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Abstract. This paper reports a study in which we investigated whether 
individuals with autism spectrum disorder (ASD) are more likely to follow gaze 
of a robot than of a human. By gaze following, we refer to one of the most 
fundamental mechanisms of social cognition, i.e., orienting attention to where 
others look. Individuals with ASD sometimes display reduced ability to follow 
gaze [1] or read out intentions from gaze direction [2]. However, as they are in 
general well responding to robots [3], we reasoned that they might be more 
likely to follow gaze of robots, relative to humans. We used a version of a gaze 
cueing paradigm [4, 5] and recruited 18 participants diagnosed with ASD. 
Participants were observing a human or a robot face and their task was to 
discriminate a target presented either at the side validly cued by the gaze of the 
human or robot; or at the opposite side. We observed typical validity effects: 
faster reaction times (RTs) to validly cued targets, relative to invalidly cued 
targets. However, and most importantly, the validity effect was larger and 
significant for the robot faces, as compared to the human faces, where the 
validity effect did not reach significance. This shows that individuals with ASD 
are more likely to follow gaze of robots, relative to humans, suggesting that the 
success of robots in involving individuals with ASD in interactions might be 
due to a very fundamental mechanism of social cognition. Our present results 
can also provide avenues for future training programs for individuals with ASD. 

Keywords: Autism Spectrum Disorder, Human-Robot Interaction, Social 
Cognition, Social Interactions. 

1 Introduction 

Research in the area of social robotics and autism has greatly expanded in recent 
years. Robots have been shown to be effective in evoking social behavior in 
individuals with ASD (for review, see [3]). This has led many researchers to design 
social robots that could ultimately be used for training social skills in those who are 
impaired in this domain. 
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Robots that are designed for training social skills in individuals with ASD are 
typically tailored to match the needs of these particular populations. That is, they are 
designed to have simplified, not too overwhelming features; they are usually 
sufficiently human-like to be able to train social skills, but not too human-like to be 
intimidating for individuals with ASD; they offer sensory rewards for achievements 
(attractive sensory feedback related to behaviors that are being trained); they are 
designed to be safe in interaction (e.g., no sharp edges or jerky movements) and to 
offer control options to the interacting individual, which should enhance the ability to 
initiate an interaction (for list of design characteristics of robots for autism, see [3]). 

Several case studies in which children with ASD responded well to an interaction 
with a humanoid robot have been described in the literature. For example, the robot 
Kaspar – designed at the University of Hertfordshire – has been shown to train 
children with ASD in emotion recognition, imitation games, turn-taking, and triadic 
interactions involving other humans [6]. Another robot, NAO (Aldebaran Robotics), 
was able to elicit eye contact in a child with ASD, and has also been reported to help 
in improving social interaction and communication skills [7]. Also Keepon – a robot 
simple in form and appearance developed by Hideki Kozima at the National Institute 
of Information and Communications Technology, Japan – has proved to evoke in 
children with autism social behaviors, interest, interpersonal communication [8-12] 
and even joint attention [13, 14]. 

These documented examples show that creating social robots for the purpose of 
training social skills in individuals with ASD is a promising avenue. To date, 
however, researchers have not unequivocally answered the question why robots are 
well accepted as social companions by individuals with ASD. The reported cases of 
social interactions between individuals with ASD and robots are, in most parts, 
qualitative data (video recordings, caregivers’ reports or observation of an 
unconstrained interaction) and only a few studies have quantitatively investigated 
social interaction patterns [14-17]. Stanton and colleagues [15], for instance, found 
that children with ASD spoke more words with and were more engaged in 
interactions with social robots compared to simple toys that did not react to the 
children’s behavior. As another example, Robins and colleagues [16] investigated 
whether the robot’s appearance affects the patients’ willingness to interact with them. 
It was found that children with ASD prefer robots with reduced physical features over 
very human-like robots. The studies provide evidence that children with ASD benefit 
from interacting with social robots resulting in improved social skills. However, the 
studies do not inform about the basic cognitive mechanisms that are triggered during 
interactions with social robots.   

In order to answer the question of what cognitive mechanisms are actually at stake 
during interactions with robots – and what is the reason why the interactions with 
robots are more successful than those with other humans, one needs to conduct well-
controlled experimental studies that are designed to examine selected cognitive 
mechanisms. 

