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Abstract—In this paper, we present an biologically-motivated
object recognition system for robots and vision tasks in general.
Our approach is based on a hierarchical model of the visual
cortex for feature extraction and rapid scene categorization.
We modify this static model to be usable in time-crucial real-
world scenarios by applying methods for optimization from
signal detection theory, information theory, signal processing
and linear algebra. Our system is more robust to clutter
and supports object localization by approaching the binding
problem in contrast to previous models. We show that our
model outperforms the preceding model and that by our mod-
ifications we created a robust and fast system which integrates
the capabilities of biological-inspired object recognition in a
technical application.

I. INTRODUCTION

Object recognition in technical systems is still confined to

specific scenarios and very limited in performance outside

their intended scope. In order to solve the problem of

object recognition, it makes sense to follow the biological

example for two reasons. First we don’t have any other

examples of an universal working vision system and second

biological systems exceed the capabilities of any existing

technical system by far. Humans are capable of detecting

and recognizing objects under the most complex circum-

stances. They can easily identify objects under most lightning

conditions, orientation, color or size. Even objects in clutter

pose little problems, in contrast to state-of-the-art computer-

based object recognition systems, which struggle to perform

adequately under varying situations. Therefore, it only makes

sense – and maybe is the only successful way – to analyse

how the visual system in biological systems works and use

that knowledge for modelling those mechanisms to build a

more likely effective and robust object recognition system.

Only recently researchers began to look into possible

architectures which process information similar to its bio-

logical prototype [1], [2], [3]. These models cover a sub-

functionality of the vision processing performed by the

brain; like visual attention, object recognition, tracking or

learning. Especially in the area of object recognition, models

have been built as a proof-of-concept with little effort in

situating them in the real-world, mainly because they aim

on biologically accurateness and the plausible modelling

of neural processing. So naturally these models are slow,
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Fig. 1: Responses for entropy (top left and right), gabor filter

(middle left) and object localization (bottom left and middle).

inefficient and hardly applicable in robotics. So far little

effort has been put into modifying and enhancing those

models to be usable in time-crucial applications in uncertain

environments. With our work we contribute to solve this

issue.

II. RELATED WORK

In the last couple of years there has been an increase in

biologically-inspired hierarchical models for object recogni-

tion, due to a deeper understanding of information processing

in the brain [4], [5], [2]. Some of these models have also been

applied to enhance common techniques like face recognition

by using biologically-inspired features [6]. Some research

draw more attention to active-vision systems, which have

been used to solve different vision problems like: object

recognition [7], [8], [9], [10], [11]; visual search [12], [13];

visual attention [14]; or visual tracking [15]. It has also

been investigated how to integrate object recognition [16],

[17] and visual attention also with a focus on the aspect

of computational complexity [18]. Especially the HMAX

model [19] has been investigated and modified in multiple

publications [20], [21], [22], [23].

In this paper we specifically focus on the optimization of

biologically-inspired object recognition for technical appli-

cations to encourage further investigations in this promising

research field.

III. HMAX

The object recognition module presented in this paper is

built on Serre et al.’s HMAX [24], which presents a feed-



Fig. 2: Functional Overview of the architecture.

forward model of the visual cortex described by Riesenhuber

and Poggio [19]. An overview is given in Figure 2. Each

layer in the classical model consists of four alternating layers

of simple cells (S1, S2) and complex cells (C1, C2) [25].

S1 Layer: The first layer is based on a representation of

simple cells which react to oriented edges and bars in the

receptive field. The response of these cells are quite similar to

Gabor filters. The Gabor filters are created using the function

Gλ,θ,ψ,σ,γ (x
′, y′) = exp

(

−x
′2 + y′2γ2

2σ2

)

cos

(

2π
x′

λ
+ ψ

)
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with

x′ = x cos θ + y sin θ (2)

and

y′ = −x sin θ + y cos θ (3)

where θ controls the orientation of the filter, ψ the phase

offset, σ the variance of the Gaussian, γ the spatial aspect

ratio and λ represents the wavelength of the sine function.

The edge-sensitive cells contribute to the rotation invariance

of the recognition system by the sensitivity to edges and

bars of different orientations.

