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Distributed stability tests for large-scale systems
with limited model information

Frederik Deroo ∗a†, Martin Meinelb†, Michael Ulbrichb, Sandra Hirchea

Abstract—Privacy concerns spark the desire to analyze large-
scale interconnected systems in a distributed fashion, i.e. without
a central entity having global model knowledge. Two different
approaches are presented to analyze stability of interconnected
linear time-invariant systems with limited model knowledge.
The two algorithms implement sufficient stability conditions and
require information exchange only with direct neighbors thus
reducing the need to share model data widely and ensuring
privacy. The first algorithm is based on an M-matrix condition,
the second one on Lyapunov inequalities. Both algorithms rely
on distributed optimization using a dual decomposition approach.
Numerical investigations are used to validate both approaches.

I. INTRODUCTION
Large-scale interconnected systems have attracted a lot of

research recently in the field of system and control theory
in attempts to handle new technological challenges in terms
of ever-increasing system sizes and to make use of advanced
communication technologies. The system class represents nu-
merous practical applications, including traffic systems [1],
vehicle formations [2], the power system [3] and other types
of distribution and infrastructure networks, just to name a
few. Because centralized methods are generally not applica-
ble to this type of systems, the system theory community
is constantly looking for new distributed approaches. While
the design of distributed control laws has received a lot of
attention, the distributed analysis of large-scale systems, e.g.
with regards to stability, has seen only few results.

The desire to test stability distributedly, meaning that there
is no central model of the system and that the subsystems
only share their information with a relatively small part of the
overall system, is important for several reasons. Our main mo-
tivation is model data privacy of the subsystems in a scenario
when competitors need to form an interconnected dynamical
system (e.g. in an electrical power grid) but are hesitant to
share their exact model data with a central entity or all other
participants. Another point is that the computation effort can
be distributed among the subsystems, and additionally that
these distributed methods are generally more flexible when
a system changes because only parts of the system need to
adapt. Last, a distributed approach promises better scalability.
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A. Related work

Traditionally, large-scale dynamical systems are analyzed
from a centralized point of view, assuming that there is a
central entity with access to the whole system model or at
least to the whole interconnection structure. For example,
already in the 1970s large-scale system stability was treated
in [4]. They derive sufficient stability conditions under the
assumption that every subsystem is dissipative and that both
the supply rate function of each subsystem and the overall
interconnection structure are centrally known. The conditions
are then posed in the form of LMIs or definiteness require-
ments. Similarly, in [5], sufficient stability tests are given
where a matrix condition is constructed which relates the
ratio of stability of the local dynamics of each subsystem
with the effect of the incoming interconnections. The matrix
is then required to be a so-called M-matrix which can be
tested e.g. using linear programming. Both of these methods
have in common that the stability test itself is done centrally.
In [6], the two approaches are relaxed and it is pointed out
that for the class of positive linear systems, stability can be
evaluated distributedly. The approach of applying distributed
optimization in a control context has been used for example
in a model predictive setting, see [7], [8], but is generally
restricted to control design. In terms of stability analysis, the
results in [9] show that a distributed stability test is possible
for positive systems using distributed linear programming.
Other results on scalable and distributed system analysis are
given in [10]. The authors present scalable stability conditions
for interconnected heterogeneous LTI systems represented by
transfer functions that are feedback coupled through a bipartite
graph. The sufficient conditions they derive are based on the
Nyquist stability criterion, and the conditions are posed in
such a way that subsystems only need to exchange information
with their neighbors. The conditions are generalized in [11]
using integral quadratic constraints (IQC). However, in both
cases the derived conditions need to be evaluated for all
frequencies ω . The concept of block-diagonal stability, a
generalization of diagonal stability [12], and a notion that is
adopted in this article, is treated in [13] and [14], however not
from a distributed perspective.

B. Contribution

The main contributions of this article are two different
distributed tests for stability for the general class of intercon-
nected LTI systems using limited model information. There
are no restrictions on the systems themselves and only limited
information exchange with neighboring systems is necessary.
The first stability test is based on the aforementioned M-
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Matrix test from [5]. Instead of testing if a matrix is an M-
matrix in a centralized fashion, we formulate an optimization
problem that contains the stability condition as constraints.
The second stability test is based on the Lyapunov inequality
and is analogously formulated as an optimization problem.
More specifically, we consider block-diagonal Lyapunov sta-
bility [13] because of its structural properties. Both optimiza-
tion problems have a structure which can be exploited using
the Distributed Nesterov Algorithm (DNA) from [15] in com-
bination with dual decomposition. As a result we present two
different distributed stability tests that allow us to check if an
LTI system is asymptotically stable using only neighborhood
information in an iterative distributed optimization scheme.
As mentioned in Section I-A, the literature so far provides
similar results only for the special case of positive systems,
and most of the literature provides stability analysis methods
only from a centralized perspective. Furthermore, an additional
contribution of the article is the general idea of using advanced
distributed optimization techniques to analyze systems dis-
tributedly. We stress that the use of distributed optimization
techniques is not mainly aimed at reducing computational
effort but the idea is to obtain methods that preserve model
data privacy for the subsystems as far as possible. This is
achieved in so far that the subsystems only need to share their
dynamic model with their direct neighbors, and not globally
or centrally. In addition, the advantages and disadvantages of
each test are discussed and numerical experiments validate the
presented methods.

The remainder of this article is organized as follows: In
Section II, we give the problem formulation. Two different
distributed stability tests are presented in Sections III and IV.
The results of numerical investigations are given in Section V,
before concluding with a summary in Section VI.

Notation: IN ∈ RN×N is the identity matrix, 1N ∈ RN×1 is
a vector with ones. The spectrum of a matrix A is λ (A) while
the real part of a complex number x is Re(x). An entry-wise
positive vector d ∈ RN is denoted by d > 0. The Frobenius
inner product of two matrices A,B is ∑i ∑ j Ai jBi j = A•B. The
set of symmetric matrices is Sn.

II. PROBLEM FORMULATION

We consider an LTI system consisting of N subsystems. The
dynamics of subsystem i are written as

ẋi(t) = Aiixi(t)+
N

∑
j=1
j 6=i

Ai jx j(t), i = 1, ...,N, xi(0) = xi,0, (1)

where xi ∈Rni is the state, Aii ∈Rni×ni represents local dynam-
ics, and Ai j ∈Rni×n j represents interaction with neighbors. In
the following, the blocks Aii and Ai j will be referred to as
(dynamic) model data.

By concatenation of the subsystems’ states, the overall
interconnected system is written compactly as

ẋ(t) = Ax(t), x(0) = x0, (2)

where x = [xT
1 , ...,x

T
N ]

T ∈Rn is the state. The matrix A consists
of the blocks Ai j. The subsystems form a partition of the states
of the system, so it must hold that ∑

N
i=1 ni = n.

To define the set of neighbors of subsystem i, we consider
the directed interconnection graph GI(VI ,EI) associated with
the matrix A. The vertex set VI is given by the set of
subsystems VI = {1, ...,N}, and the edge set EI contains the
edge ( j, i)∈ EI iff any entry of Ai j 6= 0. The set of nodes whose
states influence the state of node i is defined as

Nin,i = { j|( j, i) ∈ EI} ,

and the set of neighboring nodes as
Ni = { j|(i, j) ∈ EI and/or ( j, i) ∈ EI} .