For example, the gaze-cueing paradigm [4, 5] is a well-established protocol to 
examine one of the most fundamental mechanisms of social cognition – gaze following. 
Gaze following occurs when one agent directs their gaze to a location; and another 
agent attends to that location (being spatially cued by the gaze direction of the first 
agent). Gaze following has been postulated to underlie important social cognitive 
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processes such as mentalizing and joint attention [2]. Gaze following is an evolutionary 
adaptive mechanism [18], as attending to where others attend (as signaled by their gaze 
direction) informs about potentially relevant events in the environment (such as the 
appearance of a predator or prey). It also serves the purpose of establishing a common 
social context for joint action [19], among other types of interactions. 

Individuals with ASD sometimes do not exhibit the typical pattern of results when 
reading out mental states from gaze behavior or in gaze cueing studies [1, 2]. A gaze 
cueing paradigm typically consists of a trial sequence in which first a face is 
presented centrally on a computer screen with gaze straight-ahead (in the direction of 
the observer). Subsequently, the gaze is shifted to a location and, then, a stimulus is 
presented either at a location in the direction to which the gaze is pointing (validly 
cued trials) or at a different location (invalidly cued trials). Participants are typically 
asked to detect, discriminate or localize the target stimulus. The logic behind this 
paradigm is that if participants follow the gaze of the observed agent on the screen, 
their focus of attention should be allocated to where the gazer gazes. Therefore, when 
the target stimulus appears at the attended location, its processing should be 
prioritized (due to attention having been already focused there), relative to when the 
target stimulus appears elsewhere. This has indeed been demonstrated by observing 
shorter reaction times [4, 5, 20-22] or lower error rates [22] to the target stimulus at 
the validly cued location, relative to invalidly cued locations. Moreover, brain 
responses (as measured by target-locked event-related potentials of the EEG signals) 
have been shown to be more enhanced for validly cued targets, relatively to invalidly 
cued targets [22, 23]. 

Interestingly, in our previous studies [20, 22], we have shown that gaze cueing 
effects were larger for human faces, as compared to robot faces when healthy adult 
participants were tested. We attributed this effect to humans adopting the so-called 
Intentional Stance [24] towards the observed human agent, but not towards the robot. 
Adopting the Intentional Stance is understood as “treating the object whose behavior 
you want to predict as a rational agent with beliefs and desires and other mental states 
exhibiting (…) intentionality” [24, p. 372]. In other words, adopting the Intentional 
Stance is simply attributing ‘a mind’ to the observed agent. In case of healthy adult 
participants, gaze following might make more sense when mind is attributed to the 
observed agent, relative to when the agent is treated only as a mechanistic device – 
because the gaze behavior of an agent with a mind might carry socially relevant 
content [18], while the gaze of a mechanistic device is devoid of such content. 
Accordingly, healthy adult participants follow the gaze of humans to a larger extent 
than that of mechanistic agents. 

Aim of the Present Study 

In the present study, we adopted a controlled paradigm targeted at a particular 
cognitive mechanism that can play a role in social interactions between individuals 
with ASD and robots. The aim was to test – using the gaze cueing paradigm involving 
human and robot agents – whether individuals with ASD would follow the gaze of a 
robot, even if they are reluctant to follow the gaze of humans [2]. The logic behind 
this was that since gaze following is one of the most fundamental mechanisms of 
social cognition, it might be affected by the general aptitude of individuals with ASD 
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Leftward or rightward gaze direction deviated by 0.2° from straight-ahead, in both 
the human and the robot condition. Stimuli were presented centrally on a white 
background, with eyes positioned on the central horizontal axis of the screen. 
Peripheral target letters were always presented at the same level as the eyes of the 
human or robot face. The target stimulus was a black capital letter (F or T), 0.2° × 
0.2° in size, which was presented at an eccentricity of 5.7° relative to the screen 
center (Fig. 2). Target positions (left or right) were determined pseudo-randomly. 

Gaze direction was not predictive of the target position: gaze was directed either to 
the side on which the target appeared (valid trials, 50% trials) or to the other side 
(invalid trials, 50% of trials). 

2.3 Procedure 

Each experimental trial began with presentation of a fixation point (2 pixels) for 850 
ms. The fixation display was followed a display with a face gazing straight-ahead (in 
the direction of the observer, 850 ms). The fixation dot remained visible (in-between 
the eyebrows of the face). The next event in the trial sequence consisted of a 
directional gaze shift to the left or the right. Subsequently, after 500 ms, the target 
letter was presented on either the left or the right side of the screen, with the face 
remaining present in the centre. Upon target presentation, participants responded as 
quickly and as accurately as possible to the identity of the target letter (F or T) using 
the ‘d’ or ‘k’ key on a standard keyboard, with response assignment counterbalanced 
across participants (d=F/k=T vs. d=T/k=F; the d/k letters were covered with F and T 
stickers). The target letter remained visible on the screen until a response was given or 
a time-out criterion (1200 ms) was reached. Figure 2 depicts an example trial 
sequence. The experiment consisted of 596 experimental trials preceded by 20 
practice trials. All conditions were pseudo-randomly mixed.  

