelihoods from
Dißmann’s models. This is an excellent result that confirms the validity of our model selection scheme
and shows that it is implemented correctly. The consistently slightly higher log likelihoods of Dißmann’s
model estimates are based on over-fitting. This scenario confirms our method as superior to Dißmann’s,
as it is important for an effective selection method to identify sparse patterns. The multivariate Gaussian
copula lags behind with an average relative log likelihood of 85% even though it is the model that has
the most parameters.

Detailed Analysis of the MCMC Output of Level 1 of Replication 1: After discarding the first 2,500 iterations
as burn-in, the posterior mode model has a posterior probability of 58% (Model 29; Table 2.4) and
all posterior samples, after burn-in, have the correct tree structure T1. The selected pair copula families
agree with the correct pair copula families, except for the family of edge 3, 6: Model 29 selects a Gaussian
pair copula, Model 30 selects the 180 degree rotation of the Gumbel copula, and Model 31 selects the
Student’s t copula. The fact that the correct model, Model 31, has only 4% posterior probability can be
attributed to our shrinkage prior, given that the log likelihoods of these three models are nearly identical.
Figure 2.2 illustrates the MCMC mixing behavior using the model index and log likelihood trace plots.

Scenario 4. Both model selection procedures select models that average about 100% of the log like-
lihoods of the true model. This extraordinary performance can be explained by a peculiarity of vine
copulas: if all pair copulas are Gaussian or independence copulas, the vine copula equals a multivariate
Gaussian copula irrespective of the density factorization V. As a result, the selection of the density fac-
torization V does not play a role in selecting suitable vine copula models here. Our sequential Bayesian
procedure selects, on average, 13.8 out of the 15 pair copulas as either Gaussian or independence copu-
las, while Dißmann’s procedures comes in second at 12.7 out of 15. This result, together with the high
relative log likelihoods, suggests that both algorithms perform similarly well at selecting suitable pair
copula families.
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Figure 2.2: Model index and log likelihood trace plot of Replication 1 of Scenario 3. The horizontal line
in the lower plot indicates the true model’s log likelihood; the vertical lines show the burn-in period.

Conclusion. Both algorithms perform equally well in fitting a vine copula to Gaussian data. Our tree-
level Bayesian approach improves model selection of general regular vine copulas, which are not inde-
pendent of the selected tree structure V. The large performance gap between Scenarios 1, 2 and the
special cases of Scenarios 3, 4 shows the limits of our tree-by-tree approach towards the selection of the
tree structure V. We acknowledge that our model selection scheme does not yet represent the definitive
answer to the model selection challenge. Nevertheless, our proposed selection scheme consistently se-
lects better-fitting models than existing selection strategies and is better at detecting sparsity patterns for
model reduction than Dißmann et al. [2013]’s frequentist method.

2.2.4 Analysis of the Computational Complexity and Runtime

Computational complexity. The computation of a single model estimate by our algorithm using the
set-up described in Section 2.2.2 consists of 50,000 MCMC updates for each level of the vine copula.
These sum up to 250,000 MCMC updates for the five levels of a six-dimensional regular vine copula.
Each MCMC update consists of a between-models move and a within-model move: the between-models
move consists of estimating the parameters and calculating the likelihood of each pair copula and each
candidate pair copula family, and an additional evaluation of the likelihood after drawing a proposal
parameter; the within-model move brings another evaluation of the likelihood of each pair copula.

Computing facilities and runtime. The simulation study was performed on a Linux cluster with AMD
Opteron-based 32-way nodes using 2.6 GHz dual core CPUs for parallel processing. The Linux cluster
is hosted by the Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften near Munich,
Germany. It took approximately 10 hours to execute our stepwise Bayesian selection strategy for a six-
dimensional data set of size 500, while it took 5-6 seconds to execute Dißmann et al. [2013]’s heuristic
and less than 0.1 seconds to estimate the correlation matrix of the multivariate Gaussian copula. It may
be noted that the runtime of our procedure could be cut significantly by reducing the number of MCMC
iterations. Our analyses suggest that convergence is achieved quickly so R ∈ [15,000, 30,000] will be
adequate choices in practice.

Recommendations for researchers. In most studies, researchers have to strike a balance between
getting quick, or getting more accurate results. With that in mind, we propose the following approach to
decide which dependence model to use. In a quick first analysis, estimate a multivariate Gaussian copula
and select a regular vine copula using Dißmann et al. [2013]’s heuristic, which can be completed within
a few seconds. If the log likelihoods of both models are similar, use the multivariate Gaussian copula
as a “good enough” standard model (see Scenario 4). However, if the log likelihood of the selected
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j Symbol Name Exposure
1 IVV iShares Core S&P 500 ETF Large-cap U.S. stocks
2 IJH iShares Core S&P Mid-Cap ETF Mid-cap U.S. stocks
3 IJR iShares Core S&P Small-Cap ETF Small-cap U.S. stocks
4 HYG iShares iBoxx $ High Yield Corpo-

rate Bond ETF
High yield corporate bonds

5 LQD iShares iBoxx $ Investment Grade
Corporate Bond ETF

U.S. investment grade corpo-
rate bonds

6 RTL iShares Retail Real Estate Capped
ETF

U.S. retail property real estate
stocks and REITs

7 REZ iShares Residential REIT Capped
ETF

U.S. residential real estate
stocks and REITs

8 SLV iShares Silver Trust Silver
9 IAU iShares Gold Trust Gold

Table 2.5: Overview of the ETFs selected for the real data example. The exposure information is taken
from the iShares homepage.

vine copula is substantially higher than the one of the Gaussian copula, perform a sequential Bayesian
analysis using our method for more accurate and more robust results, and better sparsity detection (see
Scenarios 1–3).

2.3 Example: Portfolio Asset Returns

We consider a diversified portfolio that invests in multiple asset classes using iShares exchange-traded
funds (ETFs) and commodity trusts. The daily log returns of each investment are modeled by a univariate
time series. The joint multivariate characteristics are modeled by a regular vine copula and a multivariate
Gaussian copula.

We learn the copulas using one year’s worth of data and then use the selected copulas together with
the marginal time series to obtain joint multivariate step-ahead forecasts for six months. The quality of
the forecasts is measured by comparing the forecast accuracy of various portfolio metrics with the actual
realizations.

2.3.1 Description of the Data

The data set contains adjusted daily closing prices of nine iShares ETFs, j = 1:9, and covers the time
period from January 2013 through June 20141. The training set consists of 252 observations from
January through December 2013 (t = 1:252); the test set consists of 124 observations from January
through June 2014 (t = 253:376). The nine ETFs form a well-diversified portfolio that invests in multiple
asset classes and can be easily replicated by retail investors (Table 2.5). Three of the funds invest in
U.S. equities (j = 1, 2, 3), two funds in U.S. treasuries (j = 4, 5), two funds in U.S. real estate through
real estate investment trusts (REITs, j = 6, 7), and two funds are commodity trusts investing in gold and
silver (j = 8, 9)2.

2.3.2 Marginal Time Series

We model the daily log returns yj,t, t = 1, 2, . . . of each series j = 1:9 using a variance discounting
dynamic linear model (DLM; [West and Harrison, 1997, Chapter 10.8]). The DLM is a fully Bayesian time
series model that has closed-form posterior and forecast distributions, and the parameters are learned
on-line. The following updating equations are adapted from Table 10.4 of West and Harrison [1997].

1The data were downloaded from http://finance.yahoo.com
2More details on the selected funds can be found on the iShares homepage at http://www.ishares.com/us/index

http://finance.yahoo.com
http://www.ishares.com/us/index
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Model structure. The general DLM models each time series yj,t, j = 1:9, by

yj,t = F′j,tθj,t + νj,t νj,t ∼ N(0, λ−1
j,t ), (2.7)

θj,t = Gj,tθj,t−1 + ωj,t ωj,t ∼ N(0,Wj,t/(cj,tλj,t)), (2.8)

λj,t = λj,t−1
ηj,t
βj

ηj,t ∼ Beta(
βjnj,t−1

2
,

(1− βj)nj,t−1

2
), (2.9)

with observation equation (2.7). Equations (2.8) and (2.9) describe the evolutions of the states θj,t, a
vector with pj entries, and λj,t, a positive scalar, where the innovations νj,t, ωj,t and ηj,t are assumed
mutually independent and independent over time. The predictors Fj,t are a vectors of size pj and the
state evolution matrices Gj,t are of dimensions pj × pj . The parameters Wj,t, nj,t−1 and βj of the state
evolutions (2.8, 2.9) are explained in the next paragraph.

Forward filtering. The information set at time t is denoted by Dt. Suppose that at time t − 1, a
normal-gamma prior for (θj,t, λj,t), given information Dt−1 has density

πj,t(θj,t, λj,t) := N(θj,t | aj,t,Rj,t/(cj,tλj,t)) ·G(λj,t | rj,t/2, rj,tcj,t/2), (2.10)

and parameters aj,t ∈ Rpj , Rj,t ∈ Rpj×pj , rj,t > 0 and cj,t > 0; at t = 0, the initial prior parameters
are aj,1, Rj,1, rj,1 and cj,1. As yj,t is observed at time t, the information set is updated to Dt and the
posterior distribution of (θj,t, λj,t), given information Dt follows as a normal-gamma

pj,t(θj,t, λj,t) := N(θj,t |mj,t,Cj,t/(sj,tλj,t))G(λj,t | nj,t/2, nj,tsj,t/2) (2.11)

with parameters mj,t = aj,t + Aj,tej,t ∈ Rpj , Cj,t = (Rj,t −Aj,tA
′
j,tqj,t)zj,t ∈ Rpj×pj , nj,t = rj,t + 1 > 0

and sj,t = zj,tcj,t > 0, where ej,t = yj,t − F′j,taj,t ∈ R is the forecast error, qj,t = cj,t + F′j,tRj,tFj,t > 0
is the forecast variance factor, Aj,t = Rj,tFj,t/qj,t ∈ Rpj is the adaptive coefficient vector, and zj,t =
(rj,t + e2

j,t/qj,t)/nj,t > 0 is the volatility update factor (see Table 10.4 of West and Harrison [1997]). The
step-ahead priors (θj,t+1, λj,t+1 | Dt) at time t follow from the system equations (2.8, 2.9) as evolutions
of the posterior states (θj,t, λj,t | Dt). The normal-gamma step-ahead prior density πj,t+1 is as in Eq. 2.10
with t evolved to t + 1 and parameters rj,t+1 = βjnj,t, cj,t+1 = sj,t, aj,t+1 = Gj,t+1mj,t, Rj,t+1 =

Gj,t+1Cj,tG
′
j,t+1 + Wj,t+1 and Wj,t+1 =

1−δj
δj

Gj,t+1Cj,tG
′
j,t+1. The discount factors βj , δj ∈ (0, 1)

inflate the prior variances in the state evolution steps and determine the model’s responsiveness to new
observations.

Forecasting. The forecast distribution of yj,t+1 at time t and with information Dt follows as a non-
standardized Student’s t distribution Tnon std(ν, µ, σ2) with ν = rj,t+1 degrees of freedom, mean µ =
F′j,t+1at+1 and variance σ2 = F′j,t+1Rj,t+1Fj,t+1 +cj,t+1 by integration of the observation equation (2.7)
over the prior distributions of the states (θj,t+1, λj,t+1). The non-standardized t distribution is a location-
scale transformation

Tnon std(ν, µ, σ2) = µ+
√
σ2 · Tν (2.12)

of a t distribution Tν with ν degrees of freedom. In the remainder, we will denote the forecast distribution
of yj,t+1 at time t by Tj,t+1.

Model choice. We use a local-level DLM that assumes Fj,t = 1 and has random walk evolutions
Gj,t = 1 for all j and t. The discount factors are set to βj = 0.96 and δj = 0.975 for all j to bal-
ance responsiveness to new observations with sufficient robustness for reliable forecasts. We start the
analysis with the initial prior parameters of each series j = 1:9 set to aj,1 = 0, Rj,1 = 10−6, rj,1 = 10,
cj,1 = 10−5. Figure 2.3 shows the sequential step-ahead forecasts and realized daily log returns as well
as the 10% quantiles of the forecast distributions as the daily value at risk of each series j = 1:9.

2.3.3 Estimation of the Dependence Models

Copula modeling is a two-step process: first, marginal models remove within-series effects from the
data yj,t to obtain i.i.d.—within each series j—uniform noise uj,t := Tj,t(yj,t); second, a copula is
selected to describe across-series dependence effects of the multivariate transformed U(0, 1) data ut =
(u1,t, . . . , u9,t)

′, t = 1, 2, . . ..
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Figure 2.3: Realized returns (gray), forecast means (black) and 10% value at risk (blue).

Tree T1 Tree T2 Tree T3 Tree T4

c1,2 N(0.74) c1,3;2 N(0.07) c1,9;5,7 I c1,8;6,7,9 G180(0.06)
c1,4 N(0.46) c1,5;7 G270(-0.10) c2,6;1,7 G180(0.08) c2,9;1,6,7 I
c1,7 N(0.39) c1,6;7 N(0.14) c3,7;1,2 I c3,6;1,2,7 I
c2,3 N(0.79) c2,7;1 G(0.12) c4,5;1,7 N(0.27) c4,6;1,5,7 I
c5,7 G(0.19) c4,7;1 G180(0.13) c5,6;1,7 N(0.12) c5,9;1,6,7 G(0.12)
c6,7 N(0.51) c6,8;9 I c7,8;6,9 I
c6,8 G(0.09) c7,9;6 I
c8,9 N(0.71)

Table 2.6: Sequential Bayesian estimate of the regular vine copula, given the training data t = 1:252.
This tables shows the Kendall’s τ parameters of the pair copulas.

Sequential Bayesian selection. We use our model selection scheme to estimate a 9-dimensional regu-
lar vine copula using the t = 1:252 observations from 2013. We apply the same priors and configuration
of the sample as in Section 2.2. The selected model is shown in Table 2.6: it has 10 Gaussian pair copu-
las, 0 Student’s t copulas, 8 Gumbel copulas, 0 Clayton copulas and 18 Independence copulas. The pair
copulas of levels k ≥ 5 are selected as Independence copulas and omitted in Table 2.6.

Dißmann’s frequentist selection. We compare against our Bayesian tree-by-tree strategy to Dißmann
et al. [2013]’s frequentist heuristic as we did in the simulation study of Section 2.2. Dißmann’s vine
copula is noticeably less parsimonious with only 13 Independence pair copulas and 5 Gaussian copulas,
7 Student’s t copulas, 7 Gumbel copulas and 4 Clayton copulas. The selected model is shown in Table 2.7.

Multivariate Gaussian copula. For reference, we also included a maximum likelihood estimate of the
multivariate Gaussian copula in our comparison. The estimated correlation matrix is shown in Table 2.8.

2.3.4 Analysis of Portfolio Forecasts

Sampling from the joint forecast distribution. Samples ŷn=1:N
t = (ŷn1,t, . . . , ŷ

n
9,t)
′ from the joint fore-

cast distribution are generated by transforming samples un = (un1 , . . . , u
n
9 )′ from the copula to the obser-

vation scale through inverse cdfs of the marginal forecast distributions, ŷnj,t := T−1
j,t (unj ).
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Tree T1 Tree T2 Tree T3

c1,2 N(0.74) c1,5;4 T(-0.18, 12.8) c1,3;2,7 N(0.06)
c1,4 N(0.46) c1,7;2 G180(0.08) c1,9;4,5 G180(0.03)
c2,3 T(0.79, 8.67) c2,4;1 I c2,5;1,4 I
c2,7 T(0.41, 8.58) c2,6;7 N(0.16) c3,6;2,7 I
c4,5 T(0.39, 4.93) c3,7;2 G270(-0.05) c4,7;1,2 G180(0.13)
c5,9 G(0.16) c4,9;5 C(0.05) c4,8;5,9 C180(0.05)
c6,7 T(0.51, 14.5) c5,8;9 C270(-0.05)
c8,9 N(0.70)

Tree T4 Tree T5 Tree T6

c1,6;2,3,7 I c2,8;1,4,5,9 T(-0.04, 16.7) c3,9;1,2,4,5,7 I
c1,8;4,5,9 G(0.06) c2,5;1,2,4,7 I c5,6;1,2,3,4,7 T(0.10, 14.3)
c2,9;1,4,5 C(0.04) c4,6;1,2,3,7 I c7,8;1,2,4,5,9 I
c3,4;1,2,7 I c7,9;1,2,4,5 I
c5,7;1,2,4 G(0.17)

Table 2.7: Regular vine copula selected by Dißmann’s heuristic, given the training data t = 1:252. This
tables shows the Kendall’s τ parameters of the pair copulas.

Σ =



1 0.92 0.89 0.64 0.02 0.58 0.61 0.21 0.16
0.92 1 0.95 0.61 0.03 0.59 0.61 0.21 0.17
0.89 0.95 1 0.58 0.00 0.54 0.57 0.20 0.15
0.64 0.61 0.58 1 0.37 0.53 0.57 0.23 0.23
0.02 0.03 0.00 0.37 1 0.32 0.32 0.14 0.20
0.58 0.59 0.54 0.53 0.32 1 0.74 0.20 0.18
0.61 0.61 0.57 0.57 0.32 0.74 1 0.18 0.16
0.21 0.21 0.20 0.23 0.14 0.20 0.18 1 0.90
0.16 0.17 0.15 0.23 0.20 0.18 0.16 0.90 1


Table 2.8: Maximum likelihood estimate of the correlation matrix of the multivariate Gaussian copula,
given the training data t = 1:252.
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Figure 2.4: Left: realized portfolio returns (gray) vs. forecast means (black) and 10% value at risk (blue)
from our sequential Bayesian vine copula model during the training date range t = 1:252. Right: Port-
folio performance of investment strategy (2.13) under our Bayesian vine copula model (black; highest
line), Dißmann’s vine model (red; lowest line) and the Gaussian model (blue; middle line) during the
test date range t = 253:376.

In-sample analysis. Consider a portfolio that invests equally in the ETFs from Table 2.5 and the weights
wt := (w1,t, . . . , w9,t)

′ = ( 1
9 , . . . ,

1
9 )′ are maintained throughout the time period t = 1:252. For each t, we

draw N = 10,000 samples ŷn=1:N
t from the joint forecast distribution to simulate the portfolio returns

r̂nt := w′tŷ
n
t . We compute the 10% value at risk as the 10% sample quantile and the expected portfolio

return as the sample mean of r̂n=1:N
t . This allows an evaluation of the adequacy of the joint multivariate

model, which consists of the nine marginal DLMs and the selected copula.

Figure 2.4 (left) shows that the predicted quantities from our sequential Bayesian vine copula model are
in line with the actual portfolio returns. The actual portfolio return is under the predicted 10% quantile
of the simulated portfolio return distribution that uses our sequential Bayesian vine copula on 8.7%, or
22 out of 252 days; if Dißmann’s vine copula or the multivariate Gaussian copula are used in conjunction
with the same marginal DLMs, the actual portfolio return is under the predicted 10% quantile on 8.3%,
or 21 out of 252 days; if the independence copula is used, the 10% value at risk is exceeded 20%, or 50
out of 252 days.

Out-of-sample analysis. During the out-of-sample period from January through June 2014, t = 253 :
376, we investigate the performance of a dynamic portfolio whose weights wt are updated daily to
maximize the predicted Sharpe ratio [Sharpe, 1966]:

max
wt

ŜRt(wt) subject to
∑
j=1:9

wj,t = 1 and wj,t ∈ (0.05, 0.25) for all j = 1:9. (2.13)

Here ŜRt(wt) (Eq. 2.14) is the estimate of the annualized Sharpe ratio of a portfolio with investment
weights wt, where µ̂t is the sample mean and Σ̂t is the sample covariance matrix of the simulated joint
forecasts ŷn=1:N

t . Again, N = 10,000 samples were used.

ŜRt(wt) :=
252 ·w′tµ̂t√
252 ·w′tΣ̂twt

. (2.14)

Our calculation of the Sharpe ratio in Eq. 2.14 is under the assumption of a zero-return risk-free asset.
The optimization constraints wj,t ∈ (0.05, 0.25) in Eq. 2.13 refer to minimum and maximum weights of
individual assets and are typical restrictions that aim at protecting investors from undue accumulation
of risk.

When the regular vine copula selected by our sequential Bayesian procedure is used as the joint model’s
dependence model, the realized annualized Sharpe ratio of the investment strategy (2.13) during the
out-of-sample period t = 253:376 is SR = 1.95; if the multivariate Gaussian copula is used to inform the
investment decisions, the realized Sharpe ratio is SR = 1.67; if Dißmann’s frequentist vine model is used,
the realized Sharpe ratio is SR = 1.53. In addition, the realized nominal return of the portfolio driven by
our sequential Bayesian vine copula is higher than the returns of the portfolios using the Gaussian copula
or Dißmann’s copula (Figure 2.4 (right)). This example provides additional evidence of our sequential
Bayesian vine model as the most reliable model for use in a real-life context.
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2.3.5 Considerations on Use in Practice

The computing time of updating the univariate DLMs is a few milliseconds, which is negligible in the
context of daily portfolio risk rebalancing. In contrast, the computational burden of estimating the
regular vine copula is much higher—in our example, our Bayesian model selection could take as long as
up to a day to complete.

We suggest that the dependence model be update in monthly, quarterly, or semi-annually intervals only.
Under the assumption that the dependence structure of financial asset returns is only slowly changing,
this is a prudent way to proceed. Even though the long computation time of our Bayesian strategy might
be a deterrent to implementing our approach, the benefits of increasing a portfolio’s performance in
nominal as well as risk-adjusted terms will quickly pay for the investment in computing time.

The combination of univariate DLMs with a regular vine copula as the dependence model provides a
robust framework for forecasting, yet is highly responsive to new observations. This can be seen, for
example, in the way the value at risk changes instantly on the day of a large negative market move.
Furthermore, it is a distinct strength of regular vine copulas to be able to model asymmetric dependence
characteristics along with various tail dependence characteristics in one model. Our example shows
that a regular vine copula-driven model can help in decision making to achieve superior investment
performance as well as improved risk forecasts.

2.4 Concluding Remarks

We discussed a Bayesian approach to model selection of regular vine copulas and presented a reversible
jump Markov chain Monte Carlo-based algorithm to facilitate posterior sampling. A key feature of our
approach, sequential model selection in the levels k reduces the search space for candidate models to a
fraction of the search space for joint selection to keep the computational run time at an acceptable level.

A simulation study (Section 2.2) demonstrated that our Bayesian model selection approach is superior to
Dißmann et al. [2013]’s frequentist one. The better performance of our Bayesian selection scheme can
be attributed to its simultaneous and prior-informed selection of the pair copula families Bk of a given
level k, while Dißmann’s algorithm selects them one-by-one. In addition to the simulation study, a real
data example (Section 2.3) illustrated how regular vine copulas can be used to achieve superior portfolio
risk forecasts and investment decisions.

Our estimation procedure extends previously available inference methods for regular vine copulas in two
significant ways. Our Bayesian tree-by-tree strategy allows the selection of the pair copula families BV
from an arbitrary set of candidate families B, which is a non-trivial extension of Smith et al. [2010]’s
indicator-based approach that can only detect (conditional) pairwise independencies. Furthermore, we
present the first Bayesian inference method for selecting the regular vine V as the building plan of the
pair copula construction jointly with the pair copula families BV . A major selling point of our approach
is that we demonstrated its superiority to existing procedures in a simulation study under controlled
conditions (see Section 2.2) as well as in an application study using real data (see Section 2.3).

Sequential model selection schemes can fail to select the correct model. This is illustrated, e.g., in Sec-
tion 2.2 by the failure of the selected models to have relative log likelihoods close to 100% in Scenarios
1 and 2. Current research aims at developing a fully Bayesian model selection scheme to estimate all
levels of a regular vine copula jointly as well as allowing for time-varying dependence effects.



Chapter 3

Simultaneous Bayesian Selection

The contents of this chapter have been submitted for publication in Gruber and Czado [2015a]. This
chapter is a lightly edited reproduction of selected contents of the submitted manuscript.

3.1 Posterior Sampling Using Reversible Jump MCMC

Reversible jump MCMC Green [1995] is an extension of the classic Metropolis-Hasting algorithm Metropo-
lis et al. [1953], Hastings [1970] that enables simulation from target distributions of varying dimension-
ality, such as they appear in Bayesian model selection. Reversible jump MCMC has a long history of being
used in Bayesian model selection of vine copulas, see, for example, Min and Czado [2011], Gruber and
Czado [2015b]. Our approach is an evolution of Gruber and Czado [2015b]’s to estimate all levels of
the regular vine copula jointly. In our application, the model space is the set of all d-dimensional regular
vine copulas V(BV(·)). The parameter space is the set of all valid parameters θV of the vine copula’s pair
copulas.

Reversible jump MCMC updates. There are two kind of moves to update the sampling chain: within-
model moves, which update only the parameters within a given model, and between-model moves, which
update the model and its parameters simultaneously. We use standard Metropolis-Hastings updates for
the within-model moves, and carefully tuned between-model updates to achieve satisfactory exploration
of the model space. Our between-model moves are detailed in Sections 3.2 and 3.3. Algorithm 3.1 shows
the general reversible jump MCMC mechanism for model selection.

Pseudo Code
Algorithm 3.1 (Reversible Jump MCMC for Model Selection).

1: Select starting values: set the regular vine

V0 = (T 0
1 = (N0

1 , E
0
1), . . . , Td−1 = (N0

d−1 = E0
d−2, E

0
d−1))

to an arbitrary regular vine on d dimensions; set all pair copula families B0
V to the independence copula,

i.e., ce;Be(·, ·) = 1 for e ∈ E0
1 , . . . , E

0
d−1.

2: for each MCMC iteration r = 1, . . . , R do
3: Perform a within-model move: update the parameters θV . Obtain updated parameters θr,NEW

V through
a Metropolis-Hastings step with random walk proposals from a mixture of normal distributions:

Cr = (Vr,BrV ,θ
r
V) := (Vr−1,Br−1

V ,θr,NEWV ).

4: Perform a between-model move: update the regular vine V along with, or only, the pair copula families
BV and parameters θV to Vr,NEW , Br,NEWV and θr,NEWV (Algorithms 3.2, 3.3):

Cr = (Vr,BrV ,θ
r
V) := (Vr,NEW ,Br,NEWV ,θr,NEWV ).

31
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5: end for
6: return the Bayesian posterior sample

(Cr)r=1,...,R = (Vr,BrV ,θ
r
V)r=1,...,R.

Notation. The following assumes the selection of an n-dimensional regular vine copula C = (V,BV ,θV).
The r-th MCMC iterate of a variable, or other quantity of interest, is superscripted by r. Proposals are
superscripted by an asterisk sign (∗), and updated variables in the r-th iteration are superscripted by
r,NEW . Proposal distributions will be denoted by q and priors are denoted by π. Subscripts may be
used to detail the affiliation of these quantities.

3.2 Selection of the Pair Copula Families

Our Bayesian selection strategy extends Min and Czado [2011]’s, which can only select the pair cop-
ulas of D-vine copulas, to select the pair copulas of general regular vine copulas. Furthermore, our
method does not share Smith et al. [2010]’s limitation to only detect conditional independencies versus
one global pair copula alternative: we can select different copula families for each pair, and the set of
candidate copula families B is not limited to one copula family.

3.2.1 Priors

We choose priors that induce model sparsity, but do not otherwise skew the posterior. Specifically, we
assume

π(BV) ∝ exp(−λdBV ), (3.1)

π(θe | BV) ∝

{
Uniform(−1,1)(τe) if Be is a one-parameter copula

Uniform(−1,1)(τe) ·
1(1,30)(νe)·log(νe)∫ 30

1
log(x)dx

if Be is a t copula
, (3.2)

where dBV denotes the number of parameters of the regular vine copula C = (V,BV ,θV) or, equivalently,
the dimension of the parameter vector θV . The prior on the parameters θV is uniform prior on the
Kendall’s τ ’s and the log-degrees of freedom of the t copula. We limit the degrees of freedom from above
by 30 to make the prior proper, and because the t copula becomes too similar to the Gaussian copula as
ν increases.

When the effect of π(θe | BV) is neglected, the prior on the pair copula families BV has some appealing
characteristics: for λ = 0, the posterior mode will be at the global maximum likelihood model; for λ = 1,
the posterior mode will be at the global AIC optimum; while λ > 1 will provide even stronger shrinkage.

3.2.2 Between-Model Move to Update (BV ,θV)

This between-model move for our reversible jump MCMC sampler (Algorithm 3.1) updates the pair
copula families BV and parameters θV . It does not change the regular vine V = (T1, . . . , Td−1), which
specifies the building plan of the pair copula construction. This between-model move consists of a
proposal step (Lines 1–13 of Algorithm 3.2) and an acceptance/rejection step (Line 14).

Proposal step. The first step selects how many pair copulas are updated, N , and selects this many
edges E ⊆ E1∪· · ·∪Ed−1 as representatives of the pair copula families to be updated, BE = (Be | e ∈ E)
(Lines 1 and 2). After this, the algorithm iterates through each selected pair copula e ∈ E to propose a
new copula family B∗e ∈ B \ Bre (Lines 4–13). Our proposal step guarantees that the proposal differs in
exactly N pair copula families from the current state by excluding the current copula family from the set
of qualifying candidate families. An auxiliary step evaluates the likelihood of each candidate pair copula
family B∗e ∈ B \ Bre when their parameters θe;B∗e are chosen to match the current copula’s Kendall’s τ
and tail-dependence coefficients λL or λU ; these matched, or augmented, parameters are denoted by
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θ̃e;B∗e . We align the proposal distribution closely with the posterior by making the proposal weights of
each candidate family proportional to its likelihood (Line 6):

qB(Bre → B∗e) ∝ L(B∗e ; θ̃e;B∗e | U) for B∗e ∈ B \ Bre;

but re-weight small proposal probabilities to observe a lower bound that ensures that the acceptance
probabilities of moves away from states with low proposal probabilities are large enough for good mixing
behavior of the sampling chain (Line 7): minB∈B qB(B)

maxB∈B qB(B) ≥ κ.

