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Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München
zur Erlangung des akademischen Grades eines Doktors der Wissenschaften genehmigten
Dissertation.

Vorsitzender: Univ.-Prof. Dr. Rudolf Gross
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Part I.

Principles of Circuit Quantum
Electrodynamics
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1. Historical Introduction

1.1. Macroscopic Coherence

The interest in coherent superconducting electronics began to rise in the early to mid 80s
as a testbed for the theoretical idea of macroscopic coherence. The apparent differences be-
tween the laws of quantum mechanics and our personal experience in the “classical” world
had already inspired the famous thought experiment of Schrödinger and his cat. However
Schrödingers cat is only the distillate of the unbridgeable gap between the “quantum”
and the “classical” world and does not show a path out of the quandary. One possible
way to marry the “quantum” and the “classical” world would be a superior theory that
reduces to the laws of quantum mechanics and classical physics in circumstances where
the respective validity is empirically established. This however immediately implies the
existence of a transition area where the superior theory supposedly reveals itself. That is
why physicists began the search for ever increasingly large objects that show “intuition
defying” quantum mechanical effects. Which quantum mechanical effects we consider
to be “intuition defying” is in itself an open question. One would not consider the exis-
tence of an insulator however large it may be as “intuition defying” even though we use
quantum mechanical principles to understand its existence. This interesting question has
been addressed most prominently by Leggett (e.g. [51]). The search for macroscopic ob-
jects that show quantum mechanical effects inevitably led to superconductivity with its
macroscopic number of Cooper pairs condensed into a single state. First experiments con-
sidered the current biased Josephson junction with its tilted washboard potential for the
phase difference between the two sides of the junction. The Josephson junction is initial-
ized in a zero voltage state in one of the metastable minima of the washboard potential.
Depending on the temperature, the Josephson junction can either tunnel out of the mini-
mum or is thermally excited and leaves the minimum and the Josephson junction switches
to the finite voltage state ( e.g. [87]). The zero voltage and finite voltage state are macro-
scopically distinct states and the mechanism of transition between the two can be seen
to be classical for thermal excitation or quantum mechanical for low temperatures where
quantum mechanical tunneling is the dominant channel for relaxation. Two of the main
players of circuit quantum electrodynmics nowadays, John Martinis and Michel Devoret,
also entered the stage of superconducting electronics as leading authors on a publication
concerning macroscopic quantum tunneling (cf. [18]).

Another possible way out of the quantum-classical conundrum would be if quantum
mechanics itself is the superior theory that reduces to the laws of classical mechanics in
appropriate situations. Dissipation is thought to be the key factor that drives the quan-
tum to classical transition. That macroscopic objects seem to behave classical might be a
consequence of the interaction with the many degrees of freedom of the environment. The
seminal paper of Caldeira and Leggett which addresses the quantum mechanical descrip-
tion of dissipation in the framework of quantum mechanics (cf.[13]) was specially tailored
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1. Historical Introduction

to describe the tunneling in the current biased Josephson junction.
Experiments with superconducting circuits quickly moved on to precursors of the charge

qubit (e.g. [65]) where the anticrossing of different charge states where probed spectro-
scopically. Instead of probing the charge states, which only differ by one cooper pair
and may therefore again be called only microscopically distinct, one considered the flux
trapped by a superconducting ring interrupted by Josephson junctions as a macroscopical
observable. For certain values of the external flux threaded through the superconducting
ring the experiments showed an anitcrossing implying a superposition of macroscopical
large currents flowing clockwise and anti-clockwise in the superconducting ring. The su-
perconducting rings used in these experiments (e.g. [85, 30]) where precursors of the cur-
rent flux qubits used for example in the state of the art quantum annealing processor of
D-Wave (e.g. [44]). Up to this point, all experiments involved spectroscopical measure-
ments, the first time-resolved experiments where performed at a reiteration of the current
biased Josephson junction (cf. [61]) where the authors observed rabi oscillations between
two metastable states in the washboard potential of the current biased Josephson junction.
The setup which came to be known as phase qubit had the big advantage of a build in read-
out. For readout a current pulse would tilt the washboard potential increasingly to get a
high probability for the excited qubit state to tunnel out and leave the Josephson junction
in the finite voltage state which could be read out with a superconducting quantum inter-
ference device (SQUID) magnetometer because the Josephson junction was embedded in a
loop. The very high confidence at that time in the capabilities of superconducting circuits
is perfectly shown in the last sentence of the abstract which states that the “qubit circuit is
the basis of a scalable quantum computer”. Up to this time it is not clear if this is actually
true, although the charge qubits, in the variety of the transmon, seem to bee in the lead
for the race to a fully scalable quantum computer due to their quantum non demolition
readout and excellent coherence properties.

However this last sentence in the abstract already anticipates one of the main directions
of research for superconducting electronics: the implementation of the diVincenczo criteria
(cf. [22]) in superconducting electronics.

1.2. Quantum Information Processing with Superconducting
Qubits

The first hurdle to be taken on the way to the superconducting quantum computer was
to increase the overall performance and precision of gates for individual superconducting
qubits. The NEC group from Japan managed to generate deterministically superpositions
between different charge states with non adiabatic gate voltage sweeps (cf. [66]). Read-
out was performed through a highly resistive probe junction which in turn limited the
coherence of the charge qubit. Since then many improvements have been made to the in-
dividual qubits, most prominently the operation of the charge qubit in the phase regime,
the transmon qubit (cf. [48]). Additionally new qubit circuits were invented ,which should
overcome the shortcomings of the standard qubits (phase-,flux- and charge qubits) while
maintaining their strengths, like the Quantronium (cf. [86]), Fluxonium (cf. [58]) and a
superconducting qubit with hard wired topological protection (cf. [32]).

As a next step interaction between two superconducting qubits was established. At first
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1.2. Quantum Information Processing with Superconducting Qubits

charge- (at the RIKEN, Japan institute cf.[72]) and phase-qubits (at University of Mary-
land cf.[6]) were coupled together because they can be coupled with a simple capacitive
coupling. Because of the advances in measurement technology, time resolved measure-
ments of the excitations oscillating back and forth between the qubits could be performed.
Coupling flux qubits together took about two years longer with the theoretical proposal in
2004 (cf. [74]) and its experimental realization in 2005 by the Delft group (cf. [57]). Two
flux qubits are coupled inductively with a SQUID loop encircling both qubits. By current
biasing the coupling SQUID one can change the coupling strength which can not be done
with the hard wired capacitive coupling. The D-wave chip still uses this kind of SQUID,
inductive, coupling between its qubits. The RIKEN group in Japan circumvented the re-
striction with the constant capacitive coupling by tuning their charge qubits in and out of
resonance. This way they could switch on and off the exchange of excitations between the
qubits and thereby implement conditional gate operations. The same level of control was
shown four years after that in a flux qubit setup with constant coupling and constant qubit
frequencies (cf. [73]). The gate was implemented by sequentially driving transitions in the
two-qubit system with suitably tuned microwave radiation.

The watershed moment in the history of superconducting electronics had already hap-
pened by then. In 2003 a cavity quantum electrodynamics architecture (QED), with a
charge qubit acting as an atom and an microwave resonator acting as a cavity had been
proposed as an building block for quantum information processing (cf. [91] and a year
later with a 1-d instead of a 3-d resonator cf. [9]). A year later this was realized by a
group at yale university (cf. [89]) for a charge qubit coupled to a microwave resonator. At
the same page in the magazine “nature” before this aforementioned publication there is
a considerably less well known publication implementing the cavity QED paradigm with
a flux qubit coupled to a superconducting harmonic oscillator realized by a joint effort of
groups in Delft and at NTT and NEC in Japan. The big success of the superconducting
electronics version of the cavity QED paradigm which came to be known as circuit QED
is rooted in the large dipole moment of the charge qubit and the small mode volume of a
coplanar waveguide resonator. The figure of merit in a cavity QED setup is the coopera-
tivity g2/(γκ), the ratio of the coupling between atom and cavity squared and the product
of the decay rates of the atom γ and the cavity κ. While the decay rates of the supercon-
ducting qubit and the resonator are held considerably low because of the superconducting
gap, the coupling can be extremely high for charge qubits and coplanar waveguide res-
onators. The coupling is proportional to the product of the dipole moment of the charge
qubit and the zero point field fluctuation of the resonator which is in turn inversely pro-
portional to the mode volume of the resonator. The one-dimensional coplanar waveguide
resonator features an exceptionally small mode volume especially compared to the three-
dimensional cavities used in conventional cavity QED. An interesting side note though is
that 3-d resonators have been reintroduced sometimes nowadays because of their better
isolation from the electrodynamic environment. The loss in zero point field fluctuation
because of the larger mode volume is compensated with the further increase of the dipole
moment of the coupled charge qubit (cf. [71]).

The circuit QED architecture while not being particularly related to quantum informa-
tion processing still enabled the implementation of prerequisites for quantum computation
with superconducting qubits. The strong coupling limit of cavity QED g2/(κγ)� 1 could
be easily reached in circuit QED setups. Another way of defining the strong coupling
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1. Historical Introduction

limit is to say that the joint excitation of atom and cavity, the upper and lower polariton,
should be well separated in a spectral measurement. The cooperativity in circuit QED
setups however can be as strong as to be able to separate peaks in the spectrum for dif-
ferent eigenenergies of the joint Hamilton operator for detuned charge qubit and coplanar
waveguide resonator. The coplanar waveguide resonator resonance is shifted by a mul-
tiple of its linewidth upon a change between the two computational states of the charge
qubit. This “strong dispersive coupling”- regime enables a readout of the charge qubit
which measures the phase of the reflection or transmission of a microwave signal driv-
ing the coplanar resonator (cf. [88]). This measurement technique enables a quantum
non-demolition readout of the charge qubit which is a required prerequisite to perform
quantum error correction. The resonator while being a readout device provides protec-
tion from the electromagnetic environment at the same time. Further refinements of this
measuring technique involved the utilization of slightly nonlinear resonators (cf. [80]) for
increased visibility. The same technique has also been adapted for flux qubits with the
readout SQUID acting as nonlinear readout resonator (cf. [55]). But the coplanar waveg-
uide resonator is not only useful as a readout device and protection from the electromag-
netical environment but is also used to couple remote superconducting qubits. Two charge
qubits have been coupled dispersively to a resonator that interact via virtual excitations of
the resonator (cf. [56]). The qubits were coupled dispersively to the resonator to prohibit
loss through the resonator. The resonator loss was due to its strong coupling to the read-
out circuitry. This restriction does not apply if one tries to couple two phase qubits that
are coupled capacitively to a coplanar waveguide resonator (cf. [82]). In this setup the
resonator actually has a higher resilience against decay as the phase qubits and excita-
tions are transferred between the qubits through non-virtual population of the resonator.
Measurements are performed with the phase qubits own readout circuitry.

1.3. Quantum Optics with Superconducting Circuits

The huge success of the circuit QED architecture not only brought up quantum informa-
tion processing applications but also gained interest in the quantum optics community
which quickly adopted superconducting electronics as a testbed for multiple quantum
optics phenomena. As a first example we mention the implementation of a circuit QED
architecture with a flux qubit which is coupled ultrastrongly to the coplanar waveguide
resonator (cf. [67]). While still being being related to the quantum optics paradigm of
cavity QED it extends the range of coupling between atom and cavity beyond any attain-
able range in “classical” quantum optics setups with atoms in cavities for photons in the
visible frequency range. This was made possible by a conducting link between flux qubit
and coplanar waveguide resonator. The spectrum of the combined setup showed effects
beyond the generic rotating wave approximation of the Jaynes Cummings model.

Instead of controlling the state of the superconducting qubit in a circuit QED setup one
reversed the scope to generate highly non-classical states in the coplanar waveguide res-
onator with the help of the superconducting qubit. Fock states up to six microwave pho-
tons (cf. [37]) were generated and a microwave source with deterministic, on-demand
release of itinerant single photon pulses was implemented (cf. [38]). In the spirit of the be-
ginnings of coherent superconducting electronics, the foundations of quantum mechanics
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1.3. Quantum Optics with Superconducting Circuits

were again tested. The group at UCSB showed the violation of the Bell inequalities with
two phase qubits coupled through a resonator (cf. [3]). One year later the Yale group build
a circuit QED setup with four Transmon qubits and showed three qubit entanglement (cf.
[20]). The entangling gates were implemented with the help of non-computational states of
the Transmon qubit and joint readout was performed by the dispersively coupled common
resonator. A group in Paris succeeded in showing the violation of a Leggett Garg inequal-
ity. While the violation of a Bell type inequality shows the unique quantum correlations in
space, a violation of a Leggett Garg inequality shows unique quantum correlations in time.
A oscillating single degree of freedom, rabi oscillations in a Transmon qubit, is measured at
successive times and shows the “state collapse” characteristics unique to the measurement
postulate of quantum mechanics.

Instead of coupling the superconducting qubit to a resonator one could also couple the
superconducting qubit to a infinite coplanar waveguide. Microwaves impinging on a flux
qubit would excite the qubit which in turn reemits into the coplanar waveguide which
is known as resonance fluorescence (cf. [4]). Superconducting qubits are not restricted
to their computational states and the design flexibility allows for almost arbitrary energy
level schemes. In addition to the above mentioned resonance fluorescence phenomenon
also the Autler-Townes effect in a three level phase qubit has been measured (cf. [81]).
And electromagnetically induced transparency has been shown in a flux qubit circuit with
a ladder type energy level scheme (cf. [1]).

In the last five years a couple of hybrid structures emerged combining the power of su-
perconducting electronics with another technology. One upcoming trend for hybrid sys-
tems is the combination with mechanical oscillators. These microelectromechanical sys-
tems (MEMS) combine for example a phase qubit with a small mechanical drum made out
of piezoelectric material (cf. [70]). The oscillation of the drum generates electrical pulses
that can couple to the phase qubit. The mechanical drum had an eigenfrequency in the
microwave regime which enabled the cooling to the mechanical groundstate just by em-
bedding the drum in the superconducting chip that is cooled in the dilution refrigerator.
The phase qubit was used to detect and manipulate the state of the mechanical drum. A
beam oscillating at radio-frequency could be cooled close to its groundstate by coupling it
to a superconducting resonator. The smaller oscillation frequency, compared to the drum,
prohibits the cooling to the ground state by conventional refrigeration techniques. How-
ever by driving the superconducting resonator slightly red-detuned, the resonator tends
to extract excitations from the oscillating beam, thereby cooling it. Superconducting cir-
cuits also have been coupled successfully to electron spins in nitrogen vacancy centers in
diamond (cf. [49]) and electron spins in ruby (cf. [79]). The main interest for research in
this direction is to combine the record breaking coherence times of solid state spin qubits
as a quantum memory with the flexibility in quantum information processing of super-
conducting qubits.

The connections between quantum optics and superconducting electronics goes well be-
yond the mapping of atoms to superconducting qubits and cavities to coplanar waveguide
resonators, which is perfectly shown in the case of the dynamical casimir effect. The dy-
namical casimir effect is the generation of photons by an acceleratedly moving mirror in
free space. The observation of the dynamical casimir effect is very difficult since the mirror
has to be moved at speeds close to the speed of light in free space, which is challenging
for a massive object like a mirror. The speed of microwaves traveling along a coplanar
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1. Historical Introduction

waveguide is very close to the speed of light in free space. However the implementation
of a moving mirror in superconducting electronics has proven to be considerably simpler
than a massive mirror for optical frequencies. A half infinite coplanar waveguide termi-
nated in a variable flux threaded SQUID has been proposed as the analog of a half infinite
vacuum terminated by a moving mirror (cf. [42]). By varying the flux threaded through
the loop, the “mirror” at the end starts to move, enabling very high speed movement of
one of the boundary conditions of the half infinite vacuum represented by the half infinite
coplanar waveguide. In 2011 a group Chalmers university succeeded in measuring the
photons generated by the moving SQUID “mirror” (cf. [90]).

1.4. Many-Body Physics with Superconducting Circuits

Circuit QED is currently on the verge of crossing the border between few- to many body
physics [39]. The well established building blocks of superconducting qubits and res-
onators are coupled capacitively, inductively or both to form larger systems [84]. This
opens up a exciting realm of completely new physical phenomena. The truncation of the
microscopic Hamilton operators for the basic building blocks of coherent superconduct-
ing circuits to generic model Hamilton operators like harmonic oscillators and two-level
systems is very well established quantitatively. In the near future experimental setups
will combine these building blocks with coupling strengths small enough not to invalidate
the approximations made for the building blocks. Combined with the design flexibility
in their spatial arrangement and coupling, these systems are the ideal experimental plat-
form to simulate almost arbitrary generic Hamilton operators. We propose two setups to
simulate Bose-Hubbard physics with the generic exchange interaction between the sites,
c.f. chapters 5 and 6. Additionally we propose a coupling scheme to expand the coupling
toolbox to nonlinear interactions, c.f. chapter 7.

These capabilities immediately place superconducting circuits into a class with quan-
tum simulators of cold atoms in optical lattices and ions in penning traps. Compared to
these systems composed of single atoms, the superconducting circuits that are composed
of a macroscopic number of atoms are subject to stronger influence of the fluctuating en-
vironment. Two level-defects in the dielectric substrate and spins trapped on the surface
of the chip degrade the coherence and have to be taken into account in the theoretical
models. Therefore the dynamics of microwave excitations in superconducting circuits is a
ideal testbed for non-equilibrium physics rather than the simulation of groundstate-phase
transitions as done with cold atoms in optical lattices. Subject to a coherent injection of
microwaves photons, by a coherent microwave drive, and subsequent dissipation of mi-
crowave photons due to the coupling to the environment, steady states emerge that show
reminiscences of the underlying groundstate phase transition, c.f. sections 5.2 and 6.4.
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2. From Maxwell to Kirchhoff

This entire chapter is devoted to the path from a full electromagnetic field description
of microwave circuits governed by the Maxwell equations to a description in terms of
electrical circuits governed by the Kirchhoff rules. A electrical circuit description of a given
setup encompasses a network representation consisting of an arbitrary amount of nodes
connected by edges. Each edge represents a two terminal device. In our work we deal
with three different kinds of two-terminal devices: capacitors, inductors and Josephson
junctions. Every two-terminal device is characterized by a unique relationship between
the current flowing through the device I and the voltage difference at its two outlets V .
These relationships together with the Kirchhoff rules form a complete set of equations of
motion for the currents and voltage drops across all two-terminal devices in the electrical
circuit. This modular architecture of the theory entails the great advantage of flexibility.
Once all the relationships for the two terminal devices are known, which often affords a
description of the two-terminal device in terms of electromagnetic fields, we can quickly
combine these building blocks with arbitrary complexity without having to solve for the
electromagnetic fields of the whole electrical circuit again.

Kirchhoff rules however strictly only apply in static situations. They are consequences
of the continuity equation of electrical charge: ∇ ~J + ∂tQ = 0 with current- ~J and charge
densityQ. If you consider the node of a electrical circuit, integrate the continuity equation
in a sphere which is small enough to only include the node and neglect temporary accumu-
lation of charge on the node, we come up with the first Kirchhoff rule:

∑
k∈node Ik = 0, the

sum of all currents flowing to the node of a electrical circuit vanishes. This is valid as long
as the characteristic timescale for changes in the current is not fast enough to introduce
charge accumulation on the node. We can circumvent however this difficulty by introduc-
ing an additional capacitor connected to ground for the node. For the second Kirchhoff
rule it is more challenging to push the high frequency limit. For the second Kirchhoff rule
we integrate ∇ × ~E = −µ∂t ~H over a surface framed by a mesh of the electrical circuit. If
we again neglect the temporal accumulation of flux threaded through the mesh we come
up with the second Kirchhoff rule:

∑
k∈loop Vk = 0, the sum of all electrical voltage drops

around every loop of the electrical circuit is zero. Lets suppose our circuit oscillates with
frequency ω in a steady state. Then the integral over the curl of the electric field can be
approximated to

∫
S ∂t

~H ≤ SωMaxS(| ~H|) = S2π/λMaxS(| ~H|), with S the surface framed
by the mesh and λ the wavelength. In other words: the second Kirchhoff rule is applica-
ble, if the physical size of the electrical circuit is small compared to the wavelength of the
excitations of the circuit.

A typical low-frequency (≈ 30MHz) resonating circuit consists of a inductor coil and a
parallel plate capacitor. If we reduce the size of the whole device by a factor of 100 we
would multiply the eigenfrequency by the same factor. The internal damping rate, mea-
sured in units of the eigenfrequency, of the wiring of the resulting microwave resonating
circuit would however increase 10-fold. If we instead reduce the number of turns in the coil

9



2. From Maxwell to Kirchhoff

Figure 2.1.: Transmission line setup. Two axially symmetric conductors in a linear isotropic
dielectric with scalar permittivity ε and scalar permeability µ

and increase the distance of the parallel plate capacitor, while leaving the dimension of the
wiring untouched, we end up with a hairpin-shaped circuit, resonating in the microwave
regime with approximately unaltered internal damping rate. The resulting electrical cir-
cuit however would be of the size of the wavelength of the microwaves itself. Two main
differences compared to low-frequency circuits will arise from this. Firstly the circuit will
start acting as an antenna and if we do not provide some means of shielding the circuit
there will be considerable radiative loss. Secondly the concept of inductors and capacitors
as physical and separated objects will fade and be replaced by a means to symbolically
represent much more complicated structures where a physical object can be inductor and
capacitor at the same time. To find the requirements for the existence of these symbolical
representations is the purpose of this chapter.

Circuit QED setups typically consist of two different types of structures: coplanar trans-
mission lines and lumped element structures. While the coplanar transmission lines are
comparable to the wavelength, the lumped element structures like Josephson artificial
atoms, coupling capacitors or Josephson junctions are considerably smaller than the wave-
length. For the latter the low-frequency concepts do apply but the open transmission lines
and transmission line resonators do need a special treatment. As it turns out the axial sym-
metry and the shielding by the groundplane are necessary ingredients to reintroduce the
low-frequency concepts of capacitance per unit length of transmission line, or characteris-
tic capacitance, and the inductance per unit length, or characteristic inductance.

In the following we concentrate on the circuit representation of coplanar transmission
lines and take the existence of circuit representations for the objects that are smaller than
the wavelength, for the reasons cited above, for granted.
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2.1. Plane Wave Propagation in Axially Symmetric Media

2.1. Plane Wave Propagation in Axially Symmetric Media

We consider a setup with arbitrarily shaped conductors surrounded by a uniform linear
medium with scalar permittivity ε and scalar permeability µ. The only requirement for
the setup is to be symmetric with respect to translations in one direction. We arrange our
cartesian coordinates such that the z-axis is the direction of axial-symmetry, c.f. figure
2.1. We express the Maxwell equations in SI units in terms of the fundamental electric
and magnetic fields, ~E and ~B, and their macroscopic or coarse grained versions electric
displacement and magnetic intensity, ~D = ε~E and ~H = (1/µ) ~B, which include the effects
of electric and magnetic polarization in various, linear media,

∇× ~H = ~J + ε
∂ ~E
∂t

∇× ~E = −µ∂
~H
∂t

(2.1a)

∇ ~B = 0 ∇ ~D = Q . (2.1b)

We are not interested in a general solution to the set of Maxwell equations for the given
situation but rather concentrate on plane wave steady state solutions oscillating with fre-
quency ω and traveling in z-direction with wavevector β; ~E(x, y, z) = ~E(x, y)ei(ωt−βz),
~H(x, y, z) = ~H(x, y)ei(ωt−βz), ~J (x, y, z) = ~j(x, y)ei(ωt−βz) and Q(x, y, z) = ρ(x, y)ei(ωt−βz).
With this ansatz and the assumption of spatially independent ε and µ the Maxwell equa-
tions are already considerably simplified,Ö

∂yHz + iβHy

−iβHx − ∂xHz

∂xHy − ∂yHx

è
=

Ö
jx + iωεEx
jy + iωεEy
jz + iωεEz

è Ö
∂yEz + iβEy
−iβEx − ∂xEz
∂xEy − ∂yEx

è
= −iωµ

Ö
Hx

Hy

Hz

è
(2.2a)

∂xHx + ∂yHy − iβHz = 0 ∂xEx + ∂yEy − iβEz =
ρ

ε
. (2.2b)

Keep in mind that these are not fully valid across dielectric-metall boundaries. For the
derivation of the boundary conditions we have to fall back on equations (2.1a).

2.2. TEM Wave Propagation

As it turns out not all components of the electromagnetic field are needed to construct
solutions to equations (2.2a) and (2.2b). We first consider vanishing axial components
of the electromagnetic fields Ez = Bz = 0. In this case E and H are transversal to the
direction of propagation hence the name Transverse ElectroMagnetic (TEM) wave. The
equations (2.2a) and (2.2b) further simplify in this particular case to,Ç

iβHy

−iβHx

å
=

Ç
jx + iωεEx
jy + iωεEy

å Ç
Ey
Ex

å
= Z0

Ç
−Hx

Hy

å
(2.3a)

∂xHy − ∂yHx = jz ∂xEy − ∂yEx = 0 (2.3b)

∂xHx + ∂yHy = 0 ∂xEx + ∂yEy =
ρ

ε
. (2.3c)
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2. From Maxwell to Kirchhoff

Evaluated outside the conductor regions, ~j = 0, equations (2.3a) tell us that ~E and ~H are
always perpendicular to each other in the dielectric and determine the wave impedance,
which is the ratio of the magnitudes of electric field and magnetic intensity |E|/|H| =»
µ/ε =: Z0 Equations (2.3a) further establish the dispersion relation β = ω

√
εµ = k0

which is the same for a plane wave traveling in a isotropic and uniform medium with
scalar permittivity ε and permeability µ without any incorporated conductors. For finite
conductivity σ (~j = σ~E) we have a different dispersion relation in the conductor. The
electromagnetic field has to be phase matched for all times at the dielectric-conductor
boundary to fulfill the boundary conditions. This is not compatible with the two differ-
ent dispersion relations and consequently no TEM mode exists. Below we will find a TEM
mode with the assumption of perfect conductors σ → ∞ and in the case of planar trans-
mission lines (c.f. section 2.4), where we encounter a boundary between air and dielectric,
we will resort to a low frequency approximation.

Every closed line integral, in the x-y-plane, of the electric field vanishes as can be seen
in equation (2.3b) for the electric field. This opens up the opportunity to derive the electric
field from a two-dimensional potential ~E = −∇Φ. This potential function has to fulfill a
Laplace equation ∆Φ = 0 in the dielectric which can be derived from equation (2.3c). In
order to solve for Φ we additionally need boundary conditions.

For finite conductivity σ, oscillating electromagnetic fields can only penetrate the con-
ductor up to a skin depth of δS =

»
2/(ωµσ). For the superconductors used in circuit QED

setups we can safely assume the conductivity to be infinite σ →∞ and all electromagnetic
fields are expelled from the interior of the (super-)conductor due to shielding from induced
surface currents ~jS = ~n× ~H and surface charges ρS = ε~n · ~E, where ~n is a unit vector per-
pendicular to the boundary between conductor and dielectric. Therefore the potential Φ is
constant throughout the conductor. The two homogeneous Maxwell equations tell us that
there is no tangential electrical field at the dielectric-conductor boundary ~n × ~E = 0 and
that the component of the magnetic density normal to the dielectric-conductor boundary
vanishes ~n · ~H = 0. The vanishing of the tangential component of the electric field is ful-
filled because of the constant potential Φ throughout the conductor and also the boundary
condition for the normal magnetic density is fulfilled by virtue of the fact that ~E and ~H are
always perpendicular to each other.

To find the TEM mode for a given setup with dielectric and conductors the solution
process is to assign to every conductor a fixed potential and solve the Laplace equations
with this fixed boundary condition. With the potential we can derive the electric field
~E = −∇Φ and immediately infer the magnetic density with equations (2.3a). With this we
can already tell that there will be no TEM mode in a waveguide with only one conductor,
since there only exist constant solutions for the Laplace equations if the potential φ has to
be equal to the same constant V0 on the whole boundary and therefore the electric field
would vanish. We need to have at least two different conductors to get a TEM mode.
Further on we will restrict our considerations to waveguides with only two conductors,
which are also called transmission lines, like the one depicted in figure (2.1). From the
uniqueness of the solution of the Laplace equation for fixed boundary conditions we can
further deduce that there will be only one TEM mode for a given two conductor setup.
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2.2. TEM Wave Propagation

2.2.1. Lumped Element Representation

The ultimate goal of this chapter is to replace the description of microwave circuits in terms
of Maxwell equations with the simplified, and most importantly modular, theory of elec-
trical circuits with capacitors and inductors and the associated Kirchhoff rules. To this end
we have to decide whether a description of the given setup in terms of a electrical circuit
actually exists and if so what the layout of the electrical circuit would be. This decompo-
sition of the given setup into a network of two terminal devices will include capacitors
and inductors and later on also Josephson junctions. Capacitors and inductors are fully
described with one parameter, the capacitance C and the inductance L respectively. The
parameters C and L constitute a relationship between the current I that is flowing through
the device and voltage drop V at the two terminals and encode the microscopic details of
the electromagnetic field description,

I = C
dV

dt
V = L

dI

dt
. (2.4)

The concept of capacitance C and inductance L is therefore tightly bound to the concept
of electrical voltage. The difference in Voltage Va,b between two points a and b is defined
as the line integral of the electric field along an arbitrary path connecting the two points
Va,b =

∫ b
a
~E · d~l. The definition for the voltage difference between two points has to be

independent of the chosen path for the integral of the electric field. This only holds for
electrical fields with vanishing curl. The electrical field for our TEM mode does not have
vanishing curl, however the axial component of its curl vanishes. Consequently all path
integrals of the electrical field are independent of the specific path as long as the line de-
fined by start and end points is parallel to the axial direction. Therefore it does make sense
to introduce the concept of voltage for the TEM mode in the axial direction of the trans-
mission line. We define capacitances c and inductances l per unit length for infinitesimal
small slices of the transmission line. The determination of l and c for the given TEM mode
can be accomplished with the following two alternative definitions of capacitances and
inductances,

C =
Q

V
L =

Ψ

I
, (2.5)

where we substitute the total induced charge Q with the charge per unit length of trans-
mission line q and the total generated flux or equivalently flux linkage Ψ with the flux
linkage per unit length ψ to get the characteristic capacitance c and inductance l. The total
charge per unit length on one conductor can be determined with the help of the second
equation (2.3c) and a two-dimensional Gauss integral,∫

S

∂xEx + ∂yEy dx dy =

∫
δS

n̂ · ~E dl =

∫
S

ρ

ε
dx dy =

q

ε
, (2.6)

where S is a surface in the x-y-plane with the boundary δS encircling one conductor while
not touching the other and n̂ the unit vector pointed outward of S. The charge on the other
conductor is −q as can be seen from the integration of the inverse of surface S which ends
up in the same line integral along δS only now with n̂ in the opposite direction. All in
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2. From Maxwell to Kirchhoff

all this provides us with the definition for c computable with the help of the field theory
solution,

c =
q

V
=

ε
∫
δS

n̂ · ~E dl
c2∫
c1

~E · d~l
, (2.7)

with c1 and c2 arbitrary points, which are in the same x-y-plane, on conductor 1 and con-
ductor 2 respectively.

