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Abstract

Worldwide, early warning systems (EWS) are increasingly operated to prevent the dam-

age and loss of life caused by natural disasters and smaller but destructive events. EWS

are part of an integrated risk management approach, which comprises alternative mitiga-

tion measures to reduce risks imposed by natural hazards. Through timely information,

EWS enable endangered persons and risk managers to set up preventive mitigation me-

asures and avoid damage and loss of life. EWS are, compared to structural prevention

measures such as dams, nets or galleries, cheap, flexible and have a minor impact on

the environment. However, to identify optimal mitigation strategies, their effect on risk

reduction and life cycle costs should be compared to alternative mitigation measures

in cost-effectiveness analyses. Existing guidelines describe detailed procedures for the

evaluation of structural mitigation measures, but not for the evaluation of complex and

often human-centered EWS. The aim of this thesis is to close the existing gap and pro-

vide a framework approach for the evaluation of the effectiveness achieved with EWS.

In addition, a guideline summarizes major findings in a simplified form to support prac-

titioners in the development and operation of cost-effective EWS.

The development of a sophisticated and applicable framework approach is achieved in

three main objectives, using theoretical and empirical methods. The first objective is

to develop a novel, generic classification for EWS. This classification distinguishes be-

tween alarm systems (AS), warning systems (WS) and forecasting systems (FS) and

enables a structured evaluation of EWS. AS are fully automated, threshold-based sys-

tems. They are installed to detect ongoing, spontaneously triggered processes such as

earthquakes, debris flows and wildfires. WS use thresholds to detect precursors of pro-

cesses that evolve over time, such as high-magnitude rockfalls, tsunamis and volcanic

eruptions. This timely information enables experts to analyze the data in detail and set

up intervention measures if necessary. FS have the lowest degree of automation. Here,

experts analyze precursors at regular intervals to predict the occurrence probability of

spontaneous events, such as snow avalanches and severe weather, on a regional scale.

The novel classification is verified by applying it to a selection of modern EWS operated

worldwide. The second objective is to identify those factors that have a major influ-

ence on the reliability and effectiveness in different EWS classes. In two detailed case

studies, the reliability and effectiveness of an AS and a WS are assessed and optimized.

For this evaluation, methods tailored to the individual EWS classes are developed. The

reliability of automated AS can be modeled in Bayesian networks (BN) and depends on

selected monitoring strategies, including sensor type, amount and positioning, of sensors,

on thresholds and on the failure probabilities of system components. An evaluation of
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partly automated WS is more complex and must account for additional factors such as

the accuracy of applied models and the influence of human decision-making. The third

objective is to derive a framework approach for the evaluation of EWS, which constitutes

the major result of this thesis.

In the novel framework approach, the effectiveness is measured as a function of the relia-

bility, as is common practice for the evaluation of structural measures. The framework

comprises three main parts: in the first two parts the reliability of EWS is quantified in

a binary approach and expressed in terms of the probability that an event is detected

(POD) and the probability that false alarms are issued (PFA). A reliability analysis of

automated AS and the automated parts of WS and FS is conducted in the first part,

before the reliability of the non-automated parts is assessed in the second analysis. In

both reliability analyses, the technical and the inherent reliability are considered. The

technical reliability accounts for the failure of system components and their configura-

tion within the system. The inherent reliability describes the ability of the EWS to

distinguish between hazard and noise. For the reliability analysis of automated parts,

a tailored method is provided in which the reliability is modeled in a six step BN. The

reliability analysis of complex, non-automated EWS parts is described in five steps. In

the third part, POD and PFA (i.e. the reliability) are used to calculate the effective-

ness. Hereby, both positive effects on risk reduction, due to timely information and

negative consequences such as a reduced compliance caused by frequent false alarms,

are considered.

In combination with the EWS classification and the case study results, this novel frame-

work approach provides a valuable basis for the evaluation of EWS. In the future, this

framework should be applied, tested and enhanced to create a convenient evaluation tool,

enabling the optimization of EWS, their comparability with alternative risk mitigation

measures and the identification of optimal warning strategies in the field of natural

hazards.
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Zusammenfassung

Weltweit werden Frühwarnsysteme (FWS) vermehrt zum Schutz vor Naturkatastro-

phen und vor kleineren aber zerstörerischen Ereignissen eingesetzt. Sie sind Teil eines

ganzheitlichen Ansatzes für das Risikomanagement von Naturgefahren, welcher Mass-

nahmen zur Vorbeugung, zur Intervention und Wiederherstellung beinhaltet. FWS

wirken vorbeugend, indem sie durch frühzeitige Informationen vorwiegend Personen-

schäden in gefährdeten Siedlungen und auf Strassen und Schienen verhindern. Im

Vergleich zu baulichen Massnahmen wie Dämmen, Galerien oder Netzen sind FWS

kostengünstig, flexibel und verändern das Landschaftsbild nur wenig. Um optimale

Strategien für den Schutz vor Naturgefahren zu entwickeln, müssen FWS in Kosten-

Wirksamkeitsanalysen mit alternativen Massnahmen verglichen werden. Damit ein

solcher Vergleich möglich ist, muss bewertet werden, inwieweit FWS ein bestimmtes

Risiko minimieren. In bestehenden Leitfäden sind detaillierte Vorgehensweisen zur Be-

wertung der Wirksamkeit von baulichen Massnahmen beschrieben, aber nicht für FWS.

Gegenstand dieser Arbeit ist es, ein allgemeingültiges Vorgehen zur Bewertung von

komplexen FWS, die oft von menschlichen Entscheidungen abhängen, zu entwickeln.

Zusätzlich wird eine Praxishilfe erstellt, die die wichtigsten Ergebnisse für Entschei-

dungsträger in einer vereinfachten Form zusammenfasst.

Die Entwicklung dieses Vorgehens beinhaltet das Erreichen von drei Teilzielen. Dabei

werden sowohl theoretische als auch empirische Methoden angewendet. Das erste Teilziel

ist die Entwicklung einer Klassifizierung für alle FWS weltweit. Diese neue Klassi-

fizierung unterscheidet Alarmsysteme (AS), Warnsysteme (WS) und Vorhersagesysteme

(VS) und ermöglicht eine strukturierte Bewertung von FWS. AS sind voll automa-

tisierte Systeme, die auf Schwellenwerten beruhen. Sie werden installiert um spontane

Ereignisse wie Erdbeben, Murgänge und Waldbrände nach deren Entstehung zu erken-

nen. WS basieren ebenfalls auf Schwellenwerten, allerdings erfassen sie Vorzeichen von

Ereignissen, die sich wie z.B. grössere Felsbewegungen, Tsunamis und Vulkanausbrüche,

über längere Zeit entwickeln. Experten erhalten zeitnah Informationen über relevante

Veränderungen. Sie analysieren die Daten und leiten, wenn notwendig, Evakuierungen

ein. VS besitzen den niedrigsten Automatisierungsgrad. Um die Eintrittswahrschein-

lichkeit von spontanen Prozessen wie Lawinen und extremen Wettersituationen für be-

stimmte Warnregionen vorhersagen zu können, analysieren Experten regelmässig die

aktuelle Lage. Diese neue Klassifizierung kann durch Anwendung auf eine Auswahl

an aktiven FWS verifiziert werden. Das zweite Teilziel ermittelt Faktoren, welche die

Wirksamkeit von FWS in den unterschiedlichen Klassen bestimmen. Dazu wird in zwei

detaillierten Fallstudien die Zuverlässigkeit und die Wirksamkeit eines AS und WS mit

speziell entwickelten Methoden bewertet und optimiert. Die Zuverlässigkeit von AS kann
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in Bayesian Netzwerken (BN) quantifiziert werden und hängt massgeblich von der Art,

Anzahl und der Position der Sensoren, von den voreingestellten Schwellenwerten und

den Ausfallwahrscheinlichkeiten einzelner Komponenten ab. Die Bewertung des teil-

automatisierten WS ist weitaus komplexer und muss Einflüsse wie Modellgenauigkeiten

und die Qualität von menschlichen Entscheidungen berücksichtigen. Das dritte Teilziel

ist die Entwicklung eines allgemein anwendbaren Vorgehens zur Bewertung von FWS.

Innerhalb dieses neuen Vorgehens wird die Wirksamkeit direkt von der Zuverlässigkeit

des FWS abgeleitet. Ein solches Vorgehen wird üblicherweise zur Bewertung von bau-

lichen Massnahmen angewendet und beinhaltet für FWS drei Teile. In den ersten beiden

Teilen wird die Zuverlässigkeit binär, über die Wahrscheinlichkeit, dass ein Ereignis vom

FWS detektiert wird (Probability of detection POD) und keine falschen Alarme ausgelöst

werden (Probability of false alarms PFA), bemessen. In der ersten Zuverlässigkeits-

analyse werden voll automatisierte AS und automatisierte Teile von WS und VS und

in der zweiten Analyse, nicht automatisierte Teile betrachtet. In beiden Analysen wird

erstmals sowohl die technische als auch die inhärente Zuverlässigkeit berücksichtigt. Die

technische Zuverlässigkeit hängt von der Ausfallwahrscheinlichkeit einzelner Kompo-

nenten und deren Anordnung im FWS ab. Die inhärente Zuverlässigkeit beschreibt die

Fähigkeit des FWS, zwischen gefährlichen Ereignissen und Störsignalen zu unterschei-

den. Die Bewertung der Zuverlässigkeit von automatisierten FWS erfolgt in einem BN

in sechs Schritten. Die Bewertung von komplexen, nicht automatisierten Systemteilen

erfolgt in fünf Schritten. Im dritten und letzten Teil wird die Wirksamkeit als Funk-

tion von POD und PFA, also der Zuverlässigkeit, berechnet. Um das reduzierte Risiko

zu bestimmen, werden sowohl positive als auch negative Effekte, die mit FWS ein-

herkommen, berücksichtigt. Während zeitnahe Informationen eine positive Wirkung

erzielen, da gefährdete Personen und Objekte evakuiert werden können, wirken sich

häufige Fehlalarme oder zu kurze Vorwarnzeiten negativ auf das Befolgen von ausge-

sprochenen Warnungen aus.

In Kombination mit der Klassifizierung bildet dieses neu entwickelte Vorgehen eine

wertvolle Grundlage zur Bewertung von FWS. Damit in Zukunft optimale Strategien

zum Schutz vor Naturgefahren bestimmt werden können, sollte dieses Vorgehen weiter

angewendet, getestet und in ein Softwaretool integriert werden.
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Lukas Eiholzer, Rudolf Krähenbühl, Josef Hess, Thomas Meisel, Karsten Jasper, Therese

Bürgi, Massimiliano Zappa, Hans Bettschen, Daniel Streit, Bernhard Wehren, John Clin-

ton, Stefan Brem and all those who contributed to my work.

For the great time I had at SLF and in Davos, I want to thank my friends and colleagues.

Finally I would like to thank my mother, my sister and Sven Sturzenegger, who were

always with me.

Martina Sättele March, 2015

vii





Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1

1.1 Risk Management for Natural Hazards . . . . . . . . . . . . . . . . . . . . 1

1.2 Risk Mitigation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Goal and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Classification of Early Warning Systems for Natural Hazards 11

2.1 Monitoring Strategies of EWS . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Classification of EWS into Alarm, Warning and Forecasting Systems . . . 14

2.2.1 Alarm Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Warning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Forecasting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Application of the Novel Classification for EWS . . . . . . . . . . . . . . . 16

2.3.1 EWS for Meteorological Hazards . . . . . . . . . . . . . . . . . . . 17

2.3.2 EWS for Floods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 EWS for Earthquakes . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 EWS for Tsunamis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 EWS for Wildfires . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 EWS for Volcanoes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.7 EWS for Mountain Hazards . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Application of EWS Classification to Alpine Processes in Switzerland . . 33

2.4.1 On-site EWS for Snow Avalanche and Debris Flows . . . . . . . . 36

2.4.2 On-site EWS for Flash Floods . . . . . . . . . . . . . . . . . . . . 38

2.4.3 On-site EWS for Rockfalls and Landslides . . . . . . . . . . . . . . 38

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



Contents

3 Criteria and Methods for the Evaluation of Early Warning Systems 45

3.1 Evaluation Criteria for EWS . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Efficiency and Effectiveness of EWS . . . . . . . . . . . . . . . . . 46

3.1.2 Reliability of EWS . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Quantitative Evaluation Methods for EWS . . . . . . . . . . . . . . . . . 53

3.2.1 Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.4 Influence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Framework for the Evaluation of Early Warning Systems 63

4.1 Reliability Analysis of the Automated EWS . . . . . . . . . . . . . . . . . 64

4.1.1 Draw System Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Design BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.3 Determine Conditional Probabilities . . . . . . . . . . . . . . . . . 69

4.1.4 Estimate Failure Probabilities of Components . . . . . . . . . . . . 69

4.1.5 Include Sensor Data and Thresholds . . . . . . . . . . . . . . . . . 71

4.1.6 Quantify the Reliability . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Reliability Analysis of the Non-Automated EWS . . . . . . . . . . . . . . 73

4.2.1 Determine Minimal Required Lead Time . . . . . . . . . . . . . . . 74

4.2.2 Estimate Failure Probability of Remote Components . . . . . . . . 75

4.2.3 Estimate Model Accuracy . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.4 Quantifying Human Decision-Makers . . . . . . . . . . . . . . . . . 77

4.2.5 Quantify the Reliability . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Effectiveness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Illgraben Case Study 83

5.1 The Illgraben Alarm System . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 BN to Model the Reliability of the Illgraben Alarm System . . . . . . . . 86

5.3 Technical Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Inherent Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Decision Graph to Identify Optimal Threshold Combinations . . . . . . . 90

5.6 Reliability and Effectiveness of the Illgraben Alarm System . . . . . . . . 92

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Preonzo Case Study 99

6.1 The Preonzo Rockslide Warning System . . . . . . . . . . . . . . . . . . . 101

6.2 Quantifying the Reliability of the Preonzo Warning System . . . . . . . . 104

6.2.1 Technical Reliability during the Detachment Phase . . . . . . . . . 104

6.2.2 Inherent Reliability during the Detachment Phase . . . . . . . . . 105

6.2.3 Technical Reliability during the Acceleration Phase . . . . . . . . . 108

6.2.4 Inherent Reliability during the Acceleration Phase . . . . . . . . . 109

6.3 Hypothetical Analysis: Optimizing Warning Systems . . . . . . . . . . . . 112

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x



Contents

7 Guideline for Practitioners 121

7.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Decision Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 System Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Discussion 125

8.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.1.1 Development of a Generic Classification for EWS . . . . . . . . . . 125

8.1.2 Verification of a Generic Classification for EWS . . . . . . . . . . . 126

8.1.3 Basis for a Structured Evaluation of EWS . . . . . . . . . . . . . . 126

8.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.1 Reliability Analysis of Alarm Systems . . . . . . . . . . . . . . . . 127

8.2.2 Reliability Analysis of Warning Systems . . . . . . . . . . . . . . . 128

8.2.3 Effectiveness Analysis of Alarm Systems . . . . . . . . . . . . . . . 128

8.2.4 Effectiveness Analysis of Warning Systems . . . . . . . . . . . . . . 129

8.3 Framework Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.1 Development of a Novel Framework Approach . . . . . . . . . . . . 130

8.3.2 Applicability on all EWS Classes . . . . . . . . . . . . . . . . . . . 131

8.4 Synoptic Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9 Conclusion and Outlook 135

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 139

xi





List of Figures

1.1 An Integrative Risk Management Concept . . . . . . . . . . . . . . . . . . 2

1.2 Cycle of Integrated Risk Management . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Goal and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Monitoring Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Units of an EWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Classification of EWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Hurricane Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Ensemble Flood Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Wave Forms of Earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Information Dissemination of the Earthquake Alarm System . . . . . . . . 23

2.8 Indian Ocean Tsunami Warning System . . . . . . . . . . . . . . . . . . . 24

2.9 Modeled Tsunami Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 FireLess Wildfire EWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Web Fire Mapper for Central Africa . . . . . . . . . . . . . . . . . . . . . 28

2.12 Monitoring Techniques for Volcano Warning Systems . . . . . . . . . . . . 29

2.13 U.S. Volcanoes and Current Activity Alerts . . . . . . . . . . . . . . . . . 30
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Chapter 1

Introduction

1.1 Risk Management for Natural Hazards

Natural disasters cause increasing economic loss and affect larger parts of the population

(Guha-Sapir et al., 2013; UNISDR, 2007a). Major disasters, such as the Indian Ocean

earthquake and tsunami in 2004, the Atlantic hurricanes Katrina and Sandy in 2005

and 2012, the Haiti earthquake in 2010, the subsequent tsunami catastrophe in Japan

in 2011 and recently, the typhoon in the Philippines in 2013, raised public awareness

and forced decision-makers to invest into preparedness. In the future, climate change,

economic growth and social shifts may reinforce this development (SwissRe, 2014). An

increasing frequency and magnitude of extreme weather events is expected to increase

the number of flood and landslide events (Van Aalst, 2006; Vellinga and van Verseveld,

2000). In areas affected by permafrost and rapid deglaciation, higher frequencies of rock

slope failures may occur (Huggel et al., 2012; Krautblatter et al., 2013). In parallel,

demographic changes resulting in increased exposure of persons to dangerous scenarios

and the growing value of public infrastructures and economic assets will rise the risk

potential (Lall and Deichmann, 2011).

For the management of risks imposed by natural hazards, comprehensive guidelines

have been provided. In 2000, the Australian Geomechanics Society published one of

the first guidelines for the risk management of landslides (AGS, 2000). The concept is

aligned to the generic risk management concept AS/NZS 4360:1999 “Risk Management”

and includes processes to analyze, assess and treat risks. In the meantime, different
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institutions adopted the concept and published similar frameworks or guidelines for the

management of landslide risk (Dai et al., 2002; Fell et al., 2005; Safeland, 2011). A basic

framework for the management of flood risks was developed in Germany (Schanze, 2006),

including similar processes for risk analysis, assessment and reduction. In Switzerland,

a comprehensive framework approach (Figure 1.1) was developed to manage and treat

the risk imposed by landslides, snow avalanches, floods, storms, hail, earthquakes and

heat waves (Bründl et al., 2009). This framework was recently adopted by e.g. Smith

(2013) as a generic approach for risk management in the field of natural hazards.

Figure 1.1: An Integrative Risk Management Concept: includes processes to analyze,
evaluate and mitigate the risk (Bründl et al., 2009).

In modern risk management frameworks, the risk of natural hazards is quantified follow-

ing an early definition developed by the former United Nations Office for Disaster Risk

Reduction (UNDRO, 1980). They quantify the risk of natural hazards as the probabil-

ity of the occurrence of an event and its consequences. The consequences of an event

depend on the exposure probability and the vulnerability of elements at risk, and can

be quantified from the associated damage. In modern approaches, the risk Ri,j of an

object i in a specific scenario j is calculated as:

Ri,j = pj × pei,j × Vi,j ×Ai (1.1)
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The probability of the occurrence of scenario j is represented by pj , pei,j is the exposure

probability of object i at risk in scenario j, Vi,j represents the vulnerability of object i

in scenario j; and Ai is the value of object i (Bründl et al., 2009; Fuchs et al., 2007).

The overall risk R is evaluated by summing or integrating over all possible scenarios and

exposed objects:

R =

nscen∑
j=1

nobj∑
i=1

Ri,j (1.2)

1.2 Risk Mitigation Strategies

To mitigate the risk of natural hazards, integrated risk management approaches comprise

mitigation measures to prepare against, respond to and recover from disasters caused by

natural hazards (FOCP, 2012). In the last few years, the focus of risk mitigation strate-

gies has clearly shifted from response and recovery towards preventive mitigation strate-

gies (UNISDR, 2007a). To increase the preparedness, early warning systems (EWS)

are frequently applied as emergency provisions (Figure 1.2). They “provide timely and

effective information and allow endangered individuals to take actions, prepare for effec-

tive response and avoid damage” (UNISDR, 2007b). In contrast to structural mitigation

measures such as dams and galleries, EWS have low life-cycle costs, are highly flexible

and have a low impact on the environment (Intrieri et al., 2012; Villagrán de Leon et al.,

2013; Hattenberger and Wöllik, 2008).

The identification of an optimal risk mitigation strategy remains a major challenge

for decision-makers. Existing guidelines recommend that the mitigation measures with

minimal costs CR leading to maximal risk reduction ∆R, are selected in a cost-benefit

analysis (Penning-Rowsell et al., 2005; SafeLand, 2012; Špačková and Straub, 2014).

This ratio between the risk reduction ∆R and costs CR is referred to as the efficiency of

mitigation measures EM (SafeLand, 2012):

EM =
∆R

CR
(1.3)

If the costs associated with the risk reduction are not explicitly measured in mone-

tary terms, the effectiveness, which is the relative reduction of the overall risk achieved
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Figure 1.2: Cycle of Integrated Risk Management: includes mitigation measures to
reduce the risk imposed by natural hazards to an acceptable level (FOCP, 2012).

due to a mitigation measure (Bründl et al., 2009), can be used as an evaluation crite-

rion. A framework approach supporting decision-makers in evaluating the effectiveness

of risk mitigation measures for a variety of natural hazard processes, such as avalanches,

landslides, floods and debris flows, was provided by Romang (2008). In this framework,

evaluation methods and examples for structural and biological measures are summarized.

The application is demonstrated for the assessment of structural measures against snow

avalanches by Margreth and Romang (2010) in detailed case studies, where the effective-

ness is derived from the reliability of the snow structures. The reliability is evaluated

semi-quantitative from the safety, serviceability and durability of the snow mitigation

measures. EWS are not considered and in the field of EWS, an acknowledged frame-

work approach for the quantification of the effectiveness achieved by EWS is currently

missing.

The effect of EWS on risk reduction (effectiveness) is investigated and discussed in

published literature and the reliability of EWS has been investigated and quantified in

case studies. It is commonly accepted that EWS decrease the consequences of natural

hazards (UNDRO, 1980). To this end, either the vulnerability (Einstein and Sousa, 2006)

or the exposure probability of expected elements at risk (Dai et al., 2002; SafeLand, 2012)
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is reduced. A comprehensive evaluation of the effectiveness should address these positive

effects and account for negative consequences associated with EWS. Elements at risk

can only be protected through timely information if they comply with the warning. The

compliance probability can be reduced through frequent false alarms and insufficient

lead time (Pate-Cornéll, 1986; Schröter et al., 2008; Rogers and Tsirkunov, 2010). A

high number of false alarms can reduce the compliance probability of persons at risk

to an issued warning, due to a loss of trust that is known as the cry-wolf syndrome

(Breznitz, 1989; Dejoy et al., 2006). Moreover, the lead time must be long enough that

those willing to comply are able to do so.

As for structural mitigation methods, a comprehensive effectiveness evaluation, including

positive and negative consequences, can be derived from the reliability (Schröter et al.,

2008; Margreth and Romang, 2010). Recently, Balbi et al. (2014) published an approach

where the effectiveness of a flood EWS is modeled from the reliability, the lead time and

the coverage of persons reached by the EWS. In the field of EWS, the reliability has been

investigated in several case studies and is commonly quantified as the ability of EWS

to detect events and avoid frequent false alarms (Pate-Cornéll, 1986; Krzysztofowicz

et al., 1994; Simmons and Sutter, 2009; Rheinberger, 2013). This reliability depends

among other factors on the failure probabilities of technical system components. In two

case studies, Bründl and Heil (2011) and Sturny and Bründl (2013) assess the technical

reliability of two active EWS and identify the most critical components. These and other

approaches on the quantification of the reliability and effectiveness achieved with EWS

have been published (see Chapter 3), but no comprehensive framework is available.

1.3 Research Goal and Objectives

To support decision-makers in the selection of optimal risk mitigation measures a novel

framework approach for the quantification of the effectiveness achieved with EWS is

developed in this thesis. It enables the evaluation and optimization of the effectiveness

and makes EWS comparable to alternative measures of an integrated risk management

approach. A comprehensive approach provides methods enabling a structured analysis of

the effectiveness directly from the reliability of an EWS. This framework and a guideline

for practitioners are the main achievements of this thesis, which is financially supported

by the Swiss Federal Office for Civil Protection (FOCP) within the project REliability

5



Chapter 1. Introduction

WARNing and Alerts (ReWarn) founded in 2011. The guideline summarizes important

findings on the reliability of EWS to assist practitioners in developing and operating

reliable EWS. To achieve these main goals, three major objectives are defined (Figure

1.3):

Objective I: Development and verification of a generic classification for EWS as the basis

for a structured evaluation of EWS.

Objective II: Quantification and optimization of the reliability and the effectiveness

achieved with EWS in two detailed case studies to identify class-specific needs.

Objective III: Development of a novel framework approach for the evaluation of EWS

that is generically applicable to different EWS classes.

Research Goal
• Effectiveness and reliability quantification of EWS

Objective 3
• Framework 

approach

Objective 2
• Case studies

Objective 1
• Classification 

Figure 1.3: Research Goal and Objectives: defined to ensure a structured conduction
of the research project.

1.3.1 Research Approach

To develop a framework approach that will be accepted and is applicable in practice and

has a solid scientific research background, several theoretical and empirical methods are

combined.
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Objective I: First an overview of active EWS is generated in a literature review and

field observations. The literature review enables the identification of modern EWS

technologies that are operated worldwide for different kinds of natural hazard processes.

The field observations are conducted in four cantons of Switzerland, located in alpine

terrain (Bernese Oberland, Grisons, Ticino and Valais) and focus on site-specific EWS

installed for gravitationally driven, alpine, natural hazard processes. Within the field

inspection, existing EWS, their components and information flow are depicted in system

sketches. The generic classification is developed based on the literature review, the field

inspection and information collected in structured interviews with system operators and

manufacturers. The classification is verified by applying it to a selection of modern EWS.

To receive feedback from researchers and practitioners the classification is published in

papers and presented at conferences and workshops (Sättele et al., 2012a,b; Sättele and

Meier, 2013; Sättele et al., 2013b; Stähli et al., 2015).

