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Abstract

In this thesis, pattern formation in oscillatory media with a nonlinear global coupling
is investigated. Predominant patterns are cluster states and so-called chimera states,
i.e., the coexistence of synchronized and desynchronized regions. Two types of cluster
states are found that give rise to two distinct chimera states. One of these types of
cluster and chimera states reproduces experimental results. We perform a bifurcation
analysis of the cluster states and identify the prerequisites for the chimera states.
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Chapter 1

Introduction

An der Schwelle jeder wissenschaftlichen
Betrachtung der Welt steht die Verwunderung.

(Wilhelm Röpke)

In 1976, Robert M. May, a physicist and biologist, realized in a seminal article pub-
lished in Nature [1] that knowing the complexity of dynamics a simple nonlinear
equation can exhibit is of great importance to everyones life. As he wrote, fo-

cussing on linearized theories even in University courses, ”ill equips the student to
confront the bizarre behaviour exhibited by the simplest of discrete nonlinear sys-
tems” [1]. Solving a linear system can be done by breaking it into parts, and solving
each part separately, like solving a partial differential equation in Fourier space for
each Fourier mode uncoupled from the other modes. Recombination of all parts then
yields the answer; thus, we can say that in a linear system the whole is equal to the
sum of its parts. Incorporating a nonlinearity in the system leads to a dramatic change
as the principle of superposition fails [2]. Considering a reaction-diffusion system the
impact of this becomes obvious: Solving a system with a homogeneous dynamics con-
sisting only of linear terms, yields spatial Fourier modes, which either grow or decay,
nothing else can happen (except, of course, in the special case of neutral stability). In
order to observe temporally stable patterns or even complex spatio-temporal behavior
emerging, we need higher order terms to stabilize linearly unstable modes and, being
at the heart of complex spatio-temporal behavior, higher order terms couple the spatial
Fourier modes. We see that without nonlinearities life would not only be totally boring,
it would not even be possible.

In fact, we need pattern formation at the very beginning of our existence in the
process of morphogenesis. Out of nearly homogeneous tissue spatial patterns of tissue
structures need to arise [3] to form shapes and functioning structures like organs.
One possible mechanism capable of creating basic patterns is the so-called Turing
mechanism, after Alan M. Turing, who described it already in 1952 [4]. A Turing
pattern, i.e., a stripe- or spot-like pattern, arises when the diffusional coupling yields
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1 Introduction

an instability of the homogeneous state, which is counterintuitive as diffusion normally
tends to homogenize a system. Further examples of pattern formation are given by
observations of Lechleiter et al. in 1991, indicating that the intracellular milieu of
Xenopus laevis oocytes behaves like a regenerative excitable medium [5]. They found
the spontaneous emergence of plane and spiral calcium waves in stimulated oocytes.

But pattern formation is not resctricted to the early stages of life. In the heart muscle
electrical turbulence can be observed [6, 7]. Spiral waves and their break-up could
be observed in cardiac tissue and these phenomena could be explained from a solely
dynamical point of view. Thus, for example, the spiral break-up is not triggered by
inhomogeneities in the system, but rather arises via a dynamic instability. As a spiral
wave in the electrical activity in the heart muscle is related to ventricular tachycardia
and spiral turbulence to ventricular fibrillation [7], understanding these phenomena is
the important first step in finding mechanisms to bring the heartbeat back to a normal
rythm.

A study in this direction was performed by Garfinkel et al. who could successfully
control chaotic cardiac arrythmia in rabbit hearts [8]. They could achieve this via a
chaos control scheme that exploits the knowledge of chaotic systems and is not just
a rude overwriting of the chaotic signal with a simple periodic stimulation. In fact,
simple periodic stimulations failed in controlling the chaos.

Finally, the application of pattern formation and nonlinear dynamics to neural net-
works is important to understand neural function and disfunction [9]. We will come
back to that point later, when considering the relation between unihemispherical sleep
and so-called chimera states found in networks of oscillators.

All these examples immediately show that there is a need for model systems to
study nonlinear dynamics in complex, pattern forming systems. Such a model system
is the catalytic oxidation of carbon monoxide on a platinum surface in UHV [10]
exhibiting a variety of patterns, like spiral waves, pulses, solitons, target patterns
and turbulence. Another model system is the Belousov-Zhabotinsky reaction, which
became a prototypical system for the study of spiral dynamics, but gives also rise to
standing, irregular and localized clusters under global feedback [11, 12].

In this thesis we model the photoelectrodissolution of n-type silicon and demonstrate
that it exhibits a wealth of spatio-temporal dynamics. It is a relatively easy-to-handle
experiment, rendering it a convenient model system to study pattern formation. Pat-
terns form in the thickness of an oxide-layer on the silicon working electrode, which
can be spatially resolved in two dimensions. First experimental studies of this pattern
formation have been published in 2009 by Miethe et al. [13]. In this article, the authors
also proposed a generic model to simulate the dynamics, based on the fact that the basic
oscillation arises via a Hopf bifurcation [14] (note that the detailed physical mechanism
for the oscillation is still unresolved). Thus, they made their ansatz with a complex
Ginzburg-Landau equation (CGLE), as this constitutes the normal form in the vicinity
of a Hopf bifurcation for a reaction-diffusion system. Additionally, there is a second
important feature in the experimental dynamics one has to capture with the model:
for many parameter values the spatially averaged oxide-layer thickness exhibits a har-

2



monic oscillation with preserved amplitude and frequency. To account for this peculiar
property, a nonlinear global coupling was introduced in the CGLE, yielding a modi-
fied complex Ginzburg-Landau equation (MCGLE). The resulting model, considered
in one-dimensional space, already captured cluster dynamics very well [13, 15].

At this point, we start our investigation. Performing extensive simulations of the
MCGLE, now in two spatial dimensions, we identify two hierarchies of symmetry-
breaking dynamics. Starting from two types of cluster patterns, i.e., patterns consisting
of different synchronized, but phase-shifted regions, for each type we find a transition to
a so-called chimera state, with different qualitative features. In a chimera state, a system
of identical oscillators, coupled identically and symmetrically, splits into two groups,
one oscillating in synchrony, while the other group exhibits incoherent behavior. This
phenomenon was first discussed by Kuramoto & Battogtokh in 2002 [16] and was
named a chimera state in 2004 by Abrams & Strogatz [17], referring to the chimera
in Greek mythology. In fact, such states have been observed earlier [18–20], without
pointing out its importance. Subsequently, many theoretical investigations dealt with
this topic, see for instance Refs. [21–30]. They could also be realized experimentally
in chemical, optical, mechanical and electrochemical systems [29, 31–34]. For a recent
review see Ref. [35].

It has long been thought that for the formation of chimera states a nonlocal coupling,
i.e., a coupling with a coupling range between local and global, is indispensable. In this
thesis we will question this assumption, since the nonlinear global coupling present in
our system suggests that chimera states arise also under global coupling. Furthermore,
a detailed comparison with the experimental dynamics is performed, aiming to proof
the existence of chimera states in the experiments.

Despite the above mentioned work on chimera states, concerning the prerequisites
of their existence and the mechanisms of their emergence only very little is known.
Bifurcation analysis revealed that they can emerge via a saddle-node bifurcation [17,
23, 26, 36], and they were found in maps with coupling-induced bistability [27]. First
analytical studies aiming to analyze the stability and to characterize the emergence
and dynamics of chimera states in nonlocally coupled systems in a general way are
presented in Refs. [36, 37]. In this thesis, we investigate if a clustering mechanism
observed typically in globally coupled systems is a sufficient feature, rendering chimera
states possible.

Chimera states might be of importance for some peculiar observations in different
disciplines, such as the unihemispheric sleep of animals [38, 39], the need for synchro-
nized bumps in otherwise chaotic neuronal networks for signal propagation [40] and
the existence of turbulent-laminar patterns in a Couette flow [41]. In unihemispherical
sleep, one half of the brain is sleeping (synchronized), while the other half is awake
(desynchronized) and furthermore, the hemispheres interchange their state from time
to time [38, 39, 42]. Up to now, this alternation phenomenon could only be reproduced
in models of non-identical oscillators that are grouped a priori, with different intra- and
inter-group coupling strengths, without external periodic forcing [43] and with forcing
[44]. In contrast, we present alternating chimera states emerging spontaneously in an
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1 Introduction

isotropic medium and with symmetrical and identical coupling for all oscillators.
The thesis is organized as follows: In Chapter 2 we will briefly introduce the theoret-

ical background, discuss the basic equations and outline the numerical methods used
for the simulations. Then, we will introduce the experiment and the corresponding
model, the MCGLE, in Chapter 3, discuss the spatio-temporal dynamics found and
compare experiment and theory in detail. In order to analyze the patterns found in
Chapter 3, we omit the diffusional coupling and investigate an ensemble of discrete
oscillators with nonlinear global coupling in Chapter 4. Finally, we compare the results
obtained with the discrete oscillators to the dynamcis in the MCGLE in Chapter 5 and
sum up in Chapter 6.

4



Chapter 2

Background & Methods

In this chapter the dynamical equations underlying this work together with important
analytical methods are introduced. We develop all necessary ideas step by step, but
also as brief as possible.

2.1 Stuart-Landau equation

The first equation we introduce is the so-called Stuart-Landau equation. It constitutes
the normal form for a system in the vicinity of a Hopf bifurcation, i.e., a system at
the onset of oscillations. The Hopf bifurcation is the typically observed bifurcation
leading to oscillations. Other bifurcations resulting in oscillations are the homoclinic
bifurcation, the saddle-node of infinite period bifurcation and the saddle-node of pe-
riodic orbits bifurcation. As they are more complex, they occur in situations that
are more involved. The center-manifold theorem [45] ensures that all systems in the
vicinity of a given local bifurcation behave analogously. In a high dimensional system
near a low-dimensional bifurcation like the Hopf bifurcation, this can be understood,
when looking at the timescales of the different variables. Near a bifurcation most vari-
ables will evolve on a fast timescale, allowing their adiabatic elimination. A few slow
variables will remain then, exhibiting the essential dynamics. Historically the name
Stuart-Landau equation goes back to a paper by Landau in 1944 [46] and a paper by
Stuart in 1960 [47]. Landau used an expansion in terms of an order parameter in order
to describe the onset of turbulence in fluids and obtained the principal form of the
Stuart-Landau equation. Stuart derived the Stuart-Landau equation via a perturbative
method in the context of wave disturbances in flows.

We present now two variants to derive the Stuart-Landau equation, first via a reduc-
tive perturbation method following chapter 2 in Ref. [48] and second via symmetry
considerations following Ref. [49]. The first variant enables one to derive appropri-
ate parameters and also coupling functions for extended systems, once the underlying
physical equations are known. However, the second variant underlines the importance
of symmetries near bifurcations. We will discuss this point in more detail when moti-
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2 Background & Methods

vating a modified complex Ginzburg-Landau equation for an experimental system in
Chapter 3.

2.1.1 Stuart-Landau equation via reductive perturbation method

The whole derivation follows chapter 2 in Ref. [48]. Consider a general dynamical
system

dX
dt

= F
(
X;µ

)
, i = 1, 2, . . . ,n ,

where X denotes, e.g., a vector of chemical concentrations for n different chemical
species and µ is a parameter. We assume now that the steady state X0, i.e.,

F
(
(X0(µ);µ

)
= 0 ,

looses its stability for µ > 0 via a Hopf bifurcation, giving rise to oscillations. Introduc-
ing a deviation u = X − X0, a Taylor expansion around the steady state reads

du
dt

= Lu + Muu + Nuuu + . . . . (2.1)

The Jacobian matrix L has elements

Li j =
∂Fi (X0)
∂X0 j

,

and Muu, Nuuu are vectors with elements

(Muu)i =
∑

j,k

1
2
∂2Fi (X0)
∂X0 j∂X0k

u juk , (Nuuu)i =
∑
j,k,l

1
6

∂3Fi (X0)
∂X0 j∂X0k∂X0l

u jukul .

At first order, Eq. (2.1) leads to an eigenvalue problem

Lu = λu .

Eigenvaluesλdetermine the linear stability of the steady state X0. In case of a supercrit-
ical Hopf bifurcation, a complex conjugated pair of eigenvalues crosses the imaginary
axis at µ = 0 with

dRe
(
λ(µ)

)
dµ

∣∣∣∣∣∣
µ=0

> 0 , (2.2)

while all other eigenvalues are at a nonzero distance to the imaginary axis. Near the
critical point µ = 0, we can expand the Jacobian in terms of µ:

L = L0 + µL1 + µ2L2 + . . . ,

and analogously for the critical eigenvalues

λ = λ0 + µλ1 + µ2λ2 + . . . .

6



2.1 Stuart-Landau equation

The eigenvalues are complex numbers, i.e., λν = σν+ iων. Since at the Hopf bifurcation
a complex conjugated pair crosses the imaginary axis, we have σ0 = 0 and because
of Eq. (2.2) we have σ1 > 0. Furthermore, we define U as the right eigenvector of L0,
corresponding to λ0, i.e.,

L0U = λ0U .

The deviation u has to scale at first order like
√∣∣∣µ∣∣∣, conforming the Hopf-scaling. Thus,

we introduce ε via ε2χ = µ, where χ = sign
(
µ
)
. Then, ε2 =

∣∣∣µ∣∣∣ and we can write

u = εu1 + ε2u2 + . . . ,

and
L = L0 + ε2χL1 + ε4L2 + . . . .

The critical eigenvalues λ have a small real part of O
(
ε2

)
, giving rise to a small growth

rate of the same order. Thus, it is convenient to introduce a slow timescale τ as τ = ε2t.
Then the temporal derivative in Eq. (2.1) becomes

d
dt

=
∂
∂t

+ ε2 ∂
∂τ

.

Putting things together, see chapter 2 in Ref. [48], one obtains at first order

u1(t, τ) = W(τ)Ueiω0t + c.c. , (2.3)

where c.c. stands for the complex conjugate. A solvability condition yields for the
dynamics of W(τ) on the slow timescale τ the Stuart-Landau equation

∂W
∂τ

= χλ1W − g |W|2 W . (2.4)

Here g is a complex number g = gr + igi. We can go to a description by means of
amplitude and phase via W = reiφ, yielding

∂r
∂τ

= χσ1r − grr3 ,

∂φ

∂τ
= χω1 − gir2 .

In the supercritical case (χ > 0) for gr > 0 and in the subcritical case (χ < 0) for gr < 0,
there exists a nontrivial solution, given by

r = rs , φ = ω̂τ + const. ,

rs =

√
σ1∣∣∣gr

∣∣∣ , ω̂ = χ
(
ω1 − gir2

s

)
.

7



2 Background & Methods

This is a solution to the Stuart-Landau equation for W. To obtain the solution in terms
of the original vector X, one has to use Eq. (2.3) and obtains

X ≈ X0 + εu1 = X0 + ε
(
Ursei(ω0+ε2ω̂)t + c.c.

)
,

describing an elliptical oscillation of small amplitude.
As a last step, we will rescale Eq. (2.4) to get rid of dispensable parameters. In full

length Eq. (2.4) reads

∂W
∂τ

= χ (σ1 + iω1) W −
(
gr + igi

)
|W|2 W .

By introducing τ̃ and W̃ by

τ =
τ̃
σ1
, W =

√
σ1∣∣∣gr

∣∣∣W̃ ,

we obtain
∂W̃
∂τ̃

= χ
(
1 + i

ω1

σ1

)
W̃ −

 gr∣∣∣gr
∣∣∣ + i

gi∣∣∣gr
∣∣∣
 ∣∣∣W̃∣∣∣2 W̃ .

Under the assumption of a supercritical Hopf bifurcation, i.e., χ > 0, and with gr > 0
we obtain

∂W̃
∂τ̃

= (1 + ic0) W̃ − (1 + ic2)
∣∣∣W̃∣∣∣2 W̃ ,

where c0 = ω1/σ1 and c2 = gi/gr. Finally, we transform to a rotating frame by W̃ =
Ŵ exp (ic0τ), yielding

∂Ŵ
∂τ

= Ŵ − (1 + ic2)
∣∣∣Ŵ∣∣∣2 Ŵ .

Renaming Ŵ →W and τ→ t gives the form of the Stuart-Landau equation, which we
will use in this thesis:

∂W
∂t

= W − (1 + ic2) |W|2 W . (2.5)

2.1.2 Stuart-Landau equation via symmetry considerations

Following Ref. [49] we will now briefly outline, how basic symmetry considerations
are sufficient to conclude the principal form of the Stuart-Landau equation. Let us start
with a harmonic oscillator,

dW
dt

= iω0W . (2.6)

The solution of this equation is a harmonic oscillation W = exp(iω0t) with frequency
ω0. Any oscillator, thus including the harmonic oscillator, is invariant with respect to
an arbitrary phase shift χ, expressed as

W →Weiχ .

8



2.2 Complex Ginzburg-Landau equation

The dynamical equations stay invariant under this transformation; it is in fact nothing
else than a shift in time. In order to treat now a nonlinear oscillator, we have to find
higher order corrections to the harmonic oscillation, Eq. (2.6), such that the resulting
dynamical equation still possesses phase invariance:

dW
dt

= iω0W + f (W,W∗) . (2.7)

The asterisk denotes complex conjugation. We need f (W,W∗) to satisfy

f
(
Weiχ,W∗e−iχ

)
= f (W,W∗) eiχ ,

in order to keep Eq. (2.7) invariant with respect to phase shifts. Up to third order,

f (W,W∗) = α1W + α2 |W|2 W ,

fulfills the requirements, whereas all other second or third order terms would break
the phase invariance. The parameters α1 = α1r + iα1i and α2 = α2r + iα2i are complex
numbers. Finally, we obtain the principal form of the Stuart-Landau equation:

dW
dt

= [α1r + i (α1i + ω0)] W + (α2r + iα2i) |W|2 W .

2.2 Complex Ginzburg-Landau equation

In the previous section we introduced the basic oscillator, the so-called Stuart-Landau
oscillator, constituting the normal form in the vicinity of a Hopf bifurcation. So far,
this describes only single oscillators and extended systems that perform synchronized
oscillations. To extend the scope of the model to spatially extended oscillatory media
exhibiting spatio-temporal dynamics, we have to add a diffusional coupling to the
system. This gives the picture of a medium, composed of local oscillators, interacting
diffusively. Considering an oscillating chemical reaction for example, this is reasonable,
as the oscillation will take place also, if we take a small part of the whole system and,
as chemical species can spread via diffusion, these small parts are coupled diffusively.

In order to derive now a general description of oscillatory media close to a Hopf
bifurcation, we again follow Kuramoto in Ref. [48]. We start with the general form of
a reaction-diffusion system

∂X
∂t

= F(X) + D∇2X .

If we consider now the stability of the uniform mode, we end up with an eigenvalue
problem, depending on the wavenumbers of spatio-temporal modes. Thus, one obtains
eigenvalues as for the Stuart-Landau oscillators, but every eigenvalue now forms a
branch, parametrized by the wavenumbers of modes in the system. The situation
we describe is that all eigenvalues are in the left half-plane up to µ = 0 and a pair

9



2 Background & Methods

of complex conjugated eigenvalues corresponding to the uniform mode crosses the
imaginary axis at µ = 0. Analogously to the situation of the discrete oscillator, the
deviation u(r, t) = X − X0 obeys

∂u
∂t

=
(
L + D∇2

)
u + Muu + Nuuu + . . . ,

now including the diffusional coupling. As in the case of Stuart-Landau oscillators
we have two timescales, t and the slow one τ. As we consider long wavelength
modes, since they cross the imaginay axis next after the uniform mode, we introduce
a slow space dependence s = εr. This gives also rise to ∇ → ε∇s. Analogously to the
derivation of the Stuart-Landau equation, we obtain

u1(t, τ, s) = W(τ, s)Ueiω0t + c.c. .

Finally, we obtain for W(τ, s) the complex Ginzburg-Landau equation (CGLE):

∂W
∂τ

= χλ1W + d∇2
s W − g |W|2 W .

d is a complex number, i.e., d = dr+idi, and g andλ1 are the same as in the Stuart-Landau
equation (2.4). We again rescale the equation using

τ→ σ−1
1 τ , s→

√
dr

σ1
s , W →

√
σ1∣∣∣gr

∣∣∣W ,

which yields
∂W
∂τ

= (1 + ic0)W + (1 + ic1)∇2
s W − (1 + ic2) |W|2 W ,

where

c0 =
ω1

σ1
, c1 =

di

dr
, c2 =

gi

gr
,

and we assumed a supercritical Hopf bifurcation and gr > 0. As a last step, we go to a
rotating frame and rename τ→ t, s→ r, resulting in the form of the CGLE, which we
will use throughout the thesis:

∂W
∂t

= W + (1 + ic1)∇2W − (1 + ic2) |W|2 W . (2.8)

In order to get an understanding of the influence of parameters c1 and c2 on the
dynamics, we consider plane-wave solutions of the CGLE in a one-dimensional system.
They read

WQ(x, t) = RQei(Qx−ωQt) ,

10



2.2 Complex Ginzburg-Landau equation

where

RQ =
√

1 −Q2 ,

ωQ = c2 + (c1 − c2)Q2 ,

and thus |Q| < 1. We can conclude that c2 is the frequency of the uniform oscillation
with Q = 0 and the difference c1 − c2 controls the nonlinear frequency-dispersion of
non-uniform modes with Q , 0.

