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Abstract—We investigate the Direction of Arrival (DoA) esti-
mation for small- and large-scale antenna arrays with a small
and a large number of antenna elements, respectively. Two
classes of algorithms are considered, namely subspace- and
compressed sensing (CS)-based algorithms. We compare those
algorithms in terms of both the DoA estimation performance
and the computational complexity based on different parameters
such as number of antenna elements, number of snapshots
and quantization. From this comparison, we conclude that the
subspace-based method ESPRIT is well suited for small-scale
antenna systems while the CS-based method IHT is advantageous
for large-scale antenna systems.

I. INTRODUCTION

The deployment of very large number of antennas at the
base station (BS), also known as massive MIMO, is a potential
candidate for the future generation of wireless communication
systems. Massive MIMO can increase the spectral efficiency
by sending and receiving signals through narrow directed
beams [1]. Massive MIMO is defined as a system with M
BS antennas and K users, where the inequality M � K
holds. The massive increase in the number of antenna elements
also requires computationally efficient Direction of Arrival
(DoA) estimation algorithms. In this paper, we investigate
the DoA estimation using subspace- and compressed sensing
(CS)-based methods for both small- and large-scale antenna
systems with a small and a large number of antenna elements,
respectively.

The subspace-based methods such as Multiple Signal Clas-
sification (MUSIC) and Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) described in [2]
and [3], respectively, use the subspaces of the covariance
matrix for the DoA estimation. On the other hand, CS-based
methods estimate the DoAs by solving a sparse recovery
problem, i.e., reconstructing sparse signals from linear mea-
surements. In CS, the sparse recovery methods like the Basis
Pursuit Denoise (BPDN) and the Iterative Hard Thresholding
(IHT) algorithm have been developed [4], which can also be
used for the DoA estimation. DoA estimation based on CS
has already been studied, e.g., in [5] and [6], by formulating
it as a sparse recovery problem.

Not only the DoA estimation performance of the methods is
important but also their computational complexity. Therefore,
we compare the subspace-based methods MUSIC and ESPRIT

as well as the CS-based methods BPDN and IHT in terms of
both the DoA estimation performance and the computational
complexity for small and large-scale antenna arrays. For the
subspace-based methods, the eigenvalue decomposition (EVD)
of the covariance matrix has to be computed, which leads to a
high computational complexity when using large-scale antenna
arrays. On the contrary, the computational complexity of IHT
might be smaller for large-scale antenna arrays as no EVD is
required.

In order to perform DoA estimation on M BS antennas,
the received analog baseband signal is converted into the
digital domain using analog-to-digital converters (ADCs). It
is shown in [7] that the power consumption of the ADCs
grows exponentially with the resolution b, i.e., PADC ∝ 22b.
The total ADC power consumed by the M antennas scales
linearly with M , i.e., PADC,tot ∝M · 22b. The extreme case of
a 1-bit ADC is advantageous in terms of power consumption
but using only 1-bit resolution generally has a severe impact
on the performance. Therefore, it is pertinent to investigate
the performance of different algorithms for the special case of
1-bit quantization.

The paper is organized as follows. In section II, a measure-
ment model for the DoA estimation with the help of a Uniform
Linear Array (ULA) is introduced. In section III, we describe
how the DoAs can be estimated by using the subspace-
based methods MUSIC and ESPRIT as well as the CS-based
methods BPDN and IHT. Section IV presents the results of the
simulations we have conducted in order to examine the DoA
estimation performance of the considered methods before the
computational complexity of those methods is compared in
section V. Finally, section VI concludes the paper.

II. MEASUREMENT MODEL

In this section, a measurement model for the DoA estima-
tion is introduced.

An M -element ULA with an inter-element spacing of
half the wavelength is located in the far field of K < M
sources emitting narrow-band zero mean signals. It receives
the signal sk (t) ∈ C of source k ∈ {1, 2, . . . ,K} from
DoA θk ∈ [−90◦, 90◦) corresponding to the spatial frequency
µk = −π sin (θk). At time instant t, the measurement acquired
by the antenna element m ∈ {1, 2, . . . ,M} of the ULA is
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given by

xm (t) =
K∑
k=1

sk (t) ej(m−1)µk + nm (t) , (1)

where nm (t) ∈ C is additive measurement noise, which is
i.i.d., zero mean and uncorrelated with the source signals.

