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Abstract:
Within the past three decades, inflation—an expansion phase prior to the hot big bang—
has become an important part of standard cosmology. Scalar fluctuations that exit the
horizon during inflation and re-enter at later times may seed the formation of galaxies and
clusters and generate anisotropies of the cosmic microwave background (CMB) that have
been observed experimentally. In this thesis, we discuss three topics on scalar fluctuations
during inflation: In the first part, we evaluate the level of non-Gaussianity and the power
spectrum of curvature perturbations for hybrid inflation models with a mild waterfall
phase. We perform a combined analysis of the original and supersymmetric F-term and
D-term models parametrized by a unified potential. We find that for models with a
mild waterfall phase that last more than 60 e-folds, the level of non-Gaussianity and
the power spectrum amplitude cannot simultaneously satisfy the constraints from CMB
angular observations, due to the dominant contribution from entropic modes. In the
second part, we analyze inflation models and curvaton scenarios in the light of future
measurements of the CMB spectrum distortions, which are generated by energy injection
from acoustic waves in the primeval plasma. We show that only very few models can induce
CMB distortions at a level that is detectable by the PIXIE experiment. For a PRISM-
class experiment, there are more models can be detected. Finally, we investigate quantum
fluctuations of a light scalar field in the late-time limit on de Sitter background. To the
leading infrared order, we show the equivalence between stochastic and field theoretic
approaches. Moreover, the infrared divergence of a massless scalar field is proved to be
regulated by its self-interaction.
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Chapter 1

General introduction

The big bang cosmology [1, 2] has achieved great success by predicting the existence of
the cosmic microwave background (CMB) radiation, which was first detected in 1964 [3].
It also illustrates the evolution of all components of cosmic fluid. However, the pure big
bang theory has three important problems concerning the naturalness of the universe: the
flatness problem, the horizon problem, and the primordial monopole problem. In 1981, A.
Guth [4] suggested that these problems could be resolved by introducing an accelerated
expansion phase before the hot big bang, which is so called cosmic inflation [5, 6, 7, 8].
In Guth’s model, inflation is driven by a scalar field which is suffering a delayed first
order transition from a false vacuum to the true vacuum. During the phase transition,
the latent heat concentrates in the wall of true vacuum bubbles. Radiation is generated
in collisions of bubble walls. Unfortunately, the bubble wall collisions rarely occur due
to the exponential expansion of false vacuum background [9, 10]. Hence, this model
cannot reheat enough. To avoid the reheating problem, the new inflation (or slow-roll
inflation) scenario is proposed [11, 12]. In the slow-roll inflation scenario, inflation is
driven by a scalar field which is rolling down a potential hill very slowly. When the scalar
field rolls down fast, inflation ends and reheating will occur. It was soon realized that
the inflation mechanism can be also used to explain the origin of perturbations in the
universe [13, 14, 15, 16, 17, 18]. During inflation, scalar and tensor fluctuations are frozen
out at super-horizon scale while all other perturbations are diluted. When these super-
horizon scalar and tensor fluctuations re-enter the horizon in the later radiation- dominated
or matter-dominated era, they seed the formation of galaxies and clusters and generate
anisotropies of the CMB, which have been observed by many experiments [19, 20, 21].

In section 1.1, we briefly review the three problems in pure big bang cosmology, and
how inflation can resolve them. Then, the slow-roll inflation scenario and the concomitant
primordial scalar fluctuations will be described in section 1.2. In addition, we introduce a
more generic method for calculating primordial fluctuations beyond slow-roll approxima-
tion, i.e. the δN formalism, in section 1.3. The details for present issues can be found in
many standard textbooks for cosmology (e.g. [22, 23, 24, 25, 26]) and some review papers
(e.g. [27, 28]).

1.1 Three puzzles for pure big bang theory

1.1.1 Flatness problem

According to the cosmological principle, the universe is homogeneous and isotropic in
everywhere when viewed in a smoothed cosmological scale. Therefore, the spacetime of
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the universe is characterized by the maximally symmetric Robertson-Walker (RW) metric

ds2 = gµνdx
µdxν = dt2 − a(t)2

[
dr2

1−Kr2
+ r2dΩ2

]
, (1.1)

where a(t) is the scale factor and K is a constant that represents the spatial curvature.
For K = 0, the spacetime is flat and infinite, whereas K > 0 (K < 0) corresponds to a
spherical (hyperbolic) model. By substituting the RW metric into Einstein equations, one
obtain the Friedmann equations

ȧ2

a2
=

8πGρ

3
− K

a2
, (1.2)

3ä

a
= −4πG(3p+ ρ), (1.3)

where ρ(t) and p(t) are the proper energy density and pressure, G is the Newton constant
and the dot · denotes the time derivative d

dt . The evolution of the scale factor a(t) is
governed by these equations. The Hubble parameter is defined as

H(t) =
ȧ(t)

a(t)
. (1.4)

The first Friedmann equation (1.2) can be rewritten as

ΩK = − K

a2H2
= 1− ρ

ρc
= 1− Ω, (1.5)

where ρc = 3H2

8πG is the critical energy density. The quantity Ω denotes the ratio of the
total energy density (including matter, radiation and vacuum energy) to the critical energy
density, while ΩK is the counterpart for curvature. The analysis of recent CMB data [29]
suggests that today’s |ΩK | < 0.01 at 95% confidence level. This result is consistent with
the type Ia supernova observations [30, 31, 32]. From the Friedmann equations (1.2)
and (1.3), we can know that, |ΩK | ∝ t2/3 in the matter-dominated (p = 0) era, whereas
|ΩK | ∝ t in the early radiation-dominated (p = ρ/3) era. Therefore, the value of |ΩK | is
even much smaller in the early stage of universe. It seems that the value of |ΩK | is fine
tuned. This is the flatness problem.