After the selected pair copulas’ proposal families are drawn from these proposal distributions, a new
parameter vector θ∗e;B∗e is proposed for every pair copula of the regular vine copula. For pair copulas e ∈ E
whose families were changed, new parameters θ∗e;B∗e come from a normal mixture distribution centered at

the matched, or augmented, parameter θ̃e;B∗e ; for all other pair copulas e 6∈ E, the new parameters θ∗e;B∗e
come from a normal mixture distribution centered at the current parameters’ values θre;Be (Line 8). The
mixture proposals improve the acceptance rate of the proposals as follows. A small variance component
tends to produce high posterior density proposals; and a high variance component increases the proposal
probability of the return move φ(θ∗

e;Bre
,Σi)(θ

r
e;Bre ) in the numerator of the acceptance probability (3.3)

high, especially when the current state θre;Bre of the sampling chain is not close to the proposal mean
θ∗e;Bre . The covariance matrices Σi and mixture weights ωi of the parameter proposal distribution are
tuning parameters.

Acceptance step. The acceptance/rejection step uses the well-established Metropolis-Hastings accep-
tance probability of a proposal C∗ := (Vr,B∗V ,θ

∗
V) to ensure that the posterior distribution is the equilib-

rium distribution of the sampling chain (Line 14),

α =
L(Vr,B∗V ,θ

∗
V | U)

L(Vr,BrV ,θ
r
V | U)

· π(Vr,B∗V ,θ
∗
V)

π(Vr,BrV ,θ
r
V)
·
∏
e∈E

qB(B∗e → Bre)
qB(Bre → B∗e)

·
∑
i

ωi

∏
e∈E

φ(θ̃e;Bre ,Σi)
(θre;Bre )

φ(θ̃e;B∗e ,Σi)
(θ∗e;B∗e )

·
∏
e6∈E

φ(θ∗
e;Bre

,Σi)(θ
r
e;Bre )

φ(θr
e;Bre

,Σi)(θ
∗
e;Bre )

 . (3.3)

This representation of the acceptance probability uses the likelihood times prior proportionality of the
posterior density. We write φ(µ,Σ)(·) for the density of the multivariate normal distribution with mean
µ and covariance matrix Σ. Equation (3.3) accounts for any birth/death moves by implicitly shrink-
ing or expanding the interpretation of φ(µ,Σ)(·) as the density function of a variable-dimension normal
distribution.

Pseudo Code
Algorithm 3.2 (Update of the Pair Copula Families BV).

1: Select how many pair copulas are updated: N ∈ {1, . . . , d(d−1)
2 }.

2: Select which pair copulas are updated: E ⊆ ∪k=1,...,d−1E
r
k with |E| = N . Denote the corresponding

pair copula families by BE and the corresponding parameters by θE .
3: Select an active parameter proposal variance: Σ = Σi with probability ωi.
4: for each selected pair copula e ∈ E do
5: Calculate the likelihoods L(Be, θ̃e;Be | U) for each candidate pair copula family Be ∈ B \ Bre .
6: Propose a new copula family B∗e ∈ B \ Bre from the proposal distribution

qB(Bre → B∗e) ∝ L(B∗e , θ̃e;B∗e | U).

7: Re-weight the proposal probabilities so that

minB∈B qB(B)

maxB∈B qB(B)
≥ κ.

8: Propose a new parameter vector θ∗e;B∗e ∼ N (θ̃e;B∗e ,Σ) from a normal distribution centered at θ̃e;B∗e .
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Algorithm Parameter

3.2 p(N = k) = 1
4 log

(
1− 1−e−4

NVe−4+k(1−e−4)

)
, where NV is the number of pair

copulas of the regular vine copula
3.2 and 3.3 κ = 0.05
3.2 and 3.3 ω1 = 0.9;

Σ1 = 0.0032 for the Kendall’s τ of one-parameter copulas;

Σ1 =

(
0.0032 0

0 0.032

)
for the (τ, log ν) parameter vector of the t copula;

ω2 = 0.1 and Σ2 = 102Σ1

3.3 qT (T rK → T ∗K) ∝
∏
e∈E∗K

(δ + |τe|) with δ = 0.2;
qT (T rk → T ∗k ) = 1

|STPk| for k > K

Table 3.1: MCMC tuning parameters for Algorithms 3.2 and 3.3.

9: end for
10: for each not-to-be-changed pair copula e 6∈ E do
11: Leave the pair copula family Bre unchanged; set B∗e = Bre .
12: Propose a new parameter vector θ∗e;Bre ∼ N (θe;Bre ,Σi) from a normal distribution centered at the

current parameter vector θre;Bre .
13: end for
14: Accept the proposal C∗ = (Vr,B∗V ,θ

∗
V) and set

Cr,NEW = (Vr,NEW,Br,NEW
V ,θr,NEW

V ) := (Vr,B∗V ,θ
∗
V)

with probability α (Equation (3.3)). If rejected, set

Cr,NEW = (Vr,NEW,Br,NEW
V ,θr,NEW

V ) := (Vr,BrV ,θ
r
V).

15: return the updated state Cr,NEW = (Vr,NEW,Br,NEW
V ,θr,NEW

V ).

3.2.3 Simulation Study

We generate multiple simulation data sets from different regular vine copulas to apply our Bayesian
selection strategy to. Starting values include Gaussian regular vine copulas with the true model’s tree
structure as well as with the tree structures selected by Dißmann et al. [2013]’s frequentist and Gruber
and Czado [2015b]’ sequential Bayesian selection methods.

Our reversible jump MCMC sampler was run with the tuning parameters described in Table 3.1. The re-
sults are based on the last 15,000 MCMC iterations of a total of 20,000, and the analyses were replicated
100 times each.

Simulation Software

We implemented our model selection procedure in a proprietary C++ software package. Our software
uses OpenMP for shared memory parallelization of the likelihood computation and parameter optimiza-
tion. Our software uses the random spanning tree and minimum spanning tree algorithms provided by
the boost graph library, and our numerical optimizer uses the CppAD library for automatic differentia-
tion.

6-Dimensional Test Data

This analysis re-uses the simulation data sets from Gruber and Czado [2015b], but with a different focus:
here we assume the true models’ regular vine tree structures as known and simultaneously select all pair
copula families; Gruber and Czado [2015b] selected the regular vine trees and the pair copula families
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Scenario 1 2 3 4
# Pairs 15 15 15 15
# I pairs 0 0 10 0
# Selected as I 0 0 10 0
# T pairs 2 3 1 0
# Selected as T 2 3 1 0
# Shrunk to I, N, G, C 0 0 0 0
# N pairs 6 4 2 15
# Selected as N 6 4 2 15
# Shrunk to I 0 0 0 0
# G or C pairs 7 8 2 0
# Selected as G or C 7 8 2 0
# Shrunk to I 0 0 0 0

Table 3.2: Summary of the simulation study in 6 dimensions.

sequentially, tree-by-tree. All of the 100 simulation data sets for each scenario consist of 500 entries. The
data generating regular vine copulas are shown in Tables 3.11–3.14 of Appendix 3.A.

Table 3.2 summarizes the results of this study, based on the aggregated posterior distribution of the
pair copula families across all 100 replications (see Tables 3.11–3.14 of Appendix 3.A). The posterior
mode family of every pair copula agrees with the one of the true model, providing empirical support
of our selection strategy. The posterior modes of most pairs have empirical posterior probabilities in
excess of 80%. Furthermore, the results of Scenario 3 also show that our shrinkage priors reliably detect
independence pair copulas, which define sparsity patterns and can allow for model reduction.

It took about 50 minutes to generate 20,000 posterior samples for 10 parallel replications on a 32-core
node.

10-Dimensional Test Data

Here we use small sample, 10-dimensional data with each simulation data set consisting of only 200
entries. We expect more widely-dispersed posteriors resulting from the combination of less information
and a larger candidate model space. Again, the selection is replicated 100 times with independently
drawn simulation data sets from each scenario to minimize sample bias.

There are seven main scenarios that cover three different regular vine structures (X1, X2, X3) that are
truncated at different levels (T2, T3, etc.) to exhibit varying degrees of sparsity. The main goal of this
simulation study is to establish that our Bayesian selection method can converge quickly to high posterior
density regions, shows good mixing behavior across different models, and identifies sparsity patterns.

Table 3.3 summarizes the results of this study. The data generating models as well as the complete
aggregated posterior analysis is shown in Tables 3.15–3.21 of Appendix 3.A. Detection of conditional in-
dependencies is excellent: in five scenarios, all conditional independencies are identified; in the remain-
ing two scenarios 10 out of 11, and 6 out of 10 independence pairs are identified. Furthermore, most
scenarios see additional pairs shrunk to (conditional) independence, and some t pair copulas shrunk to
one-parameter copulas, as is expected from our combination of small sample size and a shrinkage prior.
The vast majority of pair copulas selected for the remaining, not-shrunk, pairs (125 out of 131) share
the original copulas’ tail-dependence and symmetry characteristics.

The generation of 20,000 reversible jump MCMC iterations for 10 parallel scenarios took about 60 min-
utes to complete on a 32-core node. The log-likelihood trace plot of Figure 3.1 shows rapid convergence
to a high-posterior density set; Scenario X3-T9 was chosen for this illustration, because the smallest
number of independence pairs should make it the most challenging for model selection. This suggests
that our carefully calibrated proposals can quickly explore the candidate model space, which contained
|B|45 = 745 models. Our results illustrate that Bayesian model selection is possible in a very large discrete
model space, and that the use of reversible jump MCMC can be suitable for such large-scale problems.
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Scenario X1-T6 X1-T2 X2-T8 X2-T3 X3-T9 X3-T3 X3-T2
# Pairs 45 45 45 45 45 45 45
# I pairs 11 29 11 27 10 23 29
# Selected as I 11 29 10 27 6 23 29
# T pairs 6 3 5 3 8 6 5
# Selected as T 0 0 4 0 5 1 0
# Shrunk to I, N, G, C 6 3 1 3 3 5 5
# N pairs 8 4 13 8 9 6 5
# Selected as N 7 4 8 6 7 6 5
# Shrunk to I 1 0 4 2 1 0 0
# G or C pairs 20 9 16 7 18 10 6
# Selected as G or C 15 9 12 6 15 9 6
# Shrunk to I 4 0 1 1 3 1 0

Table 3.3: Summary of the simulation study in 10 dimensions.
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Figure 3.1: Log-likelihood trace plot of replication 1 of Scenario X3-T9.



3.3. JOINT SELECTION OF THE REGULAR VINE AND PAIR COPULAS 37

Discussion

Our fully Bayesian model selection strategy for the pair copula families of regular vine copulas extends
beyond selection strategies discussed in existing literature. We showed that our proposed Bayesian selec-
tion method and reversible jump MCMC implementation work very well together in obtaining Bayesian
posterior samples. Scalability in dimension d seems unproblematic, given that the computational run
time and selection accuracy did not deteriorate significantly from dimension d = 6 to d = 10.

3.3 Joint Selection of the Regular Vine and Pair Copulas

Selection of the regular vine tree structure V is more complex and computationally intensive than se-
lection of the pair copula families BV . We present two different approaches for between-model moves
to jointly update the tree structure V and pair copula families BV . The first between-model move (Sec-
tion 3.3.3) is a local-search update that builds up the proposal for a new regular vine V tree-by-tree,
starting from the current state vine; the second move (Section 3.3.4) uses importance sampling to draw
entire regular vine tree sequences from a weighted distribution of vines.

3.3.1 Differences to Sequential Bayesian Selection

Gruber and Czado [2015b]’s method performs a sequential Bayesian posterior simulation of each level
k = 1, . . . , d − 1 of a regular vine copula, conditional on already selected states of the previous levels
1, . . . , k−1. The posterior distribution of each level is collapsed into the posterior mode so that the model
selection procedure can proceed to the next level k+ 1. In the end, one obtains a level-by-level Bayesian
procedure that produces a point estimate of the model. In this paper, we present a method to estimate
the posterior distribution of all levels of a regular vine copula jointly—the output are many different
regular vine copulas that represent draws from the posterior distribution of all regular vine copulas.

The key conceptual adjustment to change the equilibrium distribution of the sampling chain is to swap
the two nested for-loops in the general sampling algorithm: in Gruber and Czado [2015b], the outer
for-loop iterates through the levels of the regular vine copula and the inner for-loop runs through the
MCMC iterations; contrariwise, our outer for-loop runs through the MCMC iterations while the inner
for-loop iterates through the levels of the regular vine copula.

This seemingly trivial swap of the nested for-loops comes with significant challenges for successful im-
plementation in practice: the model search space of simultaneous selection of all levels is enormously
larger than for sequential selection (Table 1.3 from [Gruber and Czado, 2015b, Table 1]). Very carefully
tuned proposals for between-model moves are required to achieve convergence to desirable models in
the enlarged candidate space. Furthermore, the acceptance probabilities of between-model moves are
very sensitive to the choice of parameter proposal distributions, given each step updates a large number
of parameters.

3.3.2 Priors

We choose priors that enforce model sparsity, but do not make structural assumptions about the vine
copula. Specifically, we assume

π(V) = discrete Uniform(·), (3.4)

π(BV | V) ∝ exp(−λdBV ), (3.5)

π(θe | V,BV) ∝

{
Uniform(−1,1)(τe) if Be is a one-parameter copula

Uniform(−1,1)(τe) ·
1(1,30)(νe)·log(νe)∫ 30

1
log(x)dx

if Be is a t copula
, (3.6)

where dBV denotes the number of parameters of the regular vine copula C = (V,BV ,θV) or, equivalently,
the dimension of the parameter vector θV . Conditionally on the regular vine V, the priors on the pair
copulas BV and parameters θV are the same as the ones used in Section 3.2.1.
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3.3.3 Between-Model Move to Update (V ,BV ,θV) (Version I)

The first step selects the lowest level K of the regular vine copula that will be changed in this iteration
(Line 1 of Algorithm 3.3); all subsequent trees TK , . . . , Td−1 will have to be adjusted, too, as the proximity
condition (Definition 1.1) ties them to the lower-level trees. This between-model move leaves the trees
and pair copulas of the levels k = 1, . . . ,K − 1 unchanged from the current state.

Vine proposal step. The proposal for tree T ∗K = (NK , E
∗
K) ∈ STPK \ T rK of level K can come from

a weighted distribution over the set of candidate trees STPK (Line 4). Possible versions of this include
independent uniform proposals (3.7), Kendall’s τ -weighted proposals (3.8), or random walk propos-
als (3.9),

qT (T rK → T ∗K) = qT (T ∗K) ∝ 1, (3.7)

qT (T rK → T ∗K) = qT (TK∗) ∝
∏
e∈E∗K

(δ + |τe|), (3.8)

qT (T rK → T ∗K) ∝ p|E
∗
K∩E

r
K | · (1− p)|E

∗
K\E

r
K |. (3.9)

The parameters p and δ of the proposal distributions for tree TK are MCMC tuning parameters. Values
p > 0.5 increase the probability that the proposal tree T ∗K has many common edges with the current state
tree T rK ; the situation is reversed for p < 0.5. Small values of δ skew the proposal distribution towards
trees T ∗K with heavy edge weights (in absolute Kendall’s τ ’s), while large values of δ decrease the impact
of edge weights on the proposal probabilities, which makes the proposal distribution more uniform.

The proposals for trees TK+1, . . . , Td−1 are drawn from a discrete uniform distribution over all permissi-
ble trees, qT (T rk → T ∗k ) = qT (T ∗k ) = 1

|STPk| (Line 6). Note that the set STPk, and its cardinality, depend
on the lower level trees T1, . . . , Tk−1. The proposal probabilities will not generally cancel each other out
in the acceptance probability, as a result (Equation (3.13)).

Family and parameter proposal step. The proposals for the pair copula families B∗k = {B∗e∗ | e∗ ∈ E∗k}
of levels k = K:(d − 1) are generated similar to Algorithm 3.2 (Lines 4–13 in Algorithm 3.2; Lines 10–
21 in Algorithm 3.3). However, the selection of the pair copula families is adapted in two ways:
first, all pair copula families in B are now permissible candidates; second, the parameters θ̃e∗;B∗

e∗
of

each pair copula e∗ ∈ E∗k are chosen such that the theoretical Kendall’s τ , and tail-dependence coeffi-
cients λL and λU of the t copula, agree with the corresponding empirical quantities of the copula data
(ui(e∗);D(e∗),uj(e∗);D(e∗)). Alternatively, the parameters could be maximum likelihood-estimated, but this
would be substantially more computationally expensive.

Once new trees and pair copula families are proposed, we propose new parameters θ∗V = (θ∗1, . . . ,θ
∗
d−1)

for the pair copulas of all levels k = 1, . . . , d − 1. The proposal parameters θ∗k for pair copulas e from
levels k = 1, . . . ,K− 1 are drawn from a normal mixture distribution centered at the current parameters
θre;Bre (Line 20); the proposal parameters θ∗k for pair copulas e∗ from levels k = K, . . . , d− 1 are centered

at the parameters θ̃e∗;B∗
e∗

(Line 15).

Proposal summary. The complete proposal state is C∗ = (V∗,B∗V ,θ
∗
V), where

V∗ = (T r1 , . . . , T
r
K−1, T

∗
K , . . . , T

∗
d−1), (3.10)

B∗V = (Br1, . . . ,BrK−1,B∗K , . . . ,B∗d−1), and (3.11)

θ∗V = (θ∗1, . . . ,θ
∗
d−1). (3.12)
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Acceptance step. The proposal C∗ = (V∗,B∗V ,θ
∗
V) is accepted with acceptance probability (Line 22)

α =
L(V∗,B∗V ,θ

∗
V | U)

L(Vr,BrV ,θ
r
V | U)

· π(V∗,B∗V ,θ
∗
V)

π(Vr,BrV ,θ
r
V)
·

∏
k=K:(d−1)

qT (T ∗k → T rk )

qT (T rk → T ∗k )
·

∏
k=K:(d−1)

∏
e∈Erk

qB(Bre)∏
e∗∈E∗k

qB(B∗e∗)

·
∑
i

ωi

 ∏
k=1:(K−1)

∏
e∈Erk

φ(θ∗
e;Bre

,Σi)(θ
r
e;Bre )

φ(θr
e;Bre

,Σi)(θ
∗
e;Bre )

·
∏

k=K:(d−1)

∏
e∈Erk

φ(θ̃e;Bre ,Σi)
(θre;Bre )∏

e∗∈E∗k
φ(θ̃e∗;B∗

e∗
,Σi)

(θ∗e∗;B∗
e∗

)

 . (3.13)

This Metropolis-Hastings acceptance probability ensures that the sampling chain will have the joint pos-
terior distribution of the regular vine V, pair copula families BV and parameters θV as its stationary
distribution. Equation (3.13) uses the likelihood times prior proportionality of the posterior density.

Pseudo Code
Algorithm 3.3 (Joint Update of the Regular Vine V and Pair Copula Families BV).
This is for the r-th iteration in Algorithm 3.1.

1: Select the lowest level of the vine that will be updated in this step; denote it by K.
2: for each level k = K, . . . , d− 1 do
3: if k = K then
4: Draw a new spanning tree T ∗k = (Nk, E

∗
k) ∈ STPk \ T rk that satisfies the proximity condition from

a proposal distribution qT (T rk → T ∗k ).
5: else
6: Draw a new spanning tree T ∗k = (Nk, E

∗
k) ∈ STPk that satisfies the proximity condition from the

proposal distribution qT (T rk → T ∗k ) = qT (T ∗k ) = 1
|STPk| .

7: end if
8: end for
9: Select an active parameter proposal variance: Σ = Σi with probability ωi.

10: for each level k = K, . . . , d− 1 do
11: for each pair copula e∗ ∈ E∗k do
12: Calculate the likelihoods L(Be, θ̃e;Be | U) for each candidate pair copula family Be ∈ B.
13: Propose a new copula family B∗e ∈ B from the proposal distribution

qB(B∗e) ∝ L(B∗e , θ̃e;B∗e | U).

14: Re-weight the proposal probabilities so that

minB∈B qB(B)

maxB∈B qB(B)
≥ κ.

15: Propose a new parameter vector θ∗e;B∗e ∼ N (θ̃e;B∗e ,Σi) from a normal distribution centered at θ̃e;B∗e .
16: end for
17: end for
18: for each pair copula e ∈ Er1 ∪ · · ·ErK−1 from levels k = 1, . . . ,K − 1 do
19: Leave the pair copula family Bre unchanged; set B∗e = Bre .
20: Propose a new parameter vector θ∗e;Bre ∼ N (θe;Bre ,Σi) from a normal distribution centered at the

current parameter vector θre;Bre .
21: end for
22: Accept the proposal C∗ = (V∗,B∗V ,θ

∗
V) and set

Cr,NEW = (Vr,NEW,Br,NEW
V ,θr,NEW

V ) := (V∗,B∗V ,θ
∗
V)

with probability α (Equation (3.13)). If rejected, set

Cr,NEW = (Vr,NEW,Br,NEW
V ,θr,NEW

V ) := (Vr,BrV ,θ
r
V).

23: return the updated state Cr,NEW = (Vr,NEW,Br,NEW
V ,θr,NEW

V )
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3.3.4 Between-Model Move to Update (V ,BV ,θV) (Version II)

This between-model move to update the regular vine V generates a large importance sample of regular
vines that it will draw its proposals from. The proposals for the pair copula families BV and parameters
θV are generated as in the previous section.

Motivation. We would like to generate proposals that lie in high-posterior density regions for most
efficient MCMC sampling. We observe that the posterior density is typically dominated by the likelihood
function of the model, unless overly informative priors are used. We propose a score SV that approxi-
mates the expected log-likelihood of a regular vine copula with a given regular vine tree structure V and
will use importance re-sampling to generate proposals from a distribution qT (V) ∝ SV .

Scoring. We propose the sum of squared Kendall’s τ ’s of all pairs as an approximation of the expected
log-likelihood of a regular vine tree structure V:

SV :=
∑

k=1:(d−1)

∑
e∈Ek

τ2
e . (3.14)

We exploit a few facts about regular vine copulas to back up our score approximation: 1) the log-
likelihood of a regular vine copula can be obtained as the sum of the log-likelihoods of all pair copulas;
2) if all pair copula families are Gaussian, the resulting regular vine copula is a multivariate Gaussian
copula irrespective of its regular vine tree structure; 3) the correlation parameter of each pair copula
equals that pairs partial correlation; 4) the correlation parameter Pearson’s ρ can be transformed to
Kendall’s τ ; and 5) the expected likelihood of the pair copula families listed in Table 1.1 tends to increase
with its strength of association parameter Kendall’s τ .

Pre-MCMC importance sampling. Before the start of our reversible jump MCMC sampler (Algo-
rithm 3.1), we generate a large importance sample with different regular vine tree structures V (Al-
gorithm 3.4). We generate the samples Vi, i = 1, . . . , I, from conditionally uniform tree-by-tree proposal
distributions

q(V) =
∏

k=1:(d−1)

q(Tk|T1, . . . , Tk−1), where (3.15)

q(Tk|T1, . . . , Tk−1) =
1

|STPk|
. (3.16)

Each sample Vi is assigned importance weight αi =
SVi
q(Vi) .

Vine proposal step. At iteration r of Algorithm 3.1, a proposal regular vine V∗ is drawn from the
importance sample (Vi, αi), i = 1, . . . , I (Algorithm 3.5).

Pseudo Code
Algorithm 3.4 (Importance Sampling for Proposals for V).
Execute this preparatory step before the start of reversible jump MCMC sampling (Algorithm 3.1).

1: Draw I proposals Vi, i = 1, . . . , I, from the tree-wise proposal distribution

q(V) =
∏

k=1:(d−1)

q(Tk|T1, . . . , Tk−1), where

q(Tk|T1, . . . , Tk−1) =
1

|STPk|
.

2: Assign each proposal Vi the importance weight

αi =
SVi

q(Vi)
.
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Scenario 1 2 3 4
True model (MLE) 3782 3434 794 1390
Seq. frequentist selection 2883 2677 800 1383
Seq. Bayesian selection 3053 2916 796 1386
Fully Bayesian selection (I) 3661 3174 785 1382
Fully Bayesian selection (II) 3697 3226 785 1382

Table 3.4: Average log-likelihoods of the selected models across all 50 replications. The highest log-
likelihoods are in bold.

3: If a proposal Vi appears ni ≥ 2 times, remove the additional copies and adjust its importance weight to
niα

i.
Algorithm 3.5 (Importance Resampling-Based Proposals for V).
The following lines replace lines 1-8 of Algorithm 3.3.

1: Set K = 1.
2: Draw a new proposal vine V∗ ∼ qV(Vi) = αi from the importance sample (Vi, αi), i = 1, . . . , I.

3.3.5 Simulation Study

We will show empirical evidence that our reversible jump MCMC scheme selects suitable models. We will
also compare the results from our novel, fully Bayesian model selection method with those from selection
methods suggested in existing literature (Dißmann et al. [2013] for sequential frequentist selection
and Gruber and Czado [2015b] for sequential Bayesian selection) to provide context perspective and
highlight the benefits of using our strategy.

The analysis will focus on evaluating the log-likelihoods as the main metric of model fit that separates
regular vine copulas with different tree structures V. Section 3.2.3 already evaluated sparsity detection
and pair copula family selection of the pair copula family updates, which we will re-use from Section 3.2.
Our analysis is based on the last 10,000 MCMC iterations out of 25,000. The quoted log-likelihoods of
our fully Bayesian selection methods are the averages of the log-likelihoods from MCMC iterations i =
15,001, . . . , 25,000; the quoted log-likelihoods of the sequential selection methods are of these methods’
point estimates. If the parameters from the fully Bayesian analysis were averaged to their posterior
means, the log-likelihoods would increase by several points.

The between-model updates are generated from a 50%–50% mixture of Algorithms 3.2 and 3.3. This
means that in each iteration r = 1, . . . , R, with probability 50%, Algorithm 3.1 will update only the pair
copula families BV and parameters θV (Algorithm 3.2), or jointly update the regular vine tree structure
V, pair copula families BV and parameters θV (Algorithm 3.3). Given the increased complexity of this
sampling scheme, all analyses are replicated only 50 times instead of 100 times as in Section 3.2.3.

6-Dimensional Test Data

This study uses the same 6-dimensional test data sets used in Section 3.2.3. Table 3.4 shows the compar-
ative model fit of the selected models in terms of their log-likelihoods. Our proposed Bayesian selection
strategies clearly outperform the existing methods in selecting regular vine copulas in Scenarios 1 and 2.
The true model of Scenario 3 is truncated to the first level; this explains why the tree-by-tree selection
methods perform on par with our fully Bayesian strategy here; Scenario 4 is of a multivariate Gaussian
copula, so selection of the regular vine tree structure does not play a role and all methods perform on a
level. Furthermore, our scoring-based proposals slightly outperform the Kendall’s τ -based proposals.

An analysis of the sampling chains reveals that once the chain has converged to a local posterior mode,
the regular vine tree structure V tends to get stuck there. Considering the vast discrete model space, this
is fully expected. The high log-likelihoods of Table 3.4 show that the selected tree structures V make for
suitable regular vine copulas, and suggest that lack of free mixing of regular vines is not detrimental to
performance.
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Scenario X1-T6 X1-T2 X2-T8 X2-T3 X3-T9 X3-T3 X3-T2
True model (MLE) 1652 1022 1707 858 1727 1256 948
Seq. frequentist selection 1450 1000 1339 832 1618 1265 969
Fully Bayesian selection (I) 1480 968 1477 822 1717 1236 933
Fully Bayesian selection (II) 1477 963 1498 825 1729 1239 935

Table 3.5: Average log-likelihoods of the selected models across all 50 replications. The highest log-
likelihoods are in bold.

It took about 2 hours to generate 25,000 posterior samples for eight replications in parallel on a 32-
core node, and the preparation of the importance sample (size I = 300,000) was completed in several
minutes.

10-Dimensional Test Data

This study uses the same 10-dimensional test data sets used in Section 3.2.3, and Table 3.5 compares
the log-likelihoods of the selected models from different selection methods. We only compare against
Dißmann et al. [2013]’s sequential frequentist selection method, given that Gruber and Czado [2015b]
only provided an analysis of 6-dimensional simulation data.

There are approximately 4.87e+14 different regular vines on 10 dimensions, which makes exploration
of the full model space practically impossible. This limits any Bayesian selection scheme to only explore
a very small fraction of the entire space in finite time and is likely to push the limits of application
of reversible jump MCMC. That said, our carefully-tuned proposals allow quick convergence to high
posterior density regions and succeed in selecting more suitable models than Dißmann et al. [2013]’s
frequentist strategy in the most complex scenarios (X1-T6, X2-T8, and X3-T9). The models selected by
the sequential frequentist selection method have slightly higher log-likelihoods than the average log-
likelihood of our fully Bayesian posterior samples in Scenarios X1-T2, X2-T3, X3-T3, and X3-T2, which
represent models of reduced complexity. In these scenarios, all pair copulas on levels greater or equal
to 3 (Scenarios X1-T2, X3-T2) or 4 (Scenarios X2-T3, X3-T3) are independence copulas, which benefits
sequential selection because there are fewer higher-order levels that will be mis-specified by sequential
selection and then lower overall model fit. Furthermore, our shrinkage prior may have affected the
selection of sparse models that describe any systematic dependence characteristics without over-fitting.