Using the array steering matrix A = [a (µ1) , . . . ,a (µK)] ∈
CM×K with a (µk) =

[
1, ejµk , . . . , ej(M−1)µk

]T ∈ CM , the
signal vector s (t) = [s1 (t) , . . . , sK (t)]

T ∈ CK and the noise
vector n (t) = [n1 (t) , . . . , nM (t)]

T ∈ CM , the measurement
model for one snapshot or a single measurement vector (SMV)
x (t) = [x1 (t) , . . . , xM (t)]

T ∈ CM at time instant t can be
formulated as

x (t) = As (t) + n (t) . (2)

It can be extended to multiple snapshots or multiple mea-
surement vectors (MMV) x (tn) at N time instants tn, n =
1, 2, . . . , N :

X = AS + N (3)

with the matrix of measurements X = [x (t1) , . . . ,x (tN )] ∈
CM×N , the signal matrix S = [s (t1) , . . . , s (tN )] ∈ CK×N
and the noise matrix N = [n (t1) , . . . ,n (tN )] ∈ CM×N .

III. DOA ESTIMATION

This section describes how the parameters of the mea-
surement model (3), i.e., the spatial frequencies µk, and
thus the DoAs θk of the K sources can be estimated for
given measurements X by using the subspace-based methods
MUSIC and ESPRIT as well as the CS-based methods BPDN
and IHT.

A. Subspace-based Methods

The Subspace-based methods use the subspaces of the
covariance matrix

Rxx = E
[
x (t) xH (t)

]
∈ CM×M (4)

of the measurements x (t) for estimating the DoAs. Or-
thonormal bases Us ∈ CM×K for the signal subspace and
U0 ∈ CM×(M−K) for the noise subspace can be obtained by
computing the EVD

Rxx = UΛUH (5)

of Rxx, where Λ ∈ RM×M is the diagonal matrix containing
the eigenvalues in descending order and U =

[
Us U0

]
∈

CM×M a unitary matrix containing the eigenvectors. Since
only N snapshots X are available, the covariance matrix Rxx

has to be estimated by

R̂xx =
1

N
XXH. (6)

1) MUSIC: The MUSIC spectrum reads [2]

S (µ) =
1

aH (µ) U0U0
Ha (µ)

(7)

and is evaluated on a sampling grid {θ1, θ2, . . . , θP } of P
potential DoAs θi corresponding to the spatial frequencies
µi = −π sin (θi), i = 1, 2, . . . , P . The indices lk, k =
1, 2, . . . ,K, of the spatial frequencies µlk at which the K
largest peaks of S (µi) occur finally determine the estimates
θ̂k = θlk for the true DoAs of the K sources.

2) ESPRIT: If ESPRIT described in [3] is applied to a M -
element ULA, which is considered as two subarrays consisting
of the first and the last M−1 elements, the invariance equation

J1UsΨ = J2Us (8)

has to be solved for Ψ ∈ CK×K in a Least Squares (LS) sense.
Here, J1 =

[
1M−1,0(M−1)×1

]
∈ {0, 1}(M−1)×M and J2 =[

0(M−1)×1,1M−1
]
∈ {0, 1}(M−1)×M are selection matrices

with the (M − 1) × (M − 1) identity matrix 1M−1 and the
zero vector 0(M−1)×1 of length M − 1. After computing the
eigenvalues φk, k = 1, 2, . . . ,K, of Ψ, the estimates for the
true DoAs of the K sources can be obtained as

θ̂k = − arcsin

(
arg (φk)

π

)
. (9)

B. Compressed Sensing (CS)-based Methods

CS aims at solving sparse recovery problems [4]. In the
SMV case, a signal vector s ∈ CP that is K-sparse, i.e.,
has at most K � P non-zero entries, is to be recovered
from M < P linear measurements x = As ∈ CM taken
by the measurement matrix A ∈ CM×P . The support of
the vector s = [s1, . . . , sP ]

