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1. Introduction

[...] curator instructus esse debet, nec suae tantum stationis architectis uti, sed
plurium advocare non minus fidem quam subtilitatem, ut aestimet quae
repraesentanda, quae differenda sint, et rursus quae per redemptores effici debeant,
quae per domesticos artifices.

[...] He [the commissioner] ought not only to consult the engineers in his own
office, but also to call upon the reliable judgment and expertise of numerous
others, that he may in the end determine which tasks are to be undertaken without
delay and which are to be postponed, and, again, which are to be carried out by
independent contractors and which by workmen of the domestic staff.

(Sextus Julius Frontinus, De aquaeductu urbis Romae)

This description of the responsibilities of the curator aquarum, the commissioner of
the aqueducts supplying water to the imperial City of Rome, given by Sextus Julius
Frontinus demonstrates that issues of planning and executing projects were as pervasive
centuries ago as they are in modern society (Frontinus and Rodgers, 2004; Walker
and Dart, 2011). Frequently, prominent projects are seen to miss time and cost targets.
Among other factors, failure to consider uncertainty in selecting and scheduling projects
can be blamed.

This dissertation covers three distinct topics within the domain of project management
and project scheduling tied together by a real-life project management problem of select-
ing initiatives to improve the supply chain function of an international semiconductor
manufacturer presented in Chapter 2.

Reyck et al. (2005) emphasize the importance of properly assessing project and portfolio
risks in project portfolio management. Ward and Chapman (2003) criticize common
risk management practice for emphasizing the downside potential of uncertainty and
neglecting unforeseen positive effects. Based on Fliedner and Liesi6 (2015), Chapter 3
addresses this issue by extending an established approach for project portfolio selection
under uncertainty, Robust Portfolio Modeling (RPM) (Liesio et al., 2007, 2008), to
provide less conservative portfolio recommendations. The chapter develops a formal
decision making framework, describes means of providing decision support based on
this model, and gives an illustrative example adapted from the case study in Chapter 2.
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If operations research is to successfully help people in solving problems, the problem
owners should not be neglected (Hamaldinen et al., 2013). Chapter 2 serves as an
overall positive example of the practical application of normative decision support
models and operations research techniques. Yet, company decision makers have
emphasized that they also take into account tacit knowledge and managerial experience
in decision making not covered by the formal process. Salo et al. (2011) emphasize
the need for research on the occurrence, the impact, and the avoidance of decision
biases in portfolio decision making settings, while Kavadias (2014) underlines the
potential of experimental research for the domain of project management in general.
Chapter 4 based on Fliedner et al. (2014) addresses human behavior in project portfolio
selection. Based on the knapsack problem, a generic and controllable problem setting,
an experimental framework is designed where subjects may dynamically select and
deselect from a list of items to build their desired portfolio. The framework makes it
possible to study both subjects” decision quality as well as their selection process.

Hans et al. (2007) survey different perspectives on managing project-driven orga-
nizations and propose a positioning framework to aid in selecting better planning
approaches. The issue of project portfolio selection, covered by Chapter 2, Chapter
3, and Chapter 4, is regarded as a tactical task that directly leads to underlying op-
erational issues of project scheduling and resource allocation. During evaluation of
the decision support system for project portfolio selection reported on in Chapter 2,
company decision makers have expressed the wish to receive additional information on
ongoing projects in order to aid project tracking and the process of allocating resources.
Based on Fliedner and Kolisch (2015), Chapter 5 considers a dynamic project resource
allocation and scheduling setting where projects arrive stochastically over time. The
chapter proposes novel problem instances to study the performance and stability of
approaches for project scheduling under uncertainty first in a static and later in a
dynamic setting.



2. A Case Study on the Selection of Supply
Chain Improvement Projects in the
Semiconductor Industry

Project portfolio selection, choosing a subset from a discrete set of project proposals
subject to various constraints, poses significant challenges to businesses and public
organizations alike (Kleinmuntz, 2007; Salo et al., 2011). Organizations typically must
choose from multiple proposals as they lack the funds, personnel, or time to pursue all
of them. Projects may impact an organization in multiple dimensions and may affect
multiple stakeholders with different preferences. Usually, significant initial investments
are necessary with the anticipation of future benefits. Hereby, project resource require-
ments, project benefits, as well as aspects of operational project execution are subject to
considerable uncertainty (Martinsuo et al., 2014). Issues in project portfolio selection
arise on a strategic level in corporate research and development planning (Heiden-
berger and Stummer, 1999; Dickinson et al., 2001; Stummer and Heidenberger, 2003) or
public policy development (Henriksen and Traynor, 1999; Liesio et al., 2007). On an
operational level, a common problem setting is the selection of process improvement
initiatives (Santhanam and Kyparisis, 1996, Grushka-Cockayne et al., 2008; Gurgur and
Morley, 2008). This chapter considers the latter domain.

We report on a practical decision problem of selecting projects to improve the supply
chain function of an international semiconductor manufacturer. While the company
has established a clear process for project evaluation and prioritizing overseen by
a project portfolio committee, company decision makers have expressed difficulties
in assessing project proposals evaluated in terms of multiple criteria and subject to
interdependencies. When considered in isolation, a project proposal with high cost
and low value may be rejected by traditional evaluation techniques, e.g., the value-
for-money principle (Keisler, 2004; Phillips and Bana e Costa, 2007; Lourengo et al.,
2012). Nonetheless, the project may be valuable to the portfolio as a whole as it enables
the execution of other valuable projects or is rendered profitable due to synergistic
effects in combination with other projects. Reyck et al. (2005) emphasize adequate
consideration of project interdependencies, incorporation of selection constraints, as
well as proper alignment of the portfolio to company strategy as key elements of
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project portfolio management and drivers of project success. Cooper et al. (2001)
empirically study the popularity and effectiveness of different approaches to project
portfolio selection. While most companies only employ financial metrics for project
selection alone, this practice does not relate to the selection of projects perceived as
most valuable by decision makers. Top performing companies additionally rely on
non-financial metrics, which result in better alignment of the project portfolio with
business strategy. In order for the semiconductor manufacturer to become a champion
in project portfolio management, an academic project was initiated. Jointly with the
supply chain management department of the company, an interactive decision support
system has been developed to provide guidance in the decision making process. The
system was designed to provide decision makers with portfolio recommendations
that are aligned with the supply chain strategy and provide highest possible financial
contribution.

Research in the area of “Portfolio Decision Analysis” (Salo et al., 2011) has brought
forth a wide range of quantitative approaches to provide guidance for project selection
problem settings. Reviews are given by e.g., Hall and Nauda (1990), Heidenberger and
Stummer (1999), and Kolisch et al. (2008). Santhanam and Kyparisis (1996) propose an
integer programming model for information system project selection taking into account
logical interdependencies as well as synergies between projects. Dickinson et al. (2001)
provide decision support for the selection and timing of technology projects at Boeing.
A non-linear integer programming model is used to maximize the net present value of
the portfolio subject to a budget constraint as well as aspiration levels on the strategic
alignment of projects in the portfolio. Logical interdependencies between projects are
modeled by a dependency matrix, which is also used to transfer value between interde-
pendent project proposals. Stummer and Heidenberger (2003) develop a multi-objective
integer programming model for the selection of research and development projects.
All Pareto optimal project portfolios are determined through complete enumeration,
which the authors regard as computationally tractable for problem settings with up to
30 projects. The model takes into account logical interdependencies and synergies be-
tween projects as well as aspiration levels for all evaluation criteria. Grushka-Cockayne
et al. (2008) provide a decision making framework for the selection of operational
improvement projects and their execution mode at the European air traffic management
organization. The authors consider a linear-additive portfolio value model taking into
account project scores evaluated by multiple stakeholders according to multiple criteria.
An integer programming model is developed that maximizes overall portfolio value
while taking into account multiple budget restrictions and aspiration levels for all score
criteria. The model is extended to additionally account for non-linear project synergies
by considering decisions on project clusters instead of single projects. Gurgur and
Morley (2008) support the selection of maintenance and infrastructure projects at the
Lockheed Martin Space Systems Company. A multi-criteria linear-additive portfolio
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value model is developed, where criteria weights are determined by swing-weighting.
The authors propose an integer programming model that maximizes aggregate project
utility. Uncertainty with regards to project cost and duration are taken into account by
chance-constraints limiting the probability of time and cost overruns.

Aspects of these approaches for project portfolio selection have been considered in the
development of the decision support system for the selection of supply chain improve-
ment projects. Based on a multi-attribute portfolio value model (Golabi et al., 1981), we
have developed an integer programming model taking into account logical interdepen-
dencies as well as synergies. Strategic alignment of the portfolio recommendation is
ensured by allowing decision makers to express aspiration levels for evaluation criteria.
We illustrate the proposed integer programming model using computational results
obtained during a past iteration of the project selection process. Furthermore, we report
on the introduction of the decision support system and initial feedback by decision
makers.

The chapter is structured as follows. Section 2.1 proposes a formal decision making
framework and integer programming model for project portfolio selection, which has
been embedded in a decision support system introduced in Section 2.2. We demonstrate
the proposed model in a case study in Section 2.3 before discussing the reception of the
decision support system in Section 2.4.

2.1. Decision Making Framework

Initially, project owners develop business cases for their project proposals. Using a
standardized template, they specify qualitative objectives, the scope, as well as the
deliverables of their proposal. Formally, projects j = 1,...,m are evaluated in terms
of execution cost giving a cost vector ¢ € R”} and multiple score criteriai =1,...,n
giving a score matrix v € R"!*". The additive overall value of project j is }i"; w;vj;,
where the vector of criterion weights w € IRl relates a unit increase in the criterion-
specific score to an increase in the overall project value. Specifically, the potential of
supply chain improvement through projects is evaluated in terms of their financial and
strategic value. Projects can create financial value by reducing cost within the company
supply chain or by enabling additional revenue for the company. Strategically, projects
can improve the lead time of customer orders, termed “Speed”, or the accuracy of
forecasted customer demands, called “Forecast Accuracy” (F/A). While financial value
is measured in monetary units, the Speed criterion is measured in days and Forecast
Accuracy in percentage points. Weights to translate strategic scores to monetary units
have been determined by a previous internal study on supply chain strategy.
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Project portfolios are subject to multiple sources of uncertainty stemming from the
company environment, project interdependencies, or the projects themselves (Martinsuo
et al., 2014). Different approaches of tackling uncertainty in project selection problems
have been proposed: The specification of distributions for uncertain data (Gurgur and
Morley, 2008), the definition of discrete scenarios of parameter realizations (Liesio and
Salo, 2012), the interval representation of input data (Diizgiin and Thiele, 2010), as
well as the representation of uncertain information by fuzzy numbers (Tavana and
Sodenkamp, 2009). The process established at the semiconductor manufacturer requires
project owners to specify a risk parameter with which nominal project scores are
multiplied to obtain risk-adjusted scores v. This approach is in line with common
practices of project risk management (Cooper et al., 2001; Phillips and Bana e Costa,
2007), yet follows the paradigm of interpreting uncertainty primarily as a threat to
portfolio success (Ward and Chapman, 2003).

Evaluated project proposals are discussed, prescreened, and prioritized during monthly
core team meetings by representatives from different departments. At this stage
interdependencies between project proposals are identified. Firstly, projects can be
logically connected, i.e., the execution of one project is dependent on the execution
of one or more other projects. As an example, a project to improve company revenue
by implementing decision support for supplier negotiations may be dependent on the
execution of an independent project to introduce a database on previous procurement
contracts. Secondly, synergies may arise from the execution of two or more related
projects. Greater cost efficiency of joint project execution creates additional financial
value, whereas greater effectiveness in supporting the supply chain strategy creates
additional value in terms of Speed or Forecast Accuracy. During quarterly steering
committee meetings, prescreened project proposals are presented and a portfolio is
selected for execution subject to budget restrictions.

In order to aid decision makers during steering committee meetings, portfolio recom-
mendations are developed by solving an integer programming problem for project
portfolio selection. A project portfolio is modeled as a binary vector x € {0,1}" in-
dicating the selection (x; = 1) of project j = 1,...,m. The overall portfolio value is
given by the sum of the additive overall values of selected projects (Golabi et al., 1981).
Synergies s = 1,...,0 account for non-additive beneficial effects VS € R%" resulting
from the joint execution of related projects (Santhanam and Kyparisis, 1996). They are
modeled as a binary vector y € {0,1}° indicating the application (ys = 1) of synergy
s =1,...,0if all required projects j € J; are selected.
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The integer programming problem solved in the decision support system is given by

n m n 0 m
maximize Z Z Vjiw;Xj + Z Z vssl-wiys - Z CiX; (2.1)
i=1j=1 i=1s=1 =1
subject to the constraints
m 0
Y vixj+ Y viys > o Vi=1,...,n (2.2)
j=1 s=1
m
j=1
Xjr < Xj V(],]/) ef (24)
ijz | Ts|ys Vs=1,...,0 (2.5)
j€Ts
xi,ys € {0,1} Vi=1,....m s=1,...,0. (2.6)

By company policy, projects may only receive funding if they are profitable, i.e., their

financial value is higher than their cost, or if they are essential in order to achieve
decision makers’ strategic goals for the company supply chain. To this end, the integer
programming problem is solved to recommend project portfolios that provide the
highest possible value contribution (2.1), i.e., the sum of the portfolio value and the
aggregate value of synergies reduced by the aggregate cost of selected projects. At
the same time, aspiration level constraints (2.2) ensure minimum achievement levels
v®P € R’} for each score criterion (Stummer and Heidenberger, 2003; Kleinmuntz,
2007), particularly reflecting strategic goals in terms of Speed and Forecast Accuracy.

Project selection is further restricted by an overall budget constraint (2.3) as well as
logical interdependencies (2.4). The budget constraint specifies that the aggregate cost
of all executed projects may not exceed a given budget level B € R. In the set of
logical interdependencies &, a tuple (j,j') € £ indicates that project j/ can only be
selected if another project j required for its execution is selected as well (Santhanam
and Kyparisis, 1996). Finally, Constraints (2.5) ensure that synergy values are only
taken into account if the required projects are selected.

2.2. Decision Support System

The integer programming model has been embedded in a decision support system to aid
the selection process during steering committee meetings. The decision support system
user interface consists of an interactive browser client integrated in the internal network
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of the company. The back-end system builds and solves the integer programming
problem and manages the presentation of project and portfolio information in the
interface.

Figure 2.1 provides an illustration of the user interface. At the bottom left of the
interface, a list of initially all project proposals is displayed (Section “Project List”). The
list contains the names of the projects as well as their financial value. By clicking on
any project a window with detailed information appears. In the top right part of the
interface, slide bars allow decision makers to adjust aspiration levels as a percentage
of maximum attainable criteria scores v™®* € IR’t. When the decision support system
is started, maximum scores for each criterion i = 1,...,n are determined by solving
integer programming problem

m o
v"™ = maximize Z vjiXj + Z vfiys (2.7)
j=1 s=1

subject to constraints (2.3) - (2.6) for each score criterion. Absolute aspiration levels are
given below the slide bars and are automatically adjusted whenever the slide bars are
changed.

By clicking the “Solve” button, decision makers can invoke the decision support system
to solve integer programming problem (2.1) - (2.6) taking into account the chosen
aspiration levels v*P. The resulting portfolio recommendation, i.e., a list of all selected
projects, is displayed at the bottom right of the interface (Section “Portfolio List”). In
the center of the interface, a bubble chart (Cooper et al., 2001) of the recommended
portfolio is displayed. All selected projects are plotted in the space of their financial
and strategic impact, i.e., the sum of projects’ monetized Speed and Forecast Accuracy
scores. Independently, logical interdependencies and synergy relationships of pairs
of projects can be visualized in a dependency matrix (Dickinson et al., 2001; Killen
and Kjaer, 2012). The top left “Portfolio” Section contains information on the budget
limit as well as aggregate information on the recommended project portfolio. Portfolio
cost, aggregate values for each score criterion, as well as the overall portfolio value are
presented. The section furthermore presents the objective function value of the integer
programming problem (2.1) - (2.6), the portfolio contribution.

Decision makers can manually select projects by dragging them from the “Project List”
to the “Portfolio List”. Projects may be excluded from the portfolio by dragging them
to the edge of the decision support system screen. Whenever a project is manually
selected or excluded, the integer programming problem (2.1) - (2.6) is automatically
solved again taking into account decision makers” manual adjustments. If the integer
programming problem is infeasible, a notification is displayed prompting decision
makers to adjust their choices.
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Portfolio Aspiration Levels

Contribution Overall Value Cost Budget Speed F/A

613.32 633.30 19.98 20.00 0% 00.00  10% 0% 00.00 0%

Speed F/A Financial value Financial value

53.31 42.77 220.95 0% 00.00  100%

Solve

Project List Portfolio List

Deselected Projects Selected Projects

Project 7 0.00 Project 15

-2.50
Available Projects

.

soo Recommended Projects

Project 1 0.00

Project 12
Project 2

G0 oo

583.00

s ouom

Project 3 400

Mow o
oG oo

Project 18

Strategic Value
\

Project 4
79.00

o
o

Project 5 0.00 150

Project 6

Project 25

BroisctlE @3 250 300 350 400 450 500 550 600 630 LD

Praiact @ nnn Financial Value

contr. / Cost Save Portfolio

Figure 2.1.: Illustration of the decision support system interface

2.3. Case Study

We report computational results obtained during a past iteration of the project selection
process. Table 2.1 summarizes all relevant project information. 58 projects (named P1
to P58) are evaluated in terms of n = 3 criteria, Speed (i = 1), Forecast Accuracy (i = 2),
and financial value (i = 3). While financial value is directly measured in monetary
units (w3 = 1), improving Speed by one unit is worth w; = 2.6 monetary units, and
one unit improvement in Forecast Accuracy is worth w, = 6.4 monetary units. 13
projects can only be selected if other projects are selected as well. Overall, 26 logical
interdependencies between projects exist. Synergies are summarized in Table 2.2. For
example, the joint selection of projects P9 and P27 creates additional value 0‘19/3 = 5.46,
amounting to 19% of the overall value of the two projects (synergy S1).

We report optimal solutions to integer programming problem (2.1) - (2.6) for different
budget levels B and no restrictions on aspiration levels (o] = v, = v3F = 0). Overall,
the integer programming problem contains 61 decision variables and 33 constraints.
Optimal portfolios for all budget levels B = 5,10, 15, ...,125 were determined in less
than five seconds (IBM ILOG CPLEX 12.6, 3.2 GHz dual-core processor, 8 GB memory).
For most budget levels, unique optimal solutions exist. Only for budget levels B = 25
and B = 60, ten distinct optimal portfolios exist.
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j jt ‘2 Yjs ¢j Required Projects
wy = 2.6 wy = 6.4 w3 =1

P1 0.0 0.0 0.4 0.44

P2 0.0 35.57 0.0 124

P3 0.0 0.0 29.38 12

P4 0.0 0.0 28.32 0.52

P5 0.0 0.0 29.68 16.2

P6 0.0 0.0 112.42 51.82 P7, P8, P9, P10, P11, P28

P7 0.0 0.67 0.0 0.62

P8 2.0 0.0 0.0 0.22

P9 0.0 0.0 1.02 0.26

P10 0.0 72 0.0 14

P11 0.0 0.67 0.0 0.96

P12 0.0 0.0 48.96 4.98 P27, P33, P34

P13 0.0 0.0 8.63 6.84

P14 0.0 0.0 0.33 0.61

P15 0.0 0.0 0.35 0.62

P16 0.0 0.0 7.32 0.22 P37

P17 0.0 0.0 0.45 0.62

P18 0.0 0.0 21.95 1.0

P19 5.99 0.0 0.0 0.34

P20 13.64 0.0 0.0 0.78

P21 1.66 0.0 0.0 0.22

P22 4.09 0.0 0.0 0.88 P8

P23 3.29 0.0 0.0 0.58 P19, P20, P21, P22, P24, P25, P26

P24 1.64 0.0 0.0 0.34 P8

P25 13.64 0.0 0.0 1.26

P26 5.46 0.0 0.0 1.34 P27

P27 0.0 0.0 27.29 248 P28

P28 0.0 0.0 27.29 17 P29

P29 0.0 0.0 17.56 23

P30 0.0 0.0 2.73 0.38

P31 0.0 0.71 2.11 118 P34

P32 0.0 0.0 29.33 2.14

P33 0.0 0.0 18.19 12.86

P34 0.0 0.0 123 0.64 P37

P35 0.0 0.0 0.14 0.74 P31

P36 0.0 0.0 0.67 0.22

P37 6.55 0.0 1.64 0.34

P38 0.0 0.0 0.8 0.22

P39 0.0 0.0 1.06 0.22

P40 0.0 0.0 172 0.22

P41 0.0 0.0 1.66 0.22 P37

P42 0.0 0.0 8.01 0.22

P43 0.0 0.0 2.77 0.22

P44 0.0 0.0 3.33 1.34

P45 0.0 0.0 0.67 0.22

P46 0.0 0.0 6.65 1.6

P47 0.0 0.0 0.33 0.12

P48 0.0 0.0 1.0 0.1

P49 0.0 0.0 0.33 0.08

P50 0.0 0.0 0.33 0.16

P51 0.0 0.0 0.4 0.1

P52 0.0 0.0 0.4 0.05

P53 0.0 0.0 0.4 0.1

P54 0.0 0.0 0.4 0.1

P55 0.0 0.0 0.4 0.2

P56 0.0 0.0 0.4 0.38

P57 0.0 0.0 0.4 0.1

P58 0.0 0.0 0.4 0.1

Table 2.1.: Project scores, cost, and logical interdependencies
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5 s s
s Ys1 Us2 Us3 Required Projects
w1 = 26 Wyo = 64 w3 = 1
S1 0.0 0.0 5.46 P9, P27
S2 4.09 0.0 8.19 P20, P27
S3 0.0 0.0 0.74 P11, P31

Table 2.2.: Synergy scores
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49 51 52 50 52 53 |
,g 34 50 49 39 51 51 52 52 52 52 33
35 44 48
4

Portfolio Value

1,000 |-
25 3 45 55 65 75 8 9 105 115 125

16 14:2
500 | 9H
0 H
5 15
B

’ UValue of Speed [ Value of F/A BFinancial Value BValue of Synergies

Figure 2.2.: Value composition of optimal portfolios for given budget levels

Figure 2.2 reports the value composition of optimal portfolios. Portfolio value with
regards to each score criterion i = 1,...,n is given by Z}":l vjw;x;. Portfolio value
due to synergies is calculated as Y} ; Y.9_; vS.w;ys. The number of selected projects
Z;”:l x;j is shown above the bar charts. For low budget levels B =5, ...,25, we find
that portfolios are dominated by projects providing strategic impact in terms of Speed
and particularly Forecast Accuracy. Scores in strategic criteria initially rise quickly
and reach their peak at budget level B = 30 whereafter additional portfolio value is
primarily driven by financial value. Value from synergies is utilized from budget level
B = 15 onward. Value contribution from Speed is reduced when increasing the budget
from B = 10 to B = 15 in order to accommodate projects that provide higher financial
value.

