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Abstract Assuming that a robot trajectory is given from a
high-level planning or learning mechanism, it needs to be
adapted to react to dynamic environment changes. In this
article we propose a novel approach to deform trajectories
while keeping their local shape similar, which is based on
the discrete Laplace-Beltrami operator. The approach can
be readily extended and covers multiple deformation tech-
niques including fixed waypoints that must be passed, po-
sitional constraints for collision avoidance or a cooperative
manipulation scheme for the coordination of multiple robots.
Due to its low computational complexity it allows for real-
time trajectory deformation both on local and global scale
and online adaptation to changed environmental constraints.
Simulations illustrate the straightforward combination of the
proposed approach with other established trajectory-related
methods like artificial potential fields or prioritized inverse
kinematics. Experiments with the HRP-4 humanoid success-
fully demonstrate the applicability in complex daily-lifetasks.

Keywords robotics· trajectory adaption· trajectory retar-
geting· trajectory similarity· local trajectory properties·
multiresolution approach· obstacle avoidance

1 Introduction

Multiple approaches exist to find a suitable robot trajectory
in a given environment. Depending on the requirements the
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trajectory is either planned from scratch using for example
sampling-based approaches like RRT/RRT* (Lavalle (1998);
Karaman and Frazzoli (2011)) or adapted based on a pre-
viously learned trajectory. In the latter case Programming
by Demonstration (PbD) (Billard et al (2008)) is a standard
method for teaching a robot complex movements. Instead
of programming every single movement by hand, the robot
imitates a demonstrated movement either through physical
guidance also known as kinesthetic teaching (Lee and Ott
(2011)) or through suitable learning and adaption methods
(Schaal (2006); Hoffmann et al (2009)). PbD approaches
are also motivated by the goal of a pleasant human-robot-
interaction and there are observations in this field based upon
motor interference, indicating that similar motions ease the
perception of humanoid robots as interaction partners
(Kupferberg et al (2011); Kilner et al (2007)).

A major challenge of PbD and planning approaches are
its adaption capabilities to changed environments, requiring
modifications of the original robot movement. In general,
there are two classes of approaches: Direct adaption and in-
direct adaption through inverse optimization. Direct adap-
tion modifies the existing movement according to the con-
straints in task space (Pastor et al (2009)). Closely related to
this approach are explicit trajectory optimization schemes as
CHOMP or TrajOpt (Zucker et al (2013); Schulman et al
(2014)). Indirect adaption requires a cost function calcu-
lated from a set of demonstrations to be valid over the task
space (Levine and Koltun (2012); Mombaur et al (2013)).
Whereas indirect adaption methods may have better gener-
alization capabilities, the cost function is difficult to obtain
for complex movements and multiple repetitions might be
necessary. In this article we focus on direct trajectory adap-
tion. Therefore we assume that a trajectory based on previ-
ous demonstrations is given, either from demonstration or a
motion planner. The objective is to keep the resulting, de-
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Fig. 1 Application of Laplacian trajectory Editing to deform a given
reference motion while maintaining its local shape: Adaption of a bi-
manual task from different start positions maintaining a fixed spatial
distance between both hands (left) and modification of a one-handed
pick-and-place task to avoid a possible obstacle (right)

formed trajectory as similar as possible to the original one
in terms of position and/or positional differences.

Various non-differential trajectory adaption methods ex-
ist in literature, including polynomials, B́ezier curves (Hi-
lario et al (2011)), splines, affine transformations (Pham and
Nakamura (2013)), Elastic Bands
(Quinlan and Khatib (1993)) or Elastic Strips (Brock and
Khatib (2002)). Despite being advantageous for specific ap-
plications, they do have individual disadvantages the pre-
sented approach overcomes. Polynomials, splines and Bé-
zier curves all suffer from a fixed granularity determined
by the number of support points, thus restricting trajectory
adaption operations either to the global or local scale. High-
order polynomials have the additional problem of overshoot-
ing, that are large spatial variations in between two subse-
quent support points. Concerning affine transformations it
has been stated in (Pham (2011)) that three concatenated
affine transformations are required in between two fixed sam-
pling points for generic first-order boundary conditions,
hence they produce unintuitive deformed trajectories with
straight lines in between. Both Elastic Bands and Elastic
Strips share some common properties with the approach pre-
sented in this article, yet they aim for shortest paths whereas
our approach focuses on shape similarity between original
and modified trajectory.

The contribution of the article is the introduction of Lapla-
cian Trajectory Editing (LTE) to deform trajectories and over-
come the disadvantages of overshooting and a fixed granu-
larity, thus allowing trajectory modifications both on a lo-
cal and global scale. The proposed approach provides an
intuitive way for deformation. By interpreting a discretized
trajectory as anm-dimensional path with associated tempo-
ral information, the problem can be transformed to keep the

geometric trajectory properties as similar as possible. For
this purpose, the discrete Laplace-Beltrami operator encodes
intrinsic path properties. The Laplace-Beltrami operatoris
well-known in the computer graphics community where it is
applied to deform (Botsch and Kobbelt (2004a); Sorkine and
Cohen-Or (2004)), classify (Luxburg (2007); Reuter et al
(2009)) and compress (Karni and Gotsman (2000); Levy
(2006)) triangular surfaces meshes. So far, however, the po-
tential of this approach has not yet been exploited for robotics
problems. By interpreting a path as an undirected graph,
the deformation can be calculated using least squares. Yet
the straightforward approach suffers from two drawbacks, a
large computational complexity due to a matrix inversion in-
volved (Eck et al (1995); Kobbelt et al (2000)) and the inade-
quate treatment of large deformations (Lipman et al (2004);
Zhou et al (2005)). The method in this article overcomes
both challenges by using a multiresolution approach. This
way all computationally demanding path modifications are
performed only on a reduced set of sampling points. In ad-
dition, positional constraints are modified in such a way as
to avoid obstacles while maintaining the local shape of the
trajectory. The method is also extended to handle the coor-
dinated movements of multiple agents, making cooperative
manipulation possible. Simulations compare the approaches
presented in this article both in the spatial domain, with re-
spect to computational complexity and with existing state of
the art approaches. A demonstration scenario using a HRP-4
robotic platform shows the successful completion of a typi-
cal household task involving bimanual pick-and-place oper-
ations while avoiding static obstacles 1. .

