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"It is now clear an extensive miRNA world was flying almost unseen by our genetic
radar. As much as geneticists like to think that nothing can escape genetic analysis, the
miRNA genes are so small that they almost escaped our notice. [...] The flowering of
the diverse and numerous miRNA genes in animals and plants may turn out to mediate
much of the gene regulation that generates cell diversity and developmental patterning, as
well as the gene regulation underlying other recent inventions in animals such as synaptic

signaling and its modulation."

Gary Ruvkun, Bruce Witghman and Ilho Ha. Cell, 2004.

"Over the past few years, remarkable progress has been made in our understanding of
miRNA biogenesis and function; however, the mechanisms that miRNAs use to regulate

gene expression remain unclear and several controversies surround the topic."

Eric Huntzinger, and Elisa [zaurralde. Nat Rev Genet, 2011.
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Abstract

As our knowledge of the eukaryotic genome structure and organization has evolved, a
new family of small non-coding regulatory RNAs, called microRNAs (miRNAs), has
emerged. 20 years after their first discovery, our comprehension of these molecules and
their interactions is still limited yet. Bound to a ribonucleoprotein complex (miRNP),
miRNAs were suggested to pair with messenger RNAs (mRNAs) inducing target decay or
translational repression. By forming a post-transcriptional regulation layer, they allow the
adjustment or amplification of target gene expression regulation conducted by transcription
factors. The miRNA targetome is extensive and constitutes highly wired networks of
regulatory interactions. At this, several highly-connected miRNAs were identified playing
key roles in the control of crucial cellular processes. In this context, the perturbation of
miRNA-mediated regulation was associated to the outcome of malignant diseases, such
as cancer. To date, there are more than 1 800 miRNA genes and 2 500 mature transcripts
known in human — for the major fraction, the function remains to be revealed.

Recent technologies contributed significant progress in the field of miRNA research.
By Argonaute (AGO):RNA cross-linking (CL), immunoprecipitation (IP) and subsequent
high-throughput sequencing (CLIP-Seq) of bound RNAs, it became feasible, for the first
time, to determine miRNP target sites of a whole transcriptome with high specificity. Until
then, target information was sparse and incomplete. Thus, the emergence of the AGO-
bound CLIP-Seq protocols afforded a wealth of data for the analysis of miRNA-mediated
regulation. This doctoral thesis aimed to quantitatively elucidate basic miRNP:target
interaction paradigms, to examine how these are impacted by genetic variance, and finally,
to develop a novel computational approach to qualitatively model global miRNA-mediated
regulation by means of novel information extracted from available AGO-bound CLIP-Seq
libraries.

First, the most important feature for target prediction, the pairing between the target
sequence and the miRNA 5’-end, the miRNA seed, was revisited. A set of canonical seed
types was identified by a sequence pattern mining strategy in AGO-bound CLIP-Seq data.
Quantitative seed type analysis confirmed the proposed specificity of long seeds, but also
revealed that the majority of bona fide sites are formed by less specific and non-conserved

seeds holding a minor impact on target expression. Their potential important role in the
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miRNA regulome was discussed. An evaluation of current computational target prediction
models showed that the majority of functional sites remain uncovered.

Next, sequence-, structure-, and homology-based attributes of miRNP target sites were
extracted and analyzed. Here, known features were confirmed. Also a novel characteristic
was detected and its potential relevance for target site determination was discussed. A
generic machine learning approach was implemented which was shown to improve the
precision of existing methods. Further, the novel information on miRNP target sites
was applied to a biological case study. Here, a miRNA regulation was identified and
experimentally verified which may contribute to the pathogenic phenotype of idiopathic
pulmonary fibrosis.

Human genetic variation has been associated to complex traits and diseases. Here,
the genomic diversity arises from 1% of variation, mostly induced by single nucleotide
polymorphisms (SNPs). Of these, reported SNPs affecting the miRNA regulation pathway
are rare. By utilizing the AGO-bound CLIP-Seq library, the question was examined whether
genetic variance interferes with miRNP bindig site features. A set of trait-associated index
SNPs and proximal SNPs in linkage disequilibrium were computed using data from
genome-wide association studies. The analysis of their localization revealed an enrichment
in 3’-untranslated regions (3’-UTRs) of protein-coding genes — the predominant region
embedding miRNA binding sites. Here, several potential mechanisms were investigated
affecting miRNA-mediated regulation. In the end, 53 cis-miR-SNPs were found altering
the canonical miRNA seed pairing, the 3’-UTR folding and/or the 3’-UTR splicing. It
was observed that cis-miR-SNPs induce an allelic expression imbalance and induce a
noticeable target expression variation.

Finally, the computational modeling of globally miRNA-mediated regulation was ad-
dressed. Understanding how regulatory networks globally coordinate the response of a cell
to changing conditions, such as perturbations by shifting environments, is an elementary
challenge in systems biology which has yet to be met. Genome-wide gene expression mea-
surements are high dimensional as these are reflecting the condition-specific interplay of
thousands of cellular components. The integration of prior biological knowledge, such as
AGO-bound CLIP-Seq libraries, into the modeling process of systems-wide gene regulation
enables the large-scale interpretation of gene expression signals in the context of known
regulatory relations. Within this thesis a novel approach called COGERE was developed.

It denotes a method for the inference of condition-specific gene regulatory networks in
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human and mouse. A framework to integrate existing knowledge of regulatory interactions
from multiple sources to a comprehensive model of prior information is presented. Further,
an algorithm was developed for the inference of condition-specific regulation by evaluating
the mutual dependency between regulator (transcription factor or miRNA) and target gene
expression using prior information. This dependency is scored by the non-parametric,
nonlinear correlation coefficient n? (eta squared) that is derived by a two-way analysis of
variance. In this thesis, it is shown that COGERE significantly outperforms alternative
methods in scoring prior information as well as in predicting condition-specific gene
regulatory networks on simulated data sets. Furthermore, by inferring the cancer gene
regulatory network, the value of COGERE to promote hypothesis-driven clinical research

1s demonstrated.
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Zusammenfassung

Uber die letzten Jahrzehnte expandierte unser Wissen iiber die Topologie des eukary-
otischen Genoms in einem beachtlichen Ausmaf}. Hierbei sind viele neue Elemente
beschrieben worden — unter anderem auch eine Familie kleiner nicht-kodierender RNAs,
den sogenannten microRNAs (miRNAs). Noch heute, 20 Jahre nach ihrer ersten Ent-
deckung, sind unsere Erkenntnisse iiber diese Molekiile und deren Interaktionen limitiert.
Integriert in einem Ribonukleoproteinkomplex (miRNP) binden miRNAs komplementéir
an Boten-RNA und erzwingen so deren Abbau oder unterbinden die Translation. Somit
bilden miRNAs eine post-transkriptionelle Regulationsebene, welche eine Adjustierung
oder Amplifikation der von Transkriptionsfatkoren gesteuerten Genexpression ermoglicht.
Die Gesamtheit der miRNA Zielgene (Regulom) ist beachtlich groB3. Es ist somit nicht
erstaunlich, dass die Menge an Interaktionen ein dichtes post-transkriptionelles genregula-
torisches Netzwerk impliziert. Hierbei wurden bereits verschiedenen hoch-verbundenen
miRNAs entscheidende Rollen in der Kontrolle von essenziellen Zellprozessen zugewiesen.
In diesem Zusammenhang wurde auch die Perturbation der miRNA-mediierten Genreg-
ulation mit schweren Erkrankungen, wie zum Beispiel Krebs, in Verbindung gebracht.
Nach heutigem Stand sind mehr als 1 800 miRNA Gene und 2 500 reife Genprodukte
im menschlichen Genom bekannt — fiir die Mehrzahl ist die Funktion noch génzlich
unbekannt.

Moderne Technologien haben einen signifikanten Anteil zum aktuellen Fortschritt in
der miRNA Forschung beigetragen. Ein kiirzlich veroffentlichtes Protokoll erzwingt kova-
lente Bindungen zwischen dem miRNP und der gebundenen Boten-RNA (cross-linking
Verfahren, CL). Anschlieend wird das RNA-bindende Protein, in diesem Fall Argonaute
(AGO), anhand von Immunoprézipitation (IP) isoliert. Das anschlieende Sequenzieren
der gebundenen RNAs (Seq) ermoglicht, zum ersten Mal, eine hoch-spezfische, transkrip-
tomweite Identifikation von miRNP Bindestellen. Bis zu diesem Zeitpunkt waren die
Informationen iiber miRNA Zielgene liickenhaft und ungenau. Entsprechend enthalten
AGO CLIP-Seq Daten neuen, hoch-relevante Informationen. Diese Doktorarbeit hatte das
Ziel anhand der quantitativen Exploration von verfiigbaren AGO CLIP-Seq Bibliotheken
grundlegende miRNP:Zielgen Interaktionsparadigmen aufzuklidren, zu erdrtern wie diese

durch genetische Variation beeinflusst werden und letztlich einen Ansatz zu entwickeln,
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um globale qualitative Modelle zelluldirer miRNA-mediierter Regulation berechnen zu
konnen.

Zuerst wurde die wichtigste Charakteristik fiir die Vorhersage von miRNA Zielgenen,
die Paarung zwischen der Boten-RNA und der 5’-terminale miRNA Seedsequenz, erneut
untersucht. Hierbei wurde eine Menge an kanonischen Seedtypen anhand einer statistis-
chen Mustersuche in der AGO CLIP-Seq Sequenzbibliothek identifiziert. Die quantitative
Analyse der Seedtypen bestitigte die bisher angenommene Spezifitit langer Seeds, jedoch
zeigte auch, dass die Mehrheit der bona fide Bindestellen durch weniger spezifische und
schwach konservierte Typen gestellt wird. Diese weisen zudem eine geringere regula-
torische Effektivitit auf. Ihre dennoch potentiell sehr wichtige Rolle im miRNA-Regulom
wurde in diesen Rahmen diskutiert. Eine Evaluierung von gingigen Vorhersagealgorith-
men zeigte, dass die Majoritit der funktionellen Bindestellen von diesen Methoden nicht
aufgefunden wird.

Als Néchstes wurden sequenz-, struktur-, und homologie-basierte Attribute von miRNP
Bindestellen extrahiert und ausgewertet. Hierbei wurden bestehende Erkenntnisse bestitigt,
sowie eine neue Charakteristik entdeckt und ihre Relevanz fiir die Bestimmung von
Bindestellen diskutiert. Anhand von Maschinellen Lernen wurde ein generischer Ansatz
entwickelt, um genomweit miRNP Bindestellen klassifizieren zu konnen. Es wurde
gezeigt, dass dieser Ansatz die Prédzision bestehender Vorhersagemethoden verbessern
kann. SchlieBlich wurden die neuen Erkenntnisse im Rahmen einer biologischen Fallstudie
angewandt. Hierbei wurde eine miRNA Regulation identifiziert und experimentell veri-
fiziert, welche vermutlich bei der Atiologie von idiopathischer pulmonaler Fibrose eine
Rolle spielt.

Die humane genetische Variation wurde mit komplexen phéanotypischen Merkmalen
und Krankheiten assoziiert. Diese wird meistens durch Einzelnukleotidpolymorphismen
(Single Nucleotide Polymorphisms, SNPs) erzeugt. Bis heute wurden diese kaum im
Zusammenhang mit miRNA Regulation beschrieben. Mehrere Indizien deuten jedoch auch
auf eine mogliche Modifikation der post-transkriptionellen Regulation von betroffenen
Genen hin. Demnach wurde unter Verwendung der AGO CLIP-Seq Daten die Frage
erortert, ob genetische Varianz mit Eigenschaften der miRNP Bindestellen interferiert.
Eine Menge an Index-SNPs und proximalen SNPs in Kopplungsungleichgewicht wurde
mit Hilfe von Daten aus genomweiten Assoziationsstudien erstellt. Die Betrachtung

der genomischen Positionen dieser SNPs brachte hervor, dass eine Anreicherung in den
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3‘-untranslatierten Regionen (3’-UTRs) von protein-kodierenden Genen besteht. Diese
Segemente sind prominent fiir das enkodieren von miRNA Bindestellen. Verschiedene
Mechanismen wurden eruiert, welche eine mogliche Stérung der miRNA Regulation
erwirken konnten. Schlielich wurden 53 cis-miR-SNPs gefunden, welche kanonische
miRNA Seed-komplementére Stellen verdndern, die lokale 3‘-UTR Faltung modifizieren
und/oder alternativ-gespleiflite 3’-UTR Transkripte erzeugen. Unter Verwendung von
Expressionsanalysen wurde gezeigt, dass diese cis-miR-SNPs eine allel-abhiingige Tran-
skriptkonzentration, sowie eine erhohte Konzentrationsvarianz aufweisen.

Im letzten Teil dieser Arbeit wurde die Problematik der Modellierung von globalen
miRNA-mediierten Regulationsnetzwerken adressiert. Das Verstdndnis wie diese Netzw-
erke die Antwort einer Zelle auf verdnderte (Umwelt-)Bedingungen koordinieren ist eine
elementare, sowie hochaktuelle Fragestellung der Systembiologie. Genomweite Genexpres-
sionsmessungen sind hochdimensional, da diese das konditionsspezifische Zusammenspiel
von Tausenden zelluldren Komponenten wiedergeben. Die Integration von Vorwissen, wie
zum Beispiel Informationen aus den AGO CLIP-Seq Bibliotheken, in die Modellierung
von systemweiter Genregulation, ermdoglicht die Interpretation von Expressionssignalen
im Kontext bekannter regulatorischer Relationen in groBem Umfang. Im Rahmen dieser
Doktorarbeit wurde der neue Ansatz COGERE entwickelt. Dies ist eine Methode zur
Inferenz konditionsspezifischer genetischer Netzwerke in Mensch und Maus. Zunichst
wird ein Framework beschrieben, welches die Integration von aktuellem Wissen aus
einer Vielzahl an semantisch unterschiedlichen Ressourcen zu einem einheitlichen Modell
ermoglicht (Prior-Modell). Desweiteren wird ein Ansatz prisentiert, welcher die In-
ferenz von konditionsspezifischen regulatorischen Interaktionen anhand des Prior-Modells
durchfiihrt. Hierfiir wurde die gegenseitige Abhingigkeit zwischen einem Regulator (Tran-
skriptionsfaktor oder miRNA) und dem Zielgen anhand von Expressionsprofilen bewertet.
Das Mal3, welches hierfiir verwendet wurde ist der nicht-parametrischen, nicht-linearen
Korrelationskoeffizienten n2 (Eta-Quadrat). Dieser wurde aus einer zweifaktoriellen
Varianzanalyse abgeleitet. Es wird gezeigt, dass COGERE, sowohl die Integration von Vor-
wissen, als auch die Bewertung konditionsspezifischer Regulationen aktueller Methoden
signifikant verbessert. Desweiteren wird anhand einer Genexpressionstudie von Krebs-
geweben gezeigt, dass COGERE eine wertvolle Ressource fiir die hypothesen-getriebene

klinische Forschung ist.
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CHAPTER 1

Introduction

1.1 The elucidation of ncRNA

RNA has long been thought to be the primordial molecule of life and, as such, was the
central subject of molecular biology research. To date, this assumption is known as the
RNA world hypothesis, proposing that self-replicating RNA molecules devolved their
information storage function to the more stable DNA and their catalytic functions to the
more chemically versatile polypeptides!!].

In the early 1940s, the prevailing role of RNA was suggested to be an intermediary, a
messenger, between DNA and the only functional components of the cell, the enzymes.
This view implied that each gene produces an enzyme, a hypothesis which is known
as the ’one gene, one enzyme’ concept. Since the simple methods applied for gene
detection at that time, such as expressed sequence tag sequencing of polyadenylated
messenger RNAs (mRNAs) and computational predictions using extrinsic information
from comparative genome analysis, were working best for highly expressed, evolutionary
conserved protein-coding genes, this idea was broadly accepted[?).

A few years after the elucidation of the DNA structure, in the late-1950s, Francis Crick
stated an explanation of the flow of genetic information within a biological system, the
celebrated central dogma of molecular biology: genetic information is transcribed from
DNA and translated from RNA to proteins. Further, he replaced the existent concept by
the almost forgotten ’one gene, one ribosome, one protein’ theory. Here, it was assumed

that each gene encodes a specific mRNA and an accordant protein synthesis machinery, a
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gene-specific ribosome. However, the later finding of a class of stable RNAs comprising
polyribonucleotides with low variation in size and base composition in the ribosome
challenged this theory. These ribosomal RNAs (rRNAs) aggregate with a variety of
proteins forming the translational apparatus which is, on the other hand, programmed by
unstable mRNAs. Apparently, rRNA seemed to be functional without being translated
and as such the existence of RNA molecules without protein-coding potential, so-called
non-coding RNA (ncRNA), was predicted for the first time[?].

The subsequent ’adaptor’ hypothesis of Francis Crick described a second class of
functional ncRNA which was assigned again a key role in the translation process. He
suggested that an RNA molecule mediates between the codon on the mRNA and the
corresponding amino acid attached on the encoded polypeptide during the protein synthesis.
Since the triplet recognition can be basically conducted by simple Watson-Crick base
pairing, RNA seemed to be the evolutionary preferred molecule over proteins?!. Indeed,
the existence of this transfer RNA (tRNA) was experimentally verified by Mahlon Hoagland
et al. in 195803!. Therefore, the defined capacity of RNA was extended from being a
pure information-carrying intermediate by additional catalytic and structural roles in the
translation process.

Since the fraction of RNA beside rRNA and tRNA was complex, non-abundant and
mostly unstable, it was highly unattractive to perform further investigations and, in the end,
this fraction was generally assumed to be entirely represented by mRNA. Additionally, the
main focus of the molecular biological research was broadly focused on solving the genetic
code during this time and thus, there was limited commitment to address the question
whether there are more RNAs than the already known ones 2.

Already in 1961 Jacob and Monod[*! speculated in their famous work on the lac operon
of Escherichia coli that gene expression is controlled through transcriptional regulation
conducted by polyribonucleotides. However, a later experiment showed that the locus
encoding the lac repressor is translated to a polypeptide which allosterical inhibits the
lactose substrate. Thus, this visionary idea faded. However, studies of such kind led to the
established transcription factor (TF) paradigm of gene regulation, i.e. gene expression is
controlled by proteins binding to cis-regulatory elements on the DNA. This concept also
emphasized that not all proteins have to be enzymes and that combinatorial interactions
of these trans-acting regulators may result in a regulatory landscape of high intrinsic

complexity that is sufficient to control cell diversity!!].
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In the following years, several classes of abundant small RNAs were deliberately isolated,
albeit some of them were discovered unexpectedly. Biochemical fractionation led to the
finding of heterogeneous protein complexes containing small nuclear RNAs, so-called
ribonucleoprotein complexs (RNPs). Later research revealed that these small nuclear
RNAs (snRNAs), namely U1, U2, U4, US and U6, play a crucial role in the RNA splicing
process as part of the spliceosomes by RNA-RNA and RNA-protein interactions!!!. Further
functional RNAs were detected such as the small nucleolar RNAs (snoRNAs) conducting
the methylation and pseudouridylation of rRNAs, tRNAs and snRNAs. The surprising
finding that the signal recognition protein guiding the protein translocation processes is not
a protein complex rather a ribonucleoprotein (protein-RNA complex), led to its renaming
to signal recognition particle!?!. Yet, the function of all of these small RNAs seemed to be
restricted to protein synthesis.

In 1969 Britten and Davidson>®! published their unconventional theory on gene regu-
lation in higher cells which attracted a great deal of attention. Based on the observation
that the diversity of heterogeneous nuclear RNA was much greater in the nucleus than
in the cytoplasm and plant as well as animal DNA contains a large amount of repetitive
non-coding sequences, they supposed that gene expression is controlled by extensive RNA-
based regulatory networks. However, research in this field focused on gene regulation by
TFs rather than RNAs and therefore this idea faded quickly!!). Later, in 1972, the public
opinion was mirrored by Susumi Ohno’s article in which he originated the term ’junk
DNA’ ] for repetitive non-coding DNA. Therefore, it is not surprising that even after the
discovery of introns in 1977, one of the most unexpected findings in molecular biology, or
the demonstration of the existence of RNAs with enzymatic capabilities (ribozymes) in the

early 1980s, the theory of regulatory ncRNA was not revisited!!.

1.2 Discovery of small regulatory ncRNAs

In 1993, a crucial finding was made by Bruce Wightman et al.®! and Rosalind Lee et al.[!
during their investigation of the regulatory processes in the development of Caenorhabditis
elegans. Until then, it was already known that the lin-14 gene product controls stage
specific lineages and is abundant in late-stage embryos and the first larval stage (L1)

but was only barley found in the subsequent L2 stage. Further, the gain-of-function
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mutation at the lin-14 3’-untranslated region (UTR) locus caused the reiteration of the
L1 stage resulting in a the same retarded Caenorhabditis elegans phenotype which has
been observed for the loss-of-function mutation at the lin-4 locus. Further, lin-4 has been
suggested to temporal decrease lin-14 protein levels /8.

Based on this starting position, Lee et al.!) delineated the regulator lin-4 and Wightman
et al.®) characterized its mediated regulation. The latter group validated that the protein
concentration of lin-14 decreased by a factor of 10 between early and late larval stages, but
in this context, they also observed that the RNA level of lin-14 was stable. In addition, they
used reporter assays to identify the lin-14 3’-UTR sequence as sufficient component for its
temporal regulation. At this, they found conserved sequences of 10 nucleotide(s) (nt) or
more which exhibited high complementarity to the lin-4 RNAs. On the whole, they argued
that lin-14 is regulated by lin-4 post-transcriptionally via cis-regulatory elements located
on the 3’-UTR. This was novel and different to the popular concept of transcriptional
regulation by proteins!®l. Lee et al.!! gradually realized that they were dealing with a
small ncRNA instead of a protein-coding gene. They were neither able to determine a
conserved protein sequence nor to identify a conventional position of a start or stop codon
in the lin-4 open reading frame. Additional in vitro mutagenesis, such as reading frame
disruption and non-sense mutations, had no effect on the regulatory function of lin-4. Thus,
they suggested that the lin-4 gene did not encode a functional protein. By Northern blot
analysis they detected two small lin-4 transcripts, namely lin-4L with 61 nt length and
lin-4S with 22 nt length. Both could be mapped on the same region and are transcribed in
the same orientation. Therefore, they concluded that the lin-4 gene product is a small RNA,
processed from a three-times longer RNA precursor with a putative stem loop structure.

The lin-4 gene remained a single idiosyncrasy of Caenorhabditis elegans until the turn of
the millennium, when a second ncRNA gene encoding a small post-transcriptional regulator,
lethal-7 (let-7), was identified "9, This ncRNA exhibited the same characteristics as lin-
14. But importantly, Amy Pasquinelli e al. /"'l demonstrated that let-7 was completely
conserved and expressed in nematode, fly and humans. Since lin-4 and let-7 showed
temporal regulation, they were classified as *small temporal RNAs’ (stRNAs) 2,

As recently as double-stranded RNA interference (RNAi) was discovered', targeted

1 For a thoroughly review on RNAI, please refer to the article of Sen and Blau!'3.
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cloning following size selection of RNAs was performed. In this line, Thomas Tuschl’s
laboratory!!4l detected endogenous small regulatory polyribonucleotides of the RNAi
pathway of length 21 — 22 nt in Drosophila melanogaster. Subsequent works recovering
this observation in other organisms led to the perception that RNAI is a more general
control mechanism. In consequence, it has been assumed that lin-4 and let-7 are members
of a very large family of small RNAs which were termed *microRNAs (miRNAs)’ 2.
Since the first release of the central miRNA repository, miRBase! 13!, at the end of 2002,
the number of registered genes strongly increased from 56 human and 41 murine to 1 881
and 1 193 entities cataloged in the latest release (June 2014), respectively (Figure 1.1)
There are multiple gene loci spread over the whole genome whereat several genes are

[16] For instance, 11 paralogous loci in Homo sapiens belong

related by a duplication event
to the let-7 family (e.g. let-7a, let-7b). In general, 31% of human miRNA genes belong to
a multimember family which is suggested to have a common ancestor based on hairpin
similarity. Further, several human genomic loci exhibit distinct precursor sequences, but
express identical mature sequences (e.g. mir-1-1 and mir-1-2). The nomenclature of
miRNA genes detected by cloning or sequencing is simply sequential (e.g. mir-1, mir-2).
This holds not for genes found in early genetic studies such as let-7 and lin-4, e.g. posterior

homologs of the latter are named mir-125. In the literature, genes and the predicted stem-

— Homo sapiens —]

T — Mus musculus /
S _ — Drosophila melanogaster P
Q Caenorhabditis elegans P
o
S
o
o -

Figure 1.1 | Cumulative number of registered miRNA genes and mature transcripts. Shown
is the count of listed miRNA genes (solid lines) and mature transcripts (dashed lines) for human
(blue), house mouse (red), fruit fly (green), and a roundworm (orange) in the central miRNA
repository, miRBase!!>!, from December 2002 (release 1.0) to June 2014 (release 21.0). In the
last four years, the number of registered human miRNA genes grew by a factor of two (mature
transcripts by a factor of 2.4).
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loop portion of the primary transcript are signified by the term *mir’, the mature product is
designated with 'miR’.

Currently, there are 196 families of mature miRNAs known to be conserved among
mammals; 34 miRNAs are phylogenetically conserved from Caenorhabditis elegans to
Homo sapiens. At this, some miRNAs have a last common ancestor and are, as such,
evolutionary related. However, the 5’-end of their mature sequences diverge implying a
distinct targeting pattern (e.g. miR-141 and miR-220c)!1¢.

It is of note that the majority of listed miRNAs in miRBase have been annotated by
high-throughput sequencing. This technology is very sensitive leading to false positives
which may be rather decay intermediates of other RNA species. A non negligible fraction
of entries are only supported by small numbers of sequencing reads and some of them
exhibit varying 5’-ends — a region which is in fact under high selective pressure (but
may vary due to authentic isoforms!!”1). A detailed verification of miRBase (release 14,
09/2009) had revealed that 173 of 564 (31%) tested loci lacked convincing evidence that
they produce genuine mature miRNAs 6],

Since this thesis focused on animal miRNAs, the following sections will exclusively
describe features of these species. The miRNA pathway in animals emerged independently
from the pathway in plants resulting in different primary modes of actions. However, core

components are conserved between both kingdoms!.

1.3 miRNA biogenesis

miRNAs are encoded by gene sequences with an average length greater than 1 000 nt
located within inter- and intragenic, i.e. exonic or intronic, genomic contexts. Here, a
good deal of human miRNAs (~ 40%) are encoded within introns of coding or non-coding
transcripts[!%2%]. In the following, the canonical and alternative maturation pathways of

functional miRNA transcripts are described. An illustration is given in Figure 1.2.

1 For information on the miRNA pathway in plants, please refer to the article of Rogers and Chen[!8].
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Figure 1.2 (previous page) | Pri-miRNAs are produced by RNA Pol II/III. The transcripts are
processed by the "Microprocessor’ complex or the spliceosome and then exported by EXPS to the
cytoplasm. Alternatively, EXP1 conducts directly their subsequent nuclear export. The pre-miRNA
is processed by AGO?2 or Dicer resulting in double stranded RNAs. The guide strand and/or the
passenger strand are loaded onto the AGO protein following the miRNP assembly. The canonical
pathway is highlighted by red arrows; alternative maturation steps are highlighted by blue arrows.

1.3.1 The canonical maturation pathway

miRNA genes are mainly transcribed by RNA polymerase II and, thus, controlled by
correspondent TFs and epigenetic regulations, such as DNA methylation and histone
modifications!®]. Since the primary transcripts of miRNA genes are rapidly processed,
these are very transient impeding the global mapping of transcription start sites. While these
sites have not yet been characterized for most miRNA genes, some promoter characteristics
have been inferred from collective analysis of CpG islands, RNA sequencing data, ChIP-
Seq!!®! and nucleosome positioning analyses and ChIP—chip screens!?!!. The transcription
initiation site has been found from hundred bases to 20 kilobases (kb) upstream and farther

of the miRNA coding region [21,22]

. General features of miRNA promoters have been
described similar to those of coding genes: conservation, CG content, comprising a TATA
element, a TFIIB recognition element, an initiator, a motif 10 element, and a downstream
promoter element!?!. Promotors of intronic genes located on the same strand as their host
are coincident with the host promoter!?3!. However, about one third of intronic miRNA
genes have multiple transcription initiation sites and, as such, exhibit independent promoter
regions?!1. Furthermore, miRNA loci located in close proximity (up to 50 kb) have been
observed to form polycistronic transcriptional units sharing a single promoter!'®!. Indeed,
these miRNAs are generally co-transcribed, but not necessarily produce active mature
transcripts simultaneously (1624231 It has been suggested that genomic clustered miRNAs
are encoded by a common primary transcript(??]. Interestingly, miRNAs encoded by the
largest human polycistronic locus, C1I9MC, are transcribed by RNA polymerase II11241.
The primary transcript of miRNA genes (pri-miRNA) is about 500 to 3 000 nt long, often
polyadenylated and capped(?*!, and folds into a typical distinctive structure containing
a local hairpin stem of 33 — 35 base pairs, a terminal loop, and single-stranded flanking

regions on both sides!'®. The enzyme Drosha, an RNase III, processes this stem-loop
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by complexing with its co-factor DGCRS (also known as Pasha or PASH-1), a protein
with RNA-binding domains determining the precise cleavage site. This "Microprocessor’
complex endonucleolytically cleaves the 5’ and 3’ strand of the stem of the pri-miRNA
liberating a small hairpin-shaped RNA of about 65 nt length (pre-miRNA)!'6!, Recent
reports suggested that additional specificity factors, such as the splicing factor SRp20 or
the DEAD-box RNA helicase p72, may contribute to pri-miRNA processing!'%?#]. Drosha-
mediated cleavage occurs co-transcriptionally and does not affect splicing of host pre-
mRNAs of intronic miRNA genes, but destabilizes mRNAs hosting exonic miRNAs!161 Tt
is of note that the ’Microprocessor’ complex defines the 5°-terminus of the mature miRNA,
the most important region defining its specificity, the so-called miRNA seed 26281, Thus,
during this processing step, a precise recognition and cleavage is fundamental for a
subsequent accurate miRNA target recognition.

Following nuclear processing, the double-stranded pre-miRNA stem with its 2 nt long
3’-overhang is recognized by the shuttle protein Exportin-5 (EXP5)!'®!. This protein not
only protects the pre-miRNA against nuclear digestion, but also complexes with Ran-GTP
to translocate the pre-mRNA through the nuclear pore complex into the cytoplasm!?4].
Here, hydrolysis of GTP causes the disassembly of the complex and releases the pre-
mRNA to the cytosol[!%]. Subsequently, another RNase IIT endonuclease, Dicer, cleaves
the terminal loop of the pre-miRNA inducing a double-stranded RNA of about 22 nt
length. The cleavage takes place along with TRBP which binds the double-stranded
RNA and activates Dicer through an induced structural rearrangement[>#!. The Dicer-
TRBP complex follows two rules in determining the cleavage site: 1) by recognizing the
3’-overhang generated by Drosha; in this case the cleavage site is located at a typical
distance of 21 — 25 nt from the 3’-terminus of the pre-miRNA (3’-counting rule) and ii)
by binding to the 5’-phosphorylated end of the pre-miRNA; in this case the pre-miRNA
is cleaved 22 nt distal from the 5’-end (5’-counting rule)!'®!. Notably, the Dicer protein
is essential for cell viability as has been shown in knock-out studies which led to lethal
phenotypes in mouse?*!. In the end, this processing step yields paired RNAs, termed the
miRNA-3p/miRNA-5p duplex, featuring the RNase III characteristic 3’-overhangs at either
end!16],
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1.3.2 Alternative maturation pathways

As soon as operative miRNAs were observed during deep sequencing experiments of
DGCRS, Drosha or Dicer deficient cells, it became clear, that there have to exist alternative
functions of the miRNA biogenesis machinery bypassing the "Microprocessor’ or Dicer
processing 297311,

The most prominent alternative, the *mirtron’ pathway, substitutes Drosha cleavage with
splicing. Here, loci within short introns produce pre-miRNA mimics. In general, introns of
eukaryotic coding or ncRNA are spliced either shortly after or concurrent with transcription
by a series of reactions catalyzed by a complex of small nuclear ribonucleoproteins, the
spliceosome. Typically, the spliced intron product has an almost linear structure. In
contrast, mirtrons exhibit a hairpin potential. During splicing they form the canonical lariat
in which the 3’-branch point is ligated to the 5’-end of the intron[*?!. Subsequently, the
lariat is debranched and adopts the typical pre-miRNA stem-loop structure. This resembled
miRNA precursor is qualified to join the remaining canonical pathway, i.e. export to the
cytoplasm and processing by Dicer!16-32].

The *Microprocessor’ is also not required for i) endogenous small hairpin RNA genes
which express directly transcripts making a tight hairpin turn, such as mir-320, and ii)
small RNAs originating from other ncRNAs, such as tRNAs, snoRNAs or viral RNAs [16],
For the former scenario, pre-mir-320 has been observed to be transported unconventionally
to the cytoplasm by Exportin-1 instead of EXP5 (331,

In all these cases, biogenesis still depends on Dicer. But, it has also been reported
that Dicer processing can be bypassed. In example, the precursor of miR-451 has a
stem of about 18 nt in length that is too small to be processed by Dicer. In this case, an
Argonaute (AGO) protein, in particular AGO2, slices the pre-mir-451 in the center of its 3’-
strand liberating a 30 nt long intermediate, the AGO-cleaved pre-mir-451 (ac-pre-mir-451).
This transcript has already the potential to regulate target gene expression. However, the
ribonuclease PARN produces the intrinsic mature miR-451 transcript by trimming down
the 3’-end of the precursor!!6].

It should be noted that only about 1% of conserved miRNAs follow one of the alternative

pathways. Thus, the vast majority of miRNAs are produced by canonical maturation ¢,
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1.3.3 The miRNA ribonucleoprotein complex

After the Dicer-TRBP complex disassociates from the miRNA-3p/miRNA-5 duplex, the
double-stranded RNA is loaded onto an AGO protein to from a miRNA ribonucleoprotein
complex (miRNP), called RNA-induced silencing complex (RISC). The miRNA duplex
is unwinded and separated into the guide strand and the passenger strand (miRNA*). In
principle, both strands are functional mature miRNAs. But, similar to other RNAi-related
pathways, such as small interfering RNAs (siRNA)**, mainly one strand determines in a
context-specific manner the RISC target. Here, the guide strand is complementary to the
mRNA target site and will reside in the miRNP; the passenger strand will be degraded 24,
The strand selection is mainly based on the thermodynamical stability of the two ends of the
RNA duplex. At this, the guide strand usually exhibits a relatively unstable terminus at the
5’-side. A further criterion may be the first nucleotide of the mature miRNA 5’-end: AGO
proteins preferentially select sequences starting with uracil'®. However, strand selection
is not completely deterministic, and for some pre-miRNAs both arms were measured
in significant amounts (3!, Further, an event called *arm switching’ has been described.
Here, each arm exhibits a tissue-specific thermodynamic stability. It has been suggested
that the stability of the duplex ends is determined, at least partly, by alternative Drosha
processing 26!,

Eight AGO proteins are encoded on the human genome. These are classified into the
AGO and PIWI subfamilies. The expression of PIWI proteins is mostly restricted to
specific cell lines and primarily functions as repressor of transposons. The AGO subfamily
comprises four members, AGO1 — 4, and was found to be ubiquitously expressed 37!
All four AGO proteins are capable of binding miRNA duplexes whereas only AGO2
has an additional slicing activity (Chapter 1.3.2). Consequently, all members of the
AGO subfamily are capable of inducing post-transcriptional regulation. In contrast to
Drosophila melanogaster, no obvious intrinsic feature exists determining the sorting of
mature miRNAs to one of the four AGO proteins in humans!16.

Structural studies of AGO2 have revealed that its peptide chain folds to a bilobal

architecture, i.e. two lobes composed by two domains each: the N-terminal! lobe with

1 N-terminus is the amino-end of the peptide chain.
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the N-terminal domain and a PAZ domain, and the C-terminal® lobe with a MID domain
and PIWI domain!'%37-381_ The interface between the MID and PIWI domain occupies a
binding pocket for the 5’-terminal phosphate group of the guide strand, while the PAZ
domain binds the miRNA 3’-end (Figure 1.3). The nuclotides 2 — 10 of the miRNA
5’-end are located at an RNA binding groove and are pre-arranged in an A-form helix
conformation!'®!. This enables an effective scanning for mRNA target sites complementary

to the miRNA seed sequence.

175 226 347 450 573 859
i -

Figure 1.3 | Structure of the miRNP. Shown is the crystal structure of the AGO2 and miR-20a
complex at 2.2 A. Each domain and inter-domain linker of the AGO2 peptide is colored, respectively
(bar diagram); the active site is highlighted. The miR-20a is displayed as stick model. The complex
is formed as follows (starting from the miRNA 5’-end): the first nucleotide is bound to the MID
domain (preferentially uracil or adenine**!), nucleotides 2 — 10 are located at the RNA binding
groove, and nucleotides 17 — 20 are bound to the PAZ domain. The figure is taken from Elkayam
et al., 2012138 with permission of Elsevier (license number 3573240054196).

1 C-terminus is the carboxyl-end of the peptide chain.
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To improve its function, AGO recruits and interacts with a set of other proteins. Firstly,
the HSC70-HSC90 chaperone complex mediates a conformational opening of AGO using
ATP. This facilitates double-stranded RNA loading. Secondly, C3PO activates AGO?2
by degrading the passenger strand[*?!. Thirdly, and most notably, glycine-tryptophan
(GW) proteins play a key role in miRNA-mediated translational repression and mRNA
degradation3”). Their N-terminal multiple gylcine-tryptophan repeats confer binding to
the AGO proteins#!.

1.3.4 miRNA turnover

miRNA turnover is the balance between miRNA synthesis and its degradation. Both
are vital factors for miRNA homeostasis. In comparison to the increasing number of
studies elucidating miRNA transcription and maturation, miRNA half-life and degradation
received less attention. Novel insights are just beginning to emerge. Studies silencing
transcription or arresting processing enzymes from the miRNA pathway showed that
miRNAs still persist for many hours or even days in affected cells>*!. In example, Bail et
al.'*?! found that the transcript level of 95% of measured miRNAs in human embryonic
kidney (HEK293T) cells remained stable for at least 8 h following transcriptional shutoff.
Thus, miRNAs appear to be generically stable molecules holding half-lifes similar to
mRNAs. By comparison, the median half-life of mammalian proteins is about 48 h[431,

However, it has been observed that individual miRNAs also possess differential stability
under varying conditions. While their mature transcripts rapidly decayed in specific
environments, their precursor levels remained unaffected (441 In example, human HelLa
cells complete a cell cycle in less than one day. At this, miR-29a has a half-life of about
12 h in both phases, interphase and mitosis. The half-life of miR-29b, by contrast, is
4 h in cycling cells and about 12 h in mitotically arrested cells. Since transfection of a
miR-29b-3p:miR-29b-5p-like duplex siRNA, lead to similar results, it has been suggested
that regulation takes place after miR-29b maturation*4,

To date, only a few miRNA-degrading enzymes are known: 5’-to-3 and 3’-to-5" ex-
oribonucleases, such as XRN1 and EXOSC4, but no endoribonucleases. These so-called
‘'miRNases’ are basically RNases which are assumed to hold a substrate spectrum beyond
miRNAs. Thus, it is not surprising that miRNases can be found widely conserved among

eukaryotes. Since the number of studies in this field is small, substrate specificity of miR-
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Nases remains largely elusive. Currently, little is known about the molecular mechanisms
perturbing steady-state levels of miRNAs — even evidence for evolutionary conservation
of miRNA turnover pathways is still missing 441,

In a recent publication, Winter and Diederichs*! reported that miRNA binding in AGO
pockets protects it from degradation by miRNases. They observed a longer half-life of
the AGO-bound mature let-7a guide strands compared to the unbound passenger strands.
While the guide strands were stable for more than 24 h, its passenger let-7a* strands
exhibited a reduced half-life of less than 4 h following transcriptional shutoff. Further,
after additional AGO?2 knock-out they observed that the half-life of endogenous mature
miRNAs (let-7a, miR-16, miR-20a, miR-21, and miR-93) dropped from more than 24 h to
9 — 12 h. Further, ectopic AGO1-3 expression increased the stability of let-7a* which has

been tested functional on its target genes (TGs).

