
Mean Square Error Beamforming in SatCom:
Uplink-Downlink Duality with Per-Feed Constraints

Andreas Gründinger, Michael Joham, Andreas Barthelme, and Wolfgang Utschick

Associate Institute for Signal Processing, Technische Universität München, Germany

Email: {gruendinger,joham,a.barthelme,utschick}@tum.de

Abstract—Balancing the per-user average mean square errors
(MSEs) of a satellite communication (SatCom) system under per-
feed limitations—linear transmit power constraints—is the focus
of this work. We propose an uplink-downlink duality for this
optimization via Lagrangian multiplier theory. Strong duality
is shown. Simple fixed point methods are used for the uplink
power allocation and the worst-case noise covariance calculation.
Simulation results are used to compare the performance for the
SatCom channel with that of a standard Gaussian channel model.
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I. INTRODUCTION

Multi-spotbeam satellite communication (SatCom) requires

adaptive beamforming to manage the increasing intercell in-

terference in the downlink [1], when narrowing down the cell

width below the 3 dB coverage and increasing the frequency

reuse in future systems. The goal is a reliable data service

provision proportional to the receivers’ demands.

The beamformer optimization must deal with the special

channel model and needs to incorporate per-feed power limita-

tions that differs from the standard sum power constraint in ter-

restrial wireless communications. Chrisopoulos et al. [2] model

the per-feed limitations as general linear power constraints.

Additional non-linear power constraints were included in [3] to

represent saturation effects in the radio frequency amplifiers.

Here, we restrict to linear per-feed constraints which is the

basis for future work on non-linear power limitations.

Special forms of per-feed constraints, e.g., per-antenna

constraints, can also be encountered in terrestrial systems when

power sharing is impossible, e.g., due to a physical separa-

tion of the antennas. In [4], the ratios between achievable

and target signal-to-interference-and-noise-ratios (SINRs) are

maximized under such power restrictions. The solution is

obtained via repeatedly solving related second order cone

(SOC) programs using a convex optimization toolbox, e.g.,

CVX [5]. However, the number of spotbeams and antennas

in SatCom, that can meet a few hundreds, leads to a large

number of per-feed constraints. Therefore, this approach is not

attractive and the use of uplink-downlink duality is favorable.

Uplink-downlink duality is an utmost useful tool for beam-

former optimizations which are difficult to solve directly in the

vector broadcast channel (BC). The problem is transformed to

a dual multiple access channel (MAC) problem with the same

achievable SINRs [6] or (average) MSEs [7]. The precoder
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design translates to an equalizer design and a power allocation.

Fixed point methods for these tasks are efficient, reliable, and

can be implemented without using optimization toolboxes [8].

Due to delays, shadowing, and scattering effects in SatCom,

the channel state information (CSI) at the transmitter (satellite)

is imperfect. Therefore, we design the beamformers according

to a min-max balancing of the average MSEs. Note that a

lower bound for the rates is maximized via minimizing MSEs.

MSE dualities between the vector BC and the vector MAC

were first revealed using SINR duality [9] for a sum power

constraint. The SINR uplink-downlink duality was extended to

linear power constraints via Lagrangian multiplier theory, by

Yu and Lan [10] for the power minimization and in [11] for

a max-min balancing formulation. However, similar average

MSE dualities are missing to the best of our knowledge.

Only for the average sum MSE minimization via alternating

optimization, an uplink-downlink approach was presented by

Bogale and Vandendorpe in [12].

We propose an uplink-downlink average MSE duality with

linear per-feed power constraints via Lagrangian multiplier

theory. In the dual uplink, the min-max average MSE problem

has a weighted sum-power constraint and includes a search

for the worst case noise covariance. Strong duality can be

shown via a related power minimization problem formulation.

Exploiting duality, we solve the min-max average MSE bal-

ancing problem in the uplink. Simulation results for a standard

channel model and for a SatCom channel model are presented.