The remainder of the article is organized as follows:
Sec. 2.1 introduces Laplacian Trajectory Editing as a method
for direct trajectory adaptation. Extensions are presented in
Sec. 3 to solve a set of specific yet commonly occurring
problems in robotics. In Sec. 4 both simulations and a robotic
experiment validate the proposed approach.

Notation: Throughout the article scalars are written in
non-bold letters (e.ga), vectors in bold lower case letters
(e.g.a) and matrices in bold capital letters (e.g.A). Access-
ing a specific element of a matrix/vector is denoted by curly
subscript brackets (e.g.A{3:} for the third row, entire column
of A).

2 Basics Of Laplacian Trajectory Editing

This section introduces LTE as the underlying framework
used throughout the article to adapt and deform discretized
trajectories. It also provides an intuitive understandingby
relating the abstract Laplace-Beltrami operator to the well-
known concept of finite differences along a path.
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2.1 General Framework

A trajectory consists of a pathP= [p(t1),p(t2), . . . ,p(tn)]T ∈

R
n×m with m ordered sampling points and corresponding

temporal informationti represented as timeti ∈ R, p(ti) ∈
R

m, written P = [p1,p2, . . . ,pn]
T for simplicity. The path

can be interpreted as an undirected graphG = (V ,E ) where
each vertexvi is associated with one sampling pointpi . The
neighbor setNi of the vertexvi is the set of all adjacent ver-
ticesv j and the edge set is defined asE = {ei j }, i, j ∈ {1, ..,n}
with

ei j =

{

wi j if j ∈ Ni ,

0 otherwise.
(1)

and the edge weightwi j . Multiple weighting schemes forwi j

exist in literature, the most prominent ones being uniform
umbrella weightswi j = 1 working best for regular-shaped
meshes and scale-dependent umbrella weightswi j =

1
‖pi−p j‖2

to compensate for irregular-shaped meshes (Desbrun et al
(1999)).

Rather than working in absolute Cartesian coordinates,
the discrete Laplace-Beltrami operator specifies the local
path properties, called Laplacian coordinatesδδδ i (Lipman et al
(2005)). For vertexvi , this results in

δδδ i = ∑
j∈Ni

wi j

∑
j∈Ni

wi j
(pi −p j ),

Written in matrix form, it turns out that the discrete Laplace-
Beltrami operator resembles the graph Laplacian matrixL ∈

R
n×n encoding the topology of the graph as

L{i j} =























1 if i = j,

−
wi j

∑
j∈Ni

wi j
if j ∈ Ni ,

0 otherwise.

Using uniform umbrella weights, one obtains the typical
strucure for paths as

L =
1
2
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.

When concatenating all Laplacian coordinatesδδδ i into a sin-
gle matrix∆∆∆ = [δδδ 1,δδδ 2, . . . ,δδδ n]

T , one can thus write

LP = ∆∆∆ . (2)

As the equation system in (2) is underdetermined, i.e. the
Laplacian matrix is singular, the Cartesian coordinatesP

cannot be uniquely calculated using the inverse ofL when
given only the Laplacian coordinates. However, by specify-
ing additional constraints in the form

P̄P = C̄, (3)

rank

([

L
P̄

])

= n,

the resulting concatenated equation system
[

L
P̄

]

Ps =

[

∆∆∆
C̄

]

, (4)

can be solved for the trajectoryPs= [ps,1, . . . ,ps,n]
T ∈R

n×m

Ps =

[

L
P̄

]+ [

∆∆∆
C̄

]

, (5)

using least squares. Note that due to the least squares ap-
proachPs andP generally differ from each other, see Fig. 2.
In addition, the constraints in̄C, P̄ are only approximately
met.

Only few viable options for̄P with a physical meaning
are known so far. The first and probably most important one
are positional constraints of the form

pi = ci ,

pinning a sampling pointpi to a desired positionci . By in-
troducing the weighting factorsω = {ωi ,ωi,1,ωi,2, . . .}, i =
1, . . . ,n determining the importance of the corresponding
constraint with respect to the Laplacian coordinatesδδδ i , it
can be rewritten as

ωipi = ωici , (6)

see the Matlab example in (Nierhoff (2013a)).

Fig. 2 Various possible path deformations by applying positional con-
straints to individual sampling points (round dots)

Another option are first order finite difference constraints
of the form

pi+1−pi = ci,1,

resulting in a fixed spatial difference between two sampling
pointsp j andpi along the path. With the weighting factor
ωi,1 it is rewritten as

ωi,1(pi+1−pi) = ωi,1ci,1. (7)
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This scheme can be extended to higher order finite differ-
ences. Hence it is for second order central finite differences

pi+1−2p j +pi−1 = ci,2,

and with the weighting factorωi,2

ωi,2(pi+1−2p j +pi−1) = ωi,2ci,2. (8)

Writing the unweighted firstnz finite differences in matrix
form

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one sees that they are linearly independent. Hence any row
of P̄ with nz nonzero entries can be represented as a weighted
sum of the firstnz order derivatives, thus providing an intu-
itive understanding of an arbitrary, non-zero row ofP̄.

Remark 1Various definitions of discrete Laplace operators
exist in literature: Being mainly based upon the connectivity
of the underlying graph, the graph Laplace operator belongs
to the wider class ofcombinatorial mesh Laplacians(Zhang
et al (2010)). Another class aregeometric mesh Laplacians,
explicitly taking into account the underlying Riemannian
geometry (Strichartz (1983); Meyer et al (2002); Dierkes
et al (2010)). Even if they do capture the geometric prop-
erties better, they are only defined on triangle meshes and
thus not straightforwardly applicable to paths.

2.2 Interpretation

Despite looking abstract at first glance, there exist intuitive
geometric and physical interpretations of LTE.