Objective II: Firstly, quantitative evaluation criteria and methods for the evaluation of

EWS applied in existing approaches are summarized in a literature review. Secondly,

two existing EWS are assessed in detailed case studies and new evaluation methods are

developed. In one case study, the reliability and the effectiveness of an automated EWS

installed for the detection of spontaneous debris flow events is evaluated and optimized.

Main results were presented at a conference (Sättele et al., 2013a) and published in a

journal paper (Sättele et al., in press). In the second case study, the same evaluation

criteria are assessed and optimized for a partly automated EWS installed to forecast the

event timing of a slowly evolving rock slope failure (Sättele et al., accepted,b). In both

case studies, not only are criteria and methods for the evaluation of EWS identified, but

also those factors that influence the effectiveness and reliability of a certain EWS class.

Objective III: Firstly, a guideline for practitioners is developed that summarizes fin-

dings from both case studies in a simplified form. To define the degree of detail and

the content with the end users, two workshops are conducted. The final guideline for

practitioners is presented and published at several workshops and conferences (Sättele

et al., 2014a,b; Sättele and Bründl, in print). The novel framework approach for the

quantification of the effectiveness and reliability achieved with EWS is based on the

classification and includes complex results that could be derived from the findings of the

case studies. To establish a generically applicable framework approach, regular meetings
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with an expert group are conducted. The expert group includes members from differ-

ent management disciplines, such as risk and natural hazards management and system

stakeholders, including manufacturers, operators and user. The final framework ap-

proach will be published in a conference paper (Sättele et al., accepted,a) and a journal

paper (Sättele et al., in preparation).

1.3.2 Thesis Outline

The structure of this thesis is aligned to the three objectives and organized into eight

chapters, in addition to the introduction (Figure 1.4).

Framework 
EWS (4)

Introduction (1)

Discussion (8) and Conclusion (9)

Figure 1.4: Thesis Outline: the structure is aligned to the objectives and organized
into nine chapters.

Chapter 2 is related to Objective I; here, the novel classification for EWS is presented.

First, the classification, which distinguishes EWS in three classes, is introduced and typ-

ical system characteristics are summarized for each class. Then, modern EWS operated

worldwide and active on-site EWS for alpine processes in Switzerland are presented and

assigned to the classification.
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Chapter 3 is related to Objective II; here, methods and evaluation criteria that have been

applied for the quantification of the effectiveness and reliability of EWS are introduced

and discussed. The terms effectiveness and reliability are defined and methods for the

quantification of EWS are presented.

Chapter 4 is related to Objective III; here, the main result, the novel framework approach

for the quantification of the effectiveness and reliability achieved with EWS, is presented

and specific needs for different EWS classes are discussed.

Chapter 5 is related to Objective II; here, detailed results of the Illgraben case study

are presented to demonstrate the applicability of the framework on automated EWS. In

addition, factors that influence the effectiveness and reliability of automated EWS are

summarized and possibilities for system optimization are presented.

Chapter 6 is also related to Objective II; here, detailed results of the second Preonzo

case study are presented. In addition, factors such as human decision-making and the

accuracy of forecasting models that influence the effectiveness and reliability of partly

automated EWS are evaluated and optimized.

Chapter 7 is strongly related to Objective III; here, the aim and structure of the guideline

for practitioners, which was developed during the thesis, are presented and recommen-

dations for practitioners are summarized.

Chapter 8 includes the final discussion; here, the applicability of achieved results and

findings are addressed in the context of existing work and further needs are discussed.

Chapter 9 includes the final conclusions; here, the main achievements are summarized

and an outlook on next steps is presented.
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Chapter 2

Classification of Early Warning

Systems for Natural Hazards

In the last decade, EWS have undergone a rapid technical development and are applied

to prevent damage imposed by different natural hazard processes (Grasso and Singh,

2009). The improvement of EWS technology has been strongly supported in inter-

national projects, such as the Hyogo Framework (UNISDR, 2007a) and is financially

supported by governments and NGOs. Modern EWS are designed according to project

specific needs and are commonly installed as prototypes with a low degree of standard-

ization. In practice, EWS are unambiguously referred to as alarm, alert, early warning

or early alert, detection, forecasting, monitoring and warning systems.

Although a sophisticated classification for EWS could not be found in the literature,

several institutions developed definitions for the terms alarm, alerts, warnings, prediction

and forecast (Villagrán de Leon et al., 2013). In Switzerland, alarms are directly issued

to endangered persons or public, in contrast to warnings which are issued to inform

responsible authorities about potential risks (FOCP, 2013b). Alarms are acoustic or

optical signals issued to protect endangered persons from imminent or existing hazardous

conditions. Warnings are issued by EWS when the possibility of a catastrophic event

exists in the near future: either if the event is occurring, is imminent or has a very high

probability (Villagrán de Leon et al., 2013). Those warnings include recommendations

or orders to take actions, such as evacuations (Hamilton, 1997). Alerts are not the same

as alarms; they are low-level warnings and typically used to summarize several warning
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levels. E.g. in the U.S., levels become more serious from Outlook to Watch to Warning

(USGS, 2014). Those alerts are mainly issued by institutions to warn the public if

certain thresholds have been exceeded (Villagrán de Leon et al., 2013). Forecasts include

the probability of a hazard event to occur during a certain time-frame in a prescribed

geographical (Hamilton, 1997). They are definite statements or statistical estimates of

the occurrence of future events (Grasso and Singh, 2009).

A sophisticated classification for EWS that is consistent with existing definitions could

not be found. Nevertheless, some authors discuss or propose partly diverse ideas on

possible classifications. For example, Bell et al. (2010) distinguish between monitor-

ing, expert and alarm systems. Monitoring systems are operated to investigate and

understand the underlying hazard process, expert systems support decision-makers in

data interpretation and alarm systems are based on predefined thresholds. In contrast,

Schmidt (2002) and Glantz (2004) state that monitoring systems are not stand-alone

EWS because they do not issue timely information. However, they are a valuable part

of every EWS in increasing the general understanding of dangerous processes. The term

expert system is already used to signify an established system type in the field of ar-

tificial intelligence for computer systems that imitate the decision abilities of humans

(Jackson, 1990).

Our novel approach classifies EWS into alarm systems (AS), warning systems (WS) and

forecasting systems (FS) (Sättele et al., in preparation). This classification is originally

developed for EWS installed for gravitational-driven alpine processes (details in Chapter

2.4), but is generally applicable to EWS operated worldwide (Chapter 2.3) and consistent

with existing definitions. It is based on different monitoring strategies for natural hazards

and addresses associated lead times and system designs.

2.1 Monitoring Strategies of EWS

EWS differ strongly in their monitoring strategies (Figure 2.1a). Before the event has

started, precursors, such as trigger events and changes in the disposition, can indicate a

future event. When the event has already started, typical process parameters can be ob-

served. Trigger events are precursors that activate main hazard events, such as extreme

precipitation, earthquakes and snow melt (Keefer, 1999). Changes in the disposition
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include time-dependent parameters, such as state of vegetation, availability of loose ma-

terial, and determine when and how often events take place (Zimmermann et al., 1997).

Process parameters are those that can be measured when the natural hazard event has

already started, such as increased flow heights, speed, pressure and ground motions

that are associated with debris flows. The lead time is directly determined through the

choice of monitoring parameters. Two main monitoring strategies can be distinguished.

If the EWS monitors process parameters of already ongoing hazard events, the informa-

tion content of the measured data is high, but the associated lead time is short. If the

EWS monitors precursors before a hazard event starts, the information content of the

monitored data is lower, but the lead time is extended.

lead time
a)

precursors
process
parameters

damage

lead time

b)

process evolving 
slowly

process triggered 
spontaneously

Figure 2.1: Monitoring Strategies: a) EWS can monitor precursors or process param-
eters leading to different lead times; aligned to (Zimmermann et al., 1997); b) dependent

on the process type, the information content of precursors varies.

The choice of the monitoring strategy includes a trade-off between lead time and the

information content of the monitored data, and depends on the occurrence type of the

underlying hazard processes (Figure 2.1b). Processes that may be rapidly triggered, such

as flash floods, debris flows, snow avalanches, spontaneously triggered slope failures and

earthquakes, provide data with high uncertainty before the event starts. For example,

a debris flow is triggered after heavy local rainfall, depending on the availability of

loose material (Badoux et al., 2009). In contrast, processes that evolve slowly, such as

mid- and high-magnitude rockfalls, deep-seated landslides and river floods, enable the

monitoring of precursors with high information content in two phases (Sättele et al.,

accepted,b). In the first phase, slope failures, for example characteristically evolve over

long time scales, typically weeks to several years, until a critical path of detachment

is developed (Krautblatter and Moore, 2014). In the final phase, velocities increase

significantly before the final failure occurs (Hungr and Evans, 2004). With respect to
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the occurrence type of a natural hazard process, three monitoring strategies can be

distinguished:

• precursors of processes that evolve slowly are monitored: the information content

is high and the lead time is extended.

• precursors of processes that are triggered spontaneously are monitored: the infor-

mation content is lower and the lead time is extended.

• process parameters of processes that are triggered spontaneously are monitored:

the information content is high but the lead time is short.

2.2 Classification of EWS into Alarm, Warning and Fore-

casting Systems

A novel, generic classification for EWS was derived directly from the monitoring strate-

gies and divides EWS into AS, WS and FS. Each class has a certain degree of automation

and can be described through a typical system design in three main units: monitoring,

interpretation and dissemination unit (Figure 2.2). In addition, EWS incorporate devices

for power supply and diagnosis tools, which detect critical failures of system components

and report them to system operators. Operations plans summarize responsibilities and

procedures for daily operation, maintenance and in the case of an event.

operation plans

power 
supply

diagnostic
systemdata interpretation

information 
dissemination

monitoring

Figure 2.2: Units of an EWS: similar, independent of the EWS class, including com-
ponents for monitoring, data interpretation and the information dissemination.

Figure 2.3 illustrates the main components of each EWS class and the degree of au-

tomation. The monitoring unit incorporates sensors, which continuously monitor the

environment to detect typical changes. The data interpretation unit is the interface
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between the units and includes those components and resources necessary to analyze,

transmit and manage the measured data for decision-making. The information dissem-

ination unit covers those components and resources necessary to issue information to

endangered persons. Remote EWS components are supplied autonomously, for exam-

ple by batteries charged with solar panels, while less remote components are typically

connected to power networks. Diagnosis systems monitor the availability of sensors and

the data transmission devices, such as the mobile network or radio connections.

m
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sensors

control 
tool

data 
transfer

data 
management

automated
intervention

sensors

data 
transfer

data 
management

organized 
intervention

experts power
network

power 
network

remote power 
supply

remote power 
supply

diagnosis 
system

diagnosis 
system

models

bulletin

connection

sensors

data 
transfer
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Figure 2.3: Classification of EWS: each EWS class incorporates different system
components and degree of automation. Automated parts are illustrated in gray boxes.

2.2.1 Alarm Systems

In the monitoring unit of AS, sensors detect process parameters of already ongoing

hazard events (Figure 2.3a). The information content of the measured data is high, but

the lead time is short. To deal with this short lead time, AS are fully automated. The

data interpretation unit includes data control, transfer and management tools as well

as components for diagnosis and power supply. The control tool is the heart of the data

interpretation unit and is often installed in the form of a data logger that controls the

sensor measurements and analyzes the data with respect to predefined thresholds. The

alarm is transferred directly to the dissemination unit, where automated intervention

measures, such as optical or acoustical signals and barriers are activated. In parallel,
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system operators and responsible risk managers receive information and can access and

analyze the measured sensor data.

2.2.2 Warning Systems

In the monitoring unit of WS, sensors monitor, precursors such as trigger events or

changes in the disposition, before the event releases (Figure 2.3b). The information

content of the data is often lower in this early stage, but the lead time is extended.

The data interpretation unit incorporates two levels and is partly automated. The

initial warning is automatically released whenever predefined thresholds are exceeded.

The final decision is made by experts analyzing the measured sensor data with models.

Within the information dissemination unit, intervention measures, such as evacuations,

are initiated.

2.2.3 Forecasting Systems

In the monitoring unit of FS, precursors are observed by sensors or persons to ob-

tain extended lead times (Figure 2.3c). The degree of automation is significantly lower

compared to threshold-based AS and WS. In data interpretation units, experts analyze

sensor data and apply models on a regular basis. The information is disseminated in the

form of bulletins, in which the regional danger levels are assigned to forecast the occur-

rence probability of hazardous events for predefined regions. The bulletins are available

for authorities and the public on the internet, radio and television. If certain danger

levels are exceeded, information is send to authorities and endangered persons.

2.3 Application of the Novel Classification for EWS

Worldwide, EWS are operated to prevent damage caused by meteorological disasters, in-

cluding flood, earthquakes and tsunamis, wildfires, volcanic eruptions and gravitational-

driven alpine processes, such as debris flows, flash floods, snow avalanches, small- to

high-magnitude rockfalls and landslides. Depending on the underlying natural hazard

process, its predictability, the competences and requirements of those operating and the

needs of those endangered by the hazard, different EWS are operated. They vary in
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their spatial dimensions, lead time, design and associated degree of automation. In the

following sections, modern EWS are exemplary assigned to the classification and sys-

tem components are described for the monitoring, data interpretation and dissemination

unit.

2.3.1 EWS for Meteorological Hazards

Meteorological processes differ strongly in their predictability. While small-scale fea-

tures, such as hail, heavy local precipitation and tornadoes, occur spontaneously, large-

scale weather patterns, such as long-term precipitation causing floods, provide longer

lead times. To prevent damage caused by meteorological processes, FS are mainly op-

erated.

In most countries, national weather services run FS, such as the Met Office in England.

In the monitoring unit, data is collected from different sources and enables atmospheric

observations before hazard events occur (MetOffice, 2014b). Surface data is collected off-

shore with buoys and on land with networks of weather stations. In England, more than

200 stations measure meteorological parameters, including air temperature, atmospheric

pressure, precipitation, wind speed and direction, humidity, cloud height and visibility.

In addition, technologies such as weather satellites, balloons and aircraft measurements

are applied. The data interpretation is conducted daily by forecasters running numeri-

cal weather prediction models multiple times to obtain ensemble weather models (Legg

and Mylne, 2004). A major challenge remains the prediction of small features, such as

local storms, heavy rainfall or hailstorms. With nowcasting methods, only short-term

event predictions for a few hours ahead can be made by extrapolating weather data

measured in real-time (Mass, 2011). In the dissemination unit, the Met Office publishes

forecasts for rain, wind, snow, ice and fog on the internet, radio, TV, social media,

smart phone apps, RSS and via email alerts. The warnings are released in four levels,

where the highest level includes the implementation of predefined preventive procedures

and instructions for the public from emergency services and local authorities (MetOffice,

2014a).

For the protection of coastal regions, the Tropical Cyclone Program was established

to coordinate the development of national and regional warning services for tropical

cyclones (WMO, 2014). These FS are operated by regional, specialized meteorology
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centers for hurricanes or tropical cyclone warning. A prominent example is the U.S.

National Hurricane Center, responsible for the Eastern Pacific and Atlantic that is part

of the National Centers for Environmental Prediction since 1995 (Rappaport et al.,

2009). In the monitoring unit, data is mainly obtained from satellites, including geosta-

tionary satellite intensity estimates, passive microwave imagery, and rainfall and wind

measurements. Data is also provided by ships and reconnaissance aircrafts. In the data

interpretation unit, forecasters are supported by software tools displaying modeled data,

which has improved the operational efficiency of forecasters in analyzing and forecasting

dangerous events. In the dissemination unit, hurricane forecasts are published every six

hours in the hurricane season. Figure 2.4 shows a cyclone track and intensity forecast,

for the next 2, 24, 36, 48, 72, 96, and 120 hours. When the lead time decreases, the

track and intensity errors decrease. In 2011, a very good track forecast could be achieved

twelve hours before the actual hurricane caused damage. Similarly, the predicted inten-

sity accuracy was significantly higher twelve hours than it was ninety-six hours before

the event (Blake and Kimberlain, 2013).

Figure 2.4: Hurricane Forecast: five day track forecast model for the hurricane Jova
(Brennan, 2012)

FS for severe weather are currently undergoing a clear trend towards automated proce-

dures in the data interpretation and dissemination units. In Germany, the AutoWARN
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system was developed by the Deutscher Wetterdienst to support a centralized and au-

tomated warning process (Reichert, 2010). The system combines all available meteoro-

logical information from observations, radar products, nowcasting products, statistical

forecast products, and model forecasts of numerical weather prediction to generate auto-

mated warning status proposals that support forecasters in decision-making. In England,

the National Severe Weather Warning Service was enhanced when a risk-based approach

was adopted. An ensemble-based, first-guess tool for severe weather was developed to

support forecasters in short range (1-2 days) warnings. The tool generates automated

early warnings and provides the opportunity to increase the lead time. Moreover, the

tool follows a risk-based approach, where the risk is evaluated from the probability of an

event to occur and the impact on the society in a risk matrix (Neal et al., 2013). Simi-

lar efforts are undertaken by the NOAA National Severe Storms Laboratory within the

project FACET, which consists of seven interrelated functions: including, for example

grid-based probabilities, advanced forecast of tornadoes, large hail or local rain events

by real-time statistical projections of indicators such as intensity, and support tools for

forecasters.

2.3.2 EWS for Floods

Flood forecasts depend directly on meteorological predictions generated for severe rain-

fall events. Lead times of floods vary significantly for river and for flash floods. While

river floods occur, the water level raises over long periods, often between days and weeks.

In contrast, flash floods are triggered fast after severe precipitation, typically in smaller

catchments within minutes or hours. Modern flood warnings are primarily generated

with FS.

Most national or regional flood FS are coupled hydro-meteorological systems. For exam-

ple, in Finland, the monitoring unit of the national FS includes measuring stations and

manual measurements for precipitation, water level, discharge, runoff and snow water

equivalent, ice thickness, water temperature, etc. (SKYE, 2013). In the data interpre-

tation unit, these observations are combined with meteorological forecasts (Wetterhall

et al., 2013). To generate probabilistic forecasts for floods, forecasters increasingly ap-

ply Hydrological Ensemble Prediction Systems (see Table 1 in HEPEX (2013)). With

this ensemble method, uncertainties associated with the forecasts can be addressed and
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an improved performance even for extreme events can be achieved (Wetterhall et al.,

2013). The detection of local flash floods, triggered by local heavy rainfall and the re-

action of small catchments remains a major challenge. In recent years, radar-based and

pluviometer-based nowcasts have been used to generate short-term forecasts up to six

hours (Liechti et al., 2013). In the data dissemination unit, flood bulletins are dissem-

inated on the internet in predefined danger levels on the regional scale. In addition,

warnings are sent to regional centers responsible for flood management, municipali-

ties and emergency services which prescribe preventative measures involving residence

(SYKE, 2013).

To support the development of a global scale FS, the European Flood Awareness System

has been tested on other continents and could successfully forecast flood events in large

basins. This would have saved lives across the world, including major events such

as Pakistan in 2010 (Alfieri et al., 2013). In the monitoring unit, hydrological and

meteorological data is collected by responsible centers. The interpretation of the data

is executed in the European Centre for Medium-Range Weather Forecasts (UK) where

forecasters analyze data to identify and evaluate endangered areas. In Figure 2.5, the

predicted discharges for a river in Romania in July 2007, modeled by the European Flood

Awareness System, are illustrated (Cloke and Pappenberger, 2009). In the dissemination

unit, information is published in the form of maps, including flood probabilities for

members up to ten days in advance (Thielen et al., 2009). In these maps, critical river

sections are assigned to three warning levels that are specified for predefined thresholds

and disseminated to authorities across Europe.

With ensemble methods, national or site-specific FS are able to provide reliable pre-

dictions several days ahead of critical discharges (Cloke and Pappenberger, 2009). De-

spite these progresses, event analysis of major past disasters revealed shortcomings of

operational FS, which are partly similar to those that come along with meteorolog-

ical FS. Thus, a similar trend towards a higher degree of automation (e.g. support

decision-makers with proposals in identifying adequate preventive action and mitigation

measures) and an increased use of probabilistic analyses tools can be observed. In-

formation on uncertainty is increasingly used to assess forecast skills and improve the

system performance. For floods, the improvement of forecasting accuracies depends on

additional hydrological processes such as snow melting, debris blocking and ice melting

(Cloke and Pappenberger, 2009). The timely prediction of flash floods remains a major
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Figure 2.5: Ensemble Flood Prediction: modeled predictions (solid lines), observed
discharge (black dashed line) and four flood discharge warning levels (Cloke and Pap-

penberger, 2009)

challenge. Currently, first efforts undertaken in Africa, Taiwan, the U.K. and U.S. could

be made with probabilistic models leading to increased lead times (Poolman et al., 2014;

Yang et al., 2014; Price et al., 2014; Hardy et al., 2013). In the future, such efforts have

to be incorporated in a comprehensive risk management framework in which local warn-

ings, in combination with additional risk mitigation measures for flash flood EWS, are

conducted within these short lead times (Obrusnik, 2011; Borga et al., 2011).

2.3.3 EWS for Earthquakes

Earthquakes occur spontaneously without precursors and are the most challenging pro-

cess for prediction. They offer minimal lead times, depending on the distance to the

epicenter, usually mere tenths of seconds, allowing for a limited conduction of mitiga-

tion measures to prevent damage (Grasso and Singh, 2009). Most systems are operated

on a regional or national scale to detect earthquakes in real-time, but they are not

EWS because they do not provide timely information enabling the implementation of

mitigation measures. These systems produce so-called shake maps, which graphically

illustrate measured ground vibrations immediately after an event to establish and orga-

nize emergency measures in areas in need of help (Gasparini and Manfredi, 2014). Only
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in some earthquake-prone countries, such as Japan, Mexico, Taiwan and Turkey, AS are

developed and operated to prevent damage caused by earthquakes.

The first AS, the Urgent Earthquake Detection and Alarm System UrEDAS, was im-

plemented in 1982 in Japan to protect the fast transport system Shinkansen railway

(Nakamura and Saita, 2007; Saita and Nakamura, 2003). A monitoring unit, consisting

of seismic sensor networks, is installed along the rails measuring p-waves. Those primary

waves are faster and arrive first, before destructible s-waves occur (Figure 2.6). In the

data interpretation unit, seismic signals are automatically analyzed in real-time, with-

out data storage, to obtain maximal lead time. Software estimates the magnitude, the

position and the depth of the epicenter to identify endangered areas and estimate the

destructiveness of the earthquake. Based on predefined thresholds, alarms are released

or not. In the data dissemination unit, alarms are issued in the form of automated power

cut-offs to stop trains that are close to endangered areas.

Figure 2.6: Wave Forms of Earthquake: fast and less destructive p-waves can be
monitored to increase the lead time (JMA, 2014).

In Japan, it is not only the railway lines but the whole country that is equipped with one

of the most advanced AS for earthquakes. In the monitoring unit, about 800 high sensi-

tivity seismic sensors are placed in boreholes (deeper than 100 m). In the interpretation

unit, data is processed in real-time to estimate relevant earthquake parameters within a

few seconds after p-waves arrive at the closest station (Nakamura et al., 2009). This in-

formation is merged with the results of Japan Meteorological Agency’s nowcast system,

which is based on 4, 000 seismic intensity meters, to issue timely earthquake and tsunami

information. In the dissemination unit, prevention measures are activated automatically

for areas that are more than 30 km away from the epicenter. Besides automated control

measures for trains, factory buildings and other safety critical infrastructures are shut

down.
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In the U.S., an earthquake AS is under development for the West Coast. The United

States Geological Survey and several partners are working on the development of ShakeAl-

ert. The monitoring unit consists of a network with approximately 400 high-quality,

ground motion sensors. Since 2012, test alarms are sent to users if predefined thresholds

in the data interpretation unit are exceeded. In the dissemination unit, users receive a

map showing the epicenter, waves moving towards the user and the remaining time to

arrival (Figure 2.7). In the future, this AS will provide seconds, or even minutes of lead

time before dangerous waves arrive (Burkett et al., 2014).

Figure 2.7: Information Dissemination of the Earthquake Alarm System: map shows
the epicenter, waves moving towards the user and the remaining time to arrival (Burkett

et al., 2014)

The main shortcoming associated with earthquake AS is the lead time. Currently, several

projects are conducted to develop technologies and procedures that maximize the lead

times. For example, the Collaboratory for the Study of Earthquake Predictability runs

test centers in Japan, Switzerland, New Zealand and the U.S. and has testing regions

in California, Italy, Japan and the North and Southwest Pacific to support earthquake

prediction experiments (CSEP, 2015). A new approach that combines advantages of

regional (accuracy) and on-site concepts (speed) was presented by Böse et al. (2007).

Within this concept, alarms can be issued from one station in a network before seismic

waves arrive in all stations. Also, Nakamura et al. (2009) proposed that borehole data

in combination with on-site processing at each station could lead to a significant im-

provement and increase the lead time for areas close to the epicenter. Other institutions

work on the improvement of probabilistic forecast methods for earthquake EWS. For
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example, the ElarmS methodology enables an estimation of the occurrence probability

and the associated lead time available from different earthquake scenarios (Allen, 2007).

2.3.4 EWS for Tsunamis

In coastal regions prone to tsunamis, earthquake AS are enhanced including prediction

capabilities for tsunamis. Lead times depend on the distance of the earthquake to

the coastal region. Thus, far-field and near-field tsunamis are distinguished. Far-field

tsunamis are characterized by the long travel distance of the tsunami compared to the

earthquake rupture length. Additionally, forecast is less complex compared to near field-

tsunamis, where the tsunami travel distance is short compared to the earthquake rupture

length. To predict tsunami timing and size after the detection of major earthquakes,

WS are operated to protect affected coastal regions.

After the 2004 near-field tsunami in the Indian Ocean, which killed about 250,000 people,

the German Indonesian Tsunami WS was set up (Lauterjung et al., 2010). To deal

with short lead times (20-40 minutes) between earthquake and tsunami impact, new

monitoring technologies have been developed to generate timely forecasts 5-10 minutes

after the earthquake (Figure 2.8).