This problem is solved by inflation because the Hubble parameter H(t) is nearly con-
stant during inflation. Thus, |ΩK | = |K|

a2H2 decreases rapidly when the universe is ex-
panding exponentially. In order to describe the dynamics of inflation, it is convenient to
introduce the number of e-folds defined by

N = log

[
a(tf )

a(ti)

]
=

∫ tf

ti

H(t)dt, (1.6)

where ti and tf are the time of the start and end of inflation. If the value of |ΩK | is nearly
unity at the beginning of inflation, then today we will have

|ΩK |0 =
|K|
a2

0H
2
0

= e−2N

(
aendHend

a0H0

)2

, (1.7)
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where the subscript “end” denotes the end of inflation and “0” corresponds to the present
epoch. Thus, in order to avoid the flatness problem, the expansion during inflation has
the lower bound

eN >
aendHend

a0H0
=
aendHend

arehHreh

ȧreh
ȧ0

, (1.8)

where “reh” is the reheat epoch. We roughly set the first fraction to be unity by assuming
that not much happens to the scale factor and Hubble parameter from the end of inflation
to the reheat epoch. Furthermore, the scale factor grows as some power of time in the
later radiation and matter-dominated eras, we are able to use an estimate ȧ ∼ a/t and
rewrite the second fraction of Eq. (1.8) as

ȧreh
ȧ0

=
areh
a0

t0
treh
≈ Treh

T0

t0
treh

. (1.9)

If the energy scale of reheating is 109GeV , i.e. Treh ∼ 1022K and treh ∼ 10−33, we have

eN >
ȧreh
ȧ0
∼ 1028, (1.10)

that indicates inflation ought to last more than 60 e-folds. A similar result is obtained
by a more precisely estimation in Ref [26]. In general, the duration of inflation may be
greater than the exact number of e-folds to solve the flatness problem. Hence, inflation
scenarios suggest that |ΩK | � 1.

1.1.2 Horizon problem

First of all, we have to introduce the concept of particle horizon [33]. The particle horizon
is the maximal causal contact region for an observer at a fixed time t. Therefore, the
radius of horizon can be defined by the maximal distance that center emitted lights could
have traveled. In a RW spacetime, if the big bang started at a time t = 0, the radius of
comoving horizon at time t is given by

dh =

∫ rmax(t)

0

dr√
1−Kr2

=

∫ t

0

dt′

a(t′)
∼ 1

a(t)H(t)
. (1.11)

To obtain this relation, we used the knowledge that the proper distance for a light ray
is dτ2 = 0. There is no causal contact between two events that are separated by a dis-
tance larger than 2dh. From equation (1.11), we note that the particle horizon scale is
proportional to the square root of |ΩK | if |K| is a non-zero constant. Thus, it is straight-
forward to reach the conclusion that the horizon size is growing during the evolution of
the universe after the hot big bang. During the expansion of horizon, one would expect to
observe strong signals of anisotropies and inhomogeneities at large scale between points
which were not causal contacted before horizon entry. However, from the recent CMB
anisotropic data [19, 29], there is no such signal. The universe is nearly isotropic and
homogeneous at large scales. This is the so-called horizon problem.

In inflation scenarios, the scale factor a(t) grows as eHt and the Hubble parameter H
is nearly a constant. Hence, the comoving horizon scale (1.11) decreases as a factor eN

where N is the number of e-folds during inflation. The evolution of the comoving horizon

3



Figure 1.1: The evolution of the comoving Hubble radius (horizon) during inflation and the
late evolution of the universe. The shaded band corresponds to the scale of observations at
present. The points that are outside the horizon in the late time can be causal contacted
before inflation. Figure from [23].

is shown in FIG. 1.1. Thus, all the observable universe can be inside the particle horizon
and causally connected in the early stage, provides

eN ≥ aendHend

a0H0
. (1.12)

This condition is the same as (1.8) for solving the flatness problem. Therefore, we know
that the horizon problem can be solved if inflation lasts more then 60 e-folds.

1.1.3 Monopole problem

Many physicists believe that the electro-weak and strong interactions are grand unified
with local symmetry under some simple symmetry group at a very high energy scale. (cf.
Ref. [34] for an overview.) At an energy MG ≈ 1016GeV , the grand unified symmetry is
spontaneously broken, and finally into the gauge symmetry of the standard model. Due to
the expansion history of the universe, this process can happen in the early time. However,
many unwanted relics are produced in the process of spontaneous symmetry breaking.
The most notorious one is the magnetic monopole. According to grant unified theories
(GUT), the abundance of magnetic monopoles should be of the same order as that of
nucleons, if monopoles do not annihilate by themselves. However, the ratio of monopoles
to nucleons is experimentally found to be less than 10−30 [35]. This discrepancy can be
also resolved by inflation, provided that the reheating temperature is lower than the GUT
scale.During inflation, monopoles were produced after GUT symmetry breaking and were
diluted rapidly by the expansion. Whereas, nucleons and photons which were generated
after the epoch of reheating were not diluted by inflation. To solve the discrepancy of
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order 10−30, the scale factor should be increased by a factor of 1010 during inflation,
which requires the number of e-folds to be greater than log 1010 = 23.

For the above three problems, the most serious one is the horizon problem. There are
some alternative solutions for other two problems. For example, the flatness problem can
be solved by assuming the space is always flat. Moreover, if there is no GUT symmetry
breaking, the monopole problem is not exist anymore. However, the horizon problem can
be only solved naturally by inflation scenarios. Perhaps, cyclic universe theory could be
an alternative solution for all these three problems [36]. But there is no evidence for it at
present.

1.2 Slow-roll inflation

1.2.1 Slow-roll approximation

The evolution of the universe is governed by the Friedmann equations (1.2) and (1.3). We
assume that there is an epoch when the universe is dominated by a nearly homogeneous
scalar field φ before the radiation-dominated era. In this epoch, the energy-momentum
tensor is

Tαβ = −gαµ ∂φ
∂xµ

∂φ

∂xβ
+ gαβ

[
1

2
gµν

∂φ

∂xµ
∂φ

∂xν
+ V (φ)

]
, (1.13)

where V (φ) is the potential for the scalar field. The scalar field can be divided into a
homogeneous zeroth-order term φ(0)(t) and a first-order perturbation δφ(t,x), i.e.

φ(t,x) = φ(0)(t) + δφ(t,x). (1.14)

For the unperturbed field φ(0)(t), the energy-momentum tensor can be rewritten as

T (0)α
β = gα0g

0
β

(
φ̇(0)

)2
− gαβ

[
1

2

(
φ̇(0)

)2
− V (φ(0))

]
, (1.15)

due to its homogeneity. The energy density of φ(0) is the time-time component of the
energy momentum tensor

ρ =
1

2

(
φ̇(0)

)2
+ V (φ(0)), (1.16)

and the pressure p = T (0)i
i is

p =
1

2

(
φ̇(0)

)2
− V (φ(0)). (1.17)

By substituting Eqs. (1.16) and (1.17) into the Friedmann equations (1.2) and (1.3), one
obtains the equations

H2 =
1

3M2
pl

[
1

2

(
φ̇(0)

)2
+ V (φ(0))

]
, (1.18)

ä

a
=

1

3M2
pl

[
−
(
φ̇(0)

)2
+ V (φ(0))

]
, (1.19)

where the reduced Planck mass M−2
pl = 8πG with ~ = c = 1 in the natural units system.