It took about 3-4 hours, depending on the scenario, to generate 25,000 posterior samples for three
replications in parallel on a 32-core node; the score resampling based strategy required an additional
40-50 minutes to prepare the importance sample (size I = 500,000) before the start of reversible jump
MCMC sampling.

Discussion

Our fully Bayesian model selection strategy for regular vine copulas is the first of its kind in two ways: it
is the first selection method to estimate all levels of a regular vine copula jointly, and it is the first selec-
tion method to yield a fully Bayesian posterior sample. Our simulation study shows that our proposed
Bayesian selection method and our reversible jump MCMC implementation work very well together in
selecting superior models than existing methods when working with complex dependence structures.

Fully Bayesian selection of the regular vine tree structure V is challenged by the faster-than-exponential
growth of the model space in dimension d. Our study showed that our Bayesian methods work extremely
well in our d = 6 and d = 10-dimensional simulation scenarios, especially when the data shows very
complex dependence structures. Computing time restrictions mean that in practice, only an increasingly
small fraction of the total model space can be explored. With that in mind, we decided to run our MCMC
sampler for “only” 25,000 iterations to highlight its quick convergence to high-posterior density regions,
which is a key feature for application in practice.

Our fully Bayesian analysis is substantially faster than Gruber and Czado [2015b]’s sequential Bayesian,
which performs a full posterior simulation for each level k = 1, . . . , d− 1. In contrast, our fully Bayesian
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j Symbol Name Exposure
1 IVV iShares Core S&P 500 ETF Large-cap U.S. stocks
2 IJH iShares Core S&P Mid-Cap ETF Mid-cap U.S. stocks
3 IJR iShares Core S&P Small-Cap ETF Small-cap U.S. stocks
4 HYG iShares iBoxx $ High Yield Corporate Bond

ETF
High yield corporate bonds

5 LQD iShares iBoxx $ Investment Grade Corpo-
rate Bond ETF

U.S. investment grade corporate bonds

6 RTL iShares Retail Real Estate Capped ETF U.S. retail property real estate stocks and
real estate investment trusts (REITs)

7 REZ iShares Residential REIT Capped ETF U.S. residential real estate stocks and real
estate investment trusts (REITs)

8 SLV iShares Silver Trust Silver
9 IAU iShares Gold Trust Gold

Table 3.6: Details of the selected ETFs.

strategy performs only one posterior simulation. Faster computation and better selection performance
make our fully Bayesian strategy the universally superior method.

Our results suggest that, if the regular vine tree structure is unknown, full Bayesian analysis will be
most beneficial if there are substantial conditional dependencies in the data. If the variables are mostly
conditionally independent, sequential selection methods are likely to perform just as well.

3.4 Example: Forecasting Portfolio Value at Risk and Expected Tail
Loss

We provide a novel, and more extensive analysis of Gruber and Czado [2015b]’s financial data set. Again,
we set up a joint multivariate model through marginal time series DLMs and a copula dependence model.
Our analysis will focus on out-of-sample forecasts of value at risk and expected tail loss (also called
conditional value at risk). The value at risk at level α% of a portfolio return r is just the (1 − α%)-
quantile of its distribution, and it gives a worst case estimate under the assumption that the realized
outcome will be within the “good α% of scenarios.” On the other hand, the expected tail loss is the
conditional expectation of the return r, given that the “bad (1− α%) of scenarios” happens [Acerbi and
Tasche, 2003].

3.4.1 Description of the Data

The data contains 440 daily historical closing prices from January 2013 through September 2014 of nine
exchange-traded funds (ETFs). The data were downloaded from http://finance.yahoo.com, and the
nine selected ETFs are described in Table 3.6. These nine ETFs serve as an example of a diversified
portfolio that the average retail investor could invest in and cover U.S. stocks, corporates, real estate,
and commodities.

3.4.2 Marginal Models

The daily prices are transformed to daily log-returns. The log-returns of each ETF are modeled by a
univariate dynamic linear model (DLM; West and Harrison [1997], Prado and West [2010]).

Model choice. The DLM is a fully Bayesian model for time series data, which makes it particularly
appealing to use for financial data. The DLM has time-varying parameters that are updated at every time
point t. This extends to the volatility parameters, which, coupled with a suitable time evolution step, will
exhibit the same volatility clusters observed in the underlying data. Furthermore, there are closed-form

http://finance.yahoo.com
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Initial prior rj,1 = 10 cj,t = 1e− 5
aj,1 = 0 Rj,1 = 1e− 6

Time t posterior ej,t = yj,t − aj,t nj,t = rj,t + 1
sj,t = cj,t(rj,t + e2

j,t/(Rj,t + cj,t))/nj,t
mj,t = aj,t +Rj,t/(Rj,t + cj,t) · ej,t
Cj,t = (Rj,t −R2

j,t/(Rj,t + cj,t))sj,t/cj,t
Time t+ 1 step-ahead prior rj,t+1 = βnj,t cj,t+1 = sj,t

aj,t+1 = mj,t Rj,t+1 = Cj,t/δ
Discount factors β = 0.96 δ = 0.975

Table 3.7: Prior and posterior parameters of the univariate local-trend DLM.

analytical expressions for the parameter updates and observation-level forecasts, which makes learning
as well as forecasting extremely fast and efficient.

There are three distinct advantages of using the DLM to describe the marginal data over a GARCH model:
learning of the DLM is much faster than estimating a GARCH-model, given the DLM’s analytical forward
filtering equations; the sequential forward filtering approach to learning, which updates the estimates
at every time point, makes the parameter estimates robust to the selection of the time period of the
data used for parameter learning; and the DLM allows systematic effects other than historical data to be
included in the model as covariates.

Model structure. West and Harrison [1997] and Prado and West [2010] provide extensive literature
on the DLM. We provide only a minimum set of key equations here that are required to understand
the remainder of this example. Our basic DLM consists of a local trend parameter θj,t and innovations
νj,t ∼ N(0, λ−1

j,t ) to describe the time t observation yj,t of series j = 1:9 by

yj,t = θj,t + νj,t.

The time t information set Dt includes all previous observations yj,1, . . . , yj,t. We choose conjugate
normal gamma priors for the parameters θj,t+1 and λj,t+1 of the form

p(θj,t+1, λj,t+1 | Dt) = φ(aj,t+1,Rj,t+1/(cj,t+1λj,t+1))(θj,t+1) · fG(rj,t+1/2,rj,t+1cj,t+1/2)(λj,t+1),

where fG(α,β)(·) is the Gamma(α, β) density function. The time t posterior follows as

p(θj,t, λj,t | Dt) = φ(mj,t,Cj,t/(sj,tλj,t))(θj,t) · fG(nj,t/2,nj,tsj,t/2)(λj,t).

Table 3.7 lists the initial prior parameters as well as the prior and posterior evolutions.

Forecasting. The forecasting distribution of yj,t+1 given the information available up to time t, Dt, is
a non-standardized t distribution Tnon std(rj,t+1, aj,t+1, Rj,t+1 + cj,t+1). A location-scale transformation
Tnon std(ν, µ, σ2) = µ +

√
σ2 · Tν of a t distribution Trj,t+1 with rj,t+1 degrees of freedom yields the non-

standardized version.

Model fit. Figure 3.2 shows the realized daily log-returns versus the forecast mean and 90% value at
risk of all series. The forecasts are sequential step-ahead forecasts at each time point t, which do not use
any future information.

The trend forecasts show local trends while effectively eliminating daily fluctuations in the time series.
The value at risk forecasts react without any delay to outsize market moves. The empirical probabilities
of observed returns less than the 90% value at risk forecasts are close to the theoretical value of 10%,
but the models tend to provide conservative risk forecasts that slightly over-estimate future volatility. In
a last step we transform the realized returns into uniform u-data for copula analysis using the forecast
distribution,

uj,t = FTnon std(rj,t,aj,t,Rj,t+cj,t)(yj,t). (3.17)



3.4. EXAMPLE: FORECASTING PORTFOLIO VALUE AT RISK AND EXPECTED TAIL LOSS 45

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

U.S. Equities: IVV

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

U.S. Equities: IJH

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

U.S. Equities: IJR

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

U.S. Corporate Bonds: HYG

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

U.S. Corporate Bonds: LQD

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

U.S. REITs: RTL

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

U.S. REITs: REZ

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

Commodities: SLV

Q1−14 Q2−14 Q3−14 Q4−14

−0.02

0

0.02

Commodities: IAU

Figure 3.2: Realized log-returns (gray, solid), forecast means (black, solid) and forecast 90% value at
risk (blue, dashed) of the nine ETFs.

3.4.3 Joint Multivariate Model

The joint multivariate model is composed of all nine marginal univariate DLMs and a copula as the
dependence model.

Learning and forecasting. The portfolio forecasting period begins in 2014, given that the 2013 data
(t = 1:252) is used to learn the copula dependence model. While we do not change the copula over
time, the univariate DLMs are updated sequentially on each day trading day t = 1:440. The out-of-
sample prediction period contains 188 trading days, t = 253:440, and our forecasting process can be
summarized as follows.

1: Select the copula using the u-data from 2013 (t = 1:252).
2: for each day t = 253:440 of 2014 do
3: Update the univariate DLMs using observation yt;
4: Apply the time evolution step to get the step-ahead priors;
5: Sample k = 1:N multivariate uk = (uk1 , . . . , u

k
9)-vectors from the posterior-weighted mixture of

vine copulas;
6: Estimate the forecast distribution of yt+1 from the Monte Carlo sample

ŷkt+1 = (T−1
non std(uk1 ; r1,t+1, a1,t+1, R1,t+1 + c1,t+1), . . . , (3.18)

T−1
non std(uk9 ; r9,t+1, a9,t+1, R9,t+1 + c9,t+1).

7: end for

Selected copulas. We used Dißmann et al. [2013]’s sequential frequentist selection method, Gruber
and Czado [2015b]’s sequential Bayesian method and our three fully Bayesian methods to select the
dependence models. The two sequential methods and our to fully Bayesian methods from Section 3.3
select regular vine copulas autonomously; our Bayesian family selection method from Section 3.2 re-
quires us to provide a regular vine tree structure V as a partly specified model input. We specify the
regular vine structure as a D-vine whose first tree T1 is a path from nodes 1 to 9; this is a very simple
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# N pairs # T pairs # G pairs # C pairs # I pairs
Seq. frequentist selection 5 11 7 6 7
Seq. Bayesian selection 10 0 3 0 23
Bayesian Family selection 11 6 10 2 6
Fully Bayesian selection (I) 11 4 9 1 11
Fully Bayesian selection (II) 10 6 5 4 11

Table 3.8: Summary of selected models for the financial data set.

and yet intuitive structure, given that ETFs from the same asset class are neighbors in the first tree. The
copulas are estimated given the transformed u-data from January through December 2013, t = 1:252.

Table 3.8 shows summary statistics of the selected models. The models selected by the sequential meth-
ods can be found in Tables 7 and 8 of Gruber and Czado [2015b]; Tables 3.22-3.24 of Appendix 3.B
show the marginal posterior distributions of the pair copula families of our fully Bayesian methods. The
posterior distributions are based on the last 10,000 MCMC iterations out of a total of 25,000. The poste-
rior samples from both our fully Bayesian methods that also select the regular vine tree structure do not
change the tree structure after burn-in, which allows the pair-based evaluation of the copula families.
The model selected by Gruber and Czado [2015b]’s sequential Bayesian method has the most indepen-
dence pair copulas, and Dißmann et al. [2013]’s sequential frequentist model estimate has the most pair
copulas with tail-dependence as well as the most asymmetric pair copulas.

3.4.4 Results

Analysis method. We investigate the expected tail loss forecasts of a portfolio to assess the adequacy
of the estimated model. Our study assumes that the portfolio invests in the nine ETFs as to maximize the
expected risk-adjusted portfolio return assuming that the returns of the ETFs are independent,

wt = arg max
w=(w1,...,w9)

w′µ̂t√
w′Σ̂twt

subject to
∑
j=1:9

wj = 1 and 0 ≤ wj ≤ 0.25, (3.19)

where µ̂t = (a1,t, . . . , a9,t) denotes the forecast returns of the individual ETFs, and Σ̂t = diag((R1,t +
c1,t) ·r1,t/(r1,t−2), . . . , (R9,t+c9,t) ·r9,t/(r9,t−2)) denotes their forecast variances. We base the portfolio
investment decisions on the independence model so that the same portfolio is used when we compare
the portfolio risk forecasts from the different copula models.

Analysis of forecasts. Our out-of-sample analysis of the forecasts begins in January 2014 and ends in
September 2014 (t = 253:440) and contains 188 trading days. Table 3.9 compares the number of value
at risk hits under different dependence models; those from our fully Bayesian models are substantially
closer to the theoretical values at 10% and 15% than those from the sequential frequentist and Bayesian
methods. Table 3.10 compares the forecast expected tail losses with the observed quantities. Here we
defined the observed losses as the realized portfolio returns on the days of value at risk hits. Again, the
forecasts from our fully Bayesian models are closer to the observed values than the forecasts from the
two sequentially selected models. The forecast errors of all models are very similar and show a mean
of about -0.10%. Lastly, Figure 3.3 illustrates the observed portfolio returns, forecast 90% value at risk
and expected tail loss, and observed value at risk hits (observed losses) from our fully Bayesian model
(selection method II).

Conclusions. We showed that the combination of univariate DLMs with a regular vine copula is a
strong couple to forecast financial asset returns. The models selected by our fully Bayesian methods
yielded superior forecasts than the sequentially selected models. While the forecast accuracy for the
expected tail losses were relatively similar, the value at risk forecasts of these fully Bayesian models were
substantially more accurate than these from the sequentially learned models. Our findings confirm that
the quantification of model uncertainty through fully Bayesian selection contributes to more reliable risk
forecasts.
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Portfolio Returns, Value at Risk, and Expected Tail Loss

Figure 3.3: Observed portfolio returns (gray, solid), forecast 90% value at risk (blue, dashed) and ex-
pected tail loss (red, solid), and observed value at risk hits (black crosses). Forecasts are from our fully
Bayesian model (selection method II).

# 10% VaR Hits # 15% VaR Hits
Theoretical value 19 28
Seq. frequentist selection 17 24
Seq. Bayesian selection 17 24
Bayesian Family selection 20 28
Fully Bayesian selection (I) 20 28
Fully Bayesian selection (II) 20 26

Table 3.9: Number of value at risk hits under different dependence models.

10% ETL 10% OL 15% ETL 15% OL
Seq. frequentist selection -0.61% -0.72% -0.53% -0.62%
Seq. Bayesian selection -0.60% -0.72% -0.52% -0.62%
Bayesian Family selection -0.54% -0.67% -0.47% -0.57%
Fully Bayesian selection (I) -0.56% -0.67% -0.49% -0.57%
Fully Bayesian selection (II) -0.57% -0.67% -0.50% -0.60%

Table 3.10: Forecast expected tail loss (ETL) and average observed losses (OL) under different depen-
dence models. The forecasts with the smallest forecast error are in bold.
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3.5 Discussion and Outlook

Our algorithm estimates all levels of a regular vine copula simultaneously. This first-of-its-kind procedure
represents a major improvement over current tree-by-tree selection procedures. Our simulation studies
showed that our proposed method to select the pair copula families excels at selecting suitable pair
copulas and identifying sparsity patterns through conditional independencies. Furthermore, our fully
Bayesian strategies to select all levels of a regular vine copula jointly showed a major improvement of
model fit compared to existing frequentist and Bayesian methods that proceed tree-by-tree. At the same
time, computation time could be reduced substantially by fully Bayesian selection, which requires only
one posterior simulation instead of one for each level k = 1, . . . , d− 1. Most important for application in
practice, the sampling chains of our reversible jump MCMC samplers converge rapidly to high posterior
density models.

Our real-data example proved the feasibility of using our proposed model selection strategies to specify
a fully Bayesian multivariate time series model for forecasting risk metrics of a portfolio of financial
assets. Our copula-based time series models produced highly accurate value at risk and expected tail
loss forecasts at different levels, benefiting from inherent quantification of model uncertainty through
Bayesian posterior analysis. We expect widespread adoption of our Bayesian selection methods, also in
other contexts than financial risk modeling, given the improved out-of-sample forecasting performance
and elimination of selection bias inherent in tree-by-tree methods.

Kim et al. [2013] illustrated in an example how the use of mixture pair copulas in pair copula con-
structions can improve the model fit. Incorporating mixture pair copulas in regular vine pair copula
constructions comes with a host of challenges that open up avenues for future research regarding selec-
tion, sparsity constraints and conditions for identifiability of such models. Furthermore, the choice of
alternative priors is mostly uninvestigated as of yet and can be a topic of future research.

3.A Selected Models for the Simulation Study

Pair N T G C I
1,2 98.8% 1.2% 0.0% 0.0% 0.0%
2,3 0.0% 0.0% 0.0% 100.0% 0.0%
3,4 0.0% 0.0% 0.0% 100.0% 0.0%
3,5 98.9% 1.1% 0.0% 0.0% 0.0%
3,6 0.0% 99.4% 0.6% 0.0% 0.0%
1,3; 2 0.0% 0.0% 100.0% 0.0% 0.0%
2,4; 3 95.0% 5.0% 0.0% 0.0% 0.0%
2,5; 3 0.0% 0.0% 0.0% 100.0% 0.0%
2,6; 3 93.7% 5.3% 0.0% 0.1% 1.0%
1,4; 2,3 0.7% 90.7% 7.3% 0.0% 1.3%
1,5; 2,3 88.4% 5.6% 3.9% 0.8% 1.3%
1,6; 2,3 0.0% 1.9% 0.2% 95.7% 2.2%
4,6; 1,2,3 49.6% 4.1% 11.5% 11.6% 23.2%
5,6; 1,2,3 0.7% 5.0% 23.2% 70.0% 1.1%
4,5; 1,2,3,6 0.3% 3.8% 95.5% 0.1% 0.3%

Table 3.11: Aggregated empirical posterior probabilities of Scenario 1. The original pair copula families
are in bold.
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Pair N T G C I
1,2 0.0% 100.0% 0.0% 0.0% 0.0%
1,3 0.0% 0.0% 0.0% 100.0% 0.0%
1,4 0.0% 0.0% 0.0% 100.0% 0.0%
1,5 98.0% 2.0% 0.0% 0.0% 0.0%
1,6 0.0% 100.0% 0.0% 0.0% 0.0%
2,3; 1 0.0% 0.3% 99.7% 0.0% 0.0%
2,4; 1 0.0% 10.8% 89.2% 0.0% 0.0%
2,5; 1 0.0% 0.0% 0.0% 100.0% 0.0%
2,6; 1 92.7% 7.3% 0.0% 0.0% 0.0%
3,4; 1,2 6.1% 80.8% 8.2% 0.3% 4.5%
3,5; 1,2 88.2% 7.4% 2.2% 0.4% 1.8%
3,6; 1,2 0.0% 0.2% 0.9% 98.9% 0.0%
4,5; 1,2,3 67.7% 8.2% 6.5% 2.7% 15.0%
4,6; 1,2,3 0.0% 0.9% 1.2% 97.9% 0.0%
5,6; 1,2,3,4 0.0% 2.0% 96.6% 1.4% 0.0%

Table 3.12: Aggregated empirical posterior probabilities of Scenario 2. The original pair copula families
are in bold.

Pair N T G C I
1,2 89.3% 8.5% 2.2% 0.0% 0.0%
2,3 0.0% 0.0% 0.2% 99.8% 0.0%
3,4 0.0% 0.0% 0.8% 99.2% 0.0%
3,5 90.4% 7.6% 2.0% 0.0% 0.0%
3,6 7.3% 86.3% 6.4% 0.0% 0.0%
1,3; 2 3.1% 0.5% 5.7% 5.5% 85.2%
2,4; 3 2.6% 0.0% 4.7% 4.1% 88.5%
2,5; 3 1.6% 0.1% 3.5% 3.6% 91.1%
2,6; 3 3.0% 0.3% 4.6% 5.6% 86.6%
1,4; 2,3 2.1% 0.6% 5.0% 4.2% 88.2%
1,5; 2,3 2.7% 0.2% 3.7% 4.5% 88.9%
1,6; 2,3 3.2% 0.1% 4.0% 3.8% 88.9%
4,6; 1,2,3 2.3% 0.7% 5.2% 4.5% 87.3%
5,6; 1,2,3 2.6% 0.2% 3.7% 3.6% 89.8%
4,5; 1,2,3,6 2.1% 0.2% 3.3% 3.8% 90.6%

Table 3.13: Aggregated empirical posterior probabilities of Scenario 3. The original pair copula families
are in bold.

Pair N T G C I
1,2 96.0% 3.6% 0.0% 0.0% 0.4%
2,3 96.1% 3.4% 0.0% 0.0% 0.4%
2,4 92.6% 7.2% 0.0% 0.0% 0.2%
3,5 93.1% 6.1% 0.7% 0.0% 0.0%
3,6 81.6% 5.2% 2.4% 1.5% 9.3%
1,3; 2 93.8% 6.2% 0.0% 0.0% 0.0%
2,5; 3 71.4% 2.9% 10.0% 3.9% 11.8%
3,4; 2 91.8% 7.0% 0.1% 0.0% 1.0%
5,6; 3 93.8% 5.7% 0.0% 0.0% 0.5%
1,5; 2,3 89.6% 6.4% 2.2% 0.1% 1.7%
2,6; 3,5 90.4% 9.0% 0.0% 0.0% 0.6%
4,5; 2,3 80.1% 6.8% 8.8% 1.7% 2.6%
1,6; 2,3,5 92.6% 7.2% 0.1% 0.0% 0.0%
4,6; 2,3,5 93.8% 4.5% 1.6% 0.0% 0.0%
1,4; 2,3,5,6 86.9% 5.4% 5.2% 0.2% 2.3%

Table 3.14: Aggregated empirical posterior probabilities of Scenario 4. The original pair copula families
are in bold.
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Pair True τ N T G C I
0,8 0.67 0.0% 1.5% 98.5% 0.0% 0.0%
1,4 0.50 0.1% 0.2% 90.7% 9.0% 0.0%
1,5 0.13 0.0% 16.3% 20.2% 63.1% 0.3%
2,6 -0.19 2.9% 39.4% 57.4% 0.2% 0.0%
3,6 0.40 91.2% 4.2% 4.6% 0.0% 0.0%
5,8 -0.50 54.0% 33.9% 12.2% 0.0% 0.0%
6,7 0.30 95.5% 1.3% 3.1% 0.1% 0.1%
7,8 0.67 0.0% 0.0% 0.0% 100.0% 0.0%
7,9 0.50 0.0% 0.0% 8.4% 89.6% 2.0%
0,5; 8 0.41 90.0% 4.1% 5.1% 0.1% 0.9%
0,7; 8 0.20 9.6% 0.8% 41.5% 47.2% 1.0%
1,8; 5 0.49 63.8% 23.1% 13.1% 0.0% 0.0%
2,7; 6 -0.50 61.0% 1.7% 23.2% 14.1% 0.0%
3,7; 6 -0.50 0.0% 1.0% 2.7% 96.3% 0.0%
4,5; 1 0.00 4.4% 3.1% 24.8% 31.9% 35.9%
6,8; 7 0.67 3.0% 8.9% 88.1% 0.0% 0.0%
6,9; 7 0.33 1.1% 0.7% 6.3% 91.8% 0.0%
0,1; 5,8 0.50 0.0% 1.0% 16.4% 82.6% 0.0%
0,6; 7,8 -0.41 20.8% 5.4% 18.9% 18.0% 36.9%
2,8; 6,7 0.41 42.7% 9.5% 45.4% 2.4% 0.0%
2,9; 6,7 0.33 0.1% 0.0% 13.9% 85.9% 0.0%
3,8; 6,7 -0.50 0.7% 15.9% 49.3% 27.3% 6.8%
4,8; 1,5 -0.50 7.0% 7.3% 85.1% 0.6% 0.0%
5,7; 0,8 0.19 46.2% 3.3% 35.8% 14.1% 0.6%
0,2; 6,7,8 -0.20 19.6% 0.7% 24.6% 20.3% 34.7%
0,3; 6,7,8 0.09 9.4% 0.7% 15.7% 14.0% 60.2%
0,4; 1,5,8 0.56 9.2% 7.9% 80.4% 2.5% 0.0%
1,7; 0,5,8 0.49 71.0% 10.8% 18.1% 0.1% 0.0%
5,6; 0,7,8 0.19 50.0% 5.3% 23.9% 16.7% 4.1%
8,9; 2,6,7 -0.23 7.1% 4.5% 22.4% 17.8% 48.2%
0,9; 2,6,7,8 -0.23 10.8% 2.7% 14.8% 14.8% 56.9%
1,6; 0,5,7,8 0.00 10.7% 2.4% 15.1% 15.2% 56.7%
2,5; 0,6,7,8 0.50 14.1% 7.2% 66.8% 10.8% 1.0%
3,5; 0,6,7,8 0.00 8.4% 0.8% 13.8% 15.8% 61.2%
4,7; 0,1,5,8 -0.33 59.1% 9.2% 24.2% 4.6% 3.0%
1,2; 0,5,6,7,8 -0.13 22.4% 8.1% 35.3% 22.8% 11.4%
1,3; 0,5,6,7,8 0.00 6.9% 1.2% 10.5% 12.8% 68.7%
4,6; 0,1,5,7,8 0.17 21.0% 5.4% 39.7% 27.8% 6.1%
5,9; 0,2,6,7,8 0.00 8.7% 2.9% 14.7% 15.7% 57.9%
1,9; 0,2,5,6,7,8 0.00 5.2% 1.4% 9.2% 8.9% 75.3%
2,3; 0,1,5,6,7,8 0.00 5.8% 0.2% 7.5% 8.2% 78.3%
2,4; 0,1,5,6,7,8 0.00 6.0% 2.4% 9.8% 9.2% 72.6%
3,9; 0,1,2,5,6,7,8 0.00 6.1% 1.2% 10.9% 10.4% 71.3%
4,9; 0,1,2,5,6,7,8 0.00 5.7% 2.7% 9.1% 9.6% 72.8%
3,4; 0,1,2,5,6,7,8,9 0.00 7.4% 1.0% 10.1% 8.8% 72.7%

Table 3.15: Aggregated empirical posterior probabilities of Scenario X1-T6. The original pair copula
families are in bold; incorrect posterior modes are in red.
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Pair True τ N T G C I
0,8 0.67 0.1% 0.1% 99.7% 0.1% 0.0%
1,4 0.50 2.4% 1.1% 88.0% 8.5% 0.0%
1,5 0.13 0.5% 5.8% 30.8% 61.1% 1.9%
2,6 -0.19 6.6% 36.1% 48.1% 7.6% 1.5%
3,6 0.40 76.4% 10.0% 11.6% 2.0% 0.0%
5,8 -0.50 22.4% 3.6% 74.0% 0.0% 0.0%
6,7 0.30 89.3% 4.9% 3.6% 2.3% 0.0%
7,8 0.67 0.0% 0.0% 0.0% 100.0% 0.0%
7,9 0.50 0.0% 0.0% 5.1% 94.9% 0.0%
0,5; 8 0.41 74.2% 7.3% 17.7% 0.8% 0.0%
0,7; 8 0.20 6.8% 1.9% 37.4% 51.2% 2.7%
1,8; 5 0.49 40.4% 13.1% 44.7% 1.3% 0.5%
2,7; 6 -0.50 71.4% 7.3% 18.6% 2.7% 0.0%
3,7; 6 -0.50 0.0% 0.0% 8.4% 91.6% 0.0%
4,5; 1 0.00 9.0% 1.0% 13.1% 11.6% 65.4%
6,8; 7 0.67 0.5% 0.6% 98.2% 0.7% 0.0%
6,9; 7 0.33 0.3% 0.0% 20.9% 78.8% 0.0%
0,1; 5,8 0.00 6.3% 1.3% 11.4% 10.5% 70.5%
0,6; 7,8 0.00 5.9% 0.9% 10.9% 10.1% 72.2%
2,8; 6,7 0.00 5.7% 1.0% 11.4% 11.8% 70.1%
2,9; 6,7 0.00 5.0% 2.2% 11.2% 9.1% 72.5%
3,8; 6,7 0.00 5.3% 0.3% 10.3% 9.7% 74.4%
4,8; 1,5 0.00 6.7% 1.9% 11.8% 12.2% 67.5%
5,7; 0,8 0.00 5.4% 0.7% 10.5% 9.2% 74.2%
0,2; 6,7,8 0.00 5.3% 0.9% 10.8% 11.3% 71.6%
0,3; 6,7,8 0.00 7.2% 0.7% 11.9% 12.6% 67.6%
0,4; 1,5,8 0.00 6.7% 1.3% 10.1% 10.2% 71.8%
1,7; 0,5,8 0.00 4.9% 2.7% 8.5% 8.8% 75.2%
5,6; 0,7,8 0.00 4.7% 0.8% 9.5% 9.4% 75.6%
8,9; 2,6,7 0.00 4.4% 0.4% 7.2% 7.8% 80.1%
0,9; 2,6,7,8 0.00 7.3% 1.6% 13.0% 11.3% 66.8%
1,6; 0,5,7,8 0.00 6.4% 0.4% 9.6% 9.4% 74.3%
2,5; 0,6,7,8 0.00 7.2% 1.9% 10.5% 10.7% 69.6%
3,5; 0,6,7,8 0.00 4.7% 0.8% 8.2% 9.9% 76.4%
4,7; 0,1,5,8 0.00 5.9% 3.1% 10.1% 9.7% 71.3%
1,2; 0,5,6,7,8 0.00 6.5% 1.6% 11.4% 11.6% 68.9%
1,3; 0,5,6,7,8 0.00 6.9% 1.8% 11.6% 10.0% 69.7%
4,6; 0,1,5,7,8 0.00 6.8% 1.3% 10.9% 9.3% 71.7%
5,9; 0,2,6,7,8 0.00 8.0% 2.7% 10.9% 11.1% 67.3%
1,9; 0,2,5,6,7,8 0.00 4.1% 0.0% 4.9% 5.7% 85.2%
2,3; 0,1,5,6,7,8 0.00 4.9% 0.8% 9.7% 8.2% 76.3%
2,4; 0,1,5,6,7,8 0.00 4.6% 0.8% 7.6% 8.0% 79.0%
3,9; 0,1,2,5,6,7,8 0.00 5.9% 0.4% 8.2% 7.9% 77.6%
4,9; 0,1,2,5,6,7,8 0.00 4.8% 0.5% 8.3% 8.8% 77.6%
3,4; 0,1,2,5,6,7,8,9 0.00 5.1% 1.2% 8.7% 8.7% 76.4%