Figure 2.8: Indian Ocean Tsunami Warning System: includes modern monitoring
technologies (GITEWS, 2015)

The monitoring unit includes a seismic broadband network of 150 sensors. In the sea,

sensors such as buoys connected with ocean bottom pressure units are used and at the

coastline, tide gauges are installed. In the data interpretation unit, experts are informed
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automatically when predefined thresholds are exceeded. To decrease the number of false

alarms and obtain maximal lead times, a combination of thresholds for warning release

is specified. Whenever predefined thresholds are exceeded, tsunami scenario simulations

and decision-support systems are operated automatically to receive fast results. Figure

2.9 illustrates two tsunami simulations based on a certain location and magnitude (Mw

8.4) of a hypothetical earthquake generated with the new EWS In the dissemination

unit, responsible staff members have to issue warnings to authorities. Evacuations are

then conducted following pre-established plans. To increase the awareness of endangered

persons towards tsunami danger, the WS operators conduct regular training in coastal

regions. Similar WS are installed in Chile, Greece, Japan and the U.S.

Figure 2.9: Modeled Tsunami Scenarios: two tsunami simulations based on a certain
location and magnitude (Mw 8.4) of a hypothetical earthquake (Lauterjung et al., 2010);

scenario for rupture running from epicenter north (left) and running south (right).

The tsunami in Japan in 2011 demonstrated the difficulties that WS for near-field

tsunamis have to deal with. A first tsunami warning was generated by the Japan Me-

teorological Agency three minutes after the earthquake based on seismic measurements

(Ozaki, 2011). When more data from offshore GPS buoys was available, the predicted

tsunami heights and affected areas were increased continuously, as was the predicted

magnitude of the earthquake. Unfortunately, the earthquake and the tsunami disrupted

data transmission and sensors close to the epicenter that would have been necessary to

generate more accurate and timely predictions and would have supported the decision-

making for changing and closing the tsunami warnings (Wei et al., 2013). To generate

reliable warnings in the future, technical components and social aspects, such as the

timely compliance to warnings, need to be improved.
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2.3.5 EWS for Wildfires

Wildfires appear spontaneously without clear precursors. They are typically induced in

dry areas by natural processes, such as lightning, or more often by humans, who are the

main reason for their ignition. Modern EWS technologies differ strongly and both AS

and FS are operated.

To prevent damages related to wildfires, so called fire danger rating systems are operated

on regional or on national levels. These systems enable the prediction of danger levels on

a regional scale based on fire indexes, which have been adapted from Canada, the U.S.

and Australia (Groot et al., 2015). The Canadian Forest Fire Weather Index FWI was

developed already in the 1960s and is the most widely used one. It is a weather-based

approach, considering temperature, rainfall, relative humidity and wind speed. In the

U.S. National Fire Danger Rating System, additional parameters, such as cloudiness,

min. and max. temperatures and precipitation durations are considered to estimate the

moisture content of fuels. To support national and regional fire management, especially

in countries were fire danger rating systems are actually missing, a global system was

released in 2011 (De Groot et al., 2010). This system is based on the Canadian Forest

Fire Weather Index and provides forecasts up to one week ahead.

Modern fire FS are enhanced danger rating systems (Groot et al., 2015). In the mon-

itoring unit, humidity and temperature sensors are directly inserted in so-called fuel

sticks to gain important data, enabling the estimation of the moisture content for a

range of fuel complexes. In addition, satellite data is used to estimate the water con-

tent of vegetation. In the data interpretation unit, forecasters combine information on

moisture content with weather forecasts and information about fire activity monitored

with remote sensing technology (mainly satellites). In the U.S., forecasters of the Storm

Prediction Center run short-range ensemble methods to quantify the probability of fire

weather parameters exceeding critical thresholds specified within the national fire rating

system to identify critical areas (Taylor et al., 2003). The dissemination of forecasts is

provided regularly for one day, two days and for the next three to eight days, separately.

In Switzerland, the experimental project FireLess2 was initiated to test the applicability

of wireless sensor technology to automatically monitor the humidity of the main com-

ponents of dead fuel on forest soils (Conedera et al., 2011). In the monitoring unit,
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sensors deliver near-real-time data on litter and humus moisture content of different for-

est types (Figure 2.10). Weather sensors provide data, such as rainfall, air humidity and

temperature, wind speed and direction. In the data interpretation unit, measured sen-

sor data and additional information, such as weather forecasts, are combined to specify

the danger levels. The automated configuration worked reliably and delivered valuable

information during the test phase. This technology could be used to enhance FS and

support decision-makers in evaluating fire danger in the future.

Figure 2.10: FireLess Wildfire EWS: sensors delivered data on litter and humus
moisture content of different forest types (Conedera et al., 2011).

AS are operated to detect ongoing fires before they cause damage to infrastructures and

persons. For South Africa, the Advanced Fire Information System was developed (Davies

et al., 2008). In the monitoring unit, satellite technology is used to detect ongoing fires.

Whenever a fire is detected, alerts are issued automatically in the data interpretation. In

the dissemination unit, alarm information is sent to the public via cell phones. A similar

worldwide AS was funded by NASA. The Fire Information for Resource Management

System is used to send satellite-derived fire information to inform users all over the

world in near-real-time or as daily or weekly summaries. Users can select any area

of the world for notification by drawing on an interactive map. Underlying real-time

information about active fires is obtained from the Webfire Mapper from NASA and the

University of Maryland (Davies et al., 2009) (Figure 2.11).

AS provide reliable information on dangerous events, while FS can estimate the danger

level and the associated probability of dangerous events, thus preventing damage. With
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Figure 2.11: Web Fire Mapper for Central Africa: displays current fires (NASA,
2015).

AS, damage can only be prevented when lead times are sufficient, which depends on the

distance between the fire and endangered persons and infrastructures.

2.3.6 EWS for Volcanoes

Volcano eruptions are typically announced by precursors, such as geophysical and geo-

chemical phenomena, hours to days in advance. On several dangerous volcanoes, EWS

are installed to provide timely warnings and prevent damages from associated explosions,

flying rocks, fast-moving, hot ash clouds, lava flows, lava domes, landslides, ash, volcanic

gases, lightning, lahars (mudflows), tsunami, and/or earthquakes (GeoNet, 2014). In

countries such as Japan, the U.S. and New Zealand, volcanoes with a high risk potential

are equipped with AS and WS, and in Central and South American countries and Africa,

volcanoes are monitored frequently (Grasso and Singh, 2009).

Two AS are installed to protect the ski area on Mt. Ruapehu in New Zealand from

lahars and provide automated information within seconds (Sherburn and Bryan, 1999;

Leonard et al., 2008). One AS detects eruptions that are big enough to cause damage

at the ski area. In the monitoring unit, seismic and acoustic (microphones) sensors are

installed to distinguish volcanic earthquakes with eruptions from tectonic earthquakes.

Earthquakes with dangerous eruptions, typically produce airwaves that can be recorded

by acoustic microphones. In the data interpretation unit, thresholds for seismic and
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acoustic data are combined to detect events and avoid false alarms. In the dissemination

unit, warnings are automatically issued via sirens and loud speakers issuing instructions

for visitors. The other AS detects lahars in the channel. Before a dam at the crater

lake collapsed, the monitoring unit consisted of geophones, tripwires and a lake level

sensor. The data interpretation unit is based on thresholds and in the dissemination

unit pagers and phones are automatically activated, following an emergency response

plan. Similar AS for lahar detection are installed in Ecuador, Indonesia, Japan, Mexico,

the Philippines and the U.S. (USGS, 2015a).

Some countries or institutions run WS, such as the one operated by the Alaska Volcano

Observatory. They are based on monitoring techniques, allowing for a timely identifi-

cation of unrest that may lead to future events (Moran et al., 2008). In the monitoring

unit, sensors monitor the occurrence of seismic signals, deformations, gas occurrences,

and hydrological or geophysical changes (Figure 2.12). In addition, remote-sensing tech-

nologies are applied to observe volcanoes. In the interpretation unit, system operators

receive automated information whenever predefined thresholds are exceeded. They an-

alyze the data and assign and communicate danger levels for persons on ground and to

worldwide standardized levels for aviation (Figure 2.13).

Figure 2.12: Monitoring Techniques for Volcano Warning Systems: include seismic,
deformation, gas, hydrological and geophysical measurements as well as remote sensing

techniques (USGS, 2015b).

The operation of WS is associated with risks because precursors vary strongly for differ-

ent volcanoes. At some volcanoes, eruptions are indicated by increased seismic activity,

while at others an increased gas production can be observed. At Mt. Ontake warnings

could not be generated in time to protect the life of thirty-six victims in September

2014, although a new WS was implemented in 2007 for 110 active volcanoes (Cyranoski,
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Figure 2.13: U.S. Volcanoes and Current Activity Alerts: maps volcanoes and alert
levels (USGS, 2014).

2014). The five GPS stations and the tiltmeter showed no changes before and during the

eruption. Only the twelve seismometers indicated increased activity several days before

the main event and a high activity eleven min before the event. A warning was not

issued because of the missing deformation activity and because similar seismic activities

could be observed on other sites that did not lead to an event. In the future, reliable

warnings with sufficient lead time can be made when on-site specific characteristics are

understood and considered in the warning procedures. To support the forecasters, prob-

abilistic tools, such as a Bayesian Belief Network and Hidden Markov Models (Marzocchi

et al., 2008; Oliveros et al., 2008; Hincks et al., 2014) are increasingly applied to generate

long- or short-time forecasts for volcanic eruptions.

2.3.7 EWS for Mountain Hazards

Gravitationally driven mass movement processes occur in mountain regions and vary

strongly in their spatial and temporal dimension. While mid- and high-magnitude rock-

falls and deep-seated landslides evolve slowly over years, processes such as debris flows

and snow avalanches are triggered spontaneously. To cover the variety of process types,

AS, WS and FS are operated (Thiebes, 2011; Michoud et al., 2013).
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WS are commonly installed to predict the timing of mid- and high-magnitude rockfalls,

which typically evolve over long periods (years) and provide longer lead times (between

days and weeks). In Åknes (Norway), a large rockslide of possible 30-40 million m3 can

trigger a tsunami in the underlying fjords (Blikra, 2008). In the monitoring unit, sen-

sors measure precursors, typically displacement rates with extensometers, single lasers,

GPS and a total station. In addition, seismic sensors, a climate station and borehole

instrumentation (inclinometers and piezometers) are installed. In the data interpreta-

tion unit, automated warnings are generated and send data to experts if predefined

thresholds, such as displacements, are exceeded. To support decision-makers the data

interpretation is implemented in an integrated web-based system and five warning levels

are defined for displacement rates and accelerations of different instrumentation (Fig-

ure 2.14) (Kristensen et al., 2010). The dissemination unit includes sirens that can be

activated to warn endangered persons in case of imminent slope failure. Similar WS

are described in Froese and Moreno (2011), summarized by Thiebes (2011), and further

system details are presented in Chapter 2.4.

Figure 2.14: Warning Levels Åknes Rockslide: thresholds and associated warning
levels for the total station (Kristensen et al., 2010).

In many countries, such as Canada, China and the U.S., WS and FS are operated on

a regional scale to predict the danger level of spontaneous debris flows and scattered

landslides based on rain thresholds (Thiebes, 2011). A prominent example is the Rio

Watch, a WS that was installed in 1996 in Rio, Brazil on a regional base for landslides

(D’Orsi et al., 2004). In the monitoring unit, rainfall patterns are observed to predict

landslide probabilities. To this end, about thirty rain gauges are installed. In 1998,
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weather and hail stations were added to detect storms earlier. In the interpretation

unit, warnings are released to experts if predefined thresholds for rain are exceeded.

In the second step, experts analyze the data to assign four danger levels defined for

expected spatial densities of landslides to four warning regions (Calvello et al., 2014).

Information is disseminated by radio and TV stations to warn and evacuate endangered

persons. Through the integration of weather and hail stations, the lead time could be

increased and the implementation of preventive, emergency measures improved. In Italy,

the first national FS was installed for rain-induced landslides (Brunetti et al., 2009).

In the monitoring unit, 1,950 sensors deliver continuous rainfall measurements. This

measured rainfall data is combined with weather forecasts and compared to predefined

thresholds in the interpretation unit. The information is disseminated in five levels that

represent probabilities of landslide occurrences. These forecast maps are published in a

WebGIS interface and a daily report is delivered via e-mail to the Italian Department

for Civil Protection (Rossi et al., 2012).

To prevent damages from spontaneous events and avoid false alarms on-site, AS are

operated to detect spontaneous debris flows, rockfalls and snow avalanches (Gubler,

2000; McClung and Schaerer, 2006; Arattano and Marchi, 2008; Badoux et al., 2009). In

the monitoring unit, ongoing processes are detected with sensors, such as seismic sensors,

tripwires, radars. In the data interpretation unit, predefined thresholds determine if

alarms are issued. In the dissemination unit, alerts are automatically released in the form

of, for example red lights when predefined thresholds are exceeded. Detailed examples

of AS for mountain processes are presented in Chapter 2.4.

Both WS and FS, especially for the prediction of spontaneous processes, have to deal

with high uncertainties and are prone to false alarms. To decrease the uncertainty,

precursors such as precipitation and other failure mechanisms should be further investi-

gated and assessed probabilistically (Stähli et al., 2015). With stochastic disaggregation

methods, radar measurements or models obtained from numerical weather predictions

are downscaled before a large numbers of outcomes are produced. Modern approaches

generate probabilistic estimations of areas most vulnerable for rain events (Schleiss and

Berne, 2012). Advances have also been made in modeling (e.g. the hydro-mechanical

properties) and in monitoring early slope failures of snow avalanches with seismic and

acoustic sensors (Van Herwijnen and Schweizer, 2011; Reiweger et al., 2014) and could

improve the forecast ability of WS and FS for spontaneous mass movement events.
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2.4 Application of EWS Classification to Alpine Processes

in Switzerland

The geography of Switzerland dictates that natural hazards often involve water and

gravitationally driven alpine processes. The landscape is characterized through rivers

and more than 1,500 lakes; and the Alps cover 60% of the country. Floods, (thunder)

storms, forest fires, snow avalanches, debris flows, rock and ice falls, landslides, flash

floods and glacier lake outburst floods (GLOF) are frequent events. The highest property

damages in the last ten years have been caused by floods, hail and storm (IRV, 2014).

Those numbers are strongly dominated by major flood events, which were triggered

through long-lasting rainfall and caused over 50% of the total damage. Between 1972

and 2007, most fatalities have, however, been caused by debris flows, landslides, rockfalls

and snow avalanches (Hilker et al., 2009).

Due to this geographical situation, EWS have a long history in Switzerland. The first

automatic AS was operated in Mahnkinn in 1937 to detect spontaneous snow avalanches

above an endangered railroad (Sättele and Meier, 2013). In 1967, the same company

built an AS to protect railway sections prone to rockfalls (Figure 2.15). An automated

earthquake detection system was installed in the early seventies and has been enhanced

with the latest seismic sensor and data management technology operated today by the

Swiss Seismological Service (Clinton et al., 2011). Automated rain measurements were

first implemented in 1978. Since that, a modern measuring network with a large coverage

has been developed by the Swiss Office for Meteorology and Climatology (MeteoSwiss)

(Spreafico et al., 2005). In 1980, forty-six automated stations to measure the river levels

and five flood AS were introduced (Spreafico, 1972). These technologies have been the

first step towards the development of the flood FS operated by the Federal Office for

the Environment, today. The first automatic snow measuring station was tested and

developed in 1985 near Zermatt. In 1996, the WSL-Institute for Snow and Avalanche

Research (SLF) began, in collaboration with the authorities to construct an automated

measuring network, which provides an important part of the data basis for the Swiss

Avalanche FS today (Lehning et al., 1998). The first on-site AS for debris flows was

installed in 1995. Since that, a variety of on-site AS and WS for landslides, rockfalls,

snow avalanches, floods and debris flows have been installed (Rageth, 1998; Gubler,

2000).
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Figure 2.15: Early EWS for Rockfall Processes: fences with wires that are destroyed
if rockfall hits the fence (left); wire connection to traffic control center that initiates
disruption of the contact line and stops the train (middle); traffic control center (right).

After the major flood catastrophes in 2005 and 2007, in which unexpectedly high dam-

ages were caused, clear responsibilities were assigned to departments and the improve-

ment of EWS technology was officially supported by the Swiss Government. A program

for the Optimization of Early Warning and Alerting of Natural Disasters was initiated,

in which procedures and responsibilities were defined and assigned to four departments

(Hess and Schmidt, 2012). The Federal Office for the Environment operates a flood FS

for main rivers and MeteoSwiss publishes a daily bulletin for severe weather; in winter,

the SLF provides a daily bulletin for snow avalanches and the Swiss Seismological Ser-

vice provides real-time earthquake information. To improve the collaboration of the four

institutes, the common information platform GIN was established (Heil et al., 2014). In

addition, warning procedures have been defined. Whenever warning level four, out of

five levels, is exceeded, warnings are actively issued to authorities and to the public. The

dissemination of the information is coordinated from a warning center and published via

radio and television.

A prominent example of a national FS is the Swiss avalanche system operated by the

SLF (Figure 2.16). The monitoring unit consists of a network with about 160 snow

and weather stations in the Alps (Techel and Darms, 2014). These stations measure

parameters such as the snow height, the amount of fresh snow, air and snow temperature

and humidity, solar radiation, wind direction and wind speed. The sensors are controlled

by data loggers and measurements are conducted at regular intervals. The power at

these remote locations is supplied via solar panels and batteries. Data measured by the

stations is sent via mobile networks or radio from remote stations to a central server.
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The data interpretation is conducted by experts on a daily basis. During a briefing,

two experts analyze measured sensor data, data from observers, and data from weather

stations operated by MeteoSwiss, and consult meteorological forecasts as well as complex

snowpack models. The forecasts are disseminated in the form of a bulletin, in which

warning regions are assigned to five danger levels. The bulletin is published via radio, TV

and internet, and if danger level four is exceeded, warnings are actively communicated

to the warning center, which disseminates the information to persons responsible for

safety and the public.

1

Monitoring

data logger 

diagnostic system

mobile network or 
radio and landline

bulletin

power network

solar panel and battery 

experts

models

160 snow and 
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wire
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Interpretation

Dissemination

Other components

operation plans

Figure 2.16: The Swiss Avalanche Forecasting System: incorporates an automated
snow and weather measuring network, based on pixmaps c©2015 swisstopo (5704 000

000).

Besides those national efforts, a variety of on-site WS and AS are operated by author-

ities or private companies in alpine regions. Within structured interviews and detailed

field investigations, forty-eight on-site AS and WS operated in four cantons (Bernese

Oberland, Grison, Ticino and Valais) could be identified by the end of 2011 (Figure

2.17). The range of EWS identified covers the variety of technologies operated for snow

avalanches, debris flows, GLOFS, different magnitudes of rockfalls and landslides in

Switzerland. Within the field investigation, all systems and their components have been

documented in their three main units for monitoring, data interpretation and informa-

tion dissemination, and assigned to the novel classification (Figure 2.2).
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Figure 2.17: On-site EWS for Alpine Processes in Switzerland: identified within the
field investigation are EWS mainly installed for snow avalanche, debris flow and rockfall

processes.

2.4.1 On-site EWS for Snow Avalanche and Debris Flows

Debris flow processes and snow avalanches both build up spontaneously without clear

precursors and flow fast. For the detection of snow avalanches there are fifteen on-site

AS close to endangered road or railway sections within the field investigation, and twelve

for debris flows. Two of those AS are operated for both processes and detect avalanches

in the winter and debris flows in the summer.

In the monitoring unit, tripwires, seismic sensors and radars are used to detect ongoing

events. The alarm decision in the interpretation unit is based on predefined thresholds

or a combination of thresholds. The alarm information is transmitted directly via radio

or mobile network to a dissemination unit, where acoustic or optic alarms are triggered

to inform endangered persons. If trains are affected, either contact lines are disconnected

or responsible traffic controllers are informed.

As an example, the Höfijbach AS is installed to protect traffic on a road from spon-

taneous debris flow events (Figure 2.18). The monitoring unit consists of two parts

(GEOPRAEVENT AG, 2009). In the upper catchment, two tripwires are controlled

by a data logger. In the lower part, another logger controls one tripwire and one echo

sounding device to measure the flow depth (Figure 2.19). In the data interpretation

unit, the status of the sensors is analyzed. Whenever tripwires in the upper catchment
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are pulled out, the upper logger sends information via radio to the lower logger. The

lower logger activates an automated alarm when it receives a signal from the upper

logger or when the lower tripwire is pulled out and the flow depth exceeds a predefined

threshold. In the dissemination unit, optical signals at the underlying road are activated

automatically and information is sent to system operators via mobile network. System

operators who conduct the analysis can access a webcam to evaluate the situation.
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Figure 2.18: System Sketch Höfijbach Alarm System: installed for automated detec-
tion of debris flows, based on pixmaps c©2015 swisstopo (5704 000 000).

Figure 2.19: Sensors of the Höfijbach Alarm System: tripwire (left), echo sounding
device to measure to flow height (right), (GEOPRAEVENT AG, 2009).
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2.4.2 On-site EWS for Flash Floods

While river floods impose a significant danger in flat areas, flash floods arise from heavy

rain or can occur from glacier lakes (GLOF) in alpine regions. For the detection of rain-

induced floods, the Federal Office for the Environment operates an AS with measuring

stations all over Switzerland, and for GLOF three WS are operated.

The monitoring unit of the AS includes thirty-eight measuring stations all over Switzer-

land. The data interpretation is based on predefined water level thresholds. Dependent

on the location of the measuring station, river floods and flash floods can be detected.

The information is disseminated with automated alarms issued to customers.

To detect flash floods from GLOF, three WS are installed. In Plaine Morte, a WS is

installed to prevent damage from flash floods triggered in three glacier lakes regularly

in the summer months (Figure 2.20). The monitoring unit consists of sensors installed

to detect precursors of the flood event. To monitor precursors, pressure sensors in each

lake detect significant changes in water level (Figure 2.21). To detect dangerous floods,

a sensor to measure the flow height is installed further down in the catchment. The

data interpretation consists of two levels; the first level is based on thresholds that are

specified to send automated warnings to system operators; in the second instance, data

is analyzed and pictures regularly taken by three webcams are consulted to decide on

appropriate prevention measures. In the information dissemination unit, evacuations

are conducted and mobile flood protection is established following intervention plans.

2.4.3 On-site EWS for Rockfalls and Landslides

Dependent on their magnitude, rockfalls appear suddenly or evolve over a long time.

For the prediction of mid- and high-magnitude rockfalls and deep-seated landslides, WS

are operated and spontaneous events are detected with AS.

For the prediction of mid- and high-magnitude rockfalls and rockslides twelve WS could

be identified. In the monitoring unit, displacements are measured. Extensometers are

installed in the tension cracks or total stations measure the distance to reflectors on the

front face at regular intervals. Whenever specific thresholds are exceeded, automated

information is send to the authorities as the first step of the data interpretation. In the
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Figure 2.20: System Sketch of the Plaine Morte Warning System: installed to gener-
ate warning for GLOF, based on pixmaps c©2015 swisstopo (5704 000 000).

Figure 2.21: Sensors of the Plaine Morte Warning System: a radar detects floods in
the catchment (left), pressure sensors monitor the lake levels (right), (GEOPRAEVENT

AG, 2015).
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second step, a decision about evacuation is made by experts, who apply forecast models

on measured sensor data. Often the inverse velocity model (see Chapter 6) is used

to predict critical failure time. In the dissemination unit, evacuation plans summarize

procedures and responsibilities for evacuations. The potential risk imposed by a deep

seated landslide is mitigated with a similar WS.

AS for rockfall are installed to discover spontaneous, small-magnitude rock- and blockfall

events endangering persons in cars or trains. In the monitoring unit, falling rocks are

detected through nets equipped with pressure and seismic sensors or tripwires. The data

interpretation is automated and an alarm is issued when thresholds are exceeded or when

tripwires are pulled out. To stop cars or trains immediately, the dissemination unit is

automated. Whenever an event is detected, contact lines are interrupted to stop arriving

trains. Alternatively, signals or barriers are activated to warn traffic on endangered road

sections. The Swiss Federal Railway Company SBB operates an advanced AS, where

experts in a control center investigate the situation and confirm the alarm before trains

are stopped (SBB, 2011). Through that additional decision-instance, the AS is able to

avoid false alarms and unnecessary traffic interruptions (Figure 2.22).
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Figure 2.22: System Sketch of the SBB Alarm System: installed in Kaschirand to
detect rock- and blockfalls on rails, based on pixmaps c©2015 swisstopo (5704 000 000).
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In the monitoring units of the AS installed in Kaschirand, there are two nets close to

critical railways sections. Each net is equipped with twenty-one sensors (Figure 2.23).

The sensors include two techniques to detect events. Seismic sensors measure ground

vibrations and tripwires are pulled out when the net is hit. In the data interpretation

unit, threshold combinations are stored in the logger and alarm information is issued

automatically to a traffic control center. The responsible traffic controller analyzes the

data and confirms the alarm within ninety seconds if the data indicates a dangerous

event. In the dissemination unit, train stops are only initiated, if the traffic controller

has not classified the alarm as a false alarm.

Figure 2.23: Sensors of the SBB Alarm System: seismic sensors detect ground shaking
(left), tripwires are pulled-out when nets are hit by rocks (right), (SBB, 2011).

2.5 Summary

EWS are installed worldwide to prevent damages and loss caused by natural hazards

and can be classified following our novel approach into AS, WS and FS. Each class can

be described through typical characteristics, which depend on the process, the selected

monitoring strategy and the associated lead time and system design (Table 2.1).