For the characteristic inductance we follow a similar procedure. The total current flow-
ing on one conductor may be found by integrating the first equation (2.3b),

I =

∫
S

jzdx dy =

∫
S

∂xHy − ∂yHx dx dy =

∫
δS

~H · d~l =
1

Z0

∫
δS

n̂ · ~E dl =
q

εZ0
, (2.8)

and again the current flowing on the other conductor is −I . The flux linkage is the total
flux generated by the current I . The magnetic flux lines resemble concentric deformed
circles around both conductors. If we integrate the total flux in between the conductors
we integrate the total magnetic flux. If we choose our path Γ of integration between both
conductors along a line of electric force than we immediately know that the magnetic field
is always perpendicular to the path of integration by virtue of equation (2.3a). Therefore
the flux per unit length of transmission line is,

ψ = µ

∫
Γ

n̂ · ~H dl = µ

∫
Γ

∣∣∣ ~H∣∣∣ dl =
µ

Z0

∫
Γ

~E · d~l =
µ

Z0
V , (2.9)

and consequently the inductance per unit length of transmission line is l = (µV )/(Z0I).
With these two equations we can establish a connection between the electromagnetic field
description and the description in terms of circuit theory for a TEM mode,

Zc =
V

I
=
ε

c

| ~E|
| ~H|

=
ε

c
Z0 =

 
l

c
v =

 
1

µε
=

 
1

lc
. (2.10)

The quotient between the voltage and current, the characteristic impedance, is the wave
impedance multiplied by ε/c and the phase velocity of the current-voltage wave on the
transmission line coincides with the phase velocity of a plane wave in the dielectric.

With the help of the above derived characteristic capacitance c and inductance l for
TEM wave propagation on a transmission line we can now devise a one-dimensional
electrical circuit model that supports wave propagation with the above derived velocity
v = 1/

√
lc = 1/

√
εµ and characteristic impedance Zc = V/I =

»
l/c. The electrical circuit

consists of inductors connected in series and each node in between the inductors connected
in parallel with a capacitor to a second conductor (c.f. figure 2.2). We can now derive the
wave equation with the help of Kirchhoff rules and the relationships for the voltage drop
and current flowing through the inductors and capacitors (c.f. equation 2.4). The current
flowing on any arbitrary node at z must vanish,

−J − c dz ∂tV + J + ∂zJ dz = 0 ⇔ ∂zJ = c ∂tV ,
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2.3. TE/TM Wave Propagation

Figure 2.2.: Lumped element representation of the the TEM mode of a transmission line.
Each mesh represents a piece of transmission line of length dz with capacitance
c dz and inductance l dz. The direction for the definition of the time dependent
current J and voltage V is given by the green arrows.

where we keep only terms linear in the infinitesimal piece of transmission line dz. And the
voltage drops around the mesh at the same node also vanish,

−V − l dz ∂tJ + V + ∂zV = 0 ⇔ ∂zV = l ∂tJ .

With these two equations we can already derive the wave equations for the voltage and
current of the transmission line,

∂2
zJ − lc ∂2

t J = 0 ∂2
zV − lc ∂2

t V = 0 . (2.11)

A general solution to this wave equation can be formulated in terms of forward-
⇀
f (z−t/v)

and backward propagating pulses
↼
f (z + t/v),

J =
⇀
J
⇀
f (z − t

v
) +

↼
J
↼
f (z +

t

v
) V =

⇀
V
⇀
f (z − t

v
) +

↼
V
↼
f (z +

t

v
) .

To fulfill the relation between current and voltage ∂zJ = −c∂tV we realize that the for-
ward and backward amplitudes of current and voltage on the line are not independent

but rather related to each other via the characteristic impedance
⇀
V /

⇀
J = −

↼
V /

↼
J = Zc. The

characteristic impedance is therefore not the ratio of voltage to current at every arbitrary
point on the transmission line but rather the ratio between the constant forward propa-
gating amplitudes of voltage and current or the negative ratio of the constant backward
propagating amplitudes of voltage and current. This issue did not come up in our field
theoretic description because we where only dealing with forward propagating harmonic
waves.

2.3. TE/TM Wave Propagation

TE and TM wave propagation have a lot of similarities the only difference is the vanishing
of the axial field component of ~E for TE modes compared to the vanishing axial component
of ~H for TM modes. We restrict this description to the TE wave mode. For vanishing
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2. From Maxwell to Kirchhoff

axial electric field component Ez = 0 we may again reformulate our electromagnetic field
equations (2.2a) and (2.2b) with the help of the same ansatz for the electromagnetic fields,
currents and charges as above for the TEM mode, to,Ç

∂yHz

∂xHz

å
=

Ñ
jx + ik

2
c
β Hy

−jy + ik
2
c
β Hx

é Ç
Ey
Ex

å
=
k0

β
Z0

Ç
−Hx

Hy

å
(2.12a)

∂xHy − ∂yHx = jz ∂xEy − ∂yEx = −iωµHz (2.12b)

∂xHx + ∂yHy = iβHz ∂xEx + ∂yEy =
ρ

ε
, (2.12c)

where k2
c = k2

0 − β2 and k0 = ωv the plane wave wavevector in the dielectric. Similar
to TEM wave propagation we again deduce that, in the dielectric, ~E and ~H are perpen-
dicular to each other from equations (2.12a) . The wave impedance however is altered
Zh := (k0/β)Z0 and now depends via β on the specific layout of the conductors and
dielectric in contrast to the TEM mode where the wave impedance is simply the wave
impedance of a plane wave in a dielectric without any conductors. For TE modes the axial
magnetic intensity component Hz assumes the role of a potential function for the mag-
netic intensity in the x-y-plane in the dielectric as can be seen in the first equation (2.12a).
If we differentiate the first component of the first equation (2.12a) with respect to y and the
second component with respect to x and use the first equation (2.12c) we can derive the
Helmholtz eigenvalue equation for Hz ,

∂2
xHz + ∂2

yHz + k2
cHz = 0 . (2.13)

This eigenvalue problem generates eigenfunctions Hz,n and eigenvalues kc,n; the different
TE modes of the given setup. With these we can derive the full magnetic intensity and the
electric field with the help of equations (2.12a). The peculiar relation between the wave
vector for the plane wave in the bare dielectric k0, the wave vector in z-direction β and the
eigenvalue kc,n, k2

0 = β2+k2
c , lends itself to the following intuitive explanation: like the two

sides of a right triangle the wave vector in axial direction β and the eigenvalue kc,n are the
components in axial direction and perpendicular to it of the hypothenuse or k0. The eigen-
value kc,n therefore can be understood as the wave vector perpendicular to the axial direc-
tion. At the same time kc,n defines a lower frequency limit ωc,n = kc,n/

√
εµ for wave prop-

agation in the specific TE mode n, with axial wave vector βn =
»
k2

0 − k2
c,n =

»
ω2εµ− k2

c,n,
which can also be understood intuitively from our wave vector decomposition picture. If
the total frequency dependent wave vector k0 is equal to or even smaller than kc than the
wave vector in axial direction β is either 0 or even imaginary indicating rapid decay in ax-
ial direction of the electromagnetic wave. Therefore wave propagation in a given TE mode
n with a wavevector k0 below the given cutoff-wavevector kc,n is not possible

2.4. Planar Transmission Lines

A planar transmission line is a quasi two-dimensional metal structure, deposited on a
dielectric substrate, which supports microwaves. The main advantage is the ease of fabri-
cation for these setups with all its manufacturing processes lend from low-frequency cir-
cuits like central processing units which are now ubiquitous in all modern devices ranging
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2.4. Planar Transmission Lines

Figure 2.3.: Structure of a coplanar waveguide as an example of a planar transmission line.
A metal layer is deposited on a substrate material with central conductor of
width W separated from the surrounding groundplane by a gap of width d

from the smartphones to super-computers. In circuit QED typically aluminium, niobium
or titanium-nitride are patterned 200nm thick with optical lithography techniques on a sil-
icon or sapphire substrate which is about 500 µm thick. Therefore we will assume hence-
forth that the metal layer is infinitely thin and introduce the surface current ~JS = ~J δ(y)
and the surface charge QS = Qδ(y). And we will assume the substrate dielectric to be
infinitely thick, see figure (2.3). For the planar transmission lines it will be advantageous
to formulate the problem in terms of the vector potential ~A and the scalar potential F . We
may express the fields ~E and ~H in terms of these potential functions,

~H =
1

µ
∇× ~A ~E = −

Ä
∂t ~A+∇F

ä
. (2.14)

In the Lorenz gauge ∇ ~A + εµ ∂tF = 0 we can derive equations of motion for the vec-
tor potential ~A and the scalar potential F with the help of the Maxwell equations (2.1a)
valid in the dielectric with ε 6= ε0 and µ = µ0 or in the air filled region above the planar
transmission line with ε = ε0, µ = µ0,

∆ ~A+ εµ ∂2
t
~A = 0 ∆F + εµ ∂2

tF = 0 . (2.15)

A general solution can be found by taking the general solutions for the potentials in the
dielectric and air individually and subsequent matching of the two solutions at the bound-
ary between air and dielectric. We derive the boundary conditions for the electromagnetic
fields with the help of the maxwell equations (2.1a),

êy × ~H|y↘0
y↗0 = ~JS êy × ~E|y↘0

y↗0 = 0 (2.16)

êy · ~B|y↘0
y↗0 = 0 êy · D|y↘0

y↗0 = QS , (2.17)

where (. . . )|y↘0
y↗0 denotes the difference between the limit of the expression in brackets ap-

proaching from the air region to y = 0 and the corresponding limit approaching from the
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2. From Maxwell to Kirchhoff

dielectric region. The tangential component of the magnetic intensity ~H exhibits a jump of
size ~jS upon crossing the boundary between dielectric and air throughout the metal layer
and the normal component of the electric intensity exhibits a jump of size ρS at the same
boundary layer. This means that there is a kink in the potentials ~A and F at the boundary
and the derivatives in y-direction exhibit a jump at the dielectric-air boundary. With the
help of equations (2.14) and the equation for the jump of the tangential component of ~H
we can immediately deduce the jump of the derivative in y-direction for the tangential
components of the vector potential ~A

∂yAx|y↘0
y↗0 = −µjS,x ∂yAz|y↘0

y↗0 = −µjS,z . (2.18a)

The universal validity of the Lorenz gauge immediately tells us the missing boundary
condition for the normal component of the vector potential ~A,

∂yAy|y↘0
y↗0 = −µ (ε0∂tF|y↘0 − ε∂tF|y↗0) . (2.18b)

And finally the boundary for the scalar potential F may be inferred from the jump of size
ρS of the normal component of the electric density ~D,

ε0 (∂tAy + ∂yF) |y↘0 − ε (∂tAy + ∂yF) |y↗0 = −ρS (2.18c)

2.4.1. Low Frequency Solutions

In order to find steady state solutions oscillating with ω propagating in axial direction
with wavevector β for the above equations of motion for the potentials (2.14) subject to
boundary conditions (2.18) we again make the ansatz ~A(x, y, z, t) = ~A(x, y, ω)ei(ωt−βz),
F(x, y, z, t) = φ(x, y, ω)ei(ωt−βz), ~JS(x, z, t) = ~jS(x, ω)ei(ωt−βz) andQS(x, z, t) = ρS(x, ω)ei(ωt−βz),
where we considered the possibility that the transversal wave functions depend on the fre-
quency ω. However we only want to take low-frequency contributions of this effect into
account and expand every potential, the surface charge and surface currents in terms of
frequency ω,

~A = ~A(0) + ω ~A(1) + ω2 ~A(2) + . . . φ = φ(0) + ωφ(1) + ω2φ(2) + . . . (2.19)

~jS = ~j
(0)
S + ω~j

(1)
S + ω2~j

(2)
S + . . . ρS = ρ

(0)
S + ωρ

(1)
S + ω2ρ

(2)
S + . . . . (2.20)

Further on we are going to restrict our calculations to lowest order in frequency ω. Keep
in mind that β is at least of first order in ω similar to TEM (2.2) and TE/TM (2.3) modes in
transmission lines or waveguides. With this our equations of motion for the potentials in
the air and dielectric, not considering the metal layer, reduce to,Ä

∂2
x + ∂2

y

ä
~A(0) = 0

Ä
∂2
x + ∂2

y

ä
φ(0) = 0 . (2.21)

The surface currents ~jS and surface charges ρS , which aren’t covered in the above equa-
tions, act as sources for the potentials ~A(0) and φ(0). The Lorenz gauge condition ∂xAx +
∂yAy−iβAz+iωεµφ = 0 and continuity equation for electric charge ∂xjS,x−iβjS,z = −iωρS
in zero order grant us further insight into the physics of the low frequency solution,

∂xA
(0)
x + ∂yA

(0)
y = 0 ∂xj

(0)
S,x = 0 . (2.22)
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2.4. Planar Transmission Lines

Current can not flow across the wedges of the metal layer in x-direction. Together with the
vanishing of the partial derivative with respect to x for the current component perpendic-
ular to the direction of the transmission line we can show that the current perpendicular
to the waveguide is negligible in a low frequency situation, jS,x = 0. This implies the
vanishing of the A(0)

x component since the source for the Ax component is negligible. If
the A(0)

x component is zero everywhere then the zero order Lorenz condition tells us that
the A(0)

y component is constant in y-direction. If we are very far away from the surface
of the planar transmission line the Ay component will be zero and consequently has to
vanish everywhere. And finally we reduced the above vector equation for ~A(0) to a scalar
equation for the remaining A(0)

z component,Ä
∂2
x + ∂2

y

ä
A(0)
z = 0

Ä
∂2
x + ∂2

y

ä
φ(0) = 0 , (2.23)

subject to the zero order boundary conditionsA(0)
z |y↘0

y↗0 = −µjS,z and ε0∂yφ(0)|y↘0−ε∂yφ(0)|y↗0 =

−ρ(0)
S .

Lumped Element Approximation

Similar to our calculations for the TEM wave propagation we are now going to derive the
connection between the static capacitance c and inductance l per unit length of transmis-
sion line and the low frequency field description of the planar transmission line. We start
by integrating the first order continuity equation for the charge and get,

W
2∫

−W
2

−iβjS,z dx =

W
2∫

W
2

−iωρS dx

⇔ βI = ωq (2.24a)

which establishes the relationship between the total current I and the charge per unit
length q on the central conductor. Since we assumed the central conductor to be perfectly
conducting σ →∞, the tangential component of the electrical field hast to vanish even in a
non-static situation. For the axial component this provides us with the following equation,

E(1)
z = −iωA(0)

z + iβφ(0) = 0

⇔ ωA(0)
z = βφ(0) = βV , (2.24b)

where we have introduced the electrical voltage V of the central conductor with respect to
the surrounding groundplane which can be defined unambiguously because of the negli-
gible axial component of the curl of the electrical field. The electrical Voltage is constant
in every slice of transmission line because of the infinite conductivity. This immediately
also applies to the axial component of the the vector potential Az . Keep in mind that the
electrical voltage V oscillates in axial direction proportional to e−iβz but even though the
electrical field vanishes in the conductor because the oscillating axial vector potential Az
compensates. Next we compute the characteristic inductivity of the planar transmission
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2. From Maxwell to Kirchhoff

line. To this end we have to integrate the entire flux generated by a piece of tramission line
of length δ and divide afterwards by δ to get the flux linkage ψ. The surface area for the
flux integral is depicted in figure 2.3,

ψ =
1

δ

δ∫
0

∞∫
0

~B · êx dydx =
1

δ

δ∫
0

∞∫
0

Ä
∇× ~A

ä
· êx dydx =

1

δ

∮
δS

~Ad~l = Az . (2.24c)

Since there is no Ay component the vertical edges of the integral around the edge of S
do not contribute. The axial component of the vector potential Az vanishes for increasing
distance to the surface of the planar transmission line Therefore we conclude that the flux
linkage ψ is equal to the axial component Az of the vector potential on the central con-
ductor since this is the only non-vanishing part of the closed path integral of the vector
potential encircling S. The characteristic capacitance and inductance of the planar trans-
mission can be determined to,

c =
q

V
l =

ψ

I
=
Az
I
. (2.24d)

With the help of all equations (2.24) we can derive the following important relations,

β2 = ω2 lc
V

I
=

 
l

c
, (2.25)

which show us that the propagation constant β and the characteristic impedance Zc = V/I
can be fully described with the knowledge of the characteristic capacitance c and induc-
tance l which are borrowed from a description in terms of static fields. c and l are the
characteristic capacitance and inductance of the planar transmission line with the central
conductor at a constant V , especially in axial direction constant, and with a constant cur-
rent I along the axial direction.
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3. Lumped Element Circuits

3.1. Hamiltonians of Electrical Circuits

To reach our ultimate goal of quantization of electrical circuits we opted to first figure out
the correct Hamiltonian of an electrical circuit and then quantizing the theory by promot-
ing observables to operators with commutators derived from the Poisson brackets of the
their classical counterparts. The derivation of the Hamiltonian of a electrical circuit entails
a slight difficulty because it is necessary to introduce a set of independent generalized co-
ordinates. If we would introduce the current through each branch of the electrical circuit
as an generalized coordinate to fully describe the state of the electrical circuit we would
immediately see that not all currents flowing to a node of the electrical circuit are indepen-
dent but rather are dependent because of the node-currents Kirchhoff rule. We circumvent
this difficulty by introducing node fluxes.

3.1.1. Energy of Capacitive and Inductive Branches

All electrical circuits considered in this work consist of networks of capacitive and induc-
tive branches. Capacitive and inductive branches are fully described by their constitutive
relations,

Vb = f(Qb) Ib = g(φb), (3.1)

respectively. Vb is the voltage difference between two sides of the branch and Ib is the cur-
rent flowing through the branch. Every branch has an arbitrarily chosen direction which
is necessary to unambiguously define the sign of the voltage difference and sign of the
current flowing through the branch. Branch voltages and branch currents can be defined
via line integrals of the electric ~E and magnetic ~B fields,

Vb =

∫
Γ

~E · d~l Ib =
1

µ

∮
Ω

~B · d~l , (3.2)

where the path Γ is chosen outside any conductor linking both ends of the branch and
the path Ω encircling the whole branch. The unambiguity and therefore validity of these
definitions has already been established in the previous chapter 2. The branch charge Qb
and branch flux φb can be defined to,

Qb =

t∫
−∞

Ib(t
′) dt′ φb =

t∫
−∞

Vb(t
′) dt′ , (3.3)

under the assumption that in the infinite past all electromagnetic fields vanished. The
branch flux φb is a generalization of the flux linkage introduced solely for inductive branches
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3. Lumped Element Circuits

�B

a) b)

�E
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Figure 3.1.: Sketch to see the equivalence of branch flux φb and flux linkage ψ for inductive
elements a) A simple piece of wire can act as an inductive element due to the
field generated around the wire. b) Orange shaded area for the calculation of
the flux linkage of a single-turn coil

in chapter 2. In contrast to the flux linkage ψ the branch flux φb can also be applied to
capacitive branches since it is defined via the voltage drop along a specific branch. For in-
ductive branches it is however the same as the flux linkage as we may convince ourselves
with the following two examples. Consider a piece of wire in an electric field ~E parallel
to the wire (c.f. figure 3.1 a). Due to the electric field a current is flowing through the
wire and due to the current there is a magnetic field with concentric magnetic field lines
in planes perpendicular to the wire. If somehow the electric field would be switched off
suddenly, the electrons would slow down and consequently decrease the magnetic field
strength. However due to Lenz’s law the diminishing magnetic field will try to accelerate
the electrons, giving the electrons a kind of “electromagnetic” inertia. In this way every
simple piece of wire acts as a inductor. The total generated flux of the piece of wire can
be evaluated by integrating the magnetic field penetrating surface S. The static magnetic
field is the result of the building up of the current in the infinite past and with the help of
a Maxwell equation we get,

ψ =

∫
S

~B · d~s =

t∫
−∞

∫
S

∂t′ ~B · d~s dt′ =
t∫

−∞

∫
S

∇× ~E · d~s dt′ =
0∫

−∞

V (t′) dt′ = φb . (3.4)

The same holds for a inductor coil depicted in figure 3.1 b), where the plane of integration
has to be changed but otherwise the whole reasoning is unchanged.

The electrical power flowing into a branch of our circuit is irrespective of the type of
branch the product of the branch voltage and current Pb = VbIb = VbQ̇b = φ̇bIb. The stored
electrical energy is the time integral of the power and we get for the stored energy in terms
of the branch charge and branch flux respectively,

h(Qb) =

t∫
−∞

VBQ̇b dt
′ =

Qb∫
0

f(Q′b) dQ
′
b h(φb) =

t∫
−∞

φ̇bIb dt
′ =

φb∫
0

g(φ′b) dφ
′
b , (3.5)
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3.1. Hamiltonians of Electrical Circuits

where we used the constitutive relations for capacitive and inductive branches (3.1) to re-
formulate the time integrals. We shortly introduce now all three types of different branches
used throughout this work.

Capacitor The capacitor appears as characteristic capacitance in the waveguiding ele-
ments of circuit QED or as lumped element version as coupling capacitance between trans-
mission line resonators and superconducting qubits. In its lumped element version the
coupling capacitance can be as simple as two metal surfaces in close proximity to each
other or interdigitated metal fingers for increased capacitance (c.f figure 3.2). Additionally
every physical Josephson junction is also a capacitor (c.f. figure 3.4)

Figure 3.2.: Various versions of capacitors in circuit QED setups. a) and b) coupling ca-
pacitors with different capacitance to couple transmission line resonators. c)
Interdigitated “finger” capacitor of a transmon qubit and an coupling capaci-
tance to the transmission line. All capacitor designs by the Zürich group led
by Andreas Wallraff.

Inductor The inductor appears like the capacitor as characteristic inductance in the trans-
mission lines of the circuit QED setup but there is also a lumped element version of the
inductor. Lumped element inductors can be realized as flattened coils in the quasi two-
dimensional circuit QED setups (c.f. figure 3.3 b) or they can be large Josephson junctions
or arrays of Josephson junctions operated in the linear regime (c.f figure 3.3 a). The re-
alization of a lumped inductor as a Josephson junction is the space-saving alternative to
implement an inductor.

Josephson Junction The most important element of a circuit QED setup is a Josephson
junction. The Josephson junction is the only non-dissipative nonlinear element in the
toolbox of the circuit QED engineer. It consists of two superconducting leads in close
proximity but separated by a small potential barrier. This barrier can be a piece of non-
superconducting metal, a narrow constriction or point contact or as it is the case for Joseph-
son junctions in circuit QED setups a insulating barrier. Josephson junctions in circuit QED
setups are made of two aluminum leads with an insulating layer of aluminum oxide. Brian
D. Josephson predicted in 1962 that current can flow across a Josephson junction as a conse-
quence of Cooper-pair tunneling without an applied electrical field [45]. A year later Brian
D. Josephson’s theory could be verified by Philip Anderson and John Rowell [2]. Every
physical Josephson junction is also a capacitor, with capacitance CJ , because of the close
proximity of the two superconducting metal leads. Therefore it is represented in a elec-
trical circuit as a “pure” Josephson element with constitutive relation I = Ic cos((2e/~)φb)
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3. Lumped Element Circuits

Figure 3.3.: Inductor implementations in circuit QED. a) Fluxonium qubit of the Yale group
led by Michel Devoret with a large array of Josephson junctions operating as a
giant inductor. b) Phase qubit of the UCSB group led by John Martinis with a
lumped element inductor coil in a gradiometric design (coil has a left handed
and right handed part) to reduce coupling to spurious stray fields

and a capacitor in parallel. If we neglect for a moment the nonlinearity of the purely in-
ductive part we end up with a LC-circuit whose eigenfrequency is ωp = 1/

√
CJLJ , the

plasma frequency, with LJ = ϕ2
0/EJ the Josephson inductance. ϕ0 = ~/(2e) is the rescaled

quantum of flux. Throughout our work we will often encounter slightly nonlinear Joseph-
son junctions and employ the picture of the Josephson junction as a LC-circuit oscillating
with the plasma frequency ωp and a small nonlinearity.

The critical current encodes material properties as well as the specific geometry of the
junction. Because of large production variances the critical current can only be determined
roughly in advance and never is the result of theoretical considerations but rather a phe-
nomenological constant that gets adjusted to reproduce the experimental results.

Figure 3.4.: Josephson junctions of circuit QED setups. a) and b) Josephson junctions of the
ultrastrong coupling setup of the TU munich group led by Rudolf Gross. c)
Charge qubit with two Josephson junctions of the first ever circuit QED exper-
iment of the Yale group led by Robert Schoelkopf and Steven Girvin

We concisely present the type, name, constitutive relation and energy for all types of
branches with the symbolic representation in a electrical circuit considered in this work in
table 3.1.
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3.1. Hamiltonians of Electrical Circuits

type name constitutive relation energy symbol

capacitive capacitor Vb = Qb
C h =

Q2
b

2C = C
2 φ̇

2
b

inductive inductor Ib = φb
L h =

φ2b
2L

Josephson junction Ib = I0 cos(2e
~ φb) h = −EJ cos( φbϕ0

)

Table 3.1.: Table for all possible branches with type, name, constitutive relation, energy of
the specific branch and the symbolic representation in a electrical circuit. EJ =
Icϕ0 is the Josephson energy.

3.1.2. Spanning Tree and Node Fluxes

Now that we know the energy of the individual branches we can set up a Lagranian for
every conceivable electrical circuit. We opt to express the state of the electrical circuit
in terms of the branch fluxes φb. With this choice we made the energy accumulated in
the capacitive branches to the equivalent of the kinetic energy of a mechanical system
since they depend on the time derivative of the branch flux (c.f. table 3.1). The energy
stored in the inductive branches is consequently the equivalent of the potential energy of a
mechanical system. The Lagrangian of any electrical circuit is therefore the sum of all the
capacitively stored energy subtracted by the sum of all inductively stored energy. If we
would now attempt to get the Hamiltonian of the system by Legendre transforming the
Lagrangian expressed in terms of the branch fluxes we would immediately get into trouble
because not all branch fluxes are independent quantities. If we integrate the Kirchhoff rule
of the vanishing of the total voltage drop in a mesh of the electrical circuit we see that the
same rule holds for the branch fluxes of the mesh,

t∫
−∞

∑
k∈Mesh

Vb|k =
∑

k∈Mesh

φb|k = 0 . (3.6)

Here however we have to make an small adjustment to our lumped element approxima-
tion that we established in the previous chapter. Since we are dealing with superconduc-
tors in circuit QED the conductivity is infinitely high and any induced ring current in a
mesh of the electrical circuit may persist forever. By the time this ring current is induced
by a time-dependent magnetic field the Kirchhoff rule of vanishing total voltage in a mesh
is violated. The time integral of this violation is exactly the flux penetrating the specific
mesh and we may therefore reformulate the Kirchhoff rule for the branch fluxes to be,

∑
k∈Mesh

φb|k = Φ (3.7)

where Φ is the flux threaded through the mesh. We may proceed in the same way with the
second Kirchhoff rule. If we integrate the current flowing on a node for all times the result
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3. Lumped Element Circuits

should be 0 since there is no excess charge on the node,

t∫
−∞

∑
k∈node

Ib|k =
∑

k∈node

Qb|k = 0 (3.8)

if there where excess charge accumulation on a junction in the physical circuit we could in-
corporate this effect into the symbolic circuit representation by adding a capacitive branch
to the node.

We now change to a set of generalized coordinates that automatically fulfills the above
reformulated Kirchhoff rules. First we choose one of the nodes of the electrical circuit to
be our virtual ground. Its node flux will be the reference flux for all other node fluxes
and therefore is not a degree of freedom of the circuit anymore. Starting from our vir-
tual ground we choose a connected set of branches, the spanning tree T , which connects
every node of the circuit with the ground node in exactly one way. The node flux of a
specific node is the sum of all branch fluxes, also considering the direction of the branch,
connecting the node to ground,

φn|j =
∑
k

Sj,kφb|k , (3.9)

where Sj,k is 1, −1 or 0 depending on whether branch k connects node j to ground in the
correct direction, in opposite direction or is not part of the path between the node and
ground at all. The remaining branches are called closure branches C and always connect
two nodes on the spanning tree. The mesh that is defined by the closure branch and the
spanning tree connecting both nodes, which might include the ground node itself, is called
irreducible loop. To be able to express the above derived Lagrangian in terms of node
fluxes we also need to know how we get a specific branch flux in terms of the node fluxes. If
the specific branch is part of the spanning tree, the branch flux is the difference between the
node fluxes that define the branch. If the branch is a closure branch, then the branch flux
is the difference of the confining node fluxes plus the flux threaded through the associated
irreducible loop,

φb|k∈T = φn|j − φn|j′ φb|k∈C = φn|j − φn|j′ + Φk . (3.10)

To further illustrate this procedure we now want to calculate a specific example. Consider
the electrical circuit depicted in figure 3.5. The green branches are the arbitrarily chosen
spanning tree for the likewise arbitrarily chosen ground node. A flux is threaded through
the irreducible loop defined by the closure branch between node 2 and 3. Observe here that
there can not be a flux threaded through the loop defined by the closure branch between
node 1 and 2 since this loop is open because of the capacitor between the ground node and
node 1. The flux can not be determined because of the open loop as well as no persistent
current can flow. A physical Josephson junction is between the ground node and node 2
represented in the electrical circuit by a pure Josephson inductor and a capacitor in parallel.
With the direction of the branches and the spanning tree chosen according to figure 3.5 this

26



3.1. Hamiltonians of Electrical Circuits

Figure 3.5.: Electrical circuit consisting of three active nodes and one ground node. The ar-
bitrarily chosen spanning tree is marked by the green branches. Red branches
are the closure branches. The irreducible loop defined by the closure branch
between node 2 and node 3 is threaded by a flux Φ. Between the ground node
and node 3 is a physical Josephson junction represented in the electrical circuit
by the “pure” Josephson element and a capacitor in parallel

leads us to the following Lagrangian,

L =
C1

2
φ̇2
n|1 +

C2

2
φ̇2
n|2 +

C3

2

Ä
φ̇n|3 − φ̇n|1

ä2−
−

Ä
φn|2 − φn|1 + Φ

ä2
2L1

−

Ä
φn|3 − φn|1

ä2
2L2

−

Ä
φn|3 − φn|2

ä2
2L3

+ EJ cos

Ç
φn|2
ϕ0

å
. (3.11)

With the Lagrangian we can compute the generalized momenta,

∂L
∂φ̇n|1

= q1 = C1φ̇n|1 + C3

Ä
φ̇n|1 − φ̇n|3

ä
(3.12)

∂L
∂φ̇n|2

= q2 = C2φ̇n|2 (3.13)

∂L
∂φ̇n|3

= q3 = C3

Ä
φ̇n|3 − φ̇n|1

ä
, (3.14)
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3. Lumped Element Circuits

and the Hamiltonian,

H =
(q1 + q3)3

2C1
+

q2
2

2C2
+

q2
3

2C3
+

+

Ä
φn|2 − φn|1 + Φ

ä2
2L1

+

Ä
φn|3 − φn|1

ä2
2L2

+

Ä
φn|3 − φn|2

ä2
2L3

− EJ cos

Ç
φn|2
ϕ0

å
. (3.15)

The first part of the Hamiltonian is the stored electrical energy expressed in node charges
while the second part is the stored magnetic energy. The node charge qn is the sum of the
charges of all capacitive branches connected to the specific node.