T is defined as the index set
supp (s) = {i : si 6= 0} of its non-zero entries. The so-
called `0 “norm” ‖s‖0 = |supp (s)| of the vector s counts
its non-zero elements. In the MMV case, a signal matrix
S = [s1, . . . , sN ] ∈ CP×N that consists of N jointly K-sparse
signal vectors sn, n = 1, 2, . . . , N , with the same support and
is therefore row K-sparse, i.e., has at most K � P non-zero
rows, is to be recovered from the matrix X = [x1, . . . ,xN ] =
AS ∈ CM×N consisting of N measurement vectors xn. The
number of non-zero rows of S can be expressed as ‖S‖p,0.
The mixed `p,q norm of S with rows si, i = 1, 2, . . . , P , is
defined as

‖S‖p,q =
∥∥∥[∥∥s1∥∥p ,∥∥s2∥∥p , . . . ,∥∥sP∥∥p]∥∥∥q . (10)

Furthermore, CS deals with the recovery of sparse signals from
measurements contaminated by noise, which makes the CS
framework applicable to the DoA estimation.

Up to now, the signal matrix S in the measurement
model (3) is not row K-sparse. In order to make it row K-
sparse, the angle θ ∈ [−90◦, 90◦) is discretized similarly
to [5], which results in a sampling grid {θ1, θ2, . . . , θP } of
P � K potential DoAs θi corresponding to the spatial
frequencies µi = −π sin (θi), i = 1, 2, . . . , P . Let I =
{i1, i2, . . . , iK} ⊂ {1, 2, . . . , P} be an ordered set of indices
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ik indicating that the kth source is located at the grid point
ik. The array steering matrix A = [a (µi1) , . . . ,a (µiK )] ∈
CM×K of the measurement model (3), whose kth column
a (µik) corresponds to the kth source, is extended to the
array steering matrix A = [a (µ1) , . . . ,a (µP )] ∈ CM×P ,
whose ith column a (µi) corresponds to the direction θi of the
sampling grid. The signal vectors s (tn) in the signal matrix
S of the measurement model (3) are extended from s (t) =
[si1 (t) , . . . , siK (t)]

T ∈ CK , whose kth element sik (t) is the
signal from source k, to s (t) = [s1 (t) , . . . , sP (t)]

T ∈ CP ,
whose ith element si (t) is the signal from the direction θi of
the sampling grid. Since

si (t) =

{
sik (t) , i = ik ∈ I
0, otherwise

, i = 1, 2, . . . , P,

and thus si (t) is only non-zero if one of the K sources is
located at grid point i, the signal vectors s (tn) are jointly K-
sparse with supp (s (tn)) = I and the signal matrix S is row
K-sparse. The DoA estimation can be considered as the sparse
recovery problem of obtaining a row K-sparse estimate Ŝ =
[ŝ (t1) , . . . , ŝ (tN )] for the true row K-sparse signal matrix S
from the measurements X with the array steering matrix A as
the measurement matrix. The indices of the non-zero rows of
Ŝ, i.e., supp (ŝ (tn)) = {l1, l2, . . . , lK}, finally determine the
estimates θ̂k = θlk for the true DoAs of the K sources.

After formulating the DoA estimation as a sparse recovery
problem, it can be solved by methods of CS.

1) BPDN: The row K-sparse signal matrix S can be
recovered by using BPDN [8]:

Ŝ = argmin
S̃∈CP×N

∥∥∥S̃∥∥∥
2,1

s.t.
∥∥∥AS̃−X

∥∥∥
F
≤ β. (11)

The objective of the optimization problem ensures that the
estimate Ŝ is row sparse while its constraint forces it to
be consistent with the measurements X. The regularization
parameter β has to be chosen appropriately depending on the
noise, which is the main drawback of this approach.

2) IHT: The greedy IHT algorithm described in [4] and [9]
tries to solve the optimization problem

ŝ = argmin
s̃∈CP

‖As̃− x‖22 s.t. ‖s̃‖0 ≤ K (12)

iteratively in order to recover the K-sparse signal vector s ∈
CP from a SMV x = As + n ∈ CM of measurements taken
by the measurement matrix A ∈ CM×P and contaminated by
noise n ∈ CM . Compared to BPDN, the roles of the objective
and the constraint are exchanged. Now, the constraint ensures
that the estimate ŝ is K-sparse while the objective forces it to
be consistent with the measurements x.

