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Abstract

Blind source separation (BSS) methods have widely been used to identify

meaningful signals from observed multivariate mixtures. Applications range

from audio recordings to biomedical signals or images, coding theory and

large-scale data from molecular biology. If the data has a specific known

structure this can be used to perform a more appropriate signal separation.

The structure can be the time axis or a grid and in this thesis we more

generally assume data with network structure. This means that a variable

either initiates the signal or depends on one or multiple predecessors. The

definition includes time series but beyond that it describes any regulatory

system, for example gene interaction networks. For network data based on

a non-trivial network only few BSS methods exist so far. Furthermore, fully

probabilistic modeling can provide useful additional information about the

mixing process and the source signals. Probabilistic models can, for exam-

ple, provide a more accurate noise estimation, determine the true number of

source signals or evaluate estimates based on their distributions. In this the-

sis we address all these tasks. In the first part, we investigate BSS methods

for weakly stationary time series. Here, we consider limiting distributions

of the mixing estimates and propose methods to determine the mixing pat-

tern. With this, we can decide which source signals actually contribute to

a specific observation and in experiments with different experimental con-

ditions we can decide which source signals are task-related. In the second

part, we invent a new probabilistic BSS model for network data where we

define the source signals in terms of a Bayesian network. This concept has

successfully been used to learn and, thus, model gene interaction networks

over the last years. To keep the parameter space small, we define weak

stationarity for Bayesian networks; with this, we continue an existing an-

alytical BSS method for network data. We infer the model parameters in



an expectation-maximization scheme. Due to the flexible modeling using

Bayesian networks we can deal with repeated measurements and missing

components and we can compare different possible network structures. We

illustrate these strengths in simulations and in an application to gene ex-

pression data where systemic inflammation in humans is under investigation.

With all this, the thesis contributes to the entirety of probabilistic methods

for structured data and provides a wide repertoire of applicabilities based

on the probabilistic modeling.



Zusammenfassung

Blind source separation (BSS) Methoden finden breite Anwendung, wenn es

darum geht, aus mehrdimensionalen Beobachtungen einzelne aussagekräftige

Signale oder Quellen herauszufiltern. Das zugrunde liegende Modell ist

eine lineares Mischmodell. Die Anwendungsgebiete reichen von Audioauf-

nahmen, biomedizinischen signal- oder bildgebenden Verfahren bis hin zu

Kodierungsmethoden und umfangreichen Datensätzen aus der Molekular-

biologie. Wenn den Daten eine bekannte sie generierende Struktur zugrunde

liegt, wie zum Beispiel die Zeitachse oder ein Gitter, dann kann diese ver-

wendet werden, um eine aussagekräftigere Quellentrennung zu erreichen.

In dieser Arbeit konzentrieren wir uns auf Daten mit Netzwerkstruktur

und nehmen an, dass eine Variable entweder das Signal initiiert oder von

einer oder mehreren Vorgängervariablen abhängt. Diese Definition schließt

Zeitreihen ein, aber beschreibt darüber hinaus jedes regulatorische System

wie zum Beispiel Interaktionsnetze von Genen. Für Daten basierend auf

einem nicht-trivialen Netzwerk gibt es bisher nur wenige BSS Methoden.

Zusätzlich zu Strukturanahmen kann die Formulierung als vollständig prob-

abilistisches Modell weitere nützliche Informationen über die Mischung der

Signale und die herausgefilterten Quellen liefern. Probabilistische Mod-

elle können zum Beispiel eine exaktere Schätzung für mögliches Hinter-

grundrauschen liefern, die tatsächliche Anzahl an Quellen bestimmen oder

Schätzungen von Parametern mit Hilfe ihrer Verteilung beurteilen. In dieser

Arbeit wenden wir uns allen genannten Bereichen zu. Im ersten Teil unter-

suchen wir BSS Methoden für schwach stationäre Zeitreihen. Wir benutzen

Grenzwertverteilungen der Mischmatrix, um das Mischmuster zu identi-

fizieren. Damit können wir zum Beispiel entscheiden, welche Quellsignale

tatsächlich aktiv sind oder in Experimenten bedingungsabhängige Quellen



finden. Im zweiten Teil stellen wir eine neue probabilistische BSS Meth-

ode vor, bei der wir die Quellsignale mit Hilfe eines Bayesianischen Netzes

beschreiben. Dieses Konzept wurde in den letzten Jahren erfolgreich verwen-

det, um genregulatorische Netzwerkstrukturen zu lernen beziehungsweise

zu modellieren. Um die Anzahl an Modellparametern gering zu halten,

definieren wir schwache Stationarität für Bayesianische Netze. Damit führen

wir die Idee einer bereits existierende analytischen BSS Methode für Netzw-

erkdaten weiter. Parameterinferenz erfolgt in unserem Ansatz mit Hilfe von

Erwartungswertmaximierung. Durch die Verwendung Bayesianischer Netze

können wir mit Mehrfachmessungen und fehlenden Komponenten umgehen

sowie verschiedene Netzwerkstrukturen vergleichen. Wir demonstrieren die

Stärke unseres Modells in Simulationen und in einer Anwendung auf Genex-

pressionsdaten, bei der systemische Entzündungen bei Menschen untersucht

wurden. Insgesamt ergänzt diese Arbeit das Spektrum an probabilistischen

BSS Methoden für Daten mit bekannter zugrundeliegender Struktur und

liefert ein großes Repertoire an Anwendungen, die nur durch probabilistis-

che Modelle möglich sind.
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Introduction

The only source of

knowledge is experience.

Albert Einstein

1.1 Probabilistic blind source separation

An often used illustration for blind source separation (BSS) is the several speakers prob-

lem or cocktail-party problem. When several people talk at the same time and micro-

phones record the overall noise one wants to identify the voice signal of each person from

the mixed records (Figure 1.1). The observations are given by the microphone record-

ings and the unknown sources are the separate voice signals. In the basic BSS model

the observations are generated by a linear mixing of the source signals. This scaling (or

weighting) of the source signals can for example represent different distances between

person and microphone. In general, one assumes that the mixing is instantaneous, i. e.

1



1. INTRODUCTION

the records are without temporal delay. The BSS objective then is to determine an

unknown mixing matrix together with unknown source signals from multiple observed

recordings. The various existing BSS models differ in additional assumptions on the

source signals and/or the mixing matrix.

Figure 1.1: Blind source separation, adopted from Eastaway et al. (2015). In BSS
one assumes multivariate observations (e. g. records from two microphones) and aims to
identify the original source signals (e. g. voice signals of two persons). In the basic model
we assume that the observations are generated as a linear and instantaneous mixing of the
source signals.

Applications of BSS methods not only include audio signals like speech and music (Lee

et al., 1999; López et al., 2011); they further range to image processing (Cichocki &

Amari, 2002; Zibulevsky, 2003) or coding theory (Lin et al., 2006; Yang et al., 2008). In

the latter one is interested in a high-dimensional representation (encryption) of the orig-

inal signals and thus the number of source signals is larger than the number of observed

signals. Furthermore, BSS methods have successfully been applied to biomedical signal

and image data. In Joyce et al. (2004) the brain’s activity is recorded with the elec-

troencephalography (EEG) measuring technique. Using BSS methods artifacts like eye

movement or blinking could be separated from the data. Theis et al. (2008) performed

dimension reduction on high-dimensional functional magnetic resonance imaging data

(fMRI) that record the brain’s activity. The patients were exposed to a photic stimulus

and BSS methods could e. g. identify the component that explains this stimulus. In

Theis et al. (2010), BSS has further been applied to fluorescence recovery after photo-

bleaching data (FRAP).

In this thesis we focus on large-scale data from molecular biology. Data like gene expres-

sion measurements or metabolomic concentrations reflect processes that take place in

a cell, a specific tissue or in the whole organism. Usually, several processes are present

at the same time and one observes a mixture of these active pathways. Identifying

2



1.1 Probabilistic blind source separation

pathways that are related to different experimental conditions or different phenotypes

provides meaningful insights. In Lutter et al. (2008), for example, independent com-

ponent analysis (ICA) is applied to gene expression data. From the estimated source

signals (i. e. profiles among all genes) the authors selected subsets of genes with highly

positive or highly negative values. These sub-modes characterize the respective source

signals and one can perform enrichment analysis to relate the signals to pathways from

the literature. In a similar approach, Teschendorff et al. (2007) identified regulatory

modules with different activation patterns dependent on the breast cancer phenotype.

Furthermore, Krumsiek et al. (2012) applied mean-field ICA to metabolomic data and

reconstructed meaningful components of the human blood metabolome.

Including the structure of the data

Time series data, images or data from biological systems have a specific structure. In

the first, the time points follow one after the other, in the second, the variables are

organized on a grid and in the last the variables are for example given as genes from a

gene regulatory network or as metabolomic compounds from a metabolomic pathway.

If the structure of the variables is known, it can be used to perform a more appropriate

signal separation. In case of time series signals, for example, one wants to identify source

signals that contain different temporal information. Here, one commonly assumes that

the signals are weakly stationary and one wants to identify source signals that are un-

correlated even when shifted along the time axis. An (un-)mixing estimate can then be

derived by (jointly) diagonalizing sample autocovariances at different lags; an estimate

of the source signals is given as product of unmixing estimate and observations. BSS

methods based on this idea are for example AMUSE (Tong et al., 1990), SOBI (Belouchrani

et al., 1997), and ACDC (Yeredor, 2002). The concept has further been generalized to

multiple dimensions which makes it applicable to images (Theis et al., 2004b, 2008).

Recently, Kowarsch et al. (2010) translated the idea of “uncorrelated signals” from time

series to networks and provided the (joint) diagonalization algorithm Grade for network

data. Here, the source signals reflect different signaling information of the network.

3



1. INTRODUCTION

More information from probabilistic models

Often, BSS methods exploit descriptive statistics to determine the unknown components

of a mixing model. The statistics are used to define a cost function according to the

model assumptions; different optimization techniques can then yield an (un-)mixing es-

timate and with this an estimate of the source signals. Often both steps are approximate

– the definition of a cost function and the optimization technique. The independent

component model, for example, can be addressed by maximizing the Gaussianity of the

signals. A descriptive statistical measure for Gaussianity is the kurtosis and maximiza-

tion can be achieved by local gradient descent or fixed point approaches (Hyvarinen

et al., 2002). We refer to BSS methods that determine an (un-)mixing estimate based

on descriptive statistics as analytical methods.

Probabilistic methods, in contrast, assume and exploit the (joint) distribution of the

random variables and/or the model parameters. The unknown components can, for ex-

ample, be estimated using a maximum likelihood or Bayesian approach. Such statisti-

cally interpretable models bring several benefits – parameter estimates can be evaluated

based on their distributions, the (in general unknown) number of source signals can be

determined, and hyperparameters or the additional information of parameterpriors can

improve the performance. For many BSS models probabilistic versions have been for-

mulated, for example probabilistic PCA (Tipping & Bishop, 1999) and Bayesian ICA

(Choudrey & Roberts, 2001). Both define the BSS model as a latent variable model;

the former performs parameter inference in an expectation-maximization scheme, the

latter uses a variational approach. Furthermore, both approaches use hyperparameters

to force single columns of the mixing estimate to zero. With this, the non-zero columns

automatically yield the (true) number of source signals; the concept is known as auto-

matic relevance determination. In the main part of this thesis, we focus on BSS methods

that provide a probabilistic description of the full model or of parts of the model.

1.2 Probabilistic BSS using graphical models

In this thesis we want to deepen the understanding of separate processes in data with

a known network as data-generating structure. Such data can, for example, be gene

4



1.2 Probabilistic BSS using graphical models

expression measurements with an underlying gene interaction network. We assume a

linear mixing model and explicitly include the structure of the data to perform a more

appropriate source separation. With this, we follow the approach of Kowarsch et al.

(2010) but now provide a fully probabilistic model and go beyond the scope of simple

parameter estimation. The benefits of our model are amongst others: We can deal

with multiple or missing observed components, we can determine the correct number

of source signals using model selection criteria, and we can compare different network

structures. Moreover, we can use different networks to describe each source signal

individually; this can provide useful insights when possibly active parts of the network

are known. Methodically, we combine the task of BSS with the mathematical concept

of graphical models. In the following we motivate the choice of graphical models and

describe our approach.

In (probabilistic) graphical models the random variables are associated with the nodes

of a graph and the dependence between the variables is defined by the graph structure.

In the literature, such models have successfully been used to learn and model biological

interaction networks. Gaussian graphical models, for example, are based on an undi-

rected graph and have been applied to genomic data (Schäfer & Strimmer, 2005) and

metabolomic data (Krumsiek et al., 2011). In both studies, an interaction network of

the variables was determined using partial correlations. Banerjee et al. (2006) continued

this concept to learn sparse interaction structures. Bayesian networks, in contrast, are

based on a directed and acyclic graph. The variables fulfill the Markov property, i. e. a

variable given its parents (direct predecessors) is independent of its other predecessors.

Friedman et al. (2000) learnt Bayesian networks from gene expression measurements

to recover gene-interactions. Furthermore, significant subnetworks of interacting genes

could be identified in Pe’er et al. (2001). We follow these approaches and use a Bayesian

network to describe the source signals of our BSS model. In contrast to the above meth-

ods, we assume that the network structure is a priori known.

Since Bayesian networks obey the Markov property, the joint distribution of the random

variables completely factorizes and the factors are given by the conditional distributions

of the variables given their parents. This yields advantages in terms of model complexity

and computational costs. To make parameter inference feasible in our model, we assume

(weak) stationarity of the signals. Weak stationarity is in fact a property of stochastic
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processes. A stochastic process {s(t)}t∈Z is weakly stationary if the mean E[s(t)] and

the autocovariance

Cov(s(t), s(t− τ))

for any lag τ ∈ Z are independent of the time point t ∈ Z. Since the autocovariance

is identical for any two random variables s(t) and s(t− τ) we can estimate this quan-

tity from one single observed time series. This is the basis of all joint diagonalization

approaches. Kowarsch et al. (2010) provided a formulation of (weak) stationarity for

networks. Let the variables
(
s(i)

)N
i=1

be connected by the edges of a weighted directed

graph G with edge weights κji ∈ R. In the style of the time-shift s(t) → s(t − τ)

along the time axis, they introduced a graph-shift s(i) → sG(i) along the edges of the

graph G (Figure 1.2). Here, sG(i) =
∑

j∈pa(i) κjis(j) is the (weighted) sum of all parent

nodes of s(i) which we index with pa(i). Stationarity of the network means that the

graph-delayed covariance

Cov(s(i),
∑

j∈pa(i)

κjis(j))

is independent of the index i. Thus, each node in the network recieves the same regu-

latory stimulus from its parent nodes and as before the graph-delayed covariance can

be estimated from one set of observations. Since we want to provide a full probabilistic

source model we sharpen the above stationarity assumptions and assume that the co-

variance between any two adjacent nodes is constant up to a known scaling factor given

by the edge weight:

Cov(s(i), s(j)) =
1

κji|pa(i)| D .

According to Kowarsch et al. (2010), we callD the graph-delayed covariance and we with

this we can define all conditional distributions of our Bayesian network. The separation

assumption is that D is diagonal, i. e. different source signals are uncorrelated with

respect to a shift in the network.

This source model describes the latent variables in our BSS approach. We further

introduce observed variables as linear mixtures of the latent variables. At this point,

repeated measurements and missing components can be easily included. The model

parameters are then given by the graph-delayed covariance, a mean vector, the mixing

matrix and the noise variance. To estimate parameters and source signals we provide

an expectation-maximization scheme and call the resulting algorithm emGrade. With
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1.3 Deep insights on a simple structure

this statistically interpretable model we bring all gains of probabilistic BSS to the field

of network data. In Chapters 6 and 7 we illustrate the power of emGrade in simulations

and in the application to gene expression data.

a)	  $me-‐series:	   b)	  network:	  

$me-‐shi3	  

graph-‐shi3	  

s(t−2)s(t−3) s(t−1) s(t)

s(j1)

s(j2)

s(j3)

s(i)
κj1

κj2

κj3

Figure 1.2: Time-shift and graph-shift. In the style of a) the time-shift s(t)→ s(t−τ)

for a node s(t) of a time series, we define b) the graph-shift for the node s(i) in the shown
network as s(i)→ κj1s(j1) + κj2s(j2) + κj3s(j3). Thus, the graph-shift of a node is given
by the weighted sum of all parents nodes.

1.3 Deep insights on a simple structure

In applications of mixing models we sometimes face the question whether single source

signals are present in a specific observation or not. In the several speakers problem, for

example, we want to know who is talking into a specific microphone. In experimental

scenarios, it can provide new insides if we identify source signals that are “on” in the

actual experiment and “off” in a control study. Both questions are related to the shape

or pattern of the mixing matrix. In the former example, we want to determine true

zero-entries from non-zero estimates. To perform sound decisions we need to know the

distributions of the mixing estimates.

The method emGrade naturally provides distributions of the source signals due to the

expectation maximization scheme. For the parameters, in particular for the mixing

matrix, we can only determine approximate confidence intervals. To facilitate sound

decisions about the mixing pattern, we consider the joint diagonalization algorithms

SOBIdef and SOBIsym (Miettinen et al., 2014, 2015) for weakly stationary time series.

Both algorithms have been published recently – partly in joint work. If we have multiple

observations of the same mixing model the (un-)mixing estimates are asymptotically

7
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normally distributed under mild conditions. Furthermore, one can explicitly calculate

the asymptotic variances of the estimates. Based on these limiting distributions, we

invent a family of hypothesis tests to compare linear combinations of the columns of

the mixing estimate to a pre-defined vector. With this, we can in particular decide

whether mixing columns represent an on/off-shape of the respective source signals. In

addition, we consider model selection criteria and define reduced mixing estimates that

contain zero-entries – with this we can determine the most appropriate zero-pattern of

the true mixing matrix. Thus, we provide methods to deeply analyse the mixing of

processes for time-dependent data based on the distributions of the mixing estimates.

1.4 Overview of this thesis

In Chapter 2 we shortly sketch the field of molecular biology. We introduce the central

principles in molecular biology, discuss gene regulatory networks and explain measure-

ment techniques that are used to obtain the data in our applications.

In Chapter 3 we provide necessary mathematical basics. We first discuss important

matrix decompositions which are used in various BSS approaches. We then introduce

stochastic processes and properties relevant for the time series part and we introduce

(un-)directed graphical models relevant for the network part. We further explain pa-

rameter estimation in probabilistic models with a focus on expectation maximization

and we shortly describe model selection criteria.

Chapter 4 gives a review about existing BSS procedures. We introduce three models in

more detail – the independent component model, non-negative matrix decomposition,

and weakly stationary time series with the method of joint diagonalization of autoco-

variances. In particular, we review the algorithm Grade (Kowarsch et al., 2010) which

generalizes concepts from time series analysis to networks; the algorithm is the basis for

our probabilistic model in Chapter 6.

In Chapter 5 we begin our survey of probabilistic BSS methods with time series data. We

review the algorithms SOBIdef (Miettinen et al., 2014) and SOBIsym (Miettinen et al.,

2015) and explain the limiting distributions of the mixing estimates. To classify the

estimation performance we provide an extense comparison to other BSS methods. Based
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on the limiting distributions we define a family of hypothesis tests and model selection

approaches to probabilistically determine the zero-pattern of the true mixing matrix.

For validation, we consider matrices with zero and non-zero entries and demonstrate

the recovery of the true zero-pattern for different time series models.

Chapter 6 contains the main contribution of this thesis – the probabilistic BSS algo-

rithm emGrade for network data. To describe the data we define a source model in

terms of a stationary Bayesian network and then expand the network by a linear mix-

ing. We explicitly derive parameter updates for an expectation maximization scheme.

As model extension we incorporate repeated observations and missing components and

allow different network structures in each source signal. In the last part we evaluate

the performance of emGrade. We discuss the empirical convergence and compare the

algorithm to other BSS methods. Furthermore, we use model selection criteria to de-

termine the true number of source signals and to select the most appropriate structure

of the sources in simulations.

In Chapter 7 we apply emGrade to publicly available gene expression data. The data

consists of a treatment and a control group and we use literature-derived pathways to

model the dependencies of the variables. We compare different pathways, investigate

the predictive power of our model for missing measurements, and discuss the biological

interpretation of the estimated source signals. We further provide a comparison of

emGrade to other BSS algorithms.

Chapter 8 provides a summary of the main findings and results of this thesis and we

propose possible targets for future research.

1.5 Main scientific contributions

The main scientific contributions of this thesis are

• the invention of probabilistic setups to determine the structure of blind source

separation mixing matrices (e. g. the position of zero-entries); our approaches are

based on the limiting distributions of the algorithms SOBIdef and SOBIsym for

weakly stationary time series,
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• a probabilistic description of regulatory data with known interaction structure;

here, we define a stationary Bayesian network dependent on a single parameter,

• the invention of the algorithm emGrade to separate data with complex network

structures; the algorithm combines the task of blind source separation with the

mathematical concept of Bayesian networks; we provide explicit formulas for pa-

rameter inference using an expectation maximization scheme and introduce exten-

sions of the algorithm assuming repeated observations, missing components and

different network structures of each source signal,

• the proof of benefits in the application of emGrade to gene expression data; we

can identify relevant pathways, predict missing measurement values and provide

probe set annotation of single genes on the microarray.

Parts of this thesis are already published in peer-reviewed journals or in conference

proceedings. Thus, some chapters are strongly related to and in parts identical with

the following publications:

• K. Illner, C. Fuchs, F.J. Theis (2014). Bayesian blind source separation for data

with network structure. Journal of Computational Biology, 21, 855–865.

• K. Illner, C. Fuchs, F.J. Theis (2014). Bayesian blind source separation applied

to the lymphocyte pathway. In Proc. 21st International Conference on Computa-

tional Statistics (COMPSTAT 2014), 625–632.

• K. Illner, C. Fuchs, F.J. Theis (2012). Blind source separation using latent Gaus-

sian graphical models. In Proc. 9th International Workshop on Computational

Systems Biology (WCSB 2012), 34–37.

• K. Illner, J. Miettinen, C. Fuchs, S. Taskinen, K. Nordhausen, H. Oja, F.J. Theis

(2015). Model selection using limiting distributions of second-order blind source

separation algorithms. Signal Processing, 113, 95–103.

• J. Miettinen, K. Illner, K. Nordhausen, H. Oja, S. Taskinen, F.J. Theis. Separa-

tion of uncorrelated stationary time series using autocovariance matrices, accepted

for Journal of Time Series Analysis.
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Whenever a chapter relates to a publication we will explicitly state this at the beginning

of the chapter.
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2

Molecular biology

In this part we provide useful knowledge from molecular biology and concepts of sys-

tems biology. We shortly sketch the mile stones in DNA discovery; we then introduce

the transition from DNA information to protein synthesis and discuss transcriptional

regulation of genes. The interaction of genes yields the network structures for the blind

source separation methods Grade (Kowarsch et al., 2010) and emGrade in Chapter 6.

Since we consider gene expression measurements in our application in Chapter 7 we

further introduce microarray technology. More background information about molecu-

lar biology can be found in Berg et al. (2011) and Alberts et al. (2008), concepts from

systems biology are described in Walhout et al. (2013).

2.1 Basics in molecular biology

Almost the entire genetic information of an organism is memorized in a molecular

structure called DNA. The first notice of this capacious molecule was in 1868/69 when

Friedrich Miescher performed experiments about leukocytes (Dahm, 2008; Olby, 1974).

Since then, pioneering discoveries were reported continuously. Watson & Crick (1953)

presented the double helix as model for the molecular structure of the DNA. In 1956,

Crick stated for the first time the dogma of molecular biology which explains the rela-

tionship between DNA, RNA and proteins (Crick, 1970). In April 2003, the Human

Genome Project encoded the complete DNA sequence of the human genome (Collins
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2. MOLECULAR BIOLOGY

et al., 2003). All these examples account for the today’s detailed picture about the

molecular basis of life and in the following we spotlight this picture.

The DNA (deoxyribonucleic acid) is a double helix that consists of two strands of

nucleotides and is present in almost every cell. The nucleotides are the DNA building

blocks; these are complexes of a base (guanine, adenine, thymine or cytosine), a sugar

(deoxyribose) and a phosphate group. In eukaryotes, i. e. organisms that contain a

nucleus, the DNA is organized on chromosomes which are located in the nucleus. On

the basis of the information coded on the DNA cells permanently synthesize proteins

in two steps – transcription and translation. Firstly, DNA is transcribed into single-

stranded RNA (ribonucleic acid) by the enzyme RNA polymerase. Different types of

RNA exist; messenger RNA (mRNA) directly codes for the protein synthesis and is in

a second step translated into functional proteins. Micro RNA (miRNA), transfer RNA

(tRNA) and ribosomal RNA (rRNA), in contrast, are non-coding RNAs and regulatorily

or enzymatically involved in transcription and translation.

The information about characteristics of an organism is stored in genes (Pearson, 2006).

Genes are sequences on the DNA that code for proteins or (small and long) non-coding

RNAs. The total of all genes is called genome. The human genome, for example, consists

of ∼ 25 000 protein-coding genes together with numerous genes for non-coding RNAs.

The transcriptome further comprises all RNA transcripts and the total of proteins yields

the proteome. Figure 2.1 schematically summarizes the relationship between genome,

transcriptome and proteome together with the most important regulatory elements.

The complete process of synthesizing functional gene products (i. e. proteins or non-

coding RNAs) from the genetic information is called gene expression. The spatiotempo-

ral gene expression pattern of a cell reflects its developmental stage, and environmental

and pathological conditions. To link genes and gene products to their biological function

public ontologies like Gene Ontology (Ashburner et al., 2000) or Kyoto Encyclopedia of

Genes and Genomes (Kanehisa et al., 2011) can be used.
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Genome	  
(DNA)	  

Transcriptome	  
(RNA)	  

Proteome	  
(proteins)	  

transcrip6on	   transla6on	  

non-‐coding	  RNAs	  

Transcrip6on	  factors	  

RNA-‐binding	  proteins	  

Figure 2.1: Central principle in molecular biology. In the first step DNA is tran-
scribed to mRNA and other non-coding types of RNA. In the second step mRNA is trans-
lated to functional proteins. Transcription is mainly regulated by transcription factors
and non-coding RNAs; translation, in contrast, is affected by RNA-binding proteins and
non-coding RNAs.

2.2 Gene regulation

Cells constantly monitor their environment and react to environmental changes and

other external stimuli. Any stimulus triggers a cascade of reactions in the cell. In

immunology, for example, the stimuli can be parts of bacteria or bacterial toxin and

in response to such antigens the cell generates specific antibody proteins. The most

important and effective mechanism in this cellular signaling is the modulation of gene

expression. The activation (or inhibition) of specific genes leads in the end to an in-

creased (or decreased) synthesis of functional proteins. In the following we first describe

transcriptional gene regulation through transcription factors and then introduce gene

regulatory networks as a systematic scheme to summarize gene regulation.

2.2.1 Transcription factors

Transcription factors (TFs) are the key cellular components of gene regulation. They

function in activating or inhibiting gene transcription. Some TFs play an important

role as master regulators in development, in particular in the formation of organs and

tissues (Halder et al., 1995). Other TFs are present throughout lifetime and are, for

example, involved in the response to internal or external cellular stimuli. The function
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2. MOLECULAR BIOLOGY

of master regulators is in general well-studied. However, the vast majority of TFs have

a more subtle effect and their function is not yet completely understood.

Characteristic for TFs is the DNA-binding domain; with this the proteins can bind to

the DNA and regulate the expression of their target genes. The counterpart of TFs on

the DNA strand are cis-regulatory elements and modules. Both are non-coding DNA

sequences with one or multiple TF-binding sites. When TFs bind to these regions the

transcription of proximate (upstream) genes is initiated or blocked. One distinguishes

between enhancers that activate gene expression and silencers that inhibit gene ex-

pression. If the genes are organized in clusters a single TF can regulate several genes

in parallel. Furthermore, a TF can usually bind to multiple DNA sequences and thus

affect different genes and a single gene can be regulated by different TFs.

