
Flexible Data-Driven Security for Android

Denis Feth
Fraunhofer Institute for Experimental

Software Engineering IESE
Kaiserslautern, Germany

denis.feth@iese.fraunhofer.de

Alexander Pretschner
Karlsruhe Institute of Technology

Karlsruhe, Germany
pretschner@kit.edu

Abstract—Android allows users to cancel the installation
of apps whenever requested permissions to resources seem
inappropriate from their point of view. Since permissions can
neither be granted individually nor changed after installation,
this results in rather coarse, and often too liberal, access rules.
We propose a more fine-grained security system beyond the
standard permission system. With our system, it is possible to
enforce complex policies that are built on temporal, cardinality,
and spatial conditions (“notify if data is used after thirty days”,
“blur data outside company’s premises”, etc.). Enforcement can
be done by means of modification or inhibition of certain events
and the execution of additional actions. Leveraging recent
advances in information flow tracking technology, our policies
can also pertain to data rather than single representations of
that data. For instance, we can prohibit a movie from being
played more than twice even if several copies have been created.
We present design and implementation of the system and
provide a security and performance analysis.

Keywords-Security, Android, Access Control, Usage Control,
Information Flow.

I. INTRODUCTION

With a market share of 52.5% [10] Android is the most
popular smart phone platform. It is characterized by open
concepts and its extensibility and individualization oppor-
tunities provided by a high number of low cost apps. On
the downside, security becomes an issue. Many apps expose
private data over the network, as recent studies have shown
[7], [29]. Because third-party applications are untrusted
per se, Android provides security mechanisms to protect
the system and its data. By default, apps are sandboxed
and therefore isolated from other system parts. They are
not allowed to access data or functionalities outside the
boundaries defined by the sandbox. At development time,
developers must specify required permissions to perform
desired actions (e.g., access to GPS or contact information)
in a so-called manifest file. Prior to the installation of the
app, the user has to accept this manifest.

While this approach guarantees a certain level of security,
it lacks flexibility in practice. Permissions are assigned at
installation time and cannot be changed afterwards. Also,
it is not possible for a user to grant certain permissions

Supported by Google’s AndroidEDU program as well as by the
Fraunhofer-Gesellschaft internal program Attract 692166.

while denying others—the entire manifest has to be accepted
or rejected. In the latter case, the app cannot be installed.
More importantly, users have no control over the runtime
behavior of applications. Even if the requested permissions
seem reasonable from the user’s point of view, the app might
abuse its rights (for example by sending private data to an
advertisement server). The user has no possibility to restrict
the usage of data once he has granted permissions.

Hence, the first attacker model we consider is that of
malicious apps. As we will see, the security system that
we describe also caters for a second attacker model, namely
that of malicious users. In this case, it is not the phone’s user
who stipulates constraints on the use of resources but rather
app providers or data owners. This is relevant in the context
of digital rights management but also in contexts where, for
instance, an employer provides phones to the employees but
wants to make sure specific functionalities are not used on
the premises of the company.

In this paper, we present a fine-grained security system
that also encompasses data-driven usage control, a gener-
alization of access control to the time after data has been
accessed. Our objective is to enhance Android security in
a way that the usage of resources can be observed and
controlled through the specification of explicit, fine-grained
security policies. To this end, we add a reference monitor to
Android that can observe and control events that pertain to
the behavior of applications and the usage of resources. In
addition, our reference monitor is data-driven. This means
that we can control not only one specific representation
of some data (e.g., “play file movie.mpg at most twice”),
but rather all representations of that data (“play the movie
initially contained in file movie.mpg at most twice”). By the
integration of these data-driven usage control concepts, data
or resource usage can flexibly be restricted. Users can now
accept manifests they wouldn’t have accepted before since
more detailed security requirements, defined by the users,
can be enforced at runtime.

Example Scenarios. For illustration purposes, we will use
the following scenarios that cannot immediately be enforced
in the standard implementation of Android.

Imagine a malicious client app for a social network.
At installation time, the user will be asked for several

permissions. For social networking apps, this usually in-
cludes Internet and location access, read and write access
to contacts, sending text messages to friends and so on.
However, once the user accepts the permissions, he has no
control how these permissions will be used. The user might
be interested in restricting the app by policies like “App X
can track my position at most once per hour”, “App X is
not allowed to send more than two text messages per day”
or “App X can only access my favorite contacts”.

We have seen that besides malicious apps, malicious users
are of interest as well. Imagine a company that provides
smart phones to its employees. Currently, the company has
no possibility to restrict the usage of this device. From their
point of view, it would make sense to apply policies like “If
at work, the social networking app X cannot be used” or
“Pictures taken on the company’s premises, including any
copy of these pictures, can only be displayed blurred after
the employee left the building and must not be uploaded by
the social network app”.

Problem. In a nutshell, the problem that we tackle is
the lack of flexibility of Android’s security system which is
based on rather coarse access permissions and requires users
to either accept or reject complete manifests at installation
time. Proposed extensions make it possible to specify com-
plex conditions on permissions or certain events but do not
allow to specify security policies for all representations of a
data item; others focus on tracking these representations.
Other extensions limit the security system’s reactions in
terms of security violations to inhibition of the respective
event, whereas the mere modification of this event (e.g.,
blurring) may be less impeding to the user.

Solution. Our solution consists of a reference monitor
at the application framework level that monitors permission
checks, intents, and queries to content providers, as well as
some selected data sinks. For tracking data flows, it uses
the TaintDroid [7] system. By means of security policies,
the monitor can be configured at runtime and check complex
conditions with temporal, spatial, and cardinality constraints.
Policies are enforced by modifying or inhibiting the trigger
events, or by executing further actions.

Contribution. As far as we know, no implementation of
data-driven reference monitors for complex conditions exists
for Android (cf. Section III).

