FAKULTAT FUR INFORMATIK
DER TECHNISCHEN UNIVERSITAT MUNCHEN

Lehrstuhl fur Sicherheit in der Informatik

Data-only Malware

Sebastian Wolfgang Vogl

Vollstandiger Abdruck der von der Fakultat fiir Informatik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Uwe Baumgarten
Priifer der Dissertation:
1. Univ.-Prof. Dr. Claudia Eckert

2. Univ.-Prof. Dr. Thorsten Holz,
Ruhr-Universitdt Bochum

Die Dissertation wurde am 09.02.2015 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultat fiir Informatik am 02.07.2015 angenommen.

Acknowledgements

Over the past years, I have received support and encouragement from many smart and
amazing people. I want to seize this opportunity to express my sincere appreciation and
gratitude to all of them.

First and foremost, I would like to extend my thanks to my advisor and supervisor,
Prof. Dr. Claudia Eckert, for providing me with the opportunity to write this thesis and
for her outstanding mentoring during this time. Her unwavering support, continuous
encouragement, and guidance greatly helped my research and this dissertation.

Similarly, I want to thank my second advisor, Prof. Dr. Thorsten Holz, for his
assistance, valuable advice, and crucial contribution to my research, which advanced and
improved my thesis substantially.

Additionally, I am very grateful to Prof. Dr. Michael Gerndt and Prof. Dr. Jonathon
Giffin for providing me with the possibility of studying at Georgia Tech and for their
support, encouragement, and guidance throughout the process.

Next, I would like to thank my former and current colleagues at the I'T security research
groups in Munich and Bochum for the interesting discussions, the collaboration, the
support of my work, the excellent atmosphere, and the pleasant evenings: Dr. Christian
Schneider, Dr. Jonas Pfoh, Thomas Kittel, George Webster, Tamas Lengyel, Fatih
Kilic, Julian Kirsch, Robert Gawlik, and Behrad Garmany. I am also grateful to the
great people I met during my studies in Munich and in Atlanta for making studying an
unforgettable experience and expanding my horizon. Most importantly, Tobias Rohm,
Sepp Tremmel, Markus Grafl, Ferdinand Beyer, Felix Weninger, Bulli Bertolotti, Paolo
Manenti, and Peter Ligeiro. My thanks also go to the extraordinary students that
contributed to my projects: Lorenz Panny, Christian von Pentz, and Jonas Jelten.

Thanks, too, to my closest friends for always being there for me, for their general
awesomeness, and for helping me to keep my sanity: Felix Romisch, Thomas Zirngibl,
Philip Lembcke, Alexander Lehmann, Melanie Lehmann, Felix Abele, and Dominik Zaun.

Finally yet importantly, I would like to thank my family. My parents who opened
up this path for me with their unlimited support, encouragement, and love. My sister
for always looking out for her little brother. My grandparents for enriching my life,
introducing me to Bud Spencer, and helping me to put things in perspective. Ronnie
for his meticulous help with grammar and text comprehension. Family Meier for their
support, understanding, and encouragement. Anna and Markus for becoming part of my
life. And my love, Elisabeth, for being you, which is more than I ever dreamed of.

il

Abstract

Protecting the integrity of code is generally considered as one of the most effective
approaches to counteract malicious software (malware). However, the fundamental
problem with code-based detection approaches is that they rely on the false assumption
that all malware consists of executable instructions. This makes them vulnerable to
data-only malware, which, in contrast to traditional malware, does not introduce any
additional instructions into the infected system. Instead, this malware form solely relies on
the instructions that existed before its presence to perform malicious computations. For
this purpose, data-only malware employs code reuse techniques such as return-oriented
programming to combine existing instructions into a new malicious program. Due to
this approach, the malware itself will consist solely of control data, enabling it to evade
all existing code-based detection mechanisms. Despite this astonishing capability and
the obvious risks associated with it, data-only malware has not been studied in detail to
date. For this reason, the dimensions of the danger of this potential future threat remain
as yet unknown.

To remedy this shortcoming, we will in this work provide the first comprehensive study
of data-only malware. We will begin by conducting a detailed analysis of data-only
malware to determine the capabilities and limitations of this new malware form. In
the process, we will show that data-only malware is not only on a par with traditional
malware, but even surpasses it in its level of stealth and its ability to evade detection.
To demonstrate this, we will present detailed proof of concept implementations of
sophisticated data-only malware that are capable of infecting current systems in spite of
the numerous protection mechanisms that they at present employ.

Having shown that data-only malware is a serious and realistic threat, we evaluate
the effectiveness of existing defense mechanisms with regard to data-only malware in the
second part of this thesis. The goal of our analysis is hereby to determine whether there
already exist effective countermeasures against data-only malware or if this new malware
form poses an immediate danger to current systems due to the lack of such. In the course
of our analysis, we identify hook-based detection mechanisms as the only potentially
effective existing countermeasure against data-only malware. To validate this hypothesis,
we follow our initial analysis with a detailed study of current hook-based detection
mechanisms. In the process, we discover that hook-based detection mechanisms rely on
the false assumption that an attacker can only modify persistent control data in order to
install hooks. This oversight enables data-only malware to evade existing mechanisms by

targeting transient control data such as return addresses instead. To illustrate this, we
present a new hooking concept that we refer to as dynamic hooking. Instead of changing
control data directly, the key idea behind this concept is to manipulate non-control
data in such a way that it will trigger a vulnerability at runtime, which then overwrites
transient control data, resulting in the invocation of the hook. Due to this approach,
dynamic hooks are hidden within non-control data, which makes it significantly more
difficult to detect them and enables them to evade all existing hook-based detection
mechanisms.

Since our analysis of existing malware defense mechanisms yielded the result that even
hook-based defense mechanisms are unable to detect data-only malware, we will deal
with countermeasures against this malware form in the third and final part of the thesis.
For this purpose, we first introduce a virtual machine introspection-based framework for
malware detection and removal called X-TIER. X-TIER enables security applications
to inject kernel modules from the hypervisor into a running virtual machine and to
execute them securely within the guest. In the process, the modules can access any kernel
function and any kernel data structure without loss of security. In addition, the modules
can transfer arbitrary information to the hypervisor. Consequently, X-TIER effectively
enables hypervisor-based security applications to circumvent the semantic gap, which
constitutes the key problem that all security applications on the hypervisor-level face. By
combining strong security guarantees with full access to the state of the virtual machine,
our framework can provide an excellent basis for countermeasures against data-only
malware.

Based on our framework we finally present three concrete detection mechanisms for
data-only malware. Each of these mechanisms puts to use one of the inherent dependencies
of data-only malware, which we identified during our initial analysis of this malware form,
against the malware itself. This results in effective countermeasures that can, particularly
when used in combination, provide strong initial defenses against data-only malware.

vi

Zusammenfassung

Die Integritat des Systemcodes zu schiitzen, gilt allgemein als eine der effektivsten Meth-
oden um Infektionen durch Schadsoftware zu verhindern. Das fundamentale Problem
solcher codebasierten Erkennungsmethoden ist jedoch, dass sie auf der falschen Annahme
basieren, dass jede Schadsoftware aus ausfithrbaren Maschineninstruktionen besteht.
Dadurch sind derartige Erkennungsmechanismen anféllig fiir rein datenbasierte Schadsoft-
ware, die im Gegensatz zu traditioneller Schadsoftware keine zusatzlichen Instruktionen
in das System einschleust. Stattdessen, verwendet diese Schadsoftwareart zur Ausfithrung
ausschliefllich Instruktionen, die sich bereits vor der Infektion auf dem System befunden
haben. Dazu fiigt die rein datenbasierte Schadsoftware bestehende Instruktionen mit
Hilfe sogenannter Code-Reuse-Techniken wie Return-Oriented Programming zu einem
neuen Schadprogramm zusammen. Die resultierende Schadsoftware besteht dabei auss-
chliellich aus Kontrolldaten, was es ihr ermoglicht allen existierenden codebasierten
Erkennungsverfahren zu entgehen. Trotz dieser erstaunlichen Fahigkeit und dem damit
verbundenem Risiko, wurde rein datenbasierte Schadsoftware in der Forschung bisher
nur unzureichend betrachtet. Aus diesem Grund ist derzeit vollig unklar, wie grof die
Gefahr ist, die von dieser zukiinftigen Bedrohung ausgeht.

Um diesen Missstand zu beseitigen, fithren wir in dieser Arbeit die erste vollstandige
Untersuchung von rein datenbasierter Schadsoftware durch. Dazu werden wir im ersten
Teil der Arbeit eine detaillierte Analyse rein datenbasierter Schadsoftware vornehmen
und die Fahigkeiten und Limitationen dieser Schadsoftwareform ermitteln. Wir zeigen,
dass rein datenbasierte Schadsoftware traditioneller Schadsoftware in vielen Bereichen
ebenbtirtig und was ihre Tarnungsfiahigkeit und ihre Entdeckunsgvermeidung anbelangt
sogar iiberlegen ist. Um diese Tatsache zu untermauern, prasentieren wir detaillierte
Beispielimplementierung von komplexer rein datenbasierter Schadsoftware, die trotz aller
heutigen Schutzmechanismen in der Lage ist aktuelle Systeme zu infizieren.

Nachdem wir gezeigt haben, dass rein datenbasierte Schadsoftware eine reale und ernst
zu nehmende Bedrohung darstellt, evaluieren wir im zweiten Teil der Arbeit die Effek-
tivitat heutiger Erkennungsmechanismen in Bezug auf diese neue Schadsoftwareform. Das
Ziel unserer Analyse ist dabei herauszufinden, ob es bereits einen effektiven Schutzmecha-
nismus gegen rein datenbasierte Schadsoftware gibt oder ob diese neue Schadsoftwareart
eine akute Gefahr fiir heutige Systeme darstellt. In unserer Analyse stellen wir fest,
dass derzeit nur hookbasierte Erkennungsmechanismen in der Lage zu sein scheinen rein
datenbasierte Schadsoftware zu erkennen. Um diese Hypothese zu tiberpriifen, fithren

Vil

wir eine detaillierte Untersuchung dieser Erkennungsmethoden durch. Dabei zeigt sich,
dass derzeitige hookbasierte Erkennungsverfahren auf der falschen Annahme beruhen,
dass Hooks nur in persistenten Kontrolldaten platziert werden kénnen. Das fiihrt dazu,
dass rein datenbasierte Schadsoftware den bestehenden Verfahren entgehen kann, indem
sie sich transiente Kontrolldaten wie Riicksprungadressen zu Nutze macht. Um dies
zu zeigen, schlagen wir ein neues Hookingkonzept vor, das wir dynamisches Hooking
nennen. Anstatt Kontrolldaten direkt zu verandern, werden dabei normale Daten so
manipuliert, dass sie Schwachstellen aktivieren, die transiente Kontrolldaten zur Laufzeit
iiberschreiben. Dadurch wird der eigentliche Hook in normalen Daten versteckt, was
die Erkennung dynamischer Hooks deutlich schwieriger macht und es dieser Hookform
ermoglicht existierenden Erkennungsverfahren zu entgehen.

Da unsere Analyse der bestehenden Erkennungsmethoden ergeben hat, dass selbst
hookbasierte Verfahren nicht in der Lage sind rein datenbasierte Schadsoftware zu erken-
nen, beschéftigen wir uns im dritten und letzten Teil der Arbeit mit Gegenmafinahme
fiir diese neue Schadsoftwareart. Dazu prasentieren wir zunachst ein hypervisorbasiertes
Framework fiir die Erkennung und Beseitigung von Schadsoftware namens X-TIER.
Durch X-TIER erhalten Sicherheitsapplikationen die Moglichkeit Kernelmodule vom
Hypervisor in eine laufende virtuelle Maschine zu laden und diese dort sicher auszufiihren.
Die injizierten Module kénnen dabei auf jede beliebige Kernelfunktion und Kerneldaten-
struktur zuzugreifen ohne ihre Sicherheit zu gefahrden. Zusatzlich konnen die vom
Modul erhaltenen Informationen zum Hypervisor transferiert werden. Dies ermdglicht
Sicherheitsapplikationen die semantische Liicke, ein zentrales Problem aller hypervisor-
basierten Applikationen, auf Hypervisorebene zu umgehen. Da unser Framework hohe
Sicherheit mit dem vollstandigen Zugriff auf die virtuelle Maschine verbindet, bietet es
eine exzellente Basis um rein datenbasierter Schadsoftware entgegenzuwirken.

Auf unserem Framework aufbauend prasentieren wir schliellich drei konkrete Erken-
nungsmechanismen fiir rein datenbasierte Schadsoftware. Jeder dieser Mechanismen
macht sich dabei eine der wahrend unserer initialen Analyse identifizierten inharenten
Abhéngigkeiten rein datenbasierter Schadsoftware zu Nutze. Dies resultiert in effizienten
Gegenmafinahmen, die insbesondere in Kombination, einen starken initialen Schutz gegen
rein datenbasierte Schadsoftware bieten.

viil

Contents

List of Publications xiii
List of Figures XV
List of Tables Xvii
List of Listings xix
1 Introduction 1
1.1 Motivation 2
1.2 Research Questions L 4
1.3 Contribution 5
1.4 Target Platform 7
1.5 Outline. 7

2 Foundations 9
2.1 Malware 10
2.1.1 Malware Evolution 10

2.1.2 Types 12

2.1.3 Type Relationship, 14

2.1.4 Key Properties 16

215 Summary ... 26

2.2 Code Reuse e 26
2.2.1 Techniques. 26

2.2.2 Code Reuse And Turing Completeness 35

2.2.3 Code Reuse Attacks in Practice 35

2.2.4 Data-only Programs 0L 36

225 Summary 37

2.3 Virtual Machine Introspection, 37
2.3.1 Virtual Machines 38

1X

Contents

2.3.2 Concept, Capabilities, and Limitations 41
2.3.3 The Semantic Gap 44
2,34 SUMMATY 49

2.4 Malware Detection & Prevention 49
2.4.1 Protection Mechanisms 50
2.4.2 Malware Detection 52

2.5 SUMMAry 59
3 Data-only Malware 61
3.1 Fundamentals 62
3.1.1 Definition & Differentiation 62
3.1.2 Core Implementation Challenges 63
3.1.3 Infection Mechanism 64
3.1.4 Prerequisites. 66

3.2 One Shot Data-only Malware 67
3.3 Persistent Data-only Malware 69
3.3.1 Challenges 70

3.3.2 Hardware Mechanisms 74
3.3.3 Software Mechanisms 76
3.3.4 Architecture 79
3.3.5 Summary ... 82

3.4 Resident Data-Only Malware 82
3.5 Proof of Concepts & Experiments 84
3.5.1 Test Environment 84
3.5.2 File-based Infection of ELF Binaries 85
3.5.3 Persistent Kernel-Level Rootkit 91
3.5.4 Residence 96
3.5.5 Summary 97

3.6 Discussion e e e e e 97
3.6.1 Computability 98

3.6.2 Stealth 100
3.6.3 Environment Dependencies. 101
3.6.4 Encryption, Polymorphism, and Metamorphism 103
3.6.5 Summary 106

3.7 Related Work 106
3.8 Summary ... 108
4 Existing Defenses 109
4.1 Protection Mechanisms 109
4.1.1 Software-based Mechanisms 109
4.1.2 Hardware-based Mechanisms 111

4.2 Signature-based Detection L. 112

Contents

4.3 Anomaly-based Detection L. 112
4.4 Integrity-based Detection oo 113
4.4.1 File Integrity Checking 113
4.4.2 Code Integrity Checking 114
4.4.3 Control Flow Integrity (CFI) Checking 114
4.4.4 Data Integrity Checking 116
4.5 Hook-based Detection 116
4.6 Summary 117
Dynamic Hooks 119
5.1 The Problem with Current Hook Defenses 120
5.2 Approach 120
5.2.1 High-Level Overview 121
5.2.2 Suited Vulnerabilitieso 123
5.2.3 Types 123
5.2.4 Properties 124
5.2.5 Automated Path Extraction 125
5.3 Experiments 128
5.3.1 Automated Path Extraction, ... 129
5.3.2 Prototypes. 130
5.4 Discussion 137
5.4.1 Transient Control Data 137
5.4.2 Limitations Lo 138
5.5 Related Work 139
5.6 Summary 140
The X-TIER Framework 141
6.1 Goals. e 142
6.2 Assumptions & Requirements 143
6.3 System Design. 145
6.3.1 Preprocessor 146
6.3.2 Injector 148
6.3.3 Communication 152
6.4 Evaluation 154
6.4.1 Performance 155
6.4.2 Security 156
6.4.3 Example Applications 158
6.4.4 Limitations 163
6.5 Related Work o 164
6.6 Summary 167

x1

Contents

7 Countermeasures

7.1 System Defense Model
7.2 Defense Strategy
7.3 Prevention Layer
7.3.1 Rerandomization
7.3.2 Architectural Changes
7.4 Detection Layer o
7.4.1 Detecting the Underlying Code Reuse Technique
7.4.2 Detecting the Control Structure
7.4.3 Detecting the Switching Mechanism
7.4.4 Combining the Mechanisms
7.5 Containment
7.5.1 Isolation
7.5.2 Encryption
7.5.3 Security Modules
7.6 SUMMATY e

8 Conclusion
8.1 Contribution

8.2 Future Research Directions

8.3 Final Words
Acronyms

Bibliography

xii

169
170
173
173
174
176
177
177
193
203
209
209
210
210
211
211

213
214
217
219

221
225

List of Publications

Sebastian Vogl and Claudia Eckert. “Using Hardware Performance Events
for Instruction-Level Monitoring on the x86 Architecture”. In: Proceedings of
FuroSec’12, 5th European Workshop on System Security, ACM Press, 2012.

Sebastian Vogl, Fatih Kilic, Christian Schneider, and Claudia Eckert. “X-TIER:
Kernel Module Injection”. In: Proceedings of the 7th International Conference
on Network and System Security. Vol. 7873. Lecture Notes in Computer Science.
Springer, June 2013, pp. 192-206.

Sebastian Vogl, Jonas Pfoh, Thomas Kittel, and Claudia Eckert. “Persistent
Data-only Malware: Function Hooks without Code”. In: Proceedings of the 21th
Annual Network & Distributed System Security Symposium (NDSS). Feb. 2014.

Sebastian Vogl, Robert Gawlik, Behrad Garmany, Thomas Kittel, Jonas Pfoh,
Claudia Eckert, and Thorsten Holz. “Dynamic Hooks: Hiding Control Flow
Changes within Non-Control Data”. In: Proceedings of the 23rd USENIX Security
Symposium. USENIX, Aug. 2014.

Thomas Kittel, Sebastian Vogl, Tamas K. Lengyel, Jonas Pfoh, and Claudia
Eckert. “Code Validation for Modern OS Kernels”. In: 1st Workshop on Malware
Memory Forensics (MMF). Dec. 2014.

Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Sebastian
Vogl, and Aggelos Kiayias. “Scalability, Fidelity and Stealth in the DRAKVUF
Dynamic Malware Analysis System”. In: Proceedings of the 30th Annual Computer
Security Applications Conference (ACSAC). Dec. 2014.

xlil

List of Figures

2 Foundations

2.1 TypeOmalware 19
2.2 Typelmalware 19
2.3 Type2malware 20
24 Typedmalware 20
2.5 Important environment dependencies of malware 21
2.6 Layout of a ROP control structure 29
2.7 Layout of a JOP control structure 31
2.8 Signal delivery on Linux 00 33
2.9 Layered system architecture 39
2.10 The semantic gap 45

3 Data-only Malware

3.1
3.2
3.3
3.4
3.5
3.6

Overwrites in the case of code reuse techniques. 72
Architecture for persistent data-only malware 80
Schematic overview of an infected ELF file 87
The restoration control structure of our file-based infection approach . . 89
Hooking mechanism of our data-only rootkit 93
Persistent stage of our data-only rootkit 94

5 Dynamic Hooks

5.1

The audit context structure of our Linux test system 132

XV

List of Figures

6 The X-TIER Framework
6.1 The architecture of X-TIER 146
6.2 The structure of the X-Format 147
6.3 The average execution time distribution of an injected module 155
7 Countermeasures
7.1 The system defense model that we propose 171
7.2 The effects of different sliding ratios on our shadow stack 188
7.3 Relation between the CFG of a program and its stack 195

Xvi

List of Tables

2 Foundations

2.1 Overview of the code reuse techniques covered within the thesis 36
2.2 Comparison of the approaches to bridging the semantic gap 49

3 Data-only Malware

3.1 Amount of binaries providing a Turing complete gadget set on various
Linux distributions 99

4 Existing Defenses

4.1 Overview of existing detection mechanisms and their applicability to
data-only malware 118

5 Dynamic Hooks

5.1 Overview of the automated path extraction for dynamic hooks 129

6 The X-TIER Framework

6.1 The kernel modules used to evaluate X-TIER 155
6.2 X-TIER performance results 157
6.3 X-Shell performance results L. 162

Xvil

List of Tables

7 Countermeasures

7.1
7.2
7.3
7.4
7.5
7.6
7.7

xXviii

Non-architectural retired branch events on recent processors 182
Shadow stack performance results 187
Shadow stack detection results 190
Stack integrity validation performance results 198
Stack integrity validation detection results I 200
Stack integrity validation detection results IT 201
Stack switch detection results oL 207

Listings

2 Foundations

2.1 Instruction replacement I 24
2.2 Instruction replacement II 24
2.3 Instruction permutationo 25
2.4 Code transposition (before) o 25
2.5 Code transposition (after) o000 25
2.6 Common stack pivoting gadget L. 29
2.7 Dispatcher gadgeto 30

3 Data-only Malware

3.1 Ideal stack switching gadget 74
3.2 Call to strncpy assemblero 78
3.3 The _init function of ELF binaries 88

5 Dynamic Hooks

5.1 The list_del function of the Linux kernel 3.8 122
5.2 Example of an 8-byte write.o 123
5.3 The audit_free names function of our Linux test system 131
5.4 The __ptrace_unlink function of our Linux test system 134
5.5 The task credential structure of our Linux test system 134
5.6 Example output of our automated path extraction tool 136
5.7 The read system call of our Linux test system 137

XixX

Chapter

Introduction

Malicious software (malware) is without doubt one of the biggest computer security
threats today. While malware has been an issue ever since the first virus appeared in
the 1970s [70], the problem has become worse in the course of the last ten years to
such an extent that it is now on the verge of getting out of control. To verify this,
we only have to take a look at recent threat reports. For example, Check Point [121]
estimated in their security report for 2014 that malware is downloaded to a computer
in a corporate environment every 10 minutes on average. As a result, a host within a
corporate environment becomes infected every 24 hours on average in spite of security
mechanisms such as antivirus software and firewalls. Symantec [32] discovered in their
newest Internet threat report that one e-mail and one website in every 196 e-mails and 566
websites contains malware. Pandalabs [106] observed more than 160,000 new malware
samples every day in their first quarterly report 2014. They further estimated the global
infection rate of machines to be 32.77%. Almost a third of all machines on the planet
are therefore infected with malware.

One of the main reasons for this development is that the motivation behind the creation
of malware has changed drastically in the course of the last ten years. Up to the early
2000s, malware was primarily developed by individuals for research purposes or merely
as a prank. The majority of malware had no financial motivation. Instead, malware
could be seen as a form of “computer vandalism” [70]. This is amply demonstrated by
the instances of malware that appeared during this period of time. Consider the Blaster
worm [6], for example, which infected more than 100,000 systems in the year 2003. In
contrast to the malware that we see today, it operated in user space with very little in
the way of defensive mechanisms and only contained a single malicious functionality:

to launch a distributed denial of service (DDOS) attack against “windowsupdate.com”.

Such a low level of sophistication paired with destructive behavior is typical of malware
at that time.

In the following years, however, malware was discovered as a business model for cyber
criminals, as a tool for cyber espionage, and as a weapon in cyber warfare [70]. As a

C
.9
)
O
=)
O
o
-
)
c

1 Introduction

result, the focus of malware developers shifted from destruction to achieving financial,
political, or military objectives. Avoiding detection suddenly became a crucial aspect
of malware creation, because the longer the malware remains hidden, the higher the
revenue for its creators. As a consequence, the sophistication level of malware increased
rapidly. Instead of simple user space malware, we now see complex kernel space malware
such as Stuxnet, Duqu, and Flame [9] that show an increase in sophistication in the
target of their attack, the exploitation methods used to deliver them, and their ability to
evade detection. This makes the detection of malware increasingly difficult, especially as
malware developers continue to research novel attack vectors, enabling them always to
stay one-step ahead of the defenders.

1.1 Motivation

The Current Anti-Malware Situation. Malware is constantly evolving. As a result,
thousands of new malware variants appear every day [106]. For instance, Check Point’s
security report for 2014 estimated that a computer within a corporate environment
downloads an unknown malware sample every 27 minutes on average [121]. The same
report states that less than 10% of the available antivirus engines are able to detect
unknown malware. If we consider these numbers, it is no wonder that malware has
infected a third of the machines on the Internet. In fact, in light of these results, even
antivirus vendors such as Symantec go so far as to say that the antivirus in its current form
is essentially “dead” given the fact that it is unable to stop most unknown attacks [132].

The problem arises because antivirus vendors still primarily rely on signatures for
detection. That is, they merely react to malware infections. As a consequence, unknown
malware can spread until it has been analyzed and signatures have been created for it.
Naturally, this process takes quite some time. A study by Lastline Labs [166] found, for
example, that it takes in general two weeks till the detection rate for previously unknown
malware samples significantly improves. Given the number of new malware samples
appearing every day, the authors thus conclude that “AV [antivirus] isn’t dead, it just
can’t keep up” [166].

Being Proactive instead of Reactive. To solve this problem we have to move away
from reactive malware detection towards proactive malware defense. Instead of waiting
for malware developers to create ever more sophisticated malware, we have to identify
and analyze possible future threats ourselves in order to mitigate attack vectors before
they can be exploited. However, to pursue this approach it is necessary to research novel
attacks in addition to defense mechanisms. By slipping into the role of the attacker,
we can detect weaknesses in our current defenses, which will allow us to identify future
malware threats more reliably. Once identified, we can study and analyze a threat to
obtain a profound understanding of it. This will not only allow us to assess its risk
accurately, but it will also enable us to design effective countermeasures against it before

1.1 Motivation

it becomes a reality. A critical threat that is just beyond the horizon and possibly
represents the next step in malware evolution is data-only malware [62, 170].

Data-only Malware. The key property that distinguishes data-only malware from
existing malware forms is that it does not introduce any new instructions into the system
it infects. Instead, this malware form utilizes the instructions that already existed before
its presence to implement its own functionality. For this purpose, data-only malware
makes use of code reuse techniques such as return-oriented programming (ROP)! to
combine existing instruction sequences into a new program. This enables data-only
malware to circumvent one of the most crucial constraints that malware has faced so far:
it is capable of infecting a system without changing its codebase.

Code-based Detection. Up until now, one of the biggest weaknesses of malware has
been that it has always consisted of executable instructions. Consequently, no matter
how sophisticated malware was, it had to change the current codebase of a system in
order to run by either introducing new code or modifying existing instructions. Since
this requirement was inherent to all malware independent of its type, this property was
naturally predestined to be used in the detection of malware and thus formed the core of
many recent protection mechanisms that were supposed to improve the current malware
detection rate. Three prominent real world examples that reflect this development are
PatchGuard, secure boot, and supervisior mode execution prevention (SMEP), which
all try to protect the codebase of a system in order to thwart malware infections. In
addition, researchers have proposed a variety of mechanisms to validate the integrity of
code at runtime. One of the most sophisticated approaches in this direction is currently
Patagonix [87], which is capable of validating the integrity of code regions of arbitrary
binaries (including the operating system (OS) kernel) in memory. While this is, by no
means, an exhaustive list, it illustrates the fact that protecting against the introduction
or modification of code is generally considered an effective method of counteracting
malware.

Future Threat? Data-only malware was specifically designed to evade code-based
detection approaches. While this alone is a strong argument in favor of the thesis that
data-only malware is a likely next step in malware evolution, it is not the only argument
that supports this theory. Another important indicator is the field of exploitation, which
is naturally strongly intertwined with the area of malware creation and has undergone
a very similar evolution. While exploits formerly used code to achieve their goals,
this approach is in the meanwhile no longer possible owing to the introduction of the
aforementioned protection mechanisms. As a consequence, exploits nowadays primarily

rely on code reuse techniques. Malware is currently facing exactly the same problem.

With the deployment of more and more code-based detection mechanisms, it will become

'We cover ROP as well as other code reuse techniques in more detail in Section 2.2.1.2.

C
.9
)
O
=)
O
o
-
)
c

1 Introduction

increasingly harder for malware authors to implement traditional malware. At some point
in the future, malware authors will thus be forced to find an alternative to code-based
malware. Since code reuse techniques have proved to be an effective solution in the case
of exploitation, it is therefore probable that malware authors will, like exploit writers,
turn towards this technique and accordingly to data-only malware. In spite of these
facts, data-only malware has not been studied in detail to date and thus many of its
capabilities and properties remain unknown.

Summary. In this thesis, we want to explore the capabilities and limitations of data-only
malware in depth so that we can obtain a profound understanding of this possible future
threat. The goal of our research is thereby, on the one hand, to assess the threat that
data-only malware poses for current systems, a threat which remains, due to lack of
research in the field, for the most part obscure, and, on the other hand, to propose initial
defense mechanisms against this threat, should it prove dangerous. Our motivation for
this work is twofold. First, as stated above, current antivirus software still primarily
relies on reactive mechanisms for malware protection. However, this approach leaves
current systems vulnerable to unknown attacks such as data-only malware, which, as
we saw from the current threat reports, are increasing in number all the time. To solve
this problem, we must move away from solely conducting defensive research towards
conducting offensive research as well. By putting ourselves in the shoes of the attacker,
we obtain the opportunity of identifying and analyzing future threats at an early stage.
This will enable us to mitigate threats before they are exploited, which will significantly
increase the security of current systems.

Second, given this line of reasoning, the question arises as to what constitutes a likely
future threat that is worth studying. To answer this question, we briefly looked at current
defense mechanisms and established that code-based malware detection represents a very
promising approach in countering the threat of traditional malware as it uses one of the
fundamental properties of current malware in the process. Since malware developers will
naturally try to evade this detection approach, they will search for alternative ways to
implement malware. Similar to the case of exploitation, it is therefore highly likely that
they will turn towards implementing malware solely by using code reuse techniques. That
is, they will turn towards data-only malware. In spite of this fact, existing knowledge
about data-only malware can currently be described as at best rudimentary.

1.2 Research Questions

This thesis aims to address two central research questions: how much of a threat does
data-only malware pose to the security of current systems? And immediately following
from this question: how can we mitigate the threat should it prove dangerous? These
questions can be further divided into three concrete subproblems:

1.3 Contribution

(Q1) What are the capabilities and limitations of data-only malware in practice?
Since data-only malware is a novel threat that has only been researched in rudimentary
fashion so far, the initial question that must be answered is what are the actual capabilities
and limitations of this malware form. In this connection it is important to state that
data-only malware relies on code reuse to function. Consequently, the computational
ability of data-only malware always depends on the instructions that the target system
provides. Considering this constraint, the fundamental question arises whether data-only
malware can provide the same functionality and properties as traditional malware. In
other words, is data-only malware as powerful as existing malware forms and thus an
equally realistic threat?

(Q2) How effective are current countermeasures against data-only malware? Hav-
ing determined what data-only malware is capable of, the second question that arises
is how well are current systems protected against this novel threat. Clearly, if existing
defense mechanisms were already able to hinder data-only malware, the threat that
the malware form poses would be relatively small. Consequently, we have to analyze
the effectiveness of existing protection mechanisms against data-only malware. In this
context, we must also consider the evasion resistance of potential defense mechanisms to
ensure that an attacker could not simply alter her methods in order to bypass them.

(Q3) How can we protect current systems from data-only malware? From the
previous questions there naturally follows a third: how can we counteract the threat of
data-only malware should it prove realistic and dangerous? To address this problem, we
must apply the insights we obtained while researching the questions Q1 and Q2 in the
development of countermeasures. Especially interesting in this regard are the limitations
of data-only malware (Q1) as well as the lessons learned from existing defenses (Q2) and
why they failed or succeed in counteracting data-only malware.

1.3 Contribution

(C1) Detailed Analysis of Data-only Malware. We perform a detailed analysis of
data-only malware to identify the capabilities and limitations of this malware form (Q1).
To address the question whether data-only malware is an equally powerful and realistic
threat as traditional malware, we determine the key properties of traditional malware
and employ them as a basis for our analysis. We show that data-only malware is able
to achieve all of the key properties of traditional malware and surpasses it even in
some respects such as its level of stealth. In the process, we also address the problem
of computability and illustrate that data-only malware has in many cases the ability
to perform arbitrary computations in spite of its dependence on the instructions of
the target system. To provide further proof of the practicability of the approach, we
additionally present detailed proof of concept (POC) implementations of sophisticated

C
.9
)
O
=)
O
o
-
)
c

1 Introduction

data-only malware capable of infecting current systems. Finally, we identify weaknesses
of data-only malware in the form of dependencies, which can provide a basis for the
creation of countermeasures against it (Q3).

(C2) Evaluation of Existing Defenses. We conduct an analysis of existing counter-
measures and investigate their ability to hinder data-only malware (Q2). We show that
hook-based detection is currently the only protection mechanism that can counteract
data-only malware.

(C3) Presentation of a Novel Hooking Concept. We analyze the evasion resistance of
hook-based detection mechanisms to evaluate their reliability against data-only malware
(Q2). In the process, we show that current hook-based detection mechanisms are based
on the false assumption that an attacker must modify persistent control data to install
hooks. This makes these mechanisms vulnerable to evasion attacks. To illustrate this,
we present a novel hooking concept that we refer to as dynamic hooking. In contrast to
existing mechanisms, dynamic hooks exploit vulnerabilities to modify transient control
data at runtime. The hook itself thereby resides within non-control data. As a result,
there is no evident connection between the hook and the control-flow change, which not
only permits dynamic hooks to evade existing detection mechanisms, but also makes it
generally difficult to create detection mechanisms for them.

(C4) Introduction of a Framework for Malware Detection and Removal. We intro-
duce X-TIER, a framework designed to provide a secure and flexible basis for malware
detection and removal (Q3). X-TIER employs virtualization to provide strong security
guarantees. Most importantly, our framework enables security applications to remain
functional even if an attacker gains full control over the monitored system. To circumvent
the semantic gap problem, X-TIER provides the possibility of injecting kernel modules
from the hypervisor into a running virtual machine (VM) where they are then securely
executed within the untrusted guest system. Due to this approach, security applications
implemented on the basis of the X-TIER framework have access to all kernel data
structures and functions of the monitored system while they themselves remain strongly
isolated from it. By combining security with accessibility, X-TIER can support a wide
range of security applications as we demonstrate with various example applications.

(C5) Presentation of Initial Countermeasures against Data-only Malware. We
present a systematic approach to counteract the threat of data-only malware (Q3).
For this purpose, we introduce a system defense model. The main idea behind this model
is to install countermeasures on multiple defense layers within the system so that an
attacker must overcome the defenses on all layers in order to successfully compromise it.
Pursuing this “defense in depth” approach, we propose defense mechanisms on each layer
to counteract the threat of data-only malware. To ensure that the proposed mechanisms

1.4 Target Platform

cannot be easily evaded, we base our novel defense mechanisms on X-TIER (C4) as
well as on the dependencies of data-only malware that we identified in the course of
its analysis (C1/Q1). We show that this results in an effective defense network which
is capable of hindering data-only malware in many cases by presenting the extensive
experiments that we conducted to evaluate our approach.

1.4 Target Platform

In this thesis we are primarily focused on the Intel IA-32 and Intel 64 architecture, which
are also commonly referred to as x86 and x86-64 respectively. During our discussion we
will, for the sake of simplicity, use the term “x86” to refer to both the 32-bit and the
64-bit version of this architecture. On the software side, we will primarily consider the

Linux and Windows OSs, which are, without doubt, two of the most widely used OSs.

Much of what we present can, however, similarly be applied to other architectures and
OSs as well.

We will utilize virtualization as a building block for our defense mechanisms. On
the hardware side, we will thereby rely on the Intel virtualization extensions and make
use of full hardware virtualization [64], while we will use the well-known Linux KVM?
hypervisor as a software foundation. In the process, we consider the hardware as well
as the entire virtualization layer to be part of our trusted computing base. That is, we
assume the hardware as well as the hypervisor and the software it requires have been
implemented correctly without error and exactly according to their specification. We
consider attacks on the trusted computing base out of scope for this thesis. In practice,
mechanisms such as HyperCheck [172] and HyperSafe [173] can be utilized to reduce this
attack vector.

1.5 Outline

In Chapter 2 we provide the foundation for our discussion of data-only malware as well
as its countermeasures. With respect to the former, we cover background information
about traditional malware, identify its key properties, and provide an overview of code
reuse techniques since they form the basis of data-only malware. For our discussion
of countermeasures we provide an introduction to virtualization and virtual machine
introspection (VMI) and cover existing malware protection and detection mechanisms.

Based on this information, we will perform a detailed analysis of data-only malware in
Chapter 3. To identify the capabilities and limitations of this malware form, we compare
it to traditional malware and determine whether it can achieve the same key properties as
its predecessor. In addition, we provide sophisticated POC implementations of data-only
malware to illustrate the practicability of the approach.

2http:/ /www.linux-kvm.org/page/Main_Page

C
.9
)
O
=)
O
o
-
)
c

1 Introduction

Having obtained a profound understanding of data-only malware, we will, in Chapter 4,
consider existing defenses and investigate which of them are effective against data-only
malware. In the process, we consider hardware and software based protection mechanisms
as well as signature-based detection, anomaly-based detection, integrity checking, and
hook-based detection. We show that hook-based detection is currently the only effective
countermeasure against data-only malware.

To determine whether current hook-based detection approaches are also reliable, we
analyze the existing mechanisms in more detail in Chapter 5. We discuss why current
hook-based detection mechanisms are vulnerable and show how the attacker can apply
these insights to her advantage to bypass the mechanisms. To this end, we introduce at
this point a novel hooking concept, dynamic hooks, that is capable of evading existing
hook detection mechanisms.

Having assumed the viewpoint of the attacker, we then take on the role of the defender
in Chapter 6 and present our framework X-TIER with the objective of providing a secure
and flexible foundation for malware detection and removal. We begin the chapter by
stating the goals behind the creation of the framework, before explaining how, based on
its design, X-TIER achieves these goals. In addition, we provide example applications
which demonstrate that X-TIER is well suited as a basis for a wide range of security
applications.

In Chapter 7 we utilize X-TTER and our insights about data-only malware to create
countermeasures against this novel threat. For this purpose, we first propose a layered
model for system defense. We then discuss defense mechanisms against data-only malware
on each layer of the model. To show the effectiveness of the approach, we describe the
experiments that we conducted and the detection results that we obtained.

Finally, we draw a conclusion and propose future research directions in the 8th and
last chapter of the thesis.

Chapter

Foundations

In this chapter, we lay the foundation for our discussion of data-only malware. The key to
understand any novel threat is to determine in what ways it differs from the threats that
we know. Consequently, to identify the limitations and capabilities of data-only malware,
we have to compare and contrast it with traditional code-based malware. To follow
this approach, however, we require detailed background information about traditional
malware first. For this purpose, we begin this chapter with a discussion of traditional
malware and its properties.

Besides knowledge about traditional malware, another important prerequisite that
we need to fulfill for our analysis of data-only malware is an overview of code reuse
and the concepts behind it. This is due to the fact that code reuse techniques actually
provide the foundation for the implementation of data-only malware. Thus we will
follow our discussion of traditional malware by covering the most common code reuse
techniques and explaining how they work. The information obtained in the process will,
in combination with the background knowledge about traditional malware, serve as a
basis for our analysis of data-only malware in Chapter 3.

Having discussed traditional malware and code reuse, we will move on to the topic of
malware defense. In addition to providing a comprehensive understanding of data-only
malware, a main goal of this thesis is to develop initial countermeasures against this
novel threat, should it prove dangerous. Before any countermeasures can be designed,

however, we first require a secure and flexible basis that countermeasures can build upon.

A technology that seems to be predestined for this task is wvirtualization. To show this
we will introduce VMI as a key technology for malware detection and removal in the
second part of the chapter. We will employ this technology as a basis for designing
and implementing a framework for the detection and removal of data-only malware in
Chapter 6.

Finally, we will provide a detailed overview of existing defense mechanisms against
traditional malware. This information will serve as a foundation for Chapter 4, where we
will analyze the effectiveness of existing countermeasures against data-only malware.

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

2.1 Malware

To answer the question whether data-only malware is an equally realistic and powerful
threat as traditional malware, we will compare both malware forms in the course of our
analysis. For this purpose, we require a solid understanding of existing malware forms
and their properties. In this section, we will provide the reader with this information.

2.1.1 Malware Evolution

The Dark Ages (1940s-1970s). The concept of a self-replicating program was first
proposed by von Neumann in the 1940s [70, 157] and was later published in his work on
“Theory of Self-Reproducing Automata” [171]. The research conducted by von Neumann
provides the basis for the first computer virus Creeper, which spread at the beginning
of the 1970s within the ARPANET, a forerunner of today’s internet, and lead to the
development of the first anti-virus program, Reeper, designed to remove Creeper [70].
Around the same time Creeper first appeared, D. J. Edwards [4] identified an attack
where operators of a system are presented “with a program so useful that they will use
it even though it may not have been produced under their control” [4] leading to the
execution of a trap door placed into the program that could then copy user IDs and
passwords. Edwards referred to this attack as Trojan horse.

The Beginning (1980-1987). While Creeper appeared in the 1970s, the first work in
academia that provides concrete examples of self-replicating programs and their properties
was presented by Kraus in his diploma thesis “Selbstreproduktion bei Programmen” (self-
replication of programs) [77] in 1980. However, at the time the dominant term used for
computer viruses remained “self-replicating programs”. Two years later, 1982, the first
documented outbreak of a computer virus occurred in the form of Elk Cloner [70, 108].
The virus was implemented by Richard Skrenta, installed itself into the boot sectors
of floppy discs, and targeted the Apple II. In 1983 Cohen then introduced the term
computer virus [10, 70] that he later in 1984 defined as “a program that can ‘infect
other program by modifying them to include a possibly evolved copy of itself” [29]. In
the same year, Thompson then extended the work of D. J. Edwards in his well-known
article “Reflections on Trusting Trust” [160] and presented the idea of a compiler-based
Trojan horse capable of installing a backdoor in programs compiled with it. Two years
later, 1986, the Brain virus [47] was released by the two Pakistani programmers Basit
Farooq Alvi and his brother Amjad. In contrast to Elk Cloner, Brain targeted IBM
compatible machines and is thus considered as the first virus for the personal computer
(PC) and the disk operating system (DOS) [10]. Later that year, Ralf Burger! presented
the first file virus for DOS called Virdem at a Chaos Computer Club (CCC) meeting
in Hamburg that was able to infect COM executables files used by the Microsoft disk
operating system (MS-DOS) [70]. In the following year more and more viruses appeared

!Burger later also published a book on the subject called “Computer Viruses: A High-tech Disease” [17].

10

2.1 Malware

that were now capable of infecting different file types and systems [10]. Since companies
were mostly unprepared for this new threat [70], this development also led to the creation
of anti-virus software such as Vaccine, which was published by Sophos [150] in 1987.

The Rise (1988-1996). On the 2nd December 1988 Robert T. Morris released the
first worm on the ARPANET [151]. The so-called internet worm infected more than 6000
machines and led to an estimated damage of 96 million U.S. dollars [70]. While the worm
itself did not contain any malicious functions, an error in its code led to the reinfection
of already infected machines, which finally led to the exhaustion of the infected machines
resources and a crash of the system. As a consequence of the incident the U.S. Defense
Advanced Research Projects Agency (DARPA) founded the first computer emergency
response team (CERT) [43].

In the following years viruses than continued to evolve by using novel techniques and
targeting new technology developments. In 1990 the first polymorphic virus Chameleon
is created, which makes use of encryption to change its appearance. Five years later the
first macro virus for Microsoft Word appears called Concept. In 1996 the first virus for
Windows 95 is observed and one year later viruses for Linux and Office 97 appear.

The Outbreak (1996-2005). During the course of the next three years, this trend
continues and viruses, Trojans, and worms start to target more and more technologies
including Windows 98, Office, Outlook, HTML, Java, and E-Mail [70]. In addition,
Trojan horses such as Back Orifice surface, which provide their users with full control of
the infected machines. With the widespread use of the internet, the creation of classical
viruses then diminishes and malware authors start to focus on network-based viruses and
worms. This leads to large scale infections through viruses such as “ILOVEYOU” [126] or
the Code Red [96] and the Blaster [6] worms. While affecting a large number of machines,
the malware appearing at the time still had no primary malicious intent though. Instead,
the malware could be mostly considered as a prank.

The Business (2005-Present). This changed in the second half of the 2000s when
malware was no longer viewed as a technical gimmick, but rather as a tool for cyber
espionage, a weapon for cyber warfare, and a business model for cyber criminals. Due to
the latter, a new malware form referred to as bots appeared, which would not only spread,
but also provide its creator with full control over the infected machine turning it into a

zombie. In addition, malware started to hide itself within the system to avoid detection.

This trend led to a second major new malware form referred to as Rootkits [13, 58|. In
the following years, malware started to evolve faster and faster making it more and more
difficult for anti-virus vendors to keep up. Malware in virtually any language appeared
aimed at a wide variety of platforms ranging from embedded devices to server systems.

The Future (2009-Present). In 2009 Hund, Holz, and Freiling [61, 62] presented the
first data-only malware in form of a return-oriented rootkit. This work was extended by
Chen et al. [24] in 2010, who demonstrated a jump-oriented data-only rootkit. Besides
our own work, however, this remains the only work on data-only malware to date. We
are the first to study the properties, capabilities, and limitations of data-only malware as
well as its effects on current protections mechanisms. While data-only malware has not

11

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

yet been spotted in the wild, the sophistication level of recent attacks such as Stuxnet,
Duqu, and Flame [9] suggest that this malware form is just beyond the horizon.

2.1.2 Types

In practice the term wirus is often used as a synonym for malware. In fact, however,
a virus represents a specific type of malware. In the following we will introduce and
differentiate five of the most important malware classes. Namely, viruses, worms, Trojan
horses, rootkits, and bots. We will discuss the relationship between these classes and the
reasoning behind their selection in the next section of this thesis.

Virus. The computer virus is one of the oldest? types of malware, but is in its classical
form only seldom encountered nowadays [44, 70]. Similar to its medical eponym, a
computer virus is an infectious agent whose primary purpose is to replicate [13]. In
contrast to medical viruses which infect living cells, however, a computer virus replicates
by infecting other programs [29]. To do so the virus attaches itself to a program and
manipulates it in such a way that it is executed whenever the host program is launched.
In the simplest form, this can either be achieved by modifying the entry point of the
infected program such that it points to the virus instead of the host [43] or by placing the
virus at the beginning of the infected file [70]. More advanced mechanisms manipulate
the data structures or the instructions of the host to get executed [157]. Besides infecting
executables [10], computer viruses can also infect boot sectors (boot virus) and data files
(macro or data virus) such as Microsoft Word documents or pictures by making use of
macros or vulnerabilities [43].

An essential property of a virus, which can also be used to distinguish it from other
malware forms, is that it does not replicate on its own [43, 44]. Instead the replication
process must always be triggered by an external entity e.g. by a user that executes
an infected program [70]. Once triggered, however, the replication itself must then be
performed by the virus alone without relying on any external help. The replicated form
of the virus may thereby differ from the original. That is, a computer virus may mutate
during replication, which can significantly raise the bar for its detection.

Worm. Similar to a virus, a worm is an infectious agent whose main purpose is to
replicate itself. In contrast to a virus, however, a worm is self-propagating [13, 44,
158]. Consequently, it does not require an external entity that initiates the replication
process, but rather propagates on its own. This property provides worms with the
capability to infect a large number of systems in a short period of time. For instance,
have researchers shown that so-called flash worms could infect “almost all vulnerable
servers on the internet in less than thirty seconds” [154], if they apply advanced strategies

2The first research in the field of computer viruses was actually conducted by John von Neumann in the
1940s [70, 157] and was later published in his work on “Theory of self-reproducing automata” [171].

12

2.1 Malware

for identifying vulnerable hosts. An example of such a strategy could be a “hit-list” of
vulnerable hosts that is created in advance before the worm is launched and enables the
worm to quickly infect a critical mass of hosts, which can then in turn be used to infect
other systems.

Due to their similarity, it is not always straight forward to distinguish between a
virus and a worm in practice. Since worms spread on their own, they in general do not
require a host to function [43]. However, as there are worms that also infect files similar
to viruses [157] (e.g. to be able to infect systems that are not connected to the same
network), this attribute alone is not sufficient to distinguish a worm from a virus. Other
authors [10, 157] distinguish between a worm and a virus based on the fact that worms
spread over the network, while viruses usually only infect local files. This categorization
based on the propagation method, however, falls short in the case that a virus spreads
over a network drive [70].

In this thesis, we will use the infection mechanism to differentiate between a worm and
a virus. While a worm is able to automatically infect other machines using vulnerabilities
on the target system, a virus can only replicate if it is activated by an external entity.

Trojan Horse. According to Bishop [10], a Trojan horse, sometimes simply referred to
as a Trojan, is “a program with an overt (documented or known) effect and a covert
(undocumented or unexpected) effect” [10]. Consequently, a Trojan horse consists —
similar to the historical original — of two elementary parts: A visible or known part (the
wooden horse) and a hidden part (the soldiers in it). Since the user does not expect the
hidden part, she can be tricked into executing the seemingly benign program, which will
then in turn activate the hidden malicious functionality. This implies that a Trojan horse
like a virus requires an external entity to activate it (the Trojans that pull the horse into
the city). In opposition to a virus, however, a Trojan horse does not replicate.

Rootkit. In contrast to other malware forms a rootkit is not used to infect a target
system, but is rather installed once an attacker already controls the target system. The
goal is thereby to provide sustained access to an infected machine [167]. To achieve this
the rootkit tries to hide all signs of an infection such that the system seems normal to an
observer, while it is in reality controlled by an attacker. That is, the sole purpose of a
rootkit is to provide stealth.

In the simplest form, rootkits are installed by replacing important system utilities
such as ps or 1s with attacker controlled binaries. In contrast to the original binaries,
the replacements will seem to operate normally, but will hide compromising information
from the user. Each replaced program can thereby be considered as a Trojan horse that
provides the standard functionality, but contains additional hidden functionality. For
instance, may the attacker controlled version of ps not display processes with a specific
PID or name. Since such rootkits solely operate in user space, the are also referred to as
user space rootkits.

13

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

More sophisticated and a lot more dangerous are so-called kernel space rootkits, which
directly infect the kernel of the system. As a result, this type of rootkit runs at the
same privilege level as the OS allowing it to modify any part of system including the
kernel itself. This enables the rootkit to hide compromising processes and files by directly
modifying kernel data structures [152]. Due to the size and complexity of modern kernels
detecting such rootkits is a very challenging task.

Bot. Originally bots were not malicious in nature, but rather helper programs used
within chat networks such as the internet relay chat (IRC) [30]. The main purpose of a
bot in this context was to support channel administrators or to provide information and
entertainment for users. Since bots were in general able to perform predefined actions
on their own and could, for instance, react to chat messages, the term bot eventually
established as a short form of robot [59]. This capability was later then abused to create
attacking bots that in contrast to their predecessors were programmed to attack users,
channels, or servers [30]. At the time these bots were, however, in general isolated and
operated on their own. With the rise of the internet and the discovery of malware as
a business model, bots then left their original battlefield and evolved into worm-like
programs that could infect other hosts on the network. Once infected, the bot would
provide its master with full control over the host turning it into a zombie completely at
the mercy of its master. As the bot continues to spread and infects other machines, this
will provide its owner eventually with an army of zombie machines forming a so-called
botnet. Since a botnet can potentially consist of thousands of machines [59], they enable
their owners to launch powerful large scale attacks such as DDOS. In addition, bots often
rely on similar stealth techniques as rootkits to avoid detection and to maintain access
to infected machines.

2.1.3 Type Relationship

Surprisingly, defining a relationship between individual malware types is not as straight-
forward as one might think. On the one hand, this is due to the fact that there is no
clear terminology for each individual malware type in literature. Quite the contrary, the
definitions for each malware class may vary significantly from author to author. Bishop,
for instance, considers a computer virus to be a type of a Trojan horse [10], while other
authors such as Szor [157] clearly distinguish between the former and the latter.

On the other hand, the lines between the individual malware types get more and
more blurry [68]. Nowadays most malware that is encountered is usually not a pure
representative of a specific malware class, but rather a combination of different malware
types. A bot, for example, can often spread on its own like a worm, but at the same time
it uses stealth techniques formerly only found in rootkits to avoid detection. Clearly,
this malware type is therefore neither a worm nor a rootkit, but rather a combination of
both species. This raises the question whether the approach of dividing malware into
individual types is timely.

14

2.1 Malware

While classifying modern malware into types may be difficult, working with malware
types instead of concrete instances has an important advantage with regard to the
research problems we consider within this thesis: one of the key questions that we try
to answer is whether data-only malware is as powerful as traditional malware and in
which regards it is inferior or superior to its traditional counterpart. To address this
question, we must compare both malware forms. However, which malware instances
should we select for this comparison? Clearly, we cannot include each and every malware
sample into our considerations. Instead, we must select a subset of traditional malware
instances that consolidate the core properties of this malware form such that the results
of our comparison are not only valid for a few malware instances, but are meaningful
for traditional malware as a whole. Making use of malware types instead of malware
instances provides an elegant solution to this problem. As described in the beginning,
each complex malware instance can essentially be seen as a combination of classical
malware types. The complex instance thereby inherits the properties and limitations of
its base types. Consequently, by working with base types instead of individual instances,
we can include the core properties of a wide range of malware samples in our analysis
while we at the same time only have to consider a few types.