One assumes that 5%-10% of all protein-coding genes of most organisms encode tran-

scription factors (Vaquerizas et al., 2009). However, the total number of TFs in an

organism is larger. Firstly, single genes can code for multiple proteins, in particular

multiple TFs. The reason for this is alternative splicing. Here, DNA is first transcribed

to pre-mRNA; alternative splicing removes exons and, thus, provides different mRNA

strands that are used for protein synthesis. Furthermore, TFs can function in a com-

plex with a second TF as homo- or heterodimers; this dimerization yields additional

TFs that are not encoded as additional genes (Grove & Walhout, 2008). Another aspect

of TFs are post-translational modifications. In response to external stimuli, signaling

pathways can in the end lead to phosphorylation and, thus, activation of specific TFs.

Many TFs are such functional endpoints of signaling pathways (Yen et al., 2011).

Besides TFs, additional proteins without DNA-binding domain play an important role

in gene regulation. In eukaryotes, for example, the DNA is tightly wrapped around

histones. Transcription is only possible when this chromosomal structure is released

by histone (de-)acetlylases. Further proteins are methylases that release DNA methy-

lation or co-activators/co-repressors that build functional complexes with TFs. Such

complexes can amplify a stimulus-induced signal and lead to a more specific cellular

response.
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2.2.2 Gene regulatory networks

Gene regulatory networks (GRNs) summarize regulatory interactions between TFs and

target genes. The nodes of the network are given by TFs and target genes, the directed

edges indicate an activating or inhibiting regulatory effect. GRNs can, for example,

be inferred from gene expression data where the expression is measured over different

experimental conditions or time; respective measurement techniques are introduced in

the next section. To infer a GRN, one assumes that genes with similar expression profile

are co-regulated by a common TF. The expression profiles of gene set and TFs can be

similar or opposite, depending on the regulatory effect of the TFs (Segal et al., 2003).

Such large-scale identifications of regulatory interactions have provided GRNs for whole

organisms. However, the approach has some drawbacks: The predictions might describe

indirect regulations or co-expressions without regulatory consequence. Furthermore,

TFs with non-changing expression profile cannot be identified as regulators (Walhout,

2011).

The structure of GRNs provides useful insights into the regulatory mechanisms of bi-

ology. Several aspects of the network topology can be investigated. The degree of a

node, for example, is the sum of in- or outcoming edges. Like in most real networks, a

few TFs function as master regulators, whereas the main portion of TFs only regulates

a small set of genes. Hierarchical structures can function as amplification of a stimulus-

induced signal; often, TFs on the same layer share static and dynamic properties (Jothi

et al., 2009). Furthermore, modularity of the network (i. e. clusters of highly connected

genes) can facilitate a fast response to external stimuli. Besides such descriptive network

properties, overrepresented network motifs are of special interest. The most important

motifs are a) autoregulation, where a TF activates/represses itself, b) cascades with

several TFs organized one after the other, c) feedforward loops, where two signals are

in parallel and d) feedback loops, where two signals are in parallel but with opposite

direction.
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2.3 Microarray technology

Several methods have been developed to determine the activity of genes in single cells,

cell accumulations or tissues. Technologies either measure the (relative) amount of

mRNA or translated proteins. The amount of proteins can, for example, be determined

using mass spectrometry or western blots; both methods exploit in the first place the

different size or mass of the proteins. In this thesis we concentrate on mRNA measure-

ments. Such data can be collected using microarrays and we describe the technology in

the following.

Microarrays determine the relative amount of (known) RNA transcripts in a given sam-

ple. The chips consist of numerous spots/probe sets that measure the amount of individ-

ual genes or gene transcripts. Each probe set contains copies of a specific DNA sequence

which in general matches a short part of the gene. Often, several probe sets for the

same gene are embedded; this facilitates a measurement control. To perform microarray

analysis, one first synthesizes complementary DNA (cDNA) from the RNA samples by

reverse transcription. Thereby, labeled nucleotides are built-in (e. g. fluorophore-labeled

nucleotides) and one uses DNA instead of RNA as copy since this is more stable. The

cDNA samples are then hybridized with the DNA sequences on the chip and lasers

determine the fluorescence intensity.

One distinguishes between one- and two-channel arrays. One-channel arrays determine

relative abundances of transcripts from one sample. Two-channel arrays, in contrast,

perform competitive hybridization of two samples on the same chip. The samples are

marked with different labels (e. g. red and green fluorophores) and represent, for exam-

ple, treatment vs. control or cancer vs. normal cells. In general, the intensity data is

used to perform a ratio-based analysis. With this one can determine genes that are up-

or down-regulated between the two samples.
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Mathematical basics

In this chapter we provide the mathematical background relevant for the contents of this

thesis. Among matrix decompositions and basic definitions from probability theory, we

introduce the important class of MA(∞)-processes which are the basis for the limiting

distributions of mixing matrices in Chapter 5. We further introduce graphical models,

i. e. models that are defined with respect to a network structure. Using graphical models

we develop the blind source separation method emGrade in Chapter 6. Since the param-

eters will be estimated using expectation maximization, we further introduce parameter

inference in probabilistic models and focus on expectation maximization. The chapter

concludes with the basics in model selection.

3.1 Vectors, matrices and decompositions

In this part we shortly outline basic properties of matrices and discuss two matrix

decompositions and orthogonalization of matrices. The following is especially relevant

for the blind source separation approaches in Chapters 4 and 5. Detailed mathematical

background can be found in Fischer (2013).

3.1.1 Notations and properties of matrices

Let Rn denote the standard n-dimensional R-vector space. The p-norm or (Lp-norm)

of a vector x ∈ Rn is defined as ‖x‖p = (|x1|p + . . . + |xn|p)1/p. For p = 2 we get
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the Euclidean norm. With this the (n− 1)-dimensional sphere is given by the subspace

Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. Let further Rn×m denote the R-vector space of all (n×m)-

dimensional real matrices. For matrices we consider the Frobenius norm defined as

‖A‖F = (
∑m

i=1

∑n
j=1 |aij |2)1/2. A matrix A ∈ Rn×n is symmetric if A = A′ where A′

denotes the transpose of A. A is orthogonal if AA′ = In where In is the identity matrix.

Furthermore, a matrix A is positive definite if and only if x′Ax > 0 for all x ∈ Rn and A

is positive semi-definite if and only if x′Ax ≥ 0 for all x ∈ Rn. The general linear group

Gl(n) consists of all invertible n× n matrices and with O(n) we denote the sub-group

of orthogonal matrices.

3.1.2 Eigenvalue decomposition

Let A ∈ Rn×n be a quadratic n× n matrix. A real number d ∈ R is an eigenvalue with

v ∈ Rn a corresponding eigenvector of A if and only if

Av = dv .

If the matrixA is positive definite then all eigenvalues are strictly larger than zero. IfA is

positive semi-definite then all eigenvalues are larger than or equal to zero. A n×nmatrix

can have up to n different eigenvalues, each corresponds to an at least 1-dimensional

subspace of eigenvectors. Eigenspaces of different eigenvalues are orthogonal to each

other. If eigenvectors of A build a basis of the n-dimensional space Rn then an eigenvalue

decomposition of A exists and is given by

A = V DV ′ .

Here, V ∈ O(n) is an orthogonal matrix, and D is a diagonal matrix containing the

eigenvalues of A on its main diagonal. The columns of V are corresponding eigenvec-

tors. If A has n different eigenvalues then the eigenspaces are 1-dimensional. Since

the columns of the orthogonal matrix V are normalized, the decomposition V DV ′ is

uniquely determined up to sign and permutation of the columns of V . This uniqueness

is important when discussing indeterminacies of blind source separation approaches for

weakly stationary time series (Section 4.3.1).

The above decomposition is also known as diagonalization of A. It exists in particular

for symmetric matrices. A well-known numerical method to derive the eigenvalues of
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a matrix is the Jacobi technique. The matrix A is gradually transformed to D using

Givens rotations. With these rotations one sets the off-diagonal element with highest

absolute value of the current matrix to zero. For the blind source separation algorithm

SOBI (Belouchrani et al., 1997) this technique is extended to a set of matrices that are

jointly diagonalized (Section 4.3.2).

3.1.3 Singular value decomposition

Let now M ∈ Rn×m be an arbitrary matrix with rank r ≤ n,m. The singular value

decomposition is given by

M = UΣV ′ ,

where U ∈ O(n) and V ∈ O(m) are orthogonal matrices and Σ ∈ Rn×m has entries

ψ1 ≥ . . . ≥ ψr > 0 on its main diagonal and is zero elsewhere. These entries are the

singular values of M . The singular values of a matrix M are related to the eigenvalues

of the (symmetric) matrixMM ′. The eigenvalue decomposition ofMM ′ can be derived

as

MM ′ = (UΣV )(V ′ΣU) = UΣΣ′U ′ .

Thus, if the singular values of M are given by ψ1, . . . , ψr then the eigenvalues of MM ′

are given by ψ2
1, . . . , ψ

2
r , and 0 if r < n. Moreover, if M ∈ Rn×n is symmetric then the

eigenvalue decomposition is given by M = UΣ0U
′ where Σ0 contains the eigenvalues

|ψ1|, . . . , |ψr|, and possibly 0 on its main diagonal. The reason for this relation is, that

if v is an eigenvector of M with eigenvalue d, then v is also an eigenvector of M2 with

eigenvalue d2.

3.1.4 Orthogonalization of matrices

In blind source separation applications the matrix space is often restricted to orthogonal

matrices and we need techniques to transform A ∈ Gl(n) to an orthogonal matrix. A

well-known method is the Gram-Schmidt process. Let aj denote the jth columns of

A. For j = 1, . . . , n we determine ãj = (In −
∑j−1

r=1 ãrã
′
r)aj and normalize ãj to unit

variance. The matrix Ã is then orthogonal.
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On the other hand the singular value decomposition has an interesting property in terms

of orthogonalizing matrices. If UΣV ′ is the singular value decomposition of M ∈ Rn×n

then UV ′ is the orthogonal matrix closest to M in terms of the Frobenius norm. For

quadratic M with singular values ψ1, . . . , ψr it holds ‖M‖F =
√
ψ2

1 + . . .+ ψ2
r . In

Chapter 5 we use the notation svd(M) = UV ′ to denote orthogonalization of a matrix

using its singular value decomposition.

3.2 Basics in probability theory

In the following we give a short introduction to probability theory and provide the basis

for the remaining part of this chapter. Further details can for example be found in

Grimmett & Stirzaker (2001).

3.2.1 Distribution and density function

Let (Ω,F , P ) be a probability space consisting of a non-empty set Ω, a σ-algebra F ⊆
P(Ω), and a probability measure P : F → [0, 1]. Let further (E, E) be a measurable

space. A random variable is then a measurable function X : Ω → E, i. e. for A ∈ E it

holds X−1(A) ∈ F . Here, E is the state space of the random variable and if E has

dimension higher than 1 X is also called random vector. In the following we use lower

case letters to denote realizations x = X(ω) for ω ∈ Ω.

A random variable X : Ω → E on (Ω,F , P ) naturally yields a probability measure PX
on (E, E). For all A ∈ E one defines

PX(A) = P (X−1(A)) .

PX is called probability function of X and we write X ∼ PX . Let now X1, . . . , Xn

(n ∈ N) be a finite sequence of random variables with values in E. We define the joint

(product) random variable X = X1 ⊗ . . .⊗Xn as

X1 ⊗ . . .⊗Xn : Ω −→ E × . . .× E

ω 7−→ (X1(ω), . . . , Xn(ω))
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We also use the notation X = (X1, . . . , Xn) and the corresponding distribution PX is

the joint distribution of X1, . . . , Xn.

From now on we consider continuous random variables with (E, E) = (Rn,B(Rn)) and

B(Rn) the Borel σ-algebra.

Definition 3.1 (Distribution function). Let X : Ω→ Rn be a continuous random vari-
able on (Ω,F , P ). The function

FX : Rn −→ [0, 1]

(x1, . . . , xn)′ 7−→ PX((−∞, x1]× . . .× (−∞, xn])

is the distribution function of X with respect to P . FX is also called the cumulative
distribution function (cdf) of X.

Definition 3.2 (Density function). Let X : Ω → Rn be a continuous random variable
on (Ω,F , P ) with distribution function FX : Rn → [0, 1]. If f : Rn → [0,∞) is a non-
negative Lebesque-integrable function such that

FX(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
f(u1, . . . , un) du1 . . . dun

for all (x1, . . . , xn) ∈ Rn, then f is a density function with respect to P . We also call
f = fX a probability density function (pdf) of X.

Let X̃ = (X1, . . . , Xn) : Ω → Rn be a joint random variable and let fX̃ be a density

function. For X = (X1, . . . , Xk) and x ∈ Rk with k < n the marginal density function

of X is given by

fX(x) =

∫ ∞
−∞

. . .

∫ ∞
−∞

fX̃(x, uk+1, . . . , un) dun . . . duk+1 ,

i. e. one integrates over all random variables not assigned to X. The above definition

also holds for arbitrary subsets {n1, . . . , nk} ⊆ {1, . . . , n} and X = (Xn1 , . . . , Xnk
).

3.2.2 Conditional distributions and independence

Let now X and Y be continuous random variables with state spaces Rn and Rm. Let

fX and fY be the marginal density functions and fX,Y the joint density function. The
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conditional density function of X given Y is then defined by

fX|Y (x | Y = y) =
fX(x)

fY (y)
,

for all y with fY (y) > 0. We also write fX|Y (x | y) to keep the notation simple. The

variables X and Y are independent if and only if the joint density factorizes, i. e.

fX,Y (x, y) = fX(x) fY (y) .

For independent variables we use the notation X ⊥⊥ Y . Independent random variables

with the same distribution function are called i.i.d. (independent and identically dis-

tributed). The definition of independence can be extended to conditional independence.

Let therefore Z be an additional random variable with state space Rk and marginal den-

sity function fZ . The random variables X and Y are conditionally independent given

Z if

fX,Y |Z(x, y | Z = z) = fX(x | Z = z) fY (y | Z = z)

for all z with fZ(z) > 0. For conditional independence we write X ⊥⊥ Y | Z.

3.2.3 Expectation and higher-order moments

Let X be a continuous (univariate) random variable with density function fX . The

expectation of X exists if and only if
∫∞
−∞ |x| fX(x) dx <∞ and is then defined as

E[X] =

∫ ∞
−∞

xfX(x) dx .

We also write X ∈ L 1 if the expectation of X exists. Let now X1, . . . , Xk be continuous

(univariate) random variables with joint density function f . For a measurable function

g : R× . . .× R→ Rk we have

E[g(X1, . . . , Xk)] =

∫ ∞
−∞

. . .

∫ ∞
−∞

g(x1, . . . , xk)f(x1, . . . , xk) dx1 . . . dxk .

Thus, the expectation E[ . ] is a linear operator in the sense that E[aX +Y ] = aE[X] +

E[Y ] for a ∈ R. The conditional expectation of X given Y is further defined by

E[X | Y = y] =

∫ ∞
−∞

xfX|Y (x | Y = y) dx .

In Chapter 6 we also use the notation EX|Y [ . ] to denote conditional expectations.
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3.2 Basics in probability theory

Beside the expectation, also higher-order moments are used to describe random vari-

ables. For X with Xr ∈ L 1 the nth central moment is given by E[(X − E[X])n] and

the nth raw moment by E[Xn]. We also write X ∈ L n and it holds L n ⊂ Lm for

m < n. The variance of X ∈ L 2 is the second central moment, i. e.

Var(X) = E[(X − E[X])2] .

The covariance generalizes the idea of a variance. For variables X,Y ∈ L 2 the covari-

ance is defined by

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY ]− E[X]E[Y ] .

If X and Y are independent then the covariance is zero. The Pearson correlation of the

dependence between two random variables and is defined by

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
,

for Var(X),Var(Y ) 6= 0. The third- and fourth-order central moments normalized with

the factor 1/
√

Var(X)n for n = 3, 4 are known as skewness and flatness. The latter can

be used to measure Gaussianity of a probability distribution. Gaussianity means the

closeness of a distribution to the Gaussian distribution and one defines the kurtosis of

a (zero-mean) random variable X ∈ L 4 as

kurt(X) = E[X]4 − 3E[X2]2 .

If X is Gaussian then the kurtosis is zero. Thus, this quantity provides a measure of

Gaussianity. We come back to this definition in Section 4.2 where we discuss indepen-

dent component analysis.

3.2.4 Important distributions

In this part we explicitly state the density functions of some important distributions.

For the following we define the indicator function 1B on a non-empty measureable set

B ⊂ Rn as

1B : Rn → R

x 7→
{

1, if x ∈ B ,

0, otherwise .
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Example 3.1 (Uniform distribution). A random variable X : Ω → Rn is uniformly dis-
tributed on B ⊂ Rn if the density function for x ∈ Rn exists and is of the form

fX(x) =
1

λn(B)
1B(x) .

Here, λn is the n-dimensional Lebesgue measure and 1B is as defined above. We write
X ∼ U(B). For univariate X uniformly distributed on an interval [a, b] ⊂ R we directly
write X ∼ U [a, b].

Example 3.2 (Normal distribution). A random variable X : Ω → Rn is multivariate
normally distributed (or Gaussian) if the density function exists for x ∈ Rn and is of
the form

fX(x) =
1√

(2π)n det(Σ)
exp
(
−1

2
(x− µ)′Σ−1(x− µ)

)
,

where µ ∈ Rn is the mean vector and Σ ∈ Rn×n is the symmetric positive semidefinite
covariance matrix. We also write X ∼ N (µ,Σ).

Let now X =
(
X1
X2

)
, µ =

( µ1
µ2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
. Then X1 | X2 is again normally

distributed with mean and covariance given by

µ1|2 = µ1 + Σ12Σ−1
22 (X2 − µ2) ,

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21 .

If X : Ω→ R is univariate normally distributed then the density function simplifies to

fX(x) =
1√

2πσ2
exp
(
−(x− µ)2

2σ2

)
,

for x ∈ R and we call σ > 0 the standard deviation. In this case we have X ∼ N (µ, σ2).

If the natural logarithm of X, i. e. ln(X), is normally distributed then X is lognormally

distributed which we define in the following.

Example 3.3 (Lognormal distribution). A univariate random variable X : Ω → R is
lognormally distributed if the density function exists for x ∈ R and is of the form

fX(x) =
1

x
√

2πσ2
exp
(
−(ln(x)− µ)2

2σ2

)
1(0,∞)(x) ,

where µ ∈ R, σ > 0 and 1(0,∞) is the indicator function on (0,∞) ⊂ R. We write
X ∼ LN (µ, σ2).
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3.3 Stochastic processes

Example 3.4 (Gamma distribution). A univariate random variable is gamma distributed
if the density function exists for x ∈ R and is of the form

fX(x) =
1

λkΓ(k)
xk−1 exp

(
−x
λ

)
1(0,∞)(x) ,

with shape parameter k > 0 and scale parameter λ > 0. The gamma function Γ( . ) is
defined by Γ(k) =

∫∞
0 tk−1 exp(−t) dt and we write X ∼ Γ(k, λ).

Example 3.5 (Chi-squared distribution). A univariate random variable is chi-squared
distributed if the density function exists for x ∈ R and is of the form

fX(x) =
1

2k/2Γ(k/2)
xk/2−1 exp

(
−x

2

)
1[0,∞)(x) .

Here, k ∈ N \ {0} is a positive integer and denotes the degrees of freedom and gamma
function Γ( . ) like before. We write X ∼ X 2

k .

The chi-squared distribution is a special case of the gamma distribution. If X is chi-

squared distributed with k degrees of freedom then X is gamma distributed with shape

parameter k/2 and scale parameter 2. We come back to this distribution when defining

test statistics in Chapter 5.

3.3 Stochastic processes

In this part we define stochastic processes and introduce some important time series

models. We get back to these models in Chapter 5 where we derive limiting distributions

of blind source separation mixing matrices. A detailed discussion of time series is given

in Brockwell & Davis (2009).

A stochastic process is a family of random variables {Xt}t∈T defined on a the same

probability space (Ω,F , P ) and with arbitrary index set T . A realization of the process

is given as {xt}t∈T where xt = Xt(ωt) for some ωt ∈ Ω. Let now {Xt}t∈T be a stochastic

process with Var(Xt) < ∞ for all t ∈ T . The autocovariance function γX(. , .) of the

process is defined by

γX(s, t) = Cov(Xs, Xt) = E[(Xs − E[Xs])(Xt − E[Xt])] ,
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for all s, t ∈ T . In time series analysis one usually assumes Z or R (or subsets) as index

set. Since any observed time series consists of countably many time points we restrict

ourselves to T = Z from now on.

Definition 3.3 (Weak stationarity). A time series {Xt}t∈Z is weakly stationary if for
all s, t ∈ Z it holds

(i) E[(Xt)
2] <∞

(ii) E[Xt] = µ

(iii) Cov(Xt, Xt+τ ) = Cov(Xs, Xs+τ ), for all τ ∈ Z

Thus, for a weakly stationary process the autocovariance only depends on the lag

τ ∈ Z. A weakly stationary process is also known as wide-sense stationary. In con-

trast, a process is strongly stationary if the joint distributions of (Xt1 , . . . , Xtk)′ and

(Xt1+τ , . . . , Xtk+τ )′ are identical for all t1, . . . , tk, τ ∈ Z.

3.3.1 Time series models

In this part we introduce time series models that will be used to generate the data in

Chapter 5. We formulate all models as univariate stochastic processes but the general-

ization to multiple dimensions is straight-forward. Firstly, let {εt}t∈Z be a stochastic

process with E[εt] = 0 and autocovariance at lag τ ∈ Z is given by

Cov(εt, εt+τ ) =

{
σ2 for τ = 0 ,

0 for τ 6= 0 .

The process is weakly stationary and is known as white noise. If εt is further Gaussian

distributed we refer to the process as white Gaussian noise. With this, we define three

important classes of time series models.

Example 3.6 (MA(∞)-process). The process {Xt}t∈Z is a moving-average process if

Xt =

∞∑
j=1

ψjεt−j + εt ,

with coefficients ψj ∈ R and {εt}t∈Z a white noise process.
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3.4 Probabilistic graphical models

If ψj = 0 for j > q the process is a moving-average process or order q and we use

the notation MA(q)-process. Let for the coefficients hold
∑∞

j=0 |ψj | < ∞ with ψ0 = 1.

The expectation is then given by E[Xt] = 0 and the autocovariance at lag τ ∈ Z is of

the form σ2
∑∞

j=0 ψjψj+τ . Since E[εt] and Cov(εt, εt+τ ) are independent of the index

t ∈ Z the process is weakly stationary. MA(∞)-processes represent a wide range of time

series models; every zero-mean weakly stationary process that is non-deterministic can

be uniquely expressed as a sum of an MA(∞)-process and a deterministic part. This

result is known as Wold’s decomposition (Brockwell & Davis, 2009, p.187). In particular,

AR- and ARMA-processes, which we introduce in the following, can be solely expressed

as MA(∞)-processes with no deterministic component.

Example 3.7 (AR(p)-process). The process {Xt}t∈Z is autoregressive of order p if

Xt =

p∑
j=1

ϕjXt−j + εt ,

with coefficients ϕ1, . . . , ϕp ∈ R and {εt}t∈Z a white noise process.

The coefficients ψj can be chosen such that the process is weakly stationary; details are

provided in Brockwell & Davis (2009). Finally, ARMA-processes combine autoregressive

and moving-average processes and are defined as follows.

Example 3.8 (ARMA(p, q)-process). The process {Xt}t∈Z is an autoregressive moving-
average process if

Xt =

p∑
j=1

ϕjXt−j +

q∑
i=1

ψiεt−i + εt ,

with coefficients ϕj , ψi ∈ R and {εt}t∈Z a white noise process.

3.4 Probabilistic graphical models

In probabilistic graphical models the random variables are represented by the nodes

of a graph – the edges of the graph reflect dependencies and independencies between

the variables. One distinguishes between undirected and directed models. For both,

Markov properties of the random variables are defined differently. In the following we

introduce these concepts. A detailed discussion on graphical models with proofs of all
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statements is given in Lauritzen (1996). A review on applications of graphical models

in systems biology can be found in Friedman (2004).

3.4.1 Graphs and notations

We first define undirected and directed graphs and discuss some terminologies. Gu =

(V,Eu) is an undirected graph if V is a set of nodes and Eu ⊆ {{i, j} | i, j ∈ V } is a set

of undirected edges. The neighbours ne(i) of a node i are given by all nodes connected

with i. Let now A,B,C ⊂ V be disjoint subsets. C separates A from B if all paths

from a node A to a node B contain one node in C. For a subset A ⊆ V the induced

subgraph of A is given by the nodes in A and all edges from the original graph that

connect nodes in A. A (sub-)graph is complete if all nodes are joined by an edge. If

any two nodes of a (sub-)graph are complete by an edge then the graph is a clique. We

also use the terms complete and clique for subsets A ⊆ V that induce such subgraphs.

Figure 3.1a illustrates the above terminologies for undirected graphs.

A directed graph Gd = (V,Ed), in contrast, is given by a set of nodes V and a set of

directed edges Ed ⊆ V × V . Since we mainly focus on directed graphs in this thesis we

omit superscripts and only write G and E whenever the graph is directed. The parents

pa(i) of a node i are given by all nodes with an edge pointing towards i. If pa(i) = ∅
then i is called a root node of the graph. The anchestors an(i) are all nodes with a

directed path leading to i (and with no path backwards). Conversely, all paths from

node i are leading towards the descendants de(i) of i. The non-descendants are given by

nd(i) = V \ (de(i) ∪ {i}) and a set A ⊆ V is anchestral if an(a) ⊆ A for all a ∈ A. The
graph G is acyclic if it contains no directed cycles. In an acyclic graph the nodes can be

ordered such that V = {1, . . . , N} and for each node all parent nodes are predecessors

with respect to that ordering. Finally, the moral graph Gm is the undirected equivalent

of G; it arises from G by adding edges between parent nodes and deleting directions.

The terminologies for directed graphs are shown in Figure 3.1b.

3.4.2 Markov random fields

Let now Gu = (V,Eu) be an undirected graph and let (Xi)i∈V be random variables

indexed according to the nodes V and with values in (Xi)i∈V . Thus, each variable Xi is
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a)	  undirected	  graph:	   b)	  directed	  graph:	  

Figure 3.1: Terminologies of graphs. a) shows an undirected complete graph. The
neighbours of node 4 are given by ne(4) = {1, 3, 6}, the subset C = {4, 5} separates
A = {1, 2, 3} from B = {6} and the induced subgraph of A is shown in red. b) shows a
directed acyclic graph. The root nodes are given by nodes 1 and 2. The parents of node 4
are given by pa(4) = {1, 3}, the anchesters are given by an(4) = {1, 2, 3}, and de(4) = {6}
are the descendants. The non-descendants of node 4 are ne(4) = {1, 3, 6}. Furthermore,
the graph in a) is the moral graph of the graph in b).

associated with a node i ∈ V . For a subset A ⊆ V let XA = (Xa)a∈A denote the joint

random variable with values in XA = ×a∈AXa. For such an undirected graphical model

various Markov properties are defined.

The variables (Xi)i∈V have the global Markov property with respect to Gu if

(G) XA ⊥⊥ XB | XC ,

where A,B,C ⊂ V are disjoint subsets and C separates A from B. This means, that XA

and XB are conditionally independent given XC (Section 3.2.2). The random variables

X have the local Markov property with respect to Gu if for all i ∈ V one has

(L) Xi ⊥⊥ XV \(ne(i)∪{i}) | Xne(i) ,

where ne(i) is the set of neighbors of node i. And last, the variables have the pairwise

Markov property with respect to Gu if for any pair (i, j) of non-adjacent nodes it holds

(P) Xi ⊥⊥ Xj | XV \{i,j} .