Figure 2.3 reports the relative frequency of each project and each synergy being selected
in an optimal portfolio for varying budget levels. While relative frequencies are either
zero or one when there is only one unique optimal solution, fractional values are
possible for B=25 and B=60 where multiple optimal solutions exist. High relative
frequencies of selection across varying budget levels give an indication of the value of
a project to decision makers. A similar approach termed “core index” is employed by
Liesio et al. (2007). We find that projects P2, P4, P10, P19, P20, P37, and P42 are selected

11
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Figure 2.3.: Relative frequency of project and synergy selection for given budget levels

for all considered budget levels. P2 and P10 are valuable with regards to the Forecast
Accuracy criterion, and P10 additionally enables project P6. P4 and P42 provide high
financial value relative to their cost. P19 and P20 are valuable with regards to the
Speed criterion relative to their cost, and P20 is additionally required for P23 as well as
synergy S2. Furthermore, P37 is required for execution of P16 and P34. Invariant to the
available budget, projects P1, P14, P15, P17, and P35 are never selected. Their overall
value is lower than their cost and they do not contribute to the portfolio indirectly
through logical interdependencies or synergies. As no aspiration levels warrant the
selection of these projects for strategic purposes, these non-profitable projects are not
considered in portfolio recommendations.

The decision support system allows decision makers to manually select or exclude
specific projects. When a project included in the optimal portfolio for a given budget
level is manually excluded, the highest obtainable portfolio contribution (2.1) taking
into account the exclusion will be no higher than the contribution when not forcing this
project out of the portfolio. The difference in contribution gives the opportunity cost
of manually excluding the project (Ghasemzadeh et al., 1999). Likewise, opportunity
cost or infeasibility of integer programming problem (2.1) - (2.6) arises when manually
selecting a project not included in the optimal portfolio. In order to shed light on the
effect of manual adjustments on the portfolio contribution, Figure 2.4 presents the per-
centage loss in portfolio contribution when requiring the selection (x; = 1) or exclusion
(xj = 0) of each project j = 1,...,m for budget levels B = 5, 10, ... ., 125. For each project,
opportunity cost due to manual selection are indicated by an upward-facing arrow,
while opportunity cost due to manual exclusion are represented by a downward-facing
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Figure 2.4.: Percentage loss in portfolio contribution when requiring the selection or
exclusion of a project for given budget levels

arrow. If the manual selection of a project causes the integer programming problem to
become infeasible, a cross is given in the chart. Across all budget levels, opportunity
cost are particularly high when excluding project P2, valuable with regards to the
Forecast Accuracy criterion. Due to high project cost, selecting projects P5, P6, and
P12 cause infeasibility for low budget levels and opportunity cost for higher budget
levels. While for low budget levels B < 10 opportunity cost are incurred when projects
P27, P28, and P29 are selected, their exclusion is penalized for higher budget levels.
This is due to the fact that projects P28 and P29 are required for the selection of project
27, which in turn shares synergies with projects P9 and P20. Selecting projects P27,
P28, or P29 for low budget levels is not cost-efficient as these projects rank among
the 15% most expensive projects. On the other hand, project interdependencies prove
valuable when sufficient budget is available to select all interdependent projects and
utilize synergies.

Finally, we study the effect of aspiration levels on portfolio performance in terms of
portfolio contribution (2.1). Figure 2.5 reports the loss in portfolio contribution when
aspiration levels are imposed compared to the case without aspiration levels. For a fixed
budget level B = 20 and a fixed aspiration level of financial value v3* = 220, which
equals 95% of v'"®, we vary the aspiration levels of strategic score criteria v} and v5™.
For a wide range of aspiration levels, decision makers only experience negligible losses
in portfolio contribution. Setting aspirations too high causes the problem setting to

quickly become infeasible. A trade-off between Speed and Forecast Accuracy arises
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only at the edge of the space of feasible aspiration levels. Significant losses occur for
extreme decision maker preferences, e.g., requiring o] to be greater than 85% of v
and setting 057 = 0. The limited tradeoff between Speed and Forecast Accuracy is
explained by optimal portfolios accommodating as much strategic value as possible.
Projects providing strategic value are preferable as they have a significantly higher
(monetized) value-to-cost ratio, 26 for Speed and 46 for Forecast Accuracy on average,
than projects providing financial value, which have a ratio of 8 (See e.g., Lourenco et al.
2012 for a discussion of the value-to-cost ratio an an evaluation metric). As portfolios
already accommodate high levels of strategic value, aspiration levels are easily achieved
without sacrificing much portfolio contribution. These results also hold for higher
budget levels and different aspiration levels for financial value.

100 % [ —

0.4

asp

o 50% |- s 03

0.2

0% = ‘ | ]

0% 50 % 100 %

asp
Uy

0.1

Figure 2.5.: Percentage loss in portfolio contribution for given aspiration levels v]"" and

USSP as percentages of the highest achievable criterion score

2.4. Observations and Insights

Stating that decision support systems frequently bear little relevance to management
and fail to accommodate decision makers” working style, Marx et al. (2011) perform
an empirical study to derive six principles for designing successful decision support
systems. They emphasize system ease-of-use, system flexibility and adaptability, as well
as a comprehensive and well manageable information model. A trade-off arises between
the comprehensiveness of information and support system usability. Similar aspects
were emphasized by decision makers within the semiconductor manufacturer during
development of the decision support system. To aid usability of the decision support
system, relevant project and portfolio information should be displayed in a clear fashion
and the system should employ visualizations and wording aligned to the established
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project selection process. Decision support system interactivity was of prime importance
to the decision makers. Displayed information and portfolio recommendations should
be easily adjustable during meetings and should support live adjustments to aspiration
levels and manual selection or exclusion of projects. Furthermore, to ensure information
consistency and minimize system maintenance, the decision support system, which
requires information on projects, project interdependencies, as well as the project
portfolio environment, should seamlessly integrate with existing data sources.

When being presented with the final decision support system design, company decision
makers expressed great satisfaction and were eager to employ it in future decision
making sessions. After the first supported session, an initial survey was conducted
with three key stakeholders of the decision support system. Decision makers regarded
the decision support system as an important tool for the decision making process and
expressed confidence in the system improving the quality of the project portfolio. They
emphasized a need for proper system documentation and user training in order to get
accustomed to the system interface as well as the unfamiliar paradigm of normative
operations research models underlying the system.

In terms of future improvements to the decision support system, decision makers
proposed including additional information regarding both new project proposals as
well as previously selected projects. Firstly, project specific key performance indicators
as well as qualitative decision criteria are used by decision makers to make portfolio
choices and are currently not accommodated by the decision support system and the
established portfolio selection process. Secondly, the decision support system shall also
be employed to track ongoing projects and potentially adjust the previously established
portfolio by terminating ongoing projects.

On a cautionary note, decision makers have also emphasized discrepancies between
the formal project selection process supported by the decision support system and
actual project selection behavior. While project proposals are evaluated by standard-
ized, quantitative criteria, which build the foundation of the recommendations by
the decision support system, decision makers also take into account tacit knowledge
and managerial experience not covered by the formal process. This aspect of project
portfolio selection has been discussed by Loch (2000), based on empirical findings
obtained at a European technology manufacturer. He concludes that “it is too simplistic
to hope for an application of general 'best practice’ [...] processes”. Loch suggests
that organizations should develop a mixture of formal and informal processes, which
together meet the strategic needs of the organization needs. To this end, this academic
project and case study has not developed a universal “holy grail” solution to project
portfolio selection, but one building block for successful project portfolio management
within the supply chain function of the semiconductor manufacturer.
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3. Adjustable Robustness for
Multiobjective Project Portfolio
Selection

Socio-economic decision problems often involve decision makers facing alternative
courses of action, which if chosen consume resources and have multi-dimensional
consequences. Research in the area of “Portfolio Decision Analysis” strives to bring
greater rationality and transparency to such resource allocation decisions (Kleinmuntz,
2007; Salo et al., 2011). Particularly, linear-additive portfolio selection models have
frequently found high impact applications (Ewing et al., 2006; Grushka-Cockayne
et al., 2008). Due to the strategic nature of typical portfolio decisions (Salo et al.,
2011; Lourengo et al., 2012), consequences, selection constraints, and decision maker
preferences are subject to significant uncertainty. In uncertain environments any
optimal portfolio determined for some point estimate parameter values might prove
unsatisfactory for other possible realizations of uncertain parameter values.

Robust Portfolio Modeling (RPM) (Liesio et al., 2007, 2008) is a Portfolio Decision
Analysis approach designed for decision environments in the context of project port-
folio selection where project consequences given as scores in multiple criteria and
decision maker preferences are subject to considerable uncertainty. RPM identifies
non-dominated portfolios, i.e., portfolios feasible in the sense that they satisfy relevant
budgetary and other constraints and for which no other feasible portfolio yields greater
value for all possible realizations of the uncertain parameters. Decision makers are
provided with a set of non-dominated portfolios to choose from and receive decisional
guidance on which projects” uncertainty has the greatest impact on the decision prob-
lem. By demanding dominance for all possible realizations of uncertain parameters,
decision recommendations provided by RPM are by design explicitly conservative.
RPM has found practical application to develop a research agenda for the forestry
sector (Konnola et al., 2007) and to select road maintenance projects (Liesio et al., 2007).

In this chapter we combine RPM with the robust optimization concept by Bertsimas

and Sim (2004). The number of project scores that are assumed to deviate from their
most likely value when determining dominance relations between portfolios are limited.
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By adjusting this deviation limit, decision makers are able to choose a desired level of
conservatism. When no limits are imposed, our approach coincides with standard RPM,
while strict limits cause our approach to omit deviations and compare portfolios based
on their most likely scores. Decision makers may choose a deviation limit based on a
metric for the share of possible realizations considered in determining non-dominated
portfolios. Our approach is easily extended to consider adjustable robustness not
only with regards to project and portfolio scores but also with regards to constraint
satisfaction.

After presenting the theoretical background in the following section, we introduce the
proposed decision making framework in Section 3.2. Section 3.3 describes how RPM
with adjustable robustness can be applied to support project portfolio selection and
how decision makers can determine desired levels of robustness. Section 3.5 extends
the framework to account for interdependencies among project scores and for modeling
uncertain coefficients in portfolio feasibility constraints. Sections 3.4 and 3.6 apply the
developed framework to supply chain management in the semiconductor industry.

3.1. Earlier Approaches to Robust Project Portfolio Selection

Robust modeling approaches aid decision makers in accounting for ambiguity and
stochastic uncertainty of parameters to decision problems when detailed information
on the nature of uncertainty, e.g., probability distributions, is not readily available
(Bertsimas et al., 2011). Both theoretical and practical contributions to the field are
covered by the surveys of Roy (2010), Bertsimas et al. (2011), and Gabrel et al. (2014).
Bertsimas et al. (2011) particularly emphasize the issue of conservatism when dealing
with robust modeling techniques. Kouvelis and Yu (1997) seek to find solutions that
minimize the worst case performance within a set of all possible realizations of uncertain
parameters. Such a realization where “everything is assumed to go wrong” is bound to
be very unlikely in practice.

The robust modeling approach by Bertsimas and Sim (2003, 2004) explicitly addresses
the problem of conservatism. The authors model uncertainty in linear and integer
programming problems by allowing uncertain coefficients of constraints or the objective
function to realize within an interval, symmetrically extending around the most likely
value of the coefficient. By limiting the number of coefficients that may deviate from
their most likely value, the authors allow decision makers to choose their desired level
of robustness. Bertsimas and Sim investigate the trade-off between the probability of
constraint violations and the most likely objective function value, termed the price
of robustness. The authors furthermore consider “correlated” constraint coefficients,
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whose deviation from their most likely values is determined by the linear combination
of a common set of factors subject to uncertainty. Perfectly correlated constraint
coefficients depend on one common factor only, while uncorrelated coefficients are each
determined by independent factors. In this modeling approach parameter I' controls the
number of factors permitted to take on their worst-case value rather than the constraint
coefficients themselves.

Several studies apply the robust modeling technique by Bertsimas and Sim (2003, 2004)
to portfolio selection problems. Kachani and Langella (2005) develop integer program-
ming models for multi-period capital rationing and budgeting problems that are robust
with regards to uncertain net present values of projects. Robustness with regards to
objective function and constraint coefficients is considered. Diizgiin and Thiele (2010)
propose an integer programming model for the selection of research projects. Uncertain
project cash flows are allowed to fall into one of several value intervals. The number
of parameters that may fall into each interval is chosen by the decision makers. The
authors propose a robust heuristic procedure where projects are selected in order of
decreasing cash-flows or cash-flow to cost ratios. Diizgiin and Thiele (2012) compare the
robust optimization approach to a stochastic programming model. Gregory et al. (2011)
review robust optimization methods in financial portfolio selection and evaluate linear
programming models for the robust selection of financial assets. The authors discuss
model formulations that support uncorrelated as well as correlated uncertain returns.
Different ways of deriving uncertainty sets from real life data, portfolio diversity, and
tradeoffs between robustness and portfolio performance are evaluated using data on
equity returns from the London stock exchange. Hassanzadeh et al. (2014) consider
project portfolio selection under multiple objectives and subject to constraints. Feasible
portfolios Pareto optimal with regards to all objectives are generated by solving an
augmented weighted Tchebycheff program (Steuer, 1986). The authors propose a robust
mixed integer programming model that protects against uncertainty in objective func-
tion coefficients, i.e., project scores, as well as coefficients of selection constraints. The
authors do not assume a priori information on decision maker preferences with regards
to objectives but implicitly elicit these in an interactive procedure. A set of candidate
portfolios is generated by solving the mixed integer programming model several times
while randomly weighting different objective functions. Based on the decision makers’
selection from this set a new set of candidates is generated with random weights being
more focused based on the decision makers’ choice. The procedure ends when decision
makers are content with their portfolio choice or a fixed number of iterations have been
performed.

Liesio et al. (2007) develop Robust Portfolio Modeling to address project portfolio
selection under uncertainty. Portfolio values are given by a linear-additive model
(Golabi et al., 1981; Liesié and Punkka, 2014) where projects are evaluated in terms
of multiple criteria. Preference Programming techniques (Salo and Hamaéldinen, 1995)
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account for uncertain project scores, bounded by value intervals, as well as uncertain
criteria weights, bounded by decision makers’ preference statements. Parameters of
selection constraints, e.g., budgetary restrictions or logical selection constraints, are
assumed to be known with certainty. It is unlikely that there exists a portfolio that
provides the highest overall value for all considered score realizations and criterion
weights. RPM provides decision makers with a set of non-dominated portfolios,
which each are not strictly inferior for all possible realizations to any other portfolio.
The authors develop a dynamic programming algorithm to compute the set of non-
dominated portfolios and propose an iterative process to reduce this set by acquiring
additional preference and score information. They employ a metric termed core index
to determine projects whose score information impacts dominances between portfolios.
Liesio et al. (2008) extend RPM to account for project interdependencies and uncertainty
with regards to selection constraints. They consider interval-valued coefficients of
a constraint that limits aggregate portfolio cost to a (variable) budget. Budgetary
restrictions are required to hold for all possible cost realizations. The authors ensure
portfolio cost-efficiency by including project cost as a weighted score criterion.

In this chapter we relax the strictly conservative robustness paradigm of Liesio et al.
(2007, 2008) by employing the adjustable robustness model by Bertsimas and Sim (2003,
2004). Decision makers control the level of conservatism with regards to uncertain
project scores and coefficients of selection constraints by choosing a suitable parameter
I'. While the related project portfolio selection approach by Hassanzadeh et al. (2014)
implicitly elicits decision makers’ preferences through an interactive procedure, our
approach, based on Robust Portfolio Modeling, separates preference elicitation from
portfolio selection. Uncertain preference information, which may be elicited by dif-
ferent methods from preference programming (Salo and Hamaéldinen, 1995), is taken
into account when determining the complete set of non-dominated portfolios. The
interactive RPM procedure furthermore provides decision makers with guidance in
refining uncertain project scores.

3.2. Decision Making Framework

Project proposals j = 1,...,m are evaluated with regards to criteriai = 1,...,n giving
a score matrix v € R™*", where vj; indicates the matrix element in the jth row and
ith column. The additive overall value of project j is };_; w;vj;, where the vector of
criterion weights w € IR" is scaled so that

n
wGSZf:{weR”|wi20,Zwi:1}. (3.1)
i=1
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The weight w; thus relates a unit increase in the criterion-specific score to an increase
in the overall value. S3; is termed the information set of criteria weights.

A project portfolio is a subset of the available proposals and is modeled as a binary
vector z € {0,1}", such that z; = 1 if and only if project j is included in portfolio z. We
assume a linear-additive portfolio model (Golabi et al., 1981; Liesit and Punkka, 2014),
where the overall portfolio value is given by the sum of its constituent projects” overall

value
m

n
V(v,wz) =Y ) vjwsz = zlow. (3.2)
i=1j=1

Projects are selected subject to linear constraints | = 1,...,q, whose coefficients form
matrix A € R7*" and whose respective limits are given by vector B € R9. Constraints
typically considered in portfolio selection problems are budgetary restrictions, which
limit the execution of costly projects, or logical constraints, which impose restrictions
on the combined execution of multiple projects (Ghasemzadeh et al., 1999; Stummer
and Heidenberger, 2003). The set of project portfolios feasible in terms of all considered
constraints is given by

Zr ={ze{0,1}"| Az < B}, (3.3)

where < holds componentwise.

If complete information on the weights and scores is available, the most preferred
feasible portfolio maximizes the overall value (3.2). This optimal portfolio can be
obtained as the solution to the integer programming problem

max V(v,w,z) = max zlow | Az < BVY. 3.4
zE€Zf ( ) 26{0,1}'"{ | o } 34)

3.2.1. Incomplete Information

Our model uses the Preference Programming approach to capture incomplete informa-
tion on the importance of criteria (Weber, 1987; Salo and Hamaldinen, 1992; Salo and
Punkka, 2005; Danielson et al., 2007; Sarabando and Dias, 2010). Preference statements
are modeled as a set of feasible weights S, C Sg satisfying linear constraints. For
instance, ranking three criteria in terms of their importance could result in the weight
set {w € S | wy > w3 > wy }. Thus, the set of feasible weights S, = S5 corresponds to
lack of any preference information, while a single weight vector S, = {w} corresponds
to complete information.

Uncertainty with regards to project scores is modeled by allowing each score vj; to
deviate from the most likely score 0;; in both directions by at most 7j;, which results in
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a range of feasible scores [6;; — Tj;, 0j; + U;;]. The information set of all possible project
score (matrices) is thus

Sy = {v € R"™" | vj = 0 + Tyiyji,y € [-1,1]""}. (3.5)

Comparing different portfolios based on their overall values over the full range of S’
(Liesio et al., 2007, 2008) leads to strictly conservative judgments. Extreme realizations
may be very unlikely as they require multiple scores to take on values at the border of
their ranges but are equally considered in comparing alternatives.

Following the approach of budgeted robustness by Bertsimas and Sim (2003) and
Bertsimas and Sim (2004), we base portfolio decision making on a subset of the polytope
Sy, in which deviations are limited by a parameter I'.

Definition 3.2.1 An adjustable uncertainty set for project scores is given by

Y lyiil < 1”}

n
Szl; = {Z) (- R™*n ’ 7)]‘1' = 'ﬁ]l + T_f]z]/]u]/ € [_11 1]Tﬂ><n,
i=1j=1

with deviation limit T € [0, mn)].

The number of scores that may deviate from their most likely values is limited by I'.
For T = mn the largest possible score information set SJ = S is considered, while
I' = 0 indicates that no deviation of scores from their most likely values is taken into
account.

3.2.2. Dominance Relations

When considering uncertain preferences and scores, the overall value V (v, w, z) of a
portfolio is uncertain as well. It is typically not possible to determine one portfolio z
optimal for all combinations of w and v. However, it is often possible to use dominance
relationships between portfolios to rule out strictly inferior solutions.

Definition 3.2.2 Portfolio z dominates z' with regard to the information set S = (S x S;),
denoted z > 2', if and only if V(v,w,z) > V(v,w,z") for all (v,w) € S and V(v,w,z) >
V(v,w,z') for some (v,w) € S.

Theorem 3.2.1 shows that determining whether z dominates z’ or not can be established
by solving a continuous knapsack problem (solvable in linear time, see e.g., Martello
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and Toth 1990) in each extreme point of the convex hull of S;,, denoted ext(conv(Sy)).
If a project is included in both portfolios z and Z/, it has an equal contribution to
the overall values of both portfolios for any realization of scores. Therefore, it is not
relevant for establishing dominance. All proofs are included in the appendix.

Theorem 3.2.1 Let z,z/ € {0,1}" and information set S = (SL x Sy) with parameter T.
Then

RN V(o,w,z) > V(6,w,z")+ B(J,w,z2,T) Yw € ext(conv(Sy))
s V(o,w,z) > V(6,w,z") Jw € ext(conv(Sy)) ’
where
n n m
B(7,w,z2,T)= max <Y Y wdiyl) ) yi<T
U (VAL j€l(z,2") i=1j=1

The introduced notion of dominance has all analytical properties to establish theoret-
ically sound preference orders between project portfolios as stated by the following
lemma.

Lemma 3.2.1 > is (i) asymmetric, (ii) irreflexive, and (iii) transitive.

As T increases the dominance relations are established more conservatively. For I' = mn
dominance exists only if a portfolio has a higher overall value for any scores in their
intervals. This case coincides with the standard RPM case. At the other extreme, I' = 0
implies that dominance exists whenever a portfolio has a higher overall value for most
likely scores than another portfolio for all feasible weights.

Corollary 3.2.1 Let z,z' € {0,1}".
(i) z = (gmwxs,) 2 ifand only if V(v,w,z) > V(v,w,2') for all (v,w) € (57" X Su),
(ii) z = (s0xs,) 2 if and only if V(9,w,z) > V(0,w,z') for all w € Sy,

where > denotes that the inequality is strict for some values of v and w.

If decision makers were to choose a dominated portfolio, another feasible portfolio
would provide equal or higher value for all allowed realizations of weights and project
scores. Decision makers should thus choose a portfolio from the set of non-dominated
portfolios.
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Definition 3.2.3 For information set S = (S x Sy,) with parameter T the set of non-
dominated portfolios is

ZN(S) = {Z € Zr | EZ, € Zp s.t. 4 >3 Z} .

Reducing the deviation limit I" < T" causes fewer score deviations to be considered and
reduces the score information set.

Theorem 3.2.2 Let information set (S} x Sy,) and deviation limits T' < T. Then

Zn(SY % Su) € Zn(Sh x Sy).

The set of non-dominated portfolios can be identified by first applying the dynamic
programming algorithm of Liesio et al. (2008) to determine the set Zx (S5’ X Sy) and
then using Theorem 3.2.1 to discard dominated portfolios to obtain Zx(SL x Sy), i.e.,

Zn(SL x Sp) = {z € ZN(S7 X Su) | P2 € ZN(S X Sw) st 2 (5145, z}. (3.6)

This is since the set Zy(Sf x S;,) is a subset of Zx/(S x S;,) for any desired robustness
level I by Theorem 3.2.2. Another possible approach is to employ the dominance check
of Theorem 3.2.1 within the dynamic programming algorithm (for details see Appendix
A). Since dominance relations are less conservative, the computation can be faster, but
use of this approach requires that decision makers have fixed their desired (maximum)
deviation limit I" a priori. If on the other hand the decision makers wish to choose a
deviation limit ' € [0, mn] ex post or examine how the set of non-dominated portfolios
depends on the value of parameter I', the former approach is preferable.