Following this idea, we now introduce a plain relationship model based on the malware
types defined in the last section. The main idea behind this model is to divide today’s
complex malware forms into base types. The quality of our model thereby heavily depends
on the base types we select. Since the model should permit conclusions for malware
in general, selecting base types that have a significant impact on the properties and
capabilities of other malware forms is crucial. While the definitions of individual malware
types vary, many authors (e.g. [10, 43, 70]) distinguish between three fundamental
malware types: viruses, worms, and Trojan horses. Each of these malware types provides
essential properties that are often found in today’s malware:

Viruses Replicate and infect other files, but require an external entity (host) to
spread.
Worms Replicate on their own using vulnerabilities.

Trojan Horse Introduce hidden functionality into benign programs.

However, a relationship model defined on these three malware types alone would be
incomplete. Besides infection strategy and hidden functionality another important aspect
of today’s malware is stealth [13, 58]. Since most widespread malware nowadays has a
financial or military motivation, the goal of the malware is not just to infect a machine,
but to do so unnoticed. Therefore rootkits, whose sole purpose is to provide stealth, must
be considered as another important malware base type.

Using these four malware types, we can define the following type relationship model:
most malware instances are derived from one or a combination of the four malware base
types virus, worm, Trojan horse, and rootkit. Consequently, to compare and contrast

15

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

traditional malware from data-only malware, it is sufficient to analyze the properties,
capabilities, and limitations of these four base types. How well the proposed model can be
applied to modern malware types can be amply demonstrated if we reconsider the example
of a bot, which is one of the most widespread malware types today [159]. A bot combines
autonomous infection with remote control functionality and stealth. Consequently, bots
“can be seen as a combination of worms, rootkits and Trojan horses” [59], which can
be expressed by the proposed model. The interested reader can find a more thorough
discussion of malware type relationship models in [69].

2.1.4 Key Properties

In the last section we introduced a type relationship model for traditional malware. In
the process, we determined that the four malware base types virus, worm, Trojan horse,
and rootkit exhibit many of the key properties of traditional malware. So far, however,
we have not discussed these properties. In this section, we will introduce the properties
that are most relevant for our discussion of data-only malware.

2.1.4.1 Infection Mechanism

One important aspect of malware is the infection mechanism that it can leverage [157].
That is, how does malware actually get onto a system. In the case of traditional malware,
we can distinguish between two basic infection mechanisms: On the one hand, malware
may be able to infect a victim through the exploitation of some vulnerability. To use this
attack vector, the target system must provide a control-low modifying vulnerability that
can be exploited by the malware to load and execute itself and the vulnerable application
must be running on the target system at the time of the infection. The exploitation of
the vulnerability can thereby occur with (e.g. rootkits) or without (e.g. worms) human
involvement.

On the other hand, the attacker can send the victim a specially crafted file and deceive
the victim into executing it (e. g., malware that spreads as email attachments). Such a
file-based infection approach is, for example, commonly used by a virus [157]. How this
infection mechanism can be realized thereby heavily depends on the format of the file
(e.g. Executable and Linkable Format (ELF)) that the malware infects.

Finally, note that we consider a file that is launched by a user and triggers a vulnerability
on the victim’s system to be a vulnerability-based infection mechanisms and not as a
file-based infection mechanism. A file-based infection mechanism does not require a
vulnerability for the loading and the execution of the malware.

2.1.4.2 In-Memory Strategy

Besides the infection mechanism, another crucial aspect of malware are the different
strategies it uses for its execution. Particularly interesting in this regard is the in-memory

16

2.1 Malware

strategy that malware forms leverage. Depending on whether the malware remains in
memory after initialization or if it removes itself directly after its initial execution, one
can thereby once more distinguish between two types of malware: direct-action malware
or (memory) persistent malware [157]. In the following we will discuss both types and
their properties in more detail.

Direct-Action Malware. In contrast to persistent malware, direct-action malware does
not permanently load itself into memory. Instead the malware is just executed once,
performs the desired action, and exits. Such attacks are executed by file-based viruses,
for instance. Once the infected file is executed, the virus looks for another file that it
can infect, executes its infection routine (given that it could identify a target), and exits.

While the effects of direct-action malware might last (e.g., the modification of a data
structure), there is no way for the malware to respond to further actions within the
system. That is, direct-action malware is incapable of intercepting events that occur

within the infected host and could, for instance, not be used to implement a key logger.

Although this effectively limits the usage scenarios for direct-action malware, this
malware type also has an important advantage. Due to the fact that this malware stores
no permanent structures within memory the detection of direct-action malware can be
difficult especially if the malware does not store any permanent data on disc either. In
this case, direct-action malware can only be detected during the short period of time of
its execution.

Persistent Malware. Malware in general needs to intercept events within the system
to be able to fulfill its purpose [116, 175]. Consider rootkits for example. Without
the capability of event interception, this malware type would be severely limited and
could not even provide basic functionality such as key logging and file hiding. Event
interception, however, requires malware to run persistently within the memory of the
infected system. Due to this fact, persistence is one of the most important properties of
malware today.

For the purpose of this thesis, we consider malware to be persistent when it makes
permanent changes in memory and permanently changes the control flow within a
system such that it can continue to achieve its objective. This characteristic allows the
malware to be aware of and react to changes in the system. The simplest example of
such functionality is replacing a function pointer with a pointer to a malicious function
that collects the data being input to the original function. We will discuss the various
possibilities that exist for malware to permanently divert the control flow in more detail
in Section 2.4.2.5.

2.1.4.3 Resident Malware

The astute reader will have noticed that the above provided definition for persistence does
not include any changes to non-volatile data storages. As a result, persistent malware

17

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

may, according to its definition, be unable to survive reboots. The reason for this apparent
lack in the definition is that we make a clear distinction between persistent malware
and resident malware. More precisely, we consider any malware that has the ability
to continue to achieve its objective without any human interaction despite a reboot or
power cycle as resident in the system and therefore as resident malware. It goes without
saying that residence is similar to persistence an essential property of malware.

2.1.4.4 Stealth Taxonomy

Having discussed fundamental properties of malware such as the infection mechanism and
the in-memory strategy, we will now move on to consider more advanced properties of
malware that may not be crucial for the execution of the malware, but are often essential
for it to be able to achieve its goals. The first property that we want to consider in this
context is stealth.

Since a primary goal of malware is to avoid detection, stealth is a crucial capability
that many malware forms strive for (e.g. rootkits). To measure the level of stealth that a
malware achieves, we will leverage a stealth malware taxonomy that was first proposed
by Rutkowska [131]. The fundamental idea behind this taxonomy is to define the level of
stealth of a malware form based on the changes it conducts to the system. As a simple
example consider malware that only changes data within the system and malware that
modifies code within the system. Clearly, the former malware type provides more stealth
than the later, since changes to code areas, which are usually static, can much easier be
detected than changes to data areas which may constantly change.

Rutkowska distinguishes between four different malware types. In the following, we
will describe each of these malware types in more detail.

Type 0 Malware. Type 0 malware is the simplest and least stealthy malware type in
the taxonomy. It is shown in Figure 2.1. In contrast to other malware types, type 0
malware does not modify other processes or the OS. Instead, the malware type runs
within a process of its own. An example of such a malware type could be a Trojan horse
that is launched by a user.

To detect this malware type we need to decide whether a given binary is malicious or
benign. While this problem is in general undecidable [29], it can be solved in many cases
in practice. Antivirus software, for instance, makes use of various mechanisms such as
signatures® to detect malicious binaries.

Type 1 Malware. Type 1 malware changes system resources that are usually constant
such as code areas. For instance, could a rootkit modify the code region of a process to
install a hook* that will trigger its execution. This approach is shown in Figure 2.2.

3We will cover signature-based detection mechanisms in more detail in Section 2.4.2.2.
4Hooks will be discussed in more detail in Section 2.4.2.5.

18

2.1 Malware

Malware
Code Data Code Data
‘ Code { Code ‘ Code Code Code
Malware
Process | Process Il e o o Process | Process Il e o o Process n

Data Data Data Data Data Data

Figure 2.1: Type 0 malware does not change Figure 2.2: Type 1 malware changes con-

i

any code or data sections but stant system resources such as
runs as an own process within code sections.
the system.

Since type 1 malware could constraint itself to solely modify system resources in
memory, it is insufficient to scan binaries on disc to detect it. Instead, the memory of the
system must be searched as well. In general, distinguishing between benign and malicious
modifications to system resources is a difficult task though. Since type 1 malware changes
constant resources, however, the problem can in this case be significantly reduced: to
detect malicious changes, it is sufficient to determine whether a constant region has been
modified. A possible approach to achieve this is to calculate a cryptographic checksum of
all constant system resources. Changes can then be detected by periodically recalculating
the checksum and comparing it to its original value. If the values differ, the resource was
changed.

Type 2 Malware. Similar to type 1 malware, type 2 malware changes resources within
the system to provide its malicious functionality. The main difference between the
two malware types is that type 2 malware only changes dynamic system resources.
Consequently, simply detecting a change is no longer sufficient to detect the malware
type. Instead, we must find a way to verify the integrity of resources that may constantly
change during normal operation such as data areas. Naturally, this is a much more
difficult problem, which is why type 2 malware is significantly harder to detect than type
1 malware. Rutkowska even goes as far as to say that the detection of this malware
type is currently in general impossible, since existing ‘systems are not designed to be
‘verifiable” [131]. An overview of type 2 malware is given in Figure 2.3.

Type 3 Malware. The last and arguable most stealthy malware type in the taxonomy
is type 3 malware. Similar to type 0 malware this malware type does not modify any
system resources, but is still able to control the entire system. To achieve this, the

(7))
c
.9
4
(3%}
me
c
=
o)
Lo

2 Foundations

Hypervisor Malware

Malware

J— P— —
‘ Code ‘ Code Code ‘ Code ’ ‘ Code Code
Process | Process Il e o o Process n Process | Process Il o o o Process n

Data Data Data ‘ Data ‘ Data Data

o

Figure 2.3: Type 2 malware. In contrast to Figure 2.4: Type 3 malware. To avoid mod-

type 1 malware, type 2 malware ifying system resources, type 3
only changes dynamic system re- malware places the entire target
sources. system into a virtual machine.

malware type makes use of virtualization®. By placing the victim’s system into a VM,
the malware can operate from the hypervisor level where it has access to the entire state
of the system and can perform arbitrary actions without the target system being aware
of its presence. This approach is shown in Figure 2.4.

To detect type 3 malware, one must detect the presence of a hypervisor from within a
guest system. While this could, for instance, be accomplished with the help of timing
attacks providing reliable detection mechanisms poses a difficult problem, since malware
authors could implement countermeasures on the hypervisor level that mitigate or disable
detection mechanisms running within the VM. After all, in this scenario the malware runs
at a higher privilege level than the guest OS making virtually any detection mechanism
vulnerable to attacks.

2.1.4.5 Environment Dependencies

In general, malware is unable to infect arbitrary systems, but rather requires a specific
software and/or hardware configuration to execute [157]. That is, malware depends on a
particular environment to run. This dependency heavily influences the characteristics
of malware. For example, malware written for the x86 architecture will not be able to
infect ARM-based devices®, since the instruction sets of both architectures significantly
differ from each other.

Environment dependencies are especially interesting for our analysis as they reflect
the limitations of a particular malware form. As a consequence, they often provide a

5We will discuss virtualization in more detail in the Section 2.3.
6Unless the malware was especially designed for both architectures and is able to generate an ARM
version of itself of course.

20

2.1 Malware

(2]
c
.9
)
)
e
c
=
o
LL

File Format, Vulnerability, Network

Application

Operating System Version

Operating System

Figure 2.5: Important environment dependencies that a malware may have. The lower
a dependency’s position within the pyramid, the higher is its complexity and
consequently the more difficult is it to resolve.

basis for countermeasures. For instance, if a malware instance requires the existence of a
particular vulnerability to infect a system, we can stop the malware from spreading by
fixing the vulnerability. In the course of our analysis, we should thus particularly focus
on identifying the dependencies of data-only malware, as they could prove invaluable in
defending against this novel threat. For this purpose, we will in this section provide an
overview of important environment dependencies that malware may have. We will then
analyze these dependencies in the context of data-only malware in Section 3.6.3.

The environment dependencies that we want to consider are shown in Figure 2.5. In
the following, we will briefly describe each of them. In the process, we will move from the
most complex dependency (Hardware) shown at the bottom of the upside-down pyramid
to the least complex dependencies (File Format, Vulnerability, Network) shown at the
top. The less complex a dependency, the easier is it to resolve. The interested reader can
find an even more exhaustive list of environment dependencies in [157].

Hardware Architecture Many malware forms require a particular hardware archi-
tecture to execute. For example, they generally depend
on a particular instruction set and a specific central pro-
cessing unit (CPU).

To resolve this dependency malware must either be able
to generate an architecture compatible version of itself

21

2 Foundations

Operating System

Operating System Version

Application

(for each supported architecture) or it must make use of
emulation to simulate a particular architecture. In the
latter case, however, at least the emulating component
must exist for each of the target architectures.

Besides the hardware architecture, most malware is de-
signed for a particular OS. This is due to the fact that
each OS exports a specific application binary interface
(ABI)7 that enables user space programs to communicate
with the OS via system calls. Since, similar to normal
programs, user space malware needs to make use of this
interface to access the hardware, it generally depends
on a specific ABI. This is even truer for malware that
resides within kernel space and makes use of the internal
functions that the OS provides.

A possible way to resolve this dependency would be if the
malware was to infect the kernel and would then provide
its own drivers to communicate with the hardware.

Especially kernel space malware may not only depend on
a particular OS, but may even depend on a particular
version of an OS. The reason for this is that internal
functions of the OS may change without notice between
different versions, since the functions are only used by the
kernel and are inaccessible from user space. Consequently,
if malware relies on a particular internal function, it may
be unable to execute if the function is updated in a new
OS version.

To reduce this problem, malware could only rely on ex-
ported functions that cannot be easily changed between
different OS releases.

Certain malware may require particular applications to
execute. Consider, for instance, a malware written in
an interpreted language such as Python. If the malware
is not natively compiled for a specific architecture, the
malware is only able to run if the required interpreter is
present on the target system.

Malware could overcome this problem by shipping the
application that the malware requires with the malicious
binary.

"We will cover the ABI in more detail in Section 2.3.1.1.

22

2.1 Malware

File Format A classical virus often depends on specific file formats
for replication. For instance, a virus may only be able
to infect Portable Executable (PE) [93] or ELF [155]
executables.
To resolve this dependency a virus must provide infection
and startup code for each executable it wants to infect.

Vulnerability Self-propagating malware may require a specific vulner-
ability on the target system to spread. For example, a
worm that uses a newly discovered vulnerability to infect
a large number of hosts on the Internet.

To reduce the dependency malware can make use of mul-
tiple infection mechanisms such as vulnerabilities, files,
and brute forcing of accounts.

Network Finally, certain malware may only able to execute if the

target system is connected to a network. For instance, a
bot may be unable to receive commands if the infected
system is not connected to the Internet. In this case, the
bot may only be able to fulfill a subset of the intended
functionality.
To resolve this dependency malware must find a way to
establish a connection even if the infected machine is not
directly connected to a network. This can for example
be achieved with radio signals [55].

2.1.4.6 Encryption, Polymorphism and Metamorphism

The last property that we want to consider is the capability of malware to evade detection.
A detection approach that is particularly interesting in this regard is signature-based
detection as it is the approach that is most commonly leveraged by antivirus software.
The basic idea behind signature-based detection is to compute a signature for each known
malware instance. Once created, the signature can then be used to identify malicious
executables by checking whether the signature matches on a given executable. The
signature thereby essential represents an unique identification pattern®. Modern malware,
however, leverages various techniques to evade the signature that has been computed for
it. In the following we will provide an overview of these techniques.

A possible way to evade signatures is to make use of encryption [10, 99, 157, 180]. By
encrypting the malware with different keys, each of the resulting ciphertexts will look
different. Consequently, it becomes quite difficult to generate an unique signature for the
malware. However, for this approach to work, the malware requires a decryption routine

8We provide a more detailed description of signature-based detection in Section 2.4.2.2.

23

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

that can decipher the encrypted malware body at runtime. While the malware body
can be encrypted, the deciphering routine must remain unencrypted. Thus instead of
computing a signature for the encrypted malware body, it is possible to create a signature
for the deciphering component. To solve this problem malware authors came up with
the idea of mutating the deciphering routine. This approach is known as polymorphic
malware [10, 99, 157, 180].

Polymorphic malware makes use of a mutation engine that allows it to change its
form. The task of the mutation engine is thereby to change the code of the malware
while keeping its original functionality intact. The most common techniques used for
this purpose are junk code insertion, instruction replacement, instruction permutation,
variable/register substitution, and code transposition. [14, 75, 125]. In the following we
will describe each of these mechanisms in more detail.

Junk Code Insertion. The main idea behind junk code insertion is to alter the ap-
pearance of code by inserting additional instructions that do not alter the logic of the
program. For instance, could a malware author first add one to a specific register and then
immediately subtract one from the same register with the next instruction. Clearly, the
value within the register would be the same after both instructions have been executed,
but the added instructions may break an existing signature for the malware.

Instruction Replacement. Another possibility to change the structure of code without
affecting its logic, is to replace existing instructions with different but equivalent instruc-
tions. As an example assume that the malware contains the following x86-64 assembler
instruction:

1 ‘ mov rax, $0x0

The purpose of this instruction is to move the value “0” into the register rax. Clearly,
this is not the only instruction that is capable of achieving this goal. Instead, a mutation
engine could, for example, substitute this instruction through one of the following
instruction blocks:

; Frist Possibility
and rax, $0x0

; Second Possibility
XOor rax, rax

; Third Possibility
or rax, $Oxffffffffffffffff
add rax, $0x1

© 0 N O U W N

In all cases the register rax will contain the value zero at the end, however, the
instructions that are used to achieve this are different each time. It goes without saying
that there exist tons of other possibilities that could be used to substitute the original
instruction stated above. The given instruction blocks are merely an example.

24

2.1 Malware

Instruction Permutation. Instead of replacing instructions, it is also possible to reorder
instructions to change the layout of the code. To use this approach, the mutation engine
can, for instance, select instruction pairs that are independent from each other and the
following instructions and can thus be swapped. Consider the following example:

1 mov rax, $0x42
2 mov rbx, $0x1337
3 add rax, rbx

In this case, the instruction in Line 1 can be exchanged with the instruction in Line 2
without altering the result of the computation.

Variable/Register Substitution. Besides replacing entire instructions the mutation
engine can also alter the registers that instructions operate on. Similarly, the location
were specific variables are stored in memory can be changed by altering the layout of the
data section of the malware and updating the instructions in the code accordingly.

Code Transposition. Similarly to permuting individual instructions, it is also possible
to reorder entire code blocks or to split code blocks in additional blocks. This is usually
achieved by inserting additional branch instructions that will ensure that the original
control flow remains intact, while the appearance of the code changes drastically. The
following pseudo code example demonstrates this approach:

Listing 2.4: Code transposition (before) Listing 2.5: Code transposition (after)
1 start: 1 3:
2 Instruction 1 2 Instruction 3
3 Instruction 2 3 JUMP 4
4 Instruction 3 4 2:
5 Instruction 4 5 Instruction 2
6 Instruction 5 6 JUMP 3
7 start:
8

JUMP 1
5:

©

Instruction 5
1:
Instruction 1
JUMP 2
4:

i e
B W N = O

Instruction 4
JUMP 5

-
ot

[un
[}

All of the above described mechanisms cannot only be applied to the binary level, but
can also be performed on a higher level such as the source code, for example. In addition,
it is also possible to substitute entire algorithms/functions within the code as long as
they produce the same result. To alter the entire decryptor, malware could, for instance,
make use of different encryption algorithms. However, while these techniques allow the
malware to create a wide range of different decryptors, the problem that remains for
polymorphic malware is that the malware body itself actually remains unchanged. From

25

(2]
c
.9
+—
)
o}
c
=
(@]
LL

2 Foundations

this it follows that a signature for the malware body will still match, once a polymorphic
malware has been decrypted, which has to happen at some point in time during the
execution of the malware. This is where metamorphic malware comes into play.

In contrast to polymorphic malware, metamorphic malware does not just mutate the
decryptor of the malware, but the entire malware including the mutation engine. Thus a
metamorphic malware can essentially be seen as a body-polymorphic malware [157]. Meta-
morphic malware in general always alters its appearance when it replicates. Consequently,
two copies of the same malware never look the same even during execution.

2.1.5 Summary

We provided a type relationship model for traditional malware that states that each
complex malware instance is derived from one or combination of four base types. Namely
these base types are Trojan horse, virus, worm, and rootkit. Based on these base types we
described the properties of traditional malware that are most interesting for our analysis.
These properties can thereby be divided into two groups: fundamental properties that
are crucial for the actual functionality of malware and advanced properties that while
not essential for its functionality are often vital for its objectives. Infection mechanism,
in-memory strategy, and residence belong to the former category. Its level of stealth, its
environment dependencies, and its ability to evade signature-based detection belong to
the latter.

2.2 Code Reuse

The fundamental idea behind data-only malware is to control the execution flow of a
system solely based on data. For this purpose the attacker introduces an especially
crafted data structure into the system that combines existing instruction sequences into
a new program and controls its execution. That is, the malware effectively assembles its
own program code by reusing the instructions that already existed before its presence.
Code reuse techniques thus provide the foundation for the creation of data-only malware.
In the following, we will provide an overview of existing code reuse techniques and explain
how they work.

2.2.1 Techniques

Code reuse techniques were originally developed as exploitation primitives to circumvent
code-based protection mechanisms. When exploiting an application the general goal of
an attacker is to execute arbitrary code. Before the existence of code-based protection
mechanisms, achieving this task was often straightforward as the attacker could simply

26

2.2 Code Reuse

place her shellcode? in an arbitrary data area and execute it from there. In his famous
article “Smashing The Stack For Fun And Profit” [3] Aleph One, for instance, places the
shellcode directly onto the stack, which was marked as writable and executable at that
time. With the introduction of protection mechanisms such as W & X (see Section 2.4.1.2
for details) this attack vector was mitigated, however, and data areas were no longer
marked as executable. As a result, attackers were forced to find a different way to execute
arbitrary code. This development led to the introduction of the first code reuse technique
in 1997 that its creator Solar Designer coined “ret2libc” (return to libc) [149].

2.2.1.1 Return to Libc (ret2libc)

The main idea behind ret2libc is to make use of the functions that are already present
within the memory of a vulnerable application instead of introducing own code. To
understand the technique, one must keep in mind that a function is essentially a reusable
piece of code that performs a deterministic action based on its arguments. By invoking a
function with attacker controlled arguments, the attacker can thus use it to perform an
action on her behalf without needing to introduce code.

To use ret2libc, an attacker must first place the arguments of the function she wants
to invoke in the foreseen register/memory locations as specified by the ABI. In the case
of a 32-bit Linux system running on the x86 architecture, for instance, the arguments
would thereby be stored on the stack in reverse order. Next, the attacker must set the

instruction pointer (IP) to the virtual address of the function that she wants to invoke.

This can, for example, be achieved by overwriting a return address on the stack. As soon
as the overwritten return address is used, the function call will occur and the desired
operation will be performed. To spawn a shell, the attacker could, for instance, make use
of system(’/bin/sh’) instead of writing her own shellcode.

A question that immediately comes to mind though is whether the functions that a

vulnerable application provides are sufficient for the actions that an attacker requires.

What is important to understand in this regard is that an attacker is generally not
restricted to the functions of the vulnerable application alone. Instead, the attacker
is able to use any function residing within the memory of the vulnerable application
including library functions. Since almost every application requires external libraries to
run, this provides the attacker with a much lager attacker surface. In case of Linux, for
instance, the attacker can make use of the entire GNU C library (libc) to accomplish the
desired task, which is why the technique is referred to as return to libc.

Due to the numerous functions contained within libraries today, ret2libc is a very
powerful technique. For instance, can the attacker allocate a new memory region that
she can mark as writable and ezxecutable, which then allows her to execute arbitrary
code on a system in spite of W @& X. This makes the technique predestined for the

9Shellcode is a general term that is used to refer to the instructions that are executed by an attacker
once she gains control over the system during the exploitation of a vulnerability. Since the attacker
usually spawns a shell in this situation, the term shellcode established.

27

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

first step during an attack. In addition, the attacker is not limited to a single function
call, but is able to chain an arbitrary number of function calls together [100]. This is
achieved by creating a control structure containing multiple function frames on the stack.
Each frame will thereby contain the address of the function to invoke as well as the
arguments to the function. By careful manipulation of the frame pointer (FP) each return
of an invoked function will load the next frame and trigger the execution of the next
function. This enables an attacker to perform sophisticated computations. In fact, given
a large enough codebase, ret2libc has even been proven to be capable of achieving Turing
completeness'® [162]. In addition, ret2libc is hard to detect in practice and is considered
as a general limitation of control flow integrity validation (CFI) mechanisms [186], since
it is in general difficult to distinguish regular function calls from function calls simulated
by an attacker.

2.2.1.2 Return-Oriented Programming (ROP)

While libraries provide a wide range of functions, they certainly do not contain a dedicated
function for every action that an attacker wants to perform. For example, it is unlikely
that a function exists that hides a process, since this functionality is obviously not needed
by a benign program. While the desired action can be achieved by combining multiple
function calls, this may be cumbersome and require a lot of space for the individual
function frames on the stack. This is why attackers came up with a second code reuse
technique referred to as return-oriented programming (ROP) [138].

The fundamental idea behind ROP is to create a new program by combining small
instruction sequences instead of entire function as in the case of ret2libc. The execution
order of these instruction sequences is once more controlled by a control data structure.
Naturally, not every instruction sequence is suited for use with ROP. To be able to use
an instruction sequence as a building block it must end with a ret instruction. Such
instruction sequences are referred to as gadgets. The property of this instruction that
makes it so useful is that it pops the top value off the stack into the IP redirecting the
control flow to the address that was on the top of the stack. By carefully constructing
the stack, it is therefore possible to execute sequences of gadgets one after another as
shown in Figure 2.6. This is achieved by placing the memory addresses of the gadgets in
the order on the stack in which they should be executed. Since every gadget ends with
a ret instruction, the final instruction of each gadget starts the execution of the next
gadget by getting its address from the stack and placing it into the IP.

To make this scheme work, the stack pointer (SP) must initially point to a control
structure containing the addresses of the individual gadgets, often called a ROP chain.
In the simplest case, this can be achieved by directly copying the ROP chain in the stack
such that the saved IP is overwritten by the address of the first gadget. However, this
may not always be possible as the available space in the stack may be limited. In such a

10We will cover Turing completeness and code reuse in more detail in Section 2.2.2 and Section 2.2.4.

28

2.2 Code Reuse

Stack Existing Code

A Pointer to Gadget

[

...; ret;

Data - ret:

Pointer to Gadget ¢
SP

Pointer to Gadget

...;ret;

Pointer to Gadget

Pointer to Gadget

Pointer to Gadget

/LN
|

Data

Pointer to Gadget ... ret;

Figure 2.6: The layout of a ROP control structure. The stack pointer (SP) functions as
program counter. The gadgets that have already been executed are shown in
grey, while gadgets that will be executed in the future are shown in light yellow.
Each gadget ends with a ret instruction. The current gadget is shown in yellow.

case, one must copy the ROP chain somewhere else in memory and point the SP to this
location. This is achieved through a stack pivot sequence.

A stack pivot sequence generally only consists of a few gadgets or, in the worst case,
only one. Setting the SP to the beginning of the ROP chain in such a scenario is a very
challenging task. Achieving this is often only possible if the attacker additionally has
control of a register or can place an additional ROP chain near the SP such that adding
or subtracting an offset from the SP is enough to activate this chain. Luckily, in the
case of an exploit the machine state is often predictable for an attacker such that these
conditions are usually met.

A popular gadget [36] that is often used as a part of a stack pivot sequence is the
following!!:

Listing 2.6: Commonly used stack pivoting gadget in ROP-based exploitation.

pop eax ; Load address of control structure into EAX
2 xchg eax, esp ; Stack Pivot
3 ret ; Start the execution of the control structure

eax just serves as an example here. Similarly, the technique could be used with any other register,

given that a gadget xchg <reg>, esp; ret; exists.

29

(72]
c
.
)
]
=
c
>3
(@]
L

2 Foundations

A prerequisite for the use of this gadget is that the address of the control structure is
either on top of the stack, placed into eax by a previous gadget, or already contained
within eax. The latter is, for example, the case when a vulnerable function returns a
pointer to a data structure that can be controlled by an attacker. Although it seems
unlikely that such a data structure address winds up in a register, it is actually a quite
common exploitation scenario which is used by techniques such as “ret2reg” (Return to
Register) [143]. Unfortunately, however, there is no universal gadget that can be used to
pivot the stack. The instruction sequence that is used to accomplish this task always
depends on the machine state at the time the exploit is triggered.

Although ROP seems to be quite limited at first glance, it has been shown that the
technique can be used to perform Turing complete computations [129]. Given a codebase
as large as libc, for example, an attacker can find many different gadgets that enable her
to build arbitrary functions by combining the individual blocks in a clever way. This
is especially true for the x86 architecture: due to the variable instruction format of
the architecture attacker can in this case not only find intended, but also unintended
gadgets [138]. However, ROP can be similarly applied to other architectures such as
280 [21], SPARC [129], PowerPC [86], and ARM [76]. The interested reader can find a
more detailed description about ROP in [129].

2.2.1.3 Jump-Oriented Programming (JOP)

ROP relies on the stack and the return instruction to function. The counteract ROP,
researchers thus presented various mechanisms that remove return instructions from code
entirely (e.g. [82]) or aim to detect ROP based on ret instructions (e.g. [23, 38, 39]). The
idea of combining small instruction sequences to perform arbitrary computations can,
however, not only be realized using return instructions. Instead, this can also be achieved
with the help of indirect jump instructions. This approach is known as jump-oriented
programming (JOP) and was first presented by Bletsch et al. [12].

In contrast to ret2libc and ROP, JOP does not leverage the SP to control the execution
of the gadgets and thus does not require the control structure to be stored on the stack.
Instead, the control structure can be located anywhere within memory. This is achieved
with the help of a so-called dispatcher gadget, which dispatches the execution of the
functional gadgets that an attacker wants to leverage. To make this scheme work, the
dispatcher gadget must be invoked at the end of every executed functional gadget. Once
invoked, the dispatcher gadget obtains the address of the next functional gadget from
the control structure and transfers execution to it. The location of the control structure
can thereby be stored within an arbitrary register.

A possible gadget that could be used as dispatcher gadget is the following:

Listing 2.7: Possible dispatcher gadget for JOP.

1 add ebp, edi ; Increase the "IP" located in EBP
2 jmp [ebp] ; Start the execution of the next gadget

30

2.2 Code Reuse

In this case the control structure is referenced by the register ebp. Whenever the
dispatcher gadget is invoked, the value of register edi is added to ebp, which will
essentially point ebp to the address of the next functional gadget within the control
structure. Once this address has been loaded, the functional gadget is invoked using an
indirect jump. The layout of a JOP control structure is shown in Figure 2.7.

While JOP does not rely on the SP and the properties of the return instruction, it
places multiple constraints on the functional gadgets. First and foremost, each functional
gadget must invoke the dispatcher gadget. This implies that the location of the dispatcher
gadget must either be stored in a specific register or must be loaded from memory by the
functional gadget. Second, the dispatcher must activate the next functional gadget. To
do so it must calculate the location of the next gadget and transfer control to it. This
operation usually requires another two registers: one register containing the location of
the control structure and one register that is used to calculate the address of the next
gadget as shown in Listing 2.7. From this it follows that JOP may require at least three
general purpose registers for execution control. These control registers must be kept in
tact during the entire execution, which implies that none of the functional gadgets can
make use of them unless it saves and restores their values. Consequently, the gadgets

Gadget Chain Existing Code

A Pointer to Gadget ¢ - - 1
——|...;Jmp <d|spal:ch>r

Data

r—>| ..y jmMp <dispatch>|L

Pointer to Gadget

Pointer to Gadget

I...;jmp <dispatch>%
Pointer to Gadget

\
Pointer to Gadget ¢ s_q ...; jmp <dispatch>

Pointer to Gadget
_.|...;jmp <dispatch>%

_,I...;jmp <dispatch>}

Data
DISPATCHER
; [...;jmp <dispatch>}
Pointer to Gadget —>|...; JMP <disp [

Figure 2.7: The layout of a JOP control structure. The gadgets that have already been
executed are shown in grey, while gadgets that will be executed in the future are
shown in light yellow. Each gadget ends with a jmp instruction that transfers
the control to the dispatcher gadget. The dispatcher in turn activates the next
gadget. The current gadget is shown in yellow.

31

(2]
c
.9
+—
)
o}
c
=
(@]
LL

2 Foundations

that can be used for JOP are much more restricted compared to the gadgets that can be
used for ROP. None the less has JOP as ROP been proven to be capable of achieving
Turing completeness [12].

2.2.1.4 Sigreturn-Oriented Programming (SROP)

Recently, Bosman and Bos presented a fourth code reuse technique that they refer to as
sigreturn-oriented programming (SROP) [15]. What is interesting about this technique
is that it is, in contrast to the other approaches, based on an OS feature instead of a
specific instruction sequence. More precisely, SROP leverages the signal handling of
UNIX-like systems (e.g. Linux) as a building block for a code reuse technique. This
demonstrates that code reuse mechanisms cannot only be based on specific hardware
instructions, but can similarly be implemented using software features. While this may
render the technique to be not applicable in general (SROP is OS dependent), it leads
to a much larger attack surface and suggests that the problem of code reuse techniques
cannot be solved entirely on the instruction level. In addition, attacks based on software
features may be much harder to detect compared to attacks relying on specific hardware
instructions. To illustrate both of these points consider ROP, for example. From the
perspective of the hardware, a return instruction should always return to the address
immediately following the last executed call instruction. This is the original purpose of
the instruction pair. Consequently, a possible detection mechanisms could verify whether
this conditions is met whenever a return instruction is executed. Such an approach
that operates on the instruction level can be very effective against hardware-based code
reuse techniques such as ROP as we will show in Section 7.4.1 where we present such
an approach. However, it is most likely powerless against software-based code reuse
attacks such as SROP, since the property that is used in this case is not residing on
a specific instruction, but rather in the logic of the software. Signal handling, which
is used by SROP, for instance, is an OS system feature provided for applications. To
distinguish malicious signals from benign signals, we would thus have to understand the
implementation logic behind the signal handler of the application. This is obviously a
much harder task than matching ret and call instructions pairs, which can generally
be accomplished without requiring in-depth knowledge of the application.

As previously mentioned, SROP abuses the signal handling of UNIX-like systems. To
understand the technique, it is therefore necessary to provide a short overview of the
signal handling mechanism found on those systems. We will use Linux as an example for
this purpose.

Signals are essentially a way to notify a process that a specific event has occurred. A
signal is, for instance, raised when an exception occurs during the execution of a process
(e.g. division by zero). Signals are, however, not directly delivered to the process itself,
but are first received by the kernel, which handles the signal delivery between processes.
To be notified of a signal, a process has to install a signal handler. This can, for instance,
be accomplished using the sigaction system call.

32

2.2 Code Reuse

User Mode Kernel Mode

Process

—:[Signal Delivery

Process | Tt
Context |] Jnvoke ©)

Return Address

Retrieve (7)
Y

© Signal Return

Trampoline

Figure 2.8: lllustration of the signal delivery process on Linux.

When a process has installed a signal handler, the kernel must invoke this handler
when the signal associated with it occurs. That is, the kernel must deliver the signal.
This is essentially a three step process [16]. First, before the signal can be delivered,
the kernel must store the current execution context of the process such that it can be
restored after the signal handler was executed. Second, the kernel must invoke the signal
handler, which is residing within user space, from kernel space. Third, the kernel must
regain execution control after the signal handler has been executed to restore the original
execution context and to resume the normal execution of the process. Delivering a
signal thus requires the kernel to switch multiple times between user mode and kernel
mode. This problem arises since the signal handler is located in userland while the signal
management is conducted by the kernel. A high-level overview of this process is shown
in Figure 2.8.

To save resources and to realize the transitions between kernel space and user space,
the kernel manipulates the stack of the process receiving the signal during signal delivery.
In particular, it pushes the current execution context and the address of a small execution
stub (2) on top of the stack. The latter will thereby function as the return address of the
signal handler, which will make sure that the execution stub is invoked, once the signal
handler returns (4). Since a user space process cannot directly return to kernel code, the
execution stub essentially functions as a trampoline (5) that will return the execution
control to the kernel (6). To achieve this the execution stub will invoke the sigreturn
system call, which will lead to a switch to kernel mode and inform the kernel that signal

33

(2]
c
.9
+—
)
o}
c
=
(@]
LL

2 Foundations

handling is complete. The kernel will then restore the original execution context using
the data that it pushed onto the process stack (7) and finally resume the process (8).

While this is a very lightweight process, it has a crucial flaw: the kernel does not store
what signals have been delivered to a process nor does it store the original execution
context at a safe location. As a result, an attacker can setup the previously described
stack data structures (2) manually and execute a sigreturn system call. The kernel will
interpret this procedure as a legitimate return from a signal handler (6) and load the
attacker controlled execution context (7) before it resumes the process (8), even though
it actually never delivered a signal to the process. This enables the attacker to control
the entire execution context of the process.

Bosman and Bos [15] propose to use this capability to execute system calls. For this
purpose the attacker simply sets up a fake execution context to contain the system call
number as well as the corresponding system call arguments, which are all specified in
registers on Linux. In addition, she sets the IP within the fake process context to point
to a syscall instruction, which occur frequently within code. Consequently, as soon as
the fake context is loaded, the IP will be set to the syscall instruction and the specified
system call will be executed.

While execution of a single system call is straightforward, chaining multiple system
calls together is more involved. To achieve this the attacker must cleverly combine the
properties of multiple system calls. In addition, she must know the address of a syscall;
ret; gadget. This gadget will effectively function as the glue between our individual
system calls similar to the dispatcher gadget in the case of JOP. On a x86-64 architecture
the entire approach then works as follows: at first, the attacker sets up a fake signal frame
and sets the IP within this frame to point to the syscall; ret; gadget. Additionally,
she sets the SP to a writable memory address and prepares the other arguments for a
read system call. Most importantly, this involves setting rax to zero, since rax specifies
the number of the system call according to the Linux ABI and zero is the number of the
read system call.

As soon as the attacker executes a sigreturn system call, the fake frame will be loaded
and the read system call will be executed. The attacker will use the system call to load
attacker controlled data into the memory area pointed to by the SP. When the read
system call returns, a ret instruction will be executed. Since the attacker now controls
the data within the stack, she can specify the next gadget. She will use this capability to
point the IP once more to the syscall; ret; gadget. Consequently, another system
call will be executed, but which one?

The register that the attacker used for the read system call will all remain the same,
except for rax, which will contain the bytes read by the read system call. As described
above rax specifies the system call number. Therefore the next system call can be
specified by the number of bytes that the read system calls returns. Consequently,
if the attacker exactly reads 306 bytes, the next system call that will be executed is
sysncfs [15]. This system call is essentially a no operation (NOP) instruction that will
do nothing, but clear the rax register. By repeating this scheme the attacker can now

34

2.2 Code Reuse

execute another read system call (rax is now zero). This allows her to chain an arbitrary
number of read system calls together and to read an arbitrary amount of data.

The final piece in the puzzle is how we can execute different system calls. If we read
in exactly 15 bytes using a read system call, rax will contain 15, which is the number
of the sigreturn system call. By setting up another fake signal frame using one of the
previous read system calls, we can thus once more make use of SROP to execute an
arbitrary system call. This approach enables us to chain arbitrary system calls together
leading to a Turing complete language [15].

2.2.2 Code Reuse And Turing Completeness

As stated throughout the last sections, all of the discussed code reuse techniques have
been proven to be Turing complete. A crucial aspect that we have not considered so
far, however, is the expressiveness of these proofs. The problem with proving Turning
completeness for a code reuse technique is that the computation abilities of the technique
always depend on the gadgets that are available to it. Consequently, a code reuse
technique cannot be proven to be Turning complete under all circumstances. Instead,
the proof can only be conducted under the assumption of a particular codebase. ROP,
for instance, has been proven Turning complete under the assumption that a specific
version of the libc is available to it whose gadgets it can leverage as a building block [138].
The expressiveness of the proof is thus limited to this particular version of the libc. A
different codebase, even if it is just a different version of the libc, however, is not covered
by the proof.

2.2.3 Code Reuse Attacks in Practice

Due to the widespread use of code-based protection mechanisms such as W & X, code
reuse techniques have become an integral part of exploit creation. During exploitation
they are commonly used to realize the first stage of the attack. Hereby the attacker
leverages code reuse techniques to create writable and executable memory regions. As
a consequence, the following stages of the attack can then again rely on traditional
shellcode that is executed from the memory regions created by data-only means.

While we made a clear distinction between the individual code reuse techniques within
this section, attackers do not limit themselves to a single code reuse technique in practice.
Instead, they use a combination of all techniques to achieve their goals. For example,
there is nothing stopping us from combining ret2libc with ROP. Consequently, we do
not have to implement every functionality using small instruction sequences, but can
reuse functions where available. Similarly, we are not restricted to solely using gadgets
conforming to a specific code reuse technique, but can combine ROP, JOP, and SROP to
increase the number of gadgets we can leverage and thus the possibilities of our attack.

To account for the fact that code reuse techniques are rarely leveraged in their “pure’
from in practice, we will for the remainder of the thesis resolve the artificial boundaries

)

35

(2]
c
.9
+—
)
o}
c
=
(@]
LL

2 Foundations

Technique Virtual IP Abused Feature Control Structure
ret2Libc FP ret Instruction Stack

ROP SP ret Instruction Stack

JOP Arbitrary Register jmp Instruction Anywhere

SROP SP ret Instruction & Stack

Signal Handling

Table 2.1: Overview of the properties of the code reuse techniques covered within the
thesis. As can be seen most code reuse techniques abuse the Stack and the ret
instruction to function.

between the techniques and will use ROP as representative for all code reuse techniques.
For the sake of a better understanding, however, we will try to use “pure” ROP in our
examples where possible.

2.2.4 Data-only Programs

According to the Oxford English Dictionary a program is “a series of coded software
instructions to control the operation of a computer or other machine” [124]. Since code
reuse techniques enable us to create a data structure, the control structure, that allows
us to control the instructions that will be executed by the CPU, this control structure
can be seen as the “code” region of a data-only program [129]. The instructions of this
program are essentially pointers to machine instruction sequences. Just like a traditional
program, the execution of a data-only program requires an IP. Instead of using the IP of
the CPU, however, data-only programs leverage a wvirtual IP that points into the control
structure. In the case of ROP, for instance, the SP is abused as virtual IP as it specifies
which of the pointers within the data-only program will be loaded into the real IP next.

In addition, similar to a normal program, which is, for example, written in C, a
data-only program is written in a code reuse language. Code reuse languages are created
by applying code reuse techniques to a specific set of instructions. Based on this set
and the code reuse technique, we can define gadgets that form the basic elements of
the language. For instance, given an instruction base such as the libc we can use ROP
to define gadgets for loading data from memory, storing data into memory, performing
arithmetic operations, and executing conditional jumps, which we can then in turn
use to create a Turing complete language [129]. While the instruction set provides the
foundation for the language, code reuse techniques provide the concept from which the
gadgets and ultimately the language can be derived. If we say a code reuse technique
is Turing complete, we thus actually mean that we can create a Turing complete code
reuse language based on its underlying concept if a specific codebase is available to us.

Table 2.1 provides an overview of the code reuse techniques covered in this section as
well as the virtual IP they leverage, the feature they abuse, and the location where they
store their control structure.

36

2.3 Virtual Machine Introspection

2.2.5 Summary

Code reuse techniques provide the basis for data-only malware as they enable us to
combine existing instructions into a new program. To accomplish this, code reuse
techniques make use of specific hardware or software features that allow them to control
the value of the IP based on a data structure. This data structure can be seen as
data-only program, whose “code” section consists of pointers to the instruction sequences
that should be reused. To start the execution of this data-only program, a code reuse
technique dependent virtual IP must be set to its entry point. The virtual IP will then
interpret the code of the program and will, with the help of the hardware or software
feature that is exploited, sequentially load the pointers into the real IP thus starting the
execution of the instruction sequences.

While code reuse is a very powerful approach that can lead to Turing complete
languages, the computational ability of a particular code reuse technique always depends
on the gadgets that are available to it. We will defer a more detailed discussion of how
this limitation affects data-only malware to Section 3.6.1. In addition, we found that
most of the existing code reuse techniques rely on the properties of the ret instruction to

function. This can be exploited to detect code reuse as we will describe in Section 7.4.1.

2.3 Virtual Machine Introspection

While malware formerly operated in user space, we nowadays primarily see malware that
attacks the OS kernel [103]. This so-called kernel-level malware operates at the same
privilege level as the OS meaning that it can attack and modify any part of the system
including the OS kernel itself. Due to this capability such malware poses a very difficult
problem for antivirus software. To see this, we have to consider the predominant security
model used on most systems today.

Virtually all existing security mechanisms found on a machine are based on the integrity
of the OS. That is, the OS is the “foundation of the trusted computing base (TCB)
found on most currently deployed computer systems” [115]. Every application running
on a system including antivirus software relies on the OS for protection. Once the OS
kernel-the heart of the OS—has been compromised, however, this security model is broken
and the OS is no longer able to provide any security guarantees. Malware running
on the same privilege level as the kernel can perform any action that the OS could

perform. There is no longer any isolation between a process and kernel-level malware.

Consequently, the malware can simply disable any antivirus software running on the
system or provide false information to it such that the antivirus software will no longer
be able to detect it.

To solve this problem, Garfinkel and Rosenblum [50] proposed the concept of wvirtual
machine introspection (VMI). The key idea behind this concept is to make use of
virtualization to move security applications out of the machine they try to protect. As a

37

(2]
c
.9
+—
)
o}
c
=
(@]
LL

2 Foundations

result, the security mechanisms not only regain the property of isolation even in the case
of kernel-level malware, but also obtain a complete and untampered view of the system
they try to protect. In the following, we will first provide an overview of virtualization
as it serves as the foundation of VMI, before we cover the properties, capabilities, and
limitations of the technique in more detail. Once this information has been established,
we will then discuss the semantic gap problem, which is a fundamental problem that
every VMI application faces.

2.3.1 Virtual Machines

One of the key concepts used in computer science to reduce the complexity of a problem
is abstraction. In the field of software engineering, for instance, we often divide a complex
programming problem into classes and subclasses. Each of the classes thereby consists of
a set of external functions and a set of internal functions. The external functions provide
an interface for other classes. This interface essentially forms a level of abstraction. It
hides the implementation details of the underlying functions and decouples the classes
such that only a minimal dependency remains. Developers can now arbitrarily change
the implementation of a class as long as they keep the interface intact. Similar they can
make use of other classes without needing to know the details of their implementation.
Each class forms its own abstract building block.

In the case of virtualization, we apply the above described concept of abstraction to a
software or hardware layer. The fundamental idea behind a virtual machine (VM) is to
provide a virtual architecture by adding a layer of abstraction to an existing software or
hardware interface [147]. The virtual architecture can thereby be fundamentally different
from the underlying interface. In particular, a virtual machine can be used to provide
a common interface even if the underlying interfaces vary greatly. Consider the Java
virtual machine (JVM) [85], for example. The JVM provides an abstract computing
machine with a well-defined interface on different hardware platforms. This is why Java
programs in general can execute on any machine that has the JVM installed.

Since a VM provides an additional abstraction layer to an existing hardware or software
layer, it is useful to consider the different interfaces that already exist in today’s computer
system architectures. This will provide us with a better understanding of the interfaces
that a VM can be based on and the interfaces that a VM can export. For this purpose,
we will in the following cover the three most important interfaces found within system
architectures today.

2.3.1.1 Hardware & Software Interfaces

A simplified view of a system architecture is shown in Figure 2.9. As one can see, there
exist three major interfaces. First, there is the interface that is exported by the hardware
to the software running on the system. This interface is referred to as the instruction
set architecture (ISA) (red). The ISA can further be divided into the interface exported

38

2.3 Virtual Machine Introspection

)
i

Applications | API

Libraries

Operating System

System ISA User ISA

Hardware

Figure 2.9: The most common interfaces found on today's system architectures. Adapted
from [147].

to supervisor software such as the OS (system ISA) and the interface provided to user

space applications and libraries (user ISA). The ISA defines the instruction set that the

architecture supports. The x86 architecture, for instance, supports the IA-32 ISA.
Second, there is the application binary interface (ABI) (orange), which “provides a

program with access to the hardware resources and services available in a system” [147].

To provide this functionality the ABI standardizes the interaction between programs on
the binary level. This information in particular includes the calling convention used and
the interaction between user space processes and the OS. The latter is thereby in general
accomplished through system calls.

With the help of system calls user space application are able to perform privileged
operations, which cannot be accomplished using the user ISA alone, such as accessing
the hard disc. For this purpose the OS exports a number of functions (system calls) that
can be invoked from user space. Once invoked, the OS verifies the access rights of the
calling process as well as the arguments provided and then conducts the desired operation
on behalf of the process (given that the process is allowed to conduct the requested
operation). The details of the communication between the OS and an user space process
(e.g. where the system call arguments are stored) are thereby defined within the ABI.

Since the ABI defines an interface on the binary level, it is usually closely bound
to a particular ISA. After all, the access to the interface defined by the ABI is always
conducted based on the instructions that the underlying ISA supports. This is why an

ABI in general cannot exist on its own, but is always defined with respect to some ISA.

39

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

To account for this fact, we will for the remainder of the thesis use the abbreviation
“ABI/ISA” to refer to an ABI/ISA pair.

Third and finally, it is also common to define interfaces on the source code level. These
interfaces are referred to as application programming interface (API) (yellow). APIs are.
for instance, provided by libraries for user space applications and allow them to reuse
existing functionality.

Of the three interfaces described above, the ISA and the ABI play an especially
important role for virtualization. Based on these interfaces, we can distinguish between
two different types of VMs, namely, process VMs and system VMs. Beginning with the
former, we will discuss both VM types in the course of the next sections.

2.3.1.2 Process Virtual Machines

A process VM exports an ABI/ISA interface. It enables a process designed for a specific
ABI/ISA (OS/hardware) to run on top of the ABI/ISA of the current system. To provide
this functionality a process VM exports the ABI/ISA that the target process expects.
When invoked, it translates the received instructions to the ABI/ISA of the underlying
system. Consequently, a process VM provides a virtual environment for a process. It is
“placed at the ABI interface, on top of the OS/hardware combination” [147].

An example of a process VM is the JVM, which provides an abstract virtual machine
as well as an virtual ABI for Java applications. The JVM thereby translates the virtual
ABI calls and the instructions of the abstract machine to the ABI/ISA of the underlying
system. This enables a Java program to execute as a virtual process on top of the JVM.

In the simplest case, a process VM only provides a virtual ABI, but reuses the ISA of
the underlying system, which simplifies the translation process. However, as shown at
the example of the JVM, a process VM can also provide its own ISA. In both cases the
translation from the virtual ABI/ISA to the real ABI/ISA can be conducted by using one
of two emulation techniques: interpretation or binary translation [147]. Interpretation
is the most straight forward approach. In this case every instruction (or ABI call)
of the virtual machine is emulated using instructions of the real machine. This may,
however, lead to a considerable slowdown, since a single virtual instruction may require
the execution of many instructions on the real machine.

Binary translation aims to solve this problem by translating entire blocks of virtual
instructions, instead of each individual instruction. This enables the binary translator
to perform optimizations on the block level allowing it to produce instructions blocks
that can be efficiently executed on the real ISA. While the optimization process may be
slow, the generated instruction blocks can be cached and reused, which will lead to an
improved execution time. Thus in comparison to interpretation, binary translation will
be slower at the beginning, but its performance will increase over time.

While process VMs have many different applications, they are only of limited use for
VMI, since they only allow the execution of user space processes. Therefore they are, for
instance, unsuited for the the analysis of kernel space malware. This is why we will not

40

2.3 Virtual Machine Introspection

consider process VMs any further within this thesis and will concentrate on system VMs
instead.

2.3.1.3 System Virtual Machines

In contrast to process VMs, system VMs do not provide a ABI/ISA interface, but an
entire system environment [147]. To achieve this, system VMs directly reside on the
system ISA, which allows them to export an arbitrary virtual ISA. As a result, system
VMs are not restricted to process virtualization alone, but are able to provide a virtual
environment for OSs. The virtualization component providing the virtual ISA is thereby
commonly referred to as hypervisor or virtual machine monitor (VMM), while a system
residing on top of the virtualization layer is referred to as guest system, guest VM, or
simply guest. Notice that due to the fact that system VMs provide a system environment,
there can be multiple guests running at the same time on the same hypervisor.

System VMs can be differentiated based on the virtual ISA they provide [117]. In
particular, a system VM can either provide a different ISA than the underlying hardware
or the same ISA. The former can be achieved with the help of emulation. In the
process, the system VM emulates the entire hardware operations by mapping the virtual
instructions to compatible instructions understood by the real hardware as has been
described in the previous section.

On the other side, if a system VM reuses the ISA of the underlying real machine, no
emulation is necessary, which increases the performance. To use the approach, however,
either the guest OS must support virtualization (this is referred to as paravirtualization)
or the hardware must provide virtualization extensions that allow the virtualization
of an unmodified guest OS. The reason for this is that OSs in general assume to run
at the highest privilege level. When running on top of a hypervisor, the guest OS,
however, resides at a lower privilege level than the VMM. Due to this fact, the OS will
no longer be able to execute specific privileged instructions. If the OS is not aware of
the virtualization layer, it will nevertheless try to execute such instructions as it would
in case of a non-virtualized environment. This will lead to an exception that may crash
the guest system, since the hardware will forbid the execution of privileged instruction
for the guest OS, unless the hardware provides virtualization support and will reroute
the resulting exceptions to the hypervisor. Since most mainstream processors nowadays
provide virtualization support, this is, however, no longer a problem in practice.