1.4 miRNA-mediated regulation of gene expression

1.4.1 Recruitment of the miRNP to mRNA targets

After ATP-independent unwinding and degradation of the passenger strand, the miRNP
effector complex will conduct the interaction with its target. In contrast to lin-14, the
majority of metazoan mRNAs do not carry several regions of extensive complementarity
to their regulatory miRNAs. Hence, several additional features are important for target
recognition.

As described before, the seed region (nucleotides 2 — 10) of the miRNA 5’-end is
pre-arranged in an A-form helix conformation in the effector complex (Figure 1.3). In
particular, bases 2 — 6 are positioned for nucleating the interaction of the miRNA with
the target mRNA. Consequently, the AGO protein reduces the entropic cost of unfolding
the miRNA for target pairing. Studies have shown that the miRNP exhibits an about 10
times faster target detection and an about 300-fold higher affinity to its targets compared
to unbound miRNAs#6471 Here, the higher the complementarity, the higher the rates
of miRNA-guided binding by AGO2. However, only the seed region has a significant
contribution whereas the miRNA 3’-terminal region plays only a secondary role. There
is no experimental evidence that the extent of 3’-pairing correlates with the extend of

gene regulation. Nonetheless, small loops in the seed:target hybrid may be tolerated if the
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pairing in the 3’-region is extensive, albeit these kinds of targets are very rare. At this, the
type of mismatch and its precise position within the duplex are important (43!,

Further, seed complementary regions of length < 5 nt are unlikely to be bound by
the miRNP*8]. Of note, miRNAs with almost identical seed sequences form families
which target the same set of mRNAs; 64% of currently known human miRNAs (listed
in miRBase!'>)) are related by their seed sequence. Most of the family members are not
co-expressed, but regulate their targets in different environments. In contrast to miRNA
clusters, seed-related miRNAs were suggested to be under positive selection maintaining
their specificity (431,

Since mRNAs are bound by translating ribosomes, functional miRNP interaction is
infrequently conducted at the coding sequence (CDS) and up to approximately 15 nt
downstream of the stop codon. The 3’-UTR has the highest density of miRNA target
sites. Here, sites are preferentially located at the beginning or end of long 3’-UTRs.
Since 3’-UTRs expanded during evolution, the sequences around miRNA target sites
might have emerged early. Consistently, these target sites were found to be under strong
evolutionary selection. Another spatial constraint is given by interactions of other RNA
binding complexes. Although, sites positioned in the CDS hold minor regulatory effects,
their interplay with 3’-UTR sites contribute significantly to the target regulation*3.

Due to its integration in the miRNP, miRNAs exhibit an optimal conformation for
duplexing with the mRNA. On the contrary, mRNAs do not have an unpaired native
structure in thermodynamic equilibrium and, thus, energy is required to unfold the target
region. Kertesz et al.!*°! suggested that the miRNA complementary site as well as flanking
regions up- and downstream have to be opened. An increased local site accessibility, 1.e. a
lowered required energy for unfolding, raises the miRNP binding affinity*°!. Consequently,
miRNP binding is also affected by the local adenine or uracil content around the target
sites[%); in contrast to guanine and cytosine which interact via three hydrogen bonds,

adenine binds to uracil only via two hydrogen bonds.

1.4.2 Translational repression and mRNA decay

After the effector complex has recognized its target, the miRNP mediates target regulation
by translational repression or mRNA degradation. The former regulatory mechanism

precedes or follows translation initiation. Besides several important factors that are
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involved in the translation process (initiation, elongation, and termination), it is crucial that
mRNAs posses a 5°-cap structure! and a 3’-poly(A) tail®. In the cytoplasm, the cap-binding
complex elF4F (composed of eIF4E, elF4G, elF4A) and the protein PABPC associate with
the 5°-cap and the 3’-poly(A), respectively. Their physical interaction results in a circular
mRNA which can be efficiently translated and is protected from degradation>!.

Predominantly, the miRNP targets the cap structure or interferes with the function of
either eIF4F or PABPC. This regulation takes place at translation initiation>!. Affected
mRNAs are transported to P-bodies? for either degradation or storage. But also miRNPs
and their targets were observed in functional units of protein synthesis (ribosomes). It has
been suggested that peptide elongation is slowed down or aborted by a ribosome drop off.
Further, proteolytic cleavage of the nascent polypeptide occurs co-translationally 2!,

However, transcriptome profiling and studies of single miRNA:target pairs showed
that the predominantly miRNP mode of action is mRNA degradation. In this case, the
miRNA target level inversely correlates with the abundance of the miRNA. Since direct
endonucleatic cleavage by miRNPs occurs only for fully complementary targets, this is
a rare mechanism in animals. Instead, for partially complementary targets, the miRNP
initiates the cellular 5’-to-3” mRNA decay pathway. Here, the 3’-poly(A) tail is removed
by deadenylases (CAF1-CCR4-NOT complex), followed by decapping through DCP2
and subsequent 5’-to-3” exonucleolytic digestion by XRN1. This can occur either after
or before translation initiation. In the latter case, mRNA polydeadenylation interferes the
PABPC binding. Independent of the point in time, it has been reported that rapid mRNA
destabilization provides the main contribution to protein output reduction in animal cell
cultures P11,

As mentioned in Chapter 1.3.3, AGOs complex with GW proteins, particularly GW 1824,
to silence miRNA partially complementary targets. The GW 182 silencing domain at the
mid and C-terminal regions interact with PABPC. This either blocks the PABPC:elF4G
interaction or reduces the affinity of PABPC for the mRNA 3’-poly(A). In both cases,
target mRNA circularization is prevented and consequently translation is inhibited. Further,

1 5’-capis am’G(5")ppp(5’)N structure at the mRNA 5’-terminus.

2 3’-poly(A) denotes multiple adenosine (A) monophosphates at the mRNA 3’-terminus.

3 P-bodies are distinct foci in the cytoplasm consisting of several enzymes involved in mRNA turnover.
Absorbed mRNAs mainly undergo decay; some mRNAs will be released to re-initiate translation.

4 GWI182 is also known as TNRC6A.
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GW182 recruits the CAF1-CCR4-NOT complex to initiate the 5°-to-3° mRNA decay
pathway. Since the open poly(A) tail conformation is more exposed to decay enzymes,
target degradation is facilitated 1.

Notably, Vasudevan et al.[>3! demonstrated that the interaction of AGO2 with the 3’-
UTR of tumor necrosis factor-o, under specific cellular conditions, lead to upregulation
rather than downregulation of translation. They suggested that AGO?2 is part of a functional
miRNP complexed with FXR1. The miRNP:mRNA pairing may induce translational
activation by interfering with inhibitory RNA-binding proteins (RBPs) at the 3’-UTR —
a scenario which has also been observed the other way round: RBPs, such as ELAV1 or
DNDI, interfere with the miRNP-mediated repression of translation and subsequently acts
as translational activator®?!. Translational activation by miRNAs was also documented as
a common function of miRNPs on cell cycle arrest. Intriguingly, translational regulation

may oscillate between repression and activation during the cell cycle®*.

1.4.3 Regulatory roles

The initial paradigm of miRNA regulation was based on the lin-4:1in-14 interaction and,
thus, complies with the role of miRNAs as binary ’off-switches’. In this case, the miRNPs
decrease the protein output of their targets to inconsequential levels, i.e. they switch
their targets off. Here, two temporal distinct scenarios can occur: either miRNAs repress
translation of pre-existing mRNAs or target transcripts are trapped by already matured
miRNAs [27],

However, miRNA transfection experiments have shown that miRNAs only modestly
repress the translational output, rarely resulting in more than a 2 — 4 fold reduction on
protein levels*3>11 In this case, miRNAs act as a rheostat rather than a binary off-switch
conferring robustness to biological processes. This ’tuning’ interaction dampens the protein
output to a more optimal, but still functional, level 27,

Nevertheless, these small expression changes of any individual target are difficult to
reconcile with the malformed phenotypes caused by perturbed miRNA regulation. Thus, it

has been suggested that the observed effect of miRNAs is obscured by several factors: 1)
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timing of the experiment!, ii) feedback loops involving expression of transcriptional regu-
lators, and iii) feedback mechanisms with the maturation pathway, such as the regulation
of Dicer by let-7 or the repression of GW182 by miR-30[43]. Further, miRNAs increase
their impact by coordinated targeting of multiple transcripts of a particular pathway or
protein complex 1,

Recently, Mukherji et al. %! analyzed the level of miRNA repression in single cells.
They observed an average modest level of repression which is in line with previous
population-based studies. But, they also reported dramatically differential effects among
individual cells. This cell-to-cell variation was strongly affected by the available miRNA
concentration, the target mRNA level, and the strength and number of embedded miRNA
binding sites at the target sequence. Given a specific miRNA target expression threshold,
strong repression occurs at low mRNA levels (below the threshold) and weak repression at
high mRNA levels (above the threshold). It has been suggested that if the miRNA pool
is not saturated, then all targets of a specific affinity for the miRNA will be exposed to
the same degree of repression. But, by increasing the mRNA concentrations, the miRNA
pool becomes gradually saturated, i.e. all miRNAs are duplexed with their targets, and
the number of mRNAs escaping miRNA-mediated regulatory mechanisms raises. Thus,
miRNAs can act as both, off-switches for targets expressed below the threshold and as
fine-tuners for targets with transcript levels ranging between the threshold and minimal
repression at high mRINA concentrations. The regulatory impact is increased by higher
complementarity (Chapter 1.4.1) and multiple target sites>%!. Since the majority of target
sequences have more than four conserved binding sites of multiple miRNA families per
3°-UTRP7, strong repression can be a result of synergistic miRNA regulation. Notably,
one miRNA is able to bind hundreds to thousands of expressed RNAs. Although a large
fraction of interactions is operative, several of the participating RNAs denote off-targets
or non-coding miRNA-sequestering agents, such as pseudogenes and long ncRNA 3.
Depending on the environment, also some mRNAs act as miRNA decoy: they bind
miRNPs, but can be degraded without functional consequences. This phenomenon has

been described as neutral interaction between a miRNA and its antitargets elsewhere 2",

1 The rate of AGO loading is about 10 h, the median half-life of target proteins is about 48 h{*3. Thus,
early measurements will imply lower effects.
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The more competitive endogenous RNAs (ceRNAs) ! are available at the transcriptome,
the lower the effective miRNA concentration, and the higher the impairment of miRNA
activity. In total, the frequency of functional bona fide miRNA targets and the amount of
natural coding and non-coding miRNA decoys? determine the location of the individual
miRNA target threshold®>!. Therefore, different tissues or conditions that exhibit dis-
tinct expression profiles account for changing target thresholds and, in the end, different

repression strengths.

1.4.4 miRNA-mediated genetic networks

Regulation of gene expression is crucial for cellular processes as it governs the availability
and activity of cellular components. This regulatory control is conditionally modulated
and expression is highly dynamic over a wide range from rapid, short responses to slow,
lasting adaptions.

TFs bind to cis-regulatory elements on the DNA to regulate the flow of genetic informa-
tion from DNA to RNA. Subsequently, miRNAs regulate post-transcriptionally the mRNA
and protein levels. To understand the regulatory activity of a genome, the reconstruction
of the whole ensemble of cis and frans elements is required. To elucidate the roles of
miRNAs, an integrated network analysis is performed emerging from summation of the
interactions of miRNAs and targets. The result is a so-called 'miRNA-mediated genetic
network’® consisting of genes that are regulated by other gene products, i.e. RNAs or
proteins.

Regulation is an interplay of various transacting factors on different layers, not only
accomplished by a single force. As described in Chapter 1.3, miRNA genes are controlled
by TFs; Enright er al.[®!] observed that miRNAs preferentially target TFs. This enables
beside co-operative and competitive, also mutual regulation. Consequently, the interplay
of transcriptional and post-transcriptional interactions results in a regulatory landscape of

high intrinsic complexity. Usually, the underlying networks are highly wired. However,

1 ceRNAs are bona fide coding and ncRNA targets competing for miRNA binding 8! For a recent review
refer to Tay er al. 1],

2 miRNA decoys are also known as miRNA ’sponges’ |

3 Basic genetic networks contain only TF regulation. Current studies, such as Cohen e al.!%%!, have shown
that miRNAs complete these networks.

43]
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there are various regulation circuits emerging repeatedly in miRNA-mediated genetic
networks. Often TFs and miRNAs form feed-forward loop motifs! in which either i) a
miRNA and its target is regulated by a common TF or i1) a TF and its target is regulated by
a common miRNA (9?1, For the former class of motifs, Hornstein et al.!%3 suggested that
miRNAs are dedicated to buffer stochastic perturbations. They distinguished their roles
between ’coherent’ and ’incoherent’ feed forward loops.

The logic of this circuit is *coherent’ in that the TFs regulation of its targets is consistent.
In example, the TF:miRNA interaction is positive (stimulation) whereas the remaining
interactions are negative (repression) 2. Here, the post-transcriptional repression is syn-
ergistic with the transcriptional inhibition of the same target. Thus, miRNAs antagonize
"leaky’ mRNA of TGs which are already transcriptionally repressed. Reciprocally, TFs
may stimulate target transcription and repress miRNA production forming another ’co-
herent’ logic 3[631. Here, existing miRNAs buffer stochastic bursts * of TF induced target
transcription.

In ’incoherent’ feed forward loops, the direct and the indirect regulation executed by the
TF are opposing. In example, the TF:miRNA and the TF:target interaction are positive
(stimulation) whereas the miRNA regulation is negative (repression) 3. Here, the co-
regulated miRNA performs fine-tuning. Target expression variation arising from extrinsic
noise, such as TF concentration or activity, is reduced (531,

A more simple motif which was also found enriched in the architecture of these networks
is the reciprocal regulation between TF and miRNA. In this feedback loop, the TF
stimulates miRNA transcription and the miRNA induces mRNA degradation of the TF.
Again, miRNAs hold a role as buffers against fluctuation in gene expression /.

In the end, integrating miRNAs in genetic networks leads, at fist glance, to an increased
dimension of connectivity. However, viewing miRNAs in this systems context reveals
their role as buffers of transcriptional noise to provide robustness in these networks*31. Tt

should be noted that a markedly buffering effect requires both a rapid change in miRNA

Feed forward loop motif composed of A, B,and C: A — B,A — C,B — C.
Type 3 ’coherent’ feed forward loop for TF A, miRNA B, and target C: A X, B,A = C,B = Cl®4,

Type 4 ’coherent’ feed forward loop for TF A, miRNA B, and target C: A — B, A X, C,B = o4,
Transcription can occur in bursts (pulses) resulting from the stochastic nature of biochemical events 1,

Type 1 ’incoherent’ feed forward loop for TF A, miRNA B, and target C: A & B, A e ,B = oY,

(O I O
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concentration and a prompt target repression. A slow miRNA response will only slightly
dampen the amplitude of the target mRNA fluctuation. Further, the local context of each
circuit has to be considered. Since all motifs are embedded in a global network, the TF,
the miRNA as well as their target are likely regulated by multiple regulators. Thus, more
sophisticated models will be needed to describe the role of miRNAs in more complex

conditions 53],

1.5 Experimental identification of miRNA targets

1.5.1 Transcriptome and proteome analyses

The first miRNA:target interaction, namely lin-4:1in: 14, was determined using two tech-
niques, genetic screening and reporter assays. In the former method, candidate interactions
are selected by gene mutations that rescue a miRNA loss-of-function phenotype. Besides
the advantage that the identified targets can be directly linked to a phenotype, this method
holds several drawbacks. In example, the experiments are laborious, challenging to con-
duct in mammals, and they yield direct as well as indirect targets. Most miRNAs are not
individually essential for the outcome of a specific phenotype. Other mechanisms, such as
targeting by miRNA families, can act in a compensatory manner!*3). In the reporter assay,
3’-UTRs with computationally predicted target sites are cloned into luciferase reporter
vectors. The quantification of the reporter gene expression following miRNA induction
(e.g. by miRNA mimics) or inhibition (e.g. by anti-miRNAs) indicates that the gene
of interest is regulated by the miRNA through their 3°-UTR 61, To identify potentially
regulated 3’-UTRs, computational predictions are performed. Hence, these experiments
are biased and restricted to miRNA target sites defined by the implemented model. Further,
genome-wide detection of miRNA targets is not feasible.

Since miRNAs mainly negatively regulate their targets, the loss/gain of miRNA function
should lead to an increased/decreased target expression. Therefore, a series of miRNA
overexpression and inhibition studies were performed. Early experiments transiently
transfected tissue specific miRNAs into cells where they are normally not endogenously
expressed. Subsequent microarray analyses or RNA sequencing (RNA-seq) were used
to identify mRNAs which exhibited higher decay rates following miRNA transfection.

Indeed, this approach enables the identification of a large set of targets, but it also holds a
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high fraction of false positives caused by off-target effects !. To overcome this problem,
the experiment was conducted the other way round: the target miRNA was inhibited in any
cell of interest using complementary exogenous oligonucleotides. It was expected that the
target mRNA is significantly upregulated following miRNA inhibition!6>].

Similarly, stable isotope labeling by amino acids in cell culture (SILAC)? approaches
were used to detect proteins that are affected by changes in miRNA expression. In contrast
to transcriptome-based approaches, these methods are sensitive to mRNA destabilization
and translational repression. Differences in protein synthesis are computed from mass
spectrometry measurements of metabolically (pulse-)labeled peptides containing heavy
isotopes of essential amino acids 3.

Transcriptome and proteome analyses are limited to targets that exhibit an expression
change to a certain extent. Since most of miRNA effects are modest, it is difficult to
distinguish primary from downstream effects®. In addition, several candidate targets do
not follow the methodical assumption, i.e. these are upregulated post-transfection (Chapter
1.4.2). To overcome these drawbacks, the direct interaction between the miRNA and its
target has to be identified. For this purpose, either the miRNA was labeled, e.g. with
a biotin-tag, or the AGO protein was labeled, e.g. with an epitope-tag, in transfection
experiments. This allowed the subsequent isolation and quantification (microarray or
RNA-Seq) of associated mRNAs (3],

1.5.2 The AGO-bound CLIP-Seq protocol

While whole transcriptome and proteome analyses provide a quantitative view of the
regulatory effect of miRNAs, they have the profound disadvantage that they do not directly
reveal miRNA:mRNA interactions. Further, one experiment is restricted to dissect the

targetome of only one of more than 2 500 mature human miRNAs. Considering that

—

Off-target effects arise when unintended or stochastic base pairings with the introduced RNA occur.

2 In the SILAC method, cells from two samples are grown in two different media, respectively: one
medium containing amino acids labeled with light isotopes (miRNA overexpression/inhibition) and one
medium with heavy-isotope-labeled amino acids (normal miRNA expression). The changes in protein
abundance are computed by the ratio between the signal from the light and heavy isotopes obtained by
mass-spectrometry (431,

3 Secondary effects arise when the activity of a true miRNA target is affected, e.g. suppression of a TF by

a transfected miRNA leads to downstream effects in the TF target expression.



1.5 Experimental identification of miRNA targets 23

the transcriptome is cell-line dependent, an excessive number of experiments has to be
conducted.

While the RISC targeting depends on stable physical association to the mRNA target,
its isolation and extraction opens the possibility to identify miRNP:target interactions in
vivo. Immunoprecipitation of proteins associated to the RISC, such as GW182 family
members [®0] or AGO!%”], provided the means of direct identification of target mRNAs
stably coupled with active complexes. Although this approach provides large datasets of
high-confidence miRNA targets %8, the precise location of the miRNP binding site was
still hidden.

Recent high-throughput methods based on AGO cross-linking and immunoprecipitation
(AGO CLIP) overcome this drawback (Figure 1.4). Ultraviolet (UV) light is used to
induce protein-RNA cross-links' between endogenous AGO and its associated guide
miRNA:mRNA duplex. Then, partially RNase-digested AGO-RNA complexes are isolated
by highly specific monoclonal antibodies and size-fractionated. Bound RNA molecules
are recovered and converted to complementary DNA (cDNA) by reverse transcriptase.
The resulting cDNA library is deep sequenced (CLIP-Seq) and the reads are mapped to
the genome! 7. Based on that, clusters are computed, e.g. by estimating the enrichment
of CLIP-Seq reads in relation to the expected number obtained from the relative mRNA
abundance from RNA-Seq or microarray data. Typically, RNA sequence mutations are
introduced by sample preparation at the cross-link regions. These so-called cross-linking-
diagnostic mutations are used to increase the efficiency of miRNP target site identification.
Further, CLIP-Seq reads which were mapped to miRNA hairpins denote AGO-associated
miRNAs. Notably, the guiding miRNA and its target site are not captured together. The
specific miRNA:mRNA hybrid remains to be inferred computationally [43!.

Three variants of the AGO-bound CLIP-Seq protocol have been established. Firstly,
high-throughput sequencing of RNAs isolated by CLIP (HITS-CLIP) uses UV C light?
inducing cross-linking-diagnostic deletions. The approach was initially employed by
Chi et al.'’! in mouse brains. They identified miRNP-binding regions, termed ’average
AGO-mRNA footprints’, where AGO bound within 62 nt of cluster peaks > 95% of the

1 TIrradiation of cells with UV light causes the formation of covalent bonds (cross-links) between proteins
and nucleic acids which are in close contact 6],
2 The used UV C light had a wavelength of 254 nm!7!,
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Figure 1.4 | The AGO-bound CLIP-Seq protocol. Illustration of the preparation of an AGO
CLIP-Seq library. First, covalent bonds are induced between RNA and the AGO protein using
UV radiation (254 nm or 365 nm). Here, using photoactivatable analogs of ribonucleosides has
been shown to enhance RNA-AGO cross-linking!’”!. The RNA-protein complexes are isolated
by immunoprecipitation. Then, bound RNAs are partially RNase-digested. A cDNA library is
prepared for subsequent high-throughput sequencing. Each protocol introduces typical RNA cross-
linking-diagnostic mutations. These make the reverse-transcriptase enzyme (RT) error-prone at the
cross-linked regions. HITS-CLIP induces RNA lesions, PAR-CLIP generates U to C mutations, and
iCLIP causes truncation at the cross-linking site. The cross-linking-diagnostic mutations facilitate
the genome-wide mapping of miRNP binding sites.

time. Secondly, Hafner er al. "% presented the photoactivatable ribonucleoside-enhanced
CLIP (PAR-CLIP) protocol: they incorporated 4-thiouridine into RNA and used UV A
light! causing distinctive mutations to deoxycytidines in the CLIP-Seq reads. Compared
to UV C light approaches, this method required less sequence reads to capture cross-

link evidence due to its high rate of T to C changes. They identified 41 nt long clusters

1 The used UV A light had a wavelength of 365 nm 701,
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which were centered over the predominant cross-linking site, termed cross-link centered
regions (CCRs). Both protocols, HITS-CLIP and PAR-CLIP, have been successfully used
to extract transcriptome-wide AGO2 binding sites in a human cell line*!. In late 2013,
a third variant, namely individual-nucleotide resolution CLIP (iCLIP), has been applied
for Caenorhabditis elegans!"*. Similar to HITS-CLIP this method uses UV C light in the
absence of photoreactive nucleotides. Its distinguishing feature is that it takes advantage of
the propensity of the reverse transcriptase to stop polymerizing at cross-linked nucleotides.
This enables the miRNP binding site capture at nucleotide-level resolution+3).

Notably, Helwak et al.[’37# presented an extension of the AGO CLIP-Seq protocol
recently. They included an additional step in which the miRNA is ligated to its target
site. Thus, miRNA:target site chimaeras are sequenced rather than each part of the hybrid
independently. Subsequent computational simulations were used to infer the structure of
the hybrid. Indeed, the idea seems compelling for improved miRNA target identification.
However, the efficiency of their cross-linking, immunoprecipitation and sequencing of
hybrids (CLASH) protocol is low; the identified targets respond only weakly to miRNA
perturbations. To be capable of mapping and modeling comprehensibly the whole miRNA

targetome, the CLASH method requires further improvements (431,

1.6 Motivation and outline of this thesis

The first report stating the idea of regulatory RNA dates back 50 years. As recently as
1993, the first small ncRNA, the Caenorhabditis elegans RNA lin-4, was described. The
later discovery of the RNA let-7 and its conservation from worms to humans initiated a
small RNA revolution. It is now 10 years ago since the scientific imprinting of the term
"microRNA’ (miRNA), but our biological comprehension of this molecule is still limited
yet. Indeed, it became clear that post-transcriptional regulation by miRNAs is important
for crucial cellular processes; consistently, its dysfunction can lead to fatal phenotypes.
However, we are only just beginning to understand the nature and the extend of miRNA
regulation. The number of known miRNA genes and mature transcripts raises continuously

— almost all of which had evaded prior detection. Also the number of studies investigating
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therapies targeting miRNAs' in human diseases is growing with some very promising first
results[7%771, Thus, the elucidation of this molecule in terms of biogenesis, target detection
and regulation, and function is of high relevance — for our basic molecular biological
understanding, but also to improve biomedical science.

Recent technologies enabled significant progress in this field, such as the successful
isolation of the active miRNP. This enabled, amongst others, its structural delineation and
the transcriptome-wide identification of miRNP binding sites. For the latter, two techniques
were published in 2009 and 2010, denoting milestones compared to previous experimental
protocols: AGO HITS-CLIP and AGO PAR-CLIP. The knowledge of miRNA target sites
has been largely obtained from measurements of expression changes following miRNA
transfection or inhibition. As discussed in Chapter 1.5.1, these transcriptome and proteome
analyses bear a variety of limitations. The most critical issue is that they are not able to
identify the miRNP binding sites. AGO-bound CLIP-Seq data identifies not only miRNA-
target interactions with high specificity[’!1, but also reveals precise miRNP binding regions.
This thesis aims to address the computational modeling of miRNA-mediated regulation in
consideration of novel information obtained from AGO-bound CLIP-Seq data analysis.

In Chapter 2, I revisited the current model of miRNA target recognition. Since
the miRNA targetome is elaborate and the experimental detection is a costly and time-
consuming process, construction of miRNA-mediated regulatory networks heavily relies
on computational miRNA target prediction. At this, it is generally accepted that the pairing
between the target sequence and the seed sequence of the miRNA 5’-end presents the
most important feature. However, prediction algorithms apply different seed paradigms
to identify miRNA target sites. Limited by the experimental methods, previous studies
defining the miRNA seed sequence have been restricted to noisy assessments, such as
signal-to-noise ratio, and degree of mRNA or protein repression.

I present an approach to prepare murine and human CLIP-Seq data to construct interac-

tion maps and to discriminate, for the first time, between functional and non-functional

1 Strategies addressing decreased miRNA levels in disease: miRNA gene re-expression by epigenetic drug
treatment, transfection with exogenous pre-miRNAs by miRNA virus delivery systems, and enhanced
miRNA processing by drugs (e.g. enoxacin).”>!

Strategies addressing increased miRNA levels in disease: complementarity-based miRNA inhibition
by synthetic antisense oligonucleotides (anti-miRNAs, antagomirs or locked nucleic acids) or vectors
containing multiple miRNA binding sites (miRNA sponges)!7!.
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target sites in a bulky and quantitative manner. By implementing a separate-and-conquer
algorithm, I defined a canonical minimal and sufficient set of six seed types and examined
their potential impact on target transcript stability. Here, I showed that the regulatory effect
depends on the length and the start position of the seed pairing. Further, I evaluated the
seed feature for miRNA target prediction. The specificity of long seeds was confirmed,
but the majority of functional target sites was formed by less specific seeds of only 6
nt indicating a crucial role of this type. Since common target prediction is restricted to
long seed sites, the majority of functional sites remains uncovered. Conservation analysis
revealed that a substantial fraction of genuine target sites was non-conserved and, as such,
lineage-specific.

Parts of this chapter were published in the journal Bioinformatics' in collaboration with
Florian Biittner 2, Volker Stiimpﬂen2 and Hans-Werner Mewes? 78],

Chapter 3 extends the previous study. Although the base-pairing of the miRNA seed
is a strong determinant of target site detection, the existence of a 6 — 8 nt long miRNA
seed complementary sequence does not necessarily imply a functional miRNA:mRNA
interaction. As such, the false positive rate is considerably high rendering the prediction of
reliable miRNA target sites still an unsolved computational challenge. Additional charac-
teristics of the binding site context that influence target sensitivity to miRNA repression are
required. Thus, I was interested whether discriminatory features can be found to predict
mRNA regions preferentially bound by the miRNP using the AGO-bound CLIP-Seq data.
For this purpose, I present an approach using a machine learning technique. A training and
evaluation set of positive and negative instances was prepared. Several features of miRNP
binding sites were extracted and scored by a sliding window approach. Subsequently,
a support vector machine (SVM) classifier was trained. The novelty of this analysis is
three-fold: 1) an elaborate data basis composed of two CLIP-Seq libraries was used, ii)
the features were selected and analyzed with the objective to describe miRNP binding
sites, and iii) the resultant classifier is able to identify miRNP:mRNA interacting regions
unbiased of any miRNA, i.e. the initial target region search does not require a miRNA seed
match. By combining the SVM classifier with common prediction methods, the precision

of determined targets was shown to be improved.

1 Bioinformatics, Oxford University press
2 Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Miinchen, Germany
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Further, a biological use-case applying the results from Chaper 2 and Chapter 3 is
presented. Pulmonary fibrosis is the most common and fatal form of idiopathic interstitial
pneumonia. Koénigshoff ef al. 1”1 reported that the WNT1-inducible signaling pathway
protein 1 (WISP1) is a highly expressed pro-fibrotic mediator in idiopathic pulmonary
fibrosis (IPF). However, its regulation remains to be elucidated. In collaboration with
Barbara Berschneider! and Melanie Konigshoff!, the hypothesis was examined that WISP1
eludes post-transcriptional control by miRNAs in pulmonary fibrosis. For this purpose, I
prepared and analyze miRNA expression studies to select a set of candidate regulators. By
applying the novel classifier, screening for the set of canonical seed types and conducting
subsequent structural analyses of the miRNA:mRNA hybrid, I predict miR-92a as most
promising candidate regulating WISP1. Experimental verification of Barbara Berschneider
and collegues showed that this miRNA and WISP1 are significantly associated in exper-
imentally lung fibroblasts and lung tissue specimens of IPF patients. Notably, miR-92a
reverses TGF-f1-induced WISP1 mRNA expression in lung fibroblasts and miR-92a
inhibition increases WISP1 protein expression. Concluding, these findings constitute a
novel regulatory role of miR-92a for WISP1 expression in pulmonary fibrosis.

Parts of this chapter were published in the journal The International Journal of Bio-
chemistry & Cell Biology* in collaboration with Barbara Berschneider!, Hoeke Baarsma',
Cedric Thiel', Chiko Shimbori’, Eric White*, Martin Kolb?, Peter Neth’, and Melanie
Konigshoff! (801,

In Chapter 4, the question was examined whether genetic variance affects miRNP
binding, e.g. by disrupting the miRNA seed complementary sequence or the local folding
of the target segment. Our current knowledge on the function of non-coding variants, in par-
ticular on SNPs affecting the miRNA regulation pathway, is limited. In collaboration with
Matthias Arnold®, a set of trait-associated index single-nucleotide polymorphisms (SNPs)
and proximal SNPs in strong LD was prepared. The analysis of their genomic position

indicated that single nucleotide mutation may influence miRNA regulation: the SNPs

Comprehensive Pneumology Center, Helmholtz Zentrum Miinchen, Germany

The International Journal of Biochemistry & Cell Biology, Elsevier

Department of Medicine, McMaster University, Hamilton, Canada

Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, USA
Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universitit Miinchen, Germany
Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Miinchen, Germany
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were found significantly enriched in the 3’-UTR of protein-coding transcripts, a prominent
segment embedding miRNA target sites. Following extraction of miRNP binding sites
from the AGO-bound CLIP-Seq data, I investigated several potential processes affecting
miRNA regulation in cis. In the end, I describe three occurring mechanisms mediated by
cis-miR-SNPs: 1) alteration of the miRNA seed pairing, ii) alternative 3’-UTR splicing
leading to a loss of miRNP binding sites, and ii1) change of the 3’-UTR fold. 53 SNPs of a
total of 288 trait-associated 3’-UTR SNPs were annotated as mediating at least one of these
mechanisms. The validity of these mechanisms was supported by an expression quantitative
trait loci (eQTL) survey. Here, cis-miR-SNP induced allelic expression imbalance (AEI)
was observed with a noticeable change in target expression variance.

Parts of this chapter were published in the journal PLoS One' in collaboration with
Matthias Arnold?, Mara Hartsperger?, Arne Pfeufer?, and Volker Stiimpflen? 81,

Chapter 5 presents COGERE, a novel method for the computational modeling of
miRNA-mediated gene regulatory networks (GRNs) in human and mouse. In contrast
to the previous chapters, in this part of the thesis the large-scale modeling of miRNA-
mediated regulation was addressed. The experimentalist is confronted with large data
sets of high dimensionality reflecting the interplay of thousands of cellular components.
Therefore, it is an imperative computational challenge to develop predictive and actionable
models to investigate functionality as well as spatial and temporal behavior of these
components. As the availability of experimental evidence in databases and the biomedical
literature sharply increased, the systemic integration of existing knowledge to support the
analysis of genome-wide molecular expression signatures of complex diseases becomes a
bare requirement. Here, the elucidation of gene regulatory networks is a valuable source
of hypothesis-driven clinical research. In this chapter, the novel approach COGERE is
presented addressing the computational modeling of global miRNA-mediated regulation.
I integrated existing information of regulatory interactions from multiple sources to a
comprehensive prior model. At this, I implemented a data integration framework using,
amongst others, information from AGO-bound CLIP-Seq data. Evaluation showed that

the developed scoring scheme outperforms common integrative approaches. Further,

1 PLoS One, Public Library of Science
2 Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Miinchen, Germany
3 Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy
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COGERE is capable to infer condition-specific regulation. This is performed by evaluating
the mutual dependency between regulator (transcription factor or miRNA) and target gene
expression using prior information. This dependency is scored by the non-parametric,
non-linear correlation coefficient 12 (eta squared) which is derived by a two-way analysis
of variance (ANOVA). Thus, COGERE implements a robust inference method together
with a concept of high-level data integration. A comparative benchmark revealed that
COGERE significantly improves alternative methods in predicting GRNs on simulated
datasets. Furthermore, by inferring the cancer-specific GRNs from a cancer expression
study, I demonstrate the utility of COGERE to promote hypothesis-driven clinical research.
Since COGERE is a generalizable approach that boosts signal-to-noise for the modeling of
large-scale condition-specific regulatory landscapes in any cellular contexts, the application
was made public available ! for academic research.

Parts of this chapter were published in the journal Nucleic Acids Research® in collabora-
tion with Jérn Leonhardt 3, and Hans-Werner Mewes = 821,
In the final Chapter Chapter 6, I summarize and conclude the results presented in this

thesis. Further, perspectives on potential future studies are discussed.

1 COGERE, http://mips.helmholtz-muenchen.de/cogere
2 Nucleic Acids Research, Oxford University Press
3 Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Miinchen, Germany



CHAPTER 2

The canonical set of miRNA seed types

The relation between miRNPs and their targets in higher eukaryotes is part of the highly
complex gene regulation network. To unravel the interactions controlling gene regulation
post-transcription, the available information is insufficient to reliably predict all functional
pairs modulating translation and mRNA decay 83831,

The basic prerequisite for miRNP binding in metazoans is a short perfect match to
the coupled miRNA complemented by imperfect matches in close vicinity. This miRNA
response element (MRE) region is called the ’seed’ sequence and is considered to be a
6 — 8 nt long substring within the first 8 nt at the 5’-end of the miRNA?®!_ It is regarded
to be the most important feature for target recognition by miRNAs in mammalians >7-281,

Naturally, merely seeking for short sequence matches yields a plethora of putative target
sites containing a large fraction of false positives. To dodge a priori the majority of
false positives, computational miRNA target site prediction approaches concentrate on the
subset of target sites equipped with long perfect seed matches. In addition, several miRNA
targeting determinants beyond the seed have been proposed to extract authentic target sites
from the set of seed matches#°->%-861 Although the evolution of miRNA targets is not well
understood, a common strategy to increase specificity is to require conservation of the
seed match. However, there is evidence that non-conserved miRNA targeting is even more
widespread 87881 and that miRNA:target interactions may play a role in the evolution of
organismal diversity (3],

To date the effect of different types of seed matches has been assessed by means of
signal-to-noise ratio?%%0! degree of mRNA [28-°%] or protein repression®’-°1l. Based on

that, a set of canonical seed types that differ in abundance and intensity of the regulatory

31
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effect has been defined?”!. However, for theses studies precise information on specific
RISC binding regions was missing and due to experimental constraints a quantitative
assessment was impractical. Now, recent experimental approaches allow for the detailed
identification of AGO-miRNA:mRNA ternary complexes using an in vivo cross-linking
protocol and subsequent high-throughput sequencing (Chapter 1.5.2). Chi et al.!”!! ana-
lyzed miRNA:mRNA interactions in Mus musculus neocortex tissue samples and published
an interaction map containing a set of verified target sites in the transcriptome of the murine
brain; Hafner et al.[’%! conducted a transcriptome-wide identification of target sites in

human embryonic kidney cells.

In this chapter, previous studies in this field are complemented by determining canonical
seed-pairing target site types using the AGO CLIP-Seq interaction maps. A minimal and
sufficient set of six seed types was identified and their potential impact on target transcript
stability was examined. Further, the precise mapping of AGO binding regions allowed
to distinguish between miRNA:target and higher resolved miRNA:target site interaction
during an evaluation of the seed feature for miRNA target prediction. At this, the impact
of individual seed types on recall and specificity was quantified. Additional target site
conservation analyses revealed that short seed-pairing sites are less conserved than long

sites.

Major parts of this chapter have been previously published in the following article:

* Ellwanger DC, Biittner FA, Mewes HW, and Stiimpflen V. The sufficient minimal
set of miRNA seed types. Bioinformatics, 27(10):1346-50, 2011.

The results of this chapter have been presented at the following scientific conferences:

* Ellwanger DC, Biittner FA, Mewes HW, and Stiimpflen V. The sufficient minimal set

of miRNA seed types. German Conference on Bioinformatics (Freising, Germany),
2011.

* Biittner FA, Ellwanger DC, Mewes HW, and Stiimpflen V. Large scale analysis
reveals novel insights into the characteristics of miRNA targeting. Lecture Notes in
Informatics Edts., Schomburg D & Grote A (Braunschweig, Germany), 2010.
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2.1 Material and Methods

2.1.1 Preparation of CLIP-Seq data

AGO HITS-CLIP

Chi et al.U’! provided a transcriptome-wide miRNA:mRNA interaction map in P13 mouse
brains. It contains the absolute chromosomal positions of sites full complementary to
miRNA seeds (murine genome assembly of 2006). These sites are located almost at the
center of an average AGO-mRNA footprint. This is a defined region of mRNA complexed
with AGO determined by AGO-mRNA clusters, where AGO bound within 62 nt of cluster
peaks > 95% of the time. For each chromosomal coordinate, I determined the longest
protein-coding mature mRNA transcript and its corresponding relative position by means
of the NCBI reference sequence database!®?!. Sites that were located within an intron
(4%) or upstream of the 3’-UTR (45%) were removed. AGO HITS-CLIP included 20
miRNAs, whereas 18 of which are broadly conserved (according to Friedman ez al. b)),
All analyses were conducted for the set of conserved miRNAs. All mRNA and miRNA
data were downloaded from the UCSC Table Browser®3l and miRBase!'>! on October

2010.

AGO PAR-CLIP

Hafner er al.!70!

identified clusters formed by at least five PAR-CLIP sequence reads and
more than 20% T to C transitions in human embryonic kidney (HEK293) cells. These
41 nt long regions were centered over the predominant cross-linking site. I mapped the
chromosomal locations of 17318 AGO1-4 CCRs to the longest protein-coding mature
mRNA transcript based on the NCBI reference sequence database annotation®?. All
CCRs located within an exon of a mRNA 3°-UTR (37%) were retained. The dataset
contained 580 miRNAs having at least one sequence read derived from AGO PAR-CLIP.
For miRNA families having the same seed sequence (position 1 — 8 at the 5’-end), the
set was reduced to the member holding the highest sequence read count. Only broadly
conserved miRNAs7! were retained. All mMRNA and miRNA data was obtained from the
UCSC Table Browser®3 and miRBase!!! on January 2011.