Thus, two random variables – with the respective nodes non-adjacent – are conditionally

independent given all other variables. For any distribution of the random variables the

global Markov property implies the local property and this further implies the pairwise

property, i. e. (G) ⇒ (L) ⇒ (P).
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Let now PX be the probability distribution of X = XV . PX factorizes according to

the undirected graph Gu if for all complete subsets A ⊆ V there exist non-negative

functions ψA : XA → [0,∞) together with a product measure µ = ⊗i∈V µi on X = XV
such that X has density f with respect to µ where

f(x) =
∏

A complete

ψA(xA) ,

for all x = (xi)i∈V in X and xA = (xa)a∈A. The functions ψA are not uniquely defined

(there is, for example, arbitrariness in the choice of µ) and one can further restrict the

connected subsets to cliques

f(x) =
∏

C clique

ψC(xC) .

We call a probability distribution that factorizes according to an undirected graph a

Markov random field. One can show, that the factorization implies the global Markov

property (and with this the local and pairwise Markov property). The following theorem

provides the opposite implication and can be found in Lauritzen (1996, p.36).

Theorem 3.1 (Hammersley and Clifford). A probability distribution PX with positive
and continuous density f with respect to some product measure µ satisfies the pair-
wise Markov property with respect to an undirected graph G if and only if it factorizes
according to Gu.

Markov random fields show an interesting applicability if we assume Gaussian random

variables. Let therefore X = (Xi)i∈V be a continuous multivariate variable that is

distributed as N|V |(µ,Σ). Let the covariance matrix Σ be regular, i. e. the inverse

exists. In this case, conditional independence in form of the pairwise Markov property

can be easily observed. The following corollary is according to Lauritzen (1996, p.129).

Corollary 3.1. Let X ∼ N|V |(µ,Σ) be normally distributed with regular covariance
matrix Σ. Then for i, j ∈ V with i 6= j it holds

Xi ⊥⊥ Xj | XV \{i,j} ⇔ kij = 0 ,

where kij is the respective entry of the concentration matrix K = Σ−1.
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In a Gaussian graphical model we now assume that the multivariate Gaussian variable

X fulfills the pairwise Markov property with respect to an undirected graph Gu. Since

the density is positive and continuous the distribution factorizes and the global and local

Markov property hold. According to the above corollary, the graph structure directly

relates to the zero-entries of the concentration matrix; if an entry kij ∈ K equals zero

then the respective nodes i, j ∈ V are non-adjacent in the graph. Based on this idea,

informative graph-structures have successfully been learnt from multivariate data sets

(Krumsiek et al., 2011; Schäfer & Strimmer, 2005).

3.4.3 Bayesian networks

Let now G = (V,E) be a directed acyclic graph and let (Xi)i∈V be random variables

with values in (Xi)i∈V . Let again XA = (Xa)a∈A denote the joint random variable with

values in XA = ×a∈AXa for any subset A ⊆ V . The Markov properties for directed

graphical models are defined as follows. The variables (Xi)i∈V have the directed global

Markov property if

(DG) XA ⊥⊥ XB | XC ,

where A and B are separated by C in (GAn(A∪B∪C))
m which is the moral graph of the

smallest anchestral set containing A∪B∪C. The random variables X have the directed

local Markov property with respect to G if for all i ∈ V one has

(DL) Xi ⊥⊥ Xnd(i) | Xpa(i) .

Thus, a variable is conditionally independent of its non-descendants given its parents.

And last, the variables have the directed pairwise Markov property with respect to G if

for any pair (i, j) of non-adjacent nodes it holds

(DP) Xi ⊥⊥ Xj | Xnd(i)\{j} .

The directed local and the directed global Markov property are equivalent, i. e. (DL)⇔
(DG). Furthermore, the directed local implies the directed pairwise property (DL) ⇒
(DP). The converse is in general not true.

Let PX be the probability distribution of X = XV . PX factories recursively according

to the directed acyclic graph G if for all i ∈ V there exist non-negative functions (or
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kernels) ki : Xi × Xpa(i) → [0,∞) together with a product measure µ = ⊗i∈V µi on

X = XV such that ∫
ki(yi, xpa(i))µi d(yi) = 1 ,

and X has density f with respect to µ where

f(x) =
∏
i∈V

ki(xi, xpa(i)) .

One can easily show that the kernels ki( . , xpa(i)) are densities of the conditional dis-

tributions Xi given Xpa(i) = xpa(i). We call a probability distribution that factorizes

recursively according to G a Bayesian network ; the distribution is defined by the con-

ditional distributions of a node given its direct predecessors. The following theorem is

according to Lauritzen (1996, p.51).

Theorem 3.2. Let PX be a probability distribution of X such that the density is given
with respect to some product measure µ. Then PX satisfies the directed global Markov
property with respect to a directed acyclic graph G if and only if it factorizes recursively
according to G.

3.5 Parameter inference in probabilistic models

In this part we introduce parameter inference using the maximum likelihood estimate

and the maximum a posteriori estimate. We further discuss expectation maximization

as an interative scheme to determine these estimates; details can be found in McLachlan

& Krishnan (2007). The section concludes with model selection approaches to deter-

mine the most appropriate probabilistic model for given data. More background about

parameter inference and model selection are given in Held (2008).

3.5.1 Maximum likelihood estimate

Let X be a (multi-dimensional) random variable and x a realization. We also call x

observations of X. We further assume that the density function f = fX exists and that

it depends on a parameter θ ∈ Θ where Θ denotes the parameter space. Here, θ might

in fact be a multi-dimensional parameter vector. The aim is to draw conclusions about
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θ based on the observations x. Therefore, we consider the likelihood function which is

for fixed observations x given as

L(θ) = f(x; θ) , θ ∈ Θ .

We are then interested in parameters θ such that the observations x become most likely,

i. e. we want to maximize the likelihood function with respect to θ. This maximum

likelihood estimate (MLE) is given by

θ̂ML = arg max
θ∈Θ

L(θ) .

Often, one considers the log-likelihood function `(θ) = ln f(x; θ) instead of L(θ). Since

the logarithm is a strictly monotonically increasing function, θ̂ML is the same estimate

in both cases.

Let now X1, . . . , Xn be independent and identically distributed random variables with

the same density function f . We consider the joint random variable X = (X1, . . . , Xn)

together with a realization x = (x1, . . . , xn). The likelihood function of x then factorizes

as

L(θ) = f(x; θ) =
n∏
i=1

f(xi; θ) .

The corresponding log-likelihood function decomposes into a sum `(θ) = ln f(x; θ) =∑n
i=1 f(xi; θ), accordingly. Thus, the log-likelihood function is often more convenient

regarding complexity.

Score function and Fisher information

Standard errors for the maximum likelihood estimate can be calculated using the Fisher

information. Let therefore the gradient vector and the negative second-order partial

derivates of the log-likelihood function be given by

S(x; θ) = ∂ lnL(θ)/∂θ ,

H(x; θ) = −∂2 lnL(θ)/∂θ ∂θ′ .

The first is known as score statistics, the latter is the Hessian matrix or the observed

information matrix. The expected Fisher information matrix I(θ) is then given by

I(θ) = E θ[S(X; θ)S′(X; θ)] = −E θ[H(X; θ)] ,
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where E θ denotes expectation using the parameters θ. The asymptotic covariance

matrix of the MLE is equal to the inverse of I(θ) and can be approximated by I(θ̂).

Thus, the standard error of θ̂i is given by

SE(θ̂i) ≈
√
I−1(θ̂)ii ≈

√
H−1(θ̂)ii ,

where it is common to replace the expected by the observed information matrix. Fur-

thermore, the approximate confidence interval at level 1− α is[
θ̂i ± z(1−α)/2(

√
H−1(θ̂;X)

ii
)
]
,

where z(1−α)/2 denotes the (1− α)/2-quantile of the normal distribution.

3.5.2 Bayesian inference

In contrast to classical parameter inference from the last section, we now think of θ

as a random variable with a density function. We are then interested in its posterior

distribution, i. e. the distribution of the parameters θ given the observations x. The

statistical background is Bayes’ Theorem.

Theorem 3.3 (Bayes’ Theorem). Let X and Y be continuous random variables and let
x and y be realizations. Then

fY |X(y | x) =
fX|Y (x | y) fY (y)∫
fX|Y (x | y) fY (y) dy

.

From this, the posterior distribution of the parameters θ given observations x directly

follows. For easier notation we drop the indexing of the different density functions and

thus get

f(θ | x) =
f(x | θ) f(θ)∫
f(x | θ) f(θ) dθ

.

The factor f(x | θ) is the likelihood function which we denoted by L(θ) = f(x; θ). Since

we now explicitly condition on the random variable θ we adapted the notation. The

factor f(x) is the prior distribution of the parameters. We also use the notation π(θ).

The denominator is known as marginal and it holds
∫
f(x | θ) f(θ) dθ =

∫
f(x, θ) dθ =

f(x). This factor is a normalizing constant and assures that
∫
f(θ | x) dθ = 1. Thus,
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3.5 Parameter inference in probabilistic models

the posterior distribution of the parameters is proportional to the product of likelihood

and prior

f(θ | x) ∝ f(x | θ) f(θ) .

For parameter maximization it often is sufficient to consider the r.h.s. The maximum

a posteriori estimate (MAP) of θ is finally given as

θ̂MAP = arg max
θ∈Θ

f(θ | x) .

3.5.3 Expectation maximization

The expectation maximization (EM) algorithm is an iterative scheme to compute the

maximum likelihood estimate. It can be easily extended to also provide the maximum

a posteriori estimate. Expectation maximization is applicable whenever parameter in-

ference from a complete data set would be straightforward – but the observed data is

incomplete. This means that either data points are missing, or that the model contains

additional variables that cannot be observed. The idea then is to replace the unob-

served variables by their conditional expectation given observed variables and model

parameters.

Let X denote observed random variables and let S denote unobserved (or unobservable)

random variables. Given observations x, we aim to maximize the data log-likelihood

`(θ) = ln f(x; θ) with respect to the parameters θ ∈ Θ. In contrast to `(θ), we assume

that the complete data log-likelihood

`c(θ) = ln fc(x, s; θ)

is easy to handle. Here, s is some unknown realization of S and with this also `c(θ) is

unknown. Thus, we further replace `c(θ) by its conditional expectation given s, and we

assume that the current parameter estimate is θ(k):

Q(θ; θ(k)) = E θ(k) [ `c(θ) | s ] .

Expectation maximization (EM) is now an iterative scheme. Given the current param-

eter estimates θ(k), we determine Q(θ; θ(k)) in the E-step. In the M-step we maximize
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Q(θ; θ(k)) with respect to the parameters θ and derive

θ(k+1) = arg max
θ∈Θ
Q(θ; θ(k)) .

Both steps are alternated until convergence of the likelihood function, i. e. until one

has `(θ(k+1)) − `(θ(k)) < ε for some threshold ε > 0. Alternatively, a sufficiently small

change in the parameters can be considered as stop criterion (Abbi et al., 2008).

Maximum a posteriori estimation

We now assume that we have some prior density f(θ) of the parameters. We then aim

to maximize the (incomplete) data posterior which is given as ln f(θ | x) = ln f(x; θ) +

ln f(θ). To this maximum using expectation maximization we consider as before the

complete data set. The complete data posterior is given by

ln fc(θ | x, s) = ln fc(x, s; θ) + ln f(θ) ,

where we omit an additive term not involving θ. In the E-step we calculate the condi-

tional expectation of ln fc(θ | x, s) given the observed data x. Let θ(k) be the current

parameter estimate then

E θ(k) [ ln fc(θ | x, s) | s ] = Q(θ; θ(k)) + ln f(θ) .

In contrast to maximum likelihood estimation, we have an additional term given by the

prior ln f(θ). In the M-step we then maximize E θ(k) [ ln fc(θ | x, s) | s ] with respect to

θ ∈ Θ and get θ(k+1).

3.5.4 Model selection

The log-likelihood function `(θ) = ln f(x; θ) evaluated at the maximum likelihood es-

timate describes how good the model explains the data. However, this quantity can

not be used to compare different models – a more complex model will directly lead to

a higher log-likelihood value. To avoid overfitting, one needs to penalize for the model

complexity.
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3.5 Parameter inference in probabilistic models

There are two widely-used criteria for model selection that are based on the likelihood

function. Both criteria differ in the penalty term for the model complexity. The Akaike

information criterion (AIC) (Akaike, 1974) is given by

AIC = 2 `(θ̂)− 2k ,

where θ̂ denotes the maximum likelihood estimate of the parameters and k is the number

of model parameters. The second criterion is the Bayesian information criterion (BIC)

(Schwarz, 1978) given by

BIC = 2 `(θ̂)− ln(n)k ,

where n denotes the number of observations. Thus, for n ≥ 8 the BIC gives a stronger

penalty compared to the AIC.

Bayesian model selection

For reasons of completeness and since the main contribution of this thesis – the algorithm

emGrade – can be easily treated in a fully Bayesian manner we additionally discuss

Bayesian model selection. So far, this method has not been applied in the contents of

this thesis but it is useful for follow-up work.

To decide between two models M1 and M2 in a Bayesian context, we first define

prior probabilities P(M1) and P(M2) of the models. The probabilities need to sum

up to 1 and if no further information about model preference is available one can set

both quantities equal to 0.5. The posterior probability of the modelM1 (and forM2,

accordingly) is then given by

P(M1 | x) =
f(x | M1)P(M1)

f(x | M1)P(M1) + f(x | M2)P(M2)
.

This follows directly from Bayes’ theorem, where the integral in the denominator is here

replaced by a (discrete) sum. The marginal likelihood in the nominator is of the form

f(x | M1) =

∫
f(x | θ1,M1) · f(θ1 | M1) dθ1 ,

where θ1 might actually be a parameter vector.
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The posterior chance P(M1 |x)/P(M2 |x) is then given by

P(M1 | x)

P(M2 | x)︸ ︷︷ ︸
posterior chance

=
f(x | M1)

f(x | M2)︸ ︷︷ ︸
Bayes factor

× P(M1)

P(M2)︸ ︷︷ ︸
prior chance

,

where the first factor is called Bayes factor, the second is the prior chance. The Bayes

factor B12 = f(x | M1)/f(x | M2) can be interpreted as quotient of posterior chance

of M1 and prior chance of M1. Thus, for B12 > 1 the data increases the propability

of modelM1 and one would prefer this model. To interpret the Bayes factor, Jeffreys

(1961) originally invented a scheme to assign relevances to all possible values B12. The

scheme was slightly modified by Kass & Raftery (1995) and thus claims: 1-3 is not

worth more than a bar mention, 3-20 is positive, 20-150 is strong, and above 150 is very

strong evidence.

With this, we provided all necessary mathematical background – probabilistic models,

stochastic processes, graphical models, parameter inference and model selection. In

the next chapter we introduce blind source separation and give an overview of existing

methods. Both chapters then build the basis for new BSS investigations in remaining

part of this thesis.
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Blind source separation

In this chapter we state the blind source separation problem and provide a review

about existing blind source separation approaches. In particular we introduce indepen-

dent component analysis, non-negative matrix factorization and (joint) diagonalization

of autocovariance matrices. We discuss different joint diagonalization approaches for

weakly stationary time series and review the algorithm Grade (Kowarsch et al., 2010)

which is an extension to network data. This chapter provides the basis for Chapters 5

and 6 where we determine the limiting distributions of the mixing estimates for time

series data and invent the new probabilistic method emGrade for network data. The

chapter concludes with a discussion about performance indices that we use to evaluate

and compare algorithms in this thesis.

For better distinction, we use bold symbols to denote random variables in the remaining

part of this thesis. Solid symbols denote realizations of random variables and parame-

ters.

4.1 The idea of BSS

In the basic blind source separation (BSS) model we assume a p-dimensional observed

random process {x(t)}t∈Z where the components of x(t) are generated by an instanta-

neous linear mixing

x(t) = A s(t) + ε(t) , t ∈ Z. (4.1)
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Here, A ∈ Rp×q is a deterministic full-rank mixing matrix and {s(t)}t∈Z is a q-dimensio-

nal unobserved process. The components {sk(t)}t∈Z for k = 1, . . . , q are known as source

signals. In general, one assumes that the unobserved variables s(t) are statistically

stationary, i. e. E[s(t)] and E[s(t)s(t)′] are independent of the index t ∈ Z. Finally,

{ε(t)}t∈Z denotes an additive noise process which is independent of the unobserved

process and with ε(t1) independent of ε(t2) for t1 6= t2. Many BSS models assume

white Gaussian noise with independently and identically distributed components, i. e.

ε(t) ∼ N (0, σ2Ip) for t ∈ Z; other models are noise-free and we omit the term ε(t)

in (4.1). As stated in Section 3.3, any oberseved data set consists of countably many

data points. We therefore use Z as index set for the random processes. Figure 4.1

illustrates the idea of BSS. Shown are three independently generated time series signals

together with three linear mixtures of these signals. Given the mixtures the task of BSS

is to recover both – the source signals and the mixing process.

Important for BSS models is the relation between the number of observations p and

the number of source signals q. In the simplest case we have p = q and the mixing

matrix is quadratic. If p > q the model is overdetermined and one is interested in

a small number of representative and informative source signals. In this case, the

concrete number of source signals is usually unknown. Tong et al. (1990), for example,

determined the number of source signals based on the eigenvalue distribution of the

sample covariance; Choudrey & Roberts (2001) used hyperparamters in their estimation

procedure to intrinsically learn the number of signals; and in our new BSS method in

Chapter 6 we apply model selection criteria to compare the estimation performances

for different values q. Finally, the most challenging case is the underdetermined model

where p < q. Applications of such models are, for example, coding theory where high-

dimensional representations of the data are needed or signal encryption (Lin et al., 2006;

Yang et al., 2008). Since the number of unknown model components can drastically

outreach the number of observations, separability issues arise (Albera et al., 2004; Cao

& Liu, 1996; He et al., 2008).

In the literature, various generalizations of the basic BSS model have been introduced.

These include, amongst others, non-linear mixing models where the mixing matrix A

is replaced by a non-linear function ψ : Rp → Rq or non-instantaneous (or convolutive)
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mixing models where

x(t) =
K∑
k=0

Ak s(t− k) + ε(t) , t ∈ Z.

A discussion on convolutive mixing models is, for example, given in Parra & Spence

(2000) and Wang et al. (2003).
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linear mixtures
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source signals

Figure 4.1: Separation of time series signals. Three idependently generated source
signals (left) together with three linear mixtures (right). The source signals are AR(1)-
processes with coefficients 0.9, 0.99999 and −0.9, respectively, and the mixing matrix is
(row-wise) given by [−0.03,−0.11, 0.43;−0.12,−0.02, 0.24;−0.63, 0.72,−0.82].

4.1.1 Properties and indeterminacies of BSS models

Without further assumptions on source signals or mixing matrix in (4.1) the separation

of x(t) into A and s(t) is not uniquely defined. For any invertible matrix C ∈ Gl(p) we

get an equivalent decomposition

x(t) = A s(t) + ε(t) = (AC)(C−1s(t)) + ε(t) = Ã s̃(t) + ε(t) .

Therefore, the various existing BSS approaches introduce additional assumptions on the

source signals (or the mixing matrix). Usually, the above indeterminacy can be limited

to matrices with one non-zero entry per row and column. Such matrices can be written

as a product LPD, where L is a sign-changing matrix, i. e. diagonal with entries ±1,

P is a permutation matrix, and D is diagonal with positive entries. Furthermore, one
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4. BLIND SOURCE SEPARATION

can assume Cov
(
s(t), s(t)

)
= Ip without loss of generality; the separation indetermi-

nacy then reduces to sign-changing permutations LP . Discussions about model-specific

indeterminacies are provided in the respective sections.

An important property of BSS models and algorithms is affine equivariance. The prop-

erty relates the (un-)mixing estimates derived from dependent data sets and justifies,

for example, data pre-whitening which we introduce in the next section. A BSS model

with additional model assumptions (Ai)i∈I is affine equivariant if for any solution A0

and s0(t) of data X =
(
x(t)

)T
t=1

we have that CA0 and s0(t) is a solution of data CX

where C ∈ Gl(p). Here, solution means, that the model assumptions are fulfilled. The

definition further translates to BSS algorithms: If Â is the mixing estimate derived with

an affine equivariant BSS method from data X then the mixing estimate derived from

data CX is given by CÂ. Sometimes, one uses transformations of the coordinate sys-

tem to assure affine equivariance of a BSS method (Ilmonen et al., 2012). Furthermore,

in Section 5.2.3 we introduce the algorithm SOBIparis2 which depends on the initial

value; here, pre-processing using a coherent initialization yields affine equivariance of

the algorithm.

4.1.2 Centering and whitening

A widely-used pre-processing when applying BSS methods is centering and pre-whitening

of the data. This means that the original data is transformed to new data with zero

mean and unit variance. The pre-processing is commonly done in case of BSS models

where we assume E[s(t)] = 0 and Cov(s(t), s(t)) = Iq for t ∈ Z. Here, one is usually

interested in the decomposition of the centered data. Besides robustness, pre-whitening

forces the mixing matrix to be orthogonal and many BSS methods are restricted to the

estimation of such matrices. After performing BSS on the whitened data one transfroms

the mixing estimate back to the original (centered) data.

Centering of the data X =
(
x(t)

)T
t=1

can be easily done by substracting the sam-

ple mean E[x(t)] = 1
T

∑T
t=1 x(t) from each observation. After centering we derive a

whitening matrix C ∈ Gl(p) using the singular value decomposition. Let therefore

RX = E[x(t)x(t)′] be the sample covariance of the centered data; it can be calculated

as RX = 1
T−1

∑T
t=1 x(t)x(t)′ and to assure symmetry we use (RX + R′X)/2 instead.
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4.2 Independent component analysis

We then consider the singular value decomposition RX = UΣV ′ where U, V ∈ O(p)

and Σ contains the singular values ψ1 ≥, . . . ,≥ ψr > 0 on its main diagonal; here,

r ≤ p denotes the rank of RX . With this, a whitening matrix is defined as C = Σ0U
′
0

where Σ0 = diag(1/
√
ψ1, . . . , 1/

√
ψr) is a diagonal matrix and U0 consists of the first r

columns of U . The new data CX =
(
Cx(t)

)T
t=1

has then unit variance. To see this we

need to consider the strong relation between singular value and eigenvalue decomposi-

tion discussed in Section 3.1. For the symmetric and positive semi-definite covariance

matrix RX an eigenvalue decomposition is given by RX = UΣU ′ and we, thus, have

Cov(Cx(t), Cx(t)) = Σ0U
′
0Cov(x(t), x(t))(Σ0U

′
0)′

= Σ0U
′
0(UΣU ′)U0Σ0

= Σ0ΣΣ0 = Ip .

In practice, we use the singular value decomposition to determine a whitening matrix;

this decomposition can be calculated more robustly in general.

The above is closely related to principal component analysis (PCA). Here, the data is

projected to a new coordinate system by an orthogonal linear transformation. The first

new coordinate describes the dimension with highest variance in the original data, the

second new coordinate is orthogonal to the first and, again, describes the dimension with

the highest variance and so on. The transformed data has uncorrelated components and

can be determined as UX =
(
Ux(t)

)T
t=1

(Hyvarinen et al., 2002). In contrast to data

whitening, the covariance is here given by Σ, i. e. by the singular values of RX .

4.2 Independent component analysis

In independent component analysis (ICA) one assumes identical and independently

distributed random variables {s(t)}t∈Z such that

(I1) the components s1(t), . . . , sq(t) are stochastically independent

(I2) at least one component is Gaussian distributed

Comon (1994) originally stated that with (I1)-(I2) and a full-rank mixing matrix the

source signals are uniquely determined up to scaling and permutation. Further identi-

fiability properties have been investigated in Eriksson & Koivunen (2004) and Theis &
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Gruber (2005). In the following we shortly outline two substantially different approaches

to perform ICA.

4.2.1 Maximization of non-Gaussianity

A widely-used ICA approach is based on maximization of non-Gaussianity of the sig-

nals. The idea is that a linear mixture of stochastically independent random variables is

more Gaussian than the independent random variables itselves. This is a consequence of

the central limit theorem. Gaussianity here means the closeness of a distribution to the

Gaussian distribution. A measure is the kurtosis (Section 3.2.3); if a random variable

is Gaussian distributed then the kurtosis is zero. Algorithms based on this idea are,

for example, FOBI (Cardoso, 1990) and JADE (Cardoso & Souloumiac, 1993). Most effi-

ciently, fastICA (Hyvärinen & Oja, 1997) performs fixed-point kurtosis maximization.

After pre-whitening, w ∈ Sp−1 is chosen on the sphere such that kurt(w′X) is maximal

for given data X. Here, the gradient of kurt(w′X) is given by

∂ kurt(w′X)

∂w′
= 4 (E[(w′X)3X]− 3‖w‖22w)

and for an extremal point w ∈ Sp−1 it holds w ∝ grad(kurt(w′X)). A detailed derivation

can be found in Theis (2003). With this, w can be determined iteratively (Algorithm 1)

and the respective independent component (IC) is given by w′X. The above can be

extended to determine a p×p unmixing matrixW and p independent components. The

rows of W can be either estimated one after the other in a deflation-based approach or

simultaneously. For both one needs to assure that W is orthogonal. The two different

conceptual appraoches are discussed in more detail in Chapter 5 where we consider BSS

for weakly stationary time series.

4.2.2 Maximum likelihood estimation

Furthermore, maximum likelihood approaches have been introduced for the ICA model.

Let therefore X and S collect the observed and unobserved variables, respectively. If

we assume white Gaussian noise with diagonal covariance matrix Σ in (4.1) then the

likelihood of the BSS model is given by

f(X | A,S,Σ) = det(2πΣ)−
N
2 e−

1
2
Tr((X−AS)′Σ−1(X−AS)) .
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4.3 BSS for weakly stationary time series

Algorithm 1: fastICA (one independent component)
input : Pre-whitened data X
output: One independent component IC, unmixing vector w

initialize w ∈ Sp−1 randomly
repeat

w(0) = w

v = E[(w′X)3X]− 3w

w = v/‖v‖2
until ‖w − w(0)‖2 < ε;
IC = w′X

To estimate model parameters A, Σ and source signals S one can use expectation max-

imization methods. Belouchrani & Cardoso (1994) provided, for example, an expecta-

tion maximization scheme together with a stochastic version and Højen-Sørensen et al.

(2002) derived advanced mean-field approaches. An application of likelihood-based ICA

to neuroimaging data can be found in Hansen (2000).

4.3 BSS for weakly stationary time series

If the observations consist of time series signals we can use the temporal dependence

to perform source separation. Instead of assuming independent source components

we assume that the components are uncorrelated – even when shifted along the time

axis. Thus, the source components contain different temporal information and are not

identical up to a time shift. In contrast to ICA, this model allows multiple Gaussian

components in the unobserved process.

4.3.1 Diagonalization of autocovariances

To perform source separation based on the second-order statistics of the data we assume

that the stochastic processes are weakly stationary (Section 3.3). This means that the

mean and the autocovariances at any lag τ ∈ Z do not change with respect to time. The

separation assumption is that the autocovariances of the unobserved process at different
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lags are diagonal. In more detail, let the observed process {x(t)}t∈Z be zero-centered

after mean-removal and for the unobserved process {s(t)}t∈Z we assume

(A1) E[s(t)] = 0p ,

(A2) Cov(s(t), s(t)) = Ip ,

(A3) Cov(s(t), s(t+ τ)) = Dτ is diagonal for all lags τ ∈ Z , and

(A4) for all i 6= j ∈ {1, . . . , p} there exists a lag τ ∈ Z such that dτi 6= dτj where

dτi and dτj are the ith and jth diagonal entry of Dτ .