In practice, certain EWS classes are commonly applied for different natural hazard

processes (Figure 2.24). AS are mainly installed for the detection of processes that have

no precursors or precursors that are complex to interpret. These are processes that build

up fast, such as earthquakes, debris flows, snow avalanches, wildfires, floods and volcano

eruptions. To deal with short lead times, AS are fully automated.
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Table 2.1: Characteristics of EWS Classes: depending on the selected monitoring
strategy.

system class alarm
system

warning
system

forecasting
system

monitoring
parameter

process
parameters

precursors precursors

lead time short extended extended

prediction
accuracy

high medium low to medium

decision
instance

threshold threshold/ experts experts

automation fully partly partly

WS are typically installed for processes that have clear precursors, such as volcanoes,

tsunamis and GLOF, or for processes that evolve slowly, such as mid- and high-magnitude

rockfalls and deep-seated landslides. The extended lead time, which can be in the range

of days to weeks, enables experts to analyze the data and initiate appropriate mitigation

measures.
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Figure 2.24: Overview EWS: type of occurrence influences type of EWS and lead
time.
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FS are often operated to increase the potential lead time of processes that appear spon-

taneously and do not come along with clear precursors, such as meteo, flood, wildfire,

snow avalanche, debris flow and scattered landslide processes. The data interpretation is

complex and conducted on a regular basis to provide danger level forecasts on a regional

scale.

Currently, a clear trend towards automated processes and probabilistic methods can

be observed to be able to increase the lead times and increase the prediction accuracy,

especially for the prediction of spontaneous natural hazard processes. An important step

towards improved EWS for natural hazards is thereby the enhancement of meteorological

forecasts, because weather forecasts are the basis for the prediction of floods, wildfires,

landslides, etc. In Switzerland, a great number of on-site AS and WS are installed to

avoid uncertainties and associated false alarms that come along with regional WS and

FS.
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Chapter 3

Criteria and Methods for the

Evaluation of Early Warning

Systems

With the classification presented in the last chapter, the basis for a structured evaluation

of EWS is provided. In the present chapter, possible criteria and methods for the evalu-

ation of EWS are summarized. Together they should enable a quantitative assessment

of EWS to integrate them in existing risk management approaches, in which alternative

risk mitigation measures are compared to identify the optimal risk mitigation strategy.

In Chapters 5 and 6, selected criteria and methods are then applied in case studies to

test their applicability and to identify those parameters that influence the performance

in different classes. In Chapter 4, selected methods are enhanced and a novel framework

for the evaluation of EWS is provided.

3.1 Evaluation Criteria for EWS

Evaluation criteria for EWS should be consistent with the criteria commonly used in risk

management for natural hazards to enable their comparability with alternative measures.

At the same time, these criteria should address specific characteristics associated with

complex technical and often human-centered EWS.
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3.1.1 Efficiency and Effectiveness of EWS

In existing risk management approaches, it is common practice to identify optimal mit-

igation measures by comparing the effect on risk reduction and related cost of alter-

native measures in cost-benefit analysis (Penning-Rowsell et al., 2005; SafeLand, 2012;

Špačková and Straub, 2014). In Switzerland, the conduction of cost-benefit analysis is

even obligatory for financial support to be offered by authorities (Bründl, 2012). A soft-

ware tool for the assessment of the economic efficiency achieved with varying mitigation

measures is provided by the Federal Office of the Environment to support practitioners

in applying for financial contributions.

The efficiency of mitigation measures is assessed when monetary values are assigned

to the risk reduction achieved with a mitigation measure. Following SafeLand (2012),

the efficiency of landslide mitigation measures can be expressed as a function of the

total risk reduced divided by the cost of the measures (see Eq. 1.3). To assess the

efficiency of EWS, monetary values have to be assigned to both benefits and negative

consequences of EWS (Pate-Cornéll, 1986; Grasso et al., 2007; Schröter et al., 2008;

Rheinberger, 2013). If the cost associated with the hazard and its consequences is

not explicitly measured in monetary terms, instead of a cost-efficiency analysis, a cost-

effectiveness analysis can be carried out. This less time consuming cost-effectiveness

analysis is commonly used to assess and identify optimal structural mitigation measures

for natural hazards in Switzerland (Bründl et al., 2009; Margreth and Romang, 2010). In

a cost-effectiveness analysis, the life-cycle cost of the mitigation measures are compared

against the effectiveness of the EWS. The effectiveness is a measure of the risk reduction

achieved with the EWS, and a comprehensive evaluation addresses positive and negative

consequences associated with EWS (Pate-Cornéll, 1986; Einstein and Sousa, 2006).

The consequences of risk reduction achieved by EWS are commonly evaluated using

the framework of signal detection theory. This approach is based on a binary model in

which a classifier is used to determine if correct rejections, hits, misses or false alarms

are generated (Figure 3.1) (Swets, 1996). For EWS, a correct rejection means that no

alarm is issued in situations where no hazard event occurs, a hit is achieved if a hazard

event is detected and an alarm is issued, a false alarms means that an alarm is issued but

no event occurs and a miss means that an event occurs, but no alarm is issued (Einstein

46



Chapter 3. Criteria and Methods for the Evaluation of Early Warning Systems

and Sousa, 2006). The classifiers are, in the case of EWS, predefined warning criteria

based on thresholds and combinations of threshold or human-decision instances.

hit 
event  + alarm

false
no event + alarm

miss
event + no alarm

neutral
no event + no alarm

classifier

Figure 3.1: Signal Detection Theory: a perfect EWS detects all events and produces
no misses or false alarms.

A perfect EWS detects every natural hazard event and never produces false alarms or

misses (Intrieri et al., 2013). However, in the work environment of EWS, false alarms are

commonly triggered by noise. For example in the case of a debris flow AS equipped with

geophones to measure ground vibrations associated with dangerous debris flow events,

noise can be induced by animals or side events, such as rockfalls in the catchment.

To identify an optimal trade-off, the benefits associated with a hit and the negative

consequences of false alarms and missed events are compared in decision analysis. EWS

achieve benefits by reducing the consequences of natural hazard processes. To this end,

they mitigate the vulnerability (Einstein and Sousa, 2006) or the probability of exposure

for endangered elements at risk (Dai et al., 2002; SafeLand, 2012). These benefits can

be tangible/intangible and direct/indirect (Carsell et al., 2004). Tangible benefits are

those to which monetary values can be assigned; for intangible benefits, monetary values

are more difficult to define. Direct benefits are those that accrue for people and prop-

erty profiting from mitigation measures implemented by the EWS; indirect benefits are

economic benefits to those outside the area covered by the EWS. Likewise, negative con-

sequences associated with false alarms and misses should be considered and quantified to

ensure a comprehensive decision-making procedure. A high number of false alarms can

e.g. reduce the probability that persons comply with an issued alarm, due to a loss of

trust, which is known as the cry-wolf syndrome (Breznitz, 1989; Dejoy et al., 2006). This

is associated with the financial loss caused by evacuations and interruption of business

processes. For the evaluation of some EWS, the lead time is a crucial factor. If the lead
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time is too short, persons willing to comply are not able to do so (Pate-Cornéll, 1986)

and if the lead time is too long, unnecessary costs for intervention measures are created.

Grasso et al. (2007) present a decision procedure, in which an optimal trade-off between

false alarms and misses for an earthquake AS is determined in cost-efficiency analysis. In

this study, costs are assigned to benefits of correct decisions (hit, neutral) and to wrong

decisions (false alarm, miss). The costs in the case of a correct detection are those

expected due to the earthquake, minus the savings due to the mitigation measures.

Moreover, costs for taking mitigation measures are considered. In their study, they

update the sensor data to predict the magnitude of the event when lead time decreases

and illustrate that trade-off between prediction accuracy and lead time. As lead time

decreases, the probability of false alarms and misses decreases. They conclude that the

expected loss associated with a predicted magnitude is an important decision criterion

that should be considered in decision analysis. In Grasso et al. (2007), the negative,

intangible consequences associated with false alarms are not considered, as suggested by

Pate-Cornéll (1986). In her analysis, she assessed the effectiveness of an EWS applied to

fire detection in buildings, as the risk reduction achieved through early event detection

and the probability that endangered persons comply with the warning. To quantify the

compliance probability to a warning, the long-term effect of false alarms and the lead

time are addressed.

For the evaluation of EWS, it is common practice to consider the probability that an

event is detected (POD) and the probability of false alarms (PFA). E.g. Simmons and

Sutter (2009) express the tornado warning performance of the U.S. National Weather

Service in terms of the number of detected events and the false alarm ratio. Similarly,

Rheinberger (2013) models the performance of two avalanche warning services based

on the trade-off between POD and PFA. More recently, Liechti et al. (2013) describe

the performance for probabilistic flash flood forecasts, generated with ensemble methods

(see Chapter 2) with POD and the ratio of false alarms.

To summarize the relation between the POD and PFA, receiver operator characteristic

(ROC) curves are used as simple graphical tools. This approach has seen widespread

application, e.g., to represent the accuracy of diagnostic tests in medicine (Fawcett,

2006), and is increasingly applied in the field of EWS. POD and PFA are both influenced

by the interpretation of the measured data. The basic relation of POD and PFA as a

48



Chapter 3. Criteria and Methods for the Evaluation of Early Warning Systems

function of the threshold is illustrated in Figure 3.2. The measured signal can be either

due to a hazard event H or due to noise N . The decision to issue a warning (detection,

alarm) is based on the threshold t. If the measured signal is larger than t, a warning

is issued. With increasing threshold t, both the POD and the PFA decrease. With

f(S|H)(s) being the conditional probability density function (PDF) of the signal S given

a hazard event H, and f(S|H̄)(s) being the conditional PDF of S given no hazard event

H̄, it is (Peterson et al., 1954; Swets, 1996):

POD(d) =

∞∫
t

f(S|H̄)(s)ds (3.1)

PFA(d) =

∞∫
t

f(S| ¯̄H)(s)ds (3.2)

Figure 3.2: Components of Signal Detection Theory and Related ROC Curve: with
an increasing threshold, POD and PFA decrease. A perfect EWS has POD = 1 and

PFA = 0 (upper left corner).
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POD and PFA are commonly used to determine the reliability of EWS, which is intro-

duced in the next chapter as the second evaluation criteria. Reliability analysis has been

identified as an accurate basis for a comprehensive effectiveness evaluation of structural

risk mitigation measures and EWS (Margreth and Romang, 2010; Balbi et al., 2014).

3.1.2 Reliability of EWS

Reliability is defined as the “ability of an item to fulfill a required function under stated

conditions for a stated period of time” (IEEE, 2010). In classical reliability analysis,

the reliability of systems and components is expressed by failure rates (Blanchard and

Fabrycky, 2011). The failure rate λ(t) can be calculated following Eq. 3.3 from the

expected number of failures E[N ] during a given time period t for s components:

λ(t) =
E[N ]

t× s
(3.3)

Failure data can be collected from field data, incidents and records or it can be gathered

in expert interviews (Stewart and Melchers, 1997). Depending on the industry, failure

data is obtained in laboratory tests or observed in practice. This data is used to specify

mean time to failure (MTTF) values, or for repairable parts from mean time between

failure (MTBF). If values for MTTF or MTBF are specified, the failure rate of a system

or its components can be calculated following Eq. 3.4:

λ =
1

MTTF
or λ =

1

MTBF
(3.4)

In some industry sectors, such as automotive, electronics, nuclear power plants, offshore

platforms and telecommunications, tailored handbooks provide constant failure rates for

components and guidance for their quantification. Most of those guidelines are adapted

from the first official handbook, the MIL-HDBK-217 - Reliability Prediction of Electronic

Equipment, published by the U.S. Department of Defense (IEEE, 2002).

Failure rates vary during the system lifetime. Following the so-called Bathtub curve,

three phases can be distinguished (Figure 3.3). In the first phase, manufacturing imper-

fections lead to initial failures and the hazard rate decreases with time. In the second
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phase, which represents the majority of the lifetime, the failure rate is constant. In the

third phase, failures due to wear-out and aging increase and so does the failure rate.

2nd phase: constant

1st phase: 
decreasing

3rd phase: 
increasing

time

ha
za

rd
 ra

te

Figure 3.3: Bathtub Curve: describes three phases of failure rates during the life-
cycle.

The failure probability over time t can be described in statistical distributions, which

are fitted to experimental data. Exponential distributions are commonly used to de-

scribe the second phase, where failure rates are constant. In risk analysis for civil and

environmental engineering, failures are often expected to occur randomly in time and

independently of each other (Straub, 2012). The failure probability is thus calculated

based on a Poisson process (Eq. 3.5).

Pr(F (t)) = 1− exp−λt (3.5)

To describe the failure probability in these phases, where the failure rate increases or

decreases with time t, Weibull and Lognormal distributions are often used; e.g. Weibull

distributions to describe the wear-out process when the shape parameter of the distri-

bution is larger than one (IEEE, 2002). In civil engineering, non-homogeneous Poisson

processes are applied, in which λ is a function of time (Straub, 2012). In the Preonzo

case study, the probability of nF failures out of n sensors on a given day is described

through a binomial distribution (see Chapter 6.2.3).

The technical reliability of a system depends on the failure probabilities of single system

components, but also on their arrangement in the system. Distinctive components can

be connected in series, in parallel or as combinations thereof (Stewart and Melchers,

1997; Straub and Der Kiureghian, 2010). When components are connected in series,

51



Chapter 3. Criteria and Methods for the Evaluation of Early Warning Systems

the failure of a single component will cause a system failure (Figure 3.4 a). The system

reliability decreases with the number of components connected in series. In contrast,

the system reliability increases when components are designed parallel (Figure 3.4b).

In such a redundant system configuration, a system is available as long as only one

component works.

a) b)

Figure 3.4: Reliability-Block Diagram: a) serial; b) parallel/ redundant system con-
figurations.

In the majority of published reliability analyses in the field of EWS for natural hazards,

not the technical but the inherent reliability is evaluated. The inherent reliability is then

typically quantified as the probability of a correct forecast POD (Pate-Cornéll, 1986;

Rheinberger, 2013; Balbi et al., 2014) alone or as a function of both POD and PFA

(Krzysztofowicz et al., 1994). If the reliability is quantified as a function of POD and

PFA, results are often graphically illustrated in ROC curves (see Figure 3.2). However, in

some analyses, the reliability is quantified as the prediction accuracy and demonstrated

as a function of the lead time of the EWS (Grasso et al., 2007; Schröter et al., 2008). As

lead time increases, more data is collected and the prediction accuracy increases. The

prediction accuracy accounts not only for the ability of the system to distinguish between

noise and hazard, but also assesses its ability to predict the location and the severity

of the event. In published reliability analyses of EWS, either the technical probability

or the inherent reliability is considered. Analysis in which both aspects are addressed

could not be found.

To ensure a comprehensive evaluation of EWS in the framework approach (see Chapter

4), reliability analysis will consider both, the inherent and the technical reliability. In the

next section, methods used to quantify and optimize the reliability and the effectiveness

of EWS are presented.
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3.2 Quantitative Evaluation Methods for EWS

To evaluate the reliability and effectiveness, different methods are applied in the field

of EWS. In this chapter, quantitative methods are summarized to provide an optimal

basis for the framework approach and the case studies in the next chapters. Some of

these methods can be applied to evaluate both criteria; the reliability and the effec-

tiveness. First, methods primarily applied for reliability assessment (fault trees and

Bayesian networks (BN)) are presented. Then, methods that support decision-makers

in the identification of an optimal trade-off between positive and negative consequences

associated with EWS (decision trees and influence diagrams) are summarized.

3.2.1 Fault Tree Analysis

To assess the failure probability of systems, classical quantitative methods, such as event

trees, fault trees, bow tie or failure mode and effect analysis, are applied (Stewart and

Melchers, 1997). Fault trees are Boolean logical diagrams that consist of an undesirable

top event and a logical order of possible events connected via AND and OR gates (Figure

3.5). In this illustrative example, the top event is used to describe the case when the

alarm is not issued by an EWS. That could be either because of a technical system

failure OR because no event is indicated by the EWS. An event is not indicated if in a

redundant sensor unit both sensor 1 failed AND sensor 2 failed.

With such a fault tree, Bründl and Heil (2011) assess the technical reliability of the Swiss

avalanche FS in a case study (system details, see Figure 2.16). First, they depict all

system components and their dependencies in a system sketch. Second, they constructed

the fault tree to identify the most critical system components in a semi-quantitative way.

However, they do not address all possible system failures and the inherent reliability of

the FS. In recent publications, complex and human-centered EWS are evaluated with

BN, which are used in the reliability analysis community as a novel tool to assess the

reliability of systems (Langseth and Portinale, 2007; Bensi et al., 2012).
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alarm is not 
issued

OR

AND

no event
indicated

technical
system
failure

sensor 1 
failed

sensor 2 
failed

Figure 3.5: Fault Tree: with an undesirable top event and AND and OR gates.

3.2.2 Bayesian Networks

In recent years, BN have been increasingly applied for environmental modeling and for

the evaluation of natural hazard risks. Aguilera et al. (2011) and Vogel (2014) sum-

marize suitable applications of BN for environmental modeling. Straub (2005) states

reasons why BN have a large potential for assessing natural hazard risks. They al-

low the incorporation of expert knowledge, deal with rare data and are based on an

intuitive modeling approach. Applications of BN for modeling EWS are presented by

Medina-Cetina and Nadim (2008), who present a BN of a landslide EWS and apply it

to determine optimal thresholds, and by Blaser et al. (2011), who use BN to assess a

Tsunami EWS in Sumatra.

A BN is a graphical probabilistic model consisting of nodes and arcs. Each node rep-

resents a random variable and the arcs among the nodes characterize the stochastic

dependence among these (Jensen and Nielsen, 2007). In many instances, the arcs can

be constructed following the causal relations between the random variables (Straub and

Der Kiureghian, 2010). In discrete BN, each node has a finite set of mutually exclusive

states. Conditional probability tables (CPT) are attached to each node, specifying the

probability of the random variable conditional on its parent nodes. The joint probabil-

ity distribution P (U), in which U = {A1, A2....An} is the universe of variables Ai, is
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calculated from all CPT P (Ai

∣∣∣ pa(Ai)) in the BN, in which pa(Ai) are the parents of

Ai, following the chain rule:

P (U) =

n∐
i=1

P (Ai | pa(Ai)) (3.6)

An illustrative example is depicted in Figure 3.6. In this BN, the probability of alarm

A issued through an EWS through timely indication I of a dangerous avalanche event

E can be modeled. In addition, an avalanche event can generate damage D. The joint

probability distribution for this avalanche example (Eq. 3.7) can be obtained following

the chain rule (Eq. 3.6).

event
E

indication
I

alarm
A

damage
D

Figure 3.6: Illustrative Example of a Bayesian Network: to model the avalanche
problem.

P (E, I,A,D) = P (E)P (I | E)P (D | E)P (A | I) (3.7)

In the example BN, probabilities for P (E) and conditional probabilities for P (I | E),

P (D | E) and P (A | I) are described in the CPT of child nodes. In Table 3.1, the

probabilities of damage conditional on an event are specified. If no event occurs, the

probability of damage is zero; if an avalanche event occurs, the damage probability is 0.8

because smaller events may not cause damage. If similar probabilities and conditional

probabilities are defined for all nodes, the BN can be used to compute the conditional

probability of all random variables. In the BN, the joint probability for all possible

scenarios can be modeled, e.g., for the case of an avalanche event that is not indicated

by the EWS and no alarm is issued, which causes damage.
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Table 3.1: CPT of the Node Damage: to specify the probability of damage conditional
on an event.

probability conditional on

event no yes

damage
no 1 0.2

yes 0 0.8

For the reliability analysis of EWS, BN have first been applied in our case studies (see

Chapter 5 and 6) and in a study of Sturny and Bründl (2014), who used BN to prob-

abilistically model the technical reliability of a glacier lake WS. In this analysis, they

follow findings from Sättele et al. (2012a) and estimate the failure probability of com-

ponents, such as battery, logger, station, sensor, considering both internal failure causes

due to e.g., aging, and external failure sources due to e.g., lightning and humidity (see

Figure 3.7). In the CPT of the nodes that represent system components, conditional

failure probabilities are specified (see Table 3.2). With this BN, they model the overall

technical reliability and identify those system components that are most critical to sys-

tem failures but do not cover the entire complexity of the EWS. The inherent reliability

of the WS is not addressed. In the following (see Chapters 4 and 5), an enhanced BN is

applied to model the technical and inherent reliability of EWS.

Table 3.2: CPT to Specify Conditional Failure Probabilities: due to internal and
external failure causes.

external failure yes no

internal failure yes no yes no

component
functioning 0 0 0 1

failure 1 1 1 0

3.2.3 Decision Trees

Decision trees are graphical constructions for quantifying the probabilities and con-

sequences associated with possible outcomes of decision-making (Friedl and Brodley,

1997). Between an initiating decision (squared node) and possible outcomes (triangles),
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internal 
failure  

battery

external
failure

internal 
failure

logger

external
failure

internal 
failure

sensor

external
failure

station

alarm

Figure 3.7: BN to Model Failure Probability of an EWS: includes components of
the EWS (here battery, logger, station and sensor), which can fail due to internal and

external failure causes.

subsequent random outcomes or chances (circles) can be defined in a logical order. The

chances at each branch need to be mutually exclusive and collectively exhaustive. Rhein-

berger (2013) adapted a decision tree (Figure 3.8) originally developed for the evaluation

of fire warning systems in buildings by Pate-Cornéll (1986) to analyze and compare the

performance of two Swiss snow avalanche warning services.

Based on the National Avalanche Forecast F , local risk managers have to decide if the

endangered roads are closed (C = 1) or not (C = 0). After the closure, an avalanche

event can occur (E = 1) or not (E = 0). The decision tree leads to four possible out-

comes (neutral, a hit, a miss or false), see Chapter 3.1. The consequences of these

outcomes are described in utility functions, including costs and positive and negative

short- and long-term effects on risk reduction achieved with the EWS. Moreover, all

decisions are associated with the life-cycle costs for acquisition, operation and main-

tenance of the EWS. To identify an optimal decision rule D the expected utilities for

each decision outcome U(C,E), the probabilities of an avalanche (non-)occurrence P (E)

and the probabilities to decide appropriately, conditional on the (non-)occurrence of an

event P (C | E), are minimized following Eq. 3.8. The probabilities of avalanche (non-

)occurrences are approximated from avalanche frequencies stored in a database. The
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road 
closure  C

national 
avalanche 
forecast  F

avalanche 
event  E

utility 
U (C,E)

U (0,0)

U (0,1)

U(1,0)

U (1,1)

0

1

0

0

1

1

neutral 

miss: accidents, injuries and
fatalaties, loss of trust in EWS

false alarm: cost intervention, 
loss of trust in EWS 

hit: cost intervention, gain of
trust in EWS

Figure 3.8: Decision Tree Avalanche Problem: can lead to neutral decision, hit, misses
and false alarms.

conditional probability of making a right decision (hit, neutral) and of wrong decisions

(false alarm, miss) are derived from the past performance of the two systems under

consideration.

E[(D)] =
∑
C

∑
E

P (E)× P (C | E)× U(C,E) (3.8)

A similar approach is presented by Martina et al. (2006), who identify the optimal

threshold of a flood EWS by minimizing the expected value of a Bayesian cost util-

ity function. In this utility function, the decision conditional on the occurrence of a

flood event (POD/ PFA) is considered. The decision tree originally developed by Pate-

Cornéll is more complex and addresses the long-term memory-effect of false alarms on

the response probability of individuals to a warning. The decision tree can be updated

whenever a new event occurs and is used to model the response at a certain lead time,

given individual risk attitudes, cost of the event and of response. This decision tree

and two alternative models to quantify the response probability are then used to iden-

tify the optimal threshold and associated optimal trade-off between POD, PFA and the

lead time. Another decision tree for the evaluation of EWS is presented by Einstein

and Sousa (2006). They calculate the utilities (costs) caused by an EWS in the event
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of multiple damage levels. The utilities include costs of consequences, costs for pas-

sive countermeasures and the effectiveness of the EWS for certain hazard danger levels.

Through an additional sensitivity analysis, they identify the effectiveness, which is ex-

pressed by conditional probabilities, as a significantly influential factor on the achieved

risk reduction. However, to identify a maximal risk reduction associated with minimal

costs for complex EWS, the authors recommend the application of influence diagrams.

3.2.4 Influence Diagram

BN can be extended to influence diagrams, which enable decision-making under uncer-

tainty, whereby the strategy that maximizes the expected utility is sought (Shachter,

1986; Jensen and Nielsen, 2007). Influence diagrams are essentially BN, extended with

decision nodes (squared) and utility nodes (rectangle), wherein the latter describe the

preferences of the decision-maker. In Figure 3.9, the BN illustrated in Figure 3.6 is

enhanced to an influence diagram that enables the choice of the optimal decision rule of

the avalanche EWS.

utilities threshold

event

indication

alarm

Figure 3.9: Illustrative Example of an Influence Diagram: based on the BN (Figure
3.6) to identify the optimal decision rule.

In the decision node threshold, two decision rules are modeled as warning thresholds.

A low threshold represents a less risk-tolerant decision-maker and a upper threshold

represents a more risk-tolerant decision-maker. The probability of the occurrence of an

event is specified in the top node with 0.05. The probability that the EWS indicates an

event is specified conditional on the threshold and the occurrence of an event (see Table

3.3).
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Table 3.3: CPT of the Node Indication: to assign conditional probabilities to an
indication of the EWS.

event yes no

threshold low high low high

indication
yes 0.99 0.7 0.1 0.01

no 0.01 0.3 0.9 0.99

In the node utility (see Table 3.4), monetary values are assigned to possible outcomes

(hit, miss, neutral, false alarms). If one computes the influence diagram, the expected

utilities for both thresholds are modeled. For the less risk-tolerant decision-maker (low

threshold) a utility value of −167 is achieved and for the more risk-tolerant decision-

maker (upper threshold) the utility is −209. In that case, a lower threshold would be

the more optimal warning strategy. A more detailed application of an influence diagram

is demonstrated in the Illgraben case study (see Chapter 5).