Organization. We present some background in Section II.
We put our work in context in Section III. We then present
the design and implementation of our system in Section IV.
In Section V, we evaluate security and performance and
discuss our system. We conclude in Section VI.

II. BACKGROUND

Android—Architecture. The Android software stack
consists of several layers. On the operating system level,
a Linux kernel provides hardware abstractions and other
basic functionalities needed by the upper layers like process,

memory and power management, networking and basic secu-
rity mechanisms. The Android runtime system is defined by
the Dalvik Virtual Machine (DVM), a Java virtual machine
for Android’s bytecode format ‘dex’. Hence, all Android
applications are written in the Java programming language.
As a middleware, the application framework builds the core
of the Android system. It provides both APIs for application
developers and several core services, including managers
for accessing the location (LocationManager) or resources
(ResourceManager, ContentProviders), controlling the appli-
cation lifecycle (ActivityManager) and many more. Finally,
Android comes with a set of core applications including
phone, launcher or the home screen. Apps are composed
of activities (UI screens), background services, receivers for
broadcast messages and content providers. The former three
component types are invoked via so-called intents. Content
providers are used to share data between apps.

Android—Security. As apps are usually provided by
third-party developers, it is important to protect the user and
the system from malicious apps. On the operating system
level, basic security mechanisms are provided by the Linux
kernel. Every installed app has its own user ID assigned, so
that access to the file system and privileged operations can be
controlled. This user ID stays constant until the application
is uninstalled. Further security is achieved by running each
app in a separate instance of the DVM and therefore in its
own process. In this way, apps are isolated from other apps,
i.e., sandboxed. To perform actions outside the boundary
defined by the sandbox, Android uses a permission system
that regulates the access to resources. At development time,
the author has to explicitly declare required permissions in
the app’s manifest file. Once an app has been installed, these
permissions cannot be changed. This is the starting point of
the work presented in this paper.

Permissions are checked by the package manager in the
application framework. Since every app runs in its own
process, calls to other apps or the or the system process
are remote calls. Those calls are realized by Binder, the
inter-process communication mechanism of Android, which
provides the possibility to securely retrieve the identity (UID
and PID) of the calling process. This information it is then
used to check whether the calling process has a specific
permission.

As a distinguishing technical feature (cf. Section III), the
work in this paper controls all introduced concepts: intents,
queries to content providers, and permission checks.

Information Flow. Information, or data flow analyses, de-
termine the flow of data through a system. This can be done
both statically [11], [28] and dynamically [5], [20]. Flows
can be explicit and implicit. Explicit flow is given via a chain
of usages of and assignments to memory locations. Implicit
flows occur if a condition is evaluated over a secret variable.
In this case, information flows from the secret variable to
all memory locations that are potentially assigned values in

both the executed and the non-executed branches. Because
the measurement of implicit flows is often impracticable in
practice (because some piece of information almost always
flows), in this paper, we make use of TaintDroid [7] that
exclusively caters for explicit flows. While TaintDroid is
about observing data flows until a specified sink is reached,
our work allows it to specify complex conditions in the form
of data-driven security policies.

III. RELATED WORK

Overviews of Android security have recently been pro-
vided, including some criticism [27], [8], also of permission-
based systems in general with a focus on Android [3].

Beresford et al. implemented MockDroid [4], a modified
Android system that allows users to deny certain permissions
after installation. It returns fake values if an app tries
to access an API that has been protected in this way.
TISSA [31] follows a similar approach. Selected “privacy-
aware components” (such as the contacts provider) were
modified to perform an additional permission check with the
TISSA system and return faked values if desired. The APEX
framework proposed by Nauman and Khan [19] enables
the user to define runtime constraints for the permission
system. In contrast to MockDroid, permissions are denied
by the package manager if the policy is violated. This
has the advantage that it is not necessary to modify each
single security-related API. Ongtang et al. propose the Saint
system [22] that extends the Android security system to
application-level runtime checks of permissions that take
into account the permissions of both caller and callee. This
allows developers to protect interfaces in a more flexible
way. Our work differs from these approaches (1) in that
we not only cater for permissions or selected APIs, but
also to intents and content provider queries (cf. Section
IV), (2) in that we can specify various actions to be taken
(inhibit, modify, execute), and (3) in that our solution makes
it possible to enforce policies defined on complex conditions
and the choice between specific and all representations of a
data item via data flow detection.

Possibly closest to our work is the ConUCON system [2]
which also allows for the specifiction of complex conditions
before and during access to data. Our work differs in that
(1) we can stipulate modifications of trigger events and
executions of further actions in addition to blocking requests
and in that (2) we cater to data flows and thus the possibility
to specify representation-independent policies.

Porscha [21] enforces DRM policies specified in an
extension of the OMA REL policy language, including
location-based policies like ours. By the use of identity-
based encryption and the binding of policies to data (e.g.,
to SMS), Porscha can control which applications can access
protected data. Indirect receivers of protected data are cov-
ered by Porscha as well. Our work differs in that (1) we can
express more powerful policies over cardinality, temporal,

and spatial operators [14]; (2) we support the modification
of trigger events as possible action, and (3) in that we cater to
data flows. On the other hand, we do not consider protecting
data in transit and do not bind the policy to the data item.

Portokalidis et al. propose to defer access decisions to
a server [24], which is complementary to our work. Our
decision point can be deployed both on the phone and
remotely.

Our work is closely related to usage control which extends
access control to what happens to data once access has been
granted [23], [26]. Typical technologies for implementing
enforcement mechanisms include ad-hoc solutions, runtime
verification, and complex event processing. In this paper,
we use runtime verification technology to automatically
synthesize the monitors from policies. Enforcement has been
studied for many different layers of abstraction, including
the operating system OpenBSD [12], the X11 level [25],
Java [15], the .NET CIL [6], machine languages [9], [30],
social networks [16] and in the context of digital rights
management [1], [18]. The reason for this variety is that data
that has to be protected comes in different representations:
as network packets, as attributes in an object, as window
content, etc. Our work differs from all the cited references
in that we specialize on the Android platform and in that
we combine the enforcement of complex usage control
requirements with the possibility to distinguish between one
specific or all representations of a data item.

