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Abstract—Representing images with their descriptive features
is the fundamental problem in CBIR. Feature coding as a key-step
in feature description has attracted the attentions in recent years.
Among the proposed coding strategies, Bag-of-Words (BoW) is
the most widely used model. Recently saliency has been mentioned
as the fundamental characteristic of BoW. Base on this idea,
Salient Coding (SaC) has been introduced. Empirical studies
show that SaC is not able to represent the global structure of
data with small number of codewords. In this paper, we remedy
this limitation by introducing Locally Linear Salient Coding
(LLSaC). This method discovers the global structure of the data
by exploiting the local linear reconstructions of the data points.
This knowledge in addition to the salient responses, provided by
SaC, helps to describe the structure of the data even with a few
codewords. Experimental results show that LLSaC obtains state-
of-the-art results on various data types such as multimedia and
Earth Observation.

Keywords—Content-Based Image Retrieval, Feature Coding,
Salient Coding, Locally Linear Embedding

I. INTRODUCTION

Exploiting the large volume of the available data (e.g.,
multimedia, Earth Observation) requires developing efficient
CBIR systems. The fundamental problem of any CBIR sys-
tem is to provide descriptive representations of images. In
recent years, Bag-of-Words (BoW) [1] model, a codebook-
based image description technique, has been widely used in
CBIR and visual indexing problems. BoW model is basically
composed of four main steps, e.g., local feature extraction,
codebook generation, feature coding, and pooling.

In the first step, various primitive features of an im-
age (e.g., color, texture, shape) are described as vectors of
analytical components, so-called feature vectors, for every
local patches of the image using various methods, e.g., rgb-
Hist [2], WLD [3], and SIFT [4]. These vectors form a high-
dimensional euclidean space, so-called feature space, where
each vector is represented as a point there. In the next step,
the structure behind the distribution of the feature points is
modeled by a codebook which is a set of points, so-called
codewords. The codewords are usually generated by applying
a clustering technique (e.g., k-means) on random samples of
the feature points. For each image, in the encoding step, a
code matrix is generated, where each row shows the responses
of a local feature point to different codewords. In order to
compute the response values, various coding schemes has been
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Fig. 1. The main framework of the proposed LLSaC method. The reconstruc-
tion weights computed in feature point space are passed to the code space.
There, the salient response of each data point is updated by the weighted
average of the responses from its neighbors, where the responses are weighted
by their corresponding reconstruction weights.

introduced in recent years, for example, voting, reconstruction,
and salient -based methods [5]. Finally, the responses of all the
local feature points to each codeword are integrated to form a
single code value using a pooling technique, e.g., sum, average,
and maximum pooling [6]. The output of the pooling step is
a histogram with the number of bins equal to the number of
the codewords which is then used by learning algorithms.

Variety of the possibilities to select a subset of the code-
words to describe a feature point as well as various methods to
compute the response values make encoding step a hot topic
in CBIR. The classic coding method is Hard Voting (HV) [1],
which counts the number of the nearest neighboring feature
points to every codeword as the code value. Using a kernel
function, Soft Voting (SV) [7] is proposed to not only consider
the distances between the feature points and the codewords, but
also allow each feature point to be described by more than one
codeword. In order to provide more descriptive information
about the feature points by the codewords, reconstruction-
based methods have been applied to coding scenarios. In these
methods, each feature point is reconstructed by a group of
codewords constrained by the number of contributed code-
words (e.g., Sparse Coding (SC) [8]) and the locality of the
codewords such as in LCC [9] and LLC [10]. Considering the
locality of the codewords in combination with the maximum
pooling in LLC leads to salient representation of the feature
points. More precisely, if K nearest codewords are used to
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code a feature point, closer codewords to the feature point
will receive a stronger response than the others. In order to
represent the salient characteristics of the feature points and to
avoid the computation cost of the LLC method, Salient Coding
(SaC) [11] and its variants such as Group Salient Coding
(GSC) [12] have been proposed.

In all the proposed coding methods, each feature point is
coded independent of the other points. However, it has been
shown in literature [13] that the relations between the neigh-
boring points help discovering the global structure of data.
Therefore, in this paper, we propose Locally Linear Salient
Coding (LLSaC) which is a new variant of SaC. In contrast to
the previous coding methods, LLSaC codes the local structures
of the feature space instead of only a feature point. In the
proposed method, the local structure of the data is discovered
by a set of linear coefficients which reconstruct each feature
point from its neighbors. The computed coefficients are then
used to update the salient response of the feature point, where
the salient response is obtained similar to the SaC method. The
idea is that if the coefficients can reconstruct a feature point
from its neighbors, they should also be able to reconstruct
the response of the feature point to a codeword from the
responses of its neighboring points. Figure 1 shows the main
idea behind our proposed method. In the feature point space,
the reconstruction weights wij are computed based on the
linear reconstruction of the point p1 from its neighbors. Then
this knowledge (i.e., reconstruction weights) are passed to the
code space. There, the salient response of p1 to the codeword
k, provided by SaC, is updated by the weighted average of
the responses of its neighboring points, where the responses
are weighted by their corresponding reconstruction weights
computed in the feature space.