Historically, the CGLE has first been derived by Newell & Whitehead in 1969, when
modelling the onset of instabilities in fluid convection [50]. In 1971, Stewartson & Stuart
extended the Stuart-Landau equation derived by Stuart [47] to capture space and time
dependence of instabilities in plane Poiseuille flow [51]. Also in 1971, DiPrima, Eckhaus
and Segel derived the CGLE in the context of general hydrodynamic stability problems,
where they performed a nonlinear analysis of disturbances to a basic flow [52]. In the
90’s a lot of studies dealt with spatiotemporal pattern formation in the CGLE, see for
example Refs. [53–64]. This list is far from being complete, but it shows already, how
much interest in the CGLE was triggered, after Kuramoto & Tsuzuki derived it for
reaction-diffusion systems [65, 66], albeit more than 15 years had to pass. Besides its
applications to reaction-diffusion systems, the CGLE can be applied to second order
phase transitions, superconductivity, superfluidity, Bose-Einstein condensation, liquid
crystals, hyrdodynamics and optical systems. For reviews on this see Refs. [48, 49, 67–
69].

Two limiting cases of the CGLE should also be mentioned. For c1, c2 →∞, the CGLE
becomes the conservative nonlinear Schrödinger equation, i.e., a Hamiltonian system.
The other limit is c1 = c2 = 0, yielding the real Ginzburg-Landau equation, which
describes stationary periodic instabilities, see again Ref. [67].

The scope of the CGLE can even be extended, by considering more general coupling
functions than the diffusional coupling, which constitutes a local, nearest-neighbor
interaction. For example, in electrochemical systems [70, 71], as well as in multicom-
ponent systems, where one fast diffusing species can be eliminated adiabatically [72],
the range of coupling can be much larger, and one obtains a so-called nonlocal cou-
pling. However, for a nonlocal coupling, the coupling strength still decreases with
the distance and it has some finite range. Another type of coupling, so-called global
coupling, does not decrease with the distance. In a system with solely global coupling,
all individual oscillators or points experience the same coupling force. This can be re-
alized for example in surface chemical reactions, where a rapid mixing in the gas phase
takes place [73, 74] and thus, changes in the local dynamics at one point on the surface
influence all other points on the surface nearly immediately. A CGLE with a general
coupling function, encompassing the above mentioned examples, can be written as

∂W
∂t

= W − (1 + ic2) |W|2 W + (1 + ic1)
∫

H (
∣∣x − x′

∣∣) [W(x′) −W(x)] dx′ .

11



2 Background & Methods

The function H (|x − x′|) constitutes a general coupling function.
Typically, global couplings are linear functions of state variables, like simple linear

averages. In this thesis, we go one step further and consider averages of nonlinear
functions of state variables and thus, treat a nonlinear global coupling. This becomes
necessary, when modelling the spatiotemporal dynamics in the oxide-layer thickness
during the photoelectrodissolution of n-type silicon, as we will show in the next chapter.

2.3 Complex Ginzburg-Landau equation near a 2:1 resonance

In this section, we give a very brief description of the CGLE with external resonant
forcing near a 2:1 resonance. More detailed information on this topic can be found in
Refs. [49, 75, 76]. Let us consider an extended system undergoing a Hopf bifurcation
with frequency Ω. The system is externally forced with a forcing frequency ω f ≈ 2Ω.
Then, in the vicinity of the Hopf, we can write

u = u0 +
[
Aeiωt + c.c.

]
+ . . . ,

with ω := ω f /2. For weak forcing, one obtains the forced CGLE as

∂A
∂t

= (µ + iν)A + (1 + ic1)∇2A − (1 + ic2) |A|2 A + γA∗ . (2.9)

µ describes the distance from the Hopf bifurcation and ν = Ω − ω f /2 is the so-called
detuning, i.e., the difference between the natural frequency Ω and the resonance fre-
quency ω f /2. γ denotes the forcing amplitude. The presence of the external forcing
breaks the continuous phase invariance, which is present in the CGLE. In case of a
2:1 resonance, the invariance with respect to an arbitrary phase shift is reduced to the
discrete symmetry A → eiπA. This is reflected in the occurrence of A∗ in the forced
CGLE.

Resonant solutions of Eq. (2.9) are given by stationary solutions A = Reiφ. Then, the
original variable u behaves like

u = u0 +
[
Reiφei

ω f
2 t + c.c.

]
+ . . . ,

which means that u oscillates at exactly half the forcing frequency, i.e., at ω f /2. There-
fore, these solutions are called locked solutions. They arise in a pair of saddle-node
bifurcations at γ = γb, where [76]

γb =

∣∣∣ν − µc2
∣∣∣√

1 + c2
2

,

which changes for ν < µ(c2
2 − 1)/(2c2) (for c2 > 0) to [76]

γb =
1
2

√
µ2 + (µc2 − 2ν)2 .

12
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We see that the locked solutions exist inside a tongue-shaped region defined by γ ≥ γb,
which can be called the 2:1 resonance tongue.

2.4 Numerical Methods

2.4.1 Numerical solution of the modified complex Ginzburg-Landau
equation

In this section, we will outline how the modified complex Ginzburg-Landau equation
(MCGLE), used in Chapter 3 to study pattern formation, is solved numerically, as
developed in Ref. [77]. The equation reads (cf. Eq. (3.4))

∂tW = W + (1 + ic1)∇2W − (1 + ic2) |W|2 W − (1 + iν) 〈W〉 + (1 + ic2)
〈
|W|2 W

〉
. (2.10)

Note that the nonlinear global coupling leads to a conserved mean-field oscillation,
〈W〉 = η exp (−iνt), with amplitude η and frequency ν. In general we can say about
Eq. (2.10) that its dynamics will exhibit several timescales due to the presence of the
diffusional coupling and the nonlinear terms. Thinking in terms of spatial modes,
the higher order modes will be damped on a very fast timescale, while the important
dynamics are then exhibited by the slowly evolving lower order modes. This renders
the problem stiff, as fast and slow timescales act together. Furthermore, the diffusional
coupling suggests solving the system in Fourier space rather than with finite differences
in real space, since the diffusion operator becomes diagonal in Fourier space and thus,
the modes are decoupled. But the presence of the cubic term proportional to |W|2 W
renders the problem more complex, as it couples the Fourier modes. We will see that
one can overcome this problem by using a so-called pseudospectral method. This
means that the nonlinear terms are evaluated in real space and then transformed
numerically to Fourier space, yielding decoupled equations in Fourier space. After the
next timestep has been calculated in Fourier space, one transforms back to real space
and evaluates the nonlinear term again, and so on.

The first step in solving the MCGLE is to expand W into a Fourier series,

W(x, y, t) =
∑
nx,ny

Wnxny(t)eiqnxny r ,

with qnxny =
(
qnx , qny

)T
and r =

(
x, y

)T. A typical experimental boundary condition
is the no-flux boundary condition, describing an experiment performed in a closed
cell without any incoming flow. Mathematically the no-flux boundary condition is
expressed as

∂W(x, y, t)
∂x

∣∣∣∣∣
x=±L/2

= 0 ,
∂W(x, y, t)

∂y

∣∣∣∣∣
y=±L/2

= 0 .

13



2 Background & Methods

To find the allowed wavenumbers in case of no-flux boundary conditions, let us con-
sider a one-dimensional system for simplicity. Then, we have

W(x, t) =
∑

n
Wn(t)eiqnx ,

and the no-flux boundary conditions give

∂W
∂x

∣∣∣∣∣
x=±L/2

=
∑
n,0

iqnWn(t)eiqnx

∣∣∣∣∣∣∣
x=±L/2

= 0

=
∑
n>0

(
iqnWn(t)eiqnx

− iqnW−n(t)e−iqnx
)∣∣∣∣∣∣∣

x=±L/2

= 0 .

The terms inside the parentheses have to vanish for each n separately:

iqnWn(t)eiqnx
− iqnW−n(t)e−iqnx

∣∣∣
x=±L/2 = 0

→ Wn(t)eiqnx = W−n(t)e−iqnx
∣∣∣
x=±L/2

e±iqnL =
W−n(t)
Wn(t)

.

As the last equation has to hold for all times t, there are two cases:

(i) W−n(t) = Wn(t) ⇒ e±iqnL = 1 ⇒ qn =
2πn

L
,n = 1, 2, 3, . . . ,

(ii) W−n(t) = −Wn(t) ⇒ e±iqnL = −1 ⇒ qn =
πn
L
,n = 1, 3, 5, . . . .

Thus, the allowed wavenumbers are given by

qn =
πn
L
, n = 0, 1, 2, 3, . . . ,

with an additional condition on the mode amplitudes

Wn = (−1)nW−n .

With this result we can turn back to our two-dimensional system and the ansatz reads
now

W(x, y, t) =
∑
nx,ny

Wnxny(t)eiqnxny r , qnxny =
(nxπ

L
,

nyπ

L

)T
, (2.11)

where we used the allowed wavenumbers. In the next step, we have to find the
conditions for the mode amplitudes Wnxny(t) in order to fulfill the boundary conditions.

14
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In x-direction the no-flux conditions give

∂W(r, t)
∂x

∣∣∣∣∣
x=±L/2

=
∑

nx>0,ny≥0

[ inxπ
L

Anxny(t)ei(nxπx+nyπy)/L
−

inxπ
L

Bnxny(t)ei(−nxπx+nyπy)/L

+
inxπ

L
Cnxny(t)ei(nxπx−nyπy)/L

−
inxπ

L
Dnxny(t)ei(−nxπx−nyπy)/L

]∣∣∣∣∣
x=±L/2

= 0 .

As the latter equation has to hold independently of y, for every set nx,ny the A,B and
the C,D terms have to vanish separately, yielding

Anxny(t)ei(nxπx+nyπy)/L
− Bnxny(t)ei(−nxπx+nyπy)/L

∣∣∣
x=±L/2 = 0

⇒ Anxny(t)e±inxπ = Bnxny(t)

⇒ Anxny(t)(−1)nx = Bnxny(t) .

With the same consideration for C,D and for the no-flux condition in y-direction, one
finally obtains the full conditions on the mode amplitudes:

Anxny(t)(−1)nx = Bnxny(t) ,

Anxny(t)(−1)ny = Cnxny(t) , (2.12)

Anxny(t)(−1)nx+ny = Dnxny(t) .

We see that it is sufficient to solve the equations for the A amplitudes only, as all
other amplitudes are then predicted by the boundary conditions. Now, we insert
our Fourier series, Eq. (2.11), into the MCGLE, Eq. (2.10). The exponential functions
exp(i2πnx/L) are orthogonal with respect to an integration over [−L/2,L/2]. In our case
the wavevectors read qn = nπ/L = 2πn/2L and thus we have to integrate over [−L,L].
Exploiting this fact, we obtain

∂W00

∂t
= −iνW00 ,

∂Wnxny

∂t
= Wnxny − (1 + ic1)

(
q2

nx
+ q2

ny

)
Wnxny − (1 + ic2)Gnxny , |nx| + |ny| , 0 , (2.13)

where
|W|2 W =

∑
nx,ny

Gnxny(t)eiqnxny r .

For a one-dimensional system with periodic boundary conditions, |W|2 W gives in
Fourier space

∑
n= j−k+l W jW∗kWl. Thus, this cubic term couples the modes in Fourier

space. We solve the equations by using a pseudospectral method: we Fourier trans-
form the term |W|2 W numerically, yielding Gnxny , resulting in an uncoupled system
of ordinary differential equations in Fourier space (note that the coupling is hidden
in Gnxny). We solve this system as described below, transform back to real space and
evaluate |W|2 W in real space. Then, we can again calculate Gnxny , and so on.
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But before solving the equations in Fourier space now, we have to clarify, how to
calculate the Fourier modes with qn = πn/L. The standard Fast Fourier Transform
(FFT) uses qn = 2πn/L. To use the FFT nevertheless, we incorporate a trick

qn =
πn
L

=
2πn
2L
≡

2πn
L′

,

where L′ = 2L. This means, the modes with qn = πn/L on the domain [−L/2,L/2] are
modes with qn = 2πn/L′ on the domain [−L′/2,L′/2] = [−L,L]. Thus, we simulate a
system of size L′ = 2L and enforce the no-flux boundary conditions at ±L/2 = ±L′/4
with the conditions on the mode amplitudes in Eq. (2.12). At the end of the simulation,
we omit the part of the system lying outside the no-flux boundaries. In this way, we
can make use of the computationally fast FFT.

Finally, we can solve the system of ordinary differential equations (ODEs) in Eqs. (2.13)
using a technique called exponential time stepping [78]. In order to understand how
this method works, we follow Ref. [78] and consider a general ODE

du
dt

= cu + F(u, t) ,

where c is a constant and F(u, t) contains nonlinear and forcing terms. The exact
solution of the above equation is given by

u(tn + h) = u(tn)ech + ech
∫ h

0
e−cτF (u(tn + τ), tn + τ) dτ . (2.14)

Let us write
u(tn) = un , u(tn + h) = un+1 , F(u(tn), tn) = Fn .

The idea of the method is now to approximate the function F under the integral and
here we use the approximation linear in the timestep h:

F(u(tn + τ), tn + τ) ' Fn +
Fn − Fn−1

h
τ + O(h2) .

Insertion of this approximation into Eq. (2.14) yields the formula for the exponential
time stepping [78]:

un+1 = unech + Fn
(1 + hc)ech

− 1 − 2hc
hc2 + Fn−1

1 + hc − ech

hc2 . (2.15)

Thus, we can identify the constant c and the nonlinearity F in Eqs. (2.13) as:

(i) homogeneous mode: c00 = −iν , F00 = 0 ,

(ii) other modes: cnxny = 1 − (1 + ic1)
(
q2

nx
+ q2

ny

)
, Fnxny = −(1 + ic2)Gnxny .
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Finally, we want to consider the homogeneous mode with F00 = 0. In this case, the
formula in Eq. (2.15) yields

un+1 = unec00h .

Rewriting this as
u(tn + h) = u(tn)ec00h ,

we see that the numerical solution for the homogeneous mode is exact. This is clear,
as the only approximation that has been introduced, was for the function F.

For the results presented in this thesis, we simulated the MCGLE mostly with 512x512
Fourier modes, used a computational timestep of ∆t = 0.05 and initialized the system
with a two-dimensional circular perturbation (proportional to 1/cosh(·)) and additional
noise. Note that the amplitude of the spatial average |〈W〉| is the parameter η, which is
conserved. The initial conditions are set appropriately.

2.4.2 Numerical solution of the Stuart-Landau ensemble with nonlinear
global coupling

The system of Stuart-Landau oscillators with nonlinear global coupling employed in
Chapter 4 and given in Eqs. (4.1) reads

d
dt

Wk = Wk− (1+ ic2) |Wk|
2 Wk− (1+ iν) 〈W〉+ (1+ ic2)

〈
|W|2 W

〉
, k = 1, 2, . . . ,N (2.16)

Here 〈· · · 〉 describes the arithmetic mean over the oscillator population, i.e., 〈W〉 =∑N
k=1 Wk/N. Taking the average of the whole equation yields for the dynamics of the

mean value
d
dt
〈W〉 = −iν 〈W〉 ⇒ 〈W〉 = ηe−iνt .

We solved Eqs. (2.16) using the scipy.integrate.ode() class of SciPy for Python and
chose the implicit Adams method with a timestep of dt = 0.01. Initial conditions are
random numbers on the real axis fulfilling the conservation law for the mean-field.

17





Chapter 3

Pattern formation in a complex Ginzburg-Landau
equation with nonlinear global coupling

The ability to reduce everything to simple
fundamental laws does not imply the ability to start
from those laws and reconstruct the universe. [...]
The constructionist hypothesis breaks down when
confronted with the twin difficulties of scale and
complexity. The behavior of large and complex
aggregates of elementary particles, it turns out, is
not to be understood in terms of a simple
extrapolation of the properties of a few particles.
Instead, at each level of complexity entirely new
properties appear, and the understanding of the
new behaviors requires research which I think is as
fundamental in its nature as any other.

(Philip W. Anderson)

In this chapter, we introduce the experimental system in detail. Subsequently, we
derive the modified complex Ginzburg-Landau equation to model the experiment.
After presenting spatio-temporal patterns in the model and comparing them to the
experiment, we will discuss the findings and conclusions. The experiments have been
conducted and analyzed by Konrad Schönleber and co-workers. Part of the results
presented in this chapter can be found in common publications [79, 80].

3.1 Experimental background: the photoelectrodissolution of
n-type silicon

During the potentiostatic photoelectrodissolution of n-type silicon under high
anodic voltage and in the presence of a flouride containing electrolyte, two
competing processes take place. Due to the applied potential, an electrochem-
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ical oxidation of the silicon creates an silicon oxide layer on the silicon electrode. The
flouride species present in the electrolyte consequently etch this oxide layer back, lead-
ing to a competition of oxide growth and shrinkage. The electrochemical equations for
these processes read:

Si + 4H2O + νVBh+
→ Si (OH)4 + 4H+ + (4 − νVB)e−

Si (OH)4→ SiO2 + 2H2O (3.1)

for the formation of silicon oxide (SiO2) [81, 82] and

SiO2 + 6HF→ SiF2−
6 + 2H+ + 2H2O (3.2)

describing the etching of SiO2 to SiF2−
6 , protons and water [83]. Also other flouride

species present in the electrolyte like HF−2 lead to an etching of the silicon oxide. In
Eqs. (3.1) νVB is the number of charge carriers from the valence band involved in the
oxidation reaction. The initial charge transfer of the electrochemical oxidation occurs
by the capture of a hole from the valence band resulting in νVB ≥ 1 [84]. In case of p-type
silicon these holes are always present, while in n-type silicon, which we consider here,
they have to be generated via illumination. Thus, we can already identify parameters
important for the reactions occurring. The oxidation and thus the creation of an oxide
layer is driven by the potential and needs illumination. The total etch rate depends
on the pH-value and the flourine concentration cF and might also be influenced by the
potential.

By adjusting the parameters, besides a steady state, the system can become oscil-
latory, which was described in the 1950s. A review on this topic can be found in
chapter 5 in Ref. [85]. Despite the potentiostatic control, the oscillations are expressed
in an oscillating current, accompanied by oscillations of the oxide-layer thickness with
an amplitude in the nm-range [86–90]. We will now briefly present the experimental
setup and subsequently discuss the oscillations in more detail.

3.1.1 Experimental setup

A sketch of the experimental setup is depicted in Fig. 3.1. The electrochemical cell con-
sists of three electrodes: reference, working and counter electrode. They are immersed
in electrolyte, potentiostatically controlled and there is an external resistance in series
with the working electrode (the relevance of this resistance will be discussed below).
The sample is illuminated with a laser (dashed line) through the circular counter elec-
trode. In order to obtain and keep uniform conditions at the whole working-electrode
surface, the electrolyte is stirred continuously and the counter electrode is placed sym-
metrically opposite the working electrode.

To investigate the spatial distribution of the oxide-layer thickness, a LED light beam
(dashed-dotted line) is reflected from the silicon-electrode surface. Due to reflection
the elliptical polarization of the light beam is changed in dependence on the local
oxide-layer thickness. Via an optical setup these polarization changes are converted
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LED

LASER

WERE CE

POTENTIOSTATIC CONTROL

CCD

Rext

Figure 3.1: Sketch of the experimental setup. RE, WE and CE denote reference, working and
counter electrode, respectively. The laser illuminates the silicon sample and the LED is
used for the ellipsometric imaging. Images are recorded with the CCD camera. In the
top right corner the oxide layer between the silicon on the left and the electrolyte on the
right is shown, together with the growth and shrinkage directions. Taken from Ref. [91]
(doi:10.1088/1367-2630/16/6/063024).

into intensity changes, which are finally measured with a CCD camera, yielding a
two-dimensional image of the oxide-layer thickness. This imaging technique is called
spatially resolved ellipsometric imaging and was first established by Rotermund et al.
[92]. For more details on the experimental setup see Ref. [79].

3.1.2 Homogeneous dynamics of the oxide-layer thickness

As already mentioned, for suitable experimental parameters the potentiostatic elec-
trodissolution of n-type silicon can take place in an oscillatory fashion. This oscillation
was first observed in 1958 for p-type silicon [81], where no illumination is needed.
It can be shown that in this case an external resistor in series with the working elec-
trode is indispensable for the oscillations to be stable [93]. Here, we consider n-type
silicon necessitating illumination. For high illumination intensities, the dynamical be-
havior of n-type silicon becomes equivalent to the one of p-type silicon [91, 94], as
then always enough holes as charge carriers are present. For n-type silicon in case

21
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of illumination-limited total current oscillations are also possible without an exter-
nal resistance. However, the resistance is an important experimental parameter, as it
provides a linear global coupling [95], since for a given potential the total current is
controlled.

A particular example of uniform oscillations for n-type silicon is depicted in Fig. 3.2.
In Fig. 3.2a the oscillations of the spatially averaged relative oxide-layer thickness ξ
(top) and of the current density j (bottom) are shown. Figure 3.2b presents the spatially
resolved oxide-layer thickness in two snaphots and in a one-dimensional cut versus
time, demonstrating that the whole electrode is oscillating in synchrony.
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Figure 3.2: Uniform oscillation of oxide-layer thickness ξ and current density j at a high
illumination intensity and under constant potential for n-type silicon. Parameters read:
cF = 50 mM, pH = 2.3, RextA = 2.7 kΩcm2, Iill = 3.0 mW/cm2 and U = 8.65 V vs. SHE.
(a) Oscillations of spatially averaged oxide-layer thickness ξ (top) and current density j
(bottom). (b) Spatially resolved oxide-layer thickness in two snapshots at consecutive
maxima of j (indicated by vertical lines in (a)) and a one-dimensional cut along the vertical
line in the left snapshot versus time. The intensity information recorded with the CCD
camera is expressed in the color coding. As obvious from the figures, the oscillation occurs
in a synchronized and thus uniform manner. Taken from Ref. [80].
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Figure 3.3: Hopf bifurcation in case of highly illuminated n-type silicon for increasing external
resistance Rext shown in the phase space of the mean oxide-layer thickness 〈ξ〉 vs. the
potential drop over the interface ∆Φint. Other parameters are kept constant to pH = 1,
cF = 75 mM and U = 8.65 V vs. SHE. Taken from Ref. [80].