Additionally, we define the undirected version of GI
as GI,u = (VI,u,EI,u) with VI,u = VI and EI,u = EI ∪ E T

I
where E T

I is the edge set of the transpose graph of GI .
The division into the N subsystems and the resulting in-

terconnection graph GI is motivated by the desire to preserve
model data privacy, and the use of only limited model infor-
mation. Classically, the structuring of the overall system (2)
into N subsystems (1) is motivated by physics, function or
geography, e.g. in a multi-agent system, or an interconnected
system. In contrast, in our setting subsystem (1) may com-
prise multiple physical, functional or geographically distant
components which, however, are willing to share their model
data completely among each other, i.e. the clustering of the
overall system is induced by privacy constraints.

Definition 1. Given system (1),(2), a system analysis method is
considered to use limited model information if subsystem i has
knowledge of Aii, and all Ai j,A ji with j ∈Ni, and it exchanges
information only with subsystems j ∈Ni.

In other words, a method of this type uses no centralized
dynamic model and no central decision maker. Instead, the
knowledge about the dynamic model data is distributed among
the subsystems in that each subsystem only knows its row
and column. Concretely, the subsystems know their own
dynamic model (1) and parts of the dynamic model of their
neighbors. Methods using limited model information ensure
privacy because the subsystems need to share their dynamic
model (1) only with a small subset of other subsystems, and
there is no central entity that knows the overall system.

The goal of this work is to decide about the stability of (2)
with limited model information as defined in Definition 1.

Remark 1. The possible clustering into larger subsystems
raises several important questions such as the influence of
different clusterings on the conservativeness of the subsequent
stability tests, and optimal clustering. This will be future work.

III. DISTRIBUTED TEST FOR CONNECTIVE STABILITY

In this section we present a distributed test to analyze if a
system is connectively stable.

Definition 2. [5] System (2) is connectively stable if it is stable
in the sense of Lyapunov for all interconnection terms αAi j
with α ∈ [0,1] and Ai j defined in (1).

Connective stability therefore implies that the system re-
mains asymptotically stable even if interconnection strengths
are changed to smaller values. A well-known tool to establish
connective stability are vector Lyapunov functions. For com-
pleteness we shortly recapitulate the foundations [5]. The idea
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of vector Lyapunov functions is to construct a Lyapunov func-
tion for the overall interconnected system as a weighted sum
of individual Lyapunov functions of the isolated subsystems
ẋi,iso = Aiixi,iso. The main tool to determine whether a vector
Lyapunov function exists are M-matrices.

Lemma 1. [5] A matrix W ∈ RN×N with nonpositive off-
diagonal elements is an M-matrix if there exists a vec-
tor d ∈ RN with strictly positive entries such that Wd > 0.

The following assumption is made in the literature [5].

Assumption 1. The decoupled individual subsystems are
asymptotically stable, i.e. Re(λ (Aii))< 0, and all eigenvalues
of Aii are distinct for all i ∈ {1, . . . ,N}.

The regular transformation matrices Ti ∈ Rni×ni are defined
which transform the isolated system i described by ẋi,iso =
Aiixi,iso into ˙̃xi,iso = Ãiix̃i,iso. Given the second part of Assump-
tion 1, T−1

i AiiTi has a real Jordan form and the transformation
mapping is xi,iso = Tix̃i,iso. This transformation is used because
it reduces conservativeness in the subsequent stability test [5].
With that, the following matrix W = [wi j] is constructed as

wi j =


σ i

M, i = j

−
√

max(λ (ÃT
i jÃi j)), j ∈Nin,i

0, else,

(3)

where σ i
M =−max(Re(λ (Ãii))) and Ãi j = T−1

i Ai jTj. With that
matrix, the following theorem is formulated.

Theorem 1. [5] Given Assumption 1 the system (2) is con-
nectively stable if there is a vector d > 0 such that Wd > 0
with W defined in (3).

Theorem 1 allows us to construct a test matrix to formulate a
condition for connective stability, and its construction requires
only limited model information. The sparsity structure of W
is identical to the block sparsity structure of A as described
by the graph GI . However, the test if the matrix W is an
M-matrix, i.e. if there exists a d > 0 such that Wd > 0
is a global problem. Hence, we need to find a distributed
method to find a suitable d, if possible. To achieve this, a
distributed optimization problem is formulated that includes
the stability condition as a constraint and then we employ
distributed optimization techniques such that only limited
model information according to Definition 1 is required. The
presented distributed optimization approach is based on the
results in [15]. The information exchange topology of the
employed algorithm is determined by the structure in the
constraints, which corresponds to the graph GI,u

Therefore we can reformulate the stability condition as
the following optimization problem with convexity parame-
ters σδ ,σdi > 0

min
(d,δ )∈RN+1

f (d,δ ) =−δ +
σδ

2
δ

2 +
N

∑
i=1

σdi

2N
d2

i (4a)

s.t.−Wd + γδ1N ≤ 0, (4b)
−d +δ1N ≤ 0, (4c)

where γ > 0 is arbitrary. For the choice of σδ ,σdi > 0 see
Remark 2 below.

Problem 4 is inspired by phase-1 problems from linear pro-
gramming that are solved to find a feasible solution to a
given set of linear constraints. Here, the strongly convex part
−δ +

σδ

2 δ 2 in (4a) alone guarantees that a vector d∗ > 0
which satisfies Wd∗ > 0 is the candidate for an optimal
solution of (4), as in this case there exists a δ ∗ > 0 with
−δ ∗+

σ∗
δ

2 δ ∗2 < 0. Finally, we add the term ∑
N
i=1

σdi
2N d2

i in (4a)
to obtain a strongly convex objective function f (d,δ ) which
in turn yields a differentiable dual objective function.
In the following theorem we show that even with the addition
of this strongly convex term in d, the optimal objective
function value of (4) indicates the existence of a vector d > 0
such that Wd > 0. The conversion from a feasibility problem
to an equivalent optimization problem allows us to a apply
distributed optimization algorithms.

Theorem 2. There exists a d > 0 such that Wd > 0 if and only
if there exists a feasible point (d,δ ) for (4) with a negative
optimal objective function value f ∗ < 0.

Proof. ⇒: Let Wd > 0 hold for some d = d̃ > 0.
Set λ1 = mini(d̃i), and λ2 = mini((Wd̃)i).
Then δ̃ := min(λ1,λ2/γ)> 0. Further, (d,δ ) = (0,0)
and (d,δ ) = (d̃, δ̃ ) are feasible for problem (4). Hence, by
convexity, for all t ∈ [0,1], (d,δ ) = (td̃, tδ̃ ) is feasible for (4).
Now consider the objective function Φ(t) at (td̃, tδ̃ )

Φ(t) :=−tδ̃ +
σδ

2
t2

δ̃
2 +

N

∑
i=1

σdi

2N
t2d̃2

i .

Since Φ
′
(0) =−δ̃ < 0, we see that if we choose 0 < t ≤ 1

sufficiently small, then Φ(t) < Φ(0) = 0. We then
set (d,δ ) = (td̃, tδ̃ ) which has the desired properties.
⇐: We now show that if there exists a feasible point (d̃, δ̃ )
of (4) with negative objective function value, then δ̃ > 0
and Wd̃ > 0. In fact, a negative objective function value can
only be achieved if δ̃ > 0. Now

d̃ ≥ δ̃1N > 0, Wd̃ ≥ γδ̃1N > 0.

