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Ingenieurfakultät Bau Geo Umwelt

Photogrammetrie und Fernerkundung

Automatic texturing of 3D models of urban areas using
image sequences from airborne TIR cameras

Dorota Iwaszczuk
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Abstract

Thermal infrared (TIR) images are often used to picture damaged and weak spots in the insu-
lation of the building hull, which is widely used in thermal inspections of buildings. The goal
of this study is to provide a groundwork for such inspection in large-scale areas in the form of
geo-referenced TIR textures for 3D building models. This avoids time consuming imaging and
manually analyzing each face independently. It also enables the extraction of façade structures
so that they can be embedded together with the TIR textures in a 3D spatial information sys-
tem.
For this purpose, 3D building models and TIR images need to be co-registered. Direct geo-
referencing as a co-registration method is usually not sufficient for precise texture extraction.
Hence, an appropriate model-to-image matching is required. The majority of the existing solu-
tions for model-to-image matching do not take the errors and uncertainties of the 3D models
into account. Usually, textures are extracted for triangulated models and existing methods do
not consider representation based on arbitrary polygons. Moreover, only few researchers assess
the quality of extracted textures, but even they fail to pay attention to the quality of the fit
between the 3D building models and the textures. Most of the methods for façade reconstruction
are based on classification or learning and require large database of training data, which is not
available for TIR images. Almost all the methods are designed for the visible domain and do
not investigate other spectral bands.
In this work, methods and strategies for precise texture extraction from airborne TIR image
sequences are developed, and the potential for windows detection in the extracted textures is
evaluated. In order to capture all faces, including the roofs, façades, and façades in the inner
courtyard, an oblique looking video camera mounted on a flying platform is used. For this ac-
quisition configuration, methods for a line-based model-to-image matching are developed, which
consider uncertainties of the 3D building model, as well as of the image features, and determine
the optimal exterior parameters of the camera. The remaining geometric mismatch between
the projected 3D building model and image structures is compensated for every texture locally.
This is done by adjusting the projected edges of the 3D building model to the gradient image
generated from the TIR image. Moreover, this study investigates whether line tracking through
the image sequence supports the matching. The accuracy of the extraction and the quality of
the textures are assessed. Finally, a method for window detection in thermal textures based on
lattice reconstruction is presented.
The tests showed good results on co-registration, particularly in cases where tracking between
the neighboring frames had been applied. Local matching also yielded improvement of the fit
between the image features and the model edges, which enabled the extraction of better fitting
textures. The extracted textures, however, are of low resolution and contrast, which makes it
difficult to use them for window detection.
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Kurzfassung

Bei der thermischen Gebäudeinspektionen kommen häufig Kameras zum Einsatz, die Bilder im
Thermischen Infrarot (TIR) aufnehmen, um Schad- oder Schwachstellen bei der Isolation von
Gebäudehüllen sichtbar zu machen. Ziel der Arbeit ist es, für großflächige urbane Bereiche
solche Inspektionen zu ermöglichen. Um zeitintensive manuelle Auswertungen zu vermeiden,
sollen georeferenzierte TIR-Texturen für 3D Gebäudemodelle automatisch abgeleitet und gespe-
ichert werden. Zusätzlich können Fassadenstrukturen bezüglich der Geometrie und Radiometrie
ausgewertet werden und in einem 3D Informationsystem (GIS, BIM) einzubinden.
Dafür müssen die 3D Gebäudemodelle und TIR Bilder koregistriert werden. Eine direkte Georef-
erenzierung ist für die Koregistrierung meistens nicht ausreichend um Gebäudetexturen präzise
zu extrahieren. Daher muss eine geeignete Zuordnung zwischen Model und Bild implemen-
tiert werden. Die meisten bekannten Zuordnungsmethoden berücksichtigen keine Fehler und
Ungenauigkeiten des 3D-Gebäudemodells. Die Texturen werden üblicherweise für triangulierte
Modelle extrahiert. Somit können als beliebige Polygone gespeicherten Gebäudemodelle nicht
behandelt werden. Nur wenige Autoren bewerten die Qualität der extrahierten Texturen, keine
Arbeit jedoch die Qualität der Übereinstimmung zwischen den Gebäudemodellen und den Tex-
turen. Die meisten Methoden zur Fassadenrekonstruktion basieren auf Klassifizierung oder
maschinellem Lernen und benötigen umfangreiche Trainingsdaten, die für TIR Bilder nicht
verfügbar sind. Außerdem sind die meisten Methoden für Bilder in sichtbaren Wellenlängen
ausgelegt und befassen sich nicht mit anderen Spektralbereichen wie Infrarot.
In dieser Arbeit werden Methoden und Strategien für eine präzise Texturextraktion aus TIR
Bildsequenzen entwickelt. Zudem wird das Potential, aus diesen Texturen Fenster zu detektieren,
evaluiert. Um sämtliche Flächen der Gebäudehülle erfassen zu können, wird eine flugzeugge-
tragene Kamera in Schrägsichtperspektive verwendet. Für diese Aufnahmekonfiguration werden
Methoden für eine linienbasierte Zuordnung zwischen Model und Bild entwickelt welche Fehler
und Ungenauigkeiten der 3D-Gebäudemodelle sowie der Bildmerkmale berücksichtigen und die
Berechnung der optimalen Parameter der äußeren Orientierung der Kamera ermöglichen. Die
nach der Optimierung verbleibende geometrische Diskrepanz zwischen Gebäudemodell und TIR
Bild wird für jede Textur einzeln lokal kompensiert. Dies wird durch Anpassung von Kan-
ten des projizierten 3D-Gebäudemodells an ein aus dem TIR Bild generieten Gradientenbild
erreicht. Zudem wird untersucht, ob eine Linienverfolgung durch die Bildsequenz die Zuord-
nung unterstützt. Die Genauigkeit der Extraktion und die Qualität der Texturen werden be-
wertet. Schließlich wird ein Verfahren zur Erkennung von Fenstern in TIR Texturen durch
Gitter-Rekonstruktion vorgestellt.
Die Versuche zeigen gute Resultate für die Koregistrierung, insbesondere wenn eine Linienverfol-
gung zwischen zwei benachbarten Bildern durchgeführt wurde. Das lokale Matching-Verfahren
führt zu verbesserter Übereinstimmung der Bildmerkmale mit den Modellkanten was wiederum
die Extraktion von gut angepassten Texturen ermöglicht. Jedoch sind die Auflösung und der
Kontrast der extrahierten TIR Texturen gering, was die Fensterdetektion erschwert.





7

Contents

Abstract 3

Kurzfassung 5

Contents 7

1 Introduction 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Objectives of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 State-of-the-art 13
2.1 Thermal Imaging in Urban Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Texture Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Model-to-Image Co-registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Direct Geo-referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Model-to-Image Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Texture Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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1 Introduction

1.1 Motivation

The amount of energy used by buildings is a significant part of the total energy consumed by
humans. Research has shown that in European countries buildings consume 40% [Baden et al.,
2006] of all produced energy. Of the energy consumed in buildings, 47% is used for heating pur-
poses [Hennigan, 2011]. Due to climate change, increasing energy costs, and energy performance
directives, the energy efficiency of buildings should be improved. Recent technologies allow new
buildings to be constructed with higher energy performances, but older buildings still need to be
inspected in order to improve their energy efficiency.

Thermal inspections of buildings using a thermal infrared (TIR) camera contribute to the
detection of damaged and weak spots in building structures [Balaras & Argiriou, 2002]. Thermal
cameras capture the heat radiation of the building hull and record it as an intensity image. The
intensity value corresponds to a remotely measured temperature on a defined scale. Nowadays,
thermal cameras can achieve high radiometric resolution of up to 0.01 [K], which means that it
is possible to capture even very small temperature differences. Thanks to this, we can detect
heat leakages in thermal images of a building hull. The knowledge of the location of heat leaks is
used for renovation planning or for quality control after the renovation. Currently, most thermal
inspections of buildings use a single TIR image analysis, without reference to the geometry of the
captured scene.

The TIR images are often taken manually for a single building. However, we can also observe
a trend to apply mobile mapping systems to carry out large scale inspections for urban quarters
[Hoegner et al., 2007] or entire cities [Chandler, 2011]. For this purpose, the TIR cameras are
mounted on a mobile terrestrial platform, for example on a vehicle. Terrestrial TIR images are
used to documentat frontal faces (façades) visible from the street level, but they do not capture
roofs and inner yards. Roofs can be seen from a flying platform, such as an unmanned aerial
vehicle (UAV) or a helicopter. Using oblique view images, inner yards can also be captured.
Combining TIR images with three-dimensional (3D) geometries allows for the spatial reference
of the thermal data and facilitates their interpretation. Thermal data can be combined with
different kinds of 3D geometries: Building Information Models (BIM) [Mikeleit & Kraneis, 2010],
3D building models via texture mapping [Hoegner et al., 2007; Iwaszczuk et al., 2011c], 3D point
clouds via assignment and interpolation of the measured temperature to the points [Cabrelles
et al., 2009; Borrmann et al., 2012; Vidas et al., 2013] or aerial photographs combined with a
point cloud [Boyd, 2013]. Using a point cloud as spatial reference enables fast generation of
results with a high level of detail and is appropriate for visual interpretation, while 3D building
models deliver more generalized and structured representations to support automatic analysis.
Embedding thermal data in a geo-database [Kumke et al., 2006] allows for spatial queries and
analysis.

For thermal inspections, a variety of data types are valuable. On the one hand, information
extracted from thermal imagery, such as thermal textures, detected heat leakages, windows,
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and other façade structures, should be stored and managed in a database together with the 3D
geometries. On the other hand, information extracted from other sources, such as remote sensing
data and spatial information systems, are also very important. Information about material of the
photographed object plays an important role in the physical interpretation of thermal images. This
information can be extracted using multi-spectral or hyper-spectral data, stored in a database
and used for analysis. Other information including building’s address, owner, type, function,
usage, construction year, solar collectors, and further attributes and properties can also be useful.
Nowadays, this information becomes successively a norm in Geographic Information Systems
(GIS), as can be seen by the developement of new standards, such as City Geography Markup
Language (CityGML)[Gröger et al., 2012]. This standardization enables interoperability of the
data and facilitates data access and exchange [Kolbe et al., 2005].

1.2 Objectives of the Work

The goal of this work is to provide the groundwork for large area thermal inspections of buildings in
form of thermal infrared textures for 3D building models. Based on these textures, an assessment
of the thermal efficiency of buildings, building complexes, districts, or entire cities is expected to
be possible. Particularly, the detection and geo-location of thermal leakages in the building hull
should be enabled. The extracted TIR textures, therefore, are required to be the best possible
quality in terms of fit and level of detail. A further requirement is to capture, if possible, the
entire building hull, especially roofs and inner yard façades, which can not be captured from the
street view level. Hence, in this work, methods and strategies will be developed and tested that
enable the extraction of well fitting textures of high geometric quality.

For this purpose, the 3D building model has to be transformed in one coordinate system
with the thermal images. This process is called “co-registration”. An algorithm for selection and
assignment of image regions to the model polygons will also be presented. This process is called
“texture extraction”. The usability of the extracted textures for extraction of “façade structures”,
such as windows, doors, and heat leakages, will be assessed based on the first attempt to interpret
thermal textures in terms of detecting windows.

In order to best capture all faces (roofs and walls) of a 3D building model, an appropriate
acquisition geometry is needed. This will be achieved by capturing the scene from a flying platform
using an oblique looking camera. Additionally, the camera should be able to capture the scene
with a high frame rate to ensure that as many faces as possible are taken from an advantageous
position and viewing angle. This will result in a large overlap between frames.

Accordingly, the methods presented in this work are developed primarily for oblique view
thermal infrared image sequences. For this thesis, four main objectives are defined and listed,
and they are ordered according to the focus of the thesis.

In an attempt to extract the best fitting textures, directly geo-referenced thermal images will
be first co-registered with an existing 3D building model, which is the first objective and main
focus of this work. The second objective is extracting textures with respect to the texture quality
and their automatic assignment to the 3D building model. The third objective is to define the
quality measures enabling the assessment of each single texture and whole texture extraction
process, with respect to the level of detail of textures and the quality of co-registration. The
fourth and last objective is detecting windows and embedding them in the 3D building model.
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1.3 Structure of the Work

This thesis contains ten chapters.

Chapter 1 introduces the topic, defines the objectives of the study, and presents the structure
of the work.

Chapter 2 presents current research on co-registration, texture extraction and building enrich-
ment by textures and façade structures. The strength and weakness of the existing approaches
are discussed and a new strategy for each of these topics is proposed.

Chapter 3 explains the theoretical background which is used in Chapters 4-6. First, the basics
of thermal imaging and properties of thermal imagery are explained. Then, selected mathematical
foundations in photogrammetry, image processing, and statistics are presented. This description
has a great impact in Chapters 4-6 because it provides the mathematical background used in the
methodology presented in this chapter.

Chapter 4 addresses the coregistration of 3D building models with TIR imagery. In coreg-
istration, the flight trajectory of the sensor is estimated in order to provide exterior orientation
parameters which ensure the best match between the projected 3D building model and the image
features. Then a tracking strategy based on the visibility prediction is introduced.

Chapter 5 introduces a concept for texture extraction and quality assessment.

Chapter 6 presents window extraction in building textures with regard to the properties of
thermal data.

Chapter 7 presents the data sets used in experiments as well as the test area. The methods
to assess the results are also proposed in this chapter.

Chapter 8 shows the results for the test area described in Chapter 7, which were achieved by
testing and validating the methodology described in chapters 4-6. The results are structured in
sections according to these chapters.

Chapter 9analyzes the results of the experiment. Problem areas and possible errors are iden-
tified. This chapter is structured in sections according to chapters 4-6.

Chapter 10 concludes the findings of the thesis and highlights the contribution of the work.
This chapter also recalls the problem areas from Chapter 9 and develops ideas to overcome the
weaknesses and unsolved problems found in this study.
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2 State-of-the-art

Realization of the tasks outlined in Section 1.2 touches various research areas within thermogra-
phy, photogrammetry, remote sensing and computer vision. State-of-the-art in those fields, which
are relevant for this thesis, will be presented in the following sections. First, recent research on
thermal imaging of buildings will be presented (Section 2.1), followed by a literature review on
the texture mapping (Section 2.2). Next, current research is presented for sub-subjects of texture
mapping that are relevant for this work, namely model-to-image co-registration (Section 2.3),
texture extraction (Section 2.4) and object detection in façade textures (Section 2.5). Finally, the
subjects and goals of this work are defined based on the literature review and identified gaps in
the state-of-the-art (Section 2.6).

2.1 Thermal Imaging in Urban Environment

The work presented in this thesis belongs to the field of high resolution thermal infrared (TIR)
imaging of urban environments; therefore, recent projects in this field are briefly described here.

Recent thermal investigations concentrate on human-made objects that are at risk of loosing
heat. In Vienna, a test flight with the thermal sensor TABI-1800 mapping a swath by 1800 sensor
elements was carried out, and 25 cm resolution data for about 30 km2 was collected. Fig. 2.1
shows Votiv Church in Viena’s city center, whereas Fig. 2.1a presents a RGB orthophoto, and
Fig. 2.1b corresponding thermal orthophoto. In the presented example, a digital terrain model
(DTM) was used for orthophoto creation. Hence, building façades in off-nadir view that are facing
to the sensor are partially visible in the orthophoto. In this project, however, no 3D information
was explicitly combined with the thermal data. The first round of collected data was applied
for an investigation of heat losses in buildings, a control of the heat distribution network, and a
control of heating for railroad switches [Jonst, 2013]. Heat distribution and leakage detection in
district heating networks are the main objective of the work presented by Berg & Ahlberg [2014].

Some projects are dedicated solely to the thermal inspection of buildings. Fondazione Bruno
Kessler conducted a project IR3D with the goal to metrically compute the heat losses of the
building [Fondazione Bruno Kessler, 2014]. Another research project “Enrichment and multi-
purpose visualization of building models with emphasis on thermal infrared data” was carried
out at Technische Universität München (TUM). The aim of this project was to automate the
acquisition of thermal data for building façades and texture extraction, as well as automatize
the analysis and visualization of the thermal data in Geographic Information Systems [Meng &
Stilla, 2007; Technische Universität München, 2013]. Within this project, thermal images were
acquired using a TIR camera mounted on a vehicle. In the post-processing, much work has been
done on relative orientation, matching with the 3D building models using a generated point cloud
and automatic mosaicing of oblique image sequences in order to create high resolution thermal
textures [Hoegner, 2014].
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Figure 2.1: Orthophoto of Votiv Church in Vienna. a) othophoto in visible (VIS) domain; b) thermal in-
frared (TIR) orthophoto. Source: Stadt Wien, MA 41-Stadtvermessung http: // www. stadtvermessung.
wien. at

Researchers at Massachusetts Institute of Technology who worked on large area thermal imag-
ing of urban areas also mounted a thermal camera on a vehicle [Chandler, 2011]. They aimed
to quickly identify inefficient buildings by detecting heat losses through walls, roofs, doors and
windows. Within this project, an imaging system called Automated Rapid Thermal Imaging Sys-
tems Technology (ARTIST) was developed [Phan, 2012]. Another idea presented by researchers
from Jacobs University Bremen was to carry out thermal mapping in indoor environment. Their
project, “ThermalMapper”, aims at constructing thermal 3D models of indoor environments for
building inspection [ThermalMapper, 2013]. A laser scanner and a thermal camera are mounted
on a robot for mobile mapping of building interiors. Thermal information is mapped on the
acquired point cloud.

Thermal data collected in urban areas can be also used for an online system with an open
access. HEAT (Heat Energy Assessment Technologies), a GeoWeb service, is provided in Calgary,
which can be used by house owners to view their building quality, or by maintenance companies to
verify building quality and to monitoring over space and time [HEAT, 2013]. This system stores
thermal images of building roofs together with address information and detected hot spots. The
cost per day of heating the home and CO2 emission are estimated based on the thermal data that
was acquired with a thermal pushbroom scanner TABI-320 delivering stripes 320 pixels wide. A
similar system is available for the island Jersey in the Channel Islands [States of Jersey, 2013].

Conclusion: None of the projects mentioned above has dealt with airborne oblique view ther-
mal data and combined them with a 3D building model, which is objective of this study. This
thesis is a continuation of the project “Enrichment and multi-purpose visualization of building
models with emphasis on thermal infrared data” carried out at Technische Universität München
in terms of extracting thermal textures for those parts of the building that cannot be seen from
the street level. The first part of this study, however, focuses mainly on co-registration of airborne
thermal image sequences and 3D building models using linear features for matching of those two
data sets. In the second part of this study, strategies for texture extraction and texture quality
assessment are adjusted to the airborne data, not to the terrestrial data captured in narrow street,
as it was in the “Enrichment and multi-purpose visualization of building models with emphasis on
thermal infrared data” project. In the third part of this work, the terrestrial textures created in

http://www.stadtvermessung.wien.at
http://www.stadtvermessung.wien.at
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frame of that project [Hoegner, 2014] are used for window detection in order to show the difference
in the difficulty compared to airborne textures.

2.2 Texture Mapping

The main objective of this study is to use texture mapping to combine TIR images and 3D building
models. Texture mapping on 3D models is a widely used technique, especially in computer
graphics, and results in adding an image to the existing 3D geometry. Photorealistic [Weinhaus
& Devarajan, 1997; Allen et al., 2001] and non-photorealistic [Klein et al., 2000; Jahnke et al.,
2008] textures, however, can be distinguished. For photorealistic texturing, the assignment of the
images of a real scene to the corresponding 3D model has to be accomplished.

Texture extraction has already been implemented in several commercial software and imaging
systems. One of such systems, Semi-Automated Modeling and Texturing System (SAMATS), was
presented by Hegarty & Carswell [2009]. This system produces textured building models from a
set of geo-referenced terrestrial images. Similarly, the system Toposcopy [Groneman, 2004] has
been developed to create photorealistic 3D models. It uses photogrammetric methods for linking
a 2D map to terrestrial images. Grenzdörffer et al. [2008] use MultiVision, a commercial software,
to texture the created 3D models semi-automatically.

Textures can be extracted from the images taken in different spectral bands, e.g. visible
(VIS) images [Hsu et al., 2000; Früh et al., 2004; Abdelhafiz & Niemeier, 2009; Abdelhafiz, 2009],
multi-spectral images [Pelagotti et al., 2009], or infrared images [Hoegner & Stilla, 2007; Iwaszczuk
et al., 2011c, 2012b]. In principle, it is also possible to combine 3D building models with Synthetic
Aperture Radar (SAR) images as long as shadow and layover effects are considered [Götz, 2010].

Various imaging systems have been applied for texture mapping. Wang et al. [2008] used the
system Pictometry for this purpose. This system consists of five cameras with one nadir-looking
camera and four oblique looking cameras which are mounted on a flying platform. This system
found a variety of applications including urban planing, 3D modeling, and emergency response
[Karbo & Schroth, 2009]. The system PFIFF [Grenzdörffer et al., 2008] is also based on an oblique
looking camera, which is integrated with a GPS receiver. Oblique view geometry require special
treatment for flight planning [Grenzdörffer et al., 2008] or measurements [Höhle, 2008]. Texture
mapping is also possible using a push-broom instrument. Lorenz & Döllner [2006] textured 3D
building models using High Resolution Stereo Camera (HRSC) mounted on an aircraft.

Despite different properties of particular spectral bands and of various imaging systems, a
generalized work-flow for the texturing process can be outlined. Fig. 2.2 shows such a work-flow,
which was followed by many of the works on texture mapping on 3D building models [Hsu et al.,
2000; Bornik et al., 2001; Sawhney et al., 2002; Früh et al., 2004; Song & Shan, 2004; Kada et al.,
2005; Karras et al., 2007; Grenzdörffer et al., 2008; Wang et al., 2008; Hegarty & Carswell, 2009;
Abdelhafiz & Niemeier, 2009] and also commercial solutions [Groneman, 2004; UVM systems,
2015]. In this figure, solid arrows represent necessary steps while dashed arrows express optional
steps. The optional procedures appear as transparent boxes in this work-flow. The opaque boxes
are followed by most of authors in diverse variations and with different focuses.

3D building models representing urban scenes are required to be geo-referenced for most
applications; therefore, direct geo-referencing [Früh et al., 2004; Klinec, 2004; Kada et al., 2005;
Karbo & Schroth, 2009] and/or aerotriangulation [Song & Shan, 2004; Grenzdörffer et al., 2008;
UVM systems, 2015] are the first steps in the sketched work-flow (Fig. 2.2-1). Two main cases
can then be distinguish for texture mapping and are covered by this generalized work-flow:
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• 3D building models are available [Hsu et al., 2000; Früh et al., 2004; Hoegner & Stilla, 2007],

• 3D building models are not available or is insufficient for the intended application [Debevec
et al., 1996; Bornik et al., 2001; Kuschk, 2013].

In case of missing or insufficient 3D building models, a simultaneous 3D reconstruction (Fig. 2.2-
2) is required. Some authors proposed reconstructing of 3D building models from oblique airborne
images [Lin & Nevatia, 1995; Karbo & Schroth, 2009; Panday & Gerke, 2011]. In such cases, tex-
tures for the façades can also be extracted from the same imagery. Here, the relative orientation
between the images and the reconstructed 3D building model is given per se and no matching of
the data sets is needed. 3D reconstruction is not the subject of this work, but it is mentioned
here for the sake of completeness. Further references to this topic can be found in Kolbe [1999];
Suveg & Vosselman [2004]; Remondino & El-Hakim [2006]; Haala & Kada [2010].

In case 3D building models are available, it is required that 3D models and images are
co-registered. Co-registration can be carried out by direct geo-referencing; however direct geo-
referencing is often not sufficient to accurately co-register the data [Früh et al., 2004; Kada
et al., 2005; Grenzdörffer et al., 2008] and is used only as approximate alignment. In airborne
photogrammetry, geo-referencing can be carried out in the frame of aerotriangulation; however,
aerotriangulation can require manual selection of control points and does not yield good results
for stripe-wise acquired oblique images with one perspective angle [Grenzdörffer et al., 2008].
Manual selection of control points can be particularly time consuming for image sequences with
a high frequency rate. Results of aerotriangulation for oblique thermal images carried out with
four perspective angles can also be insufficient for high accuracy model-to-image co-registration
[Kolecki et al., 2010]. The mismatch can be due to inaccurately estimated exterior and interior
orientations of the camera or inaccuracies in the 3D building model; therefore, many authors
propose model-to-image matching (Fig. 2.2-3) in order to improve the co-registration [Früh et al.,
2004; Ding & Zakhor, 2008], which can be supported by tracking [Hsu et al., 2000] (Fig. 2.2-4).
Automated model-to-image matching can also be carried out during the flight and contribute to
the localization of the aircraft or vehicle.

After co-registration occurs, texture extraction can be carried out. The next necessary steps
are visibility check (Fig. 2.2-5) and best texture selection (Fig. 2.2-6), which result in a textured 3D
model. Quality assessment (Fig. 2.2-8) can also be carried out [Lorenz & Döllner, 2006; Hoegner
et al., 2012]. The final step is storing and data management (Fig. 2.2-9), and more detailed
elaborations on this topic can be found in various publications [Früh et al., 2004; Song & Shan,
2004]. Texture extraction can be also followed by object detection in façade textures [Hoegner &
Stilla, 2009] (Fig. 2.2-7).

The presented work-flow assumes a calibrated camera system, which can be done in a self-
calibration process or calibrated in advance using a calibration field [Faugeras et al., 1992; Hartley,
1994; Fraser, 1997; Pollefeys et al., 1998; Triggs et al., 2000; Hemayed, 2003; Remondino & Fraser,
2006; Tang et al., 2007]. All interior parameters of the camera, including lens distortions, should
be known before texturing. Additionally, a lever-arm and boresight calibration [Kolecki et al.,
2010; Hebel & Stilla, 2012] should be carried out. These parameters can be also determined in
a self-calibration process in conjunction with exterior orientation (ExtOri) parameters [Kolecki
et al., 2010].

In order to facilitate a geometrical calibration of an infrared camera, the control points have
to differ from its surrounding through the emitted radiation. Special calibration fields with an
electric bulb can be applied for calibration in laboratory [Luhmann et al., 2011].
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Conclusion: The generalized work-flow for texture mapping presented in Fig. 2.2 is also suit-
able to fulfill the goals of this work and is followed in the methodology and experiments presented
within this study. The focus of this thesis is, however, adjusted to the objectives of the work. It
is assumed that the airborne thermal textures will be combined with other textures (terrestrial,
visible) using the same 3D building model. Moreover, combination of the textures from different
points in time should be possible in form of multiple textures for each face. An existing 3D
building model, therefore, is used and co-registered with the images in order to achieve good fit
between the data sets.

A literature review on co-registration, the main focus of the thesis, is found in (Section 2.3),
including direct geo-referencing and model-to-image- matching also supported by tracking. The
second focus of the thesis is texture extraction adapted for the requirements of thermal inspections.
Thus, the literature describing the topic of texture extraction is presented in Section 2.4, and
includes visibility check, best texture selection, quality assessment storing and data management.
Since this study deals also with window detection in façade textures, object detection in façade
textures are explored in Section 2.5.

2.3 Model-to-Image Co-registration

Model-to-image co-registration is a necessary step in texture mapping on existing building models.
In this section, relevant research is presented. The studies referenced do not limit to co-registration
of 3D building models with thermal images; they also include other spectral bands, particularly
the visible domain. The co-registration methods that are presented, also are not restricted to
3D building models too, but the selected literature focuses heavily on urban areas and building
models.