Given a continuous pathΠΠΠ(s) ∈ R
3 parameterized by

arc lengths, the Frenet-Serret formula describe the local cur-
vatureκ and the local torsionτ . By introducing the unit tan-
gent vectort, the normal unit vectorn and the binormal unit
vectorb= t×n with × as the cross product for a given point
along the path, one obtains (Do-Carmo (1976))

dt
ds

= κn,

dn
ds

=−κt+ τb,

db
ds

=−τn.

Thenκ can be calculated as

κ =

∥

∥

∥

∥

dt
ds

∥

∥

∥

∥

=

∥

∥

∥

∥

d2ΠΠΠ(s)
ds2

∥

∥

∥

∥

. (9)

If the path is not continuous but discrete, one can represent
the continuous pathΠΠΠ(s) by its discretizationP andm= 3.
Then the central difference approximation of (9) is

∥

∥

∥

∥

d2p(s)
ds2

∥

∥

∥

∥

=
p(s+h)−2p(s)+p(s−h)

h2 , (10)

with step lengthh. Assuming the sampling points are equidis-
tantly spaced with distanceh, (10) is rewritten as

∥

∥

∥

∥

d2pppi

ds2

∥

∥

∥

∥

=
pi+1−2pi +pi−1

h2 , i = 2,3, . . . ,n−1. (11)

This formula is closely related to the Laplacian coordinates
(Taubin (1995)), that is

δδδ i =
pi+1−2pi +pi−1

−2
, i = 2,3, . . . ,n−1, (12)

differing from (11) only in terms of the scaling factor (1
h2 vs.

1
−2).

Until now only the spatial domain is considered. In real-
ity however, e.g. when recording a movement with a motion
capture system, subsequent trajectory points are typically
sampled at a constant temporal rate, hence spaced rather
equitemporally than equidistantly. With∆ t = ti − ti−1 as the
temporal difference between any two subsequent sampling
points the acceleration̈p along the trajectory is

p̈i =
pi+1−2pi +pi−1

∆ t2 , i = 2,3, . . . ,n−1,

differing from (12) again only in terms of the scaling factor
( 1

∆ t2
vs. 1

−2). In case two subsequent sampling points are
fixed - see (7) - it is interpreted as a velocity constraint. In
case of three subsequent sampling points, (8) corresponds to
an acceleration constraint.

Looking at the weighting factorsω in (6)-(8) they deter-
mine the importance of the additional constraints inP̄ with
respect toL. Speaking loosely, they define the admissible
amount of deformation. Forω ≈ 0 the path is deformed just
insignificantly and the constraints specified inP̄ andC̄ are
hardly met. On the other hand, weighting factorsω ≫ 0 pri-
oritize the constraints, leading to larger deformation.

Numerous variations exist: The Laplacian matrixL can
also be constructed based on the first/third order derivatives
(a different name should be used in this case). For a given
straight lineP consisting of equidistantly and equitempo-
rally spaced sampling points, the deformed trajectoryP̄ re-
sembles a minimum velocity/jerk trajectory. This is consis-
tent with findings about minimum jerk trajectories for hu-
man movement generation (Flash and Hogan (1985)).
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3 Extension to Laplacian Trajectory Editing

Having introduced the basic concepts of LTE, this article
continues with several improvements over the original ap-
proach in Sec. 2.1, making it applicable to a wider class of
trajectory retargeting problems arising in robotics. As men-
tioned in the introduction, the approach presented so far suf-
fers from two main drawbacks, a high computational com-
plexity due to the matrix inversion and the incapability to
handle nonlinear deformation effects. To overcome both chal-
lenges, a multiresolution approach is presented. The sever-
ity of not handling nonlinear deformation effects becomes
clear when looking at the example in Fig. 3. A handwrit-
ten word (“Hello”) is deformed by fixing three sampling
points through positional constraints. Whereas the original
approach of Sec. 2.1 obviously has low similarity, the mul-
tiresolution approach resembles the word well. In addition,

original trajectory

original approach

multires. approach

fixed sampling points

Fig. 3 Comparison between the original and the multiresolution ap-
proach

the article shows novel extensions for reactive collision avoid-
ance, cooperative manipulation of multiple manipulators or
endeffectors and the inclusion of kinematic constraints for
execution on a real robot.

3.1 Arun’s Method For Handling Nonlinear Deformation
Effects

As stated in the introduction, nonlinear deformation effects
are not handled properly by LTE. Probably the most fre-
quent nonlinear effect occurring during path adaption are
rotations. In order to cope with them on a local path scale,
the method of Arun (Arun et al (1987); Umeyama (1991);
Nierhoff and Hirche (2012)) is combined with LTE. Its core
concept can be recapitulated as follows: Assume that one
is given two sets of points, namelyPr = [pr,1, . . . ,pr,k]

T ∈

R
k×m andPd = [pd,1, . . . ,pd,k]

T ∈ R
k×m that

should be matched using the homogeneous transformation

pd,i = cRpr,i + t ∀i = 1, . . . ,k,

with constantc as a scalar scaling factor,R ∈R
m×m as a ro-

tation matrix andt ∈ R
n as a translational vector. Because

the matching is usually not perfect, one has to find an affine
transformation that matches bothPr andPd ”as good as pos-
sible”. The problem can be reformulated as a minimization
problem using the error termno as

no =
k

∑
i=1

∥

∥pd,i − (cRpr,i + t)
∥

∥

2
.

The elements of the homogeneous transformation can be
calculated using Singular Value Decomposition: LetQ ∈

R
m×m be the covariance matrix as

Q =
1
k

k

∑
i=1

(pr,i − p̄r)(pd,i − p̄d)
T
,

with p̄r as the centroid ofPr andp̄d as the centroid ofPd

p̄r =
1
k

k

∑
i=1

pr,i , p̄d =
1
k

k

∑
i=1

pd,i .

Similarly, the varianceσ2
s is calculated as

σ2
s =

1
k

k

∑
i=1

∥

∥p′
ri

∥

∥

2
.