Each iteration of IHT consists of two steps, a gradient
descent step and a hard thresholding step. The gradient descent
step

š(i+1) = ŝ(i) + µAH
(
x−Aŝ(i)

)
(13)

with step size µ starting at the current estimate ŝ(i) reduces the
consistency-enforcing objective. The hard thresholding step

ensures that the constraint is fulfilled by applying the hard
thresholding operator HK (.), which sets all but the K largest
in magnitude elements to 0, to the resulting vector š(i+1) to
get a new K-sparse estimate ŝ(i+1) = HK

(
š(i+1)

)
.

In order to recover the row K-sparse signal matrix S ∈
CP×N from the MMV X ∈ CM×N according to the mea-
surement model (3), we would like to solve the optimization
problem

Ŝ = argmin
S̃∈CP×N

∥∥∥AS̃−X
∥∥∥2
F

s.t.
∥∥∥S̃∥∥∥

p,0
≤ K. (14)

The constraint ensures that the estimate Ŝ is row K-sparse
whereas the objective forces it to be consistent with the
measurements X.

The standard IHT algorithm for the SMV case has to be
modified to solve the new optimization problem of the MMV
scenario. In each iteration, the value of the new consistency-
enforcing objective is reduced by computing the gradient
descent step

Š(i+1) = Ŝ(i) + µAH
(
X−AŜ(i)

)
(15)

starting at the current estimate Ŝ(i) simultaneously for all
MMV according to (13) with step size µ. Applying the hard
thresholding operator H̄K (.) to the resulting matrix Š(i+1)

sets all but the K rows with the largest `2 norm to 0T to get
a new row K-sparse estimate Ŝ(i+1) = H̄K

(
Š(i+1)

)
, which

ensures that the constraint is fulfilled.
The resulting IHT algorithm for the MMV scenario is

described in Algorithm 1.

Algorithm 1 IHT for MMV
Input: X, A, K, µ

Initialize: Ŝ(0) = 0, i = 0
while stopping criterion not met do

Ŝ(i+1) = H̄K

(
Ŝ(i) + µAH

(
X−AŜ(i)

))
i := i+ 1

end while
Output: Ŝ(i)

IV. DOA ESTIMATION PERFORMANCE

We examined the DoA estimation performance of the
subspace-based methods MUSIC and ESPRIT as well as the
one of the CS-based methods BPDN and IHT for small- and
large-scale antenna arrays in simulations. The results of the
simulations are presented in this section.

The DoA estimation performance is measured in terms of
the root mean square error (RMSE)

RMSEθ =

√√√√ 1

RK

R∑
r=1

K∑
k=1

∣∣∣θ̂k,r − θk∣∣∣2 (16)

between the DoAs θk of the sources k = 1, 2, . . . ,K and their
estimates θ̂k,r in R = 100 Monte Carlo runs r = 1, 2, . . . , R.
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The sampling grid used for MUSIC, BPDN and IHT
is constructed from the P = 1024 angles θi =
arcsin

(
2
P (i− 1)− 1

)
corresponding to the equally spaced

spatial frequencies µi = π− 2π
P (i− 1), i = 1, 2, . . . , P . Since

the absolute inner product between neighboring columns of
A is pretty high for a large P , we decided to let the hard
thresholding operator H̄K (.) in IHT set all but the K rows
at which the `2 norm of the rows has its largest peaks to 0T.
H̄K (.) is also applied to the estimate of BPDN to make it
row K-sparse if it has more than K non-zero rows.
K = 2 sources are located at the angles θ1 = 4.93◦

and θ2 = 10.01◦. They are uncorrelated and emit equipower
QPSK-symbols with zero mean and variance σ2

s = 1, whereas
the measurement noise samples are drawn from an i.i.d.
circularly symmetric complex Gaussian random process with
zero mean and variance σ2

n. The SNR in dB is defined as

SNR = 10 log10

(
Kσ2

s

σ2
n

)
dB (17)

and chosen to be 10 dB for all simulations.
In order to reduce the computational complexity of BPDN,

the matrix of measurements X ∈ CM×N is compressed to the
matrix XSVD ∈ CM×K used in BPDN instead of X by the `1-
SVD described in [5] if the number of snapshots is larger than
the number of sources, i.e., N > K. As mentioned previously,
the appropriate choice of the regularization parameter β in (11)
is important. For the simulations, we chose it to be

β =
√

min (K,N)Mσ2
n. (18)

In addition to the RMSE of the considered DoA estimation
methods, we also provide the Cramér-Rao Bound (CRB).