In this thesis we will primarily consider same system VMs that make use of hardware
support for virtualization. However, most of the techniques that we present can similarly
be applied to paravirtualization or different ISA system VMs.

2.3.2 Concept, Capabilities, and Limitations

Virtual machine introspection (VMI) “describes the act of examining, monitoring, and
manipulating the state of a guest OS running inside a virtual machine from the isolation

41

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

of the hypervisor” [117]. Instead of placing security software into the machine it tries to
protect, VMI moves security application to the hypervisor level where they can remain
functional even if the entire guest system is under the control of an attacker. Due to
this approach security applications obtain three essential properties that form the core of
VMI [50]:

Isolation This is the most important property from a security standpoint. In
contrast to traditional security software, VMI-based security applications
will run in isolation from the guest system that they monitor. Software
residing in the guest is thereby unable to access or alter security software
residing on the hypervisor level.

Interposition To be able to operate, a hypervisor needs to intercept certain events within
the execution of the guest (e.g. the execution of privileged instructions).
This ability can be leveraged to not only intercept events that are crucial
for the functioning of the hypervisor, but also to intercept security critical
events within the guest system. Since the hypervisor resides on a layer
below the guest system, the trapping of an event cannot be disabled
or intercepted by the guest. This makes VMI not only interesting for
intrusion detection systems (IDSs), but also for intrusion prevention
systems (IPSs).

Inspection Even though software running within the guest system cannot access
software residing outside of the VM, security software residing on the
hypervisor level is able to access and modify the entire state of the
guest. That is, the isolation property mentioned above only restricts the
access of the guest system, while providing the security software with a
complete and untainted view of the guest’s state [117]. Since the state of
a VM is “compromised of CPU and I/O register values as well as volatile
and stable system storage contents” [118], it becomes very difficult for
malware to hide from VMI-based security software [50].

While VMI provides three very strong security properties, there are of course limitations
to each of those properties that must be considered as well. To provide the reader with
a better understanding of the capabilities of VMI and its limitations, we will in the
following discuss each of the aforementioned properties in more detail.

2.3.2.1 Isolation

First and foremost the property of isolation does not imply transparency. That is, a guest
system is able to infer that it is running within a virtualized environment. Similarly,
malware residing within a guest is able to detect the virtualized environment and may
even be able to identify security software running on the hypervisor level. While there

42

2.3 Virtual Machine Introspection

has been a lot of work trying to achieve transparency using VMI (e.g. [40, 127, 128)]), it is
in general believed that achieving true transparency based on virtualization is impossible.
For instance, Garfinkel, which is one of the authors that proposed VMI in the first
place, claims that “building a transparent VMM is fundamentally infeasible, as well as
impractical from a performance and engineering standpoint” [49].

Second, VMI only protects a security application from direct accesses through the
guest, it, however, does not protect it against attacks that are a result of the data that
is accessed by the security application (e.g. buffer overflows). As a result, VMI-based
security applications are susceptible to indirect attacks where an attacker manipulates
the internal state of the guest OS [5]. When a security application does not expect such
manipulations, it may access malformed data which can in turn lead to false-negatives or
in the worst case the triggering of a vulnerability in the security application. Consequently,
any data read from the the guest’s state should be considered malicious and must be
handled with care.

Finally, isolation can of course only be provided given that the hypervisor was imple-
mented correctly and does not contain any vulnerability. Practice has shown, however,
that hypervisors—similarly to any other software—can contain exploitable software bugs
that allow to compromise the hypervisor [45, 105]. In this thesis, we consider such
attacks out-of-scope and assume that the hypervisor has been implemented correctly.

In practice, the hypervisor can be protected against attacks using mechanisms such as
HyperSafe [173].

2.3.2.2 Interposition

While different ISA system VMs can in general intercept arbitrary events within the
guest due to emulation, the same does not apply for same ISA system VMs. To intercept
a hardware event from the hypervisor in this case, one must cause a VM exit whenever
the hardware event occurs. This process is also referred to as trapping an event. In many
cases, trapping an event can be easily accomplished with the help of the hardware itself,
as in the case of page-faults or control register changes. However, considering the total
number of hardware events that exist, the events that can be natively trapped still only
form a small subset. It is therefore a common challenge with VMI-based applications to
find a mechanisms to trap events not directly supported by the hardware.

In general, the approach in such a situation is to generate a secondary hardware event
for which trapping is supported, whenever the desired hardware event occurs. As an
example, consider the interrupt trapping mechanism that is used by Nitro [120]. In this
case, the authors wanted to trap every occurrence of a user-defined interrupt (which
are the interrupts 33-255 in the interrupt descriptor table (IDT)) to the hypervisor on
the x86 architecture - an event that is not natively supported by the hardware. They
accomplished this by setting the IDT limit, which contains the size of the IDT, to only
include the first 32 entries. As a consequence, every interrupt with a number higher than
32 causes a general protection fault, a trappable event.

43

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

Other researchers have shown that the same or a similar signal can be used to trap
code execution [112] (page faults), individual instruction types such as call or ret
instructions [168] (non-maskable interrupts), or sysenter /syscall instructions [40] (general
protection fault). Besides using a signal, it is also possible to use specific instructions
such as HLT [169] to trap events. In this case, the event trapping mechanism must ensure
that a trappable instruction is executed directly after the event occurred.

To make use of an event trapping mechanism in a VMI application, the mechanism
must not only reliably trap the event of interest, but it must also provide all of the
properties that the application requires. While the most important properties of an event
trapping mechanism are certainly tamper-resistance and stealth, performance naturally
is also essential. To achieve good performance results, the event trapping mechanism
should only produce VM exits when the desired event occurs. Therefore events that
frequently occur during normal operation such as page faults should in general be avoided
for event trapping if possible.

2.3.2.3 Inspection

While an VMI-based security application has access to the entire state of the guest system,
making use of this state is not as straight forward as one might think. To effectively use
the state one has to overcome one of the fundamental problems of VMI, which is referred
to as the semantic gap [22]. Due to the significance of the problem, we will cover it in a
section of its own.

2.3.3 The Semantic Gap

Security applications residing on the hypervisor level are able to inspect the entire state
of a guest system. However, their view of this state is very different from the view
that the guest OS has. While the view of the latter is compromised of high-level data
structures, the view of VMI-based security applications is restricted to the bits and bytes
contained in the guest’s state. This is due to the fact that the security application lacks
the semantic knowledge of the guest OS that is required to interpret the binary, low-level
state of the guest correctly. This semantic disconnect between the hypervisor and the
guest OS is referred as the semantic gap [22].

The semantic gap is illustrated in Figure 2.10. As can be seen, the semantic knowledge
of the guest OS is crucial to be actually able to make use of the state that is available to
the hypervisor. Without this knowledge, a VMI-based security application is limited to
the “binary view” of the state which contains all information, but is nearly useless without
semantics. To solve this problem, we have to generate a view on the hypervisor level
that is similar to the view the guest OS has and allows a VMI-based security application
to access any information that it requires to function. This process is referred to as
bridging the semantic gap. Pfoh, Schneider, and Eckert [118] presented three general
approaches that can be used to accomplish this: in-band delivery, out-of-band delivery,

44

2.3 Virtual Machine Introspection

Semantic Knowledge Binary View
module_state = MODULE_STATE_LIVE7>_|

00 00 00 00]9c 95 ba ed 7c b7 37 cl|6c 6f 6 70

00 00 00 00 00 60 00 00 00 0600 60 00 00 00 00
struct module struct list_head 00 00 00 00 00 00 0060 00 00 00 00 00 00 00 00
— / o .- 00 00 0000 00 00 00 00 00 00 00 60 00 00 00 00
list prev - 00 00 00 00 00 00 00 00 [60 ae 27 de co 4a 80 df]
name e4 95 ba e0 cc 4a 80 df O 4a 80 df 6¢c b0 37 cl
m';z‘i’rl;fo_attrs gg 3.; 2; g; 83 gg gg gg 07 00 00 00 5¢ cl c3 ed)
—ror K0 g [66 70 2a de 00 60 00 60
arc_version 5 : 00 00 00 00 80 7f 33 de 50 cO c3 e® 60 cO c3 e
holders_dir == struct module_kobject 02 00 00 00 68 CO c3 €0 ©2 60 60 60 00 00 00 00
syms o kobj RS 00 00 00 00 00 60 00 60 00 00 00 60 00 00 00 00
@es b mod - 00 00 00 00 0O 00 00 60 00 00 00 00 00 00 00 00
i) 5 o drivers_dir > 00 60 60 00 60 60 00 0O 00 00 00 00 00 00 00 00

mp - =/=p
ctors
num_ctors \
\'void (%)) = NULL)
—

00 00 00 00 00 fO c3 e 00 00 00 00 00 a0 c3 ed
00 a5 26 00 00 00 00 00 00 3d le 00 00
00 02 00 00 00 90 96 ba e0 c8 8f 38 cl
e0 c8 c2 c3 ed 8 c2 c3 ed 20 00 00 00
1c ba df
00 00 00
00 00

-99_de
b8 bd c3 e a8 79 [00 00 60 60/00 00 00 0

Figure 2.10: The figure illustrates the semantic gap based on an excerpt of the guest's
physical memory. On the right the “binary view" is shown. This is the view
of the hypervisor. The guest OS can make use of the semantic knowledge
shown on the left to interpret this binary view. This information, however, is
not available to the hypervisor. (Source: [133]).

and derivation. Before we can describe these approaches in more detail, however, we
must first introduce the properties that we will use to compare and contrast them.

2.3.3.1 Properties

In this section we will introduce important properties that must be taken into account
when creating a solution that bridges the semantic gap, which we from here on simply
refer to as a bridging component. We will use these properties in the following sections
to provide the reader with a better understanding of the advantages and disadvantages
of the individual available approaches that try to accomplish this task.

Binding. Bridging components often make assumptions about the guest system based
on their semantic knowledge [117]. For instance, they assume that the guest OS provides
a specific interface or a specific data structure layout. The internal implementation of
a software interface or a data structures may, however, change. If the assumptions of
the bridging component are not bound to the software state of the guest, it may not be
aware of such changes and may rely on false assumptions. For example, to obtain the list
of processes running within a guest system, a bridging component may try to access the
guest’s process list that it assumes to be stored at a specific location. There is, however,

45

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

no guarantee that this list is actually used by the guest. Instead an attacker could have
altered the software state of the system such that it uses a different hidden process list.
That is, an attacker can invalidate the assumptions made by the bridging component
to present a seemingly good system state to a security application, while the system is
compromised in reality.

Such an attack is possible, since the assumptions made by the bridging component are
dependent on the software state of the guest, while the state of the guest is independent of
those assumptions. Consequently, we refer to such an approach as being non-binding [87],
since the software state of the guest is not bound to the assumptions of the bridging
component. On the other side, we call an approach binding if an attacker is unable to
change the software state of the inspected guest in a way that invalidates the assumptions
of the approach without the bridging component being aware of the attack.

Guest OS Portability. A bridging approach is guest OS portable [118], if it is inde-
pendent from the guest OS used. In this case, the bridging component can be used for
different OSs without changing its implementation. Otherwise, if an approach is not
guest OS portable, each guest OS may require its own implementation of the bridging
component.

Hardware Portability. Similar to being independent of the guest OS, an approach can
also be independent of the underlying hardware. In this case the approach can be applied
to multiple hardware platforms without changing its implementation. We call such an
approach hardware portable [118].

Full State Reconstruction. Not every bridging approach may be able to reconstruct
the entire high-level state of the the guest system on the hypervisor level [117]. While
this feature may not be required for every VMI-based security application, the more
complete the reconstruction of the state is the better suited is a bridging component in
general as a foundation for VMI-based security applications. We say an approach is able
to achieve full state reconstruction if it provides access to the same information as the
guest OS.

Stealth. Stealth specifies how easy it is to detect a VMI-based security mechanism
from within the guest system. Although VMI-based mechanisms are not transparent as
has been discussed in Section 2.3.2, the degree of stealth that an approach provides is still
important. While virtualization is in most cases easily detectable, inferring which security
applications reside on the hypervisor level can be a very challenging task especially for
mechanisms with a high level of stealth. Since an attacker may decide to infect a system
based on the present security mechanisms (e.g. to avoid the infection of a honeynet), it
is crucial that security applications do not easily give away their presence. We consider a
VMI-based mechanism to achieve a high level of stealth, if it cannot be detected directly

46

2.3 Virtual Machine Introspection

from within the guest system by reading some software or hardware value (e.g. register),
but only based on some side channel such as timing attacks.

Isolation. Naturally isolation is one of the most important aspects for a mechanism that
bridges the semantic gap from a security perspective. Ideally, the bridging mechanism
should have the exact same isolation properties as the hypervisor. For a more detailed
discussion of this property we refer the reader to Section 2.3.2.1.

2.3.3.2 In-Band Delivery

An in-band delivery approach takes advantage of the guest system itself to gather high-
level state-information. This is accomplished by placing an agent into the guest system.
Upon request, this in-guest agent can then simply query the guest OS for the desired
information and transfer it to the hypervisor. Instead of bridging the semantic gap, this
approach thus rather circumuvents the semantic gap.

In-guest approaches tend to have a better performance than out-of-guest approaches as
they reduce the number of VM exists, which are in general very costly operations [141].
However, with in-band delivery, one inadvertently trades stealth and isolation for in-
spection and performance as the agent will execute inside the guest OS. Since the guest
system may be compromised, it seems like we do not gain anything from this approach
compared to traditional anti-virus software. In both cases a component resides within
the system. This component can be attacked and disabled by malware running in the
machine. However, there is a major difference between the scenarios: in the case of an
in-guest component we can make use of a trusted entity, the hypervisor, to protect the
component from tampering. This option is not available in a non-virtualized scenario.
Therefore the main challenge for an in-band delivery approach from a security perspective
is to protect the in-guest component during its execution in an untrusted guest system
from the hypervisor.

In addition, an in-band delivery approach is in general non-binding, since it relies on
the information provided by the guest. There is, however, no universal way for the agent
to decide whether the received information reflects the real state of the guest or if was
manipulated by an attacker. Clearly, an in-guest approach is also not guest OS portable.
An agent designed for Windows, for instance, cannot be used to retrieve information
from within a Linux guest. Instead, each guest OS requires its own individual in-guest
agent. An in-band approach is, however, hardware portable and able to achieve full state
reconstruction.

We will cover existing in-guest approaches in more detail in Section 6.5.

2.3.3.3 Out-of-Band Delivery

In contrast to in-band delivery approaches, out-of-band delivery approaches do not rely on
an in-guest component to bridge the semantic gap. Instead, they try to solve the problem

47

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

entirely from the VMM by reconstructing the guest’s data structures on the hypervisor
level using semantic knowledge that is delivered to the view generating component in
advance. To obtain this knowledge these approaches make use of information sources
such as exported kernel symbols [66], debugging symbols [50], static source code analysis
[19, 133, 134], signatures for kernel data structures [42], or program traces [41].

Although out-of-band approaches are able to narrow the semantic gap, full state
reconstruction has, to the best of our knowledge, not been achieved so far. One of the
main reasons for this is certainly the complexity of modern OS kernels, which makes
it very difficult to recreate the entire view of the guest OS on the hypervisor level. In
addition, out-of-band approaches are not guest OS portable and non-binding [117, 133].
The latter being a result of the fact that the necessary semantic knowledge used for
reconstruction is delivered to the bridging component beforehand using an out-of-band
channel. Consequently, this knowledge is not bound to the current software state of
the guest. On the plus side, out-of-band delivery approaches, however, are in general
hardware portable, and provide a high-level of stealth, since they operate entirely on the
hypervisor level out of the reach of the guest.

2.3.3.4 Derivation

Derivation fundamentally differs from delivery-based approaches in that it does not use
software-based semantic knowledge to bridge the semantic gap, but instead leverages
semantic knowledge that can be derived from the (virtual) hardware to accomplish the
same. By using a hardware centric approach, derivation is the only bridging technique
that can provide guest OS portability and binding. Since the semantic knowledge used
by the approach is based on the hardware, an attacker cannot simply alter the software
state of the guest system to invalidate this knowledge. Instead, the attacker is forced
to act according to the rules that the hardware lays upon her. In addition, derivation
often achieves a high-level of stealth given that the bridging component does not alter
the virtual hardware in way that can be observed by the guest.

However, this functionality comes at a cost. First of all, derivation is not hardware
portable. Second and more importantly, the semantic knowledge that can be derived from
the hardware is quite constrained [117]. Consequently, hardware portable approaches
are far from being able to achieve full state reconstruction and must in practice often
be combined with delivery-based approaches to tap their full potential. Examples of
derivate approaches include Patagonix [87], Lycosid [67] and Nitro [120].

2.3.3.5 Comparison of the Approaches

Table 2.2 summarizes the properties of the individual approaches to bridging the semantic
gap. Derivation is the only approach that is binding and guest OS portable. However,
the approach is also the only one that is not hardware portable and unable to reconstruct
the full state. Both derivation and out-of-band delivery achieve a high-level of stealth as

48

2.4 Malware Detection & Prevention

Property m-band out-of-band Derivation

Binding

Hardware portable

Guest OS portable

Full State Reconstruction
Stealth

Isolation

*X XN XN\ X%
NN XN X%
ANAND S NR Y

Table 2.2: Comparison of the different approaches to bridging the semantic gap.

they operate outside of the guest system. In addition, out-of-band delivery is hardware
portable and can in theory achieve full state reconstruction. To the best of our knowledge,
this has, however, not been accomplished so far. In-band delivery approaches on the other

side naturally achieve full state reconstruction as they operate within the guest system.

Due to this property they are in contrast to the other approaches unable to achieve a
high-level of stealth and isolation though. Just as out-of-band delivery approaches they
are hardware portable, but non-binding.

2.3.4 Summary

The security of most systems today is based on the integrity of the OS. The OS thus

presents a single point of failure. Once the OS is compromised all security is lost.

VMI provides a solution to this dilemma by leveraging full hardware virtualization to
move security applications out of the system they try to protect. As a consequence,
security applications can remain functional even if the entire VM including the OS is
compromised. This capability comes at the cost of the semantic gap though, which
describes the semantic disconnect between the hypervisor and the guest OS. To solve
this problem, we must generate the semantic view of the guest OS on the hypervisor
level. This can be accomplished by placing an agent into the guest (in-band delivery), by
providing the necessary semantic knowledge to the hypervisor in advance (out-of-band
delivery), or by deriving information from the hardware (derivation).

2.4 Malware Detection & Prevention

In this thesis we are not only concerned with the capabilities and limitations of data-only
malware, but also want to research how we can mitigate this novel threat should if prove
dangerous. That is, we want to consider data-only malware from the vantage point of the
attacker as well as the defender. In this context one of the important issues that we have
to analyze is the effectiveness of existing countermeasures against data-only malware.

49

(2]
c
.9
+—
)
o}
c
=
(@]
LL

2 Foundations

To be able to do so, however, we must first provide the reader with an overview of the
malware prevention and detection mechanisms that can be found on systems today.

2.4.1 Protection Mechanisms

Modern systems employ a variety of software and hardware mechanisms to hinder
the successful execution of malware. In the following, we provide an overview of the
mechanisms that can commonly be found on x86 Linux and Windows systems.

2.4.1.1 Software-based Mechanisms

StackGuard. One of the first approaches to counter buffer overflow attacks was Stack-
Guard [33]. StackGuard places a new field (canary) between a function’s local variables
and saved return address on the stack. When initializing a function’s local stack, the OS
automatically initializes the canary with a random value whose integrity is verified before
returning. The general idea behind this approach is that any buffer overflow attack that
overwrites the return address must also overwrite the canary, and since this canary is
initialized with a random number, it is very difficult for an attacker to guess the correct
value. Based on this, the program can determine that if the canary’s value changed a
buffer overflow likely occurred and can take appropriate actions (e.g., terminate).

Kernel Patch Protection (PatchGuard). Beginning with the 64-bit version of Win-
dows XP, Microsoft introduced a mechanism that runs at regular intervals and verifies
the integrity of the kernel’s code sections and important kernel data structures called
PatchGuard [72]. In particular, PatchGuard attempts to verify the integrity of those
portions of the kernel that are often patched by a rootkit or other malware such as its
code sections, system service tables, descriptor tables, etc.

Address Space Layout Randomization (ASLR). Another contemporary protection
mechanism is address space layout randomization (ASLR) and its kernel equivalent kernel
ASLR (KASLR) [51]. The main idea behind this approach is to randomize the base
address where code sections are loaded to. This makes it difficult to employ exploits that
make use of existing code. In fact, ASLR is supposed to act as the hard counter to code
reuse attacks such as ROP and ret2libc. Due to the fact that code reuse attacks makes
use of existing code snippets, these attacks are hindered when those code snippets are
loaded at random offsets. This leaves the attacker in a situation in which she is forced to
guess the location of gadgets or functions.

2.4.1.2 Hardware-based Mechanisms

W @ X. One of the oldest protection mechanisms is W @ X. This approach makes use
of the paging (or segmentation) features of particular hardware (e. g., x86). Such features

20

2.4 Malware Detection & Prevention

often allow a level of read/write/execute access control at page or segment granularity.

The W & X mechanism works by marking single pages as either writable or executable,
but never as both simultaneously. This prohibits an attacker from introducing new code
as “data”, then manipulating the system to execute that code. It also prohibits an
attacker from directly introducing new code in those areas of memory reserved for code
as they are not writable. That is, memory is split up to contain either code or data and
the code sections can not be written to while the data sections cannot be executed.

Supervisor Mode Execution Prevention (SMEP). A fairly new protection mechanism
introduced by Intel is SMEP [64]. When this feature is enabled, the processor will fault
when the current privilege level (CPL) of the processor is less than three and an attempt
to execute code from a page whose supervisor bit is not set is made. This means that
the processor will not allow the execution of code in user space while operating in kernel
mode. This is useful against attacks in which code is loaded into user space —which
requires no special privileges— and the kernel control flow is manipulated into jumping to
this code segment.

Supervisor Mode Access Prevention (SMAP). As the name suggests, supervisior
mode access prevention (SMAP) is closely related to SMEP. While SMEP is focused
on code execution, however, SMAP prevents accesses to user data from kernel code. In
particular, when enabled the processor will fault whenever an instruction is executed
at CPL less than three which tries to access data stored within a page that does have
its supervisor bit set. This prohibits the kernel from accessing user data and forces an
attacker to find a way to load malicious data into kernel space before she can use it for
code reuse attacks such as ROP. Since the kernel sometimes requires access to user data
(e.g. to execute a system call), the caveat of the technique is that the kernel must disable

SMAP whenever such an access is required and re-enable it after the access was made.

For this purpose Intel introduced two new instructions CLAC and STAC [111].

Code Signing. In contrast to the other mechanisms described so far which generally
aim to prevent dynamic exploits, code signing approaches work by validating the integrity
of the code while it is loaded. This is accomplished by leveraging digitally signed binaries
that are checked before loading and are only loaded if the binary is unchanged and signed
with the key of a trusted party. As such an approach is quite restrictive, it is generally
used in kernel protection rather than in userland protection.

With the assistance of hardware, code signing can be used to implement a trusted
boot sequence. This works such that the boot ROM (the root of trust embedded in the
hardware) only loads an untainted and signed bootloader, this bootloader only loads
an untainted and signed kernel, and finally the kernel only loads untainted and signed
drivers or modules. By building such a chain of trust and rooting it in hardware one can
be very certain that all code that is loaded into the kernel is untainted and trusted at

ol

(2]
c
.9
+—
)
o}
c
=
(@]
LL

2 Foundations

the time it 1s loaded. The UEFI specification describes such a mechanism and is used in
modern PCs [163]. However it is important to note that this will not prevent code from
being introduced at runtime through a vulnerability, for example.

2.4.2 Malware Detection

Having provided an overview of current software-based and hardware-based protection
mechanisms, we now cover present malware detection mechanisms. Instead of focusing
on individual detection approaches, however, which would due to their sheer number go
far beyond the scope of this thesis, we discuss the major detection concepts leveraged
today.

While the individual definitions may vary, there exist two fundamental malware detec-
tion concepts in literature: signature-based detection and anomaly-based detection [63,
110]. In addition, many authors also consider a third category that is particularly im-
portant for data-only malware: integrity-based detection [158]. In the following we will
consider each of these categories in turn. In the process, we will also discuss hook-based
detection, which is a specific form of integrity-based detection that is specifically relevant
for our analysis. Before we begin with our discussion, however, we define important
terms that we are going to use throughout the section.

2.4.2.1 Definitions

There are two types of data that we will encounter during our discussions in this section:
control data and non-control data. The former can thereby further be divided into
transient and persistent control data. In the following we will define these types of data.

Control data and non-control data. Control data specifies the target location of a
branch instruction. By changing control data, an attacker can arbitrarily change the
control flow of an application. Examples of control data are return addresses and function
pointers.

In contrast, non-control data never contains the target address for a control transfer.
In certain cases, however, it may influence the control flow of an application. For instance,
a conditional branch may depend on the value of non-control data.

Transient and persistent control data. We consider control data to be transient when
it cannot be reached through a pointer-chain originating from a global variable. This
essentially implies that there is no lasting connection between the application and the
control data. Instead, the control data is only visible in the current scope of the execution
such as a return address which is only valid as long as a function executes.

By extension, we consider all control data that is reachable through a global variable
as persistent, since the control data is permanently connected to the application and can
thus always be accessed independent of the current scope.

o2

2.4 Malware Detection & Prevention

2.4.2.2 Signature-based Detection

One of the most well-known and widely used malware detection mechanisms is signature-
based detection. The main idea behind this approach is to calculate an unique digital
fingerprint (signature) for each known malware instance, which can then be leveraged
to identify and detect malware reliably. In general, a signature is thereby essentially a
regular expression that matches a specific byte pattern within the malware binary. The
detection process then consists of applying the regular expression to each file that should
be checked for a malware infection. If a regular expression created for a malware binary
matches on a file, the file is considered to be an instance of the malware the signature
belongs to.

To make this scheme work, it is essential that each pattern that is used to identify
a malware instance is unique. To this end researchers presented various mechanisms
that are capable of creating signatures for malware detection automatically (e.g. [53,
83, 137])'? . However, since existing approaches still suffer from false positives and may
not be able to generate reliable signatures for all malware types (especially when the
malware is obfuscated), signature creation primarily remains a manual process [63].

The main disadvantage of signature-based detection is that the approach is in general
only able to detect known malware. After all, one must calculate a signature of a malware
sample before it can be used for detection. In addition, malware may be able to evade
signature-based detection using techniques such as polymorphism or metamorphism (see
Section 2.1.4 for details). To counteract such approaches,; anti-virus scanners usually not
only scan binaries before their execution, but emulate the execution of the binary [157] or
scan the memory of the system for signatures. As a result, the anti-virus becomes able to
detect malware that unpacks or decrypts itself in memory. This approach, however, can

only be used against polymorphic malware, but is insufficient for metamorphic malware.

To detect metamorphic malware and to improve signature-based detection, researchers
proposed to make use of semantic signatures [28, 78]. Instead of calculating a syntactic
signature based on the binary representation of the malware, semantic signatures try to
capture semantic properties of the malware. This can, for instance, be achieved with the
help of templates. While a syntactic signature is often based on concrete instructions,
the semantic template-based signature will specify the effect of the instructions using
symbolic values. As a result, the signature will match as long as the instructions executed
by the malware will lead to the same result as the symbolic calculation specified in the
template. Since metamorphic malware typically employs syntactic metamorphism, while

keeping the semantic of the malware intact, such an approach can be very effective.

However, Moser, Kruegel, and Kirda [97] have shown that semantic signatures are not
foolproof either and can be evaded as well.

While signature-based detection is vulnerable to evasion attacks, the approach also has
a significant advantage: in general signature-based detection produces almost no false
positives, which is a very important property in practice. In fact, detection accuracy is

12The interested reader can overview of such approaches in [71].

53

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

in many cases almost as important as the detection rate, which may be one of the reason
why signature-based detection—in spite of its drawback—still remains widely in use.

2.4.2.3 Anomaly-based Detection

The key idea behind anomaly-based detection is to detect malware based on the behavior
it exhibits. More precisely, we assume that the behavior of a system infected with
malware will deviate significantly from the behavior the system would normally have.
Since the behavior of malware is independent of its implementation, this approach is
capable of detecting known as well as unknown malware.

To detect anomalies, we first create a model of normal behavior of a user, a program,
a system, a network etc. In the next step, we monitor the entity for which the model
was created. The runtime data it generates is then compared to the created model. If
the entity conforms to the model, it exhibits normal or legal behavior. On the other
side, if the entity deviates from the model, it exhibits abnormal behavior. Since malware
is expected to modify the behavior of a system from normal to abnormal, the latter is
interpreted as a sign of a malware infection.

Naturally, the effectiveness of anomaly-based detection stands and falls with the quality
of the created model that describes the normal system behavior. In general, there exist
three different techniques to create such a model: statistical anomaly detection, machine
learning based anomaly detection, and data mining based anomaly detection [110]. Each
of these techniques thereby makes use of a training phase and a testing phase. During
the first phase, the training phase, the model of normal behavior is generated. Later on
this model is then used in the testing phase to detect abnormal behavior.

In the case of statistical anomaly detection, the detector requires two different profiles
for detection. Namely, the stored and current profile. The stored profile contains the
model of normal behavior created in the training phase. It is obtained by monitoring the
target entity and collecting statistics about its behavior. For example, one could record
how much network traffic and CPU usage a process has. During the testing phase the
stored profile is then compared to the current profile, which reflects the behavior that
the monitored entity currently exhibits. For this purpose the current profile is constantly
updated. The deviation between the stored profile and the current profile is then used to
calculate an anomaly score. Should the anomaly score reach a predefined threshold, the
detector will consider this as abnormal behavior and raise an alarm.

In contrast to statistical anomaly detection which uses predefined features and thresh-
olds, machine learning based anomaly detection leverages machine learning to improve
its performance based on previously obtained results. For this purpose, the detector
receives a training set that it uses to “learn” a model of normal behavior. Based on this
model it then classifies the currently observed behavior as either normal or abnormal.

To use statistical and machine learning based anomaly detection approaches we have
to select features that allow us to distinguish normal from abnormal behavior. This often
requires the involvement of an human expert. However, modern systems contain so many

o4

2.4 Malware Detection & Prevention

features (e.g. CPU, disc, or network usage, system and API calls, running process etc.)
that some patterns within data may even remain hidden from an expert. Consequently,
we may miss the features that may actually be suited best for detecting the anomaly we
are looking for.

To solve this problem, researchers proposed the concept of data mining based anomaly
detection. The main idea thereby is to automatically extract patterns of normal (or
malicious) behavior from large amounts of audit data that can then be used for anomaly
detection [80]. For this purpose data mining techniques are applied to the audit data to
discover the necessary knowledge. Once a pattern has been found, it can then be used to
detect anomalies.

The main issue of anomaly-based detection is that it is based on probabilities. In
contrast to signatures, behavior is not a concrete value that can be measured and
compared. As a result, normal system behavior may be classified as malicious (false
positive) or malicious behavior may be classified as normal (false negative). Thus while
anomaly-based detection is capable of detecting unknown attacks, it is not as reliable as
signature-based detection.

2.4.2.4 Integrity-based Detection

Another popular approach to malware detection is to detect malware infections based
on integrity violations [158]. The approach makes use of the observation that malware
must modify the state of the system it infects to function. To see this, one must only
consider the malware taxonomy introduced by Rutkowska [131] (see Section 2.1.4.4 for
details). In her taxonomy Rutkowska classifies malware based on the type of modification
that the malware conducts to the system state. Consequently, we can detect malware
infections by identifying malicious changes to the system state, which is the basic idea
behind integrity-based detection.

The complexity of the approach thereby heavily depends on the part of the system
state whose integrity should be validated. As observed by Rutkowska, the system state
can be roughly divided into constant and dynamic parts. The validation of constant
parts of the system state is thereby generally easy: to detect malware infections, it is
sufficient to detect any change within the monitored region, since a constant part should
never change during normal operation. Validating the integrity of dynamic regions on
the other side is often difficult. Instead of simply detecting changes, we must in this
case determine whether a change conducted to the dynamic part of the system state
was malicious or benign. Depending on the part of the state that we target, it may
thereby become quite challenging to find integrity constraints that are restrictive enough
to detect malware modifications, but are at the same time loose enough to avoid false
positives.

Existing detection methods that fall into this category can be classified into file
integrity checkers, code integrity checkers, control-flow integrity checkers, and data
integrity checkers. In the following, we consider each of the mechanisms in turn.

%)

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

File Integrity Checkers. Viruses infect files by appending the virus body to them.
By doing so, they modify the file. Since binaries are in general static, this behavior
lends itself well for a detection mechanism. The main idea thereby is to calculate a
cryptographic checksum of every binary in a secure environment. Once these checksums
have been created, they can be used to verify whether a file has changed by recalculating
the cryptographic checksum of the file and comparing its value to the original checksum.
If the checksums differ, the file was changed.

Code Integrity Checkers. Another important part of the system state is the codebase.
Since traditional malware consists of executable instructions, it must add additional
instructions to the system or modify existing instructions to function. That is, traditional
malware is forced to change the codebase of the system to run. Because code regions of
programs are usually static once the program has been loaded into memory, this property
is naturally predestined for the detection of traditional malware as it is common to all
malware types and on top of that relatively easy to implement. In fact, we can leverage
a similar approach as in the case of file integrity checking and calculate cryptographic
checksums (hashes) for code regions, which can then be validated using a whitelist.

To protect the component responsible for code integrity validation, code integrity
checker in general either rely on specific hardware (e.g. [114]) or leverage virtualization
(e.g [116, 128]), which is the more common approach. The latter has the additional
advantage that the whitelist used for comparison can be stored on the hypervisor level
as well such that it is isolated from the monitored system.

When it comes to the validation process itself, the main issue that must be considered
is that code regions are only static once they have been loaded into memory. During the
loading process, however, the loader may modify code regions to prepare them for their
execution. For example, may the loader have to update addresses used within the code
when ASLR is leveraged and the base address of the code section is randomized. As a
result, the final hash value of a code region is dependent on the modifications applied to
a binary at load time.

The general approach to handle this issue is to make use of a trusted store that contains
all benign binaries instead of a plain whitelist only containing the hashes of the benign
code regions. During the validation of a code region, the integrity checker then simulates
the changes conducted by the loader on the benign binary and compares the result with
the code region in memory. A similar approach is for example used by Patagonix [87], a
well-known a hypervisor-based code integrity system. Instead of simulating the changes,
Patagonix, however, reverts the changes conducted by the loader to obtain the original
code section as it is stored within the binary. Once the original layout of a code region
has been restored, its hash can be calculated and compared to the whitelist.

Control Flow Integrity Checkers. The general goal of an attacker is to execute her
own code. To accomplish this she must modify the control flow of the system at some

o6

2.4 Malware Detection & Prevention

point in time and redirect its execution to her code. Abadi et al. [1] proposed to leverage
this deviation of the normal control flow for a detection mechanism which they refer to
as control flow integrity validation (CFI). The idea behind CFT is to ensure the integrity
of the control flow of an application by constructing its control flow graph (CFG) and
validating that every control transfer of the application follows the rules of this graph.
Since the control flow modification of the attacker will in general not correspond to
the CFG of the application, this results in a protection mechanism that is difficult to
evade [2]. The enforcement of the control flow validation can thereby be either conducted
by inserting control flow checks through recompilation (e.g. [81]), by instrumentation
(e.g. [186]), using virtualization (e.g. [34]), or by using specific hardware features such as
the performance counters (e.g. [181]).

Data Integrity Checkers. Validating the integrity of data is in general a lot more com-
plex than validating the integrity of code or files. While the latter are usually invariable,
data is dynamic and may constantly change. As a result, detecting modifications alone
is no longer sufficient to detect malware infections. Instead, the changes conducted to a
data structure must be validated. How this can be accomplished in practice depends
on the data structure as well as the application that uses it. That is, data integrity
validation is in general application specific.

Existing data-integrity checkers are primarily focused on the OS kernel. Petroni et
al. [115] were the first to propose a general architecture for the detection of kernel data
integrity violations. Since then various systems have been proposed that try to detect or
prevent malicious modification of kernel data structures [19, 57, 79, 127, 134]. However,
what is common to all these approaches is that they only enforce integrity checks, but
leave the creation of the actual integrity constraints to a human expert. To the best of our
knowledge, the only approach that tries to generate integrity constraints for kernel data
structures automatically is Gibraltar [7]. While this approach provides a good starting
point and could support a human expert in the creation of integrity constraints, the
authors acknowledge that the generated invariants are “neither sound nor complete” [7].

2.4.2.5 Hook-based Detection

The final detection approach that we want to consider is hook-based detection. On close
examination hook detection is actually a form of integrity-based detection. However, due
to the importance of the method, we cover it in a subsection of its own.

The fundamental idea behind hook detection is that malware must in general intercept
events within the system to able to fulfill its purpose as has been described in Sec-
tion 2.1.4.2. Event interception, however, requires malware to divert the control flow of
the infected system at runtime. To achieve this, malware must install hooks in the system
that facilitate the required control flow transfer on behalf of the malware whenever the
desired event occurs. Instead of detecting the malware itself, hook detection aims to
find these hooks within the system to identify malware infections. In the following, we

57

(2]
c
.9
+—
)
e
c
=
(@]
LL

2 Foundations

will first discuss the topic of malware and hooking in more detail, before we present an
overview of existing hooking mechanisms.

Malware and Hooking. Petroni and Hicks [116] estimated that about 96% of all
rootkits require hooks within the system to function. Intuitively, this makes sense: since
the sole purpose of rootkits is to provide stealth, they have to hide all signs of an infection.
While existing structures can be hidden using techniques such as direct kernel object
manipulation (DKOM) [152], hooks enable rootkits to react to changes occurring at
runtime. Consider, for instance, that a hidden process creates a new network connection
or a child process. Naturally, a rootkit must also hide such newly created objects to
achieve its goal. This, however, requires a rootkit to be notified of the occurrence of such
events. Hooks solve this problem by enabling a rootkit to install callback functions in
the system. This makes them an integral part of rootkit functionality.

In practice, rootkit functionality is often mixed with a variety of malicious payloads.
According to a report by Microsoft released in 2012 [52], “some of the most prevalent
malware families today consistently use rootkit functionality”. The primary reason for
this is that the single purpose of a rootkit is to avoid detection. Consequently, it is
not a big surprise that the techniques formerly only found in rootkits are increasingly
being adapted by malware. Since rootkits require hooks to function, this, however, also
implies that any malware based on rootkit functionality will require the same. Hooks
thus present an apparent place for malware detection.

Existing Hooking Strategies and their Detection. In general, we can distinguish
between two different types of hooks: code hooks and data hooks [174, 184]. Code hooks
work by directly patching the application’s code regions: wherever the attacker wants
to redirect the control flow of the application, she overwrites existing instructions with
a branch instruction. As a result, the control flow of the application is diverted every
time the execution passes through the modified instructions. Since code hooks modify
existing instructions, however, they can be detected using code-based integrity checking
as has been described in the last section.

Instead of modifying code directly, data hooks target persistent control data (i.e. func-
tion pointers) within the application. By modifying control data, the attacker is able
to divert every control transfer that makes use of the modified data. For example, the
most straightforward method for intercepting the execution of system calls is to modify
function pointers within the system call table.

To counter the threat of data hooks, researchers proposed various systems that attempt
to protect function pointers within an application (e.g [19, 81, 116, 174]). As in the
case of data-integrity checking, most of the existing approaches thereby focus of the
protection of function pointers within the kernel. In general, this is accomplished by
ensuring that every function pointer points to a valid function according to the kernel’s
CFG. Petroni and Hicks [116] leverage such an approach, for example. In particular,

o8

2.5 Summary

they implemented a monitor that periodically validates all function pointers within the
kernel’s memory region. To obtain all function pointers, the monitor traverses the graph
of all kernel objects by starting from the global variables and repeatedly following all
pointers contained in the objects that it reaches. In the process, the monitor also extracts
all function pointers contained within the objects it discovers along the way and verifies
that each of them points to valid function. Once a validation is complete, the monitor
starts the whole process anew.

2.5 Summary

This chapter laid the foundation that we require to address the research questions of
this thesis. To determine whether data-only malware represents an equally realistic and
powerful threat as traditional malware, we have to compare both malware forms. For this

purpose, provided an overview of traditional malware and identified its key properties.

In the process, we established that the dependencies of a malware form could be the key
for its detection.

Next, we considered the second cornerstone for our in-depth analysis of data-only
malware in Chapter 3: code reuse techniques. The main idea behind these approaches

is to perform computations by combining existing instructions into a new program.

The execution of this program is thereby controlled by a data structure which contains
pointers to the instruction sequences that should be reused. By exploiting specific
hardware or software features, the individual sequences can be connected in such a way
that each sequence initiates the execution of the next. While this approach enables an
attacker to perform complex computations without introducing code, the computational
ability of code reuse ultimately depends on the instructions that the target application
inherently provides. Consequently, code reuse techniques are another important aspect
that must be considered to fully answer the question raised above. In addition, the
hardware or software feature that a technique exploits in order to perform computations

can simultaneously provide a basis for detection mechanisms, as we will see in Chapter 7.

From code reuse, we then moved to virtualization. In particular, we introduced VMI,
which, due to its strong security guarantees, would provide an ideal platform for malware
defense, if it were not for the semantic gap problem. Having detailed the capabilities of
the technique, we thus discussed three approaches (in-band delivery, out-of-band delivery,
and derivation) that can be used to bridge the semantic gap as well as their advantages
and disadvantages. We will employ this information to create a VMI-based framework
for malware detection and removal in Chapter 6.

Lastly, we provided an overview of important malware protection and detection
mechanisms, which will allow us to analyze the effectiveness of existing defenses against
data-only malware in Chapter 4.

With this information in mind, we can now address our first research question and
determine the capabilities and limitations of data-only malware.

99

(2]
c
.9
+—
)
e
c
=
(@]
LL

Chapter

Data-only Malware

The key idea behind data-only malware is to perform computations by combining existing
instructions into a new malicious program. This is achieved by applying code reuse
techniques to the problem of malware creation. While this approach enables the malware
form to evade all code-based detection approaches, the question arises whether data-only
malware constitutes as equally realistic and powerful a threat as its predecessor, given
that it relies on code reuse to function. To answer this question, we will in this chapter
determine the capabilities and limitations of data-only malware. For this purpose, we
will perform a detailed analysis of the malware form based on the properties we identified
in Section 2.1. In the process, we show that data-only malware is not only able to
achieve all of the key properties of traditional malware, but even surpasses its traditional
counterpart in terms of its level of stealth and its ability to evade detection. To prove
the practicability of the approach, we will additionally provide detailed proof of concept
(POC) implementations of sophisticated data-only malware that are capable of infecting
current systems in spite of the numerous protection mechanisms that they employ. In
our analysis, we will thereby discuss many previously unconsidered aspects of data-only
malware, which are essential for the understanding of this malware form, but even more
so for the development of countermeasures against it.

Chapter Outline. We begin by providing a definition for data-only malware, discussing
the core challenges of its creation, and explaining the infection mechanisms that it
can leverage in Section 3.1. Having discussed the fundamental principles behind the
creation of data-only malware, we cover the three types of data-only malware that exist

starting with the most simplistic type, “one shot data-only malware”, in Section 3.2.

While powerful in theory, this malware type faces the crucial constraint that it can
neither react to events nor infect a system permanently. This finding will lead us to the
discussion of persistent data-only malware and resident data-only malware in Section 3.3
and Section 3.4 respectively, which overcome these shortcomings. In Section 3.5 we then
move from theory to practice and prove the validity of our considerations by providing

61

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

POC implementations of sophisticated data-only malware. Having discussed data-only
malware in theory and practice, we conclude our analysis by comparing data-only malware
with traditional malware in Section 3.6. In the process, we discuss the computational
abilities of data-only malware, its level of stealth, its environment dependencies, and
the applicability of signature evasion techniques such as encryption, polymorphism, and
metamorphism. Finally, we summarize the chapter in Section 3.8.

3.1 Fundamentals

In this section, we cover the fundamental principles behind data-only malware. Before
we can go into details on the creation of data-only malware, however, we first have to
provide a definition for the malware form.

3.1.1 Definition & Differentiation

Data-only malware can essentially be seen as a malicious data-only program written in a
code reuse language. The key property that thereby distinguishes data-only programs
from traditional programs is that the former do not modify the codebase of a system.
Consequently, to be able to provide a definition for data-only malware, we first have to
specify what we actually mean by the term codebase:

Definition (Codebase). The codebase of a system consists of all intended instruction
sequences residing within volatile or non-volatile storage that can be executed by the
underlying hardware.

Note that this implies that the codebase of a system is not fixed, but may change
over time (e.g. when a new program is downloaded from the Internet). Following this
definition, we will from here on refer to any data that is part of the codebase as “code”,
while we refer to all remaining data as “data”. Based on our notion of codebase, we can
now provide a definition for data-only malware:

Definition (Data-only Malware). Data-only malware is a program specifically designed
to disrupt or damage a computer system without changing or extending its codebase.

As the astute reader may have noticed, this definition of data-only malware is an
extension of the definition of malware, which is commonly referred to as “software which
is specifically designed to disrupt or damage a computer system” [123]. It contains three
crucial aspects about data-only malware. First of all, data-only malware does not change
or extend the codebase of a system. To accomplish this, data-only malware must solely
consist of data. A crucial property of this class of malware is therefore that the IP never
points to anything introduced by the malware itself.

Second, data-only malware is a program. That is, data-only malware consists of instruc-
tions for some form of machine, which enables the malware to perform computations [124].

62

3.1 Fundamentals

This computational ability is what distinguishes data-only malware from plain malicious
data. For example, consider data that purposefully crashes an application because it
overflows a buffer and overwrites critical data of the application. Clearly, this data
disrupts the normal operation of the system, but to qualify as data-only malware it must
also provide the capability to perform computations without changing or extending the
codebase.

Data-only malware achieves this by reusing the instructions of other applications. This
leads to the third important observation about data-only malware: the malware form
cannot exist on its own. Instead, data-only malware always requires a host application,
whose instructions it can leverage, to function.

3.1.2 Core Implementation Challenges

Data-only malware is a data-only program. As in the case of a traditional program,
the lifecycle of a data-only program can be divided into three stages: the loading stage,
where the program is loaded into memory, the ezxecution stage, where the program is
executed, and the cleanup stage, where the leveraged resources are freed after the program
terminated. However, while the OS sets up and supervises each of these stages for a
traditional program, the realization and management of these stages must be conducted
by the data-only program itself in the case of data-only malware. Whenever we want to
implement data-only malware (or any other data-only program for that matter), we thus
must find a way to realize each of these stages. In the following, we will describe each of
the stages and the challenges it faces in more detail.

Challenge A: Loading and Storing the Data-only Program. Before a program can
be executed, its code region must be loaded into memory. The equivalent of a code
region in the case of data-only malware is the control structure. Consequently, one
major challenge of data-only malware is to load this control structure and any other
data required by the malware into memory and to safely store it during its execution.
This requires that the infected application provides some functionality to move external
data into memory. Hereby, it is essential that the memory that is used by the routine to
store the data is large enough to contain the necessary control structure. In general, the
control structure requires significantly more space than traditional shellcode.

Challenge B: Starting the Data-only Program. Besides loading the data-only pro-
gram, it must also be started. That is, the virtual IP must be set to the control structure
and its execution must be triggered. This step is comparable with setting the IP to the
code region of traditional malware and essentially is what starts the actual execution of
the data-only malware. How this is accomplished heavily depends on the location where
the control structure resides (Challenge A) and the code reuse mechanism that is used.
In the case of ROP, for example, the SP must first be set to point to the control structure

63

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

in memory and the control structure must then be activated using a ret instruction.
Finding a instruction sequence that achieves this is often a difficult task.

Challenge C: Restoring a Valid Execution Path. Data-only programs require the
instructions of a host application to function. At some point during the execution of the
host, the data-only program must be loaded into memory (Challenge A) and the virtual
IP must be set to the entry point of the control structure (Challenge B). Achieving
this requires the attacker to modify the state and the control flow of the host. For
instance, to execute a ROP chain we must place the chain on the stack and execute a
ret instruction. After the execution of the data-only program, we must restore a valid
state and a valid control flow of the host to avoid side effects such as crashing the host
application. Consider a data-only program that is loaded using a vulnerability in kernel
space, for example. If the program does not restore a valid kernel control flow path after
its execution, there is a good chance that the system will crash. Consequently, when
designing data-only programs, one must not only consider the loading process of the
control structure, but also the cleanup stage.

While we face a similar problem in the case of traditional malware (e.g. a virus that
modifies its host in order to run), we can leverage arbitrary instructions to backup and
restore any part of the hosts state in this case. For instance, we can easily preserve
registers by pushing them on the stack and restoring them at the end of the execution.
In the case of code reuse techniques, however, we have to find a gadget for each action
that we want to perform, which makes this task naturally a lot more difficult as we can
only work with the instructions that the host provides.

3.1.3 Infection Mechanism

One of the first questions that arises when we consider data-only malware is which attack
vectors the malware can use to infect a system. Similar to traditional malware, data-
only malware can make use of a vulnerability-based infection approach and a file-based
infection approach. In the following, we will consider both infection mechanisms in more
detail.

3.1.3.1 Vulnerability-based Infection

As code reuse techniques originally stem from the field of exploitation, vulnerabilities
represent an obvious attack vector for data-only malware to infect a system. In fact,
the techniques used by exploits can often be directly applied to load (Challenge A) and
execute (Challenge B) data-only malware. The main difference arises in the following
stages, where exploits in general make use of code, while data-only malware solely relies
on code reuse.

How a vulnerability-based infection process is conducted in practice, heavily depends
on the vulnerability that is exploited. Nowadays exploits are often quite complex, consist

64

3.1 Fundamentals

of multiple stages, and may require the combination of multiple individual vulnerabilities
(e.g. control flow modification and privilege escalation) to succeed. We will provide a
concrete example of a vulnerability-based infection process in Section 3.5.3.

3.1.3.2 File-based Infection

The second infection process that we want to consider within this thesis is file-based
infection. Since there has, to the best of our knowledge, not been presented a file-based
infection approach for data-only malware so far, we will consider this attack vector and its
challenges in more detail. For the sake of simplicity, we will thereby focus on a file-based
infection mechanism that employs an ezecutable to infiltrate the system.

While file-based infection is in principle a very simple infection mechanism, realizing
it solely based on data is a lot more difficult than in the case of traditional code-based
malware. The main problem thereby lies in the loading (Challenge A) and activation
(Challenge B) of the control structure. To see this we have to take a closer look at the
loading process of an executable.

When a executable is started, it is first processed by a special program referred to as
the loader. The purpose of the loader is to conduct all steps that are necessary to prepare
the executable for its execution. As we discussed in Section 3.1.2, before a program can
be executed its code and data regions must be placed into memory. In the first step, the
loader thus allocates memory regions for the code and data regions of the executable
and loads them into memory. Once this has been accomplished, the loader will update

any address within the executable that depends on the a base address of another section.
Consider a global variable, for example, that is accessed by a function of the program.

Since the virtual address of this global variable depends on the base address of the data
section, which is placed into memory by the loader, it is unknown at compile time. As
a consequence, the loader must patch the correct address of the variable into the code
section, once the code and data sections have been transferred into memory and the final
location of the global variable is known. This process is referred to as relocation.

Besides using internal symbols such as the global variable from the last example, a
program may also use external symbols such as functions from an external library as
the libc. Therefore after relocation, the loader must also resolve any external symbols
that the executable requires to function. This task is referred to as symbol resolution
and essentially requires the loader to load any file into the virtual address space of the
executable that is used by it. Finally, after relocation and symbol resolution have been
completed, the loader can invoke the entry point of the executable in memory to start
the execution of the actual program, which completes the loading process.

In the case of code-based malware, an attacker could thus simply modify the code
section of the executable she wants to infect. As a result, the loader would load the
manipulated code into memory and execute it similar to a benign program. Loading
(Challenge A) and executing (Challenge B) the malware is straightforward.

Now consider that we want to accomplish the same using data-only malware. While

65

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

we can also modify the data section of an executable to contain the data-only program,
this will only place the malware into memory (Challenge A), it will, however, not trigger
its execution (Challenge B). To achieve the latter, we must find a code sequence within
the executable that activates the control structure. In the case of ROP, for instance, this
implies that we must find a stack pivot sequence that sets the SP to our control structure
and executes a ret instruction. Whether such a stack pivoting sequence exists, depends
on the executable though. Additionally, even if such a sequence would be contained in
the executable, how can we actually use it, if we do not know the address of the code
region beforehand? Since the code region is loaded into memory by the loader, the final
location of it is unknown until the loading process occurred, especially if protections such
as ASLR are used. However, to employ a file-base infection approach we must attach the
data-only program to a file before it is loaded leading to a “chicken and egg” problem.

Taking these problems into consideration, it becomes quite clear why there has not
been presented a file-based infection approach for data-only malware so far. There is,
however, an elegant solution: we can leverage the loader to load and start our data-only
program at runtime. While the specifics of this approach depend on the file format that
is used (e.g. ELF), the general idea behind this approach is as follows: as previously
described the loader must perform relocation and symbol resolution to prepare a program
for its execution. To conduct these steps the loader makes uses of management structures
within the executable that specify what locations within the executable must be updated
in what way. Since the loader can resolve any internal and external symbol, we can
abuse it to construct the data-only program. To accomplish this we will manipulate the
management lists used by the loader in such a way that it will first resolve the address
of the gadgets we require and then write them to a predefined memory area. This will
effectively construct our data-only program at a specified memory location at runtime.
We will present a concrete example of such a file-based infection mechanism for the Linux
ELF file format in Section 3.5.2.