IV. DESIGN

A. Layers of Enforcement

Flexible security checks can be implemented at different
system layers. The choice of the level considerably influ-
ences the architecture and the kind of policies that can be
enforced. For our purposes, enforcement at the application
framework level appears as the best solution. It serves
as middleware, provides hardware abstraction and system
services for multiple purposes. Therefore it is the ideal place
to monitor events and to enforce security policies. Other
possibilities like system call interposition, hooking into the
DVM interpreter or static byte code manipulation were
rejected since they are too low-level for our purpose and,
given the higher number of events to be monitored at these
layers, are likely to yield significantly higher performance
overheads (cf. Section V-B). Furthermore, the level of the
application framework is the only option that allows the
proper use of TaintDroid for data flow tracking.

We monitor four types of events: permission checks,
queries to content providers, intents and certain data sinks
like the network, file system and IPC.

By monitoring permission requests, the current permis-
sion framework gets considerably more flexible. With our
system, it is possible to control permissions given to apps
on the grounds of complex conditions (see below) that are
checked at runtime rather than at deployment time. For

example, the user can choose to give a certain app the
permission to access the Internet only once per hour. Once
the permission is granted by our reference monitor, the
decision is then up to the package manager, the normal
decision point.

Queries to content providers are monitored to protect
private data. Content providers encapsulate an application’s
data, for instance, contact data of the contact app. The author
of a content provider can achieve basic access control by
defining permissions which are necessary to access its data.
However, it is not possible for the user to limit access
based on self-defined rules. By monitoring queries to content
providers—that syntactically resemble SQL queries—it can
directly be controlled which data is read or written. For
example, an app could be limited so that it only has access
to favorite contacts.

Finally, intents are monitored. They are managed by the
activity manager, which is part of the application framework
and handles the lifecycle of apps. Via intents, activities,
services and broadcast receivers are activated within and in-
between applications. By monitoring them, the interaction
between activities and services as well as broadcast mes-
sages can be controlled.

B. Information Flow Tracking

An important part of controlling data usage is the tracking
of information flow. By the consideration of information
flow, the user is able to specify policies about how data might
flow through the system and to protect all representations,
or copies, of a data item. To trace information flow, we use
TaintDroid [7] which provides a framework for information
flow tracking on Android. It works with taint tags that are
persistently added to data at data sources. Whenever this
data is copied, the taint tag is copied along with the data.
With TaintDroid, it is hence possible to track data flows
through the system and to consider specific representations
of data. For example, it is possible to add a special taint
marking to a picture that has been taken at a specific location
and prevent any usage of this picture by applications. Since
the taint tag is persistently added to the picture, all (also
non-verbatim) copies of this picture would be covered by
this policy. Instead of declaring “DSC0123.jpg cannot be
used by app X”, the policy would be “The picture with
taint marking XY cannot be used by app X” Currently,
TaintDroid supports 32 individual taint markings which can
be combined as desired. We monitor information flow by
checking taints tags passed in intents and the taint tags of
data that is read or written via content provider queries.
Additionally, events are triggered if tainted data is read from
or written to the file system or if it passes the network sink.
Note that our work extends TaintDroid in that TaintDroid
detects data flows whereas our framework makes it possible
to control data flows with respect to user-defined policies.

C. Policy Language

Policies consist of two parts: A set of event declarations
(specifying events that may occur in a concrete system) and
a set of mechanism descriptions, consisting of preventive and
detective event-condition-action (or ECA) rules. Preventive
mechanisms can block or modify the event, while detective
mechanisms can only observe that an event happened under
the condition specified in the rule. Both strategies can exe-
cute additional actions. Listing 1 provides the abstract syntax
where S denotes strings and N denotes natural numbers.

Listing 1: Abstract Policy Syntax
1Policy::= eventDeclaration, {PreventiveMechanism | DetectiveMechanism}+;
2PreventiveMechanism::= Event, Condition, AuthorizationAction,
3{ExecuteAction};
4DetectiveMechanism::= Event, Condition, {ExecuteAction};
5Event::= actionName, {paramMatch | Location};
6Location::= latitude, longitude, tolerance, defaultValue, [negate];
7Condition ::= PL | TL;
8PL ::= true | false | xPathEval(S) | eventMatch |
9not(PL) | and(PL,PL) | or(PL,PL) | implies(PL,PL);
10TL ::= PL | not(TL) | and(TL,TL) | or (TL,TL) | implies(TL,TL) |
11since(TL,PL) | always(TL) | before(N,TL) | during(N,TL) |
12within(N,TL) | replim(N,N,N,PL) | repmax(PL,N) | repsince(PL,N,TL);
13AuthorizationAction::= allow | inhibit | {Modifier};
14Modifier::= paramName, (value | taint(N) | replace(S, S) | append(S) |
15blur(N) | delete(S) | add(S));
16ExecuteAction::= log | notify | startActivity | mockLocation;

To check if the trigger event (which can be any event
happening in the system) is relevant for a particular policy,
the event is first matched against the parameters specified
in the policy. Besides that, it is possible to check for taint
markings, in order to apply the policy to any representation
of a data item that is to be protected. Additionally, a
location condition can be added to the trigger. It consists of
coordinates (latitude, longitude), a tolerance in meters and
a default value that will be used if the location cannot be
accessed (e.g. due to a bad signal). If the last optional flag
is set to true, the evaluation will be negated. This allows us
to define a trigger which matches if we are not at the given
location.