II. DOWNLINK SYSTEM MODEL

The downlink received signals, e.g., from a SatCom sce-

nario, read as yk = hH
k tksk + hH

k

∑K
i6=k tisi + nk. The

independent data signals si ∼ NC(0, 1) are linearly precoded

with ti at the transmitter and sent over the channels hk ∈ CN

to the K mobile receivers. The additive noise at mobile i is

ni ∼ NC(0, σ
2
i ), i = 1, . . . ,K . The received signal is scaled

with fk∈C, i.e., ŝk=fkyk, such that the MSE E
[

|sk − ŝk|2
]

for the k-th receiver’s signal estimate reads as

MSEk=1−2Re{f∗
kh

H
k tk}+

K
∑

i=1

|fk|2|hH
k ti|2+|fk|2σ2

k. (1)

A. Linear Per-Feed Power Constraints

The per-feed transmit power limitations are represented as

K
∑

i=1

tHi Ai,ℓti =
K
∑

i=1

‖A1/2
i,ℓ ti‖22 ≤ Pℓ, ℓ = 1, . . . , L (2)

where Ai,ℓ = A
H/2
i,ℓ A

1/2
i,ℓ � 0 with rank

{
∑L

ℓ=1 Ai,ℓ

}

= N .



Important examples from terrestrial communications are a

sum power constraint, per-beam constraints, and per-antenna

constraints. Depending on the imposed transmit power con-

straint(s), the matrices Ai,ℓ have different forms:

• sum power: Ai,ℓ=IN for all i=1, ...,K and L=1;

• per-beam: Ai,i=IN and Ai,ℓ=0N×N , ℓ 6= i with L=K;

• per-antenna: Ai,ℓ=eℓe
T
ℓ with L=N .

Per-feed constraints are equal to per-antenna constraints if a

single horn antenna sends the output of a high-power amplifier

to the reflector at the satellite. However, when small phased

arrays form the feeds, the matrices Ai,ℓ have rank{Ai,ℓ} > 1.

The per-feed constraints in (2) are a first step towards more

advanced power constraints for the beamformer design of

multi-beam SatCom systems. For example, non-linear power

constraints could model the saturation effects in the radio

frequency amplifiers in SatCom (cf. [3]).

B. Channel State Information Models

Imperfect CSI at the transmitter is the second issue in

SatCom. We assume knowledge of the first and second order

moment of the channels hk, i.e.,

h̄k = E[hk], Rk = E[hkh
H
k ]. (3)

The expressions for h̄k and Rk result from the employed

fading model. For example, the Gaussian model hk = h̄k+h̃k
with h̃k ∼ NC(0,Ck) is common to represent fading effects

and limited training and/or feedback capabilities in terrestrial

systems. Therewith, the second moment is Rk = h̄kh̄
H
k +Ck.

Multi-spotbeam satellite mobile channels follow the fading

model in [13] (see also [1]). The basis is Rician fading that

models the line-of-sight characteristic of satellite channels, i.e.,

zk =

√

κ

κ+ 1
z̄k +

√

1

κ+ 1
z̃k (4)

with Rician factor κ, line-of-sight component z̄, and complex

random z̃k. Since scatterers are mainly around the receivers

and far from the transmitting satellite, we modeled z̃k=wkz̄k
and wk ∼ NC(0, σ

2
wk

) in previous work (e.g., [14]). Such a

restriction is not imposed in this work, i.e., z̃k ∼ NC(0,Cz)
may have a full rank covariance matrix, e.g., Cz = IN .

According to Loo’s model [15], the line-of-sight component

is subject to a multiplicative log-normal distributed factor ξk ,

i.e., z̄k = ξkẑk where ln(ξk) ∼ N (mk, σ
2
ξk
). This factor

comprises rain fading, shadowing, and the receivers’ mobility.

The resulting fading vector in (4) is distorted by the beam

gain characteristic Bk = diag(b1,k, . . . , bN,k), that depends

on the relative position of the receivers to the spotbeam

centers. Here, bj,k =
√
gj,k e

− jψj,k contains the tapered-

aperture antenna gain [16] from antenna j to user k with

gi,k =
(

J1(ui,k)
2ui,k

+ 36
J3(ui,k)

u3

i,k

)2

, where J1(·) and J3(·) are

the first kind Bessel functions of order one and three, respec-

tively, of ui,k = 2.07123
sin(θi,k)
sin(θ3dB)

. The angle θi,k is between

beamcenter i and user k as seen from the satellite and θ3dB

is the one-sided half-power beamwidth. For an approximation

of the small phase shifts ψj,k, we assumed that the antennas

are oriented in a plane orthogonal to the central beam, that is

directed to Munich.

The channel to mobile k reads finally as (cf. [3])

hk =
√
gFSL,kBkzk (5)

where gFSL,k =
(

λ
4π

)2 1
dk

models the free space loss (FSL)

with wavelength λ and altitude dk. The moments of (5) are

h̄k =

√

gFSL,kκ

κ+ 1
emk+σ

2

ξk
/2

Bkẑk,

Rk = eσ
2

ξk h̄kh̄
H
k +

gFSL,k

κ+ 1
BkCzk

BH
k .