I obtained the processed (background-corrected, adjusted for non-specific binding, and
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quantile normalized with the GCRMA algorithm 7)) microarray measurements of HEK293
cells transfected with 2’-O-methyl-modified antisense oligoribonucleotides of the most
highly expressed 27 miRNAs in the PAR-CLIP study (let-7a, miR-10a, miR-15a, miR-15b,
miR-16, miR-17, miR-18a, miR-19a, miR-19b, miR-20a, miR-20b, miR-21, miR-25,
miR-27a, miR-30a, miR-30b, miR-30c, miR-92b, miR-93, miR-101, miR-103, miR-106b,
miR-186, miR-301a, miR-378, miR-7, miR-124) and microarrays of mock-transfected
HEK?293 cells from Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under series GSE21577. Platform probe identifiers (IDs) (Affymetrix Human Genome
U133 Plus 2.0 Array) were mapped to GeneBank[®*! accessions using GEO platform
annotation GPL570. The log-intensity of probe sets mapping to the same gene were
averaged to obtain the expression level per single transcript. The log fold-changes of
transcript intensities were calculated as the ratio of the mean transcript expression in

miRNA antisense-treated samples and mock-transfected cells.

2.1.2 Definition of functional binding sites

Based on the set of conserved miRNA sequences and mRNA 3’-UTR sequences, all sites
complementary to a minimum of six contiguous nucleotides beginning at either position
1, 2 or 3 relative to the 5’-end of the miRNA were determined. The seed matches were
classified by means of their distance to nucleotides found in AGO HITS-CLIP footprints.
To account for all seed start positions, each seed match located within a distance of 2 nt
to an AGO HITS-CLIP nucleotide was tagged functional. Since the reported positions in
the AGO HITS-CLIP data were located almost at the center of a 62 nt long average AGO-
mRNA footprint, matches found within a distance of 3 — 31 nt could also be functional.
Since the chromosomal coordinates of the footprints were not available, an unambiguous
classification was not feasible. To avoid false positives, these sites remained unclassified.
All seed matches located beyond the AGO-mRNA footprint (distance > 31), i.e. outside
of a miRNP binding site, were classified as non-functional. Further, two miRNAs whose
target sites were not significantly enriched () test P-value (P) < 0.05) in the footprints
were removed from the dataset. Finally, the instances were composed of 7 342 functional,
64 689 non-functional and 1755 unclassified seed-pairing sites. Verifying a required
minimum target site length of 6 nt, all Smer matches were determined. The frequency of

seed matches within a footprint (distance < 31) and beyond of it was calculated for each
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seed match length.

Accordingly, for the AGO PAR-CLIP data, seed matches were classified by means
of their distance to the predominant CCR site. The seed match located within the CCR
and nearest to its center was classified functional for each miRNA. Again, to avoid false
positives, miRNA target sites found beyond the CCR center remained unclassified. Seed
matches lying beyond the CCR, i.e. outside of a miRNP binding site, were classified
non-functional. Further, only miRNAs whose target sites were significantly enriched (x>
test P < 0.05) in the CCRs were retained. Transcripts having only non-functional sites
were removed from the dataset. Finally, the instances were composed of 21 214 functional,
380 893 non-functional and 665 unclassified seed-pairing sites for 72 miRNAs and 3 166
3’-UTRs.

2.1.3 Determination of seed types

The background set 2 was defined based on the functional and non-functional sites. A
seed match §), , € €2 was distinguished by its start position p relative to the miRNA 5°-
end (1 =«a, 2=, 3 ="17) and its length k. Due to the hierarchical structure of Q, the
application of a separate-and-conquer strategy was feasible (Algorithm 2.1). First, the
target sites were divided by their seed match start position. Thus, one got three supersets
composed of seed matches of a minimum length of 6 nt containing all seed types: Sq ¢,
Sp.6> Sy,6- These sets were separated into 6mers having a mismatch at their subsequent
position (Sq 6, Sg.6 Sy.6) and seed matches having a minimum length of 7 nt, S, 7. The
null hypothesis was tested stating that the distribution of functional and non-functional
target sites is independent of a mismatch at the 3’ most subsequent position of a seed
match. Thus, if the proportions of functional to non-functional target sites between the S, ¢
and the % seed types were not significantly varying, the separation terminated otherwise
the procedure was continued for the next seed type length. The P was calculated by means
of a two-tailed Fisher’s exact test!®>!. The outcome of this were 20 match types m with a
corresponding P. The distributions of all seed match types were disjoint because each seed
match was graded by the longest possible type.

For a significance level of 0.05, the a-seed site separation terminated after three steps,
the B-seed matches contained two significant subsets and y-yielded no significant subsets.

The found significant seed types were termed based on their start position and their length:
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Sy = "kmerp". For standardization, the endmost subsets were renamed: So g = 8mera,
Sg .7 = Tmerf3, Sy ¢ = 6mery.

To estimate the significance of the seed type set, the distribution of the functional sites
was compared with a randomized pool of functional seed matches. By drawing without
replacement, a subset of 7 803 instances of the multinomial distribution from functional
and non-functional seed matches was created. The P was calculated by means of a 2 test

of independence.

Algorithm 2.1: Find canonical seed types
Data: Start position type p, consecutive seed match length , set of class-divided seed

matches Q = QT UQ™
Result: Significant seed types

1 begin
2 X —0 > Initialize accumulator
> Identification of subsets (separation step)

3 Sp i {Vs € Q : starttype(s) = p A length(s) > k} > Match at k+ 1
4 E — {Vs € Q : starttype(s) = p A length(s) = k} > Mismatch at k+ 1
s | m—[S,nNQF|, SN, IS, NQT|,|S,xN27|] > Contingency table
6 P «— FisherTest(m) > Fisher’s exact test[%”]
7 if P > 0.05 then > Reject null hypothesis for a significance level of 0.05
8 return X US), ¢
9 else > Continue recursively with subsets (conquer step)

10 IR U%

11 k—k+1

12 goto3

13 end if

14 end

2.1.4 Analysis of miRNA target site prediction

The impact of the seed types to miRNA target site prediction was evaluated in terms of
recall, specificity and precision. The recall estimates how many of the functional target

sites 27 are covered by a certain seed type S, the specificity computes the fraction of
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correctly excluded non-functional target sites and the precision denotes the relative amount

of functional sites of a seed type.

Let

’

pr=|{s:s€SAs€Q"}

pr=Hs:seSAs¢Q1},

n=1{s:sZSAsgQ"},

ng=\{s:sgSAseQt}|
One can define:

Pt
p;+nf

Pt

recall = )
Pt +pf

, specificity =

, precision = (2.1)

n+ Py
Further, an aggregate measure was computed (Matthews correlation coefficient, MCC):

pithy — pyng

MCC =
V(i +p5)(pe4ng)(n+pr)(n+ny)

(2.2)

The quality metrics of each miRNA target prediction algorithm were determined in
terms of pure seed finding. Their seed type selection was assigned as described in the
related literature. Due to ambiguous seed type assignments based on the first position of the
target sequence, the evaluation of TargetScan°! was performed by executing predictions
on the mRNA set.

2.1.5 Seed type characterization

To estimate the miRNA seed type usage, the relative frequencies f; of a seed type S for
a certain miRNA was calculated. These values were normalized by the mean u and the

standard deviation o':

Z(fs) = Js— Ky (2.3)

Ofs
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The conservation of each seed site was determined using the software package PHAST !
as described by Betel et al.[71. The included algorithm PhastCons is based on a phyloge-
netic hidden Markov model which is fitted to the input sequence by maximum likelihood.
Each nucleotide gets a score measuring the evolutionary conservation across 17 vertebrates.
For each seed match the absolute chromosomal coordinates were determined and a con-
servation score was calculated. Only if the score of each nucleotide within a functional
seed match exceeded the threshold of 0.571°7], the site was tagged conserved in mammals.
The background conservation of a seed type was computed by calculating the fraction of

conserved nucleotides of a non-redundant set of 3’-UTRs holding a specific seed type.

2.2 Results

2.2.1 The canonical seed types of miRNA target recognition

In this study, a set of canonical seed types was defined by analyzing the seed matches
of experimentally verified functional target sites in the 3’-UTR. The AGO HITS-CLIP
miRNA:mRNA interaction map (murine assembly of 2006)!"! lists 15665 chromosomal
positions of target sites belonging to 20 miRNAs frequently bound in AGO complexes.
These sites were mapped to annotated protein-coding mRNA transcripts and retained if
they were located within the 3’-UTR, respectively. For each miRNA, the 3’-UTRs of the
transcript set were scanned for all sites complementary to a miRNA subsequence beginning
at either position one (o-position), two (-position) or three (‘y-position) relative to the
miRNA 5’-end. At this, a minimum length of 6 nt was required. Seed matches of length
five, as reported by Brennecke et al.[*®!, were not significantly enriched in average AGO
footprints (Table 2.1). The sites were classified by means of their distance to an AGO
HITS-CLIP binding site. After filtering of 16 broadly conserved miRNAs of which target
sites were significantly enriched in AGO footprints, the set contained 2 369 murine genes
with 7070 Ago HITS-CLIP sites.

Each contiguous seed match was defined by its start position type and its length. The
dataset was composed of eight -, seven - and five Y- seed match types (Figure 2.1).
Following the principle of Occam’s razor, the simplest seed type setting for target prediction
should usually be the correct one. To reduce unnecessary complexity of the seed type

set, unique seed types differing significantly from their superset in terms of functional
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Figure 2.1 | Determination of the sufficient minimal set of seed types. The background set £ is
composed of functional and non-functional seed match sites. Each seed match S, ; is characterized
by its start position p relative to the miRNA 5’-end and its minimum length k: S, € £, with
pe{o,B,y} and k > 5. In each step £, can be further separated into a subset of seed matches
with a length of at least k nt, S, , and a subset of seed matches with a length of exactly & nt, %.
If the distribution of functional and non-functional target sites is independent of a mismatch at
the 3’ most subsequent position of a seed match (P > 0.05), the separation terminated otherwise
the procedure was continued for the next seed type length. P are shown for each separation node
(HITS-CLIP colored red, PAR-CLIP colored blue). The following seed types were identified: two
seed types starting at position one (Sq 6, S¢.7, Sa.8), two starting at position two (%, Sg.7), and
one starting at position three (Sy,6).
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Table 2.1 | Enrichment of consecutive matching sites found in HITS-CLIP cluster peaks.

Site length Sites in peak  Sites out of peak Log odds ratio P
5 14876 208 562 0.00 5.55 x 107001

6 6239 54346 0.21 5.92 x 10728

7 2295 14772 0.34 5.41x 107281

8 948 3963 0.53 2.39 x 107270

9 219 983 0.50 9.98 x 19705

10 45 242 0.42 7.03 x 107010

11 13 58 0.50 7.57 x 107995

12 2 16 0.25 4.44 x 107001

13 2 3 0.97 2.70 x 107903

and non-functional site distribution were identified. Six different, disjunct types of seeds
were achieved: three 6mers either beginning at the first nucleotide (6mera), the second
nucleotide (6merf3) or the third nucleotide (6mery), two 7mers either starting at position
one (7mera) or position two (7merf3) and one 8mer beginning at the first nucleotide
(8merca). These canonical seed types terminated within the first 8 nt of the miRNA in 97%
of cases. This underscores the importance of the octamer at the miRNA 5’-end. A fact
which can be motivated by the AGO2 protein structure. The first 10 nt of the miRNA are
located at the RNA binding groove (Figure 1.3) and prearranged in a geometry resembling

an A-form helix[38],

The results suggest that the accessibility of a preformed helical
segment longer than about 8 nt would not increase the effective nucleation surface. This
may be reasoned by the fact that additional nucleotides would face opposing directions
inducing topological challenges %!,

The significance of this seed type set was evaluated by a sampling approach. The log
odds ratio of long seed types is above zero, pointing to a better discrimination between
functional and non-functional sites (Table 2.2). Further, to exclude that the inferred seed
type set is affected by an experimental bias, human AGO PAR-CLIP data!’%! composed
of 21 214 functional, 380 893 non-functional seed-pairing sites for 72 miRNAs and 3 166
3’-UTRs was used to validate the observation. By applying the presented separate-and-
conquer algorithm, the identical seed type set was identified (Figure 2.1 and 2.2A).

Next, the destabilization effect of miRNA binding to a specific seed type was char-
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Table 2.2 | Determined canonical seed types.

Seed type Functional % Non-functional % LOR? P
6mero 1793 24 20746 32 —0.12  1.20x 10798
6merf 1382 19 13500 21 —0.04  2.57x107004
6mery 1755 24 17954 28 —0.06 2.26 x 10709
Tmera 760 10 5036 8 0.12  2.03x107°83
Tmerf3 959 13 5250 8 0.21 1.34 x 107942
8merq 693 9 2203 3 0.44 7.60 x 107132
“Log odds ratio based on sampling.
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Figure 2.2 | Correlation of HITS-CLIP and PAR-CLIP. A | The seed type distribution of func-
tional sites is equal in both datasets (F-test P = 2.1 x 1073). B | The log odds ratio (LOR) was
computed of finding functional sites in conserved regions. The log odds ratio (LOR) is equal in
human and mouse (F-test P = 1.3 x 1072).

acterized. For this purpose, transcriptome-wide expression data of embryonic kidney
cells following transfection with antisense oligoribonucleotides of the most abundant 27
miRNAs in the PAR-CLIP study!”"! was examined. Figure 2.3A shows that the stability of
transcripts which contain a functional target site characterized by any of the six seed types
was significantly increased post-transfection compared to transcripts without a functional
seed match (Bonferroni corrected Wilcoxon rank sum test P < 107%). One can also
observe an increasing order of regulatory effectivity: from 6mery (lowest), 6mera, 6merf3,
7mera, Tmerf3, to 8mera (highest). Consistent with previous studies®"! the repressive

effect of the miRNA depends on the length of the seed-complementary region and rises
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clearly from 6mer to 7mer to 8mer matches (Figure 2.3B).

A

B

— No seed site — No seed site — No seed site

Bmera (P=3.5x 109 n=487) emer (P=7.3 x 1079 n=969) a-seed (P=6.9x 1079 n=3814)
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Figure 2.3 | Effectiveness of canonical sites. Transcripts were categorized according to the
presence of a functional seed matching site of any of the 27 most abundant miRNAs in the
PAR-CLIP study. The distribution of the expression fold-change of target transcripts following
anti-miRNA transfection are shown for these categories: the magnitude of destabilization effects of
transcripts containing a specific functional canonical site (A), the effectiveness based on either the
seed match length (B) or the seed match starting position (C). P are given by the Wilcoxon rank
sum test and indicate significant differences between the expression level changes of n transcripts
with a functional target site versus 386 transcripts without a functional seed complementary site;
shown values were adjusted for multiple-testing using the Bonferroni correction.

In a previous work, Bartel?”l defined seeds of miRNA target recognition. The AGO
CLIP-Seq derived set of canonical seed type recovers the previous definition and extends it
by additional seed types starting at the -position (Figure 2.4). Interestingly, the major
fraction of functional target sites is complementary to the very 5’-terminal nucleotide of
the miRNA seed sequence (HITS-CLIP 44%, PAR-CLIP 40%). The set of miRNAs whose
target sites were significantly enriched in AGO binding sites have a strong bias towards
a uracil at their first position (2 test P < 1.1 x 107%3). This observation has also been
previously stated elsewhere[*®-1901 and was suggested to be justified by the AGO2 protein
structure. Backbone atomes of a rigid loop in the middle domain of the AGO?2 peptide
chain exhibit a higher affinity for the base of uracil monophosphate (UMP) than for the
base of adenosine monophosphate (two-fold lower), guanosine monophosphate (28-fold

lower) and cytosine monophosphate (30-fold lower than UMP)[*?1. Thus, mature miRNA
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Figure 2.4 | Definition of seed types. The seed types were termed by the start position relative to
the 5’-end of the miRNA and the length of the consecutive seed match. The defined set of canonical
seed types can be surjectively projected to the seed type set of Bartel?”]. Equivalent definitions
could be found for 6merf3, 7merf} and 6mery. In the case of miRNAs having a seed sequence
beginning with a uracil, 7mero complies with 7mer-A1l and 8mer« is equal to 8mer. Otherwise
6merf3 equates 7mer-Al and 7merf8 complies with 8mer. If the first position within the target
sequence is not an adenine, 8mero equates 7mer-m8 and 7mer is equal to 6mer. Additionally,
the set considered 6mer matches that are complementary to the first position of a miRNA seed
(6bmero). Core seeds can be found from position 1 to 6 (covered by 6mero, 7mero, and 8merq), 2
to 7 (covered by 6merf3, 7merc, 7merf3 and 8mera) and 3 to 8 (covered by 6mery, 7merf3 and
8mera) of the miRNA sequence.

sequences starting with a uracil may be preferentially integrated into the RISC. Further,
Lewis et al.!°") reported that the majority of conserved target sites exhibits a 3’-terminal
adenine. They assumed that this so-called A anchor’ is recognized simultaneously or
sequentially to the interaction with the first nucleotide of the miRNA by a protein contained
in the RISC. Resultant, as uracil binds to adenine via two hydrogen bonds, ¢-seed types can
be indeed expected to be frequently observed. This raises the question how Watson-Crick
pairing at the very 3’-terminus of the miRNA complementary site affects mRNA:miRNP
complexing and to which extent target cleavage. The transfection data provides no evidence
for a differential effectiveness between - or B-paired seed regions (Figure 2.3C).
Previous studies defined the miRNA seed match starting at position two and requiring a
length of at least 6 nt as miRNA core seed>70>7] je. a paired region covered by multiple
seed types. In the canonical set, it is covered by the seed types 6merf3, 7mero, 7merf3
and 8merc. In addition, two further core seeds can be identified: the former is ranging
from position one to six covered by 6merc;, 7mero and 8mero; the latter is ranging from

position three to eight covered by 6mery, 7merf3 and 8mera.
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2.2.2 Majority of functional sites are based on 6mer seeds

The effect of each seed type to recall and specificity was examined (Figure 2.5A). Focusing
on the relative contribution of each seed type to functional sites, 6mer seeds make up the
highest fraction of true target sites (recall = 0.67). On the other hand, 6mer types involve
many false positives leading in sum to a low specificity (0.19) and precision (0.09). In
terms of computational target site classification, the usage of a short seed type causes an
inverse prediction (MCC < 0, Figure 2.5C), suggesting the avoidance of such a type. In

this case, reversing the classification would yield a result superior to an average random

prediction.
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Figure 2.5 | Accuracy evaluation. A, D | The impact of each seed type on miRNA target site
prediction was determined by means of recall and specificity. The effect of the (default) seed type
selection is shown for several prediction algorithms. These values present the minimum specificity
and the maximum recall of the six tools, respectively. B, E | Removing non-conserved target sites
increases the specificity and the precision, but lowers the recall. C, F | MCC values for predicting
sites with and without filtering for conserved sites. Note that panels D, E and F do not reflect the
ranking of predictions based on the algorithms’ scoring schemes; T.scan = TargetScan, T.spy S =
TargetSpy Seed. The dashed line illustrates an average random prediction.
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Barely one-third of all genuine target sites are covered by seeds of length 7 and 8.
Among these seed types, 7merf3 holds the highest recall (0.13) and 8mera shows the best
specificity (0.97). The combined set of 7- and 8mer matches achieves a specificity of 0.8
(precision = 0.19).

Evaluation on the miRNA:mRNA interaction level resulted in an increased recall and
specificity for each seed type (Figure 2.6). This evaluation level is more general, as only the
presence of a site on a mRNA matters. Multiple matches of one miRNA on a target mRNA
are combined into one miRNA:mRNA interaction. In contrast, the miRNA target site
determination evaluation takes the location of a seed match relative to an AGO footprint
into account. Consequently, evaluation on the more general level implies that multiple false
positive seed matches may be combined to one true positive miRNA:3’-UTR interaction.
Conversely, multiple true negative target sites may be combined to one false positive
interaction.

The majority of functional sites are formed by short seed-pairing sites. These 6mers
were found to be associated with low repressive effects. Three regulatory roles have been
proposed for miRNAs in the literature: switches, fine-tuners, or natural targets (Chapter
1.4.3). In this study, 6mer seeds were found to be associated with low repressive effects. It
can be suggested that marginal reduction, i.e. fine-tuning, of the mRNA level may be the
predominant effect of global miRNA-mediated regulation. Also, short seed-complementary
sites may likely play a major role in the miRNA decoy mechanism (Chapter 6).

The importance of short seed types gains further support by the observation that 37%
of the 3’-UTRs contain exclusively seed matches of length six in their AGO footprints.
Interestingly, the sequences of this subset of 3’-UTRs are significantly shorter than those
of the superset (t-test P = 4.53 x 107%). Stark et al.'%! studied the impact of miRNA
regulation on 3’-UTR evolution and found that short 3’-UTRs indicate avoidance of
miRNA regulation. This goes well with the observation that short 3’-UTRs are regulated
by less effective 6mer matches.

Next, the question was addressed, whether miRNAs exhibit seed type propensities.
The relative frequencies of the seed types were computed for each miRNA. A Z-score
indicates miRNAs holding a frequency over or below the mean frequency given a specific
seed type (Figure 2.7). It was observed that 6mer seed types and long seed types are
grouped to clusters, respectively. Further, two main miRNA cluster appeared. The larger

group contains miRNAs binding primarily to 6mer-based functional sites. Seven of the
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Figure 2.6 | Accuracy evaluation of miRNA:mRNA interaction determination. A, D | The
contribution of a seed type to a miRNA:mRNA interaction was measured by the receiver operating
characteristic (recall vs. 1— specificity). The corresponding minimum specificity and maximum
recall values for a set of six miRNA target prediction algorithms were determined. B, E | The effect
on accuracy by retaining only conserved sites was computed. C, F | MCC values for predicting
miRNA:mRNA interactions with and without filtering for conserved sites. Note that panels D, E
and F do not reflect the ranking of predictions based on the algorithms’ scoring schemes; T.scan =
TargetScan, T.spy S = TargetSpy Seed. The dashed line illustrates an average random prediction.

16 miRNAs carry out stronger repression by pairing to rather long seed matches. These
results suggest that each miRNA likely has a transcriptome-specific bias towards long or

short seed-binding sites.

2.2.3 Non-conserved targeting relies on short seeds

The strategy established by Betel et al.|°7! was used to identify seed-pairing sites conserved
across mammals (Figure 2.8). The majority of functional target sites is conserved (60%).
All seed types have a higher fraction of conserved sites than one would expect by chance,
given the conservation of their 3’-UTRs (6mera: log odds ratio = 0.33, P = 1.23 x 10761
6merf: log odds ratio = 0.34, P = 4.07 x 10739, 6mery: log odds ratio = 0.36, P =
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Figure 2.7 | Seed type distribution for each miRNA. The colors affected by the row Z-score
indicate the propensity of miRNAs to bind specific seed-complementary sites in the murine
neocortex transcriptome. A red/blue coloration implies a higher/lower usage of a seed type
compared to other miRNAs.

2.53 x 10771; 7mera: log odds ratio = 0.57, P = 2.75 x 10~7%; 7merf3: log odds ratio
= 0.53, P =3.33 x 107%; 8mera: log odds ratio = 0.77, P = 1.12 x 10~198). This
observation was validated with the human AGO PAR-CLIP data (Figure 2.2B).

The 6mer sites reveal an almost equal partitioning in conserved and non-conserved sites.
A clear discrepancy between the numbers of conserved and non-conserved sites emerges
for 7- and 8mer seeds. Particularly, 8mero seed matches exhibit a significant tendency to
be conserved. The number of conserved sites in this case is more than three times as high
as the number of non-conserved sites. In terms of 7mer seeds, about two-thirds of the seed
matches are conserved, whereat 7mera exceeds 7merf3. Retaining only conserved seed
matches lifts target prediction specificity of all seed types (Figure 2.5B). In particular, the
6mer seeds show a significant increase in specificity resulting in a classification better than
an average random guess (MCC > 0, Figure 2.5C).

In summary, the mean probability to be conserved is about 55% for a 6mer seed. In
contrast, 7mer and 8mer seeds have a probability of up to 77% to be conserved. Further, a
total of 75% of the functional non-conserved sites are covered by 6mer seeds. Therefore,
lineage-specific miRNA regulation relies to a large extent on target sites containing short

seed-pairing sites.
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Figure 2.8 | Conservation of seedtypes. Observed and expected fraction of conserved functional
seed matches for each seed type.

2.2.4 Target prediction focuses on 7- and 8mer seed matches

Frequently used approaches for target prediction in mammals were reviewed with regard
to the implemented seed types (Table 2.3). The TargetScan algorithm %! seeks mainly
for seeds of length seven and eight via the seed types 7mer-A1, 7mer-m8 and 8mer. The
Tmer-Al sites may be of type 6merf in the event that the miRNA sequence starts with a
nucleotide different to uracil. However, the majority of mammalian miRNAs begins with
a uracil®”. Both PicTar!'%2! and EIMMO!%! require stringent seed pairing of 7 — 8 nt
starting at either the « or the B-position. A novel approach called TargetSpy (with seed

setting) (104 restricts target predictions to transcripts encoding a perfect 7mer site.

Table 2.3 | Default miRNA seed type selection of prediction algorithms.

Algorithm  6mero 6merf3 6mery Tmero Tmerf3 Smera
PITA“ v v v v
TargetScan® b v v v
PicTar v v v
EIMMO v v v
TargetSpy S v v v
PACMIT* v v

“Configurable seed length; default seed types ensure high precision.
bTf miRNA seed sequence starts with an adenine, guanine, or cytosine.
‘If miRNA seed sequence starts with a uracil.
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Some algorithms allow for custom-defined seed searching: PITA [*%1 seeks by default for
sites of length six, seven and eight that start at position two of the miRNA. The standard
setting of PACMIT!!%] is even more restrictive by considering merely sites matching
to miRNA positions 2 — 8. Both tools enable the adjustment of the site length by the
user. RNAhybrid!1%! as well as IntaRNA 97! are more flexible by providing a couple of
additional parameters to customize the seed search, e.g. a user-defined setting of the start
position. Notably, IntaRNA is a general approach to predict any RNA:RNA interactions.
Both tools do not suggest default seed search parameters.

The impact of the (default) seed type selection of prediction algorithms on recall and
specificity was evaluated. Prediction methods implement scoring schemes to value target
site characteristics beside the seed. In contrast to common evaluation frameworks, the
assessment presented in this work is not focusing on a subset of top scored instances, but
uses all predictions. Therefore, the denoted specificity values represent the minima while
the recall values show the maxima for the (default) seed choice, respectively. It should be
noted that subsets composed of top scored predictions would achieve significantly higher
specificity values.

It was observed that all prediction models exhibit a considerable constraint regarding
their ability of finding potential target sites (Figure 2.5D and F). PITA holds the highest
recall of 52% (specificity = 60%) owing to the exhaustive search for 6merf3 seed matches,
whereas PACMIT has the lowest recall of 23% (specificity = 88%). Remarkably, this
tool is restricted to find less than a quarter of all functional seed-pairing sites. Additional
filtering by removing conserved sites increases the specificity but consequently lowers the
recall (Figure 2.5E). Here, PACMIT can only find 16% of all functional sites (specificity
= 73%). A higher recall but a lower specificity can be observed for the prediction of
miRNA:mRNA interactions (Figure 2.6D, E, and F). Concluding, due to the significant
gain of precision, tool developers prefer to use long seeds. This study quantified the loss

of recall accompanied by this proceeding.

2.3 Conclusion

This study presented an analysis of the most important feature for miRNA target recogni-

tion, the so-called miRNA seed, using a large-scale dataset of functional target sites. Based
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on the AGO HITS-CLIP and AGO PAR-CLIP miRNA:mRNA interaction maps, seed
properties and their influences on miRNA target site prediction methods were analyzed.
Due to the definite specification of AGO binding sites, the classification of MREs contained
in the mRNA 3’-UTR as either functional or non-functional was feasible. A minimal set of
seed types that is sufficient for accurate miRNA target site predictions was defined and its
effect on transcript stability was examined. The data pool presented in this work allowed
for enhanced analysis of miRNA target prediction algorithms compared to earlier studies
that were restricted by experimental constraints (e.g. Alexiou et al.['%8]; Selbach ez al. 1),

It was found that most conserved miRNAs interact predominantly with target sites
endowed with short seed matches; 67% of functional sites are based on 6mer seeds.
The common assumption that short seed matches are associated with low effects on
target mRNA stability>’! was recovered. From this observation it was suggested that
the predominant effect of global miRNA-mediated regulation is a marginal reduction
of the mRNA level. This is consistent with the commonly accepted mode of action of
miRNA regulation: these short regulatory ncRNAs were suggested to be responsible for
fine regulation of target transcript abundance to adapt the cellular phenotype during crucial
processes such as cell development and differentiation!19%).

In terms of maintaining target predictions with a low false-positive rate, the common
approach of current algorithms to focus mainly on seeds of length seven or eight was
reconfirmed. At present, prediction algorithms have to accept severe deficiencies of recall
to ensure high specificity that is naturally considered to be more important. In addition,
such a restriction denotes a disregard of the majority of fine-tuned miRNA targets.

It was observed that the preferential search for long seeds lifts the proportion of con-
served sites. However, a substantial fraction (40%) of all functional target sites is not
conserved across mammals; 6mer complementary seed sites are enriched among these.
It remains to be elucidated, how the conservation constraints for each seed type vary
between close and more distant related species. Recently, Xu et al. [891 described that, in
general, seed-based target sites are more conserved between closely related species, such
as primates, but less conserved for distantly related species, such as birds and mammals.
Although most target sites were suggested to be under, at least marginal, evolutionary
constraints, several seed-sites are conserved only for a short evolutionary period. Based on
the observation of this chapter, one can suggest that a fraction of 6mers evolved from Smers

rather from long seed-pairing sites that are assumed to be under positive selection. Since
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one miRNP binding site embeds multiple seed-pairing sites, the evolutionary emergence
of bona fide ’sponging’ 6mer motifs is one probable scenario (Chapter 6). However, the
current knowledge about miRNA target site evolution is limited — further investigations
are required to clarify this question.

Concluding, omitting short seed-pairing sites and requiring target site conservation
results in a lowered recall of current target prediction algorithms. Since the fraction of
spurious matches is very high for this kind of seed-pairing sites, the problem of recall
can be easily translated to a problem of precision. This strongly intensifies the need for
features beyond seed pairing that realistically describe miRNA targeting, in particular non-
conserved target sites. It may also raise the basic question for the potential of seed-based

approaches in discriminating between functional and non-functional sites.






CHAPTER 3

miRNP features beyond miRNA seed pairing

After maturation in the cytoplasm, miRNAs are incorporated into the miRNP and function
as primer for partially complementary base pairing mostly to the 3’-UTR of the target
mRNA 521, Early studies on target recognition revealed that Watson-Crick pairing between
the target sequence and the 5’-end of the miRNA is a primary determinant of target
specificity 1. As discussed in Chapter 2, such a seed match by itself is a poor predictor
due to high stochastic noise caused by the high number of random occurrences of any given
6mer, 7mer or 8mer motif in a 3’-UTR. Thus, for reliable target determination additional
features beyond seed pairing are required.

However, the comprehension of the molecular basis of the miRNA:target pairing process
is limited. Since the experimental detection is a costly and time-consuming process,
the current knowledge about the exact location of miRNA target sites is limited and
disproportional to the number of known miRNAs. A common database with target site-
related information is miRecords!!!!], The most recent release (April 27, 2013) contains
733 interactions of 162 miRNAs and 297 genes in human. In contrast, the miRBase
(release 20, June 2013) sequence database lists 2 576 human mature miRNA transcripts.
Considering that it has been estimated that miRNAs regulate hundreds of targets via
multiple target sites(°?], it is obvious that the reported number of verified information
accounts only for a small fraction of the actual extent of miRNA targeting. This fact
emphasizes the urgent need for computational miRNA target site prediction methods to
guide wet lab experiments and, in the end, to facilitate the transcriptome-wide discovery of
operative miRNA-mediated regulation.

Considerable advances have been made in ab initio target prediction!?”-1121. Several

53
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algorithms were developed implementing additional target site features, such as evolution-
ary conservation 19?1, structural accessibility [4%-113-1141 "Jocal nucleotide composition, and
target site location®°!. All tools require an initial search for anchor sequences such as seed
complementary sites. Subsequently they are evaluating the site by their respective feature
scoring schemes. For the most part, all of the them generate a bulge of predictions — many
of which are presumed to be false positives!®]. Thus, the prediction of reliable miRNA
target sites is still an unsolved computational challenge.

Over the recent years, significant efforts have been made in the experimental high-
throughput screening of biologically relevant miRNA:target interactions. By using cross-
linking and AGO immunoprecipitation coupled with high-throughput sequencing (CLIP-
Seq) in cells of interest, the binding regions of the miRNP can be reliably determined.
This is a clear advantage to previous experimental approaches such as mRNA expression
profiling and proteomics3>87-211 as this technique allow the direct identification of a huge
pool of short target sequences representing miRNP binding regions (Chapter 1.5.2). It has
been suggested that the false-positive rate of prediction algorithms can be significantly
reduced by restricting the search space of miRNA target sites a prioril’%’1115] However,
AGO CLIP-Seq libraries are limited to highly expressed transcripts. Further, the results are
condition-specific, i.e. they depend on the environment, organism, tissue, and cell cycle
state. Thus, the computational characterization and genome-wide prediction of miRNP
binding sites is of particular interest.

This chapter analyzes features of miRNP binding sites beyond seed pairing. For thus
purpose, an elaborate data pool of negative and positive instances from two AGO-bound
CLIP-Seq libraries was prepared. Several features were collected from literature which
were suitable for miRNP binding site prediction. This set was composed of attributes
established for miRNA target prediction as well as relevant characteristics from other fields
of RNA analysis. Following feature extraction, a SVM-based classifier was trained. The
classifier ranks segments on target transcripts for their miRNP binding affinity. It is inde-
pendent of any miRNA sequence and as such can be combined with a subsequent miRNA
target site search, such as a naive seed matching or any sophisticated target prediction
tool. By using miRNA transfection data, it was shown that filtering of target sequences by
predicted AGO-bound regions increases the precision of common target prediction algo-
rithms. Further, the approach was applied to examine the hypothesis that the pro-fibrotic

mediator WISP1 escapes post-transcriptional regulation by miRNAs in pulmonary fibrosis.
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At this, miR-92a was identified as potential regulator. Subsequent experiments confirmed
the miR-92a-mediated regulation of WISP1 in lung fibroblasts and lung tissue specimens
of affected patients. Further, it was found that TGF-f 1-induced WISP1 expression can be
altered by modulation of miR-92a in human primary lung fibroblasts (pFBs).

Parts of this chapter have been previously published in the following article:

* Berschneider B, Ellwanger DC, Shimbori C, White ES, Kolb M, Neth P, and
Konigshoff M. miR-92a regulates TGF-f 1 induced WISP1 expression in pulmonary
fibrosis. Int J Biochem Cell Biol., 53:432-41, 2014.

The results of this chapter have been presented at the following scientific conferences:

* Berschneider B, Ellwanger DC, Mewes HW, Neth P, Konigshoff M. Regulation of
Wntl-inducible signaling pathway protein 1 by miRNAs in pulmonary fibroblasts.
Am J Respir Crit Care Med, 187 A6060 (Philadelphia, USA), 2013.

* Berschneider B, Ellwanger DC, Thiel C, Stiimpflen V, and Konigshoff M. mi-
croRNA regulation of WISP1 in pulmonary fibrosis: an in silico approach. Pneu-
mologie, 65 - A6 (Homburg/Saar, Germany), 2011.
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3.1 Material and Methods

3.1.1 Processing of CLIP-Seq data

Kishore et al.['1®) examined the effect of metabolic labeling with photoreactive nucleosides,
cross-linking at distinct wavelengths and the use of different ribonucleases on the recovery
of AGO?2 binding-sites by PAR-CLIP and HITS-CLIP. They prepared libraries of AGO2
CCRs based on both experimental protocols in human embryonic kidney (HEK293)
cells. Subsequent statistical analyses of the enrichment of binding sites and the frequency
of various types of mutations within these sites allowed an accurate extraction. The
complete RNase T1 treated samples were obtained from Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) under series GSE28865. It has been described that the
3’-UTR represents the major miRNA binding region with the highest impact on target
transcript stability ?”-117], Therefore, the CCRs were mapped to the longest mature 3°-UTR
transcript of each gene based on the Ensembl 3] genes annotation (assembly GRCh37)
resulting in 5 701 CCRs for PAR-CLIP and 2407 CCRs for HITS-CLIP.

3.1.2 Feature extraction

To extract the features of an AGO2 CCR, a sliding window approach was applied. A
window length of n = 41 nt was selected. Segments of this length were suggested to
represent the central miRNP binding segment!’%116] " Starting at the first position of a
3’-UTR and moving by 1 nt, the following feature vector x = (x1,...,x11)’ was computed

for the central nucleotide.

Conservation score

Each nucleotide of a 3’-UTR was rated by a conservation score from the PhastCons!*®! and
PhyloP 46way ! track provided by the UCSC Table Browser!*3!. The central nucleotide
of a window was assigned two scores by computing the total conservation of a window

segment using either algorithm.
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Local base content

The local content of adenine (A) and uracil (U)PY, the content of adenine and guanine

(G)I201 a5 well as the uracil content!’?! within a window was scored by a weighting

function tailing off the distance from the central nucleotide®!. The presence of the
respective nucleotide increased the score for the site:
U s ) 1 ifnuc(d) €K
d , with sy = (@) (3.1)

5i= ) [0.5n] —d|+ 1

d=1 0 otherwise

The function nuc(d) returns the nucleotide on position d of the sequence window. Three
feature scores were computed with K = {A, U}, K = {A, G}, and K = {U}.

Base asymmetry bias

The basic asymmetry signals (skews) were calculated. These were proposed as evidence
for the potential formation of strand-specific RNA structures between A and U as well as
G and cytosine (C)H21.

ik

= — 3.2
Ji+ fi G2

Xi

Here, f; denotes the relative fraction of nucleotide k and f; denotes the relative fraction of
the nucleotide complementary to nucleotide k in the sequence window. Two scores were
computed with k = A (AT skew), and k = G (GC skew).

Compositional entropy

The base compositional entropy of a sequence window was scored by 1201

xi=— Y. filog(fe) (3.3)

ke{A,T,G,C}

where fj denotes the relative fraction of the nucleotide & in the window sequence.
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Relative position

The relative distance of the central nucleotide to the center of the 3’-UTR was calculated>%,
i.e. the higher the relative position score € [0, 1], the closer was a window located to one
of the 3’-UTR ends.

Structural accessibility

More accessible segments were proposed to be more effective target sites[*°). The Raccess
algorithm 22! was applied to compute the structural accessibility of each nucleotide of
a 3’-UTR. A minimum length of 20 nt was forced to be accessible. The maximal span
of base pairs considered for pairing was restricted to 400 nt. The central nucleotide of a

sequence window was assigned the total energy required to unfold the window segment.

miRNA pattern aggregration

It has been described that regions encoding miRNA target sites accumulate patterns com-

posed of reverse complements of mature miRNAsg [104113]

. To avoid a species specific
bias, patterns were mined from the set of 687 broadly conserved miRNAs provided by
Grimson et al. P, Identical and near-duplicate sequences were removed by computing
optimal global pair-wise alignments using the dynamic programming method proposed
by Needleman and Wunsch (NW) 23] (Algorithm 3.1). This resulted in a subset R of
236 sequences with less than 73% identity. All variable-length motifs in the reverse
complement of R were discovered with the Teiresias!!?*! algorithm. The patterns were
defined analogous to Miranda et al.!''3]: minimum length of L = 4 nt and at least 30%
of their positions had to be specified (W = 12). In addition, it was required that a pat-
tern has to occur at least K = 3 times. Then, a second-order Markov chain was used to
estimate the log probability of the 397 737 patterns to occur by chance on human En-
sembl[!18] 3°_UTR sequences. For this purpose, the occurrences of all tri-nucleotides
f separated by any number of wild-cards, i.e. any nucleotide (denoted by ’-’), were
computed. Then, the probability that a pattern, e.g. UC-A-C---G, is generated from
a random database was computed using the Bayes’ theorem, e.g. P(UC-A-C---G) =
P(UC-AJUC)P(C-A-C|C-A)P(A-C---G|A-C). The probabilities were directly inferred
from f, e.g. P(UC-A|UC) = fyc.a/(fuc.a + fuc.u + fuc.g + fucc). Each 3°-UTR was
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scanned by all members of the pattern library. If a motif was found, then the scores of all
matching nucleotides were increased by the negated log probability of the pattern. The
central nucleotide of a sequence window was assigned the total pattern score found in a

window segment.