As stated in Sections 4.1.1 and 4.1.2 the assumptions (A1) and (A2) are without loss of

generality. If we assume a noise-free linear mixing the autocovariances of the observed

process are given by

Cov(x(t),x(t+ τ)) =

{
ADτA

′ τ 6= 0 ,

AA′ τ = 0 .

According to (A4), the mixing matrix A is uniquely determined up to sign and permu-

tation of the columns. To see this we consider the whitened process {x∗(t)}t∈Z with

mixing matrix A∗ ∈ O(p) introduced in Section 4.1.2. The decomposition A∗Dτ (A∗)′ is

then an eigenvalue decomposition of Cov(x∗(t),x∗(t+τ)). At a single lag τ some of the

eigenvalues dτ1, . . . , dτp might be identical and the columns of A∗ are not uniquely de-

termined. Together with (A4) we find that each column of A∗ generates a 1-dimensional

intersection of eigenspaces. Thus, A∗ (and with this also A) is uniquely determined up

to sign and permutation.

In the presence of white Gaussian noise, i. e. ε(t) ∼ N (0, σ2Ip) for t ∈ Z, the autocovari-

ance at lag zero is given by Cov(x(t),x(t)) = AA′ + σ2Ip. If we assume that the noise

variance is known or can be estimated from the data we get the same identifiability

properties as before (Tong et al., 1990).

If now observations X =
(
x(t)

)T
t=1

are given, one can jointly diagonalize sample autoco-

variances to determine an unmixing estimate. The sample autocovariance at lag τ ∈ Z

is given by

Mτ =
1

T − τ
T−τ∑
t=1

x(t)x(t+ τ)′ .

For joint diagonalization we use sample autocovariances at distinct lags τ1, . . . , τK ∈ Z

and assume that (A4) holds for {τ1, . . . , τK} instead of Z. For better readability, we
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denote the sample autocovariances as M1, . . . ,MK even if the lags are different from

1, . . . ,K. An unmixing estimate is then a p×pmatrixW = (w1, . . . , wp)
′ that minimizes

the off-diagonal elements of WMkW
′ for all k = 1, . . . ,K in the sense that

f(W ) =
K∑
k=1

‖off(WMkW
′)‖ 2

F . (4.2)

is minimized under the constraint WM0W
′ = Ip. Here, off(M) = M − diag(M) with

diag(M) a diagonal matrix consisting of the diagonal entries of M . From the spectral

theorem it follows that an optimal solution W is indeed an estimate of the unmixing

matrix.

4.3.2 Joint diagonlization algorithms

Many algorithms are based on the idea of (jointly) diagonalizing autocovariances, e. g.

AMUSE (Tong et al., 1990), SOBI (Belouchrani et al., 1997), TDSEP (Ziehe & Müller, 1998),

ACDC (Yeredor, 2002), and LSDIAG (Ziehe et al., 2003). Most of the algorithms require

pre-whitening of the data since the (un-)mixing estimate is orthogonal by construction.

For image processing the assumption of uncorrelated source components can be extended

to the spatial dimension of the data (Schießl et al., 2000; Theis et al., 2008). Moreover,

multi-dimensional autocovariances have been introduced yielding the algorithm mdSOBI

(Theis et al., 2004b). A review on joint diagonalization algorithms is for example given

in (Theis & Inouye, 2006). In the following we explain three important algorithms in

more detail.

SOBI (Belouchrani et al., 1997) is the original second-order blind identification algorithm

and jointly diagonalizes sample autocovariancesM1, . . . ,MK of pre-whitened data. The

algorithm is a generalization of the Jacobi technique to determine eigenvalue decompo-

sitions (Section 3.1). Starting with an orthogonal initial guess for the unmixing matrix,

the algorithm determines for each pair of rows in turn an optimal Jacobi rotation to

maximize (4.2). The current unmixing estimate is then rotated in the plane spanned

by the two rows. If only one sample autocovariance is considered (i. e. K = 1) the

algorithm exactly yields the Jacobi technique. Similar joint diagonalizing procedures

have been discussed in Bunse-Gerstner et al. (1993) and Cardoso & Souloumiac (1996).
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ACDC (Yeredor, 2002) is a non-orthogonal algorithm to jointly diagonalize M1, . . . ,MK .

The weighted cost-function is here defined by

h(A,D1, . . . , DK) =
K∑
k=1

λk‖Mk −ADkA
′‖ 2

F ,

where λ1, . . . , λK ∈ R+ are known positive weights and D1, . . . , DK are diagonal ma-

trices. The algorithm performs two optimization steps in turn. In the AC-step the

above cost-function is minimized w.r.t. one single column of the mixing matrix A and

in the DC-step it is minimized w.r.t. all diagonal matrices Dk. Since the final mixing

estimate is not necessarily orthogonal, ACDC does not require pre-whitened data. To

approximately fulfill (A2) from Section 4.3.1 the set of autocovariances should include

M0 at lag zero.

The “Algorithm for Multiple Unknown Signals Extraction” (AMUSE) was introduced by

Tong et al. (1990). In contrast to true joint diagonalization approaches, only one au-

tocovariance (at a single lag τ ∈ Z) is considered. The algorithm forms the basis

for the extension to network data in the next section and we therefore present data-

pre-processing and the diagonalization scheme in more detail. The original algorithm

assumes white Gaussian noise and determines its variance from the data. In Algorithm 2

we only present the version for a noise-free linear mixing.

Algorithm 2: Amuse
input : Observations X
output: Source signals S, unmixing matrix W

% center and pre-whiten data

x(t)← x(t)− E[x(t)] remove sample mean
RX = E[x(t)x(t)′] sample covariance
RX ← UΣV ′ singular value decomposition
C = Σ0U

′
0 (Section 4.1.2)

Y = CX whitened data

% diagonalization

RY (τ) = E[y(t)y(t− τ)′] sample autocovariance at lag τ
RY (τ)← UΣV ′ singular value decomposition
W = U ′C

S = U ′CX
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4.3 BSS for weakly stationary time series

4.3.3 The Grade algorithm

Kowarsch et al. (2010) generalized the concept of weakly stationary time series to sig-

naling networks and provided a BSS approach similarly to AMUSE. The idea is to identify

source components that are uncorrelated when shifted along a given graph. Since the

separation is based on diagonalizing the graph-delayed covariance matrix we introduce

the concept at this point. The following refers to some properties of graphs discussed

in Section 3.4.1.

Let G = (V,E,K) be a weighted directed graph with V = {1, . . . , N} the set of nodes,

E ⊆ V ×V the set of edges and κij ∈ R are weights assigned to the edges (i, j) ∈ E. We

further assume, that 1, . . . , n0 − 1 are the root nodes of the graph. Let now
(
s(i)

)N
i=1

be random variables indexed according to the nodes V . Kowarsch et al. introduced the

graph-shift of s(i) as

sG(i) =
∑

j∈pa(i)

κjis(j) , (4.3)

where pa(i) are all parent nodes of i. With this, they defined the graph-delayed covari-

ance as Cov(s(i), sG(i)) and assumed that it is independent of the index i. This is the

stationarity assumption for graphs. Similarly to (A1)-(A4) for weakly stationary time

series data (Section 4.3.1), we get the following separation assumptions for signaling

data

(A1) E[s(i)] = 0p

(A2) Cov(s(i), s(i)) = Ip

(A3) Cov(s(i), sG(i)) = DPa is diagonal

(A4) the (diagonal) entries of DPa are pairwise different

Let now x(1), . . . , x(N) be pre-whitened data. To determine an unmixing estimate W

one diagonalizes the sample graph-delayed covariance which is given by

DPa
X =

1

N − n0 − 1

N∑
i=n0

∑
j∈pa(i)

κjix(j)x(i)′ . (4.4)

The resulting algorithm is called Grade – graph-decorrelation algorithm – and an imple-

mentation is provided in Algorithm 3. In case of a line-graph the above BSS approach

corresponds to AMUSE, and in case of a graph with no egdes we get the same as principal
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4. BLIND SOURCE SEPARATION

component analysis. In Chapter 6 we invent a new probabilistic formulation of the

algorithm where we use a Bayesian network to model the variables.

Algorithm 3: Grade
input : Observations X, weighted directed acyclic graph G
output: Source signals S, unmixing matrix W , graph-decorrelation DPa

% center and pre-whiten data

x(i)← x(i)− E[x(i)] remove sample mean
RX = E[x(i)x(i)′] sample covariance
RX ← UΣV ′ singular value decomposition
C = Σ0U

′
0 (Section 4.1.2)

Y = CX whitened data

% diagonalization

DPa
Y = E[y(i)yG(i)′] sample graph-delayed covariance

DPa
Y ← UΣV ′ singular value decomposition

W = U ′C

S = U ′CX

4.4 Non-negative matrix factorization

To give a broader view of existing BSS approaches we shortly outline non-negative

matrix factorization (NMF). In NMF we assume non-negative observations and sources

together with a non-substractive mixing. In contrast to previously discussed methods,

we have no further assumptions about statistical dependencies of the latent variables.

The non-negativity constraint opens a large field of applications and it has successfully

been applied in the context of image recognition (Lee & Seung, 1999), text data mining

(Pauca et al., 2004) and gene expression analysis (Gao & Church, 2005; Kim & Park,

2007).

Let now X ∈ Rp×N be an observed non-negative matrix. We aim to decompose X

into non-negative matrices A ∈ Rp×q and S ∈ Rq×N such that X ≈ AS. NMF can be

formulated as a constrained optimization problem where we minimize

f(A,S) =
1

2
‖X −AS‖ 2

F s.t. A, S ≥ 0 .
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Here, A,S ≥ 0 means that all entries of A and S are non-negative. Lee & Seung (2001)

introduced multiplicative update rules to determine A and S – both updates assure a

non-increasing cost-function f . A detailed review about existing NMF algorithms is

given in Berry et al. (2007).

Furthermore, penalized optimization can be used to learn a sparse non-negative repre-

sentation of X. The problem is known as sparse NMF and can be formulated as

fpen(A,S) =
1

2
‖X −AS‖ 2

F + α ‖A‖ 2
F + β ‖S‖ 2

F s.t. A, S ≥ 0 .

Here, α and β are the penalization parameters that press single entries of A and S

to zero. According to Tibshirani (1996) the L1-norm is more appropriate to enforce

sparsity than the L2-norm. Sparse NMF has for example been applied to gene expres-

sion data to classify cancer (Gao & Church, 2005; Kim & Park, 2007). In Appendix A

we discuss a similar penalization for the problem of jointly diagonalizing autocovari-

ances. However, since the non-negativity constraint is replaced by a (contradictory)

orthogonality constraint naive numerical optimization fails.

4.5 Performance indices

In this part we discuss performance measures for BSS approaches. Since NMF is very

different in terms of identifiability we focus on ICA and weakly stationary time series

approaches. For these BSS methods a variety of performance indices have been pro-

posed. An overview and comparison is, for example, given by Nordhausen et al. (2011).

There are two different conceptual approaches – the first is based on the (un-)mixing

estimate the second on the estimated source sequence.

For an evaluation based on the (un-)mixing estimate one typically considers the gain

matrix G = ŴA where Ŵ denotes the unmixing estimate and A is the true mixing

matrix. A well-known index that is easy to compute is the Amari error (Amari et al.,

1996) defined by

AE(G) =
1

2p(p− 1)

[ p∑
i=1

( p∑
j=1

|gij |
maxk |gik|

− 1
)

+

p∑
j=1

( p∑
i=1

|gij |
maxk |gkj |

− 1
)]

,
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4. BLIND SOURCE SEPARATION

where G = (gij)ij . The index yields values in [0, 1], and the smaller the value the better

is the estimate Ŵ . Due to a common indeterminacy of BSS models (Section 4.1.1) we

have for any true unmixing matrix thatWA = LPD, where L is a sign-changing matrix,

P is a permutation matrix andD is diagonal with positive entries. The Amari error only

corrects for sign-changing and permutations. To fairly compare unmixing estimates in

the presence of scaling indeterminacies, Nordhausen et al. (2008) introduced a unique

sorting and scaling of Ŵ .

An affine invariant performance index is the minimum distance index (Ilmonen et al.,

2010; Theis et al., 2004a) defined by

MDI(G) =
1√
p− 1

inf
C∈C
‖CŴA− Ip‖F .

Here, C is the set of p × p matrices with one non-zero entry per row and column. In

other words, C consists of matrices C = LPD with L, P and D as before. Thus, the

MDI is independent of sign, permutation and scaling of the rows of Ŵ . The index yields

values in [0, 1], and we say that the unmixing estimate Ŵ is close to the true unmixing

matrix if this value is close to zero. For a fast computation we consider G̃ with entries

g̃ij = g2
ij/
∑p

k=1 g
2
ik for i, j = 1, . . . , p. The MDI can then be reformulated as

MDI(G) =
1√
p− 1

(
p−max

P
(Tr(PG̃))

)1/2
,

with permutation matrix P . The maximization can efficiently be calculated using linear

programming.

To evaluate the performance based on the estimated source signals Ŝ one uses the mean

squared error

MSE(Ŝ, S) =
1

dN
min
L,P
‖LPŜ∗ − S∗‖ 2

F .

As before, L is a sign-changing matrix and P a permutation matrix. Ŝ∗ and S∗ denote

the estimated and true source signals scaled to unit sample variance. In the signal

processing community, e. g. in Karvanen et al. (2000), one often considers the signal-

to-inference ratio. This performance measure transforms the MSE to logarithmic scale

and is defined as SIR = −10 log10(MSE(Ŝ, S)).

In Chapter 6 we introduce a new BSS approach where the mixing matrix is not neces-

sarily quadratic and the mixing estimate is unique up to sign and permutation of the
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columns. Mixing matrix and source signals are jointly estimated using a log-likelihood

approach and the source signals follow a normal distribution with unit variance. To

evaluate Â ∈ Rp×q and Ŝ ∈ Rq×N with respect to the model assumptions and model

indeterminacies we use a normalized version of the Frobenius matrix norm and correct

for the model indeterminancies. We define the distance measures for mixing matrix and

source signals as

minDist(Â, A) =
1√
pq

min
L,P
‖ ÂLP −A ‖F , (4.5)

minDist†(Ŝ, S) =
1√
qN

min
L,P
‖LPŜ − S ‖F . (4.6)

Both distances are not scaled to [0, 1] but like above a low value indicates a better

fit. The distances minDist and MDI usually differ since only the latter optimizes with

respect to the scaling of the mixing rows. minDist†, in contrast, is directly related to

the MSE – in our model we assume that the sources are scaled to unit variance and

thus we omit the scaling to unit sample variance for the distance measure.

In this chapter we gave a review about existing BSS methods for time series data, images

and network data. In particular, we introduced the concept of joint diagonalization

of autocovariances – this concept is continued in Chapter 5 – and we introduced the

algorihtm Grade which leads the way to its probabilistic extension emGrade in Chapter 6.
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5

Separation of time series data

In this chapter we start our investigation of probabilistic blind source separation ap-

proaches with time series data. Thus, the variables (time points) are linked by a line-

graph and we move on to more complex structures in the later chapters.

We focus on the joint diagonalization methods SOBIdef and SOBIsym for separating

weakly stationary time series (Miettinen et al., 2014, 2015). The latter has only re-

cently been submitted in joint work. For both algorithms the (un-)mixing estimates

are asymptotically normally distributed under mild conditions and one can determine

limiting variances of the estimates when the time series length goes to infinity. We

shortly review the algorithms, discuss further variants and compare all algorithms to

widely-used BSS methods. In the second part we use the limiting distributions to

perform probabilistic pattern identification: We want to decide whether close-to-zero

entries of the mixing estimate are actually zero and, thus, determine the zero-pattern

of the true mixing matrix. To achieve this we formulate hypothesis tests and model

selection approaches using the limiting distributions of the estimates and we validate

both in simulations.

The chapter is based on and in parts identical with the following publications

• K. Illner, J. Miettinen, C. Fuchs, S. Taskinen, K. Nordhausen, H. Oja, F.J. Theis

(2015). Model selection using limiting distributions of second-order blind source

separation algorithms. Signal Processing, 113, 95–103.
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5. SEPARATION OF TIME SERIES DATA

• J. Miettinen,K. Illner, K. Nordhausen, H. Oja, S. Taskinen, F.J. Theis. Separation

of uncorrelated stationary time series using autocovariance matrices, accepted for

Journal of Time Series Analysis.

5.1 Probabilistic pattern identification

In applications of BSS models, sometimes questions about the shape (or pattern) of the

mixing matrix arise. In the following we outline two scenarios where sound decisions

about the mixing pattern are needed.

In some applications we are interested in active source signals. In the several speakers

problem, for example, we want to decide whether a single speaker’s sound is recorded

by a specific microphone or not. This is related to the question whether single entries in

the mixing matrix are zero. If the jth source signal is not present in the ith observation

then the entry (i, j) of the mixing matrix is zero. We are therefore interested in the

zero-pattern of the mixing matrix, i. e. the positions of zero-entries. Nevertheless, BSS

algorithms typically estimate a dense matrix where no entry is exactly equal to zero.

Simple thresholding implies the cruical choice of an appropriate cutoff and does not

appear convincing.

Experimental data are often collected under various experimental conditions like treat-

ment vs. control or rest period vs. stimulus. In Hong & Calhoun (2004) and Beckmann

& Smith (2004), for example, ICA methods are applied to human fMRI data (images

of the brain activity) where the patients go through periods of rest and visual or audio-

visual stimuli. Here, it is interesting to decide which source signals are task-related

(McKeown et al., 1998). Since the columns of the mixing matrix reflect the impact of

the respective source signals among the different stimuli we want to test whether mixing

columns are (statistically) significantly different from some pre-defined index vector.

To provide profound answers to these questions we use limiting distributions of the

mixing estimates. Limiting distributions describe the asymptotic distribution of the

mixing estimate when the time series length goes to infinity. In Ollila & Kim (2011),

for example, such distributions are derived for the fastICA estimate of the independent

component model and in Miettinen et al. (2012) for the AMUSE estimate of the BSS

58



5.2 Deflation-based and symmetric approaches

model for weakly stationary time series. In this chapter, we focus on the joint diago-

nalization (JD) problem from Section 4.3.1 with the algorithms SOBIdef and SOBIsym

(Miettinen et al., 2014, 2015). If we fix a mixing model (i. e. the mixing matrix and

the time series model of the source signals) and consider several samples from the time

series {s(t)}t∈Z we find that the mixing estimates approximately follow normal distri-

butions (Figure 5.1). If {s(t)}t∈Z is an MA(∞)-process the limiting distributions can

be calculated or approximated from the estimated source signals. With this additional

information about the mixing estimates we provide a family of linear hypothesis tests

to decide whether mixing columns are of some pre-defined shape and we provide model

selection approaches to identify the most appropriate zero-pattern of the mixing matrix.

If we are only interested in the zero-entries of the mixing matrix, another idea might

be to add a penalty term to the JD problem (4.2). However, numerical optimization of

such a penalized version fails in practice and we discuss the reasons in Appendix A.

In the following we first introduce the algorithms SOBIdef and SOBIsym and compare

them to other BSS methods. We then move on to the limiting distributions of the

(un-)mixing estimates and introduce and validate probabilistic pattern identification

approaches.

5.2 Deflation-based and symmetric approaches

We consider the BSS model for weakly stationary time series introduced in Section 4.3.1.

Thus, let {x(t)}t∈Z be a p-variate observed time series that is weakly stationary and

zero-centered. We assume a noise-free linear mixing

x(t) = A s(t) , t ∈ Z, (5.1)

where A is a deterministic full-rank p × p mixing matrix and {s(t)}t∈Z is a p-variate

unobserved time series that fulfills assumptions (A1)-(A4) from page 48. Given data

X =
(
x(t)

)T
t=1

let M1, . . . ,Mk denote the sample autocovariances at distinct lags

τ1, . . . , τK ∈ Z. M0 is the sample autocovariance at lag zero. An unmixing estimate W

can be determined by minimizing

f(W ) =

K∑
k=1

‖diag(WMkW
′)‖ 2

F =

p∑
j=1

K∑
k=1

(w′jMkwj)
2 (5.2)
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Figure 5.1: Asymptotic variance. Histrograms of the SOBIsym mixing entries A(1, 1)

and A(1, 2) derived from 10, 50 and 1 000 simulations of an observed time series. The
observations are generated from three AR(1)-processes with coefficients 0.9, −0.6, and 0.3

and fixed mixing matrix. The right plots also indicate the true mean (red) together with
the (theoretically) asymptotic distribution (green).

under the constraintWM0W
′ = Ip. This constraint maximization problem is equivalent

to the constraint minimization (4.2) discussed in Section 4.3.1.

There are several ways to determine an optimal solution of (5.2). In the following we

recall two conceptual approaches introduced by Miettinen et al. (2014, 2015). In the

deflation-based approach the single rows of the unmixing matrix are estimated one after

the other, in the symmetric approach, in contrast, all rows are estimated simultaneously.

We derive the estimating equations and provide algorithms for both approaches.

5.2.1 Deflation-based SOBI

We consider the single rows of the unmixing matrix one after the other and successively

maximize the inner sums of (5.2). Thus, at each step j = 1, . . . , p− 1 we maximize

fj(wj) =

K∑
k=1

(w′jMkwj)
2 (5.3)

under the constraint w′jM0wj = δrj for r ≤ j. The constraint assures that for the

final unmixing estimate it holds W ′M0W = Ip. To address this constraint optimization
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5.2 Deflation-based and symmetric approaches

problem we use the Lagrange multiplier technique (Sun & Yuan, 2006). The Lagrangian

function is given by

L(wj , λj) =
K∑
k=1

(w′jMkwj)
2 − λjj(w′jM0wj − 1)−

j−1∑
r=1

λjr(w
′
rM0wr − 0)

where λj = (λj1, . . . , λjj)
′ are the Lagrangian multipliers for wj . If ŵj is an optimal

solution of the constrained maximization problem (5.3) then λ̂j ∈ Rj exists such that

the first-order partial derivatives of the Lagrangian function vanish at (ŵj , λ̂j). The

partial derivative of L(wj , λj) with respect to wj is given by

∂L

∂wj
= 2

K∑
k=1

(w′jMkwj)Mkwj − 2λjjM0wj − 2

j−1∑
r=1

λjrM0wr .

If we set ∂L/∂wj equal to zero, multiply both sides from the left with w′i and summate

the resulting equations for all i < j we obtain the estimating equations for the deflation-

based approach. For better readability we use the abbreviation

H(wj) =

K∑
k=1

(w′jMkwj)Mkwj .

Proposition 5.1. Let W = (w1, . . . , wp)
′ be an optimal BSS unmixing estimate derived

by a deflation-based approach using autocovariance matrices M0, M1, . . . ,MK . Then
wj for j = 1, . . . , p− 1 solves the estimating equation

H(wj) = M0(

j∑
r=1

w′rwr)H(wj) .

The algorithm SOBIdef (Algorithm 4) determines an unmixing estimate according to the

above estimating equations. In the algorithm we assume that the data is pre-whitened

(i. e. M0 = Ip) and the unmixing estimate is orthogonal. It can be easily seen that after

convergence the estimating equations in Proposition 5.1 are fulfilled (Miettinen et al.,

2014, Appendix A).

The performance of SOBIdef depends on the extraction order of the rows, or equiv-

alently, on permutations of the initial vectors w1, . . . , wp. If we consider all p! per-

mutations we get up to p! different unmixing estimates with different values for the

maximization function (5.2). This behavior has been studied in detail in Miettinen
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Algorithm 4: SOBIdef
input : Autocovariances M1, . . . ,MK of pre-whitened data
output: Orthogonal unmixing estimate W

for j = 1, . . . , p− 1 do
inititalize wj optimal (cf. p.62)
repeat

w
(0)
j = wj

wj ← H(wj)

wj ← (Ip −
∑j−1

r=1wrw
′
r)wj

wj ← wj/ ‖wj‖2
until ‖wj − w(0)

j ‖2 < ε or ‖wj + w
(0)
j ‖2 < ε;

et al. (2014). As optimal initialization the authors introduced the following: Among

a set of random vectors wj orthogonal to the first estimates ŵ1, . . . , ŵj−1 one chooses

wj with highest value fj(wj) =
∑K

k=1(w′jMkwj)
2; this vector wj is then used as initial-

ization at step j. If the considered set of random vectors is sufficiently large, SOBIdef

becomes independent of the initial guess. Furthermore, the unmixing estimate derived

from SOBIdef is affine equivariant.

5.2.2 Symmetric SOBI

In the symmetric approach all rows of the unmixing matrix are estimated at once, such

that the complete sum in (5.2) is maximized. The constraint WM0W
′ = Ip can be split

into single constraints w′iM0w
′
j = δij for i, j = 1, . . . , p. Since M0 is symmetric it holds

w′iM0wj = w′jM0wi and we, thus, have (p+1)p/2 different constraints. The Lagrangian

function is given by

L(W,Λ) =

p∑
j=1

K∑
k=1

(w′jMkwj)
2 −

p∑
j=1

λjj(w
′
jM0wj − 1)−

p∑
j=1

j−1∑
r=1

λjr(w
′
rM0wj − 0) ,

where Λ = (λij) is a symmetric matrix of Lagrange multipliers. The partial derivation

with respect to wj can be derived similarly to the deflation-based approach and for a

solution W it holds

2H(wj) = M0

(
2λjjwj+

j−1∑
r=1

λrjwr +

p∑
r=j+1

λjrwr

)
.
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As outlined in Miettinen et al. (2015), multiplying both sides from the left with w′i

yields 2w′iH(wj) = λij for i < j and 2w′iH(wj) = λji for i > j. Since Λ is symmetric

we obtain the following estimating equations for the symmetric approach.

Proposition 5.2. Let W = (w1, . . . , wp)
′ be an optimal BSS unmixing estimate derived

by a symmetric approach using autocovariance matrices M0, M1, . . . ,MK . Then for
i, j = 1, . . . , p it holds

w′iH(wj) = w′jH(wi) and w′iM0wj = δij .

To provide a BSS algorithm, we assume as before that the data is pre-whitened. SOBIsym

(Algorithm 5) determines the unmixing estimate according to the above estimation

equations, i. e. after convergence the estimating equations are fulfilled. In the algo-

rithm, svd(W ) denotes orthogonalization of W using the singular value decomposition

(Section3.1).

Algorithm 5: SOBIsym
input : Autocovariances M1, . . . ,MK of pre-whitened data
output: Orthogonal unmixing estimate W

initialize W ∈ O(p) randomly
repeat

W (0) = W

W ← (H(w1), . . . ,H(wp))

W ← svd(W )

until ‖W −W (0)‖F < ε;

5.2.3 Pairwise variants

The widely-used JD algorithm SOBI (Section 4.3.2) uses Jacobi rotations to update pairs

of mixing columns. Accordingly, we now discuss two pairwise methods based on updates

H( . ). For both methods we fix a sequence of pairs of indices (i, j) with i < j and repeat

updating the complete sequence until convergence. The algorithms assume pre-whitened

data and only differ in the orthogonalization step. For SOBIpairs1 (Algorithm 6) we

use the singular values decomposition. Here, svd†(wi, wj) denotes orthogonalization
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of wi and wj using the singular values decomposition in the 2-dimensional subspace

spanned by these vectors; after orthogonalization we perform back-transformation into

the original space. For SOBIpairs2 (Algorithm 7), in contrast, we use Gram-Schmidt

orthogonalization.