Hence, setting d = d̃ finishes the proof.

In the following we describe how the optimization problem
can be solved distributedly using the DNA from [15] in
combination with dual decomposition. To derive the dual
problem of (4) consider the corresponding Lagrangian

L (d,δ ,λ ,µ) =−δ +
σδ

2
δ

2 +
N

∑
i=1

σdi

2N
d2

i +λ
T (−Wd + γδ1N)

+µ
T (−d +δ1N)

= (−1+
N

∑
i=1

(γλi +µi))δ +
σδ

2
δ

2

+
N

∑
i=1

(
−

N

∑
j=1

λ jWji−µi

)
di +

σdi

2N
d2

i .

The Lagrangian is clearly separable in δ and in di. The
corresponding dual function is given by

ϕ(λ ,µ) =min
δ∈R

{
(−1+

N

∑
i=1

(γλi +µi))δ +
σδ

2
δ

2

}
+

N

∑
i=1

min
di∈R

{(
−

N

∑
j=1

λ jWji−µi

)
di +

σdi

2N
d2

i

}
, (5)
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which can be evaluated in parallel.
Due to the uniqueness of the minimizer di(λ ,µi)

and δ (λ ,µ) in (5) it follows that the gradient of the concave
dual function is given by (cf. Theorem 3.1 in [16])

∇λiϕ(λ ,µ) = ∇λiL (d(λ ,µ),δ (λ ,µ),λ ,µ)

= γδ (λ ,µ)−
N

∑
j=1

Wi jd j(λ ,µ j),

∇µiϕ(λ ,µ) = ∇µiL (d(λ ,µ),δ (λ ,µ),λ ,µ)

= δ (λ ,µ)−di(λ ,µi).

Moreover, it can be shown that the gradient of the dual
function is Lipschitz continuous with Lipschitz constant [16]

L =
N

∑
i=1

N(∑N
j=1 W 2

ji +1)

σdi

+
N(1+ γ2)

σδ

. (6)

Finally, the DNA can be applied to maximize the dual function
in parallel to obtain the following algorithm. Moreover, the
DNA can be implemented with event-based communication
to reduce the communication effort as detailed in [15], but for
ease of presentation, this aspect is left out in this article.

Algorithm 1. For k ≥ 0 do in parallel:
1) Given λ k and µk compute

δ
k+1 = argmin

δ∈R

{
(−1+

N

∑
i=1

(γλ
k
i +µ

k
i ))δ +

σδ

2
δ

2

}
,

dk+1
i = arg min

di∈R

{
−

(
N

∑
j=1

λ
k
j Wji +µ

k
i

)
di +

σdi

2N
d2

i

}
,

2) Compute
∇λiϕ(λ

k,µk) = γδ
k+1−

N

∑
j=1

Wi jdk+1
j ,

∇µiϕ(λ
k,µk) =−dk+1

i +δ
k+1.

3) Find
λ̃

k
i = argmax

λ≥0

{
∇λiϕ(λ

k,µk)λ − L
2
(λ −λ

k
i )

2
}
,

µ̃
k
i = argmax

µ≥0

{
∇µiϕ(λ

k,µk)µ− L
2
(µ−µ

k
i )

2
}
,

4) Find
tk
i = argmax

t≥0

{
−L

2
t2 +

(
k

∑
j=0

j+1
2

∇λiϕ(λ
j,µ j)

)
t

}
,

vk
i = argmax

v≥0

{
−L

2
v2 +

(
k

∑
j=0

j+1
2

∇µiϕ(λ
j,µ j)

)
v

}
,

5) Set
λ

k+1
i =

k+1
k+3

λ̃
k
i +

2
k+3

tk
i ,

µ
k+1
i =

k+1
k+3

µ̃
k
i +

2
k+3

vk
i ,

Starting with (λ0,µ0) = (0,0) the following convergence
result for Algorithm 1 holds.

Theorem 3. Taking k = d
√

8L/εe−1 with ε > 0 and Lipschitz
constant L defined by (6), then after iteration k of Algorithm
1 an approximate solution to problem (4) is

(d̂, δ̂ ) :=
k

∑
j=0

2( j+1)
(k+1)(k+2)

(d j+1,δ j+1),

which satisfies the following bounds on the primal gap

−ε

∥∥∥∥(λ ∗

µ∗

)∥∥∥∥2

≤−δ̂ +
σδ

2
δ̂

2 +
N

∑
i=1

σdi

2N
d̂i

2− f ∗ ≤ 0, (7)

as well as the following bound on the constraint violation∥∥∥∥∥
[
−Wd̂ + γδ̂1N

−d̂ + δ̂1N

]+∥∥∥∥∥≤ ε

∥∥∥∥(λ ∗

µ∗

)∥∥∥∥ , (8)

where f ∗ is the optimal function value of problem (4) and [ ]+

is the componentwise projection onto the nonnegative real
numbers. Moreover, λ ∗ and µ∗ are optimal dual multipliers,
i.e., they maximize the concave dual function ϕ(λ ,µ) in (5).

Proof. For ease of notation we define

f (d,δ ) =−δ +
σδ

2
δ

2 +
N

∑
i=1

σdi

2
d2

i ,

W (d,δ ) =
(
−Wd + γδ1N
−d +δ1N

)
, Λ = (λ T ,µT )T .

It can be shown that the following inequality holds (cf.
Lemma 3.3 and Remark 3.8 in [16])

−‖Λ∗‖
∥∥∥∥[W (d̂, δ̂ )

]+∥∥∥∥≤ f (d̂, δ̂ )− f ∗ ≤ f (d̂, δ̂ )−ϕ(λ̂ , µ̂), (9)

where (λ̂ , µ̂) := (λ̃ k, µ̃k). Moreover, applying Theorem 3.4
in [16] we have

f (d̂, δ̂ )−ϕ(λ̂ , µ̂)≤ min
Λ∈R2N

+

{
2L

(k+1)2 ‖Λ‖
2−
〈

W (d̂, δ̂ ),Λ
〉}

.

It is straight forward to show that the optimal solution of
the right-hand side of the above is obtained at Λ = (k +
1)2/(4L)[W (d̂, δ̂ )]+ and it follows that

f (d̂, δ̂ )−ϕ(λ̂ , µ̂)≤− (k+1)2

8L

∥∥∥∥[W (d̂, δ̂ )
]+∥∥∥∥2

≤ 0. (10)

Combining (9) and (10) yields

(k+1)2

8L

∥∥∥∥[W (d̂, δ̂ )
]+∥∥∥∥2

−‖Λ∗‖
∥∥∥∥[W (d̂, δ̂ )

]+∥∥∥∥≤ 0

and inequality (8) follows immediately as well as (7).

A similar proof for this convergence rate is given in [17].
As the norm of the optimal dual multipliers λ ∗ and µ∗ is not

known beforehand, the lower bound on the primal gap in (7)
and the upper bound on the constraint violation in (8) cannot
be evaluated directly with the results from the distributed
algorithm in order to decide if a system is connectively stable.
Therefore, we propose the following algorithm.