Algorithm 3.1: Find divergent miRNA sequences
Data: Ordered set S of » miRNA sequences by decreasing length

Result: Heterogeneous miRNA sequences

1 begin

2 | R—{S[1]} o> Initialize with first sequence of set S
3 for k — 2 ton do

4 A — NW(S[k], R, gapopen = 10, gapexiend = 0.5) t> Global alignment!!23]
5 I < Identity(A) > Number of identical positions for each alignment
6 if Viel:i<0.73 then

7 | RUSK]

8 end if

9 end for
10 return R
11 end

3.1.3 Preparation of training and test data

Feature scaling

To avoid difficulties during model learning, such as domination of features with greater
numeric ranges over attributes with smaller numeric ranges, the feature vectors had to be
prepared. Some machine learning algorithms will not work properly as their objective
functions computing the distance between instances will be governed by the feature(s)
with the highest range. In particular, kernel based functions computing the inner products
of feature vectors will suffer from numerical problems. Scaling induces an approximately

proportionately contribution of each attribute to the final distance. Thus, each feature
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distribution x; was standardize by scaling to the range [—1,1]:

, 2(x; — max(x;))

(3.4)

max (x;) — min(x;)

Instance selection

The 10% most reliable AGO CCRs were selected from the CLIP-Seq libraries according to
the ranking provided by Kishore ez al. 1161, The central nucleotide of all miRNP binding-
sites as well as all nucleotides located 10 nt up- and 10 nt downstream to the center were
classified positive (miRNP™). All other nucleotides located on the same 3’-UTR and not
within any other CCR measured by AGO PAR-CLIP were classified negative (miRNP™).
By this procedure 11 706 positive and 1 307 123 negative instances were created for AGO
PAR-CLIP and 5 061 positive and 570971 negative instances for AGO HITS-CLIP. For
subsequent processing, i.e. feature analysis and machine learning, the dataset was balanced

by extracting a sample of negative instances.

3.1.4 Feature analysis

To analyze the miRNP binding site features, each feature score distribution x; was dis-
cretized to bins of equal width. Then, the fraction of positive and negative instances per bin
was computed. This resulted in two matrices S LI,OX“ of true (¢ = miRNP™) and random
sites (c = miRNP ™). Using these matrices, the difference between the fraction of miRNP™

and miRNP™ sites for each score bin b; ; was calculated:
D(b; j) = P(b; j|c = miRNP") — P(b; j|c = miRNP") (3.5)

Here, D(b; j) = 0 indicates no difference in feature score frequency between positive and
negative instances; otherwise the feature interval is over-represented in positive instances
(D(b; ;) > 0) and vice versa (D(b; j) < 0).

Since the score intervals were all equal spaced, the common information gain metric
was applicable to rank each feature by its overall information content!!?! for each AGO
CLIP-Seq library d:

IG4(c,x;) =H(c)—H(c|x;) (3.6)
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with
H(c ——ZP )og,P(c)
(3.7)
H(cl) ==Y ) P(c)P(c|bij)logy (P(c|bi))
¢ b

H (c) denotes the total entropy; H(c) = 1 as the data set is balanced (P(c) = 0.5). H(c|x;) is
the total entropy considering the information based on feature x;. The entropy characterizes
the impurity of an arbitrary collection of instances. The information gain, i.e. the difference
of H(c) and H(c|x;), describes the expected reduction in entropy caused by separating
the instances according to a specific feature. Finally, the average information gain was
computed over each data set, i.e. AGO PAR-CLIP and AGO HITS-CLIP. This value will

be referred as information gain IG in this study.

3.1.5 Model learning

For model learning, a balanced training set was sampled with N = 2000 instances. Further,
an instance i was defined as (x,c) with x' is the feature vector and ¢’ the class label (+1
for miRNP™, —1 for miRNP ™). The classification problem was formulated as follows. To
separate the two classes linearly by a supervised learning function & (x'), a hyperplane had
to be defined 129!

E(X) =& () — &) = (Wi +wig) — (Whx' +wa0) =wlx' +wg (3.8)

with the weight vector w and é(xi ) > 0, then ¢! = +1, otherwise ¢! = —1. Thus, wq defined
the threshold because if ¢/ = +1, then w! x' > —wy.

To lower the generalization error, each instance was required to be located at the correct
side and also exhibit a certain distance to the hyperplane, i.e. if £ (x') > +1, then ¢/ = +1
and if & (x') < —1, then ¢’ = —1. Here, the optimal hyperplane had to be found to maximize
this margin with the least error (instance is located on wrong side or within margin), i.e.
&(x') > 1— 2. The slack variable A stores the deviation from the margin, i.e. A = 0 is
correctly classified, 0 < A < 1 is correctly classified but located within the margin, and
A > 1 is wrongly classified!!26].

An algorithm which is capable of solving this problem is the so-called SVM 271,
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It applies a product of basis functions K(x',x) = ¢(x)7 ¢(x) (kernel) to perform non-
linear transformations to a higher-dimensional space where the problem can be linearly
solved!!26!, New instances are then mapped into that space and are assigned a class label
based on which side of the margin they are located. To train the SVM the Gaussian radial
basis function K (x,x) = exp(—7||x' — x||?) was selected!'?®]. This kernel has been shown
to be eligible to classify miRNA target sites!'?8!. To determine the parameters of the SVM,
namely the regularization cost C (trade-off between misclassification and complexity of
decision surface) and the kernel width 7, a two dimensional grid search was performed

with a 5-fold cross-validation to optimize the accuracy of the prediction:

|miRNP;; N miRNP; | 4- [miRNP, N miRNP; |
|miRNP, |

accuracy = 3.9
Here, miRNP,, denotes the predicted and miRNP, the experimentally observed sites
respectively. Finally, a SVM model was trained using the determined parameters. The

entire training process was performed by applying the LIBSVM library 121,

3.1.6 Model evaluation

The accuracy of the SVM was assessed using 5-fold cross validation. Further, it was
tested against an independent sample of size 2 000 of the HITS-CLIP data set. To evaluate
whether the filtering by predicted miRNP binding sites improves the precision of existing
approaches, miRNA transfection experiments were used. The measurements from let-7c,
miR-15a, miR-16, miR-17-5p, miR-20, miR-103, miR-106b, miR-141, miR-192, miR-
200a, and miR-215 were obtained from the NCBI Gene Expression Omnibus (GEO;

(1301 The mRNA expression

http://www.ncbi.nlm.nih.gov/geo/) under accession GSE6838
levels in HCT116 Dicer™ miRNA transfected cells were computed relative to mock-
transfected cells 24 h post-transfection. Probe IDs were mapped to the accession number
of the longest Ensembl!!'8] transcript. The probe with the lowest log fold-change for
each transcript was selected. Potential miRNA binding sites were predicted by applying
TargetScan% and TargetSpy !4, Here, both, the *sensitive’ and the ’specific’ version of
TargetSpy was evaluated. For each transfection experiment the null hypothesis was tested
that the set of filtered predicted targets of any tool exhibit equal or lower fold-changes

than a random selection of equal size by means of the one-sided Mann-Whitney U-test.
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100 random samples each were extracted allowing the computation of the combined P test
proposed by Fisher!!3!). This test measures whether all of the separate null hypotheses are

true:

100
X300~ —2 Y In(P) (3.10)
i=1

Here, the test statistic follows a y? distribution with 200 degrees of freedom. If P; of
each sample i tend to be small, the test statistic x> will be large, suggesting that the null

hypotheses can be rejected for every individual test.

3.1.7 Case study

The workflow of the data analysis and modeling is outlined in Figure 3.1. In the following

each step is described in detail.

Identification of target sites

All potential miRNP™ sites were predicted for the WISP1 3’-UTR (Ensembl '8! transcript
ENST00000250160). Segments composed of 20 nt up- and 20 nt downstream of a miRNP™
site were classified as region with increased affinity to the miRNP. It has been shown that
complementarity to the miRNA seed region is most predictive to changes in mRNA levels
in response to changes in miRNA concentration®°. Thus, all potential seed-binding sites
were determined using the set of miRNA seed types found significantly enriched in AGO
CCRs (Chapter 2). All sites located in miRNP™ regions were assumed to be functional. The
stability defined by the hybridization energy AGpyprig of the miRNA:mRNA heteroduplex

was predicted by the tool IntaRNA requiring the given seed pairing (107,

Preparation of IPF expression data

Two human miRNA expression profiles were obtained from GEO under series GSE13316!132!
(10 IPF, 10 control samples) and GSE21394[1331 (9 IPF/UIP, 6 control samples). The raw
data was normexp background corrected!!3#, quantile normalized!'33], and log, trans-
formed. Processed miRNA expression data of a murine bleomycin-induced lung fibrosis

[136

model was obtained from Liu et al. !'3%! (ArrayExpress; http://www.ebi.ac.uk/arrayexpress/,
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Figure 3.1 | Flow chart for the identification of candidate miRNA:WISP1 interactions. Since
WISP1 is strongly upregulated in IPF, a set of candidate miRNAs which were downregulated in
pulmonary fibrosis was determined. For this purpose, several independent expression studies were
examined. Then, the supervised machine learning approach developed in this study was applied
(right branch). This classifier was used to rank potential miRNP binding regions (miRNP™) on
the WISP1 3’-UTR. Seed matching sites of all candidate miRNAs were determined on the WISP1
3’-UTR. Potential miRNA:mRNA hybrids found within miRNP™ sites were ranked by their duplex
energy. The most promising interaction was selected for further experimental investigations.

accession E-MEXP-2749; 9 samples, pooled reference). Values for within-array replicate
spots were replaced with their average, at which only probes with an intensity of greater
than 95% of the negative controls were considered. For the human IPF studies, the expres-
sion fold-change of each miRNA between IPF and control samples was calculated. For the
mouse model data, the miRNA expression after 7 and 14 days of bleomycin instillation
was compared to day 0. Statistical significance was determined by the Wilcoxon rank-sum

test.
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Experimental procedures

Experimental material and methods (human tissue, primary human fibroblasts, fibrotic
rat lung, cell treatments and transfections, RT-qPCRs, Western blots, enzyme-linked
immunosorbent assays, and Luciferase reporter assays) were conducted by external collab-
orators. For more details, please refer to our corresponding publication (Berschneider et
al., 20148%),

In this chapter, results of RT-qPCR experiments were specified using the AA¢; meth-
od[1371_ In a nutshell, the relative value of the RNA concentration of the target gene in
the PCR reaction was denoted by the threshold cycle (Ct) metric. The Ct was defined
as the number of cycles required for the fluorescent signal to cross a specified threshold,
i.e. exceeds the background level. Replicates were averaged by the arithmetic mean. The
relative transcript abundance of a target gene relative to a reference (housekeeping) gene
was computed by Ac, = Cteference _ clarget The relative changes of RNA levels between

e __ Atreated control
conditions was calculated by AAcy = AG*" — A"

3.2 Results

3.2.1 miRNP binding site features

Recent studies using cross-linking and immunoprecipitation (CLIP) provide a properly
mapping of transcriptome-wide binding sites of RNA-binding proteins. In particular,
CLIP of AGO proteins provides specific regions of AGO binding and miRNA target sites.
This raises the question whether this information can be used to facilitate miRNA target
prediction by filtering candidate 3’-UTRs for regions likely bound by the miRNPs. Further,
since the AGO CLIP-Seq protocol is difficult to perform and, per se, restricted to a specific
transcriptome, it is of particular interest whether the ab initio identification of miRNP
binding sites is feasible.

To build a computational model by learning from CLIP-Seq data, selective features had
to be extracted from a set of representative instances. For this purpose, a set of bona fide
miRNP binding sites (miRNP™) and off-sites (miRNP~) was prepared using the libraries
of two recent AGO CLIP-Seq experiments!! 161, In detail, a miRNP™ site corresponds to

the nucleotide located at the center of a CCR of 41 nt length whereas miRNP™ sites were
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not found in any experimental measurement. In total, two balanced data sets with 23412
AGO PAR-CLIP and 10 122 HITS-CLIP instances were generated, respectively.

Several characteristics have been proposed to classify RNA segments in general, and
miRNA target sites in particular. In this study, 11 of these features were collected and
adapted to enable an unbiased characterization of miRNP binding sites. These allude a
variety of characteristics: sequence-based (the asymmetry bias of AU and GC, the local
content of U, AU, GU, and the compositional entropy), thermodynamic-based (the required
energy to access the site), homology-based (the local conservation by PhastCons!®!
and PhyloP!'!) motif-based (miRNA pattern aggregation), and position-based (the
relative location of the binding site on the target transcript). The features were analyzed
by measuring the differences of the score distributions between positive and negative
instances. Further, the information content was rated by the information gain (IG) metric
(Figure 3.2).

In general, all features exhibited a non-zero IG and, as such, contain relevant site
information. In particular, it was found that miRNP target regions were preferentially
conserved and accessible, i.e. less energy is required to unfold the mRNA. This observation
goes well with the current common consensus on feature selection for miRNA target
prediction. The windowed PhastCons scoring scheme performed slightly better than the
per-base PhyloP framework in weighting conserved functional sites. PhastCons scores the
probability that a nucleotide belongs to a conserved element whereas the PhyloP score
denotes the —log(P) under a null hypothesis of neutral evolution.

It should be noted that, although different in data basis and calculation, the presented
study reproduces the previous observations of Kertesz ef al.[*°]. The difference in accessi-
bility between positive and negative instances perfectly followed their reported distribution.
As expected, the high IG of the accessibility attribute was accompanied by a characteristic
local sequence composition: miRNP target sites exhibited a high AU content which indi-
cates local structures composed of pairings with only two hydrogen bonds. The AU content
and the total energy required to unfold this region were negatively correlated (Figure 3.3).

Interestingly, the distribution of G and C was remarkably right skewed, i.e. genuine
miRNP target sites hold a higher fraction of C than G (median GC skew in AGO PAR-CLIP
= —0.22 and in AGO HITS-CLIP = —0.28). By contrast, the nucleotide composition
of negative instances followed Chargaff’s second parity rule!!38! (median GC skew ~ 0).

This feature gave one of the best discriminability and, to my best knowledge, was not
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Figure 3.2 | Analysis of AGO site characteristics. For each score value (x-axis) the difference
between the distributions of miRNP binding sites and randomly selected regions of the 3’-UTR
is plotted (in %). The fraction of miRNP binding sites that differ from random sites is indicated
(shaded area). (continued on next page)
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Figure 3.2 (previous page) | The total information gain metric (IG) was used to rank each feature by
its information content (upper left panel). The following features were analyzed for PAR-CLIP (blue
curves) and HITS-CLIP (orange curves): PhastCons conservation score (A), PhyloP conservation
score (B), GC asymmetry bias (C), total energy required to unfold the segment (D), local AU
content (E), miRNA pattern aggregation (F), local U content (G), AU asymmetry bias (H), local
GU content (I), compositional entropy (K), and relative position (L). P are given by the Wilcoxon
rank sum test and indicate the significance level of the difference between the distributions. Note
that the y-axes were not scaled equally to foster a better comprehension.

directly used for miRNA target prediction yet. The GC skew described the data better (1IG
= 8.0) than established features, such as the target site accessibility (IG = 4.4), the local
AU content (IG = 4.2), and the relative site location (IG = 0.8). An explanation for this
skew may be a propensity to form specific local RNA structures!'2:13%1 These folds are
likely more accessible for the RISC as the energy required to unfold these segments is
positively correlated with the C% > G% bias (AGO PAR-CLIP p = 0.34, AGO HITS-CLIP
p = 0.32). While the purine G pairs with C by three hydrogen bonds, it is also capable
to form common non-Watson-Crick G-U and U-G wobble pairs in RNA structure! 140,
Thus, lowering the fraction of G may decrease the number of stable hydrogen bonds.
Consistently, the local GU content is positively related with the C% > G% ratio (AGO
PAR-CLIP p = 0.52, AGO HITS-CLIP p = 0.59).

Further, an enrichment of miRNA binding motifs was observed. This result suggests
that these miRNP target segments may embed multiple target sites for several miRNAs.
Notably, the difference in score distributions was not growing on a linear basis. This
indicates that the number of operative miRNA target sites is limited to a certain amount
within miRNP-bound regions. All pattern matches were preferentially located in regions of
higher AU and lower GU content, and as such, segments of superior accessibility (Figure
3.3). Notably, these regions exhibited a higher fraction of A than U. This is interesting as
adenines have been assigned a prominent role as miRNA target site anchors!®" and the
very 5’-terminal nucleotide of the major fraction of guide miRNA sequences is U enabling
Watson-Crick base pairing to the target sequence (o-seed types, Chapter 2).

The local U and the local GU content varied to a considerable amount between the
AGO PAR-CLIP and the AGO HITS-CLIP library. This effect is likely caused by the

70]

experimental protocols. Indeed, Hafner et al. [’ previously found an elevated U-content
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in their AGO PAR-CLIP data (HEK?293 cells). They argued that this was as expected
according to previous analyses of functional miRNA binding sites. The direct comparison
of AGO PAR-CLIP and AGO HITS-CLIP in the presented study confirmed that there
is a very likely propensity of AGO to bind U enriched sites, albeit this holds only to
a certain extend. Although AGO?2 has been suggested to exhibit a higher affinity for
the base of U monophosphate than for other bases'*”), a binding preference of AGO
proteins for U-enriched target sequence tracts has not been reported in the literature. The
observed discrepancy between both protocols suggests that the PAR-CLIP technique holds
a noticeable experimental bias. It can be suggested that the sequence propensity is intrinsic

to the usage of 4-thiouridine in this protocol 1411,
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Figure 3.3 | Correlation between miRNP site features. Correlation is measured by Pearson’s p
and is shown for the AGO PAR-CLIP (A) and AGO HITS-CLIP (B) library. The color and shape of
the ellipses denotes the strength and type of association (negative correlation: red, bent backwards;
positive correlation: blue, bent forwards). Please note that the feature accessibility is defined as the
total energy required to unfold the segment.
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3.2.2 ’Hot spot’ filtering raises precision of miRNA target prediction

Miranda et al.!'''3! proposed the idea of the association of “hot spots’, so-called ’target
islands’, regions with aggregations of putative miRNA binding sites on the 3’-UTR. In
their work they showed the statistical importance and advantage of filtering target mRNA
sequences. This study extends their idea by integrating novel biological information about
AGO binding sites from recent AGO CLIP-Seq libraries. A SVM model was trained using
the set of 11 miRNP binding site features. The classifier achieved 75.3% accuracy by
5-fold cross-validation. Further, the SVM was tested against a set composed of 2 000
instances from the AGO HITS-CLIP library and obtained a decent accuracy of 68.85%.
Again, this drop in performance may point to an experimental bias of AGO-PAR CLIP
as already discussed. However, the classifier evaluation suggests that the prediction of
miRNP cis-regulatory regions without guide miRNA sequence information is feasible. It
also emphasizes the complex binding specificity of AGO2.

Next, it was investigated whether the classifier is able to improve common miRNA target
prediction. An evaluation based on miRNA transfection data exhibited promising results.
Since available target prediction methods are based on varying principles, two common
approaches were selected exemplary, representing two basic paradigms: i) TargetScan %!
which requires a Watson-Crick pairing between the miRNA seed and the target sequence,
and ii) TargetSpy !4 which predicts target sites regardless of the presence of a seed match.
The latter is a machine learning approach which has been trained to optimize prediction
accuracy in two ways: a very restrictive version referred as TargetSpygpec and sensitive
version referred as TargetSpygens. The log fold-change distribution of predicted target
mRNAs following transfection of 11 miRNAs was evaluated (Figure 3.4A). It became
apparent that filtering by miRNP™ sites reduces the fraction of targets with no or less
repressive effects for each prediction algorithm. The significance of this observation
was tested against 100 random samples of target sites of equal size for each transfection
experiment and reached an oa-level of P < 0.05 for at least four measurements each (number
of miRNAs: TargetScan™ = 11, TargetSpyy,,; = 10, TargetSpy},,. = 4). The filtering
effect can be interpreted as an increase in precision, i.e. the fraction of predicted targets that
are assumed to be functional. To specify the value of the filtering effect, the top 20% most
downregulated targets were defined as true positives (according to Betel ef al.4?1). This

enabled the estimation of the precision of each prediction algorithm. Figure 3.4B shows
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Figure 3.4 | Evaluation of miRNA target predictions filtered by miRNP" segments. A | Distri-
bution of log; fold-changes of predicted target mRNAs following miRNA transfection (straight
lines). A downward shift in the cumulative distribution of mRNAs holding a target site lo-
cated in a predicted miRNP™ region can be observed (dashed lines; TargetScan™, TargetSpy.,.
TargetSpyjpec). The cumulative fraction is computed by the arithmetic mean of all 11 miRNA
transfection experiments. B | Average precision of miRNA target prediction over all 11 transfection
experiments. The top 20% downregulated transcripts of each miRNA were defined as positives. The
filtering by miRNP™ segments advances the precision. The error bars denote the 95% confidence
interval for the mean.

that filtering by miRNP™ regions improved the precision of common prediction algorithms

(gain in precision: TargetScan™ = 9.0%, TargetSpyy,,,; = 7.2%, TargetSpy;,,.. = 2.1%).

3.3 Case study: miRNA-mediated regulation in IPF

Recently, several studies proposed a role for miRNAs in IPF[?3-132.1361 ' the most common
and aggressive form of idiopathic interstitial pneumonial'*3l. Its etiology is uncertain

(144,145] " TPF is characterized by aberrant

and therapeutic interventions are still limited
remodeling and profound changes in the phenotypes of alveolar epithelial cells and lung
fibroblasts 2>, Normally, the pulmonary epithelium and underlying mesenchymal cells
in the epithelial-mesenchymal unit communicate with each other through cytokines and
growth factors coordinating growth and response to injury 46!, One of the key pathological

hallmarks is the disturbed growth factor signaling within the epithelial-mesenchymal unit
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whereat the transforming growth factor-f1 (TGF-f1, TGFB1) has been identified as key
pro-fibrotic mediator!'47], Also Wnt signaling was suggested to contribute to epithelial as
well as mesenchymal cell dysfunction and/or reprogramming in experimental and human
pulmonary fibrosis 1481491 At this, Konigshoff er al.!”! reported a markedly increased
Whnt target gene in IPF, WISPI. Its repression resulted in attenuated pulmonary fibrosis
development in vivo. They suggested that the secreted multicellular protein WISP1 is an
important mediator of perturbed epithelial-mesenchymal crosstalk. It is largely unknown
how its gene expression is regulated. In this respect, the modulation of aberrantly regulated
miRNAs was proposed as potential treatment to affect the development of pulmonary
fibrosis 1501511 Interestingly, the WISP1 transcript exhibits a long 3’-UTR — a region
preferentially targeted by miRNAs. Thus, it was hypothesized that miRNA-mediated
WISPI regulation may get lost in pulmonary fibrosis. This event may induce WISP1

upregulation which in turn contributes to the pathogenic phenotype.

3.3.1 Candidate miRNAs regulating WISP1

To reduce the set of candidate miRNAs, mature sequences that were measured downreg-
ulated in pulmonary fibrosis were of particular interest. Therefore, two miRNA array
studies of human and mouse fibrotic lung tissues!!3%152 were compared. Here, 30 miR-
NAs significantly (P < 0.05) decreased in human IPF tissue specimens were identified.
Of these, 13 miRNAs also exhibited decreased transcript levels after 7 and 14 days of
bleomycin instillation in a murine lung fibrosis model. For each of these miRNAs (let-7d,
let-7g, miR-26a, miR-26b, miR-30a-5p, miR-30b, miR-30d, miR-92a, miR-101, miR-203,
miR-326, miR-375, and miR-598), the WISP 3->UTR was scanned for seed complementary
sites (according to the seed type set described in Chapter 2). The structure and stability,
AGpyprig, of the resulting 30 miRNA:mRNA duplices were computed, respectively (Table
3.1). Then, 14 miRNP* segments were identified on the WISP1 3’-UTR (Ensembl[!!8]
transcript, 2 634 nt length) by the novel SVM-based classifier. Here, 13 miRNA target sites
were located in a miRNP™ region. In the end, miR-92a (also known as miR-92a-3p) was
found the most likely regulator of WISP1 (Figure 3.5). This miRNA exhibited a differential
expression in IPF and was predicted to bind to a target located within a miRNP-preferred
region forming a stable RNA duplex geometry (AGpyprig = —13.30 kcal/mol, seed type =
Tmerq,).
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Table 3.1 | Potential target sites of miRNA candidates. Listed are seed matches and their position
(Pos.) on the WISP1 3’-UTR. Symbol names and miRBase MIMAT accession numbers are based on
GSE13316 (miRBase 9.1, GEO platform GPL6955, human). Fold-changes (FC) for E-MEXP-2749
(mouse) were computed after 7 and 14 days of bleomycin instillation (d7; dy4).

MIMAT FCgsg133i6

Symbol
miR-92a
miR-101
let-7g
miR-203
miR-598
miR-203
miR-92a
miR-598
miR-30a-5p
miR-375
miR-30b
miR-30d
miR-101
let-7d
miR-30a-5p
miR-30d
miR-326
miR-30b
miR-30a-5p
miR-30d
miR-26a
miR-326
miR-26b
miR-203
miR-26a
miR-203
miR-92a
miR-30b
miR-101
miR-26b

0000092
0000099
0000414
0000264
0003266
0000264
0000092
0003266
0000087
0000728
0000420
0000245
0000099
0000065
0000087
0000245
0000756
0000420
0000087
0000245
0000082
0000756
0000083
0000264
0000082
0000264
0000092
0000420
0000099
0000083

0.71
0.62
0.80
0.53
0.89
0.53
0.71
0.89
0.54
0.70
0.54
0.51
0.62
0.76
0.54
0.51
0.84
0.54
0.54
0.51
0.83
0.84
0.74
0.53
0.83
0.53
0.71
0.54
0.62
0.74

FCr.MEXP-2749
0.98; 0.96
0.72; 0.59
0.88; 0.93
0.86; 0.82
0.98; 0.93
0.86; 0.82
0.98; 0.96
0.98; 0.93
0.84; 0.75
0.91; 0.88
0.80; 0.74
0.82;0.71
0.72; 0.59
0.93; 0.97
0.84; 0.75
0.82;0.71
0.93; 0.84
0.80; 0.74
0.84; 0.75
0.82;0.71
0.74; 0.65
0.93; 0.84
0.77; 0.67
0.86; 0.82
0.74; 0.65
0.86; 0.82
0.98; 0.96
0.80; 0.74
0.72; 0.59
0.77; 0.67

Pos.
1600
455
516
125
473
78
2583
148
1811
415
1811
1811
1314
1055
1183
1183
1480
1183
1194
1194
1976
726
1976
1125
827
2109
1947
1194
1918
827

Seed
Tmerc
8mera
6mero

6mery
6merf3
6mero
6merf3
6mery
Tmerf3
6merf3
Tmerf
Tmerf3
6merf3
6mero
6merf3
6merf3
6merf3
6merf3
6mery
6mery
Tmerf3
6merf3
Tmerf3
8mero
6mero
6merf3
6mery
6mery
6merf3

6mero

Class
miRNP™
miRNP™
miRNP*
miRNP*
miRNP™
miRNP™
miRNP*
miRNP*
miRNP™
miRNP™
miRNP"
miRNP*
miRNP™
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP~
miRNP™
miRNP~
miRNP~

AGyybria
-13.30 kealmol
-12.73 kealmol
-12.50 kealmol
-12.30 kealmol
-11.01 kealmol
-10.50 kealmol

-8.70 kealmol
-8.29 kealimol
-8.26 kcalmol
-7.40 kealmol
-6.40 kealmol
-5.86 kealimol
-5.00 kealimol
-18.50 kealmol
-16.20 kealmol
-15.50 kealmol
-13.90 kealmol
-13.50 kealmol
-13.39 kealmol
-13.29 kealmol
-11.51 kealmol
-10.83 kealmol
-10.11 keal/mol
-9.92 kealimol
-9.83 kealimol
-9.46 kealmol
-7.83 kealimol
-7.70 kecalmol
-5.03 kcalmol
-4.53 kealmol
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. UG CCCU
miR-92a UC CGG GUUC ACGUUAU -8.7 kcal/mol
WISP1 AG GCU UAAG UGCAAUG ™
GA C uuc UCAGAAUUUCCC
GGCCC ucC

miR-92a  UGUCC UGU ACGUUAU
WISP1 AUAGG ACA  UGCAAUA
AAA U

-13.3 kcal/mol

1 883 1766 2650
WISP1 3'-UTR

Figure 3.5 | Predicted target sites of miR-92a on the WISP1 3’-UTR. Schematic representation
of miR-92a binding sites on the human WISP1 3’-UTR. Solid boxes represent miRNP" segments;
two miR-92a seed-complementary sites were found located within these regions (7mero seed
match at position 1600 and 6merf3 seed match at position 2 583). For each candidate binding site,
the predicted miRNA:target duplex structure and the hybridization energy is shown, respectively.

Next, it was aimed to confirm the candidate selection approach by additional experimen-
tal measurements. First, the miR-92a downregulation was confirmed in a miRNA array of
human IPF tissue samples!!33) (GEO GSE21394; fold-change = 0.45, P = 1.2 x 1079,
Second, the expression of miR-92a was measured in pulmonary fibrosis tissue specimens
by RT-qPCR (Figure B.1A). Again, significantly lower levels in IPF compared to con-
trol samples (donors from unaffected lung tissue biopsies) were observed (Ag‘tmOr =292,
A8Y =1.63, P =2.9 x 107%). Third, the WISPI protein level was measured in six
whole IPF lunge tissue homogenate and six donor samples using Western Blotting. Here,
WISP1 was found upregulated (Figure B.1B)!3Y1. Fourth, the miRNA target prediction
was confirmed by firefly luciferase reporter gene assays (Figure B.1C). It was of interest
whether miR-92a affects the protein concentration of human WISP1 via its 3’-UTR. Thus,
HEK cells were transfected with a miR-92a inhibitor and a reporter plasmid containing
the WISP1 3’-UTR cloned downstream to firefly. The inhibition of miR-92a led to a
significantly increased luciferase activity indicating that miR-92a regulates WISP1 by
binding to its 3’-UTR (ratio of firefly activity with and without WISP1 3’-UTR = 1.2,
P=2.3x1072)801,
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3.3.2 miR-92a regulates TGFB1-induced WISP1 expression

WISP1 is a matricellular protein and as such is poorly expressed under homeostatic
conditions and likely modulated by growth factor signaling!’®!. Berschneider et al. 3"
investigated whether TGF-f 1, one of the most potent pro-fibrotic cytokines involved in
myofibroblast differentiation!'4”], impacts WISP1 expression. They observed increased
WISP1 mRNA and protein levels in human pFB after 24 h of TGF-f1 treatment. At
this, WISP1 upregulation was accompanied by myofibroblast differentiation. Further,
Western blotting and an enzyme-linked immunosorbent assay showed that WISP1 protein
concentration was induced in supernatants of TGF-f 1-treated human pFB indicating
enhanced secretion of WISPI.

To examine whether TGF-f 1-induced WISP1 expression is altered by miRNA regulation
in a pro-fibrotic environment in vitro, miR-92a and a negative control was transfected
to human pFB cells (Figure B.2A). It was observed that miR-92a buffered the TGF-
B 1-induced WISP1 mRNA level (AAS™! = 1.24, AAZIRD22 = 1,02, P = 9.6 x 1072).
The expression of the TGF-1 target genes COL1A1 and FN1 was induced by TGF-
B1 treatment but not altered by miR-92a. This indicates that miR-92a targets WISP1
specifically (801,

These findings were corroborated by analyzing WISP1 protein expression in pFB upon
miR-92a inhibition (Figure B.2B). Significantly increased WISP1 protein concentrations
were observed (fold-change = 2.1, P < 0.05)[8%1. These results suggest that miR-92a
modulates WISP1 protein expression and that this regulatory interaction may contribute to
WISPI1 stimulation in pulmonary fibrosis.

Next, it was elucidated if the post-transcriptional regulation of WISP1 by miR-92a can
also be observed in vivo. For this purpose, lung tissue homogenate samples were analyzed
by RT-qPCR at day 7 and 21 after viral overexpression of TGF-f1 in the rat lung, a fibrosis
model proposed by Sime ez al. >3] (Figure B.3A—C). Increased levels of WISP1 mRNA
(AAYT =259, AAY?! = 1.82) and decreased levels of miR-92a (AA%Y = —0.87,
AAS?YZI = —0.85, P = 2.0 x 1079%) were found on both days compared to controls from
day 21. At this, the expression levels of WISP1 and miR-92a exhibited a significant
negative correlation as given by the coefficient of determination from linear regression
R*>=0.43 (P =6.1 x 107980,

It was assessed whether this association can be translated from the rat fibrosis model to
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human IPF. Therefore, human pFB from fibrotic and non-fibrotic patients were analyzed
(Figure B.3D and E). Increased mRNA levels of WIPS1 in primary fibroblasts from IPF
patients were observed (AAcy =4.67, P =4.6 X 10792). The correlation between WISP1
mRNA and miR-92a levels was confirmed (R2 =0.69,P=1.1x 10_02) (801 These results
suggest that miR-92a regulates WISP1 expression in experimental and human fibrosis in

Vivo.

3.4 Conclusion

Chapter 2 of this thesis focused on the most important feature determining miRNA effi-
ciency, the specific miRNA seed-pairing to the target sequence. In this study, the analysis
was extended by a superordinate level, i.e. not the target attributes of a particular miRNA-
pairing site, rather general features specifying binding sites of the miRNP complex were
elucidated. Several studies have proposed the idea that miRNA binding sites can be found
aggregated in “target islands’ on the mRNA[1%41131 Indeed, Miranda et al.!''3! have
shown in their work that this idea is meaningful from a statistical point of view. A crucial
shortcoming of miRNA target prediction is the bulk of spurious matches, non-functional
miRNA complementary sites. This problem has been discussed by Karlin and Altschul [134]
in the context of sequence similarity detection during the development of their BLAST
algorithm >3, In particular, the number of complementary sites m of length 1, in the
target sequence ¢ of length /; having a score s > § expected by chance can be approximated
by a Poisson distribution with m = K x [,,, X [; X e S, Here, K and A denote constants
depending on the scoring system. Using this equation the probability of a target prediction
algorithm to report one ore more spurious matches can be calculated by P = 1 —e " [113],
Obviously, P depends on /; (i.e. the longer the target sequence, the higher the likelihood to
detect one or more spurious matches), S (e.g. miRNA:mRNA hybridization energy), and
Iy (i.e. the number of pairing nucleotides). The scoring scheme is given by the miRNA
target prediction approaches and /,, defined by its search paradigm (i.e. with or without
seed requirement). By shortening /; to ’target islands’, the probability that a method will
report spurious matches will be reduced. Miranda et al.['13] described that if an algorithm
examines only 1/p-th of a target sequence, the number of false positives is reduced by a

factor approximately equal to p. This advantage holds across a very wide range of values
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for m and was suggested to be valid for a magnitude of real-world cases!!!3.

In the presented study, two recent AGO CLIP-Seq libraries were used to extract attributes
describing miRNP binding regions on target mRNAs. At this, an elaborate set of instances
composed of 16767 positive and 16767 negative sites was used. Amongst others, the
conservation, the accessibility of the target region and a skewed G and C distribution
was found to contain high information contents. These features are independent of any
miRNA sequence and thus are relevant for the AGO target region. By training a SVM
classifier it was shown that miRNP binding sites can be distinguished from random
segments. It can be suggested that the basic idea proposed by Miranda et al.!''3! which
was motivated by a statistical point of view, can also be motivated by a biological prospect
as there are characteristic regions preferentially targeted by RISC (referred as miRNP™).
Filtering of existing miRNA target prediction algorithms by miRNP* reduced the number
of interactions with low regulatory effects and improved their precision, respectively.
However, the comprehension of the molecular level of miRNP:mRNA pairing is still limited
and, as such, the lack of features handicaps the classification of these sites resulting in false
predictions. There is still potential for improvement as was shown by the identification of
novel discriminating attributes in this study. Additionally an experimental bias was found
for AGO PAR-CLIP likely induced by the requirement of 4-thiouridine transfected cells.
Thus, target prediction will certainly also benefit from future experimental advancements.
At this, unbiased protocols with a higher resolution, i.e. revealing genuine miRNA:mRNA
duplices, are of particular interest.

The SVM was used to predict miRNA:WISPI interactions in IPF. High WISP1 levels
have been associated with de novo collagen synthesis in bleomycin-induced lung fibro-
sis[1561. Berschneider ef al. 181 detected increased WISP1 protein secretion upon TGF-f3 1
in vitro and in vivo and suggested an autocrine and paracrine function of WISP1 within the
epithelial-mesenchymal trophic unit in IPF.

A set of candidate miRNAs was composed that were found downregulated in three
microarray studies of pulmonary fibrosis. Among these, miR-92a exhibited two target
sites with a low miRNA:mRNA duplex energy located in miRNP" segments. This miRNA
is a member of the polycistronic miR-17~92 cluster which was suggested to play an
important role in lung development and homeostasis. Animals with an introduced miR-
17~92 gene knock-out died postnatal likely caused by hypoplastic lungs and ventricular

157]

septal defects!!>7]. The cluster has been found expressed in epithelial lung progenitor
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cells promoting their proliferative and undifferentiated phenotype!'>8!. Interestingly, other
members of the miR-17~92 cluster were not found downregulated in the data of Pan-
dit er al.!'3?1 (GEO GSE13316). Recently, it has been reported that post-transcriptional
regulation of polycistronic clusters led to different mature miRNA levels under hypoxia
conditions 1. Tt can be suggested that this may occur in pulmonary fibrosis as well.
Dakhlallah ez al.[1%0) suggested that miR-92a is downregulated due to epigenetic modifi-
cations in IPF. They observed an enhanced DNA methylation at the miR-17~92 cluster
locus in IPF fibroblasts. Further investigations are required to elucidate whether miR-92a
downregulation in IPF is caused by cytokine signaling and/or epigenetic modifications
during fibrotic reprogramming.

Subsequent experiments validated that miR-92a downregulation is accompanied by in-
creased WISPI protein levels in IPF samples. Further, miR-92a reversed TGF-f1 induced
WIPS1 mRNA expression in vitro and its inhibition led to WISP1 protein upregulation.
It was found that miR-92a and WISP1 expression were significantly negative correlated
in lung tissue homogenate samples in a fibrosis rat model in vivo and in primary human
fibroblasts from IPF patients ex vivo. These findings indicate, for the first time, an altered
post-transcriptional regulation of WISP1 in pulmonary fibrosis.

It should be noted that it remains unclear if the activation of Wnt signalling is a causal
or a reactive process confounded by the IPF onset. Further, it is evident that miRNAs
modulate signal propagation by regulating compounds in all horizontal layers of signaling
networks! 1!l Thus, it can be expected that also other members of the TGF-1 and/or
Wnt/f3-catenine pathways are modified. While it was shown that miR-92a is able to directly
target WISPI, its repression may also lead to altered TGF-1/Wnt signaling and, as such,
may induce offsite effects downstream to WISP1 expression.