Increasing the external resistance starting from Rext = 0 for otherwise constant pa-
rameters, reveals that uniform oscillations arise in a Hopf bifurcation [96]. In Fig. 3.3
the resultant growth of the limit cycle is shown in the phase space. At high coupling
strength, i.e., at high Rext, the limit cycle breaks down, since then no stable oxide can
be formed anymore.

So far, we considered n-type silicon with high illumination intensity, whereby high
means that always enough charge carriers are present for the electrooxidation to occur.
A second global coupling, in addition to the linear global coupling via the external
resistance, can now be realized by reducing the illumination intensity. This limits the
total current through the electrode by limiting the available amount of charge carriers.
The example in Fig. 3.4 demonstrates the nonlinear effect on the current, while the
mean oxide-layer thickness performs nearly harmonic oscillations nonetheless. Due to
the effect on the current, the dynamics experience a nonlinear global coupling, which
is weak for high illumination intensities and strong for low intensities. Note that the
full mechanism how the nonlinear coupling arises and how it could be expressed as
a mathematical coupling function is not completely clear yet. The description given
here displays our current understanding. The nonlinear global coupling renders stable
uniform oscillations without external resistance possible. They are also created in a
Hopf bifurcation when varying the illumination intensity, as demonstrated in Fig. 3.5.
In this case, the limit cycle shrinks again, when the illumination intensity drops below
a certain intermediate value. This suggests another Hopf bifurcation, when coming
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from low illumination intensities.
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Figure 3.4: Example for the effect of a limited illumination of n-type silicon on the total current

and on the mean oxide-layer thickness. The current (top) is effected nonlinearly, while the
mean oxide-layer thickness (bottom) performs a still nearly harmonic oscillation, cf. Fig. 3.2.
Taken from Ref. [91] (doi:10.1088/1367-2630/16/6/063024).

Combining both coupling mechanisms, linear and nonlinear global couplings, ren-
ders the formation of spatio-temporal patterns in the oxide-layer thickness possible.
In Fig. 3.6 a phase diagram is presented. Pattern formation can be observed for strong
nonlinear global coupling, i.e., low illumination intensity, and weak linear global cou-
pling, i.e., small Rext.

The spatio-temporal pattern formation can be monitored and investigated via the
ellipsometric imaging technique explained above. Astonishingly, for a huge parame-
ter region, the spatially averaged oxide-layer thickness exhibits persistent and nearly
harmonic oscillations, in a way as shown in Fig. 3.2a, despite the formation of patterns
in the oxide-layer thickness. In other regions of parameter space, these mean-field os-
cillations might exhibit two different frequencies or be irregular as well [91]. However,
in this thesis we restrict on the case of nearly harmonic mean-field oscillations.
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3.1 Experimental background: the photoelectrodissolution of n-type silicon

Figure 3.5: Hopf bifurcation in case of n-type silicon without external resistance for varying
illumination intensity and otherwise fixed parameters pH = 1 and cF = 75 mM. Taken from
Ref. [80].

Figure 3.6: Phase diagram: nonlinear global coupling vs. linear global coupling. The strength
of the nonlinear global coupling is measured in terms of the illumination intensity Iill, while
the strength of the linear global coupling is given by RextA. Other parameters read: cF = 50
mM and pH = 2.3. Taken from Ref. [91] (doi:10.1088/1367-2630/16/6/063024).
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3 Pattern formation in a CGLE with nonlinear global coupling

An overview of the main patterns, relevant to this thesis, is presented in Fig. 3.7.
Shown are two-dimensional snapshots of the oxide-layer thickness, visualized with
colors, and one-dimensional spatio-temporal cross sections. In Figs. 3.7a and b the
modulated amplitude cluster state is depicted. Consecutive snapshots demonstrate
that the system is split into two phases that oscillate in anti-phase. However, as
the one-dimensional cut in Fig. 3.7b reveals, these anti-phase oscillations are more
complex than one would expect from simple two-phase clusters. There is a strong
uniform oscillation present, which is modulated by two-phase clusters. These two-
phase clusters are oscillating at half the frequency of the uniform oscillation. This type
of clustering has also been termed type II clusters [13, 15, 97].

The modulated amplitude cluster state undergoes a symmetry-breaking transition.
We will discuss this transition in detail below, when considering the theoretical results.
Here, we give a brief description of the resulting states. The first symmetry-broken
state one finds, coming from the modulated amplitude cluster state, is what we call
subclustering and the dynamics of it are depicted in Figs. 3.7c and d. The snapshots
and the one-dimensional cut demonstrate that the system now splits into a homoge-
neously oscillating region and a region exhibiting two-phase clusters. These two-phase
subclusters oscillate at half the frequency of the homogeneous oscillation.

Changing parameters further one finds a more dramatic kind of symmetry-breaking.
In the state presented in Figs 3.7e and f, we observe a homogeneously oscillating region
coexisting with a region exhibiting incoherent and turbulent dynamics. Thus, this state
is an experimental realization of a chimera state.

An appropriate model has to reproduce the special type of clustering and the
symmetry-breaking dynamics. In the next section we will outline how this is achieved
with a general ansatz describing a system in the vicinity of a Hopf bifurcation. Subse-
quently, the spatio-temporal patterns found in simulations of this model are analyzed
and then compared to the patterns found in the experiments.

26



3.1 Experimental background: the photoelectrodissolution of n-type silicon

Figure 3.7: Spatio-temporal evolution of the oxide-layer thickness during the photoelectrodis-
solution of silicon: modulated amplitude clusters, subclustering and chimera state. Shown
are snapshots and one-dimensional cuts versus time, colors indicate the thickness of the
oxide layer, x and y represent spatial coordinates and t denotes time. (a,b) Modulated
amplitude cluster state, where two intermixed regions oscillate each uniformly with a
phase difference to the respective other one. (c,d) The oxide-layer thickness exhibits sub-
clustering: a stripe of two-phase clusters is embedded in an otherwise uniformly oscillating
background. The clusters in the stripe oscillate at half the frequency of the background
oscillation. (e,f) Chimera state: the coexistence of synchrony (domain in upper right cor-
ner) and asynchrony is apparent. Parameters read: cF = 35 mM, pH = 1, A = 22.73 mm2,
Rext = 40 kΩ, I ' 0.7 mW/cm2 (modulated amplitude cluster, a and b), cF = 50 mM, pH
= 2.3, A = 23.06 mm2, Rext = 0 Ω, I ' 1 mW/cm2 (subclustering, c and d) and cF = 50 mM,
pH = 3, A = 22.42 mm2, Rext = 0 Ω, I ' 0.5 mW/cm2 (chimera, e and f).
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3 Pattern formation in a CGLE with nonlinear global coupling

3.2 Theoretical modelling of experiments

The experimental system presented in the preceding section can be modelled in a very
general way. This will be summarized in what follows. From Section 3.3 on, results
obtained in the framework of this thesis are discussed.

At high illumination intensities we observe homogeneous oscillations over the entire
electrode surface. These oscillations originate in a Hopf bifurcation as described above.
Thus, in order to model this system, the appropriate normal form to start with is the
complex Ginzburg-Landau equation (CGLE) [48, 49, 67] for a complex order parameter
W(x, t)

∂tW = W + (1 + ic1)∇2W − (1 + ic2) |W|2 W . (3.3)

This equation describes all reaction-diffusion equations in the vicinity of a supercrit-
ical Hopf bifurcation. For more details and a derivation see Chapter 2. Equation (3.3)
admits plane wave solutions of wavenumber Q

WQ = RQ exp
[
i(ωQt + Qx)

]
,

with
∣∣∣RQ

∣∣∣2 = 1−Q2 and ωQ = −c2 + (c2− c1)Q2 [48, 49]. A general solution is then given
as a combination of these plane waves. This, in general, results in dynamics with an
unpreserved homogeneous mode W0 = 〈W〉. In contrast, for a huge parameter space
the silicon system exhibits conserved harmonic oscillations in the averaged oxide-layer
thickness. To achieve this in the model, the CGLE is extended in a straightforward
way by introducing a nonlinear global coupling into Eq. (3.3), leading to a modified
complex Ginzburg-Landau equation (MCGLE) [13, 15]

∂tW = W + (1 + ic1)∇2W − (1 + ic2) |W|2 W − (1 + iν) 〈W〉 + (1 + ic2)
〈
|W|2 W

〉
. (3.4)

Since we model a two-dimensional system, the complex order parameter W(r, t) is a
function of the position vector r = (x, y)T and time t. Angular brackets 〈· · · 〉 denote the
spatial average. As briefly outlined in Chapter 2, linear global couplings have been
already studied and there exist general ways in which in an experimental system a
linear global coupling arises. New is the introduction of the nonlinear global-coupling
term proportional to

〈
|W|2 W

〉
, becoming necessary due to the coupling induced by the

limitation of illumination. The total coupling is designed in such a way that, when
taking the spatial average of the whole equation, Eq. (3.4), one obtains

∂t 〈W〉 = −iν 〈W〉 , (3.5)

which results in conserved harmonic oscillations of the spatial average,

〈W〉 = W0 = η exp
[
−i(νt + φ0)

]
, (3.6)
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3.2 Theoretical modelling of experiments

with amplitude η and frequency ν. φ0 is an arbitrary initial phase. The essential
dynamical properties of the silicon system are thus met with Eq. (3.4): oscillations
arising through a Hopf bifurcation and the conserved harmonic mean-field oscillation.
In Section 3.5 we show that this general ansatz indeed captures the pattern dynamics
found in the experiments. But before, we calculate the linear stability of the uniform
oscillation in the next section. This enables us to choose a suitable parameter region in
order to observe pattern formation.

3.2.1 Linear stability analysis

For the linear stability analysis of the MCGLE, Eq. (3.4), we write W = W0(1+w), where
w is a general inhomogeneity and W0 is the homogeneous mode [15],

W0 = ηe−iνt . (3.7)

Inserting this ansatz into the MCGLE, one finds for the several parts

∂tW = −iνW0 + W0∂tw − iwνW0

∇
2W = W0∇

2w

|W|2 W = |W0|
2 W0

(
1 + 2w + w∗ + 2 |w|2 + w2 + |w|2 w

)
〈W〉 = W0〈

|W|2 W
〉

= |W0|
2 W0

〈
1 + 2 |w|2 + w2 + |w|2 w

〉
.

Putting everything together, one obtains

W0∂tw − iνwW0 = W0w + (1 + ic1)W0∇
2w

− (1 + ic2) |W0|
2 W0

(
1 + 2w + w∗ + 2 |w|2 + w2 + |w|2 w

)
+ (1 + ic2) |W0|

2 W0

〈
1 + 2 |w|2 + w2 + |w|2 w

〉
.

Division by W0 and rearranging terms yields for w,

∂tw =
(
1 + iν − 2(1 + ic2)η2

)
w + (1 + ic1)∇2w

− (1 + ic2)η2
(
|w|2 w + w∗

)
+ A ,

where we defined

A = −(1 + ic2)η2
[(

2 |w|2 + w2
)
−

〈
2 |w|2 + w2 + |w|2 w

〉]
.

We further introduce
a = 1 + iν − 2(1 + ic2)η2 (3.8)

and, since we are interested in the linear stability of the system, we neglect nonlinear
terms. Thus, we obtain

∂tw = aw + (1 + ic1)∇2w − (1 + ic2)η2w∗ . (3.9)
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3 Pattern formation in a CGLE with nonlinear global coupling

Expanding the complex amplitude w into a Fourier series under the assumption of
no-flux boundary conditions at the ends of the domain and, for convenience, consid-
ering a one-dimensional system, we have

w =
∑
n,0

wneiqnx , qn =
πn
L

wn = (−1)nw−n .

Insertion into Eq. (3.9) yields for the Fourier amplitudes wn

∂twn = wn − (1 + ic1)q2
nwn − (1 + ic2)η2(−1)nw∗n .

For wn and w∗n one finally obtains

∂t

(
wn
w∗n

)
=

(
a − (1 + ic1)q2

n −(1 + ic2)η2(−1)n

−(1 − ic2)η2(−1)n a∗ − (1 − ic1)q2
n

)
︸                                            ︷︷                                            ︸

=:J

(
wn
w∗n

)
.

The trace τ and the determinant ∆ of the matrix J are given by

τ = a + a∗ − 2q2
n

∆ = |a|2 − (1 − ic1)aq2
n − (1 + ic1)a∗q2

n

+ (1 + c2
1)q4

n − (1 + c2
2)η4 .

Using the definition of a in Eq. (3.8) one obtains [15]

τ = 2 − 4η2
− 2q2

n (3.10)

∆ = 1 + ν2 + 3η4(1 + c2
2) + (1 + c2

1)q4
n − 4η2(1 + c2ν)

+ 2q2
n

(
2η2(1 + c1c2) − (1 + c1ν)

)
. (3.11)

The eigenvalues determining the stability can now be calculated as

λ± =
1
2

(
τ ±
√

τ2 − 4∆
)
. (3.12)

Thus, the uniform oscillation becomes unstable in two cases: (i) If τ > 0 the system is
unstable, independent of the value of ∆. Then, we have

τ = 2 − 4η2
− 2q2

n > 0

⇒ η <

√
1 − q2

n

2
.

For qn = 0 we obtain the threshold ηc: whenever

η < ηc = 1/
√

2 ≈ 0.707 ,
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3.3 From cluster to chimera states: type I dynamics

the uniform oscillation becomes unstable. (ii) If τ < 0, then the determinant has to be
negative, ∆ < 0, to render the homogeneous mode unstable.

We can conclude from cases (i) and (ii) that for very high values of η the uniform
oscillation is always stable, as the η4 term in the formula for ∆ results in a positive
determinant. Furthermore, for higher order modes with qn > 1, a positive trace τ is
impossible. Also the q4

n term in the determinant gives rise to positive ∆ at large values
of qn. Thus, higher order modes are always damped, which is important, since in
numerical simulations performed in Fourier space, which is also the case in this thesis,
very high modes are neglected.

We are now aware of the parameter regions, in which the uniform oscillation is
unstable and where hence pattern formation can be expected. In the next sections, we
present two hierarchies of dynamics found in simulations of the MCGLE. Subsequently,
we will compare one of the two types to the patterns found in the experiments.

3.3 From cluster to chimera states: type I dynamics

The first type of dynamics we present are patterns related to well-known amplitude
clusters [98]. The dynamics of such amplitude clusters is visualized in Fig. 3.8a in a
two-dimensional snapshot showing

∣∣∣W(x, y)
∣∣∣ (left), a one dimensional cut as indicated

in the snapshot versus time (middle) and a snapshot of the arrangement of the local
oscillators in the complex plane (right). Parameters read c1 = 0.2, c2 = 0.56, ν = 1.5
and η = 0.9. Thus, the trace τ is negative in Eq. (3.12) and the determinant ∆ renders
the system unstable. Amplitude clusters consist of regions separated mainly by an
amplitude difference. Both groups oscillate, with a small phase difference to each
other, at constant, but different amplitude.

Changing parameter c2 to c2 = 0.58, we obtain symmetry-breaking dynamics, as
shown in Fig. 3.8b. Synchronized regions of constant amplitude coexist with regions,
where amplitude waves are emitted from the boundaries and from amplitude-spiral
cores. The amplitude spirals are visible in the two-dimensional snapshot. Interestingly,
there is no amplitude defect in the spiral core and the spiral dynamics take place in a
very curved and confined region. In typical reaction-diffusion systems, the amplitude
drops to zero in the center of a spiral, constituting an amplitude defect. This is
reasonable as in the spiral center the phase jumps. Furthermore, spiral dynamics
are typically strongly present in the phase variables, while they are less pronounced
in the amplitudes. Here, dynamics are mainly found in the modulus, while the phase
hardly exhibits any spatial pattern, its more or less uniform in the two regions, with
a small phase shift between the regions. This is also obvious from the arrangement
in the complex plane. In the amplitude cluster state in Fig. 3.8a, the two groups of
oscillators reside at the two ends of the string visible in the complex plane. Going to
spiral-wave like dynamics in Fig. 3.8b, the group at the lower radius desynchronizes
slightly to form a bunch. Inside the bunch the relative amplitude differences are much
larger than the mutual phase differences.
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3 Pattern formation in a CGLE with nonlinear global coupling

Figure 3.8: Type I patterns found in Eq. (3.4): snapshots of |W| (left column), one-dimensional
cuts versus time (also |W|) as indicated by the vertical lines in the snapshots (middle column)
and snapshots of the arrangement of local oscillators in the complex plane (right column).
(a) Amplitude clusters (c1 = 0.2, c2 = 0.56, ν = 1.5, η = 0.9). (b) Coexistence of synchrony
and spiral-wave like dynamics. Waves are emitted from the region boundaries and from
the spiral cores (c1 = 0.2, c2 = 0.58, ν = 1.5, η = 0.9). (c) Type I chimera state consisting
of oval-shaped regions exhibiting desynchronized behavior in an otherwise homogeneous
background. (c1 = 0.2, c2 = 0.61, ν = 1.5, η = 1.0).

This bunch of oscillators at the lower radius desynchronizes even more when chang-
ing parameters to c2 = 0.61 and η = 1.0. Now, the symmetry-breaking is more dramatic:
Synchronized regions of constant amplitude coexist with regions displaying amplitude
turbulence, see Fig. 3.8c. This is an example for a chimera state, which is mainly present
in the modulus dynamics. Dynamics in the desynchronized regions are reminiscent of
intermittent behavior in the standard complex Ginzburg-Landau equation [57]: homo-
geneous spots pop up in an irregular manner, vanishing slowly afterwards. Amplitude
defects do not occur. One observes a slight oscillation in the amplitude of the homo-
geneous part and this seems to be connected to size oscillations of the desynchronized
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3.3 From cluster to chimera states: type I dynamics

regions, as visible in the one-dimensional cut. Furthermore, in both, the spiral-wave
like dynamics and the chimera state, the dynamics in the incoherent regions are over-
layed by an overall oscillation, washing out the patterns repeatedly. However, it does
not seem that the dynamics are resetted, but rather the visualization becomes blurry.

Type I chimeras are related to amplitude clusters, as the two groups in both states
are separated by an amplitude difference. Thus, the clustering mechanism is needed to
yield two separated groups in order to obtain the dynamics presented here. Then, the
symmetry is broken due to nonlinear amplitude effects: since the response on a force
depends on the amplitude of the oscillator, the response is different in the two groups
at different moduli. As we will see in Section 3.4, the modulated amplitude clusters
give rise to a second type of chimera states.

3.3.1 Type I chimeras under linear global coupling

Figure 3.9: Type I chimera state in a CGLE with linear global coupling, given in Eq. (3.13).
Shown are a two-dimensional snapshot of the modulus (a), a one-dimensional cut of the
modulus versus time (b) and the arrangement of local oscillators in the complex plane (c).
Parameters read c1 = 1.2, c2 = 1.7, K = 0.67 and c3 = −1.25.

Interestingly, one finds type I chimeras also in a CGLE with linear global coupling:

∂W
∂t

= W − (1 + ic2) |W|2 W + (1 + ic1)∇2W + K(1 + ic3) (〈W〉 −W) . (3.13)

The linear average 〈W〉 constitutes the linear global coupling, K(1 + ic3) is the complex
prefactor with parameters K and c3. Numerical results are depicted in Fig. 3.9. The
one-dimensional cut of |W| reveals that the spatio-temporal dynamics are qualitatively
the same as in the type I chimeras found in the MCGLE, see Fig. 3.8c. Moreover,
the arrangement of local oscillators in the complex plane in Fig. 3.9c resembles the
configuration in case of the MCGLE. Differences are that the incoherent domains in
Fig. 3.9a are not of oval shape and that one observes a rather irregular oscillation in
the modulus in the one-dimensional cut, instead of a more periodic one. These states
are related to chimera states found in an ensemble of Stuart-Landau oscillators with
linear global coupling [99]. We will see in Section 4.3 that the mean-field in case of
the chimera state under linear global coupling oscillates approximately harmonically
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3 Pattern formation in a CGLE with nonlinear global coupling

and that the amplitude clusters and type I chimeras found in our model constitute
idealized dynamics of the corresponding patterns found under linear global coupling.

3.4 From cluster to chimera states: type II dynamics

For c2 = −0.7, ν = 0.1 and η = 0.66 we find a second type of cluster pattern, which is
presented in Fig. 3.10a. Note that here we plot the real part of W in the snapshots, as both
the modulus and the phase exhibit significant variations in case of the type II dynamics.
The system again splits into two phases, but the one-dimensional cuts versus time show
that the dynamics are more complex than in case of amplitude clusters. We observe an
overall uniform oscillation, which is modulated by two-phase clusters. Thus, we call
this type of clustering modulated amplitude clusters, as the clusters are a modulation
of the amplitude of a uniform oscillation. The modulational oscillations can be seen
best in the one-dimensional cut of |W|, depicted in the right column of Fig. 3.10a. This
pattern is one of the most prominent patterns in the photoelectrodissolution of n-type
silicon [13, 15, 79, 91] and the MCGLE thus reproduces this pattern very well.

The second type of clusters also undergoes a symmetry-breaking transition [79], here
when changing c2 to c2 = −0.67, resulting in subclustering as shown in Fig. 3.10b. One
phase exhibits two phase clusters as a substructure, while the other one stays homo-
geneous. The substructure-clusters oscillate at half the frequency of the modulational
oscillations as the cut of |W| in the right column of Fig. 3.10b demonstrates. Therefore,
we suspect the subclustering being connected to a period-doubling bifurcation.