Algorithm 2. 1) Choose a minimum accuracy parame-
ter εmin, an initial accuracy parameter ε0 and run
Algorithm 1. Set ε1 = αε0, where α ∈ (0,1).

2) Rerun Algorithm 1.
3) If εi > εmin, set εi+1 = αεi and go back to step 2.

Otherwise stop.
The subsystems then need to evaluate if the obtained series

of objective function values of all steps converge to a negative
value, or if a convergence to 0 occurs.
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In other words, with Algorithm 2, the subsystems decide
on connective stability if f (d̂(ε), δ̂ (ε)) 6→ 0. In this case the
subsystems observe a consistent convergence to an optimal
value for decreasing values of ε . If f (d̂(ε), δ̂ (ε))→ 0 for ε→
0, i.e. no convergence to a value other than 0 is observed, no
decision on connective stability can be made because of the
known sufficiency of the condition.

Remark 2. Regarding the choice of convexity parame-
ters σdi and σδ , we use that Algorithm 1 has a complexity
of O(

√
L/ε) according to Theorem 3. It follows that large

convexity parameter σdi and σδ on the one hand yield a small
Lipschitz constant L defined by (6) which reduces the number
of iterations. On the other hand, in this case the accuracy ε

has to be chosen smaller, which raises the number of iterations,
as the objective function value (4a) and therefore the primal
gap moves closer to zero. It follows that there is a trade-off in
the choice, but that the choice has little effect on the overall
computational effort.

Remark 3. In parallel to the work presented in this paper,
a new distributed dual gradient algorithm for linearly con-
strained separable problems with strongly convex objective
function is published in [18] where a linear convergence rate
is shown. This would be a good alternative to the algorithm
that we use. However, we apply the DNA as the focus here is
on the development of distributed stability tests. Furthermore,
the DNA facilitates an event-triggered communication [15].

Finally, Algorithm 1 can be set up and run with limited
model information according to Definition 1. That means that
it is completely distributed with the same structure as the
original dynamical system described by the graph GI,u, i.e.
only neighboring subsystems need to communicate during
the optimization. This follows immediately from the sparsity
structure of W for the computation of dk+1

i and steps 2-5 of Al-
gorithm 1. The computation of δ k+1 in step 1 of Algorithm 1,
which is a globally shared variable, can be done with local
communication too by using a consensus algorithm [19]: Each
agent computes the term γλi+µi, then the average of all terms
is determined with only local communication in a consensus
phase and knowing the size of the network N each agent ob-
tains the sum over all individual terms and can compute δ k+1

himself. In the same way, the approximate objective function
value f (d̂(ε), δ̂ (ε)) and the Lipschitz constant L defined in (6)
can be computed with only local communication if the network
size is known (for details we refer to [19]). Finally, the total
number of subsystems is no sensitive information and does
not violate privacy. Concluding this section, we now have a
method to test connective stability of System (2) using limited
model information.

IV. DISTRIBUTED LYAPUNOV STABILITY ANALYSIS

In this section we present an alternative method for testing
stability of large-scale systems based on the Lyapunov linear
matrix inequality. It is well known that system (2) is asymp-
totically stable if and only if there exists a P ∈ Sn with P� 0
such that the Lyapunov linear matrix inequality

AT P+PA≺ 0 (11)

is satisfied. If P is a full matrix (11) has no distributed
structure. Therefore, we make the following assumption.

Assumption 2. The solution P of (11) is restricted to be block-
diagonal, where the block sizes of P are determined by the
subsystem sizes ni in (1).

Assumption 2 restricts (11) to a sufficient condition. We
confine our analysis to this sufficient condition because it
maintains the structure of the original system. Hence, Assump-
tion 2 enables us to apply distributed optimization, which in
turn allows us to test if system (2) is asymptotically stable
using limited model information according to Definition 1.

In the following we will consider a problem with a
sparsity structure induced by Asym = (AT diag(P1, . . . ,PN) +
diag(P1, . . . ,PN)A) for any Pi ∈ Sni . The block sparsity
structure is described by the undirected interaction graph GI,u,
while the element sparsity structure is described by the
graph Gu = (Vu,Eu), where ( j, i)∈ Eu iff the element Asym

i j 6= 0.

Remark 4. Gu has the same structure as GI,u if the nodes
of Gu that belong to the same subsystem are merged to a
subsystem node. It follows that any distributed algorithm with
a communication topology that equals the topology of Gu uses
only limited model information as defined in Definition 1.

In the following we will use a decomposition method for
LMIs such that we can apply distributed optimization methods
to check Lyapunov stability. In order for the decomposition
method to work, we have to make the following assumption.

Assumption 3. Gu is a chordal graph.

A chordal graph is defined to be a graph where every
cycle of length ≥ 4 has a chord, i.e. an edge joining non-
consecutive vertices of the cycle [20]. If Gu does not satisfy
this assumption, it is possible to chordalize Gu in polynomial
time [21] but then local communication with neighbors is not
sufficient for the presented stability test to be applicable. In
the following we check condition (11) with a block-diagonal P
in a distributed way. To this end we use the same idea as in
Section III by formulating an optimization problem and then
applying distributed optimization methods. We start with the
following problem with convexity parameters σδ and σPl .

min
δ∈R,Pl∈Snl

f (δ ,Pl) =−δ +
σδ

2
δ

2 +
N

∑
l=1

σPl

2N

∥∥∥Pl
∥∥∥2

F
(12a)

s.t. F(P,δ )� 0, (12b)

Pl−δ Inl � 0 for l = 1, . . . ,N, (12c)

where
F(P,δ ) :=−AT diag(P1, . . . ,PN)−diag(P1, . . . ,PN)A− γδ In,

and γ is arbitrary. The variable δ is used to make the problem
feasible, independent of the stability of the system. The
optimal function value of problem (12) is defined as f ∗.

Theorem 4. The inequality (11) holds for some P = P̃ ∈ Sn

with P̃ = diag(P̃1, . . . , P̃N) if and only if there exists a feasible
point (P1, . . . ,PN ,δ ) for (12) with f ∗ < 0.

Proof. The proof is identical to the proof of Theorem 2
because the overall problem formulation is identical and the
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objective function of (12) is also convex. Additionally, as in
the proof of Theorem 2 f ∗ < 0 implies that δ ∗ > 0.

Following the approach in [22], where a semidefinite dual
of the AC-OPF problem is solved distributedly, we apply
the range-space conversion method [21] to decompose the
LMI (12b). This allows the application of the distributed dual
decomposition scheme presented in the previous section.

To this end, let N = {1, . . . ,n} and consider the r-space
sparsity pattern [21] of constraint (12b), which is

SPLMI = {(i, j) ∈N ×N : Fi j(P,δ ) 6=0

for some (P1, . . . ,PN ,δ ) ∈ Sn1 × . . .×SnN×R, i 6= j}.

We use the following definitions that can be found in [21]:
Let F ⊆N ×N and define

F• = F ∪{(i, i) : i ∈N } ,
Sn(F,0) =

{
X ∈ Sn : Xi j = 0 if (i, j) /∈ F•

}
,

SC =
{

X ∈ Sn : Xi j = 0 if (i, j) /∈C×C
}
∀C ⊆N ,

SC
+ =

{
X ∈ SC : X � 0

}
∀C ⊆N ,

J(C) = {(i, j) ∈C×C : i≤ j} ∀C ⊆N .