Table 3.4: CPT of the Node Utility: to assign monetary values to neutral decisions,
misses, hits and false alarms.

event yes no

alarm yes no yes no

value - 5000 -10000 -1000 0

3.3 Summary

The effectiveness and the reliability are valuable evaluation criteria for EWS and enable

their comparison to alternative risk mitigation measures in an integrated risk man-

agement approach. The effectiveness is the reduced risk reduction achieved with the

EWS and can be quantified from positive consequences achieved through timely de-

tection (POD) and negative consequences, such as decreased compliance due to false

alarms (PFA). The reliability of EWS is commonly expressed as a function of POD and

PFA and an adequate basis for effectiveness considerations. A comprehensive reliability

evaluation includes both the technical failure probabilities of system components and

the inherent reliability of EWS. In existing studies, fault trees and Bayesian approaches
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are applied to assess the reliability and effectiveness of EWS. Decision trees are applied

to identify an optimal trade-off between the POD, PFA and the lead time. In the field

of EWS, BN have not been previously applied to model the reliability. In the following

chapter, a novel framework approach, in which the reliability of EWS is modeled with a

BN as the basis for the effectiveness evaluation, is demonstrated. In two case studies (see

Chapter 5 and 6), the BN is applied to model the reliability and enhanced to identify

optimal warning strategies.
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Chapter 4

Framework for the Evaluation of

Early Warning Systems

In the previous chapters, a classification, evaluation criteria and methods for the quanti-

tative assessment of EWS were introduced. In this chapter, a novel framework approach,

enabling the quantification of the effectiveness achieved with EWS, is presented. The

framework approach addresses needs and requirements associated with different EWS

classes, identified in the classification and in two detailed case studies, in which EWS

for alpine processes were investigated (see Chapter 5 and 6). However, it is generically

applicable for all kinds of natural hazard processes. Figure 4.1 illustrates the three main

parts, in which the effectiveness is derived from the reliability.

Part I: Reliability analysis to quantify the automated parts of EWS: The technical relia-

bility depends on failures of components and dependencies among them. The inherent

reliability depends on the monitoring strategy (type, number and positioning of sensors)

and automated decision instances (thresholds and their combinations). The reliability

is expressed in terms of POD and PFA.

Part II: Reliability analysis to quantify the non-automated parts of EWS: The tech-

nical reliability depends on failures of components and dependencies among them and

influences the ability of decision-makers to make accurate event forecasts. The inherent

reliability of WS and FS depends on human decision-making based on models and their

accuracy. The reliability is expressed in terms of POD and PFA and depends on the

lead time.
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Part III: Effectiveness Analysis of the EWS: The effectiveness of EWS can be quantified

in terms of the risk reduction achieved through timely detection of an event POD and

the probability that persons comply to the warning (POC), which can be decreased due

to frequent false alarms (PFA) or insufficient lead time provided by the EWS.

Effectiveness AnalysesReliability Analysis
(automated part EWS)

Inherent Reliability: 
monitoring strategy, 
automated 
decision-instance, etc.

Technical Reliability: 
failure probabilities, 
configuration, etc.

Reliability Analysis    
(non-automated part EWS)

Inherent Reliability: 
human-decision making, 
model accuracy,  
monitoring strategy, etc.

Technical Reliability: 
failure probabilities, 
configuration, etc.

Risk Reduction: 
through timely detection  
(POD), etc.

Compliance Reduction: 
due to false alarm (PFA), 
insufficient lead time, etc.  

Part I Part II Part III

Framework Approach

Figure 4.1: Framework Approach for Quantification of EWS: includes three main
processes.

In function of the EWS class and the degree of automation, different parts of the frame-

work approach need to be conducted. In Figure 2.3, parts typically automated in each

EWS class are illustrated. Fully automated AS can be quantified within part I and III;

partly automated WS and FS require a more complex analysis, including all three parts.

In the following sub-chapters, steps, equations and factors necessary to evaluate EWS

in those three main parts are described. For part I, a tailored method to assess the

reliability is introduced.

4.1 Reliability Analysis of the Automated EWS

The reliability achieved by fully automated AS and the automated part of WS and

FS can be determined in a comprehensive analysis, including both the technical and

inherent reliability (Figure 4.2). The reliability analysis is conducted within six steps,

in which the reliability is modeled probabilistically in a BN and expressed in terms of

POD and PFA.
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Reliability Analysis Method
(automated part EWS)

Inherent Reliability:

Part I

draw system sketch
Technical Reliability: 

design BN

estimate failure probabilities of components

determine conditional probabilities 

include sensor data and thresholds

quantify the reliability

Figure 4.2: Reliability Analysis for Automated Parts of EWS: includes six steps to
model technical and inherent reliability in a BN.

In the context of EWS, the POD and the PFA can be defined within an expectation

operator E[·] as:

POD = E

[
number of detected events

number of events

]
(4.1)

PFA = E

[
number of days with false alarms

number of event free days

]
(4.2)

Note that the PFA must be defined using a reference unit, e.g., days, as illustrated in

Eq. 4.2. To ensure the comparability, it is important to use the same unit consistently

throughout all parts of the framework.

4.1.1 Draw System Sketch

A system sketch is an essential basis to understanding the design and the dependencies

among the components in an EWS (Figure 4.3). It can be constructed according to the
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three main units of an EWS: monitoring, data interpretation, information dissemination

and contains all EWS components, including those for power supply, data management

and diagnostic tools (see Fig. 2.3). Diagnostic tools are important as they deliver

timely information on failures of components and should be considered when estimating

failure probabilities of system components (see Chapter 4.1.4). The degree of detail is

limited to main components, e.g., the data logger includes the software or the mobile

network includes the devices for data transmission, the modem and the availability of the

mobile phone. Redundant system parts, which are duplications in the form of identical

or different system components fulfilling the same function, are depicted redundantly

in the system sketch. To understand the EWS and prepare for the next step, all the

components essential for the warning chain are highlighted.
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sensor 1

solar panel/ 
battery

optical 
signal

data transfer

sensor 2

data     
logger 

wire  1 wire 2

data server

power 
network

diagnostic 
tool

redundant redundant

not relevant for 
alarm chain

Figure 4.3: System Sketch of EWS: constructed according to the three main units
and including all components of the EWS.

4.1.2 Design BN

The BN is constructed according to the three main units of an EWS and can be derived

from the system sketch. It consists of arcs and three different node types, shown as

black, white and grey in Figure 4.4.
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Figure 4.4: BN for EWS Reliability Analysis: consists of arcs and three node types.

Grey nodes depict the causal chain from the hazard event to the warning. In the top

node hazard event, mutual states can be assigned to indicate the occurrence of an event.

Two states (yes and no) are necessary to model the reliability of the EWS as a measure

of POD and PFA, in the node warning (see Chapter 4.1.6). Additional states can be

defined in the top node to assess the POD achieved for different event magnitudes. The

other nodes of the causal chain represent main functionalities, such as data measured

and event indicated. Redundant system parts require redundant nodes in the causal

chain. The information flow between those main functionalities is represented with arcs.

Individual EWS components are integrated as white nodes in the BN and their failure

probabilities are specified in the CPT (see Chapter 4.1.4). To each grey node of the

causal chain, those components that influence its functionality are connected via arcs.

Dependencies between the nodes are described by these arcs and in the CPT of grey
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nodes (see Chapter 4.1.3). Black decision nodes, threshold and warning criteria, as well

as data measured by sensors, conditional on the occurrence of an event, are added in the

causal chain to incorporate the inherent reliability into the BN (see Chapter 4.1.5).

The reliability of the automated part of WS and FS can also be modeled in a BN,

as illustrated in Figure 4.5. WS are typically automated in the monitoring and the

data interpretation unit; and the BN is constructed to model the probability that the

system operators receive timely warnings (POD) and false alarms (PFA) in the node

warning. Often, the thresholds used in WS are set low to ensure that small changes

are detected as soon as possible. This implicates high values for POD and PFA. This

PFA can be neglected for WS if one assumes that the compliance of the experts does not

decrease when regular, automated warnings are issued. In these cases, the decision nodes

threshold, necessary to model the PFA, can be excluded from the BN. This simplified

consideration can be adopted to model the automated part of FS, where the reliability

is independent of thresholds. For FS, the BN is a valuable tool to model the probability

that system operators receive data on a regular basis in the data interpretation unit.
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a) Warning System b) Forecasting System

Figure 4.5: BN to Model Warning and Forecasting Systems: BN to model reliability
of automated parts of Warning and Forecasting Systems.

68



Chapter 4. Framework for the Evaluation of Early Warning Systems

4.1.3 Determine Conditional Probabilities

The reliability of an EWS depends on the configuration of EWS components and their

interdependencies. Besides arcs, which are used to determine the information flow be-

tween the individual components of the EWS, conditional probabilities can be specified

in the CPT of child nodes. In the CPT, dependencies are typically modeled determin-

istically as AND or OR relations. AND relations are used to specify serial connections

and OR relations are used to model redundancies. In Table 4.1, the CPT of compo-

nents connected in series is illustrated. In Figure 4.4, a warning is released when both

the power network AND the optical signal in the non-redundant dissemination unit are

functioning. Table 4.2 is used to present the CPT of redundant system parts. In the

causal chain, a warning is issued if an event is indicated by senor unit 1 OR by sensor

unit 2.

Table 4.1: CPT of the Node Warning Released: used to model AND relation.

power network yes no

optical signal yes no yes no

warning released
yes 1 0 0 0

no 0 1 1 1

Table 4.2: CPT of the Node Warning Issued: used to model OR relation.

event indicated 1 yes no

event indicated 2 yes no yes no

warning issued
yes 1 1 1 0

no 0 0 0 1

4.1.4 Estimate Failure Probabilities of Components

The failure probabilities of individual EWS components influence the technical reliability

of the EWS and have to be specified for each component in the BN. The technical EWS

components are represented in the white nodes of the BN and are modeled by binary

random variables, with states functioning and failed in the CPT (Table 4.3). These
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Table 4.3: CPT of the Nodes Representing Components: used to incorporate failure
probabilities.

component
functioning 0.9995

failure 0.0005

failure probabilities include both the failure probabilities associated with internal failure,

such as aging, and those with external failure sources, such as lightning, humidity and

extreme temperatures.

Specified MTTF and MTBF values are often available and can be used to determine

the internal failure rate λIF following Eq. 3.4. This failure rate λIF is associated with

a reference unit (e.g. failures per day or per year) that should comply with the one

selected above for PFA.

Following, Eq. 4.3, λIF can be combined with the external failure rate λEF to obtain λ.

λ = λIF + λEF (4.3)

Values for λEF are rarely specified by suppliers and need to be approximated in the same

unit as λIF , based on repair records and expert estimates. EWS are primarily installed

in remote areas. As an example, EWS for volcanoes and alpine hazards are installed in

mountain regions, close to rivers and glaciers, in high altitudes, steep catchments and

are thus prone to numerous external failure causes. Lightning, humidity, storm and ex-

treme temperatures are the most frequent external factors that cause failures on system

components. Rockfalls, snow avalanches and snow load, ice blocks, flood, vegetation,

mud, dust and fog are site- or system-specific causes that can lead to failures of system

components. Additional potential failure causes, such as construction, vandalism and

animals, must also be considered. Automated parts of EWS for tsunamis and hurricanes

are installed under water or on its surface and have to withstand destructive impacts

such as strong waves and aggressive salt water.

From the overall failure rate λ, failure probabilities can be derived in probability dis-

tributions. If failures occur following a Poisson process, i.e., if they occur randomly in

time and independently of each other, the probability of a component failure at time t

is calculated as (Straub, 2012):
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Pr(F (t)) = λ× E[Tr] (4.4)

λ is the failure rate of the component and E[Tr] is the expected time it takes to detect and

repair a failure. The approximation holds for small values of λ, i.e., for λ� 1/(E[Tr]).

How fast component failures are detected, depends on whether a diagnostic system is

integrated in the EWS or not and on the speed of detection if one is installed. How

fast components are repaired depends on the type of failure, the availability of service

personnel and spare parts, and on additional operational measures taken to ensure that

hazardous events are detected. If a diagnostic tool is installed to send daily reports,

failures are detected within one day. If spare parts are available for all parts and can

be implemented within one day, E[Tr] is two days. If failures probabilities cannot be

quantified following a Poisson process, more suitable probability distributions can be

used (see Chapter 3.1.2).

4.1.5 Include Sensor Data and Thresholds

To model the ability of an EWS to distinguish between hazard and noise, the nodes

threshold, warning criteria and data measured are added in the BN. This step should

be conducted for all AS and can be skipped for the automated part of FS. For WS this

consideration is relevant if frequent false alarms are expected to decrease the compliance

of the information recipient. In the BN black decision nodes threshold are added to each

node event indicated to specify a warning threshold. An additional decision node, called

warning criteria, is added to the node warning issued if warnings are based on the

indication from individual sensors. In Figure 4.4, the warning is only issued when both

sensors indicate an event. In the CPT of nodes data measured, the probabilities of the

sensor signal exceeding the defined threshold, conditional on whether or not an event

occurs, are specified.

For the evaluation of existing AS and WS, past sensor data can be used to estimate

the probability of sensor signals to exceed a threshold conditional on an event during

the selected reference unit. The selected period should be similar to the reference unit

chosen for the calculation of failure rates (as defined in 4.1.3). To obtain scalar sensor

signals, the maximum or mean values measured in each time unit are determined first.

71



Chapter 4. Framework for the Evaluation of Early Warning Systems

Then, signals recorded on days with events and days without events are assigned into two

groups. In each group, probability distributions are fitted to measured sensor signals

to obtain the PDF. The ground motions and flow heights conditional on debris flow

events in the Illgraben are described, e.g., in lognormal distributions (see Chapter 6).

The selection of the distribution depends on the process and has to be identified site-

specifically. In Figure 4.6, a threshold and two cumulative density functions (CDF)

fitted to sensor signals measured on days with and without events, are illustrated. The

intersections between the CDF and the threshold indicate both the probability of the

threshold being exceeded on event days (0.99) and on days without events (0.01). Similar

consideration can be made for varying thresholds to specify the probabilities in the node

data measured.

signal on days
without event

signal on days
with event

C
D

F

scalar sensor signal

threshold

0.99

0.01

Figure 4.6: Fitted Sensor Signal Conditional on Event: and threshold to identify
probabilities in the CPT of the nodes data measured.

If sensor data is not scalar, it is typically transformed into scalar signals that are com-

parable to thresholds. For example, earthquake AS, measure time series of ground

vibrations with different sensors to model the expected magnitude in real-time, which is

then compared to a predefined threshold (see Chapter 2.3.3). In this case, the probabil-

ity of the modeled senor data, here expected magnitude, to exceed a certain threshold

is specified in the CPT.

If the EWS are installed for the detection of rare events, such as volcanic eruptions

and high-magnitude rockfalls, signals measured on days with events may be rare. In

this case, probabilities have to be estimated by experts. That must be done carefully
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and with respect to the positioning of the sensor; as demonstrated for similar sensors

installed to detect debris flows, the performance can vary significantly (see Figure 5.6).

4.1.6 Quantify the Reliability

In the last step, the BN is used to probabilistically model the reliability of automated

AS and the automated part of WS and FS. For AS and WS values for POD and PFA can

be obtained by changing the status of the top node and evaluating the BN. To compute

the POD in the node warning, the top node hazard event can be set to the state yes;

likewise, the PFA is obtained by setting the top node to state no. The same BN allows

the technical or inherent reliability to be modeled separately. Therefore, the probability

of measured sensor data to exceed the threshold is set to 1 or failure probabilities of

system components are set to 0. For FS and WS, whose reliability is measured in terms

of POD alone, the top node hazard event can be set to the state yes to model the

reliability.

The BN can be extended to an influence diagram to optimize the reliability for utilities

defined for hits, false alarms, misses and neutral decisions. In Chapter 5, the threshold

which maximizes the system reliability is defined in an influence diagram. The reliability

analysis of non-automated parts of WS and FS is less time critical and includes more

complex decision procedures as illustrated in the following.

4.2 Reliability Analysis of the Non-Automated EWS

The second reliability analysis for the non-automated part of WS and FS has to address

both the technical and the inherent reliability to evaluate the ability of the decision-

maker in setting up intervention measures and avoiding damage. The inherent reliability

depends on the ability of the model to forecast the event and the ability of the decision-

makers to interpret the model. The technical reliability influences the ability of the

EWS to support the decision-makers in creating an event forecast that directly depends

on the availability and quality of the measured sensor data. In the novel framework

approach, the technical and the inherent reliability achieved in the non-automated parts

of EWS are quantified in five steps (Figure 4.7). The reliability is evaluated in a binary

approach and expressed in terms of POD and PFA. The POD is the probability that the
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intervention measures are in place when the event occurs to avoid damage. The PFA

means that intervention measures are in place and no event occurs.

Reliability Analysis Method
(non-automated part EWS)

Inherent Reliability:

Part II

determine minimal required lead time
Technical Reliability: 

estimate failure probability of remote 
components

estimate model accuracy

quantifying human decision-maker

quantify the reliability

Figure 4.7: Reliability Analysis for Non-Automated Parts of EWS: includes five steps
to model technical and inherent reliability.

4.2.1 Determine Minimal Required Lead Time

In the non-automated part of WS and FS, experts analyze precursors to obtain extended

lead times up to several days (see Figure 2.24). In this case, the reliability should be

evaluated as a function of the lead time. Typically, the reliability increases when the

lead time decreases, as illustrated in Figure 4.8. To simplify the subsequent reliability

analysis, it can be useful to quantify the reliability at a fixed lead time ∆t. For WS,

the minimum lead time required to conduct the intervention measures, can be chosen to

ensure that interventions are conducted successfully and no additional costs are caused

through unnecessary long interventions. In the Preonzo case study, the reliability of the

EWS is evaluated one day before the event (see Chapter 6). For FS, the lead time is

equal to the release frequency; for a daily bulletin, the lead time would be one day.
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increasing lead time/ 
decreasing reliability
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D

PFA

1

0

0 1

Figure 4.8: Reliability vs. Lead Time: typically the reliability decreases when the
lead time increases.

4.2.2 Estimate Failure Probability of Remote Components

The failure probability of remote components, such as sensors, typically increases when

the event gets closer for WS because destructive side-events arise in the release area. The

increased technical failure probability P (F ) at a certain lead time ∆t before the event

can be quantified by fitting probability distributions, such as the Weibull or a binomial

distribution (see Chapter 3.1.2 and Chapter 6.2.3.), to failure records of past events. In

cases, where records are not available, the failure probability P (F ) for a certain lead

time ∆t before the event has to be estimated by experts or adapted from experience

made at similar sites.

If an increased number of failures are expected, the number of remaining sensors at the

lead time ∆t should be determined and used in the next step, where the accuracy of the

model is estimated. If a WS is constructed in a way that increased failure probabilities

are not expected, this step can be neglected. This is typically the case for FW where

forecasts are made on a regular basis and not only when hazardous events are expected

in the near future.
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4.2.3 Estimate Model Accuracy

The model accuracy depends on varying parameters, such as on the underlying monitor-

ing strategy, the technical failure probability and on the applicability of the model itself.

The monitoring strategy is important because the type, the number and the positioning

of the sensors determines the data base quality. An increased technical failure reliability

may have a negative effect on the quality of the data base. The applicability of the

model can vary significantly for different natural hazard process types. While brittle

rockfalls with high-magnitudes can be, for example, forecasted reliably with the inverse

velocity model (Wegmann et al., 2003; Petley and Petley, 2006; Krähenbühl, 2006; Rose

and Hungr, 2007), small-magnitude rockfalls occur typically spontaneously. Similarly,

volcanic eruptions are characterized trough site-specific precursors and warning criteria

are often not transferable (see Chapter 2.3.6).

For natural hazard events that occur frequently, values for POD and PFA can be quan-

tified in post-analysis to evaluate models following Eq. 4.1 and 4.2. Models used within

WS are typically applied to predict site-specific events and can be evaluated by their

application on recorded pre-event data. To this end, the model is applied at the fixed

lead time (see Chapter 4.2.1) on data measured by individual sensors before that lead

time to obtain event forecasts. In Figure 4.9, the forecasted number of days to the event

modeled at lead time ∆t = 1 by grouped sensors are illustrated and fitted with a prob-

ability distribution. In this example 0.95% of the sensors predict the event to occur at

the expected lead time ∆t = 1 and thus the POD is 0.95. To obtain values for PFA, the

model is applied to make forecasts on days not equal to the lead time (for the example,

more than one day before the event). Then those forecasts, in which sensors predict the

event for the next day but no event occurs are identified and compared to the number

of non-event days. A detailed evaluation of the inverse velocity model is demonstrated

in Chapter 6. In this study, the model becomes more reliable with an increasing number

of sensors.

In published literature, models used in FS for meteorological hazards and floods, are

evaluated as a measure of POD and PFA (Simmons and Sutter, 2009; Liechti et al.,

2013). Evaluation of these models can be more complex, because not only the ability

to predict a specific hazard event but the ability of the model to predict the occurrence

probability of hazardous events on a regional scale needs to be evaluated.
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Figure 4.9: Forecasted Days to Event: modeled by grouped sensors at lead time
∆t = 1.

If event data for the evaluation of models used in WS and FS is not available, values

for POD and PFA can be adopted from event analysis of similar EWS or from expert

estimates. Besides the ability of the model, the ability of humans to make accurate

decisions should be evaluated in the next step.

4.2.4 Quantifying Human Decision-Makers

The reliability achieved in the non-automated parts of both WS and FS depends strongly

on the ability of humans to make correct decisions. To quantify this ability, decision-

makers can be characterized through different risk types. Each risk type is specified

through different criteria, which must be fulfilled when intervention measures are set up.

These criteria can be inherent or technical. An inherent criterion could, for example,

mean that an evacuation is set up if the model predicts an event with a probability

higher than a predefined value. A technical criterion would mean that an evacuation

is initiated if, for example, a predefined percentage of sensors are left. In case of the

inherent criteria, the POD could be derived from the model accuracy. If the model

predicts the event to occur within the specified lead time with a probability of 0.95 and

the decision-makers evacuate if the probability is higher than 0.8, intervention measures

are set up.
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In practice, decision-making procedures which are conducted in both WS and FS are

complex and not determined by simple decision rules. Decisions are made by expert

teams, who apply models on measured sensor data and consult additional information

sources. As an example, the danger levels of snow avalanches, which are published daily

in the bulletin of the Swiss FS, are selected by an expert team, who consult snowpack

and weather models as well as information from local observers (see Chapter 2.4). A

comprehensive evaluation of decisions made in that expert team would has to account

for varying factors, such as the model accuracies, the effect of group dynamics and the

risk tolerance and experience of the individuals.

4.2.5 Quantify the Reliability

The reliability achieved in the non-automated part of WS and FS depends, among other

factors, on the lead time, the monitoring strategy, the technical failure probabilities, the

model accuracy and complex human, decision-making procedures. The reliability should,

as for automated EWS (see reliability analysis, part I), be expressed in terms of POD

and PFA. These measures are then used in the last part to quantify the effectiveness of

EWS.

For FS and WS, the reliabilities of both analyses are combined to obtain one value for

POD and one for PFA as input parameters for effectiveness evaluation. To obtain an

overall POD, the values modeled in the first reliability analysis POD1 and in the second

analysis POD2 are combined following Eq. 4.5:

POD = POD1 × POD2 (4.5)

POD1 and POD2 are multiplied because the overall POD cannot exceed single values of

POD. If, for example, the POD1 calculated for the automated part is 0.95, the overall

POD cannot exceed this value. To determine the overall PFA, values calculated in both

reliability analyses are summed up, to account for all false alarms following Eq. 4.6.

But in the majority of cases, this consideration is not necessary for WS, where low

thresholds are used to immediately inform experts about relevant changes and where

false alarm should not decrease their willingness to comply (see Chapter 4.1.6). It is

also not relevant for FS, where the PFA is not modeled in the BN of the first reliability
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analysis. Here, the PFA quantified in the second reliability analysis is used as input for

the effectiveness analysis.

PFA = PFA1 + PFA2 (4.6)

4.3 Effectiveness Analysis

The effectiveness of an EWS Ew can be quantified in terms of the relative reduction of

the overall risk, with R being the overall risk without the EWS and Rw the risk with

the EWS installed:

Ew = 1− Rw

R
(4.7)

Both R and Rw are evaluated according to Eq. 1.1 and 1.2. In many instances, it is not

necessary to determine the contribution of all factors to the risk in Eq. 1.1. Instead, it

will often be sufficient to assess the effect of the EWS on individual factors as a function of

POD and PFA. EWS aim to generate information before a hazard event causes damage;

therefore, they reduce the risk primarily by mitigating the exposure probability peij

of persons and mobile objects i in a hazard scenario j. Only in some cases, e.g., if

earthquake AS detect events quick enough to slow down trains, the vulnerability Vij of

object i in scenario j is decreased. In the following, an approach in which the EWS

decreases the exposure probability peij is presented.