(6)

III. AVERAGE MEAN SQUARE ERROR BALANCING

We design the beamformers to minimize the maximum

average MSE. We remark that this is a conservative approach

for average rate balancing. The rate rk = − log2(MMSEk)
is a convex function of the minimum MSE (MMSE), i.e., the

MSE with perfect CSI MMSE receive filters

fk,MMSE =
hH
k tk

∑K
i=1 |hH

k ti|2 + σ2
k

. (7)

Therewith, Jensen’s inequality provides the lower bound

E[rk] ≥ − log2(E[MMSEk]).

Balancing the average MSEs with the filters in (7), i.e.,

E[MMSEk] = 1− E
[

|hH
k tk|2

/(

K
∑

i=1

|hH
k ti|2 + σ2

k

)]

, (8)

remains difficult for imperfect transmitter CSI. The expecta-

tion in (8) is over a ratio of correlated random parameters.

Even though closed form expressions may be found for this

expectation, a direct minimization of maxk E[MMSEk] w.r.t.

the beamformers is still a non-convex optimization problem.

We resolve this issue with a beamformer optimization that

considers the receivers to have the same imperfect channel

knowledge as the transmitter. Note that any receive filter

different from that in (7) results in an upper bound to the

achievable instantaneous MMSE with perfect receiver CSI.

Therefore, also an upper bound for the average MMSE in (8) is

obtained. The joint minimization of these MSE upper bounds

results in the maximization of lower bounds for the achievable

rates. Whenever the average MSEs are balanced at a level ε̂,
the average rates are ensured to lie above − log2(ε̂).

If the receivers have the same imperfect CSI as the trans-

mitter, the min-max average MSE optimization with (linear)

per-feed constraints reads as

min
f ,t

max
k

M̂SEk

s. t.:
K
∑

i=1

‖A1/2
i,ℓ ti‖22 ≤ Pℓ, ∀ ℓ = 1, . . . , L

(9)

where t = [tT1 , . . . t
T
K ]T, f = [f1, . . . , fK ]T, and the average

MSEs E[MSEk] are given by

M̂SEk=1−2Re{f̃∗
k h̄

H
k tk}+

K
∑

i=1

|f̃k|2tHi Rkti+|f̃k|2σ2
k. (10)

We provide a dual uplink formulation to solve problem (9),

which is then a receive filter design and power allocation



problem over a worst-case noise covariance matrix. This

matrix may be found via a subgradient method, for example,

and the power allocation is a simple fixed point algorithm.

IV. MSE UPPER BOUND MINIMIZATION

By inserting the MMSE filters for imperfect receiver CSI

f̃k,MMSE =
h̄H
k tk

∑K
i=1 t

H
i Rkti + σ2

k

, (11)

problem (9) becomes a quasiconvex program. The objective,

i.e., maxk M̂MSEk with

M̂MSEk = 1− |h̄H
k tk|2

∑K
i=1 t

H
i Rkti + σ2

k

, (12)

is the pointwise maximum of quasiconvex functions, since the

lower level set of the MMSE features a convex reformulation.

Moreover, the per-feed power constraints in (9) are convex.

To see this, we first reformulate (9) with (12) as

min
ε̂,t

ε̂ s. t.:
K
∑

i=1

‖A1/2
i,ℓ ti‖22 ≤ Pℓ, ∀ℓ = 1, . . . , L,

|h̄H
k tk|2

(1 − ε̂) ≥
K
∑

i=1

‖R1/2
k ti‖22 + σ2

k, ∀k = 1, . . . ,K

(13)

where we introduced the balancing level ε̂ ∈ [0, 1] as a slack

variable for the maximum of the K average MMSEs and R
1/2
k

is the square root matrix of Rk=R
H/2
k R

1/2
k . Since the average

MMSEs in (12) and the power limitations are independent

w.r.t. a phase shift of the beamformers, we restrict h̄H
k tk to

be real and positive in (13).1 The convex lower level set

representations for the MMSEs are then obtained via a square

root operation on both sides of the inequality as is seen in (14).

A. Bisection Over Power Minimizations

We may find the optimizers of (13) via solving a series

of convex problems. This is similar to SINR balancing with

per-antenna constraints [4], where the balanced SINRs and the

corresponding beamformers are found with a bisection. In each

bisection step, a power minimization in SOC form is solved.