Let us consider the case that the scalar field is dominated by its potential energy, i.e.
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V (φ(0)) � 1
2

(
φ̇(0)

)2
. In this case, the scalar field rolls down the potential very slowly,

and the higher order terms of φ̇(0) are negligible. This is the so called slow-roll approxi-
mation. From Eq. (1.19), we have ä > 0, that indicates an accelerating expansion of the
unperturbed background. From Eq. (1.18), the Hubble parameter is approximately

H2 ≈ V (φ(0))

3M2
pl

. (1.20)

By combining both equations, one obtains a(t) = a(t0)eHt. Space expand exponentially
during inflation. In order to describe the background evolution, cosmologists introduce
the slow-roll parameters which can be defined in different manners [37]. In this thesis, we
adopt the definition of Hubble flow functions [27]

εn+1 ≡
d log |εn|
dN

, n ≥ 0, (1.21)

where ε0 ≡ Hini/H. During the epoch of inflation, the first slow-roll parameter ε1 must
be less than 1. When ε1 = 1, inflation ends and the slow-roll condition is violated. In the
context of slow-roll inflation, the parameters εn can be expressed as

ε1 =
M2
pl

2

(
Vφ
V

)2

, (1.22)

ε2 = 2M2
pl

[(
Vφ
V

)2

−
Vφφ
V

]
, (1.23)

ε2ε3 = 2M4
pl

[
VφφφVφ
V 2

− 3
Vφφ
V

(
Vφ
V

)2

+ 2

(
Vφ
V

)4
]
, (1.24)

where the subscript φ denotes the derivative d
dφ . Thus, the shape of the inflationary

potential is also presented by the values of slow-roll parameters.

1.2.2 Scalar field perturbations

There are primordial scalar and tensor fluctuations generated in the epoch of inflation. In
this thesis, we focus on the scalar fluctuations which are detected in CMB experiments
[19, 20]. Although the BICEP2 collaboration [21] stated that they discovered primordial
B-mode polarization at 7σ confidence level and the tensor-to-scalar ratio r = 0.2, the
recent Planck data analysis [38] shows that the BICEP2 signal is in the some order of dust
radiations. Thus, the tensor fluctuation is not confirmed yet.

During inflation, the evolution of the scalar field is governed by the Klein-Gordon
equation

φ̈+ 3Hφ̇+ Vφ = 0. (1.25)

We apply the homogeneous decomposition (1.14) in the Fourier components φk of the
field. Then, the Klein-Gordon equation for the first-order perturbation can be written as

δ̈φk + 3H ˙δφk +

(
k

a

)2

δφk + Vφφδφk = 0. (1.26)
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In a slow-roll inflation, Vφφ is proportional to the second slow-roll parameter (1.23). Hence,
the last term in above equation can be neglected. The first-order perturbation can be
treated as a massless free field. By transforming from coordinate time t to conformal time
η = −1/aH, and rescaling ψ ≡ aδφ, Eq. (1.26) becomes

d2ψk(η)

dη2
+ (k2 − 2(aH)2)ψk(η) = 0. (1.27)

Due to the quantum nature of δφ, the field ψ can be decomposed into its k-modes

(2π)3ψ̂k(η) = ψk(η)â(k) + ψ∗k(η)â†(−k). (1.28)

Here ψk is the mode function that satisfies Eq. (1.27) with the initial condition in Bunch-
Davies vacuum [39]

ψk(η) =
1√
2k
e−ikη. (1.29)

Thus, the solution is given by

ψk(η) =
e−ikη√

2k

(kη − i)
kη

. (1.30)

In order to study on the statistical behaviour of field fluctuation, we introduce the defini-
tion of the power spectrum as a dimensionless pre-factor of the correlation function that
reads

〈ψkψk′〉 =
2π2

k3
Pψ(k)δ3(k + k′). (1.31)

At the time well after horizon exit of the k-mode, the term kη � 1 that can be negligible.
Then, one obtain the power spectrum of ψ

Pψ(k, η) =
k3

2π2
|ψk(η)|2 =

(
1

2πη

)2

. (1.32)

Recalling ψ = aδφ, the power spectrum of first order perturbations δφ is giving by

Pδφ(k) =
Pψ(k, η)

a2
=

(
H

2π

)2

. (1.33)

In inflation scenarios, the Hubble parameter H is nearly a constant. Hence, we say that
the scalar field perturbation is frozen at super-horizon scale.

1.2.3 Curvature perturbation

Besides field fluctuations, the background spacetime is perturbed as well. In general,
spacetime perturbations can be decomposed into scalar, vector and tensor modes. There
is a decomposition theorem tell us that the three different perturbation modes are not
coupling to each other up to the first order. We focus on the scalar perturbations in this
thesis. In the conformal Newtonian gauge, the first-order perturbed metric can be written
as

ds2 = a2[(1 + 2Ψ)dη2 − (1− 2Φ)δijdx
idxj ], (1.34)
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where Ψ and Φ are gravitational potentials (also named as Bardeen potentials). The
curvature perturbation on uniform-density hypersurfaces is given by [16, 40]

ζ = −Ψ−Hδρ

ρ̇
, (1.35)

where δρ is the density perturbation. Note that ζ is gauge invariant and becomes time in-
dependent after horizon exit, it corresponds to observations of CMB anisotropies. Around
the time of horizon-crossing, Ψ is negligible. Hence, to the first order, curvature pertur-
bation ζ is given by

ζ = −H δφ

φ̇(0)
. (1.36)

A few Hubble times after horizon exit, the power spectrum of ζ reads

Pζ(k) =

(
H

φ̇(0)

)2

Pδφ

∣∣∣∣∣
k

=
1

4π2

(
H2

φ̇(0)

)2
∣∣∣∣∣
k

. (1.37)

In slow-roll scenarios, the second order derivative in the Klein-Gordon equation (1.25) is
negligible. Thus, we have

φ̇ = −
Vφ
3H

. (1.38)

By using Eqs (1.20) and (1.38), one obtains the Pζ(k) under slow-roll approximation, it
reads

Pζ(k) =
V

24π2M4
plε1

∣∣∣∣∣
k

(1.39)

In order to study on the scale-dependence of Pζ(k), we define the spectral index ns as

ns − 1 ≡
d logPζ(k)

d log k

∣∣∣∣
k∗

= −2ε1 − ε2, (1.40)

where k∗ is the pivot scale. Since ε1 � 1 and ε2 � 1 during slow-roll inflations, the power
spectrum of primordial curvature perturbation is nearly scale invariant. From recent CMB
observations [19, 20], we know that Pζ(k∗) ≈ 2.2× 10−9 and ns ≈ 0.96 at the pivot scale
k∗ = 0.002Mpc−1.