CHAPTER 4

Genetic variation affecting the miRNA regulome

Aberrant miRNA expression contributes to significant cell biological consequences, per-

turbed organismal homeostasis, and ultimately leads to pathogenesis of fatal diseases [16%163],

Recent databases list hundreds of miRNAs linked to more than 100 human disorders [16+165],
Several studies reported miRNAs as valid biomarkers for complex traits[16>-1681 Thus, the
mechanisms affecting miRNA-mediated regulation are of particular interest. In Chapter
1.4.3 it was described that miRNAs exhibit an average modest level of target repression.
However, an ectopic miRNA expression impacts the post-transcriptional regulatory effect
on target transcripts. Also the local target site composition has been reported as impor-
tant determinant of regulatory efficiency. Here, several key attributes, such as sequence
complementarity (Chapter 2) and target site geometry (Chapter 3), were discussed in the
previous chapters. Some first reports suggest that a disruption of bona fide target sites
affects complex traits and diseases, such as cancer!1®],

The genomic diversity in humans arises from 1% of variation!!7%!, mostly induced by
SNPs. These denote the occurrence of several, most common two, different nucleotides
at the same genomic locus (allele) within a particular population. Here, the allele of
lower frequency defines the minor allele frequency (MAF) of a SNP. Since the genetic
component tend to run in families without following the classical Mendel’s laws of
inheritance, an association approach is applied. These kind of studies comprise the
scanning of markers, such as SNPs, across complete sets of genomes of many individuals
to identify genetic variations which are significantly more common in affected than in
unaffected individuals'!”1-172], Until now several hundred genome-wide association (GWA)

studies have been performed associating a huge amount of predisposing variants to over a
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hundred disorders and traits!!73]. Since associations are conducted by correlation, GWA
approaches are limited in the determination of causal loci, nor reveal their functional basis
underlying disease risk. Thus, an ever growing amount of signals found in GWA studies is
awaiting mechanistic characterization.

The genomic distribution of SNPs is not homogeneous. Over 90% of the common
trait-associated variations identified by GWA studies are located within non-coding regions
of the human genome[l74] of which functional annotation remains limited. However, it
has been supposed that many of these polymorphisms are likely to underlie perturbed
dynamics of gene expression between individuals!!73].

One of the first reports of miRNA-related SNPs was in 2005 by Abelson et al. 11761,
describing a mutation in the target site of miR-189 at SLITRK1 which was associated with
Tourette’s syndrome. Since then, several attempts were conducted to identify potential

interrelations of aberrant miRNA regulation and genetic variation!!77-1811,

Amongst
others, a signal from a GWA study was suggested, for the first time, to be explained by
polymorphic miRNA targeting in the risk for Crohn’s disease!!32]. However, these studies
were lacking comprehensive data on trait-associated polymorphisms and are often limited
to in silico MREs which exhibit a high false positive rate (Chapter 2). Genetic variants in
the 3’-UTR, and in particular in the miRNP binding region, have long been neglected for
the most part of all GWA studies. Hence, published polymorphisms affecting the miRNA
regulation pathway are rare[!30-181],

Recent experimental technologies using cross-linking and AGO immunoprecipitation
coupled with high-throughput sequencing (CLIP-Seq) enables an accurate transcriptome-
wide determination of miRNP binding sites (Chapter 1.5.2). This study aims to identify
mechanisms affecting miRNA-mediated regulation integrating AGO CLIP-Seq data and
SNPs from public GWA studies. First, it was shown that trait-associated SNPs were en-
riched in the 3’-UTR — a region encoding the major fraction of operative miRNP binding
sites. At this, affected genes were found enriched in lipid metabolism processes. Using
computational analyses, the impact of 3’-UTR SNPs on several target site features was
investigated: 1) the loss of 3’-poly(A) signals which has been described to cause genetic
diseases by cap-dependent miRNA-mediated degradation of the mRNA 1831841 jj) Jocal
changes of the target RNA structure which impacts an important feature for the binding
affinity of the miRNP[4%185.1861 i) the alteration of MREs which affects miRNA:mRNA

duplexing (Chapter 2) and iv) modifications of pre-mRNA splice sites which has been
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reported to originate transcript variants with an altered translational efficiency!!37). In the
end, 53 cis-acting miR-SNPs were annotated as mediating at least on of these mechanisms.
By computing SNP-gene expression associations across different tissue types/populations,
it was observed that cis-miR-SNPs induce AEI.

Parts of this chapter have been previously published in the following article:

« Arnold M', Ellwanger DC', Hartsperger ML, Pfeufer A, and Stiimpflen V. Cis-
acting polymorphisms affect complex traits through modifications of microRNA
regulation pathways. PLoS One, 7(5):e36694, 2012.

T equal contributors
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4.1 Material and Methods

4.1.1 Preparation of the SNP data set

SNPs were obtained from the HapMap Project describing common patterns of human
genetic variation (release 22, CEU! panel)!'#]. Since most SNPs were expected to be
silent!'®] the set was filtered by SNPs associated to a trait increasing the specificity of
the subsequent analysis. For this purpose, the NHGRI catalog of published GWA studies
(accessed 2011)1'8%1 was mined for significant (P < 107) SNP-trait correlations!?%.
Further, linkage disequilibrium (LD) patterns were identified using the tool SNAP!1°1l by

computing the correlation between two loci:

e T2 1 — 7,172

I, T, 1T 2

where 7; ; is the frequency of a haplotype for two loci with two alleles each; 7;  is the

4.1

frequency of allele i of the first locus, and 7 ; is the frequency of the allele j of the second
locus!19?!
(within 500 kb) locus ranges in [0, 1], with 7> = 1 denotes perfect LD. Proximal SNPs

with 72 > 0.8 were extracted. Finally, a set of 5101 index and 13 783 proximal SNPs was

. The correlation coefficient r between a GWAS index locus and a proximal

obtained.

4.1.2 Mapping SNPs to the miRNA regulome

All SNPs were mapped on genomic locations of protein-coding genes (NCBI Reference
Sequence!!3) annotation, genome build NCBI36). Then, regional classes were defined as
follows: 1) intergenic, 2) intragenic with its subclasses 2.1), intronic and 2.2) exonic with
its subclasses 2.2.1) 5’-UTR, 2.2.2) CDS and 2.2.3) 3’-UTR. For the location enrichment
analysis, each SNP was assigned to one of the five endmost classification levels.

To test if SNPs affect miRNA targeting by altering mature miRNA sequences, SNPs
were mapped to miRNA genes. Since the annotation of pri-miRNAs is largely unknown,

the chromosomal coordinates of sequences encoding miRNA hairpins, i.e. pre-miRNAs,

1 Utah residents with northern and western European ancestry from the CEPH collection



4.1 Material and Methods 83

was used (miRBase!'?! release 18, genome build GRCH37). For consistency, the GRCH37
coordinates were transformed to the NCBI36 genome assembly using the UCSC liftOver

tool 1941,

Integration of AGO CLIP-Seq data

To elucidate potential mechanisms affecting miRNA targeting, the human CLIP-Seq li-
braries of two miRNP proteins, AGO and TNRC6, were used from the starBase database!!%>1,
The available chromosomal coordinates of the CLIP-Seq clusters were converted to the
NCBI36 genome build using the UCSC liftOver tool"¥ and mapped to transcripts of
protein-coding genes according to the NCBI Reference Sequence annotation (RefSeq)!1°3.
The final set contained 139 254 locations of miRNP binding regions on 24 442 transcripts.
The study was processed using the 48% of sites located within a 3’-UTR.

Examination of polyadenylation signals

Chromosomal coordinates of poly(A) signals were obtained from the PolyA DB %],

Beaudoing et al. 7]

proposed that poly(A) sites are located 10 — 30 nt downstream of
the poly(A) signals. Therefore, all trait-associated SNPs located within this segment were
determined. Then, a 11 nt long sequence window centered at each SNP was extracted and
examined for the most abundant poly(A) signal!!®”]. Variants were annotated effecting a
poly(A) signal if they induce the creation of a new signal sequence or disrupt an existing
pattern. SNPs with alleles maintaining the signal character of the sequence, i.e. variations
creating another valid signal, were considered as synonymous mutations without any effect

on mRNA stability.

Determination of splice sites

The NNSplice algorithm from the Berkeley Drosophila Genome project!!*®! was applied
to predict alterations in transcript splicing. A genomic DNA sequence window of 60 nt
centered at the SNP position was used as input. Predicted splice sites with a likelithood
greater than 0.5 were retained neglecting cases with marginal changes!!°. The following
events were considered: the total loss/gain of a splice site and the increase/decrease of the
splice site likelihood. Lost acceptor sites or sites exhibiting an increase/decrease in their

likelihood were filtered if they were located between 100 nt upstream and 10 nt downstream
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of a reference intron/exon border (according to the NCBI Reference gene annotation %31,
human genome build NCBI36). Lost donor sites or sites with an increased/decreased
likelihood were retained if they were located between 10 nt up- and downstream of a
reference exon/intron border. A gain of a completely new splice site was always kept!19%.
Computed alternative spliced transcripts were explored whether they gain intronic or lose

exonic miRNP binding sites.

Analysis of RNA structural properties

To account for structural changes, the RNAfold algorithm (version 1.8.5) from the Vienna
RNA Package!?%1 was applied. Here, the complete ensemble of possible RNA conforma-
tions was considered. The partition function and the base pairing probability matrix of
each 3’-UTR sequence encoding the respective alleles were computed 2°!1. The matrix row
sums determined the pairing score for each nucleotide. A score vector S of length n =41 nt
centered at a miRNP:mRNA interaction site was extracted. The linear correlation between
the reference S; and the mutated structure S; was measured by the Pearson product-moment

correlation coefficient![2021:

_ Y1 (Sik— ps;) (Sjx — ps;)
GS:‘GSJ(H_ 1)

Ps;.s; 4.2)
where u denotes the arithmetic mean and ¢ the sample standard deviation.

Since multiple miRNP binding sites were measured for a single transcript, the smallest
correlation coefficient was taken for each SNP per transcript, i.e. the strongest effect on
RNA folding was selected. To filter the RNA structural ensemble for significant variants,
the minimal correlation coefficient was computed for 1 000 random samples obtained from
the SNP background set. Based on this distribution, a correlation coefficient of 0.55 was
found having a probability of less than 5% for a type I error (Figure B.4). Thus, SNPs
inducing a minimal structural correlation coefficient of less than 0.55 between its alleles

were filtered.

Identification of altered MREs

For each allele, all sites complementary to a canonical miRNA seed sequence (Chapter

2) were scanned in the 3’-UTRs of protein-coding genes. MREs were filtered if they
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were located within a distance of 21 nt to the center of a miRNP interaction site!’. To
additionally reduce the false positive rate, it was required that a miRNA had at least one
sequence read in its accordant CLIP-Seq experiment. Further, miRNAs were removed of
which target sites were not significantly enriched within miRNP binding segments (log
odds ratio > 0, 752 test P < 0.05). Finally, 258 miRNAs were found of which seed-pairing

sites were disrupted and 324 miRNAs of which seed-binding affinity was increased.

Site conservation

To determine the maximum likelihood of a locus to be conserved across species, the
algorithm PhastCons from the PHAST package %! was applied using a whole genome
alignment of 17 vertebrates. According to Betel e al. ), a score greater than 0.57 was

used to classify a site as conserved in mammals.

4.1.3 Statistical testing with simulated data

To test the significance of the observations, a background set was created. The 2.7 million
SNPs from the CEU panel of the joint HapMap Phases I, II and III (release 27) were
filtered by entities with an available genotype information!!7%-1882031 " Official SNP IDs

were determined using the tool SNAPHU

. Chromosomal coordinates (genome build
NCBI36) were assigned according to the UCSC Table Browser annotation!*3!. Samples
were generated comparable to the SNP set used for the analysis framework: 1000 samples
with 5 101 index SNPs were drawn with replacement and extended with SNPs in strong
LD (72 > 0.8). The analysis pipeline, i.e SNP localization enrichment and identification
of mechanisms affecting miRNP function, was conducted for each sample. Then, the
cumulative empirical distribution was computed from the resulting values allowing the
inference of the probability that the observed value x is stochastic, i.e. the probability to

obtain a value > x by chance.

4.1.4 Genotype-gene expression survey

To associate SNPs with transcript level changes, the data from Nica ef al. > was used.
They provided normalized gene expression profiles of three tissue types (166 adipose sam-

ples, 156 lymphoblastoid cell line samples and 160 skin samples; Illumina HT-12v3 chip)
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from healthy female twins (1/3 monozygotic, 2/3 dizygotic) derived from the MuTHER pi-
lot phase project (Multiple Tissue Human Expression Resource; http://www.muther.ac.uk/).
Missing measurements were complemented by data from Stranger ez al.[?%31. They mea-
sured the expression of lymphoblastoid cell lines (Illumina HumanWG-6 v2 chip) from
726 HapMap?%3 individuals (CEU', CHB?, GIH?, JPT*, LWK>, MEX®, MKK’ and
YRI®). The linkage between allele occupancy and gene expression intensity were scored
by the Spearman’s rank correlation coefficient, i.e. Pearson correlation between the ranked
variables 2061, Statistical significance is assessed by computing a non-parametric P by data
permutation. Expression values are shuffled between individuals’ genotypes and the nomi-
nal P are recomputed (using a 7-statistic!?%71). A probability distribution is constructed by
repeating this procedure 10000 times under the null hypothesis of no SNP-probe linkage.
All calculations were performed by applying Genevar!?Y’!, a platform of database and web
services designed for the analysis of SNP-gene associations.

The regulatory effect of each SNP was quantified by the coefficient of variation (CV)
metric [208-2101;

Vi = 1002 4.3)

Hi
where (; denotes the arithmetic mean and o; the standard deviation of the expression levels
of transcript i across individuals. Please note that the variance, 61-2, gives a measure of
how far a set of data values is spread out. Here, the rooted variance is used to quantify the
amount of variation or dispersion in the set of expression values. Thus, the CV metric has

eligible properties to quantify variation of gene expression 219,

Northern and Western European ancestry in Utah, US
Han Chinese in Beijing, China

Gujarati Indians in Houston, US

Japanese in Tokyo, Japan

Luhya in Webuye, Kenya

Mexican ancestry in Los Angeles, US

Maasai in Kinyawa, Kenya

Yoruba in Ibadan, Nigeria

0NN B W~
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4.2 Results

4.2.1 Enrichment of SNPs in 3’-UTRs

Previous studies reported that the major fraction of trait-associated SNPs was located at
non-coding regions!!7#!. Since these variants do not impact the gene product directly, it has
been suggested that gene expression dynamics are likely affected!!”>!. The predominant
non-coding region bound by miRNPs is the 3’-UTR of target mRNAs. Thus, SNPs
impacting gene expression controlled by miRNAs were expected to be found within these
segments.

A set of 18 884 SNPs was created filtering the HapMap CEU panel '8 by index SNPs
from the catalog of published GWA studies'®" and proximal SNPs in strong LD (> > 0.8).
Each locus was classified by its chromosomal position relative to a protein-coding gene:
intergenic, intronic, 5’-UTR, CDS, and 3’-UTR. Analysis of the regional classifications
revealed a location bias towards intragenic, and in particular, terminal untranslated regions.
436 SNPs were located in the 3°-UTR of 326 human genes (odds ratio = 2.3, y? test
P < 1079%). The enrichment was also observed for index SNPs only (odds ratio = 2.1,
x? test P < 10719). The significance of this observation was validated by calculating the
probability of achieving an equal or stronger 3’-UTR enrichment by chance in a sample
of equal size (P = 1.1 x 10~7). The robustness of this observation was examined by
testing for potential dependencies between the odds ratio and different thresholds for 2.
Adjusting for 7* during the LD computation showed that the distribution of odds ratios
locally stabilizes around the threshold of 2 >0.8 (Figure 4.1A).

In this context, the MAF was analyzed. In general, the SNPs used in this study exhibited
a higher MAF, i.e. these were more common than the complete HapMap SNP background
— independent of the chromosomal location. However, the MAF distribution of the 3’-UTR
SNPs had a slight trend towards moderate frequencies of 0.1 — 0.4. This trend becomes
more pronounced when comparing the 3’-UTR SNPs to polymorphisms located in the other
two exonic regions, i.e. 5’-UTR and CDS. The 3’-UTR SNPs were under-represented in
the intervals [0.0,0.1] (odds ratio = 0.88), [0.2,0.3] (odds ratio = 0.70) and [0.4,0.5] (odds
ratio = 0.78). The other two intervals were significantly (P < 0.05) enriched: [0.1,0.2]
(odds ratio = 1.40) and [0.3,0.4] (odds ratio = 1.59). At this, it was of particular interest

whether the enrichment of trait-associated SNPs in the 3’-UTR compared against the
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Figure 4.1 | Statistical analysis of 3’-UTR enrichment values. A | Enrichment of SNPs in 3’-
UTRs of coding genes with respect to different 72 thresholds during LD computation. Shown are
the odds ratios and the confidence intervals for five cut-offs < 2. The odds ratio stabilizes at a
minimum of 0.8 for accumulative 3’-UTR sets. B | Enrichment of SNPs in 3’-UTRs of coding
genes with respect to the MAF. Shown are the odds ratios and confidence intervals for five different
MAF bins; * P < 107, ## p < 10713, ##x p < 10715,

complete HapMap background is only valid for a specific MAF. Figure 4.1B shows that

the odds ratio always reached significance.

4.2.2 3’-UTR SNPs are involved in lipid metabolism

Next, it was assessed whether the 326 genes embedding a 3’-UTR SNP share com-
mon characteristics in terms of disease involvement and functional annotation. For
this purpose, relevant traits were mapped to MeSH terms (Medical Subject Headings;
http://www.ncbi.nlm.nih.gov/mesh/). The most abundant categories found in the 49 disease
classes were immune system diseases, mental disorders, digestive system diseases, ner-
vous system diseases, and neoplasms. Notably, the distribution of the 3’-UTR SNPs over
these disease classes showed no significant enrichment compared to the number of studies
performed for the single disorders in the NHGRI GWA study catalog!!®"!. Comparing
the number of 3’-UTR SNPs per disease to the number of all non-3’-UTR SNPs, lipid
concentrations were found to be significantly enriched (P = 1.3 x 1073).

Testing for enrichment of disease terms using alternative databases, three categories

reached statistical significance (Bonferroni corrected P < 0.05): dyslipidemia (OMIM;
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http://omim.org/), neurological diseases, and infections (Genetic Association Database [>!1).

Additional functional gene set enrichment analysis by means of Gene ontology terms [212]
revealed four significantly enriched (Bonferroni corrected P < 0.05) annotations in this
set: lipid metabolism, axon growth, activation of the immune response/inflammation, and

regulation of/response to cell signaling.

4.2.3 3’-UTR SNPs affect miRNP binding site features

To elucidate the mechanisms influencing miRNP targeting, the analysis was continued with
transcripts featuring both, 3’-UTR SNPs and experimentally determined miRNP binding
sites by AGO-bound CLIP-Seq measurements. This data set contained 288 SNPs located
at 219 genes of which 409 transcripts were affected. Please note that the analysis is in
silico, i.e. transcripts were not sequenced in vivo, rather SNPs were introduced to reference
sequences.

The efficacy of miRNPs to control target mRNAs relies, in a broader sense, on two
important features: the target sequence composition, such as the encoding of MREs (Chap-
ter 2) and the local target structure (Chapter 3). To determine, how 3’-UTR SNPs affect
miRNA-mediated regulation in cis, four potential mechanisms compromising targeting
features were examined. Of these three were found in the data of this study (Figure 4.2).

The basic prerequisite for miRNP binding in metazoans is a short perfect match to the
coupled miRNA complemented by imperfect matches in close vicinity. This MRE region is
called the ’seed’ sequence and is considered to be a 6 — 8 nt long substring within the first 8
nt at the 5’-end of the miRNA?%1. 22 SNPs (7.6%) were predicted impairing MREs (Table
C.1), and 28 SNPs (9.7%) creating new or enhancing (i.e. extending an already existing
seed match) MRE sequences (Table C.2). The number of SNPs substituting the MRE of
one miRNA by a MRE of another miRNA, amounts to 13 variants. Accordingly, a total of
37 unique SNPs (12.8%) directly impact MREs (impairment P = 1.3 x 10~2, enhancement
P =8.8 x 10~%). Additionally, it was found that only 11% of SNPs enhancing or creating a
MRE were conserved across mammals. This was a lower fraction than for SNPs mediating
one of the other mechanisms (splicing = 29%, structure = 29%).

The geometry of miRNA target sequences is an important determinant of miRNP
binding affinity [4%-185-186] 14 SNPs (4.9%) were predicted to impact the binding of the
RISC through significant changes (P < 0.05) of the local 3’-UTR structure (Table C.4).
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Figure 4.2 | Mechanisms of 3’-UTR variants impacting miRNA function in ¢is. Usually protein-
coding genes are transcribed to pre-mRNAs which are subsequently maturated by splicing, capping,
and polyadenylation; transcripts of miRNA genes are processed by the RNases Drosha and Dicer
and incorporated in a protein-complex (miRNP). (continued on next page)
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Figure 4.2 (previous page) | The miRNP binds to characteristic sites at the target mRNA and
represses translation or induces degradation. Three cis-acting miR-SNP mechanisms perturbing this
process were identified: 1) 64% of variants caused an altered MRE sequence increasing/decreasing
miRNA binding affinity, ii) 24% of SNPs detached miRNP binding sites by alternative splicing,
and iii) 12% of variants induced a changed local secondary structure of the miRNA target region.

The alteration of pre-mRNAs by modifying splicing signals has been reported to in-
fluence translational efficiency!'371. Seven SNPs (7.4%) were predicted to interfere with
RNA splice sites (Table C.3). Of these, six were predicted to create new acceptor sites and
one to create a new donor site (acceptor sites P = 1.8 X 10~2, donor sites P = 1.4 x 1072).
In all seven cases, the predicted gain of splice sites results in exon shortening, leading to
a noticeable loss (46% on average) of miRNP binding sites in the accordant transcripts.
SNPs interfering with splice sites located at an exon/intron or intron/exon junction (as
annotated in NCBI RefSeq!!?3!) were not observed.

The loss of 3’-poly(A) signals has been described to cause genetic diseases by cap-
dependent miRNA-mediated degradation of the mRNA[!33-184] " Four SNPs affecting
hexamers with a sequence characteristic for poly(A) signals were identified. However,
none of these hexamers was located in close proximity to a known poly(A) site.

In total, 53 3’-UTR SNPs mediating at least one mechanism impacting miRNA function
were found (Table 4.1). Of note, 14 of these were index SNPs as reported in the NHGRI
GWAS catalog (rs7097, rs7119, rs9253, rs12916, rs1379659, rs2071518, rs2244967,
1s2282301, rs2564921, rs4770433, rs4819388, rs4973768, rs7528419, and rs11542478).
In the following, SNPs affecting miRNA-mediated regulation in cis are referred as ’cis-
miR-SNPs’.
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Table 4.1 | Cis-miR-SNPs. Listed are the SNP IDs (* denotes index SNPs), the affected gene,
the type of MRE affection (disruption: —, creation: 4, both: =£), the occurence RNA folding
impairments, the type of splice site affection (acceptor gain: Acc+, donor gain: Don+), the SNP-
gene expression linkage score from two cohorts (p > 0: mRNA increase, p < 0: mRNA decrease)
and the associated trait. Missing values in the MuTHER study were substituted by HapMap3
measurements (footnoted is the reference population and all populations with the same score sign).

SNP Gene MRE Folding Splicing P1 p2 Disease/Trait

rs1121 PDXDC1 + -0.13  -0.11 Height

rs4564 DLD — 0.05 0.06 Ulcerative colitis

rs6706 TRIP6 = -0.07 0.06 Resting heart rate

rs7089 TMUB2 + -0.52 -0.63 Bone density

rs7097* POLRID + -0.34  -0.39 Large B-cell lymphoma
rs7118 ZFP90 + 042 0.43 Ulcerative colitis

rs7119% HMG20A = -0.05 0.09 Type 2 diabetes

rs7371 GNAI3 Acc+ -0.47 -0.33 Major depressive disorder
rs7444 UBE2L3 v 0.69 ¢ Crohn’s disease

rs7444 UBE2L3 v 0.69 ¢ Lupus

rs8523 ELOVL2 + -0.27 -0.15 Phospholipid levels
1s9253* MEAF6 — NA NA  Hematological phenotypes

rs9927 PYGB
rs10923 SMC4
rs11700 E2F4
rs12439 CLIC4
rs12916%*  HMGCR
rs12916*  HMGCR

-0.06  0.11 Liver enzyme levels
0.19 0.26 Primary biliary cirrhosis
0.16  0.11 Coronary heart disease

-0.21 -0.08 Height

-0.21 -0.03 Cholesterol levels

-0.21 -0.03 Metabolic traits

rs12956 RYBP 0.03 -0.10 Height

513099 TMEDI10 0.22 b Height

rs42038 CDK6 v Acc+ 0.11 ¢ Height

rs42039 CDK6 -0.01 -0.10 Rheumatoid arthritis

1s232775  MYSMI -0.05 -0.13 Diabetic retinopathy

rs699779  NOTCH2 — Acc+ 0.18 0.14 Type 2 diabetes
rs823136  RAB7L1
rs835575  NOTCH2
rs835576 NOTCH2

rs1045100 ATGI6L1
9JPT; CEU, CHB, GIH, LWK, MEX, MKK, YRI.
bLWK; CEU, CHB, GIH, JPT, MKK, YRI.
‘LWK; CEU, GIH, MKK.

4CHB; GIH, LWK, MEX.

¢LWK; CHB, MEX, MKK, YRL

+ o+ K+ K+
SNEEN

+ +

-0.17 4" Parkinson’s disease
v -0.23  -0.12 Type 2 diabetes

-0.23  -0.12 Type 2 diabetes

-0.24 -0.18 Crohn’s disease

HoH K+
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Table 4.1 (continued)
SNP Gene
151045407 ZNF678
rs1046917 FN3KRP
11047440 CEP120
rs1058588 VAMPS
rs1379659* SLIT2
152032933 RMI2
rs2071518%* NOV
1s2077579 DDX6
152229302 HOXB2
152244967* VSTM4
rs2282301% RIT1
1s2293578 SLC39A13
1s2564921%* RTF1
rs3816661 CD276
rs3821301 TANCI1
154770433 % SACS
rs4819388* ICOSLG
1s4973768* SLC4A7
1s6722332 WDRI12
16722332 WDR12
157350928 KIAA1267
1s7528419%* CELSR2
1s7528419% CELSR2
1s7528419%* CELSR2
1s7528419%* CELSR2
1s7528419%* CELSR2
rs8176751 ABO
rs10892082 PAFAH1B2
rs10892082  PAFAH1B2
rs11067231 MMAB
rs11542478* FAMI110C
rs11713355 SLC6A6
117574361 KIAA1267

+

v
v

MRE Folding Splicing

Acc+

Don+
Acc+

Acc+

Acc+
Acc+
Acc+
Acc+

Acc+

P1
0.22

0.42
-0.21
-0.44
-0.02
-0.32
-0.03
-0.36
-0.31
0.41
0.13
0.04
-0.16
-0.08
0.20
0.19
-0.36
0.13
0.19
0.19
-0.28
0.19
0.19
0.19
0.19
0.19
0.14
0.04
0.04
-0.44
0.15
-0.05
-0.28

p2

0.28
-0.11
-0.30

0.17
-0.14
-0.17

-0.33
8
h

-0.07
i
0.17
-0.06
-0.06
-0.03
0.08
0.02
0.02
-0.17
0.01
0.01
0.01
0.01
0.01
0.12
0.23
0.23
-0.49
0.01
-0.18
-0.17

Trait

Height

HbAlc levels

Body mass index
Prostate cancer
Echocardiographic traits
Celiac disease

Blood pressure

Primary biliary cirrhosis
Primary tooth developm.
Serum uric acid
Conduct disorder

Body mass index
Height

Liver enzyme levels
Sudden cardiac arrest
Protein QTL

Celiac disease

Breast cancer

Coronary heart disease
Myocardial infarction
Parkinson’s disease
Cardioviscular disease
Cholesterol levels
Metabolic traits
Myocardial infarction
Response to statins
Hematolog. phenotypes
Protein QTL
Triglyceride levels
Cholesterol levels
Inform. processing speed
Cognitive performance

Parkinson’s disease

°LWK; CHB, MEX, MKK, YRI.
fJPT; CHB, GIH, MEX.

8YRI; CEU, GIH, MEX.

hyRI; JPT, LWK, MEX

{CEU; GIH, MKK.
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4.2.4 Cis-miR-SNPs exhibit allelic expression imbalance

Since cis-miR-SNPs were predicted to change miRNP binding specificity, the question was
examined whether these variants imply turnover of miRNA targeting accounting for AEI of
miRNA target genes. For this purpose, gene expression profiles from genotyped individuals
were collected (twin samples from the MuTHER pilot project quantified by Nica et al.
2011 [2041; missing measurements were filled by samples of HapMap individuals quantified
by Stranger et al. 201212%31). The linkage between cis-miR-SNPs (allelic occupancy) and
target gene expression was conducted using Spearman’s rank correlation and scored by its
coefficient p.

The canonical model of miRNA-mediated regulation postulates that miRNPs repress
expression of target mRNAs[?7l. Under this simple model, 72% of all SNP-mRNA
associations were found being in accordance with the expected differential expression for
each allelic occupancy in at least two cohorts: 1) increased mRNA levels (p > 0) induced by
miRNA regulation loss due to impairment of MREs or RNA folding, or alternative spliced
exons, and ii) decreased mRNA levels (p < 0) caused by miRNA regulation gain due to
enhanced MRE affinity or RNA structures attracting miRNP binding (Table 4.1). The
statistical significance of the associations was assessed using a permutation approach. Here,
50% of all cis-miR-SNPs reached a significance level of P < 0.08 in at least one cohort.
Of these, two affected splice sites, nine altered the target structure and 18 cis-miR-SNPs
manipulated MREs. These results suggest that the cis-miR-SNP mechanisms presented in
this study are coupled with AEL

However, the correlation coefficient does not quantify the extent of expression variation
induced by cis-miR-SNPs. For this purpose, the coefficient of expression variation (CV)
was employed. This metric has been previously well justified for the analysis of variance
in expression profiles?%8-2101 In line with the SNP-expression linkage analysis above,
CV values were conducted for each transcript across the subset of individuals from the
MuTHER pilot expression study provided by Nica ez al. 2041,

The expression variance of transcripts with predicted cis-miR-SNPs ranged from 0.95 to
5.18 with a median of 2.22 (Figure 4.3A). Since the turnover of miRNA-mediate regulation
has been reported to be decent (Chapter 1.4.3), the variance in expression levels was
expected to be moderate. However, the observed effect was significant higher (~ 61%)

than expected by chance from the whole background distribution (Kolmogorov-Smirnov
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test P = 9.3 x 107%7). The strongest variation was induced by altered splice signals
(median = 2.75), followed by affected MREs (median = 2.16) and local folding (median =
2.15).

Next, the effect of each cis-miR-SNP on target variance was examined individually.
Here, the cumulative distribution function of the CV values was computed. This allowed
to estimate the location of each cis-miR-SNP CV value in the background distribution.
In other words, the fraction of genes exhibiting a lower expression variation than the
cis-miR-SNP affected gene was estimated (Figure 4.3B). 86% of variants exhibited an
allelic expression variance beyond the average. Of these 27% had a higher CV than 90%
of the background. Therefore, the CV analysis suggest that the mechanisms conducted by
the cis-miRNA-SNPs are coupled with increased gene expression variability.

Since the set of cis-miRNA-SNPs was composed of either index SNPs from the NHGRI
GWAS catalog or proximal SNPs in strong LD, the respective trait associations were
available. This raised the question whether the found cis-miRNA-SNPs may be reasonable
in the context of their predicted phenotype. For this purpose, for each mechanism an
example was examined by literature research.

As a first example, the cis-miRNA-SNP rs11067231 was found associated with perturbed
cholesterol levels. This SNP is located at the chromosome 1224 region which was
associated with high-density lipoprotein-cholesterol >!3]. Its G>T nucleotide change at the
reference genome sequence originates a 6mery binding site for miR-624 at the 3’-UTR of
the transferase MMAB. Fogarty et al.[>!3 observed a significant change in relative allelic
expression of MMAB whereat the rs11067231 allele with lower high-density lipoprotein-
cholesterol correlated with higher MMAB transcript abundance. They suggested that
MMAB may be the most likely gene influencing high-density lipoprotein-cholesterol
levels. An AEI was confirmed by the MuTHER study: the rs11067231 allele creating
the MRE for miR-624 was significantly linked with reduced MMAB transcript levels
(p1 = —0.438, P, =9.4x 107>, pp = —0.488, P, =3.2 x 1079).

Secondly, the SNP rs10923 was found in high LD (> = 0.86) with the primary biliary
cirrhosis GWA-associated risk loci rs4679904 2141, The minor G allele of SNP rs10923
disrupts the MRE of miR-299-5p located at the 3’-UTR of SMC4. This miRNA has
been reported to be upregulated in patients suffering from primary biliary cirrhosis?!>!.
A considerable AEI was observed by the MuTHER study exhibiting increased SMC4
transcript levels for the G allele (p; = —0.191, P = 1.0 % 1071, pr=—-0.264, P, =
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Figure 4.3 | Expression variance induced by cis-miR-SNPs. A | Boxplot of the distributions of
the CV values of all transcripts (BG) and the transcripts predicted to be affected by a cis-miR-SNPs.
P is given by the Kolmogorov-Smirnov test and indicates the significance level of the difference
between the distributions. B | For each cis-miR-SNPs, the fraction of all measured transcripts
holding a lower expression variance than the affected transcript are shown. The node coloration
denotes a higher location of the observed CV in the empirical cumulative CV distribution of all
transcripts, respectively.

1.8 x 1072). SMC4 is part of the condensin I complex?'%! which has been suggested to
be involved in the single-strand break repair mechanism by complexing with PARP1 and
XRCC1[2!7I — two genes which were observed overexpressed in active cirrhosis!218],
Thirdly, the SNP rs1046917 was associated with altered glycated hemoglobin levels
which are reflecting the effective plasma glucose concentration. Structure analysis revealed
an altered folding of the FN3KRP 3’-UTR induced by the A>G nucleotide change at the
reference genome sequence. The mutated RNA conformation decreases the affinity of the
miRNP to bind to the target region. Consistently, an increased expression of FN3KRP
induced by rs1046917 was observed by the MuTHER study (p; = 0.421, P, = 1.0 x 1074,
P> =0.275, P, = 9.9 x 1073). FN3KRP is assumed to protect proteins from nonenzymatic
glycation to restore their function>!”). However, its specific physiological function remains
largely unknown. Its protein sequence is highly similar to its neighboring enzyme FN3K
which has been described to affect the glycation level at specific sites of haemoglobin (229,

Conceivably, an increased FN3KRP activity can be suggested to result in reduced amounts
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of glucose circulating in the blood plasma and to account for the etiology of hypoglycaemia.

Lastly, the final product of purine degradation is uric acid, a compound of which
elevated serum concentrations have been associated with several diseases such as gout [221]
hypertension, and disorders of the cardiovascular system 222! in previous epidemiological
studies. At this, it is very likely that immunoglobulins facilitate the crystallization of
uric acid precipitating monosodium urate cristals out of serum (231, The A allele of the
serum urate associated SNP rs2244967 was predicted to generate a new acceptor splice
site which shortens the mature 3’-UTR of VSTM4 causing a loss of 50% of all miRNP
binding sites. Consistently, an AEI of VSTM4 comprising a higher expression level for
the A allele was found (p; = 0.409, P, = 1.2 x 107>, po = 0.176, P, = 6.7 x 1072). The
function of VSTM4 is still unknown. However, its protein embeds an immunoglobulin-
like domain (V-set domain) which can be also found in immunoglobulin light and heavy
chains. Since it has been demonstrated that all three major classes of immunoglobulin
have an affinity to the surface of monosodium urate crystals?3] it can be suggested that
VSTM4 may also contribute to the crystallization of uric acid. Thus, increased activity of
VSTM4 contributes to raised monosodium urate crystal levels which in turn triggers the
phagocytosis of these crystals by neutrophils. This mechanism has been reported to affect
the volume of urinary excretion of uric acid, and consequently, the level of serum uric acid.
Interestingly, hyperuricemia has been associated to the etiology and inflammatory attacks

of gout[?24],

4.3 Conclusion

In the previous chapters of this thesis (Chapter 2 and Chapter 3), relevant characteristics of
miRNP binding sites were analyzed. Since our current knowledge on potential effects on
miRNA target selection by SNPs is limited, the impact of genetic variation on these features
was of particular interest in this study. A set of human SNPs was generated composed
of trait-associated index and proximal variants in strong LD. By analyzing their genomic
position, a significant enrichment of loci in the 3’-UTR of protein-coding genes was
observed. Since the 3’-UTR of the mRNA is the major host for cis-regulatory elements of
miRNA regulation, it was investigated whether 3’-UTR variants impact post-transcriptional

regulation. Experimentally determined miRNP binding sites by the CLIP-Seq protocol
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were mapped to affected transcripts. Subsequently, the potential mechanistic model of
a single nucleotide mutation on miRNP targeting was determined. It is of note that the
used sequences were reference transcripts as provided by the RefSeq database!'?3]. As
such, the presented mechanisms were in silico predictions requiring further experimental
validations, such as in vivo RNA sequencing.

The computational analysis revealed that, in the majority of cases, SNPs created/disrupted
MRE sequences or enhanced/damped their complementarity to miRNA sequences. Al-
though using alternative MRE definitions, this finding confirmed previous studies22>-226],
Also a third novel scenario with a less straightforward rationale was observed: the sub-
stitution of the MRE of one miRNA by the MRE of another miRNA. Such a mutation
may constitute concurrent but simultaneously diverging effects in different cell types,
depending on the respective expression patterns of the two miRNAs. The fraction of
‘regulator switches’ denotes one third of the whole set of variants affecting MREs which is
a surprisingly high number. This result proposes that the transcripts embedding a 'regulator
switch’ may represent rather interesting subjects for further studies.

The second most abundant effect was the alteration of the mRNA secondary structure
leading to a modified local conformation of the miRNP binding region. Previous studies
reported the importance of the RNA folding on the binding affinity of the miRNP com-
plex 491851 The results of the presented study suggest that single nucleotide mutations
may lead to considerable impacts on the miRNA regulatory network. By the example
of FN3KRP, its effect was hypothesized in the context of the etiology of hypoglycaemia.
However, the extent to which this mechanism translates into the development of traits or
diseases remains unknown. In fact, further investigations are required to shed more light on
this particular mechanism. It should be noted that a simultaneous work of Haas et al.[13%]
confirmed an interrelation between disease-associated 3’-UTR variants causing mRNA
structural change and perturbed miRNA targeting.

The third mechanism effects splice signals. This event has been well described in the
context of altered composition of amino acids and domains in proteins and was linked
to disease susceptibility 19?2271, The splicing machinery is confronted with multiple
attributes that guide the recognition of exon-intron boundaries. At this, the sequences in
splice junctions are of particular importance as mutations alter the recognition efficiency
of splicing factors(>?8]. In the presented study, not the CDS, rather the 3’-UTR was

investigated for SNP induced alternative splicing. In average, it was predicted that 46%
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of miRNP binding sites got lost due to exon shortening, entailing the escape of the target
gene from translational repression by miRNAs. Although coherent in the biological sense,
it should be noted again that this observation relies on a computational prediction. The
expression of miRNAs and target transcripts is, in fact, condition-specific. Novel high-
throughput technologies, such as RNA sequencing, will reveal to what extent alternative
transcripts are processed that evade miRNA regulation. Further, alternative splicing may
also lead to unstable transcripts. In example, rs7371 was predicted to induce a shortened
GNAI3 3’-UTR due to creating a novel splicing acceptor site. However, the variant
allele exhibited a lowered transcript concentration (Table 4.1). As the affected region was
predicted to be conserved across mammals, its deficiency may impair mRNA stability or
translocation.

Another mechanism which was not investigated in this study, but expected to be also
relevant, is the interference of miRNA biogenesis. Changing the miRNA seed sequence, or
impairing the function of a specific miRNA will change its specific regulome and, as such,
have drastic global effects by rewiring gene regulatory networks. The data of the presented
study contained no conclusive evidence for variations in miRNA genes, and as such, direct
perturbation of miRNA processing and function in trans. Only one SNP (rs2168518) was
found located within the hairpin transcript of miR-4513. The usage of a more sensitive
data basis, e.g. the recent 1 000 Genomes Project!??! and an upcoming miRBase release,
will reveal likely further SNPs in known miRNA genes. Also the genotyped SNPs may not
had significant MAFs to be included in the used panel. However, based on the observations
in this study, it can be suggested that miRNA-mediated regulation is primarily affected by
common cis-miR-SNPs.