The SVD ofQ is calculated such that

Q = USVT
. (13)

Thenc, R andt can be computed as

R = VS′UT
,

c=
1

σ2
s

tr(SS′),

t = p̄d −cRp̄s.

with S′ preventing mirrored mappings

S′ =

{

I if det(U)det(V) = 1,

diag(1, . . . ,1,−1) if det(U)det(V) =−1.

As shown in (Sorkine and Alexa (2007)), the method can be
adapted withc = 1 to rotate the Laplacian coordinates in-
dividually for every sampling point. When applied to paths,
this results in new Laplacian coordinatesδ̂δδ i as

δ̂δδ i = Riδδδ i ,

with the rotation matrixRi based upon the sampling points’
position of original and deformed path. For the Laplacian
coordinateδδδ i the two sets of sampling points arePr = [pi −

pi−1,pi −pi+1]
T andPd = [ps,i −ps,i−1,ps,i −ps,i+1]

T .
Whereas the SVD solution can be used in arbitrary dimen-
sions and also for higher order derivatives, we realize that
bothPr andPd consist only of two vectors when using Lapla-
cian coordinates. Then an optimal rotationRi can be calcu-
lated in 2D and 3D using basic geometry. Although the latter
has a lower computational complexity, it is only marginally
faster to compute in Matlab as there are highly optimized
routines to calculate the SVD.
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3.2 Multiresolution Approach For Possible Online
Application

Whereas the method in the previous section can handle non-
linear deformation effects, it is also slow as every Laplacian
coordinate has to be rotated individually. In combination
with the matrix inversion of LTE the method is inapplica-
ble for time-critical applications. To overcome the compu-
tational bottleneck, we propose a multiresolution approach
together with a detailed evaluation both in the spatial and
the temporal domain and an extension for fast path deforma-
tion in 3D. By downsampling the path first, Arun’s method
will be applied only to a reduced number of sampling points
during the adaption step. The Laplacian coordinates of all
remaining sampling points are then interpolated in a final
reconstruction step, thus speeding up calculation 4. A pre-
liminary version of this approach is presented in (Nierhoff
et al (2013)), consisting of three steps:

downsampling adaption reconstruction

Fig. 4 Overview of the multiresolution approach

3.2.1 Downsampling

The goal of the downsampling step is to find a reduced set
of so-called support sampling pointsP′ = [p′

1,p
′
2, . . . ,p

′
n′ ]

T ∈

R
n′×m, subject to

P′ ∈ P, (14)

min
n′−1

∑
i=2

(‖p′
i −p′

i−1‖2−‖p′
i+1−p′

i‖2)
2
. (15)

The first condition enables the remaining sampling points to
be directly interpolated during the reconstruction step based
on the deformed support sampling points. The second con-
dition is necessary as combinatorial mesh Laplacians do not
take into account the geometry of the graph and thus rely on
a regular mesh structure (‖p′

i − p′
i−1‖2 = ‖p′

i+1 − p′
i‖2) for

a good approximation (Taubin (1995); Botsch and Kobbelt
(2004b); Wardetzky et al (2007)). It is

F(∆ f (x)) = F(∇2 f (x)) ∝ u2F(u),

with F as the Fourier transform from the spatial domainf (x)
to the frequency domainF(u). Hence the Laplace operator is
heavily influenced by high-frequency noise. To increase ro-
bustness, the path is smoothed in the spatial/frequency do-
main using a spatial moving average filter (SMA) respec-
tively a Fast Fourier Transform (FFT). In the limit, this re-
sults in a regular mesh structure‖p′

i − p′
i−1‖2 = ‖p′

i+1 −

p′
i‖2 = const. If we impose additional constraints on specific

sampling points, they must be included inP′ as well.

3.2.2 Adaption

During the adaption step, a two-staged approach modifies
the shape of the downsampled trajectoryP′ (Sorkine and
Alexa (2007)). For the remainder of this section, we will
mark the support sampling points of iterationit with P′

it and
the Laplacian coordinates of the support sampling points
with ∆∆∆ ′

it . In the first step, the resulting LTE equation system
is solved forP′

it+1 as

P′
it+1 =

[

L
ωP̄

]+ [

∆∆∆ ′
it

ωC̄

]

.

In the second step, the elements of∆∆∆ ′
it are updated individu-

ally for every support sampling using Arun’s method based
on P′

it andP′
it+1, resulting in∆∆∆ ′

it+1.
After l iterations, this results in the downsampled path

P′
l = [p′

l ,1, . . . ,p
′
l ,n′ ]

T . The final step of the adaption is to cal-
culate a rotation matrixR′

k, k= {1,2, . . . ,n′} for every sup-
port sampling point, measuring the rotation betweenP′

1 and
P′

l using Arun’s method.

3.2.3 Reconstruction using LTE

After deformation of the downsampled pathP′, the position
of all remaining sampling points must be reconstructed, re-
sulting in Ps. Let thek-th path segment ofPs, namedPs,k,
be defined as the set of all sampling points betweenp′

l ,k and
p′

l ,k+1, with ”between” referring to the graph structure and
not the spatial domain. Then the position of all sampling
points of the k-th trajectory segment is calculated as

Ps,k =

[

Ls,k

P̄s,k

]+ [

∆∆∆s,k

C̄s,k

]

,

with Ls,k as the Laplacian matrix for thek-th trajectory seg-
ment,∆∆∆ s,k containing the rotated Laplacian coordinates and
suitable boundary constraints encoded inP̄s,k, C̄s,k. The ma-
trix Ls,k is simply a submatrix ofL with similar structure.
The boundary constraints in̄Ps,k, C̄s,k are calculated by fix-
ing the first and last sampling point of every trajectory seg-
ment, that isp′

l ,k andp′
l ,k+1. The elements of∆∆∆ s,k are calcu-

lated by linearly interpolating the differential coordinates of
the path segment based onR′

k andR′
k+1. Depending on the

used representation either axis/angle based interpolation or
SLERP/NLERP (Shoemake (1985)) might be better suited
for up to three dimensions.
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3.2.4 Reconstruction using Affine Transformations