1.3 The generic δN formalism

There are two types of primordial perturbations can be generated during inflation. They
are adiabatic and isocurvature perturbations. The slow-roll approximation is applicable for
the adiabatic phase and problematic for the isocurvature phase. Therefore, a more generic
method is needed. Hence, we would like to introduce the δN formalism [13, 41, 42, 43, 44].

The δN formalism is based on the separate universe assumption, which is usually
regarded as a pair of assumptions. The first one is that the spatial gradients are negligible
at a scale larger than smoothed scale. Given this assumption, one can deal the evolution
of the universe as if it were homogeneous. The second assumption is that the universe is
locally isotropic at each position. With both assumptions, the smoothed universe can be
regarded as unperturbed and separated.

8



In order to investigate the scalar curvature perturbation, we consider uniform-energy
density slices with which threads are comoving. Then, the spatial metric can be written
as

gij = a2(x, t)γij(x), (1.41)

where a(x, t) ≡ a(t)eζ(x,t) and γij is the unit matrix as we do not consider tensor pertur-
bations. For two uniform-energy density slices at t1 and t2, the e-fold time between them
is given by

N12(x) =

∫ t2

t1

ȧ

a
dt = ζ(x, t2)− ζ(x, t1). (1.42)

If one start from a flat slice ( with ζ = 0 which is a particular type of uniform-energy
density slices) and end at time t with a uniform-energy density slices, then the curvature
perturbation is

ζ(x, t) = δN(x, t) = N(x, t)−N(x, 0). (1.43)

This is the so-called δN formula. Note that the expansion N is a function of the energy
density and scalar fields. In the single scalar field case, it can be rewritten as

δN = N(ρ(t), φ(x))−N(ρ(t), φ(0)) = Nφδφ(x) +O(δφ)2. (1.44)

Thus, we obtain the power spectrum of ζ in the first order

Pζ = N2
φPδφ = N2

φ

(
H

2π

)2

. (1.45)

By rewriting

Nφ =
dN

dφ
= −H

φ̇
, (1.46)

one obtains
Nφ =

V

MplVφ
, (1.47)

with slow-roll approximation. Therefore, the power spectrum reads

Pζ =
V

24π2M4
plε1

, (1.48)

that returns to the result (1.39) in the previous section.
We note that the δN formalism is a powerful tool for calculating primordial curvature

perturbations. It can be applied to the cases beyond slow-roll approximation.

1.4 Topics of this thesis

In this thesis, we discuss on a few peculiar problems about primordial scalar fluctuations
during inflation. This manuscript is divided into three independent parts.

In the first part, we investigate curvature perturbations and non-Gaussianities from
hybrid inflation models (original [45], supersymmetric F-term [46, 47] and D-term [48, 49])
with a mild waterfall phase [50, 51, 52], taking into account the contribution of entropy
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(isocurvature) modes. By using δN formalism, non-Gaussianities and curvature pertur-
bations are calculated both analytically and numerically. We study on the regime of the
mild waterfall inflation that last more than about 60 e-folds time. We find that the non-
Gaussianity parameter fNL and the spectral index ns can fit well with CMB anisotropies
observations [19, 20]. However, at the same time, the spectrum amplitude increase by
serval orders of magnitude due to the contribution of entropy modes. Therefore, all con-
sidered hybrid models are ruled out by CMB observations.

The second part is devoted to testing inflation and curvaton scenarios with CMB
distortions. CMB spectral distortions are caused by energy injection processes for the
monopole, and can be detected by future experiments such as the Primordial Inflation
Explorer (PIXIE) [53] and the Polarized Radiation Imaging and Spectroscopy (PRISM)
[54, 55]. We focus on the spectral distortions caused by Silk damping that can give
information for the primordial scalar power spectrum on small scales. In this manuscript,
a model-oriented approach is adopted. All 49 single field inflation models listed in Ref.
[27] are examined, and only the original hybrid model can be detected by PIXIE in a
tuned parameter regime. After that, we investigate on three effective multi-field scenarios
(with softly and suddenly turning trajectories, and with a mild waterfall trajectory) and
curvaton scenarios. We find that softly trajectories and curvaton scenarios cannot induce
distortions at detectable level, whereas a sudden turn in field space or a mild waterfall
trajectory can lead to an observable amount of CMB distortion.

Finally, the third part is dedicated to self-regulatory mechanism for leading infrared
(IR) behaviour of scalar correlation functions. For a scalar field on de Sitter background,
the quantum fluctuations which behave as classic perturbations are proportional to the
term H2

m2 , where m is the mass of the field. When the scalar field is light, i.e. m2 �
H2, the soft modes will be accumulated at horizon-crossing that leads to IR divergence
in correlation functions. In this part, we develop a field theoretical method from first
principles based on the closed time path formalism. This method can be employed to study
the time evolution of scalar perturbations during inflation since it is time-dependent. In the
late time limit, we find agreement with the leading IR correlations found using stochastic
methods [56] up to all loop orders.
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Introduction

Hybrid models are well motivated because they can be embedded in various high energy
frameworks such as supersymmetry (SUSY) [46, 47, 49, 57, 58, 59], supergravity (SUG-
RA) [48, 60], and GUT [61, 62, 63]. In the usual description of those models, inflation
is driven by an inflaton field which rolls slowly along a nearly flat valley. It ends nearly
instantaneously when another field (the waterfall field) gains a nonzero value and triggers
a waterfall phase. In this standard regime of a fast waterfall, the original hybrid model
induces a slightly blue tilted power spectrum which is strongly disfavored by CMB ob-
servations [19, 20]. Moreover, at the end of inflation, the Z2 symmetry breaking of the
potential leads to the formation of domain walls that will induce catastrophic consequence
for cosmology.