We rewrite the power minimization corresponding to (13) as

min
α,t

α2

s. t.:
Re{h̄H

k tk}√
1− ε̂ ≥

∥

∥[tH(IK ⊗R
H/2
k ), σk]

∥

∥

2
,

Im{h̄H
k tk} = 0, ∀ k = 1, . . . ,K

∥

∥A
1/2
ℓ t

∥

∥

2
≤ α

√

Pℓ, ∀ ℓ = 1, . . . , L

(14)

where A
1/2
ℓ are blockdiagonal matrices with elements A

1/2
i,ℓ ,

i = 1, . . . ,K , and the joint MSE level ε̂ is fixed. Obviously,

the minimum α2
min(ε̂) of (14) is strictly monotonically decreas-

ing in ε̂. Similarly, the minimum ε̂min(P1, . . . , PL) of (13)

is strictly monotonically decreasing in α if Pℓ = α2P ′
ℓ and

P ′
ℓ > 0 is fixed. Therefore, a simple line search via (14),

1Under this restriction, all possible solutions of (9) result from the possible
solutions of (13) via t′i = eφi ti, φi ∈ [0, 2π).

e.g., a bisection, is able to find the optimizers of (13) if

it meets αmin(ε̂) = 1 with a predefined accuracy. We used

the disciplined convex programming toolbox CVX [5] to find

αmin(ε̂) and check our numerical simulations.2

B. Uplink-Downlink MSE Duality

Alternatively, the average MSE balancing problem in (9)

can be solved in the dual uplink. As can be inferred from the

proof of Proposition 1, the dual uplink average MSE balancing

optimization can be written as

max
µ≥0

min
λ≥0,u

max
i

M̂SEi,UL

s. t.:

K
∑

i=1

λiσ
2
i ≤

L
∑

ℓ=1

µℓPℓ.
(15)

The average uplink MSE that corresponds to user i reads as

M̂SEi,UL = 1−
√

λi2Re{h̄H
i ui}

+ uH
i

(

K
∑

k=1

λkRk +

L
∑

ℓ=1

µℓAi,ℓ

)

ui. (16)

The uplink power allocation vector λ = [λ1, . . . , λK ]T ≥ 0

comprises the dual variables associated with the MMSE con-

straints in (13). The vector µ = [µ1, . . . , µL]
T≥0, that defines

the worst-case noise covariance matrix
∑L
ℓ=1 µℓAi,ℓ in (16),

contains the dual variables for the per-feed constraints.

Note that the optimal filters in u=[uT
1, . . . ,u

T
K ]Tof (15) are

ui =
(

K
∑

k=1

λkRk +

L
∑

ℓ=1

µℓAi,ℓ

)†

h̄i
√

λi. (17)

Inserting (17) into (16), (15) may be written as a max-min

MMSE balancing problem with the MMSEs

M̂MSEi,UL = 1− λih̄H
i

(

K
∑

k=1

λkRk +

L
∑

ℓ=1

µℓAi,ℓ

)†

h̄i, (18)

which are independent w.r.t. a common scaling of µ and λ.

Proposition 1. The duality gap between (9) and (15) is zero.

Proof. To prove the strong duality result, we create an inverse

power minimization to the uplink max-min MSE balancing

problem in (15). This power minimization problem is more-

over strongly dual to the convex power minimization problem

in (14). Therefore, the same transmit power is required to

achieve the same MSE for all users in the uplink and the

downlink. Since the power minimization in (14) is again

inverse to the downlink MSE balancing problem in (9), the

balanced MSE in the uplink and the downlink is the same.

To find the uplink power minimization, we remark that (15)

is independent w.r.t. a common scaling of µ and λ and the

power constraint will be satisfied with equality in the optimum.

Therefore, we may replace the sum power constraint in (15)

by the two constraints
∑L

ℓ=1 µℓPℓ ≤ 1 and
∑K

i=1 λiσ
2
i ≤ 1

2Note that that the constraints in (14) may not be attainable, e.g., when

ε̂ < K−N
K

even if all Rk’s are rank-one [17]. For matrices Rk with a rank
larger than one, the attainable ε̂ can lie far below this bound. We set αmin(ε̂)
to infinity in this cases.



without changing the solution. Keeping the former of the two

constraints and changing the latter one to
∑K

i=1 λiσ
2
i ≤ P ,

the minimum balanced uplink MSE ε̂UL(P ) becomes a strictly

monotonically decreasing function in P ≥ 0. The correspond-

ing inverse function reads as

Pmin(ε̂) =max
µ≥0

min
λ≥0,u

K
∑

i=1

λiσ
2
i (19)

s. t.:

L
∑

ℓ=1

µℓPℓ ≤ 1, ε̂ ≥ M̂SEi,UL, ∀i = 1, . . . ,K.