The condition part is expressed in past temporal logic
that can be formulated by the use of logical, temporal,
cardinal and event matching operators, as well as with
XPath expressions. Because of space restrictions, we do not
describe the language semantics for expressing conditions in
detail [14], [17] but rather give the intuition only: since(a,b)
is true if b has been true ever since a happened; the always
operator is intuitive, before(n,a) is true if a was true n
time steps ago; within and during are intuitive. The cardinal
operator repmax(n,a) specifies that a has been true at most
n times in the past; replim(l,m,n,a) specifies a lower (l) and
upper limit (m) of allowed events a in the last n timesteps;
and repsince(n,a,b) specifies that a has been true at most n
times since b became true.

The action part describes if the event is allowed or
if it has to be modified or blocked (only for preventive
mechanisms) and possibly contains additional actions. For
the modification of event parameters, we can use a set of

standard operations (such as replace or append), and of
course a complete replacement of the parameter value. It is
also possible to add taint markings to data. The current im-
plementation allows the additional execution of four action
types, namely logging, user notification, starting an activity
and faking the current location. In practice, policies are
specified in a concrete XML syntax, as shown in Listing 2.

D. Architecture

Our high level architecture (Figure 1) consists of two
components: a reference monitor in the Android system and
the security manager app.

Figure 1: Conceptual view

The reference monitor is in charge of enforcing the ECA
rules specified in the deployed policies. It consists of two
components, namely the PEP and the PDP. The Policy
Enforcement Point (PEP) receives events and enforces the
policy by allowing, modifying or inhibiting them. It may
also perform additional actions, as described above. The
PEP is running as a system service, which is advantageous
because system services have all permissions by default as
they are running in the system process. Thus, all resources of
the system can be accessed and used unrestrictedly (besides
some smaller exceptions like SD card access).

The decision of whether or not an event is allowed is
taken by the Policy Decision Point (PDP). It decides about
the admission of incoming events based on the condition
part of the ECA rule. The PDP is automatically synthesized
from the policy condition [13]. We chose to run the PDP
directly on the device rather than remotely. If necessary,
the PDP could also run as a web service, with a tradeoff
between global policy enforcement, availability requirements
and expected performance drawbacks. For now, the PDP is a
system service just as the PEP. However, the implementation
itself is done natively. We chose to do so because in
this way, we were able to re-use existing PDP synthesis
implementations [17].

At runtime, the interaction with the monitor works as
follows. The hooked component (e.g. the activity manager)
synchronously sends the event to the PEP via Binder.
According to the type of the event, the PEP transforms the
event into a format that can be understood by the PDP. Via
Binder, the PEP sends the event to the PDP, which decides
whether the event is allowed or not and if modifications or
additional actions are required. Based on this decision, the
PEP will now execute desired actions or modifications. The
hook will then replace the original event with the (possibly
modified) event that has been returned by the monitor.

The Security-Manager app has two main purposes. First,
it provides a user interface for our system. Regarding this,
the user can deploy policies and change several settings of
the monitor (such as status, logging level, etc.). Also, it
is in charge of notifying the user about policy violations,
if specified in the deployed policies. Second, the Security-
Manager implements the policy store. The user can choose
to import policies from the SD card or from a webserver
or to create simple policies directly on the device with the
built-in policy editor.

E. Scenarios Revisited

In Section I we introduced several scenarios. We now
show how to define respective policies and explain how
these policies are enforced in our system. Listing 2 shows
some of the mechanisms for the scenarios mentioned in the
beginning.

The policy contains four preventive mechanisms. The first
mechanism deals with the first scenario and assures that
app X with UID 10052 cannot send more than two text
messages (SMS) per day. Each time the app tries to send an
SMS an event is triggered and matched against the specified
parameters. If the event matches, the condition is evaluated.
If it evaluates to true—in this case, if at least two text
messages have been sent during the day, and another attempt
(trigger) to send a text message occurs—the user is notified
and the permission will be denied. This is implemented in
Android’s package manager, where a SecurityException is
thrown.

The other mechanisms are used to implement the second
scenario. To prevent employees from using a certain app at
work, the policy contains a mechanism that blocks all intents
that aim to start an activity of the app in question (e.g., all in-
tents targeting a package starting with “com.socialnetwork”).
In order to block the events only at the company, we added
location information to the policy.

To blur pictures that have been taken at a company, as well
as all copies of these pictures, we need two mechanisms.
First, we have to taint pictures if they have been taken at
the company and second, we have to blur read operations
on this file outside the company. Accordingly, the third
mechanism assures that pictures are tainted with a special
taint marking (0x10000 = 65536) whenever they are taken

Listing 2: Example Policy (excerpt)
1 <preventiveMechanism name="LimitTextMsg">
2 <description>App must not send more than two text msg a day</description>
3 <trigger action="permission:check" />
4 <condition>
5 <not>
6 <repLim lowerLimit="0" upperLimit="1" amount="1" unit="DAYS" >
7 <eventMatch action="permission:check">
8 <paramMatch name="perm" value="android.permission.SEND_SMS" />
9 <paramMatch name="uid" value="10052" />