3.3. Interactive Decision Support

The developed framework serves a basis for an interactive procedure that aids decision
makers in choosing a project portfolio. Based on initial specifications of uncertain
criteria weights and project scores (S) x S;), a set of non-dominated portfolios is
determined for decision makers to choose from. If the set of candidate portfolios is too
large to make proper portfolio choices, more conclusive decision recommendations can
be obtained by considering an information subset (S, x S,/) C (S} x Sy).

A subset of uncertain criteria weights S,y C S, is obtained by imposing additional
or tighter preference statements (Salo and Hamaldinen, 1995). The information set
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of project scores is reduced by re-evaluating most likely scores ﬁ;i and possible score
deviations 5;1'- From Liesio et al. (2008) it follows that if scores are re-evaluated so
that 57 is a subset of S7° then this also holds for the sets of non-dominated portfolios
resulting from these information sets. By Theorem 3.2.2 the set of non-dominated
portfolios for ST, with arbitrary deviation limit I is a subset of non-dominated portfolio
for 57 Finally, if most likely scores remain unchanged and only deviation limits are
reduced the resulting sets of feasible scores and non-dominated portfolios are subsets
of the original sets. These results are formalized by the following Theorem.

Theorem 3.3.1 Let information sets S = (S3° X Sy), " = (S5 X Sy) with S C S, int(S) N
S" # @ and an arbitrary deviation limit T.

(i) If’@;z — 5;1 > @]Z - ’(711 and ”('3;-1- + 27;1 < ’()A]l + ?7]‘1‘, then Szl;, C 53 and

ZN(SY X Su) C ZNn (ST X Sy).

(i1) Ifﬁ;l = 0j; and 5;1. < Uj;, then Slr)/ C SIand

ZN(SL x Su) € Zn(SE x Sy).

We use core indexes (Liesio et al., 2007) to identify those projects for which more
accurate information can reduce the set of non-dominated portfolios. The core index of
a projects measures the share of non-dominated portfolios that include the project.

Definition 3.3.1 For information set S = (S5 x Sy,) core indexes C(S) € [0,1]™ are given by

 Yaezy(s) %

C](S)— |ZN(S)| :1,...,m.

Projects with a core index of zero, included in none of the non-dominated portfolios, as
well as projects with a core index of one, included in all non-dominated portfolios, do
not aid in reducing the set of non-dominated portfolios. When reducing the information
set of scores for any project j with core index C;(S}, x Sy,) €]0,1|, additional dominance
relations may arise causing portfolios to fall out of the set of non-dominated portfolios.
The following lemma formalizes this result.

Lemma 3.3.1 Let information sets S = (S5 x Sy,) and S' = (SL, x Sy,), where ST, C ST such
that 9'; = 9j; and Tj; = Uj; for i = 1,...,n and all j with C;(S) €]0,1[. Then

Zn(S") = Zn(S)
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By Theorem 3.2.2 the set of non-dominated portfolios can also be reduced by lowering
deviation limit I" causing dominance relations to be determined less conservatively. A
tradeoff arises between precise coverage of the information set and the size of the set of
non-dominated portfolios. In order to aid decision makers in choosing a suitable level
of robustness I', we provide information on the fraction of the information set S’ taken
into account when determining dominance relations between project portfolios for
different deviation limits. To this end, we consider uncertain scores as random variables
0. Each 7j; is given by 0;; = 0j; + 1;;U;;, with 77;; being identically, independently, and
symmetrically distributed with support [—1,1]. The probability that random scores
realize within S} is given by

n.om r
P(5e ) =P} Y i <T) = /(fmn‘*...*f‘,?mn‘), (37)

i=1j=1

where * indicates convolutions. In cases where no additional distributional information
is available, it is adequate to assume 7 to be uniformly distributed in the range [—1, 1],
ie, n; ~ U (—1,1) (Shakhsi-Niaei et al., 2011). The compound random variable
Y1 X% [1ji| then follows an Irwin-Hall probability distribution (Irwin, 1927; Hall,
1927), and a precise probability of 7 falling in the considered information set is given

by

non L] mn
P(oesSy) =P Y |ni| <T) = ( : Z(—1)8< )(r—g)m". (3.8)

i=1j=1 mn)! g

Figure 3.1 illustrates the probability IP(¢ € S.) for 7 being distributed uniformly. As the
exact calculation of quantity (3.8) is not computationally tractable when high numbers
of parameters are considered, we approximate probabilities by Monte Carlo simulation.
1,000, 000 realizations of nm independently distributed uniform random variables with
support [—1,1] have been considered. The same approach is used to obtain a good
approximation of IP(¢ € S}) for triangularly distributed #j; ~ Tr(—1,0,1), where no
general formula in line with (3.8) can be given.

For arbitrary, symmetric distributions of 17, P( € S}) can be bound using Markov’s

inequality

mnE[[y|]
T

The level of E[|1]] depends on the assumed distribution of the random variable 7 and
controls the tightness of the approximate probability bound. If the decision makers
are able to specify a best, worst, and most realistic value, scores can be assumed
as triangularly or beta-distributed in the domain of these three values. In case 7 is
triangularly distributed in [—1,1], E[||] = }.Figure 3.1 also illustrates the lower bound
(3.9) to IP(¢ € S!) for different levels of T and mn.

P(5eS))>1— (3.9)
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Figure 3.1.: Monte Carlo simulation and Markov bound for P(4 € S.) for uniformly
and triangularly distributed 7, given levels of I', and different settings of

mn

3.4. Application to the Selection of Supply Chain
Improvement Projects

We illustrate the developed framework with an example based on a real life project
portfolio selection problem at an international semiconductor manufacturer, where
initiatives are chosen to improve supply chain performance (Kolisch et al., 2012). While
the project and portfolio value model are derived from practice, project scores and
decision making constraints have been adapted to illustrate the concept of RPM with

adjustable robustness.

3.4.1. Project Value Model

Table 3.1 summarizes all relevant project information used in the case study. The 58
project proposals (named P1 to P58) are evaluated in terms of their impact on supply
chain competitiveness, which is measured with n = 3 criteria. Projects may impact
the speed of order processing, termed “Speed” (i = 1), as well as the accuracy of
forecasting future customer demands, termed “Forecast Accuracy” (i = 2). These
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strategic contributions to critical success factors of the semiconductor supply chain
are measured in “natural units”, i.e., days (i = 1) and percentage points (i = 2). The
direct financial impact of a project (i = 3), capturing anticipated increases in turnover
or cost reductions, is measured in monetary units. The score information set S;° is
given by most likely project scores 9 as well as possible score deviations . The criteria
are aggregated by converting the strategic criteria (i = 1,2) to monetary units using
monetization rates, which capture decision makers’ incomplete preferences. These rates
are modeled by the set of feasible weights

3.4.2. Portfolio Value and Constraints

Portfolio value is additive across projects up to synergies, which account for beneficial
effects resulting from the joint execution of related projects (Santhanam and Kyparisis,
1996). When choosing both projects P9 and P27, their overall value increases by 20% as
synergy S1, when choosing projects P20 and P27 synergy S2 amounts to 30%, and for
projects P11 and P31 synergy S3 is 25%. Synergies are modeled through additional,
artificial projects S1, S2, and S3, whose values amount to the proposed synergetic
effects. Logical constraints ensure that these artificial projects can be selected only if the
projects producing the synergy effect are also selected (Liesio et al., 2008). Furthermore,
there are 13 projects whose selection requires that some other specific projects have been
included in the portfolio (cf. last column in Table 3.1), which results in 13 additional
logical constraints. Finally, the aggregate cost of executed projects may not exceed a
given budget level of 50 monetary units (2}":1 cjxj < 50).

3.4.3. Results

The problem contains m = 61 projects (58 real projects and 3 synergies), which are
evaluated in terms of n = 3 criteria. 62 of the 58 x 3 criterion scores are non-zero
and can deviate from their most likely scores. The deviation limit therefore may
take on values I' € [0,62]. The set of non-dominated portfolios Zy(S3 x Si) was
computed using the dynamic programming algorithm by Liesio et al. (2008) and then
sets Zn (S5 x Sy) for different levels of I' were obtained through pairwise comparisons
(3.6). The calculation of Zy(SS® x Sy) took 54 minutes, while the pairwise comparisons
to derive ZN(SE X Sy) for all levels of T € [0, 62] were performed in 27 seconds (2.5
GHz dual-core processor, 4 GB memory).
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j ¢j Required Projects
oj1 ) 3 Ui Uj Uj3
P1 0.0 0.0 04 0.0 0.0 0.04 0.44
P2 0.0 35.57 0.0 0.0 0.0 0.0 1.24
P3 0.0 0.0 48.96 0.0 0.0 48.96 1.2
P4 0.0 0.0 56.64 0.0 0.0 56.64 0.52
P5 0.0 0.0 29.38 0.0 0.0 29.38 16.2
P6 0.0 0.0 112.33 0.0 0.0 7489  51.82 P7, P8, P9, P10, P11, P28
P7 0.0 0.33 0.0 0.0 0.33 0.0 0.62
P8 2.0 0.0 0.0 0.22 0.0 0.0 0.22
P9 0.0 0.0 117 0.0 0.0 0.29 0.26
P10 0.0 72 0.0 0.0 48 0.0 1.4
P11 0.0 0.67 0.0 0.0 0.0 0.0 0.96
P12 0.0 0.0 48.96 0.0 0.0 48.96 4.98 P27, P33, P34
P13 0.0 0.0 8.63 0.0 0.0 8.63 6.84
P14 0.0 0.0 0.33 0.0 0.0 0.11 0.61
P15 0.0 0.0 0.35 0.0 0.0 0.09 0.62
P16 0.0 0.0 7.32 0.0 0.0 7.32 0.22 P37
P17 0.0 0.0 0.91 0.0 0.0 0.91 0.62
P18 0.0 0.0 21.95 0.0 0.0 7.32 1.0
P19 5.99 0.0 0.0 0.67 0.0 0.0 0.34
P20 13.64 0.0 0.0 4.55 0.0 0.0 0.78
P21 1.66 0.0 0.0 0.55 0.0 0.0 0.22
P22 4.09 0.0 0.0 1.36 0.0 0.0 0.88 P8
P23 3.29 0.0 0.0 11 0.0 0.0 0.58 P19, P20, P21, P22, P24, P25, P26
P24 l.64 0.0 0.0 0.18 0.0 0.0 0.34 P8
P25 13.64 0.0 0.0 4.55 0.0 0.0 1.26
P26 5.46 0.0 0.0 3.64 0.0 0.0 1.34 P27
P27 0.0 0.0 27.29 0.0 0.0 9.1 248 P28
P28 0.0 0.0 27.29 0.0 0.0 9.1 1.7 P29
P29 0.0 0.0 17.56 0.0 0.0 11.71 23
P30 0.0 0.0 273 0.0 0.0 0.91 0.38
P31 0.0 0.67 2.08 0.0 0.22 0.69 118 P34
P32 0.0 0.0 29.28 0.0 0.0 7.32 214
P33 0.0 0.0 18.19 0.0 0.0 1819 1286
P34 0.0 0.0 1.23 0.0 0.0 0.82 0.64 P37
P35 0.0 0.0 0.14 0.0 0.0 0.05 0.74 P31
P36 0.0 0.0 0.67 0.0 0.0 0.22 0.22
P37 6.55 0.0 1.64 0.73 0.0 0.18 0.34
P38 0.0 0.0 0.8 0.0 0.0 0.09 0.22
P39 0.0 0.0 1.06 0.0 0.0 0.27 0.22
P40 0.0 0.0 1.8 0.0 0.0 0.6 0.22
P41 0.0 0.0 1.66 0.0 0.0 0.55 0.22 P37
P42 0.0 0.0 8.08 0.0 0.0 2.69 0.22
P43 0.0 0.0 2.84 0.0 0.0 0.95 0.22
P44 0.0 0.0 3.33 0.0 0.0 111 1.34
P45 0.0 0.0 0.67 0.0 0.0 0.22 0.22
P46 0.0 0.0 6.65 0.0 0.0 2.22 1.6
P47 0.0 0.0 0.33 0.0 0.0 0.11 0.12
P48 0.0 0.0 1.0 0.0 0.0 0.33 0.1
P49 0.0 0.0 0.33 0.0 0.0 0.11 0.08
P50 0.0 0.0 0.33 0.0 0.0 0.11 0.16
P51 0.0 0.0 0.4 0.0 0.0 0.13 0.1
P52 0.0 0.0 04 0.0 0.0 0.13 0.05
P53 0.0 0.0 0.4 0.0 0.0 0.13 0.1
P54 0.0 0.0 04 0.0 0.0 0.13 0.1
P55 0.0 0.0 0.4 0.0 0.0 0.13 0.2
P56 0.0 0.0 04 0.0 0.0 0.13 0.38
P57 0.0 0.0 0.4 0.0 0.0 0.13 0.1
P58 0.0 0.0 04 0.0 0.0 0.13 0.1
S1 0.0 0.0 5.46 0.0 0.0 1.82 0.0 P9, P27
S2 4.09 0.0 8.19 1.36 0.0 273 0.0 P20, P27
S3 0.0 0.0 0.55 0.0 0.0 0.19 0.0 P11, P31

Table 3.1.: Project and synergy scores, project cost, and logical constraints
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Figure 3.2.: Number of non-dominated portfolios for given levels of T’

Figure 3.2 reports the number of non-dominated portfolios for different levels of I'.
When comparing portfolios based on most likely scores alone (I' = 0), one optimal
portfolio exists. With increasing levels of robustness, additional portfolios become
non-dominated up to a maximum of |Zn(Sy, x SL)| = 562 for T > 21.

Portfolios non-dominated for I' > 21 are composed of 34 to 55 projects (41 on average).
Pairs of portfolios differ by between 2 and 23 projects (7 on average). When comparing
portfolios in terms of dominance, deviations of up to I' project scores whose most
likely realization is larger than zero are taken into account. If I is increased beyond the
number of project scores with most likely realizations greater than zero, dominance
relationships between portfolios do no longer change. Therefore, the set of non-
dominated portfolios obtains its maximum size for roughly two thirds of the value
range of T'.

The left side of Figure 3.3 presents the sets of uncertain scores for all non-dominated
portfolios Zxn (S5 X Sy ). Most likely overall portfolio values, indicated by crosses, are
72 for Speed, 45 to 47 for Forecast Accuracy, and 454 to 459 for Financial Impact. All
portfolios have at least worst-case overall values of 62 in terms of Speed, 42 in terms of
Forecast Accuracy, and 306 in terms of Financial Impact.

Applying probability bounds discussed in Section 3.3, Monte Carlo simulation gives the
probability of covering a particular realization of uniformly distributed project scores
dforT =21 as P(d € SI) ~ 4-107° and for triangularly distributed project scores
as IP(7 € S.) ~ 0.58. Decision makers wishing to reduce the set of non-dominated
portfolios may either reduce robustness, i.e., the probability of taking into account a
particular realization of 7, or they may try to provide revised project scores S7; and
preferences S,y so that 57 x S,y C S7° X Sg.
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Figure 3.3.: Score information set of non-dominated portfolios

S5/ and S, are obtained by reducing all score deviations by 20%, leaving most likely
scores unchanged, and adjusting preferences so that both Speed and Forecast Accu-
racy are regarded 3.0 times as important as financial impact. By Theorem 3.3.1 (ii),
ZNn(SY, x Sy) can be derived from Zy (S x Sy,) through pairwise comparisons. Figure
3.2 reports the number of non-dominated portfolios and the average number of projects
included in each non-dominated portfolio. Starting with one non-dominated portfolio
for I' = 0, the set grows to 409 portfolios for I' > 15. The right side of Figure 3.3
indicates that non-dominated portfolios have at least a worst-case overall value of 63 in
terms of Speed, 43 in terms of Forecast Accuracy, and 339 in terms of financial impact.

Figure 3.4 illustrates project and synergy core indexes for both the original and reduced
information set for different levels of I'. The figure shows that by reducing I or tran-
sitioning from information set S3° X S, to S x S,y all core projects (Cj(Sw x S}) = 1)
and exterior projects (Cj(S, x S},) = 0) are maintained. As for I' = 0 only one non-
dominated portfolio remains, all borderline projects gradually either become core or
exterior projects. For the original information set, 29 projects have a core index of one
for all levels of I. When transitioning from information set S7° x Sy to 577 X Sy, 6
additional projects become core projects for all levels of I'. Projects P5, P6, and P35
are exterior projects for all levels of I'. Score information regarding projects that are
core or exterior projects invariant to I', i.e., are core or exterior projects with regards to
Sw % 53, does not influence the set of non-dominated portfolios. Therefore, decision
makers should focus on the remaining 24 borderline projects if they wish to further
refine the information set S, X Sy C S5 X Syr.
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Figure 3.4.: Project core indexes for given levels of I'

3.5. Extensions to the Decision Making Framework

We present two extensions of the basic decision making framework to accommodate
two aspects common to practical decision making environments, interdependencies of
uncertain project scores, and uncertainty with regards to constraint coefficients.

3.5.1. Modeling Interdependence of Uncertain Project Scores

The decision making framework from Section 3.2 assumes that project scores take on
any value within the information set independent of one another. Frequently, project
scores cannot be regarded as completely independent; for instance, project proposals
within the same organization share technological or organizational properties that
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can cause their scores to manifest jointly within their specified value ranges (Loch
and Kavadias, 2002; Gregory et al., 2011; Hall, 2012). Such interdependencies can be
modeled through constraints on the score information set.

Definition 3.5.1 An adjustable uncertainty set for project scores subject to interdependence is
given by

n m
Ig = {v € 5y | vji = 0j; +v],y]Z,A Y < Bl,y €| ’”X”,ZZ lyii| < F} ,
i=1j=1

where Y € [—~1,1]"" is a vector containing all entries yj; of Matrix y, Al € R™™ and
= (bl,...,bHT e R".

The matrix of constraint coefficients A! facilitates co- and diametric movement of scores
across different criteria as well as different projects. For example, scores in different
criteria for one project can be modeled to deviate jointly as their realizations are both
tied to the development of the project. Perfect correlation of two scores ji and j'i’ is

modeled by two Constraints (ATl = [al,...,al,] and [AT)p = [al,,...,aL,], where
a]IZ = a]I/l/ =1, a],/ = a] = —1, bl = b}, = 0. Furthermore, it is possible to model joint

deviation of the scores of dlfferent projects, which makes sense if these projects are
interdependent in their execution. We only require that constraints A'Y < B induce a
valid polytope within the space [—1,1]™" such that I is a non-empty set.

The conditions for portfolio dominance from Theorem 3.2.1 can be adjusted to consider
score uncertainty sets with interdependence by substituting

n m n m
BL(T,w,z,7,T) = max {Z Y witiyji(z zj)|AIY < BI,ZZ lyjil < T}

yel=1ame i3 = i=1j=1
(3.10)

for B(¥,w, z,z',T). The substitution does not affect the validity of Theorem 3.2.1 or the
properties given in Lemma 3.2.1. Interdependency constraints only limit the solution
polytope of optimization problem B!(7,w, z,z/,T') compared to (7, w, z,z',T) while all
properties of continuity and convexity are maintained.

Constraining the realizations of decision variables y in I rule out the most extreme
realizations within the score information set 55. Therefore, the score information set
considering interdependence is a subset of the information set without interdependence
II' C SI and the set of non-dominated portfolios Zy (I} x Sy,) is a subset of Zx/(SL x S;,).
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Lemma 3.5.1 Let preference information set Sy, score information set SL, and score information
set 1Y, limited by constraints A'Y < B! such that I} # {@}. Then

Zn (I x Sy) € Zn(SE x Sy).

3.5.2. Modeling Uncertain Constraint Coefficients

Not only decision maker preferences and project scores may be subject to uncertainty
but also decision making constraints. Previous project portfolio selection approaches
have considered uncertainty with regards to project cost (Gutjahr and Froeschl, 2013;
Liesio et al., 2008), available budget (Li, 2009), and the achievement of aspiration levels
for overall portfolio value with regards to different score criteria (Hall et al., 2009).

Uncertain coefficients in constraints, which determine the set of feasible portfolios
Zr, are modeled in line with Bertsimas and Sim (2003) and Bertsimas and Sim (2004).
Constraint coefficients are given by a matrix A € R7*", where for each coefficient a;;
the most likely realization is 4;; and realizations may deviate from this value by at most
djj. The number of coefficients that may deviate from their most likely value is limited
by parameter I'4.

Definition 3.5.2 The set of feasible portfolios assuming uncertain constraint coefficients is
given by
7o {z €{0,1}"|Az<B VAe SQA},

where

m
St = {A € RV | ay; = ay + dyjyy € (LT Y |yl T4 1= 1,...,q}
j=1

is the information set of uncertain constraint coefficients for deviation limit T4 € [0, m)].

The set of feasible portfolios ZL when considering coefficient uncertainty set SE‘A can be
directly derived from Theorem 1 of Bertsimas and Sim (2003).

Lemma 3.5.2 For a given constraint coefficient information set SEA parameterized with T4 the
set of constraint-feasible portfolios is given by

ZEA = {z € {0,1}"| Az+ﬁ(§,z,FA) < B},
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where ﬁ(ﬁ, z,T4) = [ﬁl(ﬁ, z,T4),.. .,ﬁq(ﬁ, z, T is Qiven by

m
Pi(AzT%) = max 3 ), ayyl )y <,

j€J(z) j=1

with J(z) = {j € {1,...,m} |z; =1}.

In extension of Definition 3.2.3, the set of non-dominated portfolios assuming uncertain
constraint coefficients is given by

Z(s) = {z ezl |32 € ZV st 2 = z}. (3.11)

The set ZL' (S) can be determined by adjusting the dynamic programming algorithm
given in Appendix A to check portfolio feasibility while taking into account constraint
robustness. B(A,z,T4) hereby constitutes q continuous knapsack problems, which are
solvable in linear time (Martello and Toth, 1990). For an arbitrary level of constraint
robustness ', some non-dominated portfolios z € Zy(S) may be rendered infeasible
(z & Z?A) and thus are not viable options for decision makers when taking into account
constraint robustness (z ¢ er\]A (S)). On the other hand, feasible portfolios z’ € ZEA that
are dominated by a portfolio z > 2/, z ¢ ZEA in turn may be rendered non-dominated
when taking into account constraint robustness (z’ € ZII:]A (9)).

Interpreting the constraint matrix A as independent random variables 7;;, symmetrically
distributed with most likely value 4;;, support [g,j,ﬁl]-], and half-range @), = @;; — 4); =
a;; — a;; Bertsimas and Sim (2003) and Bertsimas and Sim (2004) derive three bounds for
the probability of a constraint being feasible in dependence of the deviation parameter.
These probability bounds may aid the decision makers in choosing a desired level of
r4.

3.6. Supply Chain Improvement Example Revisited

In order to illustrate the developed extensions, we expand the model developed for
selecting supply chain improvement projects. First, we assume that for each project
proposal the three criteria scores deviate jointly within their relative value ranges. This
relationship can be accounted for by constraints y;; —y;y <0 i,i' € {1,...,n},i #
i',j = 1,...,m. Furthermore, score deviations for synergy projects are assumed to
be given by the average deviation of their enabling projects. This corresponds to
constraints ‘517 Yjeg Ypi —Yji < 0and —|71]_| Yjeg ypityi <0 VjeS,i=1,..., n Set
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Figure 3.5.: Number of non-dominated portfolios for given levels of T’

§ denotes synergy projects (S1, S2, S3) and set &; contains all projects required for the
execution of project j.