2.3.1 Direct Geo-referencing

Direct geo-referencing consists of geo-referencing using known exterior orientation (ExtOri) of
the camera without taking any information from the image. Approximated exterior orientation
parameters can be directly determined using global positioning system (GPS) data. In order
to increase the accuracy of direct geo-referencing, an inertial navigation system (INS) is often
used together with the GPS receiver. INS provides good short-term accuracy, but over time, a
systematic drift occurs. Thus, the combination of GPS and INS makes it possible to avoid the
INS drift and to bridge any short loss of satellite signal by GPS [Yastikli & Jacobsen, 2005]. In
order to apply direct geo-referencing, a system calibration needs to be carried out. In partic-
ular the camera position and orientation are often not identical to the position and orientation
registered by integrated GPS/INS, in which case the estimation of the misalignment angles (bore-
sight parameters) and the lever arm vector is necessary [Yastikli & Jacobsen, 2005; Eugster &
Nebiker, 2007; Stilla et al., 2009; Kolecki et al., 2010]. Furthermore, a transformation between
coordinate systems is necessary, since most building models are stored in national coordinates,
while GPS/INS navigation uses a geographic coordinate system [Legat, 2006; Skaloud & Legat,
2008]. The accuracy of georeferencing depends on the sophistication (and therefore price) of the
navigation device, and on the availability of differential GPS (DGPS) corrections. Usually the
accuracy of the direct geo-referencing is too low for a precise direct co-registration and texture
extraction, but it can be used as approximated values to initialize further processing. Position
errors in 3D building models can also be observed as a result of 3D reconstruction using inaccu-
rately geo-referenced data and large deviations in modeling. Inaccuracies in boresight calibration
can also lead to mismatches between the 3D building model and the image [Kolecki et al., 2010].
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These mismatches can be reduced via a model-to-image matching, and the matching should be
adaptable to the accuracy of the direct geo-referencing.

2.3.2 Model-to-Image Matching

Model-to-image matching is a widely discussed topic and various methods for implementation
have been developed. Some authors [Van den Heuvel, 1998; Hu et al., 2006; Ding & Zakhor,
2008; Cham et al., 2010; Förstner, 2010b] assume that considered scenes consist of piece-wise
planar surfaces with dominant directions (so called Manhattan or Legoland scenes) and calculate
vanishing points of the vertical and horizontal lines. This, in combination with GPS data, can be
used for the computation of exterior orientation parameters. These methods require a calibrated
camera system and and the extraction of many vertical and horizontal lines in the image. Because
of the lack of vertical and horizontal lines, which can be unambiguously extracted, these methods
can fail in residential areas [Ding & Zakhor, 2008]. In some works [Vosselman, 1992; Eugster
& Nebiker, 2009; Eugster, 2011], relational matching is applied, which considers not only the
agreement between an image feature and a model feature, but also takes the relationship between
features into account. These methods can also be differentiated based on the image features used
for matching. For model-to-image matching in urban areas, some authors propose points [Ding
& Zakhor, 2008; Wang et al., 2008; Avbelj et al., 2010], but most consider lines more natural
for building structures used them for co-registration [Debevec et al., 1996; Hsu et al., 2000; Früh
et al., 2004; Eugster & Nebiker, 2009]. Hybrid methods employing points and lines at the same
time, however, have been also discussed [Zhang et al., 2005; Tian et al., 2008].

Some methods fit 3D models directly to the contours. Lowe [1991] proposes a method for fit-
ting parametric 3D models to images, mainly for recognition and tracking purposes. He detected
contours in the image and used them to determine projection and model parameters. This was
done by minimizing the perpendicular distance from the points on the image edge to the projected
model curve. Additionally, Lowe proposes a method to solve the problem when there are more
unknowns than constraints on the solution based on the observations. For this purpose, he in-
troduces prior constraints on the desired solution. Vosselman [1998] adapts the method proposed
by Lowe [1991] to match parametric building primitives with aerial images in a semi-automatic
way. He avoids the threshold for the gradient value by calculating the gradient perpendicular
to the model edge in the surroundings of the edge and then weighting the observations with a
squared grey value gradient. Panday & Gerke [2011] continue the idea to fit parametric building
models using oblique aerial images. They extend parametric building models with a roof over-
hang and use oblique images to update building models obtained with airborne laser scanning
(ALS). Nyaruhuma et al. [2012] also register 3D models with images using image gradients. They
implement edge matching of 3D building models with airborne oblique images using mutual infor-
mation technique for individual edges, faces, or whole buildings. In their research, they tackle the
problem of identifying changes in building inventory. For this purpose, they project the 3D build-
ing model into the image and calculate the gradient direction. Then they use them to calculate
the “pixel gradient direction probability density” and “edge pixel gradient direction probability
density” and compute the mutual information out of these two probability densities.

Some authors believe line matching of aerial images can be done with with 2D vector data.
Habbecke & Kobbelt [2010] coregister 2D cadastral maps using oblique images in three stages.
In the first stage, similar to the work by Ding & Zakhor [2008], they calculate vanishing points
and use them to reduce unknown parameters of exterior orientation from six to four in order
to simplify the search for further parameters. They then detect lines in oblique images, which
correspond to vertical lines in the object space, and assign them to map corners vertices. They
use RANSAC [Fischler & Bolles, 1981] to select the correct correspondences from a larger set of
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initial correspondences. Lastly, they refine the co-registration by detecting the lines horizontal
in the object space and matching them across pairs of images. Using these matches, they solve
bundle-adjustment-like global optimization over all camera parameters. Kawai & Saji [2007] also
coregister aerial oblique images with 2D maps. First, they roughly determine the exterior orien-
tation of the images by global registration. They support the co-registration using vertical aerial
imagery at this stage. Next, they refine the co-registration locally by matching corresponding
points in the oblique images and in the 2D map. They compute the projective transformation as
the final result of the co-registration.

Considering different properties of objects in the infrared domain, the selection of a specific
approach is often needed. Stilla et al. [2000] and Avbelj et al. [2010] propose a method for
matching low resolution TIR images based on intersection points of roof edges. Roof edges are
selected because they can be reliably extracted in IR images. This is related to the operation
principle of the TIR cameras, which record the thermal radiation of the photographed objects.
This radiation depends on objects temperature and emissivity, and the emissivity depends on the
material. Building façades are usually made of materials with emissivity similar to the emissivity
of the materials used for pavement and streets. Hence, the contrast between the building façades
and pavements or streets is often low. For roofs, especially when made of roof tiles or sheet metal,
the contrast to façades can be better used for edge detection in TIR images.

Pelagotti et al. [2009] propose a method for co-registration of 3D models with multi-spectral
images using mutual information between two images. From the 3D model, a depth image is
calculated and coregistered with the mutli-spectral image by maximizing the mutual information.
They also deform the image to be registered using affine transformation as deformation model.

Line Matching: As mentioned above, lines are more representative for man-made objects than
points; therefore, line matching is an important task for co-registering of 3D building models with
images. One of the earliest examples of line based model-to-image matching was presented by
Sester & Förstner [1989]. They present a concept for object location in aerial images using
the orthogonal 2D sketches of buildings. The goal of this work is to determine the position of
the control points in the image, such as the gable points of the roof. They interpret the 2D
sketches creating 3D parametric description and use probabilistic clustering to find image lines
corresponding to the lines from the sketches. They then automatically determine the exterior
orientation of the aerial images. From the corresponding line pairs, they obtain the optimal
solution for the exterior orientation parameters of the camera using a robust estimation. Schickler
[1992] extends this approach with self-diagnosis by analyzing the final results with respect to the
precision and sensitivity of the geometric configuration of the control points. Schickler [1992]
also mentions the possibility of employing the RANSAC technique to find incorrectly located
control point models and to predict a more likely set of matching candidates. He also presents an
adaptation of this method for semi-automatic mapping of 3D objects.

In the texture mapping context, some authors also employ line based co-registration. Früh
et al. [2004] propose an approach based on matching line segments with model edges. In this
method, the edges are extracted in the image and the model is projected into the image from
random camera positions. A rating based on line matching is calculated and the procedure is
repeated for each position. The position with the highest rating is chosen for texture mapping.
Many random parameter configurations have to be tested for every frame, thus the computational
effort of this method is very high. No correspondence between frames is used in this approach

Lee et al. [2002] uses vanishing points to calculate the orientation of the camera and three
correspondences of line segments to recover the camera position. After determining the orientation
parameters, they create hypotheses about the camera position, and then they classify all image
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lines and all model lines into two major directions. Finally, using the RANSAC, they calculate the
position of the camera out of three correspondences of line segments. Kada et al. [2005], aiming
a real time visualization of urban scenes using graphic hardware, implement a modified spatial
resection with lines as described in Klinec [2004]. Klinec [2004] presents a system for pedestrian
localization by model-to-image matching using lines. He uses direct linear transformation (DLT)
to determine the initial camera position. He then uses modified collinearity equations with line
parametrization for final solutions, as proposed by Schwermann [1995]. Cheng et al. [2013] use line
matching for texture mapping in indoor environments. Assuming the planarity of the captured
scene, they assign lines from image pairs using RANSAC and calculate translation between them.
This translation is used for image stitching.

Hsu et al. [2000] and Sawhney et al. [2002] texture existing 3D models using a video sequence.
They assume the camera pose to be known in the first frame of the sequence and predict the
pose in the next frame. The correspondence between the frames is estimated using optical flow.
They then search for the best camera position by minimizing the disagreement between projected
edges and edges detected in the image. For this purpose, they represent the local edge strength
within an image as an energy field. Next they vary the pose and try to maximize the integral of
this field along the projected 3D line segment. They use the steepest descent method to find the
optimal solution.

Line matching was frequently addressed in the 3D reconstruction context. Debevec et al.
[1996] propose a method for reconstruction using lines marked in the image by the user. They
represent lines with two vectors, the first one representing the direction of the line and the second
one representing a random point on the line. This allows then to represent the projection of the
line as an intersection of the plane spanned by two vectors: the vector from the point on the line
showing in the line’s direction and the vector from the projection center to the point on the line.
They use parametric 3D primitives for reconstruction and obtain the 3D structures by minimizing
the sum of the disparity between the projected edges of the primitive models and the edges marked
in the image. Schenk [2004] represents lines using four parameters proposed by Roberts [1988]
in 3D and defines colineraity equations for the lines using these parameters. This idea is also
utilized by Meierhold et al. [2008]. Heuel & Förstner [2001] propose a methodology for the 3D
reconstruction of buildings from multiple oriented images using statistical geometric reasoning for
projective geometry. They group uncertain 2D and 3D entities and use them to construct further
entities. Ok et al. [2012] concentrate on finding correspondences between the lines. They define
a pair-wise measure for line correspondence in stereo pairs to find the initial correspondences.
The final correspondences between the stereo images are established in a line-to-line matching.
In this line-to-line matching, they consider a similarity measure based on a Daisy descriptor, a
redundancy measure, and a pair-wise quality measure.

The majority of works assume the 3D building model to be error free. Only a few of the
presented methods for model-to-image matching consider the uncertainty of 3D models [Sester &
Förstner, 1989; Schickler, 1992; Lowe, 1991]. In these works, the 3D models are stored in a param-
eterized form; which is very useful for 3D reconstruction. These parameterized models represent
simple buildings or building primitives; however, reconstructed building models are frequently
modeled by polyhedra and stored in a format supporting polyhedral models, e.g. CityGML.

Representation of Uncertainty: Sester & Förstner [1989] and Schickler [1992] introduce un-
certainty in three model parameters (width, length and slope) for a simple case of roof sketches
and integrate them in the adjustment, together with the uncertainties in two parameters of 2D
lines detected in the image. Luxen & Förstner [2001] present a method for optimal estimation for
the projection matrix with the covariance matrix for its entries using point and line correspon-
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dences. Using homogeneous coordinates, they represent 3D lines by joining of two 3D points and
the projection of these lines as projection planes. In doing so, the entries of the projection matrix
for points (size 3×4) is calculated, and calculation of the projection matrix for lines (size 3×6)
can be avoided. Luxen & Förstner introduce the uncertainty of the 2D points and lines in the
adjustment model.

Heuel & Förstner [2001] and Heuel [2002] also use a homogeneous representation of geometric
uncertain entities to match line segments in order to optimally reconstruct 3D lines and group
them. Heuel [2002] gives a very detailed and structured overview of the representation of uncertain
entities in 2D and 3D, including points, lines, and planes and geometric reasoning. He also presents
the constructions using uncertain entities and appropriate error propagation. Beder [2004, 2007]
uses the same representation for grouping points and lines by statistical testing for incidence.

Meidow et al. [2009a,b] collect, evaluate, discuss, and extend various representations for un-
certain geometric entities in 2D. Additionally, they provide a generic estimation procedure for
multiple uncertain geometric entities with Gauss-Helmert model. They handle uncertain homo-
geneous vectors and their possibly singular covariance matrices by introducing constraints for the
observations in addition to the conditions for the observations and parameters and restrictions
for the parameters.

Förstner [2010a] introduces a minimal representation of uncertainty for points and lines in 2D
and 3D using the unit sphere. A minimal representation is achieved by reducing the homogeneous
coordinates by projecting them on the plane tangent to the unit sphere at the considered geometric
entity. Special attention is paid to the 3D lines, which have to be reduced on a four dimensional
tangent space and treated separately. He also gives an application example of the introduced
representation in bundle adjustment. Förstner [2012] extends the previous work by presenting
an application for statistical testing. Schneider et al. [2012] use this minimal representation of
homogeneous coordinates for image and scene points in a bundle adjustment for omnidirectional
and multi-view cameras. Instead of using Euclidean normalization, they integrate far points
and points at infinity in the adjustment using spherical normalization. In Förstner [2010b], the
minimal representation is implemented to optimally detect vanishing points.

Conclusion: In this study, co-registration will be done by improving the camera pose based on
the correspondence between the model and image features. Due to the different accuracies of the
direct geo-referencing, depending on the quality of navigation device, the matching should adapt
its accuracy, which will be explained in this thesis. Many authors mention that linear features are
most suitable for model-to-image matching in urban areas; therefore, line segments will be used
for matching in this study. For this purpose, the line representation suitable for the application
will be chosen. Since image features and 3D building models are expected to be uncertain, the line
representation and estimation method should be selected, so that the uncertainty can be taken
into consideration. This will be done by using two representations. First, the representation in-
troduced by Schenk [2004] will be used and extended with the uncertainties of the 3D model. The
estimation will be done using the Gauss-Markov model and the collinearity equations for lines in
Euclidean space. Second, the representations presented in Luxen & Förstner [2001] and Heuel
[2002] will be adapted for the purposes of this work, as well as the generic estimation procedure
introduced by Meidow et al. [2009b].
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2.4 Texture Extraction

In this work, texture extraction is understood as the process of selection and association of an
image section to a face of a 3D building model, which includes visibility check and storing this
selection with the 3D model. The co-registration between the 3D model and the image is assumed
to be given.

Visibility check: In general, two groups of methods for visibility check can be distinguished:
(i) image based methods and (ii) polygon-based methods. In image-based methods, z-buffer
(depth image) or ray casting algorithms are applied. In polygon-based (vector-based) approaches,
polygon clipping is used. Typically, all polygons (triangles) are projected into the image plane and
are intersected [Kuzmin et al., 2004; Hanusch, 2008]. The depth-buffer method is a basic method
for removing hidden surfaces adopted from computer graphics. The depth-buffer is created by
projecting a polygon of the 3D scene into the image and storing that pixels are occupied by the
polygon together with the distance to the polygon from each pixel. This procedure is repeated
with the other polygons and the occupancy of the pixels is overwritten when the next projected
polygon has a lower distance to the image at this pixel. This method is revisited often with some
variations [Früh et al., 2004; Karras et al., 2007]. In ray casting technique, the depth image is
generated by tracing the rays sent from the projection center through each pixel of the image
plane. Those rays are intersected with all surfaces of the 3D scene, and the intersections are
sorted due to the distance to the image plane. The surface is marked as visible at a certain pixel
if its intersection with the corresponding ray was closest to the image plane [Hoegner et al., 2007].
Bénitez & Baillard [2009] introduce and compare three methods: 2D ray tracing, 3D z-buffering,
and 3D ray tracing. The 2D method is not useful for the cases when a higher building is visible
behind a lower one. Vallet & Houzay [2011] present a method to efficiently compute the visibility
using GPU. Abdelhafiz & Niemeier [2009] and Abdelhafiz [2009] integrate digital images and laser
scanning point clouds. They use a Multi Layer 3DImage (ML3DImage) algorithm, which classifies
the visibility on two stages: point stage and surface stage. Using model-based visibility check,
only self-occlusions can be detected. For high quality texture mapping, especially when certain
objects, such as windows or heat leakages need to be detected in the texture, non-predictable
(un-modeled) occlusions have to be taken into account. For this purpose, multiple images [Böhm,
2004; Abdelhafiz & Niemeier, 2009; Abdelhafiz, 2009] or laser point clouds [Bénitez et al., 2010]
are utilized.

Best Texture Selection: Best texture selection is an important step of texture extraction
because it enables texturing with high quality textures. This becomes particularly important
for texturing using an image sequence. In literature, different strategies for the best texture
selection can be distinguished. Some authors propose using only one parameter as selection
criteria. Bénitez & Baillard [2009] selected textures based on visibility only; however, they mention
the need to extend their method with quality criteria. Debevec et al. [1996] introduced View-
Dependent Texture-Mapping. In this approach, the angle between the viewing direction of the
camera and the normal of the face were calculated. For texture mapping, the image with the
smallest angle between the viewing direction and the normal were selected. Similarly Wang et al.
[2008] use the viewing angle to select the oblique image for a façade texture. In some studies
more then one parameter is used to calculate the quality measure. Früh et al. [2004] defined the
quality measure based on resolution, occlusion, viewing angle and coherence with the neighboring
triangle. Some authors discussed the problem of radiometric differences between two frames and
solve it by appropriate texture blending. Texture blending combines multiple images in order
to achieve a high quality texture for one face. Früh et al. [2004] implemented texture blending
by favoring neighboring triangles of the same model face to be extracted from the same image.
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Karras et al. [2007] introduced a weighted texture blending. Their method regulates the local
radiometric contribution of each image. Outlying color values are rejected automatically using
statistical tests. Lorenz [2011] proposed a texel-wise selection and blending, taking into account
the localization in the oblique view image, occlusion, and viewing angle for each texel separately.

Quality Assessment of Building Textures: In most studies, the texture quality was in-
troduced as a value used to select the best texture. Such quality calculated for the selection
procedure can be stored with the texture. It is an abstract value, however, which can be inter-
preted to compare the quality between faces, but does not give information any about the level
of detail of the texture and its fit to the 3D model. Some researchers, therefore, calculate local
resolution for every pixel. Lorenz & Döllner [2006] analyzed the quality of texture extracted from
airborne images taken with an HRSC camera and created quality maps consisting of local effec-
tive resolution. Similar resolution maps for textures are also presented in Hoegner & Stilla [2007].
Hoegner et al. [2012] assess the matching quality between the image sequence and the building
model by analyzing the extracted textures. Textures from different sequences at different times
and with different orientation parameters are compared through correlation and assessed visually.
This method does not give any independent measure that could express the quality of fit between
the model and the extracted texture.

Storing and Data Management: Another issue in texture mapping is the storage of ex-
tracted textures. Some authors [Früh et al., 2004; Kaul & Bohn, 2008] use a texture atlas (image
containing all textures) to avoid storing many small images independently. Storing textures in a
database and integrating them with a web service is also conceivable. Eugster & Nebiker [2008]
integrate the textured model within the Virtual Globe. In the last decade, the standard CityGML
for storage of 3D building models has been developed [Gröger & Plümer, 2012]. In this standard,
the faces do not have to be triangulated. It is possible to store one face as a polygon or even a set
of polygons. CityGML makes it possible to associate multiple textures with one face by assigning
them to different themes (e.g. spring or winter), which can be used to store thermal textures
captured in different points in time.

Conclusion: In the study CityGML will be used because of its ability to store multiple tex-
tures. The majority of the methods for visibility check presented above, however, are based on
triangulated models and do not deal with polygon representation, which is allowed for example in
CityGML [Gröger & Plümer, 2012]. Such polygon representation is also more useful for further
interpreting the extracted textures. The described methods do not take into account the perma-
nently occluded faces or their parts, which are typical for densely build-up areas, and they are
developed for VIS images - that is, for good user perception and not for TIR images, where each
pixel contain a radiation measurement. Strategies to overcome these difficulties will be developed
in this thesis.

2.5 Object Detection in Façade Textures

Due to the objectives of this thesis, in this section, only the small area of object detection will
be presented, namely the detection of objects in façade textures. Since the goal is to detect the
windows in TIR building textures, the works on TIR images will first be presented. Literature
about visible image findings will be also reviewed.

Klingert [2005] works with terrestrial TIR façade images and aims to detect heat leakage using
basic image processing operations, namely pixel-oriented image segmentation with thresholding.
Hoegner & Stilla [2009] analyze rectified thermal textures and try to detect thermal leakages by
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detecting edges and using a region growing approach. Because the windows reflect the surround-
ings, in some camera configurations whole windows or their parts can appear similar to thermal
leakages. In order to avoid confusion, the window areas are masked by combining the forward and
backward view textures. This method is effective since windows lay on the plane slightly behind
the façade plane. Sirmacek et al. [2011] present an approach to detect windows and doors, as well
as thermal leakages. They use L-shapes detected in thermal textures. L-shapes are grouped to
build rectangular structures. According to the defined minimal and maximal object size, windows
are either accepted or rejected. The heat leakages are detected similarly to Hoegner & Stilla [2009]
using a combination of morphological operators and reject leakages that lay inside the previously
detected windows and doors.

Much more studies on façade image interpretation have been presented in visible domain. For
example, a joint research project called eTRIMS (E-Training for Interpreting Images of Man-Made
Scenes) which studies façade classification, has been established in Europe [Förstner & Korč, 2009;
Förstner et al., 2009]. The focus of this project is to automatically recognize the main elements of
a man-made urban scene, such as street, vegetation, windows, and doors. Classification methods
using graphical models [Yang, 2011; Drauschke, 2011], boosting classifiers [Grabner et al., 2008] or
support vector machines [Bochko & Petrou, 2007] are applied for this purpose. Others concentrate
more on façade structure. C̆ech & S̆ára [2008, 2009] classified window panes by Maximum A-
posteriori Probability Labeling, forcing them to be rectangles. Wenzel et al. [2007, 2008] search
for symmetries in the rectified image and clusters detected features to interpret the façade.

Ripperda & Brenner [2006]; Ripperda [2008, 2010] used grammars to describe the façades.
Their data-driven method is used to derive the distribution of façade attributes (e.g. the position
of windows) and use these distributions to create rules of façade appearance. In order to construct
these rules, they proposed reversible jump Markov chain Monte Carlo (rjMCMC) [Green, 1995].
MCMC based methods were also introduced by Dick et al. [2004] and Mayer & Reznik [2007].
Reznik & Mayer [2007] used implicit shape models introduced by Leibe & Schiele [2004] to detect
and delineate windows using alarge set of training data. Mayer & Reznik [2008] extend this
methodology with a self diagnostic algorithm. Werner & Zisserman [2002] use regular structure
primitives like vanishing points or symmetry detected in uncalibrated images.

Meixner & Leberl [2010, 2011] demonstrate the potential of nadir view airborne images for
façade interpretation and argue that airborne oblique images are more suitable for this purpose.
However, façades are well visible in nadir view images only if they are in off-nadir areas, namely
in the marginal area of the image.

Some authors aim at building façade reconstruction from 3D point clouds. Becker [2009] and
Becker & Haala [2009] propose quality dependent façade reconstruction from LiDAR point clouds
based on a formal grammar. They combine bottom-up and top-down approaches and integrate
the rules into the data-driven reconstruction. Tuttas & Stilla [2011] use multi-aspect airborne
laser scanning data in forward looking view. The points lying behind the façade plane are taken
for façade reconstruction, and Fourier transformation is applied to find repetitive structures.

Parallel to the work presented in this dissertation, Schack et al. [2012] developed a method
based on lattice detection and applied it to persistent scatterer point clouds and oblique aerial
imagery. At the same time, Wenzel & Förstner [2012] present a method for interpreting the
façade images by aggregating low-level features, such as line segments. They select aggregations
significant for object detection and use them for learning and classification.

Conclusion: Façade image interpretation has been intensively discussed over the last decade
and many good performing methods have been presented; however, most of the tests have been
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done using VIS data. Besides, the majority of those methods needs training data, which is not
available for TIR images at this moment. The few publications presenting results in TIR data
were concentrating on high resolution terrestrial images. No experiments were performed using
airborne TIR textures.

2.6 Subjects and Goals of the Work

Summing up the state-of-the-art presented in Sections 2.1 - 2.5, lot of work has been done on
model-to-image matching, texture extraction, and interpretation of the building textures. How-
ever, still some unsolved problems remain.

The majority of the solutions for model-to-image matching do not take the errors and uncer-
tainties of the 3D models into account. Usually, textures are extracted for triangulated models
and existing methods do not consider boundary representation based on polygons. Moreover,
only few authors attempt to assess the quality of extracted textures. Most of the methods for
façade reconstruction are based on classification or learning and require training data. Finally,
almost all the methods are optimized for the visible domain, and do not investigate other spectral
bands. Accordingly, this thesis follows three main goals.

First, it develops a methodology for model-to-image matching which take errors and uncer-
tainties of the 3D building model into account. Line segments are utilized for the matching, as
they are the most suitable features for this purpose. However, their representation with uncer-
tainties is more challenging than for points. To achieve the best fit, optimal exterior parameters
of a calibrated camera are determined. Additionally, it utilize the properties of image sequences
and investigates the benefit of them.

Second, it shows a texture mapping strategy suitable for thermal building inspections and
allows for assessment of accuracy and quality of the extracted textures. It uses a-priori knowledge
from the 3D building model to determine the visibility and quality of the data.

Third, it presents an interpretation method for thermal textures with emphasis on window
detection based on lattice reconstruction. Mainly, the problem of blurred edges, low contrast and
low resolution of thermal data is focused.

Since the methodology presented in this thesis is developed to extract textures for thermal
inspection of building, it shows experiments on thermal infrared data set and discusses the results
in this context, taking into account the suitability and quality of the achieved results.

Specifically, the following research questions will be investigated:

- Will co-registration results significantly improve if uncertainties of 3D models and of image
features are considered in the estimation?

- To what extent does line tracking support model-to-image matching?

- What is the potential for the textures extracted from airborne thermal images to be used for
window detection?
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3 Theoretical Background

In this chapter, the theoretical background for Thermal Imaging (Section 3.1), Photogrammetry
(Section 3.2), Image Processing (Section 3.3) and Statistics (Section 3.4) are presented. The
material presented in this chapter is used in Chapters 4-6 as a basis for the developed methods
presented in this study.

3.1 Thermal Imaging

This section should help the reader to understand the principle and usefulness of thermography in
various areas of science and engineering. First, the scope of application is presented (Section 3.1.1).
Then, the thermography principle is briefly explained (Section 3.1.2). Finally, the influence of
the environment during the temperature measurement is described (Section 3.1.3.

3.1.1 Applications of Thermal Images

Thermal imaging is widely used in various fields of science and engineering. It finds application in
military, medicine [Bronzino & Diakides, 2008], chemistry [Vollmer & Möllmann, 2010] and civil
engineering [Feldmeier & Rossa, 2009; Fouad & Richter, 2012]. When mounted on airborne and
space-borne flying platforms, thermal sensors can also be used for city climate analysis with heat
islands detection [Weng, 2009] or for detecting moving objects and traffic monitoring [Stilla &
Michaelsen, 2002; Hinz, 2004; Kirchhof & Stilla, 2006]. Another important application of thermal
images is thermography of buildings [Weber, 1982].

Fig. 3.1 shows an exemplary aerial image of an urban area (Fig. 3.1a) and a TIR image of the
same scene (Fig. 3.1b). In the TIR image, small warm objects such as a chimney (Fig. 3.1c) and
street lighting (Fig. 3.1d) can be recognized as spots with higher intensity than their surroundings.
Static, parked cars appear as dark spots. Static light spots in a row of dark spots suggest one of
the cars had been recently driven (Fig. 3.1e-f). A light spot on the road surface indicates a car
had recently driven away (Fig. 3.1g).

3.1.2 Thermographic Definitions

Several books and publications describe the principles, potentials, and challenges of thermography
[Wallrabe, 2001; Gaussorgues, 1994; Minkina & Dudzik, 2009]. Thermal imaging is based on the
fact that every object with a temperature greater than absolute zero emits thermal radiation
as electromagnetic waves. This electromagnetic radiation is by nature similar to visible light,
radio waves, X-radiation, and gamma-radiation. The difference between these radiations is their
wavelength or frequency (Fig.3.2).