Changing the parameter further to c2 = −0.58 the symmetry-breaking becomes again
more dramatic: the beforehand existing two-phase subclusters turn into turbulence,
thus realizing a second type of chimera states, see Fig. 3.10c. We could not resolve,
whether the transition from subclustering to the chimera state is a period-doubling
route to chaos or the breakdown of a 3-torus [100]. Both seems to be reasonable.

At this point, we have to emphasize the connection to the photoelectrodissolution
of silicon, since this second type of chimera states can be observed in experiments, too
[79, 91]. We compare the simulations and the experiments in detail in the next section.

In type II states, the specific interaction between the two phases via the nonlinear
global coupling leads to a symmetry-breaking transition, as we will show in the follow-
ing. Let us call the two phases A and B, respectively. Simulations show that the system
evolves according to a minimization of the interface between A and B. This leads to
a demixing of the phases. Long-term simulations for a modulated amplitude cluster
state and a chimera state are shown in Figs. 3.11a and b, respectively, demonstrating
that the phase boundary eventually becomes straight. As the diffusional coupling be-
tween A and B acts only near the boundaries, for large domain sizes it can be neglected.
Under this assumption, the dynamics in each phase is governed by

∂tWX(r, t) = WX(r, t) + (1 + ic1)∇2WX(r, t) − (1 + ic2) |WX(r, t)|2 WX(r, t) + Z(WA,WB) ,

where X = A, B and Z(WA,WB) is the coupling between A and B and has to be deter-
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3.4 From cluster to chimera states: type II dynamics

Figure 3.10: Type II patterns found in Eq. (3.4): two-dimensional snapshots of Re W in left
column, one-dimensional cuts of Re W in middle column and of |W| in right column. (a)
Modulated amplitude clusters (c1 = 0.2, c2 = −0.7, ν = 0.1, η = 0.66). (b) Subclustering,
where one phase is synchronized, while the other one exhibits two-phase clusters as a
substructure (c1 = 0.2, c2 = −0.67, ν = 0.1, η = 0.66). (c) Type II chimera (c1 = 0.2, c2 = −0.58,
ν = 0.1, η = 0.66).
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3 Pattern formation in a CGLE with nonlinear global coupling

Figure 3.11: After long simulation times the boundaries between the phases in case of modu-
lated amplitude clusters (a) and type II chimera states (b) become approximately straight.
Simulation times are indicated in the figures. Note that the chimera state shown here is
in fact an alternating chimera state, cf. Section 3.6. Parameters read: c1 = 0.2, c2 = −0.7,
ν = 0.1, η = 0.66 (modulated amplitude cluster, a); c1 = 0.2, c2 = −0.64, ν = 0.1, η = 0.66
(type II chimera, b). I thank Sindre W. Haugland for providing these figures.

mined. Exploiting the conservation law for the homogeneous mode, one finds

Z(WA,WB) = −(1 + iν)η exp(−iνt) + (1 + ic2)
1
2

(〈
|WA|

2 WA

〉
+

〈
|WB|

2 WB
〉)
.

We can further write for the spatial averages over phases A and B, RA exp (−iα) ≡〈
|WA|

2 WA

〉
and RB exp

(
−iβ

)
≡

〈
|WB|

2 WB
〉
, respectively, and K exp

(
iγ

)
≡ (1 + ic2)/2,

where γ = γ(c2). With the phase difference ∆φ ≡ β − α between A and B, one can now
show that the intra-group coupling differs from the inter-group coupling. Note that
∆φ is generally unequal to π for the dynamics we consider here. One obtains in terms
of α

Z(WA,WB) = −(1 + iν)ηe−iνt + KRAei(γ−α) + e−i∆φKRBei(γ−α) .

We see that phases A and B experience each a different influence from the intra- and
inter-group couplings. This is not due to a difference in coupling strength defined
a priori, but is the result of the intrinsic dynamics causing the phase difference. As
studies of two subpopulations in Refs. [23, 31] with global intra- and inter-group
couplings of different strength show the existence of chimera states, we conclude that
the similar situation arising here renders the emergence of chimeras possible. The
coupling can be tuned with the parameter c2, where the influence is different on inter-
and intra-group coupling if ∆φ depends also on c2, which is a reasonable assumption.
Note that these considerations in principle also apply to type I chimeras. However, we
think that the difference in the mean amplitudes between the groups is more important
in case of type I chimeras, since, due to nonlinear amplitude effects, the response on a
force depends on the actual amplitude and thus, the response differs in the two groups.
This strongly breaks the symmetry between the two groups.
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a

b

Figure 3.12: Cumulative power spectrum in (a) and phase histograms for the Fourier amplitudes
a(r, ω) at the highest peak in (b) and at the second highest peak in (c), which are indicated
by circles in (a).

The observations above rationalize the symmetry-breaking. Now, we analyze the
frequency spectrum of the type II chimeras. Therefore, we perform a Fourier trans-
formation in time of the real part of W(r, t) at every point r = (x, y) [13]. We spatially
average the resulting squared amplitudes |a(r, ω)|2 to obtain the cumulative power
spectrum S(ω) =

〈
|a(r, ω)|2

〉
. The resulting spectrum for the simulation presented in

Fig. 3.10c is depicted in Fig. 3.12a. Due to the turbulence in the incoherent phase it
consists of a large background, but exhibits also two major peaks, marked with circles.
The highest peak is at the frequency ν of the mean-field oscillation, see Eq. (3.6). The
second highest peak stems from the clustering frequency: as outlined above, in the
modulated amplitude clusters one observes two major frequencies, one of the homo-
geneous oscillation and one as a result of the modulational oscillation. In the type II
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3 Pattern formation in a CGLE with nonlinear global coupling

chimera, the separation into two different phases occurs via this clustering mechanism
and therefore, some properties of it are still present. This becomes more clear, when
inspecting the Fourier amplitudes a(r, ω) at the two highest peaks, which consist of
moduli and phases. The distribution of phases of the local oscillators at the two peaks
is shown in histograms in Figs. 3.12b and c. At frequency ν, Fig. 3.12b, the existence of
only one, sharp peak demonstrates that all local oscillators perform the homogeneous
oscillation in synchrony. The histogram for the second highest peak at ω ≈ 0.31 re-
veals that the clustering mechanism is still active: we encounter two peaks for the two
groups, which are phase shifted by π, indicating that at this frequency the clustering
occurs. The left peak is sharp and describes the synchronized oscillators, while the
right peak has a Gaussian-like shape, thus, describing the incoherent oscillators.

The type II dynamics presented in this section are in fact the type of patterns that
are also found in the experiments. Therefore, we compare simulation results and
experimental results in detail in the next section. Even the chimera state can be observed
in the experiments. Furthermore, in Section 4.3 we investigate the type II chimeras
also in the Stuart-Landau ensemble. We will highlight the connection to the modulated
amplitude clusters and show that the motions in the incoherent parts of both types of
chimeras are indeed chaotic.
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3.5 Experiment versus theory

3.5 Experiment versus theory

We presented two types of spatio-temporal dynamics found in simulations of the
MCGLE in the last two sections. The MCGLE was proposed as a general model
describing the dynamics during the photoelectrodissolution of n-type silicon. In this
section, we test this assumption by comparing the simulation results with patterns
found in the experiments. So far, only the type II dynamics reproduce experimental
patterns, while type I dynamics have not been found in the experiment yet. We depicted
the type II dynamics in the experiments in Fig. 3.7. We see that typical features are
similar and that we can thus identify experimental patterns with patterns found in
the MCGLE. In what follows, we will compare each of the states in detail and will
additionally have a look at spatio-temporal turbulence.

3.5.1 Cluster patterns

We found two types of cluster patterns in the simulations. Here, we will compare the
modulated amplitude clusters to experimental cluster patterns. In Fig. 3.13 we depict
the cluster dynamics in the simulations of Eq. (3.4) and the experimental ones [79]. In
Figs. 3.13a and c two-dimensional snapshots of the simulations and the experiments,
respectively, are shown. The spatio-temporal dynamics can be seen in one-dimensional
cuts in Figs. 3.13b and d for the simulations and the experiments, respectively. They
show that the homogeneous oscillation is modulated by two-phase clusters, in both
cases. Therefore, it is clear, that the phase shift between two regions is not given by π.

To analyze and compare time series of the dynamics, we perform a Fourier trans-
formation in time at every point r of the ellipsometric signal and of the real part of
W(r, t) for the experiments and simulations, respectively [13]. We spatially average
the resulting squared amplitudes |a(r, ω)|2 to obtain the cumulative power spectrum
S(ω) =

〈
|a(r, ω)|2

〉
. Results are shown in Fig. 3.14.

Two major peaks occur in both cumulative power spectra in Fig. 3.14a (theory) and
d (experiment), one at the frequency ν of the mean-field oscillation. The other one
describes the frequency of the clusters. This becomes clear when considering the
Fourier amplitudes, corresponding to these peaks, in the complex plane: At ω = ν
(Figs. 3.14b and e) all local oscillators form a bunch, while at ω ≈ ν/2 (Figs. 3.14c
and f) the oscillators arrange into two clusters, located at the endpoints of the bar
visible. Due to the diffusive coupling, the clusters are connected by an interfacial
region, leading to the intermediate oscillators of the bar. The fact that the connection
of the two clusters crosses the zero point implies that the borders between them are
Ising-type walls. As in this picture the phase shift between the two clusters is given by
π, we conclude that at this frequency the clustering takes place. Due to the Ising-type
walls, the borders are static, at least on a short time scale. In fact, on a long time scale
the borders in the simulation move, thereby reducing curvature. The experiments
cannot be performed on such a long time scale, as the basic oscillation has a period
of about 250s. Waiting for e.g. 1000 oscillations of the mean-field would take several
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3 Pattern formation in a CGLE with nonlinear global coupling

Figure 3.13: Two-phase clusters in theory (a,b) and experiment (c,d). (a) Snapshot of the
two-dimensional oscillatory medium in the theory. Shown is the real part of W. (b) Spatio-
temporal dynamics in a one-dimensional cut versus time in the theory. (c,d) The same as
(a,b) now for the experimental results. The simulation captures the experimental dynamics
very well. Note that the colorbars are different for each subfigure. Parameters read: c1 = 0.2,
c2 = −0.58, ν = 1.0, η = 0.66 (simulation) and cF = 35 mM, pH=1, Rext · A = 9.1 kΩcm2,
Iill = 0.7 mW/cm2 (experiment). Taken from Ref. [80].

days. During this timespan, it is not possible to keep the experimental parameters
constant in the present setup. In the experiments, in most cases the cluster frequency
is given by approximately ν/2. This leads to the conclusion that the clusters arise via
a period-doubling bifurcation. Contrarily, in the theory the cluster frequency can be
tuned continuously. This suggests that the modulated amplitude clusters arise in the
MCGLE in a secondary Hopf bifurcation, not in a period-doubling bifurcation. We
will investigate this question in Chapter 4. However, we cannot proof that it is a
period-doubling bifurcation in the experiments. Maybe the dynamics are confined to
a parameter region, where the clustering frequency approximately amounts to ν/2; or
cluster patterns with other frequencies are simply unstable. For better comparison of
theory and experiment, we chose the parameter values in the simulations such that the
clustering frequency also amounts to ν/2.
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3.5 Experiment versus theory

Figure 3.14: (a,d) Cumulative power spectra for simulations and experiments, respectively.
The two major peaks at ν and approximately ν/2 are indicated. The arrangement of the
local Fourier amplitudes in the complex plane corresponding to these peaks are depicted
in (b) and (c) for the theory and (e) and (f) for the experiments, respectively. The whole
two-dimensional system is considered, which leads to the scattered oscillators in the exper-
imental result in (f). Taken from Ref. [80].
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3 Pattern formation in a CGLE with nonlinear global coupling

3.5.2 Subclustering

The symmetry-breaking type of clustering found in our simulations also occurs in the
experiments. The system again separates into two regions as in the case of the two-
phase clusters, but now one region is homogeneous, while the other one exhibits two-
phase clusters as a substructure [79]. Such states were also observed in Refs. [19, 31].
Results are depicted in Fig. 3.15. Note that we present in Fig. 3.15b the modulus

Figure 3.15: Subclustering in theory (a,b) and experiment (c,d). Again snapshots (a,c) and
one-dimensional cuts (b,d) are shown. The system splits into two regions, one region being
homogeneous and one exhibiting two-phase clusters as a substructure. Note that in (b) for
better visibility

∣∣∣W(y, t)
∣∣∣ is shown. Parameters read: c1 = 0.2, c2 = −0.67, ν = 0.1, η = 0.66

(simulation) and cF = 35 mM, pH=1, Rext · A = 7.6 kΩcm2, Iill = 0.5 mW/cm2 (experiment).
Taken from Ref. [80].∣∣∣W(y, t)

∣∣∣ instead of the real part. For a picture of the real part see Fig. 3.10b. In |W| one
observes oscillations with a main frequency given by the frequency of the modulations.
In the cut in Fig. 3.15b it is visible that the subclusters oscillate at half of this frequency,
indicating that this phenomenon is related to a period-doubling bifurcation. In contrast,
in the experiments the mechanism seems to be a demixing of the modulated amplitude
cluster state into a synchronized region oscillating with the mean-field frequency and a
region with two-phase clusters that are not a modulation of an underlying oscillation.
These two-phase clusters oscillate at half the frequency of the synchronized region.
Demixing thus means here that the oscillation with two frequencies, present in the

42



3.5 Experiment versus theory

modulated amplitude cluster state, separates spatially into two regions with the two
frequencies. Thus, simulation and experiment share qualitative features, while there
are differences in the detailed dynamics.

3.5.3 Chimera states

Also the peculiar dynamics of the chimera state can be found in the photoelectrodis-
solution of n-type silicon. It resembles the type II chimeras found in the simulations.
For comparison, we present in Fig. 3.16 the chimera state found in the simulations (a,b)
and the one found in the experiments (c,d) [79].

Figure 3.16: Chimera states in theory (a,b) and experiment (c,d). Snapshots (a,c) and one-
dimensional cuts (b,d) are shown. In both, the simulation and the experimental pattern, the
synchronized and turbulent regions can be distinguished clearly. Parameters read: c1 = 0.2,
c2 = −0.58, ν = 0.1, η = 0.66 (simulation) and cF = 75 mM, pH=3.5, Rext · A = 5.61 kΩcm2,
Iill = 1.8 mW/cm2 (experiment).

In both, the experiments and the simulations nothing is imposed to induce this
symmetry-breaking. The experimental conditions are kept uniform over the entire
electrode. Furthermore, these patterns form spontaneously, i.e., no specially prepared
initial conditions are required to obtain them.

We make a direct comparison of the theoretical and experimental spatial profiles in
Fig. 3.17. The real part of W is shown in Fig. 3.17a and the oxide-layer thickness ξ is
shown in Fig. 3.17b, respectively. The experimental results are from the run shown in
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3 Pattern formation in a CGLE with nonlinear global coupling

Fig. 3.7(e,f). The plots in Figs. 3.17a and b show an excellent qualitative agreement.

a b

c d

Figure 3.17: Comparison of theoretical and experimental chimera states. The one-dimensional
spatial profiles in theory (a) and experiment (b) are in excellent agreement. Furthermore,
both correlation functions |C(x)| (for details see text) exhibit a fast drop to nearly zero. This
shows the fast decrease of spatial correlations in theory (c) and experiment (d). Experimental
parameters are as in Fig. 3.7(e,f).

Finally, we quantify the incoherence in the turbulent regions of the chimera state:

We calculate the correlation function C(x, t) =
〈
W̃(x, t)W̃∗(0, 0)

〉
x′,t′

/
〈∣∣∣W̃(0, 0)

∣∣∣2〉
x′,t′

(the

asterisk denotes complex conjugation and the average is performed over space and
time) in a cut in the incoherent region for both theory and experiment, where W̃
is obtained by subtracting the average of this cut from the original data. From the
experimental data the complex signal W(x, t) was obtained via a Hilbert transformation
[101]. The resulting |C(x)| ≡ |C(x, 0)| is shown in Figs 3.17c (theory) and d (experiment).
As seen in the figures, |C(x)| drops very fast to approximately zero, demonstrating
that after this distance the individual oscillators behave uncorrelated. Note that the
fluctuations of |C(x)| are due to the finiteness of the sample.

3.5.4 Turbulence

As the coexistence of synchrony and turbulence in the chimera state suggests, we find
this state in parameter space between fully synchronized and turbulent states. There-
fore, the chimera state can be regarded as a mediator between synchrony and turbu-
lence. An experimental example of the synchronized state is shown in Fig. 3.2, whereas
the turbulent dynamics in simulation and experiment are presented in Fig. 3.18.

An uniform oscillation is still present in the dynamics, but it is modulated by in-
coherent and aperiodic oscillations. Similar turbulent patterns have been described
in Ref. [11], where also localized clusters are discussed, which are reminiscent of the
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3.6 Alternating chimera states

Figure 3.18: Turbulent dynamics in theory (a,b) and experiment (c,d). Snapshots (a,c) and
one-dimensional cuts (b,d) are shown. The whole system exhibits turbulent dynamics.
Parameters read: c1 = 0.2, c2 = −0.58, ν = 0.05, η = 0.66 (simulation) and cF = 50 mM, pH=3,
Rext · A = 6.7 kΩcm2, Iill = 1.0 mW/cm2 (experiment). Taken from Ref. [80].

subclusters presented in Fig. 3.15. In this reference, the authors consider the Belousov-
Zhabotinsky reaction-diffusion system with photochemical global feedback. Interest-
ingly, the average concentration of the catalyst also displays periodic oscillations in
case of ”irregular clusters”, which is the dynamics similar to the ones presented in
Fig. 3.18.

This finishes our comparison of theory and experiment. In the discussion at the
end of this chapter, we will summarize the results and identify similarities, as well as
differences.

3.6 Alternating chimera states

In the chimera states presented so far, synchronized and desynchronized regions might
grow and shrink, but will not switch their character, meaning there is no interchange
of synchronized and desynchronized regions. However, in unihemispherical sleep, a
prominent example in nature exhibiting similar features like chimera states, the sleep-
ing (synchronized) and awake (desynchronized) cerebral hemispheres interchange
their state from time to time [38, 39, 42]. This kind of sleep is performed by, e.g.,
various dolphins and birds. Up to now, the alternation phenomenon could only be
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3 Pattern formation in a CGLE with nonlinear global coupling

reproduced in models of non-identical oscillators that are grouped a priori, with dif-
ferent intra- and inter-group coupling strengths, without external periodic forcing [43]
and with forcing [44]. In contrast, here we present alternating chimera states emerging
spontaneously in an isotropic medium and with symmetrical and identical coupling
for all oscillators. This work was done together with Sindre W. Haugland, in the course
of his Master Thesis. The principle existence of these states in our model is reason-
able, since the type II chimera states described in the preceding sections seem to occur
always in a phase-balanced configuration, i.e., both phases are of the same size. In
such a situation, interchanging both regions again yields a solution to the underlying
equations. This renders alternating chimeras possible.

Figure 3.19: Alternating chimera state with curved boundaries. (a)-(c) Two-dimensional snap-
shots of |W| at consecutive times showing the interchange of synchrony and incoherence.
(d) One-dimensional cut along the x-axis showing the spatio-temporal dynamics of |W|
during the alternation process from (a) to (c). Parameters read: c1 = 0.2, c2 = −0.64, ν = 0.1,
η = 0.66.

A series of snapshots is presented in Figs. 3.19a-c, elucidating the interchange of
synchrony and incoherence. A spatio-temporal visualization of this process is given
in Fig. 3.19d. This alternation process occurs rather erratically in time, as long as the
domain boundaries are very curvy. Simulating the system for at least T = 1 · 106,
the domain boundaries straighten, as they always do in order to decrease curvature
and therefore some interfacial energy (in case of type II dynamics). Then, one is left
with two domains separated by a straight boundary as presented in Fig. 3.20. Now
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3.6 Alternating chimera states

Figure 3.20: Alternating chimera state with straight boundaries. (a)-(c) Two-dimensional snap-
shots of |W| at consecutive times showing one alternation. (d) One-dimensional cut along
the x-axis. Snapshots in (a)-(c) are at t = 0, 600, 1000 in the timeline of the cut, respectively.

alternations occur in a more periodic fashion with an approximate period of about
∆T = 103. The alternating chimera state seems to be stable, as a simulation up to
T = 3.7 · 107 does not show any break down. The one-dimensional cut in Fig. 3.20d
demonstrates how the alternation takes place. First, the turbulence in the incoherent
part starts to become synchronized. This is followed by a spread of turbulence in the
beforehand synchronized part, which is initiated at the domain boundary acting as an
incoherent nucleus.

Of course, the question arises what triggers the alternation. A critical look at the
one-dimensional cut in Fig. 3.20d gives a first hint: alternations seem to be connected
to a movement of the domain boundary and therefore to a change in the relative sizes
of the two domains. It seems that an alternation takes place once the turbulent region
becomes larger than the synchronized one. To test this assumption, we modified the
initial conditions in order to start on the one hand with a much smaller turbulent region
and on the other hand with a much larger turbulent region. The larger turbulent region
was obtained via reflection at the system boundary. The results of this investigation
are presented in Fig. 3.21. Starting with a small turbulent region, as in Figs. 3.21a and
b, gives the following behavior: the turbulent region grows until it becomes slightly
larger than the synchronized region, followed by an interchange of dynamics. The
growth speed is initially larger and decreases with convergence of the domain sizes,
since the phase-balanced state, though unstable in the present case, constitutes an
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3 Pattern formation in a CGLE with nonlinear global coupling

Figure 3.21: Investigating the influence of the domain sizes on the alternation. (a,b) Starting
with a small turbulent region, this region will grow until it is slightly larger than the
synchronized one, followed by an alternation. (c,d) Starting with a large turbulent region,
an immediate, rapid alternation occurs: After the turbulent region synchronized, turbulence
spreads in the initially synchronized region.

equilibrium situation.