As can be seen in Fig. 1, for a small-scale antenna array
with M = 8 antenna elements, the RMSE of IHT is larger than
10◦ regardless of the number of snapshots N . BPDN performs
better than IHT and achieves a RMSE of approximately 1◦ if
enough snapshots are available. If the number of snapshots
is sufficiently large, the two subspace-based methods MUSIC
and ESPRIT exhibit a similar performance that is much better
than the one of the CS-based methods.

On the contrary, ESPRIT shows the worst performance of
all methods regardless of the number of snapshots N if a
large-scale antenna array with M = 64 antenna elements is
used for DoA estimation, as the simulation results in Fig. 2
demonstrate. If the number of snapshots is small, MUSIC
and the CS-based methods perform significantly better than
ESPRIT. They are even able to estimate the DoAs with only
one single snapshot and a very small RMSE. While the RMSE
of MUSIC and IHT is almost identical for one snapshot,
the performance gap between both algorithms increases with
increasing number of snapshots since MUSIC can exploit the
availability of more snapshots better than IHT. The smallest
RMSE of all methods regardless of the number of snapshots
is achieved by BPDN.

In Fig. 3 the RMSE is plotted over the number of antenna
elements M for N = 100 snapshots. If a large number of
snapshots as in this case is available, a small number of

100 101 102 103
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100

101

N

R
M

SE
θ

[◦
]

BPDN
IHT
MUSIC
ESPRIT
√

CRB

Fig. 1. RMSEθ vs. N for M = 8.
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100

101

N

R
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θ
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BPDN
IHT
MUSIC
ESPRIT
√

CRB

Fig. 2. RMSEθ vs. N for M = 64.

antenna elements is sufficient for ESPRIT to estimate the
DoAs with a RMSE that is smaller than the one of all other
methods. They require more antenna elements to achieve the
same performance as ESPRIT. For a small number of antenna
elements, BPDN and IHT perform better than MUSIC, which,
however, becomes better than BPDN and IHT with increasing
number of antenna elements. The RMSE curve of BPDN
always lies below the one of IHT.

If only N = 2 snapshots are available, ESPRIT is not
able to estimate the DoAs any more and increasing the
number of antenna elements cannot compensate for the small
number of snapshots, which becomes apparent in Fig. 4. The
performance of IHT and MUSIC is comparable and both
outperform ESPRIT for a large number of antenna elements
since their DoA estimation performance improves significantly
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Fig. 3. RMSEθ vs. M for N = 100.

with increasing number of antenna elements. Only BPDN
is able to provide even better DoA estimates. The large
performance gap between the two subspace-based methods
MUSIC and ESPRIT is due to the fact that MUSIC works
on the noise subspace whereas ESPRIT works on the signal
subspace. The dimension of the noise subspace is M − K
and thus grows with increasing number of antenna elements
M . The dimension of the signal subspace, however, is K and
thus independent of the number of antenna elements M . If the
number of antenna elements M is very large compared to the
number of sources K, the dimension of the noise subspace
is very large such that the estimation of the noise subspace
from a small number of snapshots is more robust than the one
of the signal subspace with the relatively small dimension K.
This explains why MUSIC is able to perform much better than
ESPRIT in this scenario.

A similar picture emerges if the measurements at the
antenna elements are additionally quantized to 1 bit such
that only the signs of the real and imaginary parts of the
measurements can be used for DoA estimation. For a small
number of antenna elements and a large number of snapshots,
ESPRIT has a better DoA estimation performance than the
other methods (see Fig. 5). For a large number of antenna el-
ements and a small number of snapshots, IHT is competitive to
BPDN1 and MUSIC, which outperform ESPRIT (see Fig. 6).
This result is of interest especially in massive MIMO systems,
where the number of antenna elements is very large and 1-
bit quantization is used in order to reduce the complexity,
power consumption and costs resulting from the large number
of antenna elements.