Thermal radiation is invisible to humans, but it can be captured by cameras working in the
infrared spectrum. Infrared radiation is defined as radiation with wavelength λ=0.78-1000 [µm]
(Fig. 3.2) and is classified into three spectral ranges: IR-A (λ=0.78-3 [µm]), IR-B (λ=3-5 [µm])
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Figure 3.1: Visible light (VIS) and thermal infrared (TIR) aerial image of an urban area: a) VIS aerial
image; b) TIR image of the same area; c) chimney; d) street lighting; e)-f) parked cars; g) warm spot
caused by a car that has just left (source: Stilla & Michaelsen [2002])
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Figure 3.2: Infrared radiation: Infrared radiation is a part of the electromagnetic spectrum with wave-
length λ=0.78-1000 [µm]. For thermal imaging, so called thermal infrared (TIR λ=3-14 [µm) is used.
However, only part of the TIR radiation can be observed through the atmosphere, as some bands are ab-
sorbed by molecules (water, carbon dioxide, ozone) contained in the air. The blue colored graph presents
an approximate transmission of the atmosphere of Earth.(The transmission graph after Wikipedia [2015])
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and IR-C (λ=5-1000 [µm]), as defined in DIN 5031. In literature, other classification are also
found, so near infrared (NIR) for λ=0.75-1.4 [µm], short-wavelength infrared (SWIR) for λ=1.4-
3 [µm], mid-wavelength infrared (MWIR) for λ=3-5 [µm] and far infrared (FIR) for λ=5-1000 [µm]
can be distinguished. For thermal imaging, the spectral range with λ=3-14 [µm] is particularly
important and is often called thermal infrared (TIR), whereas the spectral range with λ=7-14 [µm]
is called long wave infrared (LWIR).

Thermal imaging is possible by sensor elements that measure radiation using different physical
effects [Wallrabe, 2001], representing it as digital numbers and transforming it into grey value
or color representation. In such image, it is possible to distinguish different objects because of
the differences of temperature or emissivity between the objects in the captured scene. This
enables intensity graduation and visualization. The ability of a camera to distinguish differences
in emitted radiations and represent them as intensities is called radiometric resolution. Nowadays,
thermal cameras are able to depict differences in temperature up to 0.01 [K].

The radiation measured by such cameras is usually a composition of emission, reflection, and
transmission. Accordingly, each object can be characterized by three factors: emissivity com-
ponent, reflection component and transmission component. The sum of these three components
is equal to 1. The emissivity component is equal to the spectral absorption component. Black
bodies have the emissivity component equal to 1, which means 100% of the captured radiation is
caused by the temperature. No reflected or transmitted radiation reaches the camera. All other
matters are characterized by all three components. Thermal radiation can also be described by
radiant energy Q and by radiant flux Φ = Q/t, where t is time. On the way between the imaged
object and the thermal sensor, the atmosphere attenuates the radiant flux. In a homogeneous
and isotropic atmosphere, the reduction of radiant flux is specified by an exponential function
along the distance d. The reduction of the radiant flux depends on the wavelength (Fig.3.2). The
reduction of the flux depends on weather and climate and is specific for a particular wavelength.
Atmosphere absorption is mainly caused by CO2 molecules, steam and diffusion at particles such
as water droplets and fine dust.

Radiation in some of the spectral bands is completely absorbed by the Earth’s atmosphere.
The intervals of wavelengths in which the radiation is transmitted through the atmosphere are
called the atmospheric window. As shown in Fig. 3.2, the atmospheric window for infrared ra-
diation (so called infrared window) includes two bands with λ=0.78-5 [µm] and λ=8-14 [µm],
whereas the spectral band with λ=3-5 [µm] and λ=8-14 [µm] belong to thermal infrared. It can
be noticed that the band with λ=3-5 [µm] is split by small gap at 4.2 [µm] into the blue spike
and red spike. Fig.3.2 demonstrates how the atmosphere absorbs fewer radiation in blue spike,
thus imaging from a far distance is more advantageous at this band than in red spike or in LWIR.
However, on shorter distances (< 2 [km]), images captured in red spike or in LWIR have good
contrast. The solar radiation has a very small impact at LWIR. Red spike MWIR also has similar
properties. Some sun reflections can still be observed also in red spike and LWIR. The sun warms
up the buildings and the measured temperature is a mixture of these effects. Thermal inspection
of buildings should be conducted between sunset and sunrise. Typically, such inspections are
undertaken when the temperature outside is in the range of a few degrees so that the heating in
buildings is already at work. However, at the time of inspection, no snow should lie close to the
buildings because it can distort the measurements.

3.1.3 Temperature Measurement

The exact determination of surface temperature is difficult because of the complex influence of
atmospheric conditions [Meier et al., 2011], especially due to the diffusion of the radiation by dust
particles. However, for thermal inspections of buildings, knowledge about the exact temperature
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of the building hull is not necessary. Thermal leakages generate temperature differences within
a wall. These leakages, therefore, are detected in the thermal image as bright warm spots on an
otherwise cold background. Detection of thermal leakages can be carried out manually or image
processing algorithms can be used; nevertheless, strongly and specularly (mirror-like) reflecting
surfaces such as glass or metal, lead to problems in thermal inspections. When photographing such
objects, the temperature of the sun, of the sky, or of other objects is usually captured. Specularly
reflective materials, such as glass or aluminum, are widely used in buildings, particularly for
windows. It is crucial, therefore, to first detect windows and then detect heat leakages in building
façades so that these areas will be excluded in subsequent leakage detection tests.

3.2 Photogrammetric Definitions

Central projection in space is essential for photogrammetry [McGlone et al., 2004; Luhmann et al.,
2006; Kraus, 2007] and also for computer vision [Hartley & Zisserman, 2004]. Both disciplines
use the pinhole camera model, but often there are differences in the definitions of the coordinate
systems used by those two communities. In general, we can say that in a pinhole-camera model,
an object point in the 3D space X = (X,Y ,Z) is mapped on the image plane as x′ = (x′, y′).

In photogrammetry, the projection is typically expressed using collinearity equations. Given
the principal distance (camera constant) ck, the principle point (x0, y0)T , a rotation matrix
R= (rij) and a projection center (X0,Y0,Z0)T, the image coordinates (x′, y′) of an object point
(X,Y ,Z)T can be written as

x′ − x0 = −ck
r11(X −X0) + r21(Y − Y0) + r31(Z − Z0)
r13(X −X0) + r23(Y − Y0) + r33(Z − Z0) +∆x′, (3.1)

y′ − y0 = −ck
r12(X −X0) + r22(Y − Y0) + r32(Z − Z0)
r13(X −X0) + r23(Y − Y0) + r33(Z − Z0) +∆y′, (3.2)

where ∆x′ and ∆y′ are the lens distortions in x and y direction respectively. Parameters ck, x0,
y0, ∆x′ and ∆y′ are called interior orientation parameters, and parameters X0, Y0, Z0, ω, φ and κ
are called exterior orientation parameters, whereas R is a function of ω, φ and κ and R is rotating
a point in the camera coordinate system to the object coordinate systemXY

Z

 =

X0
Y0
Z0

+m

r11 r12 r13
r21 r22 r23
r31 r32 r33


x′ − x0 −∆x′
y′ − y0 −∆y′

−ck

 , (3.3)

where m is a scale parameter. Hence, the inverse R−1 is used for rotation from the object coordi-
nate system to the camera coordinate system [Luhmann et al., 2006]. Here the image coordinate
system is defined as a 3D Euclidean coordinates system with the origin in the projection center
(X0,Y0,Z0)T, Z -axis perpendicular to the image plane and pointing away from the photographed
scene. The viewing direction, therefore, can be defined as −Z .

In computer vision, the camera coordinate system is usually defined similarly to the camera
coordinate system used in photogrammetry. It is a 3D Euclidean coordinate system with the
origin in the projection center O and the viewing direction perpendicular to the image plane.
Here, however, the Z -axis is pointing in the viewing direction [Hartley & Zisserman, 2004]. In
computer vision, the rotation matrix R is typically rotating an object point X to the camera
coordinate system. The mapping of the object point X on a plane is done by rotation R and
translation to O using

Xcam = R(X −O). (3.4)
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Then, Xcam is projected into the image using homogeneous coordinates

x = K
[
I3 03,1

]
Xcam = KR

[
I3 −O

]
X, (3.5)

where X =
[
XT 1

]T
is the object point X in the object coordinate system represented in

homogeneous coordinates and Xcam =
[
XT
cam 1

]T
is the same point in the camera coordinate

system, also represented in the homogeneous coordinates. The camera matrix K is defined as

K =

ck s x0
0 ck y0
0 0 1

 , (3.6)

where s is the skew parameter, which is equal to zero for most cameras [Hartley & Zisserman,
2004]. The projection matrix is defined as P = KR

[
I3 −O

]
, then

x = PX. (3.7)

This way of formulating central projection leads to a linear equation system, which is easier to
deal with than the collinearity equations (non-linear system). Instead, the collinearity equations
enable us to model more camera parameters related to the lens distortions.

3.3 Image Processing Definitions

Digital image processing provides many meaningful methods for the automation of photogram-
metric and remote sensing tasks [Haberäcker, 1987; Blackledge, 1997; Jensen, 2004; Gonzalez &
Woods, 2008; Parker, 2011]. In this section, only the approaches used in this thesis are briefly
presented.

3.3.1 Cross-correlation and Masked Correlation

Cross-correlation is widely used in image processing and in image analysis to express the similarity
of two image sections [Luhmann et al., 2006]. Cross-correlations coefficient of a template t and
image section g is given as

c = 1
n

∑
i

(gi − g)(ti − t)
σgσt

, (3.8)

where n is the number of pixels in the template t, g is the average of g, t is the average of t, gi is
ith element of g, ti is ith element of t,

σg =

√∑
i(gi − g)2

n
(3.9)

and

σt =

√∑
i(ti − t)2

n
. (3.10)

If the template for the correlation is a binary mask, then (3.8) can be modified, as presented
in Stilla [1993], to

c = sgn(ρ⊕ − ρ	)sgn(g⊕ − g	) 1√
m
m	

(
σ⊕

g⊕−g	

)2
+ m

m⊕

(
σ	

g⊕−g	

)2
+ 1

, (3.11)
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where ρ⊕ denotes value of on mask, ρ	 denotes value of off mask, g⊕ denotes mean value of
intensity values in the image covered by on mask, g	 denotes mean value of intensity values
in the image covered by off mask, m⊕ denotes number of on pixels in the mask, m	 denotes
number of off pixels in the mask, m denotes number of on and off pixels in the mask, σ⊕ denotes
standard deviation of intensity values covered by the on mask and σ	 denotes standard deviation
of intensity values covered by the off mask. This formula enables faster calculation in case of a
binary template.

3.3.2 Edge Detectors

Edge detectors belong to core methods in image processing. Apart from many available algo-
rithms, the techniques based on the first-order derivative are used in many applications. Typi-
cally, in such techniques, the strength of the edge is expressed using the gradient magnitude which
is calculated as

g =
√
g2
x + g2

y , (3.12)

where g2
x denotes first derivative in the horizontal direction and g2

y denotes first derivative in
the vertical direction. g2

x and g2
y are usually calculated using edge detection operator e.g., Sobel

operator. The direction of the gradient is calculated as

φ = atan2 (gx, gy) . (3.13)

In practice, the Gaussian blur is often used as a pre-processing step for edge detection. This
allows reducing the noise in the image and reduces multiple false detections.

3.3.3 Region Segmentation with Dynamic Threshold based on Local Image
Parameters

Image segmentation can be divided into pixel-, region- and model-based methods. For pre-
processing, the pixel-oriented methods, such as simple, histogram based, dynamic and hysteresis
thresholding are commonly used. The principle of dynamic threshold is based on the assumption
that the searched object has a homogeneous intensity which differs from the local surround-
ings[Haberäcker, 1987; Gonzalez & Woods, 2008].

In this approach, the background image B : B is calculated by smoothing the original image
I : I with a mask G : G. The size of G is defined to be approximately double the size of expected
object. G is often a mean mask [Haberäcker, 1987] or a mask that is a linear combination of the
mean and the standard deviation [Gonzalez & Woods, 2008].

Segmentation is carried out based on the difference per pixel between the original image I and
the background image B as follows

S(r, c) =
{

1, if I(r, c)−B(r, c) ≤ t
0, otherwise

(3.14)

for segmentation of light objects and

S(r, c) =
{

1, if B(r, c)− I(r, c) ≤ t
0, otherwise

(3.15)

for segmentation of dark objects, where S is the binary result image, (r, c) is the row and column
index and t is the threshold. The threshold t expresses the minimal difference between the object
and the background. Light objects are objects with high intensity values, while dark objects have
low intensity values.
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3.4 Statistical Definitions

In this section, selected topics of estimation theory are briefly sketched to provide some theoretical
background knowledge necessary to understand the content of this study, including some topics
of estimation theory. Specifically, least square adjustment and robust estimators (RANSAC
and clustering), representation of uncertainty of geometric entities, and statistical testing are
presented.

3.4.1 Estimation Theory

Estimation theory provides a methodology for estimating unknown parameters from a given set
of observations [Koch, 1999; McGlone et al., 2004; Förstner & Wrobel, 2016]. Among others, the
least square estimation is commonly used to fit unknown parameters of a mathematical model to
the data by minimizing a cost function:

Ω = (y− s[E (y)])T(y− s[E (y)])→ min, (3.16)

where y is the observation vector and s[E (y)]] is the function of observations (estimator) [Koch,
1999]. In addition to the mathematical model, a stochastic model can be introduced in the least
square adjustment by minimizing

Ω = (y− s[E (y)])TQ−1
yy(y− s[E (y)])→ min, (3.17)

where Qyy = Σyy/σ
2
0 is the weight coefficient matrix and Σyy is the covariance matrix of the

observations. This makes it possible to take the uncertainty of the data into consideration.
Typically, for the least square estimation, one of two regression models is used: the Gauss-Markov
Model or the Gauss-Helmert Model. The following explanation of these two approaches is based
on [Koch, 1999; Niemeier, 2008]

Gauss-Markov Model

Assume A is a matrix of given coefficients of a linear model. The Gauss-Markov model is formu-
lated as

Aβ = E (y), (3.18)

where β is the vector of unknown parameters. Introducing the random vector v of the errors to
y with E (v) = 0, the models is represented by

Aβ = y + v. (3.19)

In order to find the optimal solution for β, the cost function

Ω = yTQ−1
yyv = (y− Aβ)TQ−1

yy(y− Aβ)→ min, (3.20)

has to be minimized using
β̂ = (ATQ−1

yyA)−1AQ−1
yyy. (3.21)

The covariance matrix for estimated β̂ is calculated as

Σ
β̂β̂

= σ2
0(ATQ−1

yyA)−1. (3.22)
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Gauss-Helmert Model

The linear Gauss-Helmert model is represented by a set of functions gi(β, y):

gi(β, y) = Aβ + By = 0. (3.23)

The optimal solution is found by minimizing the Lagrange function

L = vTQ−1
yyv − 2

∑
i

kigi(β, y). (3.24)

For non-linear problems, both the Gauss-Markov and the Gauss-Helmert models have to be
linearized using first derivatives locally at the mean. The solution has to be calculated iteratively
and the approximated values for unknown parameters are needed.

RANSAC

RANdom SAmple Consensus - RANSAC [Fischler & Bolles, 1981] is a robust estimation ap-
proach that fits parameters of a mathematical model using a random selection of observations.
It is assumed that the data includes observations that fulfill a mathematical model (inliers) and
observations that do not fit this model (outliers); however, the inliers can be subject to noise.
In this approach, a solution is calculated based on minimal number of observations, which are
treated as hypothetical inliers. It is tested among all observations to determine how many fit
with the hypothetical solution. This procedure is repeated k-times and the solution with highest
number of inliers is selected. This makes it possible to achieve a high likelihood of hitting the
correct set of observations. The number of repetition k for a given probability p that RANSAC
makes at least one error free selection is calculated as

k = log(1− p)
log(1− (1− ε)r) , (3.25)

where ε∈(0,1) is the outlier rate and r is the minimal number of observation necessary to solve
the task.

Clustering

Clustering is a robust estimation method based on filling an accumulator representing the param-
eter space [Förstner & Wrobel, 2016]. The dimension of the accumulator is equal to the number
of the unknown parameters. Each observation votes for one or more cells of the accumulator.
Each cell represents a possible solution for the unknown parameters. The cell of the accumulator
having the most votes is assumed to be the estimate for the unknown parameters. An example
for clustering is the commonly used Hough transformation [Hough, 1962].

Both, RANSAC and clustering do not give an accurate solution, but both methods are very
robust to outliers. Therefore, they are often used as rough estimates for the searched parameters.
They detect outlier and they prepare for maximum likelihood or mean least square estimation.

3.4.2 Propagation of Uncertainty

In statistics, the uncertainty of a variable x such that x = f(v) is propagated from the uncertainty
of v is formally written as

Σxx = JΣvvJ
T, (3.26)

where Σvv denotes the covariance matrix of v and J is the Jacobian (matrix of first-order partial
derivatives) for the transformation function f .
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3.4.3 Representation of Uncertain Entities

In general, we can distinguish Euclidean and homogeneous representations for points, lines, planes
and other geometric entities. These representations for points, lines, planes in 2D and 3D that
are meaningful for this work are presented. More on representation of uncertain entities can be
found in Heuel [2002], Förstner [2004], Meidow et al. [2009a], etc.

Representation of Points and Planes

In 2D, uncertain points are represented in Euclidean space by a 2-vector and its covariance matrix
as

x : {x, Σxx}, (3.27)
where

x =
[
x1
x2

]
, Σxx =

[
σ2
x1 σx1x2

σx1x2 σ2
x2

]
. (3.28)

Analogously, in Euclidean 3D space, points are represented as 3-vectors

X : {X, ΣXX}, (3.29)

where

X =

X1
X2
X3

 , ΣXX =

 σ2
X1

σX1X2 σX1X3

σX1X2 σ2
X2

σX2X3

σX1X3 σX2X3 σ2
X3

 . (3.30)

In projective space, the same points are represented using homogeneous coordinates as 3-
vectors in 2D and 4-vectors in 3D, so that

x =

x1
x2
1

 =

 uv
w

 =
[
xE
xh

]
(3.31)

and

X =


X1
X2
X3
1

 =


U

V

W

T

 =
[
XE

Xh

]
, (3.32)

where xE andXE are the Euclidean parts and xh andXh the homogeneous parts. The uncertainty
of the homogeneous points is represented by the covariance matrices such that

Σxx =
[
Σxx 0
0T 0

]
(3.33)

and
ΣXX =

[
ΣXX 0
0T 0

]
. (3.34)

Planes are dual of a 3D point in the projective geometry; therefore, they are also represented
as 4-vectors

A =


A

B

C

D

 =
[
Ah

AE

]
. (3.35)

However, the Euclidean part Ah and the homogeneous part AE are differently defined. 2D lines
are dual of a 2D point.
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Representation of Lines

Euclidean representation for lines in 2D: A 2D line has 2 degrees of freedom and can be
represented using the Hessian normal form with angle γ and distance d:

x cos γ + y sin γ − d = 0. (3.36)

Here, d denotes the shortest distance from the line to the origin of the coordinate system, and γ

denotes direction angle of the normal vector to the line (Fig. 3.3b); therefore, an uncertain 2D
line can be represented as:

l : {h, Σhh}, (3.37)

where
h =

[
γ

d

]
, Σhh =

[
σ2
γ σγd

σγd σ2
d

]
. (3.38)

A 2D line can be also represented using the slope-intercept form

y = mx+ b. (3.39)

Homogeneous representation for lines in 2D: In the projective geometry, a 2D line can
be represented by

l : {l, Σll}, (3.40)

where

l =
[ lh

l0

]
=

a
b
c

 . (3.41)

Here, lh is the homogeneous part, l0 is the Euclidean part, and the condition a2 + b2 + c2 6= 0
has to be fulfilled∗. In case a2 + b2 = 0, the obtained line is a line at infinity. lh can be expressed
using angle γ and l0 using distance d from (3.38) asa

b
c

 = λ

cos γ
sin γ
−d

 , (3.42)

with real factor λ 6= 0. Accordingly the covariance matrix Σll can be derived as Σll = JhΣhhJTh
using

JT
h = ∂l

∂h
=

−λ sin γ 0
λ cos γ 0

0 −λ

 . (3.43)

The above derivation is useful for image lines extracted using methods such as Hough transfor-
mation; however, in computer vision, line segments defined by two points are often observed. A
2D line can be constructed as a join of two 2D points x1 and x2 using

l = x1 × x2 = S(x1)x2 = −S(x2)x1, (3.44)

where S is the skew-symmetric matrix

S(x) =

 0 −w v

w 0 −u
−v u 0

 , x =

uv
w

 . (3.45)

∗Homogeneous lines are dual to homogeneous points, but their homogeneous and Euclidean part are defined
differently. Compare with the representation of 2D points in (3.31).



3.4. Statistical Definitions 37

The covariance matrix for l is calculated as

Σll = S(x2)Σx1x1ST(x2) + S(x1)Σx2x2ST(x1), (3.46)

assuming uncorrelated points x1 and x2.

Euclidean representation for lines in 3D: Typically, a 3D line is described by a direction
vector v and a point P . For this description, any point P belonging to the line can be used,
thus there is more than one set of parameters describing one line. To solve this problem, Roberts
[1988] introduced a line representation that is unique and unambiguous. This line representa-
tion was discussed, varied, and applied in photogrammetric context by Schenk [2004]. This line
representation is based on two orientation parameters (α, θ) and two positional parameters (Xs,
Ys). The azimuth α and zenith θ can be deduced from the spherical coordinates of vector v.
(Xs, Ys) are the coordinates of the intersection point with the plane X’Y’, where X’Y’Z’ is the
rotated original coordinate system XYZ, so that the Z’-axis is parallel to the line (Fig. 3.3a).
All equations required to calculate these parameters are given in Schenk [2004] and in Meierhold
et al. [2008]. Each point on the line can be expressed asXY

Z

 =

Xs cosα cos θ − Ys sinα+ t cosα sin θ
Xs sinα cos θ + Ys cosα+ t sinα sin θ

−Xs sin θ + t cos θ

 . (3.47)

Such a line is represented as
Lmi : {Li, ΣLiLi} (3.48)

using a 4-vector Li = [αi, θi,Xsi,Ysi]T. This parameterization uses four parameters, which is the
number of degrees of freedom of a 3D line.

Figure 3.3: Parametrization of a line - graphical representation a) in 3D space using 4 parameters; b) in
2D space using 2 parameters.

Homogeneous representation for lines in 3D: Lines in 3D projective space are represented
by homogeneous 6-vectors called also Plücker coordinates

L : L = X1 ∧X2 =
[
X2 −X1
X1 ×X2

]
=
[
Lh
LE

]
, (3.49)

where X1 is the join operator. In this representation Lh = X2 − X1 is the homogeneous part,
with two degrees of freedom, and LE = X1 ×X2 is the Euclidean part and can be interpreted
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as normal of the plane X1X2O defined by L and the origin of the coordinate system O. Plücker
coordinates have to fulfill the condition

LT
hLE = 0. (3.50)

3.4.4 Euclidean and Spherical Normalization

The homogeneous representation is ambiguous due to the higher number of coordinates as degree
of freedom. This ambiguity can be restricted by a normalization, for example by commonly used
spherical normalization or Euclidean normalization. Euclidean normalization for homogeneous
coordinates of a point is performed by

xe = Ne(x) = x
xh

. (3.51)

The covariance matrix of this point has to be also normalized by

Σe
xx = Je(x)ΣxxJ

T
e (x), (3.52)

where

Je(x) = 1
x2
h

[
xhI2 −xE
0T 0

]
. (3.53)

Euclidean normalization for homogeneous coordinates of a line is calculated using

le = Ne(l) = l
‖lh‖

. (3.54)

The corresponding covariance matrix is then normalized by

Σe
ll = Je(l)ΣllJ

T
e (l), (3.55)

where

J e(l) =
1

‖lh‖

I2 −
lh lT

h

‖lh‖2
0

− lE lT
h

‖lh‖2
1

 . (3.56)

Spherical normalization is defined as

xs = Ns(x) = x
‖x‖ . (3.57)

In 2D, this normalization is equivalent for both: points and lines. Together with the entity, its
covariance matrix has to also be normalized by

Σs
xx = J s(x)ΣxxJ

T
s (x), (3.58)

where
Je(x) = 1

‖x‖

[
I3 − xxT

xTx

]
. (3.59)
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3.4.5 Statistical Tests

As shown in Heuel [2002], we calculate the distance vector d and test the hypothesis H0

H0 : d = U(x)y = V (y)x = 0, (3.60)

where x and y are the entities and U and V are the functions defining the relation between x and
y. x and y are lines and we investigate the incidence in this particular case. Then we calculate
the covariance matrix

Σdd = U(x)ΣyyU
T + V ΣxxV

T(y). (3.61)

Then H0 is rejected with the significance level α if

T = dTΣ−1
ddd > εH = χ2

1−α;n. (3.62)
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4 Co-registration of 3D Building
Models with TIR Imagery

The main goal of this thesis is to extract optimal thermal infrared (TIR) textures for a 3D building
model, making in crucial to find the best fit between the existing 3D building model and the TIR
images. In order to do this, an alignment between the model and image features is needed. This
alignment is given by the projection matrix, including the exterior orientation parameters and
the camera model. The exterior orientation parameters are typically taken from the GPS and
INS navigation. The accuracy of the navigation system is, however, often not sufficient to provide
an ideal match between the 3D model and the image. The alignment between the model and
the image structures can be improved by matching the 3D model with the image features and
re-calculating the exterior orientation parameters of the camera.

The exterior orientation parameters can be calculated by photogrammetric resection in space.
In literature methods employing points, lines or both points and lines are used for this purpose.
For buildings, linear structures are easier to detect in the images while the building corners
(vertices), which can be represented by points, can be detected as intersections of lines. Therefore,
in this work, linear structures in the image and in the model are utilized for the model-to-image
assignment and to re-calculate the exterior orientation parameters and projection matrix.

In this chapter, a co-registration method based on a line-based model-to-image matching with
tracking is presented. First, a methodology to match a single frame with a 3D building model
is presented in Section 4.1. In this section, two alternative optimization methods for camera
pose estimation based on the model-to-image correspondences are introduced. The first method
is formulated in Euclidean space and uses RANSAC to revise the line-to-line correspondences
and a Gauss-Markov model for the estimation. The second method is formulated in projective
space and employs an accumulator approach to search for correspondences and a Gauss-Helmert
model for the estimation. Both methods are implemented, tested, and compared. In Section 4.2,
a strategy to support the matching using line tracking is sketched. Finally, in Section 4.3, the
estimation method using the Gauss-Helmert model from Section 4.1 is extended with an outlier
detection.

In this study, interior orientation of the thermal infrared (TIR) camera is assumed to be
known. Also the uncertainties of the 3D building model and of the image features, as well as the
accuracy of the navigation device, is assumed to be given. The uncertainties of the 3D building
model and of the image features are considered in the estimation.

Parts of this chapter have been published in Iwaszczuk et al. [2010, 2012a,b,c, 2013a,b];
Iwaszczuk & Stilla [2014a,b,c].
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4.1 Co-registration with a Single Image

For the co-registration of a single image and a 3D building model, two procedures need to be
carried out: model-to-image matching and camera pose estimation. For model-to-image matching,
corresponding features in the image and in the model have to be found. For this purpose, image
features are extracted and selected. Extracted image features have particular reliability and
geometric uncertainty, which is described in Section 4.1.1. For the matching, only the reliable
features are taken. The geometric uncertainty influences the results of camera pose estimation and
are taken into account for optimal pose estimation. Then, the 3D building models are projected
into the image and the visibility is checked (Section 4.1.2). The 3D building models are treated as
uncertain because of the inaccurate creation process and generalization; therefore, the uncertainty
of the 3D building models is included in the pose estimation process as described in Section 4.1.3.
Next, the line correspondences between the image and model lines are found and the optimal
camera pose is calculated (Section 4.1.4).