The choice of the spanning tree and the ground node corresponds to the choice of a
gauge in electromagnetic field theory.

3.2. Boundary Conditions

A typical circuit QED setup will consist of elements comparable to the size of the mi-
crowaves that guide waves like coplanar waveguides and coplanar waveguide resonators
and elements that are much smaller than the wavelength of the commonly used microwaves
like coupling capacitors, superconducting qubits and lumped element LC circuits. To ac-
comodate our theory to this situation in circuit QED we have to introduce the description
of the state of the coplanar waveguide in terms of the “node” flux field. This way we get
a coherent description of lumped elements as well as elements guiding waves. And we
have to derive boundary conditions for the “node” flux field that eventually will describe
the scattering of waves in the coplanar waveguides at the discontinuities represented by
the lumped elements of the circuit QED setup. The introduction of boundary conditions at
first may seem alien to the Hamilton formalism introduced above in section 3.1 however
boundary conditions will naturally emerge if we take a step back and thoroughly investi-
gate the transition from the lumped element representation of the coplanar waveguide to
the continuum limit of equations 2.11.

We start with the simplest possible discontinuity of a coplanar waveguide, the open
circuited end (c.f. figure 3.6). The coplanar waveguide is subdivided in lumps of length
∆ with an in series inductance of ∆l and a parallel capacitance to the groundplane of
∆c. The spanning tree for the description in terms of node fluxes is chosen to take the
surrounding groundplane to be the ground node. The surrounding groundplane which
can be a quite large object is in the circuit representation just one node. This is because
we assume the groundplane to be at the same electrical potential throughout the setup for
all times. This is a prerequisite which requires in some cases careful engineering because
the central line in a coplanar waveguide may cut the groundplane in two separate planes
which have to be connected again by conductive air bridges to circumvent parasitic slotline
modes where the two sides of the groundplane are at different electrical potential. The
only branch of the spanning tree follows the central conductor with the inductances which
renders the capacitive branches to be closing branches. With this choice of spanning tree
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3.2. Boundary Conditions

Figure 3.6.: Electrical circuit model for the open circuited coplanar waveguide. Every ac-
tive node in the circuit is symbolized by a black circle. Spanning tree branches
are green and closure branches red, the ground node is green. Every active
node represents a piece of coplanar waveguide of length ∆ with capacitance
∆c and inductance ∆l. The ground node represents the entire surrounding
groundplane of the coplanar waveguide resonator.

the Lagrangian expressed in terms of the node fluxes reads L = Lbulk + Lboundary where,

Lbulk =
∑
n

∆c

2
φ̇2
n −

(φn − φn−1)2

2∆l
Lboundary =

∆c

2
φ̇2

1 −
(φ2 − φ1)2

2∆l
, (3.16)

with the subtle difference being that the first node flux only couples to one neighbor φ2

and not to two like all other node fluxes. This affects the Lagrangian equations of motion
for the node fluxes substantially,

d

dt

∂L
∂φ̇n

− ∂L
∂φn

= ∆cφ̈n +
−φn−1 + 2φn − φn+1

2∆l
= 0 (3.17)

d

dt

∂L
∂φ̇1

− ∂L
∂φ1

= ∆cφ̈1 +
φ1 − φ2

2∆l
= 0 . (3.18)

When we again perform the continuum limit ∆ → 0 we have to replace the node fluxes
with a flux field φn → φ(x) and the first flux node becomes the boundary value for the flux
field φ1 → φ|x=0. The different structure of the equations of motion for the node fluxes
generates a wave equation for the flux function in the bulk,

∂2
t φ(x, t)− 1

lc
∂2
xφ(x, t) = 0, (3.19)

which is enabled by the special structure of the second, inductive, term of the equation of
motion for the bulk node fluxes in combination with the ∆ in the first, capacitive, term. At
the boundary however the capacitive term vanishes and we get the following condition,

1

l
∂xφ(x)|x=0 = I|x=0 = 0 , (3.20)

which tells us the physical obvious fact that current can not flow through the open circuited
end of the coplanar waveguide. In this way the correct boundary conditions emerge as the
“frozen” equations of motion for node fluxes at the boundary in the continuum limit.
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3. Lumped Element Circuits

Figure 3.7.: Electrical circuit model of a coupling capacitor Cc at position x∗ in a coplanar
waveguide. Active nodes are black circles, spanning tree branches are green
and closure branches red

Further on we use the same spanning tree as above and omit the calculation of the equa-
tions of motion in the bulk since they show no difference to the above example. We may
expand on the above scheme with two additional examples which we often encountered
in the course of our work. The first is the capacitive coupling Cc between two half infinite
coplanar waveguides (c.f. figure 3.7) encountered in the coupling of a coplanar waveguide
resonator to a half infinite coplanar waveguide to excite or detect the field in the resonator.
The Lagrangian for the node fluxes directly adjacent to the coupling capacitance is,

Lcc =
∆c

2

Ä
φ̇2
l + φ̇2

r

ä
+
Cc
2

Ä
φ̇l − φ̇r

ä2 − (φl − φl−1)2

2∆l
− (φr+1 − φr)2

2∆l
. (3.21)

The Euler Lagrange equations of motion are,

d

dt

∂L
∂φ̇l
− ∂L
∂φl

= ∆cφ̈r + Cc
Ä
φ̈l − φ̈r

ä
+
φl − φl−1

2∆l
= 0 (3.22)

d

dt

∂L
∂φ̇r
− ∂L
∂φr

= ∆cφ̈l + Cc
Ä
φ̈l − φ̈r

ä
+
φr − φr+1

2∆l
= 0 . (3.23)

And after performing the continuum limit, ∆→ 0, φl → φ|x↗x∗ and φr → φ|x↘x∗ , we get,

Cc
Ä
∂2
t φ|x↘x∗ − ∂2

t φ|x↗x∗
ä

+
1

l
∂xφ|x↗x∗ = 0 (3.24)

Cc
Ä
∂2
t φ|x↘x∗ − ∂2

t φ|x↗x∗
ä

+
1

l
∂xφ|x↘x∗ = 0 . (3.25)

The capacitor therefore may introduce a discontinuity of the flux function. Subtracting the
two equations we see that the current going into the capacitor from the left has to be equal
to the current leaving the capacitor to the right,

1

l
∂xφ|x↗x∗ =

1

l
∂xφ|x↘x∗ . (3.26)

Cc (∂tφ|x↘x∗ − ∂tφ|x↗x∗) is the charge on the capacitor and the boundary conditions state
that the current flowing through the coupling capacitor Cc is the time derivative of this
charge.
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3.2. Boundary Conditions

Figure 3.8.: Electrical circuit model for the linearized Josephson junction with capacitance
CJ and Josephson inductance LJ at position x∗ in a coplanar waveguide. Ac-
tive nodes are black circles, spanning tree branches are green and closure
branches red. Since the irreducible loop between the capacitor and inductor
of the Josephson junction is not a physical loop in the setup but a symbolical
representation of a physical Josephson junction, it can not be threaded by a
external flux.

The last example involves the the interruption of the central line of the coplanar waveg-
uide with an LC-circuit (c.f. figure 3.8). This example is of special importance to our work
since it is the linearized version of a Josephson junction that interrupts the central line of
the waveguide resonator. The Lagrangian for the LC circuit is,

LJJ =
∆c

2

Ä
φ̇2
l + φ̇2

r

ä
+
CJ
2

Ä
φ̇r − φ̇l

ä2 − (φl − φl−1)2

2∆l
− (φr+1 − φr)2

2∆l
− (φr − φl)2

2LJ
. (3.27)

The linear part of the Josephson junction introduces a flux drop or discontinuity in the flux
function similar to the capacitor. After performing the continuum limit we end up with
the following boundary conditions,

CJ
Ä
∂2
t φ|x↘x∗ − ∂2

t φ|x↗x∗
ä

+
φ|x↘x∗ − φ|x↗x∗

LJ
=

1

l
∂xφ|x↗x∗ (3.28)

CJ
Ä
∂2
t φ|x↘x∗ − ∂2

t φ|x↗x∗
ä

+
φ|x↘x∗ − φ|x↗x∗

LJ
=

1

l
∂xφ|x↘x∗ , (3.29)

which again state that the current going into the LC-circuit coming from the left has to
equal the current leaving the LC-circuit to the right (1/l)∂xφ|x↘x∗/(1/l)∂xφ|x↗x∗ . Addi-
tional to that however they tell us that the sum of the currents flowing through the capac-
itor CJ

(
∂2
t φ|x↘x∗ − ∂2

t φ|x↗x∗
)

and the inductor (φ|x↘x∗ − φ|x↗x∗)/LJ have to be equal to
the current flowing through the LC-circuit. This is the Kirchhoff rule for the embedded
LC-circuit and it is a consequence of the introduction of the node fluxes that it naturally
emerges as one of the “frozen” equations of motion.
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3. Lumped Element Circuits

3.3. Transfer Matrix Picture

We want to introduce a additional way of representing the flux field on the coplanar
waveguide which provides computational advantages over the previous approach where
the flux field is merely a real number associated to every point x of the coplanar waveg-
uide. An eigensolution to the wave equation (c.f equation 3.19) with frequency ω can be

written in terms of forward
⇀
φ and backward

↼
φ propagating plane waves,

φ(x, t) =
⇀
φ(kx− ωt) +

↼
φ(kx+ ωt) , (3.30)

with
⇀
φ(kx− ωt) = aei(kx−ωt)

↼
φ(kx+ ωt) = be−i(kx+ωt) . (3.31)

The forward and backward propagating plane wave are linearly independent solutions to
the wave equation and to emphasize this fact we may write them as the components of a
two dimensional representation ~φ of the flux function,

φ(x, t)“= ~φ(x, t) =

Ü
⇀
φ(x, t)

↼
φ(x, t)

ê
=

Ü
aei(kx−ωt)

be−i(kx+ωt)

ê
. (3.32)

With this representation we are able to devise a couple of two-dimensional matrices that
help us manipulate the two-dimensional flux function ~φ and will ultimately become the
subject of investigation themselves in chapter 6. At first we introduce the translational
matrix T (δ) which propagates the flux function for the distance δ in positive direction
along the coplanar waveguide,

~φ(x+ δ, t) = T (δ)~φ(x, t) T (δ) =

Ü
eikδ 0

0 e−ikδ

ê
. (3.33)

We may reexamine the boundary conditions for the flux function investigated in the pre-
vious section 3.2 in the framework of the two-dimensional flux function representation.
We start with the open-circuited end of a coplanar waveguide. The current has to vanish
at the end of the coplanar wave-guide which imposes the condition (1/l)∂xφ|x=0 on the
flux function. Expressed in terms of forward and backward propagating amplitudes of the
two-dimensional flux function this amounts to,

⇀
φ
′
(kx− ωt)|x=0 −

↼
φ
′
(kx+ ωt)|x=0 = 0 , (3.34)

where
⇀
φ
′

and
↼
φ
′

is the derivative of the forward and backward propagating amplitude
with respect to the argument of the function. Notice here that we did not have to utilize
the special plane wave form. A arbitrary signal propagating towards the open circuited
end of the coplanar waveguide is reflected since the spatial derivative of the forward and
backward propagating flux amplitudes has to be the same for all times.
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3.3. Transfer Matrix Picture

The boundary condition for an open circuited end of a coplanar waveguide establishes
a relationship between forward and backward propagating amplitudes of a single flux
function. On the contrary the boundary condition of a coplanar waveguide interrupted by
a capacitor or LC-circuit will establish relationships between the forward and backward
propagating amplitudes of the flux functions directly to the right and left of the capacitor
or LC-circuit. Comparable to a scattering problem we will therefore introduce a scatter-
ing matrix which will “propagate” the flux function directly left of the disruption to the
immediate right of the disruption. We introduce the forward amplitudes,ar and al, and
backward amplitudes, br and bl, directly to the right and left of the disruption,

~φ|x↘x∗ =

Ü
aei(kx−ωt)

be−i(kx−ωt)

ê
|x↘x∗ =

Ü
ar

br

ê
(3.35)

~φ|x↗x∗ =

Ü
aei(kx−ωt)

be−i(kx−ωt)

ê
|x↗x∗ =

Ü
al

bl

ê
, (3.36)

and reexpress the boundary conditions for the coplanar waveguide interrupted by a ca-
pacitor (c.f. equation 3.24) with them,

−Ccω2 (ar + br − al − bl) +
ik

l
(al − bl) = 0 (3.37)

−Ccω2 (ar + br − al − bl) +
ik

l
(ar − br) = 0 . (3.38)

The boundary equations may be reformulated to,Ü
ar

br

ê
=

Ü
1 + ik

2Cclω2 − ik
2Cclω2

ik
2Cclω2 1− ik

2Cclω2

ê
︸ ︷︷ ︸

A

Ü
al

bl

ê
, (3.39)

to get the matrix that propagates the two-dimensional flux function from the left of the
capacitor to its right A. Notice here that we get the inverse of the matrix A upon inverting
the sign of the wavevector k which reflects the mirror symmetry of the setup. Given the
scattering matrixA of the coplanar waveguide interrupted by a capacitor we may examine
the following situation: lets suppose a plane wave impinges on the capacitor from the
left. The plane wave is reflected and and transmitted because of the capacitor and we
want to calculate the reflection and transmission coefficients. We choose the forward and
backward amplitudes according to our considerations above, al = 1, bl = R, ar = T and
br = 0. And solve for the reflection and transmission coefficient R and T with the help of
A,

R =
k

k + i2Cclω2
T =

2Cclω
2

2Cclω2 − ik
R+ T = 1 . (3.40)
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Figure 3.9.: Magnitude and phase of the transmission coefficient for plane waves on a
coplanar waveguide with frequency ω impinging on a capacitor with capac-
itance Cc. The circuit for coplanar waveguide in the circuit diagram depicting
incoming, reflected and transmitted plane waves is abbreviated by a horizontal
line.

For small frequencies ω < 1/(Cc
»
l/c) the plane waves are totally reflected at the capacitor

with a π/2 phase shift. For increasing frequencies the capacitor starts becoming transpar-
ent until it virtually disappears and lets the high frequency plane waves pass as if there
was no capacitor (c.f. figure 3.9).

We proceed with the coplanar waveguide interrupted by a LC-circuit in the exact same
way. The boundary conditions for the LC-circuit (c.f. equation 3.28) expressed in terms of
the forward and backward amplitudes ar, al and br, bl are,

−CJω2 (ar + br − al − bl) +
ar + br − al − bl

LJ
=
ik

l
(al − bl) (3.41)

−CJω2 (ar + br − al − bl) +
ar + br − al − bl

LJ
=
ik

l
(al − bl) . (3.42)

And we reformulate the boundary equations again,Ü
ar

br

ê
=

â
1 + ikLJ

2l

(
1−ω2

ω2p

) − ikLJ

2l

(
1−ω2

ω2p

)
ikLJ

2l

(
1−ω2

ω2p

) 1− ikLJ

2l

(
1−ω2

ω2p

)

ì
︸ ︷︷ ︸

S

Ü
al

bl

ê
, (3.43)

to get the scattering matrix of a coplanar waveguide interrupted by a LC-circuit, S, where
ωp = 1/

√
LJCJ is the frequency of the LC-circuit. We consider the same situation as above

of an impinging plane wave that is reflected and transmitted at the LC-circuit. Now the
impinging plane wave is reflected if it is on resonance with the LC-circuit at ω = ωp, with
the width of the resonance ∆ω =

»
(ZJ/(2Zc))2 + 4 given by the ratio of the characteristic

impedances of the LC-circuit ZJ =
»
LJ/CJ and the coplanar waveguide

»
l/c. The pro-

cess however can not be explained by the excitation of a harmonic oscillator which then
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3.3. Transfer Matrix Picture

Figure 3.10.: Magnitude and phase of the transmission coefficient for plane waves on a
coplanar waveguide with frequency ω impinging on a LC-circuit with capaci-
tance CJ and inductance LJ . The circuit for coplanar waveguide in the circuit
diagram depicting incoming, reflected and transmitted plane waves is abbre-
viated by a horizontal line.

reemits into both directions of the coplanar waveguide as can be seen by the phase of the
reflected and transmitted plane waves. Plane waves rather enter the LC-circuit and pass
through the capacitor or inductor depending on the relationship between the plane wave
frequency and the LC-circuit frequency. For plane wave frequencies smaller than the LC-
circuit frequency ω < ωp the inductor is virtually transparent and imprints its characteristic
phase relations on the reflected and transmitted plane waves. For plane wave frequencies
larger then the LC-circuit frequency it is the other way around: the capacitor is virtually
transparent, as calculated above, and the plane waves pass through the capacitor as can
be seen by the phase of the reflected and transmitted plane waves. To summarize: The
resonance phenomenon observed here is the consequence of a combination of a high-pass
and low-pass filter rather then the consequence of a sinusoidal excitation of a harmonic
oscillator that reemits in the coplanar waveguide.
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4. Quantization of Electrical Circuits

In the previous chapter we described the state of a arbitrary electrical circuit in terms of
node fluxes with the help of a spanning tree. The introduction of node fluxes was neces-
sary to introduce a description of the electrical circuit in terms of independent variables
that already fulfills the Kirchhoff rules. With this we were able to Legendre transform and
get the canonical conjugate variables of the node fluxes, the node charges, and the Hamil-
tonian of the electrical circuit. Up to this point however everything we did was classical
physics.

The extraordinary good decoupling from external as well as internal degrees of freedom
of the Cooper-pair condensate in the superconducting electronics in combination with the
low operating temperatures reveals macroscopic variables like node fluxes, node charges,
node voltages or branch currents to be quantum observables. Currents that are measured
repeatedly prove to be random with probability distributions that are derivable from the
laws of quantum mechanics. This means that for example currents can flow clockwise and
anti-clockwise at the same time in a superconducting ring and show the counterintuitive
correlations of entanglement in different regions of the superconducting circuit.

To get to a quantum theory of electrical circuits we proceed on the well-treaded path of
canonical quantization. We promote the node fluxes and node charges to operators with
the canonical commutation relations. This chapter illustrates the procedure and the con-
sequences of the quantization of some example electrical circuits which are of importance
for the discipline of superconducting circuits as well as for the work presented in the main
part of the thesis.

Figure 4.1.: a) Circuit representation of the LC oscillator with spanning tree. b) Probability
distributions for the measurements of φ provided the state of the LC oscillator
is one of its eigenfunctions |n〉
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4. Quantization of Electrical Circuits

4.1. LC Oscillator

We start by quantizing the most simple and fundamental electrical circuit, the LC oscillator
(c.f. figure 4.1 a) . The LC oscillator consists of a capacitor and an inductor in parallel.
Electrical charge can accumulate on the capacitor and generate a electrical field between
the capacitor plates. A current flows through the inductor, when the capacitor discharges,
and builds up a magnetic field. In this way the LC oscillator exchanges back and forth
energy stored in a electric and a magnetic field. The Lagrangian of the LC oscillator is,

L =
C

2
φ̇− 1

2L
φ . (4.1)

We Legendre transform the Lagrangian to get the Hamiltonian,

H =
q2

2C
+

φ

2L
, (4.2)

with q = (∂L)/(∂φ̇) = Cφ̇ the canonical conjugate momentum of φ. q is in this particular
case the excess charge on one of the capacitor plates. To quantize the theory we simply
promote the classical obervables q and φ to quantum observables q → q̂ and φ → φ̂ with
the commutation relation

î
φ̂, q̂
ó

= i~ and get the quantum mechanical Hamilton operator,

H → H =
q̂2

2C
+

φ̂

2L
. (4.3)

For linear, or nearly linear, systems it can be convenient to introduce lowering and raising
operators a and a† with,

φ̂ =

 
~Zc
2

Ä
a+ a†

ä
q̂ = −i

 
~

2Zc

Ä
a− a†

ä
(4.4)

a =
1√

2L~ω
φ̂+

i√
2C~ω

q̂ a† =
1√

2L~ω
φ̂− i√

2C~ω
q̂ , (4.5)

where Zc =
»
L/C is the characteristic impedance and ω = 1/

√
LC the resonance fre-

quency of the LC circuit. The experimentally proven fact that superconducting circuits
behave quantum mechanically has profound consequences for our expectations on the
outcome of experiments. If we would measure the flux φ in the inductor of the circuit after
having extracted all energy of the system we would still measure random nonzero values
for the flux variable with a gaussian probability distribution with the variance given by,…

〈0|
Ä
φ̂− 〈0| φ̂ |0〉

ä2 |0〉 =
»
〈0| φ̂2 |0〉 =

 
~Zc
2

=: φZPF . (4.6)

For a typical LC oscillator in circuit QED setups with a characteristic impedance of 100Ω
this corresponds to 0.22ϕ0, where ϕ0 = ~/(2e) is the reduced quantum of flux. The vari-
ance in the current flowing through the inductor IZPF and the variance of the voltage drop
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4.2. Coplanar Waveguide Resonator

across the capacitor VZPF of this LC circuit, with a resonance frequency of 6GHz, would be
respectively,

IZPF =
φZPF

L
=

 
~Zc
2

ω

Zc
= 4.4nA (4.7)

VZPF = φ̇ZPF =
i

~
[H,φ]ZPF =

qZPF

C
=

 
~

2Zc
ωZc = 0.44µV , (4.8)

where ÔZPF means the zero point fluctuations
»
〈0| (Ô − 〈0| Ô |0〉)2 |0〉 of the respective op-

erator Ô. If we charge the LC circuit microwave photon by microwave photon and thereby
climb the equally spaced ladder of Fock states, the probability distributions for measuring
specific flux values are given by the famous eigenfunctions of the linear oscillator (c.f. fig-
ure 4.1 b). This involves for example the intriguing fact that the probability for measuring
zero flux vanishes for states which contain an odd number of microwave photons. It has
to be emphasized here however that there are no experiments measuring directly the flux.
Typical experiments with superconducting circuits involve spectroscopical measurements
that are mostly sensitive to energy eigenvalues rather than specific forms of the eigenfunc-
tions.

4.2. Coplanar Waveguide Resonator

Closely related to the LC oscillator is the coplanar waveguide resonator. The coplanar
waveguide resonator is simply a finite piece of coplanar waveguide of length L, typically
terminated at both sides with capacitive coupling to half infinite coplanar waveguides for
driving and readout purposes. To simplify our description we neglect the capacitive cou-
pling and consider a open-circuited coplanar waveguide resonator. We describe the state
of the coplanar waveguide with the above introduced flux function φ(x). The Lagrangian
of the coplanar waveguide resonator therefore reads,

L =

L∫
0

c

2
(∂tφ)2 − 1

2l
(∂xφ) dx , (4.9)

where l is the inductance and c the capacitance per unit length of coplanar waveguide. The
flux function consequentially fulfills a wave equation ∂2

t φ− v2∂2
xφ = 0 with phase velocity

v = 1/
√
lc. We start with an separation of variables ansatz: φ(t, x) = g(t)f(x) and reduce

the partial differential equation of motion to two ordinary equations of motion g̈−ω2g = 0
and f ′′ − k2f = 0 with ω2 the separation constant or rather ω the eigenfrequency of the
solution to the wave equation subject to boundary conditions. k = ω/v is the wavevector
of the solution. The fundamental solution to the ordinary differential equation for f is,

f(x) = aeikx + be−ikx , (4.10)

with forward a and backward b propagating amplitudes. Subject to appropriate boundary
conditions we will get a set of allowed values for the wavevector kn which in turn will
provide us with discrete allowed eigenfrequencies ωn = vkn. We solve for the allowed kn
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4. Quantization of Electrical Circuits

with a transfer matrix technique, which will seem like taking a sledgehammer to crack a
nut, however it will familiarize us with this technique that we will need below. The open
circuited boundary conditions state that no current can flow at the ends of the coplanar
waveguide resonator,

1

l
∂xφ|x=0 = 0

1

l
∂xφ|x=L = 0 , (4.11)

which can be reformulated in terms of the forward and backward propagating amplitudes,

a0 − b0 = 0 aL − bL = 0 , (4.12)

where a0, aL, b0 and bL are the forward and backward propagating amplitudes at the left
and right end of the coplanar waveguide resonator respectively. These two equations can
be considered as a system of linear equations. Unfortunately it is underdetermined since
we have four variables but only two equations. The forward and backward propagating
amplitudes of the right and left end of the resonator are however not independent but can
be mapped on each other with the help of the already introduced translational matrix T (δ)
(c.f. equation 3.33) with δ = −L,Ü

a0

b0

ê
=

Ü
e−ikL 0

0 eikL

êÜ
aL

bL

ê
. (4.13)

With this in mind we can reformulate the underdetermined set of equations into a set of
equations for a0 and b0 only,Ü

1 − 1

(1 − 1)T (−L)

êÜ
a0

b0

ê
=

Ü
1 −1

e−ikL −eikL

êÜ
a0

b0

ê
=

Ü
0

0

ê
. (4.14)

We only get nontrivial solutions if the determinant of the coefficient matrix vanishes,∣∣∣∣∣∣∣∣∣
1 −1

e−ikL −eikL

∣∣∣∣∣∣∣∣∣ = −2i sin(kL) = 0 ⇔ kL = nπ . (4.15)

We choose a0 and b0 independent of n and arbitrarily to be a0 = b0 = 1/2 and derive the
eigenfunctions fn by propagating the solution from the left end of the coplanar waveguide
resonator to position x with the help of the translational matrix T (δ = x),

fn(x) =
1

2

Ç
1 1

å
T (x)|k=kn

Ü
1

1

ê
= cos(knx) . (4.16)

We can express the flux function in terms of the eigenfunctions fn and their associated
eigenfunctions gn, φ =

∑
n gnfn which oscillate with frequencies ωn = (nπv)/L = nω0
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that are multiples of the fundamental mode frequency ω0. Plugged into the Lagrangian
or Hamiltonian of the coplanar waveguide resonator it decomposes into the individual
eigenmodes of the system,

L =
∞∑
n=1

Å
Lc

4
ġ2
n −

Lc

4
ω2
ng

2
n

ã
⇔ H =

∞∑
n=1

Ç
q2
n

Lc
+
Lc

4
ω2
ng

2
n

å
, (4.17)

with qn the canonical conjugate momentum of the time dependent mode amplitude gn.
Notice here that qn can not be attributed to the excess charge on a physical capacitor. Now
we accomplished to decompose the coplanar waveguide resonator into an set of infinite LC
oscillators with frequencies ωn = nω0 and characteristic impedancesZn = (2/π)

»
l/c(1/n),

where
»
l/c is the characteristic impedance of the coplanar waveguide. Now we can pro-

ceed in an analogous manner to the previous chapter of quantizing the LC oscillator. We
introduce lowering and raising operators for all eigenmodes of the coplanar waveguide
resonator individually,

ĝn =

 
~Zn

2

Ä
an + a†n

ä
q̂n = −i

 
~

2Zn

Ä
an − a†n

ä
(4.18)

an =

 
Lcωn

4~
ĝn +

i√
Lc~ωn

q̂n a†n =

 
Lcωn

4~
ĝn −

i√
Lc~ωn

q̂n . (4.19)

The Hamilton operator is now the sum over all Hamilton operators of the individual LC
oscillators,

H =
∞∑
n=1

~nω0a
†
nan . (4.20)

Here we already rescaled the energy of the groundstate of the Hamilton operator by omit-
ting the 1/2 terms in the Hamilton operators of the individual LC oscillators.

The effective capacitors and inductors of the eigenmodes of the coplanar waveguides
do not have any corresponding elements in the setup, they are rather abstract objects to
be chosen to reproduce the frequency and characteristic impedance of specific vibrational
modes of the coplanar waveguide resonator. Therefore their quantization does not mean
that the charge on a capacitor or the current through a inductor is quantized but rather the
one dimensional flux field itself becomes a quantum mechanical observable,

φ̂ =
∞∑
n=1

cos(n
π

L
x)

 
~Zn

2

Ä
an + a†n

ä
. (4.21)

In figure 4.2 we plot the mean value of the field φ and its variance for various states |ψ〉.