C1 Layer: Complex cells have a larger receptive field

than simple cells and add some degree of spatial invariance

and shift tolerance to the system. S1 cells of same scale

band, same orientation and adjacent filter size are connected

to a complex cell. The functionality can be described as a

kind of max pooling operation; The maximum value of two

adjacent filters of different sizes is calculated by using a

sliding window approach.

S2 Layer: In the third layer small patches are chosen

from random positions in the receptive field of C1. Each

patch set consists of 4 patches, assembled by taking each

patch in the set from a C1 response of different orientation

(0◦, 45◦, 90◦, 135◦) but same position and same scale band.

Serre et al. use different sizes of patch sets: patch sets

which contain patches of size 4; patch sets with patches of

size 8; with size 12 and with size 16. These patch sets are

then used for two different cases

Before the training or classification case, a dictionary of

patch sets needs to be built. In the standard HMAX system

these patch sets are chosen randomly over multiple images.

The S2 cell response is similar to a Gaussian radial basis

function and can be calculated as follows

ri,k = exp(−β||Xi − Pk||2) (4)

where β is the sharpness of the tuning. Xi is one of the

patch sets created in the S2 layer and Pk is one of the

“memorized” patch set in the earlier created dictionary. The

radial basis function is calculated for all patches i in the set

of patch sets of S2 and for all patch sets k in the dictionary.

C2 Layer: Like in C1, the complex cells in the C2 layer

now again perform a max operation over all the responses.

For each element in the dictionary the maximum response

for equation 4 is calculated using all the RBF responses of

the patch sets of equal size. Using equation 4 this leads to



fk = max(exp(−β||Xi − Pk||2)); ∀i (5)

which builds the feature vector F = {f0, f1, . . . , fd}
for all k in the dictionary, with d being the length of the

dictionary. The feature vector can now be further used for

training a classifier. For comparison reasons we used a SVM

classifier as Serre et al. with a radial basis function kernel

[24].

IV. IMPROVEMENTS

We enhanced the standard HMAX model to be applicable

in real-world scenarios in terms of speed, object recognition

performance and object localization (see figure 1).

A. Gabor Filter

Gabor filters have been shown to provide a good estimate

for the response of cortical simple cells and so they are used

in all of the HMAX-like implementations. The model pre-

sented in [20] uses four different orientations with different

sizes and parameters resulting in 64 different filters. Mutch

and Lowe [22] use a slightly different approach by applying

12 different orientations but with a sparse representation

to a pyramid-based model. The different orientations are

supposed to contribute to the system’s orientation invariance.

However, those models create n-dimensional patches - with

n being the number of different orientations - at stage S2

by sampling over random positions. These patches are used

for creating a feature vector for classification by applying

a radial basis function, which calculates the norm of the

difference of the n-dimensional patches. Consequently the

result of the RBF function is quite different if the patches

are rotated, which indicates, that orientation invariance is

in fact very limited. Therefore we argue, that Gabor filter

of different orientations can be combined by creating an

orientation-free Gabor filter:

Gλ,ψ,σ,γ (x, y) =

exp
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This approach creates a much finer representation of edges

than ordinary Gabor filters, as all possible orientations are

covered (see figure 3). In addition it reduces the computa-

tional cost of convolution from n dimensions to one - in

our case from 64 to 12. Another benefit of a orientation-

free Gabor filter is that it is separable, which would make it

computationally more effective. But in the HMAX model

the filter is only defined within a circular area as it is

more accurate to a simple cells’ anatomy, which makes it

non-separable. We tested non-circular Gabor filters against

circular ones and got better defined edges using the original

approach. Using singular value decomposition (SVD) we are

still able to factorize a circular Gabor filter into separable

matrices. The SVD of the Gabor fitler matrix takes the

following form:

(a) 0◦ (b) 45◦ (c) 90◦ (d) 135◦

(e) Orientation-free Gabor filter
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Fig. 3: Modification of applied Gabor filters

Fig. 4: Speed comparison between Image Filtering with non-

separable and separable kernel using CPU and GPU for

different kernel sizes.

G = USV T =

j
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uisiv
T
i (7)

We can precalculate the separable filters and create the

convolved image J from image I by using

J =

j
∑

i=1

I ∗ (ui
√
si) + I ∗ (vTi

√
si) (8)

We achieve almost similar results for j ≥ 3 compared to

the original filter with an average error rate of 9.5 ∗ 10−5

over the whole filter (see figure 3f) - and still are faster by

applying the separable filtering for j = 3 than using the

non-separable filter.