In order to evaluate the proposed method, it compared
to SaC and other coding strategies such as HV, SV, and
LLC on 15 natural scenes dataset. Results show that LLSaC
improves SaC significantly to outperforms the other coding
strategies even for small codebook sizes. Since large num-
ber of codewords besides improving learning performance
introduces problems such as the storage problem, the curse
of dimensionality which increase the computation effort, and
the limited degree of freedom [14]. Therefore, developing
coding strategies which help learning methods to achieve
high accuracies with small codebook sizes make them more
scalable. Moreover, it is shown that LLSaC also improves SaC
in case of other data types such as Earth Observation which
verifies the generality of the proposed method.

Rest of the paper is organized as follows: Section II and III
provide brief reviews of Salient Coding and the linear rep-
resentation of non-linear structures, respectively. Section IV
explains the LLSaC method. Results are then discussed in
Section V. Finally, the paper is concluded in Section VI.

II. SALIENT CODING

Based on the idea that saliency is a fundamental charac-
teristic of the feature space and the codebook-based coding
strategies, Salient Coding (SaC) [11] has been introduced. SaC
considers the relative distances of the feature points and the
codewords in combination with maximum pooling to code
the saliency information of the points. In other words, the

codeword which is relatively close to a feature point can
strongly describe the point independent of the other codewords.
Therefore, the salient response sik of the feature point pi to
the codeword bk is obtained by:

sik =

{
Ψ(pi) if k = argmink ‖pi − bk‖2
0 else

, (1)

Ψ(pi) = Φ(

∑
t(‖pi − bt‖2 − ‖pi − bk‖2)∑

t ‖pi − bt‖2 ), t ∈ NC(bk),

(2)

where Φ is a monotonically decreasing function and
NC(bk) is a set of K nearest codewords to the feature point pi.
According to the Equation 1, each feature point only responds
to its nearest codeword which results in a hard assignment
strategy [12].

III. LINEAR REPRESENTATION OF NON-LINEAR

STRUCTURES

Using linear coefficients to represent the non-linear struc-
ture of data has been introduced first by Saul and Roweis [13]
in their proposed neighborhood preserving dimensionality
reduction method, the so-called Locally Linear Embedding
(LLE). The idea is that every original N -dimensional data point
pi ∈ R

N can be reconstructed by a linear combination of its
neighboring points pj ∈ R

N , given a set of weighs wij ∈ W .
To compute the weights that best reconstruct the data points,
the following cost function should be minimized,

E(W ) =
∑
i

|pi −
∑
j

wijpj |2. (3)

In this function, wij determines the contribution of pj to the
reconstruction of pi. Thus, each row of the matrix W should
sum to one,

∑
j wij = 1. Moreover, in order to allow only

the contributions of the neighbors, for every non-neighboring
points wij = 0. The optimal weights are obtained in closed
form by solving a least square problem. For more details about
computing optimal weights, we refer readers to [15].

IV. LOCALLY LINEAR SALIENT CODING

In this section we explain our proposed Locally Linear
Salient Coding (LLSaC) method which is a new variant of SaC
method. SaC has been introduced to use the local saliency of
points. However, as it is mentioned in the original article [11],
for small codebooks SaC is worse than other coding tech-
niques such as HV and SV. Since SaC codes each feature
point independent of the other points, the small number of
codewords cannot represent the structure of the entire feature
space. Therefore, SaC is highly sensitive to the codebook size
and only outperforms the other schemes for large codebooks.

In order to overcome the limitation of SaC in represent-
ing the structure of the feature space with small number
of codewords, we introduce LLSaC in this paper. LLSaC
codes the local patches neighboring to every feature points in
order to provide codewords with more informative responses.



LLSaC discovers the structure of the feature space based
on a set of linear coefficients which construct each feature
point from its neighbors. The idea of linear representation of
non-linear structures has been introduced in [13] for locally
linear embedding of high-dimensional points into a lower-
dimensional space. Based on this idea, we claim that if the
point pi is reconstructed from its neighbors pj using linear
coefficients wij , the response sik of pi to the codeword bk
should also be reconstructed from the responses (sjk) of its
neighboring points,

sik �
∑
j

wijsjk, j ∈ NN(pi), (4)

where NN(pi) is the set of K̄ nearest feature points to the
point pi. Thus, first, the responses of the feature points to the
codewords are computed using SaC method. Then, the salient
responses of every feature points pi (i.e., sik) is updated by:

s̄ik =
1

2
(
∑
j

wijsjk + sik), j ∈ NN(pi). (5)

Finally, the updated salient codes (s̄ik) are integrated using
maximum pooling to form the final image descriptor.