If the initial coverage of turbulence is significantly larger, shown in Figs. 3.21c and
d, an immediate, rapid alternation occurs: After the synchronization of the turbulent
region has taken place, turbulence starts to spread from the domain boundary into
the initially synchronized domain. Concurrently, this region grows, which occurs at a
smaller velocity.

Performing the same type of simulations with modified initial conditions for non-
alternating chimera states, one finds the following behavior: an initially smaller tur-
bulent domain grows until phase balance is reached, while in case of an initially larger
turbulent domain an alternation takes place. Then, the now smaller turbulent region
grows again until phase balance is reached.

We can conclude that an alternation is triggered once the turbulent region becomes
larger than the synchronized one. In case of alternating chimera states, the phase-
balanced situation is unstable and a turbulent region will always grow and therefore
alternations occur repeatedly. In non-alternating chimera states, the phase-balanced
configuration is stable and thus, no spontaneous alternations do occur. The question
stays, why the turbulent region is growing. This growth behavior has also been found
in other reaction-diffusion systems, including a model of catalytic CO oxidation on a
Pt(110) surface [102–106].

Similar to the alternating chimera states, also the subclustering state can alternate
for c2 = −0.66. However, up to now we could only observe a limited number of
alternations as an initial transient.
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3.7 Localized turbulence

Figure 3.22: Localized turbulence: two-dimensional snapshots of |W| in (a) at times indicated
in the figures, one-dimensional cut (also |W|) in (b) as indicated in the first snapshot and
a snapshot of the arrangement of local oscillators in the complex plane in (c) (c1 = −1.6,
c2 = 1.5, ν = 1.5, η = 0.9).

3.7 Localized turbulence

For a totally different set of parameters, c1 = −1.6, c2 = 1.5, ν = 1.5 and η = 0.9, we
encounter so-called localized turbulence. We depict our results in Fig. 3.22, where we
present three snapshots at times indicated in the figures in (a), a one-dimensional cut
versus time in (b) and a snapshot of the arrangement of local oscillators in the complex
plane in (c). Here, we show again |W|. Small spots of turbulence are randomly created
in an otherwise homogeneous background, which then move through the system and
spread, but always keeping an overall small size. As for their creation, they also
vanish in an irregular manner. The turbulence can be described as circular defect
lines (or at least lines of very small amplitude) expanding and breaking down. After
their breakdown, new defect circles are created. Such localized turbulence has also
been observed in the CGLE with delayed global coupling [107]. It is a phenomenon
similar to chimera states as the system also shows the coexistence of synchronized and
turbulent regions. However, the separation of these regions is fundamentally different.
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3 Pattern formation in a CGLE with nonlinear global coupling

In the chimera states considered in this thesis and also those discussed in literature,
there is a clear separation of coherent and incoherent phases via a phase boundary, as
clearly visible in Fig. 3.8c, Fig. 3.9 and Fig. 3.10c. Also in nonlocally coupled systems,
where the boundaries are rather smooth, the separation is clearly identifiable [16].
Furthermore, the boundaries move only on a slow timescale. In contrast, the incoherent
spots in localized turbulence are not separated from the homogeneous regions by
phase boundaries. Albeit, there is also a coexistence of synchrony and incoherence,
matching the definition of a chimera state, the two phases, i.e., the synchronized and the
incoherent phases, cannot be clearly identified. Therefore, we think the term localized
turbulence is more appropriate than chimera state.

3.8 Discussion

During the photoelectrodissolution of n-type silicon, the oxide-layer on the silicon
working electrode exhibits peculiar spatio-temporal pattern formation [13, 14, 79, 80,
91]. Essential features of the experimental dynamics are: (i) the nearly harmonic
oscillation of the mean oxide-layer thickness, (ii) the uniform oscillation arising via a
Hopf bifurcation, (iii) an external resistance in series with the working electrode giving
rise to a linear global coupling and (iv) a nonlinear global coupling being suspected to
be caused by a cut-off of the total current due to a limitation of charge carriers. A general
model capturing these features is given by a complex Ginzburg-Landau equation with
a nonlinear global coupling [13, 15]. Simulations of this MCGLE yield a huge variety of
different patterns. We presented two types of cluster patterns, the amplitude clusters
and the modulated amplitude clusters, which both undergoe a symmetry-breaking
transition towards two different types of chimera states.

We demonstrated that type II dynamics describe experimental patterns very well. In
both, the experiments and the simulations, we found modulated amplitude clusters,
subclustering, chimera states and turbulence. Chimera states and turbulence show
the best agreement, while there are some differences between experiment and the-
ory in case of modulated amplitude clusters and subclustering. In the experiment,
the second frequency in the modulated amplitude clusters (for the case of two-phase
clusters) is always given by approximately half the frequency of the mean-field oscil-
lation. This strongly suggests a period-doubling bifurcation being the reason of this
second frequency. In contrast, in the MCGLE the modulated amplitude clusters seem
to arise via a secondary Hopf bifurcation, giving rise to a continuously tunable second
frequency. Also in the case of subclustering we find differences between experiment
and simulation. In the experiments it seems that a demixing process takes place,
spatially separating the modulational oscillation of the modulated amplitude clusters
from the mean-field oscillation. The part with the modulational oscillations exhibits
the clustering and therefore this part of the system then constitutes the region with
the substructure, while the other part oscillates uniformly. Contrarily, the simulations
suggest a period-doubling bifurcation for the mechanism yielding the subclustering,
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as the two-phase subclusters oscillate at half the frequency of the modulational oscil-
lations. However, the overall experimental dynamics are captured very well with this
general ansatz, which describes only the essential features of the experiment, but not
the detailed physical mechanisms behind the osclllations and pattern formation.

The theory shows even further interesting dynamics. We discussed alternating
chimera states, where the synchronized and desynchronized regions interchange their
state repeatedly [108]. These alternations occur rather irregularly at early times, but
become more and more periodic at later times, when the boundary between the two
phases tends to become straight.

Finally, we depicted simulation results showing so-called localized turbulence [107].
In this state, turbulent spots spread through the system, by means of circular lines
of very small amplitude, expanding and breaking down. This dynamics raises the
question of a robust definition of chimera states, since in localized turbulence one also
observes a coexistence of synchrony and incoherence. However, we argue that a phase
boundary between the synchronized and incoherent regions is crucial. Nevertheless,
further research in this direction is needed.

3.8.1 Clusters

The common notion of phase clusters describes a state, where the oscillatory medium
separates into several parts. The oscillations in the different parts are phase shifted
with respect to each other [11, 109–112]. Each phase cluster can be described as a point
rotating on a circle. In the most simple case the clusters are arranged symmetrically
on this circle and therefore, the phase shifts in case of n clusters amount to 2πm/n
[111–113], where m = 1, 2, . . . ,n − 1. Typically, in the case of cluster patterns the
dynamics can be reduced to a phase model [113]. However, there exist a second type of
clusters, where essential variations in the amplitudes are present, called type II clusters
[13, 15, 97]. We demonstrated that this second type of cluster patterns naturally arises
in our experiments and can be reproduced with the MCGLE.

Now, we clarify, how such clustering can occur and why it is possible in the MCGLE.
In what follows we consider clusters, where the two groups are in anti-phase config-
uration, at least in some reference frame. Note that in the CGLE, Eq. (3.3), the cluster
patterns we consider cannot emerge, since the dynamics are invariant under a phase
shift W → eiχW, for arbitrary χ and no terms are present to break the symmetry. For
such clustering to occur this symmetry has to be broken [49]. This becomes clear when
considering two-phase clusters with phase balance, i.e., both clusters have the same
size. Then, if W1 is a solution, a rotation by π, W1eiπ, yields the second solution, while
a rotation by an arbitrary angle α , π does not yield a solution.

Thus, the general equation can be reduced to a form that describes cluster solutions
only and therefore, prossesses only the discrete symmetry. In terms of the complex
order parameter W this means that the dynamical equations are only invariant under
the discrete transformation

W → eiπW .
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3 Pattern formation in a CGLE with nonlinear global coupling

In general, for n clusters, one needs that the equations are invariant under the discrete
symmetry [49]

W → ei2π/nW .

To account for this symmetry the proper extension of the CGLE is given by the term
γnW∗n−1, describing also an external resonant forcing [49, 75, 76, 111, 112, 114–118], see
also Chapter 2. The asterisk denotes complex conjugation.

We will see that such a symmetry breaking term is intrinsically present in the MCGLE.
Therefore, we write W = W0(1+w) for the complex amplitude in Eq. (3.4). By exploiting
the conservation law, Eq. (3.6), and the resulting fact that 〈w〉 = 〈w∗〉 = 0, one obtains
again a CGLE, now for the inhomogeneity w, which reads [15]

∂tw = (µ + iβ)w + (1 + ic1)∇2w − (1 + ic2)η2(|w|2 w + w∗) + C , (3.14)

where
C = (1 + ic2)η2

[〈
2 |w|2 + w2 + |w|2 w

〉
−

(
2 |w|2 + w2

)]
andµ = 1−2η2, β = ν−2c2η2. Here, the necessary symmetry-breaking term−(1+ic2)η2w∗

occurs. But note that this term does not arise from the nonlinear global coupling.
It would be present also when considering the CGLE, Eq. (3.3), without additional
couplings. Crucial are the terms in C proportional to |w|2 and w2. As long as they are
present, the equation is not symmetric with respect to the transformation w→ eiψw for
any ψ. Here, the nonlinear global coupling comes into play, as it renders a vanishing
C possible via the term proportional to

〈
2 |w|2 + w2

〉
. To show this, we assume a two-

cluster state, where the two regions are described by solutions w1 and w2 in anti-phase,
i.e., w1 = R exp(iφ) and w2 = R exp(i(φ + π)). Then,

|w1|
2 = |w2|

2 = R2 = 〈|w|〉

w2
1 = w2

2 = R2 exp
(
i2φ

)
=

〈
w2

〉
.

Furthermore, since |w1|
2 w1 = R3 exp(iφ) and |w2|

2 w2 = −R3 exp(iφ) = − |w1|
2 w1, also

the nonlinear average vanishes, i.e.,
〈
|w|2 w

〉
= 0. In essence, in case of a two-cluster

state, the term C vanishes.
In turn, for C = 0, the occurrence of phase-balanced clusters is possible, since then

the equation is symmetric with respect to the discrete symmetry w → eiπw. Then,
it describes the subclass of phase-balanced two-cluster solutions. Note that this is
impossible for a solely linear global coupling and that in case of clusters of different
size these symmetry considerations do not hold.

Cluster solutions of Eq. (3.14) are then characterized by uniform regions, corre-
sponding to different uniform solutions, with phase shifts to each other, as we already
assumed above. Each of these solutions describes one cluster. As they are homoge-
neous, for such solutions the diffusional coupling vanishes and one obtains

∂twA = (µ + iβ)wA − (1 + ic2)η2(|wA|
2 wA + w∗A) + C ,
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where the subscript A indicates that this is the solution for one part of the system. At
the borders between such regions, the diffusional coupling is active. In Section 4.2 we
will encounter this equation again, when making the ansatz of two groups of equal
size, leading to C = 0, in an ensemble of Stuart-Landau oscillators with the nonlinear
global coupling of the MCGLE, i.e., the MCGLE without diffusional coupling. The two
groups represent the two clusters. Then, we perform a bifurcation analysis of these
two-cluster solutions. We will see that the results of this analysis can be transferred to
the two-cluster solutions in the MCGLE without any restrictions.

3.8.2 Chimera states

Chimera states were mostly found in systems with nonlocal coupling. Typically, in
these systems the synchronized state coexists with the chimera state and is stable.
This bistability makes the observation rather difficult, as in many cases very special
initial conditions have to be used, otherwise all oscillators would simply synchronize.
However, there are a few examples, where they arise spontaneously (in some cases
the synchronized solution is also unstable), see, e.g., Refs. [25, 29, 34]. Concerning the
mechanisms of their emergence in nonlocally coupled systems only very little is known.
Bifurcation analysis revealed that they can emerge via a saddle-node bifurcation [17,
23, 26, 36], and they were found in maps with coupling-induced bistability [27]. First
analytical studies aiming to analyze the stability and to characterize the emergence
and dynamics of chimera states in nonlocally coupled systems in a general way are
presented in Refs. [36, 37].

Under global coupling, chimera states exhibit different properties. In our system,
the synchronized state is unstable in the parameter region, where chimera states could
be found. As a consequence, they form always spontaneously from random initial
conditions. However, there is an additional prerequisite in globally coupled systems
that is not present in nonlocally coupled ones: the system has to split into two well-
defined groups that are separated in phase space. Only then, the symmetry of the
system can be broken and the groups can behave differently. Both types of chimera
states presented in this thesis occur in the vicinity of cluster states. Thus, the clustering
mechanism seems to be responsible for the separation into groups. We will investigate
this point in detail in the next chapter. This would be an example of a dynamically
induced bistability, also encountered in Refs. [99, 119]. One can also choose a system
composed of already bistable units [119] or split the ensemble of oscillators into two
groups artificially, by setting up two groups with different intra- and inter-group
coupling strengths [23, 31]. In fact, the type II chimeras seem to be related to the chimera
states found with the two groups with different intra- and inter-group coupling, as the
same situation arises dynamically. We discussed that point in Section 3.4.

Under nonlocal coupling one can observe also a type of chimera state that is different
to the original chimera state described by Kuramoto & Battogtokh [16]. Considering
coupled logistic maps, one finds a chimera state, where the incoherent part is periodic,
i.e., frequency locked [27, 28]. Thus, this chimera state is only spatially incoherent,
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exhibiting a profile with coherent and incoherent parts that oscillates periodically. The
same behavior was also found in Ref. [22]. In contrast, in nonlocally coupled systems
one typically finds a distribution of mean frequencies in the incoherent part of the
chimera state [16].

First experimental observations of chimera states were achieved in an experimental
realization of the two-groups system with different intra- and inter-group coupling
[31] and a realization of the coupled-map lattice [32]. The two-groups system was real-
ized using an ensemble of photosensitive Belousov-Zhabotinsky particles. Due to the
photosensitivity of the reaction, the feedback could be implemented via illumination
controlled by a computer to obtain the desired coupling. As already discussed, this
type of chimera state shares properties with the type II chimeras found in the MCGLE
and therefore also with the chimeras found during the photoelectrodissolution of n-
type silicon. The same setup was used later to investigate a typical nonlocal coupling
[29]. The realization of a coupled-map lattice was achieved by controlling the polariza-
tion properties of an optical wavefront with a liquid-crystal spatial light modulator. In
this experiment, the coupling is also implemented using a computer [32]. Thus, these
experiments have in common that they need external control to obtain the desired
coupling function, which is not the case in the experiments described in the present
thesis.

Furthermore, there are other experiments that do not incorporate an external control.
The first example is by Martens et al., who built up the two-groups model with two sets
of metronomes [33]. As we will see in the next chapter, the dynamics of the chimera state
they describe and the surrounding states are similar to the case of type I chimeras. The
second example of experimental chimeras without control from outside is a network of
electrochemical oscillators, where the discrete units exhibit the oscillatory dissolution of
nickel wires and are coupled via a resistance network [34]. The introduction of a delay
in this system is possible by implementing also capacitances. In this experiment, the
chimera states form also spontaneously. Incoherent oscillators display phase-slipping
behavior, i.e., their motion is very slow in the vicinity of the synchronized group,
followed by relatively fast 2π phase slips. Type II chimeras exhibit similar behavior.

3.8.3 Open questions

Our analysis of spatio-temporal dynamics found in the MCGLE including the two types
of chimera states still leaves some questions open. Both chimeras inherit properties
from the cluster states in which they originate. Type I chimeras are created coming
from amplitude clusters and consequently, the synchronized and the incoherent group
are also separated by an amplitude difference, while the phase difference stays small.
All oscillators exhibit one dominant time scale, which is the period of the mean-
field oscillation. In contrast, type II chimeras stem from the modulated amplitude
clusters and hence, exhibit a second characteristic time scale, which is the clustering
frequency. This connection to the cluster states has to be investigated in more detail.
Furthermore, we did not unravel the bifurcations leading to the cluster states yet.
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3.8 Discussion

Modulated amplitude clusters seem to be created in a secondary Hopf bifurcation
as the frequency of modulational oscillations can be tuned continuously. This has
to be shown rigorously, enabling one to approximate the cluster frequency with the
corresponding Hopf frequency. However, a bifurcation analysis of a spatially extended
system is not straightforward to perform.

To overcome this issue and address the above mentioned questions, we will reduce
the spatially extended MCGLE to a discrete ensemble of Stuart-Landau oscillators with
nonlinear global coupling. This is simply done by omitting the diffusional coupling in
the MCGLE and will be the topic of the next chapter.
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Chapter 4

Stuart-Landau oscillators with nonlinear global
coupling

Das Ziel der Wissenschaft ist es immer gewesen,
die Komplexität der Welt auf simple Regeln zu
reduzieren.

(Benoît Mandelbrot)

4.1 Motivation

In the preceding chapter we presented quite complex spatio-temporal patterns found
in numerical simulations of a modified complex Ginzburg-Landau equation with
nonlinear global coupling. We successively compared the results to patterns form-

ing in the oxide-layer thickness during the photoelectrodissolution of n-type silicon.
So far, we could only provide a qualitative description of the dynamics, a detailed
investigation of their creation in terms of a bifurcation analysis was unfeasible in the
extended system, due to the high number of degrees of freedom. Now, we make the
hypothesis that the diffusional coupling leads only to the spatial arrangement of the
patterns, at least for a subset of patterns. In the next chapter, we will demonstrate that
this is a reasonable assumption. Of course, there are patterns, where the diffusional
coupling plays an important role in the overall dynamics, an example is localized tur-
bulence, which seems to depend on the diffusional spreading of turbulence. However,
for some patterns it is a correct assumption, and, therefore, we drop the diffusive term
in the MCGLE, Eq. (3.4), and investigate N Stuart-Landau oscillators coupled via a
nonlinear global coupling:

d
dt

Wk = Wk− (1+ ic2) |Wk|
2 Wk− (1+ iν) 〈W〉+ (1+ ic2)

〈
|W|2 W

〉
, k = 1, 2, . . . ,N . (4.1)

Here 〈· · · 〉 describes the arithmetic mean over the oscillator population, i.e., 〈W〉 =∑N
k=1 Wk/N. Taking the average of the whole equation yields for the dynamics of the
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4 Stuart-Landau oscillators with nonlinear global coupling

mean value
d
dt
〈W〉 = −iν 〈W〉 ⇒ 〈W〉 = ηe−iνt . (4.2)

Again, the dynamics exhibit a preserved and harmonic mean-field oscillation, which
is important as it constitutes a relevant feature of the MCGLE and of the experiments.

In the next section we will investigate cluster solutions in this ensemble of Stuart-
Landau oscillators and reveal the underlying bifurcations leading to their formation.
As we can identify the cluster solutions with cluster patterns in the extended system, the
results apply also to the patterns found in the MCGLE. Subsequently, we present two
types of chimera states found in Eqs. (4.1) and investigate their relation to the cluster
patterns. It turns out that the clustering mechanism constitutes the first symmetry-
breaking step rendering the formation of chimera states possible. Again, the connection
to the spatio-temporal patterns in the MCGLE is discussed.

4.2 Two-cluster solutions in an ensemble of generic limit-cycle
oscillators with periodic self-forcing via the mean-field

Cluster formation is a well known phenomenon in systems of coupled oscillators. It
arises in discrete systems of individual units [19, 113, 120] and in spatially extended
oscillatory media [11, 109–112]. The common property of clusters in these systems is
that the oscillators separate into distinct groups having the same properties within.
The oscillations in the different groups are then phase shifted with respect to each
other. In the symmetrical phase cluster state, the phase shifts for n clusters are given
by 2πm/n [111–113], where m = 1, 2, . . . ,n − 1.

As we will see in this section, the nonlinear global coupling leads to two-cluster
soltuions, i.e., solutions with two groups, exhibiting more complex than simple periodic
dynamics. In many cases the amplitude variations in cluster states are very small and
the dynamics can be approximated by phase models. However, in some solutions we
observe here, essential variations in the amplitude occur. In this state the clusters are a
modulation of a homogeneous oscillation, as visible in Fig. 4.1a. Such dynamics, which
were also called type II clusters [97], have been described also in Refs. [13, 15, 97, 121].

The nonlinear global coupling in Eqs. (4.1) leads to a conserved periodic mean-field
oscillation that acts back on the individual oscillators as a forcing. We will see that this
indeed leads to a so-called Arnold tongue, a tongue-shaped region in which oscilla-
tions are entrained to the driving. Reducing the full set of equations to two effective
equations, we describe the case of clustering with two groups. We show that we end
up with an equation possessing the same (symmetry) properties as the resonantly
forced CGLE near a 2:1 resonance [114], which also exhibits cluster formation [76]. For
details on this equation, see Section 2.3. The special symmetry leads to a very complex
bifurcation diagram and therefore to a wide variety of different dynamical states, in
line with results on periodically forced oscillators near a 2:1 resonance [122, 123], with
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4.2 Two-cluster solutions

one exception: inside the locking region we observe a 1:1 entrainment, despite the
bifurcation structure of a 2:1 resonance.

Equations (4.1) are equivariant to the direct product SN × S1 of the symmetry group
SN of permutations of N elements and the circle group S1, describing the global phase
invariance. The equivariance to SN is obvious, as a permutation of indices in Eqs. (4.1)
leaves the whole set of equations invariant. Nevertheless, particular solutions are not
required to possess the full SN×S1 symmetry, only all solutions together exhibit it [124].
This consideration will help us later identifying the bifurcations that are possible to
occur in the system.