Algorithm 6: SOBIpairs1
input : Autocovariances M1, . . . ,MK of pre-whitened data
output: Orthogonal unmixing estimate W

initialize W ∈ O(p) randomly
repeat

W (0) = W

for i = 1, . . . , p do
for j = i+ 1, . . . , p do

(wi, wj)← (H(wi), H(wj))

(wi, wj)← svd†(wi, wj)

until ‖W −W (0)‖F < ε;

Algorithm 7: SOBIpairs2
input : Autocovariances M1, . . . ,MK of pre-whitened data
output: Orthogonal unmixing estimate W

initialize W ∈ O(p) randomly
repeat

W (0) = W

for i = 1, . . . , p do
for j = i+ 1, . . . , p do

(wi, wj)← (H(wi), H(wj))

wi ← (Ip −
∑

r 6=i,r 6=j wrw
′
r)wi

wi ← wi/ ‖wi‖2
wj ← (Ip −

∑
r 6=j wrw

′
r)wj

wj ← wj/ ‖wj‖2
until ‖W −W (0)‖F < ε;

The column updates of these pairwise methods are different from the Jacobi rotations

in SOBI. However, we found in our simulations that after convergence SOBIpairs1 and

SOBI lead to exactly the same estimates. The estimates derived from SOBIpairs2 are
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not affine equivariant. To assure affine equivariance for all proposed second-order blind

identification variants one can use the AMUSE unmixing estimate as initialization. This

yields a coherent initialization since the AMUSE estimate is affine equivariant.

For both pairwise methods we investigated a variety of modifications. Since the orthog-

onalization is only symmetric in the first version, we determined in the second version

for each pair (i, j) whether the update of (wi, wj) or (wj , wi) leads to the better im-

provement on the estimate. Furthermore, we considered for both algorithms all pairs of

indices (i, j) with i 6= j (instead of i < j). We introduced inner convergence where we

repeat the update and orthogonalization step for each pair until convergence. In con-

trast, we determined a best sequence of pairs (i. e. at each step we determined the pair

whose update leads to the highest increase of (5.2)) and we update that sequence once.

All these modifications did not lead to a truly better performance and a comparison is

given in the next section.

5.3 Algorithm performance

We consider the following four time series models:

(i) AR(4)-model : three AR(4)-processes with coefficient vectors (0.2,−0.5, 0.5,−0.4),

(0.3, 0.1,−0.7, 0.2), (−0.2, 0.3, 0.1, 0.1) and normal innovations

(ii) ARMA-model : three ARMA-processes with AR-coefficient vectors (−0.4, 0.2,

−0.3), (0.2, 0.5,−0.1), (0.5,−0.1, 0.1) and MA-coefficient vectors (0.1,−0.3, 0.2,

0.2,−0.1), (0.7, 0.4,−0.3, 0.1,−0.2), (−0.5,−0.4,−0.2, 0.5, 0.1) and normal inno-

vations

(iii) mixed model : one AR(3)-, one AR(1)-, one MA(10)-process with coefficient vectors

(0.5, 0.1, 0.3), (0.7), (0.4, 0.2,−0.1,−0.4, 0.3, 0.2, 0.6, 0.1,−0.3,−0.1) and normal

innovations

(iv) close-coefficient model : three MA(3)-processes with coefficient vectors (−0.25, 0.1,

0.5), (−0.3, 0.1, 0.35), (−0.2, 0.07, 0.4) and normal innovations

From all models we generate times-series of length T and scale each component to

unit variance. We mix observations from these source signals using a random mixing
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matrix A with entries from U [−1, 1]. For joint diagonalization we consider sample

autocovariances at lags τ = 1, . . . ,K. Note, that all algorithms are applied to the

whitened data, and we need to transform the estimate to the original coordinate system

afterwards. Further, all algorithms contain loops to update the single vectors or matrices

iteratively. In the simulations we repeat these loops until the change in terms of the

Frobenius norm (of the updated vector or matrix) is less than 10−6, or a maximum

number of 1 000 iterations is achieved. If there is no convergence after this maximum

number of iterations we consider the run as non-convergent. All non-convergent runs

are excluded from the performance results.

In Figure 5.2 A.-C. we generated data from models (i)-(iii) with a sample size of

T = 10 000 and used sample autocovariances at lags τ = 1, . . . , 10 for joint diagonal-

ization. All algorithms are initialized with the identity matrix – except SOBIdef which

has some intern randomization for correct row selection. An initialization with the

AMUSE estimate only changes the performance of SOBIpairs2 and this improved result

is also added to the comparison. In these first abundant data situations all algorithms

achieve comparable performances, where SOBIdef is slightly slower in terms of runtime.

Surprisingly, SOBI, SOBIsym and SOBIpairs1 lead to exactly the same estimates after

convergence, and this was true for all considered data situations.

We then move on to more challenging data situations. In Figure 5.3 D. we consider

model (i) but reduce the length of the time series to T = 50, in E. we add noise

from N (0, 0.3) to each observation, and in F. we consider the close-coefficient model

(iv). For the pairwise methods SOBIpairs1+2 and the non-orthogonal ACDC the runtime

increases and the estimates of SOBIdef and SOBIpairs1 show a decrease in performance.

A summary of the performances over all considered examples A.-F. is given in Table

5.1.

In the previous section we discussed several modifications of SOBIpairs1+2 where we

updated all pairs (wi, wj) for i 6= j, introduced inner convergence and determined a best

sequence of pairs that we update once. For SOBIpairs2 we also determined the better

pair (wi, wj) or (wj , wi) to be updated. Figure 5.5 shows the estimation performance of

all these modifications. In the plots we consider data from the AR(4)-model (i) and the

close-coefficient model (iv). As before the time series length is fixed at T = 10 000 and
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Table 5.1: Summary of JD performances. Median MDI and median runtime together with
the interquantile range IQR (i. e. the difference between the 75% and the 25% quantile)
over all six time series examples from Figure 5.2 and 5.3. The last column indicates the
number of non-convergent runs among a total of 60 000 runs; these non-convergent runs
are omitted from the results.

MDI (IQR) time (in ms) (IQR) #non-convergent

SOBIdef 0.058 (0.276) 0.130 (0.030) 1

SOBIsym 0.049 (0.207) 0.010 (0.020) 1

SOBI 0.049 (0.207) 0.000 (0.000) 16

SOBIpairs1 0.049 (0.207) 0.060 (0.080) 1

SOBIpairs2 0.064 (0.280) 0.050 (0.050) 166

SOBIpairs2* 0.058 (0.280) 0.030 (0.030) 295

ACDC 0.049 (0.210) 0.050 (0.110) 0

for joint diagonalization we use autocovariances at lags τ = 1, . . . , 10. For SOBIpairs1

all modifications did not lead to a better performance. For SOBIpairs2 updating all

pairs slightly increased to estimation performance on data from model (iv) but with the

loss of a worse runtime. For both pairwise methods it was important to repeat updating

the complete sequence of pairs several times – if we consider a best sequence that we

update once the estimation performance strongly decreases.

For SOBIdef, SOBIsym and the original pairwise methods SOBIpairs1+2 we further il-

lustrate the convergence behavior. Figure 5.5 shows the MDI value among the single

iterations for data from time series models (i) and (iv). In case of SOBIdef the trace

contains jumps since we estimate the unmixing rows consecutively. Moreover, all algo-

rithms – except SOBIdef – determine in-between estimates that outperform the final

one.

To determine the impact of the number of sample autocovariances, we generated data

from model (i) and increased K = 3, . . . , 100. While the performance only slightly

changes we find a remarkable increase in runtime for SOBIdef and ACDC (Figure 5.6,

upper plots). Similarly, the dimensionality of the problem mainly affects the runtime;

the performance only slightly decreases. In dimensions p > 10 the estimation with
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5. SEPARATION OF TIME SERIES DATA

SOBIpairs1+2 was intractable and we focus on the remaining algorithms for increasing

dimensions p = 3, 5, . . . , 50 (Figure 5.6, lower plots).

In summary, we find that SOBI, SOBIsym and SOBIpairs1 yield the best overall perfor-

mances and determine exactly the same mixing estimates after convergence. Although

SOBI shows the lowest runtime among all algorithms, SOBIsym provides a reasonable al-

ternative and has the advantage that the limiting distributions of the mixing estimates

can be determined (Section 5.4). In comparison, ACDC is midrange and the algorithms

SOBIdef, SOBIpairs2 and SOBIpairs2∗ show an inferior performance in terms of cor-

rectness of the estimate and runtime. The AMUSE initialization in SOBIpairs2∗ mainly

affects the runtime and only slightly improves the estimation performance. Further-

more, all pairwise methods were intractrable in high dimensions (p > 10) and also the

runtime of ACDC does not scale well with the dimensionality.
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Figure 5.2: JD performance for different time series models. In A.-C. we show the
median MDI (upper plots) and the median runtime (lower plots) of the mixing estimates
over 10 000 repetitions. In A. the data was generated from the AR(4)-model (i), in B. from
the ARMA-model (ii) , and in C. from the mixed model (iii). The sample size is fixed at
T = 10 000 and for joint diagonalization we consider autocovariances at lags τ = 1, . . . , 10.
All algorithms are initialized with the identity matrix; for SOBIpairs2 we also show the
improved results with AMUSE initialization (*). Values between the plots indicate the counts
of larger MDI/time values above the axis scaling.
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Figure 5.3: JD performance for different time series models. In D.-F. we con-
sider challenging data situations and show the median MDI (upper plots) and the median
runtime (lower plots) of the mixing estimates over 10 000 repetitions. In D. the data was
generated from model (i) with a small sample size of T = 50, in E. the data was generated
from model (i) including additive noise, and in F. we used data from the close-coefficient
model (iv). If not stated differently, the sample size is fixed at T = 10 000 and for joint
diagonalization we consider autocovariances at lags τ = 1, . . . , 10. All algorithms are ini-
tialized with the identity matrix; for SOBIpairs2 we also show the improved result with
AMUSE initialization (*). Values between the plots indicate the counts of larger time values
above the axis scaling.
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Figure 5.4: JD performance for pairwise variants. The plots show the median
MDI (upper plots) and the median runtime (lower plots) of the mixing estimates derived
from all pairwise variants over 500 repetitions. In A. the data was generated from the
AR(4)-model (i) and in B. from the close-coefficient model (iv). The sample size is fixed at
T = 10 000 and for joint diagonalization we consider autocovariances at lags τ = 1, . . . , 10.
All algorithms are initialized with the identity matrix. Values between the plots indicate
the counts of larger MDI/time values above the axis scaling.
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Figure 5.5: JD convergence. The plots show the MDI values among the single iterations
of five estimation procedures of SOBIdef, SOBIsym, SOBIpairs1 and SOBIpairs2. Since
SOBIdef estimates the columns of the unmixing matrix one after the other we observe
jumps in the MDI trace. In A. the data was generated from the AR(4)-model (i) and in
B. from the close-coefficient model (iv) where the sample size is fixed at T = 10 000 and
for joint diagonalization we consider autocovariances at lags τ = 1, . . . , 10.
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Figure 5.6: JD performance for increasing number of autocovariances and in-
creasing dimension. Shown is the average MDI together with the upper and lower
25%-quantiles (left) and the average runtime (right) for the mixing estimates over 10 000

repetitions. Upper plots: The data was generated from the AR(4)-model (i) and has
a length of T = 10 000. For joint diagonalization we consider autocovariances at lags
τ = 1, . . . ,K with increasing K = 3, . . . , 100. Lower plots: The data was generated from
AR(3)-models with random coefficients in each dimension and has a length of T = 10 000.
For joint diagonalization we consider autocovariances at lags τ = 1, . . . , 10 and the dimen-
sion of the data increases from p = 3, . . . , 50. Note that SOBIsym, SOBI and SOBIpairs1
yield the same mixing estimates.
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5.4 Limiting distributions

The crucial point of strength about SOBIdef and SOBIsym is that we know the asymp-

totic distribution of the estimates. Under general multivariate time series assumptions,

the (un-)mixing matrix estimates converge in probability to a true (un-)mixing matrix

with limiting multivariate normal distribution. In the following we explain how the

limiting variances can be calculated when the underlying time series model is given and

how they can be estimated in case of real data. Further details and less restricting time

series assumptions can be found in Miettinen et al. (2014, 2015).

In the BSS model (5.1) with assumptions (A1)-(A4) from page 48 the separation into

mixing matrix and unobservable process is unique only up to sign-changing permuta-

tions. For the remaining part we need to clear this unidentifiability since we want to

compare mixing estimate and true mixing matrix on the level of single entries. We

therefore replace (A4) by the stronger assumption

(A4)∗
∑

k d
2
k1 > . . . >

∑
k d

2
kp, where dk1, . . . , dkp are the diagonal entries of the

autocovariance of {s(t)}t∈Z at lag k ∈ Z, and a′j1p ≥ 0 for all columns aj of

A, where 1p denotes a p-dimensional vector of ones.

With this the separation problem becomes unique: From (A4) it follows that the mixing

matrix A is unique up to sign-changing permutations. The first constraint in (A4)∗

determines the sorting of the components of {s(t)}t∈Z and thus the sorting of the

columns of A. The second constraint fixed the indeterminacy of scaling the columns

of A with ±1. To assure (A4)∗ for the SOBIdef and SOBIsym estimates we add a

post-processing step and sort the rows of the original unmixing estimate such that∑
k(wjMkw

′
j)

2 is decreasing for j = 1, . . . , p. In addition we may need to multiply single

columns by −1 to obtain positive column sums. For SOBIdef the discussed optimal

initialization assures that the above sums are decreasing; we only need to consider the

positive column sums.

We further specify the assumptions about the unobserved process. We assume a p-

variate MA(∞)-process as introduced in Section 3.3 where

s(t) =

∞∑
j=0

Ψj ε(t−j) , for t ∈ Z ,
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5.4 Limiting distributions

with matrices Ψj ∈ Rp×p and ε(t) ∼ N (0, Ip) for t ∈ Z. The more general assumption

that ε(t) are independent and identically distributed p-vectors is discussed in Miettinen

et al. (2014, 2015). According to (A2), the process {s(t)}t∈Z has unit variance; thus,

the matrices Ψj are diagonal and satisfy
∑∞

j=0 Ψ2
j = Ip for j ∈ Z.

The variance in the mixing estimates mainly depends on the autocovariances of the

unobservable process. Let therefore ψj = (ψj1, . . . , ψjp)
′ be the diagonal elements of Ψj

and we define

Fk =
∞∑
j=0

ψjψ
′
j+k , for k ∈ Z .

The diagonal elements of Fk are then the autocovariances of {s(t)}t∈Z at lag k. For

better readability we define the p× p matrix Q(lm) for lags l,m ∈ Z:

Q
(lm)
ii =

∞∑
s=−∞

(
(Fs+l)ii(Fs+m)ii + (Fs+l)ii(Fs−m)ii

)
,

Q
(lm)
ij =

∞∑
s=−∞

1

2

(
(Fs+l−m)ii(Fs)jj + (Fs)ii(Fs+l−m)jj

)
.

From now on we consider the mixing and unmixing estimates as p2-variate random

variables rather than concrete estimates. For visual distinction we use bold symbols

Â=(âij) and Ŵ =(ŵij)
′. We further use the notation vec( . ) to denote the columnwise

vectorization of a matrix. The following collects important results from Miettinen et al.

(2014, 2015) in a form useful for their application in practice.

Theorem 5.1. Let x(t) = Ip s(t), t ∈ Z, be an identity BSS model with mixing matrix
Ip, and let {s(t)}t∈Z be a p-variate MA(∞)-process as defined above. We assume (A1)-
(A3) and (A4)∗, and for joint diagonalization we consider sample autocovariances at
lags k ∈ {τ1, . . . , τK}.

If Ŵ is the SOBIdef or the SOBIsym estimate for the unmixing matrix based on obser-
vations x(1), . . . , x(T ), then Ŵ →pr Ip in probability and the limiting distribution of√
Tvec(Ŵ − Ip) for T →∞ is a p2-variate normal distribution with a mean vector zero

and a covariance matrix

Σ =
∑
i,j

vij (eie′i ⊗ eje′j) +
∑
i,j

cij (eie′j ⊗ eje′i) ,
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where ei and ej denote the canonical unit vectors with 1 at the ith or jth component,
and the non-zero coefficients vij and cij for i, j = 1, . . . , p are as follows:

a) If Ŵ is the SOBIdef estimate, then

vij =



∑
l,m dlidmiQ

(lm)
ij − 2µii

∑
k dkiQ

(k0)
ij + µ2

iiQ
(00)
ij

(µii − µij)2
i < j ,∑

l,m dljdmj Q
(lm)
ij − 2µji

∑
k dkj Q

(k0)
ij + µ2

jiQ
(00)
ij

(µji − µjj)2
i > j ,

4−1Q
(00)
ii i = j ,

cij = −vij +
µiiQ

(00)
ij −∑k dkiQ

(k0)
ij

µii − µij
, for i < j .

b) If Ŵ is the SOBIsym estimate, then

vij =



∑
l,m(dli − dlj)(dmi − λmj)Q(lm)

ij

(
∑

k(dki − dkj)2)2
+ · · ·

−2νij
∑

k(dki − dkj)Q
(k0)
ij + ν2

ij Q
(00)
ij

(
∑

k(dki − dkj)2)2
i 6= j ,

4−1Q
(00)
ii i = j ,

cij = vij +
νij Q

(00)
ij −∑k(dki − dkj)Q

(k0)
ij∑

k(dki − dkj)2
, for i 6= j .

Here, µij =
∑

k dkidkj and νij =
∑

k(d
2
ki−dkidkj) with dki, dkj the ith and jth diagonal

element of the autocovariance of {s(t)}t∈Z at lag k, and Q(lm) are as defined above.

Under the assumptions of Theorem 5.1 the relation between the limiting distribution of

mixing and unmixing estimate is given by
√
Tvec(Â− Ip) = −

√
Tvec(Ŵ − Ip) + opr(1) ,

where opr(.) is the order in probability. Thus,
√
Tvec(Â − Ip) and −

√
Tvec(Ŵ − Ip)

have the same limiting distribution in case of the identity mixing model. The coefficients

vij and cij are the asymptotic (co-)variances of
√
T ŵij for T → ∞. More precisely,

vij = AsVar(
√
T ŵij) and cij = AsCov(

√
T ŵij ,

√
T ŵji).

Since the SOBIdef and SOBIsym estimates are affine equivariant, one can further derive

the limiting distributions of the mixing and unmixing estimate in case of the general

model (A 6= Ip).
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Corollary 5.1. Let x(t) = As(t), t ∈ Z, be a BSS model with an arbitrary mixing
matrix A = W−1 and {s(t)}t∈Z as before. Then

√
Tvec(Â − A) and

√
Tvec(Ŵ −W )

are asymptotically normally distributed with a mean vector zero and covariance matrices
of the form

ASV (Â) = (Ip ⊗A) Σ (Ip ⊗A′) ,
ASV †(Ŵ ) = (W ′ ⊗ Ip) Σ (W ⊗ Ip) ,

where A⊗ B = (aijB)ij denotes the Kronecker product of two matrices and Σ is given
in Theorem 5.1.

Given a finite sample x(1), . . . , x(T ), the deflation-based or symmetric mixing estimate

Â is then approximately normally distributed as

N (vec(A) ,
1

T
ASV (Â)) ,

where the distribution depends on the true mixing matrix as well as the underlying

source model. Since in general the true mixing matrix and the source model are un-

known, we can approximate the distribution using the unmixing estimate Ŵ and the

estimated source signals Ŵx(1), . . . , Ŵx(T ). We determine the asymptotic variance us-

ing sample autocovariances of the source estimates and consider lags from a finite subset

of Z. In addition, we need to consider finite sums when calculating Fk, Q(lm) and Σ.

We denote the resulting finite-sample variance by ÂSV (Â). Functions to compute the

asymptotic and the finite-sample variances can be found in the R-package ‘BSSasymp’

(Miettinen et al., 2013).

5.5 Identification of the mixing pattern

Based on the limiting distributions from the previous section we now introduce prob-

abilistic concepts to decide whether close-to-zero-entries of the mixing estimate are

actually zero. With this, we can determine which source signals
(
sj(t)

)T
t=1

actually

contribute to an observation
(
xi(t)

)T
t=1

. We use the expression zero-pattern to refer to

the positions of zero-entries in the mixing matrix.
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Like in the previous section, we need to suppress the permutation indeterminacies of

the BSS model. Thus, we assume the model variation (A4)∗ from page 74 together with

the discussed post-processing of SOBIdef and SOBIsym.

5.5.1 Pattern identification via hypothesis tests

First, we investigate hypothesis tests on linear combinations of the mixing entries. Let

therefore x(1), . . . , x(T ) be observations of a BSS model with mixing matrix A. We

consider a family of linear null hypotheses H0 : Γ vec(A) = b and alternatives H1 :

Γ vec(A) 6= b, where Γ is a k × p2 matrix and b is a k-vector. If the rows of Γ contain

only one non-zero entry and this entry equals 1 we can test whether single entries of

Â are different from zero. Under the above null hypothesis and with Â the SOBIdef or

SOBIsym estimate we have
√
T (Γ vec(Â)− b) →d Nk(0,Γ(ASV (Â))Γ′)

in distribution. This can be used in a test construction (still under H0) as

M := (Γ vec(Â)− b)′
(
Γ(

1

T
ÂSV (Â))Γ′

)−1
(Γ vec(Â)− b) →d χ2

k .

Here, χ2
k denotes the chi-squared distribution with k degrees of freedom (Section 3.2.4)

and k is the number of linear equations in Γ vec(A) = b. If M is larger than the upper

αth quantile of χ2
k, we reject H0 with (asymptotic) probability of false alarm equal to α.

Similar test statistics have been introduced by Ollila & Kim (2011) for the independent

component model using the fastICA estimate.

To determine the zero-pattern of the mixing matrix we independently test H0 : aij = 0

vs. H1 : aij 6= 0 for all mixing entries. If H0 is not rejected we assume that the

corresponding entry is zero. This first approach for pattern identification is rather

simplistic since the dependence structure of the mixing entries is not taken into account.

In the simulations in Section 5.6 we refer to this approach as h-test.

5.5.2 Pattern identification via information criteria

We now move on to information criteria to select between different zero-patterns of the

mixing matrix. Let Ah denote a p × p matrix with zero-entries at positions given in
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5.5 Identification of the mixing pattern

h ⊆ {1, . . . , p}×{1, . . . , p}. Thus, h is the zero-pattern of Ah. In the following we define

the probabilistic model for such reduced mixing matrices.

According to Section 5.4, the mixing estimate Â is asymptotically normally distributed

with the mean being the true mixing matrix and variance given by the limiting variance.

Based on observations x(1), . . . , x(T ) one can estimate the variance using the finite

sample variance. A model for the (unknown) reduced mixing matrix Ah with zero-

pattern h is given by

N (vec(Ah) ,
1

T
ÂSV (Â)) , (5.4)

where ÂSV (Â) is the finite sample variance calculated from x(1), . . . , x(T ). The number

of model parameters equals the number of non-zero entries in Ah and for h = ∅ we get

the full model with p2 parameters. The observations are given by the mixing estimate

Â and with this the likelihood function is defined as `(Ah) = ln f(Â;Ah) where f is

the density function with respect to (5.4). Finally, let Âh = argmaxA `(Ah) denote the

maximum likelihood estimate of the reduced mixing matrix.

To determine the most appropriate zero-pattern of the mixing matrix, we study a com-

plete range of information criteria

IC(h) = −2 `(Âh) + kc , (5.5)

where h is any zero-pattern, k = p2− |h| denotes the number of model parameters, and

c is some constant. For c = 2 the above equation yields the Akaike information criterion

(AIC) and for c = ln(T ) the equation yields the Bayesian information criterion (BIC)

where T is the length of the observed time series (Section 3.5.4). With this, we identify

the lowest value IC(h) among all zero-patterns and the resulting h is the estimated

zero-pattern for the mixing matrix. In the result part we refer to this approach as AIC,

BIC, or IC.

In the above approach one needs to maximize the likelihood function for all zero-patterns

h to determine the reduced estimate Âh. To save computational time we invent a

more heuristic variant: Since Â itself is a mixing estimate, the non-zero entries of

Âh will typically be close at the corresponding entries of Â. Thus, we might directly

set entries of Â to zero and leave all other entries unchanged. For a zero-pattern h

we set Âh(i, j) = Â(i, j) for (i, j) 6∈ h and zero otherwise. Note that this approach
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yields different estimates than before whenever ÂSV (Â) contains non-zero off-diagonal

entries. Using this modified estimate Âh we again determine the zero-pattern with the

lowest value IC(h). We refer to this approach as AICmod, BICmod, or ICmod.

5.6 Simulations

In the following we first validate the test statistics from Section 5.5.1 and investigate

the impact of noise. We then provide a comparison of the three pattern identification

methods IC, ICmod and h-test from Section 5.5.2. We consider mixing matrices with

different numbers of zero-entries and different time series models.

We consider the AR(4)-model (i) from Section 5.3 and generate 3-dimensional data with

mixing matrix A = I3. For j = 1, 2, 3 we then test the hypothesis H (j)
0 : aj = ej vs.

H
(j)
1 : aj 6= ej , where ej is the canonical unit vector with 1 at the jth component. In

addition we consider the complete mixing matrix and test H (all)
0 : vec(A) = vec(I3) vs.

H
(all)
1 : vec(A) 6= vec(I3). For all these tests we can easily define a matrix Γ with entries

in {0, 1} such that Γ vec(A) = ej for j = 1, 2, 3 or Γ vec(A) = vec(I3), respectively. In

the first case the degrees of freedom of χ2
k equal p in the latter p2. Table 5.2 shows the

percentage of (falsely) rejected null hypotheses at significance level 0.05 over 5 000 runs

for a sample length of T = 500, 1 000, 10 000. We find a better identification for the first

column of the estimate, but for T = 10 000 all tests come close to the expected value of

5%.

We further address the question of how large entries of the mixing matrix must be

such that they can be identified as non-zero. We therefore replace the previous mixing

matrix, and we assume now that the first column of A is of the form a1 = (1, ε, 0)′.

All other entries are chosen randomly from the uniform distribution ±U [0.1, 1.0] (U1)

or ±U [0.5, 1.0] (U2). Here, ±U [v, w] for 0 < v < w denotes a uniform distribution

with support [−w,−v] ∪ [v, w]. We test H (1)
0 : a1 = e1 vs. H (1)

1 : a1 6= e1 for increasing

ε = 0, 0.01, . . . , 0.05 and with 1 000 runs in each case. The percentage of correctly

rejected null hypotheses increases with the value of ε and already at a value of ε = 0.02

we observe a rejection rate of 80% (Figure 5.7).
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Table 5.2: Hypothesis tests on mixing entries. We generate data from the AR(4)-model
(i) with a time series length of T = 10 000. The true mixing matrix is chosen as identity
matrix and for each column aj (j = 1, 2, 3) we test H(j)

0 : aj = ej vs. H(j)
1 : aj 6= ej .

In addition, we consider the complete mixing matrix and test H(all)
0 : vec(A) = vec(I3)

vs. H(all)
1 : vec(A) 6= vec(I3). The table shows the percentage of (falsely) rejected null

hypotheses at significance level 0.05 over 5 000 samples.

SOBIdef SOBIsym

T H
(1)
0 H

(2)
0 H

(3)
0 H

(all)
0 H

(1)
0 H

(2)
0 H

(3)
0 H

(all)
0

500 5.50 6.16 7.98 8.28 5.84 6.36 7.42 8.38

1 000 5.62 5.46 6.70 6.50 5.96 5.16 6.92 6.58

10 000 4.32 5.26 5.26 4.62 4.46 5.50 5.04 4.66

To perform model selection we generate data using the AR(4)-model (i) and fix the

sample size at T = 10 000. For the mixing matrix we consider the following four zero-

patterns:

A1 =
(
∗ 0 ∗
∗ ∗ ∗
∗ ∗ ∗

)
, A2 =

( ∗ 0 ∗
∗ ∗ 0
∗ ∗ ∗

)
, A3 =

(
∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

)
, A4 =

( ∗ 0 0
0 ∗ ∗
0 ∗ ∗

)
,

where (*) denotes the non-zero entries. In case 1, for example, the second source

signal has no impact on the first observation, and in case 3 the first observation

depends only on the first source signal and so on. Let hi denote the set of zero-

entries in each case, i.e. h1 = {(1, 2)}, h2 = {(1, 2), (2, 3)}, h3 = {(1, 2), (1, 3)} and

h4 = {(1, 2), (1, 3), (2, 1), (3, 1)}. The non-zero entries of the mixing matrix are chosen

randomly from the uniform distribution ±U [0.1, 1.0].