4.3. Charge Qubit

The charge qubit is a device consisting of two superconducting islands connected by a
Josephson junction (c.f. fig.:4.3 a). The two superconducting islands and the Josephson
junction form a capacitor with capacitance CJ . Typically there is a gate capacitor with
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4. Quantization of Electrical Circuits

Figure 4.2.: Mean value of the field φ̄ = 〈ψ| φ̂ |ψ〉 (red line) and its fluctuations φ̄ ± x∆φ
(orange shaded area with x ∈ [0, 1]) with variance ∆φ = 〈ψ| φ̂2 |ψ〉 − 〈ψ| φ̂ |ψ〉2
for various states ψ of the coplanar waveguide resonator. Notice that in every
eigenstate of the Hamilton operator the mean value vanishes. The Bell state of
the fundamental and first excited mode, 1√

2
(|0〉1 |0〉2 + |1〉1 |1〉2), has vanishing

mean value while the superposition of the vacuum and first fock state of the
fundmental mode, 1√

2
(|0〉1 + |1〉1), shows non-vanishing mean values of the

flux field

a) b)

Figure 4.3.: a) Transmon type charge qubit with two superconducting islands, capacitive
coupling and Josephson junction between the two islands. The qubit is con-
trolled via a small gate voltage applied from below. b) Circuit representation
of the charge qubit a). The coloring is not intended to show the spanning tree
of the setup but is chosen to mirror the colored areas of the image to the right
with the two superconducting islands and the gate capacitance.
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4.3. Charge Qubit

capacitance Cg which is connected to a power source which can provide ac-drive signals
as well as constant dc voltages to operate the charge qubit. Additionally there are trapped
charges on the islands or two-level fluctuators in the oxide layer of the Josephson junction
which provide uncontrolled noise acting on the charge degree of freedom of the charge
qubit. We are going to combine these two effects in the flux of the node that defines the
branch of the gate capacitor φg (c.f. fig:4.3 b). For the purpose of our model of the charge
qubit the flux φg is a parameter rather then a physical observable of the system since we
are not interested in the inevitable backaction of the charge qubit on its electromagnetic
environment and control circuitry. The Lagrangian of the whole setup therefore reads,

Lcq =
CJ
2
φ̇2 +

Cg
2

Ä
φ̇− φ̇g

ä2
+ EJ cos

Å
φ

ϕ0

ã
, (4.22)

where EJ = ϕ2
0/LJ is the Josephson energy. We introduce the total capacitance of the

island that is connected to the gate capacitor C = CJ +Cg and reformulate the Lagrangian
to read,

Lcq =
C

2

Ä
φ̇+ Vg

ä2
+ EJ cos

Å
φ

ϕ0

ã
, (4.23)

where Vg = −(Cg/C)φ̇g is the voltage drop at the gate capacitor. The choice of sign for this
definition is arbitrary and given by convention. The Hamiltonian for the charge qubit is
up to a irrelevant constant,

Hcq =
(q − qg)2

2C
− EJ cos

Å
φ

ϕ0

ã
, (4.24)

with qg = Cgφ̇g the induced charge of the gate capacitor. Now we may proceed by promot-
ing q → q̂ and φ → φ̂ to quantum mechanical observables with the commutation relationî
φ̂, q̂
ó

= i~. There is however a slightly more suitable choice of observables to describe the
state of the charge qubit. If we choose to describe the state of the charge qubit in terms of
the number of cooper pairs that have tunneled through the Josephson junction n̂ = q̂/(2e)
and the phase-drop across the Josephson junction ϕ̂ = φ̂/ϕ0 rather then the flux, we get
the Hamilton operator,

Hcq = 4EC (n̂− ng)2 − EJ cos(ϕ̂) , (4.25)

with the commutation relation [ϕ̂, n̂] = i and the number of induced Cooper pairs ng =
qg/(2e) = (Cgφ̇g)/(2e).

Spectrum of the charge qubit The charge qubit is defined by two energy scales, the en-
ergy cost of transferring an electron from one of the superconducting islands to the other
EC = e2/(2CJ) and the Josephson energyEJ . The eigenstates of the charge qubit have sup-
pressed quantum fluctuations in their charge quadrature with respect to their fluctuations
in the phase variable if the charging energy, EC , dominates the Josephson energy and vice
versa for the Josephson energy being larger than the charging energy. Let us consider at
first the charge qubit where the charging energy is much larger than the Josephson energy
EC � EJ . In this regime the energy is given by the capacitive term in the Hamilton opera-
tor (c.f. eq: 4.25). The eigenstates of the Hamilton operator are the eigenstates of the charge
operator, or equivalently, the number operator of the Cooper pairs |n〉 with n̂ |n〉 = n |n〉.
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Figure 4.4.: Spectrum of the charge qubit plotted over the number of induced Cooper pairs
ng for different values of EJ/EC ranging from the “charge” regime EJ/EC = 1
to the beginning of the “transmon”-regime EJ/EC = 10. In the charge regime
the gap between the groundstate and first excited state at the sweet spot is
roughly given by the Josephson energyEJ . In the transmon regime we observe
a rapid decrease of the susceptibility to noise in ng, rendering the transmon
qubit the state of the art superconducting qubit

As a function of the number of induced Cooper pairs ng the eigenenergies are parabolas
with origins at integer ng and curvature 4EC (c.f. dashed grey graphs in fig.: 4.4). At half
integer ng = (n + 1)(1/2) eigenstates |n〉 and |n+ 1〉 are degenerate. If we introduce the
Josephson term in the Hamilton operator perturbatively the degeneracy is lifted and we
get a avoided crossing every half integer ng. For finite EJ/EC all eigenenergies and eigen-
states as a function of phase ϕ of the charge qubit can be computed exactly because there
exists a mapping to the Mathieu equation and the associated Mathieu functions [47]. The
eigenenergies of the charge qubit are,

En = ECa2[ng+k(n,ng)](−EJ/(2EC)) (4.26)

with aν(q) Mathieu’s characteristic value and,

k(n, ng) =
∑
l=±1

[int(2ng + l/2) mod 2] · [int(ng) + l(−1)n [(n+ 1)div2]] (4.27)

a function to correctly sort band indices n. At half integer ng = (n+1)(1/2) the eigenenergy
does not change to first order upon fluctuating ng, ∂ngEn|ng=(m+1)(1/2) = 0 for all integer n
and m. This is a very desirable feature as ng is constantly subjected to uncontrolled noise
originating from stray radiation, quasi-particle poisoning or trapped two-level fluctuators
in the insulating barrier of the Josephson junction. Therefore charge qubits are operated
at the avoided crossing or “sweet spot” as it is typically called. Operation at the sweet
spot however requires constant feedback techniques to counteract slow thermal drift of
the setup parameters. This nuisance fueled the development of a charge qubit with a
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4.3. Charge Qubit

universal sweet spot, i.e. a charge qubit with eigenenergies that do not depend on ng at
all.

4.3.1. Transmon

The fluctuations in the induced number of Cooper pairs ng are almost independent of the
size of the superconducting islands. Therefore a good idea to decrease the influence of
the fluctuations is to increase the size, or rather the mutual capacitance, of the two super-
conducting islands. There is however a downside to doing this: The nonlinearity of the
qubit decreases at the same time, which in turn prolongs addressing the computational
states of the qubit and consequentially lengthens the period in which the qubit is subject
to detrimental noise. The success of the universal “sweet spot” charge qubit, or Transmon
qubit, is rooted in the fact that the susceptibility to external noise in ng decreases faster
than the nonlinearity. The loss of nonlinearity can be understood as follows: If we increase
the ratio of Josephson energy over charging energy the zero point flux fluctuations of the
eigenstates decrease and the eigenfunctions do not probe anymore the higher order non-
linear contributions of the cosine in the Josephson term of the Hamilton operator. This
already provides us with an strategy to derive a approximate Hamilton operator of the
Transmon qubit from the full charge qubit Hamilton operator (eq.: 4.25). We solve the lin-
ear part of the Hamilton operator exactly and treat the nonlinear terms of the cosine in the
Josephson term as a perturbation,

Hcq = 4EC (n̂− ng)2 − EJ cos(ϕ̂) = 4EC (n̂− ng)2 +
1

2
EJ ϕ̂

2 − EJ
∞∑
n=2

(−1)n
ϕ̂2n

(2n)!
, (4.28)

where we neglected the irrelevant constant part of the Cosine. We truncate the remaining
nonlinear terms of the Josephson energy to the leading order quartic term,

Hcq ≈ H ′Transmon = 4EC (n̂− ng)2 +
1

2
EJ ϕ̂

2 − EJ
24
ϕ̂4, (4.29)

and we gauge transform the resulting Hamilton operator with Ug = e−ingϕ̂ to get rid of the
number of induced cooper pairs ng in the capacitive term of the Hamilton operator. We
introduce the generic raising and lowering operators,

n̂ =
i

2
4

 
EJ

2EC

Ä
b− b†

ä
ϕ̂ = 4

 
2EC
EJ

Ä
b+ b†

ä
, (4.30)

and get the generic harmonic oscillator Hamilton operator with a quartic perturbation,

H ′Transmon =
√

8ECEJ

Å
b†b+

1

2

ã
− EC

12

Ä
b+ b†

ä4
. (4.31)

Here we can see the aforementioned peculiar effect that the nonlinearity does not depend
solely on the Josephson energy but also on the zero point fluctuations of the phase, which
in turn depend on the quartic root of EC/EJ . For the quartic leading order nonlinearity
this actually means that the strength of the nonlinearity does not depend on the Josephson
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energy at all. The nonlinearity of this Hamilton operator EC/12 will be very small com-
pared to the frequency of the linear part

√
8ECEJ and we can perform an rotating wave

approximation to get rid of rotating terms in the nonlinearity,

H ′Transmon ≈ HTransmon =
√

8ECEJ

Å
b†b+

1

2

ã
− EC

2
b†b†bb . (4.32)

Here we neglected a slight renormalization of the harmonic oscillator frequency δ = −EC/2.
Now we can directly see the nonlinearity U , i.e. the difference in the transition energies
between the groundstate and the first excited and the first excited and the second excited
eigenstate of the Transmon qubit ∆E10 − ∆E21 = EC . The nonlinearity in units of the
frequency of the Transmon qubit

√
8ECEJ is therefore inversely proportional to the ratio

of Josephson energy to charging energy, U ∝ 1/
√
EJEC .

Notice that the gauge transformation to get rid of ng is only valid since we broke the dis-
crete translational symmetry of the cosine potential already by truncation. In the Hilbert
space of 2π-periodic wave functions the translation in ϕ by 2π, Ut = ei2πn̂ is the identity.
This property is only retained after our gauge transformation for integer ng, i.e. Ug and
Ut only commute for integer ng. Therefore we can not investigate the susceptibility of
the charge qubit with respect to fluctuations in ng with the truncated Transmon Hamil-
ton operator HTransmon. We rather have to resort to a WKB approximation for the exact
eigenenergies derived from Mathieu’s equation (c.f. eq.: 4.26),

En(ng) ≈ En(ng = 1/4)− εn
2

cos(2πng) , (4.33)

with,

εn ≈ (−1)nEC
24n+5

n!

 
2

π

Å
EJ

2EC

ãn
2

+ 3
4

e−
√

8EJ/EC . (4.34)

From this we can see that the maximal possible difference in the eigenenergies of the charge
qubit decrease exponentially as a function of the ratio of Josephson energy to charging
energy rather than polynomially like the nonlinearity.
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Many-Body Physics with Circuit
Quantum Electrodynamics
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In present-day research the physics of quantum many-body systems has gained a lot of
attention. Strongly interacting quantum many body systems can be found in condensed
matter physics with allegedly the high temperature superconductor being one or in nu-
clear physics. The complexity of the microscopic models of these systems however typ-
ically prohibits direct theoretical treatment. Therefore ideal many-body Hamilton opera-
tors are investigated theoretically as minimal models for collective physical phenomena
ranging from quantum phase transitions to quantum transport and nonequilibrium dy-
namics. Yet also technological applications are being investigated for systems with specifi-
cally designed many-body Hamilton operators. Most prominently the quantum computer
would constitute, if realized once, a highly controllable interacting many-body system.
Connected to quantum computing but also of fundamental interest are quantum many
body phenomena like topologically protected quantum states for example in toric code
models [46].

There are only few situations with analytical solutions for interacting many-body Hamil-
ton operators. Normally one would use advanced numerical techniques to investigate the-
oretically the properties of the many-body Hamilton operator, but numerical methods are
limited by the exponential growth of the Hilbert space of many-body systems with increas-
ing number of particles. As an alternative approach to circumvent this dilemma, quantum
simulators are now being explored intensively, thanks to the seminal comment of Richard
Feynman during a keynote speech about “Simulating Physics on Computers” [27]. Quan-
tum simulators are highly controllable quantum systems that emulate the physics of min-
imal model Hamilton operators that potentially reproduce quantitatively phenomena in
physical systems we do not understand yet or even show phenomena hitherto not know
at all. Additionally a quantum simulator should give us the opportunity to measure every
observable we are interested in, that might not be accessible in the system we are simu-
lating. Present day quantum simulators are therefore often strongly magnified versions
of the respective system one is interested in, where for example lattice constants greatly
exceed interatomic distances in a crystal. This can either allow to measure spatial correla-
tions or perform manipulations for specific tasks such as quantum computing. Quantum
many-body Hamilton operators can for example be simulated with cold atoms trapped
by laser fields in various shapes and dimensions [10], in ion traps [29] or arrays of cavity
quantum electrodynamics (QED) systems [35, 36, 34].

Almost all simulators mentioned above use massive particles to simulate massive par-
ticles. Arrays of cavity quantum electrodynamical systems pursue a different route in
simulating many body physics. Photons that can hop between the cavities of the array are
supposed to mimic their massive counterparts in the systems we want to simulate. Pho-
tons however rarely interact which is why they need to be coupled to nonlinear scatterers
that are placed in the cavities. Because of the strong coupling between photons and non-
linear scatterers, polaritons, joint excitations of a photonic mode and an excitation of the
nonlinear scatterer, emerge. The polaritons inherit the ability to move around in the array
of cavities from the photonic part and an onsite nonlinearity from the nonlinear scatterers.
In this context, the nonlinearity can be regarded as an interaction between polaritons in
the same cavity. Polaritons however only form in the strong coupling regime, which can
be reached by increasing the coupling between the nonlinear scatterer and the photonic
mode of the cavity until it exceeds the decay rates of both. This condition is nowadays
extremely well met in circuit QED. In circuit QED microwave photons confined by quasi
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one-dimensional transmission line resonators can be coupled to Josephson junction based
quantum two-level systems (qubits) [89, 9, 17]. The very small mode volume of the one-
dimensional transmission line and the very large dipole moment of the Josephson qubit
result in exceptionally high coupling rates [67] while the superconducting gap ensures low
dissipation. In the following we show that an effective Bose-Hubbard Hamilton operator
for polaritons can be engineered in an array of coplanar waveguide resonators that each
couple to a transmon qubit [48].

50



5. Bose Hubbard Physics with circuit QED
Arrays

5.1. Transmon-QED and the Bose-Hubbard Model

To generate a Bose-Hubbard model with polaritons we consider an array of capacitively
coupled coplanar waveguide resonators with each resonator itself coupled to a transmon
qubit (c.f. figure 5.1). In this section, we first introduce the Hamilton operator that de-
scribes this setup and then show how it can be considerably simplified and transformed
into a Bose-Hubbard Hamilton operator for two polariton species.

5.1.1. The full Hamilton operator

The full Hamilton operator of our setup is a sum of single-site Hamilton operators,H1−site,i,
that each describe a transmon qubit coupled to a coplanar waveguide resonator and terms
that describe the capacitive coupling between neighbouring resonators, HJ,i,i+1,

H =
∑
i

(H1−site,i +HJ,i,i+1) . (5.1)

The transmon qubit (c.f. subsection 4.3.1) regime can be accessed by shunting the Joseph-
son junction with an additional large capacitance and thereby lowering the charging en-
ergy EC = e2/(2CΣ). Here, CΣ = CJ + Cg + CB is the sum of the junction’s capacitance,
CJ , the mutual capacitance with the coplanar waveguide resonator, Cg, and the shunting
capacitance CB . Only one of the modes of the coplanar waveguide resonator is frequency-
matched to the transmon qubit and by design this mode will have an anti-node at the
transmon qubit position. Therefore the Hamilton operator for one mode of the coplanar
waveguide resonator coupled to a transmon qubit reads,

H1−site = 4EC
Ä
n̂− ndcg − nacg

ä2 − EJ cos (ϕ̂) + ω′′ra
†a . (5.2)

Figure 5.1.: Sketch of the proposed system to simulate Bose-Hubbard physics. Coplanar
waveguide resonators are coupled capacitively in a chain and each resonator
is coupled to a transmon qubit that gives rise to an on-site interaction for the
polaritons. For definitions of J0 and g, see equations 5.8 and 5.5.
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Here, ω′′r is the resonance frequency of the isolated resonator and we have omitted the
site-index i for readability. The transmon qubit is placed in the antinode of the coplanar
waveguide resonator’s field mode. This gives rise to an additional ac component,

nacg =
Cg

(2e)
V (0)

rms(a+ a†) , where V (0)
rms =

»
ω′′r /Cr , (5.3)

is the root mean square voltage of the vacuum field mode, a the annihilation operator of
photons in the resonator and Cr the full capacitance of the coplanar waveguide resonator
with respect to the groundplane. The offset charge nacg thus induces a coupling between
the transmon qubit and photons in the resonator. For circuit QED setups one normally
uses λ-resonators with the antinode located at the middle of the resonator.

The energy of the coupling capacitor between neighbouring coplanar waveguide res-
onators, e.g. sites i and i+ 1, can be expressed in terms of the difference in the electrostatic
potentials across the capacitor,

HJ,i,i+1 =
Cc(V̂i − V̂i+1)2

2
=
Cc
Cr

ω′′r
2

(a†i + ai − a†i+1 − ai+1)2 .

Here, Cc is the capacitance of the capacitor that connects the two resonators. We assume
the electrostatic potential in resonator i to have antinodes at the ends of the resonator and
write it in terms of the creation and annihilation operators, a†i and ai. We now turn to
simplify the Hamilton operator 5.1 by a sequence of approximations.

5.1.2. Approximations to single-site terms

We first simplify the single-site terms, H1−site, as in equation 5.2. For large EJ/EC and low
energies, the phase difference between the two islands remains small and we can expand
the cosine in 5.2 around ϕ = 0 up to quartic order,

H
(1)
1−site = 4EC

Ä
n̂− ndcg − nacg

ä2 − EJ +
EJ
2
ϕ̂2 − EJ

24
ϕ̂4 + ω′′ra

†a . (5.4)

Higher order terms can be neglected, c.f. [48]. In terms of bosonic creation and annihilation
operators for the transmon qubit excitations,

n̂ =
i

2

Å
EJ

2EC

ã 1
4 Ä
b− b†

ä
ϕ̂ =

Å
2EC
EJ

ã 1
4 Ä
b+ b†

ä
the Hamilton operator 5.4 reads,

H
(1)
1−site = Htransmon +Hlin +Hcoupling +Hres , (5.5)

where,

Htransmon = ωqb
†b− EC

12
(b+ b†)4

Hlin = −i4ECndcg
Å
EJ

2EC

ã 1
4

(b− b†) + 2
Cg
CΣ

eV (0)
rmsn

dc
g

Ä
a+ a†

ä
Hcoupling = ig(b− b†)(a+ a†)

Hres = ω′ra
†a .
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with,

ωq =
√

8ECEJ

ω′r = ω′′r

Ç
1 +

C2
g

CΣCr

å
g =

Cg
CΣ

eV (0)
rms

Å
EJ

2EC

ã 1
4

.

The terms linear in the creation and annihilation operators can be eliminated by perform-
ing the unitary transformation

U = U1 ⊗ U2

U1 = exp
Ä
ra− ra†

ä
U2 = exp

Ä
i(sb† + sb)

ä
.

that displaces the creation and annihilation operators by the constants r and s respectively

a→ U1aU
†
1 = a+ r b→ U2bU

†
2 = b− is .

r and s can now be chosen such that all terms linear in a and b cancel in the transformed
Hamilton operator. Finally the interaction between the transmon qubit and the field mode
of the coplanar waveguide resonator is reduced to an exchange interaction in a rotat-
ing wave approximation. To justify this rotating wave approximation we have to ensure
that the interaction strength between the transmon qubit and the coplanar waveguide res-
onator is smaller than the sum of the frequencies of the two,

g

ω′r + ωq
� 1 . (5.6)

Parameters extracted from [28] are ω′r = 43.6Ghz, EC = 0.4Ghz and a maximal value for
EJ/EC of 150. We chooseCgeV

(0)
rms/(CΣωr) = 0.1 which is in agreement with the theoretical

upper bound in [48] and find g
ω′r+ωq

≈ 0.1. The single-site Hamilton operator can thus be
approximated by,

H
(2)
1−site =

√
8ECEJb

†b− EC
12

Ä
b+ b†

ä4
+ g
Ä
a†b+ ab†

ä
+ ω′ra

†a . (5.7)

5.1.3. Approximations to couplings between resonators

We now turn to simplify the couplings between neighbouring resonators, HJ,i,i+1. We
assume that Cc � Cr which implies that Ccω′′r /(2Cr) is small compared to the isolated
cavity frequency ω′′r , Cc/(2Cr) � 1 and apply a rotating wave approximation to neglect
those terms in the intercavity interaction that don’t conserve the total photon number and
therefore brake the U(1) symmetry,

H
(1)
J,i,i+1 = J0(a†iai + ai+1a

†
i+1)− J0(a†iai+1 + aia

†
i+1) , (5.8)
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where J0 = (Cc/Cr)ω
′
r. The first term on the right hand side of 5.8 can be absorbed into

the single-site Hamilton operators by introducing a shifted resonator frequency

ωr = ω′′r

Ç
1 +

C2
g

CΣCr
+ 2

Cc
Cr

Ç
1 +

C2
g

CΣCr

åå
, (5.9)

and the remaining term in 5.8 describes tunneling of photons between neighbouring res-
onators. Next, we explain how the simplified Hamilton operatorH(2) =

∑
i

(
H

(2)
1−site,i +H

(1)
J,i,i+1

)
can be transformed to a two component Bose-Hubbard Hamilton operator.

5.1.4. The polariton modes

In the case of circuit QED with transmon qubits the coupling constant between microwave
and qubit excitations is the dominating interaction energy of the system. Excitations of the
whole system therefore can’t be characterized as purely microwave or qubit excitations in
general. To obtain a more suitable description we introduce new creation and annihilation
operators,

c+ = cos(θ)a+ sin(θ)b c− = sin(θ)a− cos(θ)b , (5.10)

describing excitations commonly termed polaritons where,

sin(θ) =
g√

g2 +
Ä
∆ω +

√
∆ω2 + g2

ä2 cos(θ) =
∆ω +

√
∆ω2 + g2√

g2 +
Ä
∆ω +

√
∆ω2 + g2

ä2 ,
with ∆ω = ωr − ωq. The sine and cosine terms account for the transition of the char-
acter of the excitations from microwave to qubit excitations for the c+-mode as the ra-
tio EJ/EC increases and vice versa for the c−-mode. Expressing the Hamilton operator
H(2) =

∑
i

(
H

(2)
1−site,i +H

(1)
J,i,i+1

)
in the polariton modes (c.f. equation 5.10) we get,

H(2) = Hc+,lin +Hc−,lin +Hcc +Hnlin .

This Hamilton operator consists of two harmonic chains for the c+ and c− polariton modes,

Hc+,lin =
∑
i

Ä
ω′+c

†
i,+ci,+ − J0 cos2(θ)

Ä
c†i,+ci+1,+ + h.c.

ää
Hc−,lin =

∑
i

Ä
ω′−c

†
i,−ci,− − J0 sin2(θ)

Ä
c†i,−ci+1,− + h.c.

ää
,

with ω′± = ((ωr + ωq) ±
√

∆2 + g2)/2, a term describing hopping from a c−-mode at site i
to a c+-mode at site i+ 1 and all other possible combinations,

Hcc = −J0 sin(θ) cos(θ)
∑
i

Ä
c†i,+ci+1,− + c†i,−ci+1,+ + h.c.

ä
,

and a term describing the nonlinearity,

Hnlin =
−Ec
12

∑
i

Ä
sin(θ)

Ä
ci,+ + c†i,+

ä
− cos(θ)

Ä
ci,− + c†i,−

ää4
.
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We assume the frequencies of the two polariton modes to be well separated, apply another
rotating wave approximation where we neglect the term Hcc and convert the nonlinear-
ity term Hnlin into Kerr form and get a renormalization of the polariton frequency and
a density-density coupling between the polariton modes. This requires the difference in
frequencies for the unperturbed modes ω′+ − ω′− =

√
∆ω2 + g2 involved to exceed the

magnitude of the coupling between the modes and the nonlinearity,»
∆ω2 + g2 � J0

»
∆ω2 + g2 � EC

12
.

Plugging in realistic values for the parameters, extracted for example from [28], (EC =
0.4Ghz, ωr = 43.6Ghz 0 < EJ/EC < 150) we realize that the second inequality is indeed
fulfilled. Engineering the capacitance Cc such that J0 is of the order of EC/12, we can en-
sure that the first equality is fulfilled as well. The rotating wave approximation eliminates
the intermode exchange coupling and we obtain a Bose-Hubbard Hamilton operator for
both modes, c+ and c−, with a density-density coupling between them,

H(3) = Hc+ +Hc− +Hdd , (5.11)

where

Hc+ =
∑
i

Å
ω+c

†
i,+ci,+ − J+

Ä
c†i,+ci+1,+ + h.c.

ä
− U+

2
c†i,+c

†
i,+ci,+ci,+

ã
Hc− =

∑
i

Å
ω−c

†
i,−ci,− − J−

Ä
c†i,−ci+1,− + h.c.

ä
− U−

2
c†i,−c

†
i,−ci,−ci,−

ã
Hdd = −

∑
i

2U+−c
†
i,+ci,+c

†
i,−ci,− ,

with

ω+ = ω′+ + EC
Ä
cos4(θ) + sin2(θ) cos2(θ)

ä
ω− = ω′− + EC

Ä
sin4(θ) + sin2(θ) cos2(θ)

ä
J+ = J0 cos2(θ) J− = J0 sin2(θ)

U+ = EC sin4(θ) U− = EC cos4(θ)

U+− = EC sin2(θ) cos2(θ) .

We thus arrived at a two component Bose-Hubbard model for the modes c+ and c−with at-
tractive interactions and a density-density coupling between both species. The two species
are a mixture of coplanar waveguide resonator field mode and transmon qubit excitations
(c.f. equation 5.10) with different weights of the photonic or qubit contribution depending
on the value of EJ/EC .

For small values ofEJ/EC the c+ polaritons become increasingly microwave excitations.
Consequently, their tunneling rate J+ approaches the tunneling rate of bare microwaves,
J0, and their on-site interaction U+ vanishes. For large EJ/EC , on the other hand, J+

vanishes and the nonlinearity U+ approaches the nonlinearity of the transmon qubits, EC .
For the c− polaritons, the roles of both limits are interchanged (c.f. figure 5.2).

55



5. Bose Hubbard Physics with circuit QED Arrays

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 5.2.: Plot of the effective Bose-Hubbard parameters for the c+ polariton mode, U+

and J+, and the c− polariton mode, U− and J−. As the character of the polari-
ton modes change as a function of EJ/EC from resonator field mode to qubit
excitation for the c+ polariton modes and vice versa for the c− polariton modes
the Bose-Hubbard parameters change accordingly.

For each value ofEJ/EC , the separation between the resonance frequencies of c+ and c−
polaritons, |ω+ − ω−|, is sufficiently large such that, in a scenario where we drive the first
resonator by a microwave source, we can always adjust the frequency of the drive to only
selectively excite one of the modes. For reasons that will become clear later we choose the
c+-polaritons to be our quantum simulator for a driven dissipative Bose-Hubbard model.

5.1.5. Validity of the approximations

To illustrate the validity of our approximations we compare the eigenenergies of the full
Hamilton operator H (c.f. equation 5.1), approximated under rotating wave assumption
(c.f. equation 5.6), with the eigenenergies of the Bose-Hubbard Hamilton operatorH(3) (c.f.
equation 5.11). The single-site Hamilton operators summed up in the full Hamilton opera-
tor describe the interaction between transmon qubit and coplanar waveguide resonator in
a rotating wave approximation. This Hamilton operator has already been used to describe
an experiment revealing the nonlinear response of a resonator and transmon qubit system
with excellent agreement between theory and experimental data [8]. Therefore comparison
of the eigenvalues of our Bose-Hubbard Hamilton operator and the eigenvalues of the full
Hamilton operator provides a good means to estimate the effects of the approximations
we made. For simplicity we restricted our model to two sites.

Both Hamilton operators conserve the total number of excitations and we can diagonal-
ize them in each subspace with a fixed number of excitations independently. Eigenvalues
of the full Hamilton operator in the one excitation subspace are plotted in solid lines in
figure 5.3 a). Without transmon qubits, the Hamilton operator of the two resonators has
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eigenmodes a± = (a1 ± a2)/
√

2. In figure 5.3 a) we also plotted the energies of these
eigenmodes of the two coupled empty coplanar waveguide resonators marked by two
horizontal dash-dotted gray lines and the eigenenergy of the transmon qubit marked by a
dash-dotted gray line.

The two eigenenergies approximated by the c−-polariton mode (blue lines in 5.3 a)
evolve from the transmon qubit energy for small values ofEJ/EC to the energies of the two
coplanar waveguide resonator states for large values of EJ/EC thereby confirming our
earlier comment that the c−-polaritons evolve from pure qubit excitations to microwave
excitations. The eigenenergies of the c− polaritons are degenerate for small values of
EJ/EC because the transmon qubits decouple from the coplanar waveguide resonators
and thereby also from each other. In figure 5.3 b) we plot differences between the eigenen-
ergies of the full Hamilton operator and the respective eigenenergies of the Bose-Hubbard
Hamilton operator. For small values of EJ/EC we find aberrations due to the error we
make in approximating the Hamilton operator of the transmon qubit H1−site,i → H

(1)
1−site,i.

There are also aberrations in the anticrossing area which are due to the neglected interac-
tions between the c+- and c−-polaritons.

For the two eigenenergies of the c+-polaritons (red lines in figure 5.3 a) there is a rather
similar scenario. They approximate the two eigenenergies of the full Hamilton operator
that are purely microwave excitations for small EJ/EC and evolve into qubit excitations
as the ratio of EJ/EC increases. There are aberrations in the anticrossing area between the
eigenenergies of the full Hamilton operator and the Bose-Hubbard Hamilton operator for
the c+-polaritons because of the neglected interactions between the c−- and c+-polaritons,
plotted in figure 5.3 b) but there is no aberration for small values of EJ/EC caused by
errors made in the transmon qubit Hamilton operator because the c+-polaritons are pure
microwave excitations for small values of EJ/EC .

Additionally to the differences between the eigenenergies of the full Hamilton opera-
tor and the Bose-Hubbard Hamilton operator in the one excitation subspace we plotted
the differences in the two excitation subspace in figure 5.3 c). These eigenenergies can be
grouped for the Bose-Hubbard Hamilton operator according to the distribution of excita-
tions among the two polariton species. Differences of eigenenergies for states with two c−
polaritons are plotted in blue, for two c+ polaritons in red and for one c− polariton and
one c+ polariton in green. In the two excitation subspace we have similar findings as in
the single excitation subspace. There are aberrations for the anti-crossing area because of
the neglected intermode polariton exchange interaction. In addition, states containing c−
polaritons have aberrations for small values of EJ/EC due to the approximations of the
transmon Hamilton operator whereas c+ polaritons do not.