Recent development have shown that these problems can be resolved with a sufficiently
mild waterfall phase [50, 51]. After a 60 e-folds expansion in the waterfall phase, topo-
logical defects are conveniently stretched outside the observable universe. Furthermore,
the observable perturbation modes exit the horizon during the waterfall with a red power
spectrum of perturbation. For the most well-known supersymmetric realization of the
hybrid inflation, the so-called F-term and D-term models, similar conclusions have been
obtained [52].

Moreover, for symmetric both F-term and D-term models, which are the most well
know supersymmetric realization of the hybrid inflation, the contribution of cosmic strings
formed at the critical point must be considered. The F-term model can satisfy the
constraints of the WMAP observation, while the D-term model was strongly disfavored
[64, 65]. However, with the Planck data, the degeneracy between the spectral index and
the string tension is strongly reduced, and both models appear to be ruled out in the
standard regime [66]. As shown in Ref. [52], these problems can be also resolved with a
mild waterfall phase last more than 60 e-folds time.

In this part, we evaluate the power spectrum of curvature perturbations and the level of
non-Gaussianities produced in the mild waterfall regime both analytically and numerically.
The first chapter is devoted to introducing the considered hybrid models and a unified
parametrization of the potential. In order to include the contribution of entropic modes
in our evaluation, the dynamics and methods for multifield cases are introduced in the
second chapter. In chapter 4 and 5, the level of non-Gaussianities and the power spectrum
of curvature perturbations are computed respectively. In the last chapter of this part, we
have a short discussion on our results as a conclusion.
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Chapter 2

Hybrid models

2.1 Original Hybrid model

In 1993, Linde [45] proposed the original hybrid inflation model as a new way to stop
inflation by a spontaneous symmetry breaking. It is a two-field model with an inflaton
field φ and a waterfall field ψ. It’s potential reads,

V (φ, ψ) = Λ

[(
1− ψ2

M2

)2

+
φ2

µ2
+

2φ2ψ2

φ2
cM

2

]
, (2.1)

where M , µ and φc are three parameters of mass dimension. FIG. 2.1 is a plot of the
potential. Inflation occurs when the inflaton rolls along the valley 〈ψ〉 = 0 (angle brackets
denote the vacuum expectation value (vev)). Soon after the inflaton crosses the critical
point φc, the waterfall field develops a Higgs-type tachyonic instability in the transverse
direction, and inflation ends. After that, the inflaton evolves toward one of its true minima
〈φ〉 = 0, 〈ψ〉 = ±M , whereas the instability triggers a tachyonic preheating era [67, 68,
69, 70, 71, 72].

In common picture, the waterfall phase is nearly instantaneous, and the 2-field dy-
namics can be approximated to the evolution of inflaton alone the valley. The effective
one-field potential is given by

V (φ) = Λ

(
1 +

φ2

µ2
VHI

)
. (2.2)

Inflation ends at the time when inflaton φ reaches the critical value φc. By defining
x ≡ φ/µVHI, the slow-roll parameters are written as

ε1 =
2M2

plx
2

µ2 (1 + x2)2 , (2.3a)

ε2 =
4M2

pl

(
−1 + x2

)
µ2 (1 + x2)2 . (2.3b)

When x = 1, the first slow-roll parameter ε1 reaches its maximum. Hence, the inflation
can be divided into large field (φ > µVHI) phase and small field (φ < µVHI) phase. To
avoid the regime where the slow-roll dynamics is violated at the transition between both
phase, it requires

µVHI >
1√
2
Mpl. (2.4)

In addition, in the slow-roll regime, the expansion of universe reads

N(x) =
µ2

VHI

4M2
pl

[
x2 − x2

i − 2 log

(
x

xi

)]
, (2.5)
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Figure 2.1: Logarithm of the original hybrid potential with Λ = M = φc = µ/100 = Mpl.
Figure from [50].

where xi is the initial field value. If the observable modes exit the Hubble horizon at
the small field phase, the number of e-folds is typically larger than 60. However, the first
slow-roll parameter ε1 is very small and the second slow-roll parameter ε2 is negative which
leads to a blue spectral tilt ns = 1− 2ε1 − ε2 > 1 that is ruled out by CMB observations
[19, 20].

2.2 Supersymmetric F-term model

The F-term inflation model [46, 47] is one of the minimal supersymmetric versions of
hybrid inflation. Its superpotential is given by

W = κŜ( ̂̄HĤ −m2) , (2.6)

where Ŝ is a gauge singlet superfield and the superfields Ĥ ( ̂̄H) transform in the (anti-
)fundamental representation of SU(N ). The correspondence tree level potential reads

V0 = κ2
(
|H̄H −m2|2 + |SH̄|2 + |SH|2

)
, (2.7)

where now S, H and H̄ are complex scalar fields. When S acquires a vev and 〈H〉 =

〈H̄〉 = 0, a trajectory that support hybrid inflation can be obtained. In this case, there
are N complex scalar fields H+ = 1√

2
(H + H̄) of mass square m2

+ = κ2(|S|2 −M2), N
complex scalar fields H− = 1√

2
(H+ H̄) of mass square m2

− = κ2(|S|2−M2), and N Dirac
fermions of mass κS. A large mass is given to H− by the D term that implies the vev of
H− can be neglected. The inflaton can be identify as φ =

√
2|S| and the waterfall field as

ψ =
√

2H+. Thus, the tree-level potential can be written as

V0(φ, ψ) = κ2m4

[(
1− ψ2

4m2

)2

+
φ2ψ2

4m4

]
=
κ2

4
φ4

c

[(
1− ψ2

2φ2
c

)2

+
φ2ψ2

φ4
c

]
. (2.8)

16



When the inflaton crosses the critical point, i.e. φ ≥ φc =
√

2m and 〈ψ〉 = 0, the
potential energy Λ = κ2m4 spontaneously breaks supersymmetry. Moreover, in terms of
these degrees of freedom, the one loop correction to the potential is

V1 =
κ4N

128π2

[
(φ2 − φ2

c)2 log

(
κ2φ

2 − φ2
c

2Q2

)
+(φ2 + φ2

c)2 log

(
κ2φ

2 + φ2
c

2Q2

)
− 2φ4 log

(
κ2φ2

2Q2

)]
, (2.9)

where Q is a renormalization scale. SUSY F-term inflation is driven by the potential
V = V0 + V1. As discussed in [52], it is a good approximation to treat the one-loop
potential to linear order in the near critical point regime. Then the dynamics relate to
the first derivative of the one-loop potential

∂V1(φ)

∂φ

∣∣∣∣∣
φ=φc

=
κ4N
8π2

φ3
c log 2 . (2.10)

It requires κ� φ2
c/M

2
P for realizing a substantial amount of e-folds in the waterfall phase

[52]. Therefore, the second order derivatives of the one-loop potential which are of order
κ4M2

16π2 ×O can be neglected, because there is no phenomenologically relevant contribution
to the observable power spectrum from them.