Table 3.16: Aggregated empirical posterior probabilities of Scenario X1-T2. The original pair copula
families are in bold; different posterior modes are in red.
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Pair True τ N T G C I
0,8 0.57 59.1% 29.0% 12.0% 0.0% 0.0%
1,3 0.48 2.2% 97.8% 0.0% 0.0% 0.0%
1,9 0.12 0.0% 1.0% 16.3% 81.5% 1.2%
2,4 0.00 5.4% 13.0% 21.6% 60.1% 0.0%
2,8 0.00 10.7% 1.8% 10.7% 20.1% 56.8%
3,8 0.00 18.6% 0.0% 15.3% 6.8% 59.3%
5,9 0.04 31.7% 1.3% 7.9% 24.6% 34.5%
6,8 0.28 0.0% 1.0% 3.0% 96.0% 0.0%
7,9 -0.02 13.4% 1.2% 6.8% 35.7% 42.9%
0,3; 8 -0.30 66.3% 12.1% 18.2% 3.3% 0.0%
1,5; 9 -0.26 99.2% 0.8% 0.0% 0.0% 0.0%
1,7; 9 -0.15 94.3% 1.9% 1.0% 2.8% 0.0%
1,8; 3 -0.03 31.1% 8.8% 24.0% 14.6% 21.5%
2,3; 8 0.46 0.5% 0.0% 11.1% 88.4% 0.0%
3,6; 8 -0.53 92.1% 6.9% 1.0% 0.0% 0.0%
3,9; 1 0.60 88.3% 11.7% 0.0% 0.0% 0.0%
4,8; 2 0.25 1.0% 0.0% 4.4% 94.5% 0.0%
0,2; 3,8 0.00 14.9% 6.0% 19.3% 22.0% 37.8%
1,2; 3,8 0.00 16.9% 5.7% 27.4% 20.4% 29.5%
2,6; 3,8 0.74 41.3% 49.4% 9.2% 0.0% 0.0%
3,4; 2,8 0.22 12.7% 87.3% 0.0% 0.0% 0.0%
3,7; 1,9 0.00 27.0% 0.1% 22.1% 20.8% 30.1%
5,7; 1,9 -0.62 81.5% 18.5% 0.0% 0.0% 0.0%
8,9; 1,3 -0.35 5.4% 15.5% 79.1% 0.0% 0.0%
0,1; 2,3,8 0.00 16.8% 4.1% 16.5% 20.8% 41.8%
0,6; 2,3,8 0.00 20.3% 2.5% 23.5% 20.7% 33.0%
2,9; 1,3,8 0.11 5.3% 43.7% 38.8% 10.2% 2.0%
3,5; 1,7,9 0.79 80.9% 18.1% 1.0% 0.0% 0.0%
4,6; 2,3,8 0.33 4.8% 4.5% 35.1% 55.6% 0.0%
7,8; 1,3,9 0.45 23.3% 39.2% 37.5% 0.0% 0.0%
0,4; 2,3,6,8 -0.38 13.1% 1.5% 22.0% 20.4% 43.1%
0,9; 1,2,3,8 -0.43 15.4% 4.5% 18.4% 18.6% 43.1%
1,6; 0,2,3,8 -0.14 29.5% 6.3% 43.1% 19.1% 2.0%
2,7; 1,3,8,9 0.00 16.9% 7.9% 24.5% 20.6% 30.1%
5,8; 1,3,7,9 0.31 1.7% 3.0% 41.8% 53.5% 0.0%
0,7; 1,2,3,8,9 0.05 20.5% 4.9% 22.5% 13.1% 39.0%
1,4; 0,2,3,6,8 0.63 67.7% 27.5% 4.8% 0.0% 0.0%
2,5; 1,3,7,8,9 0.72 32.0% 38.9% 29.2% 0.0% 0.0%
6,9; 0,1,2,3,8 -0.23 12.5% 13.0% 42.6% 23.5% 8.4%
0,5; 1,2,3,7,8,9 0.00 15.2% 5.8% 18.7% 22.0% 38.2%
4,9; 0,1,2,3,6,8 -0.66 20.7% 26.4% 50.3% 2.6% 0.0%
6,7; 0,1,2,3,8,9 0.77 34.8% 23.7% 38.6% 2.9% 0.0%
4,7; 0,1,2,3,6,8,9 0.73 24.1% 25.6% 45.8% 4.5% 0.0%
5,6; 0,1,2,3,7,8,9 -0.37 35.8% 8.7% 41.2% 14.3% 0.0%
4,5; 0,1,2,3,6,7,8,9 0.00 20.0% 9.6% 22.9% 20.9% 26.6%

Table 3.17: Aggregated empirical posterior probabilities of Scenario X2-T8. The original pair copula
families are in bold; different posterior modes are in red.
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Pair True τ N T G C I
0,8 0.57 56.2% 28.7% 15.1% 0.0% 0.0%
1,3 0.48 51.5% 40.0% 8.5% 0.0% 0.0%
1,9 0.12 6.4% 0.7% 27.4% 62.6% 2.9%
2,4 0.00 4.6% 0.3% 8.5% 8.5% 78.1%
2,8 0.00 3.5% 0.8% 4.8% 6.2% 84.8%
3,8 0.00 2.2% 0.0% 4.5% 2.6% 90.7%
5,9 0.04 9.8% 0.8% 12.4% 11.4% 65.8%
6,8 0.28 0.0% 0.0% 3.1% 96.9% 0.0%
7,9 -0.02 6.4% 0.5% 8.1% 10.6% 74.4%
0,3; 8 -0.30 70.5% 7.5% 18.4% 3.7% 0.0%
1,5; 9 -0.26 75.5% 10.2% 11.7% 2.6% 0.0%
1,7; 9 -0.15 55.7% 6.9% 23.4% 12.5% 1.6%
1,8; 3 -0.03 9.2% 2.0% 15.8% 12.8% 60.4%
2,3; 8 0.46 0.0% 0.0% 0.0% 100.0% 0.0%
3,6; 8 -0.53 93.0% 7.0% 0.0% 0.0% 0.0%
3,9; 1 0.60 91.5% 7.0% 1.5% 0.0% 0.0%
4,8; 2 0.25 2.9% 0.7% 29.6% 66.9% 0.0%
0,2; 3,8 0.00 4.0% 0.7% 8.5% 8.3% 78.4%
1,2; 3,8 0.00 6.2% 0.6% 10.6% 11.7% 70.8%
2,6; 3,8 0.74 51.9% 35.6% 12.4% 0.0% 0.0%
3,4; 2,8 0.22 13.0% 5.1% 50.1% 30.8% 1.0%
3,7; 1,9 0.00 6.1% 0.9% 9.6% 10.3% 73.0%
5,7; 1,9 -0.62 83.7% 12.2% 4.1% 0.0% 0.0%
8,9; 1,3 -0.35 8.3% 3.6% 63.4% 24.7% 0.0%
0,1; 2,3,8 0.00 8.1% 1.0% 13.2% 13.9% 63.8%
0,6; 2,3,8 0.00 7.2% 0.5% 10.9% 12.2% 69.2%
2,9; 1,3,8 0.00 5.8% 0.1% 9.4% 10.8% 74.0%
3,5; 1,7,9 0.00 6.5% 1.1% 11.2% 11.7% 69.4%
4,6; 2,3,8 0.00 7.1% 1.6% 12.6% 11.8% 67.0%
7,8; 1,3,9 0.00 5.8% 0.8% 9.9% 13.0% 70.5%
0,4; 2,3,6,8 0.00 6.8% 1.9% 12.8% 10.7% 67.8%
0,9; 1,2,3,8 0.00 6.0% 0.9% 11.2% 11.8% 70.1%
1,6; 0,2,3,8 0.00 5.7% 0.7% 11.9% 10.5% 71.3%
2,7; 1,3,8,9 0.00 6.6% 0.6% 10.7% 9.8% 72.4%
5,8; 1,3,7,9 0.00 5.7% 1.0% 9.6% 10.7% 73.1%
0,7; 1,2,3,8,9 0.00 5.8% 0.7% 10.2% 9.8% 73.5%
1,4; 0,2,3,6,8 0.00 5.1% 0.3% 9.5% 10.4% 74.8%
2,5; 1,3,7,8,9 0.00 5.1% 1.4% 8.8% 8.8% 75.9%
6,9; 0,1,2,3,8 0.00 6.0% 0.3% 12.2% 11.6% 69.9%
0,5; 1,2,3,7,8,9 0.00 4.9% 1.3% 8.5% 9.0% 76.3%
4,9; 0,1,2,3,6,8 0.00 5.6% 0.5% 10.3% 10.4% 73.2%
6,7; 0,1,2,3,8,9 0.00 8.1% 0.9% 13.8% 12.3% 64.9%
4,7; 0,1,2,3,6,8,9 0.00 5.6% 1.0% 10.6% 11.4% 71.4%
5,6; 0,1,2,3,7,8,9 0.00 4.7% 1.3% 7.5% 7.7% 78.8%
4,5; 0,1,2,3,6,7,8,9 0.00 6.0% 1.2% 9.9% 10.4% 72.4%

Table 3.18: Aggregated empirical posterior probabilities of Scenario X2-T3. The original pair copula
families are in bold; different posterior modes are in red.
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Pair True τ N T G C I
0,8 -0.41 0.2% 0.0% 93.9% 5.9% 0.0%
0,9 -0.67 0.0% 2.0% 98.0% 0.0% 0.0%
1,4 0.64 92.8% 7.2% 0.0% 0.0% 0.0%
2,7 -0.23 7.4% 85.5% 7.1% 0.0% 0.0%
2,9 -0.41 13.9% 57.7% 28.4% 0.0% 0.0%
3,5 0.42 34.2% 56.6% 9.2% 0.0% 0.0%
4,9 0.64 0.0% 0.0% 100.0% 0.0% 0.0%
5,6 0.60 0.0% 1.0% 99.0% 0.0% 0.0%
5,9 -0.36 92.0% 6.5% 1.5% 0.0% 0.0%
0,5; 9 0.43 14.9% 83.1% 2.0% 0.0% 0.0%
1,9; 4 -0.27 72.0% 24.3% 3.6% 0.0% 0.0%
2,4; 9 0.58 84.2% 15.8% 0.0% 0.0% 0.0%
2,5; 9 0.00 70.6% 1.1% 8.8% 12.4% 7.1%
3,6; 5 0.32 25.0% 4.1% 14.1% 56.8% 0.0%
6,9; 5 -0.17 1.5% 1.2% 9.9% 86.6% 0.8%
7,9; 2 0.30 18.0% 72.6% 8.0% 1.4% 0.0%
8,9; 0 0.30 77.7% 7.7% 12.4% 2.1% 0.0%
0,6; 5,9 0.40 0.0% 1.0% 24.1% 74.9% 0.0%
1,2; 4,9 -0.64 13.6% 22.2% 64.3% 0.0% 0.0%
2,6; 5,9 0.00 54.9% 9.0% 10.6% 20.4% 5.2%
3,9; 5,6 0.17 14.0% 8.2% 28.6% 49.2% 0.0%
4,7; 2,9 0.28 65.6% 5.0% 23.0% 6.4% 0.0%
5,7; 2,9 0.02 8.6% 1.2% 19.1% 22.6% 48.5%
5,8; 0,9 -0.64 53.6% 30.9% 15.5% 0.0% 0.0%
0,3; 5,6,9 -0.57 16.6% 5.6% 30.1% 47.7% 0.0%
1,7; 2,4,9 -0.53 66.6% 16.9% 15.8% 0.8% 0.0%
2,3; 5,6,9 0.60 14.1% 13.2% 71.9% 0.8% 0.0%
4,5; 2,7,9 0.24 13.1% 0.1% 40.1% 45.7% 1.0%
6,7; 2,5,9 -0.72 66.8% 28.4% 4.8% 0.0% 0.0%
6,8; 0,5,9 0.00 9.3% 1.2% 14.6% 12.2% 62.7%
0,2; 3,5,6,9 -0.48 6.0% 1.1% 60.8% 32.1% 0.0%
1,5; 2,4,7,9 0.21 15.8% 8.6% 46.4% 28.2% 1.0%
3,7; 2,5,6,9 0.00 5.6% 8.9% 30.4% 39.3% 15.8%
3,8; 0,5,6,9 -0.54 12.2% 2.0% 17.6% 18.2% 50.0%
4,6; 2,5,7,9 0.00 15.2% 1.5% 19.0% 19.6% 44.7%
0,7; 2,3,5,6,9 -0.42 3.6% 8.7% 44.9% 41.8% 1.0%
1,6; 2,4,5,7,9 0.00 9.2% 2.4% 20.0% 15.8% 52.7%
2,8; 0,3,5,6,9 0.78 8.1% 0.7% 12.7% 11.6% 66.9%
3,4; 2,5,6,7,9 0.00 10.7% 1.2% 17.5% 21.2% 49.4%
0,4; 2,3,5,6,7,9 0.00 9.5% 0.4% 13.2% 15.3% 61.6%
1,3; 2,4,5,6,7,9 0.00 26.1% 3.6% 38.1% 23.1% 9.1%
7,8; 0,2,3,5,6,9 0.72 7.7% 2.0% 13.9% 12.9% 63.5%
0,1; 2,3,4,5,6,7,9 0.32 12.9% 1.6% 34.9% 29.8% 20.8%
4,8; 0,2,3,5,6,7,9 0.00 8.9% 2.8% 16.9% 15.8% 55.6%
1,8; 0,2,3,4,5,6,7,9 -0.49 7.9% 1.7% 15.6% 14.1% 60.6%

Table 3.19: Aggregated empirical posterior probabilities of Scenario X3-T9. The original pair copula
families are in bold; different posterior modes are in red.
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Pair True τ N T G C I
0,8 -0.41 0.3% 1.6% 92.9% 5.2% 0.0%
0,9 -0.67 0.0% 1.0% 98.0% 1.0% 0.0%
1,4 0.64 92.6% 6.4% 1.0% 0.0% 0.0%
2,7 -0.23 34.7% 8.9% 47.6% 8.7% 0.0%
2,9 -0.41 28.7% 69.4% 1.8% 0.0% 0.0%
3,5 0.42 46.1% 27.9% 25.9% 0.1% 0.0%
4,9 0.64 0.0% 0.0% 100.0% 0.0% 0.0%
5,6 0.60 0.2% 0.6% 97.3% 1.9% 0.0%
5,9 -0.36 93.8% 5.1% 0.8% 0.2% 0.0%
0,5; 9 0.43 50.5% 42.5% 7.0% 0.0% 0.0%
1,9; 4 -0.27 79.5% 12.2% 8.0% 0.3% 0.0%
2,4; 9 0.58 91.1% 6.9% 2.0% 0.0% 0.0%
2,5; 9 0.00 7.4% 0.9% 13.5% 14.4% 63.8%
3,6; 5 0.32 7.6% 4.2% 48.0% 40.2% 0.0%
6,9; 5 -0.17 6.2% 3.0% 39.8% 50.0% 1.0%
7,9; 2 0.30 43.7% 12.5% 38.7% 5.0% 0.0%
8,9; 0 0.30 84.6% 8.6% 5.5% 1.2% 0.0%
0,6; 5,9 0.40 0.2% 0.2% 17.0% 82.6% 0.0%
1,2; 4,9 -0.64 2.4% 2.5% 92.2% 2.9% 0.0%
2,6; 5,9 0.00 6.9% 1.6% 13.5% 13.1% 64.9%
3,9; 5,6 0.17 7.1% 1.2% 36.7% 54.5% 0.5%
4,7; 2,9 0.28 60.9% 6.4% 23.2% 9.5% 0.0%
5,7; 2,9 0.02 8.4% 0.1% 12.4% 13.5% 65.6%
5,8; 0,9 -0.64 56.0% 25.3% 18.8% 0.0% 0.0%
0,3; 5,6,9 0.00 4.8% 0.8% 8.2% 7.4% 78.8%
1,7; 2,4,9 0.00 7.6% 0.8% 11.1% 11.0% 69.5%
2,3; 5,6,9 0.00 6.3% 0.3% 12.6% 13.0% 67.8%
4,5; 2,7,9 0.00 8.9% 0.5% 15.5% 12.4% 62.8%
6,7; 2,5,9 0.00 5.9% 0.6% 10.1% 10.6% 72.8%
6,8; 0,5,9 0.00 6.8% 0.8% 10.8% 12.1% 69.5%
0,2; 3,5,6,9 0.00 5.7% 0.4% 10.2% 9.8% 74.0%
1,5; 2,4,7,9 0.00 6.7% 0.2% 14.9% 13.2% 65.0%
3,7; 2,5,6,9 0.00 5.4% 3.0% 9.8% 10.2% 71.5%
3,8; 0,5,6,9 0.00 6.9% 0.6% 12.9% 14.3% 65.3%
4,6; 2,5,7,9 0.00 8.4% 2.2% 14.3% 13.2% 61.9%
0,7; 2,3,5,6,9 0.00 5.2% 0.6% 9.1% 10.4% 74.7%
1,6; 2,4,5,7,9 0.00 6.3% 0.9% 11.0% 11.7% 70.2%
2,8; 0,3,5,6,9 0.00 8.0% 0.4% 12.5% 14.1% 65.0%
3,4; 2,5,6,7,9 0.00 6.9% 0.3% 12.3% 11.4% 69.0%
0,4; 2,3,5,6,7,9 0.00 6.9% 1.6% 13.1% 12.6% 65.8%
1,3; 2,4,5,6,7,9 0.00 7.9% 0.6% 11.8% 10.9% 68.8%
7,8; 0,2,3,5,6,9 0.00 6.9% 0.5% 10.7% 11.5% 70.4%
0,1; 2,3,4,5,6,7,9 0.00 7.3% 0.5% 13.3% 13.7% 65.2%
4,8; 0,2,3,5,6,7,9 0.00 7.9% 0.9% 11.8% 11.8% 67.6%
1,8; 0,2,3,4,5,6,7,9 0.00 5.6% 0.6% 12.2% 11.7% 69.9%

Table 3.20: Aggregated empirical posterior probabilities of Scenario X3-T3. The original pair copula
families are in bold; different posterior modes are in red.



56 CHAPTER 3. SIMULTANEOUS BAYESIAN SELECTION

Pair True τ N T G C I
0,8 -0.41 2.7% 2.8% 76.7% 17.8% 0.0%
0,9 -0.67 0.1% 0.0% 99.1% 0.8% 0.0%
1,4 0.64 91.3% 8.4% 0.3% 0.0% 0.0%
2,7 -0.23 31.7% 9.1% 44.7% 14.5% 0.0%
2,9 -0.41 47.9% 36.7% 15.3% 0.0% 0.0%
3,5 0.42 41.6% 28.0% 28.7% 1.7% 0.0%
4,9 0.64 0.1% 0.9% 97.9% 1.0% 0.0%
5,6 0.60 1.8% 2.3% 91.0% 4.9% 0.0%
5,9 -0.36 81.9% 6.5% 10.5% 1.2% 0.0%
0,5; 9 0.43 46.4% 19.9% 32.9% 0.9% 0.0%
1,9; 4 -0.27 60.9% 4.6% 25.5% 9.0% 0.0%
2,4; 9 0.58 84.1% 9.4% 6.5% 0.0% 0.0%
2,5; 9 0.00 4.9% 0.2% 9.5% 8.6% 76.7%
3,6; 5 0.32 10.5% 3.4% 61.7% 24.4% 0.0%
6,9; 5 -0.17 8.3% 3.8% 35.6% 51.4% 1.0%
7,9; 2 0.30 37.3% 14.4% 42.9% 5.3% 0.0%
8,9; 0 0.30 66.5% 6.0% 21.4% 6.1% 0.0%
0,6; 5,9 0.00 7.6% 0.4% 13.6% 11.3% 67.1%
1,2; 4,9 0.00 6.9% 1.9% 11.3% 11.4% 68.5%
2,6; 5,9 0.00 6.1% 0.1% 8.1% 9.6% 76.0%
3,9; 5,6 0.00 7.5% 2.0% 13.2% 12.3% 64.9%
4,7; 2,9 0.00 6.1% 0.6% 8.8% 8.7% 75.7%
5,7; 2,9 0.00 7.1% 0.6% 11.1% 11.7% 69.5%
5,8; 0,9 0.00 4.5% 0.2% 8.9% 8.5% 77.9%
0,3; 5,6,9 0.00 5.6% 1.9% 11.2% 11.2% 70.1%
1,7; 2,4,9 0.00 7.3% 1.1% 11.0% 11.3% 69.4%
2,3; 5,6,9 0.00 7.8% 0.6% 10.5% 10.1% 71.0%
4,5; 2,7,9 0.00 6.9% 0.1% 10.9% 10.2% 71.9%
6,7; 2,5,9 0.00 7.9% 1.7% 12.8% 12.8% 64.8%
6,8; 0,5,9 0.00 5.0% 0.4% 7.7% 7.4% 79.5%
0,2; 3,5,6,9 0.00 6.1% 0.5% 11.8% 10.7% 70.9%
1,5; 2,4,7,9 0.00 6.0% 2.5% 9.9% 10.2% 71.4%
3,7; 2,5,6,9 0.00 6.3% 1.5% 10.7% 9.3% 72.2%
3,8; 0,5,6,9 0.00 7.4% 1.2% 10.0% 11.0% 70.3%
4,6; 2,5,7,9 0.00 6.6% 1.0% 12.9% 12.0% 67.6%
0,7; 2,3,5,6,9 0.00 7.9% 0.8% 10.9% 10.8% 69.6%
1,6; 2,4,5,7,9 0.00 6.0% 1.2% 10.0% 11.8% 70.9%
2,8; 0,3,5,6,9 0.00 5.5% 0.7% 10.8% 10.1% 72.9%
3,4; 2,5,6,7,9 0.00 6.1% 1.2% 10.1% 9.8% 72.8%
0,4; 2,3,5,6,7,9 0.00 5.3% 0.7% 9.6% 9.1% 75.2%
1,3; 2,4,5,6,7,9 0.00 5.5% 0.7% 12.7% 10.8% 70.4%
7,8; 0,2,3,5,6,9 0.00 5.9% 0.3% 10.9% 9.2% 73.8%
0,1; 2,3,4,5,6,7,9 0.00 6.3% 1.6% 12.5% 13.1% 66.5%
4,8; 0,2,3,5,6,7,9 0.00 5.7% 1.9% 14.0% 14.8% 63.6%
1,8; 0,2,3,4,5,6,7,9 0.00 5.3% 1.4% 11.5% 10.8% 71.0%

Table 3.21: Aggregated empirical posterior probabilities of Scenario X3-T2. The original pair copula
families are in bold; different posterior modes are in red.
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3.B Selected Models for the Real-Data Example

Pair N T G C I
1,2 79.9% 20.1% 0.0% 0.0% 0.0%
2,3 21.1% 78.9% 0.0% 0.0% 0.0%
3,4 11.3% 88.7% 0.0% 0.0% 0.0%
4,5 0.0% 82.1% 17.9% 0.0% 0.0%
5,6 0.0% 100.0% 0.0% 0.0% 0.0%
6,7 0.0% 100.0% 0.0% 0.0% 0.0%
7,8 29.4% 0.0% 46.9% 23.7% 0.0%
8,9 78.2% 21.9% 0.0% 0.0% 0.0%
1,3; 2 38.1% 9.1% 20.5% 32.4% 0.0%
2,4; 3 35.8% 0.0% 45.3% 18.9% 0.0%
3,5; 4 10.7% 0.0% 67.2% 22.1% 0.0%
4,6; 5 86.9% 0.0% 12.0% 1.1% 0.0%
5,7; 6 10.5% 57.4% 32.1% 0.0% 0.0%
6,8; 7 49.9% 0.0% 13.3% 36.7% 0.0%
7,9; 8 0.0% 0.0% 0.0% 0.0% 100.0%
1,4; 2,3 74.1% 0.0% 23.7% 2.2% 0.0%
2,5; 3,4 0.0% 0.0% 0.0% 0.0% 100.0%
3,6; 4,5 0.5% 0.0% 52.8% 46.7% 0.0%
4,7; 5,6 2.0% 0.0% 1.2% 5.0% 91.8%
5,8; 6,7 1.2% 0.0% 51.9% 46.9% 0.0%
6,9; 7,8 10.4% 0.0% 8.1% 42.3% 39.2%
1,5; 2,3,4 8.3% 0.0% 6.7% 6.5% 78.6%
2,6; 3,4,5 23.7% 0.0% 39.4% 36.9% 0.0%
3,7; 4,5,6 4.3% 0.0% 36.5% 59.2% 0.0%
4,8; 5,6,7 65.0% 0.0% 34.3% 0.7% 0.0%
5,9; 6,7,8 51.5% 0.0% 43.5% 5.0% 0.0%
1,6; 2,3,4,5 57.4% 2.3% 39.0% 1.3% 0.0%
2,7; 3,4,5,6 0.0% 0.0% 5.0% 2.1% 92.9%
3,8; 4,5,6,7 84.3% 13.1% 0.7% 1.9% 0.0%
4,9; 5,6,7,8 18.1% 17.5% 63.4% 1.0% 0.0%
1,7; 2,3,4,5,6 21.1% 0.0% 28.7% 50.2% 0.0%
2,8; 3,4,5,6,7 33.0% 0.0% 39.9% 27.1% 0.0%
3,9; 4,5,6,7,8 68.1% 7.9% 18.1% 5.9% 0.0%
1,8; 2,3,4,5,6,7 6.9% 0.0% 64.4% 27.6% 1.2%
2,9; 3,4,5,6,7,8 4.5% 0.0% 28.7% 18.6% 48.1%
1,9; 2,3,4,5,6,7,8 16.5% 0.0% 55.2% 28.4% 0.0%

Table 3.22: Posterior distribution of pair copulas, given a drawable vine tree structure. The biggest
posterior probabilities are in bold.
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Pair N T G C I
0,1 91.0% 9.1% 0.0% 0.0% 0.0%
0,2 100.0% 0.0% 0.0% 0.0% 0.0%
0,8 100.0% 0.0% 0.0% 0.0% 0.0%
1,3 0.0% 100.0% 0.0% 0.0% 0.0%
2,4 0.0% 100.0% 0.0% 0.0% 0.0%
2,5 0.0% 0.0% 83.5% 16.6% 0.0%
5,6 0.0% 100.0% 0.0% 0.0% 0.0%
7,8 95.0% 2.7% 2.3% 0.0% 0.0%
0,3; 1 62.3% 37.7% 0.0% 0.0% 0.0%
0,4; 2 0.0% 0.0% 0.0% 0.0% 100.0%
0,5; 2 52.1% 0.0% 43.8% 4.1% 0.0%
0,7; 8 0.0% 0.0% 0.0% 0.0% 100.0%
1,2; 0 5.7% 94.3% 0.0% 0.0% 0.0%
1,8; 0 0.0% 44.7% 55.3% 0.0% 0.0%
2,6; 5 0.0% 0.0% 0.0% 0.0% 100.0%
0,6; 2,5 0.0% 0.0% 0.0% 0.0% 100.0%
1,5; 0,2 0.0% 0.0% 0.0% 0.0% 100.0%
1,7; 0,8 22.1% 0.0% 62.7% 15.2% 0.0%
2,3; 0,1 0.0% 0.0% 0.0% 0.0% 100.0%
2,8; 0,1 0.0% 0.0% 22.2% 0.0% 77.8%
4,5; 0,2 97.0% 3.0% 0.0% 0.0% 0.0%
1,4; 0,2,5 30.1% 0.0% 37.8% 32.1% 0.0%
2,7; 0,1,8 0.0% 0.0% 0.0% 0.0% 100.0%
3,5; 0,1,2 2.8% 0.0% 33.9% 63.2% 0.0%
3,8; 0,1,2 2.4% 0.0% 72.5% 25.1% 0.0%
4,6; 0,2,5 100.0% 0.0% 0.0% 0.0% 0.0%
1,6; 0,2,4,5 22.3% 0.0% 48.3% 29.4% 0.0%
3,4; 0,1,2,5 10.4% 0.0% 54.1% 35.5% 0.0%
3,7; 0,1,2,8 0.0% 0.0% 0.0% 0.0% 100.0%
5,8; 0,1,2,3 72.2% 0.0% 5.9% 21.9% 0.0%
3,6; 0,1,2,4,5 17.1% 0.0% 44.9% 38.0% 0.0%
4,8; 0,1,2,3,5 45.6% 0.0% 15.8% 38.6% 0.0%
5,7; 0,1,2,3,8 1.5% 4.4% 0.0% 9.7% 84.4%
4,7; 0,1,2,3,5,8 55.7% 0.0% 14.5% 29.8% 0.0%
6,8; 0,1,2,3,4,5 23.8% 0.0% 43.8% 32.3% 0.0%
6,7; 0,1,2,3,4,5,8 0.0% 0.0% 0.0% 0.0% 100.0%

Table 3.23: Posterior distribution of pair copulas, given a drawable vine tree structure. The biggest
posterior probabilities are in bold.
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Pair N T G C I
0,4 0.0% 63.6% 33.6% 2.8% 0.0%
0,6 0.0% 0.0% 70.8% 29.2% 0.0%
0,8 82.3% 17.7% 0.0% 0.0% 0.0%
1,2 15.5% 84.5% 0.0% 0.0% 0.0%
1,8 0.0% 100.0% 0.0% 0.0% 0.0%
3,6 2.9% 0.0% 64.9% 32.1% 0.0%
5,6 0.0% 100.0% 0.0% 0.0% 0.0%
7,8 31.8% 38.0% 30.2% 0.0% 0.0%
0,1; 8 98.1% 1.9% 0.0% 0.0% 0.0%
0,3; 6 86.3% 13.7% 0.0% 0.0% 0.0%
0,5; 6 0.0% 12.0% 85.3% 2.8% 0.0%
0,7; 8 54.8% 0.0% 23.5% 21.7% 0.0%
2,8; 1 4.4% 0.0% 17.4% 16.7% 61.5%
4,8; 0 100.0% 0.0% 0.0% 0.0% 0.0%
6,8; 0 100.0% 0.0% 0.0% 0.0% 0.0%
0,2; 1,8 0.0% 0.0% 0.0% 0.0% 100.0%
1,6; 0,8 14.7% 0.0% 7.5% 21.1% 56.7%
3,8; 0,6 45.1% 0.0% 1.1% 19.2% 34.6%
4,6; 0,8 80.9% 19.1% 0.0% 0.0% 0.0%
5,8; 0,6 0.3% 0.0% 8.8% 8.0% 82.9%
6,7; 0,8 34.0% 0.0% 41.6% 24.4% 0.0%
1,3; 0,6,8 0.0% 0.0% 0.0% 0.0% 100.0%
1,4; 0,6,8 8.4% 0.0% 12.5% 25.7% 53.4%
1,5; 0,6,8 0.0% 0.0% 0.0% 6.7% 93.3%
2,6; 0,1,8 0.0% 0.0% 0.2% 14.8% 85.1%
4,7; 0,6,8 16.5% 14.1% 26.3% 43.1% 0.0%
1,7; 0,4,6,8 44.6% 1.0% 29.2% 25.2% 0.0%
2,4; 0,1,6,8 0.0% 0.0% 2.7% 1.7% 95.7%
3,5; 0,1,6,8 51.6% 0.0% 28.2% 20.2% 0.0%
4,5; 0,1,6,8 34.3% 0.0% 20.2% 45.5% 0.0%
2,7; 0,1,4,6,8 0.0% 0.0% 0.0% 0.0% 100.0%
3,4; 0,1,5,6,8 34.6% 9.7% 20.8% 35.0% 0.0%
5,7; 0,1,4,6,8 18.4% 0.0% 38.8% 22.7% 20.2%
2,5; 0,1,4,6,7,8 11.8% 46.6% 10.0% 31.6% 0.0%
3,7; 0,1,4,5,6,8 0.0% 0.0% 0.0% 5.8% 94.2%
2,3; 0,1,4,5,6,7,8 10.3% 26.9% 22.9% 40.0% 0.0%

Table 3.24: Posterior distribution of pair copulas, given a drawable vine tree structure. The biggest
posterior probabilities are in bold.
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Chapter 4

Introduction to Dynamic Linear Models

The contents of Section 4.4 are a reproduction of the submitted content of [Gruber and West, 2015a,
Section 2.1]. Furthermore, the contents of Section 4.5 are a lightly edited reproduction of the contents
of [Gruber and West, 2015b,a, Section 1].