While in principle any program that is involved in the execution of a binary can be
abused for a file-based infection process, abusing the loader for this purpose leads to
multiple advantages. First of all, since the loader is able to resolve arbitrary addresses,
we can leverage any external symbol we want. This allows us to not only use gadgets
from the infected executable, but from any library of the system. Second, a file-based
infection process based on the loader will not just work for a single executable, but
potentially for every executable it loads. Consequently, the proposed approach is not
only powerful, but also widely applicable.

3.1.4 Prerequisites

Based on the observations we made throughout this section, we can state the prerequisites
that must be fulfilled for the successful infection and execution of data-only malware.
First of all, not every executable or vulnerability is suited for the execution of data-only
malware. Instead, there are specific constraints that must be fulfilled. Most importantly,

66

3.2 One Shot Data-only Malware

the executable or the vulnerability must allow the attacker to control the IP. This is

important as the attacker cannot introduce code, yet needs to modify the control flow.

In general, this is done by careful manipulation of the IP. For example, in ROP this
is achieved by constructing a control structure with pointers to gadgets. If the control
structure is properly constructed, the functionality of the ret instruction can be leveraged
to control the execution flow. However, before this structure can be used, an attacker
must find a way to set the SP to its location. For the general case of data-only malware,
this therefore implies that the infection process must not only provide control of the IP,
but must also enable the attacker to activate her control structure (Challenge B).

In addition, the infection mechanism must provide the attacker with the ability to
transfer the required control structure into memory (Challenge A). This requires that
the host application provides some functionality to move attacker controlled data into
memory. The memory area that is controlled by the attacker must thereby be large
enough to contain the control structure.

Lastly, the host program must provide the instruction sequences (i.e., gadgets) that
are necessary to implement the functionality of the data-only malware. This leads to the
following prerequisites for data-only malware:

Instructions The victim’s system must contain the instruction sequences that are
required to implement the malware’s functionality. In general, this implies
that the data-only malware requires a specific host application to be
running on the victim’s system whose instructions it can leverage to
implement its own functionality.

Infection The victim’s system must provide an infection point: either a file that can
be manipulated to start the execution of the malware or a vulnerability.

Memory The infection mechanism must provide a mechanism to load the required
control structure into memory.

Control The infection mechanism must provide the attacker with control of the
instruction pointer (IP) and enable her to activate the control structure.

3.2 One Shot Data-only Malware

Having discussed the fundamental principles behind data-only malware and the infection
mechanisms it can leverage, the question arises which in-memory strategies are available to
this malware form and whether it can achieve persistence and residence (see Section 2.1.4.2
and Section 2.1.4.3 respectively). To discuss these properties, we will throughout the
next three sections consider three basic types of data-only malware that each exhibit one
of the properties: one shot data-only malware, persistent data-only malware, and resident
data-only malware. We begin with the simplest type: one shot data-only malware.

67

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

In its simplest form data-only malware is neither persistent nor resident, but instead
solely leverages a direct-action approach. In this case the malware essentially consists of
a single data-only payload that is executed once, performs the desired action, and exits.
This is why we refer to this malware form as “one shot” (data-only) malware. While one
shot malware does not have a very sophisticated design, it is the data-only malware form
that has been studied most commonly in the limited research available.

Since one shot data-only malware is not persistent, it does not permanently change
the control flow of a system. Instead, actions are performed by executing an infected
executable or exploiting a vulnerability over and over again. At its heart, one shot data-
only malware thus consists of a loading stage that can handle different data-only programs.
Each action that the malware supports is implemented as an individual program. To
execute a particular action, the loading stage is triggered using the corresponding program.
While one shot malware can thus provide multiple different functionalities in the form of
different programs, the execution of a particular functionality requires the reexecution of
the entire malware. Hereby, the execution of the malware must always be triggered by
an external entity. Since one shot malware is neither persistent nor resident, it can never
trigger its own execution.

While one shot data-only malware can in theory use a file-based infection approach for
the loading stage, the one shot malware that has been presented so far exclusively uses
a vulnerability-based infection approach. Certainly, one of the main reasons for this is
that implementing one shot malware using a vulnerability is straightforward. Essentially
all that an attacker requires is an exploit that can handle arbitrary data-only payloads.
Modifying an existing exploit to support this feature is generally easy. To show this, let
us reconsider the core problems of data-only malware that we identified in Section 3.1.2
and analyze how they can be solved in the context of one shot data-only malware. In the
process we assume that we already have a control flow modifying exploit at our disposal
that we want to use as a basis for our attack.

Challenge A: Loading and Storing the Data-only Program. The exploitation of a
control flow modifying vulnerability requires the attacker to have the ability to load a
control structure or shellcode into memory. After all, she must be able to execute her
own code. Therefore the attacker can simply reuse the loading mechanism of the exploit
for the implementation of the one shot data-only malware. The only problem that might
occur is that the control structure of data-only malware usually requires more space than
an optimized shellcode. However, this issue can be solved with the help of a multi-staged
loading process. In this case, the attacker makes use of a small and optimized control
structure which will upon execution load a larger control structure.

Challenge B: Starting the Data-only Program. Since most applications nowadays
are protected by mechanisms such as W & X, exploits in general also have to use code
reuse mechanisms during the first stage of the exploitation. Consequently, the attacker

68

3.3 Persistent Data-only Malware

will in many cases be able to simply reuse the activation mechanism of the exploit for
the activation of the one shot data-only malware. Otherwise, if the exploit is capable
of directly executing code, there is from a practical point of view no need for a loading
process that is based on code reuse techniques in the first place. Instead, the attacker
could simply use code to load the one shot malware into memory and to start its execution.

Challenge C: Restoring a Valid Execution Path. Once the payload has been executed,
an exploit must in general restore a valid execution path. While it is possible to simply let
the exploited application crash (given that it is not critical for the health of the system),
this may lead to suspicious entries in the log files of the attacked system, which should
be avoided. If the assumed exploit restores a valid execution path, this mechanism can
directly be reused by the one shot data-only malware similarly to the aforementioned
challenges. Otherwise the attacker has to find a way to restore a valid execution path
and add it to the end of the payload. A well-known mechanism that is often used to
achieve this in the case of exploitation is to restore the original execution path. To do
this, the attacker simply returns to the original intended location within the application
that would have been invoked if the vulnerability had not been exploited.

Conclusion. The core challenges of one shot data-only malware which uses vulnerability-
based loading stage are very similar to the challenges that we face in traditional ex-
ploitation. In fact, vulnerability-based one shot data-only malware can be seen as an
exploit with a sophisticated payload. This is why it is often simple to leverage existing
exploits for the creation of one shot data-only malware. One shot data-only malware is a
natural extension to traditional exploitation. Persistent and resident data-only malware
is, however, much more difficult to realize as it significantly differs from the problems we
encounter in traditional exploitation. As does a file-based infection approach.

The reason that data-only malware has mostly been non-persistent so far is that it is
very difficult to achieve persistence without introducing any code. In the next section we
will take a closer look at the challenges involved and how one might overcome them.

3.3 Persistent Data-only Malware

As described in Section 2.1.4.2; persistence is a crucial property that many malware
forms require. Upon initial consideration, it seems unlikely that persistence is possible
without the introduction of code. In fact, some researchers dismiss the possibility of
persistent data-only malware entirely [128], while other researchers have speculated that
it is possible, but did not manage to actually implement it [24]. In this section, we will
show that persistent data-only malware is, indeed, possible and will provide a concrete
architecture for its implementation.

In contrast to one shot data-only malware, persistent data-only malware is capable of
permanently altering the normal control flow of a software system. Loading the malware

69

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

is achieved by executing a manipulated binary (file-based infection) or by exploiting
a vulnerable program (vulnerability-based infection) once. This infection process has
essentially two stages. The first stage is the initialization stage. During this stage the
iitialization control structure is executed, which performs the bootstrapping of the
malware. In particular, the initialization control structure is responsible for placing the
hooks, which will later trigger the execution of the malware, and the loading of the
persistent stage. This persistent stage then implements the persistent functionality of the
malware. While this sounds very straightforward, there are several challenges that one
must overcome in order to be successful. These are described in the following section.

3.3.1 Challenges

Persistent data-only malware faces four fundamental challenges that are directly related
to the three core implementation challenges that we identified in Section 3.1.2. However,
before we describe these challenges in more detail, it is important to separate the
challenges faced in the initialization stage and the challenges faced in the persistent
stage. As it turns out, the initialization stage must face the same challenges that one
shot data-malware faces. The reason for this is that the initialization control structures
essentially performs all the tasks that are necessary to prepare the execution of the
persistent stage. For this purpose it is executed once during the initialization stage of
the persistent data-only malware. It is therefore comparable to a payload of one shot
data-only malware. Since the challenges of one shot data-only malware have already
been detailed in the previous section, we will in this section only consider the challenges
that the persistent stage faces. That is, the challenges that have to be overcome before,
during, and after the execution of the persistent stage. Consequently, in the following,
we will assume that the initialization control structure of the malware has already taken
control of the system and now prepares the execution of the persistent stage.

3.3.1.1 Finding a Suitable Memory Location

First, a memory location must be located that can contain the persistent control structure
of the malware (Challenge A). In contrast to the case of non-persistent data-only malware,
it is essential that this memory location is exclusively owned by the malware itself in
order to avoid the control structure being destroyed during the normal execution of the
infected program. The problem arises since the persistent control structure is not just
executed once as in the case of one shot data-only malware, but every time a hook is
invoked. As a result the stack is usually not suited for such a task. Instead, a memory
area must either be reserved within the system or an existing unused memory area can
be occupied. The latter is, for instance, possible if the infected application does not make
full use of a data region that has been allocated to it. Finally, care must also be taken
that this memory location is never deallocated after the initial stage has taken place.

70

3.3 Persistent Data-only Malware

3.3.1.2 Protecting Against Overwrites

Second, the persistent control structure has to be protected against overwrites (Chal-
lenge A). If the control structure is modified in an uncontrolled way, it is very likely
that the malware will malfunction on the next execution. Notice that finding a memory
location that is exclusively owned by the malware as described in the previous challenge,
is not enough to guarantee that the persistent control structure is not overwritten. In
the case of ROP, for instance, we have to set the SP to point to the persistent control
structure to execute it. If another thread of execution interrupts our control flow and
tries to make use of the stack before we finish, it could overwrite gadgets of the persistent
chain that have been executed before we were interrupted.

In general, there exist two possible types of overwrites: self-induced and interrupt-
induced. The former refers to overwrites that are triggered by the malware itself. As
an example, consider a call instruction that is part of a gadget used within a ROP
chain. This instruction will essentially push the return address on the stack and then
transfer control to the location specified by its operand. Since the SP points to the
control structure, the call instruction will overwrite parts of it by pushing the address. In
fact, the push will, in many cases, overwrite the address of the gadget that contains the
call as shown in Figure 3.1. This is due to the fact that the address of the gadget that
is currently executing (A in Figure 3.1) usually resides directly before the current SP.

While self-induced overwrites have to be kept in mind when designing persistent
data-only malware, they can be avoided by carefully selecting the gadgets that are
used to implement its functionality. Interrupt-induced overwrites on the other hand,
are overwrites that are triggered by an external event and can therefore not simply be
avoided. Instead, the malware must be designed to protect itself against these overwrites.
Due to the fact that interrupts are very frequent events, it is very likely that persistent
kernel malware is interrupted during its execution and an interrupt handler is invoked.
This interrupt handler may, amongst other things, make use of the current stack during
its execution. In the case of ROP this means that the part of the control structure that
resides before the current SP may be overwritten.

The types of overwrites that can occur heavily depend on the technique that is used to
to implement the malware (e. g., ROP) and its functionality. Interrupt-induced overwrites,
for instance, usually only occur within kernel space, but not in user space.

3.3.1.3 Resuming the Original Control Flow

Third, since the persistent stage of the malware is invoked by a function hook, we have to
make sure execution continues normally after the malware has run (Challenge C). This is
due to the fact that the execution path, which led to the invocation of the hook, will most
likely expect a result from the original function that was replaced by the malware. This
result has to be provided by the malware. Otherwise, if the malware would simply try to
gracefully terminate the execution path (e.g., by returning to the main function), certain

71

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

H EBX ECX
Register | 02a | 3
EAX EIP (before CALL) EIP (after CALL)
0x563 A+ 0x3 B
acC acC
before CALL ECX after CALL ECX
Gadgets OXFFFF OXFFFF
A: ADD EAX,EBX;
A+0x3: CALL ECX; Address of next gadget Address of next gadget
A+0x6: MOV EAX,EBX: 8 . ESP A+ 0x6
& ! ESP
B: POP ECX; — B (ECX) . B (ECX)
Soarm A
G POPEAX: 0x2a (EBX) E E 0x2a (EBX)
C+0x2: POP EBX; 0x539 (EAX) Y R 0x539 (EAX)
SO 1 T
0x0 0x0

Figure 3.1: Self-induced and interrupt-induced overwrites in the case of ROP. To visualize
self-induced overwrites, the picture shows the state of the machine before and
after the execution of the CALL ECX instruction at address A + 0x3. Interrupt-
induced overwrites are displayed using the bars next to the stack, since they
could overwrite any value before the current SP. The ROP chain that is shown
uses three different gadgets to load two immediates into EAX and EBX, add
their values, and store the result in EAX.

code paths would never be executed, which will lead to a reduction in functionality and
in the worst case a system crash. This is especially a problem for kernel space persistent
data-only malware, where a failure to restore a valid execution path, will in most cases
crash the entire system.

To be able to continue the original execution path, persistent data-only malware must
be careful to not overwrite register or memory values during its execution that it might
need later on to resume the execution path. This essentially requires that the persistent
stage backs up important registers/memory locations before it makes use of them, unless
the malware can predict/infer their values. Additionally, the malware must restore the
original values before it hands back the execution.

3.3.1.4 Activating the Control Structure

Fourth and more importantly, a mechanism or specific instruction sequence must be found
that activates the persistent control structure when a hook is invoked (Challenge B). If
we once again consider ROP as an example, it is not enough that the IP is manipulated

72

3.3 Persistent Data-only Malware

through an overwritten function pointer, but we must also manipulate the system in a
way such that the SP points to the beginning of our persistent ROP chain. Since this
chain is stored somewhere in memory (not on the stack) the first instruction sequence
that is executed on behalf of the malware when the function hook is invoked must modify
the SP to point to the ROP chain. That is, it must switch the stack. This switching
sequence is a requirement for a persistent data-only malware. Notice that the switching
sequence must in general be a sequence of continuous instructions. As we do not yet have
control over the SP at this stage it is very difficult to build a chain of multiple gadgets.
Setting the SP to a specific value under these conditions is quite challenging.

At first glance, it seems as if the previously described challenge is the same challenge
that we face in a data-only exploit. In this case we also need to find a way to activate our
control structure, which for ROP means that we have to point the SP to our volatile stack
as described in Section 2.2.1.2. However, while the problems are related, the scenarios in
which we try to solve them are very different. To see this, lets us briefly compare the
machine state in both situations.

In the case of a traditional ROP exploit, we usually have a very solid understanding
of the state that the machine will be in when our exploit is triggered. For instance,
consider an exploit that overwrote the saved IP on the stack. When the vulnerable
program tries to return to this address, attacker controlled code will be executed. Since
we overwrote the return address of a particular function, we know which functions will be
executed before the overwritten return address is used. Due to the deterministic nature
of these functions, we are able to gather a lot of information about the machine state.
In particular, we will know the layout of the stack and the data types of the general
purpose registers and the local and global variables, which will allow us to use techniques
such as “ret2reg”. In the case of a traditional stack-based overflow, we can even simply
place our ROP chain on the stack by writing past the saved return address.

In contrast to this, consider persistent data-only malware which is invoked by a hook
placed somewhere within the system. Depending on the location of the hook, there might
be dozens of execution paths that lead to the invocation of the hook. In general, we will
therefore not be able to make any assumptions about the stack or the general purpose
registers. In short, the only register whose value we can predict when the hook is invoked
is the IP. Since we only control the IP, but have not yet activated any control structure,
we will only be able to use a single gadget to switch the stack. This is the worst case
scenario that we described in Section 2.2.1.2. However, in this case we neither control
another register nor a buffer on the stack. Consequently, we cannot simply use common
stack pivot gadgets such as the one presented in Section 2.2.1.2. Activating our persistent
control structure in this situation is a difficult problem. What is even more, we will need
to find a way to conduct the stack switch without corrupting register or memory values
that are needed later on. After all we must hand back the execution to the previous
function after we have handled the hook in order to avoid any side effects on the system
as has been described in the previous section. This is also not the case for traditional
exploits, where a graceful exit is in general enough to avoid a crash of the system.

73

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

An ideal initialization sequence for a ROP-based piece of malware on the x86 architec-
ture might look as follows:

Listing 3.1: An ideal stack switching gadget.

1 mov eax, esp ; store the current ESP in EAX
2 mov esp, &control_structure ; move control structure address into ESP
3 ret ; trigger the control structure

However, it is obviously very unlikely that such an instruction sequence exists. In the
following section, we discuss hardware and software-based solutions that can be used to
manipulate the SP when a hooked function is called for a ROP-based approach.

3.3.2 Hardware Mechanisms

All of the following hardware-based mechanisms require the highest privilege-level to use
them. Therefore these mechanisms are mainly of interest for attacks on the kernel.

3.3.2.1 The Sysenter Instruction

The sysenter instruction was introduced by Intel with the Pentium-II processor as a
replacement for the interrupt-based system call mechanism. Since sysenter fulfills all
the tasks that are required for a switch from a lower privilege level to the highest privilege
level without intermediate table look-ups, it is much faster then the previously used
interrupt-based system call invocation [64]. As a result, all modern OSs support the use
of the sysenter instruction as a alternative to interrupt-based system calls.

Internally, sysenter relies on three model-specific registers(MSRs) to perform a context
switch from a lower privilege level to ring 0. Namely these MSRs are:

IA32_SYSENTER_CS Defines the target code segment that will be used after the

context switch.

IA32_SYSENTER_EIP Holds the IP that will be used after the context switch
occurred.

IA32_ SYSENTER_ESP Holds the SP that will be used after the context switch.

By carefully manipulating the TA32_SYSENTER EIP and the IA32_SYSENTER _ESP MSRs,
an attacker can control both the SP as well as the IP. In order to leverage this approach
to place hooks within the system, the malware would first need to set the appropriate
MSRs to point to the malware’s persistent control structure (SP) and the first gadget
(IP). The hook itself then needs to point to a sysenter instruction within memory. As a
result, every invocation of the hooked function would transfer the execution control to
the malware.

A problem with such an approach is that the current SP is not saved anywhere and is
simply overwritten. Therefore extra steps must be taken to restore the original SP after

74

3.3 Persistent Data-only Malware

the malware executes. How this is achieved heavily depends on the particular hook and
OS used.

Finally, it may seem that such an approach would break the original system call
mechanism, however this need not be the case. First, it is often the case that 64-bit OSs
prefer to use yet a third mechanism for implementing system calls, namely the syscall
instruction. In this case, we need not worry as the sysenter-based mechanism is not in
use anyway. On the other hand, if the host does make use of the sysenter instruction,
the malware must simply handle this case and determine whether the call to our hook is

the result of a “real” system call or the result of a function hook and react appropriately.

In the case of a “real” system call, the malware simply needs to hand control to the
system call dispatcher.

3.3.2.2 The Task State Segment

Although the feature is not used by most modern OSs, the x86 architecture provides a
hardware mechanism for performing context switches between processes. For this purpose
there exist so-called task-state segment (T'SS) descriptors, which are part of the global
descriptor table (GDT). By invoking a TSS descriptor, an attacker can load a completely
new execution context. Consequently, persistent data-only malware can make use of this
feature to control the IP as well as the SP during the invocation of a hook. To achieve
this, the malware must first set up a T'SS descriptor and then point the function hook
to an instruction sequence that invokes this descriptor. A far jump to the descriptor is
often used for this purpose! (jmp <tss_desc>:0x0000).

When the hook is executed the machine will then use the TSS descriptor to perform
a “context switch” to the malware. During this process the hardware will first save the
value of all general purpose registers in the TSS descriptor of the current task, before
setting them to the values stored in the just activated TSS descriptor. This allows the
malware not only to load a completely different execution context, but also enables it to
easily access and restore the old execution context.

While this approach is very powerful, it is restricted to 32-bit systems. On 64-bit
systems the x86 architecture no longer supports the above described context switching
feature. However, while context switching has been disabled, a new mechanism has been
introduced to the TSS that similarly allows an attacker to control the SP, the Interrupt
Stack Table (IST). The IST is essentially a table of pointers, where each pointer contains

the address of a memory region that can be used as stack region by an interrupt handler.

This mechanism allows the kernel to individually assign a stack from the IST to each
interrupt handler.

In the x86 architecture, interrupt handling is based on the IDT. The IDT contains
an interrupt-gate descriptor for each individual interrupt. Amongst other things this
descriptor specifies the address of the interrupt handler that should be invoked. Whenever

!The interested reader can find an overview of other possible sequences in Section 7.3 of the Intel
Software Developer’s Manual 3A [64].

75

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

an interrupt occurs, the number of the interrupt is used as an index into the IDT. Based
on the number of the interrupt, it is therefore possible to obtain its corresponding
interrupt-gate descriptor, which in turn specifies the address of the interrupt handler.

Besides the address of the interrupt handler, the interrupt-gate descriptor also contains
an index into the IST. Should this index be greater than zero, the hardware will load
the address contained within the specified IST entry into the SP, before invoking the
interrupt handler. In addition, the machine will push the old value of the SP and the IP
as part of the interrupt-stack-frame onto the new stack such that the interrupt handler
is able to restore their original values after its execution.

To use this mechanism for a stack switch, the initialization stage of the malware has to
point one of the entries within the IST to the location of the persistent stage. Additionally,
one of the interrupt gate-descriptors in the IDT has to be setup to use this modified IST
entry and to point to the first gadget in our persistent ROP chain. This first gadget must
increase the SP by the size of the interrupt-stack-frame as the hardware automatically
pushes this frame to the new stack when the interrupt is invoked. Finally, the hook has
to be set to a gadget that invokes the interrupt whose descriptor was prepared in the
way just described. The invocation of the hook will then lead to an interrupt, which
will in turn lead to stack switch that in combination with the stack increasing gadget
will lead to the execution of the persistent chain. Once the persistent chain finished its
execution, it can restore the original SP and IP from the interrupt-stack-frame [64].

3.3.3 Software Mechanisms

Having described some hardware mechanisms in the previous section, we will now
introduce several software mechanisms for switching the stack. These software-based
mechanisms are specific to the hook that is placed within the system. Therefore, these
approaches are not universal, but serve as examples of what is possible.

3.3.3.1 Using a fixed Memory Address

The easiest way to achieve a stack switch is to find a gadget that loads a fized address
into the SP and to store the required control structure at this fixed location. This enables
us to perform the stack switch by simply invoking the gadget. Besides our own work,
this is the only other known stack switching technique that we are aware of. It was first
proposed by Hund [61].

While the approach is simple, it faces multiple problems. First of all, gadgets that load
a fixed address into the SP are not very common. This is especially true for the x86-64
architecture. Consequently, this approach may not be available in practice. Second, even
when one finds such a gadget, the memory area located at the fixed address may already
be in use. In this case, we cannot simply place our control structure at the fixed address
as we might overwrite important information. Third, given that the memory area is
free, we need to find a way to actually load our control structure to this position. If we

76

3.3 Persistent Data-only Malware

simply manipulate the page tables and place the structure there, we risk that our control
structure is overwritten, should the memory area ever be allocated, as has been described
in Section 3.3.1.1. Thus to provide a reliable solution, we must find a way to force the
memory allocator to assign the memory area to us where the fixed address resides. While
techniques such as heap spraying [31] may allow us to influence the allocator, obtaining
a specific address can be difficult. In addition to allocating the address, the memory
range available at the address must be large enough for our control structure. Taking all
these problems into consideration, the technique seems to be only useful in particular
scenarios and not as a general switching mechanism.

3.3.3.2 Adapting the Location of the Control Structure

The main problem that hinders us from using a common stack pivot gadget such as
the one described in Section 2.2.1.2 to switch the stack is that we neither control a
register value nor a buffer on the stack when a hook is invoked. However, we might
be able to control the location in which our persistent ROP chain will reside. If this is
possible, we can circumvent this problem by placing the persistent control structure of
the malware above the stack of the process. By this we simply mean that the control
structure must be loaded at an address that is smaller than the original stack base minus
the maximum stack size of the process. A switch to the persistent control structure can
then be performed using the common stack pivot sub esp, <offset>; ret;.

Since the malware control structure resides above the process stack, it will not be
destroyed during the normal program execution given that the maximum stack size of
the process is known. In addition, we are not restricted to a single fixed address, but any
location near the stack will suffice. Whether it is possible to place the persistent chain at
such a location depends on the structure of the vulnerable program and the employed
infection mechanism. In general, an attacker can apply exploiting techniques such as
heap spraying [31] to influence memory allocation. While the approach is still quite
constrained, it is not as restrictive as placing the control structure at a fixed location.

Finally, notice that the constant stack offset must not necessarily point directly to
the malware’s control structure. Instead the attacker can introduce a NOP sled at the
beginning of her control structure (in ROP terms a NOP is simply the address of a ret
instruction). In this case the constant offset must simply point somewhere into the NOP
sled. The success of the approach will then depend on the variation of the stack —which
generally occupies only one or two pages— and the size of the sled.

3.3.3.3 Adapting the Location of the Stack

Instead of placing the persistent control structure at a suitable location above the stack,
it is also possible to change the location of the stack itself. This is due to the fact that
OSs usually store the address of the stack for each process and the kernel in specific
registers or memory locations. In the case of Linux, for example, the kernel SP is stored

7

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

within a per_cpu variable. When the kernel switches from user space to kernel space, it
will load the address stored at this location into the SP. Thus by overwriting the stored
address, an attacker is able to set the kernel stack to an arbitrary memory location.
Similarly, an attacker can overwrite the saved SP of a single or multiple processes.

If the attacker controls the SP through this technique, she can, for instance, place the
SP in front of the persistent control structure. The stack switch can then be performed
using a gadget such as add esp, <offset>; ret;.

3.3.3.4 Using Pointer Chains

One of the biggest problems that persistent data-only malware faces when attempting to
set hooks is that until the stack is switched (in the case of ROP) it can only rely on a
single sequence of instructions to perform the necessary task of activating the control
structure. If the malware could chain multiple instruction sequences this task would be
much easier since it could combine multiple gadgets to reach this goal.

One possibility that would allow one to create a small chain of instruction sequences is
to overwrite multiple function pointers that are called in sequence. To demonstrate this,
consider the following example: The vulnerable program contains a global buffer that is
located in the data section. Imagine that the initialization stage loaded the persistent
control structure in this buffer. It is very likely that the vulnerable program contains
various instruction sequences that operate on the buffer. For example, there may be a
‘strncpy’ operation that copies data into the buffer. On the x86 architecture this could
result in the following assembler code:

Listing 3.2: Call to strncpy in assembler.

mov [esp + 8], size;

mov [esp + 4], &source;

; move absolute address of the global buffer
; to the top of the stack

mov [esp + 0], &dest;

call <strncpy@plt>

D U e W N =

This provides the malware with an instruction sequence that loads the absolute address
of the buffer onto the stack (Line 6). In addition, the malware can control the function
call in Line 7. This is due to the fact that library functions (e.g., strncpy) are called
as function pointers that are offsets within a global table. In Linux this table is called
the global offset table (GOT) while in Windows this table is referred to as the Import
Address Table (IAT). If we continue with our example, overwriting the function pointer of
the strncpy function within the GOT? allows the malware to execute a second instruction
sequence that loads the absolute address into the SP.

Note that while this is a contrived example, it is quite generic and the constructs
used are very common practice. The prerequisites for such an approach are (1) the

2Notice that this overwrite has to occur during the initialization stage. When the persistent stage of
the malware is invoked by a hook, the function pointers must already be overwritten.

78

3.3 Persistent Data-only Malware

existence of a global buffer, (2) a library function that operates on that buffer, and (3)
a writable table that facilitates the linking of library functions. In both Windows and
Linux environments these are commonly found in processes.

3.3.4 Architecture

Up to this point, we have presented a rather abstract view of the architecture of persistent
data-only malware. To discuss the challenges associated with the creation of data-only
malware and the mechanisms that can be used to activate it, we considered two stages:
the initialization stage and the persistent stage. In this section we want to refine this view
and present a concrete architecture for persistent data-only malware. This architecture is
shown in Figure 3.2. As one can see, the architecture makes use of four different control
structures: the initialization chain, the copy chain, the dispatcher chain, and the payload
chain. While the initialization stage of the malware only consists of a single control
structure (initialization chain), the persistent stage has been divided into the copy chain,
the dispatcher chain, and the payload chain. In the following we will describe each of the
chains in more detail. In the process we will also state which of the previously described
challenges each individual chain faces.

3.3.4.1 Initialization Chain

As has been described in Section 3.3, data-only malware is loaded using a specially crafted
binary or a vulnerability. The component that is executed during this initial loading
phase is the the initialization chain (1). Since this component is only executed once, it
acts very much like more traditional ROP exploits, which means that it does not require
an exclusive memory area and is not affected by overwrites as outlined in Section 3.3.1.1
and Section 3.3.1.2, respectively. In addition, the initialization chain usually does not
have to restore the original execution path as outlined in Section 3.3.1.3. Instead, any
execution path that leads to a graceful exit is in general sufficient.

The initialization chain is responsible for conducting all steps that are necessary for
bootstrapping the execution of the persistent stage. In particular, it must place a hook (2)
within the victim’s system, setup a switching mechanism (3) as outlined in Section 3.3.1.4,
and copy the copy chain (4a) into memory. The latter requires that the initialization
chain solves the first challenge discussed in Section 3.3.1.1. That is, the initialization
chain must copy the copy chain to a memory location that is exclusively owned by the
malware.

In addition, the initialization chain may have to create global state (4b), if the malware
requires this. State is essential if the malware requires data to be stored across multiple
invocations. Such a data area can either be integrated into the copy chain or be placed
at a separate memory location as shown in Figure 3.2. In any case, the memory region
used to contain the state must - similar to the copy chain - be exclusively owned by the
malware.

79

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

Initialization Activation Static Component
T T —— o
@ /~(2)Hook @ @
Initialization S \ Copy Global
e chain || State
‘0

A

Dynamic Component

Dispatcher
® Chain

State Process N
A

State Process Il
A

State Process |

pooozeenees B Anumam
i6b) Payload
Process |

.
Payload
Process N

Y
Payload
Process Il

Figure 3.2: Overview of the proposed architecture for persistent data-only malware.

3.3.4.2 Copy Chain

The copy chain is invoked every time the hook that the initialization chain placed is
triggered. In particular, the hook will transfer control to the switching mechanism, which
in turn will invoke the copy chain.

The copy chain is the only truly persistent chain of the malware. Due to this fact it
faces the most restrictions and must be carefully created to avoid overwrites as outlined
in Section 3.3.1.2. It fulfills two main tasks. First and foremost, it must save the values
of all general purpose registers when it begins execution in order to be able to restore the
original register values after the malware has been executed as outlined in Section 3.3.1.3.
To achieve this, the malware may only leverage gadgets that use registers which have
already been saved, must not be saved according to the calling conventions, or whose
values can be predicted. Consequently, this chain is severely limited when it starts
execution, but will have access to an increasing number of gadgets with every register it
saves. The values of the registers can be stored in the global state.

However, even when all registers have been saved, the copy chain is still tightly
restricted as it must be executed with interrupts disabled and cannot invoke external
functions to avoid overwrites as discussed in Section 3.3.1.2. Such restrictions could
severely limit the functionality of the malware. To solve this problem, the copy chain
creates a separate dynamic component upon each invocation of the hook. To do this,
it simply copies the next control structure (the dispatcher chain in case of Figure 3.2)
to a predefined memory area that is created by the initialization chain. Once activated,
this dynamic control structure can then execute without having to consider self-induced

80

3.3 Persistent Data-only Malware

overwrites as it is dynamically created on the fly for every invocation of the hook.

While this approach is sufficient for malware that only infects a single process, kernel-
level malware may set a hook that can be triggered by multiple executions paths that are
running concurrently. Consider a hook on a system call, for instance. When a system
call is invoked, it is not guaranteed that the system call execution will return before a
context switch and a different process makes the same system call. As a result, the same
hook may be triggered multiple times by different processes simultaneously. In such
a case, it is possible that the dynamic component of the previous system call hook is
overwritten by the currently executing hook. This situation would likely lead to a kernel
crash once the context and execution of the previous process is restored.

The most straightforward method to avoid this may simply be to disable interrupts.
While we make use of this method in the copy chain, it is not an ideal solution for the
entire dynamic component. This is due to the fact that this would lead to a further
constraint for the malware. This constraint being that the malware may not use any
external functions, since they may reenable interrupts during their execution. As we want
to keep the malware as constraint-free as possible, we look to a more elegant solution.
To this end, we make use of a dispatcher chain (5).

3.3.4.3 Dispatcher Chain

A dispatcher chain (5) is required whenever multiple concurrent threads of execution can
invoke one of the hooks used by the malware. The general idea behind a dispatcher chain
is to create an individual payload for each process. To achieve this the chain allocates
an individual memory area for each process and copies the payload chain (6b) into this
memory area on each invocation occurring in the context of the process. Similarly, the
dispatcher will create individual state (6a) for each process, where information such as
the register values for this process, which are copied from the global state, are stored.
The dispatcher must therefore also guarantee that a specific payload chain will always
have access to the same state area. To do this the dispatcher must patch the address of
the state area into the payload chain at runtime.

This approach provides each process with individual persistent state and a unique
payload and thus effectively avoids the problem described above. Finally, notice that the
dispatcher chain must be directly invoked by the copy chain and can only make use of
external functions that do not enable interrupts. In other words, interrupts must remain
disabled while the dispatcher chain is executing.

3.3.4.4 Payload Chain

The payload chain (6b) contains the actual functionality of the malware. Since it is
recreated on each invocation by the dispatcher chain and is additionally unique for
each process, it is neither affected by self-induced overwrites nor by interrupt-induced
overwrites. That is, the malware can, at this point, invoke any external function and can

81

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

make use of any register that has been saved by the copy chain. Thus the payload chain
is essentially a traditional ROP-chain with the benefit that it may make use of persistent
state to store data between invocations. As a result, the payload chain is very flexible
and is only limited by the gadgets that the victim’s system provides.

At the end of its execution, the payload chain must restore the original register values
and hand control back to the execution path that was executed before the hook was
invoked as outlined in Section 3.3.1.3. While the former can be easily achieved, since
the register values are saved by the copy chain and placed into the process state by
the dispatcher chain, the latter requires the restoration of the original SP. Since this
information may be lost (depending on the switching mechanism that is used), this
process is usually application dependent and must be solved on a case by case basis. In
general, the FP can be used to restore the original SP given that the frame size of the
function executing before the hook is invoked is known.

3.3.5 Summary

In this section we explained how data-only malware can achieve the important property of
persistence. First, we must find a memory area that is exclusively owned by the data-only
malware. While this can simply be accomplished by reserving new memory for the
data-only malware, this alone is insufficient to protect persistent data-only malware from
overwrites. Instead, we must also handle self-induced and interrupt-induced overwrites,
which are the second challenge of persistent data-only malware. To cope with these
problems we have to carefully design our persistent chain and disable interrupts at the
beginning of its execution. This led us to third and most important challenge of this
malware form, how we can force the activation of the persistent chain when a hook is
invoked. To address this issue, we presented multiple hardware-based and software-based
stack switching mechanisms that can be leveraged to achieve this task. In this context
we also discussed the final challenge of persistent data-only malware: the restoration
of the original control flow after the execution of the hook. Finally, we proposed an
architecture for the creation of data-only malware that considers all of the aspects that
we covered throughout this section. Most importantly, the architecture leverages an
individual payload chain for each process, which enables persistent data-only malware to
prevail in the otherwise devastating scenario where the stack is used by the system and
the malware at the same time. We will present a POC implementation that leverages
this architecture in Section 3.5.3.

3.4 Resident Data-Only Malware

While persistent data-only malware is, due to its ability to react to events within the
system, far more powerful than one shot data-only malware, it still faces a severe
restriction: it is unable to survive a reboot without human interaction. In general,

82

3.4 Resident Data-Only Malware

however, malware aims to infect a system permanently and not just until the occurrence
of the next reboot. To achieve this, the malware must become resident. In this section,
we will cover the property of residence in more detail.

In order to survive a reboot, data-only malware must be automatically loaded (Chal-
lenge A) and executed (Challenge B) on system boot. How this can be accomplished,
depends on the infection mechanism that the data-only malware uses. In case of a
file-based infection mechanism, achieving residence is actually quite straightforward.
Since the approach enables data-only malware to permanently infect an executable, the
malware will become resident if the infected file is executed at boot. As in the case of
traditional malware there exist many different ways to achieve this. For instance, on
Windows the executable could simply be placed into the autostart folder. The interested
reader can find an overview about common mechanisms that malware leverages to load
malicious executables at boot in [144].

On the other side, if the data-only malware used a vulnerability-based infection
process, it must ensure the re-exploitation of the vulnerability after each boot. This
places additional constraints on the vulnerability that is used for infection. First, the
vulnerability must be contained in a program that is executed during boot. This ensures
that the malware is loaded with the system. Second, the vulnerability must be self-
triggering. That is, the vulnerable program must read some external data source, such as
a configuration file, which will trigger the vulnerability, load the data-only malware into
memory, and start its execution.

However, especially when considering kernel-level data-only malware it is unlikely that
the same vulnerability that is used to load the malware is also self-triggering. To solve
this problem a multi-staged loading process can be used. The main idea behind this
approach is to use a second vulnerability to trigger the execution of the infection process.
Of course, this second vulnerability must not necessarily be in the same piece of software.
As an example, consider a kernel-level data-only malware that uses a vulnerability to load
itself that is not self-triggering. To solve this problem we can make use of a self-triggering
user space vulnerability to bootstrap the execution of the kernel-level malware. Thereby
the user space vulnerability will provide the malware with control over a process that
is loaded at system boot. The malware will use this control to actually trigger the
kernel-level vulnerability, which loads the kernel component of the malware. Instead of
targeting the kernel vulnerability directly, the malware will use a two staged loading
process to place itself into the kernel.

Besides leveraging multiple vulnerabilities to conduct a multiple-staged loading process,
the attacker can of course also combine file-based infection with vulnerability-based
infection to accomplish the same. In the example above, the attacker could, for instance,
make use of an executable infected with data-only malware to perform the first stage
of the loading process. Once the executable is loaded and starts the execution of the
data-only malware, the malware could then once again trigger the kernel vulnerability
and load the kernel-space component. This approach has the advantage that the malware
does not require a self-triggering vulnerability to function.

83

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

Although a multi-staged loading process requires the infection of multiple host appli-
cations, it can enable an attacker to overcome various obstacles. By initially leveraging
attack vectors that are simpler to exploit, the attacker gains a platform for further
exploitation. This might be useful if the second stage of the loading process requires
additional information about the running system. This could be the case if the second
stage must overcome protection mechanisms such as ASLR, for example. We will provide
a concrete example of a resident data-only malware in Section 3.5.4.

3.5 Proof of Concepts & Experiments

So far we have only considered data-only malware from a theoretical point of view.
However, to show that data-only malware is a realistic threat and to understand it in
all its details it is necessary to analyze the practical aspects of data-only malware as
well. For this purpose, we will in this section present detailed proof of concept (POC)
implementations of data-only malware. In particular, we will describe a general file-
based infection mechanism for ELF binaries and leverage it to create file-based one shot
data-only malware in Section 3.5.2, we will use the architecture that we proposed in
Section 3.3.4 to construct a persistent kernel-level data-only rootkit in 3.5.3, and we will
present a multi-staged loading process for the aforementioned rootkit to demonstrate
residence in our third and last POC implementation in Section 3.5.4.

We chose these POCs for two reasons. First and foremost, they demonstrate all of the
theoretical concepts that we discussed so far at the hand of practical examples. Most
notably, the POC implementations cover all three types of data-only malware as well as
both of the infection mechanisms it can use. Second, they prove that data-only malware
can be leveraged to construct sophisticated malware capable of infecting recent systems
in spite of all modern protection mechanisms. This shows that data-only malware is a
realistic threat that can be applied to real world scenarios. To underpin the latter, we
begin by describing our test environment.

3.5.1 Test Environment

To provide a realistic attack scenario, we implemented all POCs on a standard installation
of a 64-bit Ubuntu 13.04 server VM running Linux kernel version 3.8 with an UEFI
BIOS and secure boot enabled. In particular, our attack model assumes the following
system /kernel level protection mechanisms:

e UEFT secure boot
e disabled module loading

e disabled /dev/kmem

84

3.5 Proof of Concepts & Experiments

e module ASLR (kernel space)

e stack canaries (user space and kernel space)

e stack reordering (user space and kernel space)
e W @ X (user space and kernel space)

e heap protection (user space)

e ASLR (user space)

As one can see, the test environment leverages the typical protection mechanisms that
can be found on most systems today and additionally makes use of secure boot. We
purposefully chose a 64-bit architecture as this architecture becomes more and more
prevalent and makes the implementation of data-only malware on top of that more
difficult as arguments must be passed within registers and not on the stack as in the case
of a 32-bit architecture. For details about the individual protection mechanisms we refer
the reader to Section 2.4.1.

3.5.2 File-based Infection of ELF Binaries

In this section we present a general and stealthy file-based infection approach for the
Linux ELF format. Since this file format is in principle very similar to other well-known
file formats (e.g. PE), it is likely, however, that the techniques we present can be adapted
for the infection of other file formats as well. Note that the technique presented here
is, to the best of our knowledge, the first file-based infection mechanism for data-only
malware.

As suggested in Section 3.1.3.2, the proposed infection mechanism is based on the
Linux loader (1d). In particular, we abuse the loader to bypass ASLR by forcing it
to construct the control structure at runtime. This is achieved by manipulating the
management structures within the binary that the loader leverages to conduct the loading
process. By careful manipulation of these management structures, we are able to provide
a file-based infection mechanisms that achieves a high-level of stealth and is even hard to
detect for experienced users. Since we additionally only make use of gadgets that are

contained in the majority of ELF executables, the mechanism is also general applicable.

In the following we will describe our file-based infection mechanism in more detail by
explaining how we solve the core implementation challenges of data-only malware.

Challenge A: Loading and Storing the Data-only Program. To be able to start the
execution of our data-only program later on, we must load it to a predictable memory
address in spite of ASLR. We accomplish this by manipulating the program header table
of the ELF binary, which contains the segments of the program as well as their type, load

85

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

address, size, and access rights [90]. Put simply, a segment is essentially a memory region.
During the loading process the loader will parse the program header table and will reserve
memory regions based on the segment information contained in it. Consequently, by
manipulating a segment entry within the program header table, we can force the loader
to reserve a memory area of an arbitrary size at an arbitrary address, which is exactly
what we require. In our POC implementation we chose to manipulate the segment entry
GNU_STACK as this entry exists within every binary compiled with GCC and is on top of
that not critical for the execution of most binaries. It essentially defines whether the
stack of a program is mapped as executable or non-executable. If the entry is missing,
the stack is by default marked as executable.

In the next step, we must find a way to load our data-only program to the memory
area that we acquire via the manipulation of the program header table. This can be
accomplished by the manipulation of another management structure: the relocation
table. As the name suggests the relocation table contains all entries that are processed
by the loader during relocation. In the case of ELF, a relocation entry is thereby a
struct consisting of three values: offset, info, and addend [90]. The first value, offset,
specifies to what memory address a relocation will be applied. By manipulating this field
we can thus write to an arbitrary memory address. This enables us to write data to the
acquired memory area. What is still missing is the possibility to resolve the address of
the gadgets we want to leverage though. This is where the other values come into play.

The second value, info, states the type of the relocation and the index of the symbol
to use should the relocation entry refer to one. Every symbol that a binary uses is thereby
stored within a symbol table. The index within the info value forms the connection
between this table and a relocation entry and thus enables us to specify relocation
types that leverage symbol information. Most important for us is the relocation type
R_X86_64_64 [89]. When the loader processes such an entry, it will resolve the symbol
specified by the symbol index contained within the info field and add the address of the
symbol to the third and final value, addend. The result of this computation will then
be written to offset. This enables us to resolve the address of arbitrary gadgets using
the following approach: First, we require the index of a symbol contained in the same
binary as the gadget we want to use. For this purpose, we can either create a new symbol
entry or use an existing symbol. Next, we create a relocation entry and set its info
field to the type R_X86_64_64 and specify the index of the symbol we selected. Finally,
we place the relative offset of the gadget to the symbol we are using into the addend
field. When the loader process the relocation entry it will then resolve the address of the
specified symbol and add the relative offset to it yielding the address of our gadget. This
approach works as the relative offset between a symbol and a gadget will always remain
the same, since ASLR only randomizes the base address of the code section, however,
not the instructions within the code section.

In our POC implementation we leverage the symbol __1ibc_start main to construct
relocation entries. On the one hand, this enables us to resolve the address of arbitrary
gadgets residing within the GNU C library (libc). Since the libc has a large codebase that

86

3.5 Proof of Concepts & Experiments

Before Infection After Infection
ELF Header ELF Header
Program Header Table Program Header Table
Symbol Table Symbol Table
- e
o . o i
B Relocations B Relocations
2 2
DYNAMIC k— DYNAMIC
Section Header Table Section Header Table
Modified Relocations

Figure 3.3: Schematic overview of an infected ELF file.

has been proven to be Turning complete multiple times [129, 138], this provides us with
a wide variety of gadgets that potentially allow us to perform arbitrary computations. On
the other hand, this also increases the generality and stealthiness of the approach, because
the libc is an integral part of a Linux system and the symbol __1ibc_start main is, to
the best of our knowledge, contained within every binary that uses the libc. Consequently,
we do not have to manipulate the symbol table in any way, while we at the same time
can draw on plentiful gadgets shared across Linux systems.

Our final approach for loading our data-only program looks then as follows: First we
manipulate the GNU_STACK entry within the program header table to create a memory
region for our data-only program. In the second step we divide the data-only program into
8-byte blocks. For each block we will create an individual relocation entry. The offset
field of the first relocation entry will thereby point to the beginning of our memory region.
Each entry that follows will increase the address by 8 bytes such that each relocation
entry writes directly 8-bytes after the location written by the previous entry. This will
write the data-only program block by block into memory. If the block we want to write
is supposed to contain the address of a gadget, we will set the type of the info field
to R_.X86_64_64 and the symbol index to the index of __1libc_start main. In addition,

we set the value of the addend to the relative offset of the gadget to __libc_start_main.

Otherwise if the block is supposed to contain a constant, we will set the type of the info
field to R_X86_64_RELATIVE and the addend to the constant we want to write. This will
simply write the value of addend into the chain.

87

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

Lastly, as one might imagine, this results in quite a few relocation entries which might
be noticed by someone inspecting the binary. This is why we leverage another technique
to hide the relocation entries from common ELF inspection tools such as objdump and
readelf. Instead of manipulating the original relocation table, we will copy the table
as well as our entries to the end of the binary file. Afterwards we will update the RELA
and RELASZ entries within the DYNAMIC segment of the binary. As a result, the loader
will process our modified relocation table at the end of the binary, while inspection tools
will print the original relocation table. The problem arises as inspection tools parse the
relocation section within the binary. The loader on the other side leverages the address
specified in the DYNAMIC segment. The final layout of an infected binary is visualized in
Figure 3.3.

Challenge B: Starting the Data-only Program. Once the the data-only program has
been loaded, we must activate it. That is, we must place the SP to the location of our
data-only program and execute a ret instruction. For this purpose we create two more
relocation entries. However, in contrast to the previous entries, these will not be used to
write into the memory region of the data-only program. Instead, they will be leveraged
to overwrite the value of a variable and the address of a function. To understand this
approach we first have to take a closer look at the execution of an ELF program.

Once the loader finishes the loading process, it will invoke the entry point of the
binary. In contrast to popular belief, this is usually not the main function of a program,
but a special function named _start. The _start function is essentially responsible for
conducting any initialization tasks that must be performed before the main function can be
invoked. Most notably, the _start function will invoke the function __libc_start_main,
which will perform the initialization of the libc. During this initialization procedure
__libc_start main will call back into the binary and invoke the function __libc_csu_init
to start the execution of any constructors the binary may have [65]. In the process,
_libc_csu_init invokes _init which contains the following code:

Listing 3.3: The _init function of ELF binaries.

sub rsp,0x8

mov rax,QWORD PTR [rip+0x200b3d] # 600ff8 <_DYNAMIC+0x1d0O>
test rax,rax

je 4004c5 <_init+0x15>

call 400520 <__gmon_start__@plt>

add rsp,0x8

ret

N OOt R W N =

As we can see, the function loads a variable from the location -DYNAMIC+0x1d0 into
rax (Line 2) and afterwards invokes __gmon_start__ (Line 5) given that rax is not zero.
We can abuse this code fragment to perform a stack switch. For this purpose, we will
first create a relocation entry that overwrites DYNAMIC+0x1d0 with the address of our
data-only program. In the second step, we create another relocation entry that overwrites
the address of __gmon_start__ within the GOT with the address of a xchg eax,esp;
ret; gadget. The first overwrite will thereby ensure that the address of our data-only

38

3.5 Proof of Concepts & Experiments

Before Prologue After Prologue

Stack Increment Stack Increment f

N\

POP RDX; RET;
Original Value RDX
POP RSI; RET;
Original Value RSI
POP RBP; RET;
Original Value RSP
LEAVE; RET;

Restoration

/

\/ Prologue - Prologue <

Figure 3.4: Overview of the restoration control structure that is created during the execution
of the prologue control structure.

program is loaded into rax (Line 2) . Since rax will be greater than zero in this case, the
_init function will try to invoke __gmon_start__. Since we overwrote its address in the
GOT, the call will, however, not invoke __gmon_start__, but our switching gadget xchg
eax,esp; ret;. The only requirement to leverage this technique is that our data-only
program resides at a 32-bit address, since xchg eax,esp; ret; will clear the upper
32-bits of rax during the exchange. This is not a problem, however, as we can freely
choose the memory address of our data-only program as we previously described.

In summary, we can start the execution of our data-only program by creating two
relocation entries that will overwrite the value of DYNAMIC+0x1d0 with the address
of our data-only program and the address of __gmon start__ within the GOT with
the address of a xchg eax,esp; ret; gadget. Since xchg eax,esp; ret; instructions

occur frequently within code, this leads to widely applicable activation mechanism.

In addition, because the overwrites are performed by the loader at runtime and the
relocations are not visible within tools such as objdump, the proposed approach is also
quite stealthy:.

Challenge C: Restoring a Valid Execution Path. After our data-only program has
been executed, we must resume the normal execution of the infected binary. To accomplish
this we make use of a prologue and an epilogue control structure. The prologue control
structure is executed directly after we perform the stack switch. It will back up important

89

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

registers and create a restoration control structure that can then be invoked by the
epilogue to restore the original values of the backed up registers and to resume the
original control flow. To create the restoration control structure, the prologue control
structure will first move the current SP into rax, which does not contain any crucial
information and can thus be overwritten, and then create some room on the stack by
adding a constant offset to the SP. The resulting space, which is pointed to by rax, is
then used by the prologue control structure to create the restoration control structure.
This structure is shown in Figure 3.4.

As one can see, the restoration structure will first restore the value of rdx and rsi,
which contain the environment pointer and the argument pointer, respectively. Next, the
restoration control structure will load the value of the original SP, which can be deduced
from rdx or rsi, into the rbp register. Finally, it will leverage a leave; ret; gadget,
which essentially moves the FP into the SP, to switch back to the original stack. The
ret following the leave will thereby load the return address of the _init function into
the IP thus resuming the original control flow.

Once the prologue has been executed and the restoration control structure has been
written, the data-only malware is free to use any register to perform its computations
with the exception of rbx. The reason for this is that the prologue will store the address
of the restoration control structure in this register. The epilogue will then load the
address contained within rbx into rbp and execute a leave; ret; gadget, which will
lead to the execution of the restoration chain and the execution of the original execution
path.

Experiments To verify the generality of the proposed approach, we leveraged our
file-based infection mechanism to infect 20 Linux programs contained in the /bin/ and
/bin/1s directories including 1s, more, rm, cat, ps, gcc, and vim with a simple one
shot malware that prints a message to the screen and then exits thereby resuming the
execution of the original program. As expected, the approach worked flawlessly with all
of them. In addition, to prove that we are also able to infect very small programs, we
created a simple “Hello World!” application and applied our infection approach. As in
the case of the other binaries, the program could successfully be infected even though it
actually only provides a very small codebase. Consequently, the proposed mechanism is
indeed quite general.

Summary. In this section we presented a file-based infection mechanisms for Linux
ELF binaries. The main idea behind the mechanism is to force the loader to create our
data-only malware during runtime by carefully manipulating the management structures
within the binary that the loader uses. In particular, we manipulate the program header
table to reserve memory, the relocation table to load and activate our data-only program,
and the DYNAMIC array to hide the modified relocation table. In the process, we solely
leverage gadgets from the libc or parts of the binary that are related to the libc and

90

3.5 Proof of Concepts & Experiments

are thus part of most Linux ELF binaries. Due to this approach, the resulting infection
mechanism is quite general and is able to reliably infect all of the ELF binaries in our
experiments with one shot data-only malware. Since we additionally leverage various

mechanisms to hide our tracks, the infection mechanism is difficult to detect in practice.

3.5.3 Persistent Kernel-Level Rootkit

To demonstrate the feasibility of the concepts discussed in Section 3.3 we implemented
a persistent data-only ROP rootkit. We chose to implement our POC in the kernel as
this demonstrates an especially dangerous form of malware. However, we argue that the
concepts outlined can easily be leveraged to infect a userland process as well.