Therefore the Bose-Hubbard Hamilton operator for the c+ polaritons mimics the be-
haviour of the full Hamilton operator for the full range of EJ/EC , provided the intersite
coupling J0 is at most of the order of the on-site nonlinearity EC and the polariton densi-
ties are not to high. To conclude: In a driven dissipative setup where we selectively excite
the c+-Polaritons we do have a quantum simulator for a Bose-Hubbard Hamilton operator.
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Figure 5.3.: The accuracy of our approximations. Plotted are the first four excited eigenval-
ues of the full Hamilton operator in figure a). Eigenvalues approximated by the
c− polaritons are plotted in blue and eigenvalues approximated by the c+ po-
laritons in red. Figures b) and c) show the differences between the eigenener-
gies of the full Hamilton operatorH and the Bose-Hubbard Hamilton operator
H(3), ∆E, in the one excitation and two excitation subspace respectively. Dif-
ferences involving eigenstates containing c− polaritons are plotted in blue and
differences involving eigenstates containing c+ polaritons are plotted in red.
Differences of eigenvalues of the full Hamilton operator and eigenvalues of
the Bose-Hubbard Hamilton operator with mixed c+ and c− parts are plotted
in green
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5.2. Polariton statistics in the driven dissipative regime

Quantum phases for the ground state and low temperature thermal states of the Bose-
Hubbard Hamilton operator have been studied with ultra-cold atoms trapped in opti-
cal lattices [10]. This system has also been employed to study the dynamics of none-
equilibrium states that were prepared by sudden quenches of some lattice parameters [33].
In contrast, a realisation in an array of coplanar waveguide resonators allows to investi-
gate the Bose-Hubbard Hamilton operator in a fundamentally different regime, where the
resonator array is permanently driven by coherent microwave sources to load it with mi-
crowave photons and thus compensate for the photons that are lost due to qubit relaxation
and resonator decay. Whereas substantial understanding of equilibrium quantum phase
transitions has been achieved, a lot less is known about these non-equilibrium scenarios
where the dynamical balance between loading and loss mechanisms leads to stationary
states. It is the investigation of these stationary states, that our approach to the simulation
of the Bose-Hubbard Hamilton operator is ideally suited for.

Experiments with transmon qubits [48, 57] coupled to a coplanar waveguide resonator
are often conducted without directly measuring the state of the qubit but by spectroscop-
ically probing the transmission properties of the resonator. In an experiment the effective
Bose-Hubbard Hamilton operator will thus be operated out of thermal equilibrium in a
driven dissipative regime [36, 31, 14, 83]. In a suitable setup with a linear chain of res-
onators one would thus drive the first resonator with a coherent microwave input and
measure the properties of the output signal at the opposite end of the chain.

In the regime we consider, this situation can be accurately described by a Bose-Hubbard
Hamilton operator for only one species of polaritons with a coherent driving term at the
first site and Markovian losses of polaritons due to cavity decay and qubit relaxation at all
sites of the chain. In this scenario, the interplay of coherent drive and polariton loss leads to
the emergence of steady states, for which we derive the particle statistics and characteristic
correlations. In doing so we focus on the polariton statistics, in particular the density and
density-density correlations, in the last resonator as these can be measured via the output
signal. Our results show a transition from a coherent field to a field with strongly non-
classical particle statistics as the ratio of on site interactions to driving strength is increased.

In this section we make use of the above explained mapping of the full Hamilton oper-
ator H to a two component Bose-Hubbard Hamilton operator H(3) and consider a chain
of coupled resonators, where we coherently drive the first resonator and adjust the mi-
crowave drive frequency to selectively excite the c+-polaritons. In the driven dissipative
regime we expect to explore new physics that go beyond the equilibrium features that are
commonly examined in many body physics. We thus calculate the polariton density and
the density-density correlations g(2) in a master equation approach and analyse the depen-
dencies on the system parameters J+,U+ and the Rabi frequency of the microwave drive
Ω.

First experimental realisations of coupled coplanar waveguide resonators are expected
to consist of only a few resonators. To closely approximate the expected experiments and
to speed up numerical calculations, we thus focus on a minimal chain of only two res-
onators. More specifically, we consider two coplanar waveguide resonators coupled to
transmon qubits, where the first coplanar waveguide resonator is driven by a microwave
source and the output signal of the second cavity is monitored as a function of the mi-
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5. Bose Hubbard Physics with circuit QED Arrays

Figure 5.4.: Sketch of experimental setup consisting of two coplanar waveguide resonators
coupled to transmon qubits with spectroscopic measurement technique: the
first coplanar waveguide resonator is excited by coherent microwave source
and the output field at the second cavity is monitored. coplanar waveguide
resonators decay at rate κ mainly because of the finite reflectivity of the cou-
pling capacitances and the transmon qubits decay Purcell enhanced at rate γ
into modes not confined by the cavity.

crowave drive frequency and the ratio of EJ/EC which can be controlled by applying an
external magnetic flux to the dc-SQUID loop of the transmon qubits c.f. 5.4. This setup
and very similar setups have been investigated in experiments for example [43], and the
spectroscopic measurement technique proposed here has already been demonstrated in
single site experiments for example in [89].

The ouput fields emanating from the second resonator are linear functions of the field
in the second resonator and thus show the same particle statistics. We therefore calculated
the polariton density and the g(2)-function for the second cavity. To do this, we use a
master equation approach in which each element, the coplanar waveguide resonators and
the transmon qubits, couple to separate environments with decay rates denoted κ for the
coplanar waveguide resonators and γ for the transmon qubits. Absolute values can for
example be extracted from [8] where γ = 3.7MHz . Decay of the coplanar waveguide
resonator is due to the finite transparency of the coupling capacitors at both ends of the
resonators and decay rates for example in [28] are κ = 5.7MHz. Both environments, for
the transmon qubit and the coplanar waveguide resonator, are assumed to be in a vaccum
state which is a valid assumption at typical temperatures for circuit QED experiments of
T = 15mK. Therefore in a master equation for a Hamilton operator expressed in the
operators for the resonator field mode a and the transmon qubit b the dissipators read,

κ

2
D[a, a]ρ+

γ

2
D[b, b]ρ ,

with
D[A,B]ρ = 2AρB† −

Ä
A†Bρ+ ρA†B

ä
.

These can be cast into dissipators expressed in the polariton modes c+ and c−,
κ

2
D[a, a]ρ+

γ

2
D[b, b]ρ = Γc+D[c+, c+]ρ+ Γc−D[c−, c−]ρ+

+Λ (D[c+, c−] +D[c−, c+]) ρ ,
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with

Γc+ =
κ cos2(θ) + γ sin2(θ)

2

Γc− =
κ sin2(θ) + γ cos2(θ)

2

Λ = sin(θ) cos(θ)
κ− γ

2
.

In the driven dissipative case where we selectively excite the polariton c+ mode we can
neglect the dissipators of the c− polaritons D[c−, c−] and the mixed dissipators D[c+, c−]
and D[c−, c+]. With these assumptions the master equation for a two site chain of the
polariton c+-mode reads,

dρ

dt
= i

î
ρ, H̃c+

ó
+ Γc+ (D[c+,1, c+,1]ρ+D[c+,2, c+,2]ρ) (5.12)

H̃c+ = Ω cos(θ)
Ä
c†+,1 + c+,1

ä
+Hc+ .

To solve this master equation numerically we use it to derive the coupled equations of
motion for the expectation values of normally ordered moments of the creation and anni-
hilation operators c†+,1, c+,1, c†+,2 and c+,2,

d

dt

¨
c†n+,1c

†m
+,2c

k
+,1c

l
+,2

∂
= Tr

î
ρ̇c†n+,1c

†m
+,2c

k
+,1c

l
+,2

ó
We truncate this set of coupled equations by omitting couplings to mean values with n +
m + k + l bigger than some nmax and solve the reduced set of equations of motion. To
confirm the accuracy of our approach, we test its convergence with increasing nmax. That
is, we repeat the procedure for nmax → nmax + 1, compare the results and increase the
value for nmax in case both results differ by more than some required threshold value.
The advantage with respect to a method that truncates the Hilbert space at some maximal
number of excitations, is that our method becomes exact in the limit where the Hamilton
operator becomes harmonic which is the case for small values of EJ/EC . Moreover we
experience a substantial decrease in cpu-time for this method.

5.2.1. Polariton density

We are interested in the field particle statistics in the driven dissipative regime and its de-
pendencies of the on-site nonlinearity U+, the intersite coupling J+ and the strength of
the microwave drive Ω. We therefore first consider the density of c+ polaritons in the last
resonator. Figure 5.5 shows the density of c+ polaritons,

¨
c†2c2

∂
, in the second cavity as a

function of the ratioEJ/EC and the microwave drive frequency ωµw. The density of polari-
tons in the last cavity exhibits resonances when the microwave drive frequency matches
one of the transition energies of the undriven conservative system Hamilton operator Hc+

and decreases rapidly because of the small decay rate Γ. One can clearly see the resonances
due to transitions driven between the groundstate and eigenenergies in the one excitation
subspace plotted in 5.3 a). Transitions from the groundstate into a two excitation state are
much weaker owing to the finite Rabi frequency of the microwave drive Ω.
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Figure 5.5.: Logarithmic density plot of the polariton density
¨
c†2c2

∂
in the last cavity plot-

ted against EJ/EC and the frequency of the microwave drive in units of the
frequency of the coplanar waveguide resonator ωµw/ωr. Resonances in the
density of polaritons arise where the microwave frequency matches one of the
transition frequencies of the non-driven conservative system Hamilton opera-
tor Hc+
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Figure 5.6.: Density plot of the g(2)-function of the polariton mode in the second cavity
plotted againstEJ/EC and the frequency of the microwave drive in units of the
frequency of the coplanar waveguide resonator ωµw/ωr. For increasing nonlin-
earity the g(2)-function shows bunching regions for red-detuned microwave
drive with respect to the energy of 1-excitation states and anti-bunching re-
gions for blue-detuned microwave drive.

5.2.2. Density-density correlations

We now consider the density-density correlations g(2) in the last resonator. The g(2)-function
is a quantity that describes the likelihood to measure two photons at the same place. The
g(2) function of the last resonator is the normalized meanvalue of the second order moment
of the field operators in the last resonator,

g(2)(c+,2) =

¨
c†+,2c

†
+,2c+,2c+,2

∂¨
c†+,2c+,2

∂2 .

Classical, thermal fields have g(2)-values larger or equal to unity with the coherent field
exhibiting a g(2)-value of 1. A g(2)-value below 1, meaning that the photons are anti-
bunched, is a sufficient condition to call the field quantum mechanical in the sense that
there is no classical field showing the same results in measurements of the g(2)-function.
Using previously developed refinements of microwave measurement techniques [63, 5],
measurements of g(2)-functions in circuit QED are now possible [12].

In figure 5.6 we plotted the g(2)-function of the field in the last coplanar waveguide res-
onator. To get a more detailed insight of the processes leading to a g(2)-value for specific
parameters we plotted the g(2)-function along special values of the microwave drive fre-
quency and the ratio EJ/EC marked by white lines in figure 5.6. Figures 5.7 and 5.8 show
the results for the different paths, denoted by a), b), and c) in the density plot of the g(2)-
function in 5.6, for the g(2)-function as well as the corresponding values for the density of
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Figure 5.7.: Plots of the g(2)-function, the density of polaritons
¨
c†2c2

∂
and the second or-

der moment
¨
c†2c
†
2c2c2

∂
in the second cavity for special values of EJ/EC are

shown. For all plots we have chosen the intersite coupling constant and the
on-site nonlinearity to be J0/ωr = 0.04 and EC/ωr = 0.04 and the decay rates
of transmon qubit and coplanar waveguide resonator to be γ/ωr = 0.00008 and
κ/ωr = 0.00004 respectively but we applied different Rabi frequencies of the
microwave drive: for a) Ω/ωr = 0.004, and for b) Ω/ωr = 0.001. Plotted are re-
sults obtained by numerical calculation of the masterequation in solid lines and
results obtained by a mean field approach with an exact single-site solution in
dashed lines. Eigenenergies of the system without dissipation and driving are
signalized by vertical dash-dotted lines. For EJ/EC = 25 one can see clearly
separated resonances for the symmetric and antisymmetric states d†± |00〉 and
a two photon resonance for the state d†+d

†
− |00〉. The shape of the resonances at

d†+ |00〉 and d†− |00〉 are reproduced by the meanfield approximation and there-
for a single mode feature. The two photon resonance for the sate d†+d

†
− |00〉 is

not reproduced by the meanfield approach since it does not correctly incorpo-
rate the interactions between d†+ and d†− modes. For EJ/EC = 125 multiple
resonances determined by the eigenenergies of the system without dissipation
and driving arise .
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Figure 5.8.: A plot of the g(2)-function, the density of polaritons
¨
c†2c2

∂
and the second or-

der moment
¨
c†2c
†
2c2c2

∂
in the second cavity is shown. The microwave drive fre-

quency is chosen to match the transition from the ground state to the symmet-
ric 1-excitation eigenstate. For all plots we have chosen the intersite coupling
constant and the on-site nonlinearity to be J0/ωr = 0.04 and EC/ωr = 0.04,
the decay rates for transmon qubit and coplanar waveguide resonator to be
γ/ωr = 0.00004 and κ/ωr = 0.00008 respectively and the Rabi frequency of the
microwave drive to be Ω/ωr = Γ/ωr = 0.00004. Plotted are results obtained by
numerical calculation of the masterequation in solid lines and results obtained
by a mean field approach with an exact single-site solution in dashed lines. In
resonance to the symmetric state g(2) shows a transition from uncorrelated co-
herent field particle statistics to anti-bunched correlated field particle statistics.
The transition from coherent to anti-bunched is determined by the interplay of
the Rabi frequency of the microwave drive and the on-site nonlinearity.
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polaritons in the last cavity, 〈c†+,2c+,2〉, and the second order moment, 〈c†+,2c
†
+,2c+,2c+,2〉.

For small values ofEJ/EC our system is basically linear because the nonlinearityU+/2 =
(EC/2) sin4(θ) is negligible. A harmonic field mode driven by a coherent source is in a co-
herent state. Therefore the g(2)-function is equal to one for small values of EJ/EC . As
the nonlinearity grows for increasing values of EJ/EC the g(2)-function plotted against
the ratio of EJ/EC and the frequency of the microwave drive ωµw becomes more struc-
tured. In the density plot of the g(2)-function in 5.6 we can identify resonances where the
frequency of the microwave drive matches the eigenenergies of the unperturbed system
without microwave drive and dissipation. These resonances manifest themselves as sep-
arating lines between bunching regions (values of g(2) > 1) and anti-bunching regions
(values of g(2) < 1).

To understand the origin of these separating lines, it is illustrating to analyze our system
in terms of a symmetric mode, d+, and an antisymmetric mode, d−, where

d± =
1√
2

(c+,1 ± c+,2)

rather than the two localized modes c+,1 and c+,2. In terms of d+ and d− the Hamilton
operator reads,

Hc+ = (ω+ − J+) d†+d+ + (ω+ + J+) d†−d− −
U+

4

Ä
d†+d

†
+d+d+ + d†−d

†
−d−d−

ä
−U+d

†
+d+d

†
−d− −

U+

4

Ä
d†+d

†
+d−d− + h.c.

ä
. (5.13)

The Hilbert space of the Hamilton operator Hc+ can be described by two different bases,
states that are labeled by the number of excitations in the collective modes,

(d†+)n√
n!

(d†−)m√
m!
|00〉 = |nm〉cm ,

or states that are labeled by the number of excitations in the localized modes,

(c†+,1)n
√
n!

(c†+,2)m
√
m!

|00〉 = |nm〉s .

The lines separating bunching and anti-bunching regions in figure 5.6 can now be identi-
fied with the energies of the 1 excitation states,

d+ |00〉 = |10〉cm =
1√
2

(|10〉s + |10〉s) (5.14)

d− |00〉 = |10〉cm =
1√
2

(|10〉s − |10〉s) (5.15)

and the energy of a 2-excitation state,

d†+d
†
− |00〉 = |11〉cm =

1√
2

(|20〉s − |02〉s) . (5.16)
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a) b)

Figure 5.9.: Sketch of the energy spectrum of the Bose-Hubbard Hamilton operator Hc+

for a two site model for vanishing nonlinearity U+ compare a) and vanish-
ing intersite coupling J+ compare b). For vanishing nonlinearity a microwave
drive can drive multiple transitions leading to a coherent state. Contrary to
the linear case for strong nonlinearity one can only drive a transition between
two distinct states as the energy differences between the eigenenergies aren’t
degenerate any more
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To understand the origin of the anti-bunching regions for a microwave drive that is blue
detuned with respect to the energies of the states (5.14-c) and the bunching regions for a
red detuned microwave drive one has to consider the spectrum of the Hamilton operator
Hc+ .

For small nonlinearity, that is for values of EJ/EC < 50, the Hamilton operator 5.13
reduces to a Hamilton operator for two uncoupled harmonic oscillators described by the
modes d+ and d− with energies ω+ − J+ and ω+ + J+ respectively. The eigenenergies
in this situation are shown in 5.9 a). A microwave drive with frequency ω+ − J+ as de-
picted in 5.9 not only drives the transition from the groundstate to the first excited state
of the symmetric collective mode |0 0〉cm → |1 0〉cm but also all other transitions to higher
excited states |n 0〉cm → |n+ 1 0〉cm. As a result the steady state in this situation is always
the coherent state exhibiting a g(2)-value of 1. For slightly increased values of the nonlin-
earity that remain in the range U+ < Γc+ , the system can still be described in terms of
two weakly interacting collective modes. But the symmetric as well as the antisymmetric
mode are subject to the nonlinearity and an intermode interaction, c.f. Hamilton opera-
tor 5.13. This can be seen in 5.7 a) where we plotted the g(2)-values that deviate from the
value of a coherent field. The g(2)-function shows anti-bunching regions for blue detuned
microwave drive with respect to the energies of the states (5.14-c) and bunching regions
for red detuned microwave drive. To gain insight into the underlying physical principles
in this situation we calculated the density 〈c†+,2c+,2〉 and the second symmetric moment
〈c†+,2c

†
+,2c+,2c+,2〉 by an iterative meanfield approach (c.f. subsection 5.2.3) to solve the

master equation 5.12 with the Hamilton operator written as in 5.13. Operator mean values
of a single driven dissipative mode with Kerr nonlinearity can be computed exactly [23]
and we expand this model in a meanfield way to incorporate the denisty-density coupling.
With this method we get good agreement with the numerical exact values for the density in
the last cavity and are able to compute values for the polariton density close to the systems
eigenenergies (5.14-c) where our numerical approach fails to converge. For details about
the method please see subsection 5.2.3. These results support our assertion that the system
can be described by weakly interacting collective modes in the limit of small nonlinearities
U+. In 5.7 a) numerically exact values are plotted in solid lines and values obtained by the
above mentioned mean field method are plotted in dashed lines.

For strong nonlinearityU+ and small intersite coupling J+, that is for values ofEJ/EC >
50, the c+-polaritons become transmon excitations and the Hamilton operator Hc+ splits
into two parts describing the first and the second transmon qubit respectively. Here the
collective modes d+ and d− no longer decouple and the localized modes c1 and c2 become
a more appropriate description of the system. The eigenenergy spectrum in this situation
is shown in 5.9 b). The main difference to the spectrum without nonlinearity is that the
microwave drive can’t be adjusted to drive multiple transitions. In order to drive the tran-
sition to the state |02〉s for example one has to adjust the microwave frequency to match
half of the energy difference between the groundstate and the 2-excitation state |02〉s be-
cause it is a two photon transition. Due to the anharmonicity of the eigenenergy spectrum
no other transition can be driven. The difference of microwave frequencies needed to
drive the transition from groundstate to |01〉s respectively |02〉s amounts to U+/2 which
is bigger than the linewidth Γc+ . To get an estimate for the value of g(2) we simplify our
model assuming that the frequency of the microwave drive is adjusted such that it reso-
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nantly drives a transition between the groundstate of our model |00〉s and some excited
state |0n〉s. Provided the Rabi frequency Ω and the loss rates κ and γ are all small com-
pared to the frequency separation between different resonance lines, the system can then
be modeled by a two level system consisting of the groundstate of our model |00〉s and the
excited state |0n〉s. In this situation the maximal occupation inversion one could get in the
steady state is,

ρmax =
1

2
(|00〉 〈00|+ |0n〉 〈0n|) ,

and the g(2)-value for this density matrix would be

g(2) =
tr
î
ρmaxc

†
+,2c

†
+,2c+,2c+,2

óÄ
tr
î
ρmaxc

†
+,2c+,2

óä2 =
2n(n− 1)

n2

which is below one for a 1-excitation state and above one for every state containing more
than 2 excitations. Therefore bunching areas arise if states containing more than 2-exciations
are excited and anti-bunching areas arise if only 1-exitation states can be excited and the
photons pass the setup “one by one”. In our Bose-Hubbard model the on-site nonlinearity
is negative and hence all transition frequencies to states containing more than two excita-
tions are red detuned with respect to transition frequencies to states containing only one
excitation (5.14-c). This is why bunching areas arise for red detuned microwave drive and
anti bunching areas arise for blue detuned microwave drive.

If we adjust the microwave drive frequency for every value ofEJ/EC to match the eigen-
frequency of the antisymmetric 1-excitation state we get the transition from a perfectly
uncorrelated field with g(2) = 1 to strongly correlated, anti-bunched field statistics with
g(2) < 1 see 5.8. For a quantum phase transition of the ground state of the Bose-Hubbard
Hamilton operator one would expect this transition as a consequence of the interplay of
the intersite hopping J+ and the on-site nonlinearity U+. For the driven dissipative system
we observe that the interplay between the Rabi frequency of the microwave drive Ω cos(θ)
and the on-site nonlinearity U+ determines the particle statistics. This can be seen in 5.8
where we plotted the g(2)-function and the intersite coupling, on-site nonlinearity and the
Rabi frequency of the microwave drive.

5.2.3. Meanfield approximation for two coupled modes with small nonlinearity

We want to solve the master equation 5.12 for small values of EJ/EC . For EJ/EC = 25,
we find J+ � U+ and express Hamilton operator H̃c+ in terms of the collective modes d+

and d−,
H̃c+ = H̃d+ + H̃d− +Hdd +Hex

where,

H̃d± =
Ω cos(θ)√

2

Ä
d†± + d±

ä
+ (∆ω+ ± J+) d†±d± −

U+

4
d†±d

†
±d±d±

Hdd = −U+d
†
+d+d

†
−d−

Hex = −U+

4

Ä
d†+d

†
+d−d− + h.c.

ä
.
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Here ∆ω+ = ω+ − ωl is the difference between the frequency ω+ and the microwave drive
frequency ωl. Since J+ � U+, the two collective modes are energetically far separated and
we neglectHex in a rotating wave approximation. In zeroth order in our approximation we
neglect Hdd as well and decouple the collective modes completely. The driven dissipative
master equation for the collective modes d+ and d− with Hamilton operators Hd+ and
Hd− can be solved exactly for steady state values, c.f. [23]. We compute the densities of
the two collective modes

¨
d†±d±

∂
= δ

(0)
± in zeroth order approximation and use them to

approximate the intermode density-density coupling,

−U+d
†
+d+d

†
−d− → −

U+

2

(
d†+d+δ

(0)
− + δ

(0)
+ d†−d−

)
.

This way the modes are still decoupled but the density of the d+-mode induces a frequency
shift of the d−-mode ω+ − J+ → ω+ − J+ −U+δ

(0)
+ and vice versa. We proceed to calculate

the densities of the two modes with the shifted frequencies to obtain the densities of the
two modes in first order approximation δ

(1)
± . We iterate this method until the difference

between densities of consecutive order in approximation is smaller than some threshold
value. After this procedure we approximate the density in the last coplanar waveguide
resonator ¨

c†+,2c+,2

∂
→ 1

2

Ä¨
d†+d+

∂
+
¨
d†−d−

∂ä
+ Re

î¨
d†+
∂
〈d−〉

ó
where we calculated the values for

¨
d†+
∂

and 〈d−〉with the renormalized frequencies ω+ +

J+ − U+δ
(nmax)
− and ω+ − J+ − U+δ

(nmax)
+ . With this procedure we can reproduce the

numerically exact values for the density in the last coplanar waveguide resonator and are
able to compute values for the polariton density close to the systems eigenenergies (5.14-
c) where the numerically exact method converges very slowly and becomes numerically
very demanding.
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6. Josephson Junction Intersected Resonators

In the previous chapter we considered a set of coplanar waveguide resonators each cou-
pled to a superconducting charge qubit as a artificial system of bosons, or more precisely
photons, to study the interplay between their on-site interaction mediated by the nonlin-
earity of the charge qubit and the hopping between the resonators. As a consequence of
the strong coupling between each individual coplanar waveguide resonator and its charge
qubit, it is more convenient to describe the elementary excitations of the system in terms
of polaritons. Polaritons are coherently combined excitations of the coplanar waveguide
resonator and the charge qubit. They inherit the ability to jump between different coplanar
waveguide resonators from their photonic nature and the ability to interact on each indi-
vidual site from their partial existence as a charge qubit excitation. Due to their twofold
nature however they also come in two flavors, the upper and lower polariton, named be-
cause of its higher and lower energy respectively. If we consider the coplanar waveguide
resonator and charge qubit to be on resonance, their polaritons are separated in energy
space by the coupling energy between resonator and qubit. This coupling energy is not
large enough to get an efficient separation of the two polariton species, albeit large com-
pared to setups in the optical regime. To further increase the coupling between the charge
qubit and the coplanar waveguide resonator one might couple them via the current in
the resonator rather then by the charge as previously done. This means incorporating
the Josephson junction directly into the central conductor of the coplanar waveguide res-
onator. In the following we will show that this greatly simplified setup actually can be
interpreted as a ultrastrongly coupled charge qubit to a coplanar waveguide resonator.
To accommodate our theoretical model to the ultrastrong coupling we change our way of
thinking. We do not consider the resonator and the qubit as separate systems and treat
their interaction as a perturbation but rather model them as an entity and treat the nonlin-
earity of the Josephson junction as perturbation.

6.1. Model Assumptions for the Josephson Junction Intersected
Resonator

At first we consider a slightly more general setup of a coplanar waveguide resonator which
is interrupted by N identical, capacitively shunted Josephson junctions with Josephson
inductance LJ and shunting capacitance CJ . The Josephson junctions are regularly spaced
with distance ∆. The coplanar waveguide resonator supports one-dimensional voltage-
current waves with wave velocity v = 1/

√
lc and characteristic wave impedance Zc =»

l/c. Where l and c are the inductance and capacitance per unit length of the coplanar
waveguide respectively. The resonator is terminated on both ends open circuited and at
the positions of the Josephson junctions the Josephson current-phase relations have to be
fulfilled. Instead of the Josephson junctions one could also incorporate dc-SQUIDs, which
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6. Josephson Junction Intersected Resonators

Figure 6.1.: Schematic sketch of the Josephson junction intersected resonator. The central
line of a coplanar microwave resonator is intersected at equal distances ∆ by
identical, capacitively shunted Josephson junctions with Josephson energy EJ
and shunting capacitance CJ . The state of the coplanar waveguide resonator
is fully defined by the flux functions at intermediary slices of coplanar waveg-
uides φi

would enable in situ tuning of Josephson plasma frequencies ωp = 1/
√
LJCJ . With this

technique one could also smooth out inevitable production deviations between individual
dc-SQUIDS. The state of the coplanar waveguide resonator is fully defined by the flux
function φ =

∫ t
−∞ V (t′)dt′ in each slice of coplanar waveguide between the Josephson

junctions. Physical observables like the excess charge per unit length, Q = cφ̇, or the
current, I = (∂xφ)/l, in the coplanar waveguide resonator may be derived from the flux
function φ. The Lagrangian for the whole system reads,

L =
N+1∑
j=1

LCPW
j +

N∑
j=1

LJJ
j , (6.1)

with,

LCPW
j =

∫ j∆

(j−1)∆

ß
c

2
[∂tφ(x, t)]2 − 1

2l
[∂xφ(x, t)]2

™
dx

LJJ
j =

CJ
2
δφ̇2

j +
ϕ2

0

LJ
cos

Å
δφj
ϕ0

ã
,

where the Josephson junctions introduce a drop δφi = φ|x↗j∆−φ|x↘j∆ in the flux function,
that is the difference between the limit of the flux function approaching the Josephson
junction from the left, φ|x↗j∆, and from the right, φ|x↘j∆. Because the setup does not
contain any flux threaded loops, that would require the sum of fluxes around the loop
to equal the threaded flux modulo 2π, the global minimum of the potential landscape of
the setup is reached, when all flux drops at the Josephson junctions δφi vanish and φ = 0
for all x ∈ [0, L]. At first we may linearize the Lagrangian around this global minimum,
find the exact eigenmodes of the linearized Lagrangian and then investigate effects of the
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nonlinearity in a perturbative manner. The nonlinearity is introduced solely by the cosine-
potential of the Josephson junctions, therefore it suffices to consider only the quadratic
part of the cosine-potential in order to get the linearized Lagrangian L̄,

LJJj → L̄JJj =
CJ
2
δφ̇2

j −
1

2LJ
δφ2

j . (6.2)

6.2. Spectrum Calculation with Transfer Matrix Technique

With the help of the transfer matrix technique (c.f section 3.3 or citation [92]) we calculate
the classical spectrum of eigenmodes of the coplanar waveguide resonator with Josephson
junctions, henceforth called nonlinear resonator.