Another option for reconstruction are affine transformations
p̃ = M (p) as presented in (Pham and Nakamura (2013)).
For a path consisting of multiple sampling pointspi they are
of the general form

p̃i = Mpi +w,

with M = {M,w},M∈R
m×m,w∈R

m. Boundary constraints
for discrete paths ensuringCq continuity at the beginning/end
of the path can be incorporated by fixing the first respec-
tively lastq+1 sampling points. Hence forC0 continuity it
is

p̃1 = Mp1+w,

p̃n = Mpn+w,

and forC1 continuity it is in addition

p̃2 = Mp2+w,

p̃n−1 = Mpn−1+w,

resulting in the linear equation system

Vb = c, (16)

with V ∈ R
4m×(m2+m), b ∈ R

m2+m containing the elements
of M,w andc =

[

p̃T
1 , p̃

T
2 , p̃

T
n−1, p̃

T
n

]T
. It is clear thatCq con-

tinuity can be only achieved if there are less or exactly as
many boundary conditions as free variables inM . As such
for C0 continuity at least one dimension and forC1 continu-
ity at least three dimensions are required. The latter case is
for the remainder of this article.

Affine transformations are advantageous from a com-
putational perspective as only a small-sized linear equation
system (12 unknowns inMk,wk for the k-th path segment
based upon the four boundary sampling points of every path
segment) has to be solved. Yet the method suffers from in-
stabilities if the matrixVk for thek-th path segment becomes
singular. To prevent this, the four boundary sampling points
must span a three-dimensional space. By defining the con-
dition numbersκ(Vk) andκ(Vk−1) based on (16) for every
path segment, we reformulate (14)-(15) as

P′ ∈ P, (17)

min f1
n′−1

∑
i=2

(‖p′
i −p′

i−1‖2−‖p′
i+1−p′

i‖2)
2+ (18)

f2
n′−1

∑
i=1

κ(Vk),

with constantsf1 and f2 ensuring a good tradeoff between a
regularly shaped mesh and a non-degenerated solution.

3.3 Positional Constraints for Obstacle Avoidance

An extension of LTE allows reactive obstacle avoidance in
task space. The method presented in this chapter is an exten-
sion of the work in Nierhoff et al (2013), providing higher
robustness and allowing larger deformations. When using
positional constraints with weighting factorsωi ≫ 1 the small
deviation from the desired position due to the least squares
approach constitutes an inevitable yet often negligible error.
In contrast this section focuses on low-weighted positional
constraints, i.e.ωi ≈ 1 or ωi < 1 with a non-negligible er-
ror. Differing from positional constraints withωi ≫ 1 im-
posed generally on a few vertices only, low-weighted posi-
tional constraints impose positional constraints onall ver-
tices. The desired behaviour of avoiding dynamic obstacles
while maintaining the original path shape in a least squares
sense is then achieved by smoothly varying both the posi-
tional constraint matrixP̄ and the positional constraint̄C
along the path. The presented approach consists of three su-
perposed parts

1. A repulsive positional constraint for obstacle avoidance
2. An attractive positional constraint pulling the path back

to its original position
3. Laplacian coordinates maintaining the local path shape

Given an obstacleΩ with with uniquely defined minimum
distancedi to each sampling pointpi of the path, the obstacle
exerts a repulsive positional constraint onpi according to

C̄1{i:} = β
(

pi +α
di

‖di‖
γ
2

)

, (19)

P̄1 = diag(β , . . . ,β ),

with constantsα ,β ,γ. The attractive positional constraint
pulling the path back is described using each sampling point’s
original positionpo,i before deformation

C̄2{i:} = δpo,i , (20)

P̄2 = diag(δ , . . . ,δ ),

with constantδ . By concatenating the conditions in (19) and
(20) intoC̄ andP̄ as

C̄ =

[

C̄1

C̄2

]

, P̄ =

[

P̄1

P̄2

]

(21)

and solving (5) forPs, the desired behavior can be achieved.
Some sample code is publicly available under
(Nierhoff (2013b)).

Unfortunately the approach becomes unstable for large
deformations. In this case the force exerted by the attrac-
tive positional constraint and the Laplacian framework that
pulls the path back to its original position gets too strong,
causing small obstacles to slip through the deformed path. A
modified and more stable version evaluates the shortest dis-
tanced̂i not between obstacleΩ and every sampling point
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pi as in (19), but between obstacleΩ and every line segment
pi +αL(pi+1−pi), αL ∈ [0,1].

C̄1{i:} = pi +α
d̂i

‖d̂i‖
γ
2

, (22)

C̄1{i+1:} = pi+1+α
d̂i

‖d̂i‖
γ
2

,

to prevent small obstacles from slipping through the path
if two subsequent sampling point are far apart. Moreover,
the attractive positional constraint is scaled with a distance-
dependent factor as

C̄2{i:} = pi + ε
po,i −pi

1+‖po,i −pi‖2
, (23)

with constantε , imposing upper bounds to the absolute value
of the attractive positional constraint. To reduce the effect of
the Laplacian coordinates, let∆∆∆o and ∆∆∆d be the matrices
containing the Laplacian coordinates of the original respec-
tively currently deformed path. Then the resulting matrix∆∆∆
is calculated as

∆∆∆ = (1−ζ )∆∆∆o+ζ ∆∆∆d, (24)

with constantζ ∈ [0,1]. For ζ = 0 the method is similar to
the unmodified version and forζ = 1 only the Laplacian
coordinates of the current path are considered, effectively
disabling the convergence back to the original path posi-
tion. Both equations (23) and (24) diminish the influence of
the attractive positional constraint respectively the Laplacian
coordinates, thus increasing robustness at the cost of an in-
creased computational complexity and slower convergence
speed back to the original path position.

A small scenario illustrating the obstacle avoidance ca-
pabilities of LTE in combination with low-weighted posi-
tional constraints is depicted in Fig. 5. With increasing num-
ber of obstacles (red circles), the initially sinusoidal path
deforms more and more to avoid all obstacles. We compare
two trajectories, corresponding to the basic and the modified
version.