Imposing these constraints A’Y < B on score information set S!, results in the score
information set with interdependence constraints II,. By Lemma 3.5.1, we derive
ZN(IL x Sy) from Zn(S), x S,y) through pairwise comparisons. As B!(7,w,z,2/,T)
given by Equation (3.10) constitutes a non-trivial linear programming problem, the
pairwise comparisons require considerably more computation time than when deriving
ZNn(SE x Sy) and Zn(SL, x Sy ). For all levels of T, Zn(I5, x S;y) was determined in 22
minutes.

Figure 3.5 compares the number of non-dominated portfolios Zn (I}, x Su) to Zn(SL, % Sy)
for different levels of I'. Both sets of non-dominated portfolios converge to a set com-
prising 409 portfolios, with Zy (I}, x S,) increasing in size more slowly and reaching

its maximum size only at I' > 44.

Second, we assume that the decision makers want to ensure minimum achievement
levels 7 € R’ for each score criterion i = 1,...,n (Stummer and Heidenberger,
2003; Kleinmuntz, 2007). Aspiration levels are modeled by portfolio constraints
Z}’Ll —vj; > —U?Sp i=1,...,n, with project scores deviating from their most likely
realization 0;; by at most ¥j;. Constraint feasibility is ensured for up to I'4 project scores
deviating from their most likely realization.

Recalling Figure 3.3, non-dominated portfolios in sets Zn (S, x Syy) and Zy(I5, x Syy)
obtain most likely scores of 72, 45 to 47, and 454 to 459 with regards to Speed, Forecast
Accuracy, and financial impact respectively. Scores take on values of 62, 42, and 306
in the worst case. If decision makers require project portfolios to have a score of 60,
35, and 345 with regards to Speed, Forecast Accuracy, and financial impact, some
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non-dominated portfolios z € Zy (I}, x S,,) are rendered infeasible when considering
worst-case scores and constraint coefficients.

For increasing levels of constraint robustness T'4, we employ the dynamic programming
algorithm to determine ZZI:]A (I3 x Syr) whenever a previously non-dominated portfolio
is rendered infeasible. For arbitrary dominance robustness I', ZIF\]A (I, x Sy) is derived
through pairwise comparisons. In our computational setup the calculation of ZIF\,A (I x
Su) for T € [0,62] and T4 € [0,61] took roughly 9 hours overall.

Figure 3.6 reports the number of non-dominated portfolios ZII:,A (IL, x Sy) for different
levels of dominance robustness and robustness for aspiration level constraints, I' and
4. For levels of constraint robustness I'4 < 12, aspiration level constraints do not
impact feasibility of non-dominated portfolios. Z}r\]f‘ (I', x Sy) remain valid as presented
in Figure 3.5 with a maximum size of 409. For higher levels of constraint robustness,
the maximum size of the set of non-dominated portfolios changes in a non-monotonous
fashion with increasing constraint robustness. For I' > 32 the set of non-dominated
portfolios remains unchanged with a maximum size of 27.

200 m
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Figure 3.6.: Number of non-dominated portfolios for given levels of T and I'!

3.7. Conclusion and Outlook

In this chapter we have developed new methods for modeling uncertainty in multi-
criteria project portfolio selection problems. Specifically, the developed methods allow
the decision makers to control the level of conservatism employed in determining
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dominance relations among portfolios. Judgments can be based on most likely scores
only or they can be made in line with Liesio et al. (2007, 2008), where scores can assume
any value within their intervals. We also showed how these methods can be used
to model interdependencies among the possible realizations of projects” scores and
capture uncertainties in coefficients of portfolio feasibility constraints. The developed
methods can be used for interactive decision support. Decision makers can reduce
the set of non-dominated portfolios by reducing potential score deviations through
more precise preference statements about the importance of different criteria and by
adjusting the level of conservatism.

Our work suggests ample opportunities for future research. For instance, Poss (2013,
2014) argues that the parameter measuring the level of conservatism should actu-
ally depend on the solution whose robustness is analyzed to ensure the same fixed
probability of constraint feasibility or reaching aspiration levels for all solutions. The
dominance concept proposed in this chapter could be extended to facilitate solution
dependent conservatism when comparing project portfolios with varying numbers of
unique projects. In our model project core indexes aid decision makers in revising
uncertain project scores by identifying borderline projects, for which more precise score
information can reduce the number of non-dominated portfolios. However, additional
research is needed to develop methods for identifying those scores that are likely to
have the greatest impact on the set of non-dominated portfolios. Finally, the developed
models should be extensively evaluated in terms of their application in practical de-
cision making settings in areas such as project portfolio selection (Heidenberger and
Stummer, 1999), new product development (Loch and Kavadias, 2002), and supplier
selection (Ho et al., 2010).
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4. Human Behavior in Project Portfolio
Selection: Insights from an Experimental
Study

Selecting a subset from a discrete set of alternatives subject to various constraints is an
ubiquitous problem in socio-economic decision making (Kleinmuntz, 2007). Research
in the area of “Portfolio Decision Analysis” (Salo et al., 2011) has brought forth a wide
range of quantitative approaches to provide guidance for such problems. Frequently,
decision problems in supplier selection (Ho et al., 2010), new product development
(Loch and Kavadias, 2002) and project portfolio selection (Heidenberger and Stummer,
1999) are considered. In contrast to numerous scientific publications on the subject,
quantitative decision support approaches have only seen limited practical application
(Booker and Bryson, 1985; Cooper et al., 2001; Loch, 2000). Unique decision making
environments, difficulties in evaluating projects and decision maker preferences, as well
as the strategic nature of decision problems cause practitioners to rely on management
expertise rather than utilizing elaborate quantitative decision support approaches
(Kester et al., 2009; Martinsuo, 2013). Thus, responsibility for portfolio decisions with
grave impact often lies with human decision makers alone, who have been shown
to behave irrationally in various decision environments (Bendoly et al., 2010). For
this reason, Salo et al. (2011) emphasize the need for research on the occurrence, the
impact, and the avoidance of decision biases in portfolio decision making settings.
Kavadias (2014) underlines the potential of experimental research for the domain of
project management in general.

In this chapter we address human behavior in project portfolio selection. Based on
the knapsack problem, a generic and controllable problem setting, we design an
experimental framework where subjects may dynamically select and deselect from a
list of items to build their desired portfolio. Our framework allows us to study both
subjects” decision quality as well as their selection process.

Our goal is to raise awareness of caveats of human decision making in project portfolio

selection by investigating decision biases. It is well known that the application of
decision heuristics in complex problem settings can result in systematic errors with
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serious implications (Gino and Pisano, 2008). We therefore strive to obtain greater
understanding of decision maker heuristics in order to aid the development of debiasing
strategies and effective decision support more compatible with human decision making
(Gigerenzer and Selten, 2001).

To the best of our knowledge, no previous study addresses behavioral heuristics
and biases in project portfolio selection. Fasolo et al. (2011) review experimental
and empirical studies on behavioral issues in portfolio decision making. Gingrich
and Soli (1984) investigate human decision making and suboptimization in a basic
resource allocation problem, in which variable amounts of resources have to be assigned
to a set of alternatives. In a similar setting, Busemeyer et al. (1986) study subjects’
learning behavior as well as the effect of giving subjects feedback on their performance.
Langholtz et al. (1993) examine a multi-period resource-allocation problem under
certainty, risk, and uncertainty while Langholtz et al. (1994, 1995) study how subjects
cope with possible resource breakdowns and abundance of resources. Langholtz et al.
(1997) consider a three-dimensional resource allocation problem that is solvable by
integer programming, for which Ball et al. (1998) examine decision making strategies
using a verbal protocol analysis technique. Gonzalez et al. (2002) examine resource-
allocation problems, where the goal is to achieve a fixed objective while minimizing
resource consumption. Most recently, Gettinger et al. (2013) and Killen (2013) focus on
the effect of different visualization techniques in support systems for portfolio decision
making.

The remainder of this chapter is structured as follows. Section 4.1 introduces the
knapsack problem setting as well as our hypotheses on human decision making in this
environment. Based on an experimental framework introduced in Section 4.2, we set
up two experimental studies and discuss the results in Section 4.3. We conclude this
chapter with potential extensions and managerial implications in Section 4.4.

4.1. Decision Making Behavior in the Knapsack Problem

The knapsack problem (Martello and Toth, 1990)

max {vTx]ka < c} 4.1)
xe{0,1}m

considers a set of items j = 1,...,m with vector v € R indicating value and vector

k € R” indicating required resources of each item. Binary decision variables x € {0,1}"

indicate the selection (x; = 1) or exclusion (x; = 0) of item j = 1,...,m. The objective

is to choose a subset of items of maximum sum of values, termed portfolio value,

while the sum of required resources, termed portfolio resource requirement, must not
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exceed resource capacity ¢ € R. While the knapsack problem is a NP-hard optimization
problem, dynamic programming approaches exist to solve it in pseudo-polynomial
time (Martello and Toth, 1990).

When facing difficult tasks, decision makers frequently reach the limits of their cognitive
capacity (Loch and Wu, 2007) and do not solve problems to optimality. We expect
decision makers to solve the knapsack problem suboptimally even in small problem
instances with two-digit numbers of alternatives, which are common in real-life portfolio
decision making (Golabi et al., 1981; Loch et al., 2001; Grushka-Cockayne et al., 2008;
Gurgur and Morley, 2008). Furthermore, we expect that decision makers will not
overcome suboptimization through learning by repetition.

Decision makers have been found to apply simple heuristics in many problem settings
(Gino and Pisano, 2008; Gans and Croson, 2008; Bendoly et al., 2010), e.g., the secretary
problem (Seale and Rapoport, 1997), the newsvendor problem (Schweitzer and Cachon,
2000), or revenue management (Bearden et al., 2008). In real-life project portfolio
selection, decision makers typically prioritize projects based on their value and resource
requirement (Kog et al., 2009; Salo et al., 2011). Advanced evaluation metrics consider
the difference between value and resource requirements, such as the net present value
(Heidenberger and Stummer, 1999), or the ratio of value and resource requirements,
following the “value for money” principle (Keisler, 2004; Phillips and Bana e Costa,
2007; Lourengo et al., 2012). We conjecture that decision makers apply similar heuristics
in the knapsack problem as well.

In iterative steps s = 1, ..., n a “constructive heuristic” for the knapsack problem selects
item h(As), ranked highest according to an evaluation criterion, from the set of items
As that have not been previously selected and the selection of which does not exceed
the resource capacity. Items can be ranked by maximum value (MaxV), minimum
resource requirement (MinK), maximum ratio of value to resource requirement (MaxR),
or maximum difference between value and resource requirement (MaxD).

WMV (A) = arg 5161%( {vj} 4.2)
MK (A) = arg ?2}4{: {ki} (4.3)
MR (L) = arg 5’2% {v;/ki} (4.4)
MDA = arg ?61%( {vj —ki}. (4.5)

Iterations stop when the selection of any remaining unselected item would exceed the
resource capacity. Constructive heuristics thus terminate with “complete portfolios”,
whose value cannot be increased by selecting any additional unselected item without
violating the capacity constraint. We define the “construction phase” as a decision
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maker’s selection process until the first complete portfolio is achieved. In contrast to
the constructive heuristics, the human decision making process can involve deselection
steps, through which decision makers might further adjust a complete portfolio built in
the construction phase. We define this phase of decision making after establishing a
first complete portfolio as the “improvement phase”.

To investigate whether people rely on constructive heuristics in the knapsack problem,
we formulate hypotheses for the MaxV, MinK, MaxR and MaxD heuristics.

H1: The selection process of decision makers during the construction phase is based
on a) the MaxV heuristic, b) the MinK heuristic, c) the MaxR heuristic, or d) the
MaxD heuristic.

Constructive heuristics require sorting all available items, with a theoretical worst-case
complexity of O(m?) (Knuth, 1968). Sorting items is less demanding to a decision
maker’s cognitive system than solving a knapsack problem to optimality through
portfolio enumeration but becomes increasingly difficult with growing instance size.
Ericcson et al. (1980) emphasize the limited capacity of human short-term memory
placing constraints on the ability to process information for problem solving. While
Miller (1994) claims that the limit on the capacity for processing information is about
seven elements, Cowan (2001), reviewing a wide range of studies, proposes a limit of
four. Although quantifying human mental capacity is matter of debate, there is no
doubt that only a limited amount of information can be bound into one functional
context (Jonides et al., 2008). For the knapsack problem, we assume that decision
makers’ ability to keep track of all available items is limited. We distinguish between
ideal “global selection behavior”, which considers all available items, and “localized
selection behavior”, which due to cognitive limitations considers only a subset of
available items. For small problem sizes, this subset might be equal to the complete set
of items but we expect that the impact of localized selection behavior increases with
increasing problem size.

H?2: Decision makers apply localized selection behavior.
In order to investigate our research hypotheses, we develop an experimental framework

to observe human decision making processes and selection performance when solving
the knapsack problem in a laboratory setting.
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4.2. Experimental Framework

During an experimental session, lasting 35 minutes, subjects are asked to solve a series
of knapsack problems. For each problem subjects are given a list of items, their values
and resource requirements, as well as the available capacity. Subjects may freely select
and deselect items from the list of items. The current portfolio value and remaining
resource capacity is communicated after each decision. Subjects are informed if they
try to select an item whose resource requirement exceeds the remaining capacity and
the attempted selection is denied. Subjects are provided with a calculator as well as
pen and paper.

After being exposed to any knapsack problem for 1 minute, subjects are free to ir-
revocably proceed to the next problem and are required to do so at latest after 5
minutes. Preliminary studies have shown that 5 minutes is enough so that subjects
do not perceive any time pressure for the kinds and sizes of problems we consider
while ensuring that all subjects are presented with at least seven knapsack problems
during a 35-minute session. The sequence in which knapsack problems are presented
is prespecified and identical for all subjects.

Money is the only incentive offered ensuring that differences in selection performance
result in clear differences in payout. At the end of the experiment, for each subject one
solved knapsack problem is randomly drawn to determine the payout. The value of
the last portfolio selected for this problem is converted to € using a problem-specific
conversion factor communicated to subjects while they solve the knapsack problem.
A subject’s payout is obtained by reducing the converted portfolio value by a fixed
charge of €100. The conversion factors and fixed charge are chosen so that subjects
can achieve a maximum payout of € 20 when solving the drawn knapsack problem to
optimality. All subjects receive at least a show-up fee of €3.

Before the experimental session begins, subjects are asked to read instructions, given
in Appendix C. Subjects are furthermore presented with three “training” knapsack
problems consisting of 25 items, which they are asked to solve within 5 minutes each.
Training problems are not considered in the incentive scheme. At the end of the session,
participants are asked to fill out a short questionnaire and are informed about their
performance for each problem as well as the resulting payout.

We present subjects with challenging knapsack problems, neither overwhelming their
mental capacity nor presenting trivial problems. Pisinger (2005) evaluates different
solution procedures for knapsack problems of varying difficulty. In a computational
study, the author considers between 50 and 10,000 items. Such dimensions are not
adequate for investigating human decision making due to limited cognitive capacity
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as well as limited time in experimental settings. We examine considerably smaller
problems consisting of between 5 and 25 items. Solution times of algorithms increase
with growing number of available items, increasing number range of values and re-
source requirements, as well as with higher correlation of item values and resource
requirements. Knapsack problems, whose values and resource requirements are in-
dependently drawn from the same range [1,r], are termed “uncorrelated” problems.
“Weakly correlated” problems are obtained by randomly drawing resource require-
ments from the range [1,7] and sampling the value of each item from the reduced range
[max(1,k; —r/10),k; +r/10]. For “strongly correlated” problems the value is fixed
to v; = k;j +r/10. We opt to use weakly correlated problems in our experiments as
Pisinger (2005) argues that they represent real-world knapsack problems in the most
realistic way. All values and resource requirements fall into the range [1, 1,000] and
values are higher than resource requirements for all items.

Smith-Miles and Lopes (2012) characterize knapsack problems by their “constraint
slackness”, the ratio of available budget to the sum of the resource requirements of
all items. For slackness levels close to zero, only a few items may be selected without
violating the budget restriction while for slackness levels close to one almost all items
may be selected and the problem arises which items not to select. Such problems
are assumed to be easier to solve while Chvéatal (1980) proposes slackness ratios of
around 0.5 for difficult problems. In line with Chvétal, we consider knapsack problems
with slackness levels between 0.4 and 0.6. At these levels knapsack problems have
the highest number of complete portfolios limiting subjects” possibilities to achieve an
optimal solution by random selection.

In order to distinguish decision making behavior clearly, we ensure that each problem
has a unique optimal solution and that the four constructive heuristics lead to different,
unique, and non-optimal solutions. In order to ensure unique selection according
to heuristics, no two items within a problem may have the same value, resource
requirement, difference between value and resource requirement, or ratio of value
divided by resource requirement. The order in which items are presented to subjects is
random and identical for all subjects.

4.3. Experimental Studies

Based on the experimental framework introduced in Section 4.2, two experimental
studies were performed at the laboratory “experimenTUM” of TUM School of Man-
agement. The experiments were programmed and conducted with the software z-tree
(Fischbacher, 2007) and were administrated using the software ORSEE (Greiner, 2004).
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2 3 4 5 6 7 8 9
m 5 10 15 25 15 25 15 25 25

Problem

Repeated Problem - - - - 3 4 3 4 -
Scaling Factor - - - -3 : % 2 -
Random Order - - - - v Vv v v -

Table 4.1.: Specifications for the knapsack problems of Study 1

Study 1 provides general insights into the performance of decision makers, their
learning behavior, as well as how the performance changes with the problem size.
Furthermore, we derive initial results regarding the use of heuristics. Based on these
findings we investigate adherence of selection steps to constructive heuristics as well as
localized selection behavior in Study 2.

4.3.1. Experimental Protocol of Study 1

Table 4.1 provides the details of the knapsack problems used in Study 1. Subjects are
presented with knapsack problems consisting of 5, 10, 15, and 25 items. To investigate
learning behavior, problems 5 and 7 are repetitions of problem 3 with 15 items and
problems 6 and 8 repeat problem 4 with 25 items. To prevent subjects from noticing
repetitions, all item values, resource requirements, and capacities are multiplied by a
“scaling factor” preserving integrity of all values. Furthermore, the order in which items
are presented is randomly changed each time a problem is repeated. After Problem 8,
subjects are presented with a series of unique problems consisting of 25 items until the
session ends after 35 minutes.

The study has been conducted with 29 undergraduate business students in two separate
experimental sessions. Including time to read instructions, time for three training
problems, as well as time to fill out the questionnaire, each session took approximately
60 minutes. At the end of the sessions, subjects were paid in private earning on average
€10.97 with a standard deviation of € 3.28 including a show-up fee of € 3.00.

4.3.2. Results of Study 1

Our analysis focuses on knapsack problems 1 to 8, which were solved by all subjects.
Out of 232 “decision making processes”, i.e., attempts to solve a knapsack problem, five
are excluded from our analysis as subjects had advanced to the next problem without
having selected a complete portfolio.

44



4. Human Behavior in Project Portfolio Selection: Insights from an Experimental Study

!

S=HsTs

Problem 1 2 3 4 5 6 7 8

m 5 10 15 25 15 25 15 25

Repeated Problem - - — — 3 4 3 4
% Solved Optlmally 59%31% 7% 0% 4% 0% 4% 0%

Psub / Pran
—_
o
a1
T

[

Figure 4.1.: Box-and-whisker plots of psyb/ Pran for all subjects and problems 1 to 8

We measure the quality of subjects’” final portfolio choice using the ratio of the obtained
portfolio value pgyp, to pran, the expected portfolio value if items are randomly selected
until a complete portfolio is obtained. pran is determined by sampling 10,000 complete
portfolios with Monte Carlo simulation. In a scheme similar to the constructive
heuristics introduced in Section 4.1, unselected items whose selection does not exceed
the resource capacity are chosen at random until a complete portfolio is obtained.
Figure 4.1 reports the distribution of the ratio psyp/ pran for all subjects. Outliers are
omitted for reasons of clarity. Average ratios psub/ pran are higher than 1 showing that
subjects’ selection approach is better than random choice. However, in line with our
expectation subjects solve knapsack problems suboptimally. Already for problem 1,
consisting of only 5 items, 41% of subjects are unable to find the optimal solution.
With increasing problem size, suboptimality becomes even more prominent. While
few subjects succeed in finding the optimal solution for the problems with 15 items,
problems consisting of 25 items are not solved to optimality by any subject.

Suboptimization is maintained on a similar level throughout the experiment. We assess
learning behavior across all subjects through linear regression of psyp,/ Pran and focus
on problems 3, 5, and 7 (m = 15) as well as 4, 6, and 8 (m = 25) where subjects
predominantly show suboptimal behavior. Slope parameter values and R>-values close
to zero, b; = 0.00 (R*> = 0.02) for m = 15 and b; = 0.00 (R*> = 0.01) for m = 25,
demonstrate that in the short run subjects do not improve by repeatedly solving a
knapsack problem.

In our experimental framework decision makers may select and deselect items at will
giving them the opportunity to revise previously made decisions. In Figure 4.2 we
analyze selection and deselection steps for the construction phase, i.e., steps leading
to a subject’s first complete portfolio, and the subsequent improvement phase, i.e., all
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Figure 4.2.: Average number of selection and deselection steps in the construction and
the improvement phase

steps undertaken after a complete portfolio has been obtained. For problems with
m = 15 the construction phase has more than twice as many steps as the improvement
phase. While during the construction phase more selection steps are performed than
deselection steps, this relationship is almost equalized in the improvement phase.
This implies that on average after a complete portfolio has been obtained one item
is removed from the portfolio in order to add a new one. For larger problems with
m = 25 the relationships between selection and deselection steps in the construction
and improvement phase are similar.

Analyzing decision making patterns of selection and deselection steps, we find that
decision makers frequently annul previous selection or deselection steps. In an “annul-
ment pattern” two subsequent steps consider the same item either first selecting and
immediately deselecting an item or deselecting and immediately reselecting an item.
Both patterns can coincide if, for example, an item is selected, deselected, and immedi-
ately reselected. Table 4.2 gives the percentage of selection and deselection steps which
are associated with annulment patterns for the construction and improvement phase.
For all considered problems less than 18% of the selection steps and more than 76% of
the deselection steps during the construction phase can be explained by annulment.
This is in line with our expectation that decision makers follow a constructive heuristic
during the construction phase, where deselection steps are only undertaken to correct
erroneously selected items. In contrast, in the improvement phase between 45% and
77% of steps are associated with annulment patterns.