V. EXPERIMENTS AND RESULTS

In this section, LLSaC is compared to SaC and other coding
schemes such as HV, SV, and LLC. In order to be consistent
with the previous feature coding articles (e.g., [5], [11], [16]),
we use the coding toolkit developed by [16]. Moreover,
in order to compare LLSaC with SaC more precisely, the
experiments are run on 15 natural scenes dataset1 and the
results are compared to the reported results in the original
paper [11]. In addition to this dataset, LLSaC is evaluated
on an Earth Observation dataset, the so-called UCMerced-
LandUse dataset2.

A. Datasets

The 15 natural scenes dataset is a collection of 4485 gray
value images of outdoor and indoor scenes. The images are
grouped into 15 non-equal size categories, where each contains
between 200 and 400 images. In our experiments, 100 images
from each category are randomly selected as training samples
and the rest are used to test the learned model.
UCMerced-LadUse is a collection of 2100 multi-spectral im-
ages of land-use scenes. The images are categorized into
21 classes, where each class contains 100 images. For our
experiments, 40 images from each class are randomly selected
for training and the rest are used for testing. Figure 2 shows
some representative samples of the datasets.

B. Experimental setups

In order to be consistent with the experimental setup in the
previous works in feature coding area (e.g., [5], [11], [16]),
the 128 dimensional SIFT descriptors are extracted densely

1http://www-cvr.ai.uiuc.edu/ponce grp/data
2http://vision.ucmerced.edu/datasets/landuse.htmls
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Fig. 2. Representative samples from (a) 15 natural scenes and (b) UCMerced-
LandUse datasets.
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Fig. 3. Performance of LLSaC on 15 natural scenes dataset for different K̄.

for every 4 pixels. In order to provide richer description of
the image features, SIFT is extracted for three scales: 16×16,
24× 24, and 32× 32. Then, k-means clustering is applied to
samples of the local feature points to generate codebooks of
various sizes. In coding step, the parameter K (i.e., the number
of nearest codewords) is fixed to K = 5 for LLSaC, SaC, and
LLC according to [11].

In LLSaC, the number of neighbors which reconstruct
the feature points is fixed to K̄ = 5 based on an empirical
study. We study the influence of K̄ to the performance of
our proposed method in classification of 15 natural scene
image collection. Figure 3 shows the performances for K̄ =
2, 5, 10, 20 under the codebook size of 16. The figure indicates
that the small number of neighbors cannot provide enough
information about the structure of the data. However, using
too many neighbors affects the locality of the reconstruction
weights.

In order to compare the performances of the coding strate-
gies, they are used to classify images using a classification
method, so-called SVM3. The setup parameters of SVM such
as cost and gamma are set to 1 according to [11]. Then
the classification accuracies are reported for various codebook
sizes. For each codebook size the experiments are run 10 times
and the average result is presented.

C. Results and discussions

In order to evaluate the proposed method, its performance
on classification tasks are compared to the other coding
methods for two datasets. Figure 4 shows the classification
accuracies for LLSaC, SaC, HV, SV, and LLC. As the graph
shows, LLSaC outperforms all the other methods under various

3http://www.csie.ntu.edu.tw/cjlin/liblinear/
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Fig. 4. Performance comparison of LLSaC and other coding schemes under
different codebook sizes on 15 natural scenes dataset. Results for SaC, HV,
SV, and LLC are reported from [11].
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Fig. 5. Performance comparison of LLSaC and SaC under different codebook
sizes on UCMerced-LandUse dataset.

codebook sizes. However, as the dictionary size increases the
performance of LLSaC converges to the results of SaC. Since
LLSaC provides the codewords with the responses from local
structures of the feature space, even small number of code-
words can discover the global structure of the data. Therefore,
LLSaC is more robust under the change in the codebook size.
However, as the number of codewords increases enough (about
80% of the number of local feature points in each image), they
can represent the structure of the data with no need for extra
information from the local structures. Consequently, LLSaC
and SaC performs similarly for large number of codewords.

Figure 5 shows the improvement achieved by updating the
SaC codes using the responses of the neighboring codes in
LLSaC on UCMerced-LandUse dataset. Since various kinds
of data (e.g., multimedia, Earth Observation) result in different
topologies in feature space, evaluating the coding strategies on
Earth Observation data verifies the generality of the methods.
Results indicate that LLSaC surpasses SaC also on this dataset.

VI. CONCLUSION

In this paper we propose Local Linear Salient Coding
(LLSaC), a new variant of Salient Coding (SaC). This method
remedies the limitations of SaC in representing the structure
of the feature space by small number of codewords. LLSaC
discovers the global structure of the data by exploiting the
local linear reconstructions of the data points. This knowledge
is then used to update the salient responses resulted by SaC.

Experimental results indicate that LLSaC is able to describe
the structure of the feature space even with a few codewords.

In this paper, the locally linear reconstruction technique
is applied to SaC; however, this technique can be seen as an
independent wrapper which can be applied to other codebook-
based coding strategies. This allows the coding methods to use
the local information of the feature space in addition to the
responses of each individual feature point to the codewords.
Thus, for future works, we suggest to apply this technique
to other feature coding strategies such as LLC, SV, and the
variants of SaC.
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