One has F(P,δ ) ⊆ Sn(SPLMI,0) for all (P1, . . . ,PN ,δ ) and
obviously the sparsity structure of Sn(SPLMI,0) coincides with
the sparsity structure of the adjacency matrix of Gu.

Consider the maximal cliques C1, . . . ,Cp of Gu and de-
note by Ei j the n × n symmetric matrix whose compo-
nents (i, j) and ( j, i) are 1 and all others are 0. Obviously, the
set
{

Ei j : (i, j) ∈N ×N , i≤ j
}

is a basis of Sn. Defining
the sets [21]

J =
p⋃

s=1

J(Cs) and Γ(i, j) = {s : i ∈Cs, j ∈Cs} ∀(i, j) ∈ J,

the LMI (12b) is equivalent to

Ei j • ∑
s∈Γ(i, j)

W s−Ei j •F(P,δ ) = 0 (13)

for (i, j) ∈ J and W s ∈ SCs
+ for s = 1, . . . , p. For details we

refer to Section 5.2 in [21]. It follows that problem (12) can
be written as

min
δ∈R,Pl∈Snl

−δ +
σδ

2
δ

2 +
N

∑
l=1

σPl

2N

∥∥∥Pl
∥∥∥2

F
(14a)

Ei j • ∑
s∈Γ(i, j)

W s−Ei j •F(P,δ ) = 0 for (i, j) ∈ J, (14b)

W s ∈ SCs
+ for s = 1, . . . , p, (14c)

δ Inl −Pl � 0 for l = 1, . . . ,N. (14d)

To obtain a strongly convex objective function for (14)
which guarantees the differentiability of the gradient of the
corresponding dual objective function, we modify (14) to

min
δ∈R,Pl∈Snl

−δ +
σδ

2
δ

2 +
N

∑
l=1

σPl

2N

∥∥∥Pl
∥∥∥2

F
+

p

∑
s=1

σW s

2p
‖W s‖2

F

(15a)

Ei j • ∑
s∈Γ(i, j)

W s−Ei j •F(P,δ ) = 0 for (i, j) ∈ J, (15b)

W s ∈ SCs
+ for s = 1, . . . , p, (15c)

δ Inl −Pl � 0 for l = 1, . . . ,N. (15d)

Theorem 5. The inequality (11) holds for some P = P̃ ∈ Sn

with P̃ = diag(P̃1, . . . , P̃N) if and only if there exists a fea-
sible point (P1, . . . ,PN ,δ ,W 1, . . . ,W p) for (15) with f ∗ < 0,
where f ∗ denotes the optimal function value of problem (15).

Proof. The proof is similar to the proof of Theorem 2 and
is left out due to space constraints. The interested reader is
referred to the extended online version of this article [23].

Finally, we rewrite F(P,δ ) in a way that allows a decom-
position. To this end, let Bl be defined as

Bl =

{
l−1

∑
i=1

ni +1, . . . ,
l

∑
i=1

ni

}
×

{
l−1

∑
i=1

ni +1, . . . ,
l

∑
i=1

ni

}
.

For l = 1, . . . ,N and (i, j) ∈ Bl we define

F0 =−γIn,

F l
i j =


1
2

(
−AT Ei j−Ei jA

)
if i < j,

1
2

(
−AT E ji−E jiA

)
if i > j,

−AT Ei j−Ei jA if i = j,

and with il := i−∑
l−1
s=1 ns, we can rewrite F(P,δ ) as

F(P,δ ) = F0
δ +

N

∑
l=1

∑
(i, j)∈Bl

F l
i jP

l
il jl .

To solve problem (15) in parallel we again employ the DNA
in combination with dual decomposition. To this end, consider
the following Lagrangian of problem (15)

L (δ ,P,W,Λ,M)

=−δ +
σδ

2
δ

2 +
N

∑
l=1

σPl

2N

∥∥∥Pl
∥∥∥2

F
+

p

∑
s=1

σW s

2p
‖W s‖2

F

+ ∑
(i, j)∈J

Λi j

(
Ei j • ∑

s∈Γ(i, j)
W s−Ei j •F(P,δ )

)

+
N

∑
l=1

Ml •
(

δ Inl −Pl
)

=−

(
∑

(i, j)∈J
Λi jEi j •F0 +1−

N

∑
l=1

Ml • Inl

)
︸ ︷︷ ︸

xδ

δ +
σδ

2
δ

2+

N

∑
l=1

[
∑

(i, j)∈Bl

−

(
∑

(a,b)∈J
ΛabEab •F l

i j +Ml
il jl

)
︸ ︷︷ ︸

=X l
Pil jl

Pl
il jl +

σPl

2N

∥∥∥Pl
∥∥∥2

F

]

+
p

∑
s=1

[
− ∑

(i, j)∈J(Cs)

−Λi jEi j︸ ︷︷ ︸
Xs

W

•W s +
σW s

2p
‖W s‖2

F

]

=−xδ δ +
σδ

2
δ

2 +
N

∑
l=1

[
−X l

P •Pl +
σPl

2N

∥∥∥Pl
∥∥∥2

F

]
+

p

∑
s=1

[
−X s

W •W s +
σW s

2p
‖W s‖2

F

]
,
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which is separable in δ , P1, . . . ,PN , and W 1, . . . ,W p. The
corresponding dual function is

ϕ(Λ,M) = min
δ∈R,Pl∈Snl ,W s∈SCs

+

L (δ ,P,W,Λ,M)

= min
δ∈R

{
−xδ δ +

σδ

2
δ

2
}

+
N

∑
l=1

min
Pl∈Snl

{
−X l

P •Pl +
σPl

2N

∥∥∥Pl
∥∥∥2

F

}
+

p

∑
s=1

min
W s∈SCs

+

[
−X s

W •W s +
σW s

2p
‖W s‖2

F

]
=− xδ δ (Λ,M)+

σδ

2
δ (Λ,M)2

+
N

∑
l=1

[
−X l

P •Pl(Λ,M)+
σPl

2N

∥∥∥Pl(Λ,M)
∥∥∥2

F

]
+

p

∑
s=1

[
−X s

W •W s(Λ,M)+
σW s

2p
‖W s(Λ,M)‖2

F

]
,

where δ (Λ,M), Pl(Λ,M), and W s(Λ,M) are the unique so-
lutions. As before ϕ(Λ,M) can be evaluated in parallel and
is continuously differentiable due to the uniqueness of the
solutions δ (Λ,M), Pl(Λ,M), and W s(Λ,M). Moreover, the
gradient of ϕ(Λ,M) with

∇Λi j ϕ(Λ,M) = Ei j • ∑
s∈Γ(i, j)

W s(Λ,M)

−Ei j •

(
F0

δ (Λ,M)+
N

∑
l=1

∑
(i, j)∈Bl

F l
i jP

l
il jl (Λ,M)

)
for(i, j) ∈ J

and

∇Ml ϕ(Λ,M) = δ (Λ,M)Inl −Pl(Λ,M) for l = 1, . . . ,N,

is again Lipschitz continuous with Lipschitz constant

L =
p

∑
s=1

p‖ECs‖2/σW s +
N

∑
l=1

N
(∥∥∥F̂ l

∥∥∥2
+1
)
/σPl

+

(
∑

(i, j)∈J

(
Ei j •F0)2

+n

)
/σδ , (16)

where ECs ∈ R|J(Cs)|×n2
is the matrix that contains the

rows Ei j(:)T for (i, j)∈ J(Cs) and F̂ l ∈R(|J|)×n2
l is the matrix

that contains rows (Eab•F l
i1 j1 , . . . ,Eab•F l

i|Bl | j|Bl |
) for (a,b)∈ J.