The SOBIdef and SOBIsym mixing estimates and their distributions are based on sample

autocovariances at lags τ = 1, . . . , 10. From these estimates we determine the most

appropriate zero-patterns following the three approaches in Section 5.5. For evaluation

we compare the zero-entries of the true mixing matrix to those of the estimated pattern.

Figures 5.8 and 5.9 show the percentage of correctly determined patterns (filled areas)

as well as the percentage of partly determined patterns (shaded areas), where not all

or more zero-entries were detected. We considered 500 samples from time series models

(i)− (iv) with random mixing matrices. We found a crucial increase in performance if

we used AIC/BIC with parameter maximization. In this case, BIC determined nearly
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Figure 5.7: Hypothesis tests on noisy mixing entries. The first column of the
mixing matrix is chosen as a1 = (1, ε, 0) for increasing ε, all other entries are randomly
sampled from U1=±U [0.1, 1.0] and U2=±U [0.5, 1.0]. The figure shows the percentage of
rejected null hypothesis H(1)

0 : a1 = e1 at significance level 0.05. In case of ε = 0, this is a
wrong decision, otherwise a correct one. We used 1 000 repetitions for each ε.

all zero-patterns for models (i)− (iii) correctly. For the close-coefficient model (iv) the

performance is significantly degrading.

We further investigated the impact of the information criterion constant c in (5.5) and

the sample size T . Figures 5.10 and 5.11 show the percentage of correctly determined

zero-patterns for SOBIsym estimate. The data was generated from time series models

(i) − (iv) with a sample length of T = 500, 1 000, 10 000. We increased c = 1, . . . , 100

where the BIC is given for c = 6.2, 6.9, and 9.2 depending on T . We find that in

nearly all settings IC clearly outperforms the modified IC. In comparison to the h-

test the information criterion is only slightly better. The highest rates of correct zero

detection are achieved for c = ln(T ) (BIC). Furthermore, the performance depends on

the underlying time series model; for the AR(4)-model (i) and the ARMA-model (ii) we

find higher recovery rates compared to the mixed-model (iii) and the close coefficient

model (iv).
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5.6 Simulations

Figure 5.8: Pattern identification to determine zero-entries of the mixing ma-
trix, models (i)-(ii). The data is generated using the AR(4)-model (i) (upper plot) and
the ARMA-model (ii) (lower plot) with a time series length of T = 10 000. The true mixing
matrix contains zeros at positions h1 = {(1, 2)}, h2 = {(1, 2), (2, 3)}, h3 = {(1, 2), (1, 3)}
and h4 = {(1, 2), (1, 3), (2, 1), (3, 1)}. We reconstruct these zero-patterns from the SOBIdef
and SOBIsym mixing estimates using the selection methods AIC, BIC, AICmod, BICmod
and h-test from Section 5.5. The percentages of correctly determined, under- and overde-
termined patterns over 500 repetitions are shown as filled, shaded and dark shaded areas,
respectively.
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5. SEPARATION OF TIME SERIES DATA

Figure 5.9: Pattern identification to determine zero-entries of the mixing ma-
trix, models (iii)-(iv). The data is generated using the mixed model (iii) (upper plot)
and the close-coefficient model (iv) (lower plot) with a time series length of T = 10 000.
The true mixing matrix contains zeros at positions h1 = {(1, 2)}, h2 = {(1, 2), (2, 3)},
h3 = {(1, 2), (1, 3)} and h4 = {(1, 2), (1, 3), (2, 1), (3, 1)}. We reconstruct these zero-
patterns from the SOBIdef and SOBIsym mixing estimates using the selection methods
AIC, BIC, AICmod, BICmod and h-test from Section 5.5. The percentages of correctly
determined, under- and overdetermined patterns over 500 repetitions are shown as filled,
shaded and dark shaded areas, respectively.
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Figure 5.10: Performance of the information criterion for increasing constant
c, models (i)-(ii). The data is generated using A. the AR(4)-model (i) and B. the
ARMA-model (ii) with a time series length of T = 10 000, T = 1 000 and T = 500 in
the single rows. The true mixing matrix contains zeros at positions h1 = {(1, 2)}, h2 =

{(1, 2), (2, 3)}, h3 = {(1, 2), (1, 3)} and h4 = {(1, 2), (1, 3), (2, 1), (3, 1)}. We reconstruct
these zero-patterns from the SOBIsym mixing estimates using the information criterion for
increasing constant c (with and without maximization) and the h-test. The figure shows
the percentage of correctly determined patterns over 500 repetitions. The black vertical
lines indicate the constant values c = 2 (AIC) and c = ln(T ) (BIC).
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Figure 5.11: Performance of the information criterion for increasing constant
c, models (iii)-(iv). The data is generated using C. the mixed model (iii) and D. the
close-coefficient model (iv) with a time series length of T = 10 000, T = 1 000 and T = 500

in the single rows. The true mixing matrix contains zeros at positions h1 = {(1, 2)}, h2 =

{(1, 2), (2, 3)}, h3 = {(1, 2), (1, 3)} and h4 = {(1, 2), (1, 3), (2, 1), (3, 1)}. We reconstruct
these zero-patterns from the SOBIsym mixing estimates using the information criterion for
increasing constant c (with and without maximization) and the h-test. The figure shows
the percentage of correctly determined patterns over 500 repetitions. The black vertical
lines indicate the constant values c = 2 (AIC) and c = ln(T ) (BIC).
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5.7 Conclusions

In this chapter we considered the second-order source separation methods SOBIdef and

SOBIsym. Both algorithms provide limiting distributions of the (un-)mixing estimates

and we developed solutions for scenarios where we can benefit from these distributions.

Firstly, we compared the relatively new methods to the well-established algorithms

SOBI and ACDC and to additional pairwise variants. In simulations we considered dif-

ferent time series models, different numbers of autocovariances and high dimensions.

The algorithms SOBIsym and SOBI provided exactly the same mixing estimates after

convergence and showed the best overall performance. SOBIdef yielded an inferior

performance with higher runtimes; ACDC performed midrange with a sharp increase in

runtime in high dimensions. The pairwise methods could not improve the estimation

performances and were intractable in higher dimensions.

In the second part we introduced the limiting distributions; based on these distributions

we formulated a family of linear hypothesis tests to compare linear combinations of the

mixing columns to pre-defined values. In particular, we tested the hypothesis that the

mixing columns equal the canonical unit vectors, i. e. the mixing matrix is the identity

matrix. Here, we considered 3×3 mixing matrices where the first column is of the form

(1, ε, 0)′ with increasing disturbance ε ≥ 0. We found correct rejection rates over 80%

for ε ≥ 0.02.

In addition, we proposed a model selection setup to determine the zero-pattern of mixing

matrices. We used a maximum-likelihood approach and a variant with lower computa-

tional costs and derived reduced mixing estimates with zero-entries at specific positions.

We then determined the most appropriate zero-pattern using model selection criteria

with different penalties for complexity. In simulations we found very high recovery rates

of the true zero-pattern using the BIC and hypothesis testing on single entries. The

other proposed methods tended to underestimate the number of zero-entries.

In the following chapters we expand the linear structure of time series to more complex

network structures, namely directed acyclic graphs. We introduce the probabilistic BSS

method emGrade based on Baysian networks; in the end, model selection criteria provide

again useful insights into the mixing process.
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6

Separation of network data

In this chapter we introduce the probabilistic BSS method emGrade. With this, we make

all gains from probabilistic BSS available for the application to network data. The term

“network data” here means that the information of the signals propagates along the

edges of an a priori known network. In our applications we focus on signaling data

from systems biology where the variables are for example given by genes connected by

a signaling pathway.

An analytical method to separate network data is Grade (Kowarsch et al., 2010) in-

troduced in Section 4.3.3. This method assumes stationary signals that are graph-

decorrelated. We continue this idea and derive a statistically interpretable model. We

first define a stationary Bayesian network to flexibly model the structure of the source

signals and then expand the network to incorporate the linear mixing. The method not

only determines estimates of the mixing and the underlying source signals, but also pro-

vides distributions of the estimates and makes model selection and Bayesian extensions

applicable. In the last part we evaluate the performance of emGrade and demonstrate

gains from the probabilistic modelling in simulations.

Parts of this chapter are already published in a journal and as a conference proceeding;

the latter also provides an application of emGrade to the gene expression data that were

originally used to evaluate Grade.

• K. Illner, C. Fuchs, F.J. Theis (2014). Bayesian blind source separation for data

with network structure. Journal of Computational Biology, 21, 855–865.
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• K. Illner, C. Fuchs, F.J. Theis (2012). Blind source separation using latent Gaus-

sian graphical models. In Proc. 9th International Workshop on Computational

Systems Biology (WCSB 2012), 34–37.

6.1 The idea of emGrade

Biological signaling pathways consist of variables that have an activating or inhibiting

effect on the other variables. To mathematically model such a structure we use Bayesian

networks (Section 3.4.3). Thus, we need to assume that the network is a directed acyclic

graph, in particular, there are no self-loops. Since Bayesian networks fulfill the Markov

property, we further assume that a variable given all its parents is independent of the

previous variables. Although these are restricting assumptions, Bayesian networks have

been successfully applied in the context of computational biology. In the literature, one

finds several approaches to learn a Bayesian network from biological signaling data, i. e.

one wants to determine the unknown network structure. The approaches mainly differ

in the definition of the conditional distributions of a variable given its parents. In the

following we shortly outline the various approaches.

Friedman et al. (2000) originally introduced Baysian networks for biological data. They

considered a multinomial model (with discrete variables) and a linear Gaussian model

to define the conditional distributions. Since the linear Gaussian model can only detect

dependencies that are close to linear an extension to also non-linear dependencies is

given by Imoto et al. (2002). Here, the dependence between a variable and its parents

is captured by a non-parametric regression with B-splines as basis. Hartemink et al.

(2001) and Pe’er et al. (2001) introduced edge-annotations for binary data: “+” indi-

cates a positive influence of a factor and “−” a negative influence. In the Bayesian

network these annotations are included as constraints on the parameters of the condi-

tional distributions.

We follow the approach of Friedman et al. (2000) and assume conditional Gaussian

distributions with linear dependencies. Instead of learning the network structure, we

assume that the network is a priori known. We use it to perform a more appropriate

source separation.
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A further key assumption in our model is stationarity of the signals. We follow the

approach of Kowarsch et al. (2010) who generalized the concept of stationarity from

time series signals to network data (Section 4.3.3). Basically, they assumed that all

variables share the same expectation and variance, and that the covariance between a

variable and the (weighted) sum of its parents is constant over the network. To define

the conditional distributions of the Bayesian network, we sharpen these assumptions

and assume that the covariance between two adjacent variables is constant up to a

known scaling factor. With this, the conditional distributions can be defined based on

a single parameter. The scaling factors are given as edge weights in the network. In a

gene regulatory network the weights refer, for example, to activation (+1) and inhibition

(−1).

Finally, we make a similar separation assumption as provided by Kowarsch et al. (2010).

We assume that the variance of each (multi-dimensional) variable as well as the covari-

ance between adjacent variables is diagonal. Later, we extend the model and assume

different network structures and thus different distributions for each source signal. In

this case, we model 1-dimensional sources that are idenpendent.

In the context of BSS we assume that we observe a linear mixture of the source signals.

If we consider the observations as a matrix, then one dimension represents the variables

(e. g. genes) that are connected by a known network structure. The second dimension

represents different time points or different experimental conditions. In addition, we

might have repeated measurements where one variable is measured multiple times un-

der the same condition. Or, on the other hand, some measurement components might

be unreliable or missing. If the data consists, for example, of microarray measurements

some probe sets on the chip can have extremely outlying values which prevent mean-

ingful source identification. In the last part we therefore extend the basic model and

account for repeated observations and missing components.

6.2 The source model

BSS approaches mainly differ in the source model, i. e. the assumptions on the source

signals. In the following we define a source model in terms of a stationary Bayesian net-
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work. We illustrate the distribution assumptions on graphs and explain the connection

to the Grade assumptions.

6.2.1 A stationary Bayesian network

Let G0 = (V,E) be a directed acyclic graph with V = {1, . . . , N} the set of nodes and

E ⊂ V × V the set of edges. Let the nodes be ordered such that for each node i all

parent nodes pa(i) = {j1, . . . , jni} have numbers lower than i. We further assume that

the first n0 − 1 nodes are the root nodes of the graph, i. e. pa(i) = ∅ for i < n0.

The associated Bayesian network is given by a set of random variables S =
(
s(i)

)N
i=1

such that the joint distribution decomposes as

p(S) =
N∏

i=n0

p(s(i) | Pa(i))

n0−1∏
i=1

p(s(i)) . (6.1)

Here, Pa(i) = (s(j1)′, . . . , s(jni)
′)′ with j1 < . . . < jni denotes the vector of all random

variables associated with the parent nodes of vi. We further assume that
(
s(i)

)N
i=1

are

q-dimensional Gaussian random variables with state space Rq.

Let now λij ∈ R be weights assigned to the edges (i, j) ∈ E. We denote the result-

ing weighted graph by G = (V,E,Λ). Let further s(i) and s(j) be random variables

associated with adjacent nodes of the graph. We make the following stationarity (and

scaling) assumptions:

(A1) E[s(i)] = 0q ,

(A2) Cov(s(i), s(i)) = Iq ,

(A3) Cov(s(i), s(j)) = λij D .

The parameter D is constant over the network and we call it the graph-delayed co-

variance of the stationary Gaussian model. According to our actual purpose of source

separation, we assume that

(A4) D = diag(d1, . . . , dq) is a diagonal matrix.

The larger an entry di the larger is the (absolute) value of the covariance between two

adjacent random variables in the ith component.
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With (A1)-(A3) and the Markov property of Bayesian networks all conditional distri-

butions in (6.1) are uniquely defined. This can be seen by inductively constructing

p(S): Let p(s(1), . . . , s(j−1)) be given. For the induction step we need to determine

Cov(s(i), s(j)) for all i ≤ j. For i = j and for i < j with (i, j) ∈ E this covariance is

given in (A2)-(A3). For i < j with (i, j) /∈ E we use the variance theorem and condition

on all parent nodes of s(j). We thus have

Cov
(
s(i), s(j)

)
=Cov

(
E[s(i) |Pa(j)] , E[s(j) |Pa(j)]

)
+E[Cov

(
s(i), s(j) |Pa(j)

)
] ,

where all conditional distributions are known and the second term equals zero due to

the Markov property. With this, we finally get p(S) and we denote the conditional

distributions in (6.1) by

s(i) |Pa(i) ∼
{
N (0q, Iq) if Pa(i) = ∅ ,
N (νD(i)Pa(i),ΣD(i)) otherwise ,

(6.2)

where νD(i)∈Rq×q ni and ΣD(i)∈Rq×q only depend on D. Since D is diagonal it holds

that ΣD(i) is also diagonal and νD(i) consists of blocks of diagonal matrices. Dependent

on the weighted graph G one can determine an interval IG⊆R such that all covariance

matrices ΣD(i) are positive definite for d1, . . . , dq ∈ IG.

In case of a line-graph ( 1 → 2 → 3 → . . . ) with all edge weights identically and

non-zero, the definition of a stationary network directly corresponds to (weakly) sta-

tionarity of time series introduced in Section 3.3. If the edge weights equal 1 then the

autocovariances of the process
(
s(i)

)N
i=1

are given by Cov(s(i), s(i − k)) = D|k| where

k ∈ Z denotes the lag. The conditional distributions of the corresponding Bayesian

network are of the form p(s(i) | s(i− 1)) ∼ N (Ds(i−1), 1−D2).

In summary, the Gaussian distributions defined in (6.2) provide a source modelM(G, q)

to separate signals from networks. Here, G is a weighted directed acyclic graph and

q is the dimension of the random variables. We assume that the graph structure –

including the edge weights – is a priori known. Thus, and because of the stationarity

assumptions (A1)-(A3), the model is parameterized by the graph-delayed covariance

D. This restriction to a single parameter makes parameter inference feasible and the

maximum likelihood approach naturally yields an estimate D̂ML. In case of a line-graph
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6. SEPARATION OF NETWORK DATA

with all weights equal to 1 the separation assumptions directly correspond to a weakly

stationary time series with uncorrelated components at any lag.

6.2.2 Illustration on graphs

To illustrate the covariance structure of the stationary Gaussian model we introduce

three graph models. The first two graphs are related to gene regulatory networks. The

last graph ist related to time series signal for comparison.

(CC) Cell-cycle: The estimated network for the cell-cycle pathway based on gene

expression data (Imoto et al., 2002). The network consists of 81 nodes and

84 edges.

(TF) Transcription factors: Three hub nodes and each directly signals on a subset

of nodes.

(LL) Line signals: Similar to time series we define a network that consists of two

line signals sharing the middle part, and one separated line signal.

Figure 6.1 illustrates these networks together with the associated covariance structure

where we randomly assigned weights ±1 to the edges. These weights might indicate

activating (+1) or inhibiting (−1) effect of a variable on its targets. Note, that our

model theoretically allows any edge weights λij ∈ R.

Since the proposed source model is based on directed graphs we further investigate the

importance of the edge directions on the covariance structure. We therefore randomly

reverse 50% of the edges in the graph models (CC), (TF) and (LL). Note, that the

resulting graph needs to be acyclic. Figure 6.2 shows the covariance structure for the

new graphs where the edge weights are as before. If edges are reversed the absolute

value of the covariance between random variables can change or even become zero.

Nevertheless, the sign of the covariance remains unchanged.

6.2.3 Review: Graph-delayed covariance

In this part we compare our new definition of a graph-delayed covariance to the original

definition from Kowarsch et al. (2010). Let as before D denote the graph-delayed

covariance introduced in Section 6.2.1 based on a weighted directed graphG = (V,E,Λ).
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6.2 The source model

Figure 6.1: Graph models and covariance structure. The upper graphics illustrate
a connected subnetwork of cell-cycle (CC), the transcription factors (TF), and lines (LL).
Darker nodes indicate root nodes and we randomly assigned edge weights with values +1

(black) and −1 (red). The lower graphics show the covariance structure associated with
each graph model for 1-dimensional random variables. The graph-delayed covariance was
set to d = 0.6 .
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Figure 6.2: Covariance structure for graph models with reversed edges. We
randomly reversed 50% of the edges in graph models (TF), (LL) and (CC) and show the
covariance structure. All edge weights are retained and the graph-delayed covariance is set
to d = 0.6 like before.
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Let now κij ∈ R be new weights for the same graph structure and let S =
(
s(i)

)N
i=1

be

random variables. Kowarsch et al. originally introduced the graph-delayed covariance

as

DPa = Cov(
∑

i∈pa(j)

κijs(i), s(j)) , (6.3)

and they assumed that it is independent of the index j. This directly relates to our

definition of D. According to assumption (A3), both definitions coincide for λij =

1/( |pa(j)|κij). Note that our model specifications (Markov property and stationarity)

uniquely define the distribution of the variables S. This does not hold for the assump-

tions in (Kowarsch et al., 2010). Thus, our approach is on the one hand more specific

but also more restricting in terms of application.

To estimate DPa from samples s(1), . . . , s(N) Kowarsch et al. further introduced

D̂Pa =
1

N−n0−1

N∑
j=n0

∑
i∈pa(j)

κijs(i) s(j)
′ , (6.4)

where we assume that the first n0 − 1 nodes are the root nodes of the graph. In

our model, we have more detailed information about the covariance between adjacent

variables. We therefore additionally consider the following refined edge-based estimate

D̂E =
1

|E| − 1

∑
(i,j)∈E

1

λij
s(i) s(j)′ . (6.5)

Diagonalization of the estimates D̂Pa and D̂E yields non-probabilistic algorithms to

separate network data (Section 4.3.3). For distinction we use the notation Grade(Pa)

and Grade(E), where the former is the original method from Kowarsch et al. (2010).

In the next section we introduce the probabilistic algorithm emGrade that is based on

the maximum likelihood estimate D̂ML. A comparison of all algorithms is provided in

Section 6.4.2.

6.3 The BSS method emGrade

In BSS we assume that we observe a linear mixture of the actual signals of interest. The

aim is to estimate the mixing together with the underlying signals. In the following we
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derive a new BSS method for network data and decribe the unobserved (latent) signals

in terms of the source model from the previous section. We provide an expectation-

maximization scheme to estimate the parameters. In the last part we extend the basic

model and account for repeated observations, allow missing components and use differ-

ent network structures to model each source signal separately.

6.3.1 The linear mixing

We consider the following mixing model: X=
(
x(i)

)N
i=1

are observed Gaussian variables

with state space Rp, and we assume latent Gaussian variables S=
(
s(i)

)N
i=1

with state

space Rq (p ≥ q), such that each variable x(i) is a linear mixture of the components of

the latent variable s(i):

x(i) = A s(i) + µ+ ε(i) , i=1, . . . , N . (6.6)

Here, ε(i) ∈ Rp is additive i.i.d. noise ε(i) ∼ N (0p, σ
2Ip) and independent of the latent

variables. A ∈ Rp×q denotes the mixing matrix and µ ∈ Rp is a constant mean vector

for all x(i). We refer to the components of the latent variables as sources, i.e. for

k=1, . . . , q we have a source sk=
(
sk(i)

)N
i=1

.

We now expand the Bayesian network from Section 3.4.3. Let S be latent variables and

the dependence is given by a weighted graph G = (V,E,Λ) as before. We additionally

introduce observed variables X, where x(i) = As(i) + µ + ε(i) for all i. The joint

distribution of X and S then decomposes as

p(X,S) =
N∏
i=1

p(x(i) |s(i))
N∏

i=n0

p(s(i) |Pa(i))

n0−1∏
i=1

p(s(i)) , (6.7)

where x(i) | s(i) ∼ N (As(i) +µ, σ2Ip) directly follows from the linear mixing and

s(i) | Pa(i) is given in (6.2). A graphical representation of the latent variable model is

given in Figure 6.3a. The model parameters are given by θ = (A,µ, σ2, D) and we have

k = dq + d+ q + 1 single parameter entries.
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a)	  model	  of	  emGrade:	   b)	  extended	  model:	  

s(1)
s(1)

s(2)
s(2)

s(3)
s(3)

s(4)
s(4)

s(N)
s(N)

x(1) x(2) x(3) x(4) x(N) x1(1)x2(1)x3(1) x1(2)x2(2) x1(3) x1(4)x2(4)x3(4) x1(N)x2(N)

Figure 6.3: Graphical representation of emGrade. Figure a) shows the basic model
with one observed variable x(i) = As(i) + µ + ε(i) for i = 1, . . . , N . In b) we take into
account multiple observations and missing components. In both figures the observed part
is shown in purple and the latent part in red.

6.3.2 Parameter inference using expectation maximization

The unknown components of our model are the parameters θ and the latent variables S,

and we are interested in both. A widely-used approach for latent variable models is ex-

pectation maximization where parameters and latent variables are updated alternately

(Section 3.5.3). Each update improves the data log-likelihood `(θ;X) = ln p(X | θ)
and in the following we explain these updates for the emGrade model.

For expectation maximization we consider the complete data log-likelihood which is

given by `c(θ;X,S) = ln p(X,S | θ). Let ES|X,θ[ . ] denote the conditional expec-

tation of the latent variables S given the observable variables X and parameters θ

(Section 3.2.3). The expectation of the complete data log-likelihood is then given by

ES|X,θ
[
ln p(X,S | θ)

]
= ES|X,θ

[
ln p(X | S, A, µ, σ2)

]
+ES|X,θ

[
ln p(S | D)

]
.

For better readability we define a combined parameter Aµ = (A,µ) ∈ Rp×(q+1) and

enlarge the latent variables by a constant component, i. e. s∗(i) = (s(i)′, 1)′ for i =
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1, . . . , N . We then have:

ES|X,θ
[
ln p(X | S, A, µ, σ2)

]
= −Np

2
ln(2π)− Np

2
ln(σ2)

− 1

2σ2

N∑
i=1

[
Tr
(
ES|X,θ[x(i)x(i)′]

)
− 2Tr

(
ES|X,θ[s∗(i)x(i)′]Aµ

)
+ Tr

(
ES|X,θ[s∗(i)s∗(i)

′]A′µAµ
)]

(6.8)

ES|X,θ
[
ln p(S | D)

]
= −Nq

2
ln(2π)−

N∑
i=n0

ln
(
det(ΣD(i))

)
− 1

2

N∑
i=n0

[
Tr
(
ES|X,θ[s(i)s(i)′]ΣD(i)−1

)
− 2Tr

(
ES|X,θ[s(i)Pa(i)′] ΣD(i)−1νD(i)

)
+ Tr

(
ES|X,θ[Pa(i)Pa(i)′] νD(i)′ΣD(i)−1νD(i)

)]
− 1

2

n0−1∑
i=1

ES|X,θ
[
s(i)s(i)′

]
(6.9)

The EM-algorithm consists of two steps that are repeated alternately until conver-

gence. In the E-step we determine the posterior distribution of the latent variables

which yields the expectations in (6.8) and (6.9). Here, we use the property E[z1z
′
2] =

Cov(z1, z2)+E[z1]E[z2]′ for random variables z1 and z2 from Section 3.2.3. If z2 or

both variables are observed the left-hand side equals E[z1] z′2 and z1z
′
2, respectively.

To get these posterior estimates we use the junction tree algorithm implemented in

the Bayes net toolbox for MATLAB (Murphy et al., 2001). This algorithm performs

marginalization in general graphs; details can be found in Neapolitan et al. (2004). In

the M-step we then maximize ES|X,θ
[
ln p(X,S)

]
with respect to the parameters. Due

to our specific stationarity assumptions the Bayes net toolbox is not applicable for pa-

rameter maximization. Let Esx=
∑N

i=1ES|X,θ
[
s∗(i)x(i)′

]
and we define Ess and Exx

accordingly. The parameter updates for A, µ (in form of Aµ) and σ2 can be derived

directly from (6.8) and we get

Aµ =
(
Esx

)′(Ess)−1 (6.10)

σ2 =
1

Np

[
Tr(Exx)− 2Tr(EsxAµ) + Tr(EssA′µAµ)

]
(6.11)
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A detailed derivation including the partial derivaties of ES|X,θ
[
ln p(X,S)

]
is provided

in Appendix B. The parameter D occurs as different rational terms νD and ΣD in (6.9).

For all source modelsM(G, .) with G a weighted directed acyclic graph one can theo-

retically derive formulas to update D. In our simulations we consider different graph

models regarding structure, number of nodes, and egde weights, and we use numerical

optimizers to obtain D. In our MATLAB implementation, for example, we use the func-

tion fmincon for constraint optimization problems. The search space for all diagonal

entries of D is given by the interval IG and since D – as well as νD(i) and ΣD(i) – is

(block-)diagonal we can maximize ES|X,θ[ln p(S)] with respect to each component of D

separately.

The proposed expectation maximization scheme for the linear mixing model from Sec-

tion 6.3.1 provides a method to separate network data. Similarly to the separation

assumptions of Grade (graph-decorrelation algorithm) we assume a diagonal matrix D,

and we therefore call the new algorithm emGrade (expectation maximization graph-

decorrelation algorithm). A pseudo-code implementation is given in Algorithm 8.

Since the EM scheme maximizes the log-likelihood function it is natural to define the

stop criterion in terms of a threshold for the increase of `(θ;X). Moreover, if we want

to perform model selection we are only interested in the log-likelihood and not in the

concrete parameter estimates. Thus, we consider |`(θ;X) − `(θ(0);X)| < 10−6 as stop

criterion when calculating AIC or BIC values. Abbi et al. (2008), in contrast, defined the

stop criterion as a sufficient small change in the single parameter estimates. Convergence

of single parameters usually requires more EM-iterations (when the same threshold is

considered) and the parameters can still vary even when the change of the log-likelihood

is negligible. To assure to have approximately reached the final parameter estimates we

use the strong requirement

∀i | θi − θ (0)
i | < 10−8 ,

whenever we are interested in the model parameters. Here, θi denotes the single entries

of the parameters A, µ, σ2 and D. Furthermore, we use 10 000 iterations at maximum.