It remains to show that (19) is dual to the convex opti-

mization in (14). This proof directly follows the steps from

Yu and Lan in [10]. Note that duality can be based on the

quadratic constraints from (13) instead of those in (14) since

the resulting KKT conditions are equivalent [18, Appendix A].

Hence, we can write the Lagrangian function of (14) as

L(α, t,λ,µ) =
K
∑

i=1

λiσ
2
i + α2

(

1−
L
∑

ℓ=1

µℓPℓ

)

(20)

+

K
∑

i=1

ti

(

Yi −
λi

1− ε̂ h̄ih̄
H
i

)

ti

where Yi =
∑L

ℓ=1 µℓAi,ℓ +
∑K
k=1 λkRk .

The dual objective results from the unconstrained minimiza-

tion of (20) w.r.t. α and t, i.e., g(λ,µ) = minα,t L(α, t,λ,µ).
Since α and the ti’s are unconstrained, g(λ,µ)→ −∞ unless

L
∑

ℓ=1

µℓPℓ ≤ 1 (21)

and Yi − λi

1−ε̂ h̄ih̄
H
i � 0N×N . With Schur’s complement [19,

A.5.5], we can recast the latter condition as (cf. [10])

(1− ε̂)− λih̄H
i Y

†
i h̄i ≥ 0. (22)

Equivalence follows since Yi � 0N×N , 1− ε̂ > 0, and (IN −
YiY

†
i )h̄i = 0N as Yi � λiRi = λi E[hih

H
i ] ≻ λih̄ih̄H

i .

With (22) and (21), the dual problem of (14) reads as

max
µ,λ≥0

K
∑

i=1

λiσ
2
i s. t.:

L
∑

ℓ=1

µℓPℓ ≤ 1, (23)

λi ≤
1− ε̂

h̄H
i

(
∑L

ℓ=1 µℓAi,ℓ +
∑K
k=1 λkRk

)†
h̄i
, ∀i = 1, . . . ,K.

The right hand side of the MMSE constraint in (23) is positive

and sublinearly monotonically increasing in λ ≥ 0 when µ is

fixed. In other words, these right hand sides define a standard

interference function [20] that is parametrized in µ and there

is a unique λ⋆ ≥ 0 that satisfies all MMSE constraints with

equality and minimizes the objective if ε̂ is attainable. Hence,

reversing the maximization over λ into a minimization and

the direction of the inequality in the MMSE constraints does

not affect the solution. Moreover, since

ε̂ ≥ 1−λih̄H
i Y

†
i h̄i = M̂MSEi,UL (24)

as can be seen in (18), we indeed obtain the power minimiza-

tion formulation in (19). This proves that a solution of (15)

results in a solution for (9).

The downlink beamformers and receive filters follow from

the uplink filters in (17) and powers in λ by (cf. [7])

ti =
√

βiui, f̃i =
√

λi
/
√

βi, ∀i = 1, . . . ,K (25)

when the balanced MSEs of (9) and (15) are equal, i.e.,

M̂SEi = M̂SEi,UL, i = 1, . . . ,K. (26)

Inserting (25) into the downlink MSEs from (10), the equation

system in (26) can be rewritten as

Ψβ = Σλ (27)

where Σ = diag(σ2
1 , . . . , σ

2
K), β = [β1, . . . , βK ]T, and

[Ψ ]i,j =

{

∑

k 6=i λku
H
i Rkui,+

∑L
ℓ=1 µℓu

H
i Ai,ℓui i = j,

−λiuH
j Riuj, i 6= j.

As Ψ is column-wise diagonally dominant with positive di-

agonal elements and non-positive off-diagonal elements, its

inverse exists and has non-negative elements. That means,

we can solve (27) for positive β, and therewith calculate the

downlink beamformers and filters in (25).

C. Iterative Uplink MSE Balancing

An iterative solution for the uplink MSE balancing problem

consists of two nested loops. The inner loop solves the power

allocation (and equalizer optimization) in the MAC, while the

outer loop controls the uplink noise covariance (cf. [11]).