Finally, the DNA can be applied to maximize the augmented
dual function in parallel. Again, for ease of presentation the
aspect of event-based communication is not presented but we
refer to [15] for details.

Algorithm 3 (Distributed Lyapunov stability test).
For k ≥ 0 do
1) Given the necessary Ml,k and components Λk

i j, each
subsystem computes

δ
k+1 = argmin

δ∈R

{
−xδ δ +

σδ

2
δ

2
}

using a consensus algorithm to determine xδ with local
communication as described in Section III. Furthermore,

the subsystems compute in parallel:

Pl,k+1 = argmin
Pl∈Snl

{
−X l

P •Pl +
σPl

2N

∥∥∥Pl
∥∥∥2

F

}
,

W s,k+1 = argmin
W s∈SCs

+

{
−X s

W •W s +
σW s

2p
‖W s‖2

F

}
,

for l = 1, . . . ,N, s= 1, . . . , p, and send Pl,k+1, and W s,k+1

to their neighbors.
For (i, j)∈ J and l = 1, . . . ,N, the subsystems do in parallel:
2) Given δ k+1, Pl,k+1, and W s,k+1 compute

∇Λi j ϕ(Λ
k,Mk) = Ei j • ∑

s∈Γ(i, j)
W s,k+1

−Ei j •

(
F0

δ
k+1 +

N

∑
l=1

∑
(i, j)∈Bl

F l
i jP

l,k+1
il jl

)
,

∇Ml ϕ(Λk,Mk) = δ
k+1Inl −Pl,k+1.

3) Find
Y k

i j = argmax
Yi j∈R

{
∇Λi j ϕ(Λ

k,Mk)Yi j−
L
2

(
Yi j−Λ

k
i j

)2
}
,

H l,k = argmax
H l∈Snl

+

{
∇Ml ϕ(Λk,Mk)•H l− L

2

∥∥∥H l−Ml,k
∥∥∥2

F

}
.

4) Find
Zk

i j = argmax
Zi j∈R

{
−L

2
Z2

i j +
k

∑
j=0

j+1
2

∇Λi j ϕ(Λ
j,M j)Zi j

}
,

T l,k = argmax
T l∈Snl

+

{
−L

2

∥∥∥T l
∥∥∥2

F
+

k

∑
j=0

j+1
2

∇Ml ϕ(Λ j,M j)•Tl

}
5) Set

Λ
k+1
i j =

k+1
k+3

Y k
i j +

2
k+3

Zk
i j,

Ml,k+1 =
k+1
k+3

H l,k +
2

k+3
T l,k.

6) Send Λk
i j and Ml,k to the neighbors.

A convergence result analogous to Theorem 3 can be made
for Algorithm 3 but is left out due to space restrictions. The
interested reader is referred to the extended version of this
article [23]. Algorithm 2 now uses Algorithm 3 instead of
Algorithm 1.

Due to the definition of X l
P and X s

W in step 1 of Algorithm 3
and the definition of ∇Λi j ϕ(Λ

k,Mk) in step 2, it follows
that the communication topology of Algorithm 3 equals the
communication topology of Gu as we assumed Gu to be chordal
(Assumption 3). Hence, Algorithm 3 uses only limited model
information according to Definition 1.

Moreover, all subproblems in the above algorithm have
closed form solutions. For example, we derive the closed
form solution for W s,k+1 in step 1: Consider the spectral
decomposition of the symmetric matrix X s

W

X s
W = QΣQT = (Q+,Q−)

(
Σ+ 0
0 Σ−

)(
QT
+

QT
−

)
,

where Σ+ contains the non-negative eigenvalues of X s
W . It

follows that the optimal solution W s,k+1 is the projection on
the positive semidefinite part of X s

W

W s,k+1 =
Q+Σ+QT

+

σW s
.

Identically, solutions for H l,k and T l,k can be obtained.
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Fig. 1: Communication topology for the two stability tests:
M-Matrix test (red, solid), additional links for Lyapunov test
(blue, dashed) because of chordal extension.

A. Discussion of the two tests

In this subsection, we discuss the two tests with respect
to differences, and respective advantages and disadvantages.
For the sake of a clearer presentation we do not take privacy
considerations or distributed computations into account here.

Both tests have in common that they use a block-diagonal
quadratic Lyapunov function. The M-matrix Lyapunov func-
tion has the form VM = ∑

N
i=1 dixT

i (T
T

i )−1T−1
i xi while the

Lyapunov inequality approach has the Lyapunov function VL =

∑
N
i=1 xT

i Pixi. Since both are restricted to a block-diagonal
form, both represent only sufficient conditions. Both also have
in common that the summands need to represent Lyapunov
functions of the individual subsystems. However, by compar-
ing the structure of the Lyapunov functions VM and VL one
can see that VM has only N degrees of freedom since the
transformation matrices Ti are fixed. On the other hand, VL
has ∑

N
i=1

ni(ni+1)
2 degrees of freedom, which reduces conser-

vatism except for the special case that all systems are scalar.
So the M-matrix condition is more conservative because it
evaluates the stability of the overall system using scalar (worst-
case) approximations of the individual subsystems. In fact, the
M-matrix test can be viewed as a special case of the block-
diagonal quadratic Lyapunov condition. It requires diagonal
stability of the transformed system Ã that is comprised of
the blocks Ãi j given in Eq. (3), but using only N parameters
on the diagonal instead of n. So clearly the M-matrix test
is more conservative than the Lyapunov test but numerical
investigations in Section V will show that it has computational
advantages. However, the conservativeness of the M-matrix
test is not introduced for the sake of the distributed solution.
For the Lyapunov test, the conservativeness stems from the
block-diagonal restriction needed for the distributed solution.

Furthermore, the Lyapunov test has the disadvantage that the
communication topology needs to be a chordal graph, so there
may be a need for additional communication links instead of
only the ones to the physical neighbors. This is visualized in
Figure 1 for a small example.

The conservativeness is illustrated with an example. The A-

matrix of a system with two subsystems is given by

A =


−1 0 1

2
1
10

0 − 1
10 −1 − 1

2
1 1 − 1

2 0
− 3

2
1
3 0 −1

 .
All eigenvalues of A have negative real parts so the system

is asymptotically stable, and the interconnection topology
is chordal. The test matrix W according to (3) is W =[ 0.1640 −1.1515
−1.9234 0.5422

]
. One eigenvalues of W has negative real part

so the matrix is not an M-matrix. However, it is possible to
determine a block-diagonal Lyapunov matrix P as

P =


49.2348 12.1610 0 0
12.1610 40.7617 0 0

0 0 35.3606 9.5783
0 0 9.5783 17.4666

 .
The matrix is positive definite and satisfies (11) showing
asymptotic stability.