We compared the computation speed for convolution with

different filter sizes on CPU and GPU for the separable filter

and the non-separable filter in figure 4 for a image size of

320× 240. Using our separable filter approach we achieve a

constant processing time on GPU of under 1 ms for j = 3
on all kernel sizes. The average computation time of the

S1 layer using our approach with 16 orientation-free Gabor

filters takes under 16 ms on GPU compared to about 256 ms

for 64 filters on CPU with the standard system (see table I).

This is a speed up of about 16.



(a) Original (b) Entropy

(c) Std Dev (d) Min Max

Fig. 5: Approximations for Entropy Calculation

B. Entropy

In [26] and [27] we enhanced the HMAX model by adding

an information theoretic aspect of neural processing - the

maximization of information along the pathway. Our system

incorporates the information entropy in the S2 layer of the

system. It is sensible in regard to the information a single

patch carries and adaptively rejects patches which don’t

account for the overall information gain. We calculate the

entropy of each patch by applying:

H(X) = −
M
∑

m=1

pm log pm (9)

with pm being the relative frequency of brightness valuem

within the patch. This approach filters out patches that show

an almost plain distribution of intensities. In order to further

reduce the computation time of the system we tested two

additional approaches to approximate the entropy in a patch:

1. The standard deviation of the patch and 2. The difference

of the maximum and minimum occurring intensity in the

patch T :

H(X) ≈ max(T )−min(T ) (10)

The intensity difference and the standard deviation ap-

proach were both equally fast but about 1.5× faster than

the entropy approach, with similar results (see figure 5).

For our system we choose the intensity difference approach,

because the threshold parameter is more intuitive than the

other approaches.

C. Radial Basis Function

The feature vector is calculated using the radial basis

function (see equation 4). This means the relative L2-norm

of the difference of two patches, the exponential function and

an exponent has to be calculated. The computation time of

this step highly depends on the number of sampled patches

and the size of the dictionary. A dictionary size of 2000 and

e.g. 500 sampled patches would require 1.000.000 RBF calls.

We approximate the RBF function response by applying a

simpler L1-norm using:

ri,k ≈ 1− ||Xi − Pk||L1

θ
(11)

with θ being the maximum possible value a L1-norm can

have for the specific patch size. Hereby we normalize r from

a range from [0; 1] with 1 meaning identical patches. This

speeds up the computation by a factor of 2 over the normal

approach.

D. Dictionary

In the standard HMAX implementation, the dictionary is

created by randomly selecting patches as artificial neurons

from a set of responses in C1. This approach bears the risk

to select a non-optimal set with over-represented and redun-

dant features. Especially in image data sets, where image

categories are presented in clutter for training and testing it

is uncertain if the applied algorithm actually classifies the

object itself or just the surroundings. The category car in the

Caltech101 database is for example such a case: The actual

object only takes a fraction of the image, whereas objects

like trees or houses take up most of the space. Therefore it

is uncertain, if the presented algorithms actually recognize

the class car or mainly the background, as the patches are

randomly selected over the whole image.

To deal with this problem our method follows an approach,

which is based on neural tuning. Cells in the brain selectively

represent specific sensory patterns. Applying our orientation-

free Gabor filter approach enables us to assign patches to

specific object classes due to the higher complexity of the

generated image after convolution. Each class is represented

by an own sub-dictionary, that is created by keeping only

patches which occur to a certain degree in all the training

images. Hereby we want to achieve, that the created dictio-

nary represents the actual object instead of it’s surroundings.

A car tire probably will appear in all images for example,

however a tree might not, therefore patches containing the

tree will most likely be filtered out.

After the sub-dictionaries are created, we apply an ap-

proach derived by lateral inhibition appearing in neural

processing. For each patch in a sub-dictionary we calculate

the response of each patch of each other sub-dictionary.

If a patch exists, which reacts above a certain threshold

to patches in all sub-dictionary, then these patches are

completely removed. That way the sub-directories are even

more confined to their specific class.

Mathematically, we can describe the set of sub-dictionaries

as a partition of dictionary D

⋃

Di∈D

Di = D (12)

with

Di = {x|∀x ∈ Di : ∄y ∈ Dj , i 6= j : r(x, y) > θ} (13)



with θ being a threshold of the response of our ap-

proximated radial basis function r of Equation 11. Pseudo-

Algorithm 1 displays how a sub-dictionary is created.