10 </eventMatch>
11 </repLim>
12 </not>
13 </condition>
14 <authorizationAction>
15 <inhibit />
16 </authorizationAction>
17 <action name="notify">
18 <parameter name="msg" value="App tried to send more than 2 msg." />
19 </action>
20 </preventiveMechanism>
21
22 <preventiveMechanism name="BlockSocialNetwork">
23 <description>The app cannot be used at the given location</description>
24 <trigger action="intent:startActivity">
25 <paramMatch name="location" value="49.430086;7.753326;50;true;false"/>
26 </trigger>
27 <condition>
28 <xPathEval>
29 starts-with(//event/parameter[@name=’component’]/@value, ’com.socialnetwork’)
30 </xPathEval>
31 </condition>
32 <authorizationAction>
33 <inhibit />
34 </authorizationAction>
35 </preventiveMechanism>
36
37 <preventiveMechanism name="TaintPictures">
38 <description> Taint pictures taken at given location </description>
39 <trigger action="dataflow:write">
40 <paramMatch name="taint" value="128" />
41 <paramMatch name="location" value="49.445626;7.760339;50;true;false"/>
42 </trigger>
43 <condition><true /></condition>
44 <authorizationAction>
45 <allow>
46 <modify>
47 <parameter name="data" value="taint$65536" />
48 </modify>
49 </allow>
50 </authorizationAction>
51 </preventiveMechanism>
52
53 <preventiveMechanism name="BlurPictures">
54 <description>
55 When not at the given location, files with taint marking 0x10000 = 65536 are

blurred upon access and the user is notified.
56 </description>
57 <trigger action="dataflow:read">
58 <paramMatch name="taint" value="65536" />
59 <paramMatch name="location" value="49.445626;7.760339;50;true;true" />
60 </trigger>
61 <condition> <true /> </condition>
62 <authorizationAction>
63 <allow>
64 <modify>
65 <parameter name="data" value="blur$5" />
66 </modify>
67 </allow>
68 </authorizationAction>
69 <action name="notify">
70 <parameter name="msg" value="A tainted picture has been blurred." />
71 </action>
72 </preventiveMechanism>

at the given location. The trigger condition is explained by
the fact that data from the camera is identified by the taint
marking 0x00080 = 128 that TaintDroid adds to pictures
taken by the camera. Subsequently, the TaintDroid system
will make sure that any copy of the picture will be tainted
with the marking 0x10080. The fourth mechanism observes
read operations on this kind of tainted pictures, and blurs the
picture if the phone is outside a diameter of 50 meters of
that location. Note that the file itself is not modified but only
the output stream of the reading operation. This allows us to
blur the file content while keeping the file itself unchanged.
Because the default value of the location trigger is set to
true, the monitor will assume that the trigger matches in
case it cannot access the location.

To assure that the evaluation of the location cannot be
manipulated, an additional mechanism is needed to prevent
spoofed locations (not shown in the listing). To realize
this, the ACCESS MOCK LOCATION permission has to
be denied for all apps. Also, a default value has to be
provided that is used whenever the location is not accessible.

V. EVALUATION

A. Security

The goal of this evaluation is to analyze our security
system to find potential vulnerabilities and possibilities to
exploit them. We perform the analysis from an attacker’s
point of view, analyzing different attack vectors and possible
benefits. In our case, we have two different attacker models.
First, we have to consider malicious apps, such as spyware.
Second, the user himself might also be interested in circum-
venting the reference monitor like in our sample scenario.
In the following, we point out different attack vectors and
analyze them with respect to their practicability. Unless
otherwise stated, our discussion is valid for both attacker
models. The analysis will be made under the following
assumptions:

1) The phone is not rooted. This is a necessary assump-
tion, because system files (including our system) can
be modified on a rooted phone. However, as rooting
would break the whole Android security concept any-
way, this can be considered a reasonable assumption.

2) Android itself is free of vulnerabilities. We need this
assumption in order to confine our discussion.

Man-in-the-Middle Attack. One way to attack the mon-
itor is to intercept messages to (the reported event) and
from (the possibly modified event) the monitor. There are
three kinds of messages an attacker might be interested in,
namely the communication with the reference monitor, the
communication between the PEP and PDP, and the com-
munication with the native PDP library. All communication
with the monitor and between the services is done via Binder
IPC. The communication with the native library is done via
JNI. Both concepts are well approved and heavily used in
Android. Following assumption 2, it can be assumed that
these mechanisms are secure and free of vulnerabilities.

Denial-of-Service Attack. An attacker could also try to
attack the availability of our system, which could be realized
in several ways.

First, the monitor process could simply be killed. How-
ever, this is not possible, since the monitor runs in the system
process and the termination of the system process would
cause a reboot of the device.

Second, the monitor can be attacked with malicious input.
This can be realized either by a flooding attack or with
malformed messages. In the first case, the attacker aims to
slow down or crash the monitor by producing artificial events
which allocate resources and have to be processed by the

monitor. However, we use a synchronous call model. This
means that the system might slow down, but the attacker
cannot gain benefit from it. In case of a malformed message,
the monitor falls into a safe state and inhibits the event if
an exception occurs on the Java level. If the monitor crashes
on the C level (e.g., due to a segmentation fault) this will
indeed cause a crash of the system process. In this case, the
device reboots, which means that the attacker cannot gain
any benefit.

Third, the native PDP implementation could be overwrit-
ten by prepending a malicious implementation. However,
this scenario cannot be exploited if the device is not rooted
(cf. assumption 1).

Fourth, since the library (libpdp) is prelinked, a return-to-
libpdp attack, similar to a return-to-libc attack, might also
be possible. To execute this attack, a buffer-overflow-attack
is necessary, contradicting assumption 2 (presumed we did
not introduce new vulnerabilities).

Fifth, the attacker could try to disable the monitor via
the service’s interface. However, the identity of the calling
process is checked in advance. This means that the monitor
can only be disabled if the call is coming from the Security-
Manager. Following assumption 2, it is not possible for
apps to forge their identity. Also, it is not possible to
install a malicious Security-Manager with the name package
name on a non-rooted device. To protect our system against
unauthorized access (e.g., if the handset user is untrusted),
the Security-Manager is password protected.