V. NUMERICAL SIMULATIONS

In this section the two presented approaches of testing
stability are evaluated. In the first subsection both distributed
algorithms are applied to test systems that satisfy both con-
ditions, while in the second subsection only one condition is
satisfied to show the reduced conservativeness. Finally, the
tests are applied to a power system.

A. Systems satisfying the M-matrix condition

For the M-matrix test from Section III, 100 asymptotically
stable systems with N = 25 subsystems are randomly cre-
ated, with ni = 2∀i, and with connection probability between
subsystems of 0.1. The created systems have the following
properties: The minimal real parts of the eigenvalues of A
are between −50.6 and −46.6, and the maximal ones are
between −7.4 and −0.001. There are 82 to 190 directed edges
(on average 133). Also they are created such that they satisfy
Assumption 3 necessary to apply the Lyapunov stability test.

To validate the results of the distributed Algorithm 1 we
compare the results of our distributed algorithm with a cen-
tralized implementation in Yalmip [24]. The comparison with
Yalmip is not in terms of efficiency but only serves as valida-
tion with regards to the final obtained values, because the goals
of our distributed algorithm and a centralized implementation
are different in terms of privacy vs. efficiency. The convexity
parameters are chosen as σδ = 10−3, σdi = 10−3. The values
of the cost function obtained with Yalmip lie between −18
and −4.78 ·10−4. The approximate result from the distributed
algorithm is always smaller than the Yalmip result, as expected
by Eq. (7). Using Algorithm 2 with ε0 = 10−1,εmin = 10−5

and α = 0.1, we obtain the objective function differences
between Yalmip and Algorithm 1 that are summarized in
Table I with minimum, maximum and mean values. They show
that the approximated solution given by Algorithm 1 improves
with decreasing ε , as expected. Furthermore, the numerical
computations show that with decreasing ε , convergence to
negative objective function is observed in all 100 cases. Hence,
all system are connectively stable by Theorem 2.

The systems are also analyzed with the distributed Lyapunov
stability test. We first compare the results of optimization
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TABLE I: Difference in objective function value between
Yalmip and Algorithm 1: Section V-A

ε min(| f ∗ε − f ∗Yalmip|) max(| f ∗ε − f ∗Yalmip|) mean(| f ∗ε − f ∗Yalmip|)
10−1 0.0041 0.090 0.012
10−2 4.08 ·10−4 0.0089 0.0012
10−3 4.08 ·10−5 8.91 ·10−4 1.16 ·10−4

10−4 4.13 ·10−6 8.89 ·10−5 1.17 ·10−5

10−5 4.5 ·10−7 8.90 ·10−6 1.19 ·10−6

TABLE II: Difference in objective function value between
Yalmip and Algorithm 3: Section V-A

ε min(| f ∗ε − f ∗Yalmip|) max(| f ∗ε − f ∗Yalmip|) mean(| f ∗ε − f ∗Yalmip|)
10−1 0.0019 0.041 0.0033
10−2 1.86 ·10−4 0.0048 3.89 ·10−4

10−3 1.92 ·10−5 7.58 ·10−4 8.57 ·10−5

problem (15) solved with Yalmip with the results from Algo-
rithm 3. The convexity parameters are set to σδ = 10−3,σPl =
10−3,σW s = 10−5.

Using Algorithm 2 with ε0 = 10−1,εmin = 10−3, and α =
0.1 the differences in Table II are obtained, indicating that
Algorithm 3 approximates the optimal solution well. Also,
convergence to negative cost function values is observed for all
100 systems and hence, we conclude stability by Theorem 4.
In conclusion, both methods identify all 100 stable systems
correctly.

Furthermore, the numerical effort of both tests is compared.
For the same accuracy ε = 10−3, the M-matrix test requires
between 173956 and 283095 iterations while the Lyapunov
test requires between 1736306 and 2385591. In addition to
the higher number of iterations, the individual iterations of the
Lyapunov test are more costly than the M-matrix test because
they involve matrix operations. The solution of LMIs that is
part of the Lyapunov test is inherently more costly than the
linear program structure of the M-matrix test. Also the overall
size of the problem is clearly smaller for the M-matrix test
because it uses a scalar approximation for every subsystem
while the Lyapunov test works with the complete model.

To visualize the principle behavior of the optimization
algorithm and the influence of ε , the cost evolution for one
example system is shown in Figure 2a where the Lyapunov
stability test is applied. It can be seen what the gain of the
additional number of iterations caused by a smaller value
of ε is. The evolution starts with a negative value and then
approaches the optimal value from below. In Figure 2b we see
the decrease in distance from the actual optimal value which
is always smaller than the respective ε .
B. Systems violating the M-matrix condition

In Section V-A it is shown that the Lyapunov stability test
also identifies all systems to be asymptotically stable that
satisfy the M-matrix condition. In this subsection, again 100
systems are randomly created, each with N = 25 subsystems
and ni = 2∀i, but in such a way such that they fail the
M-Matrix condition but satisfy the Lyapunov condition. The
minimal real parts of the eigenvalues of A lie between −22.03
and −18.6, the maximal ones between −2.6 and −0.03, and
there are 78 to 197 directed interconnections. Also they are
created such that satisfy Assumption 3.

0.5 1 1.5
·106

−0.5

−0.48

−0.46

ε = 1

ε = 10−1
ε = 10−2 ε = 10−3

Iterations

C
os
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(a) Cost evolution for different ε
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(b) Final cost for different ε

Fig. 2: Algorithm behavior for different values of ε: Final
optimal value is -0.4466 in black (dashed)

Employing Algorithm 2 with ε0 = 10−1,εmin = 10−3

and α = 0.1, the cost difference between Yalmip (values
between −3.3 and −0.068) and Algorithm 3 are given in Ta-
ble III. Also this procedure indicates convergence to negative
cost function values in all 100 cases. Hence we conclude
asymptotic stability by Theorem 4.

When the M-Matrix test is applied to the systems us-
ing Yalmip, the objective value is between 1.4 ·10−13

and 1.76 ·10−11 , i.e. the systems do not satisfy the condition
for connective stability. When applying Algorithm 1 with
Algorithm 2, the obtained objective functions become closer
and closer to zero with decreasing ε (10−3→ 10−6). While
one cannot guarantee that the condition may be satisfied for
even smaller values of ε , the subsystems have to choose
an appropriate εmin to make their decision. Summarizing the
two subsections, the Lyapunov stability test identifies a larger
class of systems at a higher numerical effort. This trade-off is
summarized in Table IV. Reducing the number of iterations
is the subject of current work and involves the application of
an adaptive-step size rule for the DNA as proposed in [22].
Qualitatively, the advantage of the M-matrix test in terms of
numerical effort is expected to remain.