The flux function for the coplanar waveguide fulfills a wave equation,

∂2
t φ− v2∂2

xφ = 0 . (6.3)

An Ansatz with separation of the variables time t and space x, φ(x, t) = g(t)f(x), leads
us to the linear dispersion relation ω = vk, with k the wavevector, and the fundamental
solution for the spatial function of the flux fj(x) = aj(x) + bj(x) (aj(x) = āje

ikx, bj(x) =
b̄je
−ikx) of coplanar waveguide slice j, which stretches from x = (j − 1)∆ to j∆. Now

the linearization of the Josephson current-flux relations (c.f. equation 6.2) emerges as a
essential step to be able to separate the spatial and temporal functions in the equations of
motion for the flux drops at the Josephson junctions. The nonlinear current-flux relation for
Josephson junctions intertwines the spatial and temporal component beyond separability.
However the linearized current-flux relations for the Josephson junctions,

−∂xφj(∆) = −∂xφj+1(0) =
l

LJ

Ç
1− ω2

ω2
p

å
δφj ,

can be recast in identical 2 by 2 matrices S mapping positive and negative frequency com-
ponents aj(x) and bj(x) directly to the left of the Josephson junction to their counterparts
directly to the right of the Josephson junction (c.f. section 3.3),Ü

aj+1(0)

bj+1(0)

ê
=

Ü
1 + iα −iα

iα 1− iα

ê
︸ ︷︷ ︸

S

Ü
aj(∆)

bj(∆)

ê
,

where 1/α = 2l/(kLJ)(1 − ω2/ω2
p) . With the translational matrix T (δ), which propagates

the flux function along the coplanar waveguide for the length δ,Ü
aj(x+ δ)

bj(x+ δ)

ê
=

Ü
eikδ 0

0 e−ikδ

ê
︸ ︷︷ ︸

T (δ)

Ü
aj(x)

bj(x)

ê
,
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6. Josephson Junction Intersected Resonators

we define D = T (∆) and are able to propagate i.e. relate the wavefunction parame-
ters a1(0), b1(0) at the left end of the nonlinear resonator to the wavefunction parameters
aN+1(∆), bN+1(∆) at the right end of the nonlinear resonator,Ü

aN+1(∆)

bN+1(∆)

ê
= D(SD)N

Ü
a1(0)

b1(0)

ê
. (6.4)

Our goal is to find the eigenmodes of the nonlinear resonator. To this end we not only need
the equations of motion for the flux function in the coplanar waveguide but we also need
boundary conditions. Current has to vanish at the borders of the nonlinear resonator,
1
l ∂xφ1|x=0 = 0 and 1

l ∂xφN+1|x=∆ = 0 which imposes the following conditions on the
spatial flux function parameters,

a1(0)− b1(0) = 0 aN+1(∆)− bN+1(∆) = 0 .

These conditions can be rewritten as a homogeneous linear equation for the wavefunction
parameters a1(0), b1(0) with the help of eq. (6.4),Ü

1 − 1

(1 − 1) .D(SD)N

êÜ
a1(0)

b1(0)

ê
=

Ü
0

0

ê
.

This homogeneous linear equation only has nontrivial solutions if the determinant of the
coefficient matrix vanishes. We use this condition to determine the eigenfrequencies of the
nonlinear resonator. To this end we express the scattering matrix that relates the wavefunc-
tion parameters at the left end of the nonlinear resonator to the wavefunction parameters
at the right end of the nonlinear resonator,

D(SD)N = D
1
2 (D

1
2SD

1
2 )ND

1
2 ,

in terms of Pauli matrices σx,σy,σz and the 2 by 2 identity matrix 1,

D
1
2SD

1
2 = (cos(k∆)− α sin(k∆))︸ ︷︷ ︸

v0

1 + i(α cos(k∆) + sin(k∆))︸ ︷︷ ︸
vz

σz −α︸︷︷︸
vy

σy

= v01 + ~v~σ . (6.5)

Using the algebraic properties of the Pauli matrices we can further calculate arbitrary pow-
ers of the above matrix,

(D
1
2SD

1
2 )N =

( ∞∑
n=0

Ç
N

2n

å
vN−2n

0 (~v.~v)n
)

︸ ︷︷ ︸
co(v)

1 +

( ∞∑
n=0

Ç
N

2n+ 1

å
vN−1−2n

0 (~v.~v)n
)

︸ ︷︷ ︸
si(v)

~v~σ .

This leads us to the following transcendental equation for the eigenenergies of the nonlin-
ear resonator,

sin(k∆) (co(v) + si(v)v0) = 0 .
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6.2. Spectrum Calculation with Transfer Matrix Technique

sin(k∆) = 0 singles out the eigenmodes of the bare coplanar waveguide resonator that
do not couple at all to the Josephson junctions because the current for these specific modes
vanishes at the positions of the Josephson junctions. The remaining factor can be simplified
to,

∞∑
n=0

Ç
N + 1

2n+ 1

å
vN−2n

0 (v2
0 − 1)n = 0 . (6.6)

By virtue of the fundamental theorem of algebra we know that this equation has N so-
lutions. Lets suppose for the moment that all N solutions for this equation v0,n are real
valued. This would provide us with N equations that can be deduced with the help of the
definition of v0 (c.f. eq.6.5) and α,

cos
(ω
v∆
)
− v0,n

sin
(ω
v∆
) =

cv

2CJ

ω

ω2
p − ω2

, (6.7)

We could now proceed by trying to directly solve the equation (6.6) and deduce all N
transcendental equations (6.7). But there is a more physical intuitive way to guess the so-
lutions of (6.6): The coefficients of the polynomial (6.6) are all numerical constants, conse-
quently all solutions v0,n should also be numerical constants without further dependencies
on the physical parameters defining the nonlinear resonator. If we are able to guess the v0,n

for a particular range of the physical parameters with the help of the equations (6.7), we
found the general solutions valid for all values of the physical parameters. Now imag-
ine a solution where the frequency of the eigenmode ω is far detuned from the plasma
frequency of the Josephson junctions ωp. The right hand side of (6.7) vanishes and the
eigenmodes should be the free modes of the bare coplanar waveguide resonator without
Josephson junctions with frequencies ωn′ = (πv/L)n′, n′ ∈ N. Therefore the left hand
side of the equations (6.7) also has to vanish for far detuned bare coplanar waveguide
resonator and Josephson junctions and consequently the solutions for equation (6.6) are
v0,n = cos

Ä
n π
N+1

ä
. Therefore all N transcendental equations for the eigenfrequencies are,

cos
(ω
v∆
)
− cos

Ä
n π
N+1

ä
sin
(ω
v∆
) =

cv

2CJ

ω

ω2
p − ω2

, (6.8)

where n ∈ [1, N ]. Every transcendental equation for a specific n has a infinite number
of solutions defining a manifold of eigenmodes with the same index n. We introduce the
combined index i = {n, k}which indexes all eigenmodes irrespective of their manifold.

The spatial flux functions fj|i can be determined by propagating the initial a1|i(0) and
b1|i(0) from the left border of the nonlinear resonator to position x with the help of the
transfer matrices T ,D and S. All pairs of a1|i(0) and b1|i(0) are equal, because of cur-
rent conservation at the end of the transmission line resonator, and we choose them to be
a1|i(0) = b1|i(0) = 1

2 without loss of generality. This provides us with a set of orthogonal
however not orthonormal spatial eigenfunctions. Therefore the spatial flux eigenfunctions
fj|i may be written,

fj|i(x) =
1

2
( 1 1 )T (x mod ∆)(SD)(j−1)

Ü
1

1

ê
.
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Again we employ the algebraic properties of the pauli matrices to get the simplified ex-
pressions for the eigenmode functions,

fj|i(x) = cj|i cos

Å
ωi
v

(x mod ∆)

ã
+ sj|i sin

Å
ωi
v

(x mod ∆)

ã
, (6.9)

with,

cj|i = cos

Ç
π

(j − 1)n

N + 1

å
−

sin
(
π (j−1)n

N+1

)
sin
Ä
π n
N+1

ä Åcos

Å
ωn,k
v

∆

ã
− cos

Å
π

n

N + 1

ãã
sj|i = −

sin
(
π (j−1)n

N+1

)
sin
Ä
π n
N+1

ä sin

Å
ωn,k
v

∆

ã
,

where again the combined index i = {n, k} is supposed to index all eigenmodes across all
manifolds.

Now that we found the eigenfrequencies and their respective spatial eigenfunctions, we
may proceed twofold. In the first section we consider a coplanar waveguide resonator
with only one Josephson junction. We evaluate its compatibility as a building block for
a network of capacitively coupled nonlinear resonators. This approach should be consid-
ered as a evolutionary step from the interacting many body system using polaritons in the
previous chapter. We adopt a different paradigm in the second section where we consider
coplanar waveguides with multiple Josephson junctions. In the spirit of a Dicke model
or Tavis-Cummings model we here present many-body physics in a single nonlinear res-
onator.

6.3. Single Josephson Junction

For a nonlinear resonator with a single Josephson junction all expressions for the general
case found in the previous section are considerably simplified. The only transcendental
equation for the spatial mode frequencies ωi reads,

cot

Å
ω

v
∆

ã
=

cv

2CJ

ω

ω2
p − ω2

, (6.10)

With the help of this transcendental equation we numerically compute the frequencies for
modes, ωi, of the nonlinear resonator which are antisymmetric with respect to a mirroring
with a plane of symmetry perpendicular to the nonlinear resonator through the Josephson
junction. For the symmetric modes the current through the Josephson junction vanishes
and consequently the flux drop across the Josephson junction also vanishes and therefore
the symmetric modes are unaltered by the presence of the Josephson junction.

One can check for the orthogonality of the antisymmetric modes by integrating the prod-
uct of two different (i 6= l) antisymmetric modes over the length of the nonlinear resonator,

∫ L

0
fi(x)fl(x) dx =

2v
Ä
ωl cos(ωiv

L
2 ) sin(ωlv

L
2 )− ωi cos(ωlv

L
2 ) sin(ωiv

L
2 )
ä

ω2
l − ω2

i

. (6.11)
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With the help of the transcendental equation for the eigenfrequencies 6.10 we get,

2v
Ä
ωl cos(ωiv

L
2 ) sin(ωlv

L
2 )− ωi cos(ωlv

L
2 ) sin(ωiv

L
2 )
ä

ω2
l − ω2

i

= −CJ
c
δfiδfl ,

where δfi is the flux drop of every spatial eigenmode, δfi = f1|i(0) − f2|i(0). This result
leads us to the useful generalization of the l2 scalar product to account for the discontinuity
at the Josephson junction,

c

∫ L

0
fi(x)fl(x) dx+ CJδfiδfl = δi,lηi , (6.12)

with the norm of the flux eigenfunctions,

ηi = c

Ç
L

2
+
δf2
i

ω2
i

c

2LJ

Ç
1 +

ω2
i

ω2
p

åå
.

We decided not to normalize the spatial eigenmodes but rather regard them as modes with
different effective “masses” or in this case capacitances ηi. This does not alter any physical
observable value but simplifies some of the calculations. Now we can reformulate the flux
field in terms of the eigenmode flux functions fi,

φ(x, t) =
∞∑
i=1

gi(t)fi(x) ,

and with the help of the orthogonality relation 6.12 we decompose the integral in the La-
grangian into a sum over the infinite number of eigenmode amplitudes gi,

L =
∞∑
i=1

Å
ηi
2
ġ2
i −

1

2
ηiω

2
i g

2
i

ã
+
ϕ2

0

LJ

Ç
cos

Å
δφ

ϕ0

ã
+

1

2

Å
δφ

ϕ0

ã2å
,

where δφ =
∑
i gi(t)δfi. Here, we already neglected the symmetric modes, because they

are completely decoupled from the antisymmetric modes. The corresponding Hamilto-
nian can be found by a Legendre transformation which leaves the nonlinear part from the
Lagrangian unaltered,

H =
∞∑
i=1

Ç
π2
i

2ηi
+

1

2
ηiω

2
i g

2
i

å
− ϕ2

0

LJ

Ç
cos

Å
δφ

ϕ0

ã
+

1

2

Å
δφ

ϕ0

ã2å
πi =ηiφ̇i .

We quantize the theory by promoting πi and gi to operators π̂i and ĝi with the canonical
commutation relations [ĝi, π̂l] = i~δi,l. The generalized coordinates ĝi and momenta π̂i can
be expressed in terms of lowering and raising operators ai and a†i via the relations,

π̂i =− i
 

~ηiωi
2

(ai − a†i ) ĝi =

 
~

2ηiωi
(ai + a†i ) ,
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SQUID 
tuning range

Figure 6.2.: Numerically calculated frequencies of the linear part of the coplanar waveg-
uide resonator intersected by the capacitively shunted Josephson junction.
Anti-crossings show up where the plasma frequency of the capacitively
shunted Josephson junction ωp (dashed ascending graph) matches one of the
frequencies of the antisymmetric modes of the coplanar waveguide resonator
(dashed horizontal graphs). For parameters used in the numerical calculation
see table 6.1

with
î
ai, a

†
l

ó
= δi,l. Finally, we arrive at the following Hamilton operator,

H =
∞∑
i=1

~ωi(a†iai +
1

2
)− ϕ2

0

LJ

Ñ
cos

(
δφ̂

ϕ0

)
+

1

2

(
δφ̂

ϕ0

)2
é
, (6.13)

with

δφ̂ =
∞∑
i=1

λi
Ä
ai + a†i

ä
and, λi =

 
~

2ηiωi
δfi .

6.3.1. Spectrum

There are two limiting cases where the solutions of the transcendental equation for the
eigenfrequencies 6.10 can be be deduced directly without any numerical calculation. For
our choice of parameters (c.f. table 6.1), the right hand side has a narrow divergence for
ω = ωp and quickly approaches zero for values of ω unequal to ωp. Consequently, we have
two different possibilities for approximate solutions of the transcendental equation. For
ω 6= ωp we can approximate the right hand side of the transcendental equation by 0 and
find with the help of the left hand side,

ωi = (2i+ 1)
πv

L
i ∈ N .
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This corresponds to the situation where the plasma frequency of the Josephson junction
ωp is off-resonant with the unperturbed frequency of the coplanar waveguide resonator
mode and consequently we recover the unperturbed frequencies of the resonator without
Josephson junction. The situation changes if one searches for modes near the plasma fre-
quency of the Josephson Junction, ω ≈ ωp. Then, the right hand side diverges and the left
hand side tells us that this always happens for frequencies equal to the frequencies of the
symmetric modes ωi = ((πv)/L)2i. If we consider the linearized current flux relation for
the capacitively shunted Josephson junction,

−∂xφ1(
L

2
) = −∂xφ2(

L

2
) =

l

LJ

Ç
1− ω2

ω2
p

å
δφ ,

we see that for modes with frequency ω = ωp the current vanishes at the place of the
Josephson junction. However the flux function of the eigenmode still has to be antisym-
metric. The only possibility for the flux function of this eigenmode is to be the same as the
symmetric mode with the half to the right of the Josephson junction flipped. Even though
there is no current flowing into the Josephson junction, the flux drop at the Josephson junc-
tion is at its maximum. This tells us that current is flowing internally between the shunted
capacitor and the inductive part of the Josephson junction to fulfill the Josephson current
flux relation. This scheme is independent of the number of Josephson junctions: If the
eigenmode of the entire nonlinear resonator oscillates at the plasma frequency of the iden-
tical Josephson junctions then the Josephson junctions introduce the maximal flux drop
in the flux function of the nonlinear resonator and the current oscillates internally in the
Josephson junctions. These considerations are confirmed by the numerically calculated
mode spectrum of the linear part of the combined device. As expected, we in principle
find the spectrum of the antisymmetric modes of the coplanar waveguide resonator and
the plasma frequency of the Josephson junction, with additional avoided crossings near
((πv)/L)(2i+ 1) ≈ ωp. The latter arise from their mutual interaction.

6.3.2. Derivation of the Kerr-nonlinearity

In principle, every antisymmetric mode is coupled to all other antisymmetric modes by
the nonlinear part of the Hamilton operator 6.13. As we illustrate in the following, the in-
teractions between different modes are however negligible in the low energy limit. Firstly,
we note that the nonlinear part of the Hamilton operator does not contain any hopping
terms of the form aia

†
l +a†ial for i 6= l because we already diagonalized the complete linear

part of the Lagrangian. Secondly, density-density interactions of the type a†iaia
†
l al can be

neglected because we assume all the modes but the mode under consideration to be in
the vacuum state and the negligible interaction between the modes prevents them from
becoming populated. Finally, the remaining higher order terms do not contribute a signif-
icant coupling. To separate the Hamilton operator of the considered mode from the rest,
we apply a rotating wave approximation, the validity of which we confirm below. This
approximation allows us to substantially simplify the cosine term of the nonlinear part of
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SQUID 
tuning range

Figure 6.3.: Nonlinearity parameter of the different modes Ui. If the frequency of the mode
is near the plasma frequency of the capacitively shunted Josephson junction
the nonlinearity e2/(4Cs) is inherited. For parameters used in the numerical
calculation see table 6.1

the Hamilton operator. To this end we, consider the identity,

cos

( ∞∑
i=1

λi
ϕ0

(ai + a†i )

)
= cos

Å
λ1

ϕ0
(a1 + a†1)

ã
cos

( ∞∑
i=2

λi
ϕ0

(ai + a†i )

)

− sin

Å
λ1

ϕ0
(a1 + a†1)

ã
sin

( ∞∑
i=2

λi
ϕ0

(ai + a†i )

)
.

The sine terms will only contain operator products with odd powers of the individual
mode operators, hence the second addend can be neglected as part of the rotating wave
approximation. If we iterate this consideration, we can approximate the cosine of the sum
of our mode position operators by the product of the cosines of the mode position opera-
tors,

cos

(∑
i

λi
ϕ0

(ai + a†i )

)
→
∏
i

cos

Å
λi
ϕ0

(ai + a†i )

ã
.

The cosine terms can further be approximated by a sum of normally ordered operator
products with equal numbers of annihilation and creation operators,

cos

Å
λi
ϕ0

(ai + a†i )

ã
→ αi,0 + αi,1a

†
iai + αi,2a

†
ia
†
iaiai + . . . . (6.14)

The expansion coefficients αi,k in equation 6.14 are not the usual expansion coefficients
of the cosine since one has to take into account that also higher powers of λi/ϕ0(ai +
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a†i ) generate operator products of lower powers if we attempt to normal order the mode
operator binomials. With the formula for mode operator binomials given in [64],

(a+ a†)m =

[m/2]∑
k=0

m−2k∑
n=0

m!(a†)iam−2k−n

2kk!n!(m− 2k − n)!
,

where [m/2] denotes the largest integer less than or equal to m/2, we can identify the
prefactors for the rotating wave expansion of the cosine,

cos

Å
λi
ϕ0

(ai + a†i )

ã
→ e

−
λ2
i

2ϕ2
0

Ç
1− λ2

i

ϕ2
0

a†iai +
λ4
i

4ϕ4
0

a†ia
†
iaiai + . . .

å
.

We assume exemplarily that only the fundamental mode is populated and can there-
fore neglect all modes with i 6= 1 in the Hamilton operator. Since |λi/ϕ0| � 1, as will
be confirmed below, and because we are only interested in low photon numbers where
λ2
i /ϕ

2
0〈a
†
1a1〉 � 1, we can truncate the cosine expansion after the quartic order term. We

thus get for the nonlinear part of our Hamilton operator in the rotating wave and low
photon number approximation,

Hnonlin → −ϕ
2
0

LJ

ÑÇ
1− λ2

1

ϕ2
0

a†1a1 +
λ4

1

4ϕ4
0

a†1a
†
1a1a1

å ∞∏
i=1

e
−

λ2
i

2ϕ2
0 +

λ2
1

ϕ2
0

a†1a1

é
.

Any constant in the Hamilton operator provides us with a not measurable shift of the
overall energy, therefore we may omit all constant terms and get the following Hamilton
operator for the fundamental mode in rotating wave approximation,

H1 = (ω1 − δω) a†1a1 − Ua†1a
†
1a1a1 ,

with

δω =
λ2

1

LJ

Ñ
1−

∞∏
i=1

e
−

λ2
i

2ϕ2
0

é
U =

λ4
1

4LJϕ2
0

∞∏
i=1

e
−

λ2
i

2ϕ2
0 ,

where δω is a small renormalization of the fundamental mode due to the nonlinearity.
To calculate the nonlinearity parameter for the fundamental mode, U1, we need to eval-

uate the formally infinite product,
∏
i exp

(
−λ2

i /(2ϕ
2
0)
)
. Here the superconducting gap

provides a natural cut-off frequency. If the first excited state of a mode of the nonlinear
resonator exceeds the superconducting gap in energy, Cooper pairs will break and strong
dissipation processes will start. Therefore we only include modes that fit energetically into
the superconducting gap in the above product and get

∏icutoff
i=1 exp

(
−λ2

i /(2ϕ
2
0

)
. icutoff is here

the largest of all i that fulfills the equality,

~
πv

L
(2i− 1) < ∆sc(T ) and ∆sc(T ) = 3.52 kBTc

 
1− T

Tc
,

with ∆sc the energy gap of the superconductor. For our calculations we used the critical
temperature of niobium. Niobium technique is favorable because of its high transition
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6. Josephson Junction Intersected Resonators

temperature of 9.2 Kelvin that enables fast precharacterization at liquid helium tempera-
tures before cooling the whole device down to the millikelvin range.

The nonlinearity of the eigenmodes is inherited from the Josephson junction when the
frequency of the eigenmode is near the plasma frequency ωp. The unnormalized non-
linearity parameter of a single Josephson junction is simply half of its charging energy
Ũ = Ec/2 = e2/(4CJ). The normalization coming from the normal ordering of all orders
of the cosine in the Hamilton operator ensures that for increasing Josephson inductance
the nonlinearity parameter vanishes. The charge qubit in the transmon regime has exactly
the same nonlinearity since after all it is merely a capacitively shunted Josephson junction.
Careful inspection of the unnormalized nonlinearity parameter of individual eigenmodes
of the nonlinear resonator provides us with the following formula,

lim
ω→ωp

Ũi = lim
ω→ωp

λ4
i

4LJϕ2
0

=
e2

4
(CJ+Lc

8
)2

CJ

.

Therefore the eigenmode of the nonlinear resonator can not inherit the full nonlinearity of
the bare Josephson junction but the nonlinearity of the Josephson junction gets renormal-
ized by virtue of the altered Josephson junction capacitance. This principle of inheritance,
where a collective mode of the composite resonator-junction system adopts the properties
of one of its constituents if its frequency matches the frequency of the respective isolated
constituent, is further illustrated by the nonlinearity Ui of higher modes (see 6.3). Here
we can see that also higher modes could be employed as onsite nonlinear mode as they
acquire the same amount of nonlinearity.

6.3.3. Experimental limitations and prerequisites

In this section we discuss how one would realize the above introduced nonlinear resonator
with one Josephson junction. We propose to use a dc SQUID instead of the single Joseph-
son junction in order to have a tunable nonlinearityU . The SQUID consists of two identical
Josephson junctions with plasma frequency ωp,0 in a loop that is threaded by an external
flux Φ. If the self inductance of the SQUID is negligible, it can be modeled as a single
Josephson junction whose plasma frequency ωp,

ωp = ωp,0
»

2| cos(Φ/(2ϕ0))|

can be tuned via the external flux Φ threading the SQUID loop (cf. [16]). The further
discussion will be twofold. We first consider the experimental limitations which are im-
posed on our theoretical model by the physics of the superconducting circuitry and then
discuss how the setup should be tuned to realize a sufficient amount of nonlinearity. In
an experiment, it is favorable that the fundamental mode of the nonlinear resonator is
within a frequency band suitable for state-of-the-art microwave measuring devices. Fur-
thermore, the thermal population should be insignificant at least at millikelvin temper-
atures. We therefore choose the length L of the transmission line resonator such that
for all relevant plasma frequencies ωp the frequency of the fundamental mode is in the
range 4GHz < ω/(2π) < 8GHz. All other design parameters of the transmission line
(Z0 , l, c) are typical values found in many circuit QED setups. We study a wide range
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6.3. Single Josephson Junction

Resonator Josephson Junction

Wave Impedance Z0 = 50Ω Shunting Capacitance CJ = 1.9pF

Phase Velocity v = 0.98 · 108 m
s plasma frequency 0.2πvL < ωp < 1.3πvL

Table 6.1.: Parameters for an experimental realization of the coplanar waveguide resonator
with a single Josephson junction.

of plasma frequencies, putting a focus on the experimentally well accessible range of
0.2((πv)/L) < ωp < 1.3((πv)/L). A summary of all relevant parameters is given in 6.1.

In figures 6.2,6.3 and 6.5 we hatch a proposed tuning range for the dc-SQUID plasma
frequency of 0.2((πv)/L) < ωp < 1.3((πv)/L). This results in a tuning range for the non-
linearity U1 of Umin/(2π~) = 10kHz to Umax/(2π~) = 10MHz and a frequency drag for
the fundamental mode of ωmin/(2π) = 5.2GHz to ωmax/(2π) = 8.5GHz. This provides
us with sufficient nonlinearity to exceed present day decay rates of coplanar waveguide
resonators γ/(2π) ≈ 100kHz while still keeping the frequency drag within the bandwidth
of state of the art microwave detection. These values allow one to investigate the Bose-
Hubbard Hamiltonian in the driven dissipative regime [14, 78, 59, 83] with seamless tun-
ability between the onsite nonlinearity dominated regime U > J and the hopping domi-
nated regime J > U using present day technology. Finally, we note that the nonlinearity
Umax is here bound from above by the charging energy (see figure 6.3). Therefore, it could
be further increased by decreasing the Josephson junction capacitance CJ . However, this
would shift the anticrossing marking the region of tunability, and hence the operating in-
terval, to lower plasma frequencies, finally resulting in fabrication and noise issues. In the
whole presented range of plasma frequencies 0.2((πv)/L) < ωp < 1.3((πv)/L) we checked
the validity of our rotating wave approximation. The most dominant process of all ne-
glected ones is the exchange of three fundamental mode excitations with one excitation of
the next higher odd mode, a1a1a1a

†
2. The prefactor for this term in the Hamilton operator is

of the order , λ3
1λ2/(LJϕ

2
0). This should be compared to the frequency difference between

three times the fundamental mode frequency ω1 and the second odd mode frequency ω2.
For the whole considered range of critical currents the quotient of the prefactor and the
frequency difference is vanishingly small, which validates our assumption of decoupled
field modes.

6.3.4. Networks

Circuit QED offers ample possibilities to couple several resonators to a network as there
are basically no limitations on the topology and geometry of networks of transmission
line resonators [47], except for constraints imposed by the detection circuitry and by space
on the chip. In figure 6.4 we display two specific configurations of one-dimensional net-
works (chains) of nonlinear resonators. In figure 6.4 a), the resonators are coupled at both
ends, which form a small capacitance and thereby enable photon hopping between ad-
jacent resonators. In this way, also two-dimensional lattices can be formed by coupling
more than two resonators at their ends. The advantage of this way of coupling the res-
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6. Josephson Junction Intersected Resonators

Figure 6.4.: Two different coupling schemes for one-dimensional networks of nonlinear
resonators. a) Capacitive coupling of the nonlinear resonators. b) Capacitive
and inductive coupling with the advantage of individual addressability for the
nonlinear resonators. Only the central wires of the coplanar waveguides are
drawn. Groundplanes are omitted.

onators is scalability, but one can only probe the output fields at the borders of the entire
network. Coplanar waveguide resonators can however also be coupled by reducing the
distance between their central lines for a certain length see figure 6.4 b). Depending on the
exact position of the convergence, and the specific mode under consideration, the coupling
between the two resonators is in general both capacitive and inductive [60, 76]. The advan-
tage of this coupling scheme is that each nonlinear resonator can be probed individually.
This advantage however only holds for one-dimensional networks.

For both designs the coupling constants are typically smaller than the frequencies of
the field modes and therefore a rotating wave approximation is applicable. The coupling
Hamilton operator consequently reads [69],

Hg =
∑
〈l,m〉

gl,m
Ä
ala
†
m + a†l am

ä
,

where al is one but always the same eigenmode operator of the different nonlinear res-
onators, the sum comprises all coupled nonlinear resonators and gl,m incorporates all mi-
croscopic details of the interaction like the respective eigenmode, the coupling capacitance
and the coupling inductance. With present day precision in sample production we assume,
for the following, all coupling constants to be equal, gl,m = g. As shown before every non-
linear resonator can be modeled by a harmonic oscillator Hamilton operator with a Kerr
nonlinearity of strength U . For the whole chain of nonlinear resonators we therefore get a

84



6.3. Single Josephson Junction

SQUID 
tuning range

Figure 6.5.: Numerically calculated coupling strengths between the same modes of adja-
cent nonlinear resonators in a capacitvely coupled network. For parameters
used in the numerical calculation see table 6.1

Bose-Hubbard Hamilton operator of the form,

HBH =
∑
l

î
ωa†l al + Ua†l a

†
l alal + g

Ä
a†l al+1 + ala

†
l+1

äó
(6.15)

Next we calculate the strength of the coupling g between two neighboring nonlinear
resonators in a network. We only consider capacitive coupling of nonlinear resonators
where the respective ends of the central lines of adjacent nonlinear resonators are either
close to each other or connected by interdigitated capacitors. To integrate the coupling
into our theoretical model we have to include the energy of the coupling capacitor, with
coupling capacitance Cc, into the Lagrangian of the nonlinear resonator,

Lc =
Cc
2

Ä
φ̇1|x=L − φ̇2|x=0

ä2
, (6.16)

where φ1/2 is the flux field of adjacent nonlinear transmission line resonators. After a Leg-
endre transformation to get the corresponding energy term in the Hamiltonian we would
get different conjugate momenta πn. We neglect this effect because the coupling capaci-
tanceCc is very small compared to the overall capacitance of the nonlinear resonator. After
quantizing the theory the time derivative of the flux field of the nonlinear resonator gets
mapped to φ̇1/2 → −i

∑
i

»
~ωi/(2ηi)fn(x)

(
a1/2,i − a

†
1/2,i

)
. The coupling term in the La-

grangian therefore provides us with many different effects: We get renormalizations of the
different resonator eigenmode frequencies, exchange couplings between different eigen-
modes of adjacent resonators and on the same resonator, which we neglect in a rotating
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6. Josephson Junction Intersected Resonators

Figure 6.6.: Spectrum of a coplanar waveguide resonator interrupted by 3 identical and
uniformly distributed Josephson junctions plotted over their plasma-frequency
ωp in units of the fundamental mode frequency (πv)/L. Eigenmodes of the
coplanar waveguide resonator without Josephson junctions that do not couple
to the Josephson junctions for symmetry reasons are omitted in the plot. The
degeneracy point that we consider in Figure 6.9 and in our calculations for the
driven dissipative regime below is marked by a dashed box.

wave approximation, and exchange coupling of the same mode of adjacent resonators,

Hi,g = −Cc
4

ωi
ηi

∑
〈l,m〉

Ä
a†l,iam,i + al,ia

†
m,i

ä
. (6.17)

The dimensionless capacitance of the fundamental eigenmodes ηi of the nonlinear trans-
mission line resonator is not affected by a change of the Josephson junction’s plasma fre-
quency for generic parameters (cf. 6.1) of our setup . The coupling gi = (Ccωi)/(4ηi) of
the same eigenmodes in adjacent nonlinear resonators is therefore almost completely de-
termined by the frequency of the modes cf. figure 6.5 , where we plotted the coupling of
the first three antisymmetric eigenmodes of the nonlinear resonator. This in turn enables
us to increase the nonlinearity while increasing the coupling, provided we do not use the
fundamental mode of the nonlinear resonator.