Finally, a DoS attack targeting the Security-Manager
might also be beneficial for an attacker if he tries to hide
notifications about policy violations. For this reason, noti-
fications are persistently stored by the app so that they are
not lost if the app is killed. If a new notification is pending,
the app’s broadcast listener will handle the notification,
regardless of whether the app has been killed before. The
second option—the installation of a malicious Security-
Manager with the same package name—has been discussed
above and shown to be not feasible on a non-rooted device.
Attacks based on malicious messages (flooding as well as
malformed messages) are not feasible either. The Security-
Manager automatically rejects messages that do not originate
from the system process.

Attacking Policy Evaluation. By modifying policies, the
attacker could misuse the monitor in any desired way. In
general, this is possible in the policy store before the policy
got deployed or in the PDP after the policy deployment.
The former possibility is prevented by the access control
mechanisms provided by the Linux kernel as policies are
centrally stored read-only in the private data folder of
the Security-Manager. Manipulating the policies after they
got installed is possible by deploying an own policy that
overrides the previous one. However, this is not possible
since the service interfaces are protected (see above).

In addition, a direct manipulation of the internal state of
the PDP could be used to influence the evaluation. However,
access to memory of other processes is not possible since
the Linux kernel provides corresponding memory protection
mechanisms. Illegal modification of internal states is usually
achieved by vulnerability based attacks (such as buffer-
overflow-attacks) which are covered by assumption 2.

Besides that, an attacker might manipulate external con-
ditions that the PDP uses for the policy evaluation, namely
time, location and taint tags. Time is supposed to be used rel-
atively and via discrete time steps, so that an attacker cannot
manipulate the evaluation in this way (e.g., by changing the
system time). However, in the current implementation we
frequently access the physical system time for evaluation.
Fortunately, this poses no problem for the first attacker
model, as user apps cannot directly change the system time
on a non-rooted device. If we consider the second attacker
model where the user is the attacker, we either have to
change our current implementation or prevent the user from
modifying the system time in the preferences. We currently
work on that issue. Mock locations can be used to forge the
device’s position to circumvent the evaluation. If a location-
based policy is installed, we hence remove existing Test-
LocationProviders (location providers that provide a mock
location). Additionally, the policy must contain a mechanism
that rejects the ACCESS MOCK LOCATION permission
for all applications. Since the position may not be accessible,
e.g., due to a bad signal or disabled location services, the
policy has to provide a default value for this case. In terms of
information flow, there are some limitations regarding tagged
files. Currently, taint tags are lost if files are read or written
directly via the file system’s address, which is a limitation
of the current TaintDroid implementation. Also, a malicious
user can access files on the SD card by simply inserting it in
a desktop computer or connecting as USB mass storage. This
could be prevented through an encrypted file system (which
is supported on newer Android version) and by monitoring
information flow over USB. However, both solutions are not
implemented in our current proof-of-concept.

B. Performance

In the following sections, we describe the setup and
the results of the performance evaluation of the reference
monitor. We consider four aspects: overhead for monitored
operations; influence on the overall system performance;
performance-critical parts in the monitor; memory usage.

Influencing Factors. Performance is impacted by several
influencing factors. First, devices differ in the integrated
hardware which influences the performance not only of the
monitor but of the whole system. Second, the number and
usage of installed apps influence the performance. Simply
speaking, the more happens on the device, the more events
will be produced that cause a higher load on the monitor.
Finally, a considerable influence stems from the deployed

policies. If policies are more sophisticated (for example if
they contain complex XPath expressions and time based
operators), or there are many mechanisms installed, this
will have a negative influence on the performance, simply
because the evaluation takes more time.

Test Setup. For the evaluation, we used a Google Nexus S
which is a middle class device, regarding its hardware
capabilities. We randomly generated several thousand events
(sending broadcast messages, read all contact data, checking
a random permission for a random app, read a tainted
file) and measured the time overhead for each operation.
Additionally, we logged all events that occurred in a 65 hour
time frame to get an idea about the total number and types
of events in a realistic end-user environment.

For the identification of performance critical sections, we
analyzed the runtime behavior of the reference monitor in
order to get an impression of the (relative) time spent for
several tasks like serialization and evaluation of the events
and the enforcement of the policy.

We used a policy that covers all event types: (1) a specific
app cannot be used at a specific location; (2) pictures that
were taken at a specific location cannot be redistributed over
the network and can only be displayed blurred outside that
location; (3) only starred (favorite) contacts are displayed;
(4) no app can access the location.

Results. First, we analyzed how the deployment of poli-
cies influences the overall performance. As a reference point,
we used an unmodified Android system and an unmodified
TaintDroid, respectively. For the evaluation, we randomly
sent broadcast intents, checked certain permissions, read
the contact database and a tainted sample file and called a
remote test service via Binder IPC. Compared to an unmod-
ified Android system, we found a computational overhead
between factor two for more complex events (e.g., reading
address book) and factor four for rather simple events (e.g.,
permission check). For simple events, the relative overhead
is higher as they have a short runtime by default. Compared
to TaintDroid, we found an overhead between factor 1.5
and 2.5. To evaluate the overall influence on performance,
we performed a 65 hour test run under normal operating
conditions. We intercepted 28,700 event, which is less than
8 events per minute. From a users point of view, the resulting
overhead is, in realistic end-user setting, barely noticeable
as the observed, absolute overhead was less than 50ms in
average.

Second, we analyzed the relative runtime of certain tasks
in the monitor (micro benchmark) in order to identify per-
formance killers using method profiling. Although method
profiling cannot be used to get realistic results about the
absolute runtime, it is a good approach to compare the
relative runtime distribution of subroutines and tasks per-
formed by the monitored method. Based on the results, we
changed the the XML-based communication we used in the
first implementation, as XML processing consumed 38% of

the total time spent in the monitor. We achieved an overall
performance improvement of factor two.

In terms of RAM, overhead can hardly be measured since
the reference monitor is a part of the system process. By
observing the memory allocation (PSS), we estimate an
overhead up to 10 percent for this process, depending on
the deployed policies and event frequencies.