Naturally, there are systems that violate both the M-matrix
condition, and the block-diagonal Lyapunov stability con-
dition. But the block-diagonal Lyapunov stability condition
is clearly less conservative than the M-matrix condition at
the cost of an increased numerical cost. On the other hand,
the M-matrix condition establishes connective stability, i.e.
robust stability. In practice, it is recommended to first check
the simple M-matrix condition and only check the Lyapunov
condition if the M-matrix condition fails.
C. Application to 30 bus power system

In this subsection we apply the presented tests to a power
system model. The dynamics of each subsystem follow [25]
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TABLE III: Difference in objective function value between
Yalmip and Algorithm 3: Section V-B

ε min(| f ∗ε − f ∗Yalmip|) max(| f ∗ε − f ∗Yalmip|) mean(| f ∗ε − f ∗Yalmip|)
10−1 0.0017 0.0376 0.0076
10−2 1.89 ·10−4 0.0038 0.0011
10−3 2.22 ·10−5 0.0035 4.86 ·10−4

TABLE IV: Comparison between the M-Matrix test and the
Lyapunov test: The Lyapunov test is clearly less conservative
at a larger computational effort

M-Matrix test Lyapunov Test
# identified stable systems out of 200 100 200
Average # iterations for ε = 10−3 156468 1751734

δ̇i(t) = 2π fi(t)

ḟi(t) =−
fi(t)
TPi

− KPi

2πTPi

 ∑
j∈Nin,i

KSi j [δi−δ j]

+
KPiPgi

TPi

,

where δi is the phase angle, fi the frequency, Pgi the generator
output (input to the system), TPi the system model time
constant, KPi the system gain and KSi j the synchronizing
coefficient of the tie-line between the ith and the jth area.
The parameters for all areas are identical with TPi = 25,KPi =
100,KSi j = 0.5. Since the original system is only marginally
stable, we use a structured feedback for stabilization [26].

The interconnection topology is taken from the IEEE 30 bus
test case [27]. The interconnection topology is not a chordal
graph so for the Lyapunov stability test we have to use the
chordal extension of the graph.

Eventually, stability cannot be shown using the M-
matrix condition. Applying the Lyapunov stability test,
the value of the cost obtained with Yalmip is −1.7004.
Using the distributed Algorithm 3 with Algorithm 2
with accuracy values ε = {1,10−1,10−2,10−3} the follow-
ing corresponding objective function values are obtained:
−1.7164,−1.7036,−1.7023,−1.7022. One can see that with
decreasing ε convergence to a negative cost function value
is observed. Thus, the distributed Lyapunov test indicates
asymptotic stability of this practical example of a large-scale
dynamical system based on Theorem 4.

VI. CONCLUSIONS

In this article we present two methods to evaluate stability
of large-scale systems in a distributed fashion where each
subsystem only exchanges limited model information. The first
approach is based on an M-matrix condition that results in
a linear program, the second one is based on a Lyapunov
LMI. The key to the distribution of the stability tests lies
in the formulation of the stability conditions in the form
of an optimization problem, thus allowing the application
of distributed optimization techniques. Numerical simulations
indicate that the second approach is computationally more
costly but reduces conservativeness. On the other hand, the
first approach guarantees connective stability. Both methods
represent first approaches for general LTI systems to evaluate
stability without the availability of a central, overall system
model, thus ensuring privacy of the subsystem model data.
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[24] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, 2004. [Online].
Available: http://users.isy.liu.se/johanl/yalmip

[25] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed
model predictive control,” IEEE Control Systems, vol. 22, no. 1, pp.
44–52, 2002.

[26] F. Deroo, M. Ulbrich, B. D. O. Anderson, and S. Hirche, “Accelerated
iterative Distributed Controller Synthesis with a Barzilai-Borwein Step
Size,” in Proc. 51st IEEE Conf. on Decision and Control (CDC), 2012.

[27] R. Christie, “IEEE 30 Bus Test Case,” 1993. [Online]. Available:
http://www.ee.washington.edu//research/pstca/pf30/pg tca30bus.htm

www-m1.ma.tum.de/foswiki/pub/M1/Lehrstuhl\ /MartinMeinel/distributed_stability.pdf
www-m1.ma.tum.de/foswiki/pub/M1/Lehrstuhl\ /MartinMeinel/distributed_stability.pdf
http://users.isy.liu.se/johanl/yalmip
http://www.ee.washington.edu//research/pstca/pf30/pg_tca30bus.htm


11

Frederik Deroo received his Diplom degree in
Mechatronics from the University of Stuttgart, Ger-
many in 2011, and a Master of Science degree
in Engineering Science and Mechanics from the
Georgia Institute of Technology in 2009. Since April
2011 he has been a research assistant at the In-
stitute of Information-oriented control. His research
interests include distributed control and analysis of
interconnected systems, as well as the application of
distributed optimization methods to control theory
problems.

Martin Meinel graduated in 2004 with a diploma
in mathematics at the Technical University of Mu-
nich. Since 2004 he is a member of the Chair
of Mathematical Optimization at the TUM, where
he is writing a doctoral dissertation on distributed
optimization with event-triggered communication.
During his Ph.D. he participated in the SPP-1305
priority program funded by the German Research
Foundation (DFG). His research interests include
distributed semidefinite and convex optimization as
well as the investigation of convergence properties

using event-triggered communication in a distributed setting.

Michael Ulbrich received his Diploma, Doctorate,
and Habilitation in Mathematics from the Technis-
che Universität München in 1992, 1996, and 2002,
respectively. From 2002 to 2006 he was a full pro-
fessor at the Department of Mathematics, University
of Hamburg. Since 2006 he is a full professor and
head of the Chair of Mathematical Optimization,
Technische Universität München. His main research
interests include nonlinear optimization, optimal
control, large-scale optimization, complementarity
problems, variational inequalities, MPECs, inverse

optimal control, and nonsmooth analysis.

Sandra Hirche received the Diplom degree in Me-
chanical Engineering and Transport Systems from
the Technical University Berlin, Germany, in 2002
and the Doctor of Engineering degree in Electrical
Engineering and Information Technology from the
Technische Universität München, Munich, Germany,
in 2005. From 2005 to 2007 she was awarded a
Postdoc scholarship from the Japanese Society for
the Promotion of Science at the Fujita Laboratory,
Tokyo Institute of Technology, Tokyo, Japan. From
2008 to 2012 she has been an associate professor at

Technische Universität München. Since 2013 she holds the Liesel Beckmann
Chair and is director of the Institute for Information-oriented Control in
the Department of Electrical Engineering and Information Technology at
Technische Universität München. Her main research interests include net-
worked dynamical systems, cooperative and distributed control, and event-
triggered control with applications in human-in-the-loop systems, robotics,
and infrastructure systems. She has published more than 150 papers in
international journals, books and refereed conferences. Dr. Hirche has served
or is serving on the Editorial Boards of the IEEE Transactions on Control
Systems Technology and the IEEE Transactions on Haptics. She has received
multiple awards such as the Rohde & Schwarz Award for her PhD thesis in
2005, the IFAC World Congress Best Poster Award in 2005 and together with
students Best Paper Awards of IEEE Worldhaptics and IFAC Conference of
Manoeuvring and Control of Marine Craft in 2009.


	Introduction
	Related work
	Contribution

	Problem formulation
	Distributed test for connective stability
	Distributed Lyapunov stability analysis
	Discussion of the two tests

	Numerical simulations
	Systems satisfying the M-matrix condition
	Systems violating the M-matrix condition
	Application to 30 bus power system

	Conclusions
	References
	Biographies
	Frederik Deroo
	Martin Meinel
	Michael Ulbrich
	Sandra Hirche