1Please note that the regularization parameter β has to be
adapted to the case of 1-bit quantization, e.g., by choosing
β =

√
1.5min (K,N)M (σ2

n + 3−1).
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Fig. 4. RMSEθ vs. M for N = 2.
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Fig. 5. RMSEθ vs. M for N = 100 and 1-bit quantization.

V. COMPUTATIONAL COMPLEXITY

In practical applications, not only the DoA estimation
performance of the methods is important but also their com-
putational complexity. Therefore, we compare the computa-
tional complexity of the subspace-based methods MUSIC and
ESPRIT as well as the one of the CS-based methods BPDN
and IHT in this section.

If the matrix of measurements is compressed by the `1-SVD,
the DoAs can be estimated using BPDN with a computational
complexity of O

(
K3P 3

)
[5]. This is larger than the costs

of the subspace-based methods MUSIC and ESPRIT, which
are O

(
M2P +M2N

)
and O

(
M3 +M2N

)
, respectively.

MUSIC is computationally more complex than ESPRIT due to
the spectral search, i.e., the evaluation of (7) on the sampling
grid of P > M spatial frequencies. The computational com-
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Fig. 6. RMSEθ vs. M for N = 2 and 1-bit quantization.

TABLE I
COMPUTATIONAL COMPLEXITY OF BPDN, IHT, MUSIC AND ESPRIT.

BPDN O
(
K3P 3

)
IHT O (MNP ) (per iteration)

MUSIC O
(
M2P +M2N

)
ESPRIT O

(
M3 +M2N

)

plexity of ESPRIT is dominated by the subspace estimation
using the EVD of the covariance matrix. Each iteration of
IHT consists only of matrix additions and multiplications as
well as the thresholding operation, whose cost is O (MNP ).
Empirically, we found out that a few iterations are sufficient
for DoA estimation. In the extreme case, only one iteration
is necessary. If the number of snapshots N is small and
the number of antenna elements M becomes very large, the
subspace estimation using the EVD of the covariance matrix
with a cost of O

(
M3
)

for the subspace-based methods and
the spectral search of MUSIC with a cost of O

(
M2P

)
be-

come computationally intractable such that the computational
complexity of IHT is smaller than the one of the subspace-
based methods. Tab. I lists the computational complexity of
all considered methods.

From this comparison of the computational complexity of
the DoA estimation methods, we can conclude that ESPRIT
is the method of choice for a scenario with a small number
of antenna elements and a large number of snapshots. In this
situation, it combines the smallest computational complexity
and a good DoA estimation performance. In a scenario, where
many antenna elements but only a few snapshots are available,
however, IHT having the smallest computational complexity
of all methods achieves a DoA estimation performance that is
almost as good as the one of BPDN and MUSIC, and much
better than the one of ESPRIT.

VI. CONCLUSION

In this paper, we compared the subspace-based methods
MUSIC and ESPRIT as well as the CS-based methods BPDN
and IHT for DoA estimation in terms of both DoA estimation
performance and computational complexity for small- and
large-scale antenna arrays. After introducing the measurement
model for DoA estimation with the help of a ULA, we
described how the DoAs can be estimated using the four
considered methods MUSIC, ESPRIT, BPDN and IHT. The
simulation results reveal that the subspace-based methods in
general and ESPRIT in particular achieve a smaller RMSE in
the DoAs and thus a better DoA estimation performance than
the CS-based methods if a small-scale antenna array with a
small number of antenna elements is used and a large number
of snapshots is available. For a large-scale antenna array with
a large number of antenna elements, the CS-based methods
perform equally well as or even better than the subspace-based
methods especially if the number of available snapshots is
small. The comparison of the computational complexity shows
that the EVD of the covariance matrix for the subspace-based
methods becomes computationally intractable for large-scale
antenna systems such that the computational complexity of
IHT is smaller than the one of the subspace-based methods.
Therefore, it can be concluded that the subspace-based method
ESPRIT is well suited for scenarios with a small-scale antenna
array and many snapshots whereas IHT is advantageous for
scenarios with a large-scale antenna array and only a few
snapshots as in massive MIMO, a potential candidate for the
future generation of wireless communication systems.
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