4.1.1 Reliability and Uncertainty of Image Features

Edge extraction is carried out with the Canny edge detector [Canny, 1986]. This edge detection
algorithm is based on the assumption that an edge is a border between two areas with different
intensities in the image. The edge strength is calculated using a gradient. By varying the minimum
edge strength required for a feature to be accepted as an edge during the extraction, different
results are achieved. Lowering this parameter results in multiple detections because low-contrast
edges are also included. However, this delivers more edges including noise. Setting the minimum
edge strength to a high value results in the detection of ”stronger” edges, but there may not be
a sufficient amount of such edges for the matching. Thus, in this thesis, edge detection with
varying minimum edge strength is proposed. As a result, we get three sets of detected edges. The
edges are approximated with line segments for better handling in further steps. After this, very
short line segments (≤ 3 [pix]) are removed and all detected sets of line segments are combined
together.

It is assumed that building edges appear in the image as line segments. Short lines more
likely correspond to other objects or to noise; therefore, all line segments are weighted using the
minimum gradient strength and the length. The weights of the lines are calculated as follows:

gj = 1
2

(
lj

dmax
+ aj

255

)
, (4.1)

where gj denotes the weight for the jth image line, lj denotes the length of the jth line, aj∈[0,255]
denotes the threshold for the minimum edge strength used for the extraction of the jth line, and
dmax is the length of the diagonal of the entire image.

This weighting is used solely to identify the reliable edges and exclude those with low weights
for the assignment of correspondences. For optimal pose estimation, the geometric uncertainty of
extracted image features is needed. This value is derived from the covariances of the estimated
parameters in the line segment approximation process. If the covariances are not available but
the geometric uncertainty of the end points is given, the covariance matrix for the image line
parameters can be calculated using error propagation.
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4.1.2 Visibility Check for Lines

In texture mapping, checking for visibility of the building model and its parts is a very important
step. It can be distinguished between visibility check for points, edges, and planes of the model.
In this work, visibility check for lines at the matching step and visibility check for planes at the
texture extraction stage is needed.

For texture extraction, Früh et al. [2004] proposed visibility check for lines based on the depth
image. In this method, visible lines are determined by storing the depth image together with
the normal vectors of surfaces. Line segments are extracted based on the direction of the normal
vector, which means line segments are detected where the direction of the normal vector changes.
This method is simple and delivers fast results, but projected lines are less accurate, the link to
the topology stored in the model is more complicated and the edges between surfaces which build
an angle close to 180◦ cannot be detected. Thus, in this study, a vector based visibility check for
lines is proposed and implemented.

The principle of visibility check for lines is presented in Fig. 4.1. First, every point (vertex)
of the 3D building model X is transformed to the 3D Euclidean coordinate system with the
origin in the projection center O and the Z -axis pointing in the viewing direction (optical axis
of the camera). This coordinate system will be called the camera coordinate system. This is
done by rotation with rotation matrix R and translation to O using Xcam = R(X − O) (see
3.4). Next, the faces of the 3D model, represented as polygons, are sorted from closest to the
farthest, taking the centroid of each polygon as reference. This sorting procedure is used to
simplify and speed up the algorithm. Polygons, which are arranged closer to the camera, are first
checked to see if they cover a particular line segment. Afterwards, all points are projected into the
image using x = K

[
I3 03,1

]
Xcam = KR

[
I3 −O

]
X = PX, (see 3.5 and 3.7) X =

[
XT 1

]T
and Xcam =

[
XT

cam 1
]T

and normalized using Euclidean normalization xe = Ne(x). In the
rest of this Section, the index e is omitted and all homogeneous coordinates are assumed to be
Euclideanly normalized.

Projected 3D points are also the end points of the projected edges of the 3D model, so projected
line segments are recovered. Every line segment defines a line. For all possible line pairs, m1∧m2,
intersection points x× are calculated as

x× = m1 ×m2. (4.2)

Then it is checked whether or not x× lies on both line segments corresponding to m1 and m2. In
this manner, intersection points of all line segments are found. These intersection points split line
segments into parts. The visibility for each of these parts is tested so that the partial occlusion
of lines can be handled. In order to do this, a point on the partial line segment is selected, say
middle point xm, and a ray from this point through the projection center Ocam is created. This
ray is described by a 3D line

L = Ocam ∧Xm (4.3)

joining the 3D points Ocam =
[
OT

cam 1
]T

=
[
0 0 0 1

]T
and Xm, where Xm =

[
xm

T 1
]T

is point xm in the camera coordinate system. The ray L intersects the line that it belongs to in
point Z and all other planes defined by faces of the 3D building model in Z′i (exceptions are planes
parallel to L), where i is indexing over the faces, starting from the closest face. If |OZ′i| < |OZ|
the line segment or the part of the line segment is occluded.
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Figure 4.1: Visibility check principle

4.1.3 Uncertainty of 3D Building Models

The uncertainty of the 3D building models is related to the inaccuracies of creation and gener-
alization. Many building models are created using aerial imagery where roof vertices and the
height to the ground are measured. Often, the roof overlap is not modeled, and the wall edges
are less accurate than the roof edges. Thus, in this thesis, different accuracies are assumed for
the roof vertices and for the wall/ground vertices in the model. This is presented graphically
as an error ellipses in Fig. 4.2. The Z-coordinate is assumed to be less accurate than the X-
and Y -coordinates. Fig. 4.2 shows that, in the case of oblique airborne images, not only the X-
and Y -components, but also the ”Z”-component of the uncertainty, has a strong influence on the
position error of the projected point.

Figure 4.2: Projection of model point uncertainty into the image in oblique geometry.
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The uncertainties of the parameters of the 3D line models (αi, θi, Xsi, Ysi) are not directly
known in most cases. Usually, the position accuracy of 3D building models created from aerial
imagery is given for building vertices; therefore, the uncertainty of model edges is treated as a
consequence of the uncertainty of model vertices (Fig. 4.3) and is calculated using error propa-
gation law as described in (3.26). The line parameters of the 3D model edges (αi, θi, Xsi, Ysi)
are calculated from the model vertices X1i and X2i. From this calculation, the Jacobian is re-
trieved and used for error propagation. The uncertainty of αi, θi, Xsi and Ysi is calculated and
each model edge can be represented by a line Lmi as described in (3.48). This representation is
extended with the uncertainties of the line parameters as follows

Lmi : {αi, θi,Xsi,Ysi},ΣLiLi . (4.4)

The uncertainty of XSi and YSi depends on the coordinate system; therefore, all calculations
are carried out using the local coordinate system.

Model projections &
propagation of uncertainty

Set of TIR images

Contour extraction 
& line approximation

Matching

Uncertainty of 
image features

Uncertainty of the 
3D building model

Uncertain image lines 
assigned to uncertain lines 

of the projected model

Acquisition

Real world

Confidence region of a model edge
Confidence region of a image line

GPS/INS
pos.&orient.

Projected 3D building model
& ist uncertainty

Figure 4.3: Projection of model uncertainty into the image in oblique geometry.
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Figure 4.4: Assignment of correspondences: a) Principle of line-to-line assignment due to the model projec-
tion; b) Graphical representation of the confidence region for end points (transparent blue), projected model
edge (hatching), and its approximation with a rectangular buffer (grey); c) Assignment of line segments in
2D using buffer and angle approach. Symbol lmi is the symbol ith model line.

4.1.4 Model-to-Image Matching

In model-to-image matching, the correspondences between the model edges and the line segments
detected in the image are searched. Using these correspondences, the camera pose is re-calculated.
Once matched, the best fit between the projected 3D building model and the image is achieved.

Assignment of Correspondences using Buffer Approach

The assignment of corresponding lines is carried out in the 2D image space. The model lines
are projected into the image using coarse exterior orientation parameters obtained by direct
georeferencing. For each model edge, potentially corresponding image line segments are found.
In this study, an assignment based on relative position and orientation is applied. First, a buffer
notated as Si, which exists around every projected visible model line segment (projected model
edge), is calculated. The width of Si is given by 2∆d, where ∆d = 3σd and σd is the uncertainty
of the parameter d (the distance from 3.36) of the projected model edge. σd is calculated by
propagating the uncertainty of the camera position and the uncertainty of the model. For all
image line segments within the buffer, the angle difference ∆γij (Fig. 4.4) is calculated. All model
line segments for which ∆γij is smaller than a threshold ∆γmax are accepted as correspondences,
where ∆γmax = 3σγ and σγ is the uncertainty of the parameter γ (angle from 3.36) of the
projected model edge. The standard deviation σγ is calculated by propagating the uncertainty of
the camera position and the uncertainty of the model. Propagation of uncertainty is carried out
as described in Section 3.4.2. Formally, these conditions is written as follows:

lj ↔ lmi if {e1j , e2j} ⊆ Si and |∆γij | < ∆γmax, (4.5)

where
∆γij = γi − γj . (4.6)

Here, lmi denotes the ith model line, Si is the search space for the ith model edge (buffer around
lmi), lj denotes the jth image line segment, e1j and e2j are the end points of the jth image line
segment, γi is the γ-parameter of the representation given by (3.36) ith projected model edge,
and γj is the γ-parameter (3.36) for the jth image line segment.
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ba c d

Figure 4.5: Outlier detectors: a) pre-selected line-to-line correspondences for RANSAC; b) randomly se-
lected line-to-line correspondences for RANSAC; c) projected 3D building model after RANSAC and ad-
justment; d) principle of accumulator (arrows mean the movements of the projected 3D building model).
Color coding: green - projected 3D building model, purple - image features, blue dashed line - preliminary
line-to-line assignments, red dashed line - selected correspondences

Dealing with Outliers

These preliminary correspondences result in many outliers, even up to 80-90% [Iwaszczuk et al.,
2012b]; therefore, these correspondences are reduced using an outlier detector. To achieve this
goal, two methods, the RANSAC and the accumulator approach, are proposed, tested and com-
pared.The main ideas of both methods in this application are presented in Fig.4.5.

Eliminating wrong assignments using RANSAC: RANSAC calculates the solution based
on the minimal number of observations needed to solve the problem. This method is which is
useful for data with high outlier rates. The theoretical background was described in Section 3.4.1.

Assigning correspondences using the buffer and the angle threshold allows for the selection
of multiple image lines corresponding to one model line. This leads to many incorrect corre-
spondences, which have to be eliminated or reduced. For this purpose, a RANSAC variation is
implemented in this thesis. From the set of all hypothetical correspondences selected in the buffer
and angle approach, we randomly select three correspondences from different parts of the model
and calculate exterior orientation parameters without redundancy. We then check how many of
the remaining correspondences fit with the randomly estimated exterior orientation parameters.
This procedure is repeated k-times, and k is calculated as shown in (3.25). Here, 6 exterior ori-
entation parameters are searched, thus r = 6, which means that three line correspondences are
needed. The outlier rate ε is estimated as

ε = N −NMod, (4.7)

where N is the number of hypothetical correspondences selected by the assignment algorithm and
NMod is the number of model lines which have at least one assigned image line. The RANSAC
algorithm results in new exterior orientation parameters and in a set of correspondences, which
are assumed to be correct. These data are taken as the input for the adjustment procedure
described in Section 4.1.4.

Eliminating wrong assignments using accumulators: Clustering is a robust estimation
method which gives reliable results even for applications with high outlier rates. The main idea
of this commonly used method is described in Section 3.4.1.

Assuming the uncertainty of a few meters in the camera position and a few degrees in the
camera orientation, the mismatch between the projected linear model structures and the structure
in the image can be simplified to a 2D transformation. The error of the camera position and the
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orientation results mostly in a 2D translation of the projected model, which can also result in a
small rotation. To find the correct match between the projected 3D model and the image, a set
of possible translations of the projected model is tested and the accumulator is filled, searching
for the most likely position of the model in the image. The same process is repeated by rotating
the projected 3D model using a small range of angles. This step results in a three dimensional
accumulator filled with the number of correspondences assigned to every cell of the accumulator
for every position and 2D rotation of the projected 3D model. Then, the maximum number of
correspondences in the accumulator space are found and the assigned line-to-line correspondence
are used to calculate the camera pose, as described in Section 4.1.4.

Optimal Pose Estimation

Using the selected correspondences, the camera pose is re-calculated to achieve a better fit between
the projected model and the image features. Camera pose estimation is a calculation of six exterior
orientation parameters β̂ = {X̂0, Ŷ0, Ẑ0, ω̂, φ̂, κ̂}. These parameters can be estimated using line
correspondences as observations. Fig. 4.4a shows the relation between the corresponding lines.
The projected model edge has clearly defined endpoints that correspond to the model vertices:
X1i ↔ x1i and X2i ↔ x2i, where the symbol ↔ indicates the correspondence relation.

The extracted edge in the image usually does not match the real edge because of the noise in
the image and the edge detection techniques. Typically, an extracted edge does not have the same
length as the corresponding real edge, so the building vertices do not correspond to the end points
of the extracted edges X1i = e1j and X2i = e2j. To handle this problem, the correspondence
based on the linear features is used. Two relations can be formulated:

1. Co-planarity of Lmi and lj ,

2. Co-planarity of X1i, X2i and lj .

Based on one of these relations, the optimal pose estimation can be solved in the Euclidean
space or in the projective space.

Estimation in Euclidean space: For pose estimation in the Euclidean space, the first relation
is used: co-planarity of Lmi and lj . The perspective projection maps the 3D line parameters
defined in (3.47) into the image. It maps a line in the 3D object space to a line (or in some
exceptional cases to a point) in the image space. A line in the image space can be represented
using (3.36).

For the perspective projection of points, the colinearity equations are used (3.1 and 3.2).
These equations have been reformulated in Schenk [2004] and Meierhold et al. [2008] so that they
can be applied for 2D line representation as shown in 3.39). In this thesis, further reformulation
is conducted so that the collinearity equations apply for the 2D line representation from (3.36).
Accordingly, the mapping function becomes

f :
{
γj = f1 (X0,Y0,Z0,ω,φ,κ,αi, θi,Xsi,Ysi)
dj = f2 (X0,Y0,Z0,ω,φ,κ,αi, θi,Xsi,Ysi, ck,x0, y0) (4.8)

where ck is the camera constant and x0,y0 are the image coordinates of the principal point. Hence,
the following functional model is defined by

γj + v̂γj = f1
(
X̂0, Ŷ0, Ẑ0, ω̂, φ̂, κ̂,αi, θi,Xsi,Ysi

)
, (4.9)
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dj + v̂dj = f2
(
X̂0, Ŷ0, Ẑ0, ω̂, φ̂, κ̂,αi, θi,Xsi,Ysi, ck,x0, y0

)
, (4.10)

where
β̂1 = [X̂0, Ŷ0, Ẑ0, ω̂, φ̂, κ̂]T (4.11)

is the vector of unknown parameters and

y1 = [γ,d]T (4.12)

is the observation vector. After the linearization of the function f , a Jacobian matrix

A1 = ∂f

∂β1
(4.13)

is derived and the unknown parameters are calculated as

β1 = (A1
TA1)−1A1

Ty1. (4.14)

In order to introduce the uncertainty of both, the model and the image features, this functional
model is extended with a stochastic model. The uncertainty of the 3D building models can be
taken into account by extending the functional model with equations for the model line parameters
as pseudo-observations y2 = [α1, ...,αi, θi,Xsi,Ysi, ...,Ysn]T such that

αi + v̂αi = f3(α̂i) = α̂i, (4.15)

θi + v̂θi = f4(θ̂i) = θ̂i, (4.16)
Xsi + v̂Xsi = f5(X̂si) = X̂si, (4.17)
Ysi + v̂Ysi = f6(Ŷsi) = Ŷsi. (4.18)

The vector of unknowns has also to be extended with the model line parameters. Accordingly,
the Jacobian matrix

A =
[
A1 0
0 A2

]
(4.19)

is extended with 4n observations and 4n unknowns, where n denotes the number of correspon-
dences and

A2 =



∂f3−1
∂α1

· · · · · · ∂f3−1
∂Ysn... ∂f4−1

∂θ1

...
. . .

... ∂f5−n

∂XSn

...
∂f6−n

∂α1
· · · · · · ∂f6−n

∂Ysn


=


1 0

. . .
0 1

 . (4.20)

This system of equations is solved using the Gauss-Markov model (Section 3.4.1) and the vector
of unknowns

β̂ = [X̂0, Ŷ0, Ẑ0, ω̂, φ̂, κ̂, α̂1, ..., α̂i, θ̂i, X̂si, Ŷsi, ..., Ŷsn]T (4.21)
is estimated using

β̂ = (ATPA)−1ATPy, (4.22)
where P is the weight matrix containing the predicted uncertainty of observations and pseudo-
observations

P =
[
Σ−1

y1y1
0

0T Σ−1
y2y2

]
. (4.23)

Here, Σy1y1 is the covariance matrix for the image line parameters [γ1, d1, ..., γi, di, ..., γn, dn]T
and is usually derived from feature extraction as residual error of the line fitting. Σy2y2 is the
covariance matrix of the line parameters [α1, ...,αi, θi,Xsi,Ysi, ...,Ysn]T of the 3D building model
derived by error propagation as described in Section 4.1.3.
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Estimation in projective space: Estimation of the exterior orientation parameters in the
projective space is formulated using the co-planarity of lj , X1i and X2i. The co-planarity of lj , X1i
and X2i is expressed as incidence of the line lj and the projected points represented as x ′1i and
x ′2i. The projected points x ′1i : x′1i = PX1i and x ′2i : x′2i = PX2i, where P is the projection
matrix. The incidence conditions lTj x′1i = 0 and lTj x′2i = 0 are written as

lTj PX1i = 0, (4.24)

lTj PX2i = 0. (4.25)

These two equations are directly adapted in the Gauss-Helmert model (Section 3.4.1) as conditions

g1(β̂, ŷ) = lTj PX1i, (4.26)

g2(β̂, ŷ) = lTj PX2i (4.27)

for the observations and parameters.

The uncertainty of the image features and the 3D building model can also be taken into
account in the projective space. The covariance matrix for a 3D point X represented in homoge-
neous coordinates X can be directly derived from the cavariance matrix ΣXX for the Euclidean
representation X of this point as

ΣXX =
[
ΣXX 0
0T 1

]
. (4.28)

However, due to redundancy in the homogeneous representation, the covariance matrix ΣXX is
singular [Förstner, 2004], which leads to restrictions in the optimization. To solve this problem,
all entities have to be spherically normalized [Kanatani, 1996], so that lsj = Ns(lj)∗, Xs

1i = Ns(X1i)
and Ys

1i = Ns(Y1i). In the rest of this section, the index s is omitted, assuming the homogeneous
coordinates are spherically normalized. This normalization has to also hold during the estimation
as well, so the constraints

c1(ŷ) = ‖lj‖ − 1, (4.29)

c2(ŷ) = ‖X1i‖ − 1, (4.30)

c3(ŷ) = ‖X2i‖ − 1 (4.31)

for the observations are needed.

To find the optimal solution for β̂ = [X̂0, Ŷ0, Ẑ0, ω̂, φ̂, κ̂], the optimization method for homo-
geneous entities presented in Meidow et al. [2009a] and Meidow et al. [2009b] is adapted for this
functional model. The Lagrange function

L = 1
2 v̂

TΣ−1
yy v̂+λT

1 g1(β̂, y+v̂)+λT
2 g2(β̂, y+v̂)+νT

1 c1(y+v̂)+νT
2 c2(y+v̂)+νT

3 c3(y+v̂) (4.32)

is minimized, where λ and ν are the Lagrangian vectors. In contrast to Meidow et al. [2009a]
and Meidow et al. [2009b], here the restriction for the estimated parameters h1(β̂) = 0 is not
needed, because the estimated parameters are defined directly as exterior orientation parameters
X0, Y0, Z0, ω, φ, κ. The observation vector for each pair of corresponding lines is written as
yij = [lj , X1i, X2i]T, where l = [a, b, c]T is the homogeneous representation for the image line
segment and X1i, X2i is the homogeneous representation of the vertices of the corresponding 3D
building edge. The covariance matrix Σll is assumed to be known as the result of the line fitting

∗The covariance matrix Σll calculated as shown in (3.46) is not singular but l is also spherically normalized in
order to avoid ambiguity of the homogeneous representation.



4.1. Co-registration with a Single Image 51

or as the result of error propagation knowing the covariance matrices of the end points of the
detected line segment (see 3.46).

The solution for the unknown parameters fulfilling (4.32) is calculated in a iterative manner,
similar to what is described by Meidow et al. [2009b]. For all conditions, the Jacobians are
calculated at the approximate values of β as

A =

∂g1(β,y)
∂β

∂g2(β,y)
∂β

 , (4.33)

B =

∂g1(β,y)
∂y 0

0 ∂g2(β,y)
∂y

 , (4.34)

C =


∂c1(y)
∂y 0 0
0 ∂c1(y)

∂y 0
0 0 ∂c1(y)

∂y

 , (4.35)

and used for normal equation

AT
(
BΣllB

T
)−1

A∆̂β = AT
(
BΣllB

T
)
a, (4.36)

where
a = BCT

(
CCT

)−1 (
C
(
y− y(τ)

)
− cτ

)
−B

(
y− y(τ)

)
− gτ . (4.37)

The index τ denotes the current iteration. Then the residuals are computed as

v(τ) = −ΣllB
Tλ−CT

(
CCT

)−1 (
C
(
y− y(τ)

)
− cø

)
. (4.38)

with Lagrangians
λ =

(
BΣllB

T
)−1 (

A∆̂β − a
)

. (4.39)

Conditioning the coordinates: Switching from the Euclidean to the homogeneous represen-
tation for point x in 2D or X in 3D is usually effected by adding 1 as an additional coordinate
(homogeneous part). Hence, for a 2D point in Euclidean space x = [u, v]T, the equivalent homoge-
neous representation is x = [u, v, 1]T, and for a 3D point in Euclidean space X = [U ,V ,W ]T, the
equivalent homogeneous representation is X = [U ,V ,W , 1]T. In many photogrammetric applica-
tions, particularly in aerial photogrammetry, the points are given in geodetic coordinate systems
(e.g., Gauss-Krüger, UTM), where the values for U and V is in the order of 106. Computations
with such inconsistent numbers can cause the calculations to be numerically instable. To solve this
problem, the homogeneous entities should be conditioned. Similar to the conditioning proposed
by Heuel [2002], the entities are conditioned prior to the estimation by checking the condition

maxhE = maxi
( ‖xhi

‖
‖xEi‖

)
≥ fmin = 0.1, (4.40)

where xhi
is the homogeneous and xEi the Euclidean part of a homogeneous entity xi (see point

representation from 3.31). If maxhE < fmin, the conditioning factor is calculated as

f = maxh0 · fmin. (4.41)
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If the Euclidean part xE is much larger than the homogeneous part xh, then f is calculated as
shown in (4.41) can be smaller than the machine accuracy εh. Hence, if f < εh then f should be
calculated as [Heuel, 2002]

f = fmin

maxi(‖xEi‖)
. (4.42)

Next, each entity is conditioned using matrices

W x(f ) =

[
f I2 0
0T 1

]
(4.43)

for the 2D points,

W l(f ) =

[
I2 0
0T f

]
(4.44)

for the 2D lines and
WX(f ) =

[
f I3 0
0T 1

]
, (4.45)

so that the conditioned coordinates xc, lc and Xc are calculated as

xc = W x(fim)x, (4.46)

lc = W l(fim)l (4.47)

and
Xc = WX(fmod)X, (4.48)

where fim is the conditioning factor for the 2D image entities and fmod is the conditioning factor
for the 3D entities.

Conditioning entities causes a change in the transformation matrix. In this study, the trans-
formation matrix is the projection matrix P, which can be reconditioned using

P = W (fim)
−1PcW (fmod). (4.49)

4.2 Coregistration with Image Sequences

Most VIS cameras, as well as the cameras operating in TIR domain, are able to capture image
sequence with a relatively high frame rate. The frame rate of 20-25 frames per second is available in
low and mid cost TIR cameras. Such frame frequency enables acquisition with a very large overlap
between the images. Accordingly, the position shift in the image space from frame to frame is a
few pixels for most objects. The viewing angle does not change between the frames significantly,
so if the correct match is found in one frame, it is relatively easy to find correspondences in the
next frame and calculate camera pose for this frame.

In an image sequence with a very large overlap between the frames, the whole process of
model-to-image matching does not have to be carried out for all frames. In order to reduce
computational effort, key-frames are used (Section 4.2.1) and selected lines are tracked from
frame to frame (Section 4.2.2).

The general idea of the coregistration process is presented in Fig. 4.6. First, the current frame
fi, including its initial exterior orientation parameters, is selected, and edge detection in the image
is carried out. These edges are used for line segment approximation, which results in a set of
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Figure 4.6: Algorithm for model-to-image matching using a video sequence and tracking of line segments.
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image line segments Li = {li,j , j ∈ {1, ..., j, ...,J}} in ith frame. The edges of the 3D building
model are contained in a set Lm = {lmn , n ∈ {1, ...,n, ...,N}}. These edges are projected into the
image and visibility is checked, which results in a set of 2D line segments in the image space.

Next, the decision level begins. Here, it is checked if the frame fi is a key-frame or not. This
decision stage is described in Section 4.2.1. Afterwards, depending on the result of the decision
procedure, one or two of three following procedures are carried out:

• Matching for frame fi, which is a key-frames (Section 4.2.1),

• Simple matching for frame fi, which is not a key-frame (Section 4.2.1),

• Tracking for frame fi, with good overlap with previous frame fi−1(Section 4.2.2).

4.2.1 Key-Frame Solution

The main goals of the key-frame solution is to reduce computational effort and to ensure the
reliability of the calculated camera pose for each frame. A key-frame is a frame in which the
image-to-model matching and pose estimation are carried out as described in Section 4.1. In
a key-frame, the chosen correspondences are selected independently of the previous frame. In
general, the key-frames can be:

• pre-defined or

• dynamically selected during the process.

In order to initiate the process, the first frame fi, i = 1 is always a key-frame (see Fig. 4.6).
If the key-frames are pre-defined, they appear in certain intervals. The interval size should be
adjusted to the overlap between the frames. For image sequences with a very high overlap the
interval, can be higher than for frames with smaller overlap. If the overlap is not constant and
not enough reliable correspondences with the model edges can be found, a dynamic selection of
key-frames is applied.

Dynamic selection of key-frames is based on the current status of the reliability of matching
and tracking. This reliability is the result of two main conditions:

• sufficient overlap between the frames fi and fi−1,

• sufficient reliability of the assignment in fi−1.

In a video sequence, the sufficient overlap between frames fi and fi−1 is given in most cases.
However, in some cases - if the camera is switched off for some time for example - the overlap can
be too small to reliably track line segments from frame to frame. The reliability of the assignments
depends on the number of selected correspondences and how much we believe that this assignment
is correct. While the number of correspondences is simple to measure, the correctness of the
assignment is more difficult to express.

As shown in Fig. 4.6 (Key-frame matching section), if the current frame fi is a key-frame, for
each line segment from Lm, corresponding line segments from Li are assigned. This assignment
is done with the full matching procedure, including the elimination of wrong assignments and
estimation. This procedure results in:
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• a set of line segments L′i =
{
l′i,k, k ∈ {1, ..., k, ...,K}

}
in the frame fi, such that L′i ⊂ Li,

which are assigned to the subset of projected model edges Lm,

• a set of line correspondences C′i = {ci,k = {n, j} , k ∈ {1, ..., k, ...,K}}

• new exterior orientation parameters for current frame fi

As shown in Fig. 4.6 (Simple matching section), if the current frame fi is not a key-frame,
simple matching is carried out. In this procedure, the correspondences are selected based on
statistical tests and the estimated displacement Di−1 = {di−1n , n ∈ {1, ...,n, ...,N}} using

mean({di−11 , ..., di−1n , ..., di−1N }). (4.50)

It results in:

• a set of line segments L′i =
{
l′i,k, k ∈ {1, ..., k, ...,K}

}
in the frame fi, such that L′i ⊂ Li,

which are assigned to the subset of projected model edges Lm,

• a set of line correspondences C′i = {ci,k = {n, j} , k ∈ {1, ..., k, ...,K}}

In addition, if frame fi has a sufficient overlap with previous frame fi−1, tracking is carried
out (Fig. 4.6, Tracking section). If frame fi is a key frame, tracking is conducted for control;
otherwise, it is used to find corresponding line segments between frames fi and fi−1, as well as
calculate mean displacement (4.50).