4.1 Introduction

Dynamic models are generally defined as “sequences of sets of models” [West and Harrison, 1997, Chap-
ter 1, Section 1.4]; in the context of time series analysis, the set of models varies over time t. The
dynamic linear model (DLM) is a Bayesian, dynamic version of the traditional linear model: an obser-
vation equation describes a linear relationship between the time t response yt, predictors Ft and states
θt, where the states take the role of the regression coefficients in the normal linear model; an evolution
equation specifies the evolution of the states from time t to t+ 1. This very general form of the DLM con-
tains many well-known models as special cases, for example, polynomial trend models, seasonal models,
and ARMA models [West and Harrison, 1997, Chapters 7–9].

The DLM can be learned sequentially, for example, for application to on-line decision problems, and
retrospective analysis is also available [West and Harrison, 1997, Prado and West, 2010, Chapter 4].
We focus on sequential learning in this dissertation, given that our main interest lies in application to
decision problems. The standard DLM, both univariate and multivariate, allows for conjugate sequential
learning, and analytic updating equations exist. This makes forward filtering extremely fast, and there
are numerous application examples that use the DLM in financial analyses [e.g. Gruber and Czado,
2015b,a, Zhao and West, 2014, Zhou et al., 2014, Gruber and West, 2015a], and in various other fields
[e.g. Koop, 2012, Nakajima and West, 2013a, Hosking et al., 2013, Agarwal et al., 2010, Queen, 1994,
Anacleto et al., 2013, Trejo et al., 2007, Prado, 2010].

Section 4.2 defines notation on various probability distributions used in connection with DLMs. Sec-
tion 4.3 introduces the univariate DLM and the steps for conjugate forward filtering; Section 4.4 does
the same for the multivariate Wishart DLM. Section 4.5 serves as a primer for Bayesian analysis of
high-dimensional time series using the simultaneous graphical DLM, which is the core methodological
contribution of this part of the dissertation, and discussed in Chapters 5 and 6, and Section 4.6 provides a
brief summary of the main methods used in Chapters 5’s derivation of an emulated conjugate sequential
learning strategy for the simultaneous graphical DLM.

4.2 Distributions

This section defines our notation; for the most part, we follow standard notation as in [Prado and
West, 2010, Chapter 1, Section 6; Chapter 2, Section 7; Chapter 10, Section 6]. The properties of the
distributions below are taken from the same reference.
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Beta distribution. A random variable η follows a beta distribution with parameters α > 0 and β > 0,

η ∼ Be(α, β),

if its density function is

p(η) =
1

B(α, β)
ηα−1(1− η)β−1.

The beta functionB(α, β) = Γ(α)Γ(β)
Γ(α+β) , the expectationE[η] = α

α+β and the variance V [η] = αβ
(α+β)2(α+β+1) .

Univariate T distribution. A random variable y follows a univariate T distribution with mode µ, scale
σ2, and degrees of freedom ν,

y ∼ Tν(µ, σ2),

if its density function is

p(y) =
Γ(ν+1

2 )

Γ(ν2 )
√
νπσ2

(
1 +

1

ν

(y − µ)2

σ2

)−(ν+1)/2

.

If ν > 1, the expectation E[y] = µ; if ν > 2, the variance V [y] = ν
ν−2σ

2.

Multivariate T distribution. A random p-vector θ follows a multivariate T distribution with mode
µ ∈ Rp, scale matrix or covariance matrix factor Σ, and degrees of freedom ν,

θ ∼ Tν(µ,Σ),

if its density function is

p(θ) =
Γ(ν+p

2 )

Γ(ν2 )(νπ)p/2
|Σ|−1/2

(
1 +

1

ν
(θ − µ)′Σ−1(θ − µ)

)−(ν+p)/2

.

If ν > 1, the expectation E[θ] = µ; if ν > 2, the covariance V [θ] = ν
ν−2Σ.

Univariate normal distribution. A random variable y follows a univariate normal distribution with
mean µ and variance σ2 > 0,

x ∼ N(µ, σ2),

if its density function is

p(y) =
1√

2πσ2
exp

(
−1

2

(y − µ)2

σ2

)
.

The inverse of the variance, λ = 1/σ2, is called the precision.

Multivariate normal distribution. A random p-vector θ follows a multivariate normal distribution
with mean µ ∈ Rp and covariance matrix Σ ∈ Rp×p,

θ ∼ N(µ,Σ),

if its density function is

p(θ) = (2π)−p/2|Σ|−1/2 exp

(
−1

2
(θ − µ)′Σ−1(θ − µ)

)
.

The inverse of the covariance, Ω = Σ−1, is called the precision matrix.
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Matrix normal distribution. A p × m random matrix Θ follows a matrix normal distribution with
mean M = (mi,j)i,j ∈ Rp×m, column variance matrix C = (ci,j) ∈ Rp×p and row variance matrix
Σ = (σi,j) ∈ Rm×m,

Θ ∼ N(M,C,Σ),

if its density function is

p(Θ) = (2π)−pm/2|C|−p/2|Σ|−m/2 × exp

(
−1

2
trace{(Θ−M)′C−1(Θ−M)Σ−1}

)
.

The marginal and conditional distributions of elements of Θ are normal. The distribution of the i-th
row of Θ, here written as Θi,:, is multivariate normal with mean Mi,: and covariance matrix ci,iΣ. The
distribution of the j-th column of Θ, written Θ:,j , is multivariate normal with mean M:,j and covariance
matrix σj,jC. Furthermore, the covariance of two rows Θi,: and Θj,: of Θ, is Cov(Θi,:,Θj,:) = ci,jΣ,
and the covariance of two columns Θ:,i and Θ:,j of Θ, is Cov(Θ:,i,Θ:,j) = σi,jC.

Gamma distribution. A random scalar λ > 0 follows a gamma distribution with shape α > 0 and rate
β > 0,

λ ∼ G(α, β),

if its density function is

p(λ) =
βα

Γ(α)
λα−1e−βλ.

The expectation E[λ] = α
β , and the variance V [λ] = α

β2 .

Normal gamma distribution. A random p-vector θ and scalar λ > 0 follow a normal gamma distribu-
tion

(θ, λ) ∼ NG(a,R, r, c)

with mode a, covariance matrix factor R, degrees of freedom r > 0, and parameter c > 0 if

θ|λ ∼ N(a,R/(cλ)),

λ ∼ G(r/2, rc/2),

where N(µ,Σ) is multivariate normal distribution with mean µ ∈ Rp and covariance matrix Σ ∈ Rp×p,
and G(α, β) is gamma with shape α > 0 and rate β > 0. Unconditional on λ, the distribution of θ is
multivariate T with mode µ, scale R, and degrees of freedom r; hence the terminology for r.

Inverse Wishart distribution. A randomm×m positive definite and symmetric matrix Σ has an inverse
Wishart distribution with n > 0 degrees of freedom and a positive definite and symmetric sum-of-squares
parameter matrix D ∈ Rm×m

Σ ∼ IW (n,D),

if its density function is

p(Σ) = c|Σ|−(m+n)/2 exp

(
−1

2
trace{ΣD}

)
,

with a constant c = |D|−(n+m−1)/22(n+m−1)m/2πm(m−1)/4
∏
i=1:m Γ((n+m− 1)/2). If n > 2, the expec-

tation is E[Σ] = D/(n− 2).

Wishart distribution. A random m×m positive definite and symmetric matrix Ω has a Wishart distri-
bution with parameters h = n+m−1 ≥ m and positive definite, symmetric parameter matrix A = D−1,
if its inverse Σ = Ω−1 ∼ IW (n,D) follows an inverse Wishart distribution with n degrees of freedom
and sum-of-squares parameter matrix D.
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Normal inverse Wishart distribution. A random p ×m matrix Θ and a m ×m positive definite and
symmetric matrix Σ have a normal inverse Wishart distribution

(Θ,Σ) ∼ NIW (M,C, n,D),

when

Θ|Σ ∼ N(M,C,Σ),

Σ ∼ IW (n,D),

where N(M,C,Σ) is a matrix normal distribution with mean M ∈ Rp×m, column variance matrix
C ∈ Rp×p and row variance matrix Σ, and IW (n,D) is an inverse Wishart distribution with n > 0
degrees of freedom and sum-of-squares parameter matrix D ∈ Rm×m.

4.3 The Univariate DLM

The dynamic linear model (DLM) is a conditionally Gaussian state-space model. This section introduces
the univariate DLM with beta-gamma evolutions for stochastic variances and discount learning [West
and Harrison, 1997, Prado and West, 2010].

4.3.1 Model Structure

The univariate time series yt is modeled via

y′t = F′tθt + ν′t, νt ∼ N(0, 1/λt), (4.1)

θt = Gtθt−1 + ωt, ωt ∼ N
(

0,
Wt

λt/E[λt]

)
, (4.2)

where νt is the observation error and ωt is the state evolution noise, which are mutually independent
and independent of all past such terms. The p-dimensional predictor vector Ft, the p× p state evolution
matrix Gt, and the p × p evolution covariance matrix Wt are known at time t. The p-dimensional state
vector θt evolves according to (4.2) and the precisions λt follow a stochastic volatility variance discount
model. Equation (4.1) is called the observation equation and (4.2) the evolution equation.

4.3.2 Forward Filtering

Sequential learning of the time-varying states θt and stochastic precisions λt is facilitated by conjugate
filtering of the time series yt. The following describes standard forward filtering with conjugate normal-
gamma priors as described in [West and Harrison, 1997, Chapter 4]. For each time t, denote by Dt all
available information, here assumed to comprise just the past data with Dt = {Dt−1, yt}.

Prior at time t. The conjugate prior for θt and λt given information set Dt−1 is normal-gamma

(θt, λt|Dt−1) ∼ NG(at,Rt, rt, ct). (4.3)

Here at is the prior mode of θt, Rt is the p× p covariance matrix factor, degrees of freedom rt > 0, and
ct > 0; note that ct is the harmonic mean estimate of the residual variance 1/λt in (4.1) via 1/E[λt] = ct.

Forecasts at t. The forecast distribution yt|Dt−1 ∼ Trt(ft, qt) is obtained by integration of the observa-
tion equation (4.1) with respect to the prior distribution (4.3). This yields the univariate T distribution
with rt degrees of freedom, mode ft = F′tat and scale qt = F′tRtFt + ct.
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Posterior at t. The posterior distribution of θt and λt given information Dt follows after a conjugate
posterior update as a normal-gamma distribution

(θt, λt|Dt) ∼ NG(mt,Ct, nt, st), (4.4)

with mode mt = at + Atet, covariance matrix factor Ct = (Rt −AtA
′
tqt)zt, degrees of freedom nt =

rt + 1, and residual variance estimate st = ztct. These parameters can be calculated after calculating the
forecast error et = yt − Ftat, volatility update factor zt = (rt + e2

t/qt)/(rt + 1), and adaptive coefficient
vector At = RtFt/qt.

Evolution to time t + 1. State θt and precision λt are evolved in two steps; here we use beta-gamma
evolutions for stochastic variances and discount learning [Prado and West, 2010, Chapter 4, Section 3.7].
Precision λt is evolved to time t+1 by applying a beta shock ηt+1 ∼ Be(βnt/2, (1−β)nt/2) that increases
the step-ahead prior variance of λt+1 to prevent the prior (and posterior) variances from converging to
zero as more observations are observed:

λt+1 = λtηt+1/β, (4.5)

⇒ λt+1|Dt ∼ G(rt+1/2, rt+1ct+1/2). (4.6)

Here β > 0 is a discount factor, and the degrees of freedom are rt+1 = βnt, and ct+1 = st. This
shock leaves expectation of λt+1 unchanged at E[λt+1|Dt] = E[λt|Dt] = 1/st, but increases the variance
by the factor 1/β: V [λt+1|Dt] = 1/(βnts

2
t ) = 1

βV [λt|Dt]. The discount factor β governs the rate at
which past information is discounted: small values of β discount earlier observations more quickly and
give a lot of weight to recent observations, values closer to 1 make the model less responsive to new
observations, and for β = 1, the model becomes a constant variance model. Conditional on λt+1, we
have θt|λt+1,Dt ∼ N(mt,Ct/(ct+1λt+1)), and the evolution of θt to time t + 1 follows state evolution
equation (4.2). The evolved prior distribution of θt+1|λt+1,Dt results as

θt+1|λt+1,Dt ∼ N(Gt+1mt,Gt+1
Ct

ct+1λt+1
G′t+1 +

Wt+1

ct+1λt+1
) (4.7)

=: N(at+1,Rt+1/(ct+1λt+1)), (4.8)

where at+1 = Gt+1mt and Rt+1 = Gt+1CtG
′
t+1 + Wt+1. The joint step-ahead prior for θt+1 and λt+1

given Dt is then as in (4.3), with t updated to t+ 1:

(θt+1, λt+1|Dt) ∼ NG(at+1,Rt+1, rt+1, ct+1). (4.9)

4.4 The Wishart Matrix Discounting Model

This section describes the Wishart Matrix Discounting Model (WDLM) for multivariate dynamic lin-
ear models. We focus on the standard variant of the traditional Beta-Bartlett Wishart discounting
model [Quintana et al., 2003] for stochastic volatility; full details are in Prado and West [2010, Chap-
ter 10, Section 4.8] whose notation we adopt here. This summary is a lightly edited reproduction of
[Gruber and West, 2015a, Section 2.1].

4.4.1 Model Structure

The m-dimensional time series yt := (y1t, . . . , ymt)
′ is modeled via observation equation (4.10)

y′t = F′tΘt + ν′t, νt ∼ N(0,Σt), (4.10)

Θt = GtΘt−1 + Ωt, Ωt ∼ N(0,Wt,Σt), (4.11)

where Ft is a known p-dimensional predictor vector; the p × m state matrix Θt evolves according to
evolution equation (4.11) with known p×p state transition matrix Gt and (known) innovation covariance
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matrix Wt; them×mmatrix Σt is a time-varying volatility matrix; and Ωt is a matrix normal innovation.
Each univariate element yjt of yt then follows the model

yjt = F′tθjt + νjt, νjt ∼ N(0, σjjt), (4.12)

θjt = Gtθj,t−1 + ωjt, ωjt ∼ N(0, σjjtWt), (4.13)

where, for each j = 1:m, the state evolution vectors ωjt are the columns of Ωt; the state vectors θjt are
the columns of Θt; and σjjt is the j − th diagonal element of Σt. Non-zero covariances in Σt induce
cross-series dependencies via Cov(νit, νjt) = σijt and Cov(ωit,ωjt) = σijtWt for i 6= j.

4.4.2 Forward Filtering

Key analysis components involve one-step evolution, forecasting and updating, as follows. Again, denote
byDt all available information at time t. The step-ahead prior evolution of the volatility matrix Σt follows
a variant of the Beta-Bartlett Wishart volatility model [Prado and West, 2010, Chapter 10, Section 4.8].

Prior at time t. The conjugate prior for Θt,Σt given Dt−1 is a matrix normal, inverse Wishart distri-
bution

(Θt,Σt|Dt−1) ∼ NIW (at,Rt, rt,Bt). (4.14)

Here at is the p×m prior mode of Θt and Rt the p× p column covariance matrix; the conditional prior
of Θt|Σt is matrix normal N(at,Rt,Σt). Parameter rt > 0 is the prior degrees-of-freedom, and Bt is
the m×m prior sum-of-squares matrix of the marginal inverse Wishart prior Σt ∼ IW (rt,Bt); the prior
mean of Σt is Bt/(rt − 2), if rt > 2.

Forecasts at t. Integration of (4.10) with respect to p(Θt,Σt|Dt−1) in (4.14) yields the multivariate
T, one-step forecast distribution yt|Dt−1 ∼ Trt(ft,Qt) with rt degrees of freedom, mode ft = F′tat and
scale matrix Qt = qtBt/rt where qt = 1 + F′tRtFt; the forecast variance matrix is qtBt/(rt− 2) if rt > 2.

Posterior at t. The posterior of Θt,Σt follows conjugate analysis upon observation of yt,

(Θt,Σt|Dt) ∼ NIW (mt,Ct, nt,Dt), (4.15)

with updated parameters mt = at + Atet, Ct = Rt −AtA
′
tqt, nt = rt + 1, and Dt = Bt + ete

′
t/qt based

on adaptive coefficient vector At = RtFt/qt and forecast error vector et = yt − ft. The distribution of
inverse volatility matrix Φt = Σ−1

t follows as a Wishart distribution W (ht,D
−1
t ), where ht = nt + p− 1.

Evolution to time t + 1. In moving ahead to time t + 1, the posterior (4.15) evolves to the implied
prior of the form of (4.14) but with index t → t + 1. The DLM state matrix Θt+1 evolves according
to state evolution equation (4.11), and the time t + 1 prior parameters follow as at+1 = Gt+1mt and
Rt+1 = Gt+1CtG

′
t+1 + Wt+1. A variant of the Beta-Bartlett Wishart volatility model [Prado and West,

2010, Chapter 10, Section 4.8] is a multivariate generalization of the beta-gamma discount evolutions
for the univariate DLM; here the evolved prior parameters follow as rt+1 = βnt and Bt+1 = bt+1Dt,
where bt+1 = (rt+1 + m − 1)/(nt + m − 1), and β ∈ (0, 1) is the discount factor governing the extent
of stochastic changes in the evolution Σt → Σt+1. Specifically, the evolved parameters are obtained as
follows. Consider the Bartlett decomposition of the inverse volatility matrix Φt,

Φt = P′tU
′
tUtPt, (4.16)

where Pt is the upper triangular Cholesky component of D−1
t and the m ×m matrix Ut is upper trian-

gular. Under the Wishart posterior distribution of Φt, the squared diagonal entries u2
t,i,i ∼ G((ht − i +

1)/2, 1/2) of Ut are gamma-distributed, the above-diagonal entries ut,i,j ∼ N(0, 1) (for j = (i+1):m and
i = 1:m) are standard normally distributed, and all random entries of Ut are mutually independent. In
evolution to t+1, apply beta-distributed shocks to the diagonal entries of Ut to obtain Ũt+1 = (ũt+1,i,j):
here the off-diagonal entries ũt+1,i,j = ut,i,j , i 6= j, are those of Ut, and ũt+1,i,i = ut,i,i

√
ηt+1,i with beta
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shocks ηt+1,i ∼ Be(βt+1,i(ht− i+1)/2, (1−βt+1,i)(ht,i− i+1)/2) and βt+1,i = (βnt+m− i)/(nt+m− i).
Taking

Φt+1 :=
1

bt+1
P′tŨ

′
t+1Ũt+1Pt, (4.17)

the evolved prior distribution of the precision matrix is Φt+1|Dt ∼W (βnt +m− 1, (bt+1Dt)
−1), and the

evolved prior of the volatility matrix is Σt+1|Dt ∼ IW (βnt, bt+1Dt) =: IW (rt+1,Bt+1).

4.5 A Primer on Simultaneous Graphical DLMs

Scaling on-line Bayesian analyses of multivariate dynamic models to increasingly high-dimensions de-
mands new modeling and computational strategies. A key need is for sequential analysis methods that
are computationally accessible while applying to models of interest in many application areas, for exam-
ple, macroeconomics [Koop, 2012, Nakajima and West, 2013a], financial portfolio studies [Aguilar and
West, 2000, Zhou et al., 2014], commercial and governmental forecasting [Agarwal et al., 2010, Queen,
1994, Anacleto et al., 2013], large scale-networks in energy demand forecasting [Hosking et al., 2013],
and neuroscience [Trejo et al., 2007, Prado, 2010].

Sparse models and efficient computation are critical to successfully scaling analyses to several hundred
dimensions, as the number of covariance parameters grows quadratically. Chapter 5 introduces Simul-
taneous Graphical Dynamic Linear Models (SGDLMs) and develops their Bayesian analyses utilizing GPU-
based computation. SGDLMs consist of flexible state-space models of individual series; separately, each is
amenable to efficient, closed form sequential filtering and forecasting [Prado and West, 2010, West and
Harrison, 1997]. Cross-series contemporaneous dependencies are captured via a sparse and dynamic
simultaneous equations formulation. Section 5.2 presents a variational Bayes strategy for emulated con-
jugate sequential learning of SGDLMs (see Figure 4.1): we start at time t with decoupled, independent
conjugate normal-gamma priors for each series j = 1:m; then each series is updated individually, and
the independent product of the within-series posteriors is a naive approximation of the exact posterior;
these parallel univariate analyses are recoupled using importance sampling-based reweighting of sets of
direct simulations from the univariate models; the exact, joint multivariate posterior is then decoupled
into an independent product of normal-gamma distributions using a variational Bayes strategy [Jordan
et al., 1999, Jaakkola and Jordan, 2000, Jaakkola, 2000] (see summary discussions in Section 4.6);
lastly, moving from time t to t + 1, within-series prior evolutions are applied to these emulating inde-
pendent normal-gamma posteriors. To scale-up the number of time series, we exploit (C++/CUDA) GPU
computation [Suchard et al., 2010, Lee et al., 2010] that is ideally suited to the analysis. Univariate time
series model updates and simulations are performed in parallel at each time point, and then recoupled
for coherent inference and forecasting before decoupling again to move to the next time point and re-
parallelization. The overall modeling and computational strategy is scalable with time series dimension
as a result. Unlike Cholesky-style and factor models [e.g. Aguilar and West, 2000, Lopes et al., 2010, Pitt
and Shephard, 1999, Lopes and Polson, 2010, Nakajima and West, 2013b], SGDLMs do not require an
ordering of the series, which can be an obstacle to model specification. Compared to dynamic graphical
models of precision matrices [e.g. Quintana and West, 1987, Carvalho and West, 2007, Wang and West,
2009], SGDLMs are scalable computationally, and flexible in allowing for patterns of change in volatility
matrices that are specified implicitly via state-space models for sets of simultaneous regression param-
eters. Compared to the standard multivariate WDLM (Section 4.4), SGDLMs inherently define sparse
representations underlying time-varying variance matrices, and allow for differing sets of predictors in
each univariate series.

The SGDLM requires specification of a set of parental time series to use as contemporaneous predictors
of each univariate series in a simultaneous equations formulation; to address this, Chapter 6 introduces
a novel and practicable selection strategy for the parental sets. Furthermore, that chapter discusses
several quantitative investment rules based on various portfolio utility functions of practical interest,
and presents a case study in managing a 400-asset portfolio using the SGDLM combined with these rules
to drive investment decisions.
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Figure 4.1: Decoupling and recoupling scheme for forward filtering in SGDLMs.
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4.6 Methods for Simultaneous Graphical DLMs

This section provides a brief summary of the main basic concepts we will use in our emulated conjugate
sequential learning scheme for the SGDLM in Section 5.2, variational mean field approximation and
importance sampling.

4.6.1 Variational Mean Field Approximation

Variational strategies transform a given problem into a related optimization problem. Such strategies
are commonly used when the problem of interest can not be solved directly; a typical example is to
approximate posterior probabilities, or bounds thereof, of graphical statistical models [Jordan et al.,
1999, Jaakkola and Jordan, 2000, Jaakkola, 2000].

We will focus on the variational mean field method as described in [Jordan et al., 1999, Section 6] and
[Jaakkola, 2000, Section 4]. Here one approximates the target distribution with density p by a more
tractable class of probability distributions with density qλ and variational parameters λ. The variational
parameters are set to minimize the Kullback-Leibler divergence KLp|qλ of p from qλ,

λ = arg min
λ
KLp|qλ = arg min

λ
Eqλ [log(qλ(z)/p(z))], (4.18)

where Eqλ [·] denotes the expectation under the approximating distribution qλ, and z is a random vari-
able; the densities p and qλ are assumed to have common support. If the class of approximating dis-
tributions qλ contains the target distribution p, optimization rule (4.18) will select select λ such that
qλ = p, given that the Kullback-Leibler divergence is always non-negative, and is zero, if and only if the
distributions are equal [Kullback and Leibler, 1951].

4.6.2 Importance Sampling for Estimation of Ep[·]

Importance sampling is a sampling method that can be used to estimate characteristics of a probability
distribution that cannot be sampled from directly [e.g. Dunn and Shultis, 2011, Chapter 5, Section 2]. Let
the target distribution have density function p(·), and let p̃(·) denote the density function of an alternative
distribution that can be sampled from. Suppose that we want to estimate the expectation Ep[f(Θ,Λ)]
of a functional transformation f(Θ,Λ) of a pair of random variables (Θ,Λ) ∼ p(·) from the target
distribution. This can be done by estimating the expectation of a different functional transformation of
(Θ,Λ) under p̃:

Ep[f(Θ,Λ)] =

∫
f(Θ,Λ)p(Θ,Λ) d(Θ,Λ)

=

∫
f(Θ,Λ)

p(Θ,Λ)

p̃(Θ,Λ)
p̃(Θ,Λ) d(Θ,Λ)

= Ep̃[f(Θ,Λ)α(Θ,Λ)],

with importance function α(Θ,Λ) := p(Θ,Λ)
p̃(Θ,Λ) .