Constructive heuristics (4.2) - (4.5) iteratively select items ranked highest according to
an evaluation criterion. Subjects conjectured to adhere to these heuristics frequently
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Construction Phase Improvement Phase
Problem m

Selection Deselection Selection Deselection

3 15.52 100.00 59.09 65.15
5 15 13.57 90.00 45.10 67.35
7 17.04 87.50 52.94 69.23
4 11.18 88.89 66.67 76.92
6 25 8.21 76.19 61.11 75.00
8 9.44 91.67 54.55 66.67

Table 4.2.: Percentage of steps associated with annulment patterns within the construc-
tion and the improvement phase

m =15 m =25
b1 R2 p bl R2 p
MaxV 002 006 =0398 0.01 0.02 =0475
MinK -0.02 0.09 =0.283 -001 0.06 =0.231

MaxR  -0.06 072 <0.001 -0.04 074 < 0.001
MaxD  -0.06 079 <0.001 -0.04 0.79 <0.001

Heuristic

Table 4.3.: Regression statistics for selection frequencies dependent on items” ranks
according to the four evaluation criteria

select items with high rank according to the evaluation criteria as well. Figure 4.3
reports the relative frequency of items being included in subjects” complete portfolios
depending on items’ rank according to the evaluation criteria of the four heuristics.
Subjects’ first complete portfolios at the end of the construction phase as well as their
final complete portfolios at the end of the improvement phase are considered. We
compare subjects” behavior to random selection behavior. To this end, we determine
the relative frequencies of items being included in all possible complete portfolios. We
find that subjects choose highly ranked items and omit low-ranked items for the MaxR,
and MaxD heuristics more often while for the MaxV and MinK heuristics no rank
dependent differences between random selection and subjects” portfolio choices can be
observed. A regression analysis provided in Table 4.3 verifies that subjects put stronger
emphasis on items with high ratio of value to resource requirement and high difference
between value and resource requirement in the construction phase. Regression line
slopes by smaller than zero are statistically significant for both criteria.
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Figure 4.3.: Selection frequency of the ith highest ranked item for all complete portfolios
as well as subjects’ first and final complete portfolios
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Problem 1 2 3 4 5 6 7 8 9
m 25 25 25 25 25 25 25 25 25
Repeated Problem - - - - 2 1 3 4 -
Scaling Factor - - - - ¥ 1 3 2 -
Reversed Order - - - - Vv Vv v v -

Table 4.4.: Specifications for the knapsack problems of Study 2
4.3.3. Experimental Protocol of Study 2

While we focus on the composition of final complete portfolios in Study 1, we specifi-
cally investigate subjects’ selection process and the use of heuristics in the construction
phase in Study 2. Table 4.4 provides the details of the knapsack problems used in
Study 2. In order to extend the number of selection steps in the construction phase,
we consider a new set of knapsack problems consisting of 25 items. We investigate
whether the sequence in which items are presented to subjects affects decision making
by repeating the first four problems with reversed order in which items are presented.
To prevent subjects from noticing the repetition, item values, resource requirements,
and budgets are multiplied by a scaling factor preserving integrity of all values. After
having finished problem 8, subjects are presented with a series of unrelated knapsack
problems until the experiment ends after 35 minutes.

Study 2 was performed with 53 undergraduate business students in three separate
sessions excluding participants of Study 1. Sessions lasted approximately 60 minutes
and subjects earned € 10.48 on average with a standard deviation of € 3.39 including a
show-up fee of €3.00.

4.3.4. Results of Study 2

Our analysis focuses on problems 1 to 8. Out of in total 424 attempts to solve these
knapsack problems, 23 are excluded from the analysis because no complete portfolio
was achieved during the construction phase. Study 1 has shown that most deselection
steps in the construction phase can be explained by annulment patterns, which reflect
reconsidered decisions not constructive decision making. In order to focus on systematic
portfolio development, we exclude steps associated with items that are selected but
are deselected later on. Out of 5,924 selection and deselection steps for all considered
problems and subjects, we exclude 620 steps in the construction phase.

We investigate subjects” adherence to a constructive heuristic by measuring the relative
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frequency of a subject selecting items in line with the heuristic. For each steps =1,...,n
during the construction phase of solving a knapsack problem,

a(s>:{ 1, if o= h(A) w6

0 else

indicates whether the item j; € {1,...,m} selected by a subject is chosen in line with
heuristic h(+), given by (4.2) - (4.5). In each step heuristics consider all available items
A, i.e., items that have not been selected in steps s = 1,...,5s — 1 and the selection
of which does not cause the resource capacity to be exceeded. Absolute and relative
heuristic adherence are given by

Agps = Y a(s) and 4.7)
s=1
Aa S

Ar = =22 (48)

If a subject selects all items exactly in line with a heuristic, then A, = 1. If a subject
ignores items chosen by a heuristic in every single step, then A, = 0 holds. In
Figure 4.4 we compare the distribution of A, for subjects” decision making with the
distribution resulting from randomly selecting items. Distributions are aggregated for
all considered problems and subjects. As in our first experiment, random selection
behavior is approximated by Monte Carlo simulation with sample size 10,000. Subjects
do not completely adhere to one single heuristic during the construction phase as A,
values are strictly smaller than one. The degree of subjects” heuristic adherence for the
MaxR as well as the MaxD heuristic is higher than for random selection behavior. No
significant difference can be found for the MaxV and MinK heuristic.

Heuristic adherence, formalized by hypotheses Hla - H1d, has been statistically tested
considering absolute adherence A,ps. We find no support for Hypothesis H1a, adherence
to the MaxV heuristic, as there is no significant difference between A,,s for subjects’
selections and random behavior across all problems (one-tailed Mann-Whitney, p =
0.121). We find weak support for adherence to the MinK heuristic, Hypothesis H1b.
Although subjects” adherence is significantly higher than for random selection (one-
tailed Mann-Whitney, p < 0.001), this difference is only significant for two out of eight
problems under consideration, as presented in Table 4.5. Hypothesis H1c, adherence to
the MaxR heuristic, is confirmed. Across all problems and in each problem separately,
subjects” behavior is significantly more often in line with this heuristic than would
be expected for random behavior (one-tailed Mann-Whitney, p < 0.001). We find
support for adherence to the MaxD heuristic, Hypothesis H1d. Across all problems
the absolute adherence is significantly higher than for random selection (one-tailed
Mann-Whitney, p < 0.001). While the effect is only mildly significant for problem
3 (one-tailed Mann-Whitney, p = 0.003), there is strong significance for the other 7
problems (one-tailed Mann-Whitney, p < 0.001).
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Figure 4.4.: Histogram of relative adherence to heuristic selection by subjects and in
case of random selection

Problem

1 2 3 4 5 6 7 8
p<0001 p=0496 p=0197 p=0016 p=0464 p<0001 p=0081 p=0319

Table 4.5.: One-tailed p-values of the Mann-Whitney test for the MinK heuristic

Overall, we find significant support that decision makers prefer to select items with the
highest ratio or the highest difference. Nevertheless, selections are not consistently in
line with the MaxR or the MaxD heuristic as across all problems the highest adherence
of a subject to any heuristic is A;¢] = 0.41. To obtain insights into these deviations, we
investigate whether the order in which items are presented to subjects impacts their
decision making.

Items are numbered in order in which they are presented to subjects. Item j = 1 is
presented to subjects first, e.g., at the top of a list, while item j = 25 is presented last,
e.g., at the bottom of a list. For two consecutive selection steps s — 1 and s, we define the
“selection span” as the number of omitted available items listed between items j;_; and
Js- Figure 4.5 presents the histogram of subjects’ selection spans across all considered
problems in comparison to the selection spans expected for random selection behavior.
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Figure 4.5.: Histogram of selection spans for consecutive selection steps

We consider the cases that the first selected item has a lower number than the second
item (js—1 < js), i.e., the decision maker has moved from top to bottom within the item
list, or that the item number has decreased (js_1 > Js), i.e., the decision maker has
moved from the bottom to the top. More than 50% of all selection spans are smaller
than or equal to 3, almost twice as much as expected for random selection behavior
(Binomial Test, p < 0.001). For each knapsack problem, subjects” selection span is
significantly smaller than for random selection (one-tailed Mann-Whitney, p < 0.001)
confirming Hypothesis H2. Subjects prefer to select items in close proximity to the
previously selected item while large spans are underrepresented. Furthermore, Figure
4.5 indicates that subjects move along the item list from top to bottom more frequently
than from the bottom to the top.

Figure 4.6 illustrates the distribution of j;, the item number selected by subjects for
the first ten selection steps (s = 1,...,10) over all problems. During the first five
selection steps, js has a significantly positive trend (Jonckheere trend test, p < 0.001).
This trend disappears for the following five selection steps (Jonckheere trend test,
p = 0.547). Subjects are likely to have traversed the complete item list at that point. We
conclude that subjects initially are biased toward items at the top of the item list and
only later consider items from the bottom. To assess whether the order of items also
influences the final portfolio, we compare portfolios resulting from the construction
phase for problems 1 to 4 with the following identical problems with reversed order
of items. There is no significant difference between the selected items for each pair of
problems, i.e., problems 1 and 6 (two-tailed Mann-Whitney, p = 0.889), problems 2 and
5 (two-tailed Mann-Whitney, p = 0.936), problems 3 and 7 (two-tailed Mann-Whitney,
p = 0.271), as well as problems 4 and 8 (two-tailed Mann-Whitney, p = 0.725).

We investigate whether subjects” selections are better explained by the MaxR or MaxD
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Figure 4.6.: Box-and-whisker plots representing the item numbers of the selected items
in selection steps 1 to 10

heuristic when accounting for localized selection behavior. For each selection step

whF(s) = { Lo jo=h(AY (i) @9)
0 else

indicates whether the item j; € {1,...,m} selected by a subject is chosen in line
with heuristic h(-), given by (4.2) - (4.5). Heuristics only consider available items
Ai’f (js—1) € As,s = 2,...,n in proximity of the previously selected item j;_;. Items
with an item number j < j;_; are considered if their selection span compared to j;_1
is no greater than b, while items with an item number j > j;_; are considered if their
selection span is no greater than f. Relative heuristic adherence considering localized
selection behavior is given by

(4.10)

Figure 4.7 reports average Afé{ values considering the MaxR and MaxD heuristic for

different parameters b and f across all problems and subjects. The figure illustrates that
subjects” selection process coincides more with a heuristic with small selection spans
b and f. Average adherence to the MaxR and MaxD heuristics is 0.22 and 0.21 when
not considering localized selection behavior (b = f = o0). Limiting subjects’” selection
spans to b = 2 and f = 3 causes average adherence to the MaxR heuristic to increase to
0.32 while adherence to the MaxD heuristic rises to 0.30. An incomplete search pattern
within a small range explains subjects’ selection process better than global selection
behavior.
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Figure 4.7.: Average Afg; values considering the MaxR and MaxD heuristic for given

parameters b and f

4.4. Conclusion and Outlook

Managers are responsible for portfolio decisions in strategic environments, where the
application of quantitative decision support is limited. Chapter 2 as well as Kolisch
et al. (2012) report on an industrial application to provide decision aid for project
portfolio selection within the supply chain function of an international semiconductor
manufacturer. While decision recommendations are derived by solving an integer
programming problem embedded in a decision support system for visualization and
interactivity, final portfolio decisions are made by managers based on a listing of
available projects. Understanding fallacies of human decision making in such settings
enables organizations to design decision processes and support systems in order to
counteract adverse effects of decision biases and heuristic decision making.

Study 1 emphasizes the limits of human decision making by showing that decision
makers behave suboptimally in the abstract setting of our experiments even when
accounting for learning behavior. We confirm the conjecture that human decision
making first focuses on selecting alternatives to construct an initial portfolio during
a construction phase, which serves as a baseline solution for further improvement.
The improvement phase is dominated by annulment patterns and has limited impact
on decision quality. Motivated by portfolio selection practice, we investigate subjects’
adherence to simple constructive heuristics during the construction phase, which
consider the value and resource requirement of alternatives. Study 1 and in more detail
Study 2 provide evidence that subjects” behavior is partially explained by adherence to
the MaxR heuristic, selecting items according to the maximum ratio of value divided
by resource requirement, as well as the MaxD heuristic, considering the maximum
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difference between value and resource requirement. Study 2 demonstrates that subjects’
selection processes are only partially in line with a construction heuristic due to
limitations on the amount of information that decision makers are able to receive,
process, or retain. Subjects compare and select items “locally” based on a limited subset
of the set of presented items in close vicinity to previously selected items. They start at
the top of the presented list of items and gradually move through it. Accounting for
localized selection behavior increases the explanatory power of the MaxR and MaxD
heuristics.

Our work suggests ample opportunities for future research. We investigate learning
effects by considering three identical but rescaled and rearranged problem instances.
We infer that the complexity of the problem hinders learning in the short run but
make no projections regarding long-term learning behavior. Further investigations
on learning effects as well as training would be worthwhile in order to overcome
the difficulty that people will realize when the same instance has been rescaled and
rearranged too often. As people are able to improve their memory span (Ericcson et al.,
1980), decision quality can improve through training due to less localized selection
behavior. Other factors besides localized selection behavior might prevent decision
makers from strictly adhering to constructive heuristics. Subjects might try to apply a
heuristic but fail at comparing and sorting items with regard to the evaluation criterion.
Also, decision makers might apply more complex heuristics that combine evaluation
criteria of the four basic heuristics treated in this study.

Operational research aims to help people in problem solving and in order to come
up with better results the problem owners should not be neglected (Hamaldinen
et al., 2013). Therefore, future research most importantly should provide guidance
in predicting critical decision making environments and provide decision makers
with debiasing methods to handle them appropriately. One promising research avenue
would be to investigate whether knapsack problems where heuristics lead to suboptimal
performance coincide with a worse performance of decision makers compared to
instances where the heuristics lead to good or even optimal solutions. If this is
the case, particular critical situations could be predicted in advance. The baseline
knapsack problem can be extended in various ways taking into account e.g., uncertainty,
multiple objectives, group decisions, project dependencies, and so on. Our experimental
framework can be easily adapted to address these topics while experimental results
can be compared to our findings as a baseline. We believe that human behavior in
portfolio decision making, whose various facets are all of great practical relevance, is a
promising field for research.

55



5. Performance and Robustness of Priority
Policies for Static and Dynamic Project
Scheduling under Uncertainty

Project managers are frequently confronted with scarce resources, e.g., limited budgets,
limited availability of skilled workforce, or limited access to required tools and infras-
tructure. Scarce project resources are allocated subject to considerable uncertainty in
terms of activity durations, varying resource requirements and supplies, or changes in
the content or structure of the entire project. Furthermore, the majority of organizations
do not execute projects in isolation but have to support several projects simultaneously
(Payne, 1995; Lova et al., 2000).

In this chapter we consider a dynamic project scheduling problem where projects with
stochastic activity durations arrive stochastically over time. Every arrival of a new
project changes the scheduling environment and makes (partial) rescheduling advisable.
Dynamic project scheduling was first addressed by Adler et al. (1995), who model the
processing of R&D projects as a queuing network. The authors report on a simulation
study that investigates the impact of different factors on the average project flow time
such as problem parameters, the number and pooling of resources, as well as limitations
on the arrival of new projects in the environment. Anavi-Isakow and Golany (2003)
also analyze the performance of different policies that limit the number of projects in
the environment. Choi et al. (2007) model the resource-constrained project scheduling
problem (RCPSP) with stochastic activity durations and dynamic project arrival as a
Markov decision process. A Q-learning-based approach is employed to heuristically
determine policies for activity initiation, cancellation of ongoing projects, as well as
resource reservation for future projects. Likewise, Melchiors and Kolisch (2010) employ
a Markov decision process model, which is solved by value iteration, while Melchiors
and Kolisch (2009) investigates different priority rules. In addition, dynamic scheduling
of activities with uncertain processing times has been considered frequently within the
domain of machine scheduling (Ouelhadj and Petrovic, 2009; Vredeveld, 2012).

Unlike previous approaches to dynamic scheduling, we propose to adapt solution pro-
cedures originally developed for the stochastic resource-constrained project scheduling
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problem (SRCPSP) (Mohring et al., 1984, 1985) to the dynamic setting of stochastically
arriving projects. The SRCPSP is a direct adaption of the well-known deterministic
resource-constrained project scheduling problem to the context of uncertainty regard-
ing activity durations. A solution to the SRCPSP is not a concrete schedule, but a
scheduling policy. A policy is applied dynamically during project execution to decide
on activity starting times based on the realized durations of finished activities and
duration estimates for pending activities. Mohring and Stork (2000) develop exact
branch-and-bound procedures working with earliest start, linear preselective, and
activity-based priority policies. Ballestin (2007) reports on a sampling heuristic and ge-
netic algorithm, while Ballestin and Leus (2009) present a greedy randomized adaptive
search procedure, both employing activity-based priority policies. Ashtiani et al. (2011)
introduce the class of pre-processor policies, a combination of earliest start policies
and resource-based priority policies. Deblaere et al. (2011) propose resource-based
policies with release times as a new scheduling policy class, which are chosen by a
simulation-based descent procedure. Recently, Fang et al. (2015) develop an estima-
tion of distribution metaheuristic to determine resource-based priority policies for the
SRCPSP.

In this chapter SRCPSP solution procedures are used to provide multi-project scheduling
policies, which are executed until the arrival of a new project requires rescheduling.
Frequent rescheduling renders dynamic project scheduling problems computationally
challenging even by standards of the NP-hard RCPSP (Blazewicz et al., 1983). For this
reason, the first half of this chapter is dedicated to the evaluation of different approaches
for the SRCPSP in order to assess their suitability for the dynamic scheduling problem.
Based on these results, we adapt specific approaches to the dynamic scheduling setting
and compare their performance in a second computational study.

Section 5.1 formally introduces the dynamic project scheduling problem, for which we
propose a solution approach in Sections 5.1.1 and 5.1.2. We report on two computational
studies in Section 5.2. The first study considers the SRCPSP and investigates the
performance and stability of two classes of scheduling policies. The second study
investigates the performance of the dominant scheduling policy class for the dynamic
scheduling problem.

5.1. Problem Setting

We consider a dynamic project scheduling problem where projects arrive stochastically
over time according to a Poisson arrival process with arrival rate A. Each arriving
project consists of activities i = 1,...,n connected by precedence relations (i,i') € &,
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where i,i’ € {1,...,n}. Each activity requires a non-negative amount of any resource
k=1,...,m during its execution giving a matrix of resource requirements r € IN"*".
Resources are available in constant maximum amounts R € IN" per period shared
by all projects. When a project arrives in the environment, only the activities, their
precedence relations, and resource requirements are known with certainty. Information
on activity durations is given by distinct, mutually independent probability distributions
d = (dy,...,ds)T. The objective is to minimize the average expected flow time of
projects, given by the difference between the completion time of a project and the time
of its arrival.

A special case of this problem is a single project arriving at time t = 0. Then the
problem boils down to the stochastic resource-constrained project scheduling problem
(Mohring and Stork, 2000). For solving the SRCPSP, a scheduling policy 7t defines
how to gradually build a project schedule during execution of the project while actual
realizations of activity durations are revealed when an activity is completed. When
considering activity durations as random variables d, activity starting times, completion
times, and any regular performance measure x(7,d) are random variables as well.
The SRCPSP is typically solved by finding a scheduling policy 7r* that minimizes
the expected project makespan within a computationally tractable class of scheduling
policies I'l. Due to computational limitations (Hagstrom, 1988), solution approaches to
the SRCPSP typically resort to simulation in order to approximate project makespan
distributions and determine the expected value.

5.1.1. Proposed Solution Approach

We propose to employ scheduling policies generated by solution procedures for the
SRCPSP to schedule projects in the dynamic project scheduling problem. We make use
of the fact that between arrivals of two subsequent projects the dynamic environment
is an extension of the SRCPSP setup considering multiple projects combined in one
network. Whenever a new project arrives, solution procedures adapted from SRCPSP
approaches are used to generate a scheduling policy for all unexecuted project activities
in the environment. The policy is generated under the objective of minimizing the
average expected flow time of all uncompleted projects and is employed to schedule
activities for execution until the next project arrives in the environment.

In order to illustrate the proposed solution approach, we assume that identical projects
adapted from an example by Igelmund and Radermacher (1983) arrive over time,
each consisting of 5 activities i = 1, ..., 5, which are connected by precedence relations
& =1{(1,4),(3,5)}. Activities require two resources with availabilities Ry = 1 and
Ry = 2 in the amounts 111 = 151 = 120 = 132 = 142 = 152 = 1 and rj = 0 otherwise.
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Figure 5.1.: llustrative example of the development of a dynamic scheduling problem
where two projects arrive over time

The left side of Figure 5.1 presents the dynamic scheduling problem where a first
project arrives at time t = 0. Activities are given as rectangular nodes, whereas arcs
indicate precedence relations. When a project arrives activity durations and thus also
the project flow time are uncertain, indicated by dotted lines.

At time t = 0 the setting corresponds to the SRCPSP, which may be solved by determin-
ing a policy for activity scheduling. The right side of Figure 5.1 illustrates the setting if
a policy starts activities 1, 2, and 3 at t = 0, and a second project, identical to the first
one, arrives at t = 5. The previously determined scheduling policy does not provide
any guidance in scheduling the second project. When determining a new policy for
both the first and the second project, it must be taken into account that activities 1 and
2 of the first project have been completed by t = 5. The stochastic scheduling problem
at t = 5 is solved to provide a scheduling policy for the unscheduled activities 4 and 5
of the first project as well as activities 6 to 10 of the second projects. When scheduling
these activities, the resource demand of activity 2, which has been started at t = 0,
but has not been completed by t = 5, must be taken into account. For exponentially
distributed activity durations, the distribution of the remaining duration of activity 2
is the same as the initial distribution. This memorylessness does not hold for other
distributions. In these cases the change in distribution must be accounted for, e.g., when
performing simulations to determine expected flow time values in SRCPSP solution
procedures.

Figure 5.2 presents activity starting and completion times if two different resource-based
priority policies 711 and 71, are applied after t = 5 until both projects are completed.
Policy 711 is given by the priority list 5 > 4 > 6 > 7 > 8 > 9 = 10, where i >~ i’ indicates
that i has higher priority than i’. Policy 71, corresponds to 6 =7 > 8 = 9 = 10 > 5 > 4.
Figure 5.2 shows that the choice of scheduling policy strongly impacts resulting project
flow time values. For 71; the first project is completed after 10 time units and the second
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Figure 5.2.: Illustrative example of the scheduling decisions of two resource-based
priority policies 711 and 71,

project after 15, giving an average flow time of 12.5. For 71, the last two activities of
the first project are delayed giving a flow time of 20, while the second project takes 11
time units. In this case, the average flow time value is 15.5. The example shows that
the choice of scheduling policy has significant impact on the project flow time.

One well established metaheuristic for the RCPSP is the priority list based genetic
algorithm by Hartmann (1998) and Hartmann (2002). This procedure has been adapted
to the SRCPSP setting by Ballestin (2007). The genetic algorithm generates populations
of priority lists, which are interpreted as scheduling policies and whose expected
project makespan is assessed by means of Monte Carlo simulation. This handling of
stochastic activity durations corresponds to a sample average approximation (SAA)
scheme (Kleywegt et al., 2002). Furthermore, Ballestin (2007) finds experimental
evidence that for cases with small variance of activity durations the distributions
can be adequately approximated by their expected values. In this case, the genetic
algorithm by Hartmann (1998) is directly applied to generate priority lists, which can be
interpreted and evaluated as scheduling policies for the SRCPSP. When computational
effort is restricted, solution procedures using the latter approach are able to explore a
larger part of the solution space than their counterparts using SAA, but for the price of
underestimating stochastic deviations.