For our POC we assume a local attacker that has user-level access. Further we presume
a vulnerability in kernel space which enables us to load our rootkit. To provide a realistic
attack scenario, we used a real Linux kernel vulnerability for this purpose. It is interesting
to note that generally one assumes that an attacker has root privileges at the time she is
ready to install a rootkit. However, since loading our rootkit requires a vulnerability, it
can be loaded without requiring root privileges.

Before we go into the details of our implementation, we begin with a quick overview.

Our POC is designed according to the architecture presented in Section 3.3.4. The

initialization stage and the persistent stage are further divided into four ROP-chains.
The initialization stage is only composed of a single ROP-chain, the initialization chain.

The initialization chain is only executed once during initial exploitation and its single
purpose is to setup the execution of the persistent stage. The persistent stage on the
other side is composed of three different ROP chains, the copy chain, the dispatcher

chain, and the payload chain. The copy chain is thereby the only truly persistent chain.

It is invoked whenever the hooks the malware placed into the system are triggered. On

every invocation the copy chain builds a dispatcher chain in a predefined memory area.

The dispatcher chain will then in turn create a unique state and a unique payload chain
for each process. The payload chain provides the actual functionality of the rootkit. In
the case of our POC, the rootkit hooks the read and getdents system call to provide key
logging, process hiding, and file hiding. We chose to implement these mechanisms, to
demonstrates that persistent data-only rootkits can indeed provide functionality similar
to traditional rootkits.

Initialization Stage. The initialization phase in a kernel rootkit requires a vulnerability
in the kernel code. We used the real Linux kernel vulnerability CVE-2013-20943 for this
purpose. This vulnerability essentially allows a user space application to take control of a
pointer variable within the kernel. With the help of this pointer variable the application
can increase the value of memory words within kernel space. By increasing the address
of an interrupt handler, the handler can be made to point to a leave; ret; gadget in

3http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2094

91

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2094

3 Data-only Malware

the kernel. The leave instruction moves the current FP into the SP and then pops the
current value on top of the stack into the FP (mov rsp, rbp; pop rbp;). By placing
the address of the initialization chain into the FP, we can use this gadget to start the
execution of our initial ROP-chain. For this scheme to work, we have to trigger the
interrupt handler that we modified by provoking an exception or executing an int X;
instruction, where X is the number of the interrupt whose handler was changed. In
addition, we have to setup the FP to point to our initial ROP-chain, which will then be
loaded into the SP by the leave instruction. Since the attacker triggers the exploit, this
is not a problem in this scenario. Notice, however, that this stack pivoting mechanism
is only possible as we control other registers besides the IP (the FP in this case). The
triggering of a hook on the other side is not controlled by an attacker, which implies that
we cannot simply use such a technique as a switching mechanism. This demonstrates the
difference of stack switching in the case of exploits and hook invocations at a practical
example.

Once the initialization chain gains control, it will allocate three memory areas within
kernel space. First, memory for the global state is allocated. The address of the state
is then patched at runtime into every location where it is used within the copy chain
and the dispatcher chain. In the next step, memory is allocated for the dispatcher chain.
The address of this memory area is then once more patched into a predefined location
within the copy chain such that the copy chain can directly use it during its execution.
This step is necessary, since the copy chain needs to copy the dispatcher chain into this
memory region on every invocation. Notice that the copy chain cannot simply allocate
memory as this would involve an external function call that would overwrite parts of the
persistent chain. Finally, memory for the copy chain is allocated and the copy chain is
copied into this memory area.

At this point the initialization chain sets up our stack switching mechanism. In this
case, we use the sysenter mechanism described in Section 3.3.2.1. This means that our
initialization chain must write the correct values in the sysenter MSRs. Specifically,
the address of a ret instruction is written into the TA32_SYSENTER _EIP MSR and the
address of the copy chain is written to the TA32_SYSENTER_ESP MSR. Finally, the hooks
are set by overwriting the read and the getdents system call in the system call table with
the address of a sysenter instruction.

Persistent Stage. Once the initialization phase is completed, the hooks are set and
the persistent stage is waiting to be triggered. The triggering of the hooks is illustrated
in Figure 3.5. As the read and the getdents system call function pointer was overwritten
in the initialization stage, any call to the read or getdents system call (1) will result in
the sysenter instruction being called (2). As described in Section 3.3.2.1, the sysenter
instruction will load the new IP from the TA32 SYSENTER EIP MSR and the new SP from
the TA32_SYSENTER ESP MSR (3). Since we overwrote these MSRs, our copy chain is
executed (4), thus addressing the challenge outlined in Section 3.3.1.4. It is important

92

3.5 Proof of Concepts & Experiments

Kernelspace Processor

System Call Table Kernel Code IA32_SYSENTER_EIP

> Read {. [(2) N

7Y
@ IA32_SYSENTER_ESP

> Getdenis} —

Copy Chain Kernel Stack

Figure 3.5: Overview of the sysenter hook on the read and getdents system call that is used
by our POC to permanently alter the control flow of the system.

to note that the sysenter instruction is our mechanism for switching the stack and is
completely independent of the fact that we are hooking system calls.

When a hook is triggered, it invokes the switching mechanism, which in turn invokes
the persistent stage of the rootkit. As outlined in Section 3.3.4, interrupts must be
disabled when the persistent stage of the malware is invoked to avoid interrupt-induced
overwrites. In our POC, this is achieved with the help of the sysenter instruction that
automatically disables interrupts when it is executed. Notice that both of the proposed
hardware-based switching mechanisms provide this feature. Should a software-based
switching mechanism be used where interrupt-induced overwrites are an issue (e.g. in
kernel space), the gadget that performs the stack switch must also disable interrupts.

An overview of the persistent stage of the POC is shown in Figure 3.6. The first chain
that is activated in the persistent stage is the copy chain. The first important task that
this chain performs is to save the current state of the CPU (1) such that control can be
gracefully restored after the payload has executed. The copy chain stores the values of
critical registers in the global state (2). To use this approach, the initialization chain
patches the addresses of the global state into the copy chain before its first execution.

After the registers have been saved, the copy chain copies the dispatcher chain (3) into
the memory area that has been preallocated for it by the initialization chain. As soon as
this copy operation is completed, execution is transferred to the newly created dispatcher
chain (4). The dispatcher chain can now use all of the registers saved by the copy chain.

93

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

Kernel Stack | | PAYLOAD GLOBAL
: State @ State
A
7 '
E Leave; 10 Switch to 4)Switch to
Y Ret; Payload | Dispatcher
Patc .
9 (K3
13 Rfsit_:;;ers payload | COPY
£ 8 COPY Dispatcher
12 Payload
prepare
Kernel Stack Reserve Z I ;
e U Memovr SAVE
Original RBP - . REGISTERS
5
@PAYLOAD etermine
Process
Payload Chain Dispatcher Chain Copy Chain
(volatile stack) (volatile Stack) (persistent)

Figure 3.6: Overview of the persistent stage of the rootkit and individual chains used in this
stage.

The dispatcher chain starts by obtaining the current process data structure (5). To
do this we make use of a Linux data structure that is associated with each CPU, the
per_cpu data structure. This data structure contains, among other things, a pointer
to the task_struct structure of the process that is currently executing. The rootkit
obtains this pointer and uses it to locate the state (6) for this specific process. For this
purpose, the global state contains an array that stores a pointer to the state of each
process together with the address of it’s task_struct pointer. By searching this array
for the task_struct pointer of the process, the rootkit can thus obtain the address of the
process’s state area. If a state does not yet exist for the current process, the dispatcher
chain will allocate a new memory region for the state and store it together with the
task_struct pointer in the array.

Once the address of the state of the process is known, the dispatcher chain will copy
the values of the registers that have been saved by the copy chain (and currently reside
within the global state) into the process state. In the next step, the dispatcher will
allocate a new memory area for the payload chain of the process (7) and copy the payload
chain into the newly allocated region (8). Finally, the dispatcher must patch (9) all the
locations in the newly created payload chain that refer to the process state (6) or the
global state (2) at runtime.

After the payload has been patched, it is ready for execution and the dispatcher will
transfer the control to the newly created chain (10). At this point the payload chain is

94

3.5 Proof of Concepts & Experiments

free to enable interrupts as the payload is now unique for each process. The payload (11)
will then execute the desired functionality. In the case of our POC this functionality
consists of key logging, process hiding, and file hiding. To achieve the former the rootkit

will copy every character that is typed by the user into a buffer within the process state.

Data typed by the user is thereby identified based on the file descriptor that is specified
in a read system call. As soon as the user types a return character, which marks the end
of a command, the data in the process state is interpreted. When the data within the
state corresponds to a specific rootkit command such as hiding a specific process, the
rootkit will execute the command and delete the data within the buffer. Otherwise the
rootkit will write the data entered by the user to the kernel log. Thus the attacker is
able to control the rootkits behavior from the command line.

Process hiding is realized by setting the PID of the process that should be hidden

to zero. As a result, the process will no longer be displayed by programs such as ps.

The process that is to be hidden (or unhidden) can thereby be specified using the
above described communication mechanism. File hiding on the other hand is realized
by intercepting the getdents system call and removing any entries from the returned
structures that should be hidden. The filename of hidden entries must thereby begin
with a predefined string. Since these are well-known techniques, we will not describe
them in more detail at this point. Notice that the payload can distinguish between read
and getdents system calls based on the system call number.

At the end of the payload chain, the original execution path must be restored and
control must be handed back to the kernel. In our POC implementation we make use
once more of a leave; ret; gadget (14) for this purpose. By placing the value of the
kernel SP into the FP, we can switch the SP back to the original kernel stack using this
instruction. However, deducing the original value of the kernel SP remains an issue as the
SP was overwritten the moment our copy chain assumed control through the execution of
the sysenter instruction. To solve this problem, we once more rely on the per_cpu data
structure, which also contains the value of the SP at the time when the kernel assumed
control from user space. By reading this value and subtracting the stack frame size of
the system call handler (the function that is executed immediately before our hook is
invoked), we can calculate the value the SP had before the sysenter instruction was
invoked. We were forced to use this approach as the FP was not set in our case (i.e., we
find ourselves at the bottom of the stack). Usually, however, it is possible to use the FP
in the same manner we use the saved SP in the per_cpu data structure. That is, one can

subtract the size of the current frame from the FP to obtain the original value of the SP.

Notice that this method is very general and also useful in userland exploitation.

To make use of a leave; ret; gadget, we first have to prepare the kernel stack for
the switch (12). Since the leave instruction will move the FP to the SP and then pop
the current value on top of the stack into the FP, we have to copy the original FP onto
the kernel stack. This will ensure that the original FP is loaded, when we hand control
back to the kernel.

Finally, there is one last step we must take to ensure a smooth transition back to the

95

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

original execution flow. We have to restore the original register values (13) that were
saved by the copy chain. These registers values are currently stored within the payload
state. Before the leave; ret; instruction is executed, the stored values are transferred
back into the corresponding registers. The only exception is the FP. Since the FP is used
by the leave instruction, it will be loaded with the address of the kernel stack pointer.
The original value of the FP will than be restored in the process of the stack switch as
has been described above.

Experiments. We leveraged our rootkit to infect our test system. By exploiting the
kernel vulnerability, the rootkit managed to load itself in spite of all the protection
mechanisms detailed in Section 3.5.1. Once loaded, we tested the rootkits functionality
by enabling and disabling key logging as well as hiding and unhiding multiple files and
processes. Throughout our experiments the system remained stable and we did not
experience any side effects. In spite of logging key strokes, the system did not show any
noticeable increase in response time.

Summary. In this section we showed that the proposed architecture for persistent data-
only malware can indeed be leveraged to implement sophisticated data-only malware such
as a kernel rootkit in practice. Instead of utilizing a file-based infection approach, we in
this case chose to use a vulnerability-based infection approach to demonstrate that this
attack vector is still available to data-only in spite of modern protection mechanisms. To
make the attack scenario as realistic as possible, we selected a real kernel vulnerability to
load the kernel rootkit into memory. The rootkit itself is thereby capable of key logging,
process hiding, and file hiding and thus provides similar functionality as code-based
rootkits. To achieve this, the rootkit must place multiple hooks within the system
call table. This shows that the proposed architecture for persistent data-only malware
supports the usage of multiple hooks as well as multiple threads and is thus well suited
for the use in real world scenarios.

3.5.4 Residence

The last concept that we have not covered from a practical perspective so far is residence.
To show that residence is possible, we created a multi-staged loading process for our kernel
rootkit that we presented in the last section. We thereby implemented the loading process
using a vulnerability-based infection mechanism. For this purpose, we first implemented
a simple C program that prints a “quote of the day”. To obtain the database of quotes,
which is a plain text file, it reads a configuration file that tells it where the database is
stored and how many quotes are contained in it. Due to an error in the function that
parses the configuration file, the attacker can, however, overwrite the saved IP on the
stack and divert the control flow.

To realize the multi-staged infection approach, we placed the binary representation

96

3.6 Discussion

of the rootkit into a text file and manipulated the configuration file to trigger the
vulnerability together with a small loader chain. This loader chain essentially fulfills
two tasks: first, it loads the rootkit into memory by using the same function that the

vulnerable program uses to load the configuration file and the file containing the quotes.

Second, it triggers the vulnerability and uses it to activate the initialization chain of the
rootkit. Once the initialization chain takes control, the normal loading process occurs as
has been described in the last section. For the sake of simplicity, we added the gadgets
required to trigger the kernel vulnerability into the binary. We like to stress, however,
that these gadgets could similarly be obtained from the libc.

To test our approach, we configured the test system to execute the vulnerable program
at boot. Once the program was executed, it triggered its self-triggering vulnerability
by loading the manipulated configuration file. This led to the execution of the loader
control structure, which in turn loaded and executed the rootkit.

While we simplified the implementation process in this case, the example shows that
residence is possible given that the host application (or one of its libraries) contains the
necessary gadgets. Due to the fact that we implemented an entire rootkit solely using
the instructions within the Linux kernel binary, we argue that this is likely the case in
practice especially as our file-based infection approach, which we could similarly use to
implement residence, provides access to the entire libc. We will discuss the problem of
computability in the case of data-only malware in more detail in the Section 3.6.1.

3.5.5 Summary

We provided three POC implementations that validated the theoretical concepts we have
discussed so far using practical examples. In particular, our first POC presented a general
and stealthy file-based infection mechanism for ELF binaries which we leveraged to infect
various binaries with one shot data-only malware. In our second POC we made use of
a real kernel vulnerability to demonstrate a vulnerability-based infection mechanism
under realistic circumstances and showed that data-only malware can indeed be used to
implement sophisticated persistent malware, such as kernel-level rootkits, that is in no
way inferior to sophisticated traditional malware. Finally, our third POC demonstrated
that data-only malware can leverage a multi-staged loading process combined with a
self-triggering vulnerability to achieve residence. In summary, these examples show that
data-only malware is a realistic and dangerous threat in practice.

3.6 Discussion

By discussing the infection mechanisms and execution strategies that data-only malware
can employ in theory and in practice, we established a solid understanding of the malware
form and the challenges associated with its creation. However, besides the elementary
properties of infection and execution, we also introduced advanced properties of malware

97

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

in Section 2.1.4, that, while not required for its functioning, are essential for malware
to achieve its objectives. In this section, we will thus continue our analysis of data-
only malware by considering these properties. To this end, we will first discuss the
computational ability of data-only malware, before we consider its level of stealth, its
environment dependencies, and its capability to evade signature-based detection.

3.6.1 Computability

One of the key questions that must be answered when considering data-only malware is
whether this malware type has the same computational ability as traditional malware,
given that it relies on code reuse to function. To provide a general, practice-oriented
answer to this question, we will consider two individual aspects of code reuse: first, what
is the likelihood that an application provides a Turing complete gadget set? Second, if
an application provides a Turing complete gadget set, do we have access to this set when
implementing data-only malware in spite of the modern protection mechanisms described
in Section 2.4.17 In the following, we will address both of these questions individually
starting with the former.

Turing Completeness in Practice. As discussed in Section 2.2.2, a single proof of
Turing completeness is only of very limited value when we want to determine the
computational ability of code reuse techniques in general. Instead, we must find a way to
estimate the likelihood of encountering an application that provides a Turing complete
gadget set in practice. To accomplish this, we require a large scale real world analysis of
applications and the gadget sets they provide. Homescu et al. [60] performed such an
analysis for Linux based OSs.

To be able to consider a wide range of applications in their analysis, Homescu et al.
used a two-staged approach. In the first step, they created a hand-picked gadget set
solely consisting of gadgets with a maximum length of 3 bytes. The simple reason for
this selection being that a small number of bytes is more likely to appear within a
binary compared to a large number of bytes. In the second step, they then divided
the hand-picked set of gadgets into classes. The selection of the classes was thereby
conducted in such a way that the existence of a single representative of each class would
be sufficient to form a Turing complete language. Instead of testing for a single set of
Turing complete gadgets at a time, this enabled them to test all possible Turing complete
gadget sets contained in their hand-picked list in a single pass.

In their analysis Homescu et al. tested all applications contained within the /usr/bin
folder on eight different OSs. In the process, they used two different scanning modes.
While they only scanned the binary itself for Turing completeness in the first mode, they
additionally scanned the libraries that a binary uses in the second mode. The results of
the experiments are show in Table 3.1.

On average, they tested 1860 applications per OS. Even if we ignore OpenSUSE,
which is an outlier in the statistic, nearly 35% of these applications provided a Turing

98

3.6 Discussion

Distribution Binaries | TC Libraries (A) ‘ TC Binary (B) ‘ o (A) ‘ o (B)
CentOS 6.0 2231 783 20 35.10% 0.90%
OpenSUSE 11.4 2292 1804 77 78.70% 3.36%
PCLinuxOS ’11 2405 955 56 | 39.71% | 2.33%
Fedora 15 1881 758 39 | 40.30% | 2.07%
Kubuntu 7.10 1337 404 27 30.22% 2.02%
Kubuntu 11.10 1655 565 45 34.14% 2.72%
Ubuntu 9.04 1492 434 31 29.09% 2.08%
Ubuntu 10.04 1587 497 35 31.32% 2.21%
Total 14880 6200 330 | 41.67% | 2.22%
w/o OpenSUSE 12588 4396 253 | 34.92% | 2.01%

Table 3.1: Overview of Linux binaries providing a Turing complete (TC) gadget set Linux

on various distributions. The first column shows the number of tested binaries.

The second and third column show the number of Turing complete binaries with
(A) and without (B) libraries. Adapted from [60].

complete gadget in the second scan mode (binary and libraries). However, when scanning

the binary on its own, only 2% of the binaries provided a Turing complete gadget set.

This shows that access to libraries is critical for achieving Turing completeness, which
intuitively makes sense, since binaries are often small compared to the libraries they
utilize. In addition, libraries are often shared among applications, which means that a
single Turing complete library can affect many different applications. In fact, this could
be one of the reasons why the number of Turing complete applications in the case of
OpenSUSE is almost twice as high as for the other OSs when libraries are considered
(79%), while it is only slightly higher without libraries (3%).

Another important observation that can be made based on the results shown in Table 3.1
is that the newer the OS version, the higher the amount of executables providing a
Turing complete gadget set. For instance, in the case of Kubuntu 7.10 the amount of
binaries containing a Turing complete gadget set was 30%, while it was 34% on Kubuntu

11.10. This also makes sense as the codebase of binaries is likely to grow with time [182].

Consequently, newer systems will probably provide a larger attack surface than older
systems.

In summary, the extensive experiments conducted by Homescu et al. show that a
considerable amount of applications provides the attacker with a Turing complete gadget

set given that she can access the code section of the binary as well as its external libraries.

In addition, since codebases tend to get larger with time, it is likely that the situation
will even improve for the attacker in the future.

Circumventing Protection Mechanisms. In the last paragraph we established that

about 35% of all applications provide a Turing complete gadget set for code reuse.

99

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

However, this is only the case if an attacker is able to access the binary as well as its
libraries. Consequently, a second aspect that we have to consider with regard to the
computational ability of data-only malware is whether the attacker has access to this
codebase given modern protection mechanisms such as ASLR.

To address this question, we must consider the two different infection mechanisms that
data-only malware can employ. The first infection mechanism that we considered was
vulnerability-based infection. To achieve Turing completeness in this case, we must find
a control flow modifying vulnerability that provides us with access to the binary as well
as its libraries. While exploitation has become more difficult over the last years, it is a
reasonable assumption that such vulnerabilities exist. For example, according to CVE
details [35], 19.8% of all reported vulnerabilities in the year 2014 were code execution
vulnerabilities. That is, every fifth vulnerability discovered last year could potentially be
used to load data-only malware. It is therefore quite likely that an attacker can leverage
this attack vector in practice.

The second infection mechanisms that we considered within this thesis is file-based
infection. As we presented a general file-based infection mechanism for ELF binaries that
provides access to the executable as well as its libraries, it is very likely that an attacker
can obtain access to a Turing complete gadget set using this attack vector.

Summary. In conclusion, in spite of relying on code reuse, data-only malware can in
many practical cases perform Turing complete computations. This makes data-only
malware to a powerful and realistic threat that can provide a basis for sophisticated
attacks. Since the codebases of systems will continue to grow, data-only malware will
even become more powerful in the future.

3.6.2 Stealth

An important property of malware is stealth. In particular, we are interested in the fact
of whether data-only malware can in general be considered more stealthy than traditional
malware, because the more stealthy a malware type is the harder becomes its detection.
To answer this question, we will classify data-only malware based on the stealth malware
taxonomy of Rutkowska [131] that we described in Section 2.1.4.4.

Data-only malware only changes dynamic system resources (data). According to the
stealth malware taxonomy, data-only malware must therefore be considered as “type 2
malware”. However, this classification would not distinguish data-only malware from
traditional type 2 malware, even though there is a fundamental difference between
both malware forms. While data-only malware exclusively changes dynamic system
resources, traditional type 2 malware changes the existing codebase of the system by
introducing new instructions. Since code is considered as a constant system resource
according to Rutkowska model, this means that traditional malware can actually never
be type 2 malware. By definition, traditional malware must always change the codebase.
Consequently, real type 2 malware did not even exist when Rutkowska presented her

100

3.6 Discussion

stealth taxonomy in 2006. Instead, the malware that Rutkowska considered to be type 2
malware must actually be seen as type 1 malware. In other words, data-only malware is
the only form of type 2 malware.

This observation implies that data-only malware is by definition more stealthy than
traditional malware and consequently harder to detect. The only exception to this rule
represents type 3 malware. However, the stealth of this malware form is based on the
properties that virtualization provides and not on the implementation approach of the
malware. That is, the stealth of this malware variant will depend on the fact of how well
the malware can hide the virtualization layer, whether the malware is implemented using
code or data is thereby irrelevant as the guest is unable to access the hypervisor directly.

3.6.3 Environment Dependencies

In Section 2.1.4.5 we established that malware in general is unable to infect arbitrary
systems, but instead requires a specific environment to function. These environment
dependencies are interesting as they could potentially provide a basis for countermeasures,
especially if the dependency is inherent to the malware type and cannot be easily resolved.
In this section, we will thus discuss the environment dependencies of data-only malware
in more detail. This discussion will provide the basis for the countermeasures that we
will present in Chapter 7.

We considered seven different important environment dependencies that heavily affect
the capabilities of traditional malware. Namely, these dependencies include hardware
architecture dependency, operating system dependency, operating system version depen-
dency, application dependency, file format dependency, vulnerability dependency, and
network dependency. In the following we will analyze how each of these dependencies
affects data-only malware. For this purpose we first discuss the dependencies that are
shared between traditional malware and data-only malware, before we cover the differing
dependencies as well as the additional dependencies that data-only malware has.

Shared Dependencies. Naturally, some of the aforementioned dependencies are in-
herent to both traditional malware and data-only malware. Traditional malware is in
generally bound to a specific hardware architecture that is capable of executing the
instructions it is made of. Data-only malware essentially consists of a control structure
containing pointers. These pointers point to instructions that eventually must be exe-
cuted by the underlying hardware. Consequently, data-only malware has the exact same
hardware architecture dependencies as traditional malware.

Additionally, similar to traditional malware, data-only malware in general depends on
a particular OS. The reason for this is that this dependency is not inherent to the concept
of data-only malware (or traditional malware for that matter), but is rather dependent
on the functionality that malware provides. As soon as this functionality requires OS
features (e.g. system calls), the malware will have an operating system dependency
irrespective of its form. The same applies to operating system version dependency and

101

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

network dependency, which are also not bound to the malware form, but to the malware’s
functionality.

Differing Dependencies. The most significant difference in dependencies between
traditional malware and data-only malware is application dependency. While some
traditional malware instances may be application dependent (e.g. malware written in
Java), data-only malware always depends on an application to function. This is due
to the fact that data-only malware is based on code reuse. Consequently, it is always
dependent on the application (or the set of applications) whose instructions it uses to
perform its own computations. In case of data-only malware application dependency is
thus comparable to hardware architecture dependency.

Besides requiring an application for ezecution, data-only malware also depends on a
host application for infection. This host can thereby either be the same application it uses
for its execution (code reuse) or a different application. Further, since the infection can
either be conducted using a file or a vulnerability, data-only malware is always dependent
on a specific file format or a vulnerability. The latter is in general more common.

Traditional malware only shares this file format dependency or vulnerability dependency
marginally. In the simplest form, the victim is tricked into executing the malware directly.
This implies that traditional malware does not require an existing application as host for
infection. Additionally, the malware only partially depends on a file format. In fact, it
can use any file format that can be executed by the victim’s OS. Data-only malware on
the other side must manipulate the management structures of a file format for file-based
infection, which couples the malware tightly to a particular format.

Additional Dependencies. Besides the dependencies we covered so far, data-only mal-
ware faces additional dependencies that traditional malware does not have. These
dependencies are a direct result of the implementation challenges we discussed in Sec-
tion 3.1.2. First and foremost, data-only malware depends on a control structure. The
control structure contains the pointers that define the computations that the malware
performs. These pointers can be seen as the “instructions” of the malware. The result-
ing control structure dependency is thus comparable to the dependency on the code of
traditional malware.

Second, data-only malware depends on a switching sequence that activates the execution
of the control structure. The switching sequence can be compared to the entry point of
traditional malware. It effectively sets the virtual IP to execute the “instructions” within
the control structure. The switching sequence itself thereby depends on the code reuse
technique that the malware is based on. In case of ROP, for instance, the switching
sequence must set the SP to point to the control structure. In the simplest case this
can be achieved by directly writing the control structure onto the current stack. The
switching sequence then simply consists of a ret instruction.

102

3.6 Discussion

3.6.4 Encryption, Polymorphism, and Metamorphism

Signature-based detection is one of the most widespread approaches to malware detection.

As such, the question arises whether data-only malware can similarly to traditional
malware leverage encryption, polymorphism, and metamorphism to evade this detection
approach or if signatures are an effective remedy against this malware type. As it
turns out, all of the techniques are similarly applicable to data-only malware. In this
case, however, the techniques are applied to the control structure of the malware and
thus to data instead of code. In the following we will take a closer look at encryption,
polymorphism, and metamorphism and their advantages and disadvantages in the context
of data-only malware. Before doing so, however, we will briefly cover the two types of
signatures that can be created for data-only malware.

When considering signatures for data-only malware, these signature could either be
created for the “instructions” (i.e. pointers) that the malware consists of or the code
that is executed on behalf of the malware. To achieve the latter, we could, for instance,
monitor all instructions that are executed on a system and try to identify sequences
belonging to data-only malware. While this approach has a large overhead, it can be very
effective. From here on we will refer to this kind of signatures as code signatures. On
the other side, we can try to create a signature for the control structure of the malware
and the “instructions” contained within the control structures. For the remainder of
this thesis we will refer to such signatures as control structure signatures. With this
knowledge in mind, let us take a look at encryption, polymorphism, and metamorphism
and how these techniques work in the case of data-only malware.

Encryption. Encrypted data-only malware operates similar to encrypted traditional
malware: Before the malware is placed into memory, its execution control structure is
processed with an encryption algorithm using a secret key. After the encryption a small
decryption control structure is perpended to the encrypted malware. Once the execution
of the malware begins, the decryption control structure will then decrypt the execution
control structure in memory and start the execution of the actual malware. Similar to
all operations that data-only malware performs, a requirement for this approach is that
the target system provides the instructions necessary for decryption.

While encrypting the control structure of data-only malware can be effective against

control structure signatures, it cannot protect the malware against code signatures.

This is due to the fact that the instructions that will be executed by the hardware
always remain the same independent of the encrypted control structure. In addition, the

encryption will only thwart control structure signatures as long as it remains encrypted.

Similar to code, the control structure must, however, be decrypted at some point in
time during execution. At this point the decrypted control structure can be detected
in memory. Finally, it might still be able to create a control structure signature for the
decryption routine. Consequently, encrypted data-only malware has the same drawbacks
as encrypted traditional malware.

103

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

Polymorphism and Metamorphism. Polymorphism and metamorphism require a mu-
tation engine that changes the form of the control structure. In Section 2.1.4.6 we
discussed five different techniques that a mutation engine can use to achieve this: junk
code insertion, instruction replacement, instruction permutation, variable/register substi-
tution, and code transposition. In the following we will consider each of these mechanisms

in turn.

Junk Code Insertion

Instruction Replacement

Instruction Permutation

104

Junk code insertion in the context of data-only mal-
ware is effectively accomplished by adding random
data to the control structure. To compensate for
this data, additional instructions must be inserted
that remove the junk data during execution. For
instance, in the case of ROP we could add arbi-
trary data to the control structure and account for
this change by increasing the SP right before the
junk data begins by the size of the junk data. This
approach can be effective against control structure
signatures as well as code signatures, since it will
change both the control structure and the executed
instructions.

There are two possible approaches to instruction re-
placement for data-only malware. On the one hand,
we can use the same approach that traditional mal-
ware uses and replace gadgets with different but
semantically equivalent gadgets. This will affect
control structure signatures as well as code signa-
tures.

On the other hand, if there exist multiple copies
of the same gadget in memory, we can replace a
pointer within the control structure with a different
pointer pointing to the exact same gadget. While
this will not allow us to evade code signatures, the
approach is very simple and may allow us to evade
control structure signatures.

The order of the pointers in the control structure
of data-only malware can be changed as long as
the resulting computation remains the same. By
changing the order of the pointers we will change
the layout of the control structure as well as of the
order of the code that will be executed.

3.6 Discussion

Variable/Register Substitution

Code Transposition

Changing the memory addresses of variables can
in the case of data-only malware often be achieved
without altering the gadgets that the malware uses.
The reason for this is that the addresses of memory
locations are usually stored within the control struc-
ture and are not part of a gadget*. Consequently,
variable substitution can often be achieved by al-
tering the control structure which may allow it to
evade control structure signatures.

Register substitution on the other hand in general
requires the substitution of gadgets and is thus effec-
tive against both control structure signatures and
code signatures.

Code transposition makes use of additional branches
to reorder the basic blocks of the malware. In the
case of data-only malware a branch is essentially a
gadget sequence that sets the virtual IP to a dif-
ferent location in the control structure. For ROP
this is achieved by increasing or decreasing the SP,
for instance. Consequently, the technique requires
additional gadgets similar to code transposition for
traditional malware which requires additional code.
Due to this fact, the mechanism is capable of de-
feating control structure signatures as well as code
signatures.

In summary, encryption, polymorphism, and metamorphism for data-only malware
can be achieved by modifying the control structure. When a modification requires
additional or different gadgets, it will in addition to the control structure alter the
executed code of the malware. Consequently, such modifications can be used against both
control structure signatures and code signatures. From the techniques covered above this
includes junk code insertion, instruction replacement, register substitution, and code
transposition. However, to use these techniques, the target system must provide the
necessary additional gadgets. This limitation does not apply to mechanisms that only
modify the control structure, but do not change the instructions that will effectively be
executed. Namely, these techniques are instruction replacement, instruction permutation,
and variable substitution. While these techniques are less restrictive and thus easier to

4Finding gadgets that use specific addresses is often difficult. This is why one in general tries to find
gadgets that operate on registers. Immediates (addresses) can then be loaded from the control
structure into a register when required. In the case of ROP this is achieved with the help of a pop
<reg>; ret gadget, which frequently occur in code.

105

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

apply, they in general can only defeat control structure signatures. The exception to the
rule is instruction permutation, which does not alter the underlying instructions, but the
order in which they are executed. Therefore the technique is also able to defeat code
signatures.

3.6.5 Summary

In this section we continued our comparison of data-only malware and traditional
malware by considering the advanced properties introduced in Section 2.1.4. We began
by addressing the question whether data-only malware has the same computational
ability as traditional malware. In the process we established that data-only malware can
in many cases make use of a Turing complete gadget set, which enables it to perform
arbitrary computations. Since the capabilities of data-only malware in the end, however,
always depend on the host application whose instructions it abuses, the malware form is
more restricted in its application than traditional malware.

In the next step we analyzed the level of stealth that data-only malware provides.
In this case data-only malware proved superior compared to traditional malware as
data-only malware does not change any constant system resources, while traditional
malware is forced to modify the codebase.

From stealth we moved on to compare the environment dependencies of both malware
forms. While data-only malware and traditional malware share the exact same dependen-
cies on hardware, operating system, and network, we found that data-only malware in
contrast to traditional malware heavily depends on the application it infects and the file
format or the vulnerability it uses for infection. In addition, we discovered that data-only
malware face two additional dependencies that do not exist for traditional malware: con-
trol structure dependency and switching sequence dependency. Consequently, data-only
malware has more dependencies than traditional malware.

Finally, we took a look at encryption, polymorphism, and metamorphism and investi-
gated the issue whether these techniques can similarly be applied to data-only malware
in order to evade signature-based detection. During our discussion we found that all
techniques can similarly applied to data-only malware. Thus data-only malware is capable
of evading signature-based detection as easily as traditional malware.

3.7 Related Work

Data-only Malware To the best of our knowledge, there currently exist three other
works in the field of data-only malware ([24, 61, 62]). All of them are primarily concerned
with one shot data-only malware. In particular, Hund, Holz, and Freiling [62] present a
non-persistent ROP-based rootkit, while Chen et al. [24] present a non-persistent JOP-
based rootkit. Both rootkits essentially provide the same functionality: The infection is
conducted using a hand-crafted vulnerability that is introduced into the kernel by loading

106

3.7 Related Work

a self-written kernel module. Consequently, both rootkits rely on a vulnerability-based
infection mechanism. Once the vulnerability has been exploited, the first stage of the
exploits will load a single data-only payload into kernel space and executed it. The
payload in this particular case consists of a data-only program that is capable of hiding a
process within the system by modifying the internal process list managed by the kernel.
Essentially this is achieved by removing the target process from the process list. After
the execution of the payload, the rootkits will then restore a valid kernel execution path
to resume normal system execution.

Besides our own work, the only other successful attempt made at the creation of
persistent data-only malware was performed by Hund [61], who implemented a persistent
rootkit. The approach described by Hund, however, differs significantly from the tech-
niques presented within this thesis. First of all, while Hund also identified the problem of
interrupt-induced overwrites, he never found a reliable solution to cope with them. In his
final solution he uses the cli instruction to disable interrupts, acknowledges, however,
that this approach could still suffer from race conditions in practice.

Second, the switching mechanism that Hund uses and that we discussed in section 3.3.3.1
is limited in several ways. Most notably, it seems to be unsuited for the infection of
64-bit kernels as gadgets that move a kernel address into rsp are seldom. In fact, we did
not find a single gadget for this purpose in the entire Linux 3.8 kernel binary, which has
the considerable size of 18 Mb and enabled us to implement an entire rootkit as we will
describe in Section 3.5.3. In addition, even if such a gadget would exist, the mechanism
would still be unreliable as the OS could potentially overwrite the data-only malware by
using the fixed memory area.

Third and finally, the rootkit implemented by Hund seems only to work in simple
hooking scenarios due to architectural constraints. The problem arises because Hund
assumes that the rootkit will be executed with interrupts disabled. Consequently, there
only exists a single control structure in memory. Many functions, especially within the
kernel, will, however, enable interrupts as soon as they are invoked or are unable to
execute as long as interrupts are disabled. As a result, data-only malware designed
according to the approach proposed by Hund will only be able to invoke a small subset
of functions which severely limits the approach in practice.

Weird Machines. Shapiro, Bratus, and Smith [140] showed that it is possible to create a
Turing complete language based on ELF metadata which allows one to perform arbitrary
computations with the Linux loader. While our work shares similar ideas, the problems
that we try to solve are fundamentally different. Shapiro, Bratus, and Smith abuse ELF
metadata as input for a “weird machine” that will perform computations with the help
of the Linux loader. In contrast to this, our work only uses the intended functionality
of the loader to create a data-only program in memory. The execution of the data-only
program is thereby not conducted by the loader, but by diverting the control flow of the
infected binary.

107

(D]
—
()
=
(q0)
=
=
c
?
©
+
()
Q

3 Data-only Malware

3.8 Summary

In this chapter we determined the capabilities and limitations of data-only malware by
conducting a detailed and systematic analysis of this novel threat and its properties. We
began by explaining the fundamental concepts that form the basis of the malware form.
In the process, we established that data-only malware is essentially a malicious data-only
program written in a code reuse language. As a consequence, data-only malware always
requires a host program, whose instructions it can reuse, to function.

Having provided the basis for our analysis, we covered the three data-only malware
types that exist (one shot, persistent, and resident data-only malware) by detailing the
challenges associated with their creation and explaining how one may overcome them.
Most importantly, we showed that data-only malware can — against popular belief —
achieve the properties of persistence and residence. As a result, data-only malware can
reach the same level of sophistication as traditional malware. We demonstrated this
by presenting implementations of sophisticated data-only malware capable of infecting
current systems in spite of the variety of protection mechanisms that they leverage.

Finally, we concluded our analysis by performing an in-depth comparison between
traditional malware and data-only malware. We found that data-only malware can,
similarly to traditional malware, rely on encryption, polymorphism, and metamorphism
to evade detection and even surpasses its traditional counterpart in its level of stealth.
However, what is most surprising is that data-only malware can in many cases perform
arbitrary computations in spite of the fact that it relies on code reuse and can thus achieve
the same computational ability as traditional malware. This makes data-only malware a
realistic and powerful threat that is well suited for the creation of sophisticated attacks.
However, our in-depth comparison also allowed us to identify three inherit weaknesses of
the malware form: it requires a host application as basis, a switching sequence for its
activation, and a control structure for its execution. As we will show in Chapter 7 these
dependencies are very well suited as a basis for detection mechanisms.

108

Chapter

Existing Defenses

By studying data-only malware in theory as well as in practice, we have established that
this malware form represents a realistic and powerful threat. So far, however, we have
only considered current protection mechanisms marginally and, with the exception of
signature-based detection, entirely ignored detection mechanisms in our analysis. This
leads to the question whether an existing approach can already counteract this novel
threat or if data-only malware poses an immediate danger to current systems. To address
this question, we will in this chapter investigate the effectiveness of existing defense
mechanisms against data-only malware. In the process, we will show that data-only
malware can evade all of the existing defense mechanisms except hook-based detection.

Chapter Outline. We begin by investigating the applicability of current protection
mechanisms to data-only malware in Section 4.1. In Section 4.2, we consider our first
detection mechanism: signature-based detection. This is followed by an analysis of
anomaly-based detection in Section 4.3. In Section 4.4, we consider integrity-based
detection mechanisms, before we discuss hook-based detection in Section 4.5. Finally, we
summarize the results of our analysis in Section 4.6.

4.1 Protection Mechanisms

In this subsection we will briefly revisit the protection mechanisms discussed in Sec-
tion 2.4.1 and examine their effectiveness against data-only malware. In the process
we will cover the protection mechanisms in the exact same order as they appear in
Section 2.4.1 beginning with the software-based protection mechanisms.

4.1.1 Software-based Mechanisms

StackGuard. While StackGuard makes it more difficult to load data-only malware
using a vulnerability-based infection mechanism, it can solely protect against buffer

109

n
(D)
)
c

8=
(D)

a
a0
c

=

S
X

L

4 Existing Defenses

overflows targeting the saved return address on the stack. However, there exist many
other attack vectors that are not covered by the approach. For example, the mechanism
is in general powerless against n-byte writes, an exploitation technique that we will cover
in more detail in Section 5.2.2. Since data-only malware is not limited to buffer overflows,
but can instead use a wide range of vulnerabilities or a file-based infection mechanism to
load itself, StackGuard can only marginally reduce the threat of data-only malware.

PatchGuard. Since PatchGuard is closed source and in addition highly obfuscated,
it is difficult to reason about the capabilities of the protection mechanism. However,
the few sources that are available about it [130, 145, 146] indicate that PatchGuard is
primarily designed to protect key kernel data structures and the OS code. Consequently,
PatchGuard essentially combines hook-based and code-based detection.

Since data-only malware does not modify the codebase of the kernel, the only attack
surface that it provides for PatchGuard are the changes it conducts to kernel data
structures (e.g. to install hooks or to facilitate the switch to a persistent chain). To test
this capability we simulated the changes that our persistent rootkit! conducts to kernel
data structures on a fully patched Windows 7 SP1 64-bit system. While the modification
of the sysenter MSRs was not detected by PatchGuard, the changes made to the system
call table? were detected. In conclusion, PatchGuard can detect kernel level data-only
malware if it installs hooks into key data structures within the system. We will defer a
more detailed discussion of hook-based detection to Section 4.5. An overview of some of
the structures that are protected by PatchGuard can be found in [130].

ASLR. ASLR randomizes the base address of libraries and binaries when they are
loaded. Among the protection mechanisms discussed so far, ASLR is certainly the one
that is most effective against data-only malware. If the attacker is unable to determine
the addresses of the gadgets she requires, the attack will obviously fail. However, the
mechanism has two crucial weaknesses. First, it cannot protect against any attack that
abuses the loader as demonstrated in Section 3.5.2, because the loader must be able
to resolve addresses to provide functionality such as symbol resolution. Consequently,
ASLR is unable to stop file-based data-only malware.

Second, a single memory disclosure vulnerability is in general sufficient to bypass
ASLR. If the attacker manages to obtain a single address, she can calculate the addresses
of all other gadgets. This is due to the fact that ASLR in general only randomizes the
base address of a code region, while the relative offsets between instructions remain
the same. However, Snow et al. [148] have shown that even a more fine-grained ASLR
implementation would not solve this issue, since an attacker could repeatedly reuse
the same memory disclosure vulnerability to obtain an arbitrary number of addresses.

1See Section 3.5.3 for details.
2The Windows equivalent of the Linux system call table is the System Service Dispatch Table
(SSDT) [130].

110

4.1 Protection Mechanisms

Consequently, memory disclosure vulnerabilities constitute an inherent problem of ASLR.

Since research has shown that attackers generally have such vulnerabilities at their
disposal when performing an attack [135, 148], ASLR can, although it seems effective in
theory, often be bypassed in practice.

4.1.2 Hardware-based Mechanisms

W & X. Due to W @& X memory regions are either executable or writable. While this
approach effectively protects systems against traditional shellcode-based attacks, it is
powerless against data-only malware as it does neither introduce new instructions into
the system nor modify existing instructions.

SMEP. A common technique leveraged by attackers in the case of kernel exploitation
is to place their shellcode into user space and to trigger the execution of the code using a
kernel vulnerability [113]. This approach has the crucial advantage that an attacker can
execute arbitrary code at the highest privilege level without having to find a way to load
code into the kernel’s memory space. SMEP hinders such attacks by ensuring that no

code is executed from a user space page while operating at the highest privilege level.

Since data-only malware does not leverage such an approach, however, the mechanism is
unable to reduce the attack surface in this case.

SMAP. SMAP is essentially the counterpart to SMEP for data. When enabled, the
CPU will generate an exception whenever a user space page is accessed while operating
at the highest privilege level. As a result, data-only malware can, similar to shellcode, no
longer be stored in user space and then executed from kernel space. While this minimizes
the attack surface, data-only malware can still execute at the privilege level it is stored
in (i.e. within user space or kernel space). In addition, the kernel must access user space
data from time to time to be able to fulfill its purpose. For instance, to execute a system
call, the kernel often requires user space arguments such as the address of the buffer that
stores the result of the system call. Consequently, SMAP must in contrast to SMEP be
temporarily disabled during normal operation. This provides an attacker with various
possibilities to circumvent the mechanism. For instance, could she leverage a hook to

redirect the execution flow precisely at the point in time when SMAP has been disabled.

Code Signing. In case of code signing, the integrity of a binary is verified while it is
loaded. Given that a code signing approach validates the entire binary and not just its
code regions, code signing can, in some cases, hinder file-based data-only malware. Since
code signing faces similar restrictions as file-integrity checking, however, we will defer a
more detailed discussion about the effectiveness of the mechanism to Section 4.4.1.

111

n
(D)
)
c

8=
()

a
a0
c

=

S
X

L

4 Existing Defenses

4.2 Signature-based Detection

In principle, signature-based detection can be used to detect data-only malware as well.
The necessary signatures can thereby be created in two different ways: one can either
create signatures based on the gadgets that the malware executes (code signature) or
one can focus on the control structure of the malware (control structure signatures).
As described in Section 3.6.4, however, data-only malware is capable of similar evasion
techniques (e.g. polymorphism and metamorphism) as traditional malware. Consequently,
both signature types essentially face the same limitations as traditional signatures. The
most severe being that signature-based detection is vulnerable to evasion attacks and
that signature generation mostly remains a time consuming manual process.

While comparing both signature types, we found that code signatures are in general
more difficult to evade than control structure signatures. Thus if a signature-based
detection approach is used to hinder data-only malware, code signatures should be
preferred. To make evasion more difficult, detection mechanisms can, as in the case of
traditional malware, employ emulation or semantic signatures. Since even anti-malware
vendors acknowledge that current signature-based approaches are only able to detect
45% of all malware infections [132], however, it is highly unlikely that signature-based
detection will be more successful in mitigating the threat of data-only malware as it
currently is in stopping traditional malware.

4.3 Anomaly-based Detection

A very important property of anomaly-based detection with regard to data-only malware
is that it focuses on the behavior of malware rather than its implementation. This
enables anomaly-based detection to counteract one of most dangerous features of data-
only malware. In particular, data-only malware constitutes a challenge for existing
defense mechanisms since it solely consists of data. At its heart, however, data-only
malware only represents a novel way to implement malware, while the behavior of the
malware remains unchanged. As a consequence, anomaly-based detection can directly be
leveraged to detect data-only malware.

That being said, anomaly-based detection, however, also faces the same limitations
as in the case of traditional malware detection. Most importantly, it is usually quite
difficult to identify features that are suitable for the detection of abnormal behavior
and anomaly-based detection typically suffers from a high false positive rate [63]. The
latter is thereby a particular severe problem, since even a small number of false positives
can render a mechanism unsuitable for real world applications. Since anomaly-based
detection, like signature-based detection, has so far been unable to substantially hinder
traditional malware, it is implausible that current approaches will be more effective
against data-only malware.

112

4.4 Integrity-based Detection

4.4 Integrity-based Detection

Having covered signature-based detection and anomaly-based detection, we will in this
section discuss the effectiveness of the integrity-based detection mechanisms that we
introduced in Section 2.4.2.4 against the threat of data-only malware. As before, we will
address the individual mechanisms in the same order as they appear in Section 2.4.2.4.

4.4.1 File Integrity Checking

File integrity checkers can in theory prevent the execution of file-based data-only malware
by checking the integrity of every file before its execution. While this approach seems
simple at first glance, it is not as straightforward to realize in practice as one might think.
First of all, to actually perform the comparison we require a cryptographic checksum of
every file. Naturally, however, there exist many binaries for which such a checksum is not
provided by default. For instance, files received via e-mail rarely come with a checksum.

To solve this problem, systems such as Tripwire [73] and Open Source SECurity
(OSSEC)? allow their users to calculate the cryptographic checksum of a file in the
current system environment. That is, they assume that the current system environment
is secure and can thus be used to calculate the initial checksum that will later on be used
for the comparison. There is, however, no guarantee that an attacker has not already
compromised the system when the calculation is performed.

Second, to provide a reliable comparison, the benign checksums must be stored in a
secure location that cannot be compromised [73]. Otherwise, an attacker could simply
change a file and then update its checksum in the database used for comparison. In
practice, this implies that we must have the ability to verify the integrity of the database
as well (e.g. using certificates). In addition, we need to ensure that the component
performing the integrity verification is in fact integer and has not been modified. This
leads to a complex architecture that must perform a lot more tasks than simple file
integrity checking. Instead, it must ensure the integrity of the database and the verification
component (and any other component involved), which may reside within a potentially
malicious environment.

Third and finally, not all files are constant. Text files, for instance, may obviously
change during their lifetime. Since many word processors support script languages in the
meantime, text files can thereby provide similar powerful attack vectors as executable
files. Beyond that, an attacker could always resort to exploitation to infect a system
with malware. Even simple text files can become security relevant if they can trigger
vulnerabilities in the programs processing them. Consequently, to protect against data-
only malware, one must actually not only verify constant files, but also dynamic files.
Doing so reliably and efficiently, however, remains, to the best of our knowledge, an open

3http:/ /www.ossec.net/

113

n
(D)
)
c

8=
()

a
a0
c

=

S
X

L

4 Existing Defenses

research problem. Due to this problem file integrity checkers similar to anomaly-based
detection systems often suffer from false positives [157].

In conclusion, file integrity checking is capable of preventing file-based data-only
malware, given that the infected file is immutable and that a cryptographic checksum
for the file exists. It is thereby essential that the checksum does not only cover the
code regions of the file, but also all of its data regions. Creating a secure architecture
for file integrity checking that provides a checksum for every binary is difficult though.
Further, validating mutable files remains an open research problem. It is probably for
these reasons that file integrity checkers are only found seldom on systems today. Finally,
file integrity checking cannot protect against vulnerability-based data-only malware.

4.4.2 Code Integrity Checking

Code integrity checkers have been proven to be very effective against traditional malware,
even against highly sophisticated malware such as kernel level rootkits [128]. As we
discussed in Section 2.4.2.4, the primary reason for this success lies in the fact that
traditional malware must change the codebase of a system to be able to execute. While
code integrity checking is predestined for the detection of traditional malware, the
approach is, however, obviously unable to detect data-only malware. In fact, data-only
malware was originally designed to evade this detection mechanism [62], which highlights
the importance of code integrity checking for traditional malware detection.

4.4.3 Control Flow Integrity (CFl) Checking

The goal of CFI is to validate the control transfers conducted by an application using its
control flow graph (CFG). While powerful in theory, CFI faces two major limitations in
practice. First of all, every check of a control transfer comes at a cost [156]. The more
instructions we verify, the higher the overhead. Ideally, however, we want to validate
every control transfer of an application in order to detect data-only malware reliably.
Since even a small overhead can have a huge impact for applications that are optimized
for performance such as an OS kernel, it is therefore essential to reduce the runtime
overhead of CFI as far as possible.

A promising approach in this direction has been presented by Bletsch et al. [12] in
the form of control flow locking (CFL). The central idea thereby is to validate control
transfers after they occur in a lazy manner. This is accomplished with the help of
control flow locks: whenever a branch is taken its control flow lock is set. The lock is
only removed when a valid destination for the branch in the control flow is reached.
A deviation of the control flow can then be detected when the lock is still set and a
branch instruction is encountered, as the control flow in this case never reached a legal
destination that removed the lock. While this implies that an attacker can deviate
once from the CFG before she is detected, this lazy validation approach enables CFL
to provide a better performance than traditional CFI approaches. In the experiments

114

4.4 Integrity-based Detection

conducted by the authors, the maximal overhead incurred by the approach was 21%. A
significant improvement considering that the original CFI mechanism proposed by Abadi
et al. [1] has a maximal overhead of 45% when performing the exact same experiments.
However, even in the case of CFL the overhead certainly remains substantial.

Second, the effectiveness of CFI heavily depends on the quality of the CFG used [37],
which can be obtained through “source-code analysis, binary analysis, or execution
profiling” [2]. For instance, to validate an indirect branch instruction, we require exactly
the targets that the branch could transfer execution to. However, determining this target
set is a challenging task, since the problem is in general undecidable [98]. To circumvent
this issue and to avoid false positives CFI mechanisms usually overapproximate in practice.
That is, they allow a larger set of control flow targets than the real precise CFG actually
would allow.

Although this may seem as a minor issue at first glance, overapproximation is actually
a severe problem that almost all current CFI mechanisms share (e.g. [12, 27, 181, 185,
186]) and that can be leveraged to easily bypass current approaches in practice as
various researchers have shown [20, 37, 135]. In particular, due to overapproximation,
CFT mechanisms become vulnerable to mimicry attacks where an attacker abuses the
additional control transfers that a coarse-grained CFG allows to perform malicious
computations. This approach is possible as the overapproximated CFG allows control
transfers, which could actually never occur during normal execution, and CFI cannot
protect against any attack that operates “within the bounds of the allowed CFG” [2].
To demonstrate this, let us consider two overapproximations that are commonly used
by current mechanisms. For instance, CFI approaches commonly allow an indirect
call instruction to target every function of a program (e.g. [1]), even though the call
should actually only be allowed to invoke specific functions. As a result, an attacker
can invoke an arbitrary function of the application if she controls a single indirect call
instruction. This is why researchers currently consider ret2libc as a general limitation of
CFI mechanisms [186].

Another common check performed by current CFI mechanisms is that a ret instruction
must always return to an instruction preceded by a call instruction [20]. In reality,
however, a ret instruction should only be allowed to return to the call that invoked the
function, not to every location preceded by a call instruction. While this overapproxi-
mated “return rule” restricts the gadgets that an attacker can leverage, it is insufficient
to prevent ROP attacks. In fact, as shown by Davi et al. [37], an attacker can still
perform arbitrary computations if this restriction is in place. That is, ROP still remains
Turing complete in spite of this restriction.

In conclusion, while CFI certainly reduces the attack surface, it faces practical problems
that must be solved before it can be leveraged as a general protection mechanism against
data-only malware. Most importantly, as recent research has shown, coarse-grained
CFT is unable to provide real security and can often easily be bypassed in practice.
Consequently, more research is needed to create fine-grained and faster CFI mechanisms
that provide real security with an acceptable performance.