The validity of the presented cis-miR-SNPs mechanisms was corroborated by an eQTL
analysis. The SNP-gene expression linkage was conducted for affected transcripts by
computing the correlation between the two variables. Additionally, the respective cis-
miR-SNP induced variance in the expression levels was measured. For all three classes
of cis-miR-SNPs, significant AEIs of affected genes were observed. Although expected
to be moderate, the effect of cis-miR-SNPs on transcript level variance was considerable
high. For the following reasons, this observation was striking. While it has been described
that miRNAs mainly acts as fine-tuners of target gene expression (Chapter 1.4.3) several
other factors may interfere cis-miR-SNPs induced effects. First, as described in Chapter 2

and Chapter 3, regulatory efficiency relies on the complex interaction of various target site
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features. The change of a single feature may not be expected to impact miRNP binding
specificity. Second, human mRNAs contain multiple target sites, for the same as well as
distinct miRNAs, which may attenuate the impact due to the loss of a specific MRE. Third,
miRNA and mRNA expression levels change under varying environments. Thus, unlike
non-synonymous coding variants consistently alter the amino acid sequence of a protein,
cis-miR-SNPs may show condition-specific effects.

On the example of four cis-miR-SNPs, the potential impact on the phenotype was
discussed. Here, it should be noted that the primary focus of this work was to investigate
the potential genetic mechanisms affecting miRNA-mediate regulation. However, several
hundred GWA studies resulted in a huge number of reported SNP-trait associations but only
a small fraction revealed a functional explanation; the majority of SNPs are far from being
proven causal variants of disease incidence?3%231], It has been suggested that non-coding
variants constitute the main fraction of SNPs identified by GWA studies!!7#. Interpreting
the identified cis-miR-SNPs in the context of the associated phenotype showed the potential
of the presented results to generate novel hypothesis. It remains elucidated if these variants
are, in fact, causal. Please, also consider that GWA studies are based on the assumption
that complex traits are caused by multiple loci with low effects on the phenotype which
exhibit alleles that are quite common in the population !. Although no direct experimental
validation was provided in this study, the most suspicious cis-miR-SNPs merit further
detailed investigation. This study also suggests that it may be inevitable to overcome the

current examination bias of GWA studies towards the coding sequence.

1 The heavily discussed ’common disease, common variant hypothesis’ [171:1721,



CHAPTER 5

Global modeling of miRNA-mediated regulation

Cellular processes are programed through regulatory control and are conditionally mod-
ulated. Gene expression is a highly regulated mechanism that has a profound impact on
crucial processes such as cell division, differentiation and apoptosis. Its malfunction can
lead to the pathogenesis of fatal diseases!?3>233]. The regulation of gene expression covers
a number of sequential processes controlling the RNA concentration of TGs selectively
regulating the quantity of gene products in the cell. Transcriptional regulation is controlled
through proteins called TFs. Combinatorial interactions of RNA-binding proteins and
non-coding RNAs with regulatory elements located on target RNA molecules determine
the functional outcome of target RNA processing, such as splicing, polyadenylation, export,
stability and translation [234] * At this, the miRNA family has attracted a lot of attention.
Integrated within a multiprotein complex (miRNP) they bind to target sites preferably
located in the 3’-UTR?%! or the coding sequence?*®! of mRNAs to govern stability
and translational efficiency. Post-transcriptional regulation by miRNAs is an essential
regulation layer for higher eukaryotes. One miRNA is able to regulate a large number of
protein-coding genes and vice versa one mRNA can be regulated by several miRNAs. By
intertwining with transcriptional GRNs, miRNA regulation induces extensive interacting
control structures. Both types of regulator genes (RGs), namely TFs and miRNAs, span a
global GRN that controls thousands of mammalian TGs and forms multilayer regulatory
circuits 2],

Novel technologies promote the ongoing transformation of biology from a data-poor
to an increasingly data-rich science. The attendant increase in the number, size and

diversity of data sources features knowledge for both, TF:TG and miRNA:TG interactions.

101
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The integration of this information offers unprecedented and as yet, largely unrealized
opportunities for discoveries from the analysis of large-scale GRNs. However, each data
source has its unique bias and inherent potential drawbacks. Sequence-based predictions
are rather exhaustive but yield a significant fraction of false positives due to the limited
comprehension of the molecular basis of the regulator:target pairing process. Databases
with experimentally verified data and high-profile studies provide an impressive amount of
information but are far from complete. The biomedical literature is rich in known regulatory
interactions but these are difficult to extract. All biological data sources naturally exhibit
semantic differences that are caused by varying levels of granularity or abstraction at which
objects and their relationships are described. These aspects illustrate the potential and
importance of sophisticated data-driven integration approaches.

The fact that integrated networks contain regulatory interactions that were described
under varying conditions makes these GRNs comprehensive, but also unspecific and
static; also the regulatory sign (stimulation/repression) of potential relations is largely
unknown. Since transcriptional and miRNA-mediated post-transcriptional regulation is
context-dependent, it is evident that static GRNs are not sufficient to represent regulatory
interactions taking place under changing conditions. Modeling condition-specific GRNs
using prior information from integrated networks aims to overcome these problems and
will facilitate a better understanding on how gene expression is modulated.

With rapidly increasing amounts of gene expression profiles, an exhaustive insight
into their underlying large-scale condition-specific GRNs becomes feasible and attractive.
Therefore, the method COGERE (modeling of COndition-specific GEne REgulation; from
the Latin ’to collect’) was developed, an approach to infer condition-specific gene regula-
tion from gene expression data integrating existing knowledge of regulatory interactions.
This approach enables the interpretation of multi-dimensional expression profiles reflecting
the dynamic interplay of thousands of cellular components in the context of known regula-
tory relations. A data structure of transcriptional and miRNA-mediated gene regulation
(prior model) was build by integrating automatically and manually mined interactions
from all available biomedical text with information from relevant databases, recent studies
and computational predictions from sequence data. In addition to an increased sensitivity,
COGERE is able to suggest references for inferred interactions that were described in
the literature. This will facilitate the generation of novel, testable hypotheses. To com-

pute the condition-specific strength of association from gene expression data, COGERE



103

uses a two-way nonlinear non-parametric ANOVA considering prior information. This
association metric overcomes the disadvantages of common approaches utilizing linear
correlation>37-2391 and mutual information (232401 Linear correlation requires miRNA
and mRNA expression profiles to be obtained from the same set of individuals (matched
data), and inherently detects only linear relations. Mutual information needs careful dis-
cretization of the expression data to avoid loss of signal and, in addition, is non-negative,
and as such does not provide information about the condition-specific sign of interaction.

In this chapter, the construction of the COGERE framework is presented and it is shown
that this approach significantly improves existing methods for the large-scale modeling
of miRNA-mediated condition-specific GRNs. Further, the utility of COGERE is demon-
strated by inferring a cancer-specific regulatory network from the NCI-6024!] microarray
project.

Major parts of this chapter have been previously published in the following article:

* Ellwanger DC, Leonhardt JF, and Mewes HW. Large-scale modeling of condition-

specific gene regulatory networks by information integration and inference. Nucleic
Acids Res., Oct 7, 2014.

The results of this chapter have been presented at the following scientific conference:

* Ellwanger DC, Leonhardt JF, and Mewes HW. Large-scale modeling of condition-
specific gene regulatory networks by information integration and inference. Work-
shop Computational Biology @ Bayer (Boston, USA), 2014.

* Ellwanger DC, Leonhardt JF, and Mewes HW. COGERE: modeling of condition-
specific gene regulation and regulator gene centrality by information integration and

inference. International Conference on Systems biology (Copenhagen, Denmark),
2013.
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5.1 Related work

The combination of sequence-based target predictions with high-throughput experimental
data improves the prediction accuracy by reducing the false positive rate!?*?!. Therefore,
a lot of effort has been put to integrate computational tools and expression data. The
mirAct web server!?#] enables the determination of condition-specific miRNA activity
based on a three-step procedure. First, miRNA targets are determined by a sequence-based
target prediction algorithm. For each TG its expression values are transformed to the
Z-score across all samples or the average of its ranks within each sample and across all
samples. Second, for each miRNA a sample score is computed using either 7-statistics
(in the case of Z-score transformation) or the difference of the average ranks between
targets and non-targets. Finally, for each miRNA the null hypothesis is tested that all
conditions have identical sample scores (Kruskal-Wallis test!***], Jonckheere-Terpstra
trend test(>*4). If the null hypothesis can be rejected, a miRNA is predicted to have a
condition-specific effect. mirAct computes miRNA activity based on the expression of its
potential targets across several conditions. Apperantly, by using this approach, it is not
feasible to explicitly identify each condition-specific miRNA:TG interaction. This can
be obtained by the widely used MATLAB tool GenMir++?*]. It implements a complex
Bayesian framework to calculate the posterior probability that a candidate interaction
is likely to have participated in degrading the TG transcript given the observed patterns
of miRNA and mRNA expression. A linear function formulates the expression of a TG
as being negatively shifted with respect to a background level of expression due to the
regulatory effects of its candidate targeting miRNAs. The GenMir++ model incorporates
parameters accounting for differences in the regulatory potential of miRNAs, varying
hybridization conditions, and normalization between the expression data sets. To learn
the parameters, GenMir++ applies the variational Bayesian algorithm, an Expectation
Maximization method which may be extremely slow and computational inefficient for a
large number of genes (convergence rate highly depends on the priors and the likelihood)
and approximates a factorized variational posterior which may diverge from the real
posterior. Since the Bayesian model requires sequence-specific scores of predicted miRNA
target sites, it is impractical to integrate prior information from experimental databases. In

contrast, the very prominent TaLasso web server!>*! enables the usage of candidate
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interactions composed of the union or intersection of several sources neglecting the
sequence-based interaction score. To infer regulation, a linear relationship between mRNA
and miRNA is assumed and approximated by LASSO (least absolute shrinkage and
selection operator) regression, an alternative regularized version of least squares. Talasso
has been shown to outperform GenMiR++ in some cases!>*9]. For a complete review on
this topic please refer to Muniategui et al. [?4?1,

The major drawback of these tools is their limitation to miRNA interactions. Several stud-
ies observed a significant co-regulation between the transcriptional and post-transcriptional
layer(62.247:2481 Tts importance has been emphasized by Chen et al. [?*°1 who suggested
a close relation between the perturbation of co-regulation and carcinogenesis. Thus, to
get a more comprehensible insight into the condition-specific regulatory landscape, it is
crucial to model the combined regulation of both, miRNAs and TFs. This facilitates the
elucidation of direct, indirect and co-regulatory mechanisms. However, the large-scale
modeling of miRNA- and TF-mediated regulatory systems is still in its infancy. The
combination of transcriptional and post-transcriptional regulation is challenging as they
involve not only RG:TG pairs, but also the interactions between the regulators themselves.
A common procedure is to filter a set of potential interactions by means of differential gene
expression, i.e. retain only significantly up- and downregulated RGs and TGs?>%!, Besides
the fact that this approach omits potential significant correlations between non-differential
expressed regulators and their targets, it is also only applicable for case-control study
setups. To find a remedy, two prominent approaches were developed: mirConnX 2371,
MAGIA 2381 and its update MAGIA2!23°1, Both approaches model GRNSs by superimpos-
ing an integrated network and inferred interactions from expression data. The integrated
network is composed of predicted and experimental verified RG:TG pairs; the inferred
network is composed of linear correlation (Pearson, Spearman or Kendall [2511) petween
each RG:TG pair across all conditions. Both tools apply a simple integration function
neglecting individual prediction scores. The utilization of a linear correlation coefficient
requires that miRNA and mRNA expression profiles have to be obtained from the same
set of individuals (matched data). Further, it has been suggested that linear associations
between regulator and target is a weak indicator of true condition-specific regulatory rela-
tionships in real biological datal>>?!. Please note that MAGIA?2 also provides the option
to use the non-linear mutual information as metric of association. This measure requires

a careful discretization of the expression data to avoid a loss of signal and predicts only
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unsigned interactions.

5.2 Material and Methods

COGERE maps regulatory complexity by reconstructing GRNs involving TFs or miRNAs
as regulators (Figure 5.1A). The workflow of COGERE is outlined in Figure 5.1B. In the
following each step of the framework (information integration, inference), the evaluation

and the data analysis of the use-case are described in detail.

5.2.1 Construction of the prior model by information integration

The prior network was composed of in vivo, in vitro and computationally determined
regulator:target interactions. Several heterogeneous data sources were combined to a
single directed, weighted graph data model G = (V,A,W). All genes with their symbols,
gene synonyms and IDs as listed in NCBI Entrez Gene!?>3! and miRBase version 19241
were added as vertices v € V' to the regulatory graph. Regulatory associations were stored
as directed interactions between two gene nodes. Each interaction was weighted by a
prior score that ranks its regulatory potential with prior € W : A — R; the weights were
stored in a weight matrix W € RV*IVI where prior; ; denotes the weight of the interaction
between v; and v;. Note that the final weight matrix was scaled to [0, 1] and G may contain
self-loops. In the following, it is specified how the weight matrix is computed from the

integrated evidences.

Integration of transcriptional regulatory interactions

To predict transcriptional regulatory associations, human and murine promoter sequences
of protein-coding genes were obtained from the ElDorado database version 08-2011
(ElDorado; http://www.genomatix.de). For miRNA genes, promoters were collected
from Fujita et al.[>>>) and CoVote!?>®! and transcriptional starts from CoreBoost_ HM 2371,
Corcoran et al.!?8! Marson et al.[*°!, Ozsolak er al.'?!!, miRStart!2%! and Eponine-
TSS?®11. Given a median promoter length of 448 nt in the study of Fujita et al.!*>>! and
350 nt predicted by CoVote, adequate promoter sequences from 500 nt upstream to 100 nt

downstream relative to a transcriptional start site were extracted. Chromosomal locations of
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all miRNA hairpins were obtained from miRBase. The distances between a miRNA hairpin
start position and all promoter start positions were calculated. For each miRNA gene, the
promoter located closest to its hairpin sequence was selected. If miRNA genes shared the
same promoter and had an inter-gene distance of up to 50 kb, they were proposed to form
a transcriptional unit!'”!. Promoters located up to 50 kb upstream of a miRNA gene or a
transcriptional unit?"! were filtered. Additional promoter regions of intragenic miRNAs
located on the same strand and within an intron of a protein-coding gene were considered
coincident with the one defined for the host gene!?3!. Gene annotations were obtained from
Ensembl 118 All promoter sequences were scanned for vertebrate TF matrix matches
using the MatInspector algorithm (matrix family library version 8.4)[2921, Modellnspector
(module library version 5.5)1293! was utilized to filter experimentally verified vertebrate
modules of transcriptional regulatory units, functional composite elements consisting of
at least two TF-binding sites in conserved order and distance. PhastCons!®! scores from
46-way (human) and 30-way (mouse) alignments of vertebrates available through the
UCSC Table Browser®3! were used to calculate mean conservation levels of potential TF-
binding sites. Each candidate target site was required to correspond to the most conserved
nucleotide at 95% of all positions of the TF matrix or to be conserved with an average
score of at least 95%. Moreover, all regulatory interactions contained in the literature were
extracted by the text-mining tool BioContext!?*]. It was required that the associations of
two biological entities were organism-specific and the interaction type was included in the
set of terms: regulation, positive regulation and negative regulation. BioContext provides a
score for each event mirroring the precision of the identified association based on specific
event features. This allowed for each TF:target interaction the computation of the prior
score based on the TF matrix similarity score Xsimilarity, the conservation score Xconservation

and the text-mining Score Xjjterature aS follows:

PI1Or = Xgimilarity + Xconservation T Xliterature (5.1)

at which Xgimilarity> Xconservation aNd Xjjterature are scaled between 0 and 1 by

x; — min(x)

Flx) = (5.2)

~ max(x) — min(x)
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Figure 5.1 (previous page) | A | Outline of the biological paradigm of TF and miRNA interplay in
gene expression regulation considered by COGERE: (i) transcriptional regulation is conducted by
TFs binding to sites in promoter regions on the DNA of genes encoding either proteins or non-coding
RNAs such as miRNAs. Here, miRNAs can be co-regulated with its protein-coding host gene, within
a transcriptional unit (gene cluster), and/or through its own promoter; (ii) miRNA regulation takes
place post-transcription by binding to sites mainly located on the 3’-UTR and/or the CDS of the
target mRNA. The transcriptional and post-transcriptional regulatory pathways are interconnected.
B | Construction of the prior network by information integration. For transcriptional regulation
predicted transcription factor-binding sites (TFBS), their conservation and mined interactions from
biomedical text were combined by a linear integration function. For post-transcriptional regulation,
individual scores of six miRNA target prediction algorithms and text-mining results were integrated
to a unified score weighting the regulatory potential of a miRNA:TG interaction. At this, AGO-
bound CLIP-Seq data and proteomics (pSILAC) data was employed. All scores computed by the
relevant integration function were normalized to percentile ranks (= prior score). Experimentally
verified interactions were added to the prior network (prior score = 1). C | Determination of
condition-specific regulation. For user-specified normalized and log;-transformed mRNA and/or
miRNA expression data of at least two conditions, COGERE computes for each interaction of the
prior network, the strength of the conditional dependency and the condition-specific regulatory
sign (stimulation/repression) by deriving the coefficient n> with its corresponding P by a two-way
ANOVA.

Integration of miRNA-mediated post-transcriptional regulatory interactions

Due to the diverse feature and model selection of miRNA:target prediction approaches [78-1081

a set of six current algorithms was selected to cover a wide range of different miRNA tar-
geting characteristics: DIANA-microT-CDS [236], mirSVR[l‘m, PicTar'92] PITA 3/151491
TargetScan 6.10°°1 and TargetSpy!1%4. Additionally, predicted interactions from literature
mining provided by miRSel[?6>], miRWalk 290!, and BioContext!?®*! were integrated. For
miRSel and miRWalk, each interaction was scored by the number of retrieved documents
containing a co-occurrence between the miRNA and its target. To minimize the false
positive rate, only the most confident predictions of each tool were obtained as recom-
mended by the authors, respectively (Table C.5). CLIP-Seq data from starBase (version
1.0)1193) was utilized to identify predicted target sites located in an AGO CLIP-Seq peak
cluster. Here, each cluster holds a biological complexity score b describing a measure
of reproducibility between biological replicates or experiments. Six score vectors X, ,
with {b=0,b=1,b=2,b=3,b=4,b > 5} were prepared for each prediction method
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m € M. A biological complexity of b = 0 denotes target sites not located in any annotated
AGO2-binding region. For each miRNA:target interaction the best score was retained.
Each prediction score vector x,, , was transformed into an efficiency score vector y,, 5, of
protein downregulation based on miRNA transfection data from Selbach et al. ! (Figure
B.5). Finally, the regression function F (x,, 5 x) for the k-th prediction score and the average
log fold-change y,, ; x of all miRNA:target pairs with x,, , ; > X, , x and a random error

Enp x Was computed:

Ymbk =F Xmp i)+ Embk (5.3)

Here, the locally weighted least squares method was applied to fit the polynomial function

of the predictor?%7). For each miRNA:target pair the prior score was computed:

prior = (=1) Y, min(ym,p ) (54)

meM

Transformation of prior scores

The integration of independent sources inherently results in non-identical, heterogeneous
prior score distributions. To obtain unified weights for each interaction type, the raw prior
scores were converted to percentile rank scores as follows:

Let

X; € priory, a prior score of an interaction type k € {TF:TG, miRNA:TG},

n; the number of equal scored interactions, i.e. |x j € priory : xj = Xx;|,

m; the number of lower scored interactions, i.e. |x; € prior; : x; < x;/,

r; the position of x; in a sorted list of priory by decreasing order.
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Then, the mean rank for ties was computed:

rit(ri+ 1)+ .+ (ritn—1)

mean(ri,ri+ 1,..,ri+n;— 1) =

n;
. njri + (1 +...+n;— 1)
= ”
niri -+ n; U5
= "
I’li—l
_rl-—|— 5

=m;+ 1 —|—O.5ni —0.5
=0.5n;4+m; +0.5

To obtain the percentile score, the rank was divided by the size N of the prior score
distribution:
(0.5n,' +m; + 0.5)

F(x; € priory) = N (5.5)
k

This equation allows an intuitive interpretation of the prior scores, e.g. a transformed priory
score of 0.90 denotes an interaction with a higher regulatory potential than 90% of all
interactions of type k contained in the prior model; in return a prior cut-off of 0.90 retains

the 10% most reliable integrated regulatory associations.

Integration of verified regulatory interactions

Experimentally verified TF:TG interactions were collected from ENCODE?%8], TRED [26°],
TRANSFAC 279 TransMir?7!!, and from manual literature search. miRNA:TG inter-
actions were obtained from miRecords!!!!], miRTarBase!?’?!, miR2Disease!!®* and

Tarbase!?”3). For each interaction contained in one of these sources the prior score was set
to 1.0.
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5.2.2 Determination of condition-specific regulation by inference

Preprocessing of expression data

Two preprocessing steps were applied to the expression data in order to improve the
discriminatory power of the inference approach:

1) Balancing the data. To avoid a condition-dependent bias, the sets of microarrays
measured under the same condition are pruned to equal size n. The M;; value was
computed for each probe j on microarray i by dividing the intensity of j by the median
intensity of the same probe across all microarrays. According to Kauffmann et al.[>74
and Irizarry et al.?7], M; ; can be decomposed to the probe effect z; (i.e. probe binding
affinity), the differential expression effect f3; ; (i.e. log scale expression level) and an
independent identically distributed error term &; ;. As z; and f3; ; are the same across all
samples within one condition, computing the sum of all L; distances enabled to filter the n

microarrays with minimal technical variation:
di=3 ) |Mi;— M (5.6)
ko j

All samples of each condition were ranked by their increasing order of d; and the top n
microarrays were selected for further processing.

11) Filtering of non-present and uninformative transcripts. In order to assess the context-
specific strength of associations, the transcripts of both regulator and target had to meet the
following two requirements: the genes needed to be expressed in all samples of interest
and to show significant variation across the different conditions. Regarding the latter, TGs
whose expression does not alter between the different conditions are unlikely to be under
context-specific regulation. All probe sets were filtered which had sufficient expression
intensities (> log>(20)) on more than 5% of the microarrays, and exhibited an adequate
variation across samples (probe set expression interquartile range > median expression

interquartile range) 2761,

Inferring condition-specific regulation by ANOVA

To score regulatory associations of the prior model in terms of condition-specific relevance,

the non-parametric, nonlinear correlation coefficient 2 (eta squared)?’”! was utilized.
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This variable was derived from a two-way ANOVA and enabled the quantification of
the mutual dependency between a regulatory pair based on gene expression profiles over
different experimental conditions. Observed expression data was modeled with n replicates
and & conditions as responses of two factors X¢ (condition) and X (RG and TG), their
potential interaction X¢ X X and the proportion of variation which cannot be explained
by the model € (measurement noise). Variance can be expressed in terms of the sum
of squared deviations from the mean (sum of squares, SS)?’8. Accordingly, a two-way

ANOVA splits the total sum of squares (SS7) into four parts:
SST = SSx. + SSx; + SSx-xx; +SSe (5.7)

Here, SSx,. reflects the effect of differential gene expression between the conditions, SSx,,
is the difference in means of the expression profiles of RG and TG, SSx.xx, denotes
the joint effect of both factors and SSe quantifies the variation due to inaccuracy of
measurement. For each regulatory pair two matrices of size n X k containing the expression
values of the RG and the TG were extracted, respectively. From equation 5.7 the mutual
dependence in gene expression between the different conditions was computed for each
Z-score standardized expression matrix . It was defined as the fraction of total variation
explained by the variation in the data between conditions:
2 SSx.

Nés = g with né, €0,1] (5.8)

This value can be interpreted in the same way as common correlation coefficients. It
was taken account that N> does not explicitly test for negative regulation: the sign of the
RG data was reversed and né . was calculated, respectively. The final score was defined
as N = max(na,,ng_)1>?
otherwise as stimulation. The detailed procedure is illustrated in Algorithm 5.1 and
Algorithm 5.2.

Regulatory associations showing a strong conditional dependency between RG and TG,

. Interactions with ng 4 < 77%7 were signed as repression,

i.e. having a high n? score, were assumed to be of high relevance. To test this dependency

for statistical significance an F-test was conducted. For each 17? the corresponding F-value

1 Z-score(x) = % with  is arithmetic mean and ¢ is the standard deviation of x.



114 5 Global modeling of miRNA-mediated regulation

was calculated by dividing the effect variance of factor X¢ by the total variance:

MSy,

Fxe = MSy’

SS;
with MS; = d—f’ andi€ {Xc,T} (5.9)
i

where the degrees of freedom were chosen dfy. =k—1and dfy =2 xn xk—1. P were
obtained from the F-distribution and adjusted by the Benjamini-Hochberg procedure [>7"!
to control the false discovery rate (FDR).

Algorithm 5.1: Compute summed squared deviation from mean (sum of squares)
Data: Number of biological replicates n, number of conditions &, expression matrix of

regulator r and target ¢, number of gene roles ¢

Result: 12

1 begin

2 SS7t—0 > Total sum of squares
3 S$Sx. <0 > Sum of squares for factor condition
4 UT # > Total arithmetic mean
5 fori<— 1tokdo

6 My <0 > Arithmetic mean for factor condition
7 for j — 1tondo

. e pixe + i)

9 SST <—SST+(r,~7j—/.LT)2+(tl-,j—,ur)z
10 end for
1 SSx. — SSx. +2q(ux. — ur)?
12 end for
B | nre SSSTXTC
14 return n2

15 end
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Algorithm 5.2: Rate condition-specific strength of association
Data: Number of biological replicates n, number of conditions k, expression values of
regulator R and target T (r resp. ¢ matrices of size n X k), number of gene roles
g=2(@.e RorT)
Result: Condition-specific dependency nr%lax, Sign of interaction s
1 begin

2 s 0 > Sign of regulation (—1 = repression, 1 = stimulation)

3 N2 — —1 > Mutual dependency

4 for r€ Rdo

5 fort €T do

6 r— %f" > Z-norm by arithmetic mean u and standard deviation &

7 t— [;—,“f > Z-norm by arithmetic ¢ and standard deviation o
P —r > Inversed R expression

9 ni «— ANOVA(n, k, r, t, g) > Analysis of variance, refer to Algorithm 5.1

10 n% «— ANOVA(n, k,7, t, q) > Analysis of variance, refer to Algorithm 5.1

1 if ni > n? then

12 ifn2, < n_% then

13 N2y n}r > Positive association

14 s—1

15 end if

16 else

17 if N2 < n? then

18 N2ax — N2 > Negative association

19 s——1

20 end if

21 end if

22 end for

23 end for

24 return (12, s)

25 end

5.2.3 Evaluation

Comparison to existing tools

For the performance assessment COGERE was compared with the common methods
mirConnX 2371 and MAGIA2 231,
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Performance assessment of the integration function

The set of mRNA expression data was taken from the miRNA transfection study performed
by Linsley et al.['3%. The data was obtained from the NCBI Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) under accession GSE6838. Expression was mea-
sured at 24 h post-transfection featuring maximal mRNA silencing but minimal secondary
effects by protein depletion. The expression profiles of HeLa, HCT116 Dicer® and DLD-1
Dicer®™ miRNA transfected cells relative to mock-transfected cells were computed. Probe
IDs were mapped to NCBI Gene accession numbers. The probe with the lowest log ratio P
for each gene was selected. To obtain statistically meaningful results, only experiments for
which each prediction tool scored at least 150 interactions were retained. The final set was
composed of 18 expression profiles containing 10 miRNAs (miR-106b, miR-16, miR-15a,
miR-20a, miR-195, miR-103, let-7c, miR-107, miR-17-5p, miR-103).

COGERE prior scores were computed without the information of validated interactions
to make the scores comparable among approaches. To mimic the integration functions of
mirConnX [>37) and MAGIA2[?3%1, the 6 miRNA target prediction algorithms incorporated
in the COGERE prior score were used. The scoring scheme of mirConnX was implemented
by weighting a miRNA:TG association by the proportion of algorithms predicting the
interaction. For MAGIA?2 all 57 possible intersections between the 6 miRNA target
prediction algorithms were computed. Spearman’s rank correlation was conducted for the
observed gene log, fold-changes following miRNA transfection versus the scores computed
for the miRNA:TG interaction. Further, a precision-recall analysis was performed. Here,

the top and bottom 20% of candidate TGs were selected based on their expression changes.

Benchmark of prediction accuracy

An overview of the in silico gold standard preparation is shown in figure 5.2A. An in silico
gold standard of 80 regulatory networks extracted from a human source network com-
posed of 64 029 experimentally verified interactions was generated using GeneNetWeaver
(version 3.1)[2891 Each sub-network contained 500 nodes and a varying number of edges
(min = 852, median = 1226 and max = 1421) of which 50% were set to occur in a
given set of conditions to obtain a balanced test set. Stochastic dynamical models of
gene regulation accounting for molecular and experimental noise were applied to simulate

matched expression data of mRNA and miRNA. The steady-state expression of all genes
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Figure 5.2 | Outline of the performance assessment. A | (i) Sub-networks were extracted from a
known GRN from human. Each edge was randomly assigned a regulatory sign (red = stimulation,
blue = repression) and a class: positive, if it was occurring in a given set of conditions, negative
otherwise (dashed lines); (ii) the condition-specific GRNs were endowed with detailed dynamical
models of gene regulation accounting for independent and synergistic interactions, as well as
molecular and measurement noise; (iii) the set of dynamic sub-networks were simulated to produce
steady states of gene and miRNA expression for a variety of conditions; (iv) several approaches
were queried to infer the condition-specific GRNs from the matched in silico expression data; (v)
the accuracy of the predicted networks was evaluated based on the area under the precision-recall
curve metric against the true condition-specific GRNs (gold standard) and compared to random
network predictions. B | To obtain noisy data sets, a defined number of microarrays was sampled
from any condition (here: C1, C2, C3), shuffled and added to the expression data set.

mRNA/ miRNA

mRNA/ miRNA

was simulated for 60 conditions [c.f. NCI-60 cancer microarray project/?*!1], with five
replicated measurements each. A precision-recall analysis was applied to determine the

accuracy of the inferred condition-specific interactions. Also, a precisiongje,-recall analysis
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was conducted to estimate the accuracy of the predicted regulatory signs:

12NG]
G|

QNG
2]

0G|
s1gn |QﬂG|

recall = ,  precision = , precision (5.10)
where € is the set of predicted interactions for a given score threshold and G the set
of condition-specific interactions in the gold standard. The precisionsg, measure was
defined by considering also the sign of an interaction (£2;, G,). By changing the threshold,
precision-recall (PR) curves were generated !. Subsequently, the area under the curve
(AUPR and AUPg;,,R) was computed. To evaluate the predicted models against results
from random guessing, a null model was constructed. For each expression set in the gold
standard a condition-specific network was computed by sampling the scores and sings
from a uniform distribution. This procedure was repeated 100 times and the median AUPR
and AUPg;g,R values were recorded for each expression set. For technical details about the
construction of the benchmark suite and the application of the prediction methods refer to

Appendix A.

Case study data

The raw total gene signals of the NCI-60 Agilent microarray measurements were taken
from the Liu ez al. study!'3¢]. Six cell samples (MCF7, HCT116, HT29, K562, SK-MEL-2
and CAK1-1) were labeled in quadruplicated and the remaining samples were labeled in du-
plicate. In accordance with the manufacturer, probe intensities < 5.0 were set to 5.0. Spots
were removed if the gene was not detected on the microarray. The data was quantile nor-
malized!!'3! and log, transformed. All probes were assigned a miRBase ID or Entrez Gene
ID, respectively. Finally, the set contained 789 miRNA probes measuring 533 genes and
26 091 mRNA probes of 16 651 genes. Processed data from the NCI-60 DTP human tumor
cell line screen measuring the activity of 19 941 chemical compounds (drugs) in NCI-60
cell lines were obtained from CellMiner (CellMiner; http://discover.nci.nih.gov/cellminer/;
version 1.4, July 2013). Expression values were averaged for replicates of cell lines. As

proposed by Liu ez al. 11391 relationships between drug activity and gene expression were

1 For details on PR curves and their relation to the common receiver operating characteristic, please refer
to Davis and Goadrich (2006) (2811,
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scored by Pearson’s correlation coefficient.

5.3 Results

5.3.1 Comprehensive information integration

As the prior model of COGERE defines the hypothesis space for the inference of condition-
specific regulation, the information integration step has to be extensive. Several sources
containing regulatory interaction information were combined to a unique, directed graph
constituting a static model of feasible gene regulation. Each interaction was weighted by a
prior score computed by a domain-specific integration function. COGERE contained a
regulatory network with 5481 057 interactions for human and 3 472 682 interactions for
mouse; thereof, 85 157 human and 18 389 murine interactions had the highest prior score
of 1. The prior networks were composed of 22 523 (human) and 21 342 (mouse) genes
with at least one interaction; thereof, 2 273 human and 2 007 murine genes were annotated
as TFs and 1 028 human and 661 murine genes were annotated as miRNAs.

As a first attempt to globally characterize the topology of a network, the degree distribu-
tion is usually analyzed. The number of regulated genes per regulator, i.e. out-degrees,
and the number of regulators per regulated gene, i.e. in-degrees, were following an
exponential distribution Py (k) = Ae~* (R2,, ~ 0.94, R?, ~ 0.76, Kolmogorov-Smirnov
statistic ~ 0.13) rather than a Poisson probability function Py (k) = M,f—,% (R2,, ~0.02,
Rl-zn ~ (.11, Kolmogorov-Smirnov statistic ~ 0.53). The latter defines a random network
topology?8?!. The out-degrees exhibited a broader distribution with a lower Y coefficient
(y ~ 3.8 x 107%) resembling rather a power law, i.e. more regulators have many targets,
whereas the in-degree distribution had a narrow exponential decay (y ~ 5.1 x 1073). This
implies that a single TG is less likely to be regulated by a high number of RGs combinato-
rially. This so-called ’EIPO’ topology (exponential in-degree and power-law out-degree)
has been suggested to reflect the molecular limits on the number of regulators that can
simultaneously exert an effect on the TG expression!2832841 In any case, however, most
nodes of the prior networks exhibited a low connectivity, while very few nodes had a very
high degree. It was therefore felt that the common concept of a hub-containing structure
with some highly-connected global regulators and many less connected fine-tuners 28>

was applicable to the integrated networks. This observation can be more sharpened using
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any prior score cut-off.

Comparing the amount of high-confident interactions (prior score > 0.9) to recent data
pools, the presented model contained an extensive set of qualitative information: 294 394
TF:TG, 11258 TF:miRNA and 316 875 miRNA:TG interactions in human. In comparison,
ENCODE 28! featured about 27 386 TF:TG, TransmiR 271! 353 TF:miRNA and the recent

release of miRTarBase 272!

about 45 540 miRNA: TG human regulatory associations. Since
there was less data available for mouse, the information gain was even higher: 199 308
TF:TG, 4 105 TF:miRNA and 156 779 miRNA:TG high-confident interactions. In compari-
son: TRANSFAC 2791 had 1 118 TF: TG, TransmiR 16 TF:miRNA and miRTarBase 13 405
murine interactions. The TransmiR database provided regulatory associations for only 9%
of human miRNA genes and 2% of murine genes. This shortcoming was substantially
improved in the presented study by extensively collecting data from existing studies and
carefully predicting promoter sequences. It was considered that miRNA genes can be
embedded within a protein-coding host gene, and/or being part of an independent tran-
scriptional unit, and/or can have their own promoter. COGERE predicted transcriptional
regulation for 51% of all human and 50% of all murine miRNA genes (as annotated in
miRBase 19). This was an increase compared to existing integrative approaches that model
transcriptional regulation of about 29% (MAGIA2[%91) to 31% (mirConnX [%3"1) of human
miRNA genes and between 46% and 47% of murine miRNA genes, respectively.

Regulatory interactions were mined from all available biomedical text and from databases,
enabling the storage of relevant references. The current prior model contains 141713
references for 97 816 interactions in human and 44 950 references for 25 142 interactions
in mouse.

It was of interest to know whether relevant information can be extracted from such an
elaborate collection. Fur this purpose, general co-regulation patterns between TFs and
miRNAs were mined exemplary. Here, the null hypothesis that the number of shared targets
is not greater than expected by chance was measured by means of the Hypergeometric
distribution:
w0 ()

P(l‘ij,tl',l‘j,T):l— Z 7
k=0 (\T\)

where t € T denotes the number of targets regulated by either RG i or RG j or by both RGs

(5.11)
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(tij)- Requiring a minimum prior score of 0.9, the null hypothesis was rejected (Bonferroni
corrected P < 10™*) for 11002 synergistic interactions of 211 transcriptional and 273
post-transcriptional regulators in human. Among these the tumor suppressor TP53 and the
oncomir mir-21 were found with the strongest evidence to regulate a common set of genes
(Bonferroni corrected P = 1.56 x 1072%; P = 3.57 x 10~%° in mouse). This observation
suggests that mir-21 overexpression impairs the tumor-suppressive function of the TP53
pathway. Indeed, it has been reported that mir-21 inhibition resulted in mRNA level
upregulation of several TP53 TGs which are required for TP53 activity in breast cancer
cells289]. Recently, Ma et al. 1?71 examined the functional interaction between TP53 and
mir-21 in vivo. They reported that loss of mir-21 has a substantial effect on apoptosis
of TP53-deficient cells and concluded that inhibition of mir-21 would be a promising
strategy in cancer treatment inducing cell death against TP53-deficient tumors overcoming
chemoresistance. Using the prior network, a detailed investigation on the shared targets
is feasible. Please note that this analysis did not take context-specific co-expression and

co-regulation of biological pathways into account.

5.3.2 Improved weighting of miRNA:TG interactions a priori

Since COGERE integrates six miRNA target prediction algorithms into a unique scor-
ing framework under consideration of individual target scores, it was of interested to
know whether the integration function improves previous approaches such as the ordinary
intersection of several tools.

First, the COGERE prior scores were compared with the prior scores computed by the in-
tegration function used by mirConnX 2371, The latter weights each miRNA:TG interaction
by the fraction of target prediction tools confirming a potential regulation. The outcome is
a prior network with a discrete score distribution composed of {0, 1/6,1/3,1/2,2/3,5/6,1}.
To obtain the intrinsic value of how well the weights describe the regulatory potential of
an interaction, the overall ranking performance of both scoring schemes was evaluated.
For this purpose, Spearman’s rank correlation was conducted between the observed log;
expression change following miRNA transfection and the prior weights of the miRNA:TG
interactions, respectively. Figure 5.3 A shows that both attempts for combining multiple
target prediction tools exhibited a better performance compared to the average performance
of all individual tools. At this, the COGERE prior score strongly outperformed the basic
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Figure 5.3 | Evaluation of the prior score of miRNA:TG interactions. A | Rank correlations
(vertical bars) between predicted interaction weights and observed mRNA log;, expression changes
measured post-transfection of 11 miRNAs in three cell lines!'3%). The lower the correlation
coefficient, the better represents the scoring framework the efficiency of a miRNA-mediated
regulation. Weighting miRNA:TG associations using the COGERE prior score outperformed the
basic scoring framework applied by mirConnX!?*” in 94% of cases. Both scoring frameworks
improved the average performance of all single target prediction algorithms. The error bars denote
the 95% confidence interval for the mean. B | Mean precision-recall curve of the COGERE prior
score ranking the top 20% most downregulated targets (positives) and 20% least downregulated
targets (negatives) of each transfection data set. Shown are also the mean precision-recall values
for all intersections of » miRNA target prediction algorithms. For a given recall the ranking by
the prior score yielded an average advantage of 7.5% points in precision compared to the simple
tool intersection applied by MAGIA2[?*1. The F-measure denotes the harmonic mean between
precision and recall. The shaded area indicates the 95% confidence interval for the mean.

weighting used by mirConnX. In contrast to the prior score, the simple combination of
target prediction tools was not optimized to describe potential miRNA-induced expression
changes. In 16 of the 18 experiments, the performance of the prior score outperformed
the basic scoring framework which constituted a significant improvement (paired signed
rank test P = 1.7 x 10™%). In all except one case, the COGERE integration function was
superior to a blindfolded random selection of a single algorithm.