After convergence, the estimates of parameters and source signals are independent of the

parameter initialization (Figure 6.4). However, for a fast convergence of the expectation

maximization procedure a good choice of parameter initialization is cruical. A beneficial
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6.3 The BSS method emGrade

Algorithm 8: emGrade

input : Observations X, weighted directed acyclic graph G
output: Source signals S, parameter estimates A, µ, σ2, D

% initialization

Determine interval IG = [dmin, dmax]

Build BN w.r.t. G, set observed variables equal to X
Initialize parameters θ = (A,µ, σ2, D) randomly where D = diag(d1, . . . , dq)

repeat
% E-step

θ(0) = θ

Determine νD(i) and ΣD(i) in s(i) |Pa(i) ∼ N (νD(i)Pa(i),ΣD(i))

Update BN with parameters A,µ, σ2, νD,ΣD

Infer from posterior distribution (junction-tree algorithm): E[s(i)], Cov(s(i), s(i)),
Cov(s(i),Pa(i)), and Cov(Pa(i),Pa(i))

% M-step

Ess =
∑N

i=1 Cov(s∗(i), s∗(i)) + E[s∗(i)]E[s∗(i)]
′

Esx =
∑N

i=1 Cov(s∗(i), s∗(i)) + E[s∗(i)]x(i)′

Exx =
∑N

i=1 Cov(s∗(i), s∗(i)) + x(i)x(i)′

Aµ =
(
Esx

)′(Ess)−1

σ2 = 1
Np

[
Tr(Exx)− 2Tr(EsxAµ)

for i = 1, . . . , q do
di = fmincon(@di, ES|X,θ

[
ln p(S | D)

]
) with ES|X,θ[ . ] a function of di ∈ IG

Update θ = (A,µ, σ2, D)

until
∣∣ `(θ;X)− `(θ(0), X)

∣∣ < ε;

101



6. SEPARATION OF NETWORK DATA

initialization is, for example, to use the mean of the observations for µ and the Grade

estimates for A and D. For the noise variance we use a low initialization σ2 = 0.1.
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Figure 6.4: Log-likelihood and parameter traces. We generate data from model
(CC) with dimensions p = 3 (observed variables) and q = 2 (latent variables). We consider
five different parameter initalizations for emGrade. The left plot shows the trace of the
log-likelihood evaluations among 100 EM-iterations. The middle plot shows the traces of
the parameters A, µ, σ2 and D for one parameter initialization and the right plot illustrates
the final parameter estimates of all initializations after convergence together with the true
parameter values (gray stars).

6.3.3 Repeated and missing observations

In this part we extend the basic model of emGrade and allow missing components

in the observed variables and repeated measurements. Since in Bayesian networks a

random variable is either latent or observed we need to split the multivariate observed

variables into multiple one-dimensional variables. We further introduce replicates of

the variables to account for repeated measurements. A graphical representation of the

extended model is shown in Figure 6.3b.

As before, let i = 1, . . . , N index the nodes in the underlying network. For each node

we assume a latent random variable s(i) = (s1(i), . . . , sq(i))
′. In contrast to the pre-

vious sections, we further introduce multiple variables xr(i) = (xr1(i), . . . , xrp(i))
′ where

r = 1, . . . , ri indicates the measurement replicate. The number of replicates can be
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6.3 The BSS method emGrade

dependent on the index i. The mixing model for xrk(i) is then given by

xrm(i) =

q∑
k=1

akmsk(i) + µm + εrm(i) ,

where (a1m, . . . , aqm) is themth row of the mixing matrix and µm is themth component

of the mean parameter. We further assume univariate noise variables εrm(i) ∼ N (0, σ2).

The variables xrm(i) can be either observed or latent ; the latter is the case, if for

the network component i the measurement under the mth experimental condition in

replicate r is not available or not reliable. Let now X collect all variables xrm(i) that

are observed, and let X0 collect all variables where the measurement is missing. In the

E-step we infer S and X0 jointly from the posterior distribution S,X0 |X, θ. For the

extended model the density function in (6.8) is given by

p(X,X0 | S) =

p∏
m=1

N∏
i=1

ri∏
r=1

p(xrm(i) | s(i)) ,

and the number of variables equals
∑N

i=1 ri p. If for a network component i in all

replicates the measurement under the experimental condition m is missing, we only

introduce one latent variable x1
m(i). Thus, the number of variables can be different for

every m; in this case, we perform maximization of mixing matrix and mean parameter

for each row separately.

In the following we demonstrate the impact of repeated and/or missing observations on

the predictive power of the latent variable model. We assume that the variable x(i) is ei-

ther completely unobserved or that we have multiple observed variables x1(i), . . . ,xr(i)

with a fixed number of replicates r. We assign the true parameters θ = (A,µ, σ2, D)

to the model and perform the E-step, i. e. we infer source signals from the posterior

expectation. We then compare the estimated and true source signals dependent on the

number of replicates and/or missing observations and dependent on the variance of the

observation noise. For evaluation we use the distance measure minDist† introduced in

Section 4.5; since we fix the mixing matrix we actually do not need to correct for sign

and permutation of the estimate. In Figure 6.5 the data is generated from model (CC)

with weights +1 and random parameters θ = (A,µ, σ2, D). As expected, we find a

better source recovery if we have many repeated and no missing variables as well as a
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low noise level. The performance also increases if the dimension of the latent variables

is smaller than the dimension of the observed variables (A.-B.), and disregarding the

graph structure of the observations yields a worse performance (C.). For the other graph

models (TF) and (LL) the results are similar.
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Figure 6.5: Source recovery from repeated observations with missing values
and observation noise. We generate repeated data from model (CC). In the upper plots
we ignore up to 20 of the observed variables, and in the bottom plots we add noise from
N (0, σ2) for σ2 = 0.1, 0.3, 0.5, . . . , 1.0 to all entries. We infer the source signals from the
posterior distribution, where the data and the true parameters are given. The plots show
the mean difference over 100 runs between the original source signals and the estimates.
In A. we fix the dimensions at p = 4 (observed variables) and q = 2 (latent variables), in
B. we have p = q = 3. In C., for comparison, we disregard the structure of the data and
consider the trivial network without edges for source estimation.

6.3.4 Separation of sub-networks

Until now we assumed one q-dimensional source model M(G, q) to jointly model all

source signals sk =
(
sk(i)

)N
i=1

for k = 1, . . . , q. If we have more detailed information
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about single components of a larger network (e.g. pathways in a gene-regulatory net-

work) and we want to separate the data according to these sub-networks we can model

the distribution of each source signal separately. Let therefore P1, . . . , Pq be weighted

graphs on the same set of nodes. For each source we consider the 1-dimensional source

modelM(Pi, 1) with graph-delayed covariance di ∈ R. We then assume that the joint

distribution of S decomposes as

p(S) =

q∏
k=1

p(sk) =

q∏
k=1

N∏
i=1

p(sk(i) | Pak(i)) . (6.12)

We denote this source model based on q different pathways as M(P1, . . . , Pq). If all

pathways are identical (i. e. Pi = G for all i), the above definition yields the original

source modelM(G, q) with diagonal graph-delayed covariance D ∈ Rq×q. The new defi-

nition only effects the expectation step; in the graphical representation we split the node

for s(i) into q nodes representing the 1-dimensional random variables s1(i), . . . , sq(i)

for i = 1, . . . , N . Again, the junction tree algorithm provides posterior estimates of the

latent variables.

6.4 Performance and features

We now evaluate the performance of emGrade. We first investigate the empirical conver-

gence of the iterative expectation-maximization scheme in terms of number of iterations

and runtime. We compare the method to Grade and to BSS methods for time series

data. In the last part, we consider a family of information criteria introduced in Sec-

tion 3.5.4. With this we perform model selection and determine number and structure

of the unknown source signals. For all simulations we consider the graph models (CC),

(TF), and (LL) from Section 6.2.2. If not stated differently, the egde weights are fixed

at +1.

6.4.1 Empirical convergence

We first give an impression of the empirical convergence of emGrade in terms of number

of iterations and runtime. As stated in Section 6.3.2 we stop the iterative estimation
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scheme when | θi − θ (0)
i | < 10−8 for all i. The respective parameter values are then the

estimation result, and we consider 10 000 EM-iterations at maximum. For illustration we

generated data from model (CC) and considered different combinations of p, q = 1, . . . , 5

(dimension of latent/observed variables). Figure 6.6 shows that for p > q the mean

number of EM-steps is small, and for p < q or large dimensions p = q the number

of EM-steps explodes and many runs do not converge at all. In BSS applications we

usually assume p ≥ q, and we limit ourselves to such cases in the following.
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Figure 6.6: Number of EM-iterations. We generate data from model (CC) and
consider different combinations of p, q = 1, . . . , 5 (dimension of observed/latent variables).
The plots show the mean number of EM-iterations among all convergent runs (left) and
the number of non-convergent runs (right). For all p/q-combinations with q ≥ p + 2 we
performed 10 runs of emGrade.

6.4.2 Algorithm comparison

We now compare emGrade to other BSS algorithms. The most similar algorithm re-

garding model assumptions is Grade, which diagonalizes the sample graph-delayed co-

variance using singular value decomposition. We distinguish between two versions –

Grade(Pa) and Grade(E), where the graph-delayed covariance is estimated as D̂Pa and

D̂E (Section 6.2.3). For comparison, we consider the BSS algorithms AMUSE and SOBI

from Section 4.3.2. Both algorithms assume weakly stationary time series data and we

simply resume the order of the random variables. For SOBI, we use sample autocovari-

ances at lag 1 and at lags 1-2, respectively. Finally, we compare our results to PCA
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(Section 4.1.2) and fastICA (Section 4.2.1); both act independently of the structure of

the random variables.

All algorithms provide estimates of the mixing matrix and the source signals – but

unlike emGrade they do not estimate the full parameter vector θ = (A,µ, σ2, D). Instead

of a likelihood-based evaluation of the performance we consider the distance measure

minDist from Section 4.5 and compare the mixing estimate to the true mixing. If p-

dimensional data is given all algorithms – except emGrade – estimate a quadratic p× p
mixing matrix. In case of p > q we only use the first q columns of the mixing estimates.

In Figure 6.7 we compare the estimation performance of all algorithms, and we fix the

dimensions at p = 3 and q = 2. For all proposed graph models emGrade outperforms

the other algorithms in terms of correctness of the estimates, the drawback is a much

higher runtime. In case of p = q the improvement of the estimates is less apparent.

6.4.3 Determining the number of source signals

We now take full advantage of the probabilistic modeling and use model selection criteria

to determine the correct number of source signals and to identify active pathways in

the network. Let M(G, q) denote the source model introduced in Section 6.2.1 where

G is a weighted graph that determines the joint distribution of the latent variables and

q is the number of source signals. The information criterion (Section 3.5.4) is given by

IC(M(G, q)) = −2 `(θ;X,M(G, q)) + k c ,

where k denotes the number of model parameters and c is some constant. To determine

the true number of source signals we fix the graph G and search for the lowest IC

value among different source models. In Figure 6.8 we generated data from model (CC)

with q = 3 the true number of source signals (dimension of the latent variables) and

p = 3, 4, 5 observations (dimension of the observed variables). We then compare the

IC values of M(q̂) =M((CC), q̂) for q̂ = 1, . . . , 5, where we consider different constant

values c. In case of p > q we find a nearly perfect estimation of the true number of

source signals for c = 2 (AIC) and c = ln(N) (BIC).
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Figure 6.7: Algorithm comparison. The plots show the mean permuted distance over
50 runs of the algorithms emGrade, Grade(G), Grade(E), AMUSE, SOBI (at lag 1, and at lags
1-2), PCA, and fastICA. In A.-C. we generated data from models (CC), (TF), and (LL)
with p = 3 and q = 2. In this case (p > q) emGrade yields the best estimation performance
for all graph models. In D.-F. where p = q = 3 the improvement compared to the other
algorithms is smaller.
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Figure 6.8: Estimation of the number of source signals. We generate data from
model (CC) with q = 3 source signals (dimension of the latent variables) and p-dimensional
observations for p = 5, 4, 3 in different colors. For the graph-delayed covariance we consider
D = [0.7,−0.49, 0.3]. The plots show the IC values of all source modelsM(q̂) =M((CC), q̂)
for increasing q̂ = 1, . . . , 5. In each plot we consider a different constant c. The black
vertical lines show the true number of source signals and the dots indicate the selected
source model in each comparison, i. e. the model with the lowest IC value. Dashed lines lead
to IC values of non-convergent runs (using the log-likelihood value after 10 000 iterations),
and some IC values are +∞.

6.4.4 Pathway identification

For pathway identification we divide each of the networks (CC), (TF), and (LL) into

three pathways P1, P2 and P3. For (CC) we define the pathways as the three connected

components of the complete cell-cycle network, for (TF) we consider the single hub-

nodes together with their target nodes as pathways, and for (LL) we consider the two

overlapping lines and the additional line as pathways. We then generate data from the

pathway source model M(Pi, Pj) introduced in Section 6.3.4, and we determine the

lowest IC value among all source models M(i, j) = M(Pi, Pj) for i, j = 1, 2, 3. If the

edges of the pathways are non-overlapping (models (CC) and (TF)) we observe a good

pathway identification, for model (LL) often only one pathway is identified correctly

(Figure 6.9).
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Figure 6.9: Pathway identification. We generate q = 2 source signals from the re-
spective pathways P1 and P2 of the models (CC), (LL), and (TF). From observations
of dimension p = 4, 3 (in different colors) we calculate the BIC of all pathway source
models M(i, j) = M(Pi, Pj), where we assume source signals from pathways Pi and Pj

(i, j = 1, 2, 3). The black vertical lines show the true pathway combination and the dots
indicate the selected source model in each comparison, i. e. the model with the lowest BIC
value.

6.5 Conclusions

In this chapter we introduced the probabilistic BSS method emGrade for network data.

We defined the source model in terms of a stationary Bayesian network and discussed

the connection to the separation assumptions of Grade. We then introduced observed

variables as linear mixtures of the source signals and provided explicit update rules for

the parameters in an expectation-maximization scheme. Furthermore, we introduced

multiple and missing observations and assumed different network structures for each

source signal. We further investigated the performance of emGrade – on the level of

parameter estimation and on the level of model selection. For the latter we evaluated

the likelihood function at the parameter estimates.

In simulations we achieved good empirical convergence if the number of source signals

was smaller than the number of observations. If the data was generated by the source

model defined in Section 6.2.1 emGrade outperformed Grade and BSS algorithms for

time series data. The improvement was more obvious if we had more observations than

source signals.

In the model selection part we assumed that the correct number q of source signals
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is unknown and we determined the parameter estimates for different numbers q =

1, . . . , 5. We then compared the information criterion values (e.g. AIC, BIC) of the

estimates. Especially, if the true number of source signals was smaller than the number

of observations we found the correct number of source signals. We further generated data

with different pathway structures for each source signal. Comparing the information

criterion values for all possible combinations of pathways, we could again determine

the correct pathways. This was more obvious when the pathways in the network were

non-overlapping.

In the next chapter we leave the area of easy-to-interpret simulations and apply emGrade

to real gene expression data. The network structure is then given by a literature-derived

gene regulatory network and we discuss the biological meaning of the estimation results.
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7

Application: Gene expression data

In this chapter we apply emGrade to publicly available gene expression data from sys-

temic inflammation in humans. We describe the experiments and the pre-processing

of the data, and we compare estimation based on different network structures which

are derived from online databases. The probabilistic framework of emGrade enables us

to use model selection criteria, and we find that a proper network information indeed

improves our model. We further estimate missing observation values and determine the

most appropriate microarray probe set for genes that are not uniquely annotated after

standard filtering. Finally, we characterize the estimated signals in terms of relevant

genes and compare the gene sets from different observations. This leads the way to a

biological interpretation of the estimated source signals.

Some of the results are already published in the conference proceeding

• K. Illner, C. Fuchs, F.J. Theis (2014). Bayesian blind source separation applied to

the lymphocyte pathway. In Proc. 21st International Conference on Computational

Statistics (COMPSTAT 2014), 625–632.

7.1 Experiments and data

We consider a study from Calvano et al. (2005) where systemic inflammation in hu-

mans is under investigation. In their experiments healthy humans were intravenously

treated with bacterial endotoxin and gene expression measurements were taken from
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whole blood leukocytes at time points 0, 2, 4, 6, 9, and 24h after endotoxin administra-

tion. The stimulus endotoxin activates innative immune responses (Fong et al., 1990).

Using a literature-derived molecular network the aim was to determine changes in the

expression measurements and identify important functional modules of this network.

The analysis gives insights into the mechanisms of the innative immune response. In

our investigation, in contrast, we consider a small sub-network and determine under-

lying regulatory modules based on BSS techniques. With this we want to deepen the

insights about molecular signaling from the high-throughput genomic data.

7.1.1 Gene expression measurements

In the experiments from Calvano et al. (2005), gene expression analysis was performed

using the Affimetrix chips HG-U133A and HG-U133B for the human genome. The

chips contained a total of 22 338 and 22 649 probe sets, respectively. More background

about the microarray technology is given in Section 2.3. With both chips expression

measurements were taken from four patients treated with intravenous endotoxin and

from four control patients without treatment. For each patient we have observations at

time points 0, 2, 4, 6, 9, 24h, only for one control patient the measurements at time

points 4h and 6h are missing. For our analysis we concentrate on the measurements

from HG-U133A.

As pre-processing we perform quantile normalization introduced by Bolstad et al. (2003)

and implemented in the R-package ‘affy’ (Gautier et al., 2004). After normalization

the distributions of probe intensities of each array are similar. In particular, they

approximately share the same mean and the same quantiles. We further perform filtering

using the R-package ‘limma’ (Smyth, 2005) and get normalized expression values of

12 683 human genes. For source separation we only consider a subset of N = 91 genes

that are associated with a specific pathway. The derivation of the pathway is discussed

in the next paragraph. We further assign the data to the eight individuals. We thus have

observations LPS1-4 from the four treated patients and observations PT1-4 from the

non-treated patients. Each selected gene corresponds to an observed random variable,

and since we have measurements from six time points the dimension of the observed

variables is p = 6. For patient PL2 the dimension is p = 4.
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7.2 Model validation

In simulations we found that the performance of emGrade increases if the variance of

the observed variables has a similar range compared to the variance of the unobserved

variables. Since the components of the latent variables have unit variance (Section 6.2.1)

we scale the sample variance of the observed components (xk(1), . . . , xk(91)) for k =

1, . . . , p to 1, accordingly.

7.1.2 Literature-derived pathways

In our BSS method we assume an initially known network that describes the dependen-

cies between the variables (genes). To derive a network that reflects differences between

control and treatment group we consider pathway information from the Genomatix

Pathway System (GePS). Based on the differentially expressed genes the software pro-

vides (amongst others) biological processes from Gene Ontology where these genes are

enriched. One highly significant pathway is “lymphocyte activation”. In this pathway

91 from a total of 486 genes are differentially expressed which results in a p-value of

7.10e-22. As network structure net1 we consider these 91 genes together with 138 edges

representing validated binding sites of transcription factors. For comparison we also in-

vestigate the less significant pathway “cell proliferation” where 158 from a total of 1610

genes (p-value 2.07e-9) are differentially expressed. If we restrict this pathway to the 91

genes from before we get a sub-network net2 with 64 edges. Both networks are shown

in Figure 7.1. As required for emGrade the networks are directed and acyclic. Since

no further information about the strength of interaction is available, we fix all egde

weights at λij = 1/#{parents of vj}. This assumption is in agreement with Kowarsch

et al. (2010).

7.2 Model validation

We apply emGrade to patients LPS1-4 and PL1-4 separately and for comparison to LPS1

and PL1 jointly. In the first the dimension of observed variables equals p = 6 (except

for PL2 where p = 4) and for the joint modelling of LPS1 and PL2 the dimension equals

p = 12. The network structure is given by net1. To validate our model we consider the
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Figure 7.1: Transcriptional signaling pathways. The network net1 consists of the 91
differentially expressed genes from the pathway “lymphocyte activation” together with 138
edges (black and red) representing validated binding sites. The sub-network net2 consists
of the signaling pathway “cell proliferation” restricted to the same set of 91 genes; it has
64 edges which are indicated in red.
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coefficient of determination which is given by

R2 = 1− SSres
SStot

= 1−
∑

r

∑91
i=1 ‖xr(i)− f r(i)‖22∑

r

∑91
i=1 ‖xr(i)− x̄r‖22

.

The total sum of squares SStot compares the data to its mean, the residual sum of

squares SSres compares the observation x(i) to the predicted values f(i) = Âŝ(i) + µ̂

for i = 1, . . . , 91. The superscript r indicates all (separately) considered data sets, e. g.

all patients LPS1-4. Figure 7.2 shows the R2-values for all treated patients LPS1-4, for

all control patients PL1-4 and for the joint modelling of LPS1 and PL1. In addition

the estimated noise variance is shown. In all settings we increase the number of source

signals from q = 1, . . . , 4. With an increase of this number we find a better fit of the

model (R2 close to 1) and a lower estimated noise variance. Notably, there is an overall

better fit of the model for the control patients PL1-4.

We further investigate different network structures. We consider net1 and net2 and for

comparison the trivial network without any edges (net0). If we fix one data set, we can

compare the BIC values for different networks and different numbers of source signals.

Figure 7.3 indicates that for all data sets the informative net1 is more appropriate

compared to net0 (lower BIC values). In contrast, the sub-network net2 does not lead

to an overall better or worse performance compared to net1. Importantly, we find that

for the treatment groups LPS1-4 a higher number of source signals is preferred. This

indicates that in case of treatment more sub-processes of the pathway “lymphocyte

activation” are active.

7.3 Results using emGrade

In the following, we present our main findings from the application of emGrade to

the gene expression data. In particular, we estimate missing observation values and

biologically evaluate the estimated source signals. In all investigations, we assume the

pathway “lymphocyte activation” (net1) as underlying network structure.
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Figure 7.2: Model validation and noise variance. We apply emGrade to all patients
LPS1-4 (treatment) and PL1-4 (control) separately and to LPS1&PL1 jointly. As network
structures we consider net1. The left plot shows the coefficient of determination R2 in case
of q = 1, 2, 3, 4 source signals. The right plot shows the estimated noise variance of the
emGrade model for all single estimating procedures.
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Figure 7.3: Comparison of different networks. The plots show the BIC values for
patients LPS1-4 (left) and PL1-4 (right) in case of q = 1, 2, 3 and 4 source signals. As
network structures we consider net0 and net1 and for LPS1-2 also net2. The different
patients are coded in different colors and the dots indicate the value for q with the lowest
BIC value.
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7.3.1 Missing observation values

We first investigate the predictive power of our model for missing observation values.

As stated in Section 6.3.3 we can easily treat missing observations as additional latent

variables in our Bayesian network. We therefore leave out the observation value of

one gene in the data set LPS1 and compare the true observation x(i) to the model

prediction f(i) = Âŝ(i) + µ̂ for i ≤ 91. Here, we distinguish between genes that are

highly connected in net1(high degree) and genes that are not connected (zero degree).

Figure 7.4 shows the Euclidean distances ‖x(i) − f(i)‖2 and the corresponding BIC

values for 10 different missing genes. For comparison we estimate parameters and source

signals from the complete data set. With increasing number of estimated source signals

q = 1, 2, 3, 4 we find smaller distances between model prediction and true observation

in case of complete data (blue solid line). If x(i) is considered as missing, this trend

is less obvious (blue stars). For highly connected genes all neighboring genes give

information about the true expression value; we expect these observation values to

be reconstructed more easily. In practice we find similar prediction performances on

average. Nevertheless, genes with zero degree can more easily guarantee a good model

fit (low BIC value) but lead to a worse predicted value at the same time. A gene with

such contradictory performance is indicated by a dashed vertical line in Figure 7.4.

For genes that are highly connected and, thus, obtain information from the network

structure we could not find such contradictory behavior. For comparison, we repeat

the investigations using the trivial network net0. Expectedly, we find similar distances

‖x(i) − f(i)‖2 for both networks when the genes have zero degree in net1. For genes

that are highly connected in net1 the model predictions derived from both networks

differ and with this the distances to the true observations. The results for the trivial

network are shown in Figure 7.4 in grey.

The estimation of missing observations provides a useful feature in the present data

situation: The genes HLA-DRB1 and HLA-DRB3 from net1 are annotated to 5 and 2

probe sets of the microarray chip. Gene filtering performed with the limma R-package

omits these genes and one does not know which probe set provides the most appropriate

expression values. We therefore treat both genes as missing observations and compare

our estimates to the measurements of the different probe sets. Table 7.1 shows the

microarray measurements of all probe sets together with our estimates. The comparison
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HLA-DRB 1 HLA-DRB 3

time obs.1 obs.2 obs.3 obs.4 obs.5 est. obs.1 obs.2 est.

0h 4.99 5.23 5.26 5.20 2.46 5.44 5.20 2.46 2.52

2h 4.24 4.26 4.38 4.11 2.76 3.74 4.11 2.76 2.29

4h 4.26 4.65 4.47 4.43 2.54 4.66 4.43 2.54 2.81

6h 4.52 4.81 4.58 4.66 2.76 4.60 4.66 2.76 2.38

9h 4.66 5.21 5.22 5.04 2.62 5.15 5.04 2.62 2.61

24h 4.86 5.28 5.12 5.23 2.08 5.11 5.23 2.08 2.21

Table 7.1: Identification of the most appropriate microarray probe set. The
table shows the microarray measurements from LPS1 at all probe sets that are linked to
the genes HLA-DRB1 and HLA-DRB3. If we treat both genes as missing observations
we get estimated observations (red). A comparison to the measurements in term of the
Eukledian distance identifies the most appropriate annotated probe set for both genes (bold
symbols).

suggests to use the 4th probe set as observation for HLA-DRB1 and the 2nd probe set

as observation for HLA-DRB3.

7.3.2 Genes associated with source signals

In this part we determine key genes associated with the estimated source signals. Key

genes characterize the respective source signals and allow a biological interpretation.

Furthermore, we compare key genes of source signals that are estimated from different

observations. For a source sk = (sk(1), . . . , sk(N)) the set of key genes is given by all

genes i with |sk(i)| > c for some threshold c > 0. According to our model assumptions

the variance of each source equals 1 and we found that c = 1 results in an adequate

number of key genes.

First, we investigate the recovery of high absolute values in case of simulated signals.