4.2.2 Tracking Line Segments

Due to very small movements of the camera between the frames, line segments can be assumed
to be only shifted by a few pixels in the next frame. They can be tracked, therefore, using cross-
correlation (see 3.8). The cross-correlation method is suitable for tracking in this study because
of the nearly invariant scale and because of viewing angle between two the neighboring frames.
Accordingly, the appearance of the tracked line segment and its surrounding will stay almost
unchanged.

The tracking with key-frames strategy gives five main possibilities regarding the verification of
correspondences, matching, estimation, and connection between the frame. These five possibilities
are presented schematically in Fig. 4.7. In the first option (Fig. 4.7a) matching and verification
are carried out in key-frames only. After every matching, the camera pose is re-calculated for
one frame. In other frames, only the line segments in the image are tracked in order to enable
verification in the next key-frame. In the second option (Fig. 4.7b), the first case is extended with
simple matching and verification in non-key-frames. Estimation is done for single key-frames,
as seen in the first case in Fig. 4.7a. Conversely, the third option (Fig. 4.7c) calls for tracking,
simple matching, and verification of correspondences, as well as the estimation in normal frames.
The fourth option (Fig. 4.7d) makes it possible to connect the result of the matching in the
key-frames. After every key-frame, a bundle adjustment with pose estimation is carried out, in
which correspondences from previous key-frames are taken into account. This strategy can be also
extended with estimation for every frame (Fig. 4.7e) so that correspondences from all previous
frames are considered.

The weakness of the first option from Fig. 4.7a is that the tracking is based on cross correlation
only and no verification of correspondences in non-key-frames is carried out. This strategy can
be less reliable than the other options, since they allow the verification to be conducted in non-
key-frames. The first strategy, however, is not computationally expensive. The second and third
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strategies (Fig. 4.7b and c) also use simple matching and verification after non-key-frames, but
they do not apply bundle adjustment, which enables us to connect correspondences in all frames.
The fourth and fifth strategies (Fig. 4.7d and e) use all correspondences in the bundle adjustment,
but they can be computationally expensive, especially if conducted after every frame (Fig. 4.7e).
In this study, the second and third strategies (Fig. 4.7b and c) are taken into further consideration
because they are assumed to be reasonably balanced in terms of the reliability of the results and
the computation time.

In Fig. 4.6 in the Tracking section, the tracking procedure is presented in detail. The process
can be explained using three frames: fi−1, fi and fi+1, where fi is the current frame. In frame fi−1,
the subset L′i−1 ⊂ Li−1 was assigned to a subset of model edges in simple matching procedure
or in matching for key-frames. The set L′′i−1 =

{
l′′i−1,r, r ∈ {1, ..., r, ...,R}

}
is a set of image line

segments traced from frame fi−2 and it was assigned to the subset of model edges in frame fi−1.
In frame fi, correspondences Ci between detected image line segments Li and tracked image line
segments L′i−1 ∪ L′′i−1 are found, using cross-correlation technique. For each line segment from
L′i−1 ∪ L′′i−1 in frame fi−1, templates b′i−1,k ∈ B′i−1 or b′′i−1,r ∈ B′′i−1 are created and searched
in frame fi. This template is created as a few pixel buffer around the tracked line segment.
The search is performed using normalized cross correlation. The correlation peak is searched by
starting from the same position as in fi−1 and moving the template in all directions by few pixels.
If the velocity model is known, the movements of the template is adjusted to this model. The
position of the template at the correlation pick is assumed to also be the position of the tracked
line segment l′i−1,k ∈ L′i−1 or l′′i−1,r ∈ L′′i−1 from fi−1 in fi. From the correlation peak, the relative
displacements D′i−1 ∪ D′′i−1 are calculated.

Afterwards, image line segments from Li corresponding to lines segments from L′i−1∪L′′i−1 are
searched. This is done by projecting the line segments from L′i−1 ∪L′′i−1 into the frame fi, adding
the displacements D′i−1 ∪ D′′i−1, and using statistical tests to find incident line segments from Li.
This results in a set of tracked image line segments L′i−1 ∪L′′i−1 assigned to a subset of Li via the
correspondences C′′i .

Then, the correspondences C′′i from tacking are verified with correspondences C′i from the
regular matching procedure or from the simple matching procedure, depending on the frame
status (key-frame/normal frame). Tracked line segments from L′i−1 ∪ L′′i−1 that are not assigned
to any of the elements of Li in frame fi, become virtual correspondences for the model edges and
are collected in L′′i . This results in correspondences Ci = C′i ∪ C′′i . For each line segment from
L′i∪L′′i , templates b′i,k ∈ B′i or b′′i,r ∈ B′′i are created. These templates replace b′i−1,k and b′′i−1,r from
fi−1, also for line segments from virtual correspondences, in order to avoid influence of geometric
deformation. Templates b′i,k and b′′i,r are used in frame fi+1 to continue the tracking.

All results of the tracking are stored in the chronicle. The chronicle entries are used to verify
the correspondences and estimation. They document the process and can be retrieved throughout
the whole procedure.

4.2.3 Visibility Prediction for Tracking

When tracking, some projected model edges cannot be visible at all times in the sequence. The
information about model edge visibility in a particular frame is derived from the model and the
approximated camera position. Whether or not the model edge is seen signals the state of a
particular model edge in each frame. For each model edge, the following states are possible: alive
- sound (fully visible), alive - injured (partially occluded), occluded (fully occluded but within
the field of view), or dead (out of field of view). Each model edge can change its state if an event
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occurs. Such events may occur for each model edge among the image sequence. Tab. 4.1 presents
these events including the change of the state caused by each event.

Table 4.1: Possible events and states for tracked lines. Alive/sound suggest the edge is fully visible,
alive/injured suggests it is partially occluded)

Event Possible states before the event Possible states after the event

Birth ∅ Alive/sound
Alive/injured

Appearing Occluded Alive/sound
Alive/injured

Injury Alive/sound Alive/injured
Healing Alive/injured Alive/sound

Disappearing Alive/sound OccludedAlive/injured

Death
Alive/sound

DeadAlive/injured
Occluded

The first event that occurs for a model edge is birth. It is the first moment, when the model
edge is visible in the image. After birth, the model edge can have one of two states: alive/injured
or alive/sound. Alive/injured means that the edge appears only partially in the frame or is
partially occluded. This is the most common state directly after the birth of the edge. Rarely
does an entire edge appear at once. If it were to occur it would directly result in an alive/sound
state, which means the edge is fully visible edge. An alive/injured edge can become alive/sound
during the healing event. Vice versa, an alive/sound edge can become alive/injured, if it gets
partially occluded by an object or if part of the edge is not seen anymore in the current frame.
Such an event is called injury. If the edge gets completely occluded by an object, such an event
is called disappearing and it results in an occluded state. Disappearing can occur for alive/sound
or alive/injured edges. The opposite of a disappearing event is an appearing event. It happens
when an occluded edge becomes alive/sound or alive/injured. The last possible event is the death
of the edge. It happens if the whole edge is no longer seen in the current frame, which means it
is out of the field of view. Death can happen to an alive/sound, alive/injured, or occluded edge.

Defining the states of the model, makes it possible to know which edge’s corresponding image
line segments should be searched. Correspondences can be found only for alive edges. Injury
is the only state which can be expressed with level of injury, it means how much of the edge is
occluded. Highly injured edges are skipped when searching for correspondences.

4.3 Detection of Errors in the Observations

The inaccuracies in the model should result in large residuals in the estimation, which can be
used to identify these inaccuracies. For this purpose, an outlier detector using a statistical test
on corrections to the observations is implemented within the estimation. This is done by using a
weight matrix [Niemeier, 2008]

P̂ =
(
BΣllB

T
)−1

(4.51)

for computation of the weight coefficient matrix for the corrections to observations

Qv̂v̂ =
(
QBTP̂

(
I−A(ATP̂A)−1ATP̂

)
B
)
Q. (4.52)
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Then the vector of standardized corrections for the observations is calculated:

ψn = |vn|
σvn

(4.53)

where vn = yn − yn0. Statistical tests are used to identify the outliers using the critical value

εh = z1−α, (4.54)

which makes it possible to reject a hypothesis with the significance level α. If ψn > εh, then this
observation is considered an outlier.

Observations identified as outliers are excluded from the estimation and the link to the corre-
sponding model edges is stored. The procedure is repeated for every frame of the image sequence.
Model edges that are frequently identified as outliers are labeled as possible errors in the 3D
model.

Also, the reliability matrix R is calculated as

R = Qv̂v̂Q
−1
ll . (4.55)

The diagonal elements of the reliability matrix r = diag(R) represent the redundancy com-
ponents [Förstner, 1979] and the sum of these components is equal to the redundancy r of the
equation system, meaning tr (R) = r. The redundancy components allow us to measure how
strong the outlier is contained in the corresponding residual [Cothren, 2005].
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5 Texturing with Thermal Data

In Chapter 4, the images were co-registered with the 3D building model. In this chapter, the
process of texture mapping is continued, with the assumption that the camera pose is optimal with
respect to the match between model and image features. In Section 5.1, the model representation
in the context of texture mapping is discussed. Some typical geometric errors in the 3D building
models are discussed and a strategy to deal with such problems is sketched. In Section 5.2,
the approach applied for visibility check is briefly introduced, followed by a presentation of a
workflow and a quality measure for the best texture selection from multiple images (Section 5.3).
Afterwards, the method for local matching refinement is introduced (Section 5.4) and a strategy
for texture creation combined with binary labeling for the invisible parts of the faces is shown
(Section 5.5). Finally, the quality criteria used for evaluating of the texture mapping are defined
(Section 5.6).

Parts of this chapter have been published in Iwaszczuk & Stilla [2010b,a] and [Iwaszczuk et al.,
2015] .

5.1 Model Representation

The model representation is an important aspect for the texture extraction strategy. In some
formats, e.g. CityGML [Gröger et al., 2012], the buildings are stored as polyhedral objects. This
model representation makes it possible to store a building face as one geometric object and not as
a collection of triangles. The texture can also be stored as one image for each face. The existing
strategies for texturing triangulated 3D models, therefore, should be verified, and if necessary,
modified.

3D building models can be represented using Constructive Solid Geometry (CSG) or Boundary
Representation (B-rep). CSG is a method used for the 3D modeling of solids using solid primitives
and boolean operations, which enable the modeling of complex surface. In B-rep, the boundary
between the solid and non-solid is represented. As result, 3D models in this representation
are collections of connected polygons. Which representation, CSG or B-rep, is more convenient
depends on the application. For texturing, the B-rep is more practical because it is easier to
assign textures to the polygons than to volumes.

5.1.1 Errors in Model Geometry

Presently, plenty of reconstruction software that enables semi automatic or even fully auto-
matic generation of large datasets of 3D building models is available on the market [ESRI, 2015;
SketchUp, 2015; virtualcitySYSTEMS, 2015]. The majority of building reconstruction software
delivers B-rep models. During the reconstruction, however, CSG principles, including solid prim-
itives and boolean operations, are used for modeling. As such, 3D building models are meant for
visualization purposes only, thus the boolean operations are often not carried out correctly and
the reconstructed building models include several volume intrusions (Fig. 5.1). Fig. 5.1a shows
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Figure 5.1: Volume intrusion: a) Volume intrusion caused by incorrect modeling; b) building modeled
without intrusions.

a schematic example of volume intrusion. The complex structure of a building is modeled by
placing a narrow and higher primitive (blue) in a wider and lower primitive (green). This way of
modeling causes two main difficulties for texturing:

• The lower part of the higher primitive is invisible because it is inside another primitive.
Also, part of the top polygon of the lower building is permanently invisible because it is
inside of the higher primitive.

• Edges resulting from intrusion of two primitives are not explicitly included in the 3D model
and cannot be used for matching.

Fig. 5.1b shows an example of correct modeling without intrusions. This is achieved by stacking
two volumes.

Permanent invisibility: The permanent invisibility of some faces or their parts is challenging
for automatic texture extraction. If invisible faces or their parts are not labeled, the system will
try to find the texture for them. This can negatively affect the computation time. In addition,
invisible faces downgrade the completeness of the texturing in the evaluation because they count
as faces that could not be textured. To solve this issue, two approaches are possible:

• Invisible faces or their parts can be removed by 3D spatial queries. This strategy requires
complex 3D operation and changes the original geometry.

• The invisible parts can be marked in the textures. For this purpose, binary textures can be
created to permanently label the invisible parts (see Section 5.5). This can be done prior
to the texturing process.

Missing edges: Missing edges, resulting from the primitive intrusion, are a problem for line
base matching. Such edges are often detected in the image but cannot be correctly assigned to the
model edges, where they are not explicitly modeled. This reduces the number of observations that
can be used to calculate the optimal exterior orientation parameters. It also increases the risk of
false assignments in the matching process. This problem can be solved by changing the geometry
to the intrusion free B-rep (Fig. 5.1 b), or by computing the missing edges as intersections of 3D
polygons. This topic, however, is not treated in this thesis and is mentioned only for the sake of
completeness only.
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Further problems with 3D geometry: A common error in 3D modeling is the opposite
orientation of a normal vector for model surfaces. In computer graphics, the 3D geometry of a
polygon is typically defined by points in clock-wise order; therefore, the normal vector of thi face
is always directed to the observer. Storing 3D geometry in this way makes it possible to define
the exterior and the interior of the building. Moreover, it allows us to use a back-face culling
algorithm, which speeds up the visibility check. During the back-face culling, only the faces with
a normal vector directed to the sensor are taken into consideration for the visibility check.

Fig. 5.2 shows an example of a 3D building model created manually with a commercial software
and translated to the CityGML format. This model is affected by a few errors in 3D geometry. In
addition to the already mentioned primitive intrusion (Fig. 5.2a), the normal vectors of its faces
are randomly oriented (Fig. 5.2b), which hinders the identification of the interior, and exterior
as well as the back-face culling. In Fig. 5.2c, the highlighted area is modeled as one face, while
in reality, these are two independent walls that are not connected. This error is also the result
of modeling for visualization purposes only. Finally, Fig. 5.2d shows how the primitives are not
perfectly snapped. This error can result from inattentive modeling or numerical errors during the
translation between the formats. Examples of another dataset with similar errors are presented
in Fig. 5.3. Here, also, imperfect snapping causes small intrusions (Fig. 5.3a). Gaps between the
buildings (Fig. 5.3b) can be seen.

Figure 5.2: Examples of common modeling errors in 3D geometry of building models: a) intersecting
primitives - the roof of the middle part on the building intersects with the roofs of the sides of the building;
b) normal vectors are not correctly oriented; c) highlighted building surface is modeled as one face, while
in reality these are two independent walls that are not connected; d) primitives are not snapped
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Figure 5.3: Examples of errors in snapping: a) small intrusions; b) gaps between the buildings. This error
can be the result of inattentive modeling or numerical errors during translation between the formats.

5.1.2 Representation of Geometry in CityGML

Considering the model representation and storage in CityGML, a question arises: What is the best
way to model the geometry of complex building structures in a way best for texture mapping?
This can be discussed using a simple example of two neighboring buildings. In general, there
are nine possible ways to store the geometries of two neighboring buildings while considering the
invisible part of both buildings. These nine possibilities are presented in Fig. 5.4. These building
configurations are typical in city areas, as well as in residential districts, which are lined with
houses and garages.

Figure 5.4: Possibilities for storing the geometry of two neighboring buildings with a common wall part:
A) a building and an auxiliary building with a common wall part; B) the wall with the common part in the
auxiliary building is stored as one polygon; C) the wall with the common part in the auxiliary building is
stored as one polygon, where the common part is a hole; D) the wall with the common part in the auxiliary
building is stored as two polygons, one for the common part and other for the rest of the building; a) the
wall with the common part in the main building is stored as one polygon; b) the wall with the common
part in the main building is stored as one polygon, where the common part is a hole; c) the wall with the
common part in the main building is stored as two polygons, one for the common part and the other for
the rest of the building.

Fig. 5.4A illustrates an auxiliary building, e.g. a garage (red), that was built touching the
main building, e.g. a residential house (blue). According to Zlatanova et al. [2004], these buildings
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fulfill a topological 3D relation meet where two faces, one from the garage and one from the house,
partially occlude each other and have a common, invisible part. In a 3D building model, these
faces can be stored in few different ways. In general, for each of the concerned faces, we can
consider three cases:

• The face is stored as one polygon including the common part (in Fig. 5.4, column a for the
residential house and row B for the garage).

• The face is stored as one polygon and the common part as a whole (in Fig. 5.4, column b
for the residential house and row C for the garage).

• The face is stored as two polygons, the common part is a separate polygon (in Fig. 5.4, the
column c for the residential house and the row D for the garage).

By combining these 3×3 possibilities, we get 9 different ways to store this model with two
neighboring buildings (Fig. 5.4 B-a to D-c). In the order presented, it can be noticed that the
cases on the main diagonal (B-a,C-b,D-c) treat the faces of both buildings in the same way. In
case B-a, each face is represented by one polygon, including the common part. In this case, no
topological relations can be modeled and the common part can not be explicitly identified, but
the advantage of this representation is that removing one of these buildings does not require any
changes in the geometry in the rest of the model. In case C-b, both faces are represented by one
polygon with a removed common part. It suggests that the buildings are one entity and that
there is a connection (passage) between them. In this case, after removing one of the buildings,
a hole in another building occurs and the building has to be closed by changing the geometry of
this face. However, such way of modeling is optimal for texture mapping because only the visible
surface is included in the model geometry. In case D-c, each face is represented by two polygons
- one for the invisible, common part and other for the visible part. Hence, the common part is
stored using two polygons. Here, after removing one of the buildings, no change of geometry is
required; however, the face of the remaining building is split into two polygons.

Cases C-c and D-b also illustrate an important method for storing the geometry. Here, the
face of one building is represented by one polygon with a removed common part, while the face
of another building is represented by two polygons. The advantage of these solutions is that
the common geometry is stored only once. On the one hand, it reduces the size of the model
because of the lower number of polygons; on the other hand, to which building the common
polygon belongs to is not clear. To ensure that both buildings are closed, a link to the common
geometry can be created as presented in Fig. 5.5. CityGML offers a possibility to use so called
XLinks, to link a geometric element of one object. Fig. 5.6 shows how such common geometry
can be stored only once. It shows two overlapping polygons stored in CityGML before and after
their intersection. After the intersection, the common part is stored as part of one wall object
and linked with the second wall object using a XLinks. The linked polygon has to get negative
orientation to indicate that the lined geometry is oppositely directed. There are two possible
outcomes. First, the common part can belong to the residential (main) building (Fig. 5.5 a).
Second, this part can belong to the auxiliary building (Fig. 5.5 b). For texture mapping, it does
not matter which solution is selected, but it can be important from the hierarchical point of
view. The residential building can be seen as superior to the auxiliary building in the hierarchy.
Accordingly, the common part should belong to the residential building. It can also be reflected in
modeling using Building and BuildingPart [Gröger et al., 2012]. Löwner et al. [2012] recommend
storing such surfaces as ClosureSurface.

In cases B-b and C-a in Fig. 5.4, the face of one building is represented by one polygon with
a removed common part, and the face of another building is represented by one polygon that
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Figure 5.5: Storing geometry of neighboring building using XLinks: a) common part belongs to the main
building; b) common part belongs to the auxiliary building.

includes the common part. This representation is inconsistent because it represents the building
differently without any benefit and it is not favorable for any application. Similarly, cases B-c
and D-a, where the face of one building is represented by two polygons, and the face of another
building is represented by one polygon that includes the common part is also not advantageous
in any task.

Fig. 5.6 presents the in which the common surface is stored in the CityGML code. Its geometry
is stored in one building as a SurfaceMember and it is assigned to the second building using XLink
and the ID from the first building. For texturing, this common geometry is excluded.

Figure 5.6: Geometry of neighboring building stored using XLinks in CityGML code
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5.2 Visibility Check for Texture Extraction

Visibility check for texture extraction determines which pixels of the texture can be seen in a
particular frame. This information is necessary to correctly extract parts of the image as textures
and to determine the quality of a texture extracted from the particular frame. Unlike visibility
check, when checking for lines (Section 4.1.2), a pixel-based approach is needed. For this purpose,
the commonly used ray tracing technique is adapted. For each texture, each pixel is defined as
a 3D point. This procedure also requires transforming the 3D model to the camera coordinate
system and sorting the face,s as described in Section 4.1.2. Then in a similar way to (4.3), a ray
L from the pixel to the projection center Ocam is created. Afterwards, on the way between Ocam
and the object, L is intersected with all intermediate planes and investigated if the intersection
point lies within the polygon. If so, the pixel is labeled as occluded. If no occlusion is detected,
the pixel is labeled as visible. This algorithm is a variation of the ray tracing algorithm.

5.3 Best Texture Selection based on Acquisition Geometry

Best texture selection is needed when one face appears in multiple images. This is particularly
important when working with image sequences taken at a high frame rate, higher than human
perception can process (about 10-12 frames per second). In such cases, each face can be observed
multiple times; therefore, for each of these of these occurrences, a quality measure has to be
calculated and the best texture has to be selected.

For this purpose, a quality measure is used. The quality measure is defined as a function of
occlusion; the angles between the normal of the investigated face and direction to the projection
center, as well as its distance to the projection center.

The best texture selection procedure is schematically presented in Fig. 5.7. Starting from
the first frame, each face pj is projected into frame fi and check if this face pj was projected
within fi. If this condition is fulfilled, the visibility is checked (Section 5.2) and the occlusion
rate oij is calculated. If pj is visible in fi, the quality qij for pj in fi is computed (Section 5.6.1).
If qij > qcurrent,j , where qcurrent,j is the quality of the current texture tcurrent,j for fi, texture
tcurrent,j is replaced by ti,j . At the same time, the resolution map mij is created and the current
resolution map mcurrrent,j is replaced by mij . This procedure is repeated for all I frames and J

faces. The replacement of the texture and of the resolution map does not have to be calculated
for each frame. Only the frame ID and image coordinates have to be stored. The final texture
can be calculated after checking the whole sequence.

Effectively, this algorithm does not have to output the ready texture, only the reference for
each face to the frame or frames where this face has the best quality. This procedure, therefore,
can be done prior to the texture extraction or even prior to the data acquisition if the planned
flying trajectory is known.

5.4 Refinement of Matching - Local Fitting

To get the best quality texture and reduce the influence of the errors in the building model,
especially unmodeled roof overhang, a local fitting is implemented. Using the estimated exte-
rior orientation of the camera (Section 4.1.4), the projected 3D building model is placed on the
adjusted position in the image. To refine the fit, a local matching is applied for each edge in-
dependently. For this purpose, the gradient image is calculated and the 3D building model is
projected into the gradient image. Around each edge, a buffer, including the pixels of the edge
surrounding, is created. The size of the buffer has to be adjusted to the allowed movements,
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which corresponds to the expected inaccuracy of the edge position in the image. The gradient
values within the buffer are used to find the edge with a subpixel accuracy (Fig. 5.8). Instead of
taking all pixels of the buffer, the points lying on the perpendicular lines at equal intervals are
picked in order to reduce the computation time. Then, the least square method is applied to fit
the line. The pixel coordinates of the picked points are set as observations and the gradient values
are used as weights. Very small gradients are considered as noise, filtered using thresholding and
set to the value 0 so that they do not influence the result of least square fitting.

Figure 5.8: Local refinement of the matching between the image and model edge using gradient values

5.5 Texture Extraction

In this thesis, a texture is defined as a rectangular image assigned to a polygon that depicts its
appearance in a certain domain, e.g., visible (VIS) or thermal infrared (TIR). For non-rectangular
textures, a bounding box around this face is created to achieve rectangular representation. These
elementary textures can be stored as separate images or can be packed in a texture atlas [Früh
et al., 2004; Kaul & Bohn, 2008], which is a patchwork of the elementary textures defined for each
face. If the textures are extracted from image sequences and the best quality textures are selected,
it is very likely that the elementary textures originate from different frames and , perhaps, have
a different viewing angle. Often, if the textures are used to visually enrich 3D city models, the
same texture is assigned to more than one face of similar buildings.

In this thesis, each elementary texture is stored separately; however, a texture atlas can be
introduced in the future. Using the same texture for more faces based on building similarity is
not possible because the textures are a source of information and are used for further processing
and feature extraction. Besides the high geometric accuracy achieved by the local fitting (Section
5.4), attention is particularly payed to the occlusion. Two types of occlusion are defined:

• Permanent occlusion, resulting from the representation of the geometry (Section 5.1).

• Occlusion in each frame, caused by the objects placed between the camera and the inspected
face (Section 5.2).

For each face, these two types of binary textures are generated. Permanent occlusion is
determined before texturing, based on the geometry of the 3D model only. For this purpose, a
pairwise checking is carried out if two faces are in the same plane. Then, one face is projected
onto the second and vice versa, to label the occluded pixels.

Considering the errors in the geometry related to bad snapping (e.g. Fig. 5.3), a tolerance can
be introduced while searching the touching faces. Faces lying in almost the same plane (angle
between planes α < αmax or the distance between planes d < dmax) are also taken into account.
For determining the intersection, a mean plane is created and the faces are projected on this plane
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orthogonally. The occlusion in each frame is calculated based on the model geometry, the camera
position, and the visibility check algorithm (Section 5.2).

The idea of the binary textures can be easily extended to label the various properties of the
texture. Extrinsic objects, such as trees and cars, can cause occlusions, and as a result, pixels
from the neighboring pixels for the visual purposes are interpolated. In this way, the textures can
become a valuable source of information. Such multi-layer Informative Textures should be always
created at the beginning of the texturing for each face.

Fig. 5.9 shows a workflow for creating a texture. First, a bounding box around the face is
created and the permanent occlusion is labeled in the appropriate binary texture. This bounding
box is then projected into the image and visibility is checked (a perfect match between the model
and the image is assumed to simplify the presentation). After checking visibility, pixels occluded
in the current frame are stored in another binary texture. Going from frame to frame, the binary
texture for the occlusion in the binary texture with current occlusion is successively overwritten,
while the binary texture with the permanent occlusion stays unmodified. This procedure results
in the creation of three textures: two binary textures, including the occlusions, and one TIR
texture. The occluded parts are blanked out in the TIR texture.

3D model

“bounding box” 
and pixels in 3D

yes

no

“bounding box” 
and pixels in 3Dpermanent occlusion

occlusion in frame

texture

projection

occluded?

visibility 
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calculation of
grey values

Figure 5.9: A workflow for texture extraction in one image

5.6 Quality Assessment of Extracted Textures

This section provides details on quality measures that are developed to assess the quality of
texturing. Two groups of qualities are distinguished. First, geometric qualities, such as resolution
and occlusion, are defined (Section 5.6.1). These qualities assess the geometric properties of the
texture and give advice about the amount of information that can be extracted from the texture,
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meaning it defines its level of details. Second, a matching quality is introduced (Section 5.6.2).
This quality makes it possible to assess how well the extracted textures fit to the 3D model.

5.6.1 Geometric Quality Measures

The geometric qualities are qualities derived from the acquisition geometry, including the camera
and object pose, as well as the inner orientation parameters of the camera. Therefore, these
qualities can be used to assess the expected quality of textures in the planning stage or to assess
the achieved textures after the flight.