2.3 Supersymmetric D-term model

The D-term inflation model [48, 49] is another minimal supersymmetric version of hybrid
inflation. The superpotential is

W = κŜ ̂̄HĤ , (2.11)

where Ŝ is again a singlet and Ĥ and ̂̄H are superfields in the one-dimensional represen-
tation of a U(1) gauge group. The D-term is given by

D =
g

2

(
|H|2 − |H̄|2 +m2

FI

)
, (2.12)

where mFI is the Fayet-Iliopoulos term. The canonically normalized inflaton field is again
φ =

√
2|S|, whereas now the waterfall field is given by ψ =

√
2|H̄| of the mass square

κ2φ2/2− g2m2
FI/4 for 〈ψ〉 = 0. Hence, the critical point is

φc =
1√
2

g

κ
mFI . (2.13)

When the inflaton φ evolves blow this critical value, the waterfall field ψ becomes tachy-
onically unstable. Then, the tree level potential is given by

V0 = κ2
(
|HH̄|2 + |SH|2 + |SH̄|2

)
+

1

2
D2

=
g2

8
m2

FI

[(
1− ψ2

2m2
FI

)2

+ 2
κ2

g2

φ2ψ2

m4
FI

]

=
κ4

2g2
φ4

c

[(
1− g2

4κ2φ2
c

ψ2

)2

+
g2

2κ2φ4
c

φ2ψ2

]
. (2.14)
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The one-loop potential takes the same form as for the F-term case, Eq. (2.9) when setting
N = 1.

2.4 Unified parametrization

In order to study the F-term and D-term and the original hybrid models in a unified
approach, it is convenient to use the parametrization

V (φ, ψ) = Λ

[(
1− ψ2

M2

)2

+

(
φ

µ

)p
+

2φ2ψ2

M2φ2
c

]
, (2.15)

where M is the position of the global minima, and φc denotes the critical instability point
along the valley. The parameter p is used to identify models. For the original hybrid
model, one has p = 2. As p = 1, the potential describes the dynamics for the F-term and
D-term models [52]. The corresponding relations of the model parameters for F-term and
D-term models are shown in TABLE 2.1.

F -term D-term
Λ κ2m4 κ4

2g2
φ4

c = g2

8 m
4
FI

φc

√
2m g√

2κ
mFI

M 2m
√

2mFI

1/µ
√

2Nκ2 log(2)
4π2m

√
2κg log 2
4π2mFI

Table 2.1: Parameters to be substituted into the potential (2.15) in order to obtain the
F - and D-term models close to the critical point.

With the unified potential, it is straightforward to write down the derivatives

∂V

∂φ
=
pΛφp−1

µp

(
1 +

4µpφ2−pψ2

pM2φ2
c

)
, (2.16a)

∂V

∂ψ
=

4ψΛ

M2

(
φ2 − φ2

c

φ2
c

+
ψ2

M2

)
, (2.16b)

∂2V

∂φ2
=
p(p− 1)Λφp−2

µp
+

4Λψ2

M2φ2
c

, (2.16c)

∂2V

∂ψ2
=

4Λ

M2

(
φ2 − φ2

c

φ2
c

+
3ψ2

M2

)
, (2.16d)

∂2V

∂φ∂ψ
=

8Λψφ

M2φ2
c

. (2.16e)

These derivatives are useful for deriving the dynamics and the phenomenological conse-
quences of hybrid inflation in following chapters. Moreover, in following chapters of this
part, we employ the standard definition for the slow-roll parameters ηXY = M2

pl[∂
2V/(∂X∂Y )]/V ,

where X and Y correspond to the canonically normalized fields φ and ψ.
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Chapter 3

Dynamics and methodology

As stated in the last chapter, a mild waterfall phase is a plausible solution for the problems
with hybrid inflation models. In the mild waterfall case, inflation is driven by both the
inflaton and the waterfall fields. Thus, the one-field effective potential Eq. (2.2) is not
available anymore, one has to treat the hybrid inflation as a multifield inflation. Therefore,
in this chapter, we are going to introduce the dynamics and the δN formalism for a
multifield inflation.

3.1 Multifield background dynamics

In single-field case, we know that the evolution of the spacetime and field itself are governed
by Friedmann equations (1.2), (1.3) and Klein-Gordon equation (1.25). If the universe
is filled with n nearly homogeneous real scalar field φi=1,2...,n, then the corresponding
Friedmann equations and Klein-Gordon equations reads

H2 =
1

3M2
pl

[
1

2

n∑
i=1

φ̇2
i + V (φi=1,...,n)

]
, (3.1)

ä

a
=

1

3M2
pl

[
−

n∑
i=1

φ̇2
i + V (φi=1,...,n)

]
, (3.2)

and
φ̈i + 3Hφ̇i +

∂V

∂φi
= 0 , (3.3)

where V (φi=1,...,n) is the field potential. To describes the collective evolution of all the
fields along the classical trajectory, an adiabatic field can be defined with the velocity [73]

σ̇ ≡

√√√√ n∑
i=1

φ̇2
i . (3.4)

Thus, the adiabatic field satisfies

σ̈ + 3Hσ̇ + Vσ = 0 , (3.5)

where

Vσ ≡
n∑
i=1

ui
∂V

∂φi
, (3.6)

with ui ≡ φ̇i/σ̇ are the components of a unit vector along the field trajectory.
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3.2 δN formalism

In section 1.3, we know that the scalar curvature perturbation ζ(x, t) equates the e-fold
variation δN(x, t)δN(x, t). In the multifield case, δN must be a function of all field values.
Then, it can be written as

ζ = δN(ρ(t), φ1, φ2, · · · ) '
n∑
i=1

N,iδφi +
1

2

n∑
i,j=1

N,ijδφiδφj , (3.7)

where the notation

N,i ≡
∂δN f

i

∂φi
i

, N,ij ≡
∂2δN f

i

∂φi
i∂φ

i
j

, (3.8)

is used. Let we choose the initial hypersurface at the time t∗ which is the time of observ-
able pivot scale k∗ = 0.05 Mpc−1 exit the particle horizon. Then, the power spectrum
amplitude and spectral index are given by [74]