Fig. 5 Obstacle avoidance scenario with spatial plots at different time
stepst

3.4 Cooperative Manipulation

So far we only considered single paths. Yet in many sce-
narios like bimanual manipulation it is necessary to adapt

the movement of two or more agents/manipulators in an ad-
equate manner. LTE is adapted in this section to take such
kind of constraints into account. Note that we are now con-
sidering trajectories, thus corresponding agent positions must
match both in the spatial and temporal domain.

Given two agents’ trajectoriesP1 = [p1,1, . . . ,p1,n]
T and

P2 = [p2,1, . . . ,p2,n]
T with corresponding equation system

L1Ps1 = ∆∆∆ 1, L2Ps2 = ∆∆∆2 and same timingti(p1,i) = ti(p2,i),
it can be rewritten as
[

L1 0
0 L2

][

Ps1

Ps2

]

=

[

∆∆∆ 1

∆∆∆ 2

]

.

To maintain a defined spatial relation, we expand the equa-
tion system similar to (4) as




L1 0
0 L2

P̄− P̄+





[

Ps1

Ps2

]

=





∆∆∆1

∆∆∆2

C̄



 , (25)

with the definition of the matrices̄P−, P̄+ ∈ Rn×n andC̄ as

P̄− = diag(−ω1, . . . ,−ωn),

P̄+ = diag(ω1, . . . ,ωn),

C̄{i:} = ωi(p1,i −p2,i).

in analogy to (7). With{ω1, . . . ,ωn} ≫ 1 the two agents
maintain a defined spatial distancedi ≈ p1,i − p2,i at time
instancei. Fixed positional constraints according to (6) can
be incorporated in a straightforward manner: As the trajec-
tories of both agents are coupled throughC̄, it is sufficient
to specify positional constraints only for a single agent to
deform both trajectories. When extending the approach to
three agents the analogy of (25) is
















L1 0 0
0 L2 0
0 0 L3

P̄− P̄+ 0
P̄− 0 P̄+

0 P̄− P̄+





















Ps1

Ps2

Ps3



=

















∆∆∆ 1

∆∆∆ 2

∆∆∆ 3

C̄1

C̄2

C̄3

















.

Yet as computational complexity fora agents isO(a2), the
approach is limited to few agents only.

Fig. 6 shows a toy scenario in which two respectively
three agents have to maintain a defined spatial distance (e.g.
when holding an object) while circumnavigating two obsta-
cles (black cylinders). It shows both undeformed trajectories
without obstacles and deformed trajectories in the presence
of obstacles. An additional graph on the right side displays
the spatial distancedi j for the undeformed trajectory and
di j ,m for the deformed trajectory between agentsj and j over
time. It is visible that the distance between every two agents
stays constant over time and changes only by an negligible
amount due to the least squares solution (<4e-10 m) during
deformation. One also sees how the trajectories of all agents
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adapt when just fixing the position of a single agent. Note
that only the most primitive case with both a constant spa-
tial distance and direction is displayed. Depending on the
task it is necessary to vary the distance or orientation of the
ensemble over time. This is done easily by modifying the
elements inC̄1, C̄2, . . .

d
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ta
n
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e
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m
]

t [steps]
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n
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e
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m
]

t [steps]

agent 1
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fixed point

0 50 100
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n
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0 1 2 [m]

Fig. 6 Cooperative manipulation involving two and three agents in the
presence of obstacles. Trajectory paths (left) and distance between ev-
ery two agents (right)

3.5 Kinematic Constraints

All calculations so far only consider the trajectory adaption
of a single point in a n-dimensional space. In most cases
this single point refers to the position of the endeffector of
a robotic manipulator in 3 dimensions. Here it is often re-
quired to fulfill additional constraints like joint limit avoid-
ance, collision avoidance or maintaining a specific endeffec-
tor orientation. Such constraints can be incorporated through
a prioritized inverse kinematics approach of the form

θ̇θθ = J+1 ṙ1+(E−J+1 J1)J+2 ṙ2, (26)

see (Nakamura (1991)). In (26) the variablesJ1, J2 andṙ1, ṙ2

refer to the task-specific Jacobians and task space veloci-
ties of primary and secondary task,E is the identity matrix
andθ̇θθ denote the generalized coordinates of the robot. Both
self-collision avoidance and obstacle avoidance are achieved
based upon enclosing cylinders covering all robot links and
a repellent artificial potential field. In case the shortest dis-
tancedca between two links or link and obstacle falls below
a defined thresholddmin

ca , the desired collision avoidance ve-
locity becomes

ṙ1 = Kca(d
min
ca −dca) if dca < dmin

ca ,

with gain factorKca. Joint limits can be avoided by defining
upper/lower boundsθ max

i , θ min
i that must not be exceeded

for joint θi . In case they are exceeded, the desired joint limit
velocity becomes

ṙ1 =

{

K jl (θ max
i −θi) if θi > θ max

i ,

K jl (θ min
i −θi) if θi > θ min

i ,

with gain factorK jl , see Yamane and Nakamura (2003). If
the desired endeffector position is encoded in the secondary,
lower prioritized task, it’s real position can differ from the
desired position during task execution due to other higher
prioritized tasks. In this case LTE allows to calculate an up-
dated optimal trajectory online during task execution. This
effect is illustrated Fig. 7. The left side shows a planar ma-
nipulator with 3 DOFs following a straight trajectory. On
the right side an additional constraint is imposed, namely
that the last joint (in red) must not collide with an added
obstacle (in black). As the real endeffector trajectory devi-
ates from the planned, straight trajectory, LTE replans new
trajectories online (in orange).

executed trajectory

replanned trajectory

without obstacle with obstacle

Fig. 7 Prioritized inverse kinematics with continuous trajectory re-
planning. Trajectory following without obstacle (left) and withobstacle
(right)

4 Experimental Evaluation

This section evaluates the presented approaches on the one
hand through simulations both with respect to computational
complexity and in the spatial domain. As the LTE frame-
work shows similarities with Elastic Strips, both approaches
are compared. It concludes with a real-life experiment in-
volving a HRP-4 robot executing a bimanual task while main-
taining additional constraints. It must be mentioned that the
choice of using sinusoidal paths in many examples is inten-
tional as this type of path is well suited for evaluating the
quality of each algorithm by inspection.