C. Discussion

In this section we discuss several design decisions and
limitations of the current approach or implementation.

Design Decisions. We chose to add the reference monitor
on a rather high level, namely at the application framework
level. This is a fundamental decision which influences not
only the implementation of the monitor, but also the moni-
tored events and the policies that can be enforced. We chose
it because for our purposes, this level is the most convenient,
given that the application framework is responsible for
the interaction of components (via intents), implements the
permission system and provides APIs that can be used by
the applications (for example to access content providers).
Nevertheless, policy enforcement on other abstraction levels
would also be beneficial, for example on the Dalvik inter-
preter or system call level. We rejected these options because
of performance aspects and the fact that policies over high-
level events (e.g., “granting a permission”) are not possible
at these abstraction layers.

As we chose TaintDroid for information flow tracking, we
have to consider the limitations of the current TaintDroid
implementation. From our point of view, the most critical
limitation is the loss of taint tags on direct read or write
operations of files. The other way around, TaintDroid pro-
duces false positives, among other things because taint tags
are stored per array or IPC message. We did not evaluate
the frequency or the impact to our solution, but have to keep
this in mind for later improvements. Another TaintDroid-
related problem is that the usage of tainted files (e.g., on the
SD card) is not restricted on non-TaintDroid devices, such
as desktop computers. This poses a problem for our second
attacker model (malicious users), as users can just mount the
SD card on an external device. A possible solution would
be the encryption of the file system, which is supported on
never Android versions.

Assumptions. Our security evaluation assumes a non-
rooted and vulnerability-free device. Both assumptions are
necessary to assure that system files are not tampered with.
However, in practice both assumptions are questionable.
Rooting an Android device is quite simple, even for unexpe-
rienced users. Also, vulnerability reports are quite frequent.
A solution for this problem would be the use of a trusted
computing platform module (TPM) which ensures that we
are running an unmodified version of the system.

Practicability. Our—and likely any comparable—system
may introduce problems it set out to resolve in the first place.

If a user decides, for privacy reasons, to disable location
services, then a policy with location conditions will fall back
to a default value that might cause the inhibition of certain
events. This seems to be a general problem of implementing
security policies rather than of our particular approach.

At runtime, policy enforcement might cause instability
of apps, for example if permissions are denied (includ-
ing ACCESS MOCK LOCATION which will be denied if
location-based policies are deployed). To face this issue, app
developers would have to consider permission denials by
catching potential security exceptions, which is rarely done
currently. An alternative would be a deep modification of
the permission framework, which is certainly not desirable.
The inhibition of the other event types should have no direct
effect on the stability of the apps, but it may change their
runtime behavior.

Usability is always a concern in specifying security poli-
cies. On the upside, the expressiveness of our language
allows a user to clearly specify requirements that distinguish
between different situations. For instance, we can concisely
specify and enforce that location data may be sent to the
network but not to an ad service without prompting the user
every time location data is about to be sent. On the downside,
the correct and adequate use of complex security policies
like those we can enforce with our system likely is hard for
non-expert users (this likely is more of a challenge when
considering the attacker model of malicious apps rather than
that of malicious users).

Several challenges coincide: understanding risk and secu-
rity requirements; formalizing requirements in a language
that does not hide its roots in temporal logic; properly
understanding the concepts of data flow as measured by
TaintDroid. This problem clearly transcends the research
described in this paper.

VI. SUMMARY AND CONCLUSIONS

We have extended Android Gingerbread 2.3.4 by flexible
data-driven access and usage control mechanisms. We can
express and enforce fine-grained policies with temporal,
spatial, and cardinal conditions that refer to both single
representations of data and, via taint tags, to all represen-
tations of a data item. Our system helps defend against
two attacker models: malicious apps and malicious users.
In the former case, the phone’s user can stipulate policies
for protecting against malicious apps (e.g., “Send at most
two SMS per hour”, or “Do not send any copy of my
contacts”). In the latter case, an app or data provider can
stipulate constraints on the usage of resources or data (e.g.,
“Play any copy of a movie at most twice”). In terms of
enforcement, we chose the application framework level as
a basis because user-relevant events happen at this level,
hooks can be placed precisely, and TaintDroid can be
used for information flow tracking. The monitor itself is
implemented by two independent system services that run

in the system process, the enforcement part (PEP) and
the decision part (PDP). This has the advantage that the
monitor is accessible from the entire system, while owning
all security permissions of the system process. To process
events and enforce the policy, the PEP queries the PDP
that decides whether or not a specific event is allowed or
should be blocked, modified or accompanied by other events.
Different kinds of events are observed to control the behavior
of applications. Permission checks are monitored in order
to improve the current permission system and to control
the usage of security relevant components. By monitoring
intents, the interaction of components of different apps
is controlled. Finally, the monitoring of content provider
requests allows the observation of the usage of private data.
By the usage of TaintDroid, tracking the flow of data through
the system is possible. Therefore, our system considers the
information flow in intents and content provider requests.
Because this alone is not sufficient, additional hooks were
placed to observe the information flow between apps and
the file system, the network and remote services (IPC).
As a user front-end, the Security-Manager app enables
the user to securely manage policies on the device and
control the monitor. The Security-Manager is deployed as
an integral part of Android and cannot be uninstalled by the
user. Authentication between the Security-Manager and the
monitor is achieved by Android’s IPC mechanism Binder.

We evaluated security and performance of our system. The
security evaluation showed that the system can be considered
as secure, in a sense that it is not possible for attackers to
circumvent the monitor under the stated assumptions. The
performance overhead was shown to be in an acceptable
range for realistic end-user scenarios.

We did not discuss several challenges in this paper,
including conflict detection and resolution among policies
and the usability of the policy specification. These are the
subject of current work as is the task of increasing security
by also considering the SD card and the USB interface and
the persistent storage and recovery of the monitor state after
a system reboot.