Resolution

The texture’s level of detail depends on its resolution. The resolution of 3D objects seen on the
image plane is usually not unique along their surfaces. Unique resolution is possible only for
planar objects that are parallel to the image plane. In nadir view photogrammetry, the ground
resolution of the images is usually expressed using a ground sample distance (GDS), which is the
distance between the pixel centers on the ground. It is calculated using the intercept theorem:

ck
s′

= H

s
, (5.1)

where s is a distance on the ground, s′ is its image in the sensor, ck is the camera constant, and
H is the flight height (see Fig. 5.10a). If s′ = 1pix, then s is the ground sampling distance. Here,
it is assumed that the ground is parallel to the sensor; therefore, all pixels have the same ground
resolution. In oblique view, the GSD varies within the image significantly; it is smaller in the
foreground and bigger in the background (Fig. 5.10b). The GSD does not give any information
about the resolution of the 3D objects, such as façade or roofs, which is the most interesting
aspect for texture mapping. Therefore, in this thesis, a local resolution for every object is defined
as the length of a line segment placed on this object, which is depicted within one pixel. This line
segment is parallel to one of the axes of the image coordinate system. Accordingly, two resolutions
for one pixel can be calculated: in x- and in y-direction of the camera coordinate system.

An oblique view is equivalent to a nadir view of a sloped surface as shown in Fig. 5.10:
Fig. 5.10b is equivalent to Fig. 5.10c.

Figure 5.10: Geometry of nadir and oblique view: a) nadir view; b) oblique view ; c) nadir view of a sloped
surface, which is equivalent to an oblique view of a flat surface.

This representation is suitable not only for the ground surfaces but also for other surfaces,
e.g. façades or roofs. In this representation, a planar surface can be defined for each pixel. This
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surface is parallel to the sensor and intersects with the photographed surface in the intersection
point of the ray from the middle of the pixel with the photographed surface (Fig. 5.11a).

Figure 5.11: Detailed geometry for calculations of the resolution

If the distance Di, which is the distance from the projection center to the photographed surface
is known, the resolution of this parallel surface can be easily calculated using (5.1) by replacing
H with Di, which results in

ck
s′

= Di

si
=⇒ si = Dis

′

ck
. (5.2)

Here, the index i denotes the pixel; however, in many cases, the photographed object is rotated
by an angle

γi = arccos(
−→−z ◦ −→n
‖−→z ‖‖−→n ‖

), (5.3)

where −→n is the normal vector of the photographed surface and −→z = [0, 0, 1]. For every γi > 0,
the length of the line segment on the photographed object is li > si. The ray from middle of
the pixel does not intersect the line segment on the photographed object in the middle of this
segment, but instead divides this segment into two line segments with the lengths li−1 and li−2
respectively (Fig. 5.11b). To calculate li, the triangles ∆A1B1P and ∆A2B2P should be solved.
Using the Law of Sines, li−1 is calculated from ∆A1B1P

li−1 = si sin(αi−1)
2 sin(βi−1) , (5.4)

where αi−1 = 180◦− (90◦−φi)− δi−1 = 90◦+φi− δi−1 and βi−1 = 180◦− γi−αi−1 = 90◦−φi +
δi−1 − γi. Similarly, li−2 is calculated from ∆A2B2P

li−2 = si sin(αi−2)
2 sin(βi−2) . (5.5)

where αi−2 = 90◦ + φi0δi−2 and βi−2 = 90◦ − φi − δi−2 − γi. Here δi−1 = φi − φi−1 and
δi−2 = φi−2 − φi. The length li is calculated as the sum of li−1 and li−2:

li = li−1 + li−2 = si
2

(sinαi−1
sin βi−1

+ sinαi−2
sin βi−2

)
. (5.6)
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φi is calculated by solving the triangle ∆OO′P ′ as follows

tanφi = ri
ck

=⇒ φi = arctan
(
ri
ck

)
. (5.7)

Analogously,

φi−1 = arctan
(
ri−1
ck

)
(5.8)

and
φi−2 = arctan

(
ri−2
ck

)
. (5.9)

If s′ = 1 [pix], then δi−1 and δi−2 are very small angles. If we assume that δi−1 ≈ δi−2 ≈ 0, it
implies that αi−1 ≈ αi−2 ≈ 90◦ + φi = αi and βi−1 ≈ βi−2 ≈ 90◦ − φi − γ = βi. Then li can be
simplified to

li = si
sinαi
sin βi

= Dis
′ sinαi

ck sin βi
. (5.10)

Another simplification is presented in Fig. 5.12. Here li is length of the line segment, which
has to be orthogonally projected onto the surface parallel to the sensor to fill one pixel

li = si
cos γ = Dis

′

ck cos γ . (5.11)

Figure 5.12: Simplified geometry for calculations of the resolution

Occlusion

Occlusion of a texture is a quality measure which is calculated based on acquisition geometry
when considering self occlusion, or when considering extrinsic occlusion from additional data.
This quality gives information about which percentage of the texture can be seen in a frame.
Knowing the depth image of the scene, the occlusion factor oij is defined as

oij = nvis
N

, (5.12)

where nvis is the number of visible pixels in face, j in frame i and N is the number of pixels
occupied by face j. The quality oij ∈ [0, 1] takes value oij = 1 for fully visible textures.
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General Geometric Quality

For best texture selection, which was described in Section 5.3, one significant quality measure is
needed. Calculating the local pixel is computationally expensive; therefore, a simplified quality
that takes resolution and occlusion into account is needed.

The more pixels in the texture are occluded, the lower the quality of the image. However, it is
possible that a strongly occluded texture has a significantly higher resolution than the resolution
of a completely visible texture. On one hand, if we want to extract a texture with the highest
resolution, we should always select the parts of the texture with the highest resolution and combine
them into one texture. On the other hand, we should keep in mind that every combination can
cause small errors on the seam lines. Accordingly, an optimal balance between the occlusion and
the resolution should be found using a quality measure

qij = a1oij + a2dij + a3 cos γxij cos γyij
a1 + a2 + a3

, (5.13)

where a1 + a2 + a3 6= 0. qij is computed for every face j in every frame i. γx, γy denote angles
between the normal of a model polygon and the viewing angle of the camera, a1, a2, a3 are
coefficients, oij is the occlusion factor, and dij denotes distance factor calculated by

dij = Dmax −Dij

Dmax −Dmin
. (5.14)

Here, Dmax denotes maximum possible distance from the projection center to model points, Dmin

denotes minimum possible distance from the projection center to model points, and Dij denotes
the distance from the projection center to the center of a model polygon. For each face, a texture
with the best quality qij is selected for texture mapping. In cases when a partially occluded face
is selected for texturing, the missing part of it is searched in other frames, again considering their
quality.

5.6.2 Matching Quality

Matching quality is introduced to measure how precisely the model was projected onto the image
and how accurate the model is itself. Inaccuracies in data acquisition, the creation process, or
the generalization can result in a faulty model. The matching quality of a texture tij assigned to
face pj in frame fi is calculated using

νtij =

√√√√√√√
Kj∑
k=1

(
Aijk
lijkIM

)2

Kj
, (5.15)

where Aijk denotes the area between the projected model line segment and the actual corre-
sponding line segment in the image, lijkIM

denotes length of the projected model line segment,
Kj denotes number of sides in the face polygon pj (Fig. 5.13).

The actual corresponding line can be measured in the image by a human operator, or it can be
estimated using the intensity values surrounding the projected model line segment in the image.
To evaluate the texture extraction in a frame fi, a quality measure

νfi
=

J∑
j=1

(
νtij

)
J

(5.16)
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Figure 5.13: Calculation of matching quality

is used. To assess the matching quality for a face pj among all frames

νpj =

I∑
i=1

(
νtij

)
I

(5.17)

is calculated. Combining (5.16) and (5.17), the matching quality ν of the whole matching process
is computed as

ν =

I∑
i=1

J∑
j=1

(νT ij)

I · J
. (5.18)

In (5.16) - (5.18) J denotes the number of visible faces in a frame fi, and I denotes the number
of frames.
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6 Window Detection in Thermal
Façade Textures

In the previous chapter, it was explained how thermal textures are extracted from airborne TIR
image sequences. In this chapter, the methodology for window detection in such textures is
presented. First, the general problem related to window detection in TIR images is addressed
(Section 6.1). Then, the design for a window model and façade model used for detection are
described (Section 6.2). Within the method presented, a search for regions of interest is imple-
mented (Section 6.3). These regions are used as candidates for windows to reconstruct the lattice
of windows (Section 6.4).

Parts of this chapter have been published in Iwaszczuk et al. [2011a,b].

6.1 Problem Overview

In optical images recorded in the visible (VIS) domain, the appearance of objects depends on
material properties, illumination, and the viewing angle. In thermal infrared (TIR) images, the
appearance depends on the material and the viewing angle as well. However, with the exception
of materials with specular (mirror-like) reflectivity, the viewing angle in TIR influences the ap-
pearance less than in the visible domain. Illumination is the main factor influencing appearance
in the VIS domain, while in TIR images the radiation of objects depends on temperature distri-
bution. Accordingly, the appearance of an object in TIR images depends on the temperature and
the material of the object when imaging diffused surfaces (e.g., wood, plastic). It also depends on
the viewing angle and the temperature of the surroundings when imaging specular surfaces (e.g.,
glass, aluminum).

Fig. 6.1 schematically shows what will happen when photographing a building façade from the
air (Fig. 6.1a) and from the ground (Fig. 6.1a). The window panes reflect the thermal radiation
of objects in the surroundings or of the sky. In the example presented in Fig. 6.1a, the top
window reflects a tree with temperature t1, the middle window reflects a car with temperature
t2 , and the lowest window reflects the ground with temperature t3. In the example in Fig. 6.1b,
the lowest window reflects a tree with temperature t1, the middle window reflects a façade of an
another building with temperature t4 , and the top window reflects the sky with temperature
t5. Knowing the temperatures t1, t2,t3, t4 and t5, corrections to the measured thermal radiation
can be introduced. Knowing the reflectivity of the photographed object and the temperature
of the reflected surface, it is possible to correct the measured thermal radiation to obtain the
temperature of the measured surface. Knowing the 3D geometry of the photographed scene and
the location of the windows in the façade makes it possible to correct the temperature of the
windows for thermal inspection or to simply exclude them. Knowledge about the location of
windows in the façade can also be helpful for identifying heat leakages, as heating systems are
often placed below the windows.
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t1

t2

t3

(a)

t1

t4
t5

(b)

Figure 6.1: Reflections in windows. Depending on the viewing angle of the camera, different objects of the
surroundings are reflected: a) airborne case; b) terrestrial case.

Although few 3D building models already include windows, most 3D datasets are created in
Level of Detail (LoD) 2, in which the openings (windows and doors) are missing [Gröger et al.,
2012]. Therefore, there is a need to develop methods to detect windows in thermal textures. In
contrast to VIS images, not much training data is obtained in the TIR domain. Additionally,
the resolution of the TIR images is typically lower than that of VIS images. Depending on the
acquisition geometry, this can lead to difficulties in photographed façades or their parts, which
have to be captured from a far distance and at a large angle - for example, in oblique airborne
images or higher stories of the buildings from the street level. Fig. 6.2 presents examples of façades
with windows taken from helicopter (about 400 [m] flight height) with an oblique TIR camera.
Because windows are only a few pixels they are difficult to distinguish from the background.
Fig. 6.3 presents some examples of window detected in TIR textures extracted from a terrestrial
image sequence (Fig. 6.3 row A), and the same windows are detected in VIS images (Fig. 6.3 row
B).

In the presented examples, the TIR images have lower resolutions and contrasts than VIS
images, and the edges in TIR images are more blurred. Accordingly, it is difficult to model
windows based on edges. Windows which appear very similar to each other in the VIS domain
can appear very different in TIR images. For instance, the first two examples shown in Fig. 6.3
belong to the same façade. In VIS images (Fig. 6.3B-a and Fig. 6.3B-b) , they appear very
similar, while in TIR images, the same windows (Fig. 6.3A-a and Fig. 6.3A-b respectively) differ
significantly from each other. Furthermore, in densely built urban areas the images taken from the
street level usually capture a small field of view at a large angle; therefore, the window opening,
which is orthogonal to the wall plane, can be seen on one side of the window. This is related
to the fact that the windows do not lie in the plane of the façade; they are shifted inside. For
example, in Fig. 6.3A-a and Fig. 6.3A-b, the image was taken from left, so the opening can be seen
on the right. Moreover, the resolution for windows in upper stories (Fig. 6.3A-d) is significantly
lower than that of windows in lower stories Fig. 6.3A-a, 6.3A-b, 6.3A-c). The problems with low
resolution are even more remarkable for airborne TIR images. The expected size of a window in a
thermal image can be in the range of a few pixels, depending on the used sensor and the distance.
For example; a 4x2 [m2] window on a façade captured with a camera at 45◦ angle and a distance
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Figure 6.2: Examples of façades with windows in
oblique airborne TIR images. Window size about:
a) 8x6 [pix2]; b) 4x5 [pix2]; c) 6x5 [pix2]

Figure 6.3: Examples of windows in terrestrial
TIR textures and in terrestrial VIS textures. The
row A shows windows from TIR textures created
from terrestrial image sequences[Hoegner et al.,
2007]. The row B shows the same windows (cor-
responding in columns) in the VIS image.

300 [m] with the focal length f = 19 [mm] and pixel size 17 [µm] will appear as an 5x10 [pix2]
section.

6.2 Window and Façade Model

According to the properties of the TIR images, a window model is developed in this thesis and
sketched in Fig. 6.4a. In this model, a window is simplified into three sections:

• a homogeneous background,

• a window frame,

• a reflecting pane (or sashes and smaller panes).

The window frame is usually built out of a different material than the material of the wall, and
accordingly, very often has a different emissivity. Thus, compared with the background, the
window frame appears with a different intensity. The area inside the frame consists of reflecting
panes of glass and other elements. The window outline, which should be detected, is defined as
the edge between the background and the window frame.

Smooth edges in the TIR image, the window outline is difficult to detect; however, the areas
around the edges can be used for its detection. For this purpose, a masked correlation is used.
The main idea of this method is that an edge is the border of two areas with different contrasts.
If the intensity difference of both areas is not very large and the edge is smooth, the gradient
magnitude is low. Accordingly, most of the standard contour detectors based on gradient imaging
will fail to find this edge. However, if the shapes of these areas are known, they can be represented
by a binary image and can be found in the image using cross correlation (Section 3.3.1) Based
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Figure 6.4: Window modeling: a) the window model (color coding: dark grey - homogeneous background,
light grey - window frame, grey color gradient - glass); b) mask used for correlation (color coding: red -
expected shape of the window, black & white binary mask, blue - don’t-care-areas).

on the model sketched in Fig. 6.4a, the binary mask, which corresponds to the expected shape
of the windows, is defined in this thesis. This mask is designed to search for edges separating
the background from the window frame and is based on the rectangular shape with a predefined
size. Fig. 6.4b shows such a binary mask for window detection. The mask represent an intensity
change between the wall and the window frame, but only window corners are modeled. The mask
consist of three areas:

• on-area (white) - an area with 1s in the binary mask,

• off -area (black) - an area with 0s in the binary mask,

• don’t-care-area (blue) - an empty area in the binary mask not used for correlation.

It does not matter if the window frame is modeled using the on-area or the off -area because
the absolute correlation value is calculated. The change of the intensity between the areas and
the shape is essential; therefore, no information is needed about which material has a higher
emissivity. Every corner is correlated separately, but the corners have to build a rectangle. This
makes it possible to vary the size of the window. An additional advantage of correlating the
corners independently is that you can deal with the occlusions related to the oblique view and
with reflections caused by the specular surface of window panes. For example, Fig.6.3b shows
a window observed from left bottom. The left side and the bottom of the window frame is not
visible. Here, the glass pane, which reflected the sky, was imaged, rather than the window frame,
as it would be it were an orthographic image. Hence, in this window, the left bottom corner shows
a light to dark change from the wall to the window, and a dark to light change in the right upper
corner. The edges between the background and the window frame are assumed to be blurred
and are defined as don’t-care-areas. The window panes are also defined as don’t-care-areas and
masked out for the correlation process. Correlation is calculated using eq. 3.11 proposed by Stilla
[1993]. The mask is correlated within regions of interest (ROI), that means within regions where
a window is expected.

A simplified façade model is used in this thesis. A façade consists of rectangular windows
ordered in rows and columns. Windows are assumed to build a regular grid; however, missing
windows are allowed. All windows in a row are assumed to be the same size, but this does
not necessarily hold fine for columns. Fig. 6.5 presents some examples of possible window
configurations in the façade.
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a b c

Figure 6.5: Possible façade structures: a) regular grid of windows of the same size; b) regular grid of
windows of the same size in rows but different size in columns; c) grid of windows with some missing
windows.

6.3 Regions of Interest

Regions of interest are parts of the façade where windows are expected. The correct definition of
these regions is essential for starting the procedure for window detection. Some authors [Lee &
Nevatia, 2004; Meixner & Leberl, 2010] recommend counting vertical and horizontal edge pixels
to find the initial position for the windows. In TIR textures, however, the window edges are
blurred and are more difficult to detect. Besides, other edges can often be detected in the façade
image as a result of material differences in the façade or heat leakages; therefore, this work applies
another technique to detect the ROI. For this purpose, dynamic thresholding is used, as described
in Section 3.3.3. The approximate size of the window can be gathered from the 3D building model
from the height and from the number of stories (e.g. from the cadaster) or from the scale of the
TIR texture. Knowing this parameter, the windows are removed using the mean filter mask G
of the size, approximately double size of the window. The difference per pixel is then calculated
between the original and the smoothed image. This results in a different image, which is, then
segmented using a local threshold (Section 3.3.3), as shown in eq. 3.14. Afterwords, bounding
boxes around every detected segment are calculated. The gravity centers of the bounding boxes
are used as starting points for the window search when using the masked correlation approach.

6.4 Lattice Reconstruction

Extracted gravity centers are used as preliminary candidates for windows and as starting points
for the lattice reconstruction (Fig. 6.6). First, the candidates for windows are grouped into the
stories. If the number of stories is known from the 3D building model, the grouping can be
done using this information; however, this approach only works if all stories are the same height.
If the number of stories is unknown, the grouping of the candidates for windows is carried out
according to the approximate window size and to the distribution of the candidates for windows.
All gravity centers are assigned height intervals, which are around half of the approximated
window size. Next, a height histogram is created and the peaks of this histogram are detected.
The final grouping of the candidates for windows correlates to the number of peaks in the height
histogram, which is the expected number of stories.

The candidates for windows in each group are adjusted so that they share the same height
because they are expected to build a row of windows of the same size arranged in one line.
Afterwards, a search for corners is conducted around every possible window using the masked
correlation introduced in Section 6.2. A window is detected if at least three corners are found.
The detected windows in each group are then adjusted to the same height and the same size
using the correlation coefficient as a weight. In all groups of detected windows, it is investigated
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whether the windows are arranged in columns. If such a dependency is observed, the windows
are also adjusted in columns, creating a regular lattice.

Finally, the lattice should be completed with the missing windows. This is accomplished by
comparing the rows. In each row, the presence of windows in other rows at the same position
are searched for. If detected, this gap becomes a candidate for a window. Using the masked
correlation with the estimated window size for this row, this hypothesis is accepted or rejected.
Additionally, the gaps between windows in rows are examined. If a window fits in the gap it is
again candidate for window, which is verified using the correlation mask.

Figure 6.6: Reconstruction of the window grid
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7 Experiments

The methodology presented in Chapter 4, Chapter 5, and Chapter 6 was implemented in MAT-
LAB and tested on an experimental dataset. The data used for the experiments are described in
Section 7.1, followed by the test end evaluation methods (Section 7.2).

7.1 Data Description

Flight campaign: In order to capture all of the façades and roofs in the test area, an appropriate
flight campaign was designed and conducted. During this flight campaign, the helicopter flew four
times above the test area, Techische Universität München, recording a sequence of oblique TIR
images. As a result, four crossing stripes where captured over the test area. This flight campaign
took place in autumn (October) 2006 in the early afternoon. The test area is located in the center
of Munich, Germany and includes of the main campus of the university, including Old Pinakothek
and the surrounding building complexes. This area is a densely built-up downtown area, where
the buildings create ring-shaped structures with inner yards.

Infrared image sequences: The thermal images were taken with TIR camera AIM 640 QLW
FLIR with a frame rate of 25 images per second, which was mounted on a platform carried by
helicopter. The flying height was approximately 400 [m] above the ground level. The camera was
forward looking with an oblique view of approximately 45◦. The size of the chip was 640x512 [pix2].
The helicopter flew over the test area four times, recording four strips of IR image sequences. Each
strip consists of almost 130 frames.

Navigation data: For direct geo-referencing, the data acquired by an Applanix POS AV 510
GPS/INS system with a 200 [Hz] frequency for INS and 1 [Hz] for GPS are used. GPS coordinates
are used to correct the INS drift within the Kalman filter procedure [Grewal et al., 2007]. The
recorded coordinates are referred to the center of the navigation device. The misalignment of the
camera and GPS/INS coordinate systems is determined within an extended bundle adjustment
and the ExtOri parameters are corrected and used for model projection.

System calibration: The camera calibration, boresight, and lever-arm parameters of the cam-
era system used for the campaign were not known; therefore, the camera system was calibrated
using the self calibration process presented in Kolecki et al. [2010]. The estimated boresight
and lever-arm parameters were used to correct the navigation data, and the camera calibration
parameters were used to undistort the images.

3D Building Model: The 3D building model of the test area was created using ArcScene - a
commercial software for 3D building reconstruction from aerial images. Originally, the model was
stored in 3D shape format and was converted to the CityGML format. During the conversion,
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some basic semantics, such as surface type, were recovered. The transformed model is presented
in Fig. 7.1.

Figure 7.1: 3D building model of the test area “Techische Universität München”

7.2 Tests and Evaluation Method

Co-registration: Line segments detection was carried out with a commercial software MVTec
HALCON using an operator for edge segment detection. This operator uses the Sobel filter for
edge detection and the size of the Sobel mask as an input parameter [MVTec Software GmbH,
2014]. The size of the Sobel mask was set to SobelSize = 9. This operator also requires a minimum
gradient magnitude: 1 ≤ MinimumAmplitude ≤ 255. By setting the MinimumMagnitude, only
pixels with a filter response larger than MinimumMagnitude are used as candidates for edge points.
For these experiments, MinimumMagnitude was varied with MinimumMagnitude = {10, 30, 50} and
used as described in Section 4.1.1. Furthermore, the maximum allowed distance of an edge point
to its approximating line was set to MaximumDistance = 3 [pix] and the minimum length of the
line segments to MinimumLength = 8 [pix] in order to avoid very short lines.

Both methods for eliminating of outliers (RANSAC and accumulator) were tested and com-
pared. These outlier detectors were evaluated visually. The evaluation method was based on
counting true positive matches (TP ), all possible correct positive matches (P ) - ground truth, and
false positive matches (FP ). All possible correct negative matches N (ground truth) were calcu-
lated asN = Nall−P , whereNall is number of all extracted lines. True negative TN = N−FP and
false negative FN = P−TP matches were also calculated. Next, true positive rate TPR = TP/P ,
false positive rate FPR = FP/N , and false discovery rate FDR = FP/(FP + TP ) were calcu-
lated.

Both methods for optimal pose estimations introduced in Section 4.1.4 were also implemented
and tested. The Gauss-Markov model was implemented together with RANSAC, and the Gauss-
Helmert model together with the accumulator.
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Some experiments were conducted with selected buildings labeled as B1, B2 and B3 in Fig. 7.1

Window detection: Window detection was carried out in exemplary textures (Fig. 7.2) ex-
tracted from airborne images and, for comparison, from textures extracted in Hoegner et al.
[2007] from terrestrial image sequences. The approximate size of the windows was derived from
the façade size and from the texture size in pixels. The initial window size in the world co-
ordinates was assumed to be around 2.5 × 2 [m2]. For evaluation, ground truth windows were
obtained manually, and the results were compared with the ground truth data. The correctness
and completeness were then calculated as

correctness =
TP

FP + TP
, (7.1)

completeness =
TP

P
, (7.2)

where TP - correctly detected windows (true positive), P - all manually determined windows
(ground truth), FP - falsely detected windows (false alarm), and FP + TP - all detected windows.
Due to the low resolution of TIR textures, blurred edges, and reflections, the position and size
of the detected windows are not expected to be very accurate. For evaluation, a window was
assumed to be detected if at least half of its surface was covered by the detection. The decision
as to whether or not a window was detected was made visually.

Figure 7.2: Test area for window detection. Four façades were selected for the experiment. For façades
1-3, terrestrial and airborne textures were available, while for façade 4, the airborne texture was available
only in the yard.
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8 Results

In this chapter, the experimental results using data described in Section 7.1 are presented. The
results are ordered as follows: results on co-registration (Section 8.1), results on texture extraction
(Section 8.2), and results on window detection (Section 8.3).

8.1 Results on Co-registration

Co-registration of the image sequences with the 3D building model (described in Section 7.1) was
carried out using the method presented in Chapter 4.

Line segment extraction and weighting: First, line segments were extracted in all images
and weights were assigned to them according to (4.1). The result of extracting and weighting line
segments in an exemplary frame (Fig. 8.1a) is presented in Fig. 8.1b. In the presented example,
three different settings for minimum edge strength (g = {10, 30, 50}) were used for the extraction.
The bottom 20% of the lines with the lowest weights were precluded from the further processing.

Figure 8.1: Results on line segment extraction and weighting: a) an exemplary TIR frame; b) weighting the
line segments extracted in this frame. Three different minimum edge strengths were used for the extraction
(g = {10, 30, 50}). Color coding from lowest to highest weight: blue, cyan, green, yellow, orange, and red.

Visibility check: Visibility check was applied as described in Section 4.1.2. Exemplary outputs
with visible lines are presented in Fig. 8.2. Here, four frames were selected and each of these four
frames were taken from different directions. The frame in Fig. 8.2a faces northward, frame in
Fig. 8.2b faces southward, frame in Fig. 8.2c faces eastward and frame in Fig. 8.2d faces westwards.
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(a) (b)

(c) (d)

Figure 8.2: Results on visibility check for lines.

Model-to-image Matching: Model-to-image matching with optimal pose estimation was con-
ducted as described in Section 4.1.4. For the evaluation, the subsets of building models, including
buildings B1, B2 and B3 (see Fig. 7.1) were selected. Each frame was treated as an independent
single frame. No correspondences between the frames were considered. The results for all steps of
the matching procedure are illustrated in Fig. 8.3 using an exemplary frame. First, preliminary
correspondences between the model edges and the image edges were searched in the surrounding
of the model edge (Fig. 8.3a). Then, the preliminary correspondences were reduced using one
of the outlier detectors (Fig. 8.3b). In this example, the correspondences were found using the
accumulator approach. Finally, the selected correspondences were used for the optimal pose esti-
mation. The adjustment was carried out in the projective space, and the model projection using
estimated exterior orientation parameters is presented in Fig. 8.3c.

A similar example is presented in Fig. 8.4, showing a section of an image before adjustment
(Fig. 8.4a) and after adjustment (Fig. 8.4b). For comparison, RANSAC was used to verify the
correspondence in this example. Fig. 8.4a shows the results of the correspondence selection and
uses the following coding: blue signals that the preliminary correspondences selected in the buffer
approach where accepted by RANSAC, while magenta signals that they were rejected. Fig. 8.4b
shows the same image section with the projected model before and after adjustment using red
and green respectively. For the exemplary frame found in Fig. 8.4, the standard deviations for
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a b c

Figure 8.3: Exemplary result on model-to-image matching: a) line correspondences selected in the buffer
approach (color coding: blue - image lines assigned to the model lines, cyan - image lines not assigned to
the model lines, green - projected edges lines with corresponding image lines, yellow - projected model edges
without corresponding image lines); b) line correspondences verified with accumulator (color coding: same
as found in image a); c) extracted image lines (cyan) and model edges projected using estimated exterior
orientation parameters (yellow).

the estimated exterior orientation parameters are σX = 3.8 [m], σY = 6.5 [m], σZ = 4.5 [m],
σω = 0.60◦, σφ = 0.69◦, and σκ = 0.39◦.

Figure 8.4: Section from an exemplary frame with extracted lines and a projected model: a) before match-
ing (color coding: cyan - image lines without correspondences, magenta - image lines that were selected
as correspondences by the buffer approach but refused by RANSAC, blue - image lines selected as cor-
respondences and accepted by RANSAC, green - model lines with correspondences, yellow - model lines
without correspondences); b) after matching (color coding: red - a 3D building model projected with initial
exterior orientation parameters, green - a 3D building model projected with adjusted exterior orientation
parameters).