4.1 Path Similarity Measure

When evaluating LTE, it offers the advantage of implicitly
providing intrinsic measures how similar two pathsP andPs

are. As the preferred measure may vary from application to
application, several are presented in this section to quantify
the amount of deformation. A first measure is given by the
least squares residual of (5) as

E = ‖LPs−∆∆∆‖2
F +

p

∑
i=1

ω2
i ‖pi − ci‖

2
2. (27)
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with F as the Frobenius norm. Implicitly it is assumed in
(27) that only positional constraints apply. For positional
constraints the offset‖pi − ci‖

2
2 between desired and result-

ing sampling point position is invisible to the human eye.
Thus a more human-oriented measure (Nierhoff et al (2014))
focuses solely on the local trajectory properties while ne-
glecting the error of the positional constraints as

E1 = ‖LPs−∆∆∆‖2
F .

Both residuals do not account for nonlinear deformation ef-
fects like rotations. Because LTE is expanded to consider
them as well, a corresponding measure adapted from (Sorkine
and Alexa (2007)) is presented in advance as

E2 =
n

∑
i=1

∑
j∈Ni

wi j ‖(p j −pi)−Ris(p js−pis)‖
2
2.

with Ris being the rotational matrix described Sec. 3.1 such
that the resulting sampling point positionsp js,pis ∈Ps match
the original sampling pointsp j ,pi ∈ P best. A more general
measure accounting not only for rotational effects but also
for scaling is

E3 =
n

∑
i=1

∑
j∈Ni

wi j ‖(p j −pi)−cRis(p js−pis)‖
2
2.

with a scalar scale factorc. One last and quite often used
measure in literature is the summed quadratic difference of
the Cartesian positions between original and deformed path,
defined as

E4 =
n

∑
i=1

‖(pis−pi)‖
2
2,

for the original sampling point positionpi and the modified
sampling point positionpis. When presenting several expan-
sions to LTE later in this article, the different path similarity
measures will give the reader not only a qualitative but also
quantitative impression about the quality of each expansion,
making it easier to compare them. In addition they are well
suited to show the amount of deformation over time.

4.1.1 Computational Complexity Comparison

Simulations compare the computational complexity of the
different presented approaches in Sec. 2.1 and Sec. 3.2.
Shown in Fig. 8 is the processing time for a single deforma-
tion step over the number of path sampling pointsn. Four
different approaches are evaluated, see Tab. 1. The table also
shows whether it is a multiresolution approach and whether
the approach can handle nonlinear deformation effects. De-
pending on the requirements, small paths are deformed in
real time. As such it takes around 10ms to adapt a path
with 300 sampling points using any of the two multiresolu-
tion approaches. Due to highly optimized routines for solv-
ing sparse equation systems, the original approach is by far

approach described in multires. nonlin.
original Sec. 2.1

Laplacian rec. Sec. 3.2.3 X X

affine rec. Sec. 3.2.4 X X

ARAP Sorkine and Alexa (2007) X

Table 1 Properties of different approaches

Fig. 8 Processing time comparison between a state-of-the-art ap-
proach (ARAP optimization) and the different methods presented in
this article

the fastest one forn< 104, yet unable to cope with nonlin-
ear deformation effects. For large trajectories withn> 104

the multiresolution approach with affine transformations for
the reconstruction step is fastest, yet it is only applicable in
three dimensions. All methods clearly outperform an exist-
ing state-of-the-art approach (ARAP) in terms of processing
time. The original approach has a computational complexity
of O(nm) due to a sparse linear equation system for every
dimension. All other approaches have a computational com-
plexity ofO(nm3) because they rely at some point on Arun’s
method requiring a SVD on am×m-matrix (13) and scale
linearly with the number of sampling pointsn.

4.1.2 Spatial Comparison

This subsections shows comparisons between the different
approaches of Sec. 2.1 and Sec. 3.2 in the spatial domain.
For this purpose, a helix-shaped sinusoidal path is deformed
by defining four positional constraints, see Fig. 9. The com-
pared methods are: the original approach (Sec. 2.1), the
ARAP optimization (Sorkine and Alexa (2007)) and multi-
ple downsampling/
reconstruction
combinations described in Sec. 3.2. It is visible that the affine
reconstruction method without proper downsampling (19)
- in cyan - differs strongly from all other approaches. The
bottom bar graphs show the normalized similarity measure
values for all other methods. As the original approach min-
imizesE1 and the ARAP optimization minimizesE2, their
values are smallest in the corresponding plots.
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Fig. 9 Spatial comparison. Spatial extension of different methods (top)
and corresponding similarity measuresE1-E4 (bottom)

4.2 Comparison With Elastic Strips

The obstacle avoidance method in Sec. 3.3 shares common
properties with the Elastic Strips framework
(Brock and Khatib (2002)). Both methods rely on the de-
composition into internal forces maintaining the originalpath
shape and external forces deforming the path. Both methods
use curvature-based methods to describe the internal forces.
Yet both their definition and purpose differs. Whereas LTE
uses the discrete Laplace-Beltrami operator

Fint,L
i = δδδ i =

pi−1−2pi +pi+1

−2
, i = 2,3, . . . ,n−1,

to describe the internal forceFint,L
i , Elastic Strips rely on a

heuristic definition for the internal forceFint,E
i as

Fint,E
i = kc

(

di−1

di−1+di
(pi+1−pi−1)− (pi −pi−1)

)

, (28)

i = 2,3, . . . ,n−1,

with di = ‖pi+1−pi‖2. The external forceFext,E
i is defined

as

Fext,E
i =

{

kr(d0−‖di‖)
di
‖di‖

if ‖di‖< d0,

0 otherwise.