To balance the MSEs and satisfy the sum-power constraint

in (15) with equality, we use the globally convergent update

λ
(n+1)
i ← 1− ε̂(n+1)

h̄H
i

(
∑K

k=1 λ
(n)
k Rk +

∑L
ℓ=1 µℓAi,ℓ

)†
h̄i
, (28)

which follows from the constraint formulation in (23). The

normalization with 1− ε̂(n+1), where [cf. constraint in (15)]

ε̂(n+1)← 1−
∑L

ℓ=1 µℓPℓ
∑K

i=1 σ
2
i /h̄

H
i (

∑K
k=1 λ

(n)
k Rk+

∑L
ℓ=1 µℓAi,ℓ)†h̄i

,

is to exploit full transmit power. This fixed-point update is less

complex than the eigenvector calculation from [8], but more

iterations are required until convergence (cf. [11]).

To find µ, a subgradient projection method similar to [21]

can be employed in the outer loop. The ℓ-th component of the

subgradient δ = [δ1, . . . , δL]
T is δℓ = −Pℓ +

∑K
i=1 t

H
i Ai,ℓti,

where the ti’s are the beamformers from the previous iteration.

Therewith, a subgradient projection step reads as

µ(j+1) ← PC

(

µ(j) + ajδ
)

.

The projection shall w.l.o.g. be onto the simplex C =
{

µ ∈
RL+|

∑L
ℓ=1 µℓ = 1

}

, since a scaling of µ does not change the

optimum of (15) and aj denotes the step size in iteration j.
Another update rule, that is used in the literature, is (cf. [11])

µ̃ℓ←
µ
(m)
ℓ

Pℓ

K
∑

i=1

tHi Ai,ℓti, µ
(m+1)
ℓ ← µ̃ℓ

∑L
ℓ=1 µ̃ℓ

, (29)

which ensures strong duality in the convergence point, i.e,

µℓ
(

Pℓ −
∑K
i=1 t

H
i Ai,ℓti

)

= 0. We remark that (29) in-

creases/decreases those µℓ that correspond to violated/satisfied
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Figure 1: average MSE vs. SNR

Parameter Value

satellite configuration GEO; Ka-band; reuse 1
beamwidth θ3dB (in degree) 0.2
number of beams (cluster 7/Europe) 7/128

log-normal fading mk /σ2
ξk

[22] −3.06 dB/1.51 dB

max satellite antenna gain 52 dBi
max user antenna gain 40 dBi
base receive noise power; approx. FSL -118 dBW; 210 dB

SNR Pℓ/σ
2
k

-10,. . . ,30 dB

Table I: Link budget Parameters in SatCom

power constraints, respectively, which is a necessary require-

ment for convergence to a local maximizer.

Both updates for µ converged to the same MSEs in our

simulations. However, the fixed-point search in (29) is less

complex than the subgradient method (cf. [11]).

V. NUMERICAL RESULTS

We computed results for a standard Gaussian fading model

and a SatCom model. For the standard fading model, the

channel means h̄k are drawn from a standard Gaussian dis-

tribution and scaled to have the same norm as the satellite

channel means, and the covariances are Ck=
1
N IN . The main

parameters for the considered SatCom scenarios are shown in

Table I. Per-antenna constraints are imposed, i.e., one antenna

per feed. The users are randomly placed within the 3 dB area

of the beams, i.e., N = K and one user per spotbeam. The

balanced average MSEs are calculated for a 7 cell system with

100 different user placements and one user realization for an

128 cell system that represents the coverage of Europe.

In Fig. 1, the (average) balanced MSEs are depicted vs.

Pℓ/σ
2
k. For perfect CSI, the MSEs decrease unbounded while

the imperfect CSI curves (MSE bound) saturate. The higher the

Rician factor κ, the lower the saturation level. For the SatCom

channels with κ = 15 dB, the multi-path scattering may be

neglected. No saturation is visible in the given SNR regime.

The exemplary 128 cell curve (Europe) decreases slower than

the 7 cell curves (MSE bound) for κ = 15 dB. While the

antenna characteristics of the SatCom channel sufficiently

separates the users in a 7 cell system, the 128 cell system

apparently suffers from the increased interference.

Note that the curves for the satellite channel differ from

those of the Gaussian channel model. For perfect CSI, the

Gaussian channel model results only in a slightly worse

average performance than for the SatCom model. However,

the MSE bound curves of the Gaussian channel model saturate

earlier than those for the SatCom model. This is a consequence

of the SatCom beam gain characteristic, which deforms the

channel mean and error covariance alike [see (5) and (6)].
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