Elimination of outliers: The elimination of outliers was tested using both the RANSAC
approach and the accumulator approach. In order to compare the robustness of RANSAC and
the accumulator, an additional test was conducted. Ten frames were selected and the algorithm
for correspondence selection was carried out using (1) the accumulator and (2) RANSAC. For
each of these ten frames, the true positive rate (TPR), the false positive rate (FPR) and the
false discovery rate (FDR) were calculated, when using both (1) accumulator and (2) RANSAC.
The mean of each rate, TPR, FPR, and FDR, for all investigated frames were then computed.
The results of this evaluation and comparison of outlier detectors is presented in Tab. 8.1.

Tab. 8.1 shows that FPR was very low for both outlier detectors. This is due to the large
number of all possible correct negative matches N . The assignment was carried out using only a
portion of the image, because the test buildings (B1, B2 and B3) cover about 20% of the frame. N
depends on all lines segments detected in the frame; therefore, FDR was also calculated, which
is more representative in this case. In Tab. 8.1, can be seen that accumulator achieves better
results: the TPR is higher, while FPR and FDR are lower.
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Table 8.1: Evaluation and comparison of outlier detectors. N - all possible correct negative matches, P -
all possible positive matches, TPR - true positive rate, FPR - false positive rate, FDR - false discovery
rate

Frame N P
ACCUMULATOR RANSAC

TPR [%] FPR [%] FDR [%] TPR [%] FPR [%] FDR [%]
13200 724 34 76,47 0,55 13,33 52,94 0,69 21,74
13201 731 33 63,64 1,09 27,59 60,61 1,64 37,50
13202 738 34 76,47 0,54 13,33 64,71 0,68 18,52
13203 735 32 59,38 1,50 36,67 37,50 1,90 53,85
13204 745 32 53,13 1,74 43,33 59,38 1,07 29,63
13205 755 33 51,52 1,46 39,29 48,48 1,59 42,86
13206 773 34 88,24 0,26 6,25 52,94 0,91 28,00
13207 771 33 60,61 1,30 33,33 57,58 1,69 40,63
13208 762 35 28,57 1,31 50,00 60,00 1,18 30,00
13209 778 34 73,53 0,77 19,35 55,88 1,67 40,63
MEAN [%] 63,15 1,05 28,25 55,00 1,30 34,33

Optimal pose estimation: Optimal pose estimation was implemented and tested using the
Gauss-Markov model in the Euclidean space and the Gauss-Helmert model in the projective
space. In the approach with the functional model defined in the Euclidean space and with
estimation formulated using Gauss-Markov model, special dealing with vertical lines is needed.
Because covariance matrices for the line parameters of the vertical lines cannot be calculated
using the error propagation approach, the covariance matrices for those lines are created based
on error propagation for non-vertical line of the same length. Tests also showed several numerical
instabilities in the adjustment when image lines were vertical in the image coordinate system.

To evaluate both methods and to investigate their sensitivity with respect to changes in
the initial exterior orientation, a subset of buildings B1, B2, B3 and a sub-sequence of frames
100 frames (#13141 to #13240) were selected. The accuracy of the initial exterior orientation
parameters were downgraded using white Gaussian noise. The noise was generated using normally
distributed random numbers with mean µ = 0 and standard deviation σ = [σXY Z ,σωφκ], where
σXY Z = 1 [m], σωφκ = 0.1◦. Then the matching was carried out for every randomly downgraded
set of exterior orientation parameters. Subsequently, the same test was successively repeated
increasing the noise parameter vector to 3σ, 4σ, 5σ and 7σ. The test was conducted using
the Gauss-Markov model without any outlier detector (Tab. 8.2, row (1)), using RANSAC and
Gaus-Markov model (Tab. 8.2, row (2)) and using the accumulator and the Gauss-Helmert model
(Tab. 8.2, row (3)).

The size of the search space Si and the angular threshold are calculated based on the expected
displacement and rotation of the projected model lines, which are in turn calculated from the
propagation of errors in the 3D building model and the exterior orientation parameters.

For example, while downgrading the initial exterior orientation by 4σ, the width parameter of
the buffer ∆d = 3σd is in the range of about 40 [pix], and the angular threshold ∆γ = 3σγ is about
8◦. The values are so high, because σd and σγ are calculated as a propagation of the uncertainties
of the camera position and orientation, and the uncertainty of the 3D building model. This leads
to many incorrect correspondences pre-selected using the buffer and the outlier rate ε ≈ 85%. In
case of downgrading with 7σ, the outlier rate increases to ε ≈ 93%. The typical least squares
adjustment method cannot cope with such a large number of outliers. Therefore, using RANSAC
or the accumulator is necessary in this case. This algorithm is robust even if the camera is shifted
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Table 8.2: Percentage of successfully matched samples with downgraded initial exterior orientation. σ
denotes the standard deviation used for the generation of normally distributed random numbers, with σ =
[σXY Z ,σωφκ]T, where σXY Z = 1 [m], and σωφκ = 0.1◦. The Table shows (1) results based on the assignment
of correspondences without outlier detection and the Gauss-Markov model adjustment; (2) results using
RANSAC and the Gauss-Markov model adjustment; (3) results using accumulator approach and the Gauss-
Helmert adjustment.

Successfully matched samples when downgrading the exte-
rior orientation with normally distributed numbers using
mean µ = 0 and standard deviation
σ 3σ 4σ 5σ 7σ

(1) 98% 43% 20% 16% 0%
(2) 96% 68% 65% 61% 46%
(3) 96% 87% 82% 83% 75%

from the initial position by a few meters. For 7σ, the rate of successfully matched frames is still
on a relatively high level, with 46% using RANSAC and Gauss-Markov model for the adjustment,
and 75% using accumulator and Gauss-Helmert model.

In Fig. 8.5, some examples of successful matching after downgrading the initial exterior orien-
tation parameters are shown. Various frames were selected to present the results. Each sub-figure
shows initial parameters downgraded with normally distributed random numbers with another
multiple of σ (the same as in Tab. 8.2).

Figure 8.5: Examples for matching successful TIR images and the 3D building model projected with a) initial
exterior orientation parameters; b) exterior orientation parameters downgraded by normally distributed
numbers with µ and 1σ; c) with µ and 3σ; d) with µ and 4σ; e) with µ and 5σ.

In order to investigate the influence of the uncertainty on the matching results, tests with
and without uncertainties were carried out. First, the method using Gauss-Markov model and
RANSAC were evaluated. For this purpose, 82 frames were used and assessed visually, whether
the matching result is better or worse when considering the uncertainties or the matching quality
remains the same. This evaluation showed that in 48% cases, the matching was better when
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considering the uncertainties. Only in 8% of the cases, the matching was worse. In other 44%
frames, it was not possible to say which result was better. Three exemplary frames used for this
test are presented in Fig. 8.6.

Figure 8.6: Influence of the uncertainty on the matching results in the Gauss-Markov model: a-c) three
exemplary frames. Color coding: blue - initial projection of the model edges, red - projected model edges
after adjustment without considering the uncertainties; yellow - projected model edges after adjustment with
the uncertainties.

The same test was carried out with the estimation using the Gaus-Helmert model (Fig. 8.7).
In this case, however, the influence of considering the uncertainties was not observed.

Because the method that uses the Gauss-Helmert model with accumulator as the outlier
detector, performs better than the method using RANSAC and the Gauss-Markov model, further
tests were carried out only using the Gauss-Helmert model and the accumulator.

Conditioning: In all presented experiments with homogeneous coordinates, the conditioning
of the coordinates was conducted as described in Section 4.1.4. In order to show the importance of
this conditioning, some test were also conducted omitting this step. For these tests, the subset of
the building model, including buildings B1, B2, B3 and a sub-sequence (frames with ids #13141
to #13240), were used. For each frame, estimation was carried out twice, with and without
conditioning. For both estimations, the same set of correspondences were used. Due to the
method described in Section 4.1.4, conditioning is carried out if maxhE < fmin. For the selected
subset of model points, belonging to buildings B1, B2, B3, the factor maxhE was computed. This
calculation resulted in maxhE = 0.0977. Factor fmin was set to 0.1. The results of this test are
presented in Fig. 8.8.

Three frames from the beginning (Fig. 8.8A), middle (Fig. 8.8B), and end (Fig. 8.8C) of the
sub-sequence were selected for visualization, but the results are comparable along entire sub-
sequence. The first column of images (Fig. 8.8a) shows the results without conditioning, while
the second column shows the results (Fig. 8.8b) with conditioning.

Fig. 8.9 shows estimated exterior orientation parameters and their 2σ confidence intervals.
Estimated parameters calculated with conditioning are presented in blue, and their confidence
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Figure 8.7: Influence of the uncertainty on the matching results in the Gauss-Helmert model: three exem-
plary frames. Color coding: blue - initial projection of the model edges, red - projected model edges after
adjustment without considering the uncertainties; yellow - projected model edges after adjustment with the
uncertainties

region in light blue, while estimated parameters calculated without conditioning are presented
in red, and their confidence region in light red. For comparison, the initial parameters are also
plotted (in cyan).

Robust estimation: Within the adjustment, an outlier detector was implemented as presented
in Section 4.3. This detector is more sensitive and can detect additional outliers than those
detected by RANSAC or the accumulator. However, this detector cannot deal with large number
of outliers and gross errors.

The significance level for testing standardized corrections for the observations (Section 4.3)
was set to α = 0.1. Each observation is represented by 11 parameters, 3 related to the im-
age line lj = [aj , bj , cj ]T, and 8 related to model corners X1i = [U1i,V1i,W1i,T1i]T and X2i =
[U2i,V2i,W2i,T2i]T. Each parameter is treated separately; for each observation, one or more pa-
rameters can be identified as outliers. Outliers in the image feature and outliers in the 3D building
model can be distinguish. Because the inaccuracies in the line detection can also affect the errors
in the parameters of the model points, these observations are not sufficient for outlier detection
in the 3D model.

Tests showed that both errors coexist. Outliers in the line parameters were detected in less
cases than outliers in model corner parameters. In most cases where outliers in the line parameters
were detected, they coexisted with errors in the parameters of model points. The outliers in image
line parameters were detected for 151 edges in 100 frames, but only in 21 cases they did not coexist
with outliers in the parameters of model points.

Fig. 8.10 shows results on the outlier detection in an exemplary frame. Here, all three possi-
bilities are presented, taking the outliers in the image line parameters, model point parameters
or both at the same time. For outlier removal and outlier free adjustment, the third option was
used. The results of the adjustment after outlier removal are presented in Fig. 8.10d.
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Figure 8.8: Influence of coordinate conditioning on pose calculation: a) estimation without conditioning;
b) estimation using conditioned coordinates with factor fmin = 0.1; A) frame #13141 ; B) frame #13181;
C) frame #13221 . Color coding: yellow - projected 3D building model after estimation, cyan - extracted
image line segments which where used for the estimation
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Figure 8.9: Estimated exterior orientation parameters and their 2σ confidence intervals. Color coding:
cyan - initial parameters, blue - estimated parameters with conditioning, light blue - confidence region
for estimated parameters with conditioning, red - estimated parameters without conditioning, light red -
confidence region for estimated parameters without conditioning.

Fig. 8.11 shows the results of outlier detection considering all 11 parameters for each ob-
servation. The results are shown on one exemplary building and across a sub-sequence of six
images.

Detected outliers are summarized for each edge along the sequence. If for an edge many
outliers were counted, then one may suspect that this edge is badly modeled. However, not only
the number of outliers counts, but also the relation to the overall correspondences found for this
edge (Fig. 8.12) is important to be considered. This relation can be expressed by the number of
outliers divided by the number of correspondences. Based on this measure, the outlieres in the
models can be identified. Here, a threshold of 0.5 is selected to identify the outliers and threshold
of 0.35 is used to identify possible outliers (Fig. 8.12b).

The outliers are visualized in Fig. 8.12c. Outliers are depicted in red and possible outliers
in orange. In addition, Fig. 8.12c shows the edge IDs to enable the interpretation of the results
found in Fig. 8.12a and Fig. 8.12b.
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Figure 8.10: Results on outlier detection in the frame #13209: a) outliers detected based on the analysis
of parameters of model points; b) outliers detected based on the analysis of parameters of image lines;
c) outliers detected based on the analysis of all parameters; d) projected 3D building model before (red)
and after (green) adjustment. Color coding for a-c: dark cyan - detected image line segments without
correspondences, bright cyan - projected model edges without correspondences, dark green - detected image
line segments with correspondences, bright green - projected model edges with correspondences, dark orange
- detected image line segments with correspondences detected as outliers, bright green - projected model
edges with correspondences detected as outliers.

Figure 8.11: Outlier detection for one building across a sub-sequence of 6 images (#13174-#13179). Color
coding: same as found in Fig. 8.10.

Tracking: To test the implemented tracking, pre-defined key-frames were used. The interval
between the key-frames was set to 3, 5 and 7. The first frame was always defined as a key-
frame. Exemplary results on tracking are presented in Fig. 8.13. In these figures, sections of the
four following frames are shown. In the lower right corner of each image section, the ID of the
corresponding frame was plotted. In the presented example, the interval between the key-frames
was set to 3, hence frames #13141 (initial frame fi with i = 1) and #13144 are key-frames, while
frames #13142 and #13143 are normal frames.

Fig. 8.13a presents the projected model: in green - tracked model edges and in yellow -
model edges, projected with estimated parameters. Fig. 8.13b shows the image line segments
corresponding to the edges in the current frame (cyan) and the image line segments tracked as
correspondences from the previous frame (blue).

Applying the presented tracking strategy, every projected model edge in frame fi, where i > 1
can get two types of correspondences with the image edges:
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(a)

(b)

(c)

Figure 8.12: Outlier ratio: a) Number of detected correspondences (blue) and outliers (red) per edge; b)
Outlier ratio per edge and threshold; c) edges detected as outliers (red), possible outliers (orange), and the
edge IDs.
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Figure 8.13: Image sections from a sequence of four images with two key-frames: a) with projected 3D
building model (color coding: bright yellow - model lines with correspondences projected after parameter
estimation, dark yellow - model lines without correspondences projected after parameter estimation, bright
green - tracked model lines with correspondences, dark green - tracked model lines without correspondences);
b) with plotted image line segments with correspondence (color coding: cyan - image line segments detected
in current frame corresponding to a model edge, blue - image line segments tracked as correspondences from
the previous frame); c) with verified correspondences (color coding: cyan - image line segments detected in
current frame corresponding to a model edge, blue - verified virtual correspondences with correspondences
in the current frame, dark orange - virtual correspondences which were added to the correspondence list
and used for tracking in the next frame).

1. Assigned correspondences (with extracted edges)

2. Tracked correspondences (virtual, with tracked edges)

Virtual (tracked) correspondences can be helpful when not enough new correspondences are
found in the current frame. However, they are not needed, if a new correspondence was found
for a certain edge. Hence, in each frame, a verification of correspondences is carried out. It
was tested whether or not there was a new correspondence which was equivalent to the tracked
correspondence. This case occurs when the tracked image edge and the newly assigned image
edge are equal. This is tested using three conditions:

• the middle points of the line segments are close to each other

• they are of similar length

• they are almost incident

The first two conditions are carried out by setting a threshold. For the third condition,
statistical tests were implemented. If only a few correspondences were found in the current
frame, then the missing correspondences are extended using the virtual correspondences. Hence,
the virtual correspondences are also used for tracking in the next frame.

In order to assess the accuracy of the tracking, the model edges were also tracked into the
key-frames. As a measure for this assessment, the distance between the tracked and projected
model edges after estimation was used. For each corresponding pair of tracked and the projected
model edges, the area between was calculated and divided by the length of the model edge. This
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Table 8.3: Evaluation of tracking with adjustment only in key-frames. The quality is expressed as the
average distance between the tracked and projected model edges. Here, analysis of this value per frame is
presented.

Interval between 3 frames 5 frames 7 framesthe key-frames
Average distance 1.6 [pix] 2.4 [pix] 3.1 [pix]
Maximum distance 2.2 [pix] 3.1 [pix] 4.0 [pix]
Minimum distance 0.9 [pix] 1.4 [pix] 0.8 [pix]

Table 8.4: Evaluation of tracking with adjustment in every frame. The quality is expressed as the average
distance between the tracked and the projected model edges. Here analysis of this value per frame.

Interval between 3 frames 5 frames 7 frames 9 frames 11 frames 20 framesthe key-frames
Average distance 1.3 [pix] 1.6 [pix] 1.0 [pix] 1.2 [pix] 1.3 [pix] 1.0 [pix]
Maximum distance 2.2 [pix] 2.7 [pix] 1.6 [pix] 1.6 [pix] 2.4 [pix] 1.5 [pix]
Minimum distance 0.6 [pix] 0.6 [pix] 0.6 [pix] 0.9 [pix] 0.7 [pix] 0.7 [pix]

value was considered to be the average distance between those two edges. This distance was
summed up and averaged among the whole frame and then stored as the quality value per frame.
Tab. 8.3 shows an analysis of these values stored per frame, dependent on the pre-defined interval
between the key-frames. The interval between the key-frames was set to 3, 5 and 7 frames. In
the first row of Tab. 8.3, the average distance between the tracked and the projected model edges
after adjustment are presented. This value can be interpreted as an average shift, which would
be made by extracting a texture in a key-frame using the tracked model.

The same test was carried out with adjustment in every frame. The results of this experiment
are shown in Tab. 8.4. Here, the tests were carried out using key-frame interval 3, 5 and 7 frames,
as well as key-frame interval 11 and 20 frames.

The computation time was also investigated∗. The search for correspondences using the accu-
mulator took about 16 [sec] per frame. The adjustment procedure, including the outlier detection
within the adjustment, took about 0.6 [sec] per frame. Line tracking took about 0.1 [sec] per
frame. Adjustment and tracking are carried out in every frame, but they search for correspon-
dences only in key-frames. In the current implementation, the computation time is about 17 times
higher in key-frames than in normal frames.

8.2 Results on Texturing

Best texture selection: Texture selection was carried out based on the quality measure pre-
sented in Section 5.6.1. The coefficients a1, a2 and a3 were set to a1 = a2 = 1 and a3 = 2. The
results of the texture selection are presented in Fig. 8.14, whereas Fig. 8.14a shows the quality of
the selected textures and 8.14b shows the viewing direction for the frame from which the texture
was selected.

Local Matching: Results on local matching are presented in Fig. 8.15. In order to refine the
fit between the 3D building model and the image, the model edges were matched locally in the

∗using non-optimized MATLAB implementation
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(a) (b)

Figure 8.14: Results on best texture selection: a) quality of selected textures; b) faces colored due to the
flight direction of the selected best texture (color coding: dark blue - from south to north, cyan - from north
to south, orange - from west to east, red - from east to west).

image. In doing so, small roof overlaps could be corrected, making the texture mapping more
precise (see Fig. 8.15). The main advantage of this method is that the objects seen in the textures
can be precisely geo-referenced in the wall coordinate system. The wall coordinate system can be
transformed into the world coordinate system; however, for objects observable in thermal images,
such as heat leakages, it is more important to localize them relatively to the building elements
and not in an independent 3D world coordinate system.

Figure 8.15: Local matching: a) adjustment for an exemplary edge; b) initial position of the projected 3D
building model; c) position after local matching.

Texture extraction: For each face of the model, a TIR texture was created based on the results
on best texture selection and local matching. Those textures were mapped on the 3D geometry
in CityGML format and displayed using Autodesk LandXplorer (Fig. 8.16).

Matching quality: To evaluate the matching quality, the reference polygons were drawn man-
ually in 70 frames. These reference polygons were used to calculate the quality measure ν from
(5.18). First, the quality measure was computed for the initial model projection using the exterior
orientation parameters after system calibration [Kolecki et al., 2010]. Then, the quality measure
ν was calculated for projection using the exterior orientation parameters corrected by matching.
These results are presented in Tab. 8.5. Next the matching quality was calculated after estimation
with and without taking uncertainties int account. This was done for the estimation (1) in Eu-
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Figure 8.16: 3D building model with TIR textures

Table 8.5: Quality measure ν calculated after system calibration and after matching in every frame

ν [pix] ν [pix]
after system calibration after matching in every frame

4.74 1.48

Table 8.6: Quality measure ν calculated after estimation with and without uncertainties: (1) in Euclidean
space - using Gauss-Markov model; (2) in projective space - using Gauss-Helmert model.

ν [pix] ν [pix]
for estimation for estimation

with uncertainties without uncertainties
(1) 2.95 4.33
(2) 1.48 1.73

clidean space using Gauss-Markov model, as well as, based on the same correspondences selected
by accumulator, (2) in projective space using Gauss-Helmert model. The result of this experiment
is presented in Tab. 8.6. Finally, the quality measure ν was also calculated after tracking. These
results are presented in Tab. 8.7. This experiment was carried out for varying key-frame intervals.

Table 8.7: Quality measure ν calculated after tracking with varying key-frame interval

Interval between 3 5 7 9 11 20 25 30
the key-frames frames frames frames frames frames frames frames frames
ν [pix] 1.55 1.64 1.73 1.64 1.67 1.71 1.71 1.73
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Table 8.8: Extracted candidates for windows in terrestrial and airborne textures for four façades

Number of detected gravity centers
Texture airborne terrestrial
Façade 1 45 22
Façade 2 36 24
Façade 3 39 18
Façade 4 41 –

8.3 Results on Window Detection

This section presents results on automatic window detection in TIR textures. Fig. 8.17 depicts
extraction of regions of interest (ROI) using a dynamic threshold. A terrestrial TIR texture (top
left) was segmented using a dynamic threshold and segmented regions were smoothed using mor-
phological operations (top right). Bounding boxes around the regions were created (bottom left)
and the gravity centers of these bounding boxes, which are preliminary candidates for windows,
were calculated (bottom right). Tab. 8.8 shows the number of detected candidates for windows
in tested terrestrial and airborne TIR textures.

Figure 8.17: Candidates for Windows detected in a terrestrial texture: a) a TIR texture extracted from
terrestrial data; b) regions of interest extracted from the TIR texture using local dynamic threshold and mor-
phological operations; c) bounding boxes around the regions of interests; d) gravity centers of the bounding
boxes.

Fig. 8.18 presents results on the lattice reconstruction for four exemplary façades. For Façade
4, only the airborne texture was available because the vehicle with the mounted TIR camera was
not able to enter the courtyard.

In reality, Façades 1-3 feature four rows of windows, but the last row (fourth story) consists of
significantly smaller windows than the other rows. In all textures of these façades a maximum of
three rows of windows were detected. Evaluating the textures visually did not allow the evaluator
to realize the existence of the fourth floor and the fourth row of windows; therefore, the fourth
row of windows was not taken into consideration while evaluating the results. Façade 4 consists
of five rows of windows and all of the rows were detected. Tab. 8.9 shows the evaluation of
the detection algorithm using correctness and completeness as quality measures. For terrestrial
textures, significantly higher correctness and completeness were achieved.
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Figure 8.18: Windows extracted in airborne and in terrestrial textures of four façades: a) location of the
façade marked in the textured 3D building models; b) windows extracted in the airborne textures; c) windows
extracted in the terrestrial textures. Four different façades were used for the experiment: A) Façade 1; B)
Façade 2; C) Façade 3; D) Façade 4.

Table 8.9: Evaluation of the window detection algorithm

Façade 1 Façade 2 Façade 3 Façade 4 Total
airb. terr. airb. terr. airb. terr. airb. terr. airb. terr.

correctness 30% 97% 57% 47% 24% 83% 100% – 63% 73%
completeness 15% 73% 6% 57% 7% 67% 72% – 26% 66%

Tab. 8.10 presents the size of windows detected in terrestrial textures. Detection was carried
out using an initial window size of 2.50×2.00 [m]. For comparison, the size of the windows were
measured manually and presented in brackets. Access to some windows was restricted, so some
ground truth data is missing.

The detected windows have been embedded in the 3D building model stored in CityGML. For
better visual perception, the windows were indented and colored in blue. It should be mentioned
that the indention was not the result of any measurement, but was done only for a more realistic
visualization. The 3D building model was displayed with the software LandXplorer. A screenshot
from this software is presented in Fig. 8.19.
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Table 8.10: Size in meters of detected windows in terrestrial TIR textures. Presented values are expressed
in [m]. When available, the manually measured ground truth size is presented in brackets.

Façade 1 Façade 2 Façade 3
Story height width height width height width

1st 2.59 (—–) 2.62 (—–) 2.08 (1.25) 1.34 (1.25) 3.10 (—–) 2.24 (—–)
2nd 2.92 (2.85) 2.09 (1.50) 3.00 (3.50) 1.90 (1.65) 2.87 (2.85) 2.50 (1.50)
3rd 2.79 (2.15) 2.23 (1.50) 3.62 (—–) 2.01 (—–) 3.18 (2.15) 1.71 (1.50)
4th – – – – – –

Figure 8.19: Extracted windows embedded in a 3D building model displayed by LandXplorer.
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9 Discussion

In this chapter, the results presented in the previous Chapter 8 are discussed and evaluated. This
chapter is organized in sections as follows: Co-registration (Section 9.1), Texturing (Section 9.2)
and Detection of Windows (Section 9.3).

9.1 Discussion on Co-registration

Line segment extraction and weighting: Line based model-to-image matching has a high
potential for co-registering building models with oblique airborne images. Edges are the most
representative features for building structures and can be easily detected in the image using
standard image processing algorithms. However, the standard line detector based on the Canny
edge detector implemented in the HALCON Software, which was used in the experiments, did
not provide very accurate results. This is due to the representation of the line segments by the
coordinates of the end points in pixel accuracy. Sub-pixel accuracy and line extraction adjusted
to the properties of TIR images could improve the results of the co-registration. The first attempt
to improve line segment extraction implemented in this thesis involved extracting using different
input parameters (edge strength), weighting and selecting the best lines. Improving the geometric
accuracy in future studies, however, could increase the accuracy of the adjustment.

Visibility check: The method implemented for visibility check made it possible to find the
visible model’s edges and to maintain them as vector data. However, some of these problems
remained after the implementation. Some of them are presented in Fig. 9.1. Fig. 9.1a shows an
overview of the scene and the projected line segments that have been identified as visible by the
implemented algorithm. The first problem, which can be observed in this scene, is that some of
the visible lines are very close to each other (Fig. 9.1b and c). In Fig. 9.1b, this is caused by
one roof with a repetitive structure and four chimneys. In this case, all the edges should have
corresponding line segments in the image; however, their correct assignment can be difficult. In
Fig. 9.1c, the model’s edges are densly projected because of how the roof was modeled. In reality,
it is an arched roof with a smooth surface and no visible edges. In the model, the same roof was
modeled using long narrow polygons, which caused the model’s edges to be very dense. In this
case, these edges are not expected to have corresponding edges in the image. Even if some edges
could be found in this area (e.g. due to sun reflections in the metal roof), it would not provide
the correct assignment. Hence, in both cases, these edges should not be taken into account for
the correspondence search. This should be the subject of a future study.

Fig. 9.1d shows another problem: due to numerical errors in the implementation of the vis-
ibility algorithm, some of the visible lines were identified as occluded (red arrow in Fig. 9.1d).
In the presented example, some edges of a lower building, which overlaps with the yard of an
another building, are missing. The problem of unmodeled building parts can also be observed in
this model (red arrow in Fig. 9.1a). This problem will be discussed in Section 9.2.
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Figure 9.1: Difficulties in visibility check for mode edges: a) overview of the scene with projected model
lines; b) roof with repetitive structures; c) arched roof; d) a zoom-in image section showing incorrectly
identified line visibility

Model-to-image Matching: Both proposed methods for model-to-image matching delivered
good results in terms of achieving an improved fit between the projected model and the image
features, which was the main motivation for implementing the model-to-image matching in this
study. The first method, which uses RANSAC and the Gauss-Markov model, performs well for
well geo-referenced images. The camera positions and rotations are have accuracy of 1 − 3 [m]
and 0.1− 0.3◦, respectively (Tab. 8.2). Results on the second method, which performs matching
using an accumulator and the Gauss-Helmert model, are good, even if the exterior orientation of
the camera has accuracy of 7 [m] and 0.7◦.