5.1.2. Proposed Scheduling Policy Classes

In literature, different classes of scheduling policies have been proposed, which are
derived from the general class of set policies. At some point in time ¢, a set policy
may start any subset of the set of activities, whose predecessors have already been
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completed and which obey the resource constraints. Decisions may only be based on
the sets of activities started and completed up to t (Mohring et al., 1985). Earliest start
policies are defined by an extension £’ O £ of precedence relations for which there
exist no minimal forbidden sets. Sets of activities are minimal forbidden if they form
an antichain with respect to £ and may not be executed simultaneously due to resource
constraints (Mohring et al., 1984). For each minimal forbidden set, preselective policies
define a preselected activity which may first be executed upon completion of any other
activity from the forbidden set (Igelmund and Radermacher, 1983).

The number of minimal forbidden sets may be exponential in the number of project
activities (Stork, 2001). The dynamic project scheduling problem builds on combinations
of several single projects in one network. In the example illustrated by Figure 5.1, at
t = 0 the first project has three minimal forbidden sets. In the combined network of
both the first project (without completed activities 1 and 2) and the second project at
t =5, 29 minimal forbidden sets exist. This illustrates that scheduling policies based
on minimal forbidden sets, i.e., preselective policies and earliest start policies, easily
become computationally intractable for large multi-project networks.

Mbohring and Stork (2000) describe two policy classes that do not rely on minimal forbid-
den sets and are characterized by a precedence-feasible priority ordering L of all project
activities. For each decision point, resource-based priority policies (ITR®) consider all
unscheduled activities whose predecessors have been completed for scheduling in the
order of the priority list. Activities are started under the condition that the resulting
partial schedule is resource-feasible. If an activity cannot be started due to resource
restrictions, the succeeding precedence-feasible activity in the priority list is considered.
Activity-based priority policies (IT*P) work under the additional side constraint that an
activity may not be started earlier than any other activity with higher priority according
to the priority list. Considering the example in Figure 5.1, any resource-based priority
policy will greedily utilize all available resources and start activities 1, 2, and 3 at t = 0.
On the other hand, activity-based priority policies might defer the execution of up to
two of the activities leaving resources idle. For regular performance measures (Sprecher
et al., 1995), Mohring and Stork (2000) and Stork (2001) show that analytically neither
ITRB nor ITAP are dominant in terms of the optimum expected performance measure
value p = E[x(71*, d)] obtainable within each class. It is possible to construct instances
where either class dominates the other one. However, the authors do not systematically
study the performance of both policy classes for a range of different problem instances.

Mohring et al. (1984) give stability requirements for scheduling policy classes with
regards to slight changes of input parameters, i.e., particularly the distribution of
activity durations. For a stable policy class, the distribution of the performance measure
(71, d) associated with every policy 7t € IT and in particular the expected performance
E[x(m,d)] will converge for every weakly convergent sequence of activity duration
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Figure 5.3.: Illustrative example of the instability of scheduling policy 7*

distributions d* — d and every uniformly convergent sequence of project performance
measures k¢ — k. The same holds true for the optimal expected performance measure
value and the identity of being an optimal policy. This notion of stability ensures
that when applying an approximation (x¢,d€) of input data (x,d) an established
optimal policy will also be almost optimal for (x,d). As procedures for the SRCPSP
rely on simulation to approximate the distributions of activity durations as well as
policy performance measures, stability should ensure reliable performance of identified
optimal policies as well as reliable optimum performance measure values.

To illustrate this concept of stability, we consider a single five-activity project arriving
at t = 0. As before, precedence relations are given by £ = {(1,4),(3,5)}. Adopting
an example by Mohring (2000), resource requirements and availabilities are set to
prevent activities 1 and 3 from being executed in parallel (R; = 1,711 =731 =1, and
ik = 0 otherwise). Activity durations follow the multivariate, discrete (two-scenario)
probability distribution

g d'=(4, 1+¢ 4, 8, 4) with probability 0.5
=4, 1, 4, 4, 8) with probability 0.5

The overall optimal scheduling policy 77*, illustrated in Figure 5.3, starts activity 2 at t =
0 and waits until t = 1 to start either activity 1 or 3. If activity 2 is not completed by t = 1
(scenario d'), activity 1 is started at t = 1 and activity 3 at t = 5. Otherwise (scenario
d?), activity 3 is started at t = 1 and activity 1 at t = 5. When applying this policy with
0 < € <12, the expected project duration is E[x(77*, d€)] = 13. Unstable behavior of 7t*
become apparent when considering d = lim._,o d°. In this case the expected project
duration discontinuously jumps to E[x(7t*,d)] = 15 # lim_,¢ E[x(7t*,d)] = 13.

Mohring et al. (1984) characterize earliest start and preselective policies as finite,

positively homogeneous, uniformly continuous, and monotonically increasing functions
rendering these classes stable in terms of convergence in « and d. In general, set
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policies and particularly resource-based priority policies TTR® are neither continuous,
monotonically increasing, or convex and thus unstable and non-monotonous. Limiting
instability and non-monotonicity, Mohring et al. (1985) argue that set policies show
quasi-stable behavior, as within the space of activity durations they are piecewise
composed of earliest start policies, which are stable. Instabilities and non-monotonous
behavior appear only on the borders between these stable sets. When restricting activity
durations to distributions with Lebesgue-density the combination of these borders has
Lebesgue measure zero and set policies show both stability and monotonous behavior.
Mohring (2000) therefore regards both set policies and priority policies as “robust” in
the sense of convergence. Unstable and non-monotonous behavior in set policies may
yet occur when considering discrete activity duration distributions, particularly for
small sample sizes. Discrete distributions are common in procedures for the SRCPSP,
which rely on simulation to approximate activity duration distributions.

5.2. Computational Studies

Past research on the SRCPSP has preferred activity- to resource-based priority policies
based on analytical insights. No detailed experimental studies have been performed
to compare the performance of both classes when scheduling practically interesting
problem instances. Likewise, the impact of stability and monotonicity on solution
procedures working with discrete approximations of activity durations has not been ex-
perimentally assessed. This leaves room for more thorough analyses of the relationship
of activity- and resource-based priority policies. The first half of the computational
study will consider both policy classes in the SRCPSP setting to choose one scheduling
policy class for application to the dynamic project scheduling problem. Based on the
promising results reported by Ballestin (2007) we adapt both the deterministic and
SAA procedure to the dynamic project scheduling setting in the second half of our
computational study. To give an indication of the value of the approaches, we compare
them with random sampling procedures (Kolisch, 1996), likewise proposed by Ballestin
(2007), as well as scheduling policies derived from common priority rules.

5.2.1. Computational Setup

We employ novel problem instances designed with both the SRCPSP and the dynamic
project scheduling problem in mind. Project networks consist of 15 non-dummy
activities and are created using the Progen/Max generator (Schwindt, 1998). The
complexity of precedence relations is controlled by the order strength (OS) parameter.
Lower OS is commonly associated with increasingly difficult problem instances due
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to higher numbers of precedence-feasible schedules (Herroelen and Reyck, 1999). We
consider parameter levels of approximately 0.1, 0.5, and 0.9.

Expected durations E[d;] of activities i = 1, ..., n fall in the range from 1 to 10. They
have been chosen to ensure a project makespan of between 10 and 20 when resource
requirements are omitted and activity durations realize as their expected values. For
stochastic activity durations, Jensen’s inequality causes expected project makespan
values to deviate from this value with increasing activity duration variance (Mohring,
2001), e.g., for exponential activity durations project flow times may vary between 11
and 32.

Every activity requires one or more types of resources where rj < 10 for all activities
and resource types. The number of different resource types required by each activity
is determined by the Resource Factor (RF) parameter (Kolisch et al., 1995). High
parameter values indicate high resource interdependency of project activities and thus
are associated with difficult scheduling environments. RF levels are set to 0.25, 0.5, 0.75,
and 1.0. Ten project networks are generated for each combination of OS and RF levels
giving 120 project networks overall.

For each project network, resource availabilities are determined by different parameters
when dealing with either the SRCPSP or the dynamic project scheduling problem.
When dealing with the SRCPSP in section 5.2.2, the parameter resource strength (RS) is
used (Kolisch et al., 1995). For a resource strength level of zero, available resources only
cover the highest demand for any single activity while for a level of one resource levels
are set to the maximum aggregate resource requirement when scheduling all activities
at their earliest start time assuming mean activity durations. Reyck and Herroelen
(1996) indicate that the solution time required for problem instances with different
resource strength values follows a bell-shaped curve with instances having low or high
resource strength levels being significantly easier to solve than others. We set resource
availabilities to give resource strength levels of approximately 0.1, 0.5, and 0.9, for all
resource types. Resource requirements of activities are set so that integer resource
availability levels exist that support each desired level of resource strength for each
resource type.

When dealing with the dynamic project scheduling problem in section 5.2.3, we consider
projects arriving according to a Poisson process with arrival rate A, all sharing the same
precedence relations, resource requirements, expected activity durations E[d;], and
duration distribution type. If the arrival rate of projects is lower than or equal to the
rate of project completion, a stable environment is established and the average number
of projects in the environment converges in the long run. If the project arrival rate is
too high, the average number of projects in the environment increases toward infinity.
In order to account for stability and different levels of resource scarcity we control the
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Figure 5.4.: Illustrative example of the relative resource consumption per time period
for policies 711 and 7,

ratio of expected per-period workload to per-period resource availability. As a metric,
we consider the expected utilization of each resource type

Yiq (E[di] - rix)
R, /

U= A k=1,...,m. (5.1)
Due to precedence constraints or interdependencies of activities requiring multiple
resource types, available resources may remain idle. Resource utilization by Equation
5.1 therefore is only an approximation of the true utilization relating the rate of project
arrival and project execution. As an illustration, we consider again the example from
the previous section. For an assumed arrival rate of 0.05, corresponding to an expected
inter-arrival-time of 20, we obtain utilization levels of u; = 0.9 and u> = 0.95. Figure
5.4 reports the per-period ratio of required to available resources for priority policies
sl and TT2.

We control average utilization levels across all resource types # €]0,1.0] by fixing all
resource availabilities to Ry = )i ; E[d;] - rjx for all resource types k = 1,...,m and
adjusting A to correspond to the desired utilization level.

In line with Ballestin and Leus (2009), we consider five different types of probability
distributions for activity durations for each project network and level of resource
strength or resource utilization: Two (continuous) uniform distributions (U1 and U2),
two beta distributions (B1 and B2) and the exponential distribution (EXP). Durations
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of all project activities are assumed to follow the same type of distribution. Uniform
distributions are defined with support [E[d;] — \/E[d;], E[d;] + \/E[d;]] for Ul and
[0,2 - E[d;]] for U2. The exponential distribution EXP has a mean value of E[d;], whereas
the beta distributions are defined with support [E[d;|/2,2 - E[d;]] and a variance of
E[d;]/3 for Bl and E[d;]?/3 for B2. Bl is defined with « = (E[d;]/2) — (1/3) and
B2 with « = 1/6. B = 2a holds for both distribution classes. The distributions are
designed so that Ul and B1 share the same low variance (E[d;]/3), U2 and B2 have the
same medium variance (E[d;]?/3), and EXP represents a case of high activity duration
variance (E[d;]?).

Figure 5.5 summarizes the generation process of problem instances as well as the
problem parameters considered in our computational study on the SRCPSP and the
dynamic project scheduling problem.

Generation of
Project Networks ’ £:05=0.1,05,09 ‘
(ProGen/Max) ¢ 777777777777777777777777

i : RE = 0.25,0.5,0.75,1.0 \

Specification of i !
E[di], ri, and Ry | — T 3

Rk : RS = 0.1, 0.5, 0.9 Rk = ?:1 E[dl‘]i’ik
) ) d; ~ Ul, B1, U2, B2, EXP
Simulation d; ~ Ul, Bl, U2, B2, EXP A w €)o1]
SRCPSP Instances Dynamic Project

Scheduling Instances

Figure 5.5.: Generation process and parameter combinations of problem instances for
the SRCPSP and dynamic project scheduling problem

5.2.2. Performance and Stability of Priority Policy Classes for the SRCPSP

For the considered SRCPSP problem instances, we enumerate all possible precedence
feasible priority lists. On average, 113,000 (minimum 1,356, maximum 630,630) priority
lists are obtained per instance. Each priority list is evaluated as an activity- and
resource-based priority policy. For each type of activity duration distribution, we
determine the distribution of the project makespan obtained by each policy through
descriptive sampling (Saliby, 1990) using 10,000 scenarios of activity durations. We
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Figure 5.6.: Box-and-whisker plots of expected makespan values within policy classes
ITAB and ITR® for different duration distribution types

compare makespan values across instances by reporting the percentage distance of the
obtained makespan values to the critical path length of projects when assuming mean
activity durations and omitting resource requirements.

In Figure 5.6 box-and-whisker plots illustrate distance values for all enumerated activity-
and resource-based priority policies across all problem instances. Separate plots are
given for different duration distribution types. Boxes cover the 25% to 75% percentile
of evaluated policies, and whiskers extend to the lowest and highest value. For all
duration distribution types, values are lower for resource- than for activity-based
priority policies. We scrutinize this result by applying the Wilcoxon signed-rank test
(Wilcoxon, 1945). We study the null hypothesis Hj that there is no difference in expected
makespan if each priority list is interpreted as an activity- or resource-based priority
policy for each problem instance versus the alternative H; that the expected makespan
of resource-based priority policies is lower than for activity-based priority policies. We
can reject Hy on a level of significance of p < 0.001. This holds for each type of activity
duration distribution.

Ashtiani et al. (2011) also present computational results indicating significantly better
expected makespan performance for resource- than for activity-based priority policies,
especially for duration distribution types with medium to high variability. Based on
these results, the authors opt to use resource-based priority policies in their proposed
hybrid pre-processor scheduling policies and solution procedure. Similarly, Deblaere
et al. (2011) argue that resource-based priority policies perform better than activity-
based priority policies due to the additional precedence relations imposed on the
project network by the latter. The presented performance gap partially explains the
superior performance of the solution procedures by Ashtiani et al. (2011) and Deblaere
et al. (2011), working with variants of resource-based priority policies, compared to
procedures by Ballestin (2007) and Ballestin and Leus (2009), which employ activity-
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Figure 5.7.: Box-and-whisker plots of optimum expected makespan values within policy
classes I1AB and TIRB for different duration distribution types

based priority policies.

Figure 5.7 compares activity- and resource-based priority policies in terms of the
optimum expected makespan p”B and pRP obtainable within each class. Box-and-
whisker plots illustrate p*B and pRB for each problem instance. For medium to high
variation in activity durations (U2 and EXP), optimal resource-based priority policies
significantly outperform optimal activity-based priority policies (one-tailed Wilcoxon
signed-rank, p < 0.001). For cases of low variation (Ul and B1) this relationship is
reversed (one-tailed Wilcoxon signed-rank, p < 0.001). For distribution type B2 the
policy classes are statistically indistinguishable on a 99% level of significance (one-tailed
Wilcoxon signed-rank, p = 0.013).

While resource-based priority policies mostly outperform activity-based priority policies
in a direct comparison of policies for the same priority list, activity-based priority
policies can outperform resource-based priority policies in terms of their obtainable
optimum value when activity duration variance is low. In order to shed light on
this discrepancy, Figure 5.8 reports the optimality gap of each activity- and resource-
based priority policy for all problem instances. We find that resource-based priority
policies have significantly lower optimality gaps than activity-based priority policies.
Furthermore, within the class of resource-based priority policies on average 25% of all
policies provide the optimum expected makespan, while only 0.03% of policies provide
the optimum value within the class of activity-based priority policies.

In this study, resource-based priority policies show predominantly superior perfor-
mance compared to activity-based priority policies, yet they are associated with unstable
behavior from a theoretical perspective. We analyze stability in terms of the convergence
of the expected makespan for any given policy. In order to justify the configuration of
his SRCPSP procedure with respect to the number of scenarios, Stork (2001) shows for
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Figure 5.8.: Box-and-whisker plots of optimality gaps within policy classes 148 and
TIRB

different numbers of scenarios the average and maximum percentage deviation of the
expected makespan from the makespan obtained when activity durations only take on
their mean value. Leus and Herroelen (2004) and Ballestin and Leus (2009) extend this
approach by considering the standard deviation of the percentage deviation of expected
makespan values obtained through repeated simulation using the same number of
scenarios, versus the “true” expected makespan value obtained by simulation using a
large number of scenarios.

We adopt this approach and compare the standard deviation of the percentage devia-
tion of approximated expected makespan values from their “true” values for multiple
activity- and resource-based priority policies. For each problem instance, we select
100 policies from both policy classes, whose “true” expected makespan value obtained
by simulation using 10,000 scenarios corresponds to the 1st, 2nd, ..., 100th percentile
within the class. For each selected policy, we obtain 100 approximations of the expected
makespan value by performing repeated simulations using either 3, 10, 100, or 1,000
scenarios of activity durations. Figure 5.9 reports the standard deviation of the devi-
ation of expected makespan values for activity- and resource-based priority policies
across problem instances for different duration distribution types and varying numbers
of scenarios. Average deviation values are lower for activity- than for resource-based
priority policies for all numbers of scenarios and distribution types. The difference in
deviation is statistically significant for all duration distribution types and scenario num-
bers (one-tailed Wilcoxon signed-rank, p < 0.001). Deviations for both policy classes as
well as differences in deviations are particularly pronounced when considering only 3
or 10 scenarios and exponentially distributed activity durations.

In terms of application, the stability of the performance measure associated with
arbitrary policies is less relevant than stability with regards to the optimal policy and
the optimum expected performance measure value. To this end, we analyze stability
properties of the optimum expected makespan values obtainable within the classes of
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Figure 5.9.: Standard deviation of the deviation of expected makespan values within
policy classes TTAP and TTRB for given numbers of scenarios and different
duration distribution types

activity- and resource-based priority policies. We consider an experimental routine
by Kleywegt et al. (2002), who study convergence and stability of optimum values in
general sample average approximation problems. We evaluate the “true” expected
makespan of all enumerated activity- and resource-based priority policies using 10,000
scenarios of activity durations and determine “true” optimum expected makespan
values p”P and pRB. We then repeat the evaluation 100 times using only three scenarios,
which are varied in each repetition. Hereby, 100 sets of approximately optimal policies
are obtained. Figure 5.10 reports the relative frequency that approximately optimal
activity- and resource-based priority policies are truly e-optimal, i.e., their “true”
value falls in the range [0*B, (1 + €)p*P] or [pRB, (1 + €)pRB]. Relative frequencies are
calculated across all problem instances. We find that approximately optimal activity-
based priority policies are significantly further away from p® than approximately
optimal resource-based priority policies from pR? (one-tailed Wilcoxon signed-rank,
p < 0.001). We conjecture that although the expected performance of arbitrary activity-
based priority policies behaves stably, the smaller number of (near-)optimal policies
within the solution space reported earlier in Figure 5.8 causes less stable behavior of
optimal activity-based priority policies.

Summarizing the first study, we conclude that on average resource-based priority
policies outperform activity-based priority policies. In cases of low variation in activity
durations, there exist activity-based priority policies that provide a lower expected
makespan value than the best obtainable resource-based priority policy. These “good”
activity-based priority policies appear to be less frequent within their solution space
than “good” resource-based priority policies. We confirm that activity-based priority
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Figure 5.10.: Relative frequency of e-optimality of approximately optimal policies
within policy classes ITAB and TTRB

policies have better stability properties than resource-based priority policies when
considering approximations of activity durations and makespan distributions. When
considering approximations using 100 scenarios, deviations for both policy classes fall
below 1% limiting the extent of unstable behavior of resource-based priority policies to
approximations using only few scenarios. Unsatisfactory stability properties of resource-
based priority policies can be mitigated by choosing higher numbers of scenarios when
approximating activity duration and makespan distributions. Furthermore, optimal
resource-based priority policies have been shown to behave more stably than activity-
based priority policies even when only few scenarios are considered.

5.2.3. Comparison of Solution Procedures for the Dynamic Project
Scheduling Problem

Due to the superior performance of resource-based priority policies, we focus on
this policy class when applying SRCPSP solution procedures to the dynamic project
scheduling problem. Starting with an empty environment, a SRCPSP solution procedure
is used to derive a scheduling policy whenever a new project arrives. The policy is
used for activity execution until the arrival of the next project. Then a new policy is
determined. In order to aid comparisons of several solution procedures across different
problem instances, we employ common random numbers as realized activity durations
and within SAA procedures as activity duration scenarios. Whenever rescheduling
is performed, new common activity duration scenarios are used in SAA procedures.
Furthermore, we employ common random numbers as project arrival times.

To obtain initial results, we consider a very basic solution procedure, the first-come-

71



5. Performance and Robustness of Priority Policies for Static and Dynamic Project Scheduling

30 o
20

10|

—Ul---B1 U2---B2- - EXP

Figure 5.11.: Average number of projects within the scheduling environment for given
levels of utilization and different duration distribution types

first-served (FCFS) priority rule. FCFS provides scheduling policies that prioritize
activities in order of their (project) arrival and the order induced by project precedence
constraints. Iterations of project arrivals and rescheduling are performed until a total
of 200 projects have been completed. For different levels of resource utilization % and
activity duration distribution types, Figure 5.11 reports the average number of projects
that are executed in parallel within the environment. Values increase with increasing
utilization and increase slightly with increasing variance of activity durations.

For different utilization levels u, Figure 5.12 presents the development of the number
of projects within the environment. Solid lines give average values, whereas dotted
lines indicate dispersion of one standard deviation around the averages. Initially, the
dynamic scheduling environment behaves unstably while the first projects arrive, and
the number of projects executed in parallel grows. If sufficient resources are available to
process arriving workload, the environment gradually becomes stable, and the average
number of projects in the environment converges.

We ensure that solution procedures for dynamic project scheduling are evaluated in
stable environments. To this end, we start evaluations only after a sufficient number
of projects have arrived for the environment to achieve stability. We determine the
required length of this “warm up period” by performing linear regression analyses
on the number of projects in the environment dependent on the number of project
arrivals. Until a threshold level of project arrivals in the environment has been reached,
executed projects are excluded from the regression analysis. For different regression
thresholds and different levels of utilization, Figure 5.13 reports the average slope of
the linear regression lines. For u < 0.9, slopes are positive when all arriving projects
are considered and decrease to zero with increasing threshold, i.e., the environments
become stable after sufficiently many projects have arrived. Stability is achieved after
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Figure 5.13.: Average linear regression line slopes obtained after warm up periods of
given length for different levels of utilization

about 20 projects have arrived. For the other solution procedures covered by this
computational study similar values are obtained. For u = 1.0, slopes are positive even
if a warm up period is accounted for. We conclude that this utilization level is too
high to support stable environments, and therefore exclude # = 1.0 when evaluating
solution procedures.