6.4. Multiple Josephson Junctions

6.4.1. Spectrum

The nonlinear resonator examined in the previous section can be considered as a building
block or one “site” in a complex network. This building block is the single ingredient to
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build the network. The network supports excitations that can hop between different build-
ing blocks and interact if they are on the same building block. In the flexible framework
of circuit QED we can also explore many body physics in a single coplanar waveguide
resonator. This situation has already been considered for example by Dicke [21] in his
seminal work on multiple two level scatterers coupled to a single photonic mode confined
by a cavity. If we consider more than one Josephson junction in our coplanar waveguide
resonator we also enter this realm of multiple scatterers coupled to the field of a single
cavity. However the extraordinary high coupling strengths of circuit QED force us to walk
off the beaten path of the phenomenological Dicke model and delve into the microscopical
model already solved for its eigenmodes in section 6.1.

To calculate the spectrum of a coplanar waveguide resonator with N Josephson junc-
tions we have to solve N transcendental equations 6.8. The computational effort therefore
only scales linearly with the system size and we are able to handle quite large systems.
In figure 6.6 we plotted the spectrum of a coplanar waveguide resonator with three junc-
tions. The Josephson junctions are spaced evenly, with distance ∆, along the length of the
coplanar waveguide resonator. Because of this symmetry the spectrum decomposes into
sub-spectra. There are as many sub-spectra as there are Josephson junctions. Each sub-
spectrum represents the manifold of eigenmodes which are solutions to one of the tran-
scendental equations 6.8. The sub spectrum for each manifold resembles the spectrum of
a Josephson junction that is ultrastrongly coupled to specific free modes of the bare copla-
nar waveguide resonator (c.f. citation [52] or section 6.3). However these sub-spectra can
not be attributed to the coupling between a specific Josephson junction and the coplanar
waveguide resonator but rather the coupling of a collective Josephson junction mode with
specific symmetry to modes of the coplanar waveguide resonator with compatible symme-
try. For a large detuning between free mode frequency and plasma frequency the Joseph-
son junction mode and the coplanar waveguide resonator oscillate independently. In turn
for degenerate plasma and free mode frequencies, the eigenfrequencies of the combined
device show an anticrossing of the order of the eigenmode frequencies themselves. In this
regime excitations of the device are strongly hybridized between the coplanar waveguide
resonator and the Josephson junctions. We can deduce the positions of the anti-crossings
with the help of flux eigenfunctions fi. Consider a free mode of the bare coplanar waveg-
uide resonator which has the frequency ωn′ = (πv/L)n′ and exhibits an anticrossing with
the Josephson junction mode which is associated to the manifold n of eigenmodes. This
mode asymptotically approximates one of the manifold modes for very large plasma fre-
quency of the Josephson junctions ωp →∞. In this situation we may conclude that the free
mode frequency plugged into the flux function of the approximated manifold eigenmode
should reduce the flux eigenfunction to that of the free mode. With this reasoning we can
deduce the following rules,

n′ = n+ 2(N + 1)m n′ = −n+ 2(N + 1)(m+ 1) . (6.18)

If either of these both rules is fulfilled, then the free mode of frequency ωn′ shows an anti-
crossing with the modes of manifold n. Additionally to all eigenmodes derived from the
transcendental equations 6.8 there are modes that do have extrema of their flux function at
the position of the Josephson junctions. The current in the coplanar waveguide is propor-
tional to the spatial derivative of the flux function. Therefore these modes have vanishing
current at the Josephson junctions and are consequentially completely decoupled.
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6. Josephson Junction Intersected Resonators

Connections to Phenomenological Model As it turned out it is possible to treat the in-
teraction between the Josephson junctions and the coplanar waveguide resonator exactly
in the microscopic model and we will introduce the small nonlinearity of the Josephson
junctions perturbatively in the following. An alternative approach would have been to
diagonalize the coplanar waveguide resonator and the Josephson junctions separately and
then treat the interaction between them in a perturbative manner. The resulting Hamilton
operator should contain interaction energy contributions similar to, g(a†+a)(b+b†), where
a lowers the eigenstate of the coplanar waveguide resonator and b lowers the eigenstate of
the Josephson junctions. The magnitude of the coupling coefficient g can already be deter-
mined by the size of the anticrossing in the exact classical spectrum of eigenmodes. The
effective coupling frequency between the Josephson junctions and the coplanar waveguide
resonator, is half of the frequency difference of the eigenmodes of the nonlinear resonator
at the anticrossing. We restrict ourselves to the lowest anticrossing in each sub spectrum
and Taylor expand the transcendental equations (6.8) to second order in ω = ωp + δω
around the anticrossing at ωp = (πv/L)n, and get

δω2 =
(N + 1)

4CJLl
⇒ g =

1

2

 
N + 1

CJLl
.

This expression can be given a simple physical meaning when we realize that the cou-
pling of two resonant oscillatory circuits where one is coupled to the current of the other
(c.f. figure 6.7) has the same functional form. The coupling strength is proportional to
the frequency of a fictional resonating circuit with the inductance of the one circuit and
the capacitance of the other. We also corroborated the approximate coupling formula with
numerical calculations presented in figure 6.7 b). The coupling strength g grows with the
square root of the number of Josephson junctions comparable to the Situation in the Dicke
model. The Dicke model describes a bosonic mode coupled uniformly to many two level
systems. After the Holstein Primakoff transformation of the two level systems we get, in
the thermodynamic limit, a mapping on the Hamiltonian of two coupled harmonic oscil-
lators. The two harmonic oscillators are the bosonic mode and spin waves for the two
level systems, and the coupling between them is proportional to the square root of the
number of two level systems. This similarity immediately raises the question whether a
ground state phase transition comparable to the one seen in the Dicke model can also hap-
pen here. In the Dicke model the phase transition is indicated by the appearance of a soft
mode, a joined excitation of the bosonic mode and the two level systems with vanishing
frequency even though the frequencies of all involved systems does not vanish. We can
exclude this possibility for our system. The left hand side of equation (6.7) diverges for
ω = 0 while the right hand side vanishes, if ωp is finite. The energy gap between the en-
ergetically lowest eigenmode and the groundstate for degenerate Josephson junctions and
coplanar waveguide resonator only slowly converges to 0 upon increasing the number of
Josephson junction evidenced by the numerical data shown in figure 6.7 c). The lowest
energy eigenmode therefore never crosses the groundstate like it does in the Dicke model.
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Figure 6.7.: a) Minimal model for the coupling of a coplanar waveguide resonator of length
L with total capacitance Lc and inductance Ll and the Josephson junction with
Josephson inductance LJ and parallel capacitance CJ . b) Comparison of nu-
merical data and analytical approximation of the phenomenological coupling
strength between coplanar waveguide resonator and Josephson junction. c)
Numerical data for the gap between the energetically lowest eigenmode and
the groundstate. All numerical data in this figure is calculated with the param-
eters presented in subsection 6.4.5

6.4.2. Quantisation

After the determination of the flux eigenfunctions fi and eigenfrequencies ωi we are now
able to decompose the Lagrangian of a flux field φ =

∑
i gifi into an infinite but discrete

set of eigenmodes with the help of the following generalized scalar product for the eigen-
functions fi,

c

L∫
0

fkfldx+ CJ

N∑
j=1

δfj|kδfj|l = δk,lηk ,

where,

δfj|i = fi|x↗j∆ − fi|x↘j∆ = 2 sin(π
jn

N + 1
)

Ä
cos(ωiv ∆)− cos(π n

N+1)
ä

sin(π n
N+1)

,

is the flux drop of the individual eigenmode i at Josephson junction j. With this scalar
product the eigenmodes are orthogonal but not normalized. The norm of the eigenmodes
reads,

ηi =
Lc

2

1− cos(ki∆) cos(π n
N+1)

sin(π n
N+1)2

+
c(N + 1)

4CJ l

Ç
sin(ki∆)

sin(π n
N+1)

å2 ω2
p + ω2

(ω2
p − ω2)2

.

The linearized Lagrangian in terms of the time dependent amplitudes gi is a sum of inde-
pendent harmonic oscillators,

L̄ =
∑
i

ηi
2
ġ2
i −

1

2
ηiω

2
i g

2
i .
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The norm of the eigenmodes has units of a capacitance and represents the fictional ca-
pacitance of the LC-circuit that in turn represents a specific eigenmode of the nonlinear
resonator. However the magnitude of the norm of the eigenmodes is without physical rel-
evance since it depends on the arbitrary chosen norm for the spatial eigenfunctions. Of
physical relevance for the modes are the frequency ωi and the local values for the electrical
potential V (x) = ġf(x) and current I(x) = 1

l g
d
dxf(x) of the central line in the coplanar

waveguide resonator which are independent of the chosen normalization. With this we
can perform a Legendre transform to get the Hamiltonian of the system,

H̄ =
∑
i

1

2ηi
π2
i +

1

2
ηiω

2
i g

2
i , (6.19)

with πi = ηiġi the canonical conjugate momentum of gi. Afterwards we quantize the
theory in the generic way by introducing individual lowering and raising operators for
the individual eigenmodes of the nonlinear coplanar waveguide resonator,

π̂i =− i
 

~ηiωi
2

(ai − a†i ) ĝi =

 
~

2ηiωi
(ai + a†i ) .

The Hamilton operator, together with the nonlinear contributions originating from the
Josephson junctions, consequently reads,

H = H̄ +HNL =
∑
i

~ωia†iai −
ϕ2

0

LJ

N∑
j=1

Ñ
cos(

δφ̂j
ϕ0

) +
1

2

(
δφ̂j
ϕ0

)2
é
,

where,

δφ̂j =
∑
i

δfj|iĝi

=
∑
i

 
2

N + 1
sin

Å
π

jni
N + 1

ã
λ(ωi)(ai + a†i ) ,

and λ(ωi) is,

λ(ωi) =

√
N + 1

√
~ωi

CJL
√

(2l
L (ω2

p − ω2
i )

2 + (cot(ωi∆v ) ωi
LCJv

(ω2
p − ω2

i ) + N+1
CJL2 (ω2

p + ω2
i ))

,

which is a measure of the mean zero point flux fluctuations in the Josephson junctions.
If the frequency of the eigenmode is close to a free mode frequency ωn′ = ((πv)/L)n′ of
the coplanar waveguide resonator, then the flux fluctuations in the Josephson junctions
vanish because the flux drops of the spatial eigenfunctions δfj|i vanish. However if the
eigenmode frequency is equal to the plasma frequency ωp, the flux fluctuations are,

λp(n) =

Õ
~

2ωp

Å
CJ + Lc

4(N+1)
1

1±cos(n π
N+1

)

ã ,
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which is the zero point flux fluctuation of a single Josephson junction with renormalized
capacitance C ′J = CJ + Lc

4(N+1)
1

1±cos(n π
N+1

) . Note that naively taking limωp→ω λ(ωn) = λ(ωp)

does not lead to correct results since cot(ωv∆) diverges for ωp → ω. We thus expressed
cot(ωv∆)(ω2

p − ω2) with the help of the transcendental equation for the eigenfrequencies
(c.f. equation 6.8) to get the correct limit.

Effects of the Nonlinearity The nonlinearity reintroduces couplings between the above
derived eigenmodes that do not couple linearly since we diagonalized the linear part of
the Lagrangian. If we would consider a infinite coplanar waveguide with Josephson junc-
tions the nonlinearity would introduce scattering of excitations with conservation of the
crystal quasi-momentum which leads to a selection rule for allowed scattering between
the eigenmodes. Our setup with the periodically spaced Josephson junction and the fi-
nite coplanar waveguide resonator still contains enough symmetry to generate a selec-
tion rule for allowed scattering between eigenmodes. The nonlinearity of the nonlinear
resonator is the sum of the Josephson energies of all phase-jumps at the Josephson junc-
tions, where quadratic terms have been subtracted. As a first step to further analyze the
workings of the nonlinearity we expand the polynomial of all manifold flux quadratures
φn =

∑
k φ̂n,k =

∑
k λ(ωn,k)(an,k + a†n,k),

HNL = −ϕ
2
0

LJ

N∑
j=1

∞∑
l=2

−2l

(2l)!(N + 1)l

(
N∑
n=1

sin(π
jn

N + 1
)
φn
ϕ0

)2l

(6.20)

= −ϕ
2
0

LJ

N∑
j=1

∞∑
l=2

−2l

(2l)!(N + 1)l

∑
n̄∈P (2l)

2l∏
m=1

sin(π
jn̄m
N + 1

)
φn̄m
ϕ0

.

Here n̄ denotes a vector of length 2l that is an element of the set P (2l) of all combinations
of manifold indices n of length 2l and n̄m is the element number m of n̄. We want to first
compute the sum over all Josephson junctions (sum over index j). Since the dependen-
cies on the Josephson junction only arise in the sine functions it suffices to examine the
expression,

N∑
j=1

2l∏
l=1

sin

Å
π

jn̄l
N + 1

ã
=

1

22l−1

N∑
j=1

∑
{σ}

P (σ) cos

Ç
π
j
∑2l
m=1 σmnm
N + 1

å
, (6.21)

where {σ} is the set of all 22l−1 different combinations σ of minus and plus signs, for
example σl = {−1, 1, 1, 1,−1, . . . , 1}. P (σ) is the parity of the sign combination P (σ) =∏2l
m=1 σm, which is either −1 for combinations with an odd number of minus signs or

1 for combinations with a even number of minus signs. The sum over j can for each
ν =

∑2l
m=1 σmnm be simplified with,

N∑
j=1

cos

Å
π

jν

N + 1

ã
=


N if ν = 2(N + 1)m m ∈ N0

−1 if ν even and ν 6= 2(N + 1)m m ∈ N0

0 if ν odd .

To further evaluate (6.21), we thus need to analyze when ν is even and whether there are
cases of ν = 2(N + 1)m with m ∈ N0. Combinations of n̄l that contain an odd number
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of odd manifold indices do not contribute because their sum can only be odd. This selec-
tion rule originates in the mirror symmetry of the device. Eigenmode functions with odd
manifold index n are anti-symmteric, with respect to a symmetry axis perpendicular to
the nonlinear resonator through its center, while eigenmode functions with even manifold
index n are symmetric. Having ruled out combinations with an odd quantity of odd mani-
fold indices, all contributing ν must be even. If there are no ν that are multiples of 2(N+1),
then

∑N
j=1 cos (πjν/(N + 1)) = −1 for all ν and because of the equally distributed plus and

minus signs of cosine terms, i.e. because
∑
{σ} P (σ) = 0, equation (6.21) is identically zero

and the specific nonlinear coupling vanishes. There can thus only be non-vanishing cou-
plings if there is at least one ν = 2(N+1)m (m ∈ N0). In fact, for every such ν = 2(N+1)m
there is another even ν 6= 2(N + 1)m with opposite parity so that the two terms add up to
a pre-factor N + 1 in each non-vanishing coupling, see Eq. (6.20). Moreover, since

N∑
j=1

2l∏
m=1

sin

Å
π
jn̄m
N + 1

ã
≤ N + 1

2
.

each coupling term between modes scales as (N + 1)α with α ≤ −1.

6.4.3. Degeneracy Point

We have decomposed the linear part of the Lagrangian into independent eigenmodes, that
are again coupled via HNL. This coupling however is only relevant if the frequency dif-
ference between a pair of eigenmodes is comparable to their mutual coupling. Particu-
larly interesting in this respect is the degeneracy point marked in figure 6.6, ωp = ω, with
ω = πv(N + 1)/L, where the plasma frequency coincides with the eigenmode frequen-
cies of N modes. We therefore concentrate our further discussions on the vicinity of the
degeneracy point where N eigenmodes with indices i = (n, k = 2) become degenerate.
Here, k can be interpreted as a band index since a mode-function with index k has k − 1
nodes between any pair of adjacent Josephson junctions, and n counts the modes within
the band.

Our goal is to neglect any remaining coupling to the other eigenmodes in a “single-
band approximation”. To confirm the accuracy of the single-band approximation applied
at ωp = ω, we examine leading terms of the couplings between modes ai. As we diagonal-
ized the linear part of the Hamilton operator for the nonlinear resonator, there are no direct
exchange coupling terms of the type, a†kal + aka

†
l in H̄ . However such terms emerge from

the nonlinearity by virtue of the bosonic commutation relations if the raising and lowering
operators are normal ordered. With the above derived selection rules for the nonlinear-
ity we can compute these linear couplings between eigenmodes, c.f. eq. (6.20). Fig. 6.8
shows these couplings for a nonlinear resonator with 8 Josephson junctions. The coupling
of every eigenmode with k = 2 with every eigenmode with k = 1 is calculated at the de-
generacy point ωp = πv

L (N + 1) and plotted in a color coded matrix plot. The strongest
coupling, occurring between the seventh and fifth eigenmode, is plotted as a function of
the plasma frequency ωp. For the couplings between all eigenmodes with k = 2 and k = 3
we did the same calculations and also plotted the result in figure 6.8. We observe that
the couplings are always three orders of magnitude smaller than the fundamental mode
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Figure 6.8.: Coupling between all eigenmodes with k = 1 and k = 2 and between all eigen-
modes with k = 2 and k = 3 at the degeneracy point. For each case, the largest
coupling gMax in units of the fundamental mode frequency (πv)/L is plotted as
a function of the plasma frequency ωp of the Josephson junctions.

frequency of the coplanar waveguide resonator. Therefore we can safely neglect all interac-
tions between eigenmodes with different values of k. In agreement with the selection rules
for the nonlinearity we find the checkerboard pattern for the coupling matrices showing
that there is no coupling between a symmetric and an antisymmetric eigenmode.

We thus focus our analysis on modes with k = 2 and the degeneracy point where
their frequencies ωn,2 ≈ ω, so that they are described by the reduced Hamilton opera-
tor [H]k=2 =

∑
n ~ωna†nan + [HNL]k=2 and skip the index k from now on: an ≡ an,2 and

ωn ≡ ωn,2.

Local Modes A new set of basis modes that arises from a unitary transformation of our
degenerate eigenmodes will also be a set of eigenmodes for the nonlinear resonator with
the same eigenfrequency ω̄. It is therefore beneficial to choose a new set of modes that
facilitates the treatment of the nonlinearity. The total nonlinearity is the sum of the locally
provided nonlinearities by the Josephson junctions. The above derived eigenmodes typi-
cally have comparable phase jumps at every Josephson junction. If we would find another
set of eigenmodes at the degeneracy point with phase jumps only on one, but mutually
different, Josephson junctions we would succeed in disentangling the coupling of the non-
linearity between eigenmodes.

The Hamilton operator for the eigenmodes in the vicinity of the degeneracy point is,î
Ĥ
ó
k=2

= ~
∑
n

ωna
†
nan −

ϕ2
0

LJ

N∑
j=1

∞∑
l=2

−1l

(2l)!

( 
2

N + 1

N∑
n=1

sin(π
jn

N + 1
)
φ̂n
ϕ0

)2l

,

where φ̂n = λ(ωn)(an + a†n). Note that if the zero point flux fluctuations λ(ωn) of the N
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degenerate eigenmodes were all equal and we used the transformation,

bj =

 
2

N + 1

N∑
n=1

sin

Å
π

jn

N + 1

ã
an,

all modes bj would decouple and the Hamilton operator would decompose into a sum of
independent Hamilton operators describing identical Josephson junctions. Because of the
subtle and from eigenmode to eigenmode differing renormalization of the zero point flux
fluctuation the new eigenmodes bj are still coupled. However we rewrite the Hamilton
operator in terms of the new modes bj assuming identical zero point flux fluctuations,

λ0 =

√
~

2CJωp
,

and append the deviations of the perfect symmetry as a correction in the coupling matrices,î
Ĥ
ó
k=2

=
N∑
j=1

~ωb†jbj + ~ω
N∑
l=1

uj,lb
†
jbl −

ϕ2
0

LJ

∞∑
m=2

(−1)m

(2m)!

Ç
~

2ωpCJϕ2
0

åm(
(bj + b†j) +

N∑
l=1

gj,l(bl + b†l )

)2m
 .

(6.22)
with the coupling matrices,

uj,l =
2

N + 1

N∑
n=1

sin

Å
jnπ

N + 1

ã
sin

Å
lnπ

N + 1

ã ï
ωn
ω
− 1

ò
and

gj,l =
2

N + 1

N∑
n=1

sin

Å
jnπ

N + 1

ã
sin

Å
lnπ

N + 1

ãñ
λ(ωn)

λ0
− 1

ô
.

For the chosen Josephson junction capacitances CJ and coplanar waveguide resonator ca-
pacitance Lc these coupling matrices are small, i.e. max(|uj,l|) � 1 and max(|gj,l|) � 1.
For this reason we may only keep terms that couple modes up to linear order in gj,l in
the Hamilton operator. Importantly, max(|gj,l|) � 1, suppresses correlated tunneling [40]
as the corresponding terms would be higher than linear order in gj,l. Keeping only terms
up to quartic order in the flux field amplitudes φ̂n in Eq. (6.22) and performing a rotating
wave approximation we arrive at the Hamiltonian,

H =
N∑
j=1

ï
~ωb†jbj −

EC
2
b†jb
†
jbjbj

ò
+ (6.23)

+~ω
N∑
j,l

uj,lb
†
jbl − EC

N∑
j,l

gj,l
Ä
(b†jb

†
jbj + b†j)bl + H.c.

ä
,

with the single Josephson junction charging energy EC = e2/(2CJ). The resulting Hamil-
ton operator describes a set of mutually coupled oscillators with Kerr type nonlinearities
of strength EC that can be substantial even on the single photon level. Interestingly the
coupling is not only formed by linear particle exchange, but also contains a non-linear,
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Figure 6.9.: Eigenmode functions with k = 2 in arbitrary units at the degeneracy point for
a nonlinear resonator with three Josephson junctions (crossed boxes). Left: flux
functions associated to the mode operators an. Right: flux functions of modes
bj that minimize nonlinearity induced mixing.

density assisted excitation exchange. We thus have a rather unique situation, where a set
of highly nonlinear modes form a narrow frequency band and can be efficiently driven by
a single input tone.

As intended the flux functions of the modes bj have a large flux drop at a specific Joseph-
son junction and considerably smaller flux drops at all other Josephson junctions which
can be seen in figure 6.9 where we plotted the flux functions of the degenerate “global”
eigenmodes an together with their “local” counterparts for the modes bj

6.4.4. Driven Dissipative Dynamics

The diagonalization of the microscopic Hamilton operator of a system of ultrastrongly in-
teracting nonlinear oscillators with a resonator provides us with the rare opportunity to
calculate transport behavior of such a system in the driven dissipative regime. With the
introduction of the “local modes” in the previous chapter we detangled the ultrastrongly
interacting subsystems into set of modes with considerably lower interaction strength that
can be taken into account perturbatively in the following. To investigate the transport
of microwave photons and the internal processes during transport, we want to concen-
trate our attention to the following situation: We weakly couple the nonlinear resonator
from one side capacitively, with capacitance Cc, to a half-infinite transmission line. With
this outlet we excite the nonlinear resonator with a sinusoidal microwave tone φext of fre-
quency ωL. The energy stored in the coupling capacitance Cc is,

H̃Ω =
Cc
2

Ä
φ̇ext − φ̇|x=0

ä2
=
Cc
2

Ä
φ̇2
ext + φ̇2|x=0

ä
− Ccφ̇extφ̇|x=0 .

We consider only small coupling capacitances and neglect a small renormalization of the
eigenmode frequencies caused by the first two terms in the expanded coupling energy.
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Moreover we choose the drive frequency to be near resonance with the modes an and
neglect any coupling to other modes of the nonlinear resonator. Expressing the internal
flux field φ at the driven side of the resonator in terms of the lowering and raising operators
of the eigenmodes an and a†n we arrive at,î

H̃Ω

ó
k=2
≈ HΩ = −Ccφ̇ext

∑
n

ġnfn(x)|x=0 = iφ̇ext
∑
n

 
~ωp
2ηn

(an − a†n) .

Here we used the special normalization we have chosen for the flux functions of the
eigenmodes, namely that they are all equal to one at the beginning of the nonlinear res-
onator. Next we unitarily transform to the bj modes and express the classical drive as
φ̇ext = Ω

√
N+1
~ωpC2

c
sin(ωLt) to get,

HΩ = i sin(ωLt)
N∑
j=1

Ω

Ñ
N∑
n=1

sin
Ä
π jn
N+1

ä
√
ηn

é
︸ ︷︷ ︸

Ωj

(bj − b†j) .

Because of varying eigenmode capacitances ηn and varying values of the flux functions
for modes bj , at the side driven by the microwave tone, we get different effective driving
strengths Ωj . We detect the excitation either with the reflected signal or by another infinite
coplanar waveguide coupled capacitively to the other end of the nonlinear resonator. A
completely analogous derivation leads to the input-output relation,

cOUT =
√
κx
∑
j

τjbj − cIN

where κx is the decay rate into the output line and,

τj =

Õ
2

(N + 1)
N∑
n=1

1
ηn

N∑
n=1

(−1)n
sin
Ä
π jn
N+1

ä
√
ηn

.

Assuming vacuum input noise outside the nonlinear resonator 〈cIN 〉 = 0 we compute the
output intensity 〈c†OUTcOUT〉with the help of the input-output relation.

There are two different types of dissipative processes that enable microwave photons
leaking out of the nonlinear resonator. Microwave photons decay through the capacitively
coupled ends of the nonlinear resonator into the half infinite coplanar waveguides and
there is dissipation due to two-level fluctuators in the Josephson junctions or the substrate
material of the circuit QED setup. The latter source of dissipation is the same for every
mode bj since we assume the quality of every Josephson junction to be the same. Yet
decay through the ends of the nonlinear resonator may be different for the individual
modes bj as they do not couple with the same strength to the in- and output coplanar
waveguides. As we found this inhomogeneity to be very small, we opted to neglect it in
this description. Therefore we here include dissipative processes with a standard master
equation technique,

ρ̇ =
i

~
[ρ,HΩ +H] +

κ

2

N∑
j=1

Ä
2bjρb

†
j − (ρb†jbj + b†jbj)

ä
,
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where κ is the phenomenological decay rate assumed to be equal for all modes bj . Assum-
ing that the dominant dissipation mechanism is relaxation in the Josephson junctions, we
employ here an independent bath approximation for the modes bj .

Mean Field Approximation Due to a dynamical balance between constant injection and
the leakage of microwave photons, as discussed in the preceding section, a steady state
emerges. The effective Hamilton operator H that we derived above constitutes a set of
nonlinear oscillators with interactions between every oscillator. Because of this high coor-
dination number together with weak couplings |uj,l|, |gj,l| � 1 a mean field approach to
investigate the steady state is reasonable. We reduce the coupling to an interaction with
the respective mean fields,

b†jbk →
¨
b†j
∂
bk + b†j 〈bk〉 andÄ

b†jb
†
jbj + b†j

ä
bk →

Ä¨
b†jb
†
jbj
∂

+
¨
b†j
∂ä
bk +

Ä
b†jb
†
jbj + b†j

ä
〈bk〉 .

In a first step we calculate the mean fields
¨
b†j
∂

and
¨
b†jb
†
jbj
∂

individually for every mode
bj and ignore the coupling. We calculate the mean fields with a standard fock space trun-
cation method with a variable truncation to ensure numerical correct values. Afterwards
we update the driving amplitudes,

Ωj → Ωj − iω
∑
k 6=j

uj,k
¨
b†j
∂

+ iEC
∑
k 6=j

gj,k
Ä¨
b†jb
†
jbj
∂

+ 2
¨
b†j
∂ä

,

and introduce another nonlinear driving,

Hnonlin
Ω = −EC

N∑
j=1

∑
k 6=j

gj,k
Ä
b†jb
†
jbj 〈bk〉+ b†jbjbj

¨
b†k
∂ä

,

which is why we can not use the exact solution to the single site problem [23], because
the exact solution does not treat nonlinear driving. With the updated driving, which takes
into account the driving of the modes among each other, we again calculate the mean fields¨
b†j
∂

and
¨
b†jb
†
jbj
∂

and iterate the procedure until it converges.

Synchonized Switching We find that, upon increasing the intensity of a red detuned
drive ωL = ωp−4EC/~ for ωp = ω, all modes switch synchronously and instantly from low
occupancies to high photon numbers, see figure 6.10. This phenomenon can be understood
as follows. Each mode bj features a negative Kerr nonlinearity. Ignoring the inter-mode
couplings, one would thus expect that the combination of slightly red detuned driving and
negative nonlinearity leads to a switching behavior as a function of the drive strength since
the Kerr nonlinearity can be interpreted as an intensity dependent frequency shift δωj ∼
(EC/2~)〈b†jbj〉 [23]. Hence, upon driving the oscillator increasingly strong the frequency
will drop and, for a critical driving strength, eventually come into resonance with the
drive, causing a growth of oscillator excitations. While switching in the higher excited
state the modes also undergo a quantum to classical transition. For a red detuned drive
of small amplitude they behave like qubits with a π-phase delay with respect to the drive

97



6. Josephson Junction Intersected Resonators

phase. After the switching into the higher excited state however the modes are in phase
with the drive like harmonic oscillators with red detuned driving. As it turned out the
nonlinear driving does not change qualitatively this behavior already observed without
nonlinear driving.

Due to the different driving amplitudes Ωj one would expect a different critical drive
strength for each mode j. Yet, the coupling gj,l or classical drive, after our mean field
approximation, between the modes is such that only modes bj that are in phase amplify
each other. When the mode with the lowest critical drive strength tries to switch it is
getting weighed down because of the phase synchronizing features of the coupling gj,l.
Yet, if eventually a majority of modes switches into the higher excited state they drag the
remaining modes with them, causing a very sharp and synchronized transition.

If we detune the plasma frequency of the Josephson junctions ωp from the point of
degeneracy, we introduce additional mixing between the modes bj , and, for detunings
∆ω > 4EC , finally destroy the symmetry of the coupling that promotes synchronization of
phases. As a consequence the synchronization of the switching behavior deteriorates and
is eventually lost.