With the EWS, the exposure probability is reduced from a value peij without warning

to a value pe
(w)
ij . Combining Eq. 4.7 with Eq. 1.1 and 1.2, the warning effectiveness for

this case becomes

Ew = 1−

nscen∑
j=1

nobj∑
i=1

pj × pe(w)
i,j × Vi,j ×Ai

nscen∑
j=1

nobj∑
i=1

pj × pei,j × Vi,j ×Ai
(4.8)

For those cases, where the EWS is installed to warn people, the nobj are the number of

exposed people and it is reasonable to assume that the exposure probability is the same
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for different i, i.e. peij = pej . For one relevant scenario j = 1 the effectiveness of the

EWS then reduces to

Ew = 1−
pj × pe(w)

j ×
nobj∑
i=1

vij ×Ai

pj × pej ×
nobj∑
i=1

vij ×Ai

= 1−
pe

(w)
j

pej
(4.9)

The EWS reduces the exposure probability to pe
(w)
j . This reduction is equal to the

probability that a warning is issued, transferred to the target persons and that the

affected people comply with the warning. The former corresponds to the POD, the

latter to the Probability of Compliance (POC). Therefore:

pe
(w)
j = pej(1− POD × POC) (4.10)

Inserting in Eq. 4.9, the effectiveness becomes

Ew = POD × POC (4.11)

The POC, i.e. the degree to which warnings are followed in practice, is strongly de-

pendent on the PFA and on the lead time (see Chapter 1.2 and Chapter 3.1). POC

can be calculated as a result of a basic compliance probability POC0 and a compliance

reduction factor due to false alarms RF (PFA) and a compliance reduction factor due

to insufficient lead time RF (ILT ):

POC = POC0 ×RF (PFA)×RF (ILT ) (4.12)

The basic compliance rate POC0 depends on several factors such as the type of interven-

tion measures, its environment and human decision-making. If, for example, barriers are

closed on a road, car drivers have to comply while red lights can be ignored. Moreover,
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different means of transportation (e.g. walking, cycling, driving) and varying environ-

ments (e.g. city, highway, countryside) can influence the willingness to comply with a

warning; e.g. a car driver on a main traffic road would be more likely to comply with

a red light than pedestrians on a hiking trail. In many instances, the compliance de-

pends on human decision-making, which is influenced by the cost of damage associated

with the hazard, the cost associated with the intervention measure as well as the hazard

awareness. If regular training is conducted and persons educated on the potential hazard

and associated risks, a higher compliance rate may be achieved.

The reduction factor due to false alarms RF (PFA) depends, among other factors, on the

recipient of the information and must be approached case-specifically. For the Illgraben

case study (see Chapter 5), values were adopted from a case study by Bliss et al. (1995).

For the Preonzo case study (see Chapter 6) the effect of false alarms was neglected,

because warning information is send to system operators who appreciate regular feedback

from the WS.

In certain cases, EWS have to be constructed in a way that the available lead time may

not be sufficient and those willing to comply cannot successfully evacuate. Especially,

in the case of AS, lead times are often in the range of seconds and limited through the

distance of the release area to endangered objects. If, for example, an AS is installed to

protect trains, the stopping distance of an arriving train could be too long to prevent

the train from entering the endangered sector. In that case, the probability of a collision

or direct hit must be considered. This effect on risk reduction should be included as

a compliance reduction factor due to insufficient lead time RF (ILT ) to quantify the

overall effectiveness.

4.4 Summary

A novel framework approach for the evaluation of EWS comprising three main parts

was introduced. In the first part, the reliability of automated EWS is quantified in

terms of POD and PFA. In the second part, the reliability of the non-automated part

of WS and FS is quantified in the same terms. In both parts, the reliability assessment

is conducted in several steps addressing both the technical and the inherent reliability.

For the reliability evaluation of automated parts of EWS, a method including six steps
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is provided, in which a BN is applied to probabilistically model POD and PFA. For the

evaluation of complex model-based decision-making in the non-automated part of EWS,

five steps are presented summarizing those factors that have a main influence on the

reliability. In the last part, the effectiveness can be derived from the reliability. To this

end, POD, PFA and the lead time are used to quantify the reduced risk achieved with

the EWS. In the illustrated approach, the POD is used to quantify the reduced exposure

probability and PFA and the lead time are expressed as compliance reduction factors to

estimate the compliance to a warning.
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Illgraben Case Study

In the present chapter, results of the Illgraben case study, in which we assess and opti-

mize the reliability and effectiveness of the Illgraben debris flow AS, are presented. A

comprehensive version of this chapter has been published as (Sättele et al., in press).

The overall system evaluation of the Illgraben AS has been conducted following part

I and part III of the framework (see Figure 4.1 in Chapter 4). The system reliability

analysis includes both the technical and the inherent system reliability. The system

reliability is expressed in terms of POD and PFA, modeled in a BN, including the

probability of system component failures and illustrated in ROC curves. Moreover,

the BN is extended to an influence diagram, here referred to as decision graph (DG),

enabling the identification of optimal system thresholds.

The effectiveness of the Illgraben AS is calculated following Eq. 4.11 and Eq. 4.12.

To quantify the effect of false alarms, values for the general compliance rate and the

effect of false alarms are estimated. The general compliance rate POC0 is set to 0.95

and was estimated from traffic analysis (Rosenbloom, 2009; Johnson et al., 2011). One

traffic analysis investigated the behavior of pedestrians towards red lights and revealed

that 5% ignore red-lights. The second analysis considered the behavior of cyclist, where

about 7% ignore red lights. To estimate the compliance reduction factor due to false

alarms RF (PFA), results from a case study that assessed the compliance frequency of

students as a function of false alarms are adopted (Bliss et al., 1995). The resulting

compliance frequencies (corresponding to our RF ) at different levels of the False Alarm

Ratio (FAR) are shown in Figure 5.1, together with a fitted quadratic function:
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RF (FAR) = −0.34FAR2 − 0.66FAR+ 1 (5.1)

Figure 5.1: Compliance Frequency: at different levels of False Alarm Ratio (FAR),
according to Bliss et al. (1995).

To incorporate the effect of decreasing compliance for a given number of false alarms in

the effectiveness, the FAR is defined as the ratio of false to correct alarms and related

to the PFA as:

FAR = PFA
Pr(H̄)

Pr(A)
(5.2)

Pr(H̄) is the probability of no hazard event and Pr(A) is the probability of an alarm

(both correct and false) on a given day. For the case study considered here, it is ap-

proximately Pr(H̄) ≈ 95% and Pr(A) ≈ 5%, therefore FAR ≈ 19 PFA. Combining Eq.

4.10, 4.11, 4.12, 5.1, 5.2, we obtain the effectiveness as a function of POD and PFA (see

also Figure 5.2):

Ew = POD × 0.95(−0.34FAR2 − 0.66FAR+ 1)

= POD × (0.95− 116PFA2 − 11.9PFA) (5.3)
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Figure 5.2: Effectiveness of the Illgraben Alarm System: as a function of Probability
of Detection (POD) and Probability of False Alarms (PFA) for the case study.

5.1 The Illgraben Alarm System

The system under investigation is located at the Illgraben catchment in the western part

of the Swiss Alps. The catchment ranges in elevation from 610 m a.s.l. to 2716 m a.s.l.

and half of the catchment area (4 km2) is covered by bedrock and debris deposits. Due

to the geological conditions, there is a remarkably high occurrence rate of debris flows.

A debris flow is a spontaneous, fast-flowing mixture of water and solid particles, which

typically consists of surges (Badoux et al., 2009). In 2006, the Swiss Federal Institute for

Forest, Snow and Landscape Research WSL designed an AS to protect local residents

and tourists frequently crossing the catchment.

The monitoring unit includes five sensors that are located close to the release area to

detect events in real-time (Figure 5.3). In the upper catchment, one single sensor,

geophone 1, continuously monitors ground vibrations. Further down in the catchment,

some hundred meters below, two geophones, 2 and 3, measure ground vibrations and

two radar devices, 1 and 2, measure the flow depth in the river bed. The upper geophone

is controlled by one logger and the remaining four sensors are controlled by a second

logger. The power at these remote locations is supplied via solar panels and batteries.

The loggers build an interface between the monitoring unit and the data interpretation

unit. If predefined threshold values in the data loggers are exceeded, an alarm call is

automatically activated via modem and transmitted to the valley. The incoming alarm

calls are forwarded via two communication devices to the information dissemination unit.

To release the alarm information to endangered persons in the catchment, three alarm
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Figure 5.3: System Sketch of the Illgraben Alarm System: illustrates the fully auto-
mated procedures and components (underlying picture by Graf).

stations are located close to three crossings of the streambed. Each station consists of

an audible signal and a red light. The lead time of the AS is determined by the velocity

of the debris flow and the runtime between the lower sensor units and the upper crossing

and is in the range between five and fifteen minutes.

5.2 BN to Model the Reliability of the Illgraben Alarm

System

To probabilistically model the system reliability for varying warning thresholds of the

Illgraben debris flow AS and to identify the threshold combination that implies the

optimal effectiveness, we design a BN and an associated DG.

By applying the BN (Figure 4.4) to the system sketch of the Illgraben AS (Figure 5.3),

the BN model of the debris flow AS depicted in Figure 5.4 is obtained. The BN is
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implemented with the free GeNIe software (DSL, 2013) and can be downloaded under

the following link: http : //abnms.org/bnrepo/bn.php?bnId = 100.

Figure 5.4: Bayesian Network for the Illgraben Alarm System: can be obtained by
applying the BN (Figure 4.4) to the system sketch (Figure 5.3).

The dark-grey nodes in the BN represent the causal chain from the hazard event to the

warning. This chain can also be interpreted as the information flow. For each sensor, a

local interpretation is made in the node event indicated, which is in state true only if the

sensor signal exceeds the corresponding threshold. The information from sensors in the

lower catchment (geophone 2, 3 and radar 1, 2) is merged in the node warning issued

2, where it is decided whether or not to issue a warning, following the selected criterion
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defined in the node warning criteria. The node warning transmitted is in state true if

either of the two warnings is issued (OR connection). If the warning is transmitted,

a warning is released at each of the three stations, given that no component failures

occur. Therefore, the final node warning should in principle have four states 0, 1, 2,

3, corresponding to the number of stations where warnings are released. However, to

comply with the binary definition of POD and PFA, this node has only two states (yes

and no). To account for the number of warnings released, the conditional probability of

warning = yes is 0.33 if two stations release a warning respectively and 0.67 if only one

station releases a warning.

5.3 Technical Reliability Analysis

The failure probabilities for components of the Illgraben AS are calculated with Eq. 3.4,

4.3 and 4.4, and incorporated in the white nodes, including both internal failures and

failures caused by external influences.

The internal failure rate λIF is directly derived from the MTTF or, for repairable parts,

from the MTBF, as specified by the suppliers. As an example, for radar devices, the

MTTF is sixty years and the corresponding internal failure rate is λIF = 4.5× 10−5 per

day. If MTTF or MTBF are not specified by the supplier, expert judgment is used to

estimate λIF .

To estimate λEF , we consult experts and evaluate historical data from repair records.

Since the installation of the Illgraben debris flow AS in 2006, one solar panel was de-

stroyed by a rockfall. In the Illgraben, rockfall is common and we assume the failure

rate to be 3×10−4d−1, which corresponds to a return period of ten years. System failure

due to extreme floods, lightning, animals, vandalism and extreme temperatures have not

occurred yet, but should be considered as possible failure causes. We assume a failure

rate of 3.0× 10−5d−1 for each external failure, which corresponds to a return period of

100 years. Summing up these rates, an overall λEF = 4.5× 10−4d−1 is computed for all

system components. This is in good agreement with available repair records.

In the Illgraben AS, E[Tr] is one day for all system components, because a diagnostic

tool is incorporated into the system to ensure that failures are detected within one day.
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If the failures cannot be repaired immediately, additional operational measures are taken

to ensure detection of an event.

To quantify the effect that technical failures have on the overall system reliability, we

incorporate technical failure rates λ for all system components in the BN. In doing so,

the maximum POD (achieved with the optimal thresholds described later in the paper)

is decreased by 0.34%. Thereof, 0.12% are due to internal failures (λIF ) and 0.22% are

due to external failures (λEF ). The technical reliability modeled for the Illgraben AS is

very high.

5.4 Inherent Reliability Analysis

The inherent reliability of the Illgraben AS, as expressed through POD and PFA, de-

pends on the selected threshold for each sensor signal. To analyze the influence of these

thresholds, decision nodes representing varying thresholds are included in the DG of

Figure 5.4. In addition, a decision node warning criteria allows various criteria to be

analyzed for issuing warnings based on the indications from the individual sensors, e.g.,

a warning is issued if at least two sensors indicate an event.

Each of the five signal nodes in the monitoring unit are described by the conditional PDF

of the maximum measured signal during a day, conditional on whether or not a debris

flow event occurs during that day. These conditional probability distributions correspond

to those of the signal detection theory as illustrated in Figure 3.2. To estimate them,

recorded sensor data from the period between 1st of May 2008 and 24th September 2012

are used. During this period, forty-four debris flow events were recorded on 883 days.

For each of the five sensors, a probability distribution is fitted to the observed signals for

days with and without events, as displayed in Figure 5.5 for Geophone 2. For inclusion

in the BN, the signal is discretized in ten classes, as shown in Table 5.1 for Geophone 2.

To quantify the inherent reliability of individual sensors, POD and the PFA are evaluated

from the conditional distributions of the signal following Eq.3.1 and 3.2. The resulting

ROC curves that represent the reliability of individual sensors for varying thresholds

are presented in Figure 5.6. They indicate that the inherent reliability of the individual

sensors varies strongly. Geophone 1 performs best and reaches a reliability close to the

optimum with POD = 0.992 and PFA = 10−4, whereas the remaining sensors have a
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Figure 5.5: Signal Geophone 2, Illgraben: Cumulative distribution functions (CDF)
represent observed data (solid lines) and the fitted probability distributions (dashed

lines).

much lower inherent reliability. The difference among the reliabilities of the sensors is

mainly due to the positioning of the sensors in the field, which influences their sensitivity

to the debris flow events and the amount of external disturbances, e.g., from animals,

humans and rockfalls.

5.5 Decision Graph to Identify Optimal Threshold Com-

binations

With five sensors, and all the signals discretized in ten classes, there are 95 = 59× 103

possible threshold combinations, each of which leads to a POD and a PFA. Further-

more, different warning criteria for combing the individual sensor results can be defined,

which further increase the number of possible warning strategies. For the Illgraben case

study, two such warning criteria are considered. Either one individual sensor can issue a

warning individually or a warning is issued when geophone 1, or at least one geophone

and one radar device in the lower catchment, indicates an event. The optimal warning

criterion in all instances for the Illgraben case study is the second criterion.
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Table 5.1: Discretized Probability Distribution: of signals measured by Geophone 2
on days with and without event.

class impulses/sec no event event

1 ≤ 1 0.8332 0.0767

2 > 1 ≤ 5 0.0512 0.1071

3 > 5 ≤ 10 0.0295 0.0663

4 > 10 ≤ 20 0.0305 0.0772

5 > 20 ≤ 30 0.0163 0.0492

6 > 30 ≤ 40 0.0102 0.0362

7 > 40 ≤ 50 0.0069 0.0286

8 > 50 ≤ 200 0.0208 0.1789

9 > 200 ≤ 500 0.0014 0.1075

10 > 500 0.0001 0.2713

Most of the possible warning strategies will be sub-optimal. Of interest are only the

Pareto optimal warning strategies, for which it holds that no other strategy exists with

simultaneously higher POD and lower PFA. To identify the Pareto optimal solutions,

we employ a DG of Figure 5.4. By adding a utility node, the BN is extended to a DG,

which can automatically identify the optimal warning threshold. This is of particular

use when multiple sensors are installed. In this case, thresholds must be set for all

sensors and combination rules (logic operators) must be defined, e.g., that a warning is

issued only if more than x sensors have a signal above their threshold. This leads to a

high-dimensional optimization problem, which can be effectively solved with the DG.

In the utility node, we modify the ratio of cost of false alarm to cost of a missed event

and use the DG to identify the optimal threshold combination and warning criterion for

each ratio. In this way, we obtain a set of Pareto optimal solutions, which allow the

construction of the system ROC curve. In Table 5.2, the optimal threshold combinations

for twenty utility ratios are presented, together with the corresponding POD, PFA and

effectiveness, as computed with Eq. 5.3. The results are also graphically illustrated in
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Figure 5.6: ROC Curves for Individual Sensors: illustrating the reliability of sensors
for nine predefined thresholds. The highest threshold is represented by operation points

left. Geophone 1 shows the best performance.

Fig. 5.7. Here, the technical reliability is already included, i.e., the results show the

overall system reliability and effectiveness.

5.6 Reliability and Effectiveness of the Illgraben Alarm

System

The POD and PFA of the Pareto optimal warning strategies for the Illgraben AS are

summarized in Table 5.2 and Figure 5.7. Using these values, the overall ROC curve of

the system is constructed, as depicted in Figure 5.8. This ROC curve is overlaid with

the system effectiveness, following Figure 5.2.

Overall, the reliability of the Illgraben debris flow AS is high, and so is its efficiency.

According to Table 5.3, the warning strategy that maximizes the effectiveness of the

system is the one found with utility ratios 0.7, 0.8 and 0.9. This warning strategy has low

thresholds for sensors geophone 1 and radar 1, whereas the thresholds of the remaining

three sensors, geophone 2, 3 and radar 2, are set to their maximum. Geophone 3 still

has a POD of 0.79 even with the largest threshold (see also Figure 5.6). For geophone
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Figure 5.7: Reliability and Effectiveness, Illgraben: of Pareto optimal warning strate-
gies, as shown in Table 5.2.

Figure 5.8: ROC Curve and Effectiveness of the Illgraben Alarm System: overlaid.
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Table 5.2: Pareto Optimal Solutions for Varying Utility Ratios: and the corresponding
POD, PFA and effectiveness.

utility ratio thresholds POD PFA Effectiveness

G1 G2 G3 R1 R2

0.009/0.01 2 8 7 3 9 0.996772 0.002851 0.912171

0.02 2 8 8 3 8 0.996342 0.000783 0.937166

0.03/0.04/0.05 2 8 8 3 9 0.996336 0.000775 0.937260

0.06/0.07/0.08/0.09/1 2 8 8 4 8 0.996072 0.000520 0.940068

0.2 2 8 9 3 9 0.995582 0.000339 0.941772

0.3 2 8 9 4 8 0.995339 0.000277 0.942281

0.4/0.5/0.6 2 9 9 4 8 0.995125 0.000248 0.942423

0.7/0.8/0.9 2 9 9 4 9 0.995110 0.000247 0.942424

1 3 8 9 4 8 0.992215 0.000078 0.941680

2 and radar 2, these optimal maximum thresholds indicate that these sensors do not

contribute to the system reliability and may even decrease the overall effectiveness of

the Illgraben debris flow AS.

To assess the influence of individual technical system components on the overall system

reliability and the resulting effectiveness, an elementary sensitivity analysis is conducted.

For each technical system component i, the system effectiveness with the optimal warn-

ing strategy is recalculated once by assuming that the technical system component i

failed and once by assuming that the system component i is perfectly reliable. This is

done by simply setting the node of technical system components i to functioning or fail-

ure respectively. The difference in effectiveness between the system with the perfectly

reliable technical system component i and the original system is called Effectiveness

Achievement Worth, as it corresponds to the Risk Achievement Worth sensitivity mea-

sure (Vesely et al., 1983). Accordingly, the difference in effectiveness between the original

system and the one with technical system component i failed is called Effectiveness Re-

duction Worth, corresponding to the Risk Reduction Worth sensitivity measure. The

results are summarized in Table 5.3, where technical system components are ordered
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according to their importance. Overall, the Effectiveness Achievement Worth of all

technical system components is small, indicating that little can be gained from improv-

ing the reliability of individual technical system components. On the other hand, the

Effectiveness Reduction Worth of the technical system components that are responsible

for the data transmitting within the Illgraben system (modem 3, call receiver 1, call

transmitter 1, mobile network or power supply), is large (9.42× 10−1). Upon failure of

any of these technical system components, the Alarm System will not work, which is

a consequence of the missing redundancy of the system with respect to these technical

system components. Redundantly constructed data transmitting devices would there-

fore improve the system reliability and so its effectiveness considerably. However, as

the Effectiveness Achievement Worth shows, the effect would be limited. For a further

analysis of possible modifications in the system configuration, a cost-benefit analysis

should be conducted.

The non-redundant technical system components in the information dissemination unit

(call receiver 2, 3, 4, battery 3, 4) are the most critical components and so their Effective-

ness Reduction Worth (3.10× 10−1) is largest. All three warning stations are equipped

with redundant warning release devices, an audible signal and a red light, which are less

critical (1.82× 10−4).

The overall high system effectiveness is mainly a consequence of the high reliability of

geophone 1 in the upper catchment. If that single geophone 1 or the technical system

components essential for its functioning (logger 1, modem 1, battery 1) fail, the loss in

effectiveness is large (1.77 × 10−1). The influence of this individual sensor exceeds the

joint influence of all four sensors in the lower catchment. The latter is quantified through

the influence of logger 2, modem 2 or battery 2, whose failures would render all four

sensors in the lower catchment useless. The influence of the individual sensors varies

drastically. While geophone 3 and radar 1 have a considerable effect on the effectiveness

of the Illgraben AS, geophone 2 and in particular radar 2 are assumed to be sensors

with minor significance. Nevertheless, the positioning of the four sensors in the lower

catchment is limited. The position is chosen to detect debris flow events that could enter

the main channel below the upper geophone at the earliest possible moment.
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Table 5.3: Sensitivity of the Effectiveness: to individual technical system components.

system
component

Effectiveness
component
functioning

Effectiveness
Achievement
Worth

Effectiveness
component
failure

Effectiveness
Reduction
Worth

1 modem 3
call receiver 1
call transmitter
power network
mobile network

0.943741 1.32× 10−3 0.0 9.42× 10−1

2 battery 3,4
call receiver 2,3,4

0.942581 1.57× 10−4 0.632004 3.10× 10−1

3 geophone 1
logger 1
modem 1
battery 1

0.942509 8.45× 10−5 0.764853 1.77× 10−1

4 modem 2
logger 2
battery 2
radar 1

0.942427 3.30× 10−6 0.935417 7.01× 10−3

5 radar 1 0.942427 3.24× 10−6 0.935876 6.55× 10−3

6 geophone 3 0.942426 2.19× 10−6 0.937827 4.60× 10−3

7 solar panel 3,4 0.942426 1.45× 10−6 0.939547 2.88× 10−3

8 solar panel 1 0.942425 8.31× 10−7 0.940781 1.64× 10−3

9 geophone 2 0.942424 2.34× 10−7 0.942048 3.77× 10−4

10 red light 1,2,3
audible signal 1,2,3

0.942424 1.04× 10−7 0.942242 1.82× 10−4

11 solar panel 2 0.942424 3.51× 10−8 0.942359 6.50× 10−5

12 radar 2 0.942424 8.16× 10−9 0.942405 1.91× 10−5
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5.7 Summary

We propose a framework to quantify the reliability of AS for natural hazards based on

BN, accounting for both technical failures and the inherent system ability. The reliability

is expressed in terms of POD and PFA. To find a warning strategy that offers an optimal

trade-off between these two, we define the system effectiveness as a function of POD and

PFA as a measure of risk reduction. The optimal warning strategy is the one maximizing

the system effectiveness. We show that by enhancing the BN to a DG, one is able to

automatically identify an optimal warning strategy for systems with multiple sensors,

where the decision on whether or not to issue an alarm is based on a combination of

signals from all these sensors. By implementing the framework for a debris flow AS, we

are able to demonstrate the applicability and usefulness of the framework in Chapter 4

for real AS installed in practice.
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Preonzo Case Study

In this chapter, results of the Preonzo case study, in which the reliability and effectiveness

of a rockfall warning system (RWS) before and during a past rockfall event on May 15,

2012 in Preonzo has been assessed, are presented. Through a hypothetical predictive

analysis, we investigate the influence of human decision-making and the number of

sensors on the system effectiveness and the intervention cost. A comprehensive version

of this chapter has been published as (Sättele et al., accepted,b).

The reliability of the Preonzo RWS is expressed as the probability of the timely set-up

of an evacuation before the event (POD) and addresses both the technical and the in-

herent reliability of the RWS (see Chapter 4). In this case study, we did not address the

PFA because automated warnings are sent to experts whose compliance should not be

decreased due to frequent false alarm. For the Preonzo RWS, the technical and inherent

reliability are analyzed separately for the detachment phase and the acceleration phase.

In the detachment phase, the EWS is fully automated and the reliability assessed fol-

lowing part I of the framework approach. Here, the RWS constantly monitors velocity

patterns of the unstable rock mass to send warning information instantaneously if pre-

defined thresholds are exceeded. Higher-magnitude rock slope failures characteristically

evolve over long periods of time, typically weeks to several years, until a critical path of

detachment is developed. Failure slopes show early signs of deformations, such as ten-

sion cracks, movements and increasing rockfall activity (Hungr and Evans, 2004). This

progressive failure includes daily fluctuations and depends on temperature, rain, snow

melt and long-term stress-strain behavior of slopes which control fracture propagation.
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Rainfall, earthquake and snow melting, weathering and aging can be important triggers

or driving factors that weaken the rock mass during the first phase (Lacasse et al., 2008).

In the detachment phase, the technical reliability remains constant and can be modeled

with BN. The inherent reliability in the detachment phase depends preliminarily on the

warning thresholds, the measured sensor data and their positioning in the field. All

these aspects can also be modeled in the BN.

In the acceleration phase, the non-automated part of the RWS is assessed as described

in part II of the framework. In this phase, the final failure occurs after an acceleration

in which rock bridges are destroyed, often preceded by sub-critical fracture propaga-

tion and stress corrosion, especially in brittle rock mass (Petley et al., 2005b,a; Petley

and Petley, 2006). To forecast the event time and execute appropriate intervention

measures, experts analyze sensor data and apply models. The time of failure can be

forecasted using measured velocity data (Fukuzono, 1990). Figure 6.1 illustrates how

the inverse velocity (1/v) is plotted against time in a linear 1/v model to obtain an event

forecast (Saito, 1969; Hashimoto et al., 1982). In the acceleration phase, the technical

reliability of the system is no longer constant, but decreases over time, because sensors

reach their mechanical limits or are likely to be destroyed by environmental impacts.

Additionally, power support and communication lines may be interrupted on purpose to

prevent additional consequences in case of a direct hit. Thus, the power supply of the

RWS becomes less reliable close to the event. We propose to address these increasing

failure probabilities of technical failures through inhomogeneous Poisson processes. The

inherent reliability in the acceleration phase addresses the ability of the RWS and the

decision-makers to set up an evacuation before the event. The forecast ability depends

on the ability of the 1/v model to forecast the event time and on the risk tolerance

of the decision-maker. To assess the inherent reliability achieved with the RWS, event

forecasts are calculated and summarized graphically.