We now investigate the random sampling procedures and genetic algorithms (GA)
proposed by Ballestin (2007). These procedures take into account stochastic activity
durations either by sample average approximation (SAA) (Kleywegt et al., 2002) or
by considering expected activity durations (Mean). In sampling procedures, regret-
based biased random sampling (RRS) based on the latest finish times of activities is
used. This sampling scheme is also employed to create initial populations for the
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genetic algorithms. All algorithms are terminated after 5,000 schedules have been
generated. This common approach in scheduling studies makes it possible to compare
algorithms without having to consider the computer architecture used in the trials
(Hartmann and Kolisch, 2000). Ballestin (2007) shows that the use of fewer scenarios in
approximating activity duration distributions is beneficial when a limit is set on the
number of generated schedules. The loss in precision regarding the project duration
distribution is more than compensated by the benefit of exploring more solutions. The
less variability in activity durations, the fewer scenarios should be used. This result
is also supported by Ballestin and Leus (2009) as well as Ashtiani et al. (2011). In our
computational study SAA using 3, 10, and 100 scenarios (denoted SAA-3, SAA-10, and
SAA-100) will be compared while applying descriptive sampling (Saliby, 1990) as a
variance reduction technique. In line with Hartmann (2002), the genetic algorithms
apply a two-point crossover and mutation operator. Through pretests we have found a
population size of 100 and a mutation probability of 0.1 to give the best results.

Table 5.1 reports average flow time values for different configurations of the random
sampling procedure and genetic algorithm. In order to ensure stability, we employ a
“warm up period” of 20 project arrivals, before evaluating project flow time values. On
average, we exclude flow time values of four projects. Flow time values for different
problem instances are compared by reporting the percentage distance of flow time
values to the critical path length of a single project when assuming mean activity
durations and omitting resource requirements. As seen in Figure 5.13, utilization level
u = 1.0 does not support stable environments. For u < 0.5, flow time values do not
differ significantly from the critical path length (0.33% on average). We therefore focus
on utilization levels u = 0.5, u = 0.7, and u = 0.9 in our evaluations. For all considered
solution procedure configurations, flow time values increase with increasing resource
utilization and variance of activity durations. We find that the genetic algorithm clearly
outperforms the random sampling procedure for all utilization levels and activity
duration distribution types (one-tailed Wilcoxon signed-rank, p < 0.01). For u# = 0.5
and exponentially distributed activity durations, random sampling procedure RRS-
SAA-100 has slightly lower average flow time values than all genetic algorithms, but the
difference is only significant when comparing to genetic algorithm GA-Mean (one-tailed
Wilcoxon signed-rank, p < 0.001).

Ballestin (2007) claims for the SRCPSP that using fewer scenarios to evaluate activity-
based priority policies during a solution procedure is beneficial when a limit on
the number of generated schedules is imposed. The loss in precision regarding the
performance measure value of individual policies is more than compensated by the
benefit of exploring more solutions. The less variability in activity durations, the fewer
scenarios should be used. For the dynamic project scheduling problem, we find weak
evidence of this claim. GA-SAA-10 and GA-SAA-100 significantly outperform GA-
Mean for most cases covered by Table 5.1 (one-tailed Wilcoxon signed-rank, p < 0.01).

74



5. Performance and Robustness of Priority Policies for Static and Dynamic Project Scheduling

Distribution
U1l B1 U2 B2 EXP

Mean 5.26% 511%  15.12% 15.66%  27.03%
SAA-3 5.24% 5.08%  15.12% 15.64%  27.00%

o RRS SAA-10 5.22% 5.06%  15.10% 15.62%  26.98%
?I. SAA-100  5.22% 5.06% 15.09% 15.61% 26.97%
I= Mean 5.24% 509% 1511% 15.64% 27.00%
GA SAA-3 5.22% 507%  1510% 15.62%  26.98%
SAA-10 5.21% 5.05% 15.09% 15.61% 26.98%

SAA-100 5.21% 5.05%  15.08% 15.60% 26.98%

Mean 6.86% 6.72%  16.74% 17.29%  28.43%

RRS SAA-3 6.80% 6.65%  16.62% 17.19%  28.30%

o~ SAA-10 6.73% 6.56%  16.57% 17.10%  28.17%
T_Ij SAA-100  6.72% 6.54%  16.57% 17.08%  28.18%
I= Mean 6.76% 6.58%  16.65% 17.17%  28.29%
GA SAA-3 6.68% 6.51%  16.59% 17.08%  28.31%
SAA-10 6.64% 6.44% 16.51% 17.01% 28.15%

SAA-100  6.65% 6.45%  16.50% 17.01% 28.17%

Mean 15.48%  15.32% 27.20%  28.55%  42.37%

RRS SAA-3 15.12% 14.97% 26.78%  27.72%  41.62%

o SAA-10  1493% 14.83% 2641% 27.30% 41.18%
C”5 SAA-100 15.17% 15.05% 26.62% 27.50%  41.07%
I= Mean 14.56% 14.42% 26.10% 27.49%  41.55%
CA SAA-3 14.30% 14.08% 26.10% 26.87%  41.05%

SAA-10  14.06% 13.94% 25.60% 26.60% 40.67%
SAA-100 14.52% 14.38% 2590% 27.02%  40.91%

Table 5.1.: Average flow time values obtained by solution procedures for given levels of
utilization and duration distribution types

With regards to GA-SAA-100, significance is weak for u = 0.9 and activity duration
distributions U1l (one-tailed Wilcoxon signed-rank, p = 0.012) and Bl (one-tailed
Wilcoxon signed-rank, p = 0.026). Comparing GA-SAA-10 and GA-SAA-100, no
clear preference can be given for either configuration for # = 0.5 and u = 0.7. For
utilization level 7 = 0.9, GA-SAA-10 significantly outperforms GA-SAA-100 (one-tailed
Wilcoxon signed-rank, p < 0.01), except for the case of exponentially distributed activity
durations where significance is weak (one-tailed Wilcoxon signed-rank, p = 0.04). This
partially supports the claim by Ballestin (2007) that when considering high levels of
resource utilization fewer scenarios are beneficial for solution procedure performance.
Yet, the bad performance of GA-Mean and the statistically ambiguous performance of
GA-SAA-3 indicate that using too few solutions to properly take into account activity
duration distributions is detrimental to flow time performance.
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For special cases of stochastic and dynamic scheduling problems, priority policies
derived from simple priority rules have been shown to lead to optimal performance.
For example, Weiss and Pinedo (1980) show the problem of scheduling jobs with
exponentially distributed activity durations on identical parallel machines to be solved
optimally in terms of the expected makespan by scheduling jobs in decreasing order
of their longest expected processing times. Chou et al. (2006) derive asymptotic
optimality of scheduling based on weighted shortest expected processing times for
a dynamic scheduling problem. We compare all implemented procedures to FCFS
and other common priority rules for (multi-)project scheduling (Demeulemeester and
Herroelen, 2002; Browning and Yassine, 2010). The longest/shortest expected processing
time (LEPT/SEPT) rules schedule activities in order of non-increasing /non-decreasing
expected duration, while the greatest rank positional weight (GRPW /GRPW?2) rules
schedule activities in order of non-increasing aggregate expected duration of the
considered activity as well as all its immediate/transitive successors. The maximum
immediate/transitive successors (MIS/MTS) priority rules schedule activities according
to non-decreasing number of immediately/transitively succeeding activities in the
project network, while the least non-related jobs (LNR]J) priority rule first selects
activities with fewest activities that are not precedence related. The minimum earliest
start time (MINEST), minimum latest start time (MINLST), minimum latest finish
time (MINLFT), and minimum slack (MINSLK) rules rely on information from the
earliest start schedule for all active projects, which considers expected activity durations,
precedence relations, and project arrival times, but ignores resource constraints. Finally,
the maximum/minimum total work content (MAXTWK/MINTWK) priority rules
schedule activities according to a measure of work content. Work content is measured
by the quotient of aggregate resource consumption of an activity, i.e., the product
of per-period consumption and expected activity duration, and aggregate resource
consumption of previously scheduled project activities.

Table 5.2 compares average flow time values of GA-SAA-10, GA-SAA-100, and priority
rules for different utilization levels. We find that both genetic algorithms outperform
scheduling policies induced by priority rules. For all utilization levels, we reject the
hypothesis that there is no difference in performance between GA-SAA-10 and GA-
SAA-100 compared to most priority rules (one-tailed Wilcoxon signed-rank, p < 0.01).
Only for u# = 0.5 GA-SAA-10 and MINLFT (one-tailed Wilcoxon signed-rank, p = 0.24)
as well as GA-SAA-10 and MINLST (one-tailed Wilcoxon signed-rank, p = 0.30) cannot
be statistically distinguished. For u = 0.9 LEPT, GRPW, GRPW2, MIS, MTS, and
MINSLK underperform considerably compared to advanced solution procedures as
well as the other priority rules.
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Solution u

Procedure 0.5 0.7 0.9

GA-SAA-10  13.62% 14.96%  24.16%
GA-SAA-100 13.62% 14.97% 24.53%

FCFS 13.70% 15.36%  27.35%
LEPT 13.83% 16.65%  62.18%
SEPT 13.75% 15.56%  29.98%

GRPW 13.81% 16.56%  69.04%
GRPW2 13.73% 16.07%  57.93%

MIS 13.78%  16.05%  44.77%
MTS 13.72%  15.88%  45.64%
LNRJ 13.69%  15.44%  35.15%

MINEST 13.74%  15.58%  27.53%
MINLFT 13.63% 15.01% 24.71%
MINLST 13.63%  15.05%  25.23%
MINSLK 13.67%  15.49%  40.49%
MAXTWK 13.73%  15.40%  27.49%
MINTWK 13.71%  15.38%  27.62%

Table 5.2.: Average flow time values obtained by GA-SAA-10, GA-SAA-100, and priority
rules for given levels of utilization

5.3. Conclusion and Outlook

In this chapter we have considered the dynamic project scheduling problem where
projects are modeled as in the SRCPSP and multiple projects arrive stochastically over
time. Established solution procedures originally developed for the static SRCPSP have
been adapted and provide multi-project scheduling policies, which are executed until
the arrival of a new project.

To investigate scheduling policy classes and solution procedure performance, we have
employed a full factorial test design. Five distribution types for stochastic activity
durations have been considered, while novel test instances with 15 activities have been
defined by the established parameters order strength, resource factor, and resource
strength as well as a resource utilization metric derived from queuing theory.

In the first computational study we have compared the performance and stability of
activity- and resource-based priority policies. Overall, we have found significantly
better performance of resource-based priority policies in terms of the expected project
makespan. Optimal activity-based priority policies only outperform resource-based
priority policies for cases of low variance of activity durations, while overall the number
of nearly optimal policies is significantly lower. While activity-based priority policies
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show better stability of expected makespan values obtained by approximating activity
durations through as few as three scenarios, the best resource-based priority policies
determined through such approximations are closer to the “true optimal policy” than
for activity-based priority policies.

Based on the results of the first computational study, we adapt SRCPSP solution proce-
dures working with resource-based priority policies to the dynamic project scheduling
problem. The random sampling procedure and genetic algorithm by Ballestin (2007)
have been employed for policy generation. Our results show superior performance
of the proposed scheduling procedures compared to common priority rules for all
considered problem instances. Among the priority rules, the MINLFT and MINLST
rule present the closest match to our procedures. The genetic algorithm outperforms
the random sampling procedure in all cases. The approximation of stochastic activity
durations by their respective mean values instead of sample average approximation,
initially proposed by Ballestin (2007) for the static SRCPSP, proves only valuable to
a limited extent when considering dynamic project scheduling environments. Only
for high levels of resource utilization and when considering sample sizes greater than
three, the loss in quality of approximation is outweighed by increased computational
capacity to explore additional candidate policies.

In order to gain deeper insights into the nature of dynamic project scheduling, our
investigations can be extended into different directions. First, additional solution
procedures can be considered in our proposed experimental routine using the novel
test instances. A comparison of the metaheuristic solution procedures considered in
this study to e.g., Markov decision-based and approximate dynamic programming
approaches (Melchiors, 2013) appears promising. While this chapter is based on
purely reactive stochastic project scheduling in the sense that no baseline schedule is
established prior to project execution, real life project planning and budgeting requires
a certain level of robustness with regard to anticipated activity starting times (Herroelen
and Leus, 2005). A decision maker thus would be interested in establishing scheduling
policies with low deviation of activity starting times from predictable means, even
for the price of longer project flow times. It appears promising to investigate the
performance of our procedures for this alternative performance measure in order to
quantify the trade-off between activity start time robustness and project flow time.
Finally, the general setting of the dynamic multi-project scheduling problem under
activity duration uncertainty could be adapted to fit different problem settings from
practice.
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Frequently, prominent projects are seen to miss time and cost targets. Among other
factors, failure to consider uncertainty in selecting and scheduling projects can be
blamed. Motivated by a real-life project management problem of selecting projects to
improve the supply chain function of an international semiconductor manufacturer
presented in Chapter 2, this dissertation has covered three distinct topics within the
domain of project management and project scheduling.

The real-life case study illustrates that choosing the right subset from a set of candidate
projects is a key driver of success and failure for organizations. Chapter 3 has considered
the Robust Portfolio Modeling (RPM) approach to multi-objective project portfolio
selection with uncertain project scores and decision maker preferences. By determining
non-dominated portfolios for all possible realizations of uncertain parameters, decision
recommendations produced by RPM may prove too conservative for real-life decision
problems. In this chapter a methodology has been developed to reduce the set of
possible realizations by limiting the number of project scores that may simultaneously
deviate from their most likely value. By adjusting this limit, decision makers can choose
desired levels of conservatism. The approach also allows to capture dependencies
among project scores as well as uncertainty in portfolio constraints.

Chapter 4 has investigated how human decision makers behave in the context of project
portfolio selection using an experimental study based on the knapsack problem. Within
the proposed experimental framework, it is possible to study both subjects” decision
quality as well as their decision making process. Decision makers select suboptimal
portfolios across all knapsack problems considered. Presented results show that human
decision making focuses on selecting items to construct an initial portfolio, which
serves as a baseline solution for further improvement. The chapter investigates subjects’
adherence to simple constructive heuristics motivated by portfolio selection practice.
Decision making is partially explained by adherence to two heuristics, but problem
complexity limits the application of such heuristics to a subset of items.

Finally, Chapter 5 has considered uncertainty in the operational domain of project

scheduling. In the setting of dynamic project scheduling, projects arrive stochastically
over time. Each arriving project is modeled as a stochastic resource-constrained project

79



6. Conclusion

scheduling problem. Activity durations are stochastic, while all other parameters are
deterministic. Activities are started based on a priority policy for all unscheduled activi-
ties to minimize the average expected flow time of the projects. The policy is updated at
each project arrival. The chapter develops novel test instances to perform computational
studies on the stochastic resource-constrained project scheduling problem as well as
the dynamic project scheduling problem. Firstly, activity- and resource-based priority
policies for the SRCPSP have been compared in terms of their expected makespan
performance and stability properties, which are relevant when employing solution
procedures based on simulation. Findings include that resource-based priority policies
outperform activity-based priority policies while only having negligible drawbacks
in terms of stability. Focusing on resource-based priority policies, the performance of
state-of-the-art SRCPSP solution procedures applied to the dynamic project scheduling
problem has been evaluated in comparison with different priority rules. The proposed
genetic algorithm outperforms random sampling procedures as well as all considered
priority rules.
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Portfolios

The algorithm developed here to compute the set of non-dominated portfolios is based
on the algorithm of Liesio et al. (2008), which determines non-dominated portfolio in
the standard RPM-framework in which scores can take any value within an interval,
ie, v € 57. The core of the algorithm is the enumeration of the sets of portfolios
Z0,71,...,Z™ using the iteration scheme

70 = {[o,...,o]T} (A1)
75 = Zs_lu{z+es\zeZs_l},s:l,...,m,

where ¢° is a unit vector with the element s equal to one and the rest of the elements
equal to zero. At each iteration stage s = 0, ....,m, portfolios in set Z° only contain
projects from the set {1, ...,s}. Furthermore, at the final stage the set Z" is equal to the
set of all possible portfolios z € {0,1}".

To avoid enumerating all possible portfolios, we deploy three techniques that at each
iteration identify and discard portfolios that cannot become non-dominated if projects
from the set {s+1,...,m} are added to them. Discarding portfolio z from the set
Z° implies that any portfolio that is obtained by adding some projects from the set
{s+1,..,m} to portfolio z is not included in any of the pursuant sets Z*1,..., Z"™.

The first of these techniques is based on the fact that a non-dominated portfolio must be
teasible; Hence, an infeasible portfolio in Z° which cannot become feasible by including
some projects from the set {s +1,...,m} can be discarded. A sufficient condition for
discarding z € Z° is that the inequality

s m
szalj + Z min {O,al]-} > b (A2)
j=1 j=s+1

holds for some I =1, ...,q (Liesio et al., 2008, Lemma 3).

The second technique is based on pairwise comparison of portfolios in Z° to identify if
a portfolio is dominated by another portfolio that also has more slack in the feasibility
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constraints. Such as portfolio can then be safely discarded as stated by the following
lemma.

Lemma A.0.1 Letz',z" € Z° and information set S = (SL x Sy,). If 2/ =g 2" and Az’ < Az"
(where < holds element-wise), then [2y,. ..,z ,zs:1,...,zm|T & Zn(S) for any z € {0,1}".

The final technique requires that some feasible portfolios with a high value are available
before the start of the iteration scheme (A.1). These reference portfolios then serve as a
benchmark for how much added value including projects from the set {s +1,...,m}
must produce for the resulting portfolio to be non-dominated. This condition is
formalized in the following lemma.

Lemma A.0.2 Let 2z’ € Zpand 2" € Z°. If
V(6,w,z') > V(0,w,z") + UBk(w,7z,Z") ¥V w € ext(conv(Sy)),

where UBs(w, ', 2" is an upper bound for the optimum of the mixed integer linear program-
ming problem

n m n m
max, ko ko Ot ) d i
yzE{/O,l}m i=1j=s+1 i=1j=1

Az < B— AZ"

n m

Y Y yi<T

Il
=
Il
=

j
yi=0vVie{l,...,n},je {je {1,..,s} |z;-+z;-’7él}
yi<2—zj—z;Vie{l,...,n},je{s+1,.,m}
yjigz]'—i—z}Vie {1,...,n},je{s+1,.. m}

then [z7,...,20,zs11, ..., zm)T & ZN(SL x Sw) for any z € {0,1}".

In principle, it is possible to solve the exact optimum of the mixed integer linear
programming problem in Lemma A.0.2 instead of relying on an upper bound for the
optimum. Although the exact solution would allow to discard more portfolios at each
iteration stage, an approximate upper bound can be obtained with significantly less
computational effort by solving either the linear programming relaxation or Lagrangian
dual of the mixed integer linear programming problem (Bertsimas and Tsitsiklis, 1997).
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The algorithm for solving the set of non-dominated portfolios Zy(S. x S;,) can be
formalized as follows:

Solve Zgr C Zr

20« {[o,...,0]T}.

fors=1,...,mdo

257 u{z+e |ze 257}

75 {z eZ [Hle{l,...,q} st iz + Y min {0,a;} > bl}

VAR

{z € Z5|} € Zp st. V(b,w,2') > V(6,w,z) + UBs(w,z,z) ¥V w € ext(conv(Sy))}
VAR {z € Z5|f7 € Z8s.t. 2 »grys, zand Az < Az}

end
ZN(SY,Sy) {z czZm| P ezmst. 2 > ST xS z}

The first step is to obtain a set of reference portfolio Zg C Zr by generating some
random weights and scores from sets S;, and S, respectively, and then solving the
resulting the integer programming problems (3.4). The loop on lines 3-8 runs through
the iteration scheme (A.1) and at each stage deploys the three techniques to discard
portfolios, i.e., Equation (A.2), Lemmas A.0.1 and A.0.2. At the last iteration stage
s = m, line 5 discards all infeasible portfolios from the set Z" and line 9 carries out
pairwise dominance checks to identify the non-dominated portfolios.
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Proof of Theorem 3.2.1

Part 1. The condition V(v,w,z) > V(v,w,z’) for all (v,
the optimum of min, ;s V (v, w, 2)

w) € S = (8L x S,) holds iff
— V(v,w,z") is non-negative. By denoting | =

{j c{1,..,m}|z; = 1,2;- = O} and J' = {] c{1,..,m}|z; = O,Z;- = 1}, this problem is

“Yi) + 2.2 5jz‘wiyﬁ}

o)

i=1jeJ’

> ) 5ﬁwiyﬁ}
Y ) Tiiwiy;i

> 5ﬁwiyﬁ}

i=1jey

given by
n m
min ) ) 0jitizj - ZZ%W = min ZZUﬂwz—
(vw)e i=1j=1 i=1j=1 (vw)es |i= S
n n
~min min §3° a0+ 5i) — 35 5 05+ )
weSy yjie[*lll] i—1 ]E] 1':1]'6]/
Llyjil<T
n n
=min min ), ) 0t + > Y G~ Y Y Oy -
w sl i—=1 1 i=1iel’ i—1iel’
E yjl<r i=1j€] i=1je] i=1jeJ i=1je]J
n n n
~min min {350~ 37 5 o0+ ¥ o -
w vii€l-1, — — — —~
w é"yﬁ‘g i=1j€e] i=1jeJ i=1jeJ i=1jeJ
=V(0,w,z)-V(6,wz)
= min V(6,w,z) - V(6,w,z')+ min, 220]1 wiyji —
WESw i€l i=1jeJ i=1jeJ
Z\y/,\<T
=min{ V(0,w,z) — V(0,w,z') — max szﬂwl
wWESy yji€l-1 i=1jeJ
Z\yj,\<l"
=B(v,w,z,2',T')
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By changing the decision variables y;;,j € ], to —y;;,

B(7,w,z,7,T) = max {szﬂ ly]1+220]1 lyﬂ} = m[ax] {Z Z vjiw lyﬂ}

yji€l=1 1 1icr 1 /
z|y;|<r =1jel =1j€] Llyyler LSV

since ] N ]’ = @. The objective function coefficients Tjiw; of this maximization problem
are non-negative. Therefore, the optimum is always found at y such that y;; > 0 for all
jeJn]J,ie{1,..,n}. Toshow that the optimum of

min {V(0,w,z) — V(6,w,z') — B(F,w,z,2',T)}

wWESy

. . . A _ A ! _ —»H . »
=min min V(6,w,z) — V(6,w,z) Z Y Tiwiy;i
Llyjil<r

=a(w,y)

is always found at some point in W = ext(conv(Sy,)), take any w’ € S;, \ W and let
y'e arg max {a(@’,y) |y €[0,1]™", ) |yl <T}.
Since a(w, y) is linear in w, there exists w” € W such that a(w”,y*) < a(w’,y*). Hence,

min a(w”,y) < a(w”,y*) <a(w,y*) = min a(w',y).
Yii

yji€lo] ji€l01]
Llyjil<T Llyjil<T

We thus have established that V (v, w,z) > V(v,w,z’) for all (v, w) € S iff
min {V (6, w,z) — V(6,w,2') — B(3,w,z,2',T)} >0. (B.1)

weW

Part 2. The condition V (v, w,z) > V(v,w,z’) for some (v, w) € S holds iff the optimum
of
max {V(v,w,z) - V(v,w,z)}

(v,w)€S

is strictly positive. Following the same steps as in Part 1, this problem is given by

=max< V(d,w,z) — V(vwz)—i— _max {ZZvﬂwyﬂ Zzﬁjiwiyﬁ}

€S —1,1jmxn 4 h
G Z\y]\<r i=1jeJ i=1jeJ'

=max < V(0,w,z) — V(0,w,z") + II}%X” {ZZ i)+ Zﬁjiwi(—yﬁ>}
=1jeJ =

WESy
| z\y,l\<r

L =B (3,w,z,2'T)
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By changing the decision variables yj;, j € J', to —y;i,

ﬁ/(ﬁ,w,z,z/,l’) = max {ZZUV iyji + Z ZU]I 1]/]1} = %11%’%(” {Z Z U]z iYji

ye):\; 1\21:” i=1jej] i=1jeJ ):U < \i=ljeju)
since ] N J" = @ and the objective function coefficients ¥j;w; are non-negative. Therefore,
the optimum is always found at y such that y;; > 0 foralli € {1,..,n},j € JN]" and
B (v,w,z,2/,T) = B(U,w,z,2,T). Thus, the condition V (v, w,z) > V(v,w,z") for some
(v,w) € S holds iff

mavz]({V b,w,z) — V(d,w,2') + (3, w,z,2,T)} > 0. (B.2)
we

Part 3. We have established

/ mingew {V(6,w,z) = V(6,w,2') — (¥, w,z,2/,T)} >0
. B.
BrsE e { maxew {V(8,0,2) = V(6,,2) + p(3,w0,2,2,T)} >0~ )
Finally, we show that these conditions hold iff
mingew {V (6, w,z) — V (9, w,z/) B0, w,zz2,T)} > 0 (B.4)

maxyew {V(0,w,z) — V(6,w,z")} >0

(B.3)=(B.4): Assume (B.3) holds. First, if f(7,w,z,z/,T) =0 for all w € W then

0 <max{V(d,w,z) — V(d,w,2') + (3, w,z,2,T)} =max {V(d,w,z) — V(d,w,z')}.

weW weW

Second, if there exists w’ € W such that (7, w’,z,2z',T) > 0 then
0<V(o,w,z) - V(6w 72)—B@,w,z272,T) < V(6w z)— V(w2

V(o,w',z) -V (o, z)<mav>v<{vaz) V(o,w,z2)}.
we

(B.4)=(B.3). Assume (B.4) holds. Then

0 < max{V(d,w,z) — V(6,w,z')} <max{V(d,w,z)—V(d,w,z')+ p(7,w,z2,T)}

weW weW

since (7, w, z,z',T) > 0 for any w. O
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Proof of Lemma 3.2.1

Letz,z/,z” € {0,1}", S = (SI x S,), and W = ext(conv(Sy)). Asymmetry, z # z, and
irreflexivity, z - z’ = 2’ 3 z, follow directly from

V(v,w,z) > V(v,w,z') V(v,w)€ES

/
FmEe { V(v,w,z) > V(v,w,z") 3(v,w)€S

Transitivity, z > z' Az’ > 2" = z > 2", can be shown by considering Theorem 3.2.1 for
z=527,7 =g7".