We numerically solved Eqs. (4.1) using an implicit Adams method with timestep
dt = 0.01 for N = 1000 oscillators, starting from random initial conditions on the real
axis fulfilling the conservation law; see also Chapter 2. For certain parameter regimes
the whole population divides into two subgroups of sizes N1 and N2 with N1 +N2 = N.
Thus, the full symmetry is reduced to SN1 × SN2 × S1

⊆ SN × S1. For η > 0 one then
observes modulated amplitude and amplitude clusters as shown in Figs. 4.1a and b,
respectively. These cluster dynamics are the most commonly oberserved coherent
solutions.

Figure 4.1: Cluster dynamics in the Stuart-Landau ensemble. Solid lines describe the trajectories
of individual oscillators and dots mark their positions in a snapshot. Dashed lines describe
the oscillation of the mean-field 〈W〉. (a) Modulated amplitude clusters for c2 = −0.6, ν = 0.1
and η = 0.7. Here, the subgroups perform additional oscillations around their mean-field
η exp(−iνt) given in Eq. (4.2). (b) Amplitude clusters for c2 = −0.6, ν = −1.5 and η = 0.9.
The main differences between the two groups are the different radii of their respective limit
cycles. The phase shift is much smaller than π.

In the modulated amplitude cluster state the subgroups oscillate, in addition to the
mean-field oscillation (shown as a blue dashed line), around their mean field. This leads
to a repeated passing by each other of the subgroups in the complex plane. Similar
states were observed in continuous systems in Refs. [13, 15, 97, 109, 121, 125]. In the
amplitude cluster state the two groups oscillate on different limit cycles separated by
an amplitude difference, while the phase shift is much smaller than π [98]. In the next
section, in order to treat these solutions mathematically, we reduce the full set of N
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4 Stuart-Landau oscillators with nonlinear global coupling

equations in Eqs. (4.1) to two effective equations modelling the two subgroups.

4.2.1 Modulated amplitude clusters in the two-groups reduction

We will now focus on modulated amplitude clusters as presented in Fig. 4.1a. As
visible in the figure, the ensemble splits into two groups, each performing amplitude-
modulated oscillations in the complex plane. To analyze these dynamics, we reduce
the N equations of the Stuart-Landau ensemble, Eqs. (4.1), to two effective equations.
Therefore, we assume two groups W1 and W2, each synchronized, with sizes N1 and
N2, respectively. The average over the entire ensemble is then given by

〈W〉 =
1
N

(N1W1 + N2W2) ,

and analogously for
〈
|W|2 W

〉
. Inserting these expressions into Eqs. (4.1) results in

d
dt

W1 =
(
1 − (1 + iν)

N1

N

)
W1

− (1 + ic2)
(
1 −

N1

N

)
|W1|

2 W1

− (1 + iν)
N2

N
W2 + (1 + ic2)

N2

N
|W2|

2 W2 , (4.3)

where the same holds for W2 with indices 1 and 2 interchanged. Thus, we reduced the
set of N equations to two effective equations and can now perform a linear stability
analysis of the synchronized state. By setting W1 = W2 we obtain

d
dt

W1 =
d
dt

W2 = −iνW1 = −iνW2 ,

and thus
W1 = W2 = ηe−iνt = W0 ,

as expected. Since the conservation law, Eq. (4.2), still has to be fulfilled, the syn-
chronized solution is given by W0. We define deviations w1 and w2 from W0 via
W1 = W0(1 + w1) and W2 = W0(1 + w2). To fulfill the conservation law,

1
N

(N1w1 + N2w2) = 0 (4.4)

holds. Inserting the definitions of w1 and w2 in Eq. (4.3), one obtains

d
dt

w1 = (1 + iν)
N2

N
(w1 − w2) − (1 + ic2)

N2

N
η2

(
2(w1 − w2) + w∗1 − w∗2 + w2

1 − w2
2

+2(|w1|
2
− |w2|

2) + |w1|
2w1 − |w2|

2w2

)
.
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4.2 Two-cluster solutions

The condition in Eq. (4.4) yields w2 = −N1w1/N2 and thus

d
dt

w1 =
[
1 − 2η2 + i

(
ν − 2c2η

2
)]

w1

− (1 + ic2)η2

w∗1 +
(
w2

1 + 2|w1|
2
) 1

N

N2
2 −N2

1

N2

 + |w1|
2w1

1
N

N3
2 + N3

1

N2
2

 (4.5)

w2 = −
N1

N2
w1 .

The above equations still depend on the group sizes N1 and N2. By considering
symmetric cluster states with N1 = N2 = N/2 this dependence vanishes and we obtain

d
dt

w1 =
(
µ + iβ

)
w1 − (1 + ic2)η2

(
|w1|

2 w1 + w∗1
)
, (4.6)

w2 = −w1 ,

where µ = 1 − 2η2 and β = ν − 2c2η2.
Note here already that now the equation for w1 is a forced CGLE near a 2:1 resonance

[114] without the diffusive coupling, which is a result of the self-forcing in the system.
Remember also that we encountered this equation for w1 with additional terms already
in Section 3.8.1, when considering cluster solutions in the MCGLE (Eq. (3.4)) (the
additional terms are reflected in the additional terms in Eq. (4.5) and the diffusive
coupling). There, we stopped at this point, while now we analyze solutions and
bifurcations.

The synchronized solution W0 possesses the symmetry S2 × S1 in the present two-
oscillators description. A bifurcation with emanating solution branches exhibiting
the reduced symmetry S1 (separation into two subgroups) has to have the following
symmetry property: the sum of the two solutions W1 + W2 is required to possess the
full symmetry S2 × S1 (W1 is on one of the solution branches and W2 on another).
Therefore, the symmetry breaking parts w1 and w2 have to cancel each other, i.e.,
w1 = −w2. This symmetry condition is fulfilled by three types of bifurcations, namely
the pitchfork, the Hopf and the period doubling bifurcations. The two new solution
branches emanating from the bifurcations are phase shifted by π. For the pitchfork
bifurcation this is illustrated as an example in Fig. 4.2. One group, here w1 chooses the
upper branch, while the other group, here w2, then has to choose the lower branch.

We will see that we indeed find the Hopf and the pitchfork bifurcation in the follow-
ing linear stability analysis of the synchronized state, which is given by w1 = w2 = 0,
and in the next section. The linear stability of the synchronized state is determined by

d
dt

(
w1
w∗1

)
=

(
µ + iβ −(1 + ic2)η2

−(1 − ic2)η2 µ − iβ

)
·

(
w1
w∗1

)
.

The eigenvalues of the Jacobian matrix are given by

λ± = 1 − 2η2
±

√
η4

(
1 − 3c2

2

)
+ 4νc2η2 − ν2 . (4.7)

61



4 Stuart-Landau oscillators with nonlinear global coupling

r

w
synchronized solution

w1

w2

Figure 4.2: Schematic pitchfork bifurcation demonstrating the emergence of the two cluster
solutions. r denotes an arbitrary parameter. Each group realizes one of the two stable
branches created in the pitchfork. Exemplary shown is the first group w1 realizing the
upper branch and the second group w2 realizing the π-rotated lower branch.

Thus, we find a secondary Hopf bifurcation in this system at η = ηH = 1/
√

2 for(
1 − 3c2

2

)
/4 + 2νc2 − ν2 < 0. This Hopf bifurcation is the origin of the modulated

amplitude clusters shown in Fig. 4.1a. In order to visualize this, we use the ansatz
Wk = W0(1 + wk) in the full system (Eqs. (4.1)) for the analysis of simulation results. For
the modulated amplitude clusters shown in Fig. 4.3a, the dynamics of wk are depicted
in Fig. 4.3b.

One can clearly identify the two limit cycles of the two subgroups (blue solid lines) in
Fig. 4.3b. The green dots mark a snapshot of the dynamics. In this reference frame the
phase shift between the two groups is given byπ. The two limit cycles are not identical,
since the full system is divided into two groups with different sizes, i.e., N1 , N2. This
results in different radii of the limit cycles in order to fulfill the condition in Eq. (4.4)
and thus to fulfill the conservation law in Eq. (4.2). The red square marks the position
of the synchronized solution. These observations confirm the result of the two-groups
analysis that modulated amplitude clusters arise in a secondary Hopf bifurcation.

Using the eigenvalues in Eq. (4.7) we can determine the Hopf frequency ωH to be

ωH = Im
(√

η4
(
1 − 3c2

2

)
+ 4c2η2ν − ν2

)
. (4.8)

Next, we investigate the frequencies occurring in the dynamics in the original frame.
Therefore, we calculate the cumulative power spectrum. To obtain this, one first has to
Fourier transform all individual time series Re Wk of the oscillators and then average
the resulting squared amplitudes |ak(ω)|2, where k is the oscillator index. It is thus
given by S(ω) =

〈
|a(ω)|2

〉
. An exemplary cumulative power spectrum for the dynamics

in the modulated amplitude cluster state (in the full system) is shown in Fig. 4.4 and it
exhibits several peaks.
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4.2 Two-cluster solutions

Figure 4.3: Emergence of modulated amplitude clusters in the full ensemble for c2 = −0.6,
ν = 1.2 and η = 0.7. (a) Modulated amplitude clusters in the original frame. (b) Two limit
cycles in antiphase and the fixed point at η (red square) in the rotating frame of wk defined
via Wk = W0(1+wk). The limit cycles have different radii as the whole population is divided
into subgroups with N1 , N2.

The strongest peak is at the frequency ν of the mean-field oscillation. As we will
show in what follows, the next two highest peaks are given by ±(ν−ωH) and ±(ν+ωH)
as indicated by vertical lines in the figure.

In the vicinity of the Hopf bifurcation, the limit-cycle solution for w1 in Eq. (4.6) is
given by

w1 = w0
+eiωHt + w0

−e−iωHt ,

where w0
±

are complex-valued constants. In the original frame this results in

W1 = ηe−iνt
(
1 + w0

+eiωHt + w0
−e−iωHt

)
,

W2 = ηe−iνt
(
1 − w0

+eiωHt
− w0

−e−iωHt
)
.

Thus, we obtain frequency contributions in the cumulative power spectrum at

± ν
(
∝ η2

)
,

± (ν − ωH)
(
∝

∣∣∣ηω0
+

∣∣∣2) , (4.9)

± (ν + ωH)
(
∝

∣∣∣ηω0
−

∣∣∣2) ,
as can be seen for the three major peaks in the power spectrum in Fig. 4.4. The other
peaks are presumably given by higher resonances. Note that for a circular limit cycle
ω0

+ or ω0
−

equals zero leading to vanishing contributions at ± (ν − ωH) or ± (ν + ωH),
respectively.

To further check the validity of the frequencies, obtained via a reduction to two effec-
tive equations and via linear stability analysis, we compare them with the frequencies
in the full system for several values of ν. The results for |ν + ωH| (blue, dashed) and
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|ωH + ν||ωH − ν| ν

Figure 4.4: Cumulative power spectrum for the full system at parameter values c2 = −0.6,
ν = 1.2, η = 0.7. The major peaks in this spectrum can be traced back to linear combinations
of the Hopf frequency ωH in Eq. (4.8) and the frequency of the mean-field oscillation ν as
indicated by the vertical lines (see text and Eq. (4.9)).

|ν − ωH| (red, solid) are shown in Fig. 4.5a. In Fig. 4.5b we show the comparison for
|ν − ωH| in more detail.

The simulation results shown are for η = 0.7, which is close to the value at the
Hopf bifurcation ηH = 1/

√
2 ≈ 0.707. As visible in the figure, the results of the linear

stability analysis (lines), Eqs. (4.9), reproduce the simulation results (symbols) very
well. The nearly constant shift visible in Fig. 4.5b is due to the finite distance to the
Hopf bifurcation.

We conclude that the modulated amplitude clusters arise through a Hopf bifurcation
in the rotating frame with frequency ν, which gives rise to the amplitude modulations
in the full system. The dynamics on the created limit cycle are in anti-phase as to fulfill
the conservation law, which is also in line with our symmetry considerations above.
Since the Hopf bifurcation occurs in the rotating frame, it is in fact a secondary Hopf
bifurcation. The dynamics in the original frame is thus quasiperiodic. This is also
obvious from the continuous frequency curves in Fig. 4.5.
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4.2 Two-cluster solutions

Figure 4.5: Comparison of the calculated peak frequencies with the frequencies in the full
system for c2 = −0.6 and η = 0.7. The Hopf bifurcation occurs at ηH = 1/

√
2. (a) Both

frequencies |ν + ωH | in blue (dashed) and |ν − ωH | in red (solid) versus ν. Lines describe the
results of the linear stability analysis, Eqs. (4.9), and symbols mark the simulation results.
(b) Magnified ωcl-axis, showing |ν − ωH | vs. ν in more detail.
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4.2.2 Amplitude clusters in the two-groups reduction

The modulated amplitude clusters described in the preceding section arise for certain
parameters through a Hopf bifurcation. This motion on a torus can be destroyed
through a saddle-node bifurcation leading to the amplitude clusters shown in Fig. 4.1b.
These amplitude clusters are solutions of Eq. (4.6) in the form w1 = R exp (iχ±) [114],
as this results in |W1| = η

√
1 + 2R cosχ± + R2. With χ+ = χ− + π the two solutions

describe limit cycles with different radii. Inserting this ansatz into Eq. (4.6), separating
real and imaginary parts and assuming R , 0 one obtains

µ − η2R2
− η2 cos 2χ − c2η

2 sin 2χ = 0 ,

β − c2η
2R2
− c2η

2 cos 2χ + η2 sin 2χ = 0 .

This set of equations can be solved for R and χ and one finds two pairs of solutions
[126, 127]:

R(1) =

√√√√√√
µ + c2β −

√
η4

(
1 + c2

2

)2
− (c2 − ν)2

η2
(
1 + c2

2

) ,

χ(1)
−

=
1
2

arcsin

 c2 − ν

η2
(
1 + c2

2

) ,
χ(1)

+ = χ(1)
−

+ π ,

R(2) =

√√√√√√
µ + c2β +

√
η4

(
1 + c2

2

)2
− (c2 − ν)2

η2
(
1 + c2

2

) ,

χ(2)
−

=
π
2
−

1
2

arcsin

 c2 − ν

η2
(
1 + c2

2

) ,
χ(2)

+ = χ(2)
−

+ π .

We calculate the boundaries η(c2, ν) of their existence and obtain:

R(1), χ(1)
±

exists for η > ηSN & η < ηc & η < η−P ,

R(2), χ(2)
±

exists for

η > ηSN , for η < ηc ,

η−P < η < η
+
P , for η > ηc .
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ηSN(c2, ν), ηc(c2, ν) and η±P(c2, ν) are given by

ηSN =

√
|c2 − ν|

1 + c2
2

,

ηc =

√
1 + c2ν

2
(
1 + c2

2

) , (4.10)

η±P =

√√√√√√2(1 + c2ν) ±
√

4(1 + c2ν)2 − 3
(
1 + c2

2

)
(1 + ν2)

3
(
1 + c2

2

) .

Linear stability analysis reveals that the amplitude cluster solutions R(1,2) exp
(
iχ(1,2)
±

)
arise as two saddle-node pairs at ηSN, thereby destroying the limit cycle of the mod-
ulated amplitude clusters in a saddle-node of infinite period bifurcation (sniper). So-
lutions (1) are saddles and solutions (2) are stable nodes. Note that at η = ηSN,
χ(1)
−

= χ(2)
−

= π/4 and thus χ(1)
+ = χ(2)

+ = 5π/4 and furthermore, R(1) = R(2). Both so-
lutions (1) and (2) can be destroyed in pitchfork bifurcations with the synchronized
solution (η±P). Note that ηc is not a bifurcation line. Below ηc the pitchfork involves
R(1) exp

(
iχ(1)
±

)
and above ηc it involves R(2) exp

(
iχ(2)
±

)
. Furthermore, the crossings of

ηc and η−P mark degenerate pitchfork bifurcations. For details see the next section. In
essence, the amplitude clusters emerge in a sniper bifurcation when coming from a
parameter region, where the modulated amplitude clusters are stable. And they arise
in a pitchfork bifurcation when coming from a parameter region, where the synchro-
nized solution is stable (in a small region they also arise via a saddle-node bifurcation;
see next section). A coarse bifurcation diagram is depicted in Fig. 4.6 with illustrations
of the dynamical states along the path A to E given in Fig. 4.7.

The overall structure reminds of a so-called Arnold tongue and we will discuss the
relation to the locking behavior of forced oscillatory media in Section 4.2.4. Inside
the tongue one observes amplitude clusters. The tongue is bounded by a sniper
bifurcation for small η values and by a pitchfork bifurcation for high η values. A
Hopf bifurcation separates the region of modulated amplitude clusters from the region
of stable synchronized solutions. To illustrate the different dynamical behaviors in
the distinct regions, we go through the path A to E (for comparison see Fig. 4.7):
Starting at A with the synchronized solution, the Hopf bifurcation creates the limit
cycle for the modulated amplitude clusters in B. This limit cycle is then destroyed
by the sniper bifurcation resulting in amplitude clusters in C. Approaching the outer
pitchfork bifurcation brings the fixed points of the amplitude clusters closer together
in D. Note that in the pitchfork between C and D the unstable solutions R(1) exp

(
iχ(1)
±

)
meet the synchronized solution, thus the stable solutions R(2) exp

(
iχ(2)
±

)
are unaffected

by this pitchfork bifurcation. At the upper pitchfork the fixed points of the amplitude
clusters merge with the synchronized solution with what we end up in E. Note that,
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Figure 4.6: Coarse bifurcation diagram for the two-groups reduction. Shown is the amplitude η
of the mean-field oscillation versus its frequency ν for fixed c2 = −0.6. The stable dynamical
states are indicated in the figure. The Hopf bifurcation (green) is given by η = ηH, the
pitchfork (blue) is described by η±P and the sniper (red) occurs at ηSN, see Eqs. (4.10).
The dynamical states along the path A to E are depicted in Fig. 4.7. The codimension-two
points are two Takens-Bogdanov points ofπ-rotational symmetry (TB±π) and two degenerate
pitchfork bifurcations (DPF). The details of the bifurcation structure, which have been
omitted here, including the unfoldings of the TB±π points, will be discussed in Section 4.2.3.

Figure 4.7: Simulation results for the two-groups reduction in the original frame illustrating
the dynamical states along the path A-E in the bifurcation diagram in Fig. 4.6.

as w2 = −w1 in Eq. (4.6), both groups undergo the bifurcations simultaneously and the
second group always realizes the π-rotated solution of the first group.

Furthermore we encounter three codimension-two bifurcations, namely a degenerate
pitchfork (DPF) and two types of Takens-Bogdanov points TB±π. The unfoldings of
the Takens-Bogdanov points are presented in the next Section. Note that due to the
symmetry present in the system, the unfoldings are much more complicated than in
the standard case.

This diagram is strictly valid only for the two-groups reduction. It clarifies, which
bifurcations lead to the amplitude and modulated amplitude clusters. The diagram is
applicable whenever the full ensemble is separated into two subgroups.
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4.2 Two-cluster solutions

4.2.3 Details of the bifurcation diagram

The codimension-two bifurcations TB±π present in the coarse bifurcation diagram in
Fig. 4.6 have rather complex unfoldings. Using the software AUTO-07P for numerical
continuation, we could identify the local and global bifurcations occurring around the
TB±π points. The unfolding of the plus case, TB+

π, is shown schematically in Fig. 4.8,
while the minus case, TB−π, is presented in Fig. 4.9. Sketches of corresponding phase
portraits are also depicted in the figures.
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Figure 4.8: Sketch of the local bifurcation structure around the TB+
π point with corresponding

phase portraits. The involved codimension-one bifurcations are: pitchfork (pf), saddle-
node (sn), Hopf (h), saddle-node of infinite period (sniper) and heteroclinic (het). The
codimension-two bifurcations are: Takens-Bogdanov TB+

π, degenerate pitchfork (DPF) and
saddle-node loop (SNL). Stable fixed points are marked by filled circles and unstable ones
by empty circles. Stable limit cycles are drawn with a solid line and unstable limit cycles
with a dashed line.

In the TB+
π point a pitchfork, a Hopf and a heteroclinic bifurcation meet. In our

system, we find in the vicinity also a saddle-node bifurcation, which meets the pitchfork
in a degenerate pitchfork bifurcation (DPF) and the heteroclinic in a saddle-node loop
(SNL) bifurcation, see Fig. 4.8. The DPF turns the pitchfork from supercritical to
subcritical and the TB+

π changes it back to supercritical. The SNL turns the saddle-node
into a saddle-node of infinite period (sniper).

When following the numbering in Fig. 4.8, we start with a stable focus (1), then
cross the saddle-node, thereby creating two saddle node pairs (2). Then, we cross
the subcritical pitchfork and end up in (3) with two stable nodes and a saddle. Next,
we cross the pitchfork on the supercritical side, yielding two saddle node pairs with
an unstable focus in between (4). Note that the foci that seem (from the figure) to
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4 Stuart-Landau oscillators with nonlinear global coupling

Figure 4.9: Sketch of the local bifurcation structure around the TB−π point with corresponding
phase portraits. The involved codimension-one bifurcations are: pitchfork (pf), saddle-
node (sn), Hopf (h), saddle-node of infinite period (sniper), saddle-loop (sl) and saddle-
node of periodic orbits (snp). The codimension-two bifurcations are: Takens-Bogdanov
with symmetry (TB−π) and without symmetry (TB), saddle-node loop (SNL), degenerate
pitchfork (DPF) and neutral saddle-loop (NSL). Here, a TB and a SNL belonging to different
solutions coincide, for details see text. Stable fixed points are marked by filled circles and
unstable ones by empty circles. Stable limit cycles are drawn with a solid line and unstable
limit cycles with a dashed line. Note that the bifurcation structure in the shaded box is not
a result of the continuation as this diverges. It is consistent with the rest of the diagram, but
there might be other bifurcations involved, see, e.g., Ref. [122].

be involved in the pitchfork bifurcations change to nodes just before the bifurcations
occur. Crossing the heteroclinic bifurcation creates a stable limit cycle around the
unstable focus in the center (5), which emerges from a double heteroclinic connection
at the bifurcation (a). Finally, the saddle node pairs are annihilated in a saddle-node
bifurcation and we are left with a stable limit cycle around an unstable focus in (6).