Algorithm 1: Create Object Specific Dictionary

Data: Sub-Dictionary Di; Set of training images T; Set

of patches C; Threshold θ

Create New Set Of patches(T1, Di);

forall s > 1 do
Create New Set Of patches(Ts, C);

forall k do

forall p do

if f(Dip , Ck) < θ then
delete(Dip );

break;
end

end

end

end

E. Object Localization

Biologically-inspired computational models have mostly

applied a simple sliding window approach to localize spe-

cific objects in an image, which makes the system rather

inefficient, especially in a fast-changing environment. The

patches in the sub-directories are object-specific enough that

they allow us to deduce the object location to a certain

degree using the patches maximum response occurrences in

the image (see figure 6). This approach requires no additional

calculation, as the maximum responses are anyway needed

to be calculated by the system in order to create the feature

vector for the classifier. We create a saliency map by adding

the maximum response values for each patch in the sub-

dictionary to the location in the saliency map where the patch

from the test image was sampled that created this highest

response.

V. RESULTS

A. Processing Speed

As already shown in figure 4, we were able to speed up

the gabor filtering by a factor of 4. Compared to our CPU

implementation of the standard HMAX model with nonsep-

arable gabor filters, our system speeds up the computation

using GPUs and separable orientation-free gabor filters by a

factor of ≈ 16.8 (see table I).

TABLE I: Processing speed of S1 layer in HMAX vs our

system (averaged over 100 cycles; CPU: i7, GPU: Geforce

670 GTX).

HMAX Our System
CPU GPU CPU GPU

Non-separable filter 252 ms 98 ms 63 ms 24 ms

Separable filter 177 ms 60 ms 44 ms 15 ms

In table II we show the computation speed for the next

layer C1. Again we compared the speed of the original

HMAX system against ours.

(a) Input Image (b) Saliency Map for
Object Subdirectory

(c) Saliency Map for
different Subdirectory

Fig. 6: Object Localization. A saliency map of maximum re-

sponses to the object subdirectories. The map which belongs

to the object in a) is shown in b); c) shows the response of a

different object subdirectory. First three images were taken

from the Caltech101 database, the others were taken from

the UIUC car dataset.

TABLE II: Processing speed C1

HMAX Our System
CPU GPU CPU GPU

MAX Operation 140 ms 37 ms 35 ms 9.25 ms

Table III shows processing speed for a dictionary of size

2000 with a sampling rate of 200 patches per patch size per

C1 layer. Our system speeds up the overall processing for

the S2 Layer by a factor of ≈ 8.6. As our system creates

a very efficient representation of an object within the sub-

directories, we already achieved good results with a sub-

directory size of about 100.

B. Classification Performance

We tested our system against the Caltech-101 database.

For each run, we randomly chose a training and testing image

set and computed results with different numbers of positive

training examples (1, 3, 15, 30 and 40) and 50 negative

training examples. Our approach outperforms the original

system in regard to the classification accuracy (e.g. for the



TABLE III: Processing speed S2 (For a dictionary size of

2000 and a sample rate of 200 per layer

HMAX Our System

Patch Size RBF Approx.RBF RBF Approx.RBF

4 1.06s 0.53s 0.26s 0.13s

8 1.59s 0.79s 0.41s 0.19s

12 2.17s 1.09s 0.55s 0.26s

16 2.86s 1.25s 0.71s 0.31s

Sum 7.68s 3.66s 1.92s 0.89s
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Fig. 7: Comparison of classification results for faces, air-

planes and cars of the Caltech image database between the

standard HMAX and our approach.

airplanes dataset 92% compared to 86%; faces: 96% to 90%,

see figure7; cars 96% to 94%) or is at least of equal result.

VI. CONCLUSION

In this paper, we have presented a biologically-inspired

object recognition system, which applies methods for opti-

mization from signal detection theory, information theory,

signal processing and linear algebra. With our modifications

we were able to speed up the computation time while

outperforming the original classification performance, which

creates a system that integrates the potential of biologically-

inspired hierarchical models into a technical application. We

also enhanced the model to be object location sensitive with-

out performance loss by making use of object subdirectories,

which adds a crucial aspect to a vision system.
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