115

n
(D)
)
c

8=
()

a
a0
c

=

S
X

L

4 Existing Defenses

4.4.4 Data Integrity Checking

Just as code integrity checking is well-suited for the detection of traditional malware,
data integrity validation would lend itself well for the detection of data-only malware.
In contrast to code, data may, however, change frequently during normal operation
making data integrity checking a lot more difficult than code validation. In particular,
data-integrity checking requires us to find data integrity constraints that enable us to
distinguish between benign and malicious changes conducted to data. As described
in Section 2.4.2.4, current approaches primarily focus on validating the integrity of
the OS kernel data structures. Unfortunately, however, these systems are only able to
enforce data integrity checks, but are unable to generate the rules required for the actual
validation. Instead, the necessary rules must be created by human experts. Given the
complexity of modern OS kernels, however, it is even for experts nearly impossible to
come up with rules that are capable of validating the data regions of the kernel in their
entirety reliably. This is why, some researchers such as Rutkowska even go as far as to
say that current “systems are [simply] not designed to be ‘verifiable” [131]. As a result,
there currently exist many loopholes that can be abused by an attacker to hide data-only
malware from data integrity checkers.

In conclusion, current data integrity approaches are unable to hinder the threat of
data-only malware. To be able to leverage data integrity checking for malware detection,
additional research in the field of automatic integrity constraint generation is required.
Techniques that are able to generate signatures for kernel data structures such as the
ones presented by Lin et al. [84] or Dolan-Gavitt et al. [42], could here provide a good
starting for further research, since the generated signatures could potentially be used to
infer integrity invariants.

4.5 Hook-based Detection

Generally speaking, malicious code requires hooks within the system to function. Without
them, an attacker is blind to the events occurring in the system, rendering her unable to
even perform simple malicious activities such as hiding of files or capturing keystrokes.
Realizing this, researchers presented various hook detection mechanisms [57, 81, 174].
Although existing detection mechanisms may not yet be able to detect all hooks that are
placed by malware, the remaining possibilities for malware to install hooks are constantly
dwindling. Hooks that are based on code modifications are usually no longer an option,
since changes to code areas are prone to code-based detection. This leaves attackers only
with the option of data hooks, but even here the options are increasingly restricted by
modern detection mechanisms. One of the main reasons for this is that control data
in contrast to non-control data is in general static [175]. As a consequence, it is much
easier to validate making hook-based detection suitable for real world applications as
mechanisms such as PatchGuard show.

116

4.6 Summary

To illustrate the capabilities of hook-based detection at a practical example, consider
the persistent rootkit we described in Section 3.5.3. The rootkit modifies the sysenter
MSRs as well as function pointers within the system call table. Both of these modifications
would have been detected by the hook-based detection mechanism presented by Wang et
al. [175], for instance. This amply demonstrates that hook-based detection can generally
be very effective in hindering data-only malware.

In conclusion, since hook-based detection mechanisms do not target the malware itself,
but the hooks it installs, data-only malware is similarly prone to hook detection as
traditional malware.

4.6 Summary

In this chapter, we discussed the effectiveness of current protection and detection mech-
anisms against data-only malware. In the process, we found that most of the existing
defense mechanisms are fundamentally flawed. Of the available protection mechanisms
we consider ASLR to be the most promising approach. By randomizing the address
space, ASLR makes it significantly more difficult for the malware to obtain the addresses
of the gadgets it requires to function. However, memory disclosure vulnerabilities often
enable an attacker to easily bypass ASLR and research has unfortunately shown that
such vulnerabilities are quite common [135, 148]. Thus while ASLR is strong in theory, it
is in its current form unable to mitigate the threat of data-only malware. We will discuss
an extension to traditional ASLR that can potentially overcome its current limitations
in Section 7.3.1.

The existing detection mechanisms present a similar picture: while most of them seem
capable of defending against data-only malware in theory, they have striking weaknesses
in practice. An overview of all approaches is shown in Table 4.1. We currently only
deem hook-based detection to be effective against data-only malware. While data-only
malware might manage to hide itself, its hooks represent an apparent weakness that is
well suited for its detection.

117

n
(D)
)
c

8=
()

a
a0
c

=

S
X

L

4 Existing Defenses

0
o 9
&L
S
Sy syt
o/ S S
A NY
>R S
NI
o\ $@ 2
¥ 40\) <
DETECTION S
Signature-based Detection ‘\/ ‘ \/‘ v

Signature-based detection can only protect against known malware in-
stances. Since more and more new malware instances appear everyday,
the approach is less and less able to protect systems.

Anomaly-based Detection ‘ v ‘ v ‘ v
Anomaly-based detection can detect both traditional malware as well as
data-only malware, because the mechanism targets the behavior of the
malware instead of its implementation. The detection approach, however,
also provides the same limitations as when applied to traditional malware.
Since current anti-virus software is only able to detect a small portion
of traditional malware, it is unlikely that current approaches are able to
significantly reduce the threat of data-only malware.

File Integrity Checking ‘ v ‘ X ‘ v
File integrity checking is in general only applicable to files that rarely
change. Today’s systems, however, contain many non-executable data files
that change frequently during normal operation and similarly provide an
attack vector. In addition, file integrity checking cannot protect against
vulnerability-based data-only malware.

Code Integrity Checking ‘ v ‘ X ‘ X
While effective, code integrity checking is a code-based method and can
therefore only protect against traditional malware.

CFI VIV v
CF1I is in theory able to reliably detect data-only malware. Its main
problem lies in the fact that CFI is only as accurate as the CFG it
enforces. Since current methods only enforce a coarse-grained CFG, they
are easily bypassable as recent research has amply demonstrated.

Data Integrity Checking ‘ v ‘ v ‘ v
Data integrity checking could be as effective against data-only malware as
code integrity checking is against traditional malware. Current systems,
however, are only able to enforce integrity constraints. The creation of
the constraints is left to a human expert.

Hook-based Detection ‘ v ‘ v ‘ v
Since hook-based detection does not target the malware itself, but the
hooks it installs, the approach can be very effective against data-only
malware in practice, which we illustrated based on our persistent data-
only rootkit.

Table 4.1: Overview of existing detection mechanisms and their applicability to data-only
malware (DoM). [v'=yes, X=no]

118

Chapter

Dynamic Hooks

Data-only malware is a dangerous threat that is capable of evading code-based detection
approaches. However, besides its instructions, current malware has another Achilles’
heel that similarly affects data-only malware: in general, malware must intercept events
within the system to be able to fulfill its purpose [116, 175]. Event interception, however,
requires malware to divert the control flow of the infected system at runtime. To
achieve this, malware must install hooks in the system that facilitate the required
control flow transfer on behalf of the malware whenever the desired event occurs. While
sophisticated malware such as data-only malware might manage to hide itself, these hooks
represent an abnormality that will be permanently visible within the system. This insight
led to development of a wide range of protection mechanisms that do not target the
malware itself, but rather detect malware infections based on the hooks that the malware
introduces [57, 81, 174]. In spite of this fact, hooking techniques have in contrast to
malware, where one can observe a constant evolution of techniques and mechanisms used
(such as data-only malware), not changed significantly over the course of recent years.
Consequently, while data-only malware may be difficult to detect, its hooks remain — as
in the case of traditional malware — a fundamental weakness.

This raises the question whether hook-based detection mechanisms could be sufficient
to mitigate the threat of data-only malware. To address this issue, we once more utilize
a proactive approach in this chapter and investigate the security of hook-based detection
mechanisms in more detail. In the process, we find that current hook-based detection
mechanisms make the incorrect assumption that attackers can only abuse persistent
control data for hooking. As a result, existing mechanisms can be circumvented by
targeting transient control data such as return addresses instead. To illustrate this, we
propose a new hooking concept, called dynamic hooking, that exploits vulnerabilities to
dynamically change the control flow of the system at runtime. The hook itself will thereby
reside within non-control data and remains hidden until it is triggered. As a result, there
is no ewvident connection between the hook and the actual control flow change, which
enables dynamic hooks to successfully evade existing detection mechanisms.

119

)
X~
(]
O
I
=
£
©
=
>
Q

5 Dynamic Hooks

Chapter Outline. We begin by explaining why current hook defense mechanisms are
vulnerable to evasion attacks in Section 5.1. With this background in mind, we discuss
the concept behind our novel hooking approach in Section 5.2. In the process, we provide
a high-level overview of our approach, discuss the vulnerabilities that can be exploited to
realize dynamic hooks, cover the different types of dynamic hooks that exist, and explain
how suitable paths for dynamic hooks can be extracted automatically. Having presented
our concept, we prove the practicability of our approach by discussing the experiments
that we conducted and describing detailed POC implementations of dynamic hooks for
recent Linux and Windows kernels in Section 5.3. In Section 5.4, we discuss the types of
transient control data that can be utilized to implement dynamic hooks and state the
limitations of the proposed concept. Finally, we cover related work in Section 5.5 and
summarize the chapter in Section 5.6.

5.1 The Problem with Current Hook Defenses

Although researchers proposed various systems that aim to protect control data within
an application! [19, 81, 116, 174], the main focus of these systems lies in the protection
of function pointers that are allocated on the heap or reside within the data region of
the application. Transient control data on the other side is generally ignored by these
approaches or they merely consider the protection of return addresses, which is not the
only kind of transient control data as we will discuss in Section 5.4.1.

While researchers acknowledge that malware could potentially also target transient
control data to modify the control flow [81, 116, 174], these attacks are usually only
considered in the context of exploitation, but are not considered to be relevant for hooking.
The reasoning behind this assumption is that malware generally needs to change the
control flow of the target application indefinitely in order to be continuously able to
intercept events. However, to permanently redirect the control flow, malware must target
persistent control data as transient control data is, by definition, only used by the system
for a limited amount of time. In the following, we demonstrate that this assumption is,
just like the assumption that malware has to change the codebase of a system to function,
false and can be used to circumvent existing defense mechanisms against hooking.

5.2 Approach

In the following, we introduce our novel hooking concept that we refer to as dynamic
hooking. For this purpose, we first provide an overview of the concept, before we discuss
the vulnerabilities that can be used to implement dynamic hooks and cover the types of
dynamic hooks that exist and their properties.

IFor more detailed information about hook-based detection we refer the reader to Section 2.4.2.5.

120

5.2 Approach

5.2.1 High-Level Overview

The main problem with existing hooking mechanisms is that they require the permanent
change of code or function pointers. Consequently, the desired control flow change of the
malware is permanently evident within the system [116]. The fundamental idea behind
dynamic hooks is to solve this problem by hiding the desired control flow change within
non-control data such that there is no clear connection between the changes that the
malware conducts and the actual control low change. This is accomplished with the
help of exploitation techniques.

To exploit a vulnerable application, an attacker makes use of specially crafted input
data that — when processed by the application — will eventually trigger a vulnerability. If
the vulnerability enables the attacker to overwrite important control structures such as a
return address, she will be able to modify and often control the execution flow of the
application using techniques such as ROP [138].

With dynamic hooks, we apply the same concepts that are used in traditional exploita-
tion scenarios to hooking. That is, we manipulate the input data of the functions we want
to hook in such a way that we will trigger a control flow modifying vulnerability when the
data is used. This effectively allows us to overwrite control data (e.g., a return address)
at runtime and enables us to control the execution flow of the application similar to a
traditional hook. The main difference, however, is that such a dynamic hook will reside
somewhere within the data structures of the application unnoticed until its malicious
payload is eventually used by the target function.

For this approach to work, we need to identify a control low modifying vulnerability
in every function that we want to hook. At first glance this seems unlikely. After all the
exploitation of vulnerabilities became more and more difficult over the course of the last
years due to widely deployed protection mechanisms and even though the vulnerability
databases list new vulnerabilities every month these in general only affect a small number
of functions. However, there is a key difference between the exploitation of traditional
vulnerabilities and vulnerabilities that are used to realize dynamic hooks: the attacker
already controls the application at the time she installs a hook. In a traditional exploit,
the attacker’s goal is to gain control over an application. To achieve this, she needs to find
an input to the application that will trigger a vulnerability. That is, the attacker can only
control the external data which is provided to the application. In the case of a dynamic
hook, however, this restriction does not apply. As the attacker controls the application,
she is free to access and modify any internal data structure of the application. This
results in a much stronger attacker model when compared to traditional exploitation.

Finding and exploiting vulnerabilities in such a scenario becomes much easier for several
reasons. First, many existing protection mechanisms such as ASLR, stack canaries, or
W @& X only protect against an external attacker, but can be easily circumvented by an
attacker that controls the application. Second, the attacker can prepare the code (or ROP
chain) she wants to execute when the vulnerability is triggered beforehand and does not
have to provide it during the exploitation process. This enables the attacker to exploit

121

)
X~
(]
O
I
=
£
©
=
>
Q

5 Dynamic Hooks

vulnerabilities where traditional methods would fail due to the space constraints of the
vulnerability. Third, the attack surface for dynamic hooks is much broader. The attacker
cannot only attack functions that handle user input, but can also target internal functions
that cannot be influenced by the user. In fact, by manipulating internal data structures,
the attacker can create new vulnerabilities that would not occur during normal operation
of the application, because the targeted data structures are normally only accessed and
modified by the program itself. This may even allow the attacker to circumvent checks
and filters within the application as the manipulated data structures may contain values
that could never occur during normal operation and may thus not have been expected
by the programmer. Finally, to hook a specific event, the hook may be placed anywhere
within the control flow of the handling code. Consequently, the attacker must generally
not find a vulnerability within a single function, but instead has a larger codebase to
work with.

Example. To illustrate the concept of dynamic hooks at a concrete example, consider
the following code from the list_del function in the Linux kernel (version 3.8):

Listing 5.1: The 1ist_del function of the Linux kernel 3.8.

1 | struct list_head {

2 struct list_head *next;

3 struct list_head *prev;

4 |}

5

6 |static void list_del(struct list_head *entry)
7 1{

8 entry->next->prev = entry->prev;

9 entry->prev->next = entry->next;

10 |}

This function essentially removes the given entry from its list. If the attacker controls
the next and the prev field from the entry to be deleted, she essentially can trigger an
arbitrary 8-byte write on a 64-bit architecture. In particular, she can write the value
of prev into the memory address [next + 8] (Line 7) and the value of next into the
memory address [prev] (Line 8). To use this code fragment for a dynamic hook, the
attacker could, for instance, modify a specific entry within the system and set its prev
pointer to point to the return address of the 1ist_del function and its next pointer
to point to attacker-controlled code. When the entry is deleted, the 1ist_del function
will then, while processing the malicious pointers, overwrite its own return address and
activate the code of the attacker on its return.

The example code above was selected as the 1ist_del function is used throughout the
Linux kernel and demonstrates the arguments stated above. In general, this function is
not exploitable by an external attacker, as the entries that are used by the function are
created by other internal functions within the kernel. While these functions initialize the
values of the pointers correctly, an attacker that controls the kernel can modify them
arbitrarily, thus creating a new vulnerability. The 1ist_del function does not expect the
manipulated values and uses them without checks. This enables an attacker to conduct

122

5.2 Approach

an arbitrary 8-byte write, which is not enough to introduce shellcode into the system,
but is sufficient to transfer the control flow to a previously prepared code region. In
addition, the attacker is not hindered by any of the protection mechanisms used by the
Linux kernel, since she can disable W @& X for her code?, must not overwrite the stack
canary, and knows the address of her code or can calculate the address of the location
of the return address®. Finally, since the 1ist_del function is invoked by many other
functions within the kernel, a dynamic hook within this function is very effective.

5.2.2 Suited Vulnerabilities

In principle, any kind of vulnerability can be used to implement a dynamic hook. In
this thesis, however, we will, for the sake of simplicity, focus on n-byte writes, sometimes
also referred to as write-what-where primitives, such as the one presented in the previous
example. But much of what we present can similarly be applied to other vulnerabilities
such as classical buffer overflows.

N-byte writes enable an attacker to modify n bytes at an arbitrary memory location.
In our example, the attacker controls an 8-byte write to an arbitrary memory address.
In x86-assembly, n-byte writes are essentially a memory mov instruction for which the
source and the destination operand can be controlled by an attacker. An example of a
potential 8-byte write vulnerability in Intel assembly syntax is the following instruction:

Listing 5.2: Example of an 8-byte write.

1 ‘ mov [rax], rbx

If the attacker can control the contents of rax and rbx at the time the instruction
is executed, she can misuse it for a dynamic hook. It goes without saying that such
instructions appear frequently within software. In the Linux 3.8 kernel binary, for
instance, we found more than 103,000 mov instructions similar to the one shown above
that can potentially be abused for an 8-byte write. This corresponds to about 5% of all
instructions (1,976,441) within the tested Linux kernel binary. Note that this does not
include the approximately 58,000 one, two, or four byte write instructions. Together,
this equates to a total of 8% of all instructions that are potentially vulnerable.

5.2.3 Types

Generally speaking, there are two different types of dynamic hooks: dynamic control hooks
and dynamic data hooks. The former target the control flow of the victim application

ZNote that this is necessary since the first write (Line 7) of the example will write the return address
(prev) into the address pointed to by [next + 8]. While this is unproblematic for data-only malware,
this will lead to write into the code section of the attacker in case of traditional malware. However,
this is not an issue in practice, as the attacker can set her code to be writable and executable. In
fact, this is, at the point of this writing, even the default for memory allocated in the Linux kernel.

3The location of the return address depends solely on the address of the kernel stack and the size of the
current function’s stack frame. Both values are known to the attacker as we explain in Section 5.3.2.

123

)
X~
(]
O
I
=
£
©
=
>
Q

5 Dynamic Hooks

and can be used as an alternative to traditional hooks since they enable an attacker to
intercept events within the application. Dynamic data hooks, on the other side, do not
target control data, but rather other critical data structures within an application. As
an example, consider that an attacker wants to install a backdoor. For this purpose, she
places a dynamic hook into a control path that can be triggered from userland such as a
specific system call. However, instead of changing control data, this dynamic hook will
upon invocation directly overwrite the credentials of a predefined process and elevate its
privileges to root. Since the task credentials are usually a data value, this can be achieved
with a single memory write. Thus, instead of overwriting a return address, the attacker
simply sets her hook to overwrite the memory location where the task credentials reside.
As pointed out by Chen et al. [25], such non-control data attacks can be quite powerful.

While dynamic data hooks do not modify the control flow directly, they can be used
to influence the control flow at a later point in time. Consider for instance data that
resides in memory and is processed by a just-in-time compiler. If an attacker manages
to overwrite this data with dynamic hooks before it gets compiled, she can influence
the instructions that are introduced into the system, which can lead to arbitrary code
execution [12].

5.2.4 Properties

We now cover the properties of dynamic hooks. In particular, we first discuss the
individual parts of dynamic hooks, before we cover their binding to an execution path
and their coverage.

Components. Dynamic hooks always consist of two integral components. On the one
hand, there is the instruction that activates the hook, which we refer to as the trigger. In
the case of a n-byte write, the trigger is the mov instruction that conducts the write on
behalf of the attacker. Every path that leads to the execution of the trigger is referred
to as a trigger path. On the other hand, there is the data that was manipulated by the
attacker and encodes the malicious action that the attacker wants to conduct. This is the
payload of the hook. For n-byte writes, the payload usually consists of two manipulated
pointers: the destination pointer, which contains the address that will be written to and
the source pointer, which specifies the value that will be written.

Binding. While the same trigger can be shared among different dynamic hooks, each
hook in general requires its own payload. The reason for this is that the payload contains
the actual data that specifies the control transfer. This data, however, will only be valid
in a particular context. To overwrite a specific return address, for example, we must first
be able to predict its exact location. This requires us to know the exact path leading to
the use of the payload by the trigger. In practice, this means that a payload and thus
the dynamic hook is usually closely bound to a specific execution path. The closer the

124

5.2 Approach

connection between an execution path and a dynamic hook, the better the control of the
attacker over the hook.

In an ideal situation, a dynamic hook is ezclusively bound to a specific execution path.

In this case, the payload of the hook is only processed in the execution path that leads
to its trigger. This enables the attacker to predict possible modifications applied to
the payload before its use in addition to the state of the machine at the time of the

exploitation with high probability, since she must only consider a single execution path.

Similar to traditional exploits, this is essential information that is required to be able to
setup a dynamic hook correctly. After all, the attacker needs to correctly predict the
exact address of the control data, which should be overwritten and overwrite it with the
precise address of the target code region. Without knowing the exact layout of the stack
as well as the transformations that may be applied to the payload before its use, this is a
hard task.

If there are multiple paths that use the payload, the dynamic hook is only loosely
bound to the path leading to the trigger instruction. The more execution paths the
payload affects, the more difficult it will become for an attacker to control the hook. On
the one hand, this is due to the fact that it will become increasingly difficult to predict
the necessary memory addresses and transformations as has been described above. On
the other hand, the more functions access the actual payload that the attacker modified,
the more likely it will be that the hook introduces side effects into the application that
may lead to unexpected behavior and crash the application. Consider, for instance, that
an entry that is used by the 1ist_del function has been modified to act as payload for a
dynamic hook. If the same entry is used by a different function to iterate through all
elements within the list, this will most likely lead to a crash as the prev and the next
pointer do not point to the previous and next element, respectively, as would have been
expected.

Coverage. Another important property of a dynamic hook is coverage: as dynamic
hooks should be closely bound to the execution path containing the trigger, it is essential
that this triggering path is always executed when the target event that should be hooked
is invoked. In this case, the dynamic hook provides full coverage. Otherwise, the hook
may only be able to intercept some execution paths of the target event, but not all. In
that case, the hook has only partial coverage and must thus be combined with other
dynamic hooks to be able to achieve full coverage of the target function. While binding

is a property of the payload of the hook, coverage is a property of the trigger instruction.

5.2.5 Automated Path Extraction

So far we have discussed the concept of dynamic hooks and provided an overview of the
different types of dynamic hooks and their properties. However, the creation of a dynamic
hook still remains a manual process, which can, as in the case of traditional exploitation,
be a very time-consuming and error-prone task especially for complex binaries such as

125

)
X~
(]
O
I
=
£
©
=
>
Q

5 Dynamic Hooks

modern OS kernels. We now describe how paths for dynamic hooks can be obtained
automatically for a given binary. This is essentially a two-step process: In the first step,
we make use of static program slicing [161, 176] to extract potential paths that could be
used for a dynamic hook. In the second step, we then employ symbolic execution [74,
136] to verify the satisfiability of the paths and to generate detailed information for their
exploitation.

5.2.5.1 Program Slicing

To find possible locations for dynamic hooks within an application, an attacker has to
find triggers that make use of a payload that she can control. Since trigger instructions
can be as simple as a memory move, there usually exist many triggering instructions in
many paths of the application. To identify whether a particular trigger instruction can
be used for a dynamic hook, it is necessary to analyze the data flow that leads to the
particular instruction. One technique that can be used for this purpose is static program
slicing [161, 176].

The basic idea behind static program slicing is to traverse back through the CFG
of an application starting from a sink node and to extract each node that directly or
indirectly influences the values used at the sink. Applied to the problem of finding
dynamic hooks, static program slicing thus allows us to determine where the values of
the source and the destination pointer in an n-byte write originate from. To achieve
this, we first identify all potentially vulnerable mov instructions within a given binary.
These are essentially all mov instructions which move a value contained within a register
to a memory location specified by another register. In the next step, we then traverse
the CFG of the binary backwards at the assembler level until we encounter the first
instruction that modifies the source register of the move. We record this instruction and
continue with our backward traversal. Instead of looking for instructions that modify the
source register of the original move, however, we will from here on search for instructions
that modify the source register of the last instruction we recorded. If we continue this
process, we eventually obtain the register or memory location where the value that is
later on contained within the source register originates. We then repeat the process for
the destination register. All the instructions that we recorded using this method form a
slice of the binary. Each slice contains all the instructions that affect a given vulnerable
mov instruction.

We implemented a slicer which is capable of extracting potential paths that could be
used for n-byte writes from a 64-bit Linux or Windows kernel binary. The implementation
of the slicer is based on the disassembler /DA Pro [56]. In particular, we make use of the
CFG that IDA provides to perform the above described static interprocedural def-use
analysis. Starting from each trigger, we perform a breadth-first search in a backwards
direction. We hereby make use of a register set to conduct the actual analysis. Initially,
this register set consists of the source and destination register. Whenever we encounter
an instruction that modifies a register included within the register set, we add the source

126

5.2 Approach

register of the instruction to the set and remove the modified register. Since we walk
backwards through the instruction stream, this effectively allows us to record and track
the def-use chains for the source and destination register. In addition, we record all
instructions that we visit along the way, in order to be able to reconstruct the path that
we explored in case we consider it to be potentially exploitable.

The challenge that remains to be solved is to determine whether a slice can be used for
a dynamic hook or not. To address this problem, we must know whether the registers in
the vulnerable move can be controlled by an attacker. We consider this to be the case if
the values of the source and destination register originate from a global variable. The
reasoning behind this approach is that the data used within the move in this case stems
from a persistent location. Consequently, to control the final mov instruction, an attacker
can modify the pointer chain starting from the global variable.

To identify global variables in the kernel, we assume that each access to a fixed address
or the global segment register (GS) constitutes an access to a global variable. The reason
for the latter is that both the Linux and Windows kernels store important global variables

that are valid for a particular CPU within a memory region pointed to by this register.

For instance, both Linux and Windows store the address of the task_struct (gs:0xc740)
or the ETHREAD (gs:0x188) structure of the process that is currently executing in this
memory region.

If both the source and the destination register originate from a fixed address or the
memory region pointed to by GS, we consider the path to be potentially exploitable and
record it such that it can later on be used as input for the symbolic execution engine.

5.2.5.2 Symbolic Execution

Symbolic Execution is a well-known program analysis method that has been proposed
by King [74] over three decades ago. The basic idea of symbolic execution is to treat
input data of interest as symbols rather than concrete values. At the beginning of the
program execution each symbol can thereby represent any possible value. As we proceed
through the program code, the values become constrained. Branches, for instance, set
up conditions that constrain symbolic variables. Each condition can be represented as a
logical formula. Based on these formulas we can then reason about the program. For
example, we can determine whether a specific execution path is reachable. For this
purpose we feed the logical formulas of the path in question into a SMT solver. If the
path is satisfiable, it can be reached and we can obtain concrete values that satisfy the
path conditions. For a more detailed introduction to symbolic execution we refer the
reader to [109, 136].

We use forward symbolic execution to verify the satisfiability of our sliced paths and to
produce detailed information for the creation of the dynamic hooks. In the process, we
utilize the VEX IR, which is a RISC like intermediate representation with single static
assignment form (SSA) properties, deeply connected to the popular Valgrind toolkit

[101]. For details we refer the reader to the specification shipped with a Valgrind release.

127

)
X~
(]
O
I
=
£
©
=
>
Q

5 Dynamic Hooks

To verify satisfiability, we transform each basic block of the sliced path into VEX
IR code and execute the code symbolically. The translation to VEX IR is achieved by
utilizing a python framework called pyvex [142]. We dismantle every VEX statement
that we obtain from pyver and link the components of the statements into our own data
structures. These data structures are used to walk over the VEX code and by doing so,
we semantically map the statements to Z3 expressions. Z3 is an open source theorem
prover developed at Microsoft Research that we use to solve our formulas [95].

As we walk over the VEX code of our sliced paths, we also keep track of three global
contexts, i.e., a memory context, CPU context, and the current jump condition. Each
context consists of Z3 expressions that semantically mirror the current state of the
execution. Additionally, each basic block also keeps track of temporary VEX IR variables
in SSA. By constant propagation, we use these variables to resolve source and destination.
Each store, load, and register set statement updates the corresponding context in form
of Z3 expressions. Once we hit a jump condition, we ask the solver whether we can take
the jump according to our context. If no solution exists, we can filter out the path. An
unsatisfiable set of formulas stops execution of the current path, and we move on with
the next slice.

At this point it is worth mentioning that we do not use symbolic execution in the
traditional sense to achieve code coverage. Our main goal is to check whether we can
walk down our paths and to determine what value sets lead us to the end of the slice. We
use the symbolic formulas to generate detailed information about the controlled registers
at the time the vulnerability is triggered as well as the jump conditions that must be
fulfilled to actually reach the trigger. By processing over the VEX code, the solver also
gives us possible values to set.

5.3 Experiments

Based on the slicer and the symbolic execution engine, we created a prototype that
we used to automatically extract paths for dynamic hooks in a fully patched Windows
7 SP1 64-bit kernel and a Linux 64-bit 3.8 kernel. We chose this approach for three
main reasons. First and foremost, since malware nowadays generally attacks the kernel,
this approach allowed us to test the prototype in a realistic scenario. Second, kernel
binaries are especially complex, which makes them well suited for a thorough test of our
implementation. Finally, by targeting Windows and Linux, the experiments show that
the proposed mechanism is applicable to two of the most popular OSs.

In the following, we first discuss the results that we obtained by providing detailed
statistics about the automatically extracted paths for both kernels. To demonstrate
how useful the prototype is when it comes to the actual creation of the hooks, we also
describe two concrete POC implementations for dynamic hooks that we created based
on the information that our prototype provided.

128

5.3 Experiments

oS Size Instructions 8-byte moves Slices Paths

vmlinux 188 MB 1,976,441 42,130 (2.1%) 1753 (4%) 566 (32%)
ntoskrnl.exe 53 MB 1,330,791 26,694 (2.0%) 5450 (20%) 379 (07%)

Table 5.1: Overview of the 8-byte moves, the potentially exploitable slices, and the exploitable
paths according to the symbolic execution engine for the analyzed Linux 3.8
64-bit (vmlinux) and Windows 7 SP1 64-bit (ntoskrnl.exe) kernels.

5.3.1 Automated Path Extraction

As stated above, we tested our prototype with a fully patched Windows 7 SP1 64-bit
kernel and a Linux 64-bit 3.8 kernel. The goal of the experiment was to automatically
extract trigger paths that could then either be used by a human expert to manually design
dynamic hooks or to automatically generate exploits. Table 5.1 provides an overview of
the obtained results.

At first, we determined the number of instructions contained within both kernel binaries
for reference. In the next step, we obtained the number of potentially exploitable 8-byte
mov instructions. In the process, we only counted those mov instructions that move data
from one general purpose register into a memory location specified by another general
purpose register with the condition that the involved registers were neither rbp nor
rsp. The reason for this restriction is that our prototype implementation currently does
not support a memory model, meaning that we cannot track memory store and load
operations in our slicer, which is why we currently ignore any path that requires this
functionality. We will cover this limitation in more detail in Section 5.4.2.

As Table 5.1 shows, about 2 % of all instructions within the tested kernels are mov
instructions that fulfill this criteria. If we would include rbp and rsp as well, the number
of potentially vulnerable move instructions would even amount to 162,264 (Linux) and
110,032 (Windows) respectively. Consequently, we only consider a small subset of the
potentially vulnerable 8-byte move instructions at the moment. By supporting a memory
model the number of potential move instructions would increase by a factor of four.

Next, we used the slicer to extract potentially exploitable slices for each of the
identified moves. In case of Linux, the slicer considered about 4% of the mov instructions
as potentially exploitable, while on the Windows side about 20% of the mov instructions
were marked as possibly exploitable. We assume that the significant difference between
Windows and Linux stems from the fact that Linux has substantially more mov instructions
that store or load data from memory (61,651 vs 37,272). Since the slicer does not support

a memory model, it will abort whenever such a mov instruction is part of a def-use chain.

Due to their number, this scenario is more likely to occur on Linux than on Windows.
Finally, we symbolically executed each of the obtained slices. In total, this led to

566 exploitable paths for Linux and 379 exploitable paths for Windows. The symbolic

execution engine thereby produced the required value for each conditional jump within

129

)
=
(]
O
I
O
=
©
c
>
a

5 Dynamic Hooks

the path and detailed information about the vulnerable mov instruction. In particular,
the output?® specifies exactly which memory addresses must be modified in what way
to pass the conditional jumps and where the source and destination values are located.
This information can directly be applied to generate exploits or to manually create a
dynamic hook as we will show in the next section.

5.3.2 Prototypes

We now present three concrete examples of dynamic hooks to illustrate the capabilities
and properties which have been discussed throughout the paper. We created these
examples based on the output provided by our prototype. The first and the third
example focus on a dynamic control hook, while the second example demonstrates a
dynamic data hook. To ease the understanding of the examples, all hooks leverage
a trigger instruction within the list_del function (as explained in Section 5.2.1) or
its Windows equivalent. The first two hooks were implemented for Linux 3.8 and an
Intel Core i7-2600 3.4 GHz CPU. To demonstrate that the proposed concept is similarly
applicable to Windows, the third hook was implemented on a fully patched version of
Windows 7 SP1 running on the same CPU.

5.3.2.1 Dynamic Control Hook: Intercepting Syscalls

A common functionality that kernel level malware requires is the possibility to intercept
system calls. In this example, we show how a single dynamic hook can be used to
intercept all system calls for a particular process. To achieve this, the hook is placed into
the execution flow of the system call handler, which is, independent of the system call
mechanism that is used (i.e., interrupt-based, sysenter-based, or syscall-based), invoked
whenever a system call on the x86 architecture is executed. Its main purpose is to invoke
the actual system call by using the system call number as an index into the system call
table.

Similar to other functions within the kernel, the system call handler can be audited
for debugging reasons. Auditing can be enabled or disabled within the flags field of the
thread_info struct associated with each process. By setting the TIF_SYSCALL_AUDIT
flag, in the thread_info struct of a particular process, every system call conducted by
a process will also lead to the invocation of the auditing functions. In particular, the
function __audit_syscall_entry will be executed before the invocation of a system call
and the function __audit_syscall_exit will be executed after the system call, but before
the system call handler hands control back to user space. In our POC implementation,
the dynamic hook is set within the __audit_syscall_exit function.

When system call auditing is enabled, the __audit_syscall_entry function will record
information about the system call such as the system call number and the arguments of

4An example of the output is provided in Section 5.3.2.3.

130

5.3 Experiments

the system call within the audit context of the process for which the TIF_SYSCALL_AUDIT
flag was set. While the __audit_syscall entry function is responsible for recording this
information, the purpose of the __audit_syscall exit function is to reset the audit con-
text of the task before the system call returns. In the process of resetting the audit context,
the __audit_syscall_exit function invokes the inline function audit_free names, which
resets the names_list within the audit context. This function contains the following
code fragment:

Listing 5.3: The audit_free names function of our Linux test system.

1 |static inline void audit_free_names(

2 struct audit_context *context) {
3 e

4 list_for_each_entry_safe(n, next,
5 &context->names_list, list) {
6 list_del(&n->list);

7 }

8 e

9 |}

The audit_free_names function essentially iterates over the names_list of the audit
context (Line 4) and deletes every entry within the list (Line 6). Consequently, if we
control the names_1ist, we can control the entry that is passed to the 1ist_del function,
which in turn allows us to exploit its vulnerability. As the names_list is not modified
by the __audit_syscall entry function or anywhere else in the kernel (to the best of
our knowledge), the attacker is free to modify it in any way she wants. That is, the
names_list structure is exclusively bound to the execution path within the system call
handler that we use for our dynamic hook.

While the names_1ist structure seems to be perfectly suited for a dynamic hook, the
triggering path places additional constraints on the hook. The problem arises due to the
fact that the 1ist_del function is contained within a loop that iterates over all entries
within the names_list list (Line 4). To iterate through the list, the loop will essentially
follow the next pointer in every entry until one of them points back to the first element
in the list, which is &context->names_list. Since we want to modify the next and the
prev pointer of an entry within the list to conduct an arbitrary 8-byte write, we have to
take this problem into account and assure that the list iteration will eventually terminate.
To achieve this we initialize the audit context as shown in Figure 5.1.

The basic idea behind this setup is to make use of a special address, referred to
as a “magic address”, that is a valid memory address, but at the same time contains
valid x86 instructions. Due to little-endian byte order, these valid instructions must be
contained in reverse order within the address. In Figure 5.1, the instruction encoded
into the address is a negative relative jump (0xe6eb (address) = Oxebe6 (instruction))
that will upon execution transfer control to a trampoline®, that then transfers control

5A trampoline is essentially a small code fragment that transfers control to an arbitrary address within
memory. We make use of the trampoline as we can only encode a few instructions into the magic
address. Once activated, the trampoline code can then call the actual function that our hook should
invoke.

131

)
X~
(]
O
I
=
£
©
=
>
Q

5 Dynamic Hooks

/&context->name_list N

+ 0x248: |next:(&Magic Address ;
erev:()/

(1 Magic_Address A
next: (&context->name_list;‘

rev:(Return Address)
G)

Figure 5.1: The audit context structure that the attacker uses to set a dynamic hook
within audit_free names. The magic address must thereby end with bytes
representing valid instructions as the address of &context->names _list will
be written into the return address, leading to the execution of the address. In
this particular case we make use of a relative negative jump (Oxebe6) to jump
to our trampoline, which will then in turn call the desired function.

to an arbitrary address. Initially when the loop begins iterating over the names_list,
it follows the next pointer to the first entry within the list, which is located at the
magic address. The next pointer stored at the magic address will in turn point back
to the names_1list, thus fulfilling the loop condition. However, before the loop exits,
the first entry in the list (located at the magic address) is processed by the list_del
function. Since the prev pointer of this entry points to the location of a return address,
the 1list_del function will overwrite this return address with the value stored in the next
pointer (prev — next = next), which points to &context->names list. Consequently,
as soon as the return address is used, control will be transferred to the address of
&context->names_list where the magic address is stored, leading to the execution of
the magic address and the activation of the trampoline code. Note that the hook requires
the audit context region created by the attacker to be writable and executable, since the
list_del function conducts two write operations as has been described in Section 5.2.1.
However, this is not a big problem in practice, since every memory region allocated in
the kernel is by default writable and executable.

The final problem that remains is which return address we are actually going to
overwrite and how we can predict its location. As previously stated, the system call
handler is invoked before every system call and it will invoke the actual function handling
the syscall. Thus, if we know the stack frame size of the system call handler and the
location of the kernel stack, we can predict where the return address of the function that

132

5.3 Experiments

is invoked by the syscall handler resides. The stack frame size can be obtained from the
assembler code of the syscall handler, while the location of kernel stack can be obtained
from a kernel variable (get_cpu_var(kernel _stack)). The target return address will
then reside at stack_frame_size + get_cpu_var(kernel _stack).

Summary. A dynamic control hook for intercepting all system calls for a particular
process can be placed in the audit_free_names function. To ensure that execution passes
through this function, we set the TIF_SYSCALL_AUDIT flag within the thread_info struct
of the target process. In the next step, we modify the audit context of the target process
in the way described above and use a trampoline to control the execution flow. This
enables us to reliably divert the control flow at runtime. The resulting dynamic hook
will have full coverage and be exclusively bound to the execution path leading to the
audit_free names function.

5.3.2.2 Dynamic Data Hook: Installing a Backdoor

The purpose of the second example is to demonstrate the possibilities of dynamic data
hooks and to show that they are indeed a realistic threat in practice. In particular, we
will make use of dynamic data hook to install a backdoor within a Linux system. The
backdoor will be capable of elevating the task rights of a predefined process to root. To
trigger the backdoor, the attacker must execute a ptrace system call on the task that
contains the dynamic hook.

The ptrace system call is a powerful system call that enables one process to attach
to another process for debugging purposes. The attached process can then control and
inspect the execution of the target process. Consequently, ptrace is primarily used by
debuggers such as gdb. In this example we are primarily interested in the ptrace_attach
function, which tries to attach the current process to the given target process, and its
counterpart the ptrace_detach function that essentially reverts the changes conducted
by ptrace_attach.

To install the backdoor we will simulate that a process used the ptrace_attach system
call to attach to the target process. This is achieved by manually applying the changes
that the ptrace_attach function conducts to the internal data structures of the target
process. Most importantly the state field of the task must be updated to include
__TASK_TRACED, the ptrace field within the task must be set to 1, and the parent field
must be set to the process which will later trigger the backdoor. We will defer the
discussion of this last change for the moment and explain it in more detail later on.

The above described changes essentially ensure that all checks are passed and that the
ptrace_detach function will be executed when the ptrace system call is invoked with the
PTRACE DETACH argument. Thus once the changes of the ptrace_attach function have
been simulated, it is possible to invoke the ptrace_detach function on the so prepared
process. The execution of the ptrace_detach function eventually leads to the invocation

133

)
=
(]
O
I
O
=
©
c
>
a

5 Dynamic Hooks

of the __ptrace_unlink function, which in turn invokes the 1ist_del function using the
ptrace_entry pointer within the target process as argument:

Listing 5.4: The __ptrace_unlink function of our Linux test system.
void __ptrace_unlink(
struct task_struct *child) {
list_del(&child->ptrace_entry) ;

}

To use this code fragment for a dynamic data hook, we modify the ptrace_entry — next
pointer and the ptrace_entry — prev pointer of the target process. This enables us to
conduct an arbitrary 8-byte write when the list_del function is invoked during the
execution of ptrace _detach. In particular, we set the prev pointer to point to the task
credentials that we want to override and the next pointer to an address that is writable
and ends with four zero bytes. To understand this, we have to take a look at the Linux
task credential structure, which defines the access rights of a process:

Listing 5.5: The task credential structure of our Linux test system.

struct cred {

kuid_t wuid; /* real UID */
kgid_t gid; /* real GID */
kuid_t suid; /* saved UID */
kgid_t sgid; /* saved GID */
kuid_t euid; /* effective UID */
kgid_t egid; /* effective GID */

O © 0 N O U W N

Jun

};

Each task contains three pairs of access rights and each access right pair consists of
a user id and a group id. Most important for us is the effective user id (euid), which
specifies the effective access rights of a process. Since the root user in Linux generally
has the user id zero, our goal is to overwrite the euid field, which has a size of 4 bytes,
with zeroes. If we choose an address for the next pointer that has its lower 32-bits set to
zero and additionally set the prev pointer to point to the euid field of the process whose
privileges we want to elevate, we will, due to the little endian byte order, overwrite the
euid (prev — next = next) field with zeroes and thus set the access rights of the process
to root. However, because the 1ist_del function will also write the prev pointer into the
address of [next + 8] (next — prev = prev), we have to ensure that the address used
within the next pointer points to a writable memory region that does not contain crucial
data. A possible address that can be used for this purpose is 0xff£f£880000000000 since
this address usually points to the first 8-bytes of the physical memory of the machine,
which is not used by the Linux kernel. Finally, note that we will also override the egid of
the process with the upper 32-bits of the address in the next pointer. This will, however,
not affect the process as long as it has a valid euid.

We can now set up a dynamic hook as follows: First, we need to select a target process
that remains running on the system as it will contain the above described dynamic hook.

134

5.3 Experiments

Good candidates are therefore background daemons such as the SSH daemon. Second,
we need to specify the victim process whose privileges we want to elevate and setup the
dynamic hook within the target process. Since we need to know the address of the task
struct of the victim process in order to be able to set the prev pointer to its euid field,
this process also needs to remain running. A good choice in this case could, for instance,
be a shell process within a screen session.

To activate the backdoor, we need to call the ptrace syscall with the PTRACE_DETACH
argument on the target process. However, the backdoor cannot be activated by any
process because only the tracing process can detach from the traced process. Since we
simulate the changes conducted by ptrace_attach, the process which can execute the
ptrace_detach call, is the process that we specify as parent during the setup of the
dynamic hook. While this ensures that the backdoor cannot be triggered by accident,
this requires us to specify the process that triggers the backdoor when we setup the
dynamic hook. The easiest way to solve this problem is to specify the victim process as
parent of the target process. In this case the victim, whose privileges will be elevated,
can trigger the backdoor itself.

Summary. A dynamic data hook can be used to implement a backdoor that can be
triggered from user space with arbitrary access rights. In our example, the backdoor is
closely bound to the process that was specified as the tracing process and to the execution
path within ptrace_detach. In addition, the hook only provides partial coverage as only
the detach call to a specific process will trigger it, which is desired behavior in the case
of a backdoor.

5.3.2.3 Dynamic Control Hook: Process Termination

To show that the proposed hooking concept can be applied to other OSs as well, we will
in our final example present a dynamic control hook that we implemented on a fully
patched version of Windows 7. In particular, the hook is capable of intercepting the
termination of an arbitrary process, which can, for instance, be useful in situations where
a malicious process on the system is found and terminated by a security application or
the user. Due to the hook, the malware would be notified of this event and could react
to it.

When a process is exiting on Windows 7, the function NtTerminateProcess is invoked
which in turn invokes various cleanup functions that prepare the termination of the
process. One of these functions is ExCleanTimerResolutionRequest. To support a
wide range of applications, Windows provides processes with the possibility to request a
change to the system’s clock interval [130]. This enables programs that have a demand
for a faster response time to decrease the clock interval and thus to increase the number
of clock-based interrupts. When a process emits such a request, the process is added to
the TimerResolutionLink list, which is used by the OS to manage all timer resolution
changes. As the name suggests, the purpose of the ExCleanTimerResolutionRequest

135

)
=
(]
O
I
O
=
©
c
>
a

5 Dynamic Hooks

function is to remove processes from the management list once they exit. Our automated
path extraction tool discovered the following path within this function:

Listing 5.6: Output of our automated path extraction tool.

1 -—--SLICE----

2 | 0x000000014042c396 mov rax, gs:188h

3 | 0x000000014042¢c39f mov rbx, [rax+70h]
4 | 0x000000014042c3c6 mov rcx, [rbx+4A8h]
5 | 0x000000014042¢c3cd mov rax, [rbx+4BOh]
6 | 0x000000014042¢c3d4 mov [rax], rcx

7 | 0x000000014042c3d7 mov [rcx+8], rax

8

9 |----SYMBOLIC----

10 | Jump Condition in: BB_0x14042c390
11 | Concat (0x0, Extract(0x1f, 0x0, MEM[RBX+0x440])) >> Concat(0x0, Oxc) &1 == 0

13 | CPU CONTEXT/CONTROLLED REGISTERS
14 |RCX -> MEM[MEM[MEM[0x188+GS]+0x70]+0x4a8]
15 | RAX -> MEM[MEM[MEM[0x188+GS]+0x70]+0x4b0]

To remove a process from the TimerResolutionLink list, the ExCleanTimerResolu-
tionRequest function obtains the forward and the backward pointer (Line 4 and Line 5)
from the EPROCESS structure of the process and performs the discussed list delete operation
(Line 6 and Line 7). The only prerequisite for this path is that the 13th least significant bit
of the memory word at location EPROCESS+0x440 is not set (Line 11). By manipulating
this memory word and the pointers, which are located within in the EPROCESS struct of the
process at offset 0x4A8 (Line 4) and offset 0x4B0 (line 5) respectively, we can thus perform
an arbitrary 8-byte write and change the control flow. In our POC implementation, we
set the forward pointer (rcx) to point to our shellcode and the backward pointer (rax) to
point to the return address of ExCleanTimerResolutionRequest. Just as in the case of
our first example, the location of the latter can be obtained by subtracting the sum of the
stack frames of the invoking functions from the start address of the kernel stack, which is
stored within the InitalStack variable contained within the KTHREAD structure of the
thread of the process. Similarly, the area where the shellcode resides must be writable
and executable. On Windows, we can allocate such a memory region by invoking the
ExAllocatePoolWithTag function with the argument NonPagedPoolExecute.

One last problem that remains, however, is that the TimerResolutionLink entry
structure of a process is unfortunately not exclusively bound to the path of our dynamic
hook, since the TimerResolutionLink list is also used by other functions such as Exp-
UpdateTimerResolution. The solution to this problem is quite simple, though: since
the TimerResolutionLink list is not critical for the execution of a process and the
ExCleanTimerResolutionRequest function does on top of that not iterate through the
list, but rather accesses the forward and backward pointers directly, we can simply remove
the entry from the linked list. As a result, the manipulated entry will no longer be
processed by other management functions, which will bind the TimerResolutionLink
entry structure exclusively to our trigger path. In our experiments, removing processes
from the TimerResolutionLink list did not affect their execution in any way. The
proposed dynamic hook therefore serves as an example that an exclusive binding of a

136

5.4 Discussion

hook payload must not be given by the target application, but can also be manually
enforced by the creator of the hook.

Summary. By manipulating the TimerResolutionLink entry structure of a process in
the way described above we can install a dynamic hook and intercept the termination of
an arbitrary process on Windows. While the manipulated structure is by default not
exclusively bound to the trigger path, the creator of the hook can enforce an exclusive
binding manually by removing the manipulated entry from its linked list. In addition,
the presented dynamic hook had full coverage in our experiments. It was even triggered
if we forcefully terminated the process using the task manager.

5.4 Discussion

Up to this point, we have not discussed what kinds of transient control data exist. This
is why it may seem to the reader that dynamic control hooks could be mitigated by
protecting return addresses alone. In this section, we cover this topic in more detail and
show that this is not the case. In addition, we review the limitations of the proposed
hooking concept and our current prototype.

5.4.1 Transient Control Data

Instead of targeting persistent control data such as function pointers in the system call
table, dynamic control hooks change transient control data at runtime. While return
addresses are a popular example of transient control data, it is not the only kind of
transient control data that exists. For instance, if a function allocates a local function

pointer, this pointer will reside on the stack and not in the data segment or the heap.

Instead of overwriting the return address, an attacker can in such a case similarly target
the function pointer. While this is a rather unlikely scenario, it demonstrates a very
important class of attacks where a local variable on the stack is changed to achieve the
desired control flow change. This class of attacks is not restricted to function pointers
alone. Consider, for example, the following code from the read® system call in the Linux
kernel:

Listing 5.7: The read system call of our Linux test system.

struct fd {
struct file *xfile;
int need_put;

};

SYSCALL_DEFINE3(read, unsigned int, fd, char
__user *, buf, size_t, count) {

N O Ot W N

5For better readability we directly included the vfs_read function into the read system call. In the
actual code the function call in Line 13 will occur in the vfs_read function.

137

)
=
(]
O
I
O
=
©
c
>
a

5 Dynamic Hooks

8 struct fd f = fdget(£fd);

10 ret = f.file->f_op->read(f.file, buf,
11 count, pos);

12

13 |}

In this case, a local structure (struct £d f) is allocated on the stack (Line 9). The
structure contains a pointer to another structure (struct file *file), which in turn
contains a function pointer that is called in Line 11. With the help of a dynamic hook,
an attacker could modify the pointer within the local structure (Line 2) and point it to
an attacker-controlled structure instead. If she manages this before the function call in
Line 13 is executed, this will effectively allow her to control the function call and thus
enable her to arbitrarily change the control flow.

Instead of targeting a return address or a function pointer directly, the attacker in this
scenario modifies a local pointer on the stack. This approach enables her to control any
data that the local function accesses using this pointer. In the kernel, where objects in
general are accessed through pointer chains, this represents a powerful attack vector,
which effectively provides control over any object that the pointer references. In addition,
the structure that the attacker controls can itself be transient and must not be connected
to any other structure within the kernel. This enables the attacker to evade any security
mechanism that iterates through the graph of kernel objects in order to find hidden
objects, which is very common in the field of VMI [19, 134], for instance.

Since the code shown above exists in many places within the Linux kernel, this example
demonstrates that dynamic hooks are not necessarily restricted to return addresses to
force a control flow change. Instead they can also target other transient data on the
stack. This must be taken into account when one considers countermeasures against
dynamic hooks.

5.4.2 Limitations

Dynamic Hooks. Dynamic hooks essentially face two limitations. First and foremost,
not every function may contain a vulnerability that can be used to implement a dynamic
hook. In contrast, it is likely that there are functions which are immune against the
attack. However, this is not a big problem in practice: if a particular function cannot be
hooked directly, it may still be possible to intercept calls to the function by hooking a
function that immediately precedes or follows the function in the execution flow. After
all, not every function contains a function pointer either. Nevertheless have function
pointer hooks been proven to be very effective in practice.

Second, similar to traditional exploits, a dynamic hook may face restrictions that
are caused by the vulnerability it is exploiting. So may specific hooks such as the one
presented in our first prototype (see Section 5.3.2.1) require that certain memory areas
are writable and executable. Depending on its restrictions, a dynamic hook may therefore
not be suitable for every scenario. This, however, heavily depends on the particular hook.

138

5.5 Related Work

Automated Path Extraction. While our prototype already produces very valuable
paths that can be used to implement powerful dynamic hooks as we have shown in
Section 5.3.2; it also faces some limitations. First, our slicer does not yet support a
detailed memory model. As a result, we are unable to find dynamic hooks on paths
where registers, which are currently monitored, are loaded with values from the stack.
This situation frequently occurs when subfunctions are called. In this case, the calling
function often stores register values temporarily on the stack to guarantee that they are
not overwritten by the subfunction. During our experiments, the slicer ignored 79,853
such paths due to this restriction.

Second, the symbolic execution engine currently only handles a subset of the available
x86 instructions. Most importantly, it is unable to handle some instructions that are a
ring-0 privilege. This is, however, a restriction in the VEX intermediate language. In
the experiments we conducted, this led to 949 (55%, Linux) and 4,908 (90%, Windows)
paths that could not be verified.

Finally, the slicer and the symbolic execution engine currently do not consider the
properties of binding and coverage, while determining whether a path could be used for
a dynamic hook or not. Consequently, not all of the paths extracted by our prototype
will be suited for the implementation of a dynamic hook. As described in Section 5.2.4,
especially the property of binding can be a limiting factor. If a payload is only loosely
bound, it is likely that the hook will introduce side effects that can lead to a crash of the
system. Determining automatically whether a path has exclusive binding or full coverage
is difficult though. As the discussed POC implementations show, even payloads that
initially seem unsuited for the implementation of a dynamic hook can through subtle
manipulations of the involved data structures yield very reliable hooks. To designate
the binding of a payload, we thus not only have to identify whether a payload is used
in multiple locations, but we also have to establish how many of those usages can be
controlled by the attacker. This requires a profound semantic understanding of the data
structures and functions involved.