Pζ(k∗) =
H2
∗

4π2

∑
i

N2
,i , (3.9)

ns − 1 = −2ε1∗ +
2
∑

ij φ̇i∗N,jN,ij

H∗
∑

iN
2
,i

, (3.10)

where star subscripts indicate quantities evaluated at t∗. With the definition of bispectrum

〈ζk1ζk2ζk3〉 ≡ (2π)3Bζ(k1, k2, k3)δ3(k1 + k2 + k3), (3.11)

the non-Gaussian properties can be specified by a parameter fNL that is defined as [75, 76]

Bζ ≡ −
6

5
fNL(k1, k2, k3)(Pζ(k1)Pζ(k2) + cyclicpermutations), (3.12)

where Pζ(k) = 2π2

k3
Pζ(k). By applying the δN formalism to the multifield case, one obtains

the non-Gaussianity parameter[74]

fNL = −5

6

∑
i,j N,iN,jN,ij(∑

iN
2
,i

)2 . (3.13)

In the δN formalism, it requires the final surface to be of uniform energy density. However,
in our calculation, we have chosen a constant field value hypersurface as the final surface.
This approximation leads to accurate predictions because the e-folds differences between
these two surfaces can be negligible compared to the e-fold variations between trajectory
reaching them. We will check this statement later in chapter 4 both analytically and
numerically. By the virtue of this approximation, one can obtain a more precise value of
the inflaton when the non-perturbed trajectory breaks the slow-roll approximation.

Note that the number of e-folds N t can be considered as a reparametrization of time,
dN t = Hdt. For example, we haveN t = Ht for a pure de Sitter inflation, where the Hubble
parameter H is constant. The function N that is employed to calculate the spectra of the
curvature perturbation at a scale k is then given by

N = N t
end −N t

k + const. . (3.14)

The constant term is irrelevant in the calculation, because the curvature perturbation is
obtained from the derivatives with respect to the fields and the fluctuations of these.
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3.3 The linear theory of multi-field perturbations

3.3.1 Perturbed equations

In the case of scalar curvature perturbation, the first-order perturbed metric is given by
Eq. (1.34)

ds2 = a2[(1 + 2Ψ)dη2 − (1− 2Φ)δijdx
idxj ], (3.15)

where Ψ and Φ are Bardeen potentials. From the spatial nondiagonal linear perturbed
Einstein equations in the longitudinal gauge, one obtains the relation Ψ = Φ. Then, the
(0, 0), (0, i) and (i, i) equations can be written as

−3H(Φ′ +HΦ) +∇2Φ =
4π

m2
pl

n∑
i=1

(
φ′iδφ

′
i − φ′2i Φ + a2 ∂V

∂φi
δφi

)
, (3.16)

Φ′ +HΦ =
4π

m2
pl

n∑
i=1

φ′iδφi , (3.17)

Φ′′ + 3HΦ′ + Φ
(
2H′ +H2

)
=

4π

m2
pl

n∑
i=1

(
φ′iδφ

′
i − φ′2i Φ− a2 ∂V

∂φi
δφi

)
, (3.18)

where a prime denotes the conformal time derivative, the conformal Hubble parameter
H ≡ a′/a and δφi is the perturbation of the scalar field φi. In addition, the linear
perturbed Klein-Gordon equations read

δφ′′i + 2Hδφ′i −∇2δφi +

n∑
j=1

a2δφj
∂2V

∂φi∂φj
= 2(φ′′i + 2Hφ′i)Φ + 4φ′iΦ

′ . (3.19)

Only if the cross derivatives of the potential and the Bardeen potential are vanishing, the
field perturbations are decoupled to each other. By combining Eq. (3.16), Eq. (3.18), and
Eq. (3.17), it is straightforward to derive the evolution equation for the Bardeen potential

Φ′′ + 6HΦ′ + (2H′ + 4H2)Φ−∇2Φ = − 8π

m2
pl

a2
n∑
i=1

∂V

∂φi
δφi . (3.20)

Moreover, the curvature perturbation is defined as

ζ ≡ Φ− H
H′ −H2

(Φ′ +HΦ) . (3.21)

We know that H′ − H2 = −4πσ′2/m2
pl from the background dynamics. Thus, with E-

q. (3.17), the comoving curvature perturbation can be rewritten as

ζ = Φ +
H
σ′2

n∑
i=1

φ′iδφi . (3.22)

Therefore, according to the background and the perturbed Einstein equations, the evolu-
tion of ζ is governed by equation [77]

ζ ′ =
m2

pl

4π

H
σ′2
∇2Φ− 2H

σ′2

[
a2

n∑
i=1

φ′i
∂V

∂φi
− a2

σ′2

(
n∑
i=1

φ′i
∂V

∂φi

)(
n∑
i=1

φ′iδφi

)]

=
m2

pl

4π

H
σ′2
∇2Φ− 2H

σ′2
⊥ija2 ∂V

∂φi
δφj , (3.23)
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where the orthogonal projector is defined as ⊥ij ≡ Id − uiuj . In the last line of this
equation, the second term, which is sourced by isocurvature perturbations, should vanish
in a single-field model.

3.3.2 Numerical integration

In Ref. [77], an exact numerical method for inflation models had been introduced. Here,
we give only the guidelines for computing the power spectrum of curvature perturbations
in a multifield scenario. For convenience, we use the number of e-folds as the time variable.
After expanding in Fourier modes, Eq. (3.19) reads [77]

d2δφi

dN t2
+ (3− ε1)

dδφi
dN t

+

n∑
j=1

1

H2

∂2V

∂φi∂φj
δφj +

k2

a2H2
δφi = 4

dΦ

dN t

dφi
dN t

− 2Φ

H2

∂V

∂φi
. (3.24)

Here, δφi = δφi(k, η) and we may use k = |k| because of isotropy. The initial condition
for the δφi is given by the quantization of the field perturbations in the limit k � aH. In
a similarly way to the one field case in section 1.2.2, the field operator can be expressed
as

δφi(η,x) =

∫
d3k

(2π)3

[
ai(k)e−ik·xδφi(k, η) + h.c.