We therefore generate data from net1 with random parameters A, µ, σ2 and D. The

dimension of the observed variables is fixed at p = 6 and the dimension of the latent

variables at q = 4. To compare key genes we align the true and estimated source signals

using the sign-changing permutation matrix P that yields the distance minDist†(Ŝ, S)

from Section 4.5. The four true and estimated source signals together with the counts for
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Figure 7.4: Reconstruction of missing observation values. We consider data LPS1
where we leave out the measurements of single genes with high and low connectivity in
net1. The degrees of the highly connected genes are 40, 35, 26, 19 and 17 – the remaining
genes have zero degree. Using emGrade we estimate q = 1, 2, 3, 4 source signals (left to
right) and determine the model prediction f(i) = Âŝ(i) + µ̂ where we assume that the
observation x(i) (i ≤ 91) is missing. Upper plots: The blue stars indicate the Euclidean
distances ‖x(i) − f(i)‖2 between model prediction and true observation. The blue solid
lines show the corresponding distances when f(i) is estimated from the complete data set.
For comparison, the gray stars and solid gray lines indicate corresponding results when the
trivial network net0 is assumed. Lower plots: Shown are the corresponding BIC values for
all above settings.
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consistent key genes are shown in Figure 7.5. Moreover, for all sources the contingency

tables of “true key gene/no true key gene” versus “estimated key gene / no estimated

key gene” are as follows:

1.) key gene true not true
estimated 17.6 3.3

not estimated 12.1 67.0

2.) key gene true not true
estimated 27.5 12.1

not estimated 12.1 48.4

3.) key gene true not true
estimated 16.5 12.1

not estimated 15.4 56.0

4.) key gene true not true
estimated 15.4 8.8

not estimated 7.7 68.1

All counts are given in percent with respect to the total number of N = 91 genes. The

higher percentages on the main diagonal indicate correct determination of key genes

and no key genes, respectively. With these findings on simulated data, we now compare

the source estimates from different treatment groups LPS1-3. We align the signals using

the generalized distance function

minDist†3(S1, S2, S3) =
1√
qN

min
P1=Ip
P2,P3∈P

∑
i,j

‖PiSi − PjSj ‖F . (7.1)

Figure 7.6 illustrates the alignment of source signals and Figure 7.7 indicates that we

have a higher key gene agreement for the treatment groups LPS1-3 compared to the

control groups PL1-3. For the control groups only the network without edges (net0)

yields a source with high agreement of key genes.
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Figure 7.5: Alignment of true and estimated source signals. We generate data
from network structure net1 with random parameters A, µ, σ2 and D and determine the
emGrade source estimates. The plots on the left show the alignment of true and estimated
source signals together with the respective key genes (dots). The horizontal red lines show
the thresholds for key gene selection. Solid vertical lines indicate genes that are correctly
estimated key genes, dashed vertical lines indicate genes that are either true key genes or
estimated key genes. The bars on the right provide the counts for these three groups.
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Figure 7.6: Alignment of source signals and intersection of key genes for LPS.
For patients LPS1, LPS2 and LPS3 and network structure net1 we determine the emGrade
source estimates for q = 3. The plots on the left show the aligned source signals (different
patients in different colors) together with the respective key genes (dots). The horizontal
red lines show the threshold for key gene selection. Solid vertical lines indicate genes that
are key genes in the aligned sources from all patients, dashed vertical lines indicate genes
that are key genes in the aligned sources from at least two patients. The bars on the right
provide the counts of key genes in all estimates (123) and the counts of key genes in two
estimates (12), (13) and (23).
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Figure 7.7: Intersection of key genes for LPS and PL. For patients LPS1-3 and
controls PL1-3 and network structures net1 and net0 we determine the emGrade source
estimates. The left figure shows the counts of genes that are key genes in all aligned source
estimates from LPS1-3 or PL1-3, respectively. The right figure gives the total number
(union) of key genes in all sources. The solid red line indicates the count of identical key
genes in LPS1-3 (net1) and LPS1-3 (net0), the dashed red line indicates the corresponding
count for PL1-3. The green line is the count of identical key genes in all four groups.
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7.3.3 Algorithm comparison

In this part we compare emGrade to other BSS methods in terms of biological inter-

pretability of the results. In particular we consider the algorithms Grade, SOBI (using

lags 1-2 and lags 1-10) and fastICA. All these algorithms have been applied to simulated

data from networks in Section 6.4.2. Here, we consider the gene expression data from

patients LPS1 and PL1. For emGrade we set the number of source signals equal to q = 4,

for the other algorithms the number of source signals equals the number of observations,

i. e. q = 12. To illustrate some obvious differences between the algorithms Figure 7.8

shows four estimated source signals from emGrade and fastICA. The latter determines

source signals with a low overall variability but with high peaks for individual genes.

The observations LPS1 and PL1 contain information from a treated and non-treated

patient. To investigate whether the algorithms identify differences between treatment

and control group we determine the correlation between the columns of the mixing

estimate and the index vector [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]. A high correlation indicates

that the respective source signal has a different impact on treatment and control group.

Figure 7.9 shows the correlation for all algorithms. Here, only emGrade determines one

mixing column with very high correlation with the index vector.
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Figure 7.8: Comparison of estimated source signals using emGrade and fastICA.
We consider the gene expression data LPS1 and PL1. The left plot shows the estimated
source signals derived from emGrade when we assume q = 4 source signals, the right plot
shows the first four source estimates derived from fastICA.
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Figure 7.9: Difference of mixing columns between treatment and control. We
consider the gene expression data LPS1 and PL1 and determine the mixing estimate using
emGrade, Grade, SOBI (with lags 1-2 and 1-10), and fastICA. The left plot shows the
correlation of all mixing columns with the index vector [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]. The
number of mixing columns equals the number of estimated source signals. In case of
emGrade we estimate q = 4 source signals, all other algorithms determine q = 12 source
signals. The right plot shows the mixing columns of all algorithms with highest correlation
with the index vector.

7.3.4 Biological interpretation

As stated in the last section, emGrade jointly applied to LPS1 and PL1 determines

a source signal that highly differs between treatment and control; in the analysis we

assumed q = 4 source signals. To understand the biological meaning of this specific

signal and the three remaining signals we show the key genes of each source signal

in the pathway “lymphocyte activation”. In Figures 7.10 and 7.11 the value for each

gene in a specific source signal is color-coded; blue indicates positive values and red

indicates negative values. We define key genes as genes with absolute value larger than

one; these genes are highlighted in the networks in dark blue and dark red. Since

source signals are unique only up to sign (and permutation) the meaning of blue and

red is exchangeable. We focus on the connected part of the network and find that

different source signals affect different parts. The second source signal, for example,

contains many key genes and these genes are spread over the network; the third signal,

in contrast, concentrates on a few highly-connected genes. Furthermore, the second

signal affects many genes in the lower part of the network whereas the last signal is not
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present at all in this part. With this, our approach motivates the definition of different

sub-modules of the original pathway; the functionality of these sub-modules might be

experimentally further validated. In addition, we performed enrichment analysis of the

key genes from each source signal using Gene Ontology (GO) terms. These terms refer,

amongst others, to biological processes and provide lists of involved genes (Section 2.1).

Using Fisher’s exact test (Fisher, 1922) one can determine biological processes where a

considered gene set is overrepresented. Tables 7.2 and 7.3 show the top 15 associated

biological processes for the key genes of each source signal. Since the genes are from

one specific pathway the enrichment is strongly biased and we find only little difference

between the source signals.

7.4 Conclusions

In this chapter we applied emGrade to gene expression data. With this we wanted

to identify informative source signals that represent active biological processes in the

data. We discussed the pre-processing of publicly available microarray data consisting

of treatment data LPS1-4 and control data PL1-4. From the Genomatix database

we derived the pathway “lymphocyte activation” which reflects differences between the

control and treatment group; this yielded the network structure in our BSS method.

In comparison to a network without egdes, the pathway information improved our esti-

mates and we found lower BIC values – this was true for the treatment and the control

group. Nevertheless, the pathway information played a major role particularly for the

treatment group where more source signals were preferred. We further investigated the

estimation of missing observation values. For two genes from the lymphocyte path-

way standard annotation to one unique microarray probe set failed. When treated as

missing observations emGrade could identify the most appropriate annotated probe set

in both cases. In addition, we investigated the prediction performance of missing ob-

servations dependent on the connectivity of the respective gene. Here, we found that

the network structure indeed improved the prediction; if genes with zero degree were

treated as missing observations this could yield a good model fit but a bad prediction

of the actual measurements at the same time. Furthermore, we characterized the esti-

mated source signals in terms of key genes, i. e. genes with high absolute value in the
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respective source signals. We found a high number of key genes (per source) that were

in agreement with LPS1-3. For PL1-3 these numbers were lower. This might again

indicate that the pathway “lymphocyte activation” better explains the dynamics in the

treatment group compared to the control group.

In the last part, we considered data LPS1 and PL1. In contrast to other BSS algorithms,

only emGrade could identify a signal with significantly different weightings in treatment

and control. This means, the signal represents regulatory processes that differ between

treatment and control. To understand the biological meaning of the estimated source

signals we mapped all signals derived from emGrade to the lymphocyte pathway. We

found that each signal is present in a different part of the network. This indicates

that the signals explain different regulatory submodules of the pathway. Finally, these

submodules give an idea about the composition of the pathway “lymphocyte activation”.
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Figure 7.10: Key genes derived from emGrade, 1st and 2nd source signal. We
applied emGrade jointly to data LPS1 and PL1; the estimated source signals are color-
coded in the network with positive values in blue and negative values in red. The upper
plot shows the results of the 1st source signal, the lower plot the result of the 2nd source
signal.
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Figure 7.11: Key genes derived from emGrade, 3rd and 4th source signal. We
applied emGrade jointly to data LPS1 and PL1; the estimated source signals are color-
coded in the network with positive values in blue and negative values in red. The upper
plot shows the results of the 3rd source signal, the lower plot the result of the 4th source
signal.
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GOBPID p-value count size term

GO:0046649 1.19e-22 18 451 lymphocyte activation
GO:0045321 2.37e-21 18 531 leukocyte activation
GO:0001775 6.79e-19 18 724 cell activation
GO:0042110 1.13e-17 15 331 T cell activation
GO:0051251 1.41e-16 13 198 positive regulation of lymphocyte activation
GO:0002696 4.21e-16 13 215 positive regulation of leukocyte activation
GO:0050867 7.68e-16 13 225 positive regulation of cell activation
GO:0050870 9.80e-16 12 157 positive regulation of T cell activation
GO:0051249 9.86e-15 13 273 regulation of lymphocyte activation
GO:0050863 3.48e-14 12 210 regulation of T cell activation
GO:0002694 5.46e-14 13 311 regulation of leukocyte activation
GO:0050865 1.62e-13 13 338 regulation of cell activation
GO:0002376 8.62e-12 18 1785 immune system process
GO:0050776 1.48e-11 14 642 regulation of immune response
GO:0006955 1.89e-11 16 1112 immune response

GOBPID p-value count size term

GO:0046649 2.51e-43 33 451 lymphocyte activation
GO:0045321 6.60e-41 33 531 leukocyte activation
GO:0001775 2.41e-36 33 724 cell activation
GO:0042110 1.32e-30 26 331 T cell activation
GO:0002376 3.21e-23 33 1785 immune system process
GO:0030098 2.05e-22 20 234 lymphocyte differentiation
GO:0006955 1.08e-21 29 1112 immune response
GO:0051249 4.81e-21 20 273 regulation of lymphocyte activation
GO:0002694 6.80e-20 20 311 regulation of leukocyte activation
GO:0050865 3.66e-19 20 338 regulation of cell activation
GO:0002521 4.92e-19 20 343 leukocyte differentiation
GO:0030217 2.07e-16 15 157 T cell differentiation
GO:0002252 6.11e-16 20 490 immune effector process
GO:0002682 8.07e-16 24 930 regulation of immune system process
GO:0051251 7.27e-15 15 198 positive regulation of lymphocyte activation

Table 7.2: Enrichment analysis for key genes derived from emGrade, 1st and
2nd source signal. We applied emGrade jointly to data LPS1 and PL1 and determined
q = 4 source signals. Listed are the top 15 biological processes derived from Gene Ontology
where the key genes of the 1st and 2nd source signal are enriched (upper/lower table). Key
genes are defined as genes with absolute value > 1 and enrichment was performed using
Fisher’s exact test.
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GOBPID p-value count size term

GO:0046649 6.66e-31 24 451 lymphocyte activation
GO:0045321 3.68e-29 24 531 leukocyte activation
GO:0001775 7.23e-26 24 724 cell activation
GO:0042110 5.55e-20 18 331 T cell activation
GO:0030098 1.16e-18 16 234 lymphocyte differentiation
GO:0051249 1.43e-17 16 273 regulation of lymphocyte activation
GO:0006955 5.17e-17 22 1112 immune response
GO:0002694 1.18e-16 16 311 regulation of leukocyte activation
GO:0002376 2.30e-16 24 1785 immune system process
GO:0050865 4.51e-16 16 338 regulation of cell activation
GO:0002521 5.71e-16 16 343 leukocyte differentiation
GO:0051251 6.32e-16 14 198 positive regulation of lymphocyte activation
GO:0002696 2.05e-15 14 215 positive regulation of leukocyte activation
GO:0050867 3.91e-15 14 225 positive regulation of cell activation
GO:0002682 4.38e-15 20 930 regulation of immune system process

GOBPID p-value count size term

GO:0046649 2.98e-25 20 451 lymphocyte activation
GO:0045321 8.34e-24 20 531 leukocyte activation
GO:0001775 4.53e-21 20 724 cell activation
GO:0042110 2.92e-18 16 331 T cell activation
GO:0051249 1.62e-17 15 273 regulation of lymphocyte activation
GO:0002694 1.18e-16 15 311 regulation of leukocyte activation
GO:0050865 4.17e-16 15 338 regulation of cell activation
GO:0051251 1.68e-13 12 198 positive regulation of lymphocyte activation
GO:0050863 3.43e-13 12 210 regulation of T cell activation
GO:0002376 3.63e-13 20 1785 immune system process
GO:0002696 4.56e-13 12 215 positive regulation of leukocyte activation
GO:0050867 7.92e-13 12 225 positive regulation of cell activation
GO:0050870 9.25e-13 11 157 positive regulation of T cell activation

GO:0002682 9.80e-13 17 930 regulation of immune system process
GO:0002684 1.36e-12 15 579 positive regulation of immune system process

Table 7.3: Enrichment analysis for key genes derived from emGrade, 3rd and
4th source signal. We applied emGrade jointly to data LPS1 and PL1 and determined
q = 4 source signals. Listed are the top 15 biological processes derived from Gene Ontology
where the key genes of the 3rd and 4th source signal are enriched (upper/lower table). Key
genes are defined as genes with absolute value > 1 and enrichment was performed using
Fisher’s exact test.
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8

Discussion and outlook

In this thesis, we presented probabilistic BSS methods that explicitly make use of the

structural information of the data. We demonstrated the power of probabilistic model-

ing in various simulation scenarios and in an application to gene expression data. In this

chapter, we shortly review the proposed methods and their applicability and summarize

our results. We then come forward with proposals about other areas of application and

possible future research.

8.1 Summary

In the first part, we considered BSS models for weakly stationary time series; here,

a mixing estimate can be derived using joint diagonalization of autocovariances. The

recently and partly in joint work published algorithms SOBIdef and SOBIsym are the

first to provide mixing estimates together with limiting distributions. Both algorithms

represent different conceptual approaches of determining an (un-)mixing estimate. To

evaluate the performance of these relatively new algorithms we provided an extense

simulation study; for comparison, we used the joint diagonalization algorithms SOBI

and ACDC and we invented further pairwise variants. In conclusion, we found that

particularly SOBIsym provides a reasonable alternative to other joint diagonalization

algorithms; it determines the same mixing estimates as SOBI with only slightly longer

runtimes.
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Based on the limiting distributions of the estimates we elaborated methods to identify

the mixing pattern and to decide, for example, whether entries in the mixing estimate

are actually zero. First, we introduced a family of linear hypothesis tests; in 80%

of our simulations we could correctly reject the hypothesis that an estimated mixing

entry equals zero if the true value equals at least 0.02. In addition, we provided a

setup to perform model selection. We considered model selection criteria with different

penalties for complexity (including AIC and BIC) and we introduced variants with

lower computational costs. In simulations with different time series models we found

very high recovery rates of the true zero entries using BIC and hypothesis testing on

single entries. The other proposed methods with differing penalizing constants tended

to underestimate the number of true zero-entries. In Appendix A we further show that

penalized optimization of the joint diagonalization problem fails. This justifies the use

of advanced methods like the proposed ones.

In the second part we moved on to more general network structures. We proposed a new

BSS method where we assumed a (known) weighted directed acyclic graph as underlying

data structure. The variable model was realized in form of a Bayesian network and the

unknown source signals were represented by latent variables. Continuing the approach

of Grade (Kowarsch et al., 2010), we substantiated the definition of weak stationarity

for regulatory data. Together with the Markov property of Bayesian networks we could

define a descriptive source model for regulatory data; it depends on a single parameter

for each source signal. To infer the model parameters, we provided an expectation-

maximization scheme with explicit update formulas; this also yields the name emGrade

for our method.

In contrast to Grade, we assume a directed acyclic graph and the distribution assump-

tions are more specific and in a sense restricting. However, the true power of emGrade

originates from the flexible modeling in terms of a Bayesian network. The model is, for

example, capable to include repeated observations and missing observed components.

Moreover, the source signals can be modeled individually assuming different network

structures on the same set of nodes. This is particularly interesting, when the net-

work naturally splits into substructures and one is interested in the impact of these

substructures in explaining the data.
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We evaluated the performance of emGrade and considered three different network struc-

tures inspired by biological network motifs. Expectedly, we found that the estimation

performance increases with the number of repeated observations and decreases with the

amount of missing observed components. In comparison to other BSS methods, emGrade

showed the most accurate estimation results; the difference to the other methods was

clearer in overdetermined settings with more observations than source signals. In partic-

ular, emGrade outperformed Grade when the data was generated using our source model;

the loss is a much higher runtime due to the iterative expectation-maximization scheme.

In simulations with emGrade we could further identify the true number of source signals

using the BIC. Additionally, we divided the networks into three subnetworks each and

modeled the source signals individually. Again, model selection with the BIC identified

the true combination of source signals among all possible combinations in most of the

simulations.

In the last part, we applied emGrade to gene expression data. In the considered experi-

ments systemic inflammation in humans was under investigation and the data consisted

of patients treated with intravenous endotoxin and a control group. As network informa-

tion we used the pathway “lymphocyte activation” which is known to reflect differences

between both groups. In comparison to the trivial network, we found that the path-

way information indeed improved the model performance. Furthermore, the prediction

of missing observations was more reliable for genes that were highly connected; this

indicates that the genes obtain information from their neighbouring genes. The most

important results of our investigations using emGrade are as follows. When treating

observations as missing, we could identify the most appropriate probe set on the mi-

croarray chip for two genes that were not uniquely annotated after standard annotation.

In comparison to other BSS algorithms, emGrade could identify a source signal with sig-

nificantly different regulatory impact in treatment and control group. And finally, the

estimated source signals represented different parts in the lymphocyte pathway and thus

deepened the understanding of regulatory submodules in the pathway.
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8.2 Outlook

For BSS models one can generally consider a variety of modifications and model re-

laxations. These include, amongst others, a non-linear mixing, a non-instantaneous

(or convolutive) mixing or for weakly stationary data the relaxation to piecewise sta-

tionarity. A further obvious generalization for the method emGrade is a fully Bayesian

treatment such that, for example, parameter priors and Bayesian model selection be-

come accessible. Besides this, we see some major aspects where the newly proposed

model not yet mirrors completely the nature of possible data. In the following, we list

the current model limitations and suggest reformulations that allow the application to

a broader range of regulatory data.

The first point is about loops and directed cycles in the network. In gene-regulatory

networks, for example, self-activating genes and positive or negative feedback loops play

an important regulatory role. So far, we used a Bayesian network to describe the source

signals. Thus, we implicitly assumed that the network is a directed and acyclic graph.

The Markov property together with the stationarity assumption uniquely defined the

joint distribution of all variables. To incorporate directed cycles the distribution of the

respective variables needs to be redefined. This is mainly a matter of definition but

we will loose the Markov property at least at one point in each directed cycle. The

original algorithm Grade, in contrast, places no restrictions on the network structure;

the algorithm is applicable to any directed network.

Besides loops and cycles, the assumption of directed edges can be restricting. In gene-

regulatory networks transcription factors activate or inhibit target genes; thus, the edges

are directed by definition. If we consider metabolomics data, in contrast, the egdes

reflect (reversible) chemical reactions between metabolomic compounds. One can use

partial correlations to learn such network structures. Here, the edges are undirected and

a random assignment of edge directions leads to different source models (Section 6.2.2).

To provide a consistent source model for undirected networks, one could simply define

the covariance of two random variables as a combination of a known weight, e. g. from

a partial correlation network, the distance of the variables in the network and a source

specific scaling parameter. The drawback is on the computational side since we lose the

facility of belief propagation in Bayesian networks. Without further assumptions, one
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needs to invert the joint covariance matrix of all random variables in each expectation

step. However, one might exploit structural aspects to overcome this computational

issue.

Finally, the proposed model can be seen as starting point for heterogeneous data anal-

ysis. This has been an emerging topic in systems biology during the last years (Jeong

et al., 2010; Sass et al., 2013). Heterogeneous data analysis means that different types

of data, e. g. DNA methylation, gene expression and protein levels, from several experi-

mental layers are modeled jointly to provide new and meaningful insights. A promising

approach can be to integrate the interacting layers of the data into our model. Here, the

relaxation to piecewise stationarity and possibly different parallel mixing processes can

be important. Nevertheless, the flexible Bayesian network structure is capable to model

a large variety of dependencies beween different types of variables and, thus, makes our

model applicable in a large variety of data situations.
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Appendix A

Model selection using penalized
optimization

In the maximization problem (5.2) from Chapter 5 we jointly diagonalize autocovari-

ances M1, . . . ,MK under the constraint WM0W
′ = Ip. To perform model selection we

consider the following penalized version

fpen(W ) =

p∑
j=1

K∑
k=1

(w′jMkwj)
2 − λ

∑
i,j

|aij | ,

where λ > 0 is a constant that forces entries of A = W−1 to zero. The case λ = 0

corresponds to the original unpenalized problem. Like before the maximization problem

is constrained by WM0W
′ = Ip. In case of pre-whitened data (M0 = Ip), we penalize

mixing entries after back-transformation. With this, both problems become equivalent

but we observe a better numerical performance on whitened data. In all simulations

we consider the MATLAB optimizer fmincon for constraint non-linear multivariate

problems.

In Figures A.1 and A.2 we generated data from the AR(4)-model (i) and the ARMA-

model (ii) from Section 5.3. The true mixing matrix contains 1, 2, . . . , 6 zero-entries and

the other entries are chosen randomly from ±U [0.1, 1]. The plots show the MDI values

of the mixing estimate of the penalized optimization problem for increasing constant

λ. The best performance is achieved for small values of λ. For larger values (λ ≥ 10)

the performance becomes very poor. Unexpectedly, the weighting parameter does not
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really scale with the number of true zero-entries and it is unclear how to appropriately

choose it.

Furthermore, we do not observe a subsequent reduction of the mixing entries to zero

like in other L1-penalized maximization problems (Figure A.3). The reason is the

constraint WM0W
′ = Ip. To perform model selection we therefore need to define a

threshold and set (small) mixing entries equal to zero. In Figures A.4 and A.5 we

consider different threshold values c = 0.0005, 0.001, 0.005 and 0.01. The plots show

the percentage of correctly determined zero-patterns for time series models (i) and (ii).

A high percentage of correct pattern identification is only achieved for λ = 0 (i.e. in

case of the un-penalized problem) or for high values λ ≥ 10. As stated above, high

values λ correspond to poor mixing estimates. All in all, the penalizing term does not

seem to increase the performance if we are interested in pattern identification.
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Figure A.1: Joint diagonalization with penalty term (MDI), model (i). The data
is generated using the AR(4)-model (i) with a time series length of T = 10 000. The true
mixing matrix contains 1, 2, . . . , 6 zero-entries. The plots show the numerical optimization
performance of the penalized joint diagonlization problem for different constants λ over
500 runs. For comparison, the horizontal green line indicates the median over all SOBI
estimates for λ = 0.
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Figure A.2: Joint diagonalization with penalty term (MDI), model (ii). The data
is generated using the ARMA-model (ii) with a time series length of T = 10 000. The true
mixing matrix contains 1, 2, . . . , 6 zero-entries. The plots show the numerical optimization
performance of the penalized joint diagonlization problem for different constants λ over
500 runs. For comparison, the horizontal green line indicates the median over all SOBI
estimates for λ = 0.
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Figure A.3: Joint diagonalization with penalty term (mixing matrix). The
data is generated using the AR(4)-model (i) with a time series length of T = 10 000.
The true mixing matrix contains 1, 2, . . . , 6 zero-entries. The plots show all entries of the
mixing estimates (blue) and the corresponding unmixing estimates (red) from numerical
optimization of the penalized joint diagonlization problem where we consider different
constants λ. The horizontal green lines indicate the SOBI mixing estimates for λ = 0.
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Figure A.4: Pattern identification using penalized optimization, model (i). The
data is generated using the AR(4)-model (i) with a time series length of T = 10 000. The
true mixing matrix contains 1, 2, . . . , 6 zero-entries. To determine the true zero-pattern
from the mixing estimates we consider different threshold values c. The plots show the
percentage of correctly determined zero-patterns over 500 runs dependent on the threshold
c and the penalizing constant λ.
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Figure A.5: Pattern identification using penalized optimization, model (ii). The
data is generated using the ARMA-model (ii) with a time series length of T = 10 000. The
true mixing matrix contains 1, 2, . . . , 6 zero-entries. To determine the true zero-pattern
from the mixing estimates we consider different threshold values c. The plots show the
percentage of correctly determined zero-patterns over 500 runs dependent on the threshold
c and the penalizing constant λ.
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Appendix B

Derivation of parameter updates for
emGrade

In Section 6.3.2 we introduced an expectation-maximization scheme to perform pa-

rameter inference in the model of emGrade. In the E-step we maximize the expected

complete data log-likelihood ES|X,θ
[
ln p(X,S | θ)

]
with respect to all model parame-

ters θ = (A,µ, σ2, D). In the following we provide the derivation of the update rules for

the parameters A, µ and σ2.

Let therefore Aµ = (A,µ) and s∗(i) = (s(i)′, 1)′ for i = 1, . . . , N . Let further Exx =∑N
i=1 x(i)x(i)′, Esx =

∑N
i=1E[s∗(i)]x(i)′, and Ess =

∑N
i=1E[s∗(i)s∗(i)

′]. The part of

ES|X,θ
[
ln p(X,S | θ)

]
dependent on the parameters A, µ and σ2 is given in (6.8); with

the above definitions it simplifies to

ES|X,θ
[

ln p(X | S, A, µ, σ2)
]

=− Np

2
ln(2π)− Np

2
ln(σ2)− 1

2σ2

N∑
i=1

[
Tr
(
E[x(i)x(i)′]

)
− 2Tr

(
E[s∗(i)x(i)′]Aµ

)
+ Tr

(
E[s∗(i)s∗(i)

′]A′µAµ
)]

=− Np

2
ln(2π)− Np

2
ln(σ2)

− 1

2σ2

[
Tr(Exx)− 2Tr(EsxAµ) + Tr(EssA′µAµ)

]
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Petersen & Pedersen (2008) provided useful formulas for the derivation of matrices.

With this, we determine the partial derivatives of the above term with respect to Aµ
and σ2 and obtain

∂

∂Aµ
ES|X,θ[ `c ] = − 1

2σ2

[
−2(Esx)′ +Aµ((Ess)′ + Ess)

]
= − 1

σ2
[−(Esx)′ +AµEss ]

∂

∂σ2
ES|X,θ[ `c ] = −Np

2σ2
+

1

2σ4

[
Tr(Exx)− 2Tr(EsxAµ) + Tr(EssA′µAµ)

]
A necessary condition for extremal point is that the partial derivates equal zero. With

this, the first expression yields an update rule for Aµ

0 = −(Esx)′ +AµEss

⇔ Aµ = (Esx)′(Ess)−1

Using this updated value Aµ we get from the second expression an update rule for σ2

0 = Npσ2 −
[
Tr(Exx)− 2Tr(EsxAµ) + Tr(EssA′µAµ)

]
⇔ σ2 =

1

Np

[
Tr(Exx)− 2Tr(EsxAµ) + Tr(EssA′µAµ)

]
The validation of these possible extremal points using higher-order partial derivatives

is not straight-forward. The reason is the multi-dimensionality in form of matrices. In

praxis we therefore test whether a step into the proposed direction leads to an increase

of the cost-function ES|X,θ
[
ln p(X,S | θ)

]
; this was always true in our simulations.
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