5.5 Related Work

To the best of our knowledge, Petroni et al. [116] were the first to consider the hooking
of transient control data. However, their work is primarily focused on the detection of
persistent control flow modifications. Attacks on transient control data are thereby only
mentioned as a limitation of their system. Hofmann et al. [57] presented a “return to
schedule” rootkit that overwrites return addresses of sleeping processes to periodically
invoke itself and evade hook detection mechanisms. While related to our work, this
approach enables the rootkit only to reschedule itself, but it is not universal and does
not allow the rootkit to intercept events.

In addition, there has also been a lot of work concerned with the possibilities of non-
control data attacks. Chen et al. [25] were the first to demonstrate that non-control data

139

)
X~
(]
O
I
=
£
©
=
>
Q

5 Dynamic Hooks

attacks are indeed a dangerous and realistic threat. Sparks and Butler [152] presented
DKOM as a general mechanism to hide objects within kernel space. Baliga et al. [§]
extended this work and presented another class of stealthy attacks that do not have
the goal of hiding objects, but rather target crucial kernel data structures to subvert
the integrity of the system. Finally, Prakash et al. [122] discussed the manipulation of
semantic values in the kernel to evade VMI.

5.6 Summary

We presented a novel hooking concept that we coined dynamic hooks. The main insight
behind this concept is that existing defense mechanisms against hooking are based on
the assumption that hooks can only be installed within persistent control data. Dynamic
hooks exploit this assumption in order to break existing defenses by targeting transient
control data instead. This is achieved by applying exploitation techniques to the problem
of hooking. To install a dynamic hook, an attacker will modify the internal data structures
of an application in such a way that its usage will trigger a vulnerability at runtime. The
hook thereby only consists of the modified data as well as the exploitation logic. This
results in a powerful attack model with a wide range of possibilities as the attacker can
make use of the entire arsenal of exploitation mechanisms to achieve her goal. Since
dynamic hooks only modify non-control data, they are considerably more difficult to
detect than other forms of hooking.

To demonstrate the universal applicability of the approach, we implemented a prototype
that is capable of automatically extracting paths for dynamic hooks from recent Linux
and Windows kernels. The experiments that we conducted prove that dynamic hooks are
not only a dangerous, but also a realistic threat that can be applied to practical scenarios
such as system call hooking and backdooring.

In conclusion, dynamic hooks illustrate the significance of incorrect assumptions for
the security of defense mechanisms. By exploiting this effective and powerful form of
hooking, data-only malware is able to evade existing hook-based detection mechanisms.

140

Chapter

The X-TIER Framework

We have shown that data-only malware is a dangerous threat, which is, when combined
with dynamic hooks, capable of evading many existing defenses including code-based
detection and hook-based detection mechanisms. Since this leaves current systems mostly
defenseless against this new malware form, the question arises as to how we can mitigate
this novel threat. To provide an effective solution, we will address this issue systematically.
In the first step, we will provide a secure and flexible foundation for countermeasures
against data-only malware, to ensure the security and reliability of the countermeasures
themselves. For this purpose, we will in this chapter present a general framework for
the detection and removal of malware. Based on this framework we will then describe
concrete countermeasures against data-only malware in the next chapter of the thesis.

A technology that comes instantly to mind when we think about malware detection is
virtualization. One of the most important properties that virtualization provides is a
complete and untainted view of the guest’s state. Since the state of the guest encompasses
all volatile and non-volatile memory, malware must, by definition, be contained within
the state as long as it is running or stored on the victim’s machine. This line of reasoning
leads to the following observation: every malware form, including data-only malware, that
15 residing within a VM is visible to the virtualizing hypervisor and thus by extension to
all VMI-based security applications implemented on top of it. Consequently, VMI-based
security applications are predestined for the detection and removal of malware. However,
to be able to leverage their full potential, one must first solve the semantic gap problem.

In the following, we present a secure, elegant, and universal approach for bridging
the semantic gap. In particular, we introduce our framework X-TIER, which provides
security applications residing on the hypervisor level with the possibility of injecting
kernel modules, also referred to as drivers, from the hypervisor into a running VM. Once
injected, the modules will be executed securely within the untrusted guest system. In
the process, they can apply arbitrary changes to the guest and can even invoke external
functions without loss of security. By providing a universal communication channel,
X-TIER enables injected modules to transfer arbitrary information to the hypervisor,

141

6 The X-TIER Framework

which effectively allows security applications to circumvent the semantic gap. Due to
these properties, X-TIER is well-suited as a secure and flexible foundation for malware
detection and removal as we will demonstrate based on multiple example applications.

Chapter Outline. We begin by stating the goals of our framework in Section 6.1. With
this background in mind we will discuss the attacker model that we assume and the
requirements of our framework, which are directly derived from our goals, in Section 6.2.
From the requirements, we will move on to discuss the system design of X-TIER in
Section 6.3. Once the system has been introduced, we will provide an evaluation of our
framework as well as a discussion of its functionality and security in Section 6.4. In
Section 6.5 we will compare our framework to related work. Finally, we will summarize
the chapter in Section 6.6.

6.1 Goals

When designing a framework for malware detection and removal, it makes sense to not
just consider data-only malware by itself, but to include traditional malware in our
thought process as well. In fact, our framework should be general enough to function
as a basis for the detection and removal of all malware forms. To be suitable for this
purpose, it must achieve three fundamental properties:

G1 Secure Execution Environment. Since the primary intention behind our frame-
work is to function as a basis for malware detection and removal, it is essential
that malware is unable to attack the security applications running on top of the
framework. That is, the framework should provide a secure execution environment
for all applications based upon it. Most importantly, this environment must ensure
that security applications can remain functional even if malware is present on the
system they monitor. This enables our framework to provide a secure basis for
malware detection as well as for malware removal. We will discuss to which extend
our framework reaches this goal in Section 6.4.2.

G2 Full State Access. Similar important to a secure execution environment, is the
ability for malware detection mechanisms to observe and access the entire high-level
state of the system. It is thereby crucial that the view of the detection mechanism
cannot be controlled by the malware. Otherwise malware might be able to evade
detection by hiding within inaccessible or concealed system areas.

Note that while this goal is related to Goal G1, a secure execution environment
does not necessarily lead to full state access. For example, a security application
residing on the hypervisor level runs within a secure environment, but it does not
have full access to the state of the VMs, due to the semantic gap problem.

142

6.2 Assumptions & Requirements

G3 Reliable Event Interception. Finally, defense mechanisms must have the possi-
bility to intercept events within the monitored system, which is a feature that is
generally required for the prevention of malware infections. An anti-virus software
may, for instance, want to intercept the opening of files to be able to detect mali-
cious programs before they are executed. Analog to the case of accessing the state,
it is thereby crucial that the event interception mechanism cannot be circumvented
by the malware.

The fundamental properties that we identified and stated above almost exactly cor-
respond to the three main features of VMI — isolation, inspection, and interposition —
that we described in Section 2.3.2. This emphasizes the importance of VMI for malware
detection and removal. However, as we stated in Section 2.3.3, VMI comes at a cost:
while a security application that resides on the hypervisor level has a complete view of all
guest systems, its view is limited to the binary representation of the state of each guest.
This is due to the fact that the security application lacks the semantic knowledge of the
guest OS that is necessary to interpret the state correctly. It is, however, exactly this
semantic view of the guest system that we require for our framework to be useful (G2).

To provide a framework that combines strong isolation properties, with reliable event
interception, and full state access, we must thus bridge the semantic gap. To achieve
this, we can either make use of an in-band approach, an out-of-band approach, or
derivation. The latter, derivation, however, only enables us to bridge a part of the
semantic gap, which violates our goal of full state access (G2). This only leaves us with
an in-band or an out-of-band approach. While out-of-band approaches are in theory
able to fully reconstruct the state of a guest, this has, to the best of our knowledge, not
been accomplished in practice so far. Modern kernels simply seem to complex to be able
to achieve this task automatically, which is why currently even the most sophisticated
approaches such as Insight [133] rely on expert knowledge to function. In spite of this,
these approaches only manage to narrow the semantic gap, but cannot close it. This is
why we chose to use an in-band approach for our framework.

To circumvent the semantic gap, our system enables VMI-based applications to inject
kernel modules from the hypervisor into running VMs. Once injected, a module will have
the possibility to access the entire high-level state of the guest without loss of security.
To achieve this, the injected modules will be protected from hypervisor during their
execution in the untrusted guest system. Consequently, our system effectively combines
the security of an out-of-band approach with the accessibility of an in-band approach.
With this background in mind, we will first state the assumptions and the requirements
of our system, before we cover the design of our framework in more detail.

6.2 Assumptions & Requirements

As stated in the last section, the first goal of our framework is to provide a secure
execution environment (G1). To be able to validate whether our framework can achieve

143

6 The X-TIER Framework

this goal, we assume an attacker model where the attacker has gained full control over
a VM and can tamper with any part of the guest OS. Consequently, it is crucial that
the code injected through our system can rely on strong security properties given that
it is executed in such a hostile environment. While we provide the attacker with the
capability to fully control VMs, we assume, in accordance with Section 1.4, that the
hypervisor and the underlying hardware are secure. This leads to the following security
requirements:

S1 Isolation. The code injected into a VM should be isolated from the guest’s code
in the following way: Any code within the guest that is not invoked by the injected
code can neither access nor modify its code or data regions. Notice that this small
limitation is necessary, since it is intended behavior that invoked functions have the
possibility of accessing and modifying variables of the injected code. The access
of the invoked functions should, however, be restricted to the variables that the
module explicitly provided to the function (e.g. as arguments). We will explain how
our framework achieves this property in Section 6.3.2.2 and discuss the security of
our approach in Section 6.4.2.

S2 Error Resistance. Faults and exceptions occurring within the injected code
should be handled within the hypervisor and not within the guest. This ensures
that no guest OS code is executed in the event of an error, which leaves our system
in control even if the injected code is faulty.

S3 Stealth. To achieve a high-level of stealth (see Section 2.3.3.1 for details), the
injection of code should not leave any traces within the guest unless the injected
code purposefully modifies the guest’s state.

S4 Guest Independence. The injection of a module must be achieved without the
help of any functions within the guest. Otherwise an attacker could intercept
injection attempts from within the VM.

These security requirements ensure that injected code will be protected by the hyper-
visor during its execution within an untrusted VM. However, another important goal of
our framework is to bridge the semantic gap and to provide security mechanisms residing
on the hypervisor level with full access to the guest’s state (G2). Consequently, injected
modules must be able to read and write data structures as well as to invoke functions
within the guest OS. This leads to the following functional requirements:

First and foremost, the injected code needs access to the most important functions
and data structures within the guest kernel’s address space. A useful approach should
avoid to constrain or burden the programmer in their doing. In fact, the development of
injectable code should be as straightforward as writing regular code for the respective

144

6.3 System Design

OS. Kernel modules! seem to be perfectly suited to fulfill both of these requirements,
since they can be developed with compiler support and enable one to access all functions
and data structures within in the kernel in a familiar and intuitive way.

In addition to the possibility of executing kernel functions within a VM, it is necessary
to provide a communication channel between the component within the hypervisor
and the injected kernel module, such that information obtained within the VM can
be transferred to the component outside of the VM. Otherwise the system will fail to
bridge the semantic gap, since none of the obtained information will be accessible to the
hypervisor.

Finally, the overall performance of the system should primarily depend on the runtime
of the injected code, but not on the process of injecting and removing it. As a consequence,
the system for code injection should be designed in a way such that the actual injection
and removal mechanism is lightweight and does not lead to a significant overhead.

The following list summarizes the functional requirements described above:

F1 Kernel Module Injection. The system should be capable of injecting existing
kernel modules into a VM. Thereby, the constraints for the creation of these kernel
modules should be as few as possible.

F2 Modification. An injected kernel module should have the ability to apply perma-
nent changes to the guest state. This widens the range of security applications that
are supported by our system beyond simple information retrieval to sophisticated
malware removal.

F3 Communication Channel. To be able to transfer information from the injected
code to the hypervisor and vice versa, a communication channel must be provided
between both components.

F4 Performance. The overall system design should keep the performance overhead
of the injection process to a minimum, including the injection itself, the removal of
the injected code, and the management tasks during runtime.

6.3 System Design

The overall design of our system is shown in Figure 6.1. As one can see, the architecture
of X-TIER consists of three components: A preprocessing component, an injection
component, and a communication component. In the following, each of these components
will be covered in a subsection of its own.

Kernel modules are a very fundamental concept that is supported by many OSs. However, the name
that is used to refer to this general mechanism may vary from OS to OS. Within this thesis we will
use the Linux term kernel module to refer to kernel code that can be loaded into an OS during
runtime to extend its functionality.

145

6 The X-TIER Framework

Preprocessor Injector
g
> — N o N\ N N D
= ﬁ ~PET nject /Execute /Remove
=]
g _r Transform / / / /
£ .
e
< Communication

Channel
“;’ W‘%— Wg_ —1
S o worer Wl © KERNEL — KERNEL
o ?""%“'a; Dty — s — 3 ——
S I -
© igir igi igil — 2 N\ — S (N P
g e i =) BT TR
X-Code W il 2 il 2 n

Figure 6.1: The architectural view of our system is shown in the upper-half of the picture,
while the underpart shows the effects of the architectural components on a kernel
module that is injected into a VM.

6.3.1 Preprocessor

To provide a general system for hypervisor-based kernel module injection, it is necessary
to decouple the injection process from the format of the module that should be injected.
In our system this is realized through the Preprocessor, which preprocesses each module
and converts it into a custom format that we refer to as X-Format. By converting the
different existing module formats into the X-Format, our system can operate on a single
common module format. This effectively makes the injection process independent from
the guest OS and allows our system to provide an universal mechanism for kernel code
injection (F1) on the x86 architecture. In the following, we will first specify the X-Format
more closely, before we describe how a module can be converted to it.

6.3.1.1 The X-Format

The idea behind the X-Format is to provide a single common structure for module injection
in which existing kernel module formats such as ELF (Linux) and PE (Windows) can be
embedded. This is achieved by defining a wrapper format, the X-Format, that is capable
of encapsulating all of the different existing module formats. By wrapping the existing
formats into a common structure, it can be guaranteed that all kernel modules provide a
mutual interface and fulfill the necessary requirements for the use with our system.
The common structure of the X-Format is shown in Figure 6.2. As one can see, the
X-Format consists of four main parts. At the beginning of the X-Format resides the
X-Loader (1). The X-Loader functions as the common entry point for all modules in
X-Format and controls the execution of the preprocessing phase of a module. Similar
to normal executables, kernel modules must usually be preprocessed before they can be
executed. This preprocessing is normally conducted by the OS when a kernel module is

146

6.3 System Design

1peo] SO ()

"ORelocator
'©Resolver
'© Oter

© Original
Module

Figure 6.2: The structure of the X-Format.

loaded. Since we inject kernel modules from the outside into a VM without the support
of the guest OS (S4), the necessary preprocessing steps have to be executed by our
system. The individual code that is required to conduct this preprocessing phase thereby
depends on the format of the module as well as the guest OS in use. To provide a mutual
interface, the X-Format standardizes the loading by appending the necessary OS specific
loader code (2) to the X-Loader, which will invoke it at runtime.

Although the preprocessing code varies from OS to OS, it encompasses in general
at least two steps that are reflected in the design of the X-Format: Relocation (2a)
and Symbol Resolution (2b). The former step, Relocation, is required to ensure that a
position independent kernel module can be executed. In contrast to position dependent
code, a position independent kernel module does not need be loaded to a fixed memory
address in order to be able to execute. Instead, the module provides a list of addresses
that have to be updated, once the memory address where a module will be loaded to has
been determined. During Relocation this list is processed and the given addresses are
adjusted according to the new base address of the module.

Besides Relocation, Symbol Resolution is the second common step that is usually
executed by the module loader. As the name suggests, the purpose of this step is to
resolve the addresses of any external kernel symbols that the module uses. How this
resolution is conducted heavily depends on the OS and will not be described in detail
within this thesis.

Since Relocation and Symbol Resolution may not be the only steps a specific OS
executes for preprocessing, the X-Format provides a third code area (2c) for preprocessing
that can contain any other code that a specific OS may require. Finally, the OS loader
code section is completed by a data area (2d) that contains all of the required information

147

6 The X-TIER Framework

for the specific loader code sections. This data includes the necessary addresses for
relocation, the symbols that must be resolved, and any other data that may be required
for the OS specific loader code (2c¢), if any. It is the task of the X-Loader to ensure that
every OS loader code segment will have access to its data area, before it transfers control
to the segment.

After the loader code of the X-Format, follows the kernel module (3) itself. The loader
code will patch this module at runtime. Thus when the X-Loader finally transfers the
control to the entry point of the module, it will be ready to execute from its current
memory location. Since the X-Loader invokes the entry point of the module, control
will be returned to the X-Loader once the entry point function has been executed. Thus
the X-Loader code is not only the entry point of a module in X-Format, but also the
exit point. This enables the X-Loader to notify our system when an injected module
has finished its execution and can be removed. Notice that this event is essential for the
functioning of our system.

Finally, the last part of the X-Format is the X-Code section (4). This section contains
wrapper functions that are required for security purposes and the communication (F3)
between the injected module and our system. We will defer the description of these
wrapper functions to Section 6.3.2.2 and Section 6.3.3.2, respectively.

6.3.1.2 Conversion to X-Format

The conversion of a kernel module into X-Format is conducted in two stages. First the
module is processed by the X-Parser component of our system as shown in Figure 6.1.
The X-Parser component is the only part of our framework that must be aware of the
different existing module formats. Its main responsibility is to parse the format of a given
module and to extract the information needed to convert the module to the X-Format.
This information consists of the entry point of the module as well as the data required
for the loading stage of the module.

The Parsing Stage is followed by a common Transformation Stage that is equal for
all module formats. During this stage the module will be converted to the common
X-Format. This is achieved by adding the necessary code blocks to the original kernel
module using the information that was collected by the X-Parser.

6.3.2 Injector

The process of injecting a module in X-Format from the outside into a VM consists of
three individual steps that are shown in Figure 6.1. In the first step, the module must be
loaded into the memory of the guest, which we refer to as the Injection Phase. Then the
actual Frecution Phase begins, where the control flow of the VM is altered and execution
is transferred to the injected binary. This phase is particular important for the security
of the proposed mechanism (G1), since it must be ensured that the injected binary is
isolated and concealed during its execution within a potentially malicious guest.

148

6.3 System Design

Finally, the injected binary must be removed from the guest after it has finished
its execution. This Removal Phase concludes the injection process and control should
therefore be returned to the guest by resuming its normal execution. In the following,
each of the above described steps will be discussed in more detail.

6.3.2.1 Injection

Before a kernel module can be executed in the context a VM, it must be loaded into the
memory of the guest. For this purpose we reserve two memory regions within the guest:
a memory region for the module itself and an additional memory region for the stack
that will be used during its execution. Although the latter memory region is not required
from a technical point of view, reserving a separate memory region for the stack allows
us to achieve stealth (S3) without having to restore the complete kernel stack memory
region of the VM after the execution of the injected module.

Reserving a memory region within the guest is a twofold process. First, a physical
memory region has to be selected that will contain the data of the new memory region
and is accessible to the guest. Next, a virtual memory mapping has to be established such
that the previously selected physical memory region can be accessed by the hardware.
Both steps will be described in more detail below.

Reserving Physical Memory. Instead of replacing existing data, we make use of the
fact that additional guest physical memory can be allocated at runtime [54]. Using this
approach has several important advantages. First of all, the guest OS will not be aware
of the newly allocated memory regions, which effectively increases the isolation (S1)
and stealth (S3) of the injected module. Second, the previously existing guest physical
memory regions will remain untouched, which avoids unnecessary complications where
data that was replaced during the injection is actually required by the injected module.
Third, the approach will lead to a better performance (F4), because code that has been
injected into a guest can easily be removed after execution. Instead of having to restore
the physical memory region of the guest that the injected code occupied, all we have to
do in this case is to free the allocated memory region.

Establishing The Memory Mapping. Once the necessary guest physical memory areas
have been allocated, a virtual memory mapping has to be established that allows the
hardware to access these memory areas using virtual addresses. Existing approaches
(e.g. [112, 141]) that try to protect code executing within a VM from the hypervisor,
often carefully create this mapping in order to provide isolation (S1). However, since
our system uses runtime isolation? to protect the injected code during execution and
does not rely on memory access flags for this purpose, the creation of the virtual address

2Runtime isolation will be discussed in more detail in Section 6.3.2.2.

149

6 The X-TIER Framework

mapping is not critical for the security of our system. Thus we only have to consider
functional requirements at this point.

In order to be able to access kernel data structures and functions (G2) it must be
ensured that the injected code has access to the relevant memory areas. To achieve
this we have to provide the injected memory regions with the necessary access rights
and have to make sure that kernel data and code regions remain mapped within the
virtual address space. The first problem can be solved by setting the appropriate flags
on all the segment descriptors and page table entries that are used to map the injected
memory regions. To leave the existing mappings intact, we will further only modify page
table entries that are free or reference user code or user data areas. In the process, it is
important that we select a continuous virtual memory region to map each of the physical
memory regions. Otherwise relative branch instructions contained within the injected
code would no longer be functional.

Finally, all pages, even code pages, that are injected should be marked as writable,
such that the loader code that is part of the X-Format is able to modify the injected code
at runtime. Since, as we will explain in more detail in the next section, the injected code
is the only one able to access this memory region, this is not a security issue. Instead,
this allows our system to even support self-modifying code.

6.3.2.2 Execution

Once a module has been injected into a VM, control needs to be transferred to the entry
point of the module to execute it. This can be achieved by manipulating the registers of
the guest directly. In particular, we have to set the IP to the entry point of the injected
module, which is the first byte of the X-Loader, and the SP as well as the FP to point to
the newly allocated stack region. However, before these changes are applied, the value
of all general purpose registers must be stored on the hypervisor level such that the
original register values can be restored after the injected module finished its execution.
In addition, it must be ensured that the injected code is executed at the highest privilege
level (CPL 0) by setting the bits in the segment registers accordingly.

While the execution of a module can be triggered by simply setting the IP of the
guest to the injected module, isolating the module from other code within the VM poses
a challenge. To meet the security requirements of isolation (S1) and stealth (S3) it is
necessary that the injected module cannot be accessed during runtime by other user or
kernel processes within the VM. If we would allow other code within the VM to execute
concurrently to the injected code, this could only be achieved by trapping all read accesses
to the injected memory regions. Although this approach is possible, it would lead to a
high performance overhead, which violates one of our functional requirements (F4). This
is why our system makes instead use of two novel techniques to achieve this goal: runtime
1solation and function call unmapping. Both of these techniques will be described in more
detail below. For the sake of simplicity, we will assume a single core VM. We discuss
how these techniques can be applied to multi-core systems in Section 6.4.4.

150

6.3 System Design

The main idea behind runtime isolation is to execute an injected module atomically
within the guest. This requires that our system disables timer interrupts within the VM
by clearing the interrupt enable flag (IF) within the RFLAGS register. Consequently, the
injected module will no longer be interrupted during its execution. However, other guest
OS code could still be executed in the case of an exception or an external interrupt. To
avoid this problem, X-TIER further intercepts all exceptions and interrupts that occur
within the VM on the hypervisor level by enabling every bit in the exception bitmap [64]
and setting the interrupt descriptor table register (IDTR) base to 32 as suggested by
Pfoh et al. [120], respectively. This will constrict the execution of the VM to the injected
module. All other code within the VM will effectively be frozen during the runtime of
the module. Even in the event of an exception or an interrupt, no guest OS code will be
executed, which provides error-resistance (52).

The only problem that remains is the handling of external function calls. If the injected
module invokes an external function, this function will have access to the module’s code
and data regions in spite of runtime isolation. X-TIER solves this problem by temporarily
removing an injected module from the guest’s memory whenever an external function is
invoked, which is why we coined the technique function call unmapping. For this purpose,
the Preprocessor adds an individual wrapper for each external function that is used by a
module to the X-Code section of an X-Module and additionally modifies each external
function call such that it will invoke the wrapper. As a result, all external function calls
within an X-Module will actually invoke wrapper functions.

Once invoked, it is the task of the wrapper to prepare the external function call.
In particular, this means that the wrapper must copy all data structures that will be
required by the external function and reside within the module’s data area to a memory
region that will be accessible to the function. During this process, the wrapper must
also update any pointers that are used within the data structures such that they no
longer point to the original data structures but to their copies. To accomplish this,
our system makes use of a special memory area, the external function area, which is
reserved by X-TIER during the module injection phase and is used as stack region for
external function calls. The external function area is the only memory area that is not
removed during an external function call. Since this area only contains data that must
be accessible to a function (e.g. the function arguments) this is not a security issue.

After the necessary data was copied, the wrapper will modify the function arguments
that were provided by the module such that every reference points to the copied data
structures. Finally, it will modify the SP to point to the external function region, place
the modified function arguments into the correct register and stack locations as it would
do if it would invoke the external function, and use the communication channel of our
framework (see next section) to notify X-TIER of the function call. In the process, the
wrapper will also provide X-TIER with the address of the external function, which the
wrapper in turn obtains during the symbol resolution phase of the X-Module.

Upon receiving the notification that an external function is about to be executed,
X-TTIER will first unmap the injected module from the VM’s memory by marking all

151

6 The X-TIER Framework

memory regions of the module as not present within the Extended Page Tables (EPT).
Next, it will reenable interrupts and invoke the external function from the hypervisor by
pushing the current IP on the stack and setting the IP to the specified address. This will
trigger the execution of the external function within the VM. As soon as the external
function returns, an EPT violation will occur, since X-TIER placed a return address on
the stack that is no longer accessible. If the current IP coincides with the value that our
system pushed on the stack, this event will be interpreted as the return of the external
function call. In this case, our system will reenable the interception of interrupts and
will return the control to the wrapper. The wrapper will then restore the stack and copy
the possibly modified function arguments back from the external function area to their
original location. Finally, the wrapper returns control to the X-Module which concludes
the external function call.

6.3.2.3 Removal

When the injected module has finished its execution, the hypervisor component needs to
be notified that the module can removed and control can be returned to the VM. In our
system, this is realized through the X-Loader component. Since the X-Loader component
invokes the initialization function of the injected module, control will be returned to
the X-Loader component as soon as the function returns. Once the X-Loader regains
control of the execution, it will notify X-TIER that the injected module has finished its
execution and can be removed. This implies that all code that an injected module wants
to execute must be located within the initialization function or be called by it.

Before we can return the control back to the VM, all changes that were conducted
during the injection phase must be reverted to achieve stealth (S3). To ensure the VM can
no longer access the injected module, all memory mappings that were created during the
Injection Phase will be removed. In the next step, the now unmapped physical memory
regions of the injected module are removed from the VM. Finally, the original values of
all general purpose registers are restored. This last step reverts all changes that were
conducted during the injection process and allows the VM to resume its execution from
the last IP before the injection. Notice that it is not the responsibility of the injection
system to remove any changes that were conducted by the injected module during the
Execution Phase, since this would violate the functional requirement of modification (F2).

6.3.3 Communication

The system we described so far, provides us with the possibility to inject kernel modules
into a VM from the hypervisor. With the help of these kernel modules we can access
data structures and functions within the guest kernel, which effectively allows us to
circumvent the semantic gap. However, up until now, the information that we obtain
through this mechanism, is confined within the VM. What is required is a communication
channel (F3) that allows us to transfer the information obtained by an injected module

152

6.3 System Design

to the hypervisor. Within this section we will first describe the realization of this
communication channel within our system, before we depict how it can be used in an
intuitive way in conjunction with output functions.

6.3.3.1 Communication Channel

Our system provides a hypercall-based communication channel that allows an injected
kernel module to send predefined commands to the Injector. To communicate with
the Injector, an injected module will raise a predefined interrupt, which we will in the
following refer to as hypercall interrupt. Due to runtime isolation, the invocation of the
hypercall interrupt will lead to a VM Exit. Once control reaches the hypervisor level,
the Injector can identify communication attempts from the module by inspecting each
interrupt and looking for the occurrence of the hypercall interrupt.

To send specific commands to the Injector, the injected module will in addition to
the hypercall interrupt make use of a predetermined general purpose register, which is
used as command register. Based on the value of this register, the Injector can then
upon the receipt of the hypercall interrupt determine which type of action the injected
module wants to execute. For this purpose, our system supports a number of predefined
commands that all have a unique decimal value assigned to them. This value is placed in
the command register by the kernel module before invoking the hypercall interrupt.

6.3.3.2 Function Call Translation

An intuitive way to transfer information to an external component is to use an output
function. As an example consider the printk function, which is an output function that
is often used within the Linux kernel and allows us to write information to the kernel
log. If we could make use of output functions such as printk to transfer information
to the hypervisor, we would obtain an output mechanism that is based upon existing
functionality and thus easy to use. However, the problem that arises if we try to use
output functions within an injected module is that the output function will be executed
within the VM. Thus the output of the function will actually end up within the guest
instead of on the host. This will not only violate our stealth requirement (S3), but also
means that modules which use output functions cannot be used for injection without
major modifications, violating one of our functional requirements (F1).

To solve this problem our system makes use of a technique that we refer to as function
call translation. The main idea of this technique is to translate function calls occurring
within the guest such that they can be executed on the host instead. To enable function
call translation for a specific output function contained within a module, all calls to
the output function will — similar to all other external function calls — be replaced with
calls to a wrapper function. From this point on whenever the output function would
be called in the original module, the wrapper will be invoked. This wrapper function
will make use of the general communication channel provided by our system to invoke

153

6 The X-TIER Framework

the hypervisor component. However, before doing so the wrapper function will put the
decimal encoding of the original output function into the command register. Based on
this value the hypervisor component can therefore determine, which output function the
injected module tried to invoke. Given that there is a function on the host that has the
same function signature as the original output function within the guest, we can then
produce the output on the host by calling this function with the exact same arguments
as the original output function. To achieve this, we first have to extract all function
arguments that were provided to the original output function from within the guest.
Depending on the architecture and the guest OS, these arguments will either reside on
the guest’s stack and/or within general purpose registers of the guest.

Once we have obtained the arguments from the hypervisor, we need to prepare them
for the use on the host system. While numeric data types can simply be forwarded to the
output function on the host, this is not the case for pointer types. This is due to the fact
that the pointers will contain guest virtual address that are valid for the guest system,
but not for the host system. Thus we have to translate the virtual address contained
within the pointer arguments to the corresponding virtual address on the host system.
Notice that this approach is possible, since the physical memory area that is used by the
guest is actually managed by the hypervisor and corresponds to a virtual memory area
on the host system. Therefore every virtual address within the guest is also accessible
through a host virtual address.

When the translation of the arguments has been completed, we have to place the
arguments in the correct stack and/or register locations on the host such that they will
be used for the next function call. Finally, we can invoke the output function on the
host. Since the output function receives the exact same arguments as the original output
function, it will generate the same output given that it provides the same functionality.

X-TIER currently uses function call translation to translate all calls to output functions
occurring within an injected module to calls to output functions that are executed on
the host system instead. In particular calls to printk (Linux) and DbgPrint (Windows)
functions that are executed by an X-Module are translated to calls to printf on the host
system. Notice, however, that the proposed mechanism of function call translation is
general and could be applied to arbitrary function calls. Moreover function call translation
is completely transparent to the developer of a kernel module (F1).

6.4 Evaluation

We implemented a prototype of our framework for the x86 architecture that is based on
the Linux KVM hypervisor. In this section, we make use of this prototype to evaluate our
framework against the functional and security related requirements that we defined in
Section 6.2. In this process, we will also discuss the functional restrictions of our current
prototype and the security related issues of invoking external functions. In addition, we
will demonstrate the capabilities of X-TIER at the hand of several example applications.

154

6.4 Evaluation

Name Description

tasklist Shows the running pro-
cesses.

1smod Prints a list of the loaded
modules.

netstat Displays the open TCP
and UDP connections for
each process.

files Prints a list of all open
files for each process.

Module Code
25%

External Function
(Output)
49%

External Function

(Other)
14%

Table 6.1: The kernel modules that were used Figure 6.3: The average execution time
to conduct the performance evalu- distribution of all modules
ation. shown in Table 6.1.

6.4.1 Performance

We used four different kernel modules that extract typical security relevant information
from within a guest system to empirically evaluate the performance of X-TIER. The
name of these modules as well as a description of their functionality is shown in Table
6.1. Each of the modules was implemented for Linux and Windows. To test function
call translation, each module was designed to print the information that it obtains using
printk (Linux) and DbgPrint (Windows), respectively.

For the purpose of implementation, compilation, and injection of the kernel modules,
we used two VMs. The virtual hardware configuration of both VMs consisted of a single
virtual CPU, 512 MB of guest physical memory, and a 20 GB virtual hard disc. As OSs
we chose the 64-bit version of Ubuntu 11.04 Server and the 32-bit version of Windows 7
Professional SP1. We purposely selected a 64-bit OS and a 32-bit OS for the VMs to
verify that our framework is generic enough to handle both system types. The host OS
was Ubuntu 12.04 64-bit running on a machine with an Intel Core i7-2600 3.4 GHz CPU
and 8 GB RAM.

The modules were compiled with gee 4.6.3 (Linux) and the Build Utility 6.1 (Windows),
respectively. While we used the default compiler flags to compile the Windows modules,
we compiled the Linux modules with the option mcmodel=1large. This flag instructs
the compiler to reserve 8 bytes for each address within the module code instead of 4
bytes. Although this option is not required, it allows us to inject a Linux kernel module
anywhere within the 64-bit virtual address space.

To measure the performance of X-TIER, we compiled (Linux) or respectively extracted
(Windows) the Linux 3.6 Kernel Image, a 467 MB tar file, within the guest. In the
process, we repeatedly injected one of the modules into the VM at intervals of one second.
The information that was obtained by an injected module was printed on the host system

155

6 The X-TIER Framework

using function call translation. In the process, each call to an output function within a
module lead to an individual VM exit. No output data was buffered within the module
to increase the performance. This experiment was repeated for each of the modules and
the resulting runtime overhead was measured from the hypervisor.

The results of the experiments are shown in Table 6.2. On average, each module was
injected 2,950 times on Linux and 1,078 times on Windows. The highest performance
overhead was introduced by the files modules, which incurred an overhead of 1.08%
and 2.76% respectively. The reason for this is that these modules had the longest runtime
within the VMs. The more time a module requires to execute, the longer all other
code within the guest will be frozen and consequently the higher will be the resulting
performance impact. As Figure 6.3 shows, the runtime itself is heavily influenced by the
number of external functions that a module invokes. This is a result of the fact that
the invocation of an external function leads to at least one VM exit, which is a costly
operation. Since output functions account for almost 50% of the runtime in the current
implementation, we expect that the performance of our prototype could be considerably
increased by buffering output data within the guest system instead of processing each
call to an output function individually.

In summary, the experiments show that our system is capable of effectively bridging
the semantic gap by injecting normally created kernel modules from the hypervisor (F1).
The overhead of the approach is very small even if a module is frequently injected into
a VM. The performance impact of the injection mainly depends on the execution time
of the injected module, which in turn is influenced by the number of external functions
that the module invokes.

6.4.2 Security

To achieve our goal of a secure execution environment (G1), we make use of VMI and
strongly isolate security applications from the machine they try to protect. This isolation
ensures that a security application on the hypervisor level cannot be accessed by code
running in a VM. However, by injecting a module into a VM and executing it within
the context of the guest, we break the native isolation that VMI provides. Ideally, a
module that was injected into a VM should have the exact same security properties that
it would have if it was running outside of the guest. X-TIER achieves this by making
use of runtime isolation and function call unmapping.

Runtime isolation restricts the execution of the guest system to the injected module and
the guest code that it invokes. Any code that is not explicitly required by an X-Module
will be frozen during its execution. This effectively isolates the module within the VM.
Even in the case that the X-Module is faulty, exceptions will not be handled by the guest
system, but on the hypervisor level as they would if the module would run outside of
the guest. The only way to disable the proposed lightweight isolation mechanism is to
reenable the timer-interrupts within the guest system by setting the IF flag, which is the
only mechanism that is used by our system that cannot be protected from the hypervisor.

156

6.4 Evaluation

Ezxperiment Runtime [ms] Result
0s Module LOAD EXEC UNLOAD IN FUNC ouT Querhead
Win tasklist 0.11 1.21 0.16 1,047 0 31,531 0.15%
Win 1lsmod 0.11 7.21 0.16 1,051 140,975 144,128 0.80%
Win netstat 0.10 293 0.23 1,182 0 30,322 0.28%
Win files 0.13 25.38 0.16 1,030 469,939 528,131 2.76%
Linux tasklist 0.30 243 0.59 2,925 0 209,581 0.18%
Linux 1smod 0.30 0.49 0.61 2,957 0 38,990 0.05%
Linux netstat 0.30 0.45 0.64 2,967 0 21,603 0.05%
Linux files 0.32 12.37 0.79 2,954 523,098 451,233 1.08%
Linux LxS 0.24 5.18 0.52 28,330 3,944,284 89,058 4.30%

Table 6.2: Results of the experiments. The columns show for each module the average
runtime of the injection (LOAD), execution (EXEC), and removal (UNLOAD)
phase in ms, the total number of injections (IN), of external function calls (FUNC)
and calls to output functions (OUT), and the total overhead that the modules’
injection incurred.

However, due to the fact that the injected module controls the virtual CPU, this can
only be done by the module itself. Therefore we do not consider this to be an issue.

While runtime isolation is sufficient to protect the normal execution of an injected
module, it cannot ensure a module’s isolation if the module itself invokes an external
function. To solve this problem, X-TIER temporarily unmaps an X-Module whenever it
invokes an external function. This is realized with the help of the EPT. In particular,
X-TIER removes the guest physical memory pages that an X-Module occupies from
the EPT. As a result, the guest will no longer be able to access the module. Since the
EPT can only be modified by the hypervisor, the proposed mechanism of function call
unmapping can reliably isolate a module during external function calls. To be useful in
practice, however, our system does not extend this isolation to the function arguments.
That is, an external function will be able to access and modify its function arguments.
While the access of an external function will be restricted to the function arguments
alone, this provides a small attack surface. This attack surface, however, is not limited
to our system, but rather inherent to the problem of invoking untrusted code. In fact, if
the module would reside on the hypervisor level and would invoke a function within a
guest system, the same problem would exist. Nevertheless, our system reduces the attack
surface by using individual wrapper functions for each external function. Rather than
updating all arguments after an external function call, each wrapper only updates the
function arguments within a module’s data region that a specific function is supposed
to modify. Consequently, an external function can only access and update the memory
regions that it requires to fulfill its purpose.

157

6 The X-TIER Framework

Finally, it is worth to emphasize that the execution of an injected module leaves
no traces within a guest system unless the module purposely modifies the state of the
guest (S3). This is due to the fact that our system only operates on memory regions that
will be removed once a module finished its execution. As a result, an injected module
that constrains itself to only reading data structures within a guest system can only be
detected based on timing attacks, since it is atomically executed and leaves no traces.
Note that, as described in Section 2.3.2.1, timing attacks are an inherent problem of
all VMI-based approaches and thus represent a limitation that is independent of our
framework.

6.4.3 Example Applications

To highlight the capabilities of X-TIER, we created multiple example applications that
demonstrate the qualities of our system. Since the main motivation behind X-TIER was
to provide a secure and flexible foundation for malware detection and removal, we created
a virus scanner for Linux as well as multiple malware removal modules to illustrate
how well our framework fulfills this role in practice. In addition, we implemented an
external hypervisor-based shell called X-Shell that enables its user to execute Linux
shell commands on the hypervisor level which are then automatically redirected into
a VM. This provides further evidence for the fact that X-TIER is indeed a powerful
framework with a broad scope of applications. In the following, we will cover each of
these applications in turn starting with the virus scanner that we implemented.

6.4.3.1 Virus Scanner

To demonstrate the possibilities of X-TIER in connection with event interception (G3),
we implemented an on-access virus scanner for Linux using X-TIER that we call LxS.
This virus scanner consists of two parts: a hypervisor component and a kernel module.
The kernel module is injected by X-TIER every time a file is executed within the VM
using the execve system call. In this particular case, we trap this event by setting a
debug breakpoint on the address of the execve system call using the debug registers of
the x86 architecture. Notice, however, that this mechanism is functionally independent of
X-TIER. X-TIER can be combined with arbitrary software or hardware-based trapping
mechanisms. Researchers presented many such mechanisms for VMI over the last years.
A good overview over some of these techniques for the x86 architecture can be found
in [119].

Once the kernel module has been injected, it reads the file that should be executed,
calculates its SHA-512 hash, and transfers the file name as well as the SHA-512 hash to
the hypervisor component using function call translation. The hypervisor component will
then compare the calculated hash to a virus database and signal to the injected module
whether the file is malicious or benign. In the first case, the module will deny access to
the file by returning an error code, while the module will invoke the original sys_execve

158

6.4 Evaluation

function in the latter case, which will trigger the execution of the file. This mechanism is
completely transparent to the guest OS and cannot be evaded.

We tested the above described virus scanner once more by monitoring the compilation
of the Linux kernel. Thereby we used a clam-av database that contained 45,039 SHA-512
hashes to check the executed binaries. The results of this experiment are shown in
Table 6.2. As one can see, the virus scanner application tested 28,330 executables during
compilation and only incurred an overhead of 4.30%. In addition, we verified the detection
mechanism of the approach by executing several malicious files including the adore-ng
rootkit, the suckit rootkit, the mood-nt rootkit, and the enyelkm rootkit. We choose
these rootkits as they are often used for testing purposes in the research community
(e.g. [48, 128, 183]). In all cases, the access to the malicious files was denied. No false
positives were observed.

6.4.3.2 Malware Removal

An important issue that we have not discussed so far is malware removal. Instead of
solely detecting malware infections, we want to go beyond such approaches and also
provide the possibility to react to infections, which is a crucial functionality that is often
overlooked. While detecting malware infections is the first step, we must also remove
the infection to restore a clean system state. Consequently, if our framework would only
provide a basis for malware detection, but not for malware removal, it could never be
effective against malware in the real world, since it would leave the job halfway done.

To test whether X-TIER is suitable as a basis for malware removal, we created individual
defense modules for the adore-ng rootkit, the suckit rootkit, the mood-nt rootkit, and
the enyelkm rootkit. Each module was thereby designed to detect its corresponding
rootkit in memory using a signature3. Once detected, the modules would remove the
rootkits entirely from the infected system by reverting all the changes that the rootkits
conducted during infection. The necessary information was thereby obtained through
manual analysis of the rootkits, as is usually the case in the real world. Since modules
injected by X-TIER can make use of all exported kernel functions and data structures, the
creation of these modules turned out to be no more complex than writing a basic kernel
module. In addition, because all the created modules where not designed for the specific
use with X-TIER, but rather as normal kernel modules, each of the created modules can
be injected with X-TIER or be run directly from within a guest system. This provides
additional evidence for the fact that X-TIER is indeed able to inject arbitrary kernel
modules from the hypervisor.

For testing purposes, we sequentially infected the Ubuntu 11.04 Server VM with each
of the rootkits. We then executed each of the defense modules using X-TIER. Due to

3Note that we purposely chose a signature-based approach, since signature-based detection is still the
most common approach to malware detection. This demonstrates that X-TIER could be used as a
basis for current detection and removal mechanisms. However, naturally, our framework could also
be employed to realize other detection mechanisms as we will show in Section 7.4.

159

6 The X-TIER Framework

the signature-based approach, the defense modules only triggered when the machine
was indeed infected with the corresponding rootkit. In addition, the defense modules
successfully reverted all of the changes conducted by the rootkits. To ensure that the
system remained stable after the removal of a rootkit, we left it running for 60 minutes
once removal was complete. We did not observe any system instabilities during our
experiments. The average runtime for a single execution of a defense module was 67,21
milliseconds. The main part of the execution time was thereby spend searching through
memory for the rootkits with the help of the signature.

Finally, it is worth mentioning that we did not take any precautions for the case that a
rootkit was currently executing when the defense module was run. In this case, it could
occur that the system crashes once the rootkit is removed, since the defense modules
also remove the code of the rootkits from memory. However, this situation did not occur
during our experiments. To avoid this scenario, one could verify whether the IP pointed
to the rootkit before removing it from memory.

6.4.3.3 X-Shell

Overview. To demonstrate the wide range of possibilities that our framework provides,
we implemented a hypervisor shell based on X-TIER similar to EXTERIOR [48]. This
shell essentially allows its user to execute almost arbitrary shell commands within the
guest system from the hypervisor level. To accomplish this we make use of system call
redirection. The key idea behind this approach is to redirect the systems calls executed
by a process running on the host system?® into a guest system. As a result, the process
will behave as if running within the guest even though it is executed externally. In
particular, it will produce the exact same information that it would produce if it was
executed within the guest on the hypervisor level. To illustrate this approach let us take
a look at a concrete example: 1s.

The purpose of the Linux program 1s is to list all files contained in a given directory.
To provide this functionality 1s relies on the getdents system call, which obtains the
contents of a directory on Linux. Let us assume for the moment that the host uses the
exact same OS as the guest. Consequently, if we execute 1s on the host system, intercept
the execution of the getdents system call, and inject the system call into the guest,
1s will list the directory contents of the guest system instead of the host. The reason
for this is that 1s does not obtain the necessary information itself, but rather uses an
interface for this purpose: the ABI. Since the guest and the host implement the same
interface in our example, it becomes possible to redirect system calls from one system to
another. This is essentially comparable to exchanging the component that implements
the interface, which is possible as long as the interface remains the same.

4Note that the same approach could also be used to redirect system calls from one guest system into
another. However, to ease the understanding, we here only consider the redirection from a host
system into a guest system.

160

6.4 Evaluation

While powerful, this approach seems to have one major limitation: the target system
must provide the same ABI as the system the application is executed on. This does not
have to be the case though. By introducing a virtualization layer, we can provide the
virtual ABI interface that a process expects and can at the same time support arbitrary
ABI implementations. To achieve the latter, the virtualization layer must translate ABI
invocations from the expected interface to the target interface and vice versa.

Implementation. To actually implement system call redirection, we have to solve four
subproblems:

System Call Interception First of all, we obviously have to find a why to intercept
the system calls of an application at runtime to be able to
perform redirection.

System Call Selection Second, we have to decide whether a specific system call
must be redirected into the guest or not. While one might
think that every system call must be redirected, this is not
the case in practice. For instance, when an application
prints output this information should be printed on the host
system and not on the guest system. Otherwise we would
never see the output of the 1s command, for example.

System Call Redirection Third, we must find a way to perform the actual redirection
of the intercepted system calls into the guest system.

System Call Translation Fourth and finally, to provide a universal approach, it
must be ensured that the host system can differ from the
guest system. For instance, we may want to use ls to
obtain information from a Windows guest. This requires
a virtualization layer that translates system calls between

different OSs.

Intercepting system calls essentially means that we must redirect the execution flow of
an application whenever a system call is executed. One of the possibilities to achieve
this is to add instrumentation code to an application during runtime. A tool that can be
used for this purpose is PIN®. PIN relies on binary instrumentation to rewrite the code
executed by an application at runtime. This approach allows us to add instrumentation
code to each system call without actually modifying the application whose system calls
we want to intercept. For this purpose, we created a PIN tool that invokes X-TIER
whenever the monitored application executes a system call. The monitored application
can thereby be an arbitrary ELF binary such as 1s.

Shttps://software.intel.com /en-us/articles/pin-a-dynamic-binary-instrumentation-tool

161

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

6 The X-TIER Framework

Runtime 3] Results
PROGRAM NORMAL REDIRECTED SYSCALLS INJECTIONS OVERHEAD
find 0.081 0.553 218 17 6.80
cat 0.039 0.309 42 6 7.93
netstat 0.007 0.172 54 d 25.00
Is 0.003 0.250 78 7 83.33
grep 0.004 0.454 96 8 118.97
uptime 0.005 0.880 95 21 195.56

Table 6.3: Performance results of our X-Shell, a hypervisor shell implemented on top of
X-TIER. For each application the columns show the average runtime of the
program with (REDIRECTED) and without (NORMAL) system call redirection,
the number of system calls the program executes (SYSCALLS), the number of
injected syscalls (INJECTIONS), and the total overhead.

Once X-TIER is invoked, our X-Shell component has to determine whether the current
system call should be redirected or not. While this seems like a complicated problem at
first glance, it turns out that a few manual rules created by an expert are sufficient to
perform this step. In particular, we currently make use of twelve handwritten rules for
system call selection. Based on these rules we are able to successfully redirect 70% (78 of
112) of the standard applications such as 1s contained within the /bin/ directory of our
test system. Note that the selection rules are only dependent on the host system, but not
on the guest system. Thus, a single rule set is sufficient to support different guest OSs.
This is due to the fact that system call selection occurs before the redirection process.

To perform the actual redirection of the system calls we leverage X-TIER. In particular,
we created a kernel module for each system call. Once injected, a module will execute
its system call within the guest system and transfer the obtained information to the
hypervisor. System call redirection can then be achieved by injecting the kernel module
that corresponds to the system call that one wants to execute.

Finally, we must translate system calls between different OSs. For this purpose, we
created a translation component that resides between PIN and X-TIER. Before a system
call is injected, this components translates the system call and its arguments to a given
target system. Each system call is thereby translated individually. Currently, we support
only Linux guests. However, tools such as wine® have shown that the approach is general
enough to be applicable to Windows as well.

Experiments. We tested the performance of our X-Shell by redirecting the execution
of various common Linux tools on our host system into the guest and recording the
overhead. Each application was thereby executed a hundred times. All experiments were

Shttp:/ /www.winehq.org/

162

6.4 Evaluation

executed on a machine with an Intel Core i5-2520M CPU and 8 GB memory. The host
system was a Gentoo Linux running kernel version 3.16, while the VM ran a Debian Sid
Linux with kernel version 3.14. The average performance results of the experiments are
shown in Table 6.3.

As one can see, the overhead of the approach is in general quite high ranging from a
seven times slowdown up to a 196 times slowdown. What is interesting though is that
the overhead not necessarily depends on the number of redirected system calls. In the
case of find and uptime, for example, we redirected almost the same number of system
calls (17 and 21 respectively). The overhead varies significantly though. Consequently,
the performance of the approach also heavily depends on the type of system call that is
redirected. In particular, the more information a system call produces, the higher will be
the resulting overhead, since each data transfer leads to an individual VM exit. Finally,
we like to stress that while the overhead seems high at first glance it is actually passable
in practice. uptime, which is the program with the highest overhead, still executes in
less than a second, for example. This is sufficient for most practical scenarios.

Summary. With the help of X-TIER, we are able to implement a hypervisor-based
shell capable of executing programs from the hypervisor within a guest system. Our
approach leverages system call redirection, a powerful technique that allows us to achieve
this functionality without modifying existing applications. By combining system call
redirection with system call translation, we could even support multiple OSs using
X-TIER’s OS independence as a foundation. Consequently, the resulting shell provides an
intuitive, elegant, and universal way to control VMs from the hypervisor. This underlines
the capabilities and usefulness of our framework X-TIER.

6.4.4 Limitations

There currently exist two limitations within our prototype. First of all, our prototype is
not yet able to operate on multi-core systems. To support multi-core systems, the concept
of runtime isolation must be expanded such that an X-Module cannot be accessed during
its execution from one of the other cores. A possible solution to this problem would be
to disable the interrupts on all CPUs and to put the additional cores into busy waiting
loops while the X-Module executes on a single core. As a result, all other CPUs would
be idle during the execution of an X-Module, which will have a negative impact on the
performance of the approach. However, as modules have a runtime that typically only
consists of a few milliseconds, this performance reduction should not be significant.
Second, there is a single functional limitation that our system places on the creation
of kernel modules. Since X-TIER injects a kernel module from the hypervisor without
involving the guest OS, specific OS data structures that are related to the module itself
will not be created within the guest OS. For instance, an X-Module will not be able to
use the __this module (Linux) or respectively the DriverObject (Windows) variable,
because the internal OS data structures that usually exist for each loaded module will

163

6 The X-TIER Framework

not be available for an X-Module. In fact, if these data structures would exist, the guest

OS would be aware of the existence of the injected module, which is why they are not
created by X-TIER.

6.5 Related Work

Lares [112] was the first VMI-based system that made use of an in-guest component.
The primary goal of this component, however, was not to bridge the semantic gap, but
to provide the possibility of actively monitoring the guest system. In particular, Lares
enables security applications residing on the hypervisor level to place tamper resistant
hooks into a guest system. When triggered, a hook transfers the control to the in-guest
component, which in turn transfers control to the hypervisor where it is redirected to the
security application that placed the hook. The in-guest component thereby essentially
functions as bridge between the hypervisor and the guest system, while the security
applications remain on the hypervisor level. X-TIER goes far beyond this work by
providing the possibility to execute arbitrary modules securely within the guest.

The first approach that — similar to X-TIER — aimed to achieve the secure execution
of an entire application within an untrusted guest system was Secure In-VM Monitoring
(SIM) [141]. The key idea behind SIM is to create an additional address space for the
security application within the guest system from the hypervisor. To isolate the security
application, the hypervisor carefully creates the layout of this new address space. First
of all, it ensures that the virtual memory area that the security application occupies
cannot be used by the guest system. This is accomplished by marking the corresponding
virtual memory areas as used within the address space of the guest. Next, it maps
all of the guest’s memory areas into the newly created address space. However, all of
the guest’s memory regions are mapped as non-executable. This effectively allows the
security application to access all of the guest’s code and data regions, while the guest is
unable to jump to its own code within the address space of the security application as
it is marked as non-executable. Finally, SIM intercepts all changes to the page tables
from the hypervisor to ensure that the guest cannot manipulate this carefully created
mapping.

To be able to switch between the address space of the guest and the security application,
SIM makes use of so-called entry and exit gates. In contrast to all other code regions,
entry and exit gates are mapped as executable in both of the address spaces. Therefore
the gates can be used by the guest as well as the security application. As the name
suggests, an entry gate will switch to the address space of the security application, while
an exit gate will switch from the address space of the security application to the address
space of the guest. To intercept events within the guest system, the security application
places hooks into the guest’s code regions. On invocation a hook will transfer control
to an entry gate, which will lead to an address space switch and the execution of the
security application. Since the switch of the address space does not require a VM exit,

164

6.5 Related Work

SIM can achieve good performance results.