Second, to analyze the performance of the prior score and the intersection of tools as
used in MAGIA2%! all 57 possible intersections composed of at least two of the six
algorithms were generated. The precision metric was defined as the fraction of predictions
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that are true positives and recall as the proportion of actual positives that are correctly
identified as such. Figure 5.3B shows that the prior score strongly improved the precision
of the prior network over almost all values of recall. On average, the ranking by prior
scores yielded a significant advantage of 7.5% points in precision (paired signed rank test
P = 8.8 x 10~'") compared to any tool intersection. Interestingly, the intersection method
was not straightforward and thus did not assure a gain of precision for a higher number of

intersected tools on the expense of recall.

5.3.3 Advanced inference of condition-specific interactions

An in silico benchmark set (80 networks of size 500 nodes with corresponding steady-state
expression data) was generated. The implemented framework was in accordance with the
approach proposed by the Dialogue for Reverse Engineering Assessments and Methods
(DREAM) competition!?8Y1. This allowed to test COGERE against a known ground
truth and to compare it to the common approaches mirConnX 237 and MAGIA2[%3°1. To
measure prediction accuracy, the area under the precision-recall curve (AUPR) and the
area under the precisionggy-recall curve (AUPgo,R) was calculated. At this, the recall
metric described the fraction of predicted condition-specific interactions defined by the
gold standard, precision denoted the proportion of true condition-specific predictions in
the result set, and precisionjg, the fraction of correctly predicted regulatory signs. The
performance advancement of each algorithm over the null model (random guessing) was
computed and denoted as AAUPR and AAUPg;,,R, respectively.

First, it was evaluated how well the algorithms infer condition-specific edges from
the expression data. Figure 5.4A shows that all tested algorithms performed better than
random guessing predicting the whole condition-specific model (A AUPR > 0 for RG:TG).
Here, COGERE (median AAUPR = 0.294) exhibited a significantly higher accuracy
(Mann-Whitney U-test P = 4 X 10~1%) than mirConnX (median AAUPR = 0.079) and
MAGIA2 (median AAUPR = 0.054). COGERE achieved major overall improvements for
the prediction of TF:TG as well as miRNA:TG interactions compared to existing tools.
The major drawback of mirConnX and MAGIA2 was their low accuracy in predicting
transcriptional regulation; both tools had their strength in detecting post-transcriptional
regulation by miRNAs (AAUPRtr.rg < AAUPR,irNA:TG)-

Second, the accuracy of predicted signs of the regulatory interactions was investigated
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Figure 5.4 | Accuracy of predicted condition-specific regulation. A | AUPR values for each
inference method for predicting condition-specific interactions. Shown is the deviation A from
the null model (random guessing). COGERE outperformed mirConnX?*7l and MAGIA2?¥]
on the prediction of condition-specific gene regulation tested against TF- and miRNA-mediated
regulation (RG), only miRNA-mediated regulation (MIR), and only transcriptional regulation (TF).
B | AUPg;znR values for each inference method for predicting the condition-specific sign of an
interaction. Shown is the deviation A from the null model (random guessing). Precisiongjg,-recall
curves were computed to determine the fraction of correctly predicted condition-specific regulatory
signs for each value of recall. COGERE exhibited an excellent accuracy tested against TF- and
miRNA-mediated regulation (RG), only miRNA-mediated regulation (MIR), and only transcrip-
tional regulation (TF). The accuracy of mirConnX and MAGIA?2 in predicting transcriptional
regulation was low.

(Figure 5.4B). Again, the AUP;;q,R values obtained by the tools were higher than the values
obtained by the null model, whereat COGERE (median AAUPg;,R = 0.456) substantially
outperformed mirConnX (median A AUPg;g,R = 0.127) and MAGIA?2 (median A AUPg;e,R
=0.073). Apparently, COGERE precisely determined the signs for both kinds of regulatory
interaction for all values of recall. mirConnX and MAGIA2 exhibited similar lower
accuracy profiles for TF: TG interactions compared to miRNA regulatory associations.
The A AUPg;gnRmirna:TG Values obtained by mirConnX were significantly higher than the
values of MAGIA2 (Mann-Whitney U-test P = 2.2 x 10712),
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5.4 Case study: Human cancer GRN

mRNA and miRNA profiles from tumor samples are frequently published. Having only
been used to extract tumor-classifying molecular signatures!!3%! or confirming predicted
miRNA:TG interactions!>7], these expression data sets contain more information to be
exploited. The condition-specific relevance of regulatory interactions was computed for
the NCI-60 data panel which involved 60 cell lines originating from prostate cancer,
lung cancer, breast cancer, melanoma, ovarian cancer, hematologic cancer, kidney cancer,
colorectal cancer and malignant glioma. The top 10% predictions by COGERE (Table 5.1)
were considered as highly relevant tumor specific interactions. This network is referred
as the cancer GRN. In the following, it will be shown that the inferred GRN enables
the systematic analysis of gene regulation in human cancers. This will demonstrate the

potential of COGERE to reveal conditional regulatory landscapes.

Table 5.1 | Network characteristics of the human cancer GRN. Listed are the network statistics
for the full inferred GRN and the subnetwork used in this study: the number of RGs and TGs, the
number of their interactions, and the highest predicted P of a condition-specific interaction; prior =
1 denotes the fraction of interactions with a prior score of 1 and reference denotes the proportion of
interactions with a reference.

NCI-60 GRN RG=TF RG =miRNA TG Interactions (prior =1, reference) max. P
Full 473 251 8853 634 863 (4%, 5%) 0.67
Study 387 180 5869 63486 (3%, 7%) <1072

5.4.1 The inferred GRN discovers causal RGs in cancer

To investigate whether the genes contained in the predicted GRN were substantially related
to the condition of cancer, 2 760 known gene-cancer associations were extracted from
HuGENavigator?8! for all cancer cell lines contained in the NCI-60 data. Altogether,
2477 cancer-related genes were measured by the NCI-60 microarrays, of which 1 192 were
contained in the inferred GRN. This denoted a significant enrichment of cancer-related
genes (odds ratio = 1.2, Fisher test P = 2.1 x 10_7), consistent with the expectation that
the inferred GRN should hold a higher fraction of cancer-related genes than expected by

chance. Further, cancer-related TFs with at least one TG were significantly overrepresented
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(odds ratio = 2.2, Fisher test P = 4.1 x 10719). Five of the 10 most highly connected TFs
(ELF3, EHF, ETS2, ETVS and KLF6) have been reported to play a role in carcinogenesis.
The enrichment was examined by using all 518 genes listed in the cancer Gene Census
database!?%%). Again, the GRN showed a significant high content of cancer-related genes
(odds ratio = 1.4, Fisher test P = 7.7 x 10~%) and regulatory TFs (odds ratio = 2.1, Fisher
test P = 2.2 x 107%) even without filtering the database for NCI-60 tumors. This result
suggests that the inferred GRN can be a valuable resource to extract information regarding
cancer-specific gene regulation in general.

Next, it was of interest to know whether the human cancer GRN was able to recapitulate
miRNAs that are both, namely dysregulated in malignant cells and at the same time causally
linked to specific oncogenic processes. The miRNAs contained in the GRN were compared
to entries in PhenomiR %], a manually curated database of miRNAs that are dysregulated
in diseases. All nine cancers of the NCI-60 panel were included. The Disease Ontology
resource 2! was used to manually map the NCI-60 cell lines to PhenomiR disease terms
(Table C.6). Remarkably, a highly significant enrichment of known dysregulated miRNAs
was observed: 164 miRNAs in the inferred GRN were previously shown to be dysregulated
in tumors of the NCI-60 data set (odds ratio = 6.0, Fisher test P =4.5 x 10~ 12. Table 5 2).

To investigate whether the dysregulated miRNAs contained in the human cancer GRN

Table 5.2 | Enrichment of NCI-60 cancer types. Listed are the numbers of miRNAs measured by
the microarray (column: In database) and contained in the cancer GRN (column: In study) that are
known to be dysregulated in a NCI-60 cancer. Also the corresponding odds ratio with its raw and
FDR adjusted Fisher Test P is shown.

NCI-60 cancer In database Instudy Odds ratio P FDR adj. P
DOID: 10283, prostate cancer 223 127 331 1.7x107'" 7.8x 107!
DOID: 1324, lung cancer 261 147 462 24x1075  21x1071
DOID: 1612, breast cancer 296 146 342 26x10710 59x10710
DOID:1909, melanoma 286 134 250 52x10797  7.8x1077
DOID:2394, ovarian cancer 205 100 199 51x107%  57x107%
DOID:2531, hematologic cancer 211 121 311 1.1x107'% 32x10°1°
DOID:263, kidney cancer 4 3 223 25x107%  25x107%
DOID:3070, malignant glioma 124 77 246 7.6x1077  9.8x 107"

DOID:9256, colorectal cancer 172 103 280 3.6x107% 6.5x107%
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were also known to hold a causal influence on cancer phenotypes, the causal relationships
annotated in mirR2Disease were manually mapped to PhenomiR. It was striking that 48%
of the miRNAs in the GRN that were known to be dysregulated were also annotated to
causally affect cancer phenotypes (odds ratio = 1.7, Fisher test P = 4.3 x 1073). Among
the top 10 of the most highly connected miRNAs, all were known to be dysregulated
and seven were assigned a known causal relationship (mir-27a, mir-23a, mir-17, mir-21,
mir-29a, mir-20a and let-7b); among the top 25, all were dysregulated and 80% causal. In
general, the higher the number of predicted condition-specific targets by COGERE, the
higher was the probability that a miRNA exhibited a causal relationship to cancer (Figure
5.5A); e.g. of the 5% of miRNAs with the highest number of targets, 67% were causal,
whereas for the 5% of miRNAs with the lowest number of regulatory interactions no causal

relationship was known.
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Figure 5.5 | Degree distributions of the cancer GRN. A | Fraction of miRNAs that have been
reported to be causally linked to specific oncogenic processes (y-axis) for each fraction of miRNAs
with the highest (light gray) or lowest (dark gray) number of targets in the cancer GRN (x-axis).
miRNAs with a high number of predicted cancer-specific TGs have been more often reported to
be causal than miRNAs with a low number of predicted cancer-specific TGs, e.g. 78% of the top
15% of miRNAs with a high out-degree had a causal role in cancer compared to only 22% of
the bottom 15% of miRNAs with a low out-degree. B | Empirical out-degree distributions of all
RGs. In average, RGs with a predicted association with an altered chemosensitivity of cancer cells
exhibited 75 (increased drug response) or 81 (decreased drug response) more targets than any RG
contained in the cancer GRN (background).
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5.4.2 RGs associated to the hallmarks of cancer

The fact that a miRNA or a TF is contained in the inferred cancer GRN did not implicate
that this RG plays a role in key oncogenic processes. Hanahan and Weinberg!?°1:2%?1
proposed 10 traits of cancer that govern the transformation of normal cells to tumor cells:
i) self sufficiency in growth signals, ii) insensitivity to antigrowth signals, iii) evading
apotosis, iv) limitless replicative potential, v) sustained angiogenesis, vi) tissue invasion
and metastasis, vii) genome instability and mutation viii) tumor promoting inflammation,
ix) reprogramming energy metabolism, and x) evading immune detection. Plaisier et
al.'?%3] prepared a set of Gene ontology?!?! biological process terms representing the
10 hallmarks of cancer. This collection was employed to analyze TGs for functional
enrichment. 1393 genes were found involved in key oncologic processes in the cancer
GRN which denoted a highly significant over-representation (odds ratio = 1.3, Fisher test
P=6.6x10"1h.

Next, it was of interested to know which RGs in detail interact with these genes and are
subsequently associated with the hallmarks of cancer. The functional enrichment analysis
of the target sets of each RG recovered 31 miRNAs and 85 TFs that were predicted to
regulate at least one process in oncogenesis (FDR adjusted Fisher test P < 0.05; Table
5.3).

Table 5.3 | RGs associated to the hallmarks of cancer. Listed are the hallmarks of cancer with
their corresponding Gene Ontology IDs and their associated RGs (target gene enrichment odds
ratio > 1 and FDR adjusted Fisher test P < 0.05).

Hallmark Regulator gene(s)
Evading Apoptosis CTBP2, ELF1, ESR2, let-7B, mir-18B, mir-21, mir-
G0:0043069, GO:0043066, GO:0045768 210, mir-23A, mir-23B, mir-24-1, mir-24-2, mir-

7-1, JUN, KLF10, KLF2, KLF4, KLF6, NFKB2,
SMAD3, TFDP2

Evading Immune Detection FLI1, mir-181B-1, mir-29A, NFKB2, PATZI,
GO0:0002837, GO:0002418, GO:0002367, SIX6, SMAD7

GO:0050776

Genome Instability and Mutation PPARD

GO0:0051276, GO:0045005, GO:0006281
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Table 5.3 (continued)
Hallmark

Insensitivity to Antigrowth Signals
G0:0009968, GO:0030308, GO:0008285,
GO0:0045786, GO:0007165

Limitless Replicative Potential
G0:0001302, GO:0032206, GO:0090398

Reprogramming Energy Metabolism
G0:0006096, GO:0071456

Self Sufficiency in Growth Signals
G0:0009967, GO:0030307, GO:0008284,
GO0:0045787, GO:0007165

Sustained Angiogenesis
GO0:0045765, GO:0045766, GO:0030949,
GO0:0001570

Regulator gene(s)

AR, BATF3, CEBPA, CEBPB, CEBPD, CTBP2,
E2F2, E2F7, EGR1, EHF, ELF1, ELF3, ELF4,
ELK3, ERG, ESR1, ETS1, ETS2, ETV4, ETV6,
ETV7, FLI1, FOSL1, FOSL2, GABPB2, GATA®6,
HIVEP2, HMGA2, HNF1A, let-7b, mir-106a, mir-
130a, mir-142, mir-152, mir-17, mir-181a-1, mir-
181b-1

STAT1

E2F2, mir-210, mir-23b, JUN

AR, BATF3, CEBPD, E2F2, E2F7, EGR1, EHF,
ELF1, ELF3, ELF4, ELK3, ERG, ETS1, ETS2,
ETV4,ETVS5,ETV6, ETV7, FLI1, FOSL1, FOSL2,
GATAG6, HIVEP2, HMGA2, HNF1A, mir-130a,
mir-142, mir-152, mir-17, mir-181a-1, mir-181c,
mir-18b, mir-192, mir-19b-1, mir-19b-2, mir-21,
mir-22, mir-23a, mir-23b, mir-24-1, mir-24-2, mir-
27a, mir-27b, mir-29a, mir-29b-1, mir-29b-2, mir-
365a, mir-365b, mir-7-1, JDP2, JUN, KLF10,
KLF11, KLF13, KLF15, KLF2, KLF3, KLF4,
KLF5, KLF6, KLF7, KLF8, KLF9, MLXIPL,
MYB, MYC, MYCN, NCOA3, NFATC1, NFKB2,
NPASI1, RARG, RELB, RUNX2, SMAD3, SNAI2,
SOXS5, SOX9, SP5, SPDEF, SPIB, STATS5A,
STATSB, STAT6, TCF3, TFAP2A, TFDP2, TOX,
XBP1

BATF, CEBPB, E2F2, EGR1, ELF1, ELF3, ELK3,
ERG, ETS1, ETS2, ETV1, FLI1, FOSL1, FOSL2,
let-7b, mir-142, mir-17, mir-181a-1, mir-181b-1,
mir-18b, mir-192, mir-21, mir-210, mir-22, mir-
23a, mir-23b, mir-24-1, mir-24-2, mir-27a, mir-
27b, mir-29a, mir-30a, mir-365a, mir-365b, mir-7-
1, JDP2, JUN, KLF10, KLF11, KLF12, KLF15,
KLF2, KLF3, KLF4, KLF5, KLF6, KLF7, KLF9,
MYB, MYC, NFIB, NPAS1, NR3Cl1, PPARD,
RUNX2, SMAD3, STATSA, TFDP2, TWIST?2
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Table 5.3 (continued)

Hallmark Regulator gene(s)

Tissue Invasion and Metastasis AR, BATF, BATF3, CEBPA, CEBPB, CEBPD,
GO0:0042060, GO:0007162, GO:0033631, E2F2, E2F7, EGR1, EHF, ELF1, ELF3, ELF4,
GO0:0044331, GO:0001837, GO:0016477, ELK3, ERG, ESR1, ESR2, ETS1, ETS2, ETV]1,
GO0:0048870, GO:0007155 ETV4, ETVS5, ETV6, FLI1I, FOSL1, FOSL2,

GABPB2, GATA6, HIVEP2, let-7b, mir-106a,
mir-130a, mir-142, mir-152, mir-17, mir-181b-
1, mir-18b, mir-192, mir-20a, mir-21, mir-22,
mir-23a, mir-23b, mir-24-1, mir-24-2, mir-27a,
mir-27b, mir-29a, mir-29B-1, mir-29b-2, mir-
30a, mir-365a, mir-365b, mir-7-1, mir-7-2, JDP2,
JUN, KLF10, KLF11, KLF12, KLF15, KLF2,
KLF3, KLF4, KLF5, KLF6, KLF7, KLF8, KLF9,
MLXIPL, MYB, MYC, MYCN, NFATCI1, NFIB,
NFIC, NFKB2, NR3Cl1, RELB, SMAD3, SNAI2,
SOX5, SOX9, SP5, SPDEF, SPI1, SPIB, STAT5A,
STATSB, STAT6, TCF3, TCF4, TFAP2A, TFDP2,
TOX, TWIST2, XBP1

Tumor Promoting Inflammation FLI1, mir-181b-1, mir-29a, NFKB2, PATZ1, SIX6,
GO0:0002419, GO:0002420, GO:0002857, SMAD7
GO0:0002842, GO:0002367, GO:0050776

Notably, 10 TFs and nine miRNAs were associated with at least five hallmarks of cancer
(E2F2, ELF1, FLI1, JUN, KLF2, KLF4, KLF6, KLF10, NFKB2, TFDP2, mir-7-1, mir-
18b, mir-21, mir-23a, mir-23b, mir-24-1, mir-24-2, mir-29a and mir-181b-1) suggesting
that these genes are promising candidates for follow-up studies. Further, the evasion of
inhibition mechanisms blocking proliferation and the metastatic potential of a cell were
observed to be under strong control. Together 100 RGs (71 TFs and 29 miRNAs) were
predicted to regulate “insensitivity to antigrowth signals’ followed by 97 RGs (71 TFs and
26 miRNAs) associated with ’tissue invasion and metastasis’. The latter hallmark is one of
the defining features of malignant tumors making putative regulators excellent biomarker
candidates. COGERE proposed a mechanistic explanation of how TFs and miRNAs act

together to directly regulate genes involved in metastatic processes (Figure 5.6).
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Figure 5.6 | Metastatic interplay of TFs and miRNAs. Nodes are biological processes (colored
parallelogram), TFs (triangle) and miRNAs (diamond). Arcs denote an enrichment of RG targets in
a metastatic process and are colored, respectively. The top five predicted negative regulations of
mir-20a are listed exemplary in the table shown at the lower right corner; e.g. the THBS1 repression
by mir-20a which was described by Dews et al.!?* and holds a condition-specific regulation score
of 0.71. This interaction affects cell adhesion and cell migration (blue and orange arcs). Note that
the shown network was filtered by regulatory interactions having at least one literature reference
(PubMed ID).
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In this example, the cancer model suggested that mir-20a, a member of the miR-
17~92 miRNA cluster, regulates cell adhesion and cell migration in tumor metastasis
through direct suppression of thrombospondin 1 (THBS1). An upregulation of miR-17~92
has been described to promote angiogenesis and tumor growth!?**, whereas increased
THBSI1 expression suppresses growth or metastasis of some tumors in vivo and inhibits
angiogenesis!?%>]. The THBS1 downregulation has been observed primarily at the level of
mRNA turnover[?%! which is probably induced by miRNA-mediated mRNA degradation.
These findings return a predicted cancer-specific interaction as an interesting subject for

further investigations.

5.4.3 The cancer GRN predicts potential targets for cancer pharmacology

Given a condition-specific GRN, a key next step for the extraction of novel testable hy-
potheses is the integration of orthogonal information. Drug insensitivity or drug resistance
are major obstacles in the successful treatment of cancer. Several studies have suggested
that robustly positive or negative correlations between drug activity and gene expression
reflect a role in chemosensitivity of cancer cells. A negative correlation may indicate that
cancer cells with an increased expression level of mRNA or miRNA are less sensitive to the
drug compound than other cells. On the contrary, if the correlation is positive, co-treatment
with mRNA or miRNA may be used to enhance drug potency or reduce toxicity 1362971,
The correlation of miRNA and mRNA expression profiles versus drug activities over all
NCI-60 cancer cell lines was calculated. First, the informative value of the correlation
coefficients was validated by comparing the results to Glso values measuring the growth
inhibitory power of the test agent provided by Blower et al.[*®”). They experimentally
tested the activity pattern of 10 drugs following either inhibitor or precursor transfection of
three miRNAs (let-7, mir-16 and mir-21) in A549 cell lines. The correlation coefficients
were in good agreement with the average logjo fold-changes of Glsy values between
lowered and raised miRNA levels (R2 =038, P=27x10"% Figure 5.7).

To gain a first broad perspective on the potential roles of the predicted RGs in cancer
therapy, the associations of 163 anti-cancer compounds and all genes contained in the
cancer GRN were analyzed. The set of drugs was restricted to compounds that were in
clinical trial or were approved by the FDA (U.S. Food and Drug Administration). 45
miRNAs and 125 TFs accounting for 105 drug-miRNA and 309 drug-TF correlations
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Figure 5.7 | Comparison of correlation coefficients to GIs) values. Shown are the log;o fold-
changes of Gls values between lowered and raised miRNA levels measured by Blower et al. [2°7)
(x-axis) and the corresponding correlation coefficients of three miRNA expression profiles and
10 drug activites (y-axis). A good agreement between the experimental measurement and the
correlation coefficients was observed (R> = 0.38, P =2.7 x 107%).

were observed reaching the a-level of P < 10~ proposed by Blower ez al.[?7]. This
denoted a significant amount of potential drug targets (miRNA odds ratio = 2.0, Fisher
test P = 9.6 x 1073; TF odds ratio = 2.9, Fisher test P = 1.9 x 10_16). Among these,
23 miRNAs and 71 TFs were predicted to decrease the cancer cells’ chemosensitivity.
This set of chemoresistance factors exhibited in average 1.7 times more targets (factor 2.9
for miRNAs, and factor 1.5 for TFs) than any RG contained in the whole GRN (Mann-
Whitney U-test P = 6.7 x 10~%; Figure 5.5B). For example, mir-22 was predicted with the
highest amount of negative effects to compound potencies; it had the third most regulatory
interactions in the cancer GRN. The aberrant expression of this oncogene has been reported
to correlate with poor survival >8] and the results indicate that tumor cells expressing
mir-22 are less sensitive to drug treatment. Based on its high number of targets, mir-22
may be an interesting subject for further assessments of its role in resistance to anticancer
agents. It remains to be evaluated if mir-22 is suitable as a prognostic biomarker. However,

if mir-22 plays a causal role in drug resistance, its inhibition may enhance the response of
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malignant cells to cancer drug treatment.

Further, 25 miRNAs and 79 TFs that exhibited a positive correlation coefficient were
observed. These were assumed to increase the susceptibility of NCI-60 cells to the action
of at least one cancer drug. Interestingly, the proto-oncogene MYC was found as the RG
which was predicted to positively affect the potency of the highest number of compounds.
This TF is constitutively expressed in many cancers causing augmentation of cell prolifera-
tion?*?!. To investigate whether this TF plays a substantial role in chemosensitivity, all
positive correlated drug-gene associations composed of the 591 predicted MYC targets
and the 8 MYC affected compounds were extracted (Figure 5.8). The expression of the
MYC targets POLG2, CAMKY, VASH2, and OGFOD?2 in cancer cells was predicted
to increase the potency of oxaliplatin. Active derivatives of this compound form both
inter- and intra-strand DNA cross-links resulting in inhibition of DNA replication and
transcription and cell-cycle nonspecific cytotoxicity. POLG2 polymerase promotes DNA
synthesis. Oxaliplatin has been described to induce lesions in the human MYC gene 3091,
Cancer treatment with oxaliplatin may reduce the positive cancer-specific regulation of
POLG2 by MYC. This, in turn, may cause an induced inhibitory effect on DNA synthesis,
entailing an enhanced cytotoxic effect of this compound. In addition VASH2 is involved in
positive regulation of angiogenesis, a typical process taking place in cancer cells. Loss
of induced regulation of this gene may induce a secondary anti-cancer effect. Further,
two compounds lowering estrogen levels were found: calusterone and dromostanolone
propionate. It has been proposed that the human MYC gen-regulatory region embeds an
estrogen-responsive cis-acting element*°!! inducing rapid MYC expression in presence of
estrogen. Further, estrogen repletion is accompanied by significant reduction in leukocyte
adhesion®%?l. The MYC target ICAM3 was predicted to increase the susceptibility of
cancer cells to the action of both anti-estrogen compounds. This gene is a member of
the intercellular adhesion molecule family and has been reported to induce cancer cell
proliferation, cellular radio-resistance, cancer cell migration, and invasion (3031 Based on
the COGERE predictions one can hypothesize, that the reduction in estrogen may reduce
MYC expression resulting in reduced ICAM3 function entailing an increased drug potency.
Another interesting compound for further investigations may be imexon, a 2-cyanoaziridine
derivate with antitumor activity. This compound was predicted to be positively affected
by the highest number of MYC targets. These 27 TGs contained amongst others BCL2, a

well-known oncogene encoding an anti-apoptotic protein.
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Figure 5.8 | Drug-gene associations of MYC targets. MYC was predicted to increase the sus-
ceptibility of NCI-60 cells to the action of eight drugs (trapezoids). Shown are the MYC targets
contained in the inferred cancer GRN (genes are ellipses, TFs are triangles) which were predicted
to positively affect the potency of at least one of the eight compounds. Gene-drug associations are
illustrated as edges (colored by compound).
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5.5 Conclusion

In contrast to the previous chapters, this study focused on the global modeling of miRNA-
mediated gene regulation. The experimentalist is confronted with large data sets of high
dimensionality reflecting the interplay of thousands of cellular components. Therefore,
it is an imperative computational challenge to develop predictive and actionable models
to investigate functionality as well as spatial and temporal behavior of these components.
As the availability of experimental evidence in databases and the biomedical literature
sharply increases, the systemic integration of existing knowledge to support the analysis
of genome-wide molecular expression signatures of complex diseases becomes a bare
requirement.

Firstly, a method was presented for the graph-oriented integration of several millions
of annotated, literature-mined as well as pure sequence-based miRNA:TG and TF: TG
interactions to a uniform scoring framework (prior score) of prior knowledge for human
and mouse. It was illustrated that the integrated model comprehensively covers current
knowledge provided by common experimental databases, the biomedical literature and
computational predictions. The presented comparison to existing attempts revealed that
the COGERE prior score constitutes a major improvement in the task of weighting miRNA
regulation by their feasible regulatory effect on a TG. A basic combination of multiple pre-
diction tools as conducted by mirConnX 237 performed better than a blindfolded random
selection of any individual algorithm. Compared to a sighted systematic selection, this
scoring scheme performed effectively worse than several individual tools (Figure 5.9). In
contrast, the COGERE prior score improved the accuracy in 78% of all transfection experi-
ments (median rank = 1) directly compared to any of the six integrated target prediction
algorithms. Further, priors based on the COGERE scoring framework exhibited effectively
more accurate information than a simple intersection of tools as used by MAGIA2 (2391,
The presented evaluation showed that a basic intersection of tools also implies a strong
limitation in usability: it remains unclear to the user which tool combination fits best his
requirements regarding recall and precision. Despite the current success of the COGERE
prior score, ongoing progress in data collection by high-throughput ’-omics’ techniques
will further improve the prior knowledge.

Secondly, to detect condition-specific regulation from mRNA and miRNA expression
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Figure 5.9 | Comparison of the miRNA:TG prior score to single algorithms. Shown are the
Spearman’s rank correlation coefficients between the log; mRNA expression fold-change following
miRNA transfection and the predicted scores for the regulatory interactions of each tool. Approaches
integrating multiple target prediction algorithms are marked with an asterisk. It can be seen that
the weighting of regulatory interactions by the prior score of COGERE is better than that of any
individual prediction tool in 14 of 18 experiments (median rank = 1). The basic scoring system
(median rank = 4) integrating all six sequence-based prediction algorithms is not optimized for
the task of ranking the regulatory potential of miRNA:TG interactions and, thus, is not better than
individual methods such as TargetScan (median rank = 2). It is of note that some of the individual
target prediction tools were not trained on genome-wide expression data (e.g. PicTar) and thus
perform worse compared to supervised approaches (e.g. TargetScan) in this assessment.

data, COGERE scores the relevance of prior interactions by measuring the mutual de-
pendency between a RG and its TG. By applying an ANOVA the non-parametric and
nonlinear correlation coefficient % and its corresponding FDR adjusted P are derived.
Here, neither a discretization of the expression data nor a setup with matching samples
is required, increasing the robustness of COGERE. It was shown that COGERE strongly
outperforms existing approaches in predicting condition-specific GRNs from synthetic
expression data and held an excellent performance for predicting the regulatory sign of an
interaction. Notably, the presented analysis denotes a comparative evaluation of MAGIA?2

and mirConnX performance for the first time.



138 5 Global modeling of miRNA-mediated regulation

COGERE is capable to infer GRNs from unmatched data implying two advantages:
1) expression data can be obtained from different studies/measurements with identical
experimental setups, ii) detection of signals in at least a subset of experiments increases the
robustness of the method against noise. COGERE balances the gene expression data by a
condition-specific and individual-independent filtering of microarrays. The discriminatory
power of the inference is sharpened as the variation within the conditions (technical
variation) is reduced, whereas the differences between the conditions (biological variation)
become more pronounced. An increased robustness of accuracy to detect context-specific
effects due to differential TF- or miRNA-mediated regulation was observed in a benchmark

with noisy expression data (Figure 5.2B and Figure 5.10).
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Figure 5.10 | Robustness analysis of the inference method. COGERE does not require matched
data. Thus, balancing the expression sets, i.e. constituting an equal number of microarray samples
for each condition, enables the filtering of appropriate measurements. COGERE computes the L
distance between all samples of the same condition to filter the optimal set of measurements of
common size having the least sum of distances. The filtered expression data is used for condition-
specific regulation inference. Pre-processing the expression data by this method maintains the
inference accuracy compared to pre-processing by balancing the expression sets by random selection
(Random) and inference without balancing the expression data (Unbalanced).

It should be noted that the performance assessment was based on simulated data. The
in silico benchmark set was based on sub-networks from a human GRN with known
interactions and thus was expected to exhibit similar types of structural properties and

regulatory dynamics as realized in biological gene networks. Indeed, the evaluation
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represented a simplified model of gene regulation. An in silico benchmark does certainly
not replace the careful evaluation in vivo, but enables a systematically and efficiently
performance validation and comparison of prediction methods over multiple networks.
Unfortunately, to date an elaborate in vivo data set composed of mRNA and miRNA
expression for several conditions as well as the corresponding experimentally verified
condition-specific GRN is not available for human or mouse. It is likely that methods
that do not perform well in a synthetic benchmark will perform even worse with real
biological datal3% In contrast to artificial data, linear correlation between a RG and a TG
is a weak indicator of true condition-specific regulatory relationships in real expression
measurements. This assumption is supported by a recent comprehensive and comparative
evaluation of inference methods rating a two-way ANOVA-based approach best on the
prediction of real GRNs from Escherichia coli and Saccharomyces cerevisiae expression
data[?3?],

The NCI-60 cancer expression study was used to show that COGERE is a valuable
resource to promote hypothesis-driven clinical research. It was demonstrated that the
GRN inferred by COGERE captured disease-relevant regulation of cancer. A significant
reliable proportion of known cancer-related genes and miRNAs were found in the predicted
network. At this, causal miRNAs exhibited a higher number of condition-specific targets
mirroring their central role in cancerogenesis. A relatively small subset of RGs were
identified that play a role in multiple oncogenic processes in cancer. By using the inferred
GRN, a mechanistic insight into the TF and miRNA interplay during the regulation of
metastatic processes was provided. Since many somatic passenger mutations may also alter
expression profiles, it is not expected that all condition-specific correlations are necessarily
related to cancer driving processes.

The presented results suggest that the GRN contains novel, testable and interesting
hypotheses regarding cancer-specific regulation beyond what is documented in existing
databases. Moreover, the network predicted TFs and miRNAs that play a role in the
chemosensitivity to approved cancer drugs and made novel predictions regarding the role
of 116 RGs mediating the expression of genes associated with oncogenic processes. A
predicted strong drug-gene relation may indicate a causal role in drug response (362971 If
such a relationship proves to be causal, it could be exploited to improve cancer therapy.
It was shown that condition-specific GRN information inferred by COGERE enables

the analysis of potential drug targets in the context of gene regulation. Based on these
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observations, it can be proposed that the predicted GRN contains several hypotheses
promoting cancer pharmacogenomics.

In summary, this chapter introduced COGERE, a novel, generalizable approach that
boosts signal-to-noise for the modeling of large-scale condition-specific regulatory land-
scapes in any cellular contexts. COGERE implements a robust inference method together
with a concept of high-level data integration. It features the capacity of rational inter-
pretation of expression signals in very large data sets in the context of known regulatory

relations driving the discovery of new biology.

5.6 Availability

A web-based user interface was implemented using the Java framework VAADIN (version
6; https://vaadin.com) to enable an easy and fast access to the COGERE application (figure
5.11). COGERE is freely available under http://mips.helmholtz-muenchen.de/cogere .

5.6.1 The cancer GRN

To facilitate reader access and usability all data contained in the predicted NCI-60 cancer
GRN was made available for further investigations: two files containing 634 863 ranked
regulatory interactions and 1721 242 scored gene associations to FDA approved com-
pounds. It was aimed to provide cancer researchers a valuable resource to explore the
cancer-specific GRN. All data can be downloaded from the COGERE website.

5.6.2 The prior network database

The species-specific prior networks were stored in a normalized MySQL database scheme
(MySQL; http://www.mysql.com; Figure B.6). To be able to integrate diverse resources,
an elaborate collection of IDs, symbols and synonyms were stored from Entrez Gene 233!,

Entrez Refseq!'®3!, Ensemble!' 8], Unigene3%!, and miRBase (version 13 to 18)[>4].

5.6.3 The COGERE application

To provide experimentalists a tool to infer GRNs for their condition of interest, a stand-

alone application of COGERE was developed. The implementation is based on Java (Java;
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Figure 5.11 | Web-based user interface of COGERE. Via the web server the data discussed in
this chapter can be accessed: the scored GRN from the NCI-60 expression data with all ranked gene-
compound associations and the COGERE stand-alone application (interface section 'Download’).
Further, the integrated prior networks are available: shown are exemplary the first 15 regulators of
MYC with a minimum prior score of 0.5 in the human network. Listed are all Entrez gene IDs,
official gene symbol names, the prior score, and the references. Gene and literature IDs are directly
hyperlinked to the corresponding external databases (Entrez Gene and PubMed).

https://www.java.com) and R (R; www.r-project.org) and as such can be run on all major
computer architectures. For convenience, a graphical user interface based on the Java SWT
widget toolkit (Java SWT; http://www.eclipse.org/swt) is provided to ease the configuration
and the usability of COGERE (Figure 5.12). However, modules to use the application
as a pure command-line tool (e.g. for remote usage on a server) were provided. As the
inference of large-scale GRNSs is computationally intensive, COGERE provides the option
to use multiple cores for parallel computing. Further, it is fully compatible to Revolution
R (Revolution R; http://www.revolutionanalytics.com), a fast enterprise-class big data-big
analytics R-based platform. For the sake of performance, the stand-alone application

comes with a local copy of the prior information database. COGERE will notify the user
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COGERE: Prediction of condition-specific gene regulation

File Help

Expression filter settings o
IGR filter (quantile): |0.5 |
PoverA filter (P): ‘b 05 ‘ PoverA filter (A): ‘ 20 ‘

[ No expression filter

Pior model settings

Minimum prior score: ‘0‘5 ‘ Organism: [Homo sapiens v

mRNA expression data

Accession of mMRNAs: ‘Ensembl Gene (e.g. ENSG00000122852) v

mRNA data file: ‘ Select

[J Use only mRNA expression

miRNA expression data

Accession of miRNAs: ‘M\rbase Transcript (e.g. MIMAT0000452) v

miRNA data file: ‘ Select

Result file name: ‘ Select

Run!

Figure 5.12 | COGERE application. Shown is the graphical user interface (runnable on Linux,
Mac OS, and Windows; 32 bit and 64 bit versions). Modules checking for new versions, the
configuration and the input parameters were implemented. Instructions for the usage, the required
input and details on the computed output are provided in the "Help’ section.

if the local version of the prior network is out of date. Since gene regulation is inferred
from expression data, COGERE requires processed (background corrected, normalized,
and log,-transformed) mRNA and miRNA expression matrices from at least two different
conditions with two samples each (tab-separated file). The first column denotes the probe
ID, the first row contains the condition for each sample. Probes may be labeled by either
Entrez Gene, Ensembl, Unigene, RefSeq, miRBase accession numbers or symbol names.
The output consists of a ’.csv’ file with the condition-specific scored gene regulatory
network (can be opened in any common spreadsheet application) and the execution log file
which lists amongst others the filtered samples and probes. A README file is provided

for detailed information. The binaries can be downloaded from the COGERE website.



CHAPTER 6

Conclusion and perspectives

The field of small non-coding regulatory RNA significantly evolved in the past two
decades. At this, our understanding of post-transcriptional control mediated by miRNAs
coupled with protein complexes (miRNPs) has greatly expanded. An important milestone
in this field was the experimental capturing of miRNP:mRNA complexes in a cellular
context. The advent of the AGO-bound CLIP-Seq protocol enabled, for the first time, the
assignment of transcriptome-wide miRNP target sites. Until then, quantitative information
on the miRNP:target pairing process was not available. The experimental detection
of miRNA targets was mainly either guided by error-prone computational predictions
or conducted by differential target expression analysis following miRNA inhibition or
overexpression. Verified miRNA target sites were rare and biased, i.e. they were relying
on the computational miRNA:mRNA duplex model. Thus, this data was not adequate for
the comprehensive analysis of miRNA targeting. Although expression measurements were
genome-wide, they were obscured by secondary effects and did not uncover the location
of miRNA target sites. Consequently, various studies, including this doctoral thesis, were
initiated briefly after the publication of the first two AGO-bound CLIP-Seq measurements
in mammals.

Despite the differences in scope and methodology, early research focused on similar and
highly relevant topics. Amongst others, they included the motif search in miRNP binding
regions (e.g. Chi et al., 20121391, the general prediction of RNA:protein interactions (e.g.
Muppirala et al., 20111307]) the identification of determinants of miRNA action (e.g. Wen
et al., 201111291 "and the implementation of novel miRNA target prediction algorithms
(e.g. Betel et al., 2010'#2]; Liu et al., 201383%81; Rennie ez al., 201413%1). Some studies
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focused on the precise inference of miRNA:mRNA interaction maps integrating specific
experimental characteristics (e.g. Corcoran et al., 2011 [310]. Erhard et al., 2013131 1]) and
miRNA expression profiles (e.g. Chou et al., 20131312]),

The first part of this thesis focused on the investigation of miRNP binding site charac-
teristics. miRNAs act as guide molecule recruiting the miRNP to partial complementary
sequences, preferentially on the 3’-UTR, of target mRNAs. Thus, the mining of general
sequence patterns in miRNP binding regions that represent the sufficient minimal set of
operative response element (MRE) types was of particular interest. The presented study
focused on the pairing of the miRNA 5’-terminal seed sequence, since it was designated
the highest relevance for target detection!3!3]. Notably, there were also several other
studies elucidating alternative non-canonical modes of miRNA target recognition using
AGO-bound CLIP-Seq data, such as the G-bulge site model at position 5 — 6 of the miRNA
5’-end by Chi et al. in 2012.