The local bifurcation structure around the TB−π point is more complex. In the TB−π
point, a pitchfork, a Hopf concerning the synchronized solution, a Hopf concerning the
amplitude cluster solutions, a saddle-loop and a saddle-node of periodic orbits (snp)
meet. The saddle-loop line is in fact the coincidence of two saddle-loop bifurcations,
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4.2 Two-cluster solutions

one which describes the saddle-loop bifurcation of the amplitude cluster solutions
(small limit cycles in Fig. 4.9) and one which concerns the modulated amplitude cluster
solutions (outer limit cycles in Fig. 4.9). With this, we can understand the codimension-
two bifurcations occurring in the vicinity of the TB−π point: the snp and the two saddle-
loops meet first in a neutral saddle-loop (NSL) and later the saddle-loops meet with the
Hopf and the saddle-node in a Takens-Bogdanov (TB) without symmetry and a saddle-
node loop (SNL). The saddle-loop corresponding to the amplitude cluster solution ends
in the TB point and the other saddle-loop turns the saddle-node into a saddle-node of
infinite period (sniper) at the SNL. Note that this region of the bifurcation diagram, i.e.,
the shaded region, is not a result of the continuation as this diverges. It is consistent
with the rest of the diagram, but there might be other bifurcations involved, see, e.g.,
Ref. [122]. In the degenerate pitchfork (DPF) the saddle-node bifurcation meets the
pitchfork.

Again we can go through the diagram step by step by following the numbering in
Fig. 4.9: We start with a stable focus (1) and cross the Hopf to obtain a stable limit cycle
around an unstable focus (2). Then, the subcritical pitchfork turns the unstable focus
into a saddle point and creates two unstable nodes (3). The subcritical Hopf creates two
unstable limit cycles (4), which form homoclinic loops when meeting the manifolds
of the saddle point in the saddle-loop bifurcation (a). This saddle-loop bifurcation
coincides with a saddle-loop bifurcation of an unstable modulated amplitude cluster
solution, which is given by the unstable limit cycle in (5). Finally, the stable and the
unstable limit cycle annihilate each other in a snp, and a pair of stable nodes (describing
the amplitude cluster solutions) with a saddle point in between remain (6).

In fact the TB±π points are Takens-Bogdanov points of π-rotational or cubic symmetry
[45, 128], see also Ref. [75]. This is the symmetry present in Eq. (4.6). They possess the
same principal bifurcation structure as the second order resonance points found in the
investigation of periodically forced oscillators [122]. However, some bifurcations are
different, as we will discuss in the next section.

4.2.4 Conclusions

We could unravel the complex bifurcation structure exhibited by the two-cluster so-
lutions of an ensemble of generic limit-cycle oscillators near a Hopf bifurcation. The
conservation of the mean-field oscillation leads to mainly two bifurcations: a Hopf
bifurcation yielding the modulated amplitude clusters and a pitchfork bifurcation re-
sulting in common amplitude clusters. The meeting of these two gives rise to two
Takens-Bogdanov points of π-rotational symmetry and therewith to a wide variety
of dynamical states. We obtained these results for equal group sizes. Only in this
case the special symmetry is present, since for N1 , N2 the unsymmetric contribu-
tions in Eq. (4.5) do not cancel. In the unsymmetric equation, the pitchfork, Hopf and
period-doubling bifurcations should not be observable. However, the applicability of
the results on dynamics with unequal group sizes suggests that also for N1 , N2 the
clusters arise via the same bifurcations. The qualitative dynamics for N1 , N2 look the
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4 Stuart-Landau oscillators with nonlinear global coupling

same as for N1 = N2. Furthermore, we compared quantitatively the cluster frequencies
in the full system with N1 , N2 to the prediction based on N1 = N2 and obtained very
good agreement.

So far, we cannot predict, for which parameter values the full system spontaneously
reduces to two groups. This is a question that should be addressed in future work.

The results of the bifurcation analysis apply directly to the spatio-temporal patterns
found in the MCGLE in Chapter 3, thereby explaining the origins of the spatially
extended modulated amplitude and amplitude clusters. In Chapter 5, we will demon-
strate that the dynamics of individual oscillators in the MCGLE are perfectly described
by the Stuart-Landau oscillators considered here, for the discussed cluster solutions.

Besides, there is a strong connection to resonantly forced oscillatory media [49,
75, 76, 111, 112, 114–118]. The symmetry properties of the reduced dynamics in
Eq. (4.6), namely the cubic andπ-rotational symmetries, are also present in the complex
Ginzburg-Landau equation (CGLE) with resonant forcing near a 2:1 resonance. In fact,
there is a linear transformation that transforms the equation for w1 in Eq. (4.6) to the
form given in, e.g., Ref. [114] (see Eq. (10) therein) of the resonantly forced CGLE,
when omitting the diffusive coupling. As for forced oscillatory media, we observe an
Arnold tongue, a region of frequency locking, in the bifurcation diagram in Fig. 4.6.
The tongue starts at ν = c2, i.e., at a value of the driving frequency ν equal to the natu-
ral frequency c2 of the Stuart-Landau oscillator. The locking region is bounded by the
saddle-node, sniper and pitchfork bifurcations. The dynamics lock to the frequency ν
of the mean-field oscillations, i.e., to the frequency of the driving. Thus, we observe
a 1:1 locking instead of a 2:1 locking, which one would expect, since we observe the
bifurcation structure of a 2:1 resonance. This is reflected in the occurrence of a pitchfork
bifurcation instead of the period doubling bifurcation, which is present in the vicinity
of a second order resonance point, see Ref. [122]. A schematic bifurcation diagram of
a standard p/2 Arnold tongue (2:p locking) is shown in Fig. 4.10. The second order
resonance points are denoted with R2± and correspond to the TB±π points in Fig. 4.6.
The Hopf bifurcation in Fig. 4.6 and the Neimark-Sacker bifurcation in Fig. 4.10 are
qualitatively the same, as the Neimark-Sacker is the discrete version of a Hopf bifur-
cation. In case of the second order resonance point one finds a saddle-node instead of
a sniper bifurcation, i.e., the torus persists. Furthermore, to achieve the 2:p dynamics,
a period-doubling bifurcation appears in Fig. 4.10 instead of the pitchfork in Fig. 4.6.

As in the forced CGLE, the locked solutions in our system do not lie on a torus,
since the torus is destroyed in a sniper bifurcation. This can be easily seen, when
considering the ansatz that we made. We investigated the dynamics of wk defined
via Wk = W0(1 + wk). The sniper bifurcation that we found creates fixed points in
wk, namely R(1,2) exp(iχ(1,2)

±
). Thus, Wk = W0(1 + R(1,2) exp(iχ(1,2)

±
)) exhibits only one

timescale, which is given by the frequency ν of the mean-field oscillation. Therefore,
the torus is destroyed.

In our system the forcing is in fact a self-forcing, as the dynamics produce a mean-
field oscillation, which is conserved and then acts back as a forcing on the system. This

72



4.2 Two-cluster solutions

Figure 4.10: Schematic bifurcation diagram of a p/2 Arnold tongue (2:p locking) in the τ vs.
A parameter plane. τ: normalized forcing period; A: normalized forcing amplitude. The
second order resonance points are marked by R2±. Other bifurcations: sn: saddle-node; pd:
period-doubling; ns: Neimark-Sacker; DPD: degenerate period doubling; hc: homoclinic
connection; t: torus collision; a superscript n denotes the period, nText, of an orbit. For more
details see Ref. [122]. Reprinted with permission from W. Vance and J. Ross, J. Chem. Phys.
91 (12) 7654 (1989). Copyright 1989, AIP Publishing LLC.

self-forcing renders the cluster solutions possible. But note that it is the mathematical
structure of a 2:1 resonance that is responsible for the cluster formation. We observe a
1:1 locking and in general this would not give rise to cluster formation.
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4 Stuart-Landau oscillators with nonlinear global coupling

4.3 Clustering as a prerequisite for chimera states in globally
coupled systems

4.3.1 Introduction

In the introduction of this thesis, we outlined the story of chimeras in nonlinear dynam-
ics. Quite a lot of studies deal with this topic, investigating different systems. However,
concerning the prerequisites of their existence and the mechanisms of their emergence
only very little is known. Bifurcation analysis revealed that they can emerge via a
saddle-node bifurcation [17, 23, 26, 36], and they were found in maps with coupling-
induced bistability [27]. First analytical studies aiming to analyze the stability and
to characterize the emergence and dynamics of chimera states in nonlocally coupled
systems in a general way are presented in Refs. [36, 37].

In this Section we argue that a clustering mechanism observed typically in globally
coupled systems is a sufficient feature, rendering chimera states possible, as it splits
the oscillators into several groups and yields at least bistability. Then, one of the two
groups can desynchronize, while the other group stays coherent if the response on the
coupling is effectively different in the two groups. In the present study we demonstrate
that this situation can arise via nonlinear amplitude effects. Moreover, we show that
different cluster states lead to different chimera states and that the chimera states inherit
properties from the cluster states in which they originate.

4.3.2 Chimera states under nonlinear global coupling

We consider again the ensemble of N = 1000 Stuart-Landau oscillators with nonlinear
global coupling in Eqs. (4.1). Again, we observe amplitude clusters and modulated
amplitude clusters in Figs. 4.11a and f, respectively, as in the last section.

The cluster formation is the first symmetry-breaking step enabling the emergence of
chimera states as it produces first of all two different groups. Indeed, in the vicinity
of the two types of clusters we also observe two associated types of chimera states, as
shown in Figs. 4.11b and e, respectively. The first type obviously inherited the property
that the two groups are separated by an amplitude difference. Thus, starting from the
amplitude cluster state, the group with the smaller radius got desynchronized. The
second type of chimeras shares properties with the modulated amplitude clusters, but
this will be discussed below, where it becomes more apparent. As we will demonstrate
in Chapter 5, these chimera states are the discrete counterparts of the spatially extended
type I and II chimeras of Chapter 3. Type I chimeras mediate between the cluster
solution in Fig. 4.11a and the synchronized state in Fig. 4.11c. In contrast, type II
chimeras bridge the gap between the cluster solution in Fig. 4.11f and completely
irregular dynamics in Fig. 4.11d.

To gain a better understanding of the temporal dynamics in the chimera states,
we depict |Wk| and Re Wk versus time for type I and II chimeras in Figs. 4.12(a,b)
and (d,e), respectively. The synchronized group is marked with red color and the
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Figure 4.11: Evolutions in the complex plane and snapshots. Trajectories of the oscillators are
shown as solid lines, whereas the symbols describe snapshots of the system. First row: type
I dynamics. (a) Amplitude clusters (η = 0.9). (b) Type I chimera (η = 1.02), black lines
and squares: incoherent group; cyan (gray) lines and circles: coherent group. (c) Complete
synchronization (η = 1.2). Other parameters: c2 = 0.58 and ν = 1.49. Second row: type II
dynamics. (d) Irregular dynamics (ν = −0.1). (e) Type II chimera (ν = 0.02), black lines and
squares: incoherent group; cyan (gray) lines and circles: coherent group. (f) Modulated
amplitude clusters (ν = 0.1). Other parameters: c2 = −0.6, η = 0.7.

incoherent group is plotted in blue. In the type I chimera there is a clear separation
of the groups by an amplitude difference. The coherent group has an approximately
constant amplitude, while the oscillators in the incoherent group exhibit irregular
amplitude fluctuations. This is reflected in the real part, showing an approximately
harmonically oscillating synchronized group. The incoherent group oscillates with the
same main frequency, but forms a band of oscillators due to the irregularity in the
modulus. This state is in fact unstable, as we observe heteroclinic transitions between
the type I chimera and two other cluster states on a large timescale. This will be
discussed below. In contrast, the second type of chimeras seems to be stable, as we
could not observe a break down in the simulations up to T = 1 · 106. The incoherent
oscillators in this type II chimera show a nearly-periodic spiking behavior (which is not
performed by all incoherent oscillators at the same time). This is a property inherited
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4 Stuart-Landau oscillators with nonlinear global coupling

Figure 4.12: Type I and II chimera states, moduli (a,d) and real parts (b,e) versus time, respec-
tively. The population splits into two groups, one being synchronized (red) and one being
desynchronized (blue). (c,f) Linear, 〈W〉, (dashed lines) and nonlinear,

〈
|W|2 W

〉
, (solid lines)

averages versus time for type I chimeras (c) and type II chimeras (f).

from the modulated amplitude clusters (Fig. 4.11f). The frequency of the spiking is
given by the frequency of the modulational oscillations that are a result of a secondary
Hopf bifurcation [129], see Section 4.2. This spiking dynamics is also visualized in the
complex plane in Fig. 4.13. We observe a slow clock-wise oscillation of the synchronized
group, while incoherent oscillators repeatedly perform a counter clock-wise rotation,
which is the spiking dynamics. Between the excursions, both groups are very close to
each other. Thus, this type of chimera state is only possible if the synchronized solution
is unstable. Furthermore, this dynamics is similar to the breathing chimera state [23],
where the incoherence of the desynchronized group is oscillating.

In essence, the dynamics show that the separations into incoherent and coherent
groups occur via the corresponding clustering mechanism, for both types of chimeras.

76
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Figure 4.13: Consecutive snapshots in the complex plane for a type II chimera state. Red marks
the synchronized group and blue the incoherent one.

Type I chimeras can also be found with a linear global coupling. Daido & Nakanishi
[98] and also Nakagawa & Kuramoto [20] describe a state that seems to be such a
chimera state, but they do not identify them as such. Only later they have been
identified as chimera states [99]. We present the chimera states found under linear
global coupling in Section 4.3.3. In fact, the nonlinear global coupling we consider
behaves effectively like a linear global coupling in case of type I dynamics. This is
visualized in Fig. 4.12c, where we plot the linear part of the coupling 〈W〉 as a red dashed
line and the nonlinear part

〈
|W|2 W

〉
as a blue solid line. We see that the nonlinear term

is also sinusoidal, i.e.,
〈
|W|2 W

〉
∝ 〈W〉, yielding an effective overall linear behaviour

of the coupling. Since this implies
〈
|Wk|

2 Wk

〉
=

〈
r3

keiφk
〉
∝

〈
rkeiφk

〉
, averaging leads

to vanishing nonlinear effects in the global coupling for type I chimeras. In contrast,
in case of type II chimeras the dynamics of

〈
|W|2 W

〉
is highly nonlinear, as shown in

Fig. 4.12f. We conclude that type II dynamics might not be observable with a solely
linear global coupling.

Furthermore, we looked at time series of individual oscillators in the incoherent
groups. Examples are depicted in Figs. 4.14a and c for type I and II chimeras, respec-
tively. As a simple test for chaoticity, next-maximum maps for the timeseries are shown
in Figs. 4.14b and d, respectively. Both next-maximum maps are highly nontrivial and
structurally very different. We see this as a clear indication that the dynamics in the
incoherent parts of the two types of chimeras take place on different types of chaotic
attractors. In the case of type II chimeras, the incoherent dynamics inherits properties
from the motion on the torus existing at close-by parameter values, while no torus
exists in the neighborhood of type I chimeras.

As already mentioned, type I chimeras are unstable and we observe heteroclinic
connections. To visualize this we define a measure characterizing the different dynam-
ical states. The natural choice of the Kuramoto order parameter is inappropriate here,
because of the strong amplitude fluctuations and since 〈W〉 = η exp (−iνt) at all times.
Therefore we use the variance σ =

〈
W2

〉
− 〈W〉2. An exemplary timeseries of |σ| for

parameters of type I chimeras is shown in Fig. 4.15a.
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Figure 4.14: Chaos in the chimera states. (a,c) Samples of timeseries of incoherent oscillators
for type I and II chimeras, respectively. Identified peaks are marked with circles. (b,d)
Next-maximum maps for the peaks in (a,c).

Three qualitatively different regimes can be identified and after an initial transient,
the system randomly settles first to one of them; in the trajectory shown it is a 1-
3 cluster state. The dynamics in this state are depicted in Fig. 4.15b and the phase
distribution at one timestep is shown in a histogram in Fig. 4.15c. This state consists of
one large cluster and three small clusters of approximately the same size. The measure
|σ| exhibits strong variations around a value of approximately 0.1. Then around t =
15000 the 1-3 cluster state breaks down and the system moves to a new state that
exhibits fluctuations of |σ| around 0.05: the type I chimera state. After approximately
∆t = 10000 we observe another transition to a state with nearly constant |σ|. This is the
amplitude cluster state as depicted in Fig. 4.11a. Figure 4.15a suggests that transitions
between these three states follow in a non-cyclic and non-periodic sequence. Thus,
though being reminiscent of a heteroclinic orbit, the dynamics possesses a further
peculiar, unpredictable feature.
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Figure 4.15: Heteroclinic connections between type I chimeras, 1-3 cluster states and amplitude
clusters for N = 100 oscillators. (a) Trajectory of |σ| in time showing the transitions between
the different states. (b) An example for the dynamics of the 1-3 cluster state in the complex
plane: lines depict time evolution and dots represent the configuration of the oscillators at
one timestep. (c) Histogram of phases in the 1-3 clusters state showing that it consists of 1
large cluster and 3 small clusters of approximately the same size.

4.3.3 Type I chimeras under linear global coupling

We demonstrated in Fig. 4.12 that in case of type I chimeras the nonlinear term in
the global coupling is proportional to the linear term and thus, the nonlinear global
coupling is effectively linear. Indeed, type I chimeras can also be found under solely
linear global coupling, as discussed in Ref. [99]. The authors considered the model:

dWk

dt
= Wk − (1 + ic2) |Wk|

2 Wk + K(1 + ic3) (〈W〉 −Wk) , k = 1, 2, . . . ,N . (4.11)

Here, K(1 + ic3) is the complex prefactor of the coupling function with parameters K
and c3. We reproduced their chimera states and depict the results in Fig. 4.16. Com-
paring with the type I chimeras found in our model (Figs. 4.12a-c), we observe many
similarities. Again, the synchronized group has a larger modulus than the desynchro-
nized one and the overall dynamics in the modulus look similar, see Fig. 4.16a. In the
real part in (b), the synchronized group performs a nearly harmonic oscillation, while
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Figure 4.16: Type I chimera state in an ensemble of Stuart-Landau oscillators with linear global
coupling, see Eq. (4.11). (a) Modulus |W| versus time; red: synchronized group, blue:
desynchronized group. (b) Real part of W versus time; red: synchronized group, blue:
desynchronized group. (c) Linear average (dashed), 〈W〉, and nonlinear average (solid
line),

〈
|W|2 W

〉
, versus time. Parameters read c2 = 2.0, K = 0.7 and c3 = −1.25.

the incoherent oscillators form a band and exhibit as a main frequency the frequency
of the synchronized group. Finally, the linear and nonlinear averages in Fig. 4.16c
oscillate approximately harmonically. In fact, the authors in Ref. [99] approximate
the mean-field with a harmonic oscillation in order to analyze the emergence of these
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chimera states. Thus, the type I chimeras under nonlinear global coupling constitute
the idealized case of the chimeras presented in Fig. 4.16, in the sense that the mean-
field oscillates exactly harmonically, leading to equivalent overall dynamics. Due to
the preserved harmonic mean-field oscillation, the dynamics of the two groups in our
model are itself more orderly. One difference is that the chimeras found under linear
global coupling seem to be stable, while, so far, we could not find stable type I chimeras
in the Stuart-Landau ensemble with nonlinear global coupling.

4.3.4 Phase diagrams

In order to give an impression of the existence regions of the two types of chimera
states found in Eqs. (4.1), we present phase diagrams in the η vs. ν parameter plane
for type I and II dynamics in Figs. 4.17 and 4.18, respectively. Note that they are only
qualitative and approximative: as we do not have quantitative measures differentiating
the various dynamical states, we identified them by visual inspection of the simulation
results. Furthermore, as in the case of type I dynamics heteroclinic transitions occur,
the phase diagram may alter for longer simulation durations. Further details are given
in the figure captions. The phase diagrams demonstrate that the chimera states are
indeed found in a finite parameter region.
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Figure 4.17: Approximate phase diagram for type I dynamics in the vicinity of the type I
chimera state (Fig. 4.11b) in the η vs. ν parameter plane. We simulated N = 100 oscillators
for a duration of T = 1 · 105. By visually inspecting the simulation results, we grouped into
three classes on a qualitative basis: amplitude cluster (blue), multistable without chimera
(green) and multistable with chimera (red).
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Figure 4.18: Approximate phase diagram for type II dynamics in the vicinity of the type II
chimera state (Fig. 4.11e) in the η vs. ν parameter plane. We simulated N = 1000 oscillators
and recorded data between t = 5000 and t = 7000, which is sufficient as no heteroclinic
transitions are expected to occur. By visually inspecting the simulation results, we grouped
into three classes on a qualitative basis: irregular (blue), modulated amplitude cluster
(green) and chimera (red).