In spite of the fact that SIM tightly restricts the access to the address space of the
security application, its architecture still exposes an attack surface. Since entry gates
must be able to switch the address space from the guest’s address space to the address
space of the security application, this switch can also be performed from any other code
region within the guest. If an attacker manages to disable the paging protections before
performing the switch to the secure address space’, it will become possible to execute
arbitrary code in the secure region. This problem does not exist for X-TIER, since the
injected code is never executed in parallel, but isolated within the guest. Whenever
guest code is run, the module is removed from the system. This leads to a much simpler
and less error-prone design, since the security of X-TIER does not depend on the paging
protections of the guest system.

In addition, while SIM and Lares circumvent the semantic gap, they do not support
the extraction of information from the guest system. That is, both approaches place
an in-guest component into the VM, but the in-guest component is actually only able
to access data structures or functions, if the component itself knows where they are
located and how they look like. Neither Lares nor SIM takes care of external symbol
resolution. As a result, the in-guest component must inspect the guest OS in the same
manner as an out-of-guest approach. This eliminates the biggest advantage of the in-
band approach: avoiding the semantic gap by making use of the guest’s own functions
to extract information. Lastly, both approaches are static, meaning that the in-guest
component is not loaded dynamically into the guest as in the case of X-TIER. Instead,
both approaches rely on a “trusted” kernel module for initialization. Consequently, the
approaches are unsuited for scenarios where it is unknown whether the guest system has
been compromised or not. This situation, however, frequently occurs in malware removal
scenarios.

In contrast to SIM and Lares, process implanting [54] is capable of extracting informa-
tion of a guest system and transferring it to the hypervisor. This is achieved by injecting
a process from the hypervisor into the guest system. To provide stealth, the hypervisor
does not create a new process within the guest, but rather substitutes the image of an
existing process with the image of the program that is injected, a technique also known as
process hollowing [177]. As a consequence, whenever the victim process is scheduled, the
guest system will actually execute the injected program instead of the original process.
The injected process can then access guest information using system calls and transfer
the obtained information to the hypervisor with the help of hypercalls.

The security of the approach is based on the assumption that the guest OS system is
trusted. To protect the implanted process against other malicious processes, its rights
are elevated to root and it is protected from kill commands. In addition, the hypervisor

"Notice that this is generally possible for a guest OS. During boot, the guest OS must, for instance, be
able to switch between different paging modes. If the hypervisor does not restrict this feature later
on, the guest can switch between the paging modes as it wishes.

165

6 The X-TIER Framework

creates a new physical memory region for the injected process at runtime. Since other
processes are unaware of this memory region and due to the fact that the implanted
process is injected into a randomly selected guest process, malicious processes on the
system neither know, which physical memory range the implanted process uses nor which
process was substituted. While this does not directly protect the injected process, it
makes it more difficult for an attacker to detect the implanted process.

The most significant drawback of process implanting is the restriction that the approach
is only secure if the guest OS is with integrity. One of the main reasons to make use of
virtualization, however, is to be able to protect security applications in spite of the fact
that the OS kernel is compromised. In fact, if the OS is trusted, there is — from a security
standpoint — no reason to resort to virtualization in the first place. Instead, we could
simply make use of a security process within the system that is protected by the OS.
Consequently, the technique is, in our opinion, not well-suited for the implementation
of a framework for malware detection and removal. In contrast, to process implanting,
X-TIER was designed to be able to execute modules securely within a guest even if the
OS has been compromised.

While X-TTER provides strong security guarantees, one might argue that a compromised
OS still can provide false information to an injected module, if the module performs an
external function call. SYRINGE [18] tries to solve this problem by verifying the integrity
of in-guest functions before and during their execution. In particular, SYRINGE enables
hypervisor-based security application to inject function calls into a guest system. Before
an in-guest function is invoked from the hypervisor, SYRINGE verifies the integrity of
the function by comparing the hash of the code page containing the function’s entry point
against a whitelist. During execution, SYRINGE will repeat this process whenever the
function leaves the current page and starts executing from a different page. In addition,
the system ensures runtime control-flow integrity by verifying the targets of all call, ret,
and indirect branch instructions according to a control-flow policy. To provide protection
against runtime modifications of stack and heap data, SYRINGE executes the injected
function call also atomically within the guest.

Since SYRINGE only injects function calls into a guest system, security applications
are isolated by the hypervisor and must not directly be protected by SYRINGE. Similar
to X-TIER, injected function calls are executed atomically within the guest system. In
addition, control-flow integrity mechanisms are leveraged to ensure the integrity of the
executed code. While this certainly raises the security of the approach, recent research
has shown that control-flow integrity mechanisms can often be bypassed as we have
described in Section 4.4.3. Further, the approach can at best ensure the integrity of the
executed code, it cannot ensure the integrity of the data that is used by the injected
function call. Therefore an attacker can still provide false information to the monitoring
application, by performing DKOM attacks [152], for example. Additionally, checking
the control-flow integrity of every invoked function leads to a significant performance
overhead. In our opinion, the increase in security that control-flow integrity provides,
does not justify this overhead. On the contrary, control-flow integrity may suggest a

166

6.6 Summary

false sense of security. In general, one should consider all information obtained from
an external source as unreliable. Nevertheless, enables X-TIER injected modules by its
design to implement arbitrary security checks such as control-flow integrity verification if
desired. Effective mechanisms can even be shared among modules by simply including
the source code.

Finally, SYRINGE can in contrast to X-TIER not provide security applications with
access to the kernel’s data structures. It only provides access to the kernel’s functions.
Data structures, however, represent a second important source of information.

6.6 Summary

In this chapter, we presented X-TIER, a framework that allows security applications to
inject kernel modules into VMs at runtime. By employing runtime isolation and function
call unmapping our system is able to execute an injected module securely within the
context of an untrusted guest system. In the process, injected modules have access to
all exported guest OS data structures and can even invoke guest OS functions without
sacrificing isolation or compromising their security.

Prior to injection, X-TIER converts modules into our uniform X-Format. This step
requires no changes or recompilation of existing kernel modules and allows our system
to support multiple OSs while remaining extensible. In addition, X-TIER provides
an intuitive communication channel that allows injected modules to send and receive
information to and from a security application residing on the hypervisor level.

Our prototype implementation of X-TIER is capable of injecting kernel modules
into Windows and Linux guests. The evaluation of our system shows that the perfor-
mance impact of module injection is small even for frequently injected modules. Due
to its functionality, security, and performance, X-TIER is very well-suited for creat-
ing hypervisor-based security applications as we demonstrated with various example
applications.

In conclusion, our framework enables hypervisor-based applications to securely and
completely bridge the semantic gap, which is the key problem that all VMI-based
application face. By providing the possibility to inject unmodified kernel modules,
X-TIER is in addition easy to use, extremely flexible, and widely applicable. Due to
these capabilities, our framework is able to provide the secure and flexible foundation
for malware detection and removal that we requested at the beginning of this chapter.
Equipped with this framework, we can now counteract the threat of data-only malware.

167

Chapter

Countermeasures

Having provided a secure and flexible basis for malware detection and removal with our
framework X-TIER, we will in this chapter discuss potential countermeasures against
data-only malware. To provide a comprehensive approach, we will thereby consider
defenses against this malware form on a conceptual as well as on a technical level. To
this end, we will first analyze the defense model that is commonly used on systems today
and explain its shortcomings. Based on our observations, we will introduce an alternative
model for system defense that employs a defense in depth approach to counteract malware
in different stages of its execution. The key idea behind this model is to install defense
mechanisms on multiple layers within the system in order to create a network of defense
mechanisms. Following this idea, we create a defense network against data-only malware
by discussing countermeasures on each of the layers that the model proposes. In the
process, we will particularly focus on the detection of data-only malware and present
three specific technical countermeasures against it. To make evasion more difficult, each
of the countermeasures is thereby based on X-TIER and exploits one of the inherent
dependencies that we identified during our analysis of data-only malware in Chapter 3
for the detection of the malware form. By combining an elaborate defense strategy with
strong technical countermeasures, we can provide effective initial defense mechanisms
against data-only malware.

Chapter Outline. We begin by addressing the threat of data-only malware on a con-
ceptual level. To this end, we introduce a system defense model in Section 7.1. Based on
this model we state our defense strategy in Section 7.2. The key idea behind this strategy
is to counteract the threat of data-only malware on the three different defense layers
that our model proposes: prevention, detection, and containment. Moving from the
conceptual to the technical level, we apply this approach and discuss possible prevention
mechanisms against data-only malware in Section 7.3. In Section 7.4 we advance to the
second layer and present three individual detection mechanisms for data-only malware.
Each of the mechanisms is thereby based on one of the fundamental dependencies of the

169

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(D]
-
c
3
(@]
O

7 Countermeasures

malware form. During our discussion, we illustrate the effectiveness of each mechanism
with detailed experiments. From the detection layer we then move to the last layer of our
defense model, the containment layer, in Section 7.5. Finally, we summarize the chapter
in Section 7.6.

7.1 System Defense Model

In the previous chapter we introduced a secure framework for the detection and removal
of (data-only) malware in the form of X-TIER. However, X-TIER “only” provides a
secure technical basis for system defense. To counteract the threat of data-only malware,
it is crucial to address the problem on a conceptual level as well. In particular, we
must define a system defense model that outlines how our defense against data-only
malware should actually be implemented. For this purpose we will first take a look at the
predominant defense model found on most systems today and explain its shortcomings.
Based on our observations, we will then discuss how we can mitigate these shortcomings
using a different model for system defense.

As discussed in Section 2.3, the present system defense model on the end host is
based in its entirety on the OS. All processes including security applications such as
antivirus software rely on the OS for protection. The OS thus represents a single point
of failure, which is the first fundamental flaw of the model. If an attacker should manage
to compromise the OS, the security model collapses and all security guarantees are lost.
As a consequence, it is crucial that the OS can never be infected by malware. Ensuring
this is the responsibility of malware protection and detection mechanisms. And therein
lies the second fundamental problem of the model: it is based on the assumption that
present protection and detection mechanisms are capable of preventing malware infections
entirely. As we saw in Chapter 4, current defense mechanisms can, however, not even
remotely provide this capability. Moreover, considering that the malware detection
problem is in general undecidable [29], it is doubtful that there will ever be a mechanism
that can provide such guarantees. Consequently, our current defense model is doomed
to failure. To solve this problem, we propose to make use of a different system defense
model that does not solely rely on the OS for protection, but rather leverages multiple
security layers. This model is shown in Figure 7.1.

As can be seen, the proposed model leverages the principle of defense in depth [165].
The main idea behind this approach is to increase the security of a system by using
multiple levels of defense instead of just one. This approach forces an attacker to overcome
all defense layers in an attempt to compromise the system, which is in general a much
harder task than bypassing a single layer of defense. While this approach is beneficial for
system defense in general, it is especially helpful for malware defense. This is due to the
fact that many current countermeasures face practical limitations as we have observed
in Chapter 4. By leveraging a defense in depth approach, we can effectively combine
multiple defense approaches on multiple layers. As a result, a single malware defense

170

7.1 System Defense Model

Malware

Detection
Containment

——

Protected
Data

Removal

Figure 7.1: The system defense model that we leverage within the thesis. The model
consists of four fundamental parts: prevention techniques (yellow), which try
to prevent infections, detection techniques (blue), which are responsible for
detecting infections, containment (red), which aims to limit the damage that an
infection can incur, and removal (black), whose purpose is to remove infected
files and to clean the system across all defense layers.

mechanism (e.g. antivirus) is no longer the sole security keeper on a system. Instead,
it becomes a part of a defense network. If a single mechanism is evaded, there remain
others that can take its place. That is, there is no longer a single point of failure. In
addition, the approach allows us to better absorb drawbacks of individual mechanisms.
For instance, anomaly-based detection often suffers from false positives. By combining
this defense technique with other approaches, we can reduce the impact of false positives
by only raising an alarm if multiple detection mechanisms are triggered at the same time.

In our model, we propose the use of three layers of defense that can in turn each
consist of multiple individual defense mechanisms. Each layer thereby attempts to hinder
(data-only) malware during a different stage of its execution. The first layer attempts to
stop malware infections before they can actually occur, which would be ideal. This is
why we refer to this layer as prevention layer. It is shown in yellow in Figure 7.1.

Since the prevention layer represents the first line of defense and aims to hinder malware
before it can infect a system, it can similarly to existing security mechanisms rely on
the OS for protection. Note, however, that we use the term “prevention mechanism” in
this thesis in a broader sense than is usual. In particular, we assume that a mechanism
must not necessarily stop the execution of malware a priori to qualify as a prevention
mechanism. Instead, we distinguish between two types of prevention mechanisms: pre-
vention mechanisms that detect malware before its execution and prevention mechanisms

171

0
(D)
—
=
0
(¢0)
(D)
S
—
(]
-
c
=3
(@)
O

7 Countermeasures

that thwart the successful execution of the malware. An example of the first category
are signature-based detection mechanisms, while protection mechanisms such as ASLR
belong to the second category.

The second defense layer of the model is formed by the detection layer shown in blue
in Figure 7.1. Realistically it is impossible to prevent malware infections entirely. We
therefore require a defense layer that detects malware infections that manage to get past
the prevention layer. At this point, however, the reader my ponder the question whether
this approach actually makes sense. Is it not already too late to detect malware once
it has successfully been executed? After all in this case the malware already had the
chance to fulfill its malicious purpose. What is important to understand though is that
malware detection nonetheless remains essential. While we cannot undo any harm done,
we can prevent future damage by detecting and removing the malware from the system.
Consequently, malware detection remains an important defense layer independent of the
fact whether the system is infected or not.

Since the task of the detection layer is to detect malware once it infected the system,
detection mechanisms cannot rely on the OS for protection and must in fact be isolated
from it such that they can remain functional even if the OS is compromised. For this
purpose, we introduced X-TIER as a secure and flexible technical foundation for malware
detection. Since X-TIER allows security applications to operate outside of the system
they try to protect and can on top of that support the execution of existing security
applications without modification, it provides a perfect basis for the implementation of
such a detection layer.

The detection layer leads us directly to the last defense layer in our model: the
containment layer (red). As stated above, it is highly unlikely that we can prevent
malware infections entirely. An important measure for malware defense that complements
our detection layer is therefore to implement mechanisms that reduce the damage that
malware can conduct. The fundamental idea behind this approach is that if we cannot
prevent malware infections, we can at least tightly limit their possibilities. In fact, if we
could isolate the malware in the system such that it cannot affect any other application,
it will in many cases matter little whether our system is infected with malware or not. As
in the case of the detection layer, the protection of individual applications or their data
can thereby be conducted from the hypervisor. We will discuss some of the potential
approaches that can be leveraged for this purpose in Section 7.5.

While containment sounds like a strange idea at first glance, it is actually a quite logical
step in the evolution of anti-malware mechanisms that we can currently also observe in
the real world. For instance, Symantec, a very well-known anti-malware company, just
recently declared that traditional antiviruses are “dead”, because they are no longer able
to adequately protect a system [132]. As a consequence, the company now focuses on
minimizing the damage of malware infections. That is, they actually focus on malware
containment instead of malware prevention.

The final element in our defense model that we have not covered so far is the removal
layer (black). Naturally, we do not only want to detect malware, but we also want to take

172

7.2 Defense Strategy

measures to remove the malware from the system once it has been identified. This step
is crucial since it actually ensures that malware is no longer able to affect the system.
The detection of the malware is only the first step in this direction. Just knowing that
the system is infected, however, does not solve the problem. The removal of the malware
does. Similar to detection and containment, the removal layer must thereby operate in
isolation from the system it protects. As shown in Section 6.4.3.2, X-TIER also provide
a flexible and secure basis for this layer.

7.2 Defense Strategy

Applying our system defense model, we will in the following create a network of defense
mechanisms to mitigate the threat of data-only malware. For this purpose, we will discuss
countermeasures on each individual layer that the model proposes. In the process, we will
particularly focus on the detection of data-only malware, since it is the most important
defense layer in the context of this thesis. To ensure that each detection component of our
network is effective and difficult to evade, we will leverage the dependencies we identified
in Section 3.6.3 as basis for our countermeasures. Since these dependencies cannot be
easily resolved and are on top of that inherent to all types of data-only malware, they
are predestined as a foundation for a comprehensive defense strategy.

To refresh reader, we identified the following dependencies during our analysis of
data-only malware:

Application Dependency Data-only malware always requires a host appli-
cation to function.

Control Structure Dependency Since data-only malware is a data-only program
written in a code reuse language, it must always
have a control structure that manages its execu-
tion.

Switching Sequence Dependency Finally, before data-only malware can be executed,
the virtual IP that it leverages must be set to
the control structure. This is accomplished by
executing a switching sequence.

With this knowledge in mind, lets take a look at our first defense layer: the prevention
layer.

7.3 Prevention Layer

When we think about preventing the successful execution of data-only malware, a
dependency that immediately comes to mind is application dependency. In particular,

173

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(]
-
c
3
(@)
O

7 Countermeasures

if we could prevent the malware from finding the gadgets it requires to execute, we
would break the elementary concept that data-only malware is based on and stop it from
functioning. A current defense approach that follows this idea is ASLR.

7.3.1 Rerandomization

ASLR randomizes the address space of an application to make it more difficult for an
attacker to obtain the addresses of the gadgets she requires. One crucial advantage of
ASLR is thereby that it only needs access to the binary representation of an application
to function and can thus directly be leveraged to protect existing applications without
modifying them first. As Snow et al. [148] have shown, however, the main problem of
ASLR, even of fine-grained ASLR that operates on the instruction-level, are memory
disclosure vulnerabilities that allow an attacker to leak addresses. An interesting approach
to counter this attack would be to rerandomize applications during runtime [11, 148].
That is, to randomize the address space of an application not just before, but also during
its execution. As a result, addresses leaked to an attacker will only provide a temporary
view of the application. This temporary view, however, must not correspond to the
actual state of the application. In fact, if the rerandomization is performed between
the time an attacker obtains an address and an attack is launched, a leaked address
will become useless to the attacker, since the layout of the application will already have
changed when the attack is performed.

Due to the fact that addresses may constantly change, rerandomization represents
a very strong defense mechanism against data-only malware and dynamic hooks. In
fact, it targets one of the fundamental requirements that these attacks are based on: to
create data-only malware and dynamic hooks we must be able to predict the addresses of
instructions or objects within the system. While we require the addresses of instructions
to actually implement the functionality of data-only malware, we must in the case of
dynamic hooks predict the location of the value that we want to override beforehand.
Rerandomization naturally complicates this task significantly. This is especially true for
persistent data-only malware and dynamic hooks, since rerandomization may change the
layout of an address space between invocations of the malware or the hook.

There are two basic approaches that can be used to perform rerandomization: one can
either just rerandomize code regions or one can rerandomize both code and data regions.
The former approach has the advantage that it can in general be easier implemented,
since we only require the location of all control data used by the application to perform
the rerandomization. However, on the down side, the method can only protect against
data-only malware and dynamic control hooks. To counteract dynamic data hooks,
we instead need to rerandomize data regions as well. For this purpose, however, we
require the location of all pointers within the application, which leads to a much more
complex design and a higher performance overhead as every rerandomization requires
the modification of more values compared to just randomizing the code regions.

174

7.3 Prevention Layer

Rerandomization in Practice. To the best of our knowledge, there currently exists
no binary-level implementation that randomizes code regions as well as data regions.
However, Williams-King [179] only recently presented a practical implementation for
rerandomizing the code regions of ELF binaries on a Linux system. To accomplish this,
he makes use of of a two-fold process. In the first step, the code regions of the ELF
executable are disassembled in memory. During this process the “Shuffler”, which is the
component that performs the rerandomization, records all IP relative instructions and
all branches to fixed addresses within the binary, since these addresses must be updated
when the rerandomization is performed. In the second step, all call instructions within
the executable are replaced with a jmp instruction to a trampoline function. The idea
thereby is to avoid that return addresses are pushed on the stack, which would make
rerandomization more difficult as the Shuffler would in this case need to unfold the stack
in order to identify them. By leveraging a trampoline, the return addresses can be stored
in a specific memory region where they can be updated during rerandomization.

While this covers most of the locations that must be modified in the process of
rerandomization, there also exist various special cases that must be considered. For
instance, may a binary contain function pointers or make use of C++ exceptions. Since
the identification of such structures is difficult on the binary-level, Williams-King solves
these cases by intercepting faults during the execution of the program and redirecting
them to the appropriate location. Notice, however, that this represents a fundamental
flaw in the current design, since this approach enables an attacker to invoke arbitrary
functions and thus to perform ret2libc style attacks.

Williams-King’s implementation is currently based on ptrace, which enables the
Shuffler to randomize the memory area of arbitrary processes. During rerandomization,
the Shuffler updates the code region of the binary as well as all libraries that the binary
uses. The runtime overhead of the approach thereby depends on the frequency of the
rerandomization. When performing rerandomization every 50 ms, the average overhead
measured was 11.3%.

To evaluate the security of the approach Williams-King studied the runtime of Snow
et al.’s [148] just-in-time (JIT) code reuse attack under the assumption that an attacker
requires at least 8 gadgets to perform a successful attack. Since Snow et al.’s results
yielded that an attacker finds about 1,35 gadgets per page, Williams-King estimated
that an attacker requires at least 71 ms for the attack in practice. Consequently, by
performing rerandomization with a frequency of less than 71 ms, we can likely hinder
most real world attacks.

Disadvantages. While rerandomization can be very effective against data-only malware
and dynamic hooks, the approach of course also has some disadvantages. First of all,
rerandomization naturally incurs a significant performance overhead (11% in the case
of Williams-King’s approach), especially if not only code, but also data regions are
rerandomized. Second, rerandomization cannot protect against brute force attacks. That

175

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(D]
-
c
3
(@]
O

7 Countermeasures

is, if an attacker is able to repeat her attack arbitrarily, she will eventually guess the
required addresses correctly and the attack will succeed. In fact, Shacham et al. [139]
have shown that rerandomization only increases the security of a system against brute
force attacks by a single bit compared to traditional ASLR. Thus it is essential that the
search space for an attacker is chosen to be large enough that brute force attacks become
impractical. Third and finally, special care must be taken that an attacker cannot predict
the rerandomization. Consequently, a cryptographically secure random number generator
should be used to determine the destination of the next randomization.

Summary. By rerandomizing applications at runtime, we effectively thwart an attacker
from obtaining the addresses she requires to perform her attacks. Compared to ASLR,
rerandomization can thereby even remain effective in the event of a memory disclosure
vulnerability. However, rerandomization also decreases the performance of protected
applications and performing rerandomization without loopholes is difficult in practice as
can be seen based on the approach that Williams-King presented. While the approach
solves many problems, it still enables an attacker to perform ret2libc attacks. In conclusion,
rerandomization is no panacea, but, if implemented correctly, it could significantly improve
the security of current systems against data-only malware and dynamic hooks.

7.3.2 Architectural Changes

Besides leveraging software approaches, we can also change the hardware layer to prevent
data-only malware infections. In this section we discuss two architectural changes that
we consider particularly effective against data-only malware: encrypting instructions and
1solating control data.

Encrypting Instructions. Rerandomization makes it more difficult for data-only mal-
ware to obtain the addresses of the gadgets it requires to function. A hardware-based
approach that goes into a similar direction would be to make use of an architecture
that solely stores encrypted instructions within memory. During execution the CPU
would then fetch the encrypted instruction from memory, decrypt it for its execution,
and reencrypt it once it has been processed. As a consequence, the actual instructions
that are executed would only be visible within the CPU.

When combined with ASLR, such a design would make it significantly more difficult
for an attacker to find the gadgets for data-only attacks. Since the entire memory only
contains encrypted data, even memory disclosure vulnerabilities would no longer be an
issue for the security of the system. Given that the randomization is not predictable
and the encryption is strong, the only option that remains for an attacker is to leverage
blind attacks [11]. While such attacks are possible, they face even more restrictions than
traditional data-only attacks and the attacks that have been presented so far ultimately
also rely on memory disclosure to function. Consequently, the approach would be very

176

7.4 Detection Layer

effective against current data-only attacks, it would, however, also lead to a performance
overhead due to the encryption and decryption of instructions.

Isolating Control Data. To infect a system, data-only malware must at some point in
time modify the control flow of the host application. This is generally accomplished by
overwriting control data such as return addresses. To make it more difficult to perform
such attacks, control data could be stored in an isolated memory region that can only be
accessed by specific instructions. For instance, a call instruction would only be allowed
to store the return address at a free memory location within the special area, while a
ret instruction could only obtain the last return address that was stored. As a result,
non-control data can no longer be used to overwrite control data as both data types are
stored separately from each other and access to the control data area is only allowed for
a set of predefined instructions. In addition, it would become significantly more difficult
for an attacker to load a control structure, since it consists of control data and must thus
somehow be loaded into the specific memory area.

7.4 Detection Layer

The second layer of our defense model is the detection layer. The main purpose of
this layer is to detect infections that bypass the prevention layer. Since this layer is
particularly important for the defense against data-only malware, we will in this section
present three general detection concepts for data-only malware. Each concept is thereby
based on one of the inherent dependencies of data-only malware.

7.4.1 Detecting the Underlying Code Reuse Technique

Data-only malware relies on code reuse to function. This makes code reuse techniques to
a key dependency of this malware form. Since code reuse techniques are on top of that
generally only used by malware, it suggests itself to detect data-only malware based on
the code reuse technique it leverages. That is, to detect data-only malware by looking
for abnormalities in the system’s execution that are caused by the characteristics of the
underlying code reuse technique. For the sake of simplicity, we will refer to this approach
as CRT-based (code reuse technique-based) detection.

Consider ROP, for example. ROP leverages the ret instruction to combine gadgets
into a program allowing it to perform arbitrary computations. The original purpose
of the ret instruction, however, is to return from a function call. Consequently, ret
instructions actually do not appear randomly within a program’s execution. Instead,
their usage follows specific conventions. Most importantly, for each ret instruction there
usually exists a corresponding call instruction. When the ret instruction is invoked,

it will transfer control to the instruction following its corresponding call instruction.

Thus if the corresponding call instruction for a ret is known, we can actually validate

177

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(]
-
c
3
(@)
O

7 Countermeasures

whether a ret instruction returns to its intended location or not. Since code generated
by compilers in general follows the previously described conventions, a benign ret will
in general return to its intended location. ROP, however, will violate these rules as
the ret instruction is in this context used to provide the connection between multiple
gadgets. As a result, there is no corresponding call instruction for the abused ret. This
represents an anomaly that can be used to detect ROP and thus data-only malware.

While we have not delved deep into the approach of CRT-based detection yet, the
example considered above already highlights a requirement of the approach: to be able
to realize CRT-based detection, we require a mechanism that allows us to monitor the
instructions that are executed by the target system. This is due to the fact that code reuse
techniques often leverage low-level assembly instructions to function. In the case of ROP
this instruction is the ret instruction, for example. To implement a detection mechanism
we thus require access to these instructions. That is, we require an nstruction-level
monitoring (ILM) mechanism. Before we continue with our discussion of CRT-based
detection, we will present such a mechanism. Based on this mechanism we will then
propose a concrete approach to CRT-based detection of data-only malware.

7.4.1.1 Selective Instruction-Level Monitoring (SILM)

Requirements. While there are many different approaches that support ILM (e.g. em-
ulation), the approach we are looking for must be suitable for malware detection. As
such the approach must fulfill specific requirements:

R1 Selective Monitoring. ILM in general leads to a significant performance overhead.
In order to keep this overhead as small as possible it is thus essential that we have
the ability to select the instruction types we want to monitor. For instance, to
detect ROP there is no need to monitor every executed instruction. Instead, it is
sufficient to solely monitor call and ret instructions. Selective ILM provides this
possibility.

R2 Evasion-Resistance. To be suitable for malware detection, it must be impossible
for an attacker to evade the ILM mechanism. That is, if the machine executes an
instruction selected for monitoring, this instruction must be received by the ILM
mechanism.

R3 Isolation. Since the monitored system could according to our defense model
already have been compromised when the detection mechanism is run, it is essential
that the ILM mechanism is isolated such that it can remain functional even if the
monitored machine is under complete control of the attacker.

R4 Stealth. To be useful for malware detection, the ILM mechanism must achieve a
high level of stealth (i.e. it can only be detected based on side channel attacks as
discussed in Section 2.3.3.1).

178

7.4 Detection Layer

Taking these requirements into account, X-TIER, which we discussed in detail in
Chapter 6, is perfectly suited as a basis for such an ILM mechanism as it natively fulfills
the requirements R3 and R4. Thus we only need to extend X-TIER with the actual
functionality required for selective instruction-level monitoring (SILM). For this purpose,
we will in the following present a general approach for ILM from the hypervisor on
the x86 architecture. In contrast to previous approaches, our technique is capable of
selectively monitoring specific instruction types (R1), which enables it to achieve a much
better performance than existing techniques. To accomplish this we make use of the
performance monitoring counters (PMCs), a hardware feature that is nowadays available
on almost all modern mainstream processors [88]. Since the PMCs can be protected
from the hypervisor, our monitoring mechanism is not only flexible, but also stealthy
(R4) and evasion-resistant (R2) [120]. Thus the approach provides a flexible and secure
basis for the implementation of CRT-based detection approaches with good performance.
Before we present our mechanism in more detail, we will, however, briefly discuss existing
hypervisor-based ILM mechanisms and their weaknesses to highlight the need for a novel
ILM approach.

Existing ILM Approaches. To the best of our knowledge, there currently exist three
general hardware-based approaches that could be used to implement ILM from the
hypervisor on the x86 architecture: page fault (PF) based ILM [119, 164], debug register
(DR) based ILM [119], and trap flag (TF) based ILM [40, 102]. However, none of these
techniques can provide the flexibility to monitor specific instruction types. To show this,
each technique will be briefly described below.

Page-Fault (PF) based ILM. By making use of the page access bits of the EPT, it is
possible to trap instructions that are either contained within (execute-disable bit) or try
to read from (present bit) or write to (read-only bit) certain memory pages. Therefore
by setting the desired access bits on every page, it is possible to trap all instructions or
all instructions that involve memory operations on a guest system.

The main problem of using this approach for ILM lies in the fact that the mechanism is
not working on an instruction basis, but rather on a page basis. Thus the mechanism is by
design only able to trap all instructions contained within a certain virtual memory page
or all instructions that have a memory operand accessing a certain virtual memory page.
Consequently, PF-based ILM does not fulfill our requirement of selective instruction
monitoring (R1).

Debug Register (DR) based ILM. The Intel x86 architecture provides four break-
point DRs that can be used to trap instructions that are fetched from a specific memory
address. By programming the DRs to contain the virtual memory address of every
instruction that we want to monitor, we can implement an ILM mechanism.

In contrast to PF based ILM, this approach works on an instruction basis. However,
the DRs are actually intended for setting hardware breakpoints. Therefore the only
feature that the hardware supports in this case, is to raise an exception based on the

179

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(D]
-
c
3
(@]
O

7 Countermeasures

locations specified in the DRs. The identification of these locations and the programming
of the DRs has to be done in software. From this it follows that the complete logic that
is required to implement a DR-based ILM mechanism, must actually be implemented in
software. The role of the hardware is limited to the trapping itself, which the hardware
cannot fulfill in all situations, due to the fact that hardware breakpoints that are placed
directly after a POP SS or MOV SS instruction may not be triggered [64]. Thus DR-based
ILM is not evasion-resistant (R2) [120].

Trap Flag (TF) based ILM. Using the TF for ILM is a very common approach
which is, for example, adopted by Ether [40] and MAVMM [102]. The TF is a system
flag, which will, if set, lead to the generation of an exception after every instruction that
is executed by the processor. Therefore this hardware mechanism is the only one of the
here presented mechanisms, that is actually intended for ILM. Besides, single-stepping
the TF can in theory also be used to implement branch monitoring by combining it
with the single-step on branches flag (BTF). However, this functionality cannot be used
in practice, since the TF is modified by some guest OSs and the processor [64]. Once
cleared, the processor will no longer generate exceptions and hence control will be lost.
This also complicates single-step monitoring, but when every instruction is trapped, it is
at least possible to reset the TF in case it was cleared between two instructions.

The whole problem arises due to the fact that the TF cannot be protected by the
hardware. This means that there is no hardware mechanism which we are aware of that
could be used to raise a signal if the TF is modified. Thus a TF-based ILM mechanisms
is not only unreliable, but also not evasion-resistant (R2), since every process has access
to its own TF and can therefore arbitrarily manipulate it.

Due to this problem Intel introduced the monitor trap flag (MTF), which is the
equivalent of the TF on the hypervisor level. When the MTF is set, every instruction will
cause a debug exception that is forwarded to the hypervisor. While this leads to an ILM
approach that is evasion-resistant, the mechanism only allows to trap every instruction.
Selective monitoring of specific instruction types is not possible (R1).

The Intel x86 Performance Monitoring Counters (PMCs). Most mainstream pro-
cessors provide a performance monitoring unit (PMU) that enables applications to
measure the performance of other applications or their own performance by monitoring
the occurrence of specific hardware events. To reduce the overhead of the performance
measurement and the lines of code that have to be added to an application that uses
the PMU [153], an application usually does not monitor these events directly. Instead,
the PMU provides so-called performance monitoring counters (PMCs) that count the
occurrence of specific hardware events and can be accessed by the applications. To
illustrate this mechanism, consider a PMC, for example, that counts the number of
instructions that have been executed by the processor. By reading this counter multiple
times and storing its value, an application can deduce how many instructions were
executed in a certain period of time.

180

7.4 Detection Layer

On the Intel x86 architecture, PMCs are MSRs that can in addition to the RDMSR and
WRMSR instructions be accessed with the RDPMC instruction. Depending on the type of
the PMC, the event that is counted by it is either fixed or programmable. While fixed
PMCs count a specific hardware event that cannot be changed, programmable PMCs
can be set to count one of the supported hardware events. For this purpose, there exists
another MSR, the performance event select (PES) MSR, that determines the event that
is counted by its corresponding PMC. Besides the event itself, the PES MSR of a PMC
also provides additional controls that can be used to influence the counter. For example,
it is possible to specify if an event is only counted at a certain processor privilege level
and if the PMC should generate an interrupt when it overflows.

The number of fixed and programmable PMCs as well as the type of events that can be
counted by a programmable PMC depend on the specific processor microarchitecture. On
Sandy Bridge-based processors, for example, there are three fixed and four programmable
PMCs [64]. When it comes to the countable events, it is necessary to distinguish between
architectural events and non-architectural events. While architectural events are available
on all x86 processor architectures, the number and type of non-architectural events depend
on the specific microarchitecture. For example, on the Sandy Bridge microarchitecture,
we find that there exist more than 200 non-architectural events in addition to the seven
architectural events that are available across all Intel x86 microarchitectures [64].

PMC-Based Trapping. The idea behind PMC-based trapping is to trap the occurrence
of hardware performance events that are counted with the help of programmable! PMCs

to the hypervisor such that these events can be used to implement security mechanisms.

As in the case of other security applications that try to monitor certain events within
a VM from the vantage point of the hypervisor, the realization of such a mechanism
requires two steps: First, it is necessary to force the hardware to generate a signal
whenever the event occurs that we want to observe. Second, this signal must lead to a
VM Exit that transfers control to the hypervisor.

In case of PMC-based trapping, the first step requires us to make sure that a PMC,
which was set to count a specific hardware event, generates a signal when a certain
number of events occurred. Since a PMC produces an interrupt on overflow, given that
the corresponding flag was set in the PES MSR that controls the PMC, we can emit a
signal if we force the PMC to overflow. This can be achieved by setting the initial value
of the PMC to MAX_PMC_VALUE - X + 1, were X is the number of events that should
occur before the overflow. For example, to cause an overflow after every counted event,
we set the PMC to its maximum value. Thus the PMC will overflow when the next event
is counted.

The interrupt signal that is emitted by a PMC on overflow depends on the setting of the
local Advanced Programmable Interrupt Controller (APIC). Amongst other things, the

LA similar approach could also be realized using fixed PMCs, but we will ignore this case for the sake
of simplicity.

181

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(D]
-
c
3
(@]
O

7 Countermeasures

Event Type Description

ALL_BRANCHES All branch instructions
CONDITIONAL All conditional branch instructions
NEAR_CALL All near call branch instructions
NEAR_RETURN All near return branch instructions
FAR_BRANCH All far branches

Table 7.1: Non-architectural events related to retired branches available on recent processors.

local APIC allows us to force the delivery of a non-maskable interrupt (NMI). Emitting
a NMI has two advantages. First, the processor will handle the interrupt immediately,
which will reduce the time that passes between the counter overflow and the moment
the interrupt is handled by the processor. This is important due to the fact that it is
possible that more than one event occurs during the time it takes to deliver the interrupt.
We will defer the discussion of this issue to the paragraph after next where we consider
PMC-based ILM in more detail.

Second, a NMI leads to a VM Exit if the appropriate flag is set within the pin-based
VM-execution controls of the x86 architecture. Thus by using a NMI we can force a VM
Exit and thus realize a control transfer to the hypervisor.

PMC-based Trapping for ILM. PMC-based trapping can be directly applied to ILM
by making use of hardware performance events that are related to instruction execution.
Since modern microarchitectures support events that allow to count specific instruction
types, the resulting ILM approach is capable of selecting these instruction types for
monitoring. To provide the reader with a better understanding of the type of events
that are available, Table 7.1 shows a small subset of the non-architectural events related
to taken branch instructions that are about to retire and are available on all modern
x86 processors. In this context the term “retire” stands for instructions that have been
executed by the CPU and whose changes will be committed to the architecture in the
order in which they appear within the instruction sequence [64].

Counter Overflow Issues. Unfortunately, there is the possibility that more than
one event occurs before the PMC overflow interrupt is received. The reason for this
phenomenon is latency within the microarchitecture in combination with the speed of
modern processors. Due to the latter it is likely that multiple instructions retire in a
very short period of time, which also means that multiple monitored events could occur
at nearly the same time. The PMC that counts these events will therefore be increased
and will on an overflow generate a signal. This signal will then be forwarded to the
local APIC that in turn will raise the selected interrupt. Because of latency, it is hence
possible that more than one event occurs during the period of time between the PMC
overflow and the delivery of the interrupt.

How many events can occur before the interrupt is delivered depends on the event that
is monitored. The closer events appear to each other within the instruction stream, the

182

7.4 Detection Layer

higher are the chances that they will occur together before the interrupt is received. If
we would implement a single-stepping mechanism with the help of a PMC by forcing
an overflow after every instruction executed by a system, for example, it is very likely
that more than one instruction would be executed before the interrupt is received. In
fact, during our experiments with such a PMC-based single-stepping mechanism, we
found that on the average about six instructions were executed before the interrupt was
received.

Notice that similar issues could arise if PMC-based trapping is applied to other areas.
How this problem can be solved must be considered on a case-by-case basis. In the
following we will provide a solution for PMC-based ILM.

Instruction Reconstruction (IR). Because of the speed of modern processors and
the latency within the microarchitecture, it is possible that we miss instructions that we
want to monitor. However, the fact that we missed an instruction will not go unnoticed.
On the contrary, the PMC that is used to count the instructions will tell us exactly
how many instructions were missed, since it continues counting even after an overflow
occurred. Therefore we know how many instructions we missed between the occurrence
of the last interrupt and the current interrupt. This effectively reduces the general
problem of recovering all missed instructions to the smaller problem of recovering all
missed instructions that lie on the execution path from the last to the current interrupt.
A possible solution to this problem is to reconstruct this execution path, reanalyze all
executed instructions, and filter the instructions that we missed. To achieve this we will
save the IP of the VM every time a monitoring related interrupt is received. This allows
us to use the IP of the last interrupt as a starting point for the IR. To reconstruct the
instructions, we will then sequentially decode all instructions that follow this starting
point until we reach the current IP. A remaining problem are control transfer instructions
that we encounter along the way, since the target of the control transfer may depend on
memory operands that may have been overwritten in the meantime. However, since the
control transfer instructions that we encounter were already processed during normal
execution, we can make use of another hardware feature to recover the target locations
of these instructions: the last branch record stack (LBR).

As the name suggests, the LBR is a stack that contains the last instructions that
caused a control transfer. More precisely, the LBR consists of MSR pairs, where one
MSR, the FROM MSR, contains the virtual address of the instruction that caused the
control transfer and the other MSR, the TO MSR, contains the virtual address of the
target of the control transfer. Therefore the LBR can be used to decide, if a branch was
taken and what the resulting IP value was.

The size of the LBR depends on the processor that is used. Recent processor families
usually provide a LBR that consists of 16 MSR pairs. The top of the LBR is indicated by
a special MSR, the so-called top-of-stack pointer (TOS) MSR. Once the TOS reaches its

maximum value, it will wrap around and the oldest entry on the stack will be overwritten.

Therefore the number of branches that can be reconstructed with the help of the LBR,
depend on its size. However, we do not expect this to be an issue in practice, since the

183

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(D]
-
c
3
(@]
O

7 Countermeasures

size of the LBR was always sufficient for IR during our experiments. But even if we had
to record more branches than the LBR can hold, this is not a problem, because it is also
possible to use the branch trace store (BTS) instead of the LBR, which is basically a LBR
in memory and can therefore hold as many branches as memory is reserved. Further in
contrast to the LBR, the BTS can be programmed to generate a signal before it overflows,
which means that branches can always be processed before they get overwritten [64].

By using the LBR it is finally possible to reconstruct the complete instruction stream
by saving the TOS of the LBR in addition to the IP on every monitoring related interrupt.
While moving through the execution path starting from the last IP we can then increase
the last TOS whenever a control transfer instruction is encountered that is recorded
on the LBR and continue sequential decoding from the destination address. This will
eventually lead us to the current IP.

Evasion-Resistance. While the steps described above allow us to monitor instructions
from the hypervisor, it is not yet clear if PMC-based trapping is evasion-resistant
(R2) [120]. To achieve this property, it is necessary that none of the hardware registers
that are used by a PMC-based trapping mechanism can be manipulated from within
the guest. Since the processor-based VM-execution controls on the x86 architecture
provide the possibility to cause a VM Exit in case a MSR is read or written or a RDPMC
instructions is executed, read or write accesses to the PMCs can be intercepted by the
hypervisor. In addition, because all control structures that are related to PMCs are MSRs
as well, attempts to access or modify the PMC control structures can also be intercepted.
Thus PMC-based trapping is evasion-resistant (R2) provided that the hardware does not
contain any flaws and implements the above mentioned mechanisms correctly [64, 120].

Summary. By leveraging the PMCs for ILM we obtain an isolated (R3) SILM mechanism
that enables us to monitor the execution of specific instruction types (R1) within a guest
system from the hypervisor. Since any access to the PMCs or their control structures
from within the VM can be trapped to the hypervisor, the mechanism is additionally
evasion-resistant (R2) and achieves a high level of stealth (R4). Due to these properties
the proposed SILM approach is well suited for the use with security applications such as
CRT-based detection of data-only malware.

7.4.1.2 Monitoring Specific Applications

The SILM monitoring mechanism presented in the last section enables us to selectively
monitor instructions from the hypervisor. In general, however, we do not want to monitor
the instructions of all applications, but rather of specific processes on the system. To
accomplish this, we have to enable the PMCs whenever a process that we want to monitor
is scheduled. In the following, we describe how application specific monitoring can be
realized in the case of Linux guests.

First and foremost, we need to find a way to specify which applications we want to
monitor and which we want to ignore. An intuitive way to do so would be to leverage the

184

7.4 Detection Layer

name of an application as identifier. This leads to the problem of how we can activate our

monitoring mechanism whenever the application X that we want to monitor is started.

To solve this problem, we intercept the execution of every new process and compare the
name of the binary that is about to be executed with the list of applications we want to
monitor. This can be achieved from the hypervisor by placing a hardware breakpoint on
the function that is executed whenever a new process is created. In the case of Linux, this
is the execve function, which receives the name of the binary that should be executed
as an argument.

Having established that we want to monitor a specific process, the next issue that we
have to address is how we can track the process across context switches. In particular,
we have to disable monitoring whenever a different process is scheduled and we have to
reenable monitoring whenever the monitored process is resumed. To achieve this, we
can make use of a derivative approach and identify a process based on the CR3 register
value [67].

The CR3 register contains the address of the page tables of a process. Since every
process has its own address space, each process has a unique CR3 register value. Whenever
a process is scheduled, this value must be loaded into the CR3 register. Since we can
intercept moves to and from the CR3 register from the hypervisor, we can use this property
to detect when a process is scheduled. All that we require for this approach to work is
the CR3 value that belongs to a process that we want to monitor. Unfortunately, this
value has not yet been computed on Linux when the execve function is invoked. This is
why we intercept the execution of a second function, start_thread, to obtain the CR3
register value of the process we want to monitor. Like execve, start_thread is executed
for every newly created process.

Equipped with the CR3 value of a process, we can activate our SILM mechanism
whenever a process that we want to monitor is executed by the CPU. The only thing
that is missing to complete our application specific monitoring mechanism is to identify
when a process has finished its execution, as the CR3 value of a process may be reused by
another process once it exits. To accomplish this, we place a hardware breakpoint on the
exit and exit_group functions, which are, as their name suggest, the counterpart to
execve and start_thread and are executed whenever a process exits.

While the above describe approach is specific to Linux, we would like to stress that the
techniques that we leverage are very generic. In fact, all that is required to implement
a similar mechanism for another OS such as Windows, is to identify the equivalent
functions that mark the beginning and the end of a process’s execution. Since all other
techniques (e.g. identifying processes based on their CR3 register value) are based on

hardware features, they are without modification directly applicable to other OSs as well.

7.4.1.3 Detecting ROP

Equipped with a secure SILM mechanism and a way to monitor specific applications,

we can now present a concrete implementation of a CRT-based detection approach.

185

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(D]
-
c
3
(@]
O

7 Countermeasures

In particular, we want to detect ROP using the approach that we described at the
beginning of this section. To refresh the reader, the idea behind this approach was to
detect ROP based on ret instructions that have not been invoked by a corresponding
call instruction. For this purpose we will implement a shadow stack on the hypervisor
level: whenever a monitored application will execute a call instruction, we will push the
address immediately following the call onto our shadow stack. On every ret instruction
we then compare the address on top of the shadow stack with the new value of the IP.
Since a function in general returns to the location immediately after the call instruction
that invoked it, both values should be equal. In this case we will remove the address on
top of the shadow stack such that we can validated the next ret instruction. Otherwise
if the addresses should not match, the ret instructions does not have a corresponding
call instruction and is thus likely a part of a ROP program.

However, there is a small caveat. While most benign ret instructions have a corre-
sponding call instruction, there are a few exceptions. For instance, as we described in
Section 2.2.1.4, the Linux kernel manipulates the stack when it delivers a signal to an
application. In the process, the kernel, amongst other things, pushes a return address
onto the stack that does not have a corresponding call instruction. To account for such
rare cases, we make use of a sliding ratio. The idea thereby is to allow a certain amount
of mispredicted ret instructions (i.e. ret instructions that do not have a corresponding
call instruction) as long as their number does stay within a specific ratio to correctly
predicted ret instructions. However, since the ratio is sliding, it does not refer to
the absolute amount of executed ret instructions, but only to the recently executed
instructions. For instance, a sliding ratio of 2/100 would state that there may occur two
mispredicted ret instructions if the remaining 98 of the last 100 ret instructions have
been predicted correctly.

Note that we do not leverage an absolute ratio, since applications typically have a large
amount of correctly predicted ret instructions, while there are only a few mispredicted
ret instructions. Consequently, an absolute ratio would enable an attacker to execute
multiple mispredicted ret instructions in a row as long as she stays below the ratio. For
long running applications, this will, due to the large amount of correctly predicted ret
instructions, typically provide the attacker with the possibility to execute a significant
amount of mispredicted ret instructions before she will be detected. This is illustrated
in column four and five (Stats Normal) of Table 7.3, which shows the number of correctly
predicted (+) and mispredicted (-) ret instructions for well-known Linux applications.
As we can see, the mispredicted ret instructions are significantly lower than the correctly
predicted ret instructions. If we would leverage an absolute ratio of one in a hundred
(1/100) for example, an attacker would in the case of ps be able to execute 2,082
mispredicted ret instructions in a row, when the attack is performed at the end of the
program’s execution. A sliding ratio on the other side will always only allow the for the
window configured number of mispredicted ret instructions independent of when the
attack is performed. We will provide a more extensive discussion of the detection results
of our approach later on in this section.

186

7.4 Detection Layer

Runtime [s] Overhead
PROGRAM NORMAL SILM TF SILM TF
Is 0.001 0.014 0.035 14.10 34.74
ps 0.003 0.906 3.432 359.71 1,362.04
df 0.002 0.828 3.459 413.79 1,729.54
dig localhost 0.454 1.020 2.655 2.19 5.85
factor 121 0.001 0.009 0.054 10.00 59.97
cat /etc/passwd 0.001 0.007 0.028 11.28 43.31
shalsum /etc/passwd 0.001 0.013 0.043 12.54 43.18
file /bin/ls 0.002 0.830 4703 415.01 2,351.69
Sleep 1 1.002 1.027 2.296 1.02 2.29
id 0.489 0.614 1.234 1.26 2.52
AVERAGE 1.45 1.92 5.05 112.91 405.14

Table 7.2: Average performance results of our shadow stack when monitoring common Linux
applications. Each program was thereby executed 100 times. The columns show
from left to right: the executed program, the runtime in seconds of the normal
execution of the program and when monitored with a shadow stack implemented
via SILM and TF, and the average overhead of both implementations.

To evaluate the performance of the approach and to demonstrate the advantage of
SILM, we implemented the above described shadow stack in two different ways. First
we used an existing ILM approach, the TF, and trapped every instruction executed by
the guest system. Whenever we encountered a call, we saved the address following
the instruction to the shadow stack and on every ret we validated the target IP using
the pushed addresses. In addition, we implemented the shadow stack using our SILM
mechanism, which we set to only monitor call and ret instructions. We then set both
implementations to monitor common Linux applications and recorded the overhead of
both approaches. All experiments where thereby conducted on an Intel Core i7-4770
CPU with 3.4GHz and 16GB of memory. While we used Debian 7.6 with Linux kernel
3.14 as host OS, the guest OS was Arch Linux running kernel version 3.15.8. The results
of this experiment are shown in Table 7.2.

As one can see, the SILM implementation is significantly faster than a traditional ILM
approach. While our TF-based shadow stack decreased the performance of a monitored
program by a factor of 2,352 in the worst case, the worst case performance decrease in
case of SILM was 415. On average the SILM shadow stack incurred an overhead of 113
times in contrast to the TF-based approach which incurred an average overhead of 405
times. Consequently, the SILM shadow stack is about 3.5 times as fast as its traditional
counterpart.

187

(7]
(D]
—
=
(7]
(g0)
(]
=
—
(]
-
c
3
(@)
O

7 Countermeasures

60

50 ~— i —

w S
o o
vy

False Positives

N
o

10

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500
Ratio

—1/x —2/x 3/x

Figure 7.2: The effects of different sliding ratios on the shadow stack. In particular, the
figure shows three different ratios 1/x, 2/x, and 3/x where x goes from 0 to 500
and the false positives for each ratio.

Even the SILM approach leads to a significant overhead though. We would like to
stress, however, that while this overhead seems huge at first glance, it is not as devastating
in practice as one would expect. In particular, the shadow stack incurs an especially
large overhead when the runtime of the measured application is small (e.g. ps, df, or
file), while its overhead decreases with the runtime of the monitored application (e.g
dig or id). Consequently, the longer an application runs, the less noticeable will be
the influence of the shadow stack. In addition, even for file, where our shadow stack
has the highest overhead, the effective average runtime remains below a second. This is
acceptable in many practical scenarios.

Having determined its performance, we then empirically evaluated the effectiveness of
our approach against data-only malware. Since the detection capability of our shadow
stack heavily depends on the sliding ratio that we use, we conducted two separate
experiments for this purpose. To setup our shadow stack, we first determined the best
setting for our sliding ratio. For this purpose, we executed the dig program multiple
times within the VM and monitored its execution with our SILM shadow stack. In the
process, we gradually increased the ratio in steps of 20 starting with a value of 1 until
we reached the value of 500. For each ratio that we tested, we executed dig a hundred
times and recorded the average number of false positives that we observed. The results
of the experiment are shown in Figure 7.2.

188

7.4 Detection Layer

If a ratio of 1/x is used, where x goes from 1 to 500, we see the number of false
positives steeply rising. We reach fifty false positives when the ratio reaches 1/40. In
this case essentially every second execution leads to a false positive as we executed the
monitored program a hundred times. When we further increase the ratio, the number of
false positives essentially stays the same.

In the beginning, the ratio of 2/x shows a similar development. In this case the number
of false positives never reaches 50, however, but is oscillating at 40. The first time the

ratio almost reaches 40 is at 2/60. From there on the ratio spikes in both directions.

This implies that the number of false positives is only partly dependent on the size of
the sliding window. Based on this observation, we can reason that the events which
lead to false positives are not equally, but randomly distributed in the execution of the
program. In case of 2/380, for instance, the number of false positives drops to 26 and
is thus about 18 false positives lower than when a sliding ratio of 2/240 was used. If
the false positives were equally distributed, however, we should actually see more false
positives when a ratio of 2/380 is used as the window size is 140 ret instructions larger
compared to 2/240.

The last ratio that we analyzed is 3/x. In contrast to the other ratios, we did not
observe any false positives in this case before we reached a ratio of 3/140. From there
on, however, their number increases noticeable. At 3/180 we can already observe 15
false positives. When we further increase the window size of the sliding ratio, the graph

exhibits a similar development as the 2/x ratio and oscillates around 10 false positives.

As before, we can observe unexpected drops in the process. At 3/460, for instance, the
number of false positives drops to 4.

Since 3/x shows a stable development at the beginning, we chose to configure our
shadow stack to use a ratio of 3/100. This provides a decent window size, while