Fig. 8.4b illustrates an improvement in the position of the projected model compared to the
direct geo-referencing. The projected building structures match the TIR image very well, so the
thermal building textures can be extracted precisely. Nevertheless, the accuracy of the estimated
exterior orientation parameters is not very high because of the low resolution of the images and the
low accuracy of the extracted edges. The presented method, in combination with this acquisition
configuration, cannot be used for precise determination of the camera positions; however, this
was not the goal of this work.

In TIR images of urban scenes it is difficult to extract building edges on the ground, since
the pavement often looks similar to walls. Therefore, in some frames, a very good fit between
the 3D building model and the roof structure was achieved, while some remaining displacements
occurred in the walls.

Elimination of outliers: By applying the RANSAC or accumulator algorithm, good re-
sults can be achieved, not only for very well geo-referenced data, but also for mid-quality geo-
referencing. However, further improvements in the search for candidate correspondences are
needed in case of low-quality input, which should be subject of future studies. The accumulator
is sensitive to inaccuracies in the angles because inaccuracies of a 3D to 2D projection are approx-
imated by a 2D motion (translation and rotation) of the projected 3D model. This assumption
holds only for the very well known rotation parameters of the camera. Small inaccuracies in the
angles of the exterior orientation cause a shift in the projected model; however, an increase in
angle errors deforms the projected 3D model, which does not allow the accumulator approach to
work efficiently. The proposed RANSAC algorithm does not depend on the angle errors in the
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initial camera pose, but large errors in the initial rotation increase the search area and, in many
cases, can lead to lines being falsely assigned.

Tests showed that matching using the accumulator and the Gauss-Helmert model is more
reliable and delivers better results, even when initial exterior orientation of the camera is less ac-
curate, than using RANSAC and the Gauss-Markov model. On one hand this is due to the slightly
better performance of the accumulator algorithm in comparison to RANSAC (see Tab. 8.1). On
the other hand it is also related to the fact that the instabilities detected in the Gauss-Markov
model when using vertical lines are avoided in the Gauss-Helmert model.

The accumulator performs better in the presented application because it works systematically,
taking all correspondences into account. RANSAC only investigates a part of the population and
makes the decision based on statistical evaluation, which can cause errors. The accumulator is
also faster because the matching problem is reduced to 2D.

Optimal pose estimation: Taking the uncertainties of image lines and of the building model
into account allows us to apply a statistical analysis based on uncertainties, such as statistical
tests and robust estimation with outlier detection. A better fit between the building model and
the image structures is also achieved.

Each optimization results in new exterior orientation parameters. However, these parameters
must not be understood as the true position of the camera, only as the parameters needed for a
better fit between the features and the edges of the 3D building model.

Both presented adjustment models, one formulated using the Gauss-Markov and the other
formulated using Gauss-Helmert model, provide corrections for the model edges. However, these
corrections cannot be directly applied to improve the geometry of the model because no constraints
for planes are implemented in the presented adjustment. Therefore, some coplanar 3D building
lines, which originally belonged to one plane, can be non-coplanar after the adjustment.

Exterior orientation parameters estimated based on the matched lines are used to find an
improved fit between the model and the image structures, which was the main motivation of this
study. These parameters, however, do not necessarily capture the correct position and orientation
of the camera in the real world. In Fig 8.9, the estimated parameters do not build a smooth
trajectory as the input data that was obtained with the GPS/INS system and smoothed by a
Kalman filter. Some of the “jumps” of the camera are the result of invalid co-registrations, and
perhaps are also caused by a connection between the camera and the navigation device if it was
not fully rigid and suffered from the vibrations of the helicopter. The correctness of the estimated
parameters could be assessed by tracking the helicopter using terrestrial measurement in an
independent coordinate system, e.g. by tracking a target on the helicopter with a tachymeter.

Conditioning: The experiments showed, that conditioning has a strong influence on the match-
ing result. In Fig 8.9, the estimated parameters Z0 and φ differ significantly from the initial value.
An error of about 25 [m] and 1.5◦ in the initial orientation parameters, which would be the result of
adjustment without conditioning, is not realistic. The result of the adjustment with conditioning
oscillates around the initial values and is therefore more likely to be correct.

It was also shown that conditioning is crucial for achieving a better fit between the image and
the building features, which was the main motivation of this work. Fig. 9.2 shows an exemplary
frame, where the effect is highly visible, particularly in the boundary areas. In this figure, the
conditioning procedure with various fmin factors is presented. It can be seen that estimation
without conditioning leads to a large mismatch in the boundary area (Fig. 9.2a). This mismatch
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is reduced by conditioning; however, the value of fmin also changes the result. The best fit was
achieved with 0.1 ≤ fmin ≤ 1.

Figure 9.2: Matching results with various fmin factors: a) scene overview; b) no conditioning; c) condi-
tioning with fmin = 2; d) conditioning with fmin = 0.1. Color coding: yellow - projected 3D building model
after estimation; cyan - extracted image line segments, which where used for the estimation.

Robust estimation: Inaccurately extracted line segments or inaccurate model edges can be
eliminated using the outlier detector within the adjustment procedure (as described in Section
4.3). In Fig. 9.3, some examples of eliminated line correspondences are presented. In most cases,
the reason for the rejection is inaccurate line segment extraction.

In Fig. 9.3a, an image section of building B3 is presented. The roof ridge of this building
was assigned to two line segments in the image, but one of them is a false assignment. The
outlier detection algorithm removed this correspondence. An eave and a vertical edge (on the left
side of building B3 in Fig. 9.3a) were assigned to the same line segment in the image. This line
segment, however, was detected inaccurately in the image and could not accurately match any of
the assigned models edges, which is why this correspondence was rejected.

In Fig. 9.3b, building B3 is seen in an another frame. Here, the ridge was poorly detected in
the image and the correspondence was rejected. Similarly, in Fig. 9.3c, which shows the building
B2, one edge was also poorly detected and rejected due to this reason. Fig. 9.3d shows building
B2 again; however, here, more correspondences have been rejected, because in this frame the
extraction of some segments was inaccurate.

In the Gauss-Markov model with pseudo-observations, errors in the model lines are difficult
to recognize using the coefficient matrix of corrections to observations (Qvv). This is due to
the fact that their redundancy components are low, and therefore the influence of the errors on
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Figure 9.3: Examples for line correspondences identified as outliers in the robust adjustment: a) building
B3, frame #13204; b) building B3, frame #13206; c) building B2, frame #13204; d) building B2, frame
#13205. Color coding: light cyan - projected model edges; dark cyan - extracted line segments; green
- accepted correspondences (dark - image line segments, light - model edges); orange - correspondences
identified as outliers (dark - image line segments, light - model edges).

the correction for each parameter is very small. In the Gauss-Helmert model, the redundancy
components for the 3D points are significantly larger, and they can be used to detect potential
outliers in the 3D building model.

Tracking: By tracking the line segments assigned to the 3D model from frame to frame, the
search area is restricted, and the time needed for calculation is reduced. Up to now, line tracking
experiments have been conducted with pre-defined key-frames. In the future, more attention
should be paid to dynamically selected key-frames and to the criteria for coregistration reliability
in a single frame. The following frame in the sequence can be set to a key-frame (in case of low
reliability) or to standard frame (in case of high reliability).

The tests showed that tracking is sufficient for finding the line correspondences needed for
camera pose estimation. Two cases were considered: in the first case, the estimation was carried
out in key-frames only (Tab. 8.3), and in the second case the estimation was carried out in every
frame (Tab. 8.4). In the first case, the quality measure for tracking was significantly higher when
the distance between the frames was increased. This dependency was not noticed in the second
case, where the adjustment was carried out in every frame.

Due to a high computation time in key-frames, it is plausible to search for correspondences
in the first frame, and then to continue with tracking only. The key-frames could still be used
to control the quality of tracking in this scenario, which would reduce the computational time
to about 0.1 [sec] per frame. This, however, is not sufficient for real time tracking. Assuming a
frame rate of 25 [frames/sec], the computation time must not exceed 0.04 [sec]; therefore, a real
time solution would require optimizing the software.

Tracking also produced a kind of a database which was created by linking image lines to each
other from frame to frame. Because the lines were also assigned to the 3D building models, there
is also a link between the lines observed from multiple directions. Such information can be used
to improve and refine the geometry of the existing 3D building model.

9.2 Discussion on Texturing

Best texture selection: The algorithm for best texture selection chose good quality textures
for most model faces. As expected, the textures have been selected from all four directions
(Fig. 8.14), depending on the quality calculated for each separate face. It was not possible to find
high quality textures for a few surfaces (Fig. 9.4), namely on small faces, such as the side surfaces
of chimneys and ventilation systems (Fig. 9.4b, c, and f). The disadvantageous orientation of the
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face and occlusion, of these particular surfaces could explain low texture quality. However it is
also possible, that the low quality is a result of a calculation inaccuracy for small faces, which is
related to the inaccurate approximation of occupied area after the projection. This is calculated
based on pixel count occupied by a projected model surface. This procedure can be inaccurate
for long, narrow faces.

Figure 9.4: Surfaces with low quality textures: a) overview; b-g) examples of surfaces with low quality
textures (blue)

Local Matching: In most cases, local matching makes it possible to overcome the errors in
the model and the extracted textures, which are depicting the whole façade. Hence, no part of
the façade is missing and no additional objects are included in the texture. This rule does not
apply for façades modeled as rectangles, which have other shapes in reality. An example of such
a façacde is presented in Fig. 9.5.

a

b

c

d

e

Figure 9.5: Example of a building with incorrectly modeled façade geometry: a) localization of this building
in the data set; b) RGB image of this building, c) TIR texture for the frontal façade; d) schematic model
of this building; e) model used for the texture extraction

This façade belongs to a building that is placed in the front section of the test area (Fig. 9.5a or
building B2 in Fig. 7.1). A VIS image of this building is presented in Fig. 9.5b. It can be observed,
that lower level of the building is slimmer than the top story, making it necessary to model it as
presented in Fig. 9.5d. However, the building models used for the experiments were created using
aerial images. Pre-defined shapes were fitted to the roof shape seen in stereo mode and extruded
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these shapes to the ground. This result of extracting a slightly incorrect texture before local
matching is shown in Fig. 9.5c. In this case, the left side of the texture was adjusted to the lower
edge of the façade, and the right side of the texture was adjusted to the upper edge. On the left
side, the upper part of the façade is depicted completely in texture, while in the lower part of the
texture, an object not belonging to the façacde occupies a small stripe of pixels. In contrast, on
the left side, where the edge was adjusted to the lower part, there is no additional stripe of pixels
belonging to any other objects, but there is a small part of the building missing in the upper part
of the texture. An error free extraction of textures is not possible in such cases without correcting
the 3D building model. Automatic model correction, however, is a complex task, especially for
such buildings as presented in in Fig. 9.5d. Particularly, the automatic detection of such buildings
can be difficult. In such buildings, certain sections of the building can be relatively low, causing
short edges, which are detected with low accuracy. Because of the lack of accuracy, these edges
cannot be used for automatic improvement of the model geometry. Automatic detection and
correction of the building models, where the roof overlap is missing (see Fig. 10.1), is generally
easier to implement.

Texture extraction: Another common and challenging source of errors that can occur during
texture extraction are un-modeled (non-predictable) occlusions. These occlusions occur when
some objects, such as vegetation, cars, city furniture, etc., are not included in the model or
are not modeled correctly. Some examples of non-predictable occlusions in the test area are
presented in Fig. 9.6. Fig. 9.6a shows the location of two exemplary textures in the model (red
frame); Fig. 9.6b and Fig. 9.6c show those textures. The texture presented in Fig. 9.6b is occluded
by two chimneys, which are not correctly modeled. The texture presented in Fig. 9.6c is occluded
by trees, which are also not included in the 3D building model. In both cases, an adaption of
existing algorithms to detect non-predictable occlusions [Böhm, 2004; Abdelhafiz & Niemeier,
2009; Abdelhafiz, 2009; Bénitez et al., 2010] could be implemented.

Figure 9.6: Examples of textures with external occlusions: a) test area with textures with highlighted exam-
ples of non-predictable occlusions; b) texture occluded by chimneys; c) texture occluded by trees.

9.3 Discussion on Windows Detection

The initial results on window detection in airborne thermal textures showed that the quality of
those textures, particularly in terms of contrast and resolution, as well as smoothed edges, make
detection difficult. Using local dynamic threshold, it was possible to find a sufficient number
of candidates (Tab. 8.8), but the algorithm did not succeed in confirming them with the corner
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detector (masked correlation). Only the detection in Façade 4 was successful because this façade
is directed to the south, and the measurement was carried out in the early afternoon. The contrast
was increased because the sun reflected off the window panes.

In contrast to the results of the airborne textures, detecting windows in the terrestrial textures
was more successful. Here, the local dynamic threshold made it possible to extract appropriate
candidates for windows. This segmentation technique helped to bridge the different appearances
caused by various objects reflected in window panes. Masked correlation and geometric constraints
made it possible to refine the position of each window. Using the mask, which switches off
irrelevant parts of the window, and searching for intensity changes in the image around the
window corners delivers promising results; however, the mask applied in this research did not
match all possible window shapes. Occlusions by trees, traffic signs, and lights, as well as by
other buildings, also made window detection difficult. Thus, more research on occlusion free
texture extraction is needed.

The achieved results of window detection in terrestrial TIR textures were satisfying: about
70% completeness and correctness. However, the results on window detection presented in this
thesis should be seen as pre-processing step, which can still be improved using detection methods
based on stochastic processes. The low completeness of the results (26% for airborne data and
66% for the terrestrial data) means that several windows remained undetected. This would be
disadvantageous for visual perception because irregular structures can be easily noticed by human
observer (8.18). However, the goal of window detection in this thesis was to identify and exclude
areas that are useless for thermal inspections. Detected windows can be used to indicate heat
leakage from radiators, which are often placed below the window. With regard to this goal, even
a few detected windows can be helpful for further analyzing of the thermal textures.

The size of the detected windows was overestimated in most cases (Tab. 8.10). This can be
due to the fact, that some windows are framed by another material that can be recognized as
window frame by the proposed algorithm.
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10 Conclusions and Outlook

In this chapter, the thesis is summarized, the contribution of the presented work is emphasized
and potential topics for future work are outlined.

10.1 Summary

This dissertation has investigated the potential of utilizing thermal infrared image sequences taken
from a flying platform in urban areas for building texturing and its application for the thermal
inspection of buildings. The main objective has been to develop a methodology that makes it
possible to extract the best quality textures by emphasizing the geometric quality of the textures.
Therefore, the most important part of the thesis has elaborated on the co-registration of 3D
building models and TIR images. The presented methodology is suitable for single images, but it
can also be used to take advantage of image sequences. For this purpose, a tracking strategy has
been developed. Since a good fit between the textures and the model does not depend only on
the co-registration, but also on the geometric accuracy of the model, typical problems and errors
in 3D building models were discussed. A solution for overcoming model inaccuracies using local
matching for each edge separately has been suggested; however, as alternative option, improving
the model’s geometry has been considered. Some attention has also been paid to best texture
selection where the main indicators for the quality are resolution and distortion due to an oblique
view. Quality measures assessing the matching quality have also been introduced. In addition, a
first attempt to detect objects in the thermal textures has been presented and discussed.

The tests showed good results on co-registration, particularly in cases where tracking between
the neighboring frames had been applied. Local matching also improved the fit between the image
features and the model edges which enabled better fitting textures to be extracted. However, these
extracted textures have a low resolution and contrast, which, unfortunately, makes it difficult to
use them for object detection which would be an important contribution to automatic thermal
building inspection.

10.2 Contributions of the Work

Thermography: This work contributes to thermography by investigating the usefulness of
thermal imagery taken from a flying platform for the thermal inspection of buildings.

Photogrammetry: This work contributes an innovative formulation of the model-to-image
problem using linear features and projective geometry. This innovation adapts the estimation
method proposed by Meidow et al. [2009b] in terms of the definition of an appropriate functional
and stochastic model. In addition, the optimal pose estimation proposed by Meidow et al. [2009b]
was extended using an outlier detection algorithm.
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3D Building Modeling: This work contributes to building modeling in terms of the en-
richment of 3D building models with thermal textures. Moreover, a concept for storing some
information, such as permanent occlusion in the form of binary textures was also presented. Fi-
nally, possible ways to store geometry of neighboring building and the most advantageous solution
for texture mapping was selected and implemented in CityGML code were discussed.

At the beginning of the thesis, three research questions were asked.

Will co-registration results significantly improve if uncertainties of 3D models and
of image features are considered in the estimation?
The results of this study did not show significant improvement in the fit between the projected
model and the image when uncertainties were considered in the estimation. The fit, however, was
improved by conditioning the coordinates in the method using homogeneous coordinates and the
Gauss-Helmert model. Additionally, considering uncertainties in the estimation is advantageous
because the stochastic model can be formulated, making it possible to implement the outlier
detector within the estimation and remove faulty observations. The co-registration results strongly
depend on the correctness of the correspondences. Taking uncertainties into account makes it
possible to remove incorrect correspondences in an effective, universal, and mathematically correct
way. Considering uncertainties in the estimation, therefore, indirectly improves the co-registration
results.

To what extent does line tracking support model-to-image matching?
Tracking lines from frame to frame facilitates faster model-to-image assignments than running
the whole procedure of model-to-image matching in each frame. Tests showed that even a simple
tracking method using cross correlation is reliable enough to estimate the exterior orientation
parameters of the camera based only on the tracked lines. The full model-to-image matching has
to be carried out in the first frame and then in the key-frames. The experiments did not show
a dependency between the key-frame interval and the accuracy of the matching. The interval,
therefore, can be set relatively high (20 frames or more). Using the key-frames for initialization,
control, and quality assessment could also be considered. The camera pose estimation could only
be conducted by line tracking; however, this can only be achieved in cases when the overlap
between the frames is very large.

What is the potential for the textures extracted from airborne thermal images to be
used for window detection?
Window detection in airborne thermal textures is a challenging task, as seen in the first results.
Two problems arose in this study. First, it was difficult to find correct candidates for windows
using the segmentation with a local dynamic threshold. Second, extracting window corners and
window edges in order to find the exact shape of the window was difficult because of the smoothed
edges, as well as the low contrasts and low resolutions of the airborne thermal textures. The
correctness of 63% is a moderate success for the first results, but the completeness of 26% falls
below expectations. Moreover, it is important to point out that these values differ significantly,
depending on the façade. The detection showed much better results for façades that were exposed
to the sun than façades that were facing another direction. The higher degree of completeness and
correctness for façades directed towards the sun is related the fact that the window panes reflect
light. Although sun reflections are undesirable for thermal inspections, they helped to better
detect the windows in this experiment. Tests with terrestrial data showed that correctness and
completeness could be improved by using a higher resolution of the textures; however, this method
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also contains unsolved problems, limiting the completeness of the detection to 50%. Overcoming
these difficulties should be subject of future work.

10.3 Future Work

The findings of this thesis have yielded a number of potential topics for further research:

- Visibility check for lines: In individual cases, the current implementation the visibility
check algorithm for lines leads to the incorrect identifications of invisible lines related to numerical
errors. In the future, more research on how to avoid this problem is needed. Moreover, an
algorithm to remove densely projected lines should be developed in order to avoid wrong line
correspondences and to reduce unnecessary computational effort.

- Tests with other platforms: Using a helicopter to acquire data allows for more payload,
which means larger cameras and the combination of many sensors, but usage of this platform is
expensive and requires complicated procedures before the flight departs. In the last few years,
unmanned aerial vehicles (UAVs) have become more and more popular. There are already good
quality TIR cameras available that can be mounted on a UAV and used to thermally inspect a
building. UAVs are flexible in terms of acquisition trajectory and they can be flown closer the
building so thatthe whole façade can be taken in one picture. This makes texture extraction
easier than in case of terrestrial imagery.

- Tests in other scenes: The developed methodology is not restricted to outdoor scenes. It
should also be tested in indoor environments. Indoor thermal textures would allow for advanced
investigations of buildings, making it possible to understand the complex dependencies of heat
circulation in a building. Also, combining indoor and outdoor thermal textures with a 3D GIS
including additional information of the buildings such as heating supply data [Kaden & Kolbe,
2013] could be investigated.

- Tests with other sensors: The presented methodology for co-registration could also be
adapted for visible data. This would make it possible to test this methodology in further appli-
cations, such as indoor navigation or autonomous flying. Also, combining multiple data sets with
3D models can enhance scope of analysis and object detection.

- Improvements of co-registration and tracking: The presented method can only deal
with geo-referenced data; therefore, in the future, a strategy for analyzing data without the initial
position information should be developed. For this purpose, calculating vanishing points can be
utilized in order to recover the orientation angles. Also, relational matching can be tested as a
method to help find approximated exterior orientation parameters. Neighboring frames should
be employed in the adjustment to improve the relative orientation of the sequence. This should
stabilize the model-to-image matching by reducing the movements of the camera.

- Rolling shutter: In the future, more attention should be paid to the rolling shutter effect.
This phenomenon should also be taken into consideration in the adjustment. Typically, the TIR
cameras read out the measured radiation row-wise. If the camera is moving, each row is read at
a different point in time, and therefore at a different position, which should be accounted for in
the geometrical model used for estimation.
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- Improvements in model geometry: Line tracking through the image sequence delivers
correspondences between the line segments in different frames. The links between the image lines
in neighboring frames should be used to improve the geometry of the 3D building models. This
can be achieved by formulating conditions for 3D planes based on the fact that two crossing 3D
planes A1 and A2 produce a 3D line L such that L = A1 ∩A2, where ∩ is the meet operator.
The projection can then be written as Q(A1 ∩ A2) = l, where Q is the projection matrix for
lines. This condition, together with parallelism and orthogonality conditions for planes, can be
used to estimate the plane parameters in the 3D model, and improve the 3D model as shown
in Fig. 10.1. However, defining the building type and all the conditions automatically is very
challenging, especially for complex scenes, such as the presented test area because buildings that
do not share the same shape are merged and there is a high grade of occlusion.

Figure 10.1: Improvement of the 3D geometry of the building models: a) flat roof; b) hip roof.

- Un-modeled occlusions: Further challenges include occlusions caused by vegetation or
un-modeled buildings; therefore, in the future, the exterior occlusions should be detected and
handled beside the self occlusion caused by the 3D building model. The point cloud created in
the Structure-from-motion algorithm or acquired by a laser scanner can be utilized for this task.

- Improvements of window detection: In further studies, the presented method for window
detection should be integrated into a stochastic process for determining the probabilities of window
positions. The presented geometric constraints could then be described by a likelihood, which
would also allow exceptions from a typical case. By applying this solution, rows with different
window sizes could also be modeled.

There were already attempts to improve the results presented in this thesis for the terrestrial
textures using a production system [Michaelsen et al., 2012]; however, due to the geometric distor-
tions of the textures, the applied methodology based on a GESTALT-system [Michaelsen, 2004]
failed to detect most of the windows (Fig. 10.2). In this study, two production systems, ”win-
dow first” (Fig. 10.2b) and ”row first” (Fig. 10.2c), were implemented. Both systems, however,
delivered similar results.

The motivation for window to be able to identify regions that are not useful for thermal
inspection because of light reflecting off window panes. In such a case, the precise size and shape
of the detected windows are not as important as the fact that false hot spots on the window
pane are excluded from further processing. Also, the correctness of the results is more important
than the completeness. If a window was skipped by the detector due to the similarity to the
background, it does not influence further processing. It is important, however, that the other
hot spots, which are of particular importance for the thermal inspections, are not recognized as
windows. Especially challenging is separating the hot spots reflected off the window pane and
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Figure 10.2: Detection of windows using a production system: a) extracted primitives (corners); b) result
with ”windows first” productions; c) result with ”rows first” productions

the hot spots below the window. To prevent classifying these regions as part of the windows,
the window model could be extended with a heating in the bottom. The façade could then be
classified simultaneously in a window class and a heating-hot-spot class by taking the contextual
information of the scene into account.

Another possibility for improving the results of window detection is to use laser point clouds
to determine candidates for windows [Tuttas & Stilla, 2011]. Moreover, the window model should
be extended so that more shapes are allowed. For example, arcs in the upper part of the window
were not considered in this research. This shape, however, is a common structure, particularly in
old buildings, which are often objects of thermal inspections.

- Super-resolution: Co-registration and model projection can offer accurate information
about the 3D coordinates of each pixel. Since every façade can be seen multiple times, this
information can be used to calculate super-resolution textures. In the future, their usability for
object detection should be investigated.
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Notation

Font Example Description

calligraphic letters x , L objects, such as points, lines, planes etc.

italic letters x, y, z Euclidean coordinates

upright letters x, l homogeneous coordinates

bold letters x, x vectors, in italic style for Euclidean vectors and
upright style for homogeneous vectors

sans-serif letters R, H matrices, in italic style for Euclidean matrices
and upright style for homogeneous matrices

blackboard bold letters A sets

Symbol Description

( · )T transpose

( · )−1 inverse

( · )−T transpose of inverse

∧ join operator (’wedge’)

∩ intersection or meet operator (’cap’)

× cross product

↔ correspondence

Ne( · ) Euclidean normalization

Ns( · ) spherical normalization

I n×n identity matrix

0m,n m×n zero matrix

‖x‖ norm of vector x

E expectation
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List of Terms

Term Explanation

blue spike infrared radiation with wavelength 3-4.2µm

camera coordinate system 3D Euclidean coordinate system with the origin in the projec-
tion center

camera pose exterior orientation of the camera

co-registration transformation of two datasets in one coordinate system

direct geo-referencing geo-referencing based on navigation data

geo-referencing aligning image data to a world coordinate system

face a single 3D polygon which is part of a 3D building model

façade structures structures that can be recognized in the building façade includ-
ing doors or cornice; in this thesis also thermal leakages

frame a single image from an image sequence (video)

frame rate the frequency of delivering a frame by a camera

long wave infrared (LWIR) infrared radiation with wavelength 7-14µm

red spike infrared radiation with wavelength 4.2-5µm

texture a raster assigned to a surface of a 3D model

texture extraction selection and assignment of image regions to model polygons

thermal infrared (TIR) infrared radiation with wavelength 3-14µm

thermal leakage a weak spot in the building hull with a high heat loss

viewing angle the angle at which an object is observed by the camera
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List of Abbreviations

Abbreviation Description Page
2D two-dimensional 19
3D three-dimensional 9
ALS airborne laser scanning 19
ARTIST Automated Rapid Thermal Imaging Systems Technology 14
BIM Building Information Models 9
B-rep Boundary Representation 61
CityGML City Geography Markup Language 21
CSG Constructive Solid Geometry 61
DGPS differential global positioning system 18
DLT direct linear transformation 21
DTM digital terrain model 13
eTRIMS E-Training for Interpreting Images of Man-Made Scenes 25
ExtOri exterior orientation of the camera 16
GIS geographic information system 10
GPS global positioning system 18
GPU Graphics processing unit 23
GSD ground sample distance 71
HEAT Heat Energy Assessment Technologies 14
HRSC High Resolution Stereo Camera 15
ID identifier 96
INS inertial navigation system 18
IR3D a project at Fontazione Bruno Kessler dedicated to thermal

building inspections
13

LiDAR Light Detection And Ranging 25
LoD Level of Detail 16
rjMCMC reversible jump Markov chain Monte Carlo 25
ML3DImage Multi Layer 3DImage 23
RANSAC RANdom SAmple Consensus 21
RGB red green blue 13
ROI region of interest 80
SAR Synthetic Aperture Radar 15
TIR thermal infrared 9
TUM Technische Universität München 13
SAMATS Semi-Automated Modeling and Texturing System 15
UAV unmanned aerial vehicle 9
VIS visible 14
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6.2 Examples of façades with windows in oblique airborne TIR images . . . . . . . . . . . . . . 79
6.3 Examples of windows in terrestrial TIR textures and in terrestrial VIS textures . . . . . . . . 79
6.4 Window modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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