I defined a set of six canonical seed types by applying a multi-branched recursion
pattern mining strategy on murine and human AGO CLIP-Seq data. Here, the seed size
ranged between 6 — 8 nt, suggesting that the first eight nucleotides constitute the effective
nucleation surface. Concurrent evidence was given by the later structural study of the
miRNP by Elkayam et al.[*3]. They proposed that the first 10 nt of the miRNA 5’-end
are preorganized for pairing in an A-form helix conformation by the AGO2 protein. The
nucleotides 9 — 11 were proposed to face away from incoming target transcripts and, thus,
are not available for nucleation!?’!. Controversy still exists regarding the pairing of the
very 5’-terminal nucleotide of the miRNA seed sequence. It has been hypothesized that
its structural conformation makes it unavailable for pairing!?’!. However, a large fraction
of functional target sites was found complementary to this (¢-)position. An explanation
may give the AGO?2 structure and the target sequence. Backbone atoms of a rigid loop
in the middle domain of the AGO?2 peptide chain exhibit a higher affinity for the base
of uracil monophosphate3%). This results in a bias of guide miRNA sequences starting
with a uracil. The majority of conserved bona fide target sites exhibits an 3’-terminal
*adenine anchor’®?). Thus, using a-seed types may be the favored scenario to encode
MREs. However, it remains to be elucidated whether an adenine at the first position of
the target site is either presumably recognized by Watson-Crick pairing or directly by a
protein of the silencing complex.

Further, I observed that the repressive effect on the target transcript level is positively
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related to the length of the consecutive seed-complementary segment. Thus, short seed
types probably have only a minor role in direct gene regulation. However, these seed
types made up the major fraction (up to 67%) of pairing conformations found in bona fide
miRNP:mRNA complexes. This raises the question whether the primary role of these seed
types is miRNA sequestration. Evidence for this hypothesis is given by the competitive
endogenous RNAs (ceRNA) hypothesis proposed by Salmena et al. in 2011381, Here,
3’-UTRs are suggested to be not only cis regulatory elements controlling the stability of
the whole transcript, but also modulate gene expression in frans. The more transcripts
with bona fide MREs are available, the higher the competition for miRNA binding, and
ultimately, the lower the effective miRNA activity. This denotes an additional regulation
layer by which target transcripts crosstalk by impairing the miRNA-mediated regulation
of co-expressed genes. Further evidence comes from the study of Mukherji et al.°%! in
2011. They reported that effective miRNA regulation was strongly influenced by the
available miRNA concentration, the target mRNA level, and the strength and number of
embedded miRNA binding sites at the target sequence. In this context, it appears that long
seed-complementary sites may act in cis whereas 6mer seed types qualify mRNAs to act
as natural miRNA decoys due to their low impact on the stability of the host. Notably, the
analysis of target site conservation in mammals showed that the majority of non-conserved
sites (~ 75%) are covered by short seeds. This is in agreement with the general hypothesis
that the non-coding transcriptome plays a major role in the greater complexity of higher
eukaryotes®?!. Recently, miRNA-target interactions were associated to the evolution of
organismal diversity 3],

To date, the ceRNA research is still in its infancy and a lot of questions remain to be
answered. First evidences were found that ceRNA networks have implications in the
initiation and progression of human diseases®”!. Functionalizing ceRNA interactions
will undoubtedly lead to important insights about basic physiology. At this, functional
studies assessing to what extend the defined 6mer sites modulate the miRNA function
are of particular relevance. Further, the prediction of ceRNA crosstalks is depending
on the computational identification of MRESs on the relevant transcripts of interest. For
this purpose, the majority of existing algorithms are not comprehensive, since these are
limited on the detection of long seed matches and focus on conserved sites. This approach
condones its lower sensitivity for a higher specificity. Indeed, the prediction of miRNA

target sites relying on short seed types is challenging due to the very high false-positive
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rate — an issue which has not been solved yet. Future studies are required that elucidate
additional rules beyond miRNA:mRNA pairing. In particular, algorithms that are capable
of identifying trans-acting MREs with high specificity are of interest.

A first step in this direction was taken in Chapter 3 of this thesis. Sequence-based,
motif-based, structural and homology-based features of miRNP target sequences were
extracted. The AGO-bound CLIP-Seq data supported the discriminative power of the
characteristics that have been reported in literature. In addition, a novel feature for target
detection was suggested: the asymmetric nucleotide composition between guanine (G) and
cytosine (C). Chargaff’s second parity rule states that the fraction of adenine (A%) ~ the
fraction of tyhmine (T%) and C% ~ G% in polynucleotide chains!!38]. 3’-UTR regions
not bound by miRNP, in fact, almost perfectly followed this rule. But operative miRNP
binding sites exhibited a skewed nucleotide distribution of C% > G%. It has been argued
that violations of Chargaff’s second parity rule might be caused by RNA intrinsic structural
constraints! 1211391 Calculations of the local 3’-UTR structure revealed that a higher C%
> G% skew is correlated with a less negative free energy required to unfold this region.
Apparently, G nucleotides may be avoided in these regions. A reason may be the unique
potential of guanine to pair with cytosine and by wobble base pairing with uracil. Thus, a
higher fraction of guanine may induce local stem structures and subsequently lowers target
site accessibility. This may be an important determinant of miRNP binding since it has
been reported that the RISC is unable to unfold structured RNA [46],

This raises the question whether a good accessibility is already a sufficient condition
for unspecific AGO binding or if there also exists characteristic local folds. Several lines
of evidence support the second hypothesis. The feature analysis showed that accessible
regions are favored by AGO, but this feature by itself is not of high specificity. In
general, proteins with RNA-binding capability have a bias towards structurally accessible
binding sites!!8].
protein than the AGO containing miRNP. The 3’-UTR is covered with a variety of RNA-

binding proteins 341, For some of them structured cis-acting recognition elements were

Thus, these segments can be also bound by another RNA-binding

described. In example, the GAIT complex inhibits the translation of mRNAs that contain a
specific stem-loop secondary structure (GAIT hairpins) in their 3°-UTR 1831, Specific RNA
secondary structures also play crucial roles in various cellular processes, such as miRNA

processing or translation. In example, it has been reported that transcription through GC
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skew regions leads to the formation of long R-loop structures in vivo>'>11 Interestingly,
the whole miRNP binding region had a higher probability for negative selection than the
remaining 3’-UTR. This may indicate an evolutionary pressure to maintain the structure
of this region. Further, seed pattern analysis revealed that probably multiple miRNA
target sites are embedded within the same segment. Thus, inital miRNP binding may
be determined by additional coincidental factors beyond the sequence of the coupled
miRNA. Also the results obtained in Chapter 4 spotlight the relevance of a coherent
structure in the miRNP:target pairing process. Occuring genetic variation in the miRNA
targetome is assumed to be a contributor to complex traits in the human population. An
integrative framework was developed to determine trait-associated SNPs in the human
miRNA targetome. The set of variants was composed of SNPs reported by GWA studies
and proximal SNPs in strong LD. Besides a potential impact of these variants on seed-based
MRE:s, a significant polymorphic structure of the AGO binding region was found.

Therefore, it is reasonable to postulate that specific local RNA structures may 1) in-
crease target site accessibility, ii) serve as AGO recognition elements, and/or iii) enhance
miRNA:mRNA duplexing. For the latter two cases, the biophysical or biochemical elucida-
tion of the tertiary structure of miRNP binding regions will shed a clear light on the matter.
Due to the greater structural diversity of RNAs than proteins as well as the sensitivity of
RNA structures to ions, solvent, metabolites and other biomolecules, the computational
prediction of the in vivo RNA 3D structure has limitations3!6]. However, in recent years
great advances have been made in this field. Using novel tools will make a first pattern
mining of the miRNP structural ensemble a feasible future project. In this connection, also
the effect of specific genetic variants on secondary and tertiary RNA conformation is of
particular interest. To assess whether specific structures enhance miRNA:mRNA duplexing,
the particular guide miRNA sequence has to be known. Currently, this information is not
available for AGO-bound CLIP-Seq experiments, but novel protocols addressing this issue,
such as CLASH!"4!, are on their way.

It should be noted that the structural analyses have to consider the interplay between the
miRNP and other RNA-binding proteins. It has been shown that RNA-binding proteins

might act as switches, either potentiating or antagonizing miRNA-mediated silencing

1 R-loop structures are formed when transcribed G-rich/C-rich RNA strands anneal back to the template
C-rich/G-rich DNA strands or vice versa.
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by altering the local secondary structure of the target sequence®'”). Future work in
this field holds promising perspectives to increase our understanding of the topology of
post-transcriptional regulation networks.

Another potential future project is the elucidation of the evolutionary mechanism leading
to the GC skew in miRNP binding sites. It has been reported that C-to-T deamination is a
source of GC skews and has been linked to DNA methylation '8, The deamination of
5-methylcytosine on the antisense strand induces a G-to-A transition on the complemen-
tary strand. Notably, adenine has been assigned a prominent role as anchor nucleotide
for miRNA target sites!°?l. However, it remains to be clarified whether this epigenetic
programming or any alternative evolutionary mechanism contributed to the observed GC
imbalance.

Chapter 3 also presents the application of the extracted miRNP characteristics and the
canonical seed types to a real biological use case. By means of a SVM classifier the
novel interaction between miR-92a and WISP1 in the progressive fibrotic lung disorder
IPF was predicted. Notably, the implemented framework enables the generic selection
of the miRNA:target pairing model and allows the extension by novel features in the
future. Subsequent experiments provided strong evidence that the predicted interaction is a
novel important miRNA-mediated regulation in pulmonary fibrosis. Future projects will
address the clinical relevance of this interaction. Since miR-92a transcript levels and WISP1
expression are increased in IPF compared to unaffected controls, the treatment with miRNA
mimics is of interest. Very recently a highly compelling work was published heading in this
direction 311, Members of the Kaminski lab, the van Rooij lab, and the biopharmaceutical
company miRagen Therapeutics Inc. developed a miRNA-based treatment for IPF. They
showed that the intravenous injection of synthetic RNA duplexes resulted in increased
target miRNA levels in vivo of several days’ duration. Further, endogenous miRNA
function was restored leading to a blocking and reversing of bleomycin-induced pulmonary
fibrosis whereas target gene expression was not affected under basal conditions.

In Chapter 4, polymorphic miRNA-mediated gene regulation was analyzed. As men-
tioned before, trait-associated variants beyond the seed-pairing region were found which
likely affect miRNA efficacy. These were suggested to alter the local structure of the
target region or result in alternative spliced transcripts. The former mechanism has been
proposed to influence mRNA function in general 2913201 but was not directly related with

miRNA-mediated regulation before. One independent study conducted at the same time
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(Haas et al.'8]) and one very recent work (Day et al.2!1) reported similar results and
some first experimental evidence for this hypothesis.

Further, a set of 53 trait-associated 3’-UTR SNPs were annotated to potentially impair
miRNA activity and were associated to AEI performing an eQTL analysis. Some interesting
candidates for further detailed investigation were described. Of note, a cis-acting genetic
factor for IPF progression was not found.

Certainly, as other initial studies in this vein (e.g. Thomas et al., 2011 [322]. Richardson et
al., 2011181 Bruno et al., 2012[323]), the presented work requires further examination. A
major shortcoming is that the analysis was limited to in silico mutated reference sequences
rather than the actual mature transcripts bearing the trait-associated SNPs. In vivo sequence
information will shed light on the validity of the predicted mechanisms. In addition, the
haplotype block requires a more detailed functional assessment. While the trait-associated
SNPs were enriched in the 3’-UTR and related to AEI, other variants in LD may explain
the association signal. Recent efforts to annotate genome-wide transcriptional regulatory
elements, such as the Encyclopedia of DNA Elements (ENCODE) Project3?*!, allows
to consider alternative compelling mechanisms that are not mediated by miRNAs. Both
options, whole transcriptome sequencing (e.g. RNA Sequencing) and LD block dissection,
will certainly increase the specificity of this kind of studies. Since Ago-bound CLIP-
Seq data is limited to a single transcriptome, future measurements will extend the set
of validated miRNP binding sites, and consequential, raise the sensitivity to detect cis-
acting polymorphisms affecting miRNA regulation. Moreover, novel data from the 1 000
Genomes Project!??! exhibits an augmented map of human genetic variations which
increases the number of variants in LD with each GWA study signal by greater than
twofold compared with the HapMap resource!!88) used in this thesis.

Finally, in Chapter 5, the global miRNA-mediated regulation was modeled using the
novel approach COGERE. As the complexity of genetic interactions poses a strict limit to
the potential of network inference from expression data single-handedly, the large-scale
integration of complementary data, such as prior information from AGO-bound CLIP-Seq
data, is of high value. For this purpose, a comprehensive collection of regulatory inter-
actions was extracted from databases and literature containing in silico, in vitro, and in
vivo interaction data. A novel data integration framework was presented weighting tran-
scriptional and post-transcriptional interactions by their confidence. Since the robustness

of integrative inference methods directly relies on the prior model, the data integration
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procedure has to be thoroughly. Evaluation of the COGERE prior scoring scheme exhibits
superior performance compared to common integration approaches.

The prior model was created for human and mouse, and permanently stored as data
warehouse. Despite the current success of the COGERE prior score, ongoing progress
in data collection by high-throughput ’-omics’ techniques will further improve the prior
model. The COGERE database can be easily extended by recent information and any
further organisms of interest. It was made accessible via a web-based user interface. To
my best knowledge, this resource is the most elaborate collection integrating weighted
transcriptional and post-transcriptional interactions yet. It delivers an insight to active and
passive potential interactions for a gene of interest. Further, as I have shown exemplary,
parameters and characteristics of the topology of miRNA-mediated GRN may be elucidated
in future studies. Notably, the network comprise also transcriptional regulatory elements,
such as miRNA promoters. Since trait-associated SNPs affecting miRNA biogenesis were
rarely found in Chapter 4, complementing the presented analysis by information from the
prior database may also denote a perspective to increase sensitivity.

Following information integration, the mutual dependency between a RG and a TG
and the corresponding regulatory sign was inferred from gene expression data. For this
purpose, the non-parametric, non-linear correlation coefficient 2 was derived from a
two-way ANOVA. The computation of this measure has a good scalability with respect
to the number of genes, enabling the inference of large-scale networks. A comparative
assessment on simulated and synthetic data showed that COGERE improves state-of-
the-art GRN inference approaches. The application of COGERE to a real 60 cell line
cancer expression panel demonstrated its potential for biologically meaningful hypothesis
generation. COGERE was published as toolkit for academic use to allow the global GRNs
inference for any regulatory landscape of interest. While COGERE was developed in the
context of microarray analysis, it can be extended to other high-throughput methodologies
that measure gene expression levels.

The development of GRN inference methods is still evolving. A major limitation of
all studies in this field, is the lack of elaborate in vivo gold standards, i.e. expression
profiles and the validated global, interconnected view of the system’s transcriptional status,
respectively. Integrative inference methods, such as COGERE, will be useful in guiding
experimental designs to verify condition-specific regulatory interactions of interest.

Another relevant challenge that can be addressed by COGERE, is the identification of
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differential gene connectivity that associate to a given phenotype. It has been reported that
co-expression patterns rather than single gene expression variation determine phenotypic
differences3>’!. COGERE computes mutual dependencies between a regulatory pair from
the effects of differential gene expression between given conditions. Thus, inferring GRNs
for various conditions will enable the identification of connections changing between
phenotypes.

COGERE examines the fraction of total variation explained by the variation in the expres-
sion data between conditions. Based on this principle, another future project is supposable:
the network-assisted clustering of expression measurements. This is highly interesting
with regard to, in example, the stratification of cancer subtypes to shed light on tumor het-
erogeneity, or the spatial and local classification of cells in single cell measurements. The
general problem can be stated as follows: given unlabeled or anonymize expression data,
1.e. no condition is defined, a finite set of categories has to be found. Indeed, algorithms
solving this problem are emerging. However, the majority of existing analyses primarily
applies generic clustering algorithms, such as hierarchical clustering?2%!, k-means 3?71,
or principal component analysis3?8]. Recently, it has been reported that considering the
network information underlying the gene expression signals during the clustering process
raises the biological relevance of the computed classes32%).

COGERE defines the cluster label by the factor condition in the two-way ANOVA. By
sampling the factor levels, the global GRNs can be computed for all possible splits of the
measurement set. Using the prior information, the updated class labels can be scored by the
generated signal strength, e.g. by a function calculating the distance between the inferred
model and the prior model. Since an increasing number of measurements induces a quickly
growing search space, the grouping problem is NP-hard 331, Thus, a search heuristic has to
be implemented. With respect to the article of Hruschka et al. 33!, T suppose that adapting
the functions (fitness, selection, mutation, and crossover) of a Genetic Algorithm [330] may
be appropriate to solve this optimization problem. Finally, the most valuable GRN and the
corresponding clustering can be extracted.

In conclusion, since the first publication of an AGO-bound CLIP-Seq dataset, several
studies, including this doctoral thesis, have revealed a wealth of novel insights to miRNA-
mediated regulation. While it denotes a great progress in this field, the AGO-bound
CLIP-Seq techniques do not resolve some impediments.

Firstly, the measurements produced by this protocol are condition-specific, i.e. the
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major fraction of the miRNA and mRNA transcriptome is absent. Considering, that
the RISC may bind transiently and multiple targets, this deficit becomes even more
pronounced. To overcome this drawback, multiple experiments had to be conducted
for various cell lines during the last years. At this, the protocol is difficult to perform
restricting the number of successful applications. In example, PAR-CLIP requires cell
lines pre-incubated with photoreactive ribonucleoside analogs. Such a treatment implies
cell-specific limitations in nucleoside uptake, the likely incidence of toxic effects (332l
or the occurrence of cross-linking biases (Chapter 3). Further, it has to be noted that
CLIP experiments were mainly conducted using RNase T1. This endonuclease has a
strong preference to cleave after guanines!!'®). Thus, it has to be considered that extensive
cleavage may result in sequence reads with a lowered fraction of G nucleotides. However,
the amount of AGO CLIP-Seq data is still growing — a fact which raised the need for
a central repository (starBase!!?>3331). Its current implementation (version 2.0, release
of 2014) contains measurements of 18 cell lines in human and 16 cell types in mouse.
This enables to address further open questions, e.g. the miRNA targetome diversity across
tissue types 3343331,

Secondly, AGO-bound CLIP-Seq data alone gives only information on the miRNP
binding region, but no functional information. Thus, the type and strength of the effect
caused by RISC binding needs to be measured by complementary experiments.

Lastly and most importantly, the identity of the guiding miRNA is still an unsolved
question. Only the extraction of the full RISC:mRNA duplex will enable to display the
whole target site details. Notably, while writing these lines, the novel promising miRNA
cross-linking and immunoprecipitation (miR-CLIP) protocol was published 3363371, Com-
parable to the AGO-bound CLIP-Seq technique, the cross-linked complex is isolated
by immunoprecipitation and the purified target RNA fragments are characterized using
high-throughput sequencing. The unique feature of this approach is the usage of a synthetic
capture miRNA which makes bound mRNAs specific to a single miRNA. This informa-
tion complements existing approaches, and with applications to a broad range of known
miRNAs, a more detailed depiction of the miRNA targetome can be expected in the near

future.
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Supplemental text

In silico benchmark of inference methods

A set of known regulatory interactions (experimentally verified in any condition) in human
composing a GRN with 14 768 nodes and 64 029 edges (the source network) was created.
Depending on the node type, the nodes were labeled by either the mRNA Entrez Gene 1D
or the miRNA miRBase gene ID. Auto-regulatory loops were removed. Each interaction
was randomly assigned a regulation sign. GeneNetWeaver (version 3.1)[?39] was used to
extract 80 modules of size 500 nodes (twice the size of the benchmark suite A proposed by
Schaffter et al.?81) from the source network as follows: the parameter seed was set to
random vertex and neighbor selection was set to random among top 50%; networks holding
less than 33% regulator genes were discarded to avoid structures with many genes not
regulating any other gene. To obtain a balanced condition-specific gold standard, for each
sub-network 50% of its edges were randomly chosen to occur in the simulated conditions
(positive instances); the 50% of regulatory associations that take not place in the simulated
conditions constitute the set of negative instances. Note that extracted sub-networks had
identical numbers of nodes but the number of edges varied.

GeneNetWeaver was applied to endow each network contained in the gold standard with
a detailed kinetic model considering both, independent and synergistic gene regulation.
Stochastic differential equations (Langevin equations with coefficient = 0.05) were selected
to model internal noise in the dynamics of the network and added experimental noise to

the gene expression data sets by applying the model of noise in microarrays (similar to a
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mix of normal and log-normal noise). Synthetic gene expression profiles of 60 conditions
(c.f. NCI-60 cancer microarray project!>*!1) were produced by simulating steady-states
of multifactorial perturbations (variation of the network steady state) to the original
network. Replicates were generated by executing the stochastic simulation of the identical
perturbations (condition) for 5 times, i.e. 5 samples per condition were obtained. Note
that expression values of replicates of the same condition differ due to the intrinsic and
experimental noise. For each network contained in the gold standard, all measurements
were combined to a matched data set of mRNA and miRNA gene expression.

Finally, 80 sets of expression profiles for 60 conditions and their corresponding true
condition-specific interaction graph (order = 500, size: min = 852, median = 1226, max =
1421) was obtained. Note that the in silico expression data is on linear scale, whereas
actual microarray data is logy-scaled. This transformation step was passed as the dynamic
model of GeneNetWeaver produces data that lends itself well to a linear scale and thus
does not vary over several orders of magnitude like raw microarray data. Positive as well
as negative signs for the regulation by TFs and miRNAs were considered as all three tools
(COGERE, mirConnX, MAGIA?2) predict repression and stimulation for any class of RG.

All condition-specific interactions were predicted with the stand-alone version of
COGERE. All filters (sample distance, probe intensity, and probe variance) were switched
off. The parameters for mirConnX 237! as well as MAGIA21?*! were chosen as pro-
posed by the authors in the respective references. First, the simulated expression data
was uploaded to mirConnX and the condition-specific regulatory network was computed
as follows: organism = human hgl9 (GRCh37) 20111109, gene ID = Entrez Gene ID,
microRNA ID = accession, association measure = Pearson, prior weight = 0.3, integration
function = weighted sum.The regulation threshold was set to 0 to reach the maximum
possible sensitivity. As mirConnX labels the nodes by the internal symbol names (stored
in its database), the symbols were translated to the corresponding official Entrez Gene or
miRBase ID. At this, synonyms were considered and ambiguous as well as not assignable
cases were resolved manually (e.g. systematic gene name errors such as 1-SEP, 1-MAR or
NaOG, MT-CO2). Second, all expression matrices of the gold standard were uploaded to
the MAGIA?2 web-server. The ID Type was set to Entrez Gene for the mRNA expression
data; for miRNA MAGIA?2 allows only transcript symbols. The variability filter was
skipped and Pearson Correlation was selected as inference method and the intersection of

TargetScan and DIANA-microT was chosen as prior.



APPENDIX B

Supplemental figures

A B C
- -WISP1  + WISP1
Y o _ 3-UTR 3-UTR
3" 2 = 39 :
> 5 =
E 5. . kDa < IPF Donor ¢ é 154 _T_
Z . -E 48 ..Q'i-. . # |WisP1 E i
= 1.0
" 130} ~<BesE SRS} -~ |coLiat W
> o
= -5 42 —— - |a-smA o 0.5
E = Donor (n=8) bt - . 8
g |=mIPF (n=7) 37 e o |lcaPDH <
-10 & 0.0 -l
MIR-92A N N
eC) Q’qy‘ %0 9{1,?‘

¢ & & &
&

Figure B.1 | Experimental confirmation of miR-92a regulation of WISP1. A | Expression of
miR-92a in donor (from unaffected lung tissue biopsies) and human IPF lung homogenate relative
to RUN43. miR-92a is significantly downregulated in IPF (Wilcoxon rank sum test P < 0.05). B |
Western blot analysis of WISP1 and pro-fibrotic markers COL1A1 and &-SMA in donor and human
IPF lung homogenate. GAPDH was used as loading control. Recombinant human WISP1 protein
(rhWISP1) and A549 cell lysates overexpressing WISP1 (PC WISP1) were used as loading controls.
It can be seen that WISP1 is upregulated on protein level in IPF. C | Luciferase reporter assays.
Black bars illustrate normalized ratios to reporter construct without WISP1 3’-UTR, miR-92a
inhibitor (I-MIR-92A) and the negative control (I-MiR-NCI); grey bars illustrate normalized ratios
to reporter construct with WISP1 3’-UTR. The activity of the reporter gene with the 3’-UTR
was significantly increased following miR-92a inhibition. Experiments were performed by and
figures were adapted from Berschneider et al., 20148 with permission of Elsevier (license number
3573240996630); * P < 0.05.
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Figure B.2 | miR-92a affects TGF-f1-induced WISP1 expression. A | Human pFB were treated
with TGF-f1 and transfected miR-92a mimics. Normalized log fold-changes of WISP1, COL1A1
and FN1 were computed. The housekeeper HPRT and untreated, non-transfected control cells
after 24 h served as reference for normalization. Transfection with MiR-NCI denotes the negative
control. Transfection with the miRNA mimic lowers the WISP1 level. B | WISP1 enzyme-linked
immunosorbent assay from pFB supernatants transfected with a miR-92a inhibitor. Suppression of
miR-92a significantly increased the WISP1 concentration. Experiments were performed by and
figures were adapted from Berschneider et al., 201439 with permission of Elsevier (license number
3573240996630); * P < 0.05.
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Figure B.3 | Correlation of miR-92a and WISP1 levels in vivo and ex vivo. RNA levels of
WISP1 (relative to GAPDH, A) and miR-92a (relative to RUN6, B) in rat whole lung homogenates
at day 7 and day 14 after infection with TGF-f1 bearing adenoviruses. WISP1 levels are increasing
while miR-92a concentration declines in vivo. Further, WISP1 was also found highly expressed in
non-fibrotic and fibrotic human pFB from IPF patients (RNA level relative to HPRT, D). Regression
analysis reveals a strong negative correlation between WISP1 and miR-92a in whole rat lung
homogenates (C) as well as in human non-fibrotic and fibrotic pFB (E). Lines above and below the
linear regression lines denote the 95% confidence interval. RNA levels were measured by RT-qPCR.
Experiments were performed by and figures were adapted from Berschneider et al., 20148 with
permission of Elsevier (license number 3573240996630); * P < 0.05.
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Figure B.4 | Probability distribution of correlation coefficients. Shown are the linear relation-
ships between the reference and mutated structures of miRNP binding regions. The lower the
coefficient the severer the structural shift. Below a coefficient of 0.55 the probability to observe a
chance of RNA secondary structure of this extent by change is less than 5%.
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Figure B.5 | Contribution of individual prediction algorithms to the prior score. Based on
pulsed SILAC data!®!l, individual scores of six miRNA target prediction algorithms were trans-
formed to a unified score weighting the regulatory potential of a miRNA:TG interaction, i.e. the
expected log, expression fold-change of the TG in human (A) and mouse (B). Additional CLIP-Seq
data was utilized to identify predicted targets located in a known AGO2 binding region. BC denotes
the biological complexity of the AGO2 binding region, i.e. a measure of reproducibility between
biological replicates or experiments; BC = 0 denotes target sites not located in any known AGO2
binding region. Shown is the average for each transformed score distribution for each biological
complexity. The error bars denote the 95% confidence interval for the mean. COGERE scores each
miRNA:TG interaction by the sum of the maximum predicted fold-change of each tool. Thus, the
vertical bars denote the average contribution of each tool to the final score, e.g. if a human miRNA
target site of TargetSpy is located in an AGO2 region with BC = 5, then TargetSpy will contribute
the highest fraction to the final miRNA:TG score.
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Figure B.6 | Integration framework and database scheme. (continued on next page)
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Figure B.6 (previous page) | TF:TG (orange) and miRNA:TG (yellow) regulatory interactions were
extracted from several heterogenous data sources. All validated data was manually pre-processed to
remove flat file inconsistencies, and multiple target predictions were integrated to a single unified
set of interactions. Since all resources use varying gene and transcript (tx) accession numbers, all
external IDs (extid) of a regulator (red arcs) and a target (blue arcs) were mapped to its unique
Entrez Gene ID (geneid, fromid, toid). All used MySQL tables are illustrated as blue boxes. The
interactions with their confidence, i.e. the prior score, are stored as directed edges (arcs) in the prior
table. In addition, the type of a regulator (miRNA or TF) and the references (table ref) are stored.
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Supplemental tables

Table C.1 | SNPs predicted to disrupt/dampen existing MREs. The first column lists the SNP
rs-numbers, in the second column the respective transcripts are given, the fourth column indicates
the conservation of the locus in mammals, and the fifth column lists the miRNAs for which MREs
were disrupted/dampened.

SNP
rs4564
1s6706

rs7089

rs7118
rs7119
1s8523

159253
rs10923
rs12439
1699779
rs835575

1s835576

RefSeq Conservation
NM_000108 v
NM_003302

NM_024107; NM_177441;
NM_001076674

NM_133458
NM_018200
NM_017770 v

NM_022756 v
NM_005496; NM_001002800

NM_013943

NM_024408

NM_024408

NM_024408

miRNA
miR-323-3p

miR-509-3p; miR-219-5p;
miR-508-3p

miR-545

miR-512-3p; miR-218; miR-455-5p
miR-571

miR-583; miR-1276; miR-203;
miR-539

miR-545

miR-299-5p

miR-338-5p

miR-381; miR-300; miR-1284

miR-559; miR-106b; miR-20a;
miR-340; miR-142-5p

miR-218
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Table C.1 (continued)

SNP
rs1045100

rs1047440
rs1058588
rs1379659
1s2229302
rs3816661

rs4770433

rs7350928

rs11713355
rs17574361

RefSeq Conservation

NM_001190266; NM_001190267;
NM_030803; NM_017974;
NM_198890

NM_153223; NM_001166226

NM_003761

NM_004787 v
NM_002145

NM_025240; NM_001024736

NM_014363 v

NM_001193466; NM_015443;
NM_001193465

NM_001134367; NM_003043

NM_001193466; NM_015443; v
NM_001193465

miRNA
miR-190b; miR-190

miR-503
miR-573
miR-602
miR-886-5p

miR-1278; miR-152; miR-148a;
miR-148b; miR-152; miR-148a;
miR-148b

miR-361-5p
miR-483-5p; miR-184

miR-487b

miR-583; miR-1276; miR-203;
miR-488
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Table C.2 | SNPs predicted to create/enhance MREs. The first column lists the SNP rs-numbers,
in the second column the respective transcripts are given, the fourth column indicates the con-

servation of the locus in mammals, and the fifth column lists the miRNAs for which MREs are

created/enhanced.
SNP RefSeq Conservation miRNA
rs1121 NM_015027 hsa-miR-892b; hsa-miR-647;
miR-149; miR-1254; miR-550;
miR-515-3p; miR-661
rs7089 NM_024107; NM_177441; miR-640
NM_001076674
rs7097 NM_015972 miR-335
rs7118 NM_133458 miR-556-5p
1s8523 NM_017770 v miR-548c-3p
1s9927 NM_002862 miR-634; miR-1226
rs10923 NM_005496; NM_001002800 miR-636
rs11700 NM_001950 v miR-328; miR-1291
rs12439 NM_013943 miR-421; miR-1324
rs12916 NM_000859; NM_001130996 miR-1909; miR-1262; miR-342-5p;
miR-608; miR-1207-5p
rs42039 NM_001145306; NM_001259 miR-509-5p; miR-509-3-5p;
miR-330-5p; miR-942; miR-544;
miR-1205; miR-593
rs232775 NM_001085487 miR-1909; miR-1266; miR-342-5p;
miR-608
rs823136 NM_003929; NM_001135664; miR-384
NM_001135663; NM_001135662
rs835575 NM_024408 miR-513a-3p; miR-587
rs835576 NM_024408 miR-1208; miR-210; miR-141;
miR-200a; miR-1914; miR-892a
rs1045100 NM_001190266; NM_001190267; miR-597
NM_030803; NM_017974;
NM_198890
rs1045407 NM_178549 miR-508-5p; miR-766;
miR-490-5p; miR-136
rs1047440 NM_153223; NM_001166226 miR-34c-5p; miR-449b; miR-34a;
miR-449a
rs2032933 NM_152308 miR-215
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Table C.2 (continued)
SNP RefSeq
rs2071518 NM_002514
rs2229302  NM_002145
rs2293578 NM_152264; NM_001128225
rs4819388  NM_015259
17350928 NM_001193466; NM_015443;
NM_001193465
rs8176751 NM_020469
rs11067231 NM_052845
rs11713355 NM_001134367; NM_003043
rs17574361 NM_001193466; NM_015443;

NM_001193465

Conservation

miRNA

miR-649

miR-542-5p; miR-769-3p
miR-575; miR-7; miR-335
miR-1915

miR-1308; miR-1262

miR-1287; miR-370; miR-34a;
miR-449a; miR-1207-5p

miR-624
miR-1267
miR-185
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Table C.3 | SNPs predicted to affect 3’-UTR splicing. The first column lists the SNP rs-numbers,
in the second column the respective transcripts are given, the third column indicates the conservation
of the locus in mammals, the fourth column denotes the distance to a reference splice site (negative:
5’ upstream of exon junction site; positive: 3’ downstream of exon border of mRNA), the sixth
column contains the type of the gained splice site (acceptor gain: Acc+, donor gain: Don+), the
score column contains the likelihood of NNSplice, and the last column provides the fraction of lost
miRNP binding sites.

SNP RefSeq Conservation Effect Distance Score Loss
rs7371 NM_006496 v Acc+ 341 0.53 0.18
rs42038 NM_001145306; Acc+ -881 0.85 0.29
NM_001259
rs699779 NM_024408 Acc+ -4013 0.51 1.00
1s2244967 NM_001031746 Acc+ -3054 090 0.50
rs4973768 NM_003615 v Don+ 1799 0.98 0.24
rs6722332 NM_018256 Acc+ -334 098 1.00

157528419 NM_001408 Acc+ 550 0.76  0.17
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Table C.4 | SNPs predicted to affect 3’-UTR secondary structure. The first column lists the SNP
rs-numbers, in the second column the respective transcripts are given, the third column indicates
the conservation of the locus in mammals, and the fourth column lists the correlation between the
reference and the mutated structure of the respective transcripts.

SNP
rs7444
rs12956
rs13099
rs42038
rs835575
rs1045407
rs1046917
rs2077579
rs2282301
rs2564921
rs3821301
rs4819388
rs10892082
rs11542478

RefSeq
NM_003347
NM_012234
NM_006827
NM_001145306
NM_024408
NM_178549
NM_024619
NM_004397
NM_006912
NM_052859
NM_001145909
NM_015259
NM_002572
NM_001077710

Conservation P
0.49

v 0.20
0.29

0.46

0.30

0.04

0.54

v 0.53
v -0.10
0.19

0.44

0.05

v -0.11
0.46
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Table C.5 | Features of miRNA target prediction algorithms. List of tools combined into a
unified scoring-framework with each feature set explicitly considered by the respective algorithm:
finding target sites in the coding-sequence (CDS) and 3’-UTR, requiring a Watson-Crick pairing
between the miRNA seed sequence and the target sequence (Seed), computing thermodynamic
features such as free energy of the miRNA:mRNA duplex (Energy), calculation of context features
such as the local AU content of the target site (Context), conservation of the target site (Cons.),
usage of expression data to weight feature scores based on the target fold-change (FC) and mining
for miRNA:target pairs in biomedical text (Text). The last column contains the selected parameters
for each tool to predict targets.

Algorithm CDS Seed Energy Context Cons. FC Text Parameters
DIANA [236] v v v v v Score > 0.6
miRSVR [142] v v V4 v Ve Score < —0.1,
Cons. > 0.566
PicTar!!0?! v v v Only conserved
PITA 3/15[49] v v v Seed > 6mer,
No gaps in seed,
Cons. > 0.9
TargetScan 6.1 130! v v v v Only conserved
TargetSpy 104 v v No seed match,
high specificity
miRSel 263 v Only human/mouse

miRWalk [260]

Q\

Only human/mouse

Biocontext 24! v Only human/mouse
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Table C.6 | Disease term mapping. Shown are the NCI-60 cell lines with their Disease Ontology
ID (DOID) and their corresponding PhenomiR and mir2Disease terms.

NCI-60 cancer
DOID:10283, Prostate cancer
DOID:1324, Lung cancer

DOID:1612, Breast cancer
DOID:1909, Melanoma

DOID:2394, Ovarian cancer

DOID:2531, Hematologic cancer

DOID:263, Kidney cancer

DOID:3070, Malignant glioma

DOID:9256, Colorectal cancer

PhenomiR term
Prostate cancer

Lung cancer

Breast cancer

Melanoma, cutaneous malignant,
2; Melanoma and neural system
tumor syndrome

Ovarian cancer

Leukemia, acute myeloid;
Leukemia, chronic lymphatic,
susceptibility to; Leukemia,
chronic myeloid;  Multiple
myeloma; Non-Hodgkin
lymphoma, somatic

Renal cell carcinoma

Glioblastoma multiforme,
matic

SO-

Colorectal cancer; Adenomas,
multiple colorectal

Mir2Disease term
Prostate cancer

Lung cancer; Non-small cell
lung cancer

Breast cancer

Malignant
Melanoma

melanoma;

Epithelial ovarian cancer; Ovar-
ian cancer; Recurrent ovarian
cancer; Serous ovarian cancer

Acute  myeloid leukemia;
Acute promyelocytic leukemia;
Chronic lymphocytic leukemia;
Chronic myeloid leukemia;
Multiple myeloma; Myelopro-
liferative disorder; Follicular
lymphoma; Acute lymphoblastic
leukemia; T-cell leukemia

Kidney cancer; Renal clear cell
carcinoma

Glioblastoma; Glioblastoma

multiforme

Colorectal cancer
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Teaching activities

Lectures

During my PhD course, I was involved in the preparation and execution of the following

lectures.

2014 Course ’Introduction to bioinformatics I: Exercises’,

Technical University Munich

2014 Course ’Introduction to bioinformatics II: Exercises’,

Technical University Munich

2014 Practical course ’Disease-oriented Bioinformatics’,
Technical University Munich

2014 Practical course ’Genome-oriented bioinformatics’,
Technical University Munich

2014 Lecture ’Non-coding and regulatory RNAs’,
Course ’Advanced Bioinformatics’,

Technical University Munich

2013 Course ’Introduction to bioinformatics I: Exercises’,

Technical University Munich
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D Teaching activities

2013 Course ’Introduction to bioinformatics II: Exercises’,

Technical University Munich

2013 Practical course *Applied Bioinformatics’,

Technical University Munich

2013 Practical course ’Disease-oriented Bioinformatics’,

Technical University Munich

2013 Practical course ’Genome-oriented bioinformatics’,

Technical University Munich

2013 Lecture ’Non-coding and regulatory RNAs’,
Course ’Advanced Bioinformatics’,

Technical University Munich

2012 Course ’Introduction to bioinformatics I: Exercises’,

Technical University Munich

2012 Course ’Introduction to bioinformatics II: Exercises’,

Technical University Munich

2012 Practical course *Applied Bioinformatics’,

Technical University Munich

2012 Practical course 'Disease-oriented Bioinformatics’,

Technical University Munich

2012 Practical course ’Genome-oriented bioinformatics’,

Technical University Munich

2012 Lecture "MicroRNAs: Small actors with a big role in the play of gene regulation.’,

12th Bioinformatics Spring School of the Helmholtz Zentrum Miinchen,

Hainburg, Austria

2012 Lecture 'Phylogenetics’,
Course ’Introduction to Bioinformatics II”,

Technical University Munich
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2012 Lecture ’Non-coding and regulatory RNAs’,
Course ’Advanced Bioinformatics’,

Technical University Munich

2011 Lecture "MicroRNAs in systems biology’,
Course ’Systems Biology of Diseases and Drug Treatment’,

Technical University Munich

2011 Lecture 'Hidden Markov Models’,
Course ’Introduction to Bioinformatics I,

Technical University Munich

2010 Course ’Introduction to bioinformatics I: Exercises’,

Technical University Munich

2010 Course ’Introduction to bioinformatics II: Exercises’,

Technical University Munich

2009 Lecture ’Biological networks’,
Practical course ’Genome-oriented bioinformatics’,

Technical University Munich

Theses

Further, I supervised the following theses.

2011 ’Simulation of miRNA-mediated gene regulatory systems via Kauffman networks

with memory’, Master thesis in bioinformatics, Goksel Kaya.

2011 ’Modeling of a diet-induced non-alcoholic fatty liver disease system from mRNA

and miRNA expression profiles’, Bachelor thesis in bioinformatics, Alice Meier.
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