6.4.5. Experimental Parameters

To examine the driven-dissipative dynamics of the nonlinear resonator at degeneracy of
all its eigenmodes, as described above, one has to make sure at first that the plasma fre-
quency at the degeneracy point is within the bandwidth of the detection chain and well
below the superconducting gap. Typically one uses frequencies of 6 − 9 GHz in circuit
QED setups. This implies half wave coplanar waveguide resonators of about 7 mm length
at phase velocities of v = 0.98 · 108 m

s in coplanar waveguides. At the degeneracy point
half a wave length has to fit in between neighboring Josephson junctions which implies
an overall nonlinear resonator length of (N + 1)0.007m. Additionally the nonlinear res-
onator has to be in the phase regime where zero point flux fluctuations are small compared
to the rescaled quantum of flux λ(ωi) < ϕ0 which is why we have chosen to shunt each
Josephson junction with an additional Capacitance CJ = 1pF. To be able to observe the
transition of synchronized to non-synchronized bj-modes, one has to change the mag-
nitude of the Josephson inductance. This can either be achieved by designing different
setups with different sizes of Josephson junctions or by using dc-superconducting quan-
tum interference devices whose effective Josephson inductance can be tuned by threading
a flux bias through their loops. The degeneracy point can be reached, given the above
set of parameters, at LJ = 2.9nH. Therefore the Josephson inductance has to be tunable
around LJ = 2.9nH. For our calculations in the driven-dissipative regime we have chosen
a phenomenological decay rate of κ/(2π) = 20MHz for the modes bj . The synchronization
effect however is very robust against dissipation and the decay rates of actual experimen-
tal setups may be larger without any impact on synchronization. The suitable choice of
parameters is summarized in table 6.2.

98



6.4. Multiple Josephson Junctions

Figure 6.10.: Occupancies for the local modes bj (colored solid lines) plotted as a function
of the drive strength Ω (scale at left vertical axes) at the degeneracy point
ωp = ω for a nonlinear resonator with N = 8 Josephson junctions (a) and for
plasma frequencies ωp slightly detuned from the degeneracy point (b) and (c).
The gray dashed line shows the output intensities (scale at right vertical axes).

Resonator Josephson Junctions

Length L = (N + 1)0.007m Shunting Capacitance CJ = 1pF

Wave Impedance Z0 = 50Ω Josephson Inductance tunable LJ ≈ 2.9nH

Phase Velocity v = 0.98 · 108 m
s bj decay rate κ

2π = 20MHz

Table 6.2.: Parameters for an experimental realization of the coplanar waveguide resonator
with multiple Josephson junctions.
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7. Nonlinear Coupling

The Bose-Hubbard model with its linear inter-site exchange coupling and onsite Kerr non-
linearities presents the probably simplest implementation of an interacting many-body
system that shows non-trivial behaviour. The microwave photons can move between sites
via the inter-site exchange coupling and they interact due to the onsite Kerr nonlineari-
ties. This interaction however is a zero-range contact interaction; microwave photons only
interact if they are on the same site. This limitation of the interaction range can be over-
come in the toolbox of superconducting circuits. With a capacitively shunted Josephson
junction (c.f. fig.: 7.1) one can implement a nonlinear coupling between sites i and j . This
nonlinear coupling effectively increases the range of the interaction indefinitely, since it is
always possible to increase the number of connections between sites in the network. The
Lagrangian of the coupling element reads,

Lc =
CJ
2

(ϕ̇i − ϕ̇j)2 + EJ cos

Å
ϕi − ϕj
ϕ0

ã
,

withEJ the Josephson energy of the Josephson junction and CJ the sum of the intrinsic ca-
pacitance of the physical Josephson junction and a optional external shunting capacitance.
The entire Lagrangian comprises all capacitive and inductive parts and may be expressed
as,

L =
1

2
~̇ϕᵀC ~̇ϕ− U(~ϕ)

with ~ϕ the vector of all node fluxes in the setup and C the capacitance matrix. The Hamil-
tonian of the setup consequentially is,

H =
1

2
~qᵀC−1~q + U(~ϕ) ,

ϕjϕi

CJ

EJ

Figure 7.1.: Nonlinear coupling circuit between sites i and j. Shunting capacitanceCJ com-
bines the effects of the intrinsic capacitance of the physical Josephson junction
and a additional external capacitance.
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with ~q the canonical conjugate momenta of ~ϕ. We may separate the capacitance matrix
into a diagonal part, the self capacitances of the nodes, and a non-diagonal part, the cou-
pling capacitances of the setup, C = Cdiag + Cnon−diag. Assuming Cnon−diag � Cdiag

we approximately invert the capacitance matrix to first order in Cnon−diag/Cdiag, C−1 ≈
C−1
diag (1−Cnon−diag/Cdiag) and get the following Hamiltonian,

H =
qi

2C̃i
+

ϕi

2L̃i
+

qj

2C̃j
+

ϕj

2L̃j
+

Hlin
〈i,j〉︷ ︸︸ ︷

CJ

C̃iC̃j
qiqj −

1

LJ
ϕiϕj︸ ︷︷ ︸

Hlin
(i,j)

−

− EJ
∞∑
n=2

(−1)n
(ϕi − ϕj)2n

ϕ2n
0 (2n)!

+Hrest ,

with, C̃α =
∑
lα Clα , the sum of all capacitances of the branches (lα) connected to node α=i

or j and, 1/L̃α =
∑
lα 1/Llα , the corresponding sum over all inverse inductances. Here

we already separated the linear parts involving nodes i and j and their coupling from the
nonlinear contributions and everything else, Hrest. With this we may proceed with the
quantization of the theory by introducing bosonic lowering and raising operators for the
nodes i and j,

ϕ̂α =
1√
2

Ç
L̃α

C̃α

å 1
4

(aα + a†α) q̂α =
i√
2

Ç
C̃α

L̃α

å 1
4

(a†α − aα) .

The linear part of the Hamilton operator involving nodes i and j and their coupling now
reads,

H lin
(i,j) = ωia

†
iai + ωja

†
jaj −

√
ωiωjα−(a†iaj + aia

†
j)−

√
ωiωjα+(a†ia

†
j + aiaj) (7.1)

with the oscillation frequencies ωα = 1/
»
L̃αC̃α and,

α± =

Ñ»
L̃iL̃j

LJ
± CJ»

C̃iC̃j

é
.

Next we truncate the nonlinearity of the coupling Josephson junction to forth order. This is
valid as long as zero point fluctuations in the node fluxes are small, (Lα/Cα)1/4 � ϕ0, and
we are only considering the lowest excited states of the node fluxes. We further assume
that the eigenfrequencies of node i and j are large compared to the coupling between
the two and neglect rotating terms in a rotating wave approximation. The approximate
Hamilton operator in this parameter regime is,

H ≈
Ä
(ωi + δωi)a

†
iai − Uia

†
ia
†
iaiai

ä
+
Ä
(ωj + δωj)a

†
jaj − Uja

†
ja
†
jajaj

ä
+H〈i,j〉 +H ′rest ,

where 〈i, j〉 parametrizes the nonlinear coupling circuit between nodes i and j. Each node
has a nonlinear onsite term due to the nonlinear terms in the coupling Hamilton operator.
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Additionally the eigenfrequencies of the nodes are slightly renormalized due to terms that
are generated during the normal ordering process of the the nonlinear terms. Since these
terms are a sum of all nonlinear branches connected to node i and j we can not further
specify their form. We may provide some examples in the following two sections (c.f.
section 7.1 and section 7.2). Finally the coupling between node i and j reads,

H〈i,j〉 = H lin
(i,j) −H

cross-Kerr
〈i,j〉 +Hassist-tunnel

〈i,j〉 −Hsqueeze
〈i,j〉

Hcross-Kerr
〈i,j〉 = 2EiijjC

»
L̃iL̃j

LJ
a†iaia

†
jaj

Hassist-tunnel
〈i,j〉 = EiiijC

(L̃3
i L̃j)

1/4

LJ
(a†ia

†
iaiaj + h.c.) + EijjjC

(L̃iL̃
3
j )

1/4

LJ
(a†ia

†
jajaj + h.c.)

H
squeeze
〈i,j〉 =

EiijjC

2

»
L̃iL̃j

LJ
(a†ia

†
iajaj + h.c.)

It consists of the desired cross-Kerr, or density-density interaction, Hcross-Kerr
〈i,j〉 , a assisted

tunneling term Hassist-tunnel
〈i,j〉 and a two-mode squeezing term H

squeeze
〈i,j〉 .

Eαβ γ δC =
e2

2(C̃αC̃βC̃γC̃δ)1/4
,

is the generalized charging energy with α, β, γ, δ = i or j. A remarkable feature of the
above presented nonlinear coupling is the possibility to compensate the linear capacitive
and inductive coupling in the coupling element (c.f. equation 7.1) for certain parameter
choices. The nonlinear coupling is the only remaining coupling in this case. The density-
density coupling is the most robust coupling compared to the assisted tunneling and two-
mode squeezing coupling because it is immune to the inevitable variances in the eigenfre-
quencies of the nodes of the lattice.

7.1. Cross-Kerr Nonlinearities

With the above introduced nonlinear coupling between sites one can now build a Bose-
Hubbard lattice with nonlinear inter-site coupling. We consider a network of oscillators,
that can either be implemented as lumped element resonators or as single modes of a
coplanar resonator (c.f. figure 7.2). These sites are connected via the above presented
capacitively shunted Josephson junctions. The Josephson junctions could be realized as
small SQUIDs thus implementing a means for in-situ tunability of linear direct exchange
coupling versus nonlinear interaction terms. Additionally one could couple each site to
a superconducting qubit or introduce on-site interactions with the scheme presented in
chapter 6.

The most suitable regime for the operation of quantum simulators based on microwaves
in superconducting circuits is the driven dissipative regime. Similar to the considerations
of chapter 5 we consider the situation where every site is driven by a coherent microwave
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Figure 7.2.: Electrical circuit sketch of the setup we envision to realize a system with cross-
Kerr nonlinearities. A chain of lumped element LC-circuits is coupled via
capacitively shunted Josephson junctions. The Josephson energies could be
tuned in situ by replacing the Josephson junctions with superconducting inter-
ference devices
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source with strength Ω and detuning δ from the frequency of site i. Due to constant injec-
tion of microwaves and the inevitable leakage, steady states emerge. We are interested in
the properties of these steady states. The Hamilton operator, in the frame rotating with the
microwave drives, for a network of identical sites with identical coupling circuits is,

H =
∑
i

î
−δni + Ω(ai + a†i )

ó
− J

∑
〈i,j〉

(a†iaj + aia
†
j) + U

∑
i

ni(ni − 1) + V
∑
〈i,j〉

ninj

+
V

4

∑
〈i,j〉

î
a†ia
†
iajaj − 2

Ä
a†i (ni + nj)aj + ai(ni + nj)a

†
j

äó
.

Here we considered an onsite interaction U , an inter-site exchange coupling J and finally
the inter-site density-density interaction, the assisted tunneling and two-mode squeezing
interactions are all parameterized by V . The onsite interaction U and the group of non-
linear couplings between sites (V ) can be tuned independently by adding arbitrary onsite
nonlinearities. The nonlinear coupling V and the linear exchange coupling J can be tuned
independently with the mutual cancelation of capactive and inductive linear exchange
coupling, as explained above. However the ratios of the three different types of nonlinear
couplings can not be altered due to their common origin in the forth order term of the
coupling Josephson junction. We may however realize that out of these three nonlinear
coupling terms the density-density interaction is the only interaction that is independent
of the frequency detuning between neighboring sites. For vanishing linear exchange cou-
pling we can therefore suppress the assisted tunneling and two-mode squeezing terms by
detuning the sites in a checkerboard pattern. If we adjust the frequencies of the microwave
drives accordingly, we still retain the site-independent Hamilton operator in a frame ro-
tating with the microwave drives. If the linear exchange coupling is non-vanishing it typ-
ically dominates the assisted tunneling and two-mode squeezing terms. Since the effects
of these coupling terms are quite similar [41] we can neglect the effect of the assisted tun-
neling and two-mode squeezing terms altogether. We model the decay with a standard
master equation where we assume uncorrelated decay into zero temperature reservoirs at
each site i,

ρ̇ = −i[H, ρ] +
κ

2

∑
i

(2aiρa
†
i − niρ− ρni) ,

with empirical decay rates κ.
It is already known that for two-level systems with inter-site density-density interac-

tions, i.e. the limit U → ∞ of our system, a antiferromagnetic phase emerges [50]. We
expect to see something similar for finite U where there is a competition between onsite
and inter-site interaction: A phase with alternating occupation 〈a†iai〉 that breakes the sym-
metry of the network of identical sites. Henceforth we call this phase “photon crystal”
in analogy to the periodic arrangement of interacting atoms that breaks the continuous
translational symmetry of the three dimensional space itself. For networks with high co-
ordination numbers we expect a meanfield approximation to be accurate. To capture the
emergence of a photon crystal however we subdivide the network into two sub-networks
A and B such that sites of sub-network A only interact with sites of sub-network B. For
a two-dimensional square lattice this would imply a checkerboard pattern of “A”- and
“B”-sites (c.f. figure 7.2). Sub-network A has N sites while sub-network B has M sites.
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We assume sites of the same sub-network to have the same mixed state but allow differ-
ences in the states between the sub-networks, ρ =

∏
i∈A ρi

∏
j∈B ρj = ρ⊗NA ρ⊗MB , and get the

following mean field decoupling,

z−1
∑
〈i,j〉

ninj −→ 〈nA〉
∑
j∈B

nj + 〈nB〉
∑
i∈A

ni

z−1
∑
〈i,j〉

a†iaj −→ 〈a
†
A〉
∑
j∈B

aj + 〈a†B〉
∑
i∈A

ai

z−1
∑
〈i,j〉

a†ia
†
iajaj −→ 〈a

†
Aa
†
A〉
∑
j∈B

ajaj + 〈a†Ba
†
B〉
∑
i∈A

aiai ,

with z the coordination number of the network. The dynamics is thus reduced to two
coupled nonlinear equations for the density matrices of the A and B sub-networks, re-
spectively ρA and ρB ,

ρ̇A = −i[HA, ρA] +
κ

2
(2aAρAa

†
A − nAρA − ρAnA)

ρ̇B = −i[HB, ρB] +
κ

2
(2aBρBa

†
B − nBρB − ρBnB) ,

(7.2)

with the effective meanfield Hamilton operators,

HA = −δnA + Ω(aA + a†A) + UnA(nA − 1) + zV wBnA − zJ(ψBa
†
A + h.c.)

HB = −δnB + Ω(aB + a†B) + UnB(nB − 1) + zV wAnB − zJ(ψAa
†
B + h.c.) .

Here we already neglected the assisted tunneling and two-mode squeezing terms. The ex-
pectation values for the occupationwA/B = tr(nA/BρA/B) and amplitudeψi = tr(aA/BρA/B)
provide the nonlinear coupling mechanism for the meanfield master equations 7.2.

The emergence of a photon crystal manifests itself as a stationary solution (ρ̇A = 0 and
ρ̇B = 0) with non-equal occupations for the sub-networks, 〈nA〉 6= 〈nB〉. The difference
in occupation for the two sub-networks, ∆n = |〈nA〉 − 〈nB〉|, therefore lends itself as an
indicator for the presence of the photon crystal. Henceforth we only consider the situation
of resonant microwave drives, δ = 0, consequentially every nonlinearity, irrespective of
their sign, can be thought of as a repulsive interaction.

For vanishing linear exchange coupling between the sites, J = 0, the emergence of the
photon crystal is a competition between the on-site interaction, U , and inter-site interac-
tion, V . In order to minimize on-site interaction U , a steady state of evenly distributed
microwave photons is preferred while a minimization of the inter-site interaction V favors
a steady state with alternating occupation, i.e. ∆n 6= 0. Consequently there is for every
value of U a critical value of the inter-site interaction Vc which marks the onset of the pho-
ton crystal (c.f. figure 7.3 a). This critical inter-site interaction Vc is a strictly monotonically
increasing function of the on-site interaction U . For vanishing on-site interaction U there is
still a finite critical inter-site interaction, zVc ' γ0(−2δ+

√
γ0)/4Ω2 with γ0 = 4δ2 +1, high-

lighting the role of the coherent microwave drives as a force which can drive the network
into a crystalline phase. For finite on-site interaction U however the situation changes: for
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Figure 7.3.: a)Color coded density plot of ∆n for the photon crystal in the U − V plane
for vanishing inter-site exchange coupling J . If the cross-Kerr term exceeds a
critical threshold Vc, the steady state is characterized by a staggered order in
which ∆n 6= 0. Here we fixed Ω = 0.75κ and δ = 0. In the inset we show ∆n as
a function of Ω and V at a fixed value of U = κ. b) Color coded density plot of
∆n for the photon crystal at finite inter-site exchange coupling. ∆n is plotted
as a function of J and V , for δ = 0 and U = κ. Here we fixed Ω = 0.75κ.

small driving strength Ω the networks total microwave occupation is not enough to probe
the effects of the interaction. For intermediate driving strength Ω, a photon crystal can
emerge that gets destroyed again for strong driving (c.f inset of figure 7.3 a). For strong
driving and finite on-site interaction the identical microwave drives thus reveal their ten-
dency to equally distribute microwave photons in the network. Finite linear inter-site
exchange coupling promotes the mobility of the microwave photons in the network and
therefore inhibits the formation of the photon crystal (c.f figure 7.3 b)

7.2. Quantum Single-Photon Transistor

Another interesting application for the nonlinear density-density interaction can be thought
of in the area of coherent manipulation of itinerant microwave photons. Deterministic gen-
eration of itinerant microwave photons in a circuit QED setup is quite simple: A qubit that
is driven with a suitable Rabi pulse to its excited state and subsequently decays into a
half infinite coplanar waveguide, generates almost perfect itinerant, single photon pulses
traveling along coplanar waveguides [24]. Imagine an array of these deterministic single-
photon sources arranged such that the coplanar waveguides could approach each other
and interact via additional control circuitry in a predetermined manner (c.f. figure 7.4 a).
If this control circuitry would be identical for every approach of coplanar waveguides and
symmetrical in the sense that if we exchanged the itinerant microwave photons right be-
fore their interaction the working of the control circuitry would not change, then we could
build an network to synthesize arbitrary states of multiple itinerant microwave photons.

We came up with a control circuitry that could block or unblock a single itinerant mi-
crowave photon dependent on the presence or absence of another single microwave pho-
ton. We dubbed it “Single-Photon Transistor” because a single photon could route another
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Figure 7.4.: a) Scheme to synthesize arbitrary states with itinerant microwave photons.
Grey lines are coplanar waveguides and the two circles are the control circuitry
mediating interaction, explained in more detail in b). b) Detailed view of the
single-photon transistor. Two transmon qubits are coupled together with σzσz
coupling and to a half-infinite and infinite coplanar waveguide respectively.

single photon in analogy to a transistor in a computer chip, where the transistor provides
a means to switch current with current.

A plane wave traveling along a one-dimensional waveguide that is coupled to a qubit
will excite the qubit. Subsequently the qubit will decay into a wave mode symmetric with
respect to the position of the qubit. The plane wave however is asymmetric with respect
to the position of the qubit. Constructive or destructive interference between the original
plane wave and the decay-pulse of the qubit can cause anything between total reflection
and transmission of the original plane wave. A single-photon wave packet as emitted by
a decaying qubit centered around the frequency of the scattering qubit is reflected if the
width of the wave packet in k-space is smaller then the coupling strength of the qubit to
the one-dimensional waveguide 1/τ . However a sufficiently detuned wave packet will get
transmitted without reflection.

The qubit is excited during the scattering process. To maximize this excitation of the
qubit we have to time-invert the decay pulse of the qubit being initially in his excited state
[15], also called inverting pulse. That is why a qubit coupled to a infinite one-dimensional
waveguide can only be fully excited by sending signals from both directions. If we want
to achieve complete excitation of a qubit, with a single pulse, we have to consider a half
infinite one-dimensional waveguide with the qubit coupled to the end of the line.

We combine these two principles to build a single-photon transistor (c.f figure 7.4 b).
Two identical transmon qubits with transition frequency ω are coupled capacitively with
coupling strengths 1/τ1 and 1/τ2 to two coplanar waveguides respectively. One half in-
finite coplanar waveguide which will guide the “control”-photon with temporal width τc
and one infinite waveguide for the “target”-photon of temporal width τt. A one-photon in-
verting pulse, τc = τ2, can maximally invert the control transmon qubit. The two transmon
qubits are coupled via the capacitively shunted Josephson junction as explained above. We
arrange things such that the linear exchange coupling vanishes. With the technique of can-
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celing the linear inductive coupling with the linear capacity coupling, we also can get rid of
any remaining geometric coupling of stray capacitances or stray inductances. The remain-
ing σzσz-coupling can be thought of as a frequency shift of the target transmon qubit that
depends on the excitation of the control transmon. Therefore the target transmon qubit can
be shifted out of resonance or into resonance dependend on the absence or presence of a
control photon inverting pulse. We assume a Lorentzian shape in frequency space for the
target photon which enables the traget photon to be a inverting pulse which could serve
as the control photon at the next single-photon transistor. The Hamilton operator for the
whole setup reads,

H = Hsys +Hcpw +Hint , (7.3)

with the Hamilton operator of the two qubits and the coupling circuit,

Hsys =
ω

2
σz1 +

ω

2
σz2 − V σz1σz2 . (7.4)

We only consider the transmon qubits and their coupling in their separate subspaces of
a single excitation. This is valid since we do not have any direct exchange of excitations
between the subsystem 1 comprising the target photon and transmon qubit and subsys-
tem 2 comprising the control photon and transmon qubit. The Hamilton operator of the
coplanar waveguides is,

Hcpw =

∫ ∞
−∞

dp p (r†prp − l†plp) +

∫ ∞
−∞

dp p b†pbp . (7.5)

The continuum of modes for the infinite coplanar waveguide consists of left, lp, and right,
rp, moving modes while the modes of the half infinite coplanar waveguide are non-degenerate.
We assume a linear dispersion relation with mode index p = vgη measured from the qubit
frequency. vg is the group velocity and η the wave vector. We extend the integral over p
from −ω to infinity to minus infinity to infinity since we only consider microwave pulses
with a pulse width much smaller than their carrier frequency. The coupling Hamilton
operator between the coplanar waveguides and the transmon qubits is,

Hint =

∫ ∞
−∞

dp

ñ
σ+

1 (rp + lp)√
2πτ1

+
σ+

2 bp√
πτ2

+ h.c.
ô
. (7.6)

We assume a point-like, frequency independent interaction with associated lifetimes for
the transmon qubits τ1 and τ2. In a realistic system, the qubits will be subject to dissi-
pation. We thus assume relaxation of excited transmon qubit levels at a rate γr and pure
qubit dephasing at a rate γϕ to derive quantum Langevin equations for the photon and
qubit operators that describe the unitary dynamics generated by H and the dissipative
processes associated to γr and γϕ. To investigate the dynamics of “single-photon” pulses
in this setup, we combine quantum scattering theory with the input-output formalism of
quantum optics as in [25], where the source terms for the input-output relations are pro-
vided by the solutions of the mentioned Langevin equations.

We have chosen to operate the transistor such that the target photon is reflected in the
absence but unaffected in the presence of the control photon and therefore arranged the
center frequencies of the control and target single-photon wave packets to be, ωc = ωt =
ω + 2V . We quantify the performance of the single-photon transistor via the difference Cs
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Figure 7.5.: Performance of the single-photon transistor. a) Maximized contrastCs = pTC−
pT as a function of the rates for qubit relaxation, γr, and pure dephasing, γϕ,
for ωc = ωt = ω + 2V , τ1 = 200/ω, J = 0.01ω and τc = τ2. b) On-off ratio
Rs = pTC/pT for the same parameters.

and ratio Rs between the transmission probabilities for the target photon in the presence
pTC and absence pT of a control photon,

Cs = pTC − pT and Rs = pTC/pT , (7.7)

For Cs = 1 the setup would describe an ideal transistor for single photons. Figure 7.5
shows the achievable transmission contrast, Cs, and on-off ratio, Rs, for a realistic device
with a qubit-qubit coupling of V = 0.01ω and ωτ1 = 200 as a function of the relaxation rate
γr and pure dephasing rate γϕ of the transmon qubits. As the plots show, an ideal single-
photon transistor can be realized in the limit of vanishing γr/ω and γϕ/ω whereas very
good performance can already be expected for currently realized values of γr/ω ∼ 10−6

and γϕ/ω ∼ 10−6 , where a single control photon changes the transmission probability
for the target photon by a factor 20. Transmission contrast and on-off ratio have been
optimized with respect to the temporal widths of target, τt and control pulses, τc.
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8.1. Future directions of circuit quantum electrodynamics

The scaling up of superconducting circuits will continue, posing mainly engineering prob-
lems. The number of parameters to be controlled on a chip increases linearly with its
complexity. This immediately implies new challenges for the control wiring coming from
high-temperature stages of the cryostat. Every wire running from a high temperature stage
to the chip introduces noise on the chip. Future setups will therefore incorporate on-chip
classical-logic elements to enable digital multiplexing of instructions sent to the chip rather
than the analog, direct control of circuit QED chips nowadays. But the increasing size of
chips not only generates engineering issues in the infrastructure around the chip but also
complicates chip design itself. The groundplane on the chip will be cut into multiple pieces
by the increasing number of waveguides, resonators and superconducting qubits. If the
groundplane to the left and right of waveguides is not held at the exact same electrical po-
tential we open the channel to slotline modes which introduce decay. Therefore a intricate
system of airbridges has to be introduced to suppress the slotline modes [77]. Additionally
there are still material science problems to tackle to further increase qubit coherence. The
influence of two level defects in the amorphous substrate material and non-equilibrium
quasi-particle production due to stray infrared fields has to be diminished [62].

Meanwhile theoretical work has to overcome its heterogenic structure. Each building
block starting from the three basic charge-, flux- and phase-qubits, over to the more exotic
quantronium- [86] and fluxonium-qubits [58] to the coplanar waveguide resonators has
its own set of techniques to understand its eigensystem. The modeling of the supercon-
ducting circuits starting from the electrodynamics of the three-dimensional setup to the
circuit representation [75] and from there to the formulation in the Lagrangian formalism
and the quantisation [19] are well established and most importantly fairly generic with
respect to different setups. Diagonalisation techniques for the Hamilton operators how-
ever are fragmented with only very narrowly restricted areas of applicability. Therefore
the current approach for the description of large systems involves the combination of al-
ready diagonalised subsystems with moderate coupling strengths in order not to render
the approximations for the subsystems invalid. This situation quite paradoxically restricts
the design freedom of actual experiments for superconducting circuits. The extraordinary
large couplings between the sub-systems are being restricted in order to comply to the
above described two-step theory approach to large superconducting circuits. There are
efforts to overcome this hurdle with group-theory [26] and an ansatz coined “Black-Box
Superconducting Circuit Quantization” [68]. The ansatz of black box circuit quantisation is
the subdivision of the whole Hamiltonian into a linear and non-linear part as pioneered in
works related to Josephson junction intersected coplanar waveguides [11, 52]. This ansatz
specifically acknowledges the strong coupling between the sub-systems and treats the non-
linearity rather than the coupling between sub-systems as a perturbation. Black-box circuit
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quantisation was developed with planar superconducting circuits embedded in three di-
mensional microwave cavities in mind. The linear part of the Hamiltonian for the setup
with three-dimensional cavities can be diagonalised with finite element methods and sub-
sequently quantised. The nonlinearity could be expressed in terms of lowering and raising
operators of the eigenmodes of the linear part of the Hamiltonian. With this sequence one
could reliably get the eigensystems of arbitrary three dimensional setups. However there
are also more advanced methods which allow for a more profound insight into the physics
of planar superconducting circuits which we are going to present below.

8.2. Quantum Graph models and Transfer Matrices

One difficulty in the modeling of planar superconducting circuits is the coexistence and
strong coupling of elements that are large and elements that are small with respect to the
wavelength of the microwaves. The elements that are large with respect to the wavelength,
also called distributed elements, are the coplanar waveguides. The transverse dimension
of coplanar waveguides is small enough to be well within the quasi one-dimensional limit.
Therefore the state of the coplanar waveguide can be completely described by the one-
dimensional flux function φ(x, t). The time derivative of the flux function is the electri-
cal potential of the central line with respect to the surrounding groundplane V (x, t) =
∂tφ(x, t) and the spatial derivative divided by the inductance per unit length is the current
through the coplanar waveguide I(x, t) = (1/l)∂xφ(x, t). The coplanar waveguides are
linear elements of the setup and their equation of motion as given by the linear part of the
Hamiltonian is a wave equation ∂2

t φ−v2∂2
xφ = 0, with the phase velocity defined by induc-

tance and capacitance per unit length of coplanar waveguide v = 1/
√
lc. In a typical setup

of planar superconducting circuits the coplanar waveguides are composed in a network
with multiple nodes where Kirchhoffs rules have to be enforced. As such the network of
coplanar waveguides is a perfect representation of a quantum graph model. Quantum
Graphs were introduced in the 1930s by Linus Pauling as a model for free electrons in
organic molecules however they arise as mathematical models in various experimental
contexts such as photonic crystals or mesoscopic systems in nanotechnology. However so
far the vast amount of insights in the spectrum and eigenmodes of quantum graphs [7] has
not been tapped for the network of coplanar waveguides.

In addition to the network of coplanar waveguides, typical superconducting circuits also
have structures which are smaller than the wavelength, so called lumped element circuits.
These are circuits composed of capacitors, inductors and Josephson junctions coupled ca-
pacitively or inductively to the network of coplanar waveguides. As we are at first only
interested in the linear part of the Hamiltonian we only take the linear, inductive part of
every Josephson junction into account. With this truncation every lumped element circuit
can be described by a finite number of eigenfrequencies. The spectrum of the eigenmodes
of the superconducting circuit as a function of these eigenfrequencies is the spectrum of the
network of coplanar waveguides and the spectrum of the lumped element circuits where
each degeneracy between the two is either lifted in an anti-crossing or not, depending on
the symmetries of the setup [54, 53]. Apart from the anticrossings the eigenmode spec-
trum is well described by the standard quantum graph theory. Near the anticrossings we
do get hybridized excitations of the waveguiding elements, the distributed elements, and
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the wave scattering elements, the lumped elements. The formulation of quantum graph
theory in terms of scattering matrices or transfer matrices is well suited to describe this
situation. The flux function in the coplanar waveguides subject to the waveequation has
two fundamental solutions: the forward- and backward propagating waves. therefore we
can represent the flux function as a two component vector with the amplitudes of forward
and backward propagating waves. In this formalism every linearized lumped element
circuit can be represented as a two-by-two matrix which describes the scattering between
forward- and backward propagating amplitudes to the left and right of the lumped el-
ement circuit. There is an intricate connection between the properties of these transfer
matrices and the spectrum of the superconducting circuit given by the secular equation
which has already been exploited to find the eigenmode spectrum of a coplanar waveg-
uide resonator intersected by Josephson junctions [54].
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quantum magnet with trappedÂ ions. Nature Physics, 4(10):757–761, July 2008.

[30] JR Friedman, V Patel, W Chen, SK Tolpygo, and JE Lukens. Quantum superposition
of distinct macroscopic states. Nature, 406(6791):43–6, July 2000.
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