BN V(o,w,z) > V(6,w,z")+ B(0,w,z,2,T) YweW
S V(d,w,z) > V(6,w,z") JweWw
RN V(o,w,z') > V(o,w,z")+ B(0,w,2,z",T) YweW
S V(d,w,z') > V(6,w,z") JweWw
N V(o,w,z) > V(6,w,z")+ B(7,w,z2,T)+p(0w,2",T) YweW
V(6,w,z) > V(0,w,z") JweW

For z 5 z” by Theorem 3.2.1 to hold, it suffices to show
B(0,w,z,7,T)+ B(0,w,z,z",T) > B(0,w,zz7"T) YweW.

J(z,2") C J(z,2")U](Z',2") holds for the 0-1 knapsack problems presented by B(7,w, z,2z/,T),
B(U,w,z',z",T) and B(¥,w,z,z",T), sharing the same budget limit I'. Thus, the opti-
mum value B(7,w, z,z",T) of decision set J(z,z") is obtainable within J(z,z") U J(Z/,z")

by combining B(7,w,z,2/,T), and (7, w,2’,z",T). O

Proof of Corollary 3.2.1

By Definition 3.2.1, Sg = {Z) € R™x" ’ Vji = 23]'1' + 5jiyjiry S [—1, 1]m><n/ ;-1:1 271:1 ‘y]z| < F}.
Part (i) For I' = mn the inequality }./' y Y} |y;i| < mn always holds for y € [—1,1]"*"
and may be omitted. The resulting expression

SZm = {?J e R™" ’ Vji = ZAJI'Z' + 5ji]/jiry € [—1, 1]m><n}
is equivalent to S° by Equation 3.5. Part (i) then follows from Definition 3.2.2.

Part (ii) For I' = 0 the inequality }.; ¥’ [y < 0 only holds for y; = 0 with
i=1,...,nand j =1,...,m, reducing the information set of project scores to a point

Sg = {U e R™" | vji = 27]1} = {@}

Part (ii) then follows from Definition 3.2.2 for information set S = ({0} x S,). O
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Proof of Theorem 3.2.2

Let information sets S = (S) x Sy,) and S’ = (SI' x S,,) as well as W = ext(conv(Sy)).
Assume Zn(S') € Zn(S) and 2’ € Zn(S'),2" & Zn(S). Then 3z € Zn(S) so thatz > 2’
and z g z'.

z>g7 = V(o,w,z) > V(o,w,z)+ B(0,w,z7,T) YweW
z ¥g 7 = V(o,w,z) < V(o,w,z)+B(0,w,z7Z,T') TJweWw
z-sZ Nz fs 7z = B0 w,z7Z,T') > B(0,wz7,T) Jw € W.

For the last expression to hold, there must exist weights w € W such that

yE[O,l]"’X” yE[O,l}’”X"

i=1je](z,2) i=1j=1 i=1je](z,2) i=1j=1

The maximization problem on the left-hand side is identical to the one on the right-
hand side except for the tighter constraint I’ < T. The inequality (7, w,z,2/,T") >
B(¥,w,z,z,T) cannot be true. (]

Proof of Theorem 3.3.1

Part (i) Applying Theorem (2) of Liesio et al. (2007), Zn(S") € Zn(S) holds. As by
Theorem 3.2.2 Zn(S!, x Syy) € Zn(S') holds, Zn(Sh, x Su) € Zn(S) holds as well.

Part (i) By Theorem 3.2.2 Zn (S, x Syv) € Zn(S} x Sy) follows from Zy(SE, x S,) €
ZNn(SY % Sy). Applying Theorem (2) of Liesid et al. (2007), Zn(SL, X Syr) € Zn(Sh % Sw)
holds if S,y C Sy, ST, C S, and int(SY x Si,) NS, x Sy # @. Assume S, Z ST and
Jo* €SI, v* ¢ St

n o m

/E]y € [_1,1]mxn,22‘yﬁ| <T @ji+6jiyji :U;} Vi=1,...,n ]: 1,...,m
i=1j=1

nom
/H]/G [—1,1]mxn,zz‘yji| <T 5]14‘5]11/]1:77;14'77;1]/71 Vi=1,...,n jzl,...,m

i=1j=1
With ﬁ;‘i = @]'1'2
n m
/Hye [_1,1]mxnlzz‘yﬁ| Sr 77]1%1277;1% Vi:1,...,n jZl,...,ﬂ’l
i=1j=1
& 77}1‘ ) .
ﬂye[—l,l]mxn,gg\yji|§F yjizﬁ—jiy;‘i Vi=1,...,n j=1,...,m
i=1j=
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% € [0,1]™*" as 77;-1- <o;Vi=1,...,n j=1,...,m. By definition, any y* falls in the
domain y* € [1,1]"*" and obeys Y3 Y1 [yj;| < I'. Both the domain and limiting

condition also hold for any term %£y* with & € [0,1]"*". There will always

=4

0.
lyjil <T yjizﬁ—ffy;ﬁi Vi=1,...,n j=1,...,m,
]l

NgE

n
Jy € [-1,1"", )
i=1j

Il
—

disproving the assumption. Thus S!, C ST, by Part (i) Sg// C S!, and by Theorem (2) of
Liesio et al. (2007) Part (ii) holds. [

Proof of Lemma 3.3.1

Let z,7z/,Z" € {0,1}" and W = ext(conv(Sy)). From Theorem 3.3.1 Part (ii) it follows
that Zn(S') € Zn(S). Assume contrary to the claim that 32" € Zn(S),z" & Zn(S').
Then 3z € Zn(S') so that

RN A, w,z,2") > BV, w,z2,T) YweW
5 A, w,z,2') >0 JweWw ’
where
n n
A, w,z,2) = V(0 ,w,z) - V(@ ,wz)=) ) ow—) ) ouw,
i=1jej i=1je]’

J= {j e{l,..m}|zj=1,z = 0}, J = {j €{l,..m}|zj =0,z = 1}, and

n nom
‘B(ﬁ/lw,Z,z/’F): max {Z Z 5}iwiyji22yﬁ<l"}.

yelo™ " | i3 jejz2) i=1j=1

By definition, J(z,z") in B(7,w,z,2/,T') considers only projects j not included in both z
and 7/, i.e., Ci(S) €]0,1], for which by assumption 77’;.1. = ¥j;. This implies

B(7,w,z7,T)=B(3,w,z7,T).
A(?',w,z,2") is likewise only determined by projects j € JU ] = J(z,z’) so that
A, w,z,7) = AD,w,z,7).

Therefore,
(0,w,z,2") > B(0,w,z,2/,T) YweW
(0,w,z,2') >0 JweWw

holds. Zn(S") C Zn(S) implies z € Zn(S) rendering 2z’ € Zy(S) invalid. O

&Sz -7
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Proof of Lemma 3.5.1

B(7,w,z,z',T) in Theorem 3.2.1 dominance is given by

n

n m
B(T,w,z2,T)= max <Y Y  wiyl Z Y yi <T

yG[O,”"’X”

i=1 jE](z,z’) i=1j=1
n m nom
— !
= mamen Z Ewivﬁyﬁ(z]- — Z])| E yjl S ;.
ye[-11] i=1j=1 i=1j=1

B! (%, w,z,2',T) only differs from this expression by additional constraints A'Y < B Tt
follows that the objective value of maximization problem (7, w, z,z’,T) is no smaller
than the objective value of B!(7,w, z,2/,T),

B(,w,z,7,T) > B (3,w,z,7,T).
For arbitrary z,z" € {0,1}"
z }ngsw Z, = Z >‘Izl}"><sw Z/

holds, which implies Zn (I} x Si) C Zn(SL % Sy). O

Proof of Lemma 3.5.2

The Lemma follows directly from Theorem 1 of Bertsimas and Sim (2003). [J

Proof of Lemma A.0.1

Assume z',z" € Z° such that 2’ >3 z” and Az’ < Az". Take any z € {0,1}" and denote
2 =1(2y,...,20 zss1,. .., zm) V. 1f 2" ¢ Zp then 2" ¢ ZN(S). In turn, if 2 € Zp then

F 0 T F 0 T B
!

B>As" =" +A| O | sarsal 0 l2al® |
Zs4+1 Zs+1 Zs+1

_Zm i _Zm _ _Zm _
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B. Proofs

which implies 2’ € Zr. Furthermore, for any (v, w) € S the value difference of portfolios
Z' and z" is equal to

-0 1 - 0 1
Vv,w,2) —V(v,w,z") = 2Tow — 2"Tow = (ZT + 0 Yow — (2'T + 0 Yow
Zs+1 Zs+1
L Zm . L Zm n

=2Tow — 2"Tow = V(v,w,2') — V(v,w,z"),

i.e., the value difference of portfolios z’ and z”. Hence, z’ g z” implies Z’ >g Z’ and
thus 2" ¢ Zn(S). O

Proof of Lemma A.0.2

Let information set S = (S x S;) and W = ext(conv(Sy)). Assume z’ € Zr and
z" € Z° such that

V(o,w,z") > V(0,w,z") + UBs(w,z,2") Vw € W.

Forany w ¢ W

S

n
V(o,w,z") > maxz
i=1j

yji€loA]

noom nom
UA]'I'ZU,‘Z}/ -+ Z Z ﬁﬁwiz]' + Z Z 77jiwiyji (B.5)
* 4

se(01) = i=1j=s+1 i=1j=1

AZ" + Az < B (B.6)
n m

Y. Yy <T (B.7)
i=1j=1

yi=0Vie{l,... n},je {j € {18} |2 +2] # 1} (B.8)
yi<2—zj—z;Vie{l,...,n},j€{s+1,.,m} (B.9)
y]1§2]+z]Vz€{1,...,n},je{s+1,...,m}. (B.10)

By denoting Z = {2 € {0,1}" |z, = z{,...,Z; = 2!}, the mixed integer linear program-
ming problem (B.5) - (B.10) can be written as

iz—j | Zl 12] 1y]l§r
willji i = 0if 2 itz #1

n n o m
= max { V(9,w,Z) + max E Z v]-iwiyﬁl Y Y yi<T,»,

£€ZNZp yi€l0d] | iZ1jejz, i=1j=1

M:

max {V( w,Z) + max {
zeZ /]IG[O 1]
AZ<B
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where J(Z,Z) = {j e{l,....m}|(z;=1,2=0)V(z;=0,2= 1)} For any w € W

V(o,w,z') > max {V(d,w,z2)+p(0,w,2,2)},
zZe/ZNZr

which by Theorem 3.2.1 implies that z’ =5 2 for any Z € Z N Zr. Hence, Z N Zn(S) = @.
0
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C. Experimental Instructions

We give the English translation of the originally German subject instructions for the
conducted experiments. The instructions for the first and second experiment are
identical except for the stated number of items in the knapsack problems. An illustrative
screenshot and its description included in the original instructions are omitted.

1. General information

You are about to participate in an experiment in decision making. In the course of
the experiment, you can earn a considerable amount of money depending on how
good your decisions are. In the experiment, all monetary amounts are specified in
Experimental Currency Units (ECU), which are converted according a fixed exchange
rate to € at the end of the experiment (see experimental payout). All your decisions and
answers will be treated confidentially. Please read the following instructions carefully.
Should you have any questions, please ask. During the experiment you have to switch
off your cell phone, and communication with other participants is prohibited.

2. Experimental task and procedure

A set of items is given, and each item generates a value but requires a capacity. Your
task is to select a subset of items given that a higher aggregate value results in a higher
payout while the aggregate resource requirement must not exceed the available capacity.

The experiment consists of several independent rounds with different number of items
(5, 10, 15, or 25), different item properties, and different capacities. Every round consists
of a single screen displaying all items in a table containing information about the item
properties (value and resource requirement) as illustrated in Figure C.1. For each item,
you can decide to select it from the list and you are free to deselect already selected
items at any time. Furthermore, the remaining capacity as well as the value of the
portfolio is displayed on the screen. Please note that if the selected item results in an
aggregate resource requirement exceeding the available capacity an error message will
appear. Please take sufficient time to make your decisions , and once you have made
your selection press the continue button to go to the next round. At most, you have 5
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C. Experimental Instructions

‘ tem | Value | Resource Requirement ‘ Selection |
Walue of the Portfolio 194 1 79 B7

3 106 a5 b

Rermaining Capacity: ag 4 135 121 Select / Deselect
i a8 74 X

Figure C.1.: Illustration of the interface presented to subjects

minutes to complete each round, and when the time is over you will be automatically
taken to the next screen. The experiment ends after 35 minutes.

Before the main rounds start, there are three training rounds and you have to fill out
a short questionnaire at the end of the experiment. In total the experiment will take
about 60 minutes.

3. Experimental payout

In each round the aggregate value of all selected items in ECU is converted by a linear
exchange-rate to €. The exchange-rate is round-dependent and displayed on the screen.
At the end of the experiment, one round out of all completed rounds is randomly
chosen for payout. For the payout a fixed amount of €100 is subtracted from the
aggregate € value in this round. In the unlikely case that the resulting payout is less
than €3, you still receive a minimum of € 3.
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D. Abbreviations and Symbols

Abbreviations

ECU Experimental currency units

FCEFS First-come-first-served priority rule

GA Genetic algorithm

GRPW Greatest rank positional weight priority rule

LEPT Longest expected processing time priority rule

LNR]J Least non-related jobs priority rule

MaxD Maximum difference between value and resource requirement heuristic
MaxR Maximum ratio of value divided by resource requirement heuristic
MAXTWK Maximum total work content priority rule

MaxV Maximum value heuristic

MINEST The minimum earliest start time priority rule

MinK Minimum resource requirement heuristic

MINLFT Minimum latest finish time priority rule

MINLST Minimum latest start time priority rule

MINSLK Minimum slack priority rule

MINTWK Minimum total work content priority rule

MIS Maximum immediate successors priority rule

MTS Maximum transitive successors priority rule

ORSEE Online recruitment system for economic experiments

OS Order strength metric

RCPSP Resource-constrained project scheduling problem

RF Resource factor metric

RPM Robust portfolio modeling

RRS Regret-based biased random sampling

RS Resource strength metric

SAA Sample average approximation

SEPT Longest expected processing time priority rule

SRCPSP Stochastic resource-constrained project scheduling problem
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Symbols in Chapter 2

Symbols in Chapter 2

Indexes
i=1,...,n Evaluation criteria
j=1,...,m Projects
s =1,...,0 Synergies

Sets
& Set of logical interdependencies (j, '), where j,j € {1,...,m}
Js Set of projects required for the activation of synergy s =1,...,0

Parameters

B € R, Budget limit

c € R% Vector of cost of projects j = 1,...,m

v € R’™" Matrix of risk-adjusted scores of projects j = 1,...,m evaluated with
regards to criteriai =1,...,n

v*P, v™M¥ ¢ R"l Vector of aspiration levels and maximum achievable scores with
regards to criteriai =1,...,n

05 € Ry Matrix of risk-adjusted scores of synergies s = 1,...,0 evaluated with
regards to criteriai =1,...,n

w € R Vector of weights of score criteriai =1,...,n

Variables
x € {0,1}" Vector of binary variables modeling a portfolio of projects j =1,...,m
y € {0,1}° Vector of binary variables modeling the activation of synergies s =
1,...,0
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Symbols in Chapter 3

Symbols in Chapter 3

Indexes
i=1,...,n Evaluation criteria
j=1,...,m Projects
k=1,...,r Score interdependency constraints
I =1,...,q Portfolio selection constraints

Sets

&; Set of projects required for the execution of project j = 1,...,m

S C (5% x S°) Information set of uncertain criteria weights and project scores

S Set of synergy projects

SQA Information set of uncertain coefficients of portfolio selection constraints

S¥ D SI, II Overall information set of uncertain project scores, adjustable infor-
mation subset without interdependence, and adjustable information subset
subject to interdependence

S5 O Sy Overall information set and information subset of uncertain criteria
weights

Zr, Z# Set of feasible portfolios and set of feasible portfolios for uncertain constraint
coefficients

Zn(S), Z'(S) Set of portfolios z € Zr and set of portfolios z € Z# non-dominated
with regards to information set S

Parameters

A A, A, A, A, A € R7*™ Matrix of nominal coefficients ajj, most likely coefficients
a4y, coefficient deviations 4, uncertain coefficients 4;;, lower coefficient value
bounds a;;, and upper coefficient value bounds a;; of portfolio selection con-
straints [ =1,...,q

Al € R Matrix of coefficients of score interdependency constraints k = 1,...,r

B € R7 Vector of limits to portfolio selection constraints [ =1,...,q

B! € R” Vector of limits to score interdependency constraints k =1,...,r

c € R% Vector of cost of projects j =1,...,m

v,9,7,0 € R™*" Matrices of nominal scores, most likely scores, score deviations,
and uncertain scores of projects j = 1,...,m evaluated with regards to criteria
i=1,...,n

v*P € IRl Vector of aspiration level values with regards to score criteriai = 1,...,n

w € IR" Vector of weights of score criteriai =1,...,n

I' € [0, mn] Score deviation limit

' € [0,m] Constraint coefficient deviation limit

7 Matrix of identically, independently, and symmetrically distributed random
variables with support [—1, 1] modeling score deviations of projects j = 1,...,m
evaluated with regards to criteriai =1,...,n
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Symbols in Chapter 3

Variables
y € [—1,1]™" Y € [—1,1]™ Matrix and vector of continuous variables modeling
value realizations of projects j = 1,...,m evaluated with regards to criteria
i=1,...,n
z € {0,1}" Vector of binary variables modeling a portfolio of projects j =1,...,m

Functions

C(S) Core indexes of projects j = 1,..., m for information set S

V(v,w,z) Linear-additive value of portfolio z € {0,1}" with regards to weight
vector w € R" and project score matrix v € R™*"

J(z,2") Set of projects either included in portfolio z € {0,1}" or z’ € {0,1}", but
not in both

B(T,w,z,7,T),B (3,w,z2,T) Maximum deviation in value between portfolios
z € {0,1}" and 2z’ € {0,1}" when considering score deviations 7 € R"*",
criteria weights w € R", and deviation limit I' € [0, mn]

B(A,z,T4) Maximum deviation in constraint value for portfolio z € {0,1}" when
considering constraint coefficient deviations A € R7*" and deviation limit
4 e [0,m]
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Symbols in Chapter 4

Symbols in Chapter 4

Indexes
j=1,...,mItems
s =1,...,n Selection steps of a subject or constructive heuristic

Sets
As D Ai"f (js—1) Set of items j = 1, ..., m that have not been previously selected and
the selection of which does not exceed the resource capacity in selection step
s = 1,...,n considering global selection behavior and considering localized
selection behavior

Parameters
b, f € [2,n] Backward and forward search range
b1 € R Regression line slope
¢ € Ry Resource capacity
js € {1,...,m}" Vector of subject selection in stepss =1,...,n
k € R"! Vector of required resources of items j = 1,...,m
p € [0,1] Observed level of significance
Pran € R4 Expected portfolio value if items are randomly selected
Psub € R4 Portfolio value obtained by a subject
r € IN Value range limit for instance generation
R? € [0,1] Coefficient of determination
v € R Vector of values of items j =1,...,m

Variables
x € {0,1}"™ Vector of binary variables modeling a portfolio of projects j =1,...,m

Functions

A.ps Absolute heuristic adherence

Asel, Afe{ Relative heuristic adherence considering global selection behavior and
considering localized selection behavior

h(AS),h(Ag’f (js—1)) Highest ranked item according to some evaluation criterion
from a set of items A, or A%/ (js—1)

a(s), «f (s) Indicator whether subject selection in step s = 1,...,# is in line with a
constructive heuristic for global selection behavior and for localized selection
behavior
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Symbols in Chapter 5

Symbols in Chapter 5

Indexes
i =1,...,n Project activities
k=1,...,m Resource types
t € R4 Points in time

Sets
(i,1") € £ Set of precedence relations between project activities i,i’ € {1,...,n}

Parameters
d = (dy,...,d,)" Duration distributions of activitiesi = 1,...,n
d € Rt Vector of durations of activitiesi =1,...,n
L Priority list
p € [0,1] Observed level of significance
r € IN"*™ Matrix of resource requirements of activities i = 1,...,n with regards to
resource typesk=1,...,m
R € IN™ Vector of per-period availabilities of resource typesk =1,...,m
A € Ry Project arrival rate
p € R Optimum performance measure value associated with optimal policy 7r*

Variables
7t*, t € I1 Scheduling policies within class IT with optimal policy 7*

Functions
u € R’} Utilization levels for resource typesk =1,...,m
u € R} Average utilization level across all resource types
k(rr,d) Performance measure distribution associated with policy 7 € IT and
activity duration distributions d
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