REFERENCES

[1] Adobe livecycle rights management es. http://www.adobe.
com/products/livecycle/rightsmanagement/indepth.html, Aug.
2010.

[2] G. Bai, L. Gu, T. Feng, Y. Guo, and X. Chen. Context-aware
usage control for android. In SecureComm, pages 326–343,
2010.

[3] D. Barrera, H. Kayacik, P. van Oorschot, and A. Somayaji. A
methodology for empirical analysis of permission-based secu-
rity models and its application to android. In Proceedings of
the 17th ACM conference on Computer and communications
security, CCS ’10, pages 73–84, New York, NY, USA, 2010.
ACM.

[4] A. Beresford, A. Rice, and N. Skehin. Mockdroid: trading
privacy for application functionality on smartphones. In
Proc. 12th Workshop on Mobile Computing Systems and
Applications, 2011.

[5] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint
analysis framework. In Proceedings of the 2007 international
symposium on Software testing and analysis, ISSTA ’07,
pages 196–206, 2007.

[6] L. Desmet, W. Joosen, F. Massacci, K. Naliuka, P. Philip-
paerts, F. Piessens, and D. Vanoverberghe. The S3MS.NET
Run Time Monitor: Tool Demonstration. ENTCS,
253(5):153–159, 2009.

[7] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In
Proc. 9th USENIX Symposium on Operating Systems Design
and Implementation, 2010. To appear.

[8] W. Enck, M. Ongtang, and P. McDaniel. Understanding
android security. Security Privacy, IEEE, 7(1):50 –57, jan.-
feb. 2009.

[9] U. Erlingsson and F. Schneider. SASI enforcement of security
policies: A retrospective. In Proc. New Security Paradigms
Workshop, pages 87–95, 1999.

[10] Gartner. http://www.gartner.com/it/page.jsp?id=1848514,
November 2011.

[11] C. Hammer and G. Snelting. Flow-sensitive, context-
sensitive, and object-sensitive information flow control based
on program dependence graphs. Int. J. Inf. Sec., 8(6):399–
422, 2009.

[12] M. Harvan and A. Pretschner. State-based Usage Control
Enforcement with Data Flow Tracking using System Call
Interposition. In Proc. 3rd Intl. Conf. on Network and System
Security, pages 373–380, 2009.

[13] K. Havelund and G. Rosu. Efficient monitoring of safety
properties. Int. J. Softw. Tools Technol. Transf., 6, Aug 2004.

[14] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter.
A policy language for distributed usage control. In Proc.
ESORICS, pages 531–546, 2007.

[15] I. Ion, B. Dragovic, and B. Crispo. Extending the Java Virtual
Machine to Enforce Fine-Grained Security Policies in Mobile
Devices. In Proc. Annual Computer Security Applications
Conference, pages 233–242. IEEE Computer Society, 2007.

[16] P. Kumari, A. Pretschner, J. Peschla, and J.-M. Kuhn. Dis-
tributed data usage control for web applications: a social
network implementation. In Proceedings of the first ACM
conference on Data and application security and privacy,
CODASPY ’11, pages 85–96, 2011.

[17] MASTER consortium. MASTER Deliverable 5.1.1: Secu-
rity Enforcement Language. http://www.master-fp7.eu/, Apr.
2010.

[18] Microsoft. Windows Rights Management Services.
http://www.microsoft.com/windowsserver2008/en/us/
ad-rms-overview.aspx, 2010.

[19] M. Nauman and S. Khan. Design and implementation of a
fine-grained resource usage model for the android platform.
Int. Arab J. Inf. Technol., 8(4):440–448, 2011.

[20] J. Newsome and D. X. Song. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of ex-
ploits on commodity software. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2005, San
Diego, California, USA, 2005.

[21] M. Ongtang, K. Butler, and P. McDaniel. Porscha: policy
oriented secure content handling in android. In Proceedings of
the 26th Annual Computer Security Applications Conference,
ACSAC ’10, pages 221–230, New York, NY, USA, 2010.
ACM.

[22] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.
Semantically rich application-centric security in android. In
Computer Security Applications Conference, 2009. ACSAC
’09. Annual, pages 340 –349, dec. 2009.

[23] J. Park and R. Sandhu. The UCON ABC usage control model.
ACM Trans. Inf. Syst. Secur., 7(1):128–174, 2004.

[24] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos.
Paranoid android: versatile protection for smartphones. In
Proceedings of the 26th Annual Computer Security Applica-
tions Conference, ACSAC ’10, pages 347–356, New York,
NY, USA, 2010. ACM.

[25] A. Pretschner, M. Buechler, M. Harvan, C. Schaefer, and
T. Walter. Usage control enforcement with data flow tracking
for x11. In Proc. 5th Intl. Workshop on Security and Trust
Management, pages 124–137, 2009.

[26] A. Pretschner, M. Hilty, and D. Basin. Distributed usage
control. Commun. ACM, 49(9):39–44, 2006.

[27] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev,
and C. Glezer. Google android: A comprehensive security
assessment. Security Privacy, IEEE, 8(2):35 –44, march-april
2010.

[28] D. X. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.
Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.
Bitblaze: A new approach to computer security via binary
analysis. In ICISS, pages 1–25, 2008.

[29] T. Vennon and D. Stroop. Threat analysis
of the android market, 2010. http://www.
globalthreatcenter.com/wp-content/uploads/2010/06/
Android-Market-Threat-Analysis-6-22-10-v1.pdf.

[30] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In Proc
IEEE Symposium on Security and Privacy, pages 79–93,
2009.

[31] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh. Taming
information-stealing smartphone applications (on android).
In 4th International Conference on Trust and Trustworthy
Computing, Pittsburgh, Pa., 2011.