 

Fig. 2. An example trial sequence with validly cued condition. Proportions of stimuli relative to 
the screen are represented as they were in the experiment. 
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people with ASD can indeed process the eye movements displayed by a robot and 
shift their attentional focus to the gazed-at location. In doing so, individuals with ASD 
appear to react to robots in a similar way as healthy participants do to human partners: 
they share attention with them and attend to where others are attending. Thus, our 
data provide empirical evidence that robots have the capability of inducing attentional 
shifts in people with ASD and can thus be used to train people with ASD in the more 
general ability of gaze following. Sharing attention with others is also an important 
prerequisite for mentalizing and understanding others’ actions – two social skills that 
are known to be impaired in ASD [2]. Since eye gaze directly informs about internal 
states, such as preferences or interests, and helps predicting what other people are 
going to do next [28], it seems that robots can be used to train individuals with ASD 
to understand others’ intentions and predict others’ actions – through gaze following. 

While many robot systems have proved to be very successful in engaging 
individuals with ASD into an interaction [3], it is as yet little understood what the 
underlying cognitive mechanisms are. Our study reveals that it might be fundamental 
mechanisms (such as shared attention/gaze following) that are the basis for other 
higher-order social cognitive processes that are elicited in interactions with robots, but 
are not activated during interactions with humans. Therefore, the phenomenal 
experience of pleasantness and fun [3] that individuals with ASD seem to have when 
interacting with robots might be a consequence of more basic (and perhaps even 
implicit) cognitive mechanisms that come into play in human-robot interaction. 

This raises the question of why individuals with ASD activate those fundamental 
mechanisms of social cognition when interacting with robots, but not to the same 
extent when interacting with humans. That is, why are they less likely to follow the 
eyes of humans, but more likely to follow the eyes of robots? This question is 
particularly interesting in the light of previous findings of Wiese, Wykowska and 
colleagues [20], where the same stimuli were used with healthy participants, but the 
opposite effect was found: stronger gaze following for the human than for the robot 
face. A possible explanation for this comes from Baron-Cohen [29, 30], who 
proposed that individuals with ASD have reduced mentalizing but increased 
systemizing skills, which makes them more interested in understanding the behavior 
of machines rather than of minds. Thus, it appears that the degree to which eye gaze is 
followed depends on how meaningful it is to the observer: Healthy controls make 
more sense of human-like eye movements and show stronger gaze following for 
human-like agents (presumably due to the behavior of human agents carrying socially 
informative content, [18]), while individuals with ASD make more sense of robot-like 
eye movements and show stronger gaze following for robot-like agents, presumably 
due to their aptitude for mechanistic systems and systemizing in general. 

It might also be the case that both patterns of results are attributable to the same 
mechanism. That is, the differential cueing effects for human vs. robot faces (in both 
healthy participants and individuals with ASD) might be related to pre-activating 
certain representations of the observed stimulus: when a human face is observed, a 
whole representation of a human being might be activated; while a representation of a 
robot is activated when a robot face is seen. These representations include various 
characteristics. One of the characteristics of a human is that humans possess minds 
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and their behavior is driven by mental states. In the case of healthy, typically 
developed people, this might produce a higher incentive to follow human gaze 
(relative to following gaze of a robot), because mental states and intentions carry 
socially informative meaning [18]. However, for individuals with ASD, the 
representation of a human might be associated with complex and probabilistic (hard 
to determine) behavior [31, 32]. A mechanistic device, by contrast, might be 
associated with a deterministic (and thus more predictable) behavior [30, 31]. Hence 
individuals with ASD may be more comfortable in the presence of systems with more 
predictable behavior, and thus be more ready to engage fundamental mechanisms of 
social cognition in interactions with them. 

5 Concluding Remarks and Future Directions 

There are two main conclusions that can be drawn from this research: First, social 
robots can be used to train people with ASD to follow eye gaze and understand that 
objects of interest are usually looked at before an action is performed with/on them. In 
doing so, one would hope that gaze following behavior shown with robots would 
generalize to human-human interactions and help people with ASD to develop basic 
mentalizing skills. Second, the present study casts light on the mechanisms that might 
be the reason for the success of robots in involving individuals with ASD into 
interactions with them [3]. We show that it might be the most fundamental 
mechanisms of social cognition that are elicited by robots, but that are not activated 
when individuals with ASD interact with other humans. As a consequence, 
interactions with robots are more efficient and smooth, and hence robots are 
successful in engaging individuals with ASD.  
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