To implement, generate i = 1:N samples (Θi,Λi) ∼ p̃(·) from the alternative distribution p̃(·) for some
large number N . Assign each sample (Θi,Λi) importance weight αi ∝ α(Θi,Λi) = p(Θi,Λi)

p̃(Θi,Λi)
, scaled such

that
∑
i=1:N αi = 1. The importance sampling-based estimate of expectation Ep[f(Θ,Λ)] under the

target distribution p(·) is then
Êp[f(Θ,Λ)] =

∑
i=1:N

αif(Θi,Λi). (4.19)
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Chapter 5

GPU-Accelerated Bayesian Learning
and Forecasting in Simultaneous
Graphical Dynamic Linear Models

The contents of this chapter have already been published in Gruber and West [2015b]. This chapter is
a lightly edited reproduction of selected contents of the accepted manuscript. Appendix 5.B contains
unpublished proofs and details underlying our variational Bayes decoupling strategy.

This chapter develops the simultaneous graphical dynamic linear model (simultaneous graphical DLM
or SGDLM) as a sparse Bayesian model of multivariate stochastic volatility. Section 5.1 introduces the
model structure of the SGDLM; a novel variational Bayes strategy for sequential learning is developed in
Section 5.2. Section 5.3 evaluates the computational cost of the proposed strategy and elaborates on the
GPU-accelerated implementation. Section 5.4 demonstrates how the implementation enables real-time
Bayesian analysis of a 400-dimensional daily stock return time series and Section 5.5 finishes this chapter
with additional comments.

5.1 Simultaneous Graphical DLMs

5.1.1 Model Structure: Definitions and Notation

Series-specific form. Consider the m−dimensional time series yt = (y1t, . . . , ymt)
′, t = 1, 2, . . . . Each

univariate series yjt is represented via a linear, normal state-space model with a traditional variance
discount model of stochastic volatility [West and Harrison, 1997, Prado and West, 2010]. With the
convention that all vectors are columns, the basic model form is:

yjt = F′jtθjt + νjt = x′jtφjt + y′sp(j),tγjt + νjt, (5.1)

θjt = Gjtθj,t−1 + ωjt, (5.2)

where the observation error νjt ∼ N(0, λ−1
jt ) and state evolution error ωjt ∼ N(0,Wjt/(cjtλjt)) are

independent, zero mean normals and are independent of all past such terms and across all series i 6=
j. Predictor vectors xjt and ysp(j),t are catenated to define F′jt = (x′jt, y′sp(j),t); corresponding state
vectors φjt and γjt similarly define θ′jt = (φ′jt, γ

′
jt). Here xjt is a series-specific vector of exogenous

predictors, while ysp(j),t is a vector of contemporaneous values of some of the other series, indexed by
sp(j) ⊆ {1:m} \ {j} and called the simultaneous parental set for series j. State vector φjt has dimension
pjφ, state vector γjt has dimension pjγ = |sp(j)|, so that θjt has dimension pj = pjφ + pjγ . The model
context assumes the parental sets, and hence their dimensions, are fixed over time (at least, fixed over
the period of time chosen for analysis) as part of the model specification. Conditional on the state vector
and exogenous predictors, write µjt = x′jtφjt. The state vector evolves according to the linear evolution

73



74 CHAPTER 5. SIMULTANEOUS GRAPHICAL DLMS

with state matrix Gjt. The states θjt and λjt are learned sequentially, while all other quantities are
specified through prior or model choices.

Equations (5.1, 5.2) define a set of coupled, dynamic simultaneous equations that cohere across j = 1:m,
representing a set of dynamic structural equations for the multivariate model of yt [e.g. Palomo et al.,
2007, and references therein].

Across-series form. Define Θt = {θ1t, . . . ,θmt} and Λt = {λ1t, . . . , λmt}, the sets of m state vectors
and precisions, and

µt =


µ1t

µ2t

...
µm−1,t

µmt

 and Γt =


0 γ1,2,t γ1,3,t · · · γ1,m,t

γ2,1,t 0 γ2,3,t · · · γ2,m,t

...
...

. . .
...

...
γm−1,1,t . . . γm−1,m−2,t 0 γm−1,m,t

γm,1,t γm,2,t . . . γm,m−1,t 0

 .

where we extend the γ∗ notation so that γjht = 0 for each h 6∈ sp(j), j = 1:m.

It follows that
yt ∼ N(Atµt,Σt) (5.3)

where
At = (I− Γt)

−1 and Ωt ≡ Σ−1
t = (I− Γt)

′Λt(I− Γt). (5.4)

Practical models will typically have small parental sets sp(j) so the resulting Γt matrix will be sparse.
That, coupled with the state evolution models for the γjt, defines a flexible class of multivariate volatility
models for the implied variance matrix Σt and its inverse– the precision matrix– Ωt. Very sparse Γt can
imply (albeit less) sparse precision matrices; the correspondence of zeros in Ωt with conditional indepen-
dencies in the resulting Gaussian graphical models [Carvalho and West, 2007] underlie the designation
of this class of models as simultaneous graphical dynamic linear models. With even modest m, practical
models will have relatively small parental sets. If the maximum parental set size is k, the model has mk
non-zero elements in Γt so that k < (m − 1)/2 means Ωt is not over-parametrized. Our motivation for
these models and their expected utility is in problems with increasingly large m; our financial time series
example in Section 5.4 has m = 400, k = 10, so represents 79,800 precision parameters in terms of just
4,000 simultaneous parental parameters.

We note connections with the use of simultaneous/structural specifications in spatial analysis on lattice
data. Simultaneous autoregressive (SAR) models define joint distributions of outcomes on a spatial
lattice via univariate conditional models based on sparse simultaneous parental (or neighboring) sets in
a form similar to that adopted here [e.g. Anselin, 1988, De Oliveira and Song, 2008, Whittle, 1954]. Part
of the inspiration for the work here derives from the utility of such models in spatial studies, especially
with regard to scalability to larger problems [Mukherjee et al., 2014].

5.1.2 Sequential Learning: Structure and Challenges

Sequential analysis moves over time t and updates summary posterior distributions for model state
vectors and precisions as new data is observed. At time t − 1, denote historical data and information
by Dt−1. Evolving to time t, this information set updates to Dt = {yt, It, Dt−1} where It denotes any
additional information or model changes used between times t−1 and t, for example, the specification of
the state evolution matrices Gjt, evolution variances Wjt, or changes in the simultaneous parental sets
sp(j) [West and Harrison, 1989, 1997, Chapter 11]. Then, analysis over times t−1 to t involves: (i) using
the time t − 1 posterior p(Θt−1,Λt−1|Dt−1) to infer the prior for time t, namely p(Θt,Λt|It,Dt−1); (ii)
using this prior to compute forecast distributions for yt and future outcomes beyond time t, as desired;
(iii) on moving to time t, updating to the current posterior p(Θt,Λt|Dt).

The full multivariate model raises computational challenges due to the non-linearities in state vectors
in (5.3, 5.4). The time t likelihood function for Θt,Λt is directly derived from the m−variate normal
density of (5.3), as

p(yt|Θt,Λt) ∝ |I− Γt|
∏
j=1:m

p(yjt|θjt, λjt) (5.5)
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where the product is of normal densities from the set of univariate models, namely yjt ∼ N(F′jtθjt, λ
−1
jt )

for j = 1:m. As a result, the time t updated posterior is

p(Θt,Λt|Dt) ∝ |I− Γt| p(Θt,Λt|It,Dt−1)
∏
j=1:m

p(yjt|θjt, λjt). (5.6)

The determinant factor here induces the computational challenges. Apart from the special cases of
compositional models [Nakajima and West, 2013a, Zhao and West, 2014] in which Γt is triangular with
a diagonal of zeros and so |I − Γt| = 1, this determinant term contributes to the likelihood for the γjt
vectors. In very sparse models, the determinant term can tend to be quite diffuse as a function of Θt,Λt

when compared to the product of individual likelihood terms. However, it matters generally; it arises
theoretically to ensure positive definiteness and symmetry of Ωt. In our financial time series example in
Section 5.4 we demonstrate some of the negative practical consequences of ignoring this term.

5.2 Model Decoupling/Recoupling Strategy

5.2.1 Motivation and Summary

The forms of (5.5, 5.6) suggest opportunity to exploit separate, parallel analyses of each univariate series
in order to define a sequential computational strategy for the full multivariate model. Each univariate
DLM of (5.1, 5.2) is a linear, normal state-space model for θjt that, when coupled with the traditional

variance discount model for stochastic volatilities
√
λ−1
jt , is amenable to standard forward filtering and

forecasting analysis in closed form [West and Harrison, 1997]. Directly implemented for series j without
regard to the other univariate models, this analysis involves sequentially updated normal/gamma priors
p(θjt, λjt|Dt−1), and posteriors p(θjt, λjt|Dt), with simple, closed-form updates. Were we to simply use
these separate univariate DLMs in parallel and assume independence across series j, then the implied
joint priors and posteriors for the {Θt,Λt} would factorize. Thus, the naive approximation of ignoring
the determinant factor in (5.5, 5.6) is akin to running a univariate DLM on each series individually. We
use this idea to define a computational strategy that improves on this naive approach while retaining the
analytical tractability of the time evolution and update steps.

The steps involved in our decoupling/recoupling strategy are fully detailed in Section 5.2.2. In summary
here, standing at time t before observation of yt, the analysis proceeds as follows:

A. At time t, adopt decoupled priors p(θjt, λjt|It,Dt−1) assumed independent over j = 1:m.

B. To predict yt+k into the future k = 0, 1, . . . , simulate these independent priors and use sampled
values to evaluate aspects of full multivariate forecast distributions.

C. At time t on observing yt, perform parallel, independent updates to posteriors in the m DLMs and
take their product to yield a naive posterior approximation p̃(Θjt,Λjt|Dt).

D. Recouple the analyses by evaluating the exact posterior using importance sampling.

E. Decouple the series by emulating the exact posterior by a product of margins over j = 1:m using
variational Bayes.

F. Apply state evolutions independently over j = 1:m to move to time t+ 1.

Note that, in special cases when Γt is chosen to be– or just happens to be– diagonal, we have a com-
positional (directed) graphical model specification, with |I − Γt| = 1. The analysis is then closed-form:
the naive posterior from C equals the exact posterior, and steps D and E can be omitted. In the kinds
of practical problems of focus– with more than a few series– the compositional approach is typically a
non-starter since it requires that the modeler can define a strict ordering of the series. While this can
be done based on substantive reasoning with relatively few series, choosing an ordering is otherwise
challenging and arbitrary, and results heavily dependent on its choice.
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5.2.2 Model Emulation: Decoupling for Forward Filtering

A. Time t prior. The prior at time t for model states and volatilities is a product of a decoupled set of
m conjugate normal/gamma priors (see Section 4.3.2), namely

p(Θt,Λt|It,Dt−1) =
∏
j=1:m

pjt(θjt, λjt|It,Dt−1) (5.7)

where pjt(·|·) denotes the density function of

(θjt, λjt|It,Dt−1) ∼ NG(ajt,Rjt, rjt, cjt). (5.8)

This uses standard notation [Prado and West, 2010] for the normal/gamma

(θjt|λjt, It,Dt−1) ∼ N(ajt,Rjt/(cjtλjt)),

(λjt|It,Dt−1) ∼ G(rjt/2, rjtcjt/2),

in which N(a,A) is multivariate normal with mean a and variance matrix A, and G(r, rc) is gamma
with shape r, rate rc, and mean r/(rc) = 1/c. The implied θjt margin of (5.8) is multivariate T with rjt
degrees of freedom, mode ajt and scale matrix Rjt; the marginal variance matrix is Rjtrjt/(rjt − 2) in
usual cases that rjt > 2.

B. Time t predictions. The one-step ahead predictive distribution is efficiently simulated by drawing
from the set of m independent normal/gamma priors above, so defining a simulation sample {Θr

t ,Λ
r
t}

from this emulating prior, where the superscript r indexes Monte Carlo samples for prediction, with
r = 1 : R for some (large) sample size R. Each sampled value then defines Monte Carlo values of one-
step forecast moments Ar

tµ
r
t ,Σ

r
t in (5.3, 5.4). Predictions more than one-step ahead follow similarly.

Conditional on sampled moments, the resulting conditionally normal predictive distributions can be
summarized or simulated for predictive inferences.

C. Naive time t posterior updates. Standard updating equations applied independently and in parallel
lead to

(θjt, λjt|Dt) ∼ NG(m̃jt, C̃jt, ñjt, s̃jt) (5.9)

with density functions denoted by p̃jt(·|·). See Section 4.3.2 for details and the explicit updating formulæ.
The resulting naive posterior approximation to p(Θt,Λt|Dt) is then

p̃(Θt,Λt|Dt) =
∏
j=1:m

p̃jt(θjt, λjt|Dt), (5.10)

which ignores the determinant term in (5.6).

D. Recoupling to exact time t posterior. We know that the exact posterior is

p(Θt,Λt|Dt) ∝ |I− Γt|
∏
j=1:m

p̃jt(θjt, λjt|Dt). (5.11)

We use importance sampling (Section 4.6.2) to estimate features of the exact joint posterior distribution
in (5.11). Draw N independent samples from the m-variate naive posterior approximation in (5.10);
the product form of the density can be exploited for independent and parallelized sampling from the m
within-series posteriors in (5.9); these are then combined to define the full sample {Θi

t,Λ
i
t}. Compute

and normalize importance weights

αti ∝
p(Θi

t,Λ
i
t|Dt)

p̃(Θi
t,Λ

i
t|Dt)

∝ |I− Γit|, i = 1 : N . (5.12)

These samples and weights
{Θi

t, Λi
t, αti}, i = 1 : N, (5.13)
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define an importance sample that can be used, for example, to estimate expectations under exact joint
posterior distribution p(·|·).

Note that the importance sample weights do not depend on the values of the simulated φijt, λ
i
jt; they

depend only on the simultaneous coefficients γjt. This reflects the view that the parallel conjugate mod-
els will effectively emulate the full multivariate model in inferring series-specific states and volatilities,
while some “corrections” will be needed for inferences on the parental states that explicitly define cross-
series structure. Importance sampling is the natural and elegant approach to making these corrections.
The univariate series/models are decoupled for updates and direct simulation, and then recoupled for
importance sampling targeting the exact posterior.

E. Decoupling of time t posterior. To move ahead to the next time point, decouple the posterior from
part D into a product of conjugate forms across series j = 1:m. A standard variational Bayes (VB)
approach, or mean-field approximation (Section 4.6.1) emulates the exact posterior by an independent
product of normal/gammas

q(Θt,Λt|Dt) ∝
∏
j=1:m

qjt(θjt, λjt|Dt) (5.14)

with components

(θjt, λjt|Dt) ∼ NG(mjt,Cjt, njt, sjt). (5.15)

The variational parameters mjt, Cjt, njt, and sjt are chosen to minimize the Kullback-Leibler diver-
gence1 KLq|p of the emulating posterior distribution q(·|·) from the exact posterior distribution p(·|·).
Using Ep[·] to denote expectations under p(·|·), standard theory [e.g. West and Harrison, 1997, Chapter
12, Section 3] implies that:

• mjt = Ep[λjtθjt]/Ep[λjt],

• Vjt = Ep[λjt(θjt −mjt)(θjt −mjt)
′],

• djt = Ep[λjt(θjt −mjt)
′V−1

jt (θjt −mjt)],

• njt is the unique value that satisfies
log(njt + pj − djt)− ψ(njt/2)− (pj − djt)/njt − log(2Ep[λjt]) + Ep[log λjt] = 0,

• sjt = (njt + pj − djt)/(njtEp[λjt]), and

• Cjt = sjtVjt.

Appendix 5.B provides mathematical proofs and a detailed derivation of the variational parameters.
The expectations Ep[·] with respect to the exact posterior distribution can be easily evaluated using the
importance sample {Θi

t,Λ
i
t, αti}, and the variational parameters are easily computed, with njt requiring

a (trivial) iterative numerical approach; see Appendix 5.A.4. Both the conceptual basis and technical
aspects of mapping to sets of conjugate forms has a long history in the Bayesian dynamic modeling
and forecasting literature [e.g. Harrison and Stevens, 1971, Alspach and Sorenson, 1972, Harrison and
Stevens, 1976, Smith and West, 1983, West and Harrison, 1997, Chapter 12, Section 3.4].

F. Evolution to time t + 1. Moving ahead one time point, the states evolve via independent models
of (5.2). This results in evolved priors as given in (5.7) in part A above, but with time index t updated
to t + 1. Formulæ are given in Section 4.3.2, simply following standard DLM theory and notation [West
and Harrison, 1997].

1For any random quantity z, the KL divergence of a distribution with density q(z) from one with density p(z) is KLq|p =

Ep
[
log{p(z)/q(z)}

]
. Here densities are continuous, discrete or mixed and have common support, and Ep[·] is the expectation

under p(·).
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5.2.3 KL Divergence and IS-VB Strategy

The VB-based posterior of (5.14) represents an improvement over the initial p̃(·|·) of (5.10) as it mini-
mizes KLq|p over all q(Θt,Λt) that are products of m normal/gamma forms for the (θjt, λjt), j = 1:m.
It turns out that the importance sampling weights αti in (5.13) provide a direct assessment of the
value of the divergence KLp̃|p. This general but, apparently, not well-known result relating KL di-
vergences to importance sampling weights is of utility here as well as more broadly. Specifically, write
HN =

∑
i=1:N αti log(Nαti), the entropy of the importance sampling weights αti relative to a set of N

uniform weights– one measure of efficacy of importance samplers [e.g. West, 1993]. It is easily shown
that, as N →∞, HN → KLp̃|p; hence, the relative entropy gives a direct estimate of the KL divergence.
It can also be shown that HN ≤ N

∑
i=1:N α

2
ti − 1 = N/SN − 1 where SN is effective sample size; for

large N , the limiting value of SN/N is bounded above by 1/(1 +KLp̃|p).

Hence HN gives an estimate of the upper bound of the minimized divergence; if HN is already small–
based on calibrating to effective sample size as above– then we are assured of closeness of the revised
VB-based posterior approximation. Furthermore, the KL divergence of any subset of parameters (Θt,Λt)
cannot exceed the divergence on the full set. This makes the latter an operational upper bound on
divergences of the approximating marginal posteriors in any of the m individual models. If the overall
approximation is good, we do not have to monitor the margins on models j = 1:m.

A further positive theoretical feature relates to evolution from time t to t+ 1. The KL-optimized product
of normal/gamma posteriors for (Θt,Λt|Dt) evolves to a similar analytic form for the time t + 1 prior
p(Θt+1,Λt+1|It+1,Dt). Now, we know that KL divergence decreases through convolutions; hence, the
divergence of this normal/gamma product for (Θt+1,Λt+1) is a better approximation of the exact time
t + 1 prior than was the case for the time t posterior. If we have a high-quality posterior approximation
at time t, then the situation only improves following evolution.

5.3 GPU-Accelerated Implementation

5.3.1 General comments

The analysis strategy of Section 5.2 is ideally suited to distributed implementation on computers with
graphics processing units (GPUs). GPUs feature hundreds or thousands of compute cores that can be
used to execute single instruction, multiple data (SIMD) operations in a massively parallel mode (cur-
rently common multi-core desktop processors typically have no more than eight cores). Whenever the
same set of numerical operations has to be performed many times on different data, GPU-accelerated
implementations offer the potential to vastly outperform CPU equivalents, based on distributing these
computations to cores in parallel. Our model and computational development, and accompanying code,
contribute to the growing body of literature linked to Bayesian statistical computations that are inher-
ently enabled via GPU implementations [e.g. Suchard et al., 2010, Lee et al., 2010] due to being simply
ideally suited to the GPU hardware/software model; these references also discuss the relative speed-up
that can be achieved over CPU computation. We note some specifics related to each of the steps in the
analysis of Section 5.2.

5.3.2 Predictive Computations

Computations for predictive distributions (Section 5.2-B) are immediately parallelizable, exploiting the
decoupling/recoupling strategy. For one-step ahead predictions, Monte Carlo draws {θrt , λrt}, r = 1 :
R, from the independent priors at time t in (5.7) are simulated in parallel. The sampled states and
volatilities are then sent to the CPU to combine and compute the implied Monte Carlo values of one-step
forecast moments Ar

tµ
r
t ,Σ

r
t in (5.3, 5.4). It is then trivial to numerically summarize and/or simulate

the one-step ahead predictive distribution p(yt|It,Dt−1) from this Monte Carlo sample of means and
variance matrices. Predictions more than one-step ahead follow similarly, and again exploit distributed
computation as the series-specific states and volatilities evolve independently in state (5.4).
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5.3.3 Posterior Update Computations

Updates and simulations of naive posterior approximations in Section 5.2-C,D are each immediately
parallelizable. The analytic update computations of parameters of the naive posterior approximations
are trivially computed in parallel, and then fed into parallel cores for simulation of the m posteriors
in parallel; this is distributable over both m and the Monte Carlo sample size N to maximally utilize
the capacity of available GPU cores. Following simulation, the Monte Carlo samples are recoupled, i.e.,
returned to the CPU for evaluation and normalization of the importance sampling weights αti.

Based on the multivariate importance samples {Θi
t,Λ

i
t, αti}, we can then trivially compute summaries of

the weights to monitor Monte Carlo accuracy, including the effective sample size and entropy measures
SN , HN discussed in Section 5.2.3.

5.3.4 Computational Costs

Let M represent Monte Carlo sample size, whether M = R for forward sampling for prediction, or
M = N in importance sampling for posterior updates (often, we will simply take R = N so that M is
the common value). Scaling computations in M is then a critical interest.

The lead complexity of sampling {Θt,Λt} is O
(
Mmp2

max

)
where pmax = maxj=1:m pj . Computing a

determinant |I− Γ∗| is the most expensive operation, with a cost of O
(
Mm3

)
. In k−step forecasting for

k ≥ 1, simulation of states {Θt+k,Λt+k} uses previously sampled states {Θt+k−1,Λt+k−1} and incurs
additional costs of O

(
Mmp3

max

)
for each k. Then inverting I − Γt+k costs O

(
Mm3

)
. So the overall

computational cost of forecasting at each of k−steps ahead is O
(
kM(m3 + mp2

max)
)

as M → ∞. The
order of computational costs in M,m is the same for posterior decoupling/recoupling updates and for
forecasting, while the actually incurred costs will increase linearly with the numbers of steps k that we
choose to forecast.

5.4 Evaluation: Stock Return Study

5.4.1 Data and Study Set-Up

We analyze daily log returns of m = 400 S&P stocks. In a simple class of SGDLMs, we evaluate 1−step
ahead forecasts for both selected individual series and across all series. We study of the effects of ig-
noring the coupling of the set of simultaneous model equations, to bear out the utility of the decou-
pling/recoupling strategy. We also compare the results with those from a benchmark analysis using the
standard Wishart discount model of multivariate stochastic volatility [WDLM; West and Harrison, 1997,
Chapter 16, Section 4].

Our data represent m = 400 current members of the S&P 500 index, restricting to those 400 that were
continuously listed from October 2000 to October 2013, our study period. The data are daily log returns,
which are differences in daily log prices. We use the first 845 daily observations, T1 = 1 : 845 (up to
December 2003) as training data for an initial exploratory analysis to define the simultaneous parental
sets for each of the m = 400 series. Based on these chosen parental sets, we then use the following
522 daily observations, T2 = 846:1,367 (from January 2004 through December 2005) as further training
data to evaluate and select suitable discount factors for the dynamic models, and to provide priors for
analysis of the following test data. The test data are the remaining 2,044 observations, Ttest = 1,368:3,411
(from January 2006 through October 2013). This provides an honest sequential forecasting analysis
and evaluation on this substantial series of hold-out/test data. In both training and test data analyses,
the Monte Carlo sample sizes R, for forecasting, and N, for IS-based posterior updates, were set at
R = N = 10,000.
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5.4.2 Model Structure and Specification via Training Data Analysis

SGDLM form. For each of the 400 univariate series, we use the local-level (random walk) for a time-
varying trend DLM [West and Harrison, 1997, Chapter 2] common in studies of financial returns [e.g.
Aguilar and West, 2000, Nakajima and West, 2013b]. This is coupled with a specified set of 10 simulta-
neous parents, whose coefficients also evolve via random walks. In (5.1), we then have pjφ = 1, xjt = 1
and pjγ = 10. The state evolution models of (5.2) have Gjt = I, the 11-dimensional identity matrix. We
use the standard block discounting approach to specify the variance matrices Wjt [West and Harrison,
1997, Chapter 6, Section 3.2]. Specifically, each Wjt is defined using two discount factors δφ, δγ , each in
(0, 1), that determine evolution variance matrix block components for level and simultaneous parental
coefficients, respectively.

Simultaneous parental sets. We used the initial 3 years of data, T1 = 1 : 845 over 2003, for ex-
ploratory analysis to select the sp(j) for each j = 1 : 400. On this initial training data set, we simply
ran separate, univariate DLMs with a local level and with all the remaining 399 series as simultaneous
parents. We then chose pj = 10 series to define each sp(j) by selecting those with the largest estimated
effect sizes over the later part of the training data.

The set of simultaneous parents obviously plays a key role in model fit and forecasting. Here, we em-
phasize that more formal model selection is not a theme in the current paper. In practice, we operate
with a chosen set of parental sets over given periods of time, refreshing/modifying the parental sets
periodically via off-line analysis, and/or using multiple such sets– a restricted number– and engaging
in model averaging. A future paper will address this question of model uncertainty. The current paper
takes the parental sets as given– based on detailed exploratory analysis of training data– the focus and
contributions involving the SGDLM modeling innovation and the decoupling/recoupling computational
strategy. We show in this example that the enhancements under this strategy are not merely theoretical
considerations, but significantly improve forecasting in this m = 400−dimensional setting.

WDLM form. The benchmark model for comparison is a local-level DLM with Wishart discount-based
multivariate volatility [West and Harrison, 1997, Chapter 16, Section 4] for the full 400−dimensional
time series. This uses a discount factor δ to define the evolution variances of the local levels as Wt =
1−δ
δ Ct−1, and a discount factor β for the Wishart discount-based evolution of the full 400× 400 observa-

tion variance matrix. Initial priors are taken as m0 = 0, C0 = 0.001, S0 = 0.1I and n0 = 5 in the notation
of the above reference, and the resulting forward filtering and forecasting equations are as detailed in
Theorem 16.4 of West and Harrison [1997].

Discount factor specification. We ran the SGDLM analysis on the second training set of data, T2 =
846:1,367. This initialized at t = 846 with priors of (5.8) is based on: rj,846 = 5 and sj,845 = 0.001,
aj,846 = 0 and Rj,846 = diag(0.0001, 0.01, · · · , 0.01). This analysis was used to explore the impact of
varying the state discount factors δφ, δγ and the volatility discount βj = β, all assumed the same across
series j. This settled on chosen values βj = 0.98, δφ = 0.98, δγ = 0.99 based on standard evaluation of
one-step ahead forecasting accuracy.

We then reran the analysis but without the IS-VB step of the computations; i.e., simply using the parallel,
independently updated set of models. This analysis led to choices βj = 0.98 and δφ = 0.98 again,
but we found improved 1−step ahead forecasting with an appropriately higher discount factor δγ =
0.999 on the parental predictors. Below we evaluate forecasting on the hold-out/test data using this
incoherent/approximate set of independent model as well using the full decoupled/recoupled analysis.
This differential choice of discount factors makes this an honest comparison as we begin the analysis of
test data with optimized parameter specification for each strategy.

A parallel analysis of the benchmark WDLM was similarly evaluated, and led to optimal discount factors
of δ = 0.98 and β = 0.9975.
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5.4.3 Forecasts of Stock Returns: Test Data Analysis

We review sequential learning and forecasting in the test data period, Ttest = 1,368:3,411, with a number
of summaries. This includes aspects of Monte Carlo accuracy, and forecast assessments for individual
time series as well as in the aggregate. Part of this includes analyzing coverage rates of 1−step ahead
forecast intervals and validation against observed values. The initial priors at time t = 1,368 are, in each
analysis, simply those evolved from the corresponding posteriors at time t−1, the last day of the training
data period.

Analysis of the IS-VB Strategy

Figure 5.1 shows the effective sample size SN of the IS-VB step at each time point t. Based on the
N = 10,000 samples, SN exceeds 7,000 during approximately 98% of the test time period Ttest. There
is a short-lived drop to about 6,100 during a period of extreme market stress following the collapse
of Bear Sterns in September 2008. In the range from 7,000 to 9,000, the typical effective sample size
indicates excellent performance of the importance sampler. Figure 5.1 also shows the corresponding
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Figure 5.1: SN and KLp̃|p during the test data time period Ttest.

IS-based estimate HN of the KL divergence KLp̃|p of p̃(·) from the p(·) at each time. Bounding the KL
of the variational Bayes posterior and the exact posterior from above implies that the variational Bayes
posterior will be very close to the exact posterior.

Aggregate Analysis

Table 5.1 shows the average coverage rates of forecasts across all series and the entire test data time
period Ttest = 1,368:3,411. Forecast intervals from the benchmark WDLM are broadly similar to those
from the SGDLM without IS-VB decoupling/recoupling (steps D and E of Section 5.2; indicated as “no
IS-VB” in the table). The full SGDLM analysis using the importance sampling/variational Bayes strategy
(indicated simply as “IS-VB” in the table) is more accurate–across all coverage levels– than the analysis
that does not use the IS-VB strategy.

Forecast interval 99.0% 95.0% 90.0% 80.0% 50.0% 20.0% 10.0%
IS-VB 98.4% 95.6% 92.4% 85.5% 59.7% 27.2% 14.4%

no IS-VB 99.1% 97.6% 96.0% 92.4% 76.3% 41.8% 23.5%
WDLM 99.2% 98.2% 97.0% 94.4% 79.7% 43.4% 24.4%

Table 5.1: Coverage of centered forecast intervals across all series j = 1:m and the entire test data time
period Ttest.