The effectiveness of EWS is a function of the achieved risk reduction (Eq. 4.8). RWS

reduce the risk primarily by decreasing the exposure probability peij of persons and

mobile objects i in a hazard scenario j (see Eq. 4.9). Accurate forecasts necessary

to generate timely information are still a major challenge for the foreseeable future.

Finding the trade-off between an early and safe evacuation and cost caused by unneces-

sary intervention measures remains crucial for experts and decision-makers. To support
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Figure 6.1: Sketch of a 1/v Model: to predict the event date of brittle rock slope
failure based on a measured kinematic time series.

decision-makers in designing an optimal RWS, the effectiveness and the cost of alterna-

tive measures are quantified here and compared in a hypothetical predictive Monte-Carlo

analysis.

6.1 The Preonzo Rockslide Warning System

Since decades, an unstable rock mass is reported, which potentially threatens the com-

munity of Preonzo (Switzerland). Since the eighteenth century, several slope failures

occurred (Willenberg et al., 2009; Loew et al., 2012). Here, we investigate the latest

event, which took place on May 15, 2012. The entire spring period of 2012 was charac-

terized by unusually high displacement rates. At the beginning of May, local authorities

were informed of critical displacements from the geologist operating the warning system.

Immediately, a crisis team was established comprising local authorities, safety officers

and geologists operating the RWS. After several days of heavy rainfall, the velocity of

the rock mass increased significantly and on May 6, the crisis team evacuated people

from the underlying factories and closed the nearest road. On May 8, the rain stopped,

the velocity decreased and intervention measures were discontinued to avoid loss and

business interruption. On May 12, the velocity increased again and a second evacuation

was initiated. In the early morning of May 15, approximately 3× 105 m3 detached from

the rock face. Fortunately, the rock mass stopped on the slope and did not harm any

infrastructures or persons.
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Between 1999 and May 2012, a RWS was installed at the Preonzo site (6.2). The

system was operated and maintained by local geologists, who are in charge of natural

hazards management in the Canton Ticino. From 1999 onwards, five extensometers were

continuously measuring the rock movements to detect accelerations and to automatically

generate warning information. To increase the system reliability, an automated total

station with fourteen reflectors was set up in summer 2010 (Loew et al., 2012). The

configuration of the Preonzo RWS can be described with three units for monitoring,

data interpretation and information dissemination.

2 2

11 1

12
11

Monitoring

data logger1

computer2

diagnostic system

mobile network1

internet2

evacuation

power network

solar panel and battery 

experts

models

extensometers1 

total station2

wire

data server

webcam

Interpretation

Dissemination

Other components

operation plans

11

Figure 6.2: System Sketch of the Preonzo Warning System: illustrates the partly
automated procedures and components, based on pixmaps c©2015 swisstopo (5704 000

000).

The monitoring unit incorporated two sensor technologies. In the tension crack of the

northern section, five extensometers monitored the displacement (Figure 6.3a). The

extensometer measurements (every 15 - 60 minutes) were controlled by a remote data

logger. Sensors and logger communicated via protected cable connections. The power

supply was provided by a battery, recharged by a solar panel. In addition to the exten-

someters, an automated total station measured the relative distance to fourteen reflectors

at the front face of the slope (Figure 6.3b). The total station in the valley was connected

to a computer that initiated regular measurements every twenty minutes. The power
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was provided by the power network and the system was located in a heated cabin, which

was built on a concrete foundation to avoid movements.

Figure 6.3: Monitoring Technologies of the Preonzo Warning System: a) positioning
of the five extensometers in the tension cracks and b) fourteen reflectors in the front
face which were regularly recorded by an automated total station (underlying picture

by Valenti).

The data interpretation unit included two main decision levels; one in the displacement

and one in the acceleration phase. In the detachment phase, warnings were automatically

generated if predefined warning thresholds were exceeded; in the acceleration phase, the

crisis team analyzed the data to decide on intervention measures. To generate auto-

mated warning information, three threshold levels were defined for each extensometer

in the tension crack (1 mm/d, 3 mm/h and 5 mm/h) and one threshold for the total

station (50 mm/d). The threshold for the total station was higher, because measured

displacements were generally higher at the front face. Whenever a threshold for an

extensometer was exceeded, the remote data logger issued warning information via the

mobile network to the geologists. Independently, the computer connected to the total

station in the valley issued a warning if the threshold was exceeded. While data from

the remote data logger was transmitted via mobile network, data from the total sta-

tion was sent via cable connection. Whenever the system operators received automated

warning information, they analyzed sensor data to decide on further activities. All data

was collected, processed and visualized on a central server and the event date was fore-

casted by the application of the 1/v model. The final decision about an evacuation was

made within the crisis team and was based on the calculated forecasts. The RWS was

equipped with a diagnostic system, which observed the availability of individual sensors,
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the status of the remote batteries and the availability of the mobile network at regular

intervals. Consequently, system failures could be detected intermediately to implement

alternative temporary risk mitigation measures.

The information dissemination unit of the Preonzo RWS consisted of intervention plans,

which summarized mitigation measures and responsibilities. The intervention was planned

and coordinated by the crisis team to protect the underlying factories and roads. The

evacuation of the factories could be initiated through an activation of acoustic signals

and was led by the police, who were responsible of closing the underlying roads.

6.2 Quantifying the Reliability of the Preonzo Warning

System

This section describes the reliability analysis of the RWS installed before and during the

event in 2012, considering both the technical and the inherent reliability. The reliability

analysis is presented separately for the detachment and the acceleration phase. In each

phase, factors that determine the system reliability are described, selected methods used

to assess the reliability are presented and the main results are summarized.

6.2.1 Technical Reliability during the Detachment Phase

Accurate automated warning information to system operators can only be generated if

technical system components work properly. In Preonzo, the RWS is equipped with a

diagnosis system that sends information when system components fail. In this situation,

experts are warned and should assess the situation on-site. Due to this fail-safe system

configuration, technical failures of the RWS will not lead to events being missed. Never-

theless, to avoid high costs due to unnecessary interventions because of frequent alarms,

the technical reliability is relevant and should be maximized. The BN to model the

technical reliability of the Preonzo RWS consists of two different types of nodes (Figure

6.4).
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Figure 6.4: Bayesian Network for the Preonzo Warning System: to model the tech-
nical reliability in the detachment phase. The monitoring unit incorporates five exten-
someters and fourteen reflectors; and the data interpretation includes components to

initiate and transfer warnings.

Grey nodes represent the causal chain from measured sensor data to the warning pro-

vided to system operators. White nodes in the BN specify the failure probabilities of sys-

tem components and were adapted from the results of the Illgraben case study (see Chap-

ter 5). They are estimated for individual components as Pr(F (t)) ∼ 5×10−4/day. Only

the failure probability of the mobile network is significantly higher, at 1.2 × 10−2/day,

according to a study conducted by the Swiss Federal Office for Civil Protection (FOCP,

2013a).

The analysis shows that the technical reliability achieved with the Preonzo RWS is

high, due to multiple and redundant sensor units. The system is equipped with two

sensor technologies that both incorporate redundant sensors. The limiting factor for the

technical reliability is the availability of the mobile network, which is not redundant.

This results in a technical system failure probability of Pr(F (t)) = 1−1.2×10−2 = 0.988.

6.2.2 Inherent Reliability during the Detachment Phase

The inherent reliability of the RWS is its ability to interpret the measured sensor data,

to distinguish between noise and hazard and to inform system operators before the event

occurs. In the detachment phase, the relation between the POD and PFA is determined

by the predefined warning threshold. To achieve a large POD, thresholds for the Preonzo
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RWS are set low by design. However, the warning thresholds are high enough to avoid

perpetual false alarms due to displacement rates that arise from daily fluctuations, e.g.,

due to temperature changes. Existing movement records summarize the displacement

rates measured by the extensometers and the total station between August 2010 and

May 2012. Dilatations measured by extensometers positioned in the northern section

are higher (extensometers 3-5) than those measured by similar sensors in the southern

section (Figure 6.5). A few hours before the event, extensometers 4 and 5 reach their

technical limits and fail. The reflectors show similar displacement characteristics as the

extensometers (Figure 6.6). Reflectors 1-7 and 9 are mounted in the northern sector and

show large displacement rates. The remaining reflectors (7, 11-14) are installed in the

southern section and do not indicate any discernable acceleration. Reflector 10 failed

already in summer 2011.

Figure 6.5: Displacements Measured by Extensometers: in the tension cracks between
August 2010 and May 2012. Extensometers positioned in the northern section (3-5)

indicate higher acceleration before the event.

In Figure 6.7, the sensor data measured by extensometer 5 from January to May 2012

is compared to the lowest warning level. The lowest warning threshold (1 mm/d) is

regularly exceeded by those sensors installed in the northern section from the beginning

of March onwards. Starting in early April, the warning threshold is constantly exceeded
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Figure 6.6: Displacements Measured by Reflectors: at the front face of the slope
between August 2010 and May 2012. Reflectors positioned in the northern section (1-7,

9) indicate acceleration before the event.

and system operators start to analyze the sensor data at more frequent intervals, inde-

pendent of automated warning information. The two upper thresholds (3 mm/h and 5

mm/h) are reached several days before the event occurs. Other extensometers in the

northern section show similar results. The only warning level defined for the reflectors

(50 mm/d) is also exceeded before the event by those reflectors installed in the northern

section.

The influence of warning thresholds on the system reliability can be modeled within the

BN, by making the conditional probability of the nodes event indicated dependent on

the threshold. Such an approach was followed for the Illgraben analysis (see Chapter 4).

However, in the detachment phase, a low threshold can be generally chosen, which leads

to a POD that is essentially one. This is because the effect of false alarms is less relevant

in this phase, as the warning information is sent to system operators and not to endan-

gered persons directly. System operators should be interested in receiving information

of every unexceptional displacement. In combination with the fail-safe configuration of

the technical system components, the overall probability of identifying an event in the
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Figure 6.7: Velocities Exceed Thresholds of Extensometer 5: velocities temporarily
exceed the lowest warning threshold in March and then constantly from beginning of

April.

detachment phase is very close to one. The large reliability of the Preonzo RWS also

leads to a number of false alarms to system operators that is reasonably small.

6.2.3 Technical Reliability during the Acceleration Phase

In the acceleration phase, geologists analyze the sensor data to forecast the event time

and support the crisis team in planning appropriate intervention measures. The techni-

cal reliability in the acceleration phase influences the RWS’s ability to support the crisis

team in creating an accurate event forecast. The forecast of the event time depends

directly on the availability and quality of the measured sensor data. Power interrup-

tions due to safety reasons or sensor failures due to large movements in the surrounding

area occur more frequently close to the event. The effect of increasing system failure

probabilities on the forecast accuracy should therefore be considered in technical relia-

bility analyses of RWS. In the northern section of the Preonzo rock face, the majority of

sensors fail in the hours before the event (Figure 6.8). Three out of five extensometers

and all reflectors positioned in the fast-moving slope are destroyed.

To quantify the accelerating destruction of sensors in Preonzo before the event in 2012, a

function describing the probability of failure is fitted to the observed number of sensors

that failed in the northern section (extensometer 1-5; reflectors 1-6 and 8, 9, 10). The

failure probability Pf for ∆t days to the event in Preonzo is modeled as:

Pf (∆t) = pbasic + pend × exp(−b×∆t) (6.1)
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Figure 6.8: Increasing Failure Rates of Sensors: shortly before the event on May 15,
2012 many sensors are destroyed due to the fast-moving slope.

The basic failure probability of technical system components pbasic is 5.0×10−4 (Section

6.2.1). To obtain values for pend and b, a likelihood function describing the observed

number of failures is established. The probability of nF failures out of n sensors on a

given day is described by a binomial distribution as:

Pr(NF = nF ) =

(
n

nF

){
Pf (∆t)nF × [1− Pf (∆t)]n−nF ]

}
(6.2)

The parameters b and pend are found by maximizing the log-likelihood function, which

is defined as:

lnL(pend, b) =

44∑
t=1

lnPr(NF = nF (t)|Pend, b) (6.3)

nF (t) are the observed failures on forty-four days before the event. By maximizing

Equation 6.3, maximum likelihood estimates for pend and b are calculated as pend = 0.689

and b = 0.510. In Figure 6.9, the percentage of sensors that failed in the northern section

and the calculated failure probabilities using Equation 6.1 for days 1-44 before the event

are summarized.

6.2.4 Inherent Reliability during the Acceleration Phase

The inherent reliability in the acceleration phase is a function of the available sensor

data, the accuracy of the 1/v model and the expert’s ability to forecast the event based

on this data. The decision about an evacuation depends on their risk tolerance. Due

to the dependence on the available sensor data, the inherent reliability is related to the

technical reliability of the RWS. An increasing number of sensor failures can reduce

the forecast ability. To assess the inherent reliability of the Preonzo system, we apply
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Figure 6.9: Modeled and Observed Failures: in the acceleration phase, an increasing
number of sensors fail just before the event. The bars (left axis) show the observed
percentage of sensors that fail; the line (right axis) depicts the failure probabilities

according to Eq. 6.1.

a linear 1/v model using measured sensor data to obtain event forecasts. The inverse

velocity at time t is calculated as following:

1

v(t)
= a+ b× t (6.4)

a and b are modeled parameters and t is the time expressed in days. To avoid large

scatter generated by small velocity values deteriorating the accuracy of the forecast, the

parameters are fitted to the measured velocity rather than to its inverse. Specifically, a

least-squares fit of a and b to measured values of v(t) is carried out through the following

relationship:

v(t) =
1

a+ b× t
(6.5)

Figure 6.10a illustrates the velocities measured by extensometer 1 in the ten days before

May 14 and the model fit. To obtain a forecast of the event time, the inverse velocities

(1/v) are calculated according to Equation 6.4 for dates t in the future. The event date

forecasted with the 1/v model is the day where the inverse velocity (1/v) cuts the x-axis.

In Figure 6.10b, the inverse velocity corresponding to Figure 6.10a is shown. On May
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14, the forecast of the event with extensometer 1 is made for May 16, one day later than

the event actually happened.

Figure 6.10: Application of 1/v Model: a) velocity recorded by extensometer 1 from
May 4 to May 14 and fitted function; b) 1/v versus time using data from extensometer
1. On May 14, the 1/v model forecasts the event to occur on May 16, which is one day

later than the observed event.

Following the approach illustrated above for extensometer 1 and data available before

May 15, event forecasts were made for every sensor and each day between April 1 and

May 14. Figure 6.11a, displays the forecasted event dates using data of different sensors

installed in the northern section as a function of the date on which the prediction is

made. In April, the forecasts made by different sensors vary significantly, but they

become more aligned by the end of April. In this final phase, the predictions based

on extensometer data show larger scatter than those based on reflector data. On May

14, the majority of sensors provide velocity data that indicated a hazardous event for

the next day. Extensometer 1 and 2 are located further south, where the measured

displacements are less significant. They forecast the event with a delay of one day.

Nevertheless, ten out of twelve sensors lead to an accurate event forecast.

The inherent reliability in the acceleration phase depends on the risk tolerance of the

decision-makers. To understand the human impact on the inherent reliability, the fore-

casted number of days to the event is plotted for days between April 1 and May 14

(Figure 6.11b) for all relevant sensors. There are several days in April on which some

sensors forecast the event for the following day. Here, different experts may come to
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different conclusions and decisions. In May, the forecasts vary less and the influence of

human decision-making becomes less important. It can be assumed that even decision-

makers with different risk tolerances would come to the same decision in this period

(which is the one that was actually taken by the crisis team in Preonzo).

6.3 Hypothetical Analysis: Optimizing Warning Systems

Based on a hypothetical analysis, the effect of those parameters that influence the re-

liability of the Preonzo RWS is investigated. To this end, the number of sensors as well

as the decision criteria for the evacuation of buildings and closure of roads (hereafter

denoted as evacuation criteria) are modified. Such analysis will allow the evaluation of

the effectiveness and the cost of varying system configurations in the design phase and

will answer questions, such as: would a RWS with less redundant sensor technologies

deliver a similar probability of detection? And to what degree does the human risk

tolerance influence the reliability and intervention cost of the RWS?

To compare the effectiveness and the cost for varying designs of the Preonzo RWS, the

POD achieved with the system and the expected cost arising from the intervention me-

asures are estimated in a hypothetical analysis. Since the actual decision on intervention

measures is based on expert assessments, which can include more information than only

sensor data, the analysis is simplified and likely to under-estimate the true capacities

of the RWS. To assess the effect of the number of initially installed sensors on the re-

liability, it is varied between five and fifty in the hypothetical analysis. To investigate

the effect of human decision-making, we specify two decision-makers with different risk

types. They are associated with different evacuation criteria (Table 6.1). A technical

evacuation criterion determines the minimum numbers of sensors that must be avail-

able for a forecast. Whenever fewer sensors are functioning, the crisis team initiates an

evacuation and the closure of the road. The inherent evacuation criterion defines the

minimum percentage of sensors that must forecast a hazardous event for the next day

in order to initiate an evacuation and road closure.

With a Monte Carlo (MC) analysis, we estimate the POD and intervention cost for the

specified risk types and modified numbers of initial sensors. In the MC analysis, the

investigated Preonzo rockfall event is randomized, as is the response of the individual
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Figure 6.11: Forecasted Event Dates: a) calculated with the 1/v model for the sensors
in the northern section on every day between April 1 and May 14; b) forecasted number
of days to the event calculated with the 1/v model for sensors in the northern section

on every day between April 1 and May 14.
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Table 6.1: Evacuation Criteria: used to define risk types.

risk type technical evacuation
criterion

inherent evacuation
criterion

conservative less risk tolerant
decision-maker

fewer than six sen-
sors are functioning

20% of the sensors forecast
the event for the next day

cowboy more risk tolerant
decision-maker

fewer than three sen-
sors are functioning

50% of the sensors forecast
the event for the next day

sensors. We use nS = 10′000 random realizations (run) of the process. For each run

if and when evacuations would be initiated is checked, based on the technical and the

inherent evacuation criteria. In each run, the number of functioning sensors for all

days between April 1 and May 14 is simulated and compared to the minimal required

number to investigate whether the technical evaluation criterion is fulfilled. The number

of functioning sensors on each day is simulated based on a binomial distribution (Eq.

6.1) with parameters determined following Section 6.2.1.

To assess whether the inherent evacuation criteria is fulfilled, the percentage of simulated

positive event forecasts for the next day is compared to the specified percentage. The

number of available event forecasts on each day depends on the remaining number of

sensors. The forecasts for the group of sensors are modeled by a probability distribution,

wherein no distinction is made between individual sensors (i.e. they are considered as

statistically independent and identically distributed). To obtain probability distributions

for forecasts on each day between April 1 and May 14, lognormal distributions are fitted

to sensor forecasts calculated for extensometers 1-5 and reflectors 1-5, 8 and 9 (Figure

6.11b). Figure 6.12 shows the empirical and the fitted CDF of the forecasted days to

event calculated on April 18 and May 14. The fitted distributions are applied in the MC

analysis to randomly generate forecasts for each day. The percentage of sensors that

forecast an event for the next day is calculated and compared to the percentage defined

by the inherent evacuation criterion.

Intervention cost arises whenever an evacuation is initiated. This cost is primarily caused

through interruptions of business processes in the subjacent factories and are estimated

as 100,000 CHF/ day based on the information of local experts. If the technical evac-

uation criterion is fulfilled, a five-day evacuation is necessary to install a replacement
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Figure 6.12: Forecast with Group of Sensors: the empirical (observed) and the fitted
cumulative probability distribution function (CDF) of the forecasted days to the event
for the group of sensors. The observed sensor forecasts are those shown in Figure 12b;
a) on April 18 the probability of an event on the next day is estimated as 0.034 and for
an event in five days as 0.43; b) on May 14, the probability of an event to occur within

the next day is estimated as 0.65 and for the second day 0.99.

system. In this time, a temporary monitoring system (e.g. interferometric radar) must

be installed to decide if the access for installation to the area is safe. The total cost of

intervention is estimated as 800,000 CHF, whereof 500,000 CHF is due to the five days

of evacuation and the remaining 300,000 CHF is the investment cost for the replace-

ment system, including the cost of temporary monitoring measures. To not complicate

the analysis, we do not separate the individual costs to different stakeholders. If the

inherent evacuation criterion is fulfilled, an evacuation for two days is initiated and the

corresponding cost is 200,000 CHF. In this analysis, the POD is the probability that the

evacuation and road closure are in place on May 15, the day of the actual event.

Figure 6.13a displays the POD calculated for the different risk types as a function

of the number of initially installed sensors. For the conservative decision-maker, the

POD is close to one, only slightly depending on the number of sensors. The more risk-

tolerant decision-maker cowboy achieves a POD between 0.65 and 0.85 which reaches its

minimum at eleven sensors. Fig. 6.13b displays the expected intervention cost calculated

for both risk types as a function of the initially installed sensors. As expected, the

conservative decision-maker creates a higher expected intervention cost, especially with

a small number of initial sensors. In this case, large costs for evacuation and replacement
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systems are generated. With a highly redundant sensor unit (around thirty sensors), the

expected cost for the conservative decision-maker reaches its minimum at 400,000 CHF.

The expected cost for intervention incurred by the more risk-tolerant cowboy reaches

minimal costs (215,000 CHF) at twenty. For a larger number of sensors, the expected

cost increases slightly up to a maximum of 236,000 CHF. It is pointed out that this

sum does not include the cost for installing the initial sensors. In a comprehensive cost

analysis, one should also include the acquisition cost of the RWS, which increases with

a rising number of sensors, to determine the optimal number of sensors.

Figure 6.13: POD and Intervention Costs Achieved with Different System Designs:
a) the POD as a function of the decision-maker and the number of initially installed
sensors; b) the expected cost for intervention (evacuation, road closure) as a function

of the decision-maker and the number of initially installed sensors.

The intervention on the day of the event, May 15, either occurred because the event

was correctly forecasted (inherent reliability) or because the failure of multiple sensors

triggered an intervention (technical failures). In Figures 6.14 and 6.15, the PODs and

expected intervention cost obtained with the inherent evacuation criterion and the tech-

nical evacuation criterion are shown individually for both risk types. To this end, both

evacuation criteria are checked on each day, independent of whether or not the other

criterion is already fulfilled and an evacuation may already be in place. For this reason,

the sum of the two individual PODs may be larger than one. The quality of the inherent

forecasts during the time of reinstalling the system after technical failures may be poor,

since only a few sensors are left during that period. If no more sensors are available one
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day before the event occurred, zero forecasts can be made and the POD associated with

the inherent evacuation criteria becomes zero.

The POD achieved because of technical failures decreases with an increasing number

of initial sensors (Figure 6.14). Evacuations due to an insufficient number of sensors

are less likely to occur when the decision-maker is the cowboy. For the conservative

decision-maker, an interesting peak is formed around seven sensors. For a minimal

numbers of sensors (5-6) an evacuation because of technical failures is low, because the

RWS was already substituted before the event. For 7-9 sensors, the probability that the

system fails during the event is maximal and so is the POD achieved with the technical

evacuation criterion. The POD because of an accurate event forecast increases with the

increasing number of sensors and is close to one for RWS with at least twenty sensors for

the conservative decision-maker. The POD achieved by the more risk-tolerant cowboy is

never exceeding the POD reached by the conservative decision-maker and never exceeds

0.84.

Figure 6.14: POD for Inherent and Technical Evacuation Criteria: individually shown
for both risk types.

In Figure 6.15, the expected intervention cost created through the inherent and technical

evacuation criteria are separately illustrated for both risk types. The expected cost,

in accordance with the technical evacuation criterion, decreases when the number of

initial sensors increases, because system failures become less likely. In particular, the

conservative risk type generates immense costs with a small number of sensors. The
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expected intervention cost generated by event forecasts becomes constant for more than

ten sensors and is higher for the conservative decision-maker.

Figure 6.15: Cost for Inherent and Technical Evacuation Criteria: expected interven-
tion costs are individually shown for both risk types.

To understand how the intervention cost arises, the probability of an evacuation being

mandated due to sensor forecasts (inherent evacuation criterion) is illustrated in Figure

6.16 for the last forty-four days before the event, with ten sensors (a) and thirty sensors

(b). The cowboy would evacuate on three days with a significant probability, namely on

days 8, 9 and 1 before the event. When comparing 6.16a with 6.16b, it is clear that the

forecast accuracy increases with more sensors. The probability of the cowboy proposing

an evacuation due to sensor signals on the day of the event is 0.59 with ten sensors and

0.76 with thirty sensors. The probability of wrongly initiating an evacuation on days 8

and 9 stays between 0.37 and 0.35 when increasing the number of sensors from ten to

thirty. The same tendencies are observed for the conservative decision-makers, whose

evacuation probabilities are significantly higher. With thirty sensors instead of ten, the

POD increases from 0.91 to 0.99.

6.4 Summary

The reliability of RWS should be quantified for the displacement and acceleration phase.

The reliability analysis confirms that the Preonzo rockfall warning system (RWS), as it
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Figure 6.16: Probability of Evacuation: due to sensors forecasts (inherent evacuation
criteria) calculated for ten (a) and thirty (b) initial sensors and different risk types for

forty-four days before the event.

was installed to detect the event in May 2012, was highly reliable. We showed that with

BN one can assess the RWS’s ability to generate automated warnings in the detachment

phase. A highly reliable system includes redundant and multiple sensor technologies, an

area-wide sensor positioning, low warning thresholds in combination with a diagnostic

system. In the acceleration phase, a maximal probability of evacuation on the day of the

event is achieved with a sufficient number of sensors and conservative decision-makers.

Both factors have a considerable effect on the system effectiveness and on the related

intervention cost. The effect of human decision-making is here modeled with rule-driven

decision criteria.