4.3.5 Conclusions

In summary, we found numerically two types of chimera states in the vicinity of two
types of clusters. The chimera states inherit properties from the respective cluster
states. We conclude that the clustering mechanism is a first symmetry-breaking step
sufficient for chimera states to occur in oscillatory systems with uniform global cou-
pling [130]. It differentiates the system into two groups thereby rendering it bistable.
Effectively, oscillators in the two states respond differently to the coupling due to non-
linear amplitude effects. Note that as a consequence, this mechanism will not give rise
to chimeras in ensembles of phase oscillators, where other mechanisms may render
their formation possible [119]. Additionally, an effective difference between intra- and
inter-group coupling arises as discussed in Section 3.4. Furthermore, we demonstrated
that the chimera states can mediate between cluster states and completely incoher-
ent behavior as well as between cluster states and synchrony. This leads us to the
conclusion that chimera states might appear spontaneously in many globally coupled
systems, as a clustering mechanism and the possibility of amplitude variations are
sufficient features a system has to exhibit.

In the system with the two groups with different intra- and inter-group coupling,
the separation of an ensemble into two subpopulations is done artificially [23, 31,
33]. However, it resembles the situation that arises dynamically via the clustering
mechanism in our system. In the system composed of metronomes [33], the authors
observe the chimeras between synchrony and the anti-phase synchronization, which
corresponds to a two-cluster state. Furthermore, they found a region of bistability,
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where the anti-phase synchronization and the chimera state is stable. We observe such
a bistability in the case of type I chimeras, where additionally heteroclinic transitions
occur.

Yeldesbay et al. considered two different mechanisms leading to chimera states
under global coupling [119]. In one system, the bistability also emerges dynamically as
a balance situation, while a second system is composed of individual bistable elements.
In this latter system, the coupling is designed such that it acts repulsively in the one
state and attractively in the other state. We stressed the point that nonlinear amplitude
effects are important for chimera states to exist in globally coupled systems as they
lead to different responses on the global force in the different states. This conclusion
is corroborated by a study of globally coupled van der Pol oscillators with a nonlinear
position-dependent frequency [131]. The authors show that this nonlinear effect on the
frequency renders chimera states under global coupling possible.

In contrast to chimera states found in systems with nonlocal coupling [132], we
could not observe a limited lifetime of type II chimeras. In case of type I chimeras, the
behavior is defined by the heteroclinic network and thus, we observe a limited residence
time in the type I chimera state. However, as the type II chimeras demonstrate, the
separation into distinct groups, one synchronized, one desynchronized, might be more
robust than the situation found under nonlocal coupling, where the synchronized
and the desynchronized regions are connected by a smooth boundary. Especially the
frequency curve in the incoherent part [16] shows that there is a more or less smooth
transition from synchrony to incoherence. If the synchronized solution is additionally
stable, it is reasonable that the chimera states are only transient in nonlocally coupled
systems, at least for small numbers of oscillators.

At this point, we should remember the cluster and chimera states in the extended
system, i.e., in the MCGLE. The investigation of Stuart-Landau oscillators was devoted
to the better understanding of the spatio-temporal dynamics in the MCGLE. In order
to transfer the conclusions of this chapter to the extended model, we have to proof
that we really describe the dynamics in the extended system with this discrete model.
Therefore, we compare the dynamics of oscillators in the Stuart-Landau ensemble with
the dynamics of individual oscillators in the extended system, i.e., points in space, in
the next chapter.

83





Chapter 5

Comparison of symmetry-breaking bifurcations and
dynamics in the MCGLE and the Stuart-Landau

ensemble

Verlockend ist der äußre Schein. Der Weise dringet
tiefer ein.

(Wilhelm Busch)

So far, we simply assumed that dropping the diffusive coupling in the MCGLE,
one does not loose a dynamically relevant term. Now, we demonstrate that this
assumption is reasonable by comparing the dynamics of oscillators in the Stuart-

Landau ensemble with the dynamics of individual oscillators, or points in space, in the
extended model, the MCGLE. Therefore, we choose a few points in space in each phase
of the spatio-temporal patterns. For the cluster dynamics the resulting time series are
depicted in Fig. 5.1. The evolution in the complex plane in case of modulated amplitude
clusters in the MCGLE (a) is indistinguishable from the corresponding dynamics of
oscillators in the Stuart-Landau ensemble (b). The same holds for amplitude clusters
in the MCGLE (c) and in the ensemble (d). With no doubt the results of the bifurcation
analysis in Section 4.2 apply directly to the two-phase clusters in the MCGLE. A similar
conclusion could be made for cluster patterns during the CO oxidation on Pt(110):
Falcke & Engel demonstrate that clusters arise with the global coupling alone, no local
coupling is needed [102]. In their experiment, the local coupling is due to surface
diffusion of mobile adsorbates and the global coupling is due to pressure changes in
the gas phase.

In Fig. 5.2 the temporal dynamics in the two types of chimera states are compared.
Individual oscillators in the MCGLE in case of type I chimeras (a) exhibit the same
qualitative features as oscillators in the discrete ensemble (b): the synchronized group
has a larger modulus, while the incoherent oscillators show irregular motion at lower
values of the modulus. Note that the c2, ν and η values differ a bit between the extended
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5 MCGLE versus Stuart-Landau ensemble

Figure 5.1: Cluster dynamics of individual oscillators in the MCGLE and in the Stuart-Landau
ensemble. (a) Modulated amplitude cluster in the MCGLE (c1 = 0.2, c2 = −0.6, ν = 0.1,
η = 0.7). (b) Modulated amplitude cluster in the Stuart-Landau ensemble (c2 = −0.6, ν = 0.1,
η = 0.7). (c) Amplitude cluster in the MCGLE (c1 = 0.2, c2 = −0.56, ν = −1.5, η = 0.9). (d)
Amplitude cluster in the Stuart-Landau ensemble (c2 = −0.56, ν = −1.5, η = 0.9). In (b,d)
the dashed line describes the mean-field.

and the discrete model. This is attributable to the change of stability by the diffusional
coupling, i.e., in the extended system the chimera state spontaneously emerges at other
parameter values as the diffusional coupling shifts the stability of the solutions. This
might also be the reason, why the type I chimeras seem to be stable in the MCGLE,
while we could only find unstable type I chimeras in the Stuart-Landau ensemble.
However, on a qualitative basis the discrete model describes the same type I chimeras
as the MCGLE.

This holds also for type II chimeras, which are compared in Figs. 5.2c and d, for the
MCGLE and the Stuart-Landau ensemble, respectively. In the MCGLE the oscillation
of the synchronized group is not as harmonic as in the discrete model; the modulational
oscillations are far more pronounced. The reason for this difference is that in the discrete
model the desynchronized group is much smaller than the synchronized group, while
in the extended system we observe approximately phase balance, i.e., both groups are
of the same size. In both cases the mean-field has to oscillate harmonically. Hence,
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5.1 Phase balance in the MCGLE

Figure 5.2: Dynamics in the two types of chimera states of individual oscillators in the MCGLE
and in the Stuart-Landau ensemble. Red denotes the synchronized group and blue the
desynchronized one. (a) Type I chimera in the MCGLE (c1 = 0.2, c2 = 0.61, ν = 1.5, η = 1.0).
(b) Type I chimera in the Stuart-Landau ensemble (c2 = 0.58, ν = 1.49, η = 1.02). (c) Type II
chimera in the MCGLE (c1 = 0.2, c2 = −0.58, ν = 0.1, η = 0.66). (d) Type II chimera in the
Stuart-Landau ensemble (c2 = −0.6, ν = 0.02, η = 0.7).

the spiking of the incoherent oscillators has to be compensated by the synchronized
group, which is more pronounced if the groups are of the same size. Furthermore, due
to the diffusional interaction of nearby oscillators, the spiking is more smooth in the
MCGLE. Again, the parameters are a bit different for the same reason as in case of type
I chimeras.

Besides minor differences in the details of the dynamics, we can conclude that also the
dynamics in the two types of chimera states in the MCGLE are sufficiently captured by
the discrete Stuart-Landau ensemble. Thus, the qualitative conclusions from Section 4.3
can also be transferred to the spatio-temporal patterns.

5.1 Phase balance in the MCGLE

In the MCGLE, type II dynamics are found to display so-called phase balance, i.e., both
dynamical phases are of the same spatial extension. Dropping the diffusional coupling
and thus, considering the ensemble of Stuart-Landau oscillators, phase balance is
broken: Usually, the two groups N1 and N2 are not of the same size, i.e., N1 , N2.
Consequently, phase balance should be a result of the diffusional coupling. In order
to verify this assumption and unravel the underlying mechanism, let us consider
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ba

Figure 5.3: Schematical profile of a modulated amplitude cluster solution in the MCGLE in
terms of |w| (for definition see text), which is out of phase balance. (a) Initial profile with
phase A (left) smaller than phase B (right) and a sharp phase boundary. (b) The phase
boundary has become smooth due to the diffusional coupling.

modulated amplitude clusters in the MCGLE in a non-balance situation. We describe
the system in the rotating frame w defined by W = W0(1+w). Figure 5.3a visualizes the
non-balance situation and we call the left region phase A and the right region phase B.

From the conservation law, 〈W〉 = W0, we have

〈w〉 = 〈wA〉 + 〈wB〉 = 0 ,

where the subscripts denote phases A and B, respectively. We can use the picture of
discrete oscillators and write the above equation as

〈w〉 =
1
N

(
NA

〈
|w| eiφ

〉
A

+ NB
〈
|w| eiφ

〉
B

)
= 0 .

NA and NB denote the number of oscillators in phase A and B, respectively, and< · · · >X
is the average over oscillators in region X, with X=A,B. Now, we assume that we can
replace the phases φ in region A with φA and in region B with φB and these phases do
not change due to diffusion. This is reasonable, since there has to be a phase shift of π
between the groups, otherwise the terms cannot cancel each other. Furthermore, the
amplitude dynamics are sufficient to explain the phenomenon of phase balance. Thus,
we obtain

1
N

(
NA 〈|w|〉A eiφA + NB 〈|w|〉B ei(φA+π)

)
= 0 ,

and finally
NA 〈|w|〉A = NB 〈|w|〉B . (5.1)

The latter equation has to be fulfilled because of the conservation law present in our
system. In case of the ensemble of Stuart-Landau oscillators, a cluster solution can be
realized for many values of NA and NB, while then 〈|w|〉A,B have to adopt appropriate
values in order to fulfill Eq. (5.1).

What happens if the diffusional coupling is introduced, is visualized in Figs. 5.3a
and b. Let the initial configuration be as shown in Fig. 5.3a, i.e., phase A is smaller than

88



5.1 Phase balance in the MCGLE

phase B and the phase boundary is very sharp. Initial values of |w| in phases A and B

are given by
∣∣∣∣w0

A,B

∣∣∣∣, respectively. The diffusional coupling will smoothen the boundary,
resulting in a boundary as shown schematically in Fig. 5.3b. We observe that the mean
value 〈|w|〉A decreased compared to

∣∣∣w0
A

∣∣∣ and 〈|w|〉B increased compared to
∣∣∣w0

B

∣∣∣ (see
dashed lines). In order to satisfy the conservation law in Eq. (5.1), the cluster sizes NA
and NB have to adapt appropriately. Thus, NA increases and NB decreases and this
procedure takes place until phase balance is reached. Note that in the phase-balance
situation, NA = NB and also 〈|w|〉A = 〈|w|〉B, while there is still a phase shift of π.

The above considerations verify that the diffusional coupling together with the con-
servation law can lead to the occurrence of phase balance in the MCGLE. However,
phase balance is only observed for type II dynamics, while type I dynamics, e.g., am-
plitude clusters, show a non-balance configuration. We could not identify the reason
behind this difference between the two types of patterns.
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Chapter 6

Summary & Outlook

Das Ganze ist mehr als die Summe seiner Teile.
(Aristoteles)

Spatially resolving the thickness of the oxide-layer on an n-type silicon working
electrode during its photoelectrodissolution reveals peculiar spatio-temporal dy-
namics [13, 14, 79, 80, 91]. Typical patterns range from cluster dynamics and tur-

bulence to such astonishing, symmetry-breaking dynamics as chimera states [16, 17, 35].
In a chimera state, the system splits into two dynamical phases, one phase oscillating
in synchrony and the other phase displaying incoherent dynamics. In this thesis, we
investigated the underlying mechanisms of these dynamics.

Since the basic oscillation in the photoelectrodissolution of n-type silicon arises via
a Hopf bifurcation, in the vicinity of this bifurcation, the dynamics are captured with
the CGLE. Yet, this is only appropriate to describe the synchronized oscillation, as
the relevant coupling terms are missing. Thus, more details of the system have to be
introduced in the model. The key property is the oscillation of the spatially averaged
oxide-layer thickness, which is harmonic with constant amplitude and frequency, for
a huge region in parameter space, despite complex spatio-temporal dynamics. Intro-
ducing a nonlinear global coupling in the CGLE, a preserved harmonic mean-field
oscillation can be achieved [13, 15]. In the experiments such a nonlinear global cou-
pling is most likely also present: We believe that the restriction of available charge
carriers by limitation of the illumination results in a nonlinear global coupling, as it
influences the total current, in a nonlinear fashion.

In this thesis we demonstrated, by means of two-dimensional simulations of the
CGLE with nonlinear global coupling, that the patterns forming in the oxide-layer
thickness are well captured with this very general model, mimicking only essential
features of the experiment, but omitting all detailed mechanisms. Not only the clus-
ter patterns exhibiting two characteristic frequencies, but also the chimera state can
be reproduced with the modified complex Ginzburg-Landau equation. In both, the
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experiments and the simulation, we could encounter the same route leading from the
cluster state via subclustering to the chimera state [79]. In the subcluster state, one
of the two phases is synchronous, while the other exhibits two-phase clusters as a
substructure. We argued that a cluster state breaks, first of all, the symmetry. The
phase difference results in a intra-group coupling that is different to the inter-group
coupling. Chimera states could be observed theoretically [23] and experimentally [31]
in a system, where this situation of two groups with different intra- and inter-group
coupling is introduced artificially. In the experiments of Ref. [31] the same route from
clusters to chimeras via subclustering is found. Remarkably, in our simulations as well
as in our experiments nothing is imposed to introduce this symmetry breaking. The
chimera states arise spontaneously due to the intrinsic dynamics. All parameters are
kept uniform and care was taken to make the coupling in the experiment symmetric.
Also the initial conditions are not relevant, as one can start in a uniform state with
superimposed noise.

In the simulations we found a further type of cluster pattern and also a corresponding
chimera state. The cluster pattern in this case is the well-known amplitude cluster [98],
which consists of two groups oscillating at different radii with a small and fixed phase
difference. We termed these states type I dynamics and the dynamics reproducing the
experiments type II dynamics. This nomenclature goes back to Ref. [97], where the
authors describe type II clusters, which exhibit an uniform oscillation plus a second
oscillation with which two-phase clusters come along. This resembles the situation
in the type II clusters described in this thesis. Thus, in the MCGLE we observe two
types of clusters with two associated types of chimera states, where the second type of
dynamics reproduces patterns found in the experiments.

It has long been thought that a nonlocal coupling, i.e., a coupling whose range is
between local and global and whose strength decreases with the distance, is indis-
pensable for the formation of chimera states. During the course of this thesis we were
able to proof the contrary, as the chimera states we found arise under global coupling.
In the MCGLE the diffusional coupling disguises this fact as one might argue that a
global coupling plus a local coupling amounts to a nonlocal coupling. Note that the
model describing two groups with different intra- and inter-group coupling [23, 31]
constitutes a minimal model with nonlocal coupling, as the coupling in some sense
still decreases with the distance. This situation arises in our model only effectively, the
underlying coupling is still global plus diffusive. In fact, by omitting the diffusional
coupling, we could proof that the chimera states survive and emerge under solely
global coupling. We will come back to that point below. Meanwhile, chimera states
could be observed in other globally coupled systems [99, 119].

Type II chimera states in the extended system are always found in a phase-balanced
configuration. Thus, interchanging the coherent with the incoherent phase yields
for symmetry reasons again a solution to the underlying equations. Consequently, we
could oberserve spontaneously emerging alternating chimera states, in which synchro-
nized and desynchronized regions interchange from time to time. This observation
might be of importance in understanding unihemispherical sleep, where such alterna-
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tions could also be observed [35, 38, 39, 42].
Various dynamics found in the MCGLE are not reliant on the diffusional coupling.

The nonlinear global coupling yields the essential dynamics, while the diffusional cou-
pling only leads to the spatial arrangement of the patterns. We verified this assump-
tion in Chapter 5. We omitted the diffusional coupling and considered an ensemble of
Stuart-Landau oscillators with nonlinear global coupling in Chapter 4, in order to gain
more insight into the mechanisms behind the spatio-temporal dynamics we found.

Starting with the cluster patterns in Section 4.2, we reduced the set of N equations
to two effective equations, describing two groups of sizes N1 and N2. Under the
assumption of equal group sizes, i.e., N1 = N2, a bifurcation analysis became possible.
Therefore, we described the dynamics in terms of a deviation w from the uniform
oscillation, defined via W = W0(1 + w), where W0 is the mean-field oscillation. The
resulting equations for w1 and w2 constitute the forced CGLE near a 2:1 resonance,
when neglecting the diffusional coupling. This gives rise to a complex bifurcation
structure, which is tongue-shaped in the η (mean-field amplitude) versus ν (mean-field
frequency) plane. Its origin for η = 0 is at ν = c2, i.e., at the frequency of the underlying
homogeneous dynamics of the Stuart-Landau oscillator. This leads to the interpretation
that the conserved mean-field oscillation can be seen as a periodic self-forcing of the
system.

The bifurcation analysis revealed that the type II clusters arise in a Hopf bifurcation
for w, which is then a secondary Hopf bifurcation in the full system. This Hopf bi-
furcation gives rise to the modulational oscillations, the reason why we call the type
II clusters modulated amplitude clusters. Since w2 = −w1, the second group always
realizes the π-rotated solution, explaining the phase shift of π in the full system at
the frequency of the modulational oscillation. Consequently, we observe quasiperi-
odic behavior in the full system and the frequency of the modulational oscillation can
be tuned with the parameters. In contrast, the modulated amplitude clusters in the
experiments seem to arise via a period-doubling bifurcation, as the frequency of the
modulational oscillation is always observed to amount to half the frequency of the
uniform oscillation. Amplitude clusters arise either via a pitchfork bifurcation with
the synchronized solution or in a saddle-node of infinite period bifurcation, thereby
destroying the torus of the modulated amplitude clusters. Thus, the amplitude clusters
constitute the locked solutions inside the tongue. Interestingly, we observe a 1:1 lock-
ing, despite the bifurcation structure of a 2:1 resonance, which is, in turn, indispensable
to observe two-cluster solutions.

Finally, we demonstrated that the two types of chimera states found in the MCGLE
are indeed observable without the diffusive coupling and thus, with a solely global
coupling. The analysis of the neighboring states led us to the conclusion that a cluster
mechanism is the first symmetry-breaking step on the way to chimera states in globally
coupled systems. This is in line with the conclusion that the two-phase cluster states
yield effectively different intra- and inter-group couplings. Additionally, nonlinear
amplitude effects are important, especially for type I chimeras, as then the response on
a global force can be different in different groups. Furthermore, the resulting chimera
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dynamics inherit properties from the clusters, in which they originate. We found also
that in case of type I dynamics the nonlinear global coupling effectively behaves like
a linear global coupling and we could establish a connection to chimera states found
in an ensemble of Stuart-Landau oscillators with solely linear global coupling [99].
Consequently, we demonstrated that these chimera states with linear global coupling
in the discrete model give rise to chimera states in a CGLE with linear global coupling,
which are equivalent to the type I chimeras found in the MCGLE. In contrast, in case
of type II dynamics the nonlinearity of the coupling seems to be indispensable.

Chaos: When the present determines the future, but
the approximate present does not approximately
determine the future.

(Edward Lorenz)

Astonishing spatio-temporal dynamics can be observed in oscillatory media un-
der nonlinear global coupling. In case of the photoelectrodissolution of n-type
silicon we are able to model them with a general ansatz and identified prin-

ciples and bifurcations underlying the pattern formation. Still unresolved are the
physical model of the basic oscillation and the exact physical mechanism of the non-
linear global coupling. Once this is done, using a center manifold reduction technique,
the corresponding normal form can be derived. This will show, for which parameter
regions the ansatz chosen in this thesis is valid and yield a connection between the
parameters in the theory and in the experimental system.

Further questions are: Can one define a measure that is minimized or maximized
under the process of pattern formation? Why does the system exhibit the coexistence
of different dynamics? These questions have to be answered in order to learn more
about the principles governing pattern formation. This holds especially for the co-
existence of synchrony and incoherence, the chimera state, constituting the strongest
symmetry-breaking state. Measures have to be defined characterizing the different
classes of chimera states. Furthermore, the connections to real world processes like
unihemispherical sleep have to be extended and set on a profound scientific basis.
Therefore, we need to look at neuronal dynamics in more detail and understand how
the brain is working. We need to know in detail, how the basic oscillators, the neurons,
can be described and how they are coupled to each other. This may lead to a deeper
understanding of brain functions and disfunctions, rendering effective therapies for,
e.g., Parkinson’s disease or epileptic seizures possible.

Once the fundamental principles behind the spatio-temporal pattern formation and
the symmetry-breaking states are identified, they can be transferred to other systems
composed of many coupled elements. Examples can be found in social sciences,
describing the dynamics of groups of human beings with their complex interactions.
This can be the process of opinion formation or also mass panic dynamics. Another
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example gaining in importance is the stability of the electrical power grid, when more
and more renewable energies are used. Strong fluctuations in the power input and
a very small inertia of the whole grid renders it more unstable with respect to small
perturbations. Perhaps even the phenomenon of a chimera state in the electrical
power grid is imaginable, yielding normal power supply in part of a country and local
breakdown in other parts.

Not only in research, but also in the everyday world
of politics and economics, we would all be better off
if more people realised that simple nonlinear
systems do not necessarily possess simple
dynamical properties.

(Robert M. May)
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