Close-Up Analysis of Individual Stocks

We now focus on series-specific forecasting performance for stock returns of six well-known companies:
Apple, Bank of America, General Electric, McDonald’s, Pfizer and Starbucks.
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Trend. Figure 5.2 shows the 60-day tracking moving average of the daily log returns, comparing em-
pirical trends with those forecast under the SGDLM with IS-VB, the SGDLM without IS-VB, and under
the WDLM. The three models perform very similarly. A more complex model with series-specific predic-
tors xjt would lead to noticeable performance improvement of the SGDLMs relative to the WDLM, as
the latter requires the same predictors across all series j = 1:m. We see no obvious advantage of using
the posterior decoupling/recoupling in this aspect of the analysis. This is to be expected: the impor-
tance sampling weights are defined by |I − Γt|, and these values are not affected by values of the trend
parameters; as a result, the marginal posteriors will be adequately estimated without the IS-VB steps.

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
Apple Inc

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
Bank of America Corp

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
General Electric Co

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
McDonald’s Corp

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
Pfizer Inc

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
Starbucks Corp

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
Apple Inc

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
Bank of America Corp

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
General Electric Co

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
McDonald’s Corp

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
Pfizer Inc

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.1

0

0.1

0.2
Starbucks Corp

Trend Volatility

Figure 5.2: Comparison of the realized 60 day moving average/volatility and forecast returns/volatilities.
The observed returns are in gray, the observed trend is in black, the results from the WDLM analysis are
in green, these from the full SGDLM analysis are in red, and those from analysis without VB are in blue.

Volatility. We represent volatility via standard deviations of returns. Figure 5.2 overlays the observed
60-day tracking moving average of volatility for the six selected stocks, with volatilities as estimated
from our analyses. The volatility forecasts from SGDLM analysis with and without IS-VB track each
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other closely until the onset of the financial crisis in the fall of 2008. Thereafter, without IS-VB– i.e.,
ignoring the cross-series constraints– the volatility forecasts skyrocket and never return to historically
normal levels. In stark contrast to the positive, the full SGDLM analysis generates forecast volatilities
in extremely good agreement with the empirically evaluated levels, before, throughout and after the
financial crisis and recessionary years. Volatility forecasts from the 400-dimensional WDLM are compar-
atively unresponsive to changes over time, and just do not reflect key aspects of the empirically estimated
volatilities. The WDLM consistently and significantly over-estimates the empirical volatility both before
and after the financial crisis; and, during the period of heightened market stress, the volatility forecasts
do not adequately reflect higher realized volatilities.

Coverage of forecast intervals. Coverage rates of forecast intervals for the six selected companies are
reported in Table 5.2. The results confirm at these individual levels the findings from the aggregate
analysis. While forecast intervals up to 95% tend to be over-estimated by either SGDLM, the IS-VB
decoupling/recoupling analysis generally improves forecasting performance, while also yielding more
precise forecast intervals. Averaged across the test data period Ttest, the forecast intervals from the WDLM
analysis are similar to those from the analysis of the SGDLM without IS-VB decoupling/recoupling, again
reflecting the aggregate results.

Forecast interval 99.0% 95.0% 90.0% 80.0% 50.0% 20.0% 10.0%
Apple Inc

IS-VB 98.4% 95.3% 92.4% 86.0% 59.4% 26.0% 13.6%
no IS-VB 99.0% 97.9% 95.8% 92.4% 74.3% 40.3% 20.4%
WDLM 99.6% 99.1% 98.1% 95.6% 79.4% 43.7% 23.1%

Bank of America Corp
IS-VB 98.2% 95.1% 91.9% 85.9% 60.9% 27.2% 14.6%

no IS-VB 98.2% 96.1% 94.5% 91.3% 79.1% 51.3% 30.9%
WDLM 97.8% 96.1% 94.6% 91.0% 80.0% 47.0% 26.3%

General Electric Co
IS-VB 98.2% 94.7% 91.1% 83.9% 58.6% 25.8% 12.9%

no IS-VB 98.9% 97.5% 95.2% 92.2% 77.4% 44.9% 25.6%
WDLM 98.7% 98.0% 96.8% 94.0% 80.9% 45.5% 24.9%

McDonald’s Corp
IS-VB 98.5% 96.1% 92.8% 86.4% 59.3% 26.5% 13.3%

no IS-VB 99.1% 98.4% 96.6% 92.9% 73.7% 38.6% 20.3%
WDLM 99.7% 99.2% 98.5% 97.1% 82.3% 44.2% 24.7%

Pfizer Inc
IS-VB 98.5% 95.5% 92.3% 85.4% 60.5% 27.0% 14.1%

no IS-VB 99.6% 98.0% 96.6% 93.0% 77.5% 40.7% 21.0%
WDLM 99.5% 98.8% 98.1% 95.4% 80.6% 43.5% 23.9%

Starbucks Corp
IS-VB 98.2% 95.5% 92.7% 86.0% 60.3% 27.4% 13.9%

no IS-VB 98.8% 97.0% 95.7% 92.0% 74.2% 39.7% 21.8%
WDLM 99.2% 98.0% 96.5% 94.0% 76.9% 40.4% 22.3%

Table 5.2: Coverage of centered forecast intervals of individual stock returns averaged over the test data
time period Ttest = 1,368:3,411.

5.4.4 Realized Computation Time

Section 5.3.4 noted theoretical considerations concerning computational loads. That is complemented
here by an empirical assessment based on rerunning multiple analyses using varying numbers of series
m and sizes of the parental sets. Table 5.3 summarizes the empirical run times across several values, in
each case generating N = M = 10,000 posterior and 1−step forecast samples at each time point. The
scaling of the run times is roughly in line with our theoretical estimates, considering some fixed time for
memory transfers and communication overheads for coordinating four GPUs. The times were measured
on a 2012 computer with four NVidia Tesla C2050 GPUs with 448 CUDA cores each.
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pj = 5 pj = 10 pj = 20
Posterior Forecast Posterior Forecast Posterior Forecast

m = 50 0.07 0.07 0.11 0.08 0.20 0.10
m = 100 0.16 0.25 0.21 0.26 0.43 0.32
m = 200 0.50 1.17 0.61 1.20 1.04 1.31
m = 400 2.13 6.75 2.32 6.78 3.22 7.01

Table 5.3: Realized run times (seconds) of SGDLM analysis and forecasting with R = N = 10,000.

5.5 Additional Comments

The multivariate dynamic model formulation via SGDLMs is persuasive in terms of the theoretical ability
to flexibly represent– in state-space forms– the dynamics of individual series coupled with contempo-
raneous, cross-series multivariate dependencies. The framework conceptually allows for scalability to
higher dimensional series and completely frees the modeler from conceptual and technical constraints
encountered in existing models. With that outlook, while also recognizing the inherent opportunities for
model decoupling as part of an overall analysis and with the insight that individual, univariate model
analyses can often come close to representing core aspects of the full multivariate model, we defined the
decoupling/recoupling strategy that builds on importance sampling and variational Bayes to define com-
putationally efficient and practically effective analyses. The computational efficacy arises from massively
distributed computation, for which GPU hardware is ideally suited; we have presented the ideas and key
details of GPU-enhanced computations, and provide freely available software for interested researchers
to follow-up. The practical effectiveness is demonstrated in the 400−dimensional time series study, and
underpinned by the discussion of theoretical questions of importance sampling and variational Bayes/KL
divergence-based approximation of unknowable exact posteriors.

Our analyses show that the SGDLM– with importance sampling and variational Bayes or without– can sig-
nificantly improve model adequacy and forecast accuracy relative to the standard matrix-normal WDLM.
Then, we also show substantial improvements in forecasting performance using SGDLMs with the over-
lay of the IS-VB strategy. Importantly, this latter benefit is realized at reasonable computational costs:
the run-time is only increased by about a third in this case study. On a rather standard 2012 desktop
(with four NVidia Tesla C2050 GPUs having 448 CUDA cores each), posterior updating and forecasting
with N = M = 10,000 Monte Carlo samples at each time step for our 400−dimensional time series
complete in less than 10 seconds per step. This easily allows for real-time analysis in intervals less than
one minute and will scale to several hundreds and low thousands of series on current and emerging
commodity desktop/laptop machines.

Current and future work includes the refinement of our existing Matlab interface, and development of
an R interface to our GPU-accelerated implementation of Bayesian learning and forecasting of SGDLMs.
Current applied and methodological questions under study are questions of parental set selection– which
again must involve a focus on practicalities and move away from a purely theoretical but practically un-
workable “global model averaging” perspective. Here again forecasting performance coupled with inno-
vations in computational strategies will likely be key to practical progress. A further potential direction
is to consider the development of methods of sequential Monte Carlo (SMC), based on particle filtering
and learning concepts, as mooted by a referee. This seems a propitious direction for methodology devel-
opment, especially in view of the potential to alleviate some of the inherent degeneracy issues faced by
SMC methods through the key and central decoupling/recoupling approach we have introduced.

5.A C++/CUDA Implementation Details

We provide an overview of the GPU implementation of the complete filtering/forecasting analysis, not-
ing a number of technical aspects and requirements as well as giving some flavor of the structure of
C++/CUDA programming2.

2Our implementation and code is based on a computer with an NVidia CUDA-enabled GPU with a compute capability of at
least 2.0. Interested users may run the code, so long as CUDA runtime, CUBLAS and CURAND libraries of Version 5.5 or newer
are installed. We also have a user-friendly Matlab interface compatible with Matlab versions as early as R2010a; though the
C++/CUDA is free-standing, some researchers may be interested in accessing GPU facilities via Matlab.
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5.A.1 Key Features of CUDA Implementation

Wherever possible, our implementation uses batched functions from the CUBLAS library to perform the
linear algebra operations for forward filtering and forecasting. Batched functions are a recent innovation
introduced into the CUBLAS library. They accelerate operations on a large number of small matrices by
bundling them into a single function call. This reduces the overhead of initiating many small operations
on the GPU individually. In particular, we use:

• cublasDgemmBatched(...) for batched matrix-matrix multiplications,

• cublasDgetrfBatched(...) for batched LU factorization,

• cublasDgetriBatched(...) for batched matrix inversion.

We developed customized kernels to achieve maximum performance for operations that fall outside the
scope of current batched CUBLAS functions; see below for details.

5.A.2 Multiple Device Parallelization

This presents the key points regarding GPU parallelization using multiple GPU devices. On top of mas-
sively parallel execution of SIMD operations in kernels, CUDA streams can be used to organize sequences
of operations. The operations within each stream are executed sequentially, but different streams are exe-
cuted concurrently on the GPU. Furthermore, different streams can be assigned to different GPU devices,
allowing multiple GPU computing. Concurrent execution and data transfers allow the most efficient
usage of GPU resources.

A call to the function cudaSetDevice(k) activates the k-th GPU device. This means all future GPU calls
will be executed on this device until the current device is changed by another call to cudaSetDevice(...).
Our implementation sets up one CUDA stream per GPU. In our importance sampling steps to generate
a posterior sample of size N and then forecast simulation of M samples, each of K GPUs will compute
N/K importance samples and then N/M direct samples; this is parallelization by particles.

The key functions from the CUDA API that organize asynchronous GPU execution are:

• cudaStreamCreate(...) to create a stream,

• cudaMemcpyAsync(...) to asynchronously move data between computer and GPU,

• cudaStreamSynchronize(...) to wait until a stream’s execution is completed,

• cudaStreamDestroy(...) to destroy a stream.

Calls to CUDA kernels, most API function calls, and asynchronous memory copy operations return control
to the host immediately. This allows us to send commands to different GPUs in a for loop and still have
them executed in parallel. However, it is necessary to wait until the operations are completed before
returning results; this is where the function cudaStreamSynchronize(...) comes in. This operates
after the GPU operations that are to be executed in parallel are sent to their respective devices.

Below is an outline of a multiple device parallelized program.

Pseudo Code
1: for GPU device k = 1 : K do
2: Call cudaSetDevice(k) to activate the k-th GPU.
3: Call cudaStreamCreate(stream k) to create a stream on the k-th GPU.
4: Call cudaMemcpyAsync(..., stream k) to asynchronously copy input arguments onto device memory.
5: end for
6: for GPU device k = 1 : K do
7: Call cudaSetDevice(k) to activate the k-th GPU.
8: Call the Variational Bayes posterior estimation subroutine to generate N/K importance samples, and then

the forecasting simulation subroutine to generate M forecast samples.
9: end for

10: for GPU device k = 1 : K do
11: Call cudaSetDevice(k) to activate the k-th GPU.
12: Call cudaMemcpyAsync(..., stream k) to asynchronously copy results to host memory.
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13: end for
14: for GPU device k = 1 : K do
15: Call cudaSetDevice(k) to activate the k-th GPU.
16: Call cudaStreamSynchronize(stream k) to wait until the computations and memory transfers are com-

pleted.
17: Call cudaStreamDestroy(stream k) to destroy the stream on the k-th GPU.
18: end for
19: Combine and post-process the results on the CPU, if applicable.

5.A.3 Generation of Gamma Variates

While the CUDA toolkit provides basic random number generators for the uniform and normal distribu-
tions, it is up to the developer to implement other distributions. Our implementation of a gamma random
number generator uses a standard rejection sampling algorithm [Marsaglia and Tsang, 2000], requiring
one uniform and one normal random number at each step. With expected acceptance probabilities over
90%, running the scheme 2n times to generate n Gamma random numbers will almost certainly suffice.

We generate 2n uniforms and normals with just one call to curandGenerateUniformDouble and curand-

GenerateNormalDouble, respectively. Bundled calls to these CUDA toolkit functions are the most effi-
cient way to generate random numbers on the GPU. Generating enough random numbers for 2n propos-
als leads to highly efficient GPU processing without unnecessary synchronization with the host device.

Specifically, a block of CUDA threads is tasked with generating a batch of k < n gamma random numbers.
The batch size is typically chosen as the maximum number of parallel threads the GPU can evaluate, that
is, k = 512 or k = 1024. That batch size is large enough so that there is going to be at least one rejected
proposal. This means that at least one thread will have to try a second attempt for acceptance. On the
other hand, k is large enough that 2k proposals will yield at least k acceptances.

The architecture of a GPU is such that no thread of a block is available when at least one thread is
busy. The second attempt of at least one thread makes the entire block unavailable for other operations.
Parallel processing of the threads means that it does not cost additional time to let all threads of the
same block generate a second proposal. Furthermore, synchronization within a block is very fast. We
will count the number of acceptances and rejections of the first attempt and fill up the k-size vector of
gamma random variables in the second attempt.

5.A.4 Computing njt in Variational Bayes

In the VB optimization of Section 5.2.2, the degrees-of-freedom parameter njt is defined implicitly by

log(njt + pj − djt)− ψ(njt/2)− (pj − djt)/njt − log(2E[λjt]) + E[log λjt] = 0. (5.16)

Our C++/CUDA program implements a CUDA kernel for the Newton-Raphson method [Atkinson, 1989]
to solve for njt, initialized at ñjt. This uses standard numerical approximations for the digamma and
trigamma functions [Abramowitz and Stegun, 1972], which we implemented for this problem as the
CUDA toolkit does not provide implementations of these functions. These computations are parallelized
over series j = 1:m.

5.A.5 Memory Management

C++/CUDA programming requires proper memory management to avoid segmentation faults as well
as memory leaks. Memory management on GPUs is very similar to memory management on the host
device/CPUs.

Memory is allocated using the malloc or cudaMalloc commands and freed using free or cudaFree. This
is a conceptually trivial task. However, keeping track of all allocated memory poses a real challenge when
more involved software projects branch into different paths. To address this, we developed a universal
and lightweight helper class, memory manager, that automates memory management. This class keeps
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pointers to allocated memory in a C++/boost list and provides methods to allocate, and keep track of,
memory as well as a clear method to free all memory it tracks.

Each function starts its own instance of our memory manager to manage memory that is not to live beyond
the lifetime of that function. At every branch that ends a function, we simply invoke the clear method
of the respective function’s memory manager to free that memory.

Furthermore, there is a global instance of memory manager to manage the large memory blocks needed
for simulation of forecasting and variational Bayes approximation. Allocating and freeing that memory
at every time step t would be prohibitively time-consuming.

5.A.6 Matlab Interface

MathWorks provides a C library, mex.h, to allow the development of a Matlab interface to C, C++ and
CUDA software. This library provides functionality to read Matlab input, write Matlab output and write
Matlab messages.

Recent versions of the Matlab Parallel Computing toolbox have another library for Matlab GPU in-
put/output, mxGPUArray.h, that also allows the allocation and freeing of GPU memory. However, in
contrast to our memory manager, Matlab’s memory tracking only avoids memory leaks when Matlab
ends, not while the function is active.

We decided against the use of the Matlab GPU library for three reasons. First, up to Matlab R2013b,
Matlab ships with an outdated version of the CUDA toolkit library that does not yet provide the latest
batch parallelism functionality that we use. Second, by not relying on the Matlab GPU library, our
functions can be compiled and run by users that do not license the parallel computing toolbox. Third,
we add backwards compatibility to earlier versions of Matlab that do not come with GPU capabilities by
programming the GPU interface ourselves. This has been tested with Matlab versions as early as R2010a
without any problems. We will of course revisit the questions as new versions of Matlab come along.

5.B Details and Proofs on Our Variational Bayes Strategy for Poste-
rior Decoupling

This section provides an extensive derivation of our variational Bayes posterior decoupling strategy that
underlies the posterior decoupling scheme used in Section 5.2.

Unlike the univariate DLM and the multivariate Wishart DLM, the simultaneous graphical DLM does
not have conjugate priors, which are needed for analytical forward filtering. Our fast forward filtering
scheme (Section 5.2) emulates conjugacy by approximating the exact time t posterior distribution of
Θt and Λt by an independent product of normal-gamma distributions using a slight adaptation of the
variational mean field method of Section 4.6.1.

Priors and Posteriors

Recall from Section 5.2.2 that the time t prior density p(Θt,Λt|It,Dt−1) of Θt and Λt in the simultaneous
graphical DLM is

p(Θt,Λt|It,Dt−1) =
∏
j=1:m

pjt(θjt, λjt|It,Dt−1), (5.17)

where, for each j = 1:m, pjt(θjt, λjt|It,Dt−1) is the density of the within-series normal-gamma prior

(θjt, λjt|It,Dt−1) ∼ NG(ajt,Rjt, rjt, cjt). (5.18)

The (exact) time t posterior density of Θt and Λt results as

p(Θt,Λt|Dt) ∝ |I− Γt|
∏
j=1:m

p̃jt(θjt, λjt|Dt), (5.19)
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where p̃jt is the density function of a normal-gamma distribution NG(m̃jt, C̃jt, ñjt, s̃jt) and Γt is a
function of Θt; the posterior parameters m̃jt, C̃jt, ñjt, and s̃jt follow from the updating equations in
Section 4.3.2.

Emulating Distribution and Kullback-Leibler Divergence

We choose the class of emulating posterior distributions q to be of the same form as the prior distribution,

q(Θt,Λt|Dt) =
∏
j=1:m

qjt(θjt, λjt|Dt) (5.20)

where, for each j = 1:m, qjt denotes the density function of the j-th component

(θjt, λjt|Dt) ∼ NG(mjt,Vjt, njt, sjt), (5.21)

and mjt, Vjt, njt, and sjt are the variational parameters.

The Kullback-Leibler divergence KLp|q of the exact posterior distribution p from the emulating posterior
distribution q follows as

KLp|q = Eq[log(q(Θt,Λt|Dt)/p(Θt,Λt|Dt))] (5.22)

= c+ Eq[log |I− Γt|] +
∑
j=1:m

Eq[log(qjt(θjt, λjt|Dt)/p̃jt(θjt, λjt|Dt))],

while the Kullback-Leibler divergence KLq|p of the emulating posterior distribution q from the exact
posterior distribution p is

KLq|p = Ep[log(p(Θt,Λt|Dt)/q(Θt,Λt|Dt))] (5.23)

= c+ Ep[log |I− Γt|] +
∑
j=1:m

Ep[log(p̃jt(θjt, λjt|Dt)/qjt(θjt, λjt|Dt))]

= c̃+
∑
j=1:m

Ep[log(p̃jt(θjt, λjt|Dt)/qjt(θjt, λjt|Dt))].

Optimization of the Variational Parameters

We observe that the problem of minimizing (5.23) reduces to minimizing each summand

Ep[log(p̃jt(θjt, λjt|Dt)/qjt(θjt, λjt|Dt))] (5.24)

individually, given that each component set of variational parameters mjt, Vjt, njt, and sjt affects ex-
actly one such summand; the expectation of the determinant |I − Γt| is under p, and so independent
of the variational parameters. On the other hand, minimizing (5.22) requires minimization of the ex-
pectation of the determinant |I − Γt| under q, which is substantially more complex. For this reason,
we minimize KLq|p in (5.23) instead of KLp|q in (5.22). Note that the optimization rule in (5.23) also
guarantees that the exact posterior distribution p is selected, if it is contained in the class of emulating
distributions q.

Using Leibniz’s rule for differentiation under the integral, the partial derivative of KLq|p with respect to
any variational parameter xjt ∈ {mjt,Vjt, njt, sjt} follows as

∂

∂xjt
KLq|p = −Ep

[
∂

∂xjt
qjt(θjt, λjt|Dt)

qjt(θjt, λjt|Dt)

]
, (5.25)

where the density function qjt is

qjt(θjt, λjt|Dt) =fN(mjt,Cjt/(sjtλjt))(θjt|λjt)× fG(njt/2,njtsjt/2)(λjt)

=(2π)−
pj
2

∣∣∣∣ Cjt

sjtλjt

∣∣∣∣− 1
2

exp

(
−1

2
(θjt −mjt)

′
(

Cjt

sjtλjt

)−1

(θjt −mjt)

)

×
(njtsjt

2

)njt/2
Γ(

njt
2 )

λ
njt/2−1
jt exp

(
−njtsjt

2
λjt

)
.
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Derivation of mjt.

0 = − ∂

∂mjt
KLq|p

= Ep

[
∂

∂mjt
qjt(θjt, λjt|Dt)

qjt(θjt, λjt|Dt)

]

= Ep


∂

∂mjt
exp

(
− 1

2 (θjt −mjt)
′
(

Cjt

sjtλjt

)−1

(θjt −mjt)

)
exp

(
− 1

2 (θjt −mjt)′
(

Cjt

sjtλjt

)−1

(θjt −mjt)

)


= Ep

[(
Cjt

sjtλjt

)−1

(θjt −mjt)

]
= sjtCjt (Ep[λjtθjt]− Ep[λjt]mjt)

⇔mjt =
Ep[λjtθjt]

Ep[λjt]
.

Derivation of Cjt. Using rules of matrix calculus from Petersen and Pedersen [2008],

0 = − ∂

∂Cjt
KLq|p

= Ep

[
∂

∂Cjt
qjt(θjt, λjt|Dt)

qjt(θjt, λjt|Dt)

]

= Ep


∂

∂Cjt
|Cjt|−

1
2 exp

(
− 1

2 (θjt −mjt)
′
(

Cjt

sjtλjt

)−1

(θjt −mjt)

)
|Cjt|−

1
2 exp

(
− 1

2 (θjt −mjt)′
(

Cjt

sjtλjt

)−1

(θjt −mjt)

)


= Ep

[
−1

2

(
I− sjtλjtC−1

jt (θjt −mjt)(θjt −mjt)
′)C−1

jt

]
= −1

2

(
I− sjtC−1

jt Ep [λjt(θjt −mjt)(θjt −mjt)
′]
)
C−1
jt

⇔ I = sjtC
−1
jt Ep [λjt(θjt −mjt)(θjt −mjt)

′]

⇔ Cjt = sjtEp[λjt(θjt −mjt)(θjt −mjt)
′]

=: sjtVjt.
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Derivation of sjt.

0 = − ∂

∂sjt
KLq|p

= Ep

[
∂
∂sjt

qjt(θjt, λjt|Dt)
qjt(θjt, λjt|Dt)

]

= Ep
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∂sjt

s
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2 exp
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2
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)
s
njt
2
jt exp

(
−njtsjt2 λjt

)


= Ep

[
njt + pj

2

1

sjt
− λjt

2

(
(θjt −mjt)

′C−1
jt (θjt −mjt) + njt
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=

1

2

(
njt + pj
sjt

− Ep
[
λjt(θjt −mjt)

′C−1
jt (θjt −mjt)
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)

⇔ sjt =
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Ep
[
λjt(θjt −mjt)′C

−1
jt (θjt −mjt)

]
+ njtEp [λjt]

=
njt + pj

1
sjt
Ep
[
λjt(θjt −mjt)′V

−1
jt (θjt −mjt)

]
+ njtEp [λjt]

=:
njt + pj

1
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djt + njtEp [λjt]

⇔ sjt =
njt + pj − djt
njtEp [λjt]

.

Derivation of njt.

0 = − ∂

∂njt
KLq|p

= Ep

[
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=
1

2

(
ψ
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− Ep [log λjt] + sjtEp [λjt]− log
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(njt

2
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− Ep [log λjt] + sjtEp [λjt]− log

(njtsjt
2

)
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= ψ
(njt

2

)
− Ep [log λjt] +
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njtEp [λjt]

Ep [λjt]− log

njt njt+pj−djtnjtEp[λjt]

2

− 1

= ψ
(njt

2

)
− Ep [log λjt] +

pj − djt
njt

− log(njt + pj − djt) + log(2Ep[λjt]).

Summary. The optimized variational parameters can be calculated in the following order.

• mjt = Ep[λjtθjt]/Ep[λjt],

• Vjt = Ep[λjt(θjt −mjt)(θjt −mjt)
′],
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• djt = Ep[λjt(θjt −mjt)
′V−1

jt (θjt −mjt)],

• njt is the unique value that satisfies
log(njt + pj − djt)− ψ(njt/2)− (pj − djt)/njt − log(2Ep[λjt]) + Ep[log λjt] = 0,

• sjt = (njt + pj − djt)/(njtEp[λjt]), and

• Cjt = sjtVjt.

Here all expectations Ep[·] are with respect to the exact posterior distribution and can be easily evaluated,
for example, using importance sampling (Section 4.6.2).
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Chapter 6

Bayesian Forecasting and Portfolio
Decisions Using Simultaneous
Graphical Dynamic Linear Models

The contents of this chapter have been submitted for publication in Gruber and West [2015a]. This
chapter is a lightly edited reproduction of selected contents of the submitted manuscript.

This chapter develops a customized SGDLM focused on a case study in financial forecasting and portfolio
optimization with 400 daily S&P 500 stock prices over 2007–2014. It includes new methodological
contributions in model selection for SGDLMs and Bayesian decision analysis/portfolio decisions. The case
study includes benchmarks of forecast performance as well as portfolio return and risk metrics against
the standard multivariate Wishart DLM (WDLM; Section 4.4). This is the appropriate benchmark as it has
been a standard model in Bayesian financial time series and portfolio analysis—in industry and academic
research—for years, being quite flexible and trivially implemented, the latter key to scaling. Section 6.1
introduces a novel and practicable selection strategy for the parental sets. Section 6.2 discusses several
quantitative investment rules based on various portfolio utility functions of practical interest. Section 6.3
presents a portfolio manager’s view of managing a 400-asset portfolio using the SGDLM combined with
such rules to drive investment decisions. Section 6.4 concludes with final remarks.

6.1 Selection of Simultaneous Parental Sets: The Bayesian Hotspot

As introduced in Gruber and West [2015b], the SGDLM framework assumes knowledge of the simulta-
neous parental sets sp(j). We need a systematic approach to selecting these sets and address this here
with a novel, natural strategy.

We will typically have |sp(j)| much smaller than m in problems where m is at all large. With m = 400 in
our S&P case study (Section 6.3), there are many patterns of time-varying dependencies among stocks,
but it is inappropriate to expect real practical value in estimating co-volatilities from models with more
than, say, 20 or so simultaneous predictors. That is, the implied dynamic graphical model—represented
by zeros/non-zeros in Γt and Ωt—will typically be quite sparse. Collinearities among potential simul-
taneous parental series will typically mean that many possible choices of a (smallish) parental set for
any one series will yield similar predictions, so working with one set of selected sp(j) is desirable. Any
specific choice can be updated periodically over time, and the models adapted and refitted, as desired.

A useful strategy is to select the sp(j) based on analysis of prior training data using a standard, triv-
ially computed analysis via a WDLM. An extension is to run a WDLM in parallel to the SGDLM, and
therefore have an opportunity to potentially change the parental set choices from time to time, based on
relationships indicated by the flexible and adaptive but, for forecasting, likely inferior WDLM analysis.
This discussion underlies our use of what we term the “Bayesian Hotspot,” the name being suggested by
visualization of the proposed automatic strategy for parental set selection.

93
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The Bayesian Hotspot selection mechanism operates on an initial set of training data, prior to the full
analysis of the test data. A multivariate WDLM is applied to the training data; this matrix discount
learning DLM can be chosen to have the same covariates used in the SGDLM, or use just a local-level
model (Ft = 1 for all t) for simplicity. The WGDLM estimates the full, m × m time-varying precision
matrix Ωt without any constraints; there are no zeros in Ωt, implying that each series is conditionally,
contemporaneously dependent on all the other m− 1 series. Off-diagonal elements in row j are, up to a
constant given by the reciprocal of the (j, j) diagonal element, implied conditional regression coefficients
of these m − 1 series in predicting yjt at time t; hence, larger values are candidates for inclusion in a
selected, small parental set. At any time t, the implied Wishart prior (Ωt|Dt−1) ∼ W (rt,Bt) in the
WDLM is trivially simulated, and a large Monte Carlo sample can then be used to compute the implied
prior ranking of the absolute values of the m−1 off-diagonal entries in row j. Choosing a target parental
set size |sp(j)|, we then select this number of the most highly ranked series. A heat-map of the prior
rankings shows the simultaneous parents as the “hottest spots” when visualized, hence the terminology.