Whereas Elastic Strips try to maintain the shortest possible
path in task space, LTE tries to maintain the original shape
of the path. If the undeformed trajectory is a straight line,
the result after deformation is roughly the same, see Fig. 10.
Yet Elastic Strips cannot be applied to non-straight paths as
they will always converge to a straight path in the absence of
obstacles. Both methods tackle the problem of large defor-
mations by modifying the internal forces. Whereas Elastic
Strips use a modified minimum-distance formulation (28)
that shares common properties with curvature based meth-
ods, LTE scales the internal forces as described in (23) and
(24). Elastic Strips are advantageous from a computational
point of view in two ways. First they only add sampling

points (robot configurations) to the path when necessary,
keeping the overall number low. LTE on the other hand al-
ways considers all sampling points. It also relies on a ma-
trix inversion whereas Elastic Strips are calculated through
a computationally more efficient gradient descent approach.
The advantage of LTE is that it converges faster due to its
least-squares approach.

Fig. 10 Comparison between Elastic Strips and LTE in the presence of
obstacles (black)

4.3 Robotic task

Real-life experiments consider a typical household task of
disposing garbage in a bin by using LTE. The task com-
prises of lifting a bucket from a lower position onto a table,
collecting garbage and disposing the garbage in the bin. To
complete the task in a changed environment, safe circum-
navigation of obstacles needs to be ensured, requiring the
obstacle avoidance scheme in Sec. 3.3. For reliable biman-
ual manipulation tasks the cooperative scheme of Sec. 3.4 is
adopted. The human demonstration movements are recorded
at a frame rate of 200Hz using a Vortex motion capture sys-
tem, tracking the position and orientation of both hands, bin
and garbage. A HRP-4 robotic platform is used for task re-
prodution. A prioritized inverse kinematic approach as de-
scribed in Sec. 3.5 ensures a physically consistent whole-
body motion incorporating joint-angle limitations, self col-
lision and COM-based balance while specifying the desired
trajectories of both hands. Displayed in Fig. 11 are pictures
of the key frames of the experiment. Each column corre-
sponds to a different run: Human demonstration (left), robotic
movement imitation (middle) and robotic movement adap-
tion (right). Due to the different figure of robot and human,
the objects of the imitation run are placed closer together.
The multiresolution LTE approach of Sec. 3.2 in combina-
tion with positional constraints (6) accounting for the
changed objects’ positions is used to adapt the trajectory.
Two modifications let the adaption run differ from the imi-
tation run: During the first part of the adaption run the robot
has to avoid an added obstacle (yellow book) when placing
the bucket on the table. By creating a repellent artificial po-
tential field (19) around the obstacle, positional constraints
with low weights according to (20-21) maintain the shape of
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the original trajectory while lifting the bucket over the ob-
stacle. This is illustrated in Fig. 11a. During the second part
the initial garbage position is elevated by around 40cm, see
Fig. 11b. The otherwise independent trajectories of left and
right arm are coupled through the cooperative manipulation
scheme in (25), maintaining a specific distance when hold-
ing the garbage bag and preventing it from falling down as
indicated in Fig. 11c/d. As LTE only modifies the position of
each endeffector, the orientation of both endeffectors is cal-
culated independently. From the position of all hand mark-
ers during the demonstrated motion the human hand orien-
tation is calculated and mapped to the robot. Velocity and
acceleration of both endeffectors (EE) are shown in Fig. 12.
Whereas there is a small velocity and acceleration of both
endeffectors during the imitation run, the adaption run leads
to high accelerations and velocities of the left endeffector
when avoiding the obstacle. Both runs have a smooth veloc-
ity/acceleration profile.

demonstration imitation adaption

b

a

c d

Fig. 11 Motion imitation task: Human demonstration (left), robotic
movement reproduction (middle) and adaption (right).
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Fig. 12 Motion imitation task: Endeffector velocity (top) and acceler-
ation (bottom) over time for the robotic movement reproduction and
adaption

5 Discussion

Experiments showed how LTE can be adapted to suit com-
mon robotic problems for discretized trajectories. The mul-
tiresolution approach accounts for large deformations, over-
comes the Laplacian-typical problems of being a linear op-
erator and proves to be faster than an existing state-of-the-
art approach. Positional constraints in combination with low
weighting factors make it possible to deform a trajectory in
a smooth manner while avoiding obstacles. Through suit-
able choice of parameters they can be fit to a user-specific
tasks. Though a lot of extensions and improvements were
presented, the original approach provided satisfying results
when dealing with simple-shaped paths and small deforma-
tions. This is advantageous as the original approach is in-
tuitive and extremely simple to implement (< 15 LOC in
Matlab).

Some issues of the LTE approach need special attention:
The multiresolution approach depends on a proper param-
eterization of the number of support sampling pointsn′ for
a good tradeoff between capturing local and global trajec-
tory properties. The same accounts - in weaker form - also
for the parameters of the positional constraints for obstacle
avoidance as otherwise undesired deformation effects occur.
When being executed on the robot, one must be aware of
all the problems associated with the prioritized inverse kine-
matics like a possible deviation from the desired trajectory
requiring online replanning and workspace constraints of the
hardware which can lead to singular configurations. As the
inverse kinematics approach does not consider dynamic con-
straints like torque limits of the motors, they have to be con-
sidered separately.
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6 Conclusion

The online adaptation of a-priori planned or learned mo-
tion trajectories is an important capability of autonomous
robots moving in unstructured and dynamic environments.
In this article we introduce Laplacian Trajectory Editing as
a general framework for real-time retargeting of trajecto-
ries subject to constraints while preserving the local shape
of the original trajectory. Due to its generality, the frame-
work can be easily combined with other methods and task-
specific extensions, of which some are described in this arti-
cle. Positional constraints with low weighting factors make
it possible to deform a trajectory in a reactive manner to
avoid obstacles without explicitly specifying waypoints the
trajectory has to pass. The combination with a prioritized
inverse kinematics approach makes it possible to consider
constraints in joint space while maintaining local trajectory
properties in task space. The presented methods are evalu-
ated in the spatial domain, with respect to processing time
and through real-life experiments with the HRP-4 robot.
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