119





Chapter 7

Guideline for Practitioners

In practice, decision-makers have to identify optimal risk mitigation measures to re-

duce the risk imposed by natural hazards to an acceptable level. Whenever EWS are

a potential mitigation measure, their reliability and effectiveness have to be analyzed

and optimized before they can be compared to alternative mitigation measures. To

support practitioners in the evaluation of EWS, major findings of the thesis have been

summarized in a guideline (Sättele and Bründl, in print) published in German, French

and Italian. The guideline supports experts in the field of natural hazards employed

by authorities, engineering offices and private companies in developing and operating

reliable EWS. The focus of the guideline is set on site-specific AS and WS installed for

gravitationally driven alpine processes, namely flash floods, debris flow, snow avalanche,

small-magnitude rockfalls to high-magnitude rockfalls and other slope failures. It con-

sists of an introduction followed by three main parts: A - Theoretical Background, B -

Decision Tools, C - EWS Examples, which are briefly introduced in the following.

7.1 Theoretical Background

The first part summarizes knowledge and provides the theoretical background. First,

natural hazard process types, their monitoring possibilities and associated EWS classes

are introduced (see Chapter 2). Second, a structured overview of components for differ-

ent EWS classes is provided. The overview includes components in three main units of an

EWS (monitoring, interpretation and a dissemination unit) in addition to components
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for power supply, system diagnostic tools and operation plans. Finally, the reliability

and factors that have a major influence on the reliability of EWS are discussed for each

system unit.

7.2 Decision Tools

In the second part, a decision graph and checklists are provided to support decision-

makers in identifying, developing and operating optimal EWS.

The decision graph is a valuable tool for an integrative planning procedure of mitigation

measures, whenever an EWS is a potential measures for a specific problem. The decision

graph enables the decision-maker to evaluate if an EWS is an appropriate mitigation

measure for a specific case and if so, which system type is practicable (Figure 7.1).

Compared to the framework approach presented in Chapter 3, the evaluation of EWS and

comparison to alternative mitigation measures are highly simplified in this qualitative

approach. Such a simplified consideration does not replace a detailed cost-effectiveness

analysis, but it enables a rough evaluation on the applicability of EWS.

In addition, two checklists summarize questions that are relevant for the assessment and

comparison of the reliability achieved with different EWS configurations from competi-

tive suppliers. Questions are selected to ensure that practitioners do not overlook major

factors that influence the reliability and effectiveness of EWS that could be identified in

the case studies (see Chapter 5 and 6).

7.3 System Examples

In the last section, six active EWS operated in Switzerland for a GLOF, a debris flow,

snow avalanche, small-magnitude rockfall, a mid-magnitude rockslide and a deep-seated

landslide are presented. Similar descriptions of EWS are presented in Chapter 2.4. For

each EWS, the underlying natural hazard process, its frequency, the potential dam-

age and the available lead time are explained. System relevant information such as

the duration of the installation, the decision criteria for the choice of a certain EWS

class, reliability related experiences with EWS, associated costs and contact persons are
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Figure 7.1: Decision Graph EWS: supports decision-makers in planning interven-
tion measures and identifying the appropriate EWS class, modified from (Sättele and

Bründl, in print).

provided. Each EWS, its components and dependencies among them are graphically

illustrated in system sketches and described in detail.

7.4 Summary

The guideline is a simplified version of the framework approach enabling the evaluation

of EWS. It includes basic knowledge on EWS, on possible evaluation criteria, such as the

reliability and effectiveness ,and summarizes those factors that have a major influence

on their performance. With convenient qualitative decision-tools, practitioners without

a statistical background are supported in the development and operation of reliable and

cost-effective EWS.
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Chapter 8

Discussion

In the following, results presented in the last chapters are evaluated with respect to

predefined objectives and goals. New contributions to existing knowledge, possible gen-

eralizations and practical implications, as well as shortcoming and future needs, are

discussed separately for each objective and the overall goal.

8.1 Classification

Objective I - Development and verification of a generic classification for EWS as the

basis for a structured evaluation of EWS.

8.1.1 Development of a Generic Classification for EWS

A novel classification, which distinguishes between AS, WS and FS is provided. Fol-

lowing Glantz (2004) and Schmidt (2002), the classification does not include monitoring

systems as a standalone EWS class, but as a fix part of EWS, which consists of three

main units for monitoring, data interpretation and information dissemination. The

classes are selected based on existing definitions and proposals for classifications but

also account for the needs of the present thesis. To enable a structured evaluation of

EWS, different degrees of automation are defined for each EWS class. As suggested by

Bell et al. (2010), fully automated, threshold-based EWS are classified as AS. Partly

automated WS and FS are further distinguished by their degree of automation.
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8.1.2 Verification of a Generic Classification for EWS

The applicability of the novel classification is demonstrated by assigning it to modern

EWS operated worldwide. During that assignment, one main shortcoming could be

revealed. The differentiation between partly automated WS and FS is often less clear

compared to the differentiation with fully automated AS. Nevertheless, a unique assign-

ment to a class is possible for the vast majority of EWS as demonstrated in Chapter 2,

where WS and FS use different decision-instances (thresholds vs. human) and spatial

scales (local vs. regional). The assignment to existing EWS, moreover, demonstrated

that one EWS can include several sub-system classes. For example, modern severe

weather EWS use thresholds to generate automated alarm information directly to per-

sons at risk (AS) and provide daily bulletins in which danger levels are assigned to specify

the probability of hazardous processes on a regional scale (FS). This multi-class EWS

assignment does not limit the applicability of the classification to EWS, but enables a

more specific evaluation of EWS in the framework approach. To support researchers

and practitioners in structured development, management and assessment of EWS, this

novel classification should be established in the field of EWS.

8.1.3 Basis for a Structured Evaluation of EWS

The novel classification enables a structured consideration of all factors that influence

the reliability and effectiveness of different EWS classes. The reliability of AS depends

on thresholds and the technical functionality of the automated system components. The

reliability of partly automated WS depends additionally on the ability of models and

humans to forecast events. These model based human decisions are the only decision-

instance used in FS. The classification is, moreover, used in the framework approach for

a structured evaluation of EWS.
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8.2 Case Studies

Objective II - Quantification and optimization of the reliability and the effectiveness

achieved with EWS in two detailed case studies to identify class-specific needs.

8.2.1 Reliability Analysis of Alarm Systems

In the Illgraben case study, a BN is constructed to quantify the reliability of a fully

automated debris flow AS in terms of POD and PFA as a function of the thresholds set

for all sensors. The flexibility of the BN made it straightforward to assess not only the

ability of the system to distinguish between hazard and noise (inherent reliability), but

also to address potential technical failures of system components (technical reliability).

By extending the BN to an influence diagram, an effective way to identify the optimal

warning strategy with multiple sensors, i.e., the determination of the optimal combina-

tion of signal thresholds at the individual sensors, was identified. The Illgraben case

study demonstrates that the inherent reliability has a significantly higher influence on

the AS performance than technical failures of components. Thresholds, the type and

number of sensors and their positioning in the field should be a central part of every

reliability analysis for AS. The POD achieved with individual sensors and thresholds

varies significantly and should be maximal. The associated PFA should be minimal and

can be reduced when thresholds from different senors are combined as decision criteria

for a warning. The evaluation of the inherent reliability was based on measured sensor

data recorded for a great amount (forty-four) of past events. Such a detailed database is

not always available in the planning phase of EWS. In those cases, experts have to esti-

mate threshold exceeding probabilities and use existing records from similar sites. The

technical reliability of the Illgraben AS is high due to redundancies and an integrated

diagnosis system. A sensitivity analysis showed that the majority of the individual

technical components have little impact on the reliability, with the exception of the

non-redundant communication system and the most important sensors. The case study

demonstrated difficulties that are associated with the estimation of failure rates arising

from external factors. While internal failure rates can often be derived from MTTF or

MTBF values specified by the suppliers, external failure rates have to be estimated by

experts or derived from repair records.
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8.2.2 Reliability Analysis of Warning Systems

The comprehensive reliability analysis of the Preonzo WS before and during a major

rockslide in May, 2012 demonstrates the importance of assessing the reliability of WS

for automated and non-automated parts individually. The reliability of the automated

WS depends on the technical and inherent reliability and can in some cases be expressed

as POD alone. The effect of false alarms (PFA) can be ignored, if warnings are sent to

WS operators, who want to receive timely information on precursors, such as increased

displacement rates, before major rockfall events. Thresholds of WS are set low to achieve

a maximal inherent POD and thus, the influence of the threshold is less crucial and can be

neglected in the reliability analysis of automated WS. In common with the Illgraben case

study, the technical reliability of the automated part is modeled in a BN. The technical

reliability here is also high due to redundant sensor units and a diagnosis system. The

reliability analysis of the non-automated part is conducted to assess the ability of models

and humans to forecast the event time. By applying the inverse velocity model to data

recorded before the 2012 event, reliable forecasts could only be made from sensors located

very close to the release area. This case study and past events, such as in Vajont, show

that the model accuracy can vary strongly depending on the rock characteristics and

should be evaluated case-specifically through a reliability analysis. The Preonzo case

study, moreover, demonstrates that a high number of sensors and a low-risk tolerance of

human decision-makers lead to a high POD. To assess the influence of human decision-

making, the behavior of the experts are replicated through simple, rule-driven decisions,

specified in evacuation criteria. Such an approach is novel, facilitates the quantitative

assessment of expert-driven WS and could also be used to describe human-decision in

FS. Presently, it is unknown if precursory information and lead time are sufficient for

the prediction of all mid-magnitude failure types since data is derived from a restricted

data set.

8.2.3 Effectiveness Analysis of Alarm Systems

In the Illgraben case study, it is demonstrated that the effectiveness of AS can, under

some conditions, be quantified as a function of POD and PFA alone. In the Illgraben, the

exposure probability of persons to hazardous events is reduced through timely informa-

tion (Dai et al., 2002; SafeLand, 2012). To quantify the reduced exposure probability,
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both positive effects and negative consequences associated with EWS are considered.

While an increased POD directly decreases the exposure probability, the PFA accounts

for the negative effect on the compliance with warnings due to false alarms, as sug-

gested by Pate-Cornéll (1986); Schröter et al. (2008); Rogers and Tsirkunov (2010).

The Illgraben case study demonstrated that the effect of false alarms on the compliance

probability is hardly quantified in existing studies and should be investigated in future

case studies for different scenarios. Negative effects on the compliance with warnings

associated with lead times that are too short are not relevant in the Illgraben analysis,

although recommended by Pate-Cornéll (1986). Here, lead times are long enough and

enable endangered persons in the catchment to escape from dangerous debris flow events.

Nevertheless, such an additional evaluation is relevant for the effectiveness evaluation

of certain other AS, e.g., those installed to stop trains with long braking distances from

entering rail sections affected by a landslide.

8.2.4 Effectiveness Analysis of Warning Systems

For Preonzo, the effectiveness of the WS is measured in terms of POD alone, because

endangered persons typically comply with well-organized evacuations conducted in the

underlying factories. Instead, intervention costs, which include the PFA, are compared

with the achieved POD. This consideration is relevant for WS, where intervention costs

can become very large when several or long evacuations are set up during extended

lead times. This is particularly relevant when WS are designed as fail-safe systems and

evacuations are set up more frequently to prevent damage as soon as the system fails.

A hypothetical analysis demonstrated that the POD increases with increasing number

of sensors and for risk-conservative decision-makers. These less risk -tolerant decision-

makers will create larger costs for intervention with a small number of sensors, but

achieve acceptable costs with a highly redundant sensor configuration. These additional

considerations are valuable for the evaluation of WS and thus, cost-effectiveness analyses

should be conducted in the planning phase of the WS.
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8.3 Framework Approach

Objective III - Development of a novel framework approach for the evaluation of EWS

that is generically applicable to different EWS classes.

8.3.1 Development of a Novel Framework Approach

For the first time, a framework approach enables the quantification of the effectiveness

achieved with EWS. The framework is a valuable tool for decision-makers to evaluate

EWS, to compare EWS to alternative mitigation measures and to identify optimal risk

mitigation strategies. It comprises three main parts to quantify the effectiveness from

the reliability of the EWS. To account for needs associated with different EWS classes

two different reliability analyses are provided.

The reliability of AS and the automated part of WS and FS is expressed in terms of POD

and PFA in the first analysis. For this consideration, a tailored method is developed, in

which the inherent and technical reliability are probabilistically modeled with a six-step

BN. In published reliability analyses, the technical and the inherent reliability have not

been evaluated together for EWS. The new method is presented in three slightly adapted

versions to account for needs associated with different EWS classes. Critical steps are the

evaluation of the probability that measured sensor signals exceed thresholds, conditional

on the occurrence of an event and the definition of component failure probabilities (see

Chapter 8.2.1). In addition, it should be noted that the BN can get very large when the

reliability of sensor networks is modeled.

The reliability of the non-automated part of WS and FS is also measured in terms of POD

and PFA, for a fixed lead time ∆t in the second reliability analysis. This simplification

is necessary because the reliability typically increases when the lead time decreases, see

Grasso et al. (2007) and Schröter et al. (2008). This is particularly relevant to WS and

FS installed for processes that evolve slowly, such as floods or high-magnitude rockfalls,

which provide lead times in the range of days and are associated with large changes

of reliability. To obtain the reliability as a function of the lead time, the reliability

analysis needs to be performed for different lead times. In contrast to the first reliability

analysis, a tailored method is not provided, but factors that influence the technical and

the inherent reliability are summarized in five steps. To develop a more comprehensive
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framework, a tailored method considering of, among other factors, human decision-

making and the prediction ability of models should be provided in the future.

The effectiveness of an EWS is equal to the risk reduction achieved with the EWS and

quantified from the reliability, following existing approaches published by Margreth and

Romang (2010) and Balbi et al. (2014). In the novel framework approach, the exposure

probability of persons and mobile objects is reduced through timely information gener-

ated by the EWS (Dai et al., 2002; SafeLand, 2012). For some EWS, e.g., in the case of

earthquake AS, the vulnerability is reduced by slowing down trains in endangered areas

(Einstein and Sousa, 2006). Such cases are not explicitly included in the framework,

but should be assessed in future case studies to be added to the framework approach.

To account for both positive and negative consequences associated with EWS, the effec-

tiveness is modeled as a function of the POD and the probability that persons comply

with the warning (POC). The POC depends on a basic compliance rate and reduction

factors associated with PFA and the lead time. The probability of compliance with

warnings depends on human decision-making and is complex to estimate. In the future,

studies need to be conducted to be able to quantify the basic compliance rate and both

reduction factors necessary for the effectiveness evaluation.

8.3.2 Applicability on all EWS Classes

The novel framework approach delivers an accurate basis for the evaluation of all kinds

of EWS. Together with the classification and due to its high flexibility, it is extendable

to cover all future needs associated with EWS. Even for EWS, which comprise the

functionalities of several EWS classes, all sub-systems can be evaluated in either both or

one part of the reliability analysis in a structured manner to quantify the effectiveness.

The framework is designed in a way that it can be easily adapted to future needs that

may come along with different EWS classes. To this end, steps in each of the three parts

can be added or skipped.
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8.4 Synoptic Discussion

With this thesis, an important basis for the evaluation of complex and often human-

centered EWS is provided. For the first time, the effectiveness and reliability of EWS is

evaluated in a generically applicable , comprehensive framework approach. In published

literature, either single EWS are investigated in detailed case studies or rather superfi-

cial approaches for the evolution of EWS are presented. Besides this novel framework

approach, major results are provided in a simplified form as a guideline for practitioners.

In the framework, the effectiveness is measured as a function of the reliability, which is

quantified in two parts. Two reliability analyses are necessary to enable a structured

evaluation of different EWS classes. The novel classification is a valuable basis enabling

a straightforward selection of the right kind of reliability analysis. To establish this

classification in the field of natural hazard risk management, it must be accepted, applied

and published by others. To increase the attention and demonstrate associated benefits,

this classification will be published together with the novel framework in conference and

journal papers, which will be proactively provided to risk managers and other stakeholder

of EWS.

To provide a convenient framework approach, a simplified binary evaluation of the re-

liability in terms of POD and PFA is chosen in both reliability analyses. In this binary

evaluation, the system ability in distinguishing between hazard and noise, but not its

ability to correctly predict the real extent of the event, is assessed. If an AS, for example,

detects the occurrence of an avalanche correctly, this is classified as a hit regardless of

whether the avalanche reaches the road section underneath. A more detailed evaluation

of the reliability should assess this ability of the EWS to predict the real extent, such as

the severity or the run-out distance of the hazard events, as recommended Grasso et al.

(2007) and SafeLand (2012). Such a detailed consideration would be especially valuable

for WS and FS. In Preonzo, the WS was, for example, able to correctly predict the

event timing, but not the affected area. In retrospect, the evacuation was not necessary

because the rockslide did not reach the underlying factories. Although a more detailed

reliability analysis would increase the quality of the reliability analysis, it would also re-

quire a more complex effectiveness analysis; at least when the effectiveness is calculated

as a function of the reliability.
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The effectiveness of EWS is derived from the reliability and accounts for both posi-

tive effects and negative consequences that are associated with EWS. In the presented

framework approach, it is extensively illustrated how POD and PFA can be used to cal-

culate the risk reduction. The effect of the lead time on the effectiveness is only sparsely

explained and should be further investigated in future research works. To enable the

demonstration of a comprehensible framework, assumptions are made. The effectiveness

calculation is, for example, limited to one scenario and elements at risk with the same

probability of exposures. In the future, a more detailed effectiveness analysis, in which

different scenarios and exposure probabilities are presented, should be conducted and

included in the framework approach. Moreover, the effectiveness evaluation is based on

the assumption that EWS reduce the exposure probability in a scenario and not for EWS

that reduce the vulnerability (Einstein and Sousa, 2006), such as earthquake AS, which

reduce the vulnerability in rail traffic by slowing down the trains. In such a case, POD

could be used to determine the degree to which the vulnerability is reduced through

timely detection. Finally, the Preonzo case study demonstrated the need to evaluate

and optimize the effectiveness of EWS with respect to cost, such as the acquisition and

intervention cost of the EWS. In such a comprehensive cost-effectiveness analysis, risk

mitigation strategies can be compared and the optimal strategy can be identified.

To increase the applicability of the framework approach for all EWS classes, a tailored

method should be provided for the second reliability analysis. Hereby, additional case

studies assessing the inherent and technical reliability of the non-automated part of

WS and FS should be conducted. This method should cover, among other factors, the

influence of the model accuracy and of human decision-making on the system reliability,

and express the reliability in terms of POD and PFA. In published case studies, the

accuracy of different models used for tornado and flood warning is expressed as POD

and PFA for past events (Simmons and Sutter, 2009; Liechti et al., 2013). However, the

POD and PFA achieved with different models on varying sites are hardly summarized

in published literature and should be further investigated. Similarly, the ability of

humans to make accurate decisions should be quantified. When decision-making can

be described by certain decision rules, different risk types can be specified through

evacuation criteria (see Chapter 6). However, in most cases, human decision-making

is complex and evaluation methods have to address psychological factors, such as risk-

tolerance, experiences and group dynamics. The current trend towards an increased
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automation of EWS, e.g., within Meteo FS, where forecasters are supported with warning

proposals (Reichert, 2010; Neal et al., 2013), will reduce the influence of humans and

increase the influence of models in reliability analyses for EWS. But as long as models

cannot replace the additional value gained through expert knowledge and experience,

human decision-making has to be considered as an integral element of WS and FS.

Finally, the user-friendliness of the framework approach could be strongly improved by

the introduction of a software tool. This software tool comprises the same three parts

as the framework approach, enabling the quantification of the effectiveness from the

reliability. It could, moreover, provide optimization possibilities for EWS and account

for the life-cycle costs associated with different system designs. In this optimization, the

costs that are caused by false alarms should be considered. To identify necessary steps

and input parameters for each step, the user has to specify the class and case-specific

requirements of the EWS, such as the endangered persons and the minimal required

lead time. In the first part, the reliability of automated EWS could be modeled in an

underlying BN that is computed in the six steps. To implement the second reliability

analysis in the software tool, a comprehensive method accounting for all factors, such

as the model accuracy and complex human decision-making, should be developed. In

this method, the reliability should be expressed as a measure of POD and PFA for

a fixed lead time, so that results of both reliability analyses can be merged and the

effectiveness can be calculated as a function of the reliability and the lead time. Finally,

this software tool could be embedded in a software environment in which EWS can

be compared to alternative measures of an integrated risk management approach. For

example, in Switzerland, the tool EconoMe currently enables the comparison of varying

mitigation measures expect of EWS (Bründl, 2012) and should be enhanced to provide

a comprehensive selection of optimal risk mitigation strategies.
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Conclusion and Outlook

9.1 Conclusion

In this thesis, a novel, comprehensive framework approach for the evaluation of EWS is

developed. This framework will support decision-makers in evaluating and optimizing

the effectiveness and the reliability achieved with EWS. For the first time, EWS be-

come comparable to alternative risk mitigation measures, and optimal risk mitigation

strategies can be identified.

The novel framework approach enables a structured evaluation of EWS. It includes two

parts to analyze the reliability as a basis for the last part, in which the effectiveness

is quantified. Dependent on the degree of automation, different reliability analyses

need to be conducted for an EWS. To specify different degrees of automation, a novel

classification for EWS into alarm systems (AS), warning systems (WS) and forecasting

system (FS) is developed and verified by a successful application to modern, active EWS.

In the framework approach, reliability is calculated in predefined steps and expressed

in terms of POD and PFA. The effectiveness is the risk reduction due to the EWS

and can be calculated as a function of the POD and the PFA, i.e., the reliability. In

this evaluation, both positive effects and negative consequences associated with EWS

are considered. To develop such as framework approach, two detailed case studies are

conducted. In these case studies, the reliability and effectiveness of an AS and a WS are

assessed and optimized to identify class-specific factors with a major influence on the

effectiveness, and to develop methods for the evaluation of EWS. The reliability of the
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automated debris flow AS Illgraben is modeled in a Bayesian network (BN) and depends

significantly on the sensor technology (including the number, the positioning and the

type of sensors), the predefined thresholds and the failure probability of components and

their dependencies among each other. The reliability achieved in the automated part

of the Preonzo rockfall WS is also modeled in a BN and can, under most instances, be

expressed as POD alone, because false alarms should not reduce the willingness of system

operators to comply with warnings. The reliability evaluation in the non-automated part

is complex and has to consider, among other factors, the accuracy of models and human

decision-making.

Together, the classification and the framework approach enable a structured evaluation

of EWS operated worldwide and provide a basis that is flexible enough to cover all needs

associated with future developments in the field of EWS.

9.2 Outlook

In the future, two main areas should be further developed to improve the applicability

and benefits of the framework approach.

First, the framework approach should be enhanced with a method enabling the quantifi-

cation of the reliability achieved with non-automated EWS parts. Such a method should

consider all major factors that influence the reliability, such as human decision-making

and the model accuracy that increases when the lead time decreases. The method

should express the reliability in terms of POD and PFA. Moreover, it should consider

both the inherent and technical reliability. The technical reliability is less relevant for

non-automated parts, but should be considered because the availability of sensors de-

termines the quality of the database and of the associated model accuracy. Although

a trend towards increased automation of decision procedures can be observed, human

decision-making should, besides the model accuracy, be a central part for the assessment

of the inherent reliability.

A second major area of future works should aim at the development of a software tool

that enables a convenient evaluation of the reliability and effectiveness achieved with

EWS. The software tool can be developed following the steps defined in the three parts

of the framework approach. The reliability for automated system parts of EWS could
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be assessed with a BN in the background. The user would have to specify the class

of EWS and those parameters that influence the reliability of the system. This would

include the system components, their estimated failure probabilities, redundancies and

dependencies, thresholds and probabilities that those thresholds are exceeded given an

event or not. The software could also provide the opportunity to identify the optimal

decision criteria of an EWS. In this case, the user would have to assign costs for false

alarms, misses, hits and correct detections. To develop a comprehensive software tool,

results gained in work area one, the method enabling the quantification of automated

parts, would have to be translated in the same software environment. Such a software

tool would support decision-makers in quantifying and optimizing the effectiveness of

EWS to compare them with alternative measures of an integrated risk management

approach and to identify optimal risk reduction strategies.
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Einzelne rechtliche Aspekte, Baurechtliche Blätter: bbl, 11, 89–101, 2008.

Heil, B., Petzold, I., Romang, H., and Hess, J.: The common information platform for

natural hazards in Switzerland, Natural Hazards, 70, 1673–1687, 2014.

HEPEX: Operational HEPS systems around the globe, Hydrologic

Ensemble Prediction Experiment, URL http://hepex.irstea.fr/

operational-heps-systems-around-the-globe/, last accessed: December 2014,

2013.

Hess, J. and Schmidt, F.: Towards optimised early warning developments in Switzerland,

in: 12th conference INTERPRAEVENT 2012, 2012.

Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database

1972–2007, Natural Hazards and Earth System Science, 9, 913–925, 2009.

Hincks, T. K., Komorowski, J.-C., Sparks, S. R., and Aspinall, W. P.: Retrospective

analysis of uncertain eruption precursors at La Soufrière volcano, Guadeloupe, 1975–

77: volcanic hazard assessment using a Bayesian Belief Network approach, Journal of

Applied Volcanology, 3, 1–26, 2014.

Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for changing

landslide activity in high mountains?, Earth Surface Processes and Landforms, 37,

77–91, 2012.

Hungr, O. and Evans, S.: The occurrence and classification of massive rock slope failure,

Felsbau, 22, 16–23, 2004.

IEEE: Std1413.1-2002 Guide for Selecting and Using reliability Prediction based on 1413,

The Institute of Electrical and Electronics Engineers, Inc., 2002.

IEEE: Std 1413-2010 - Standard Framework for Reliability Prediction of Hardware, The

Institute of Electrical and Electronics Engineers, Inc., 2010.

Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N.: Design and implementation

of a landslide early warning system, Engineering Geology, 147, 124–136, 2012.

Intrieri, E., Gigli, G., Casagli, N., and Nadim, F.: Brief communication ”Landslide

Early Warning System: toolbox and general concepts”, Natural Hazards and Earth

System Sciences, vol. 13, pp. 85–90, 2013.

145

http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/


Bibliography

IRV: Durchschnittlicher Anteil der Ursachen an der Schadenhöhe im Zeitraum 2004
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