6.2 Bayesian Portfolio Analysis

Part of our comparison of SGDLM and WDLM approaches in the S&P case study in Section 6.3 involves
assessments of a range of dynamically optimized and updated portfolios, considering several practi-
cally relevant variants of fundamental mean-variance portfolio rules [Markowitz, 1952, Aguilar and
West, 2000, Carvalho and West, 2007, Quintana et al., 2003, 2010, Prado and West, 2010, Chapter 10,
Section 4.7]. The analysis models daily log-returns on stocks and sequentially updates the portfolio
allocation across these stocks via Bayesian decision analysis using chosen portfolio utility functions.
Mean-variance optimization aims to control risk while aiming for positive returns, and modified utilities
overlay additional, practically relevant constraints. In addition to specific target return portfolios, we
consider utility functions that incorporate a benchmark index and require that optimized portfolios be,
in expectation, uncorrelated with the benchmark in addition to target return and risk components.

Our models are applied to the vector of daily returns yt. In all models, the mean and variance matrix of
the one-step ahead forecast distribution p(yt|Dt−1) are key ingredients. Denote these by pt = E(yt|Dt−1)
and Pt = V (yt|Dt−1). As noted in Section 4.4, these moments are trivially computed in a WDLM, as the
forecast is a multivariate T distribution; in the SGDLM, they are computed via Monte Carlo simulation
based on the recoupled importance sampling analysis at each time t. A portfolio weight vector wt =
(w1,t, . . . , wm,t)

′ defines the allocation of capital across the m assets. The decision is to choose wt at
market close on day t− 1, and then act on that reallocation; on day t, the new closing prices are realized
and the process repeats on the following day. Based on the forecast distribution of returns, the implied
one-step ahead forecast mean and variance of the portfolio for any specific weight vector wt are w′tpt
and w′tPtwt, respectively.

Minimum variance portfolio. The standard or baseline minimum variance portfolio chooses wt as
that vector minimizing the expected portfolio variance wtPtwt subject 1′wt = 1. The optimal weight
vector is trivially computed. More practically relevant portfolio strategies overlay additional constraints,
as follows.

Target return mean-variance portfolio. The original [Markowitz, 1952] mean-variance portfolio rule
minimizes the risk—again in terms of portfolio variance—for a given, desired target return τt. The
relevant decision analysis simply modifies the minimum variance portfolio optimization by adding the
constraint w′tpt ≥ τt, or its practical equivalent w′tpt = τt. Note that the targets τt can vary over time,
and be chosen adaptively by either direct specification or an automated rule.

Benchmark-neutral portfolio. This refinement mandates that the portfolio be uncorrelated, in expec-
tation, at each step with a selected benchmark time series. To implement this, joint one-step ahead
forecast distributions are required for the assets of interest together with the benchmark series. With
no loss of generality, we do this by taking the selected benchmark series as j = 1. The relevant de-
cision analysis then simply modifies the minimum variance and/or target return portfolio optimization
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by adding the constraints w1t = 0 and w′tP·1t = 0 where P·1t is the first column of Pt containing the
covariances of all series with the benchmark.

6.3 Case Study: S&P 500 Stocks

6.3.1 Context and Data

We use data on the S&P 500 stock market index (SPX) and 400 S&P 500 member stocks that have
been continuously listed since 2002. We are interested in—among other things—comparisons using
benchmark neutral portfolios, and take SPX as the benchmark; our models are thus for the m = 401-
dimensional vector of returns comprising SPX as the first entry, followed by the 400 stocks. We use
additional series as predictors: the VIX volatility index (VIX) and the ten year treasury yields (TNX).
The SPX data and stock data are quoted in daily log-returns yt = log(pricet/pricet−1). The VIX and
TNX data are the levels of the indices: annualized implied 30-day volatility and annualized interest rate,
respectively. The data covers the years 2002 through Q3-2013; the years 2002–2006 are used as training
data, and the remaining years are used as test data.

Our comparative analyses assume that there are no bid-ask spreads and that the cost of all trades is 20
basis points of the traded volume. We operate under the assumption that all trades can be executed
at the daily closing price and that short-selling is possible. Our calculations of annualized returns and
volatilities assume that a year consists of 252 trading days.

6.3.2 Forecast Model Specifications

We use the WDLM and SGDLM from Sections 4.4 and 5.1 in combination with different external predic-
tors and discount factors. Table 6.1 provides a full summary of the models used.

External predictors. For clarity, denote the S&P 500 index log-returns by ySPX,t ≡ y1t. The simplest
DLM form is the local-level model, specified via

Fjt = Ft = 1 (6.1)

for all j = 1:m and t. We use this as a base model, and study several extensions hoping to achieve better
forecasting performance. The first extension of the base model is a two-factor approach using the time
t− 1 log-return ySPX,t−1 of the S&P 500 index as a momentum factor, and the time t− 1 10-year treasury
yield TNXt−1 as an interest rate factor. That is,

Fjt = Ft = (1, ySPX,t−1,TNXt−1)′. (6.2)

A second extension is a three-factor model using short-term momentum changes of the S&P 500 index
∆ySPX,t−1 := ySPX,t−1 − ySPX,t−2, one-day changes of the 10-year treasury yield ∆TNXt−1 := TNXt−1 −
TNXt−2, and two-day changes of the VIX index level (∆2VIXt−1 := VIXt−1 − VIXt−3). Thus

Fjt = Ft = (1,∆ySPX,t−1,∆TNXt−1,∆
2VIXt−1)′. (6.3)

The third extension uses smoothed momentum changes of the S&P 500 index in combination with two-
day changes of the VIX index levels, namely ∆2VIXt−1. In this case,

Fjt = Ft = (1, 0.5
∑
k=1:2

ySPX,t−k − 0.2
∑
k=1:5

ySPX,t−k,∆
2VIXt−1)′. (6.4)

These predictors Ft can be used with the WDLM as well as the SGDLM, given that they are not series-
specific. For use only with the SGDLM, we modify the last variant of (6.4) to use the smoothed momen-
tum changes of each series j = 1:m instead of the changes of the S&P 500 index. That is,

Fjt = (1, 0.5
∑
k=1:2

yj,t−k − 0.2
∑
k=1:5

yj,t−k,∆
2VIXt−1)′. (6.5)
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Model Predictors Discount Factors
WDLM 1 (6.1) β = 0.980, δ = 0.990
SGDLM 1 (6.1) βj = 0.975, δjφ = 0.980, δjγ = 0.990
WDLM 2 (6.2) β = 0.980, δ = 0.998
SGDLM 2 (6.2) βj = 0.975, δjφ = 0.985, δjγ = 0.990
WDLM 3 (6.3) β = 0.980, δ = 0.998
SGDLM 3 (6.3) βj = 0.975, δjφ = 0.985, δjγ = 0.990
WDLM 4 (6.4) β = 0.980, δ = 0.998
SGDLM 4 (6.4) βj = 0.975, δjφ = 0.985, δjγ = 0.990
SGDLM 5 (6.5) βj = 0.975, δjφ = 0.985, δjγ = 0.990

Table 6.1: Dynamic models and discount factors compared for S&P study.

6.3.3 Training Data Analysis

An initial period of data from 2002 through 2006 was used for training analysis to guide choice of
discount factors and initial parental sets. Analysis of WDLMs and SGDLMs with varying specifications
allows for selection of those demonstrating the best predictive performance—in terms of responsiveness
to changing market levels and resilience to individual outliers—during that period. In some cases where
varying the discount factors and parental sets impacts on forecasting performance only marginally, we
selected those generating highest risk-adjusted return for portfolio rule $1 (see Table 6.4) during the
training data period.

For the WDLM, we investigated β ∈ {0.980, 0.998} and δ ∈ {0.990, 0.998}; for the SGDLM we investigated
combinations of βj ∈ {0.975, 0.990}, δjφ ∈ {0.980, 0.985, 0.990} and δjγ ∈ {0.990}. The selection of
δjγ = 0.990 follows previous analyses [e.g. Section 5 in Gruber and West, 2015b]. The Bayesian Hotspot
strategy was used to identify initial sets of 20 simultaneous parents for each series, and the parental sets
and starting priors are subsequently updated every year as detailed in the next section.

From the training data analysis with WDLMs, we selected the Wishart volatility discount factor β = 0.98,
and WDLM state discount factor δ ∈ {0.990, 0.998} depending on the choice of predictors Ft. For the
SGDLM, we selected univariate volatility discount factors βj = 0.975, external predictor state discount
factors δjφ ∈ {0.980, 0.985} depending on the choice of predictors Fjt, and parental predictor state
discount factors δjγ = 0.990 for all series j = 1:m. The external predictors used in (6.2)–(6.5) contain
time-varying effects, so that high discount factors δ and δjφ were appropriate choices for models WDLM
2–4 and SGDLM 2–5. The local-level models, WDLM 1 and SGDLM 1, required smaller discount factors
δ and δjφ to capture time-varying trends by allowing for more stochastic variation in the states Θt of the
WDLM and φjt of the SGDLM. Models and parameters are summarized in Table 6.1.

6.3.4 Sequential Analysis of Time Series

The test data period is from the start of 2007 through Q3-2013. During this period, the SGDLMs are
set to autonomously update their simultaneous parents and starting priors on the first trading day of
each year. Denote by t1,y the first trading day of the new year, and write t1,y−1 and tend,y−1 for the first
and last trading days of the previous year, respectively. The simultaneous parents for each new year
are selected by the Bayesian Hotspot (Section 6.1) using the step-ahead prior for t1,y of the local-level
WDLM on the last trading day of the previous year, tend,y−1. We use the same local-level WDLM to inform
the selection of the parental sets of all SGDLMs to keep the effects of different covariance/dependence
models separate from the effect of different mean-level predictors.

At the start of each year, priors for the revised parental set models are specified by re-filtering the previous
year’s observations yt for t = t1,y−1:tend,y−1 using the new simultaneous parents; here the analyses are
started on the first trading day of the previous year, t1,y−1, with relatively diffuse initial priors informed
by the posterior parameters of the SGDLM of the previous year.



6.3. CASE STUDY: S&P 500 STOCKS 97

2007 2008 2009 2010 2011 2012 2013
SPX SPX SPX SPX SPX SPX SPX
C UN ABT UN AAPL UW AAPL UW AAPL UW ABC UN BCR UN
EBAY UW AEE UN ABT UN AEE UN BCR UN AXP UN BF/B UN
EQR UN AFL UN APD UN BEN UN CPB UN BCR UN BMY UN
EXC UN APD UN BEN UN BLL UN DOV UN BK UN CPB UN
HES UN BBT UN BLL UN DOV UN EBAY UW CPB UN EBAY UW
HRS UN BHI UN EBAY UW EBAY UW EIX UN D UN INTC UW
IFF UN COP UN EIX UN EIX UN HCN UN DNB UN JNJ UN
MKC UN DOV UN HES UN ETR UN INTC UW DOV UN MCK UN
MRO UN EBAY UW JNJ UN HD UN JPM UN EBAY UW MSFT UW
MTB UN GIS UN MAS UN INTC UW KO UN INTC UW NI UN
NSC UN LMT UN MKC UN L UN L UN KO UN OMC UN
PCP UN NSC UN MTB UN MSFT UW MSFT UW MCK UN PCLN UW
PEP UN PX UN NEE UN NEE UN NI UN MSFT UW PG UN
PX UN SIAL UW PG UN NSC UN PG UN NI UN RSG UN
SIAL UW SO UN SIAL UW PKI UN PKI UN PG UN SO UN
SO UN TEG UN SO UN T UN TMO UN SO UN TROW UW
STI UN TMO UN TEG UN TMO UN TROW UW TMO UN TRV UN
T UN UPS UN UNP UN VZ UN VTR UN XEL UN XEL UN
YHOO UW XL UN UPS UN XEL UN XEL UN XOM UN XOM UN

14 new 12 new 13 new 9 new 8 new 8 new

Table 6.2: Simultaneous parental sets of Amazon from 2007 through 2013 in model SGDLM 1. New
parents are in bold and parents that exit in the following year are italicized.

6.3.5 Aspects of Selected Simultaneous Parents

Table 6.2 shows the simultaneous parental sets for Amazon stock from 2007 through 2013. During this
time, on average 10.7 out of 20 parents were replaced every year; furthermore, there were three tech-
nology stocks—Apple, ebay, Intel and Microsoft—that were more persistent than the other simultaneous
parents, which is a result consistent with the nature of the companies and the dynamics of their stock
valuations over this period. Across all 400 stocks, on average 11.7 out of the 20 simultaneous parents
were replaced each year. In the heart of the financial crisis—2008 through 2010—average turnover of
parents across the 400 stocks was 13.0 of the 20, markedly higher than the average turnover of 10.5
during the next three years, 2011 through 2013.

6.3.6 Trends, Volatilities and Co-Volatilities

Point forecasts from the local-level models WDLM 1 and SGDLM 1 are relatively smooth, and similar to
the 60-day moving average line, as should be expected; see Figure 6.1. The daily, time-varying predictors
Fjt and Ft of the more structured models induce increased volatility in predictions. A visual analysis of
the figures does not reveal obvious differences among forecasts means, though very small differences—
that may be hard to discern visually—can, of course, be practically relevant in terms of their impact
on portfolio outcomes. Table 6.3 reports mean-squared errors and correlations with observed values
as metrics of forecast quality; the WDLM shows slightly smaller aggregate mean-squared errors than
the SGDLM, but no general statement can be made about the correlations of the forecasts and realized
returns.

Estimated volatilities of all WDLMs substantially over-estimate the realized volatilities and adapt only
slowly to changing realized volatilities. In contrast, volatilities inferred from all SGDLMs are very close
to the realized volatilities and are much more responsive to changing volatility levels. More importantly,
and justifying the sparse simultaneous parental structure of the SGDLM, the forecasts of across-series
co-volatilities are improved very substantially; see Figure 6.1, for example.
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Figure 6.1: The left and right columns show the log-returns and volatilities of the S&P 500 and Amazon,
respectively; the central column shows the co-volatilities. Observed returns are in gray, the 60-day
moving averages, volatilities and co-volatilities are in black, and forecasts from the WDLM and SGDLM
are in green and blue, respectively.
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WDLM 1 WDLM 2 WDLM 3 WDLM 4 SGDLM 1 SGDLM 2 SGDLM 3 SGDLM 4 SGDLM 5
20

02
–

20
06

Corr. SPX -1.1% 0.8% -3.4% 4.8% -2.1% -3.6% -3.9% 4.1% 3.8%
Corr. all -3.6% -0.8% -0.7% 1.4% -3.6% -1.2% -0.1% 0.8% 0.7%
MSE SPX 1.00e-4 1.00e-4 1.00e-4 0.99e-4 1.00e-4 1.02e-4 1.03e-4 1.01e-4 1.01e-4
MSE all 0.44e-3 0.43e-3 0.44e-3 0.43e-3 0.44e-3 0.45e-3 0.45e-3 0.44e-3 0.45e-3

20
07

–
20

13

Corr. SPX -1.4% 8.6% 11.4% 8.4% -0.2% 4.1% 14.4% 11.8% 12.7%
Corr. all -2.8% 2.5% 4.9% 3.5% -2.2% 0.9% 6.8% 5.9% 7.2%
MSE SPX 2.16e-4 2.14e-4 2.14e-4 2.15e-4 2.17e-4 2.21e-4 2.17e-4 2.18e-4 2.19e-4
MSE all 0.63e-3 0.63e-3 0.63e-3 0.63e-3 0.63e-3 0.65e-3 0.65e-3 0.64e-3 0.65e-3

Table 6.3: Summary of forecast metrics: correlation of step-ahead forecasts with realized values and
mean-squared errors of forecasts; “SPX” refers to the S&P 500 index and “all” refers to the 400 individual
stocks.

Strategy Description
$1 target return τt = 10%/252
$2 target return τt = 15%/252
$3 target return τt = µ̂SPX,t + 5%/252
$4 SPX neutral, target return τt = 10%/252
$5 SPX neutral, target return τt = 15%/252
$6 SPX neutral, target return τt = µ̂SPX,t + 5%/252

Table 6.4: Portfolio investment strategies compared in S&P study.

6.3.7 Portfolio Comparisons

We analyze the optimization-based investment strategies summarized in Table 6.4. We paired each of
the nine models in Table 6.1 with the quantitative investment strategies in Table 6.4. The investment
analysis proceeded as follows for each model-strategy pair: (i) at market close on day t − 1, update the
model distributions based on the observation yt−1; (ii) compute or simulate the one-step ahead forecast
distribution for yt; solve the portfolio optimization and adjust the portfolio investment weight vector wt

to the new, optimized value; (iii) move to time t, observe and record the realized returns, and continue
with t→ t+ 1.

Realized portfolio returns and estimated volatilities of the investment strategies in Table 6.4 are sum-
marized in Table 6.5. Here we add a nmiss, the number of years during which the target return was
not achieved (on an annualized basis). Across all investment strategies, superior portfolio performance
in nominal as well as risk-adjusted terms is achieved by using forecasts from the SGDLM to inform in-
vestment decisions. Furthermore, adding the zero-correlation constraint to the portfolio optimization
effectively reduces the realized correlations of the portfolios to the S&P 500, and increases the nominal
and risk-adjusted returns. An interesting finding is that the best-performing models in terms of MSE or
correlation of forecasts and realized values (Table 6.3) are not the best models to use for investment
decisions. This latter point is consistent with experience in other areas of statistical and decision analytic
work, where utility-guided selection of models can lead to different model structures than those favored
on purely statistical metrics [e.g. Jones et al., 2005, Carvalho and West, 2007].

Figure 6.2 visualizes the portfolio value processes, in terms of cumulative returns, of the best-performing
WDLM and SGDLM models using portfolio investment strategies $3 and $6. Under strategy $3 using
forecasts from model SGDLM 4, $1,000 invested at the beginning of 2007 would have grown to $2,300
after accounting for trading costs. Based on forecasts from model WDLM 2, the same investment strategy
would have generated only $1,070. Adding the SPX benchmark neutrality constraints further improved
the portfolio performance, realizing growth of $1,000 to $2,575 and $1,089 under these two models,
respectively. To put these numbers in perspective: a passive investment in the S&P 500 would have
grown into $1,238 during the same time period. This example shows that the SGDLM is a superior
model for use in decision analysis, and its adoption can lead to significant monetary gains.
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WDLM 1 WDLM 2 WDLM 3 WDLM 4 SGDLM 1 SGDLM 2 SGDLM 3 SGDLM 4 SGDLM 5
Investment Strategy $1

20
07

–
20

13
µ -0.96% -0.34% 0.43% -0.12% 10.09% 8.63% 7.11% 10.91% 11.25%
σ 11.94% 11.81% 11.72% 11.79% 14.08% 13.10% 12.81% 13.12% 13.41%
µ/σ -0.08 -0.03 0.04 -0.01 0.72 0.66 0.56 0.83 0.84
ρSPX 37.62% 37.41% 39.06% 38.20% 38.27% 35.27% 34.09% 35.81% 33.55%
nmiss 5/7 4/7 5/7 5/7 3/7 3/7 3/7 3/7 3/7

Investment Strategy $2

20
07

–
20

13

µ -0.46% -0.15% 0.36% -0.39% 9.94% 8.98% 8.16% 11.43% 12.19%
σ 11.99% 11.92% 11.76% 11.89% 13.96% 13.52% 13.29% 13.09% 13.55%
µ/σ -0.04 -0.01 0.03 -0.03 0.71 0.66 0.61 0.87 0.90
ρSPX 36.82% 36.63% 38.29% 37.10% 36.36% 35.67% 32.92% 36.21% 32.50%
nmiss 7/7 7/7 6/7 7/7 3/7 3/7 3/7 3/7 3/7

Investment Strategy $3

20
07

–
20

13

µ 0.05% 0.96% -2.08% -0.21% 9.47% 6.74% 6.22% 11.76% 6.31%
σ 11.94% 11.86% 12.03% 11.96% 14.58% 13.59% 14.66% 13.75% 15.39%
µ/σ 0.00 0.08 -0.17 -0.02 0.65 0.50 0.42 0.86 0.41
ρSPX 40.84% 35.30% 35.87% 36.36% 51.12% 40.41% 37.95% 38.92% 34.82%
nmiss 4/7 4/7 4/7 4/7 3/7 4/7 3/7 3/7 4/7

Investment Strategy $4

20
07

–
20

13

µ -1.13% -0.71% -0.38% -0.11% 10.18% 9.14% 7.83% 12.44% 12.13%
σ 12.02% 12.04% 11.97% 11.94% 13.57% 12.88% 13.01% 13.19% 13.73%
µ/σ -0.09 -0.06 -0.03 -0.01 0.75 0.71 0.60 0.94 0.88
ρSPX 22.08% 21.07% 22.01% 22.66% 18.12% 22.00% 17.53% 19.19% 17.09%
nmiss 5/7 5/7 5/7 5/7 3/7 3/7 3/7 3/7 3/7

Investment Strategy $5

20
07

–
20

13

µ -1.04% -0.22% -1.08% -0.30% 11.65% 8.64% 7.07% 12.64% 11.77%
σ 12.18% 12.15% 12.08% 12.09% 14.18% 13.23% 12.78% 13.48% 14.00%
µ/σ -0.09 -0.02 -0.09 -0.02 0.82 0.65 0.55 0.94 0.84
ρSPX 21.76% 20.64% 22.04% 21.47% 17.38% 21.08% 18.25% 18.42% 16.32%
nmiss 7/7 5/7 6/7 6/7 3/7 4/7 5/7 3/7 3/7

Investment Strategy $6

20
07

–
20

13

µ -1.28% 1.20% -3.46% -1.14% 13.45% 6.60% 9.33% 13.36% 11.26%
σ 12.11% 12.17% 12.42% 12.32% 15.13% 14.10% 15.23% 14.45% 16.02%
µ/σ -0.11 0.10 -0.28 -0.09 0.89 0.47 0.61 0.92 0.70
ρSPX 24.69% 19.04% 19.71% 21.28% 22.53% 20.21% 15.29% 17.49% 16.60%
nmiss 4/7 4/7 4/7 4/7 3/7 3/7 4/7 3/7 4/7

Table 6.5: Results of investment strategies $1–$6. µ denotes the average annualized realized returns
(italicized figures indicate failure to achieve the return target); σ denotes the average annualized realized
volatility; ρSPX denotes the realized correlations of daily returns with the S&P 500 benchmark; and nmiss
denotes the number of years during which the target return was not achieved.

2007 2008 2009 2010 2011 2012 2013 2014
500

1000

1500

2000

2500
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Figure 6.2: Portfolios $3 (solid lines) and $6 (dashed-dotted lines) and S&P 500 (black); the forecasts
from the WDLM and SGDLM are in green and blue, respectively.
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6.4 Summary Comments

Our S&P study investigated the multivariate forecast performance of the SGDLM for use in short-term
forecasting and Bayesian portfolio decision analysis. The sparse, dynamic graphical model structure
induced by the dynamic simultaneous parental predictor construct defines a parsimonious and potentially
effective approach to structuring the contemporaneous relations in dynamic models. That is, the number
of time-varying parameters to describe the structure of multivariate volatility is substantially reduced
relative to standard models, which include the class of WDLMs. Data-respected and informed sparsity
patterns, and adaptivity in representing such patterns as they may change over time, has the potential to
improve forecasting accuracy and decisions based on such forecasts. The S&P study results bear out this
potential. The SGDLM modeling approach delivers substantially improved characterizations of volatility
and co-volatility, in terms of forecast accuracy as well as usability in decision processes. The latter point
is clearly highlighted in our portfolio investment evaluations. Portfolios reliant on model-based forecast
information yield consistently higher nominal and risk-adjusted returns relative to standard approaches,
and desired optimization constraints are more reliably achieved. As just one take-home summary to
add to the more detailed results discussed in the study above, we note that the empirical performance
reported here shows average annualized investment returns of SGDLM-driven quantitative investment
rules as high as 13.5% over a seven year period starting close to the pre-financial crisis peak in 2007
through Q3-2013; that is a period during which the annual gains of the S&P 500 averaged only 3.0%
(log-returns normalized to a 252 day year).
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and W. K. Härdle (Eds.), Copulae in Mathematical and Quantitative Finance, Lecture Notes in Statistics,
pp. 17–37. Springer Berlin Heidelberg.

Czado, C., S. Jeske, and M. Hofmann (2013). Selection strategies for regular vine copulae. Journal de la
Societe Francaise de Statistique 154(1), 174–191.

Danaher, P. J. and M. S. Smith (2011). Modeling Multivariate Distributions Using Copulas: Applications
in Marketing. Marketing Science 30, 4–21.

De Oliveira, V. and J. J. Song (2008). Bayesian analysis of simultaneous autoregressive models. The
Indian Journal of Statistics 70-B, 323–350.

Dißmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular
vine copulae and application to financial returns. Computational Statistics & Data Analysis 59(1),
52–69.

Dunn, W. and J. K. Shultis (2011). Exploring Monte Carlo Methods. Wiley.

Erhardt, T., C. Czado, and U. Schepsmeier (2015a). R-vine models for spatial time series with an appli-
cation to daily mean temperature. Biometrics.

Erhardt, T., C. Czado, and U. Schepsmeier (2015b). Spatial composite likelihood inference using local
C-vines. Journal of Multivariate Analysis.

Frees, E. W. and P. Wang (2006). Copula credibility for aggregate loss models. Insurance: Mathematics
and Economics 38(2), 360–373.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model deter-
mination. Biometrika 82, 711–732.

Gregoire, V., C. Genest, and M. Gendron (2008). Using copulas to model price dependence in energy
markets. Energy risk 5, 58–64.

Grimaldi, S. and F. Serinaldi (2006). Asymmetric copula in multivariate flood frequency analysis. Ad-
vances in Water Resources 29(8), 1155–1167.

Gruber, L. F. (2011). Bayesian Analysis of R-Vine Copulas. Master’s thesis, Technische Universität
München.

Gruber, L. F. and C. Czado (2015a). Bayesian Model Selection of Regular Vine Copulas. Submitted.

Gruber, L. F. and C. Czado (2015b). Sequential Bayesian Model Selection of Regular Vine Copulas.
Bayesian Analysis. Advance Publication, 4 February 2015.

Gruber, L. F. and M. West (2015a). Bayesian Forecasting and Portfolio Decisions Using Simultaneous
Graphical Dynamic Linear Models. Submitted.

http://www.coin-or.org/CppAD/
http://www.coin-or.org/CppAD/


BIBLIOGRAPHY 105

Gruber, L. F. and M. West (2015b). GPU-Accelerated Bayesian Learning and Forecasting in Simultaneous
Graphical Dynamic Linear Models. Bayesian Analysis. Advance Publication, 2 March 2015.

Harrison, P. J. and C. F. Stevens (1971). A bayesian approach to short-term forecasting. Operations
Research Quarterly 22, 341–362.

Harrison, P. J. and C. F. Stevens (1976). Bayesian forecasting (with discussion). Journal of the Royal
Statistical Society (Series B, Methodological) 38, 205–247.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57, 97–109.

Heinen, A. and E. Rengifo (2007). Multivariate autoregressive modeling of time series count data using
copulas. Journal of Empirical Finance 14(4), 564–583.

Hofert, M. and M. Scherer (2011). CDO pricing with nested Archimedean copulas. Quantitative Fi-
nance 11(5), 775–787.

Hosking, J. R. M., R. Natarajan, S. Ghosh, S. Subramanian, and X. Zhang (2013). Short-term forecasting
of the daily load curve for residential electricity usage in the Smart Grid. Applied Stochastic Models in
Business and Industry 29(6), 604–620.

Hu, L. (2006). Dependence patterns across financial markets: A mixed copula approach. Applied Finan-
cial Economics 16(10), 717–729.

Jaakkola, T. S. (2000). Tutorial on variational approximation methods. In M. Opper and D. Saad (Eds.),
Advanced Mean Field Methods: Theory and Practice, pp. 129–159. MIT Press.

Jaakkola, T. S. and M. I. Jordan (2000). Bayesian parameter estimation via variational methods. Statistics
and Computing 10, 25–27.

Joe, H. (1996). Families of m-variate distributions with given margins and m(m− 1)/2 bivariate depen-
dence parameters. Lecture Notes-Monograph Series 28, 120–141.

Joe, H. (2001). Multivariate Models and Dependence Concepts. Chapman & Hall.

Joe, H. (2014). Dependence Modeling with Copulas. Chapman and Hall/CRC.

Jondeau, E. and M. Rockinger (2006). The Copula-GARCH model of conditional dependencies: An
international stock market application. Journal of International Money and Finance 25(5), 827–853.

Jones, B., A. Dobra, C. M. Carvalho, C. Hans, C. Carter, and M. West (2005). Experiments in stochastic
computation for high-dimensional graphical models. Statistical Science 20, 388–400.

Jordan, M. I., Z. Ghahramani, T. S. Jaakkola, and L. K. Saul (1999). An Introduction to Variational
Methods for Graphical Models. Machine Learning 37, 183–233.

Kim, D., J.-M. Kim, S.-M. Liao, and Y.-S. Jung (2013). Mixture of D-vine copulas for modeling depen-
dence. Computational Statistics & Data Analysis 64, 1–19.

Kirchhoff, G. (1847). Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der
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