]
, (3.25)

where h.c. stands for Hermitian conjugation and the operator ai(k) satisfies the com-
mutation relation [ai(k), a†j(k

′)] = (2π)3δijδ(k − k′). Moreover, the normalized quantum
modes are defined by a rescaling

vi,k(η) = aδφi(k, η) . (3.26)

They obey the equation v′′i,k+k2vi,k = 0 as the mass terms can be neglected. In the regime
k � aH, we have

lim
k/aH→+∞

vk,i(η) = ke−ik(η−ηi) . (3.27)

Thus, the initial conditions for the field perturbations can be written as

δφi,i.c. =
1√
2k

1

ai.c.
, (3.28)[

dδφi
dN t

]
i.c.

= − 1

ai.c.

√
2k

(
1 + i

k

ai.c.Hi.c.

)
, (3.29)

where the quantities with a subscript i.c. correspond to their initial values. If one inte-
grates the perturbations from the onset of inflation, numerical integration of sub-horizon
modes will cost a great deal of time because the total number of e-folds can be much large
than N∗. In order to improve the performance, integration of the perturbations is started
later when the condition

k

H(ni.c.)
= Ck � 1 (3.30)

is satisfied, where Ck is a constant characterizing the decoupling limit. In conclusion,
there are four steps for the numerical integration of multi-field perturbations:
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1. Integrate the background dynamics until the end of inflation, in order to gain the
value of N t

end and N t
end −N t

∗.

2. Integrate the background dynamics again, until N t
i.c. is reached, to fix initial condi-

tions for the perturbations.

3. Integrate the background and the perturbation dynamics simultaneously from N t
i.c.

to N t
end for each comoving mode.

4. Determinate the scalar power spectrum, Pζ(k) = 1/(2π2)
∑

i |ζi|2, where i = 1...n

corresponds to the n independent initial conditions for the field perturbations δφi
and ζi being the induced contributions to the curvature perturbation ζ.

3.4 Inflation along waterfall trajectories

Until now, the discussions in this chapter are valid for all multifield inflation models. In
this section, we focus on the hybrid models with a mild waterfall phase which lasts for more
than 60 e-folds. The mild waterfall dynamics has been investigated for the original model
in Ref. [50, 51] and for the F-term and D-term models in Ref. [52]. In this section, we
rederive the dynamics for the unified potential of Eq. (2.15) in the mild waterfall regime.
Following the analytic description in Ref. [51], we parametrize the filed as

φ ≡ φce
ξ , ψ ≡ ψ0eχ , (3.31)

where ψ0 is the initial condition for the waterfall field at the critical point of instability.
In the slow-roll waterfall scenarios, the conditions ξ < 0 and |ξ| � 1 must be satisfied.
Furthermore, the field evolution below the critical point can be divided into three phases
[51]:

• Phase 0: the second term of Eq. (2.16b) and the first term of Eq. (2.16a) are domi-
nant.

• Phase 1: the first term of Eq. (2.16b) and the first term of Eq. (2.16a) are dominant.

• Phase 2: the first term of Eq. (2.16b) and the second term of Eq. (2.16a) are domi-
nant.

Classically, the duration of the phase 0 is tiny [51]. Moreover, in a quantum scenario, in
the vicinity of the critical point of instability, the quantum diffusion of the waterfall field
dominates over the classical dynamics. Therefore, the phase 0 is not needed to be taken
into account.

3.4.1 Phase 1

The field trajectories in phase 1 is determined from the slow-roll equations which can be
written as

ξ2 =
pM2φp−2

c

4µp
(χ− χi) (3.32)
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Then the connection point (ξ2, χ2) between phase 1 and 2 is

χ2 ≡ ln

√pφ p2c M
2µp/2ψi

 . (3.33)

The duration of phase 1 is given by integrating

dξ

dN t
' −

pφp−2
c M2

pl

µp
. (3.34)

If the e-fold time is set to be zero at the critical instability point, one obtains

ξ = −
pM2

plφ
p−2
c

µp
N t . (3.35)

However, we note that there is a temporal minimum for the potential that is an ellipse
corresponding ∂V/∂ψ = 0. It is located on the trajectories

ξ = −ψ
2
i e2χ

2M2
. (3.36)

Provided

χ2 <
pφp+2

c

16µpM2
, (3.37)

, the temporal minimum is reached in the phase 1. One therefore obtains

ξ2 ≡


−
√
pφ

p
2
−1

c M

2µp/2
√
χ

2
for χ2 >

pφp+2
c

16µpM2

−pφ
p
c

8µp
for χ2 <

pφp+2
c

16µpM2

. (3.38)

The number of e-folds N1 realized in phase 1 then is given by

N1 =



√
χ2µ

p/2M

2
√
pφ

p
2
−1

c M2
pl

for χ2 >
pφp+2

c

16µpM2

φ2
c

8M2
pl

for χ2 <
pφp+2

c

16µpM2

. (3.39)

3.4.2 Phase 2

Solving the slow-roll equations, we find that the field trajectories in phase 2 follow the
relation

ξ2 = ξ2
2 +

pM2φp−2
c

8µp

[
e2(χ−χ2) − 1

]
. (3.40)

The temporal minimum is reached when

ξ = ξ2T.M. ≡ −
M2

2φ2
c

−

√
M4

4φ4
c

+ ξ2
2 −

pφpc
8µp

. (3.41)
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If the slow-roll conditions violated when

ηψψ '
8M2

plξ

M2
' −1 , (3.42)

the inflation ends before reaching the temporal minimum. In contrast, if the slow-roll
conditions violated when

ηφφ '
4M2

plψ
2

φ2
cM

2
' 1 , (3.43)

fields evolve through the temporal minimum before the end of inflation. By using E-
q. (3.36), one thus finds that

ξend =


− φ2

c

8M2
pl

for |ξend| > |ξ2T.M.|

− M2

8M2
pl

for |ξend| < |ξ2T.M.|
. (3.44)

Assuming that ξ � 1 and χ2 > 1/2, the slow-roll equations can be solved exactly in phase
2 before reaching the temporal minimum. Then, one obtains [51]

ξ(N t) = c′

√
pM2

2φp−2
c µp

(c′ − c)f(N t)− c′ − c
(c′ − c)f(N t) + c′ + c

, (3.45)

where c ≡
√
χ2/2, c′ ≡

√
c2 − 1/4 and

f(N t) = exp

8
√

2c′pφ
p
2
−1

c M2
pl(N

t −N1)√
pµpM2

 . (3.46)

In the limit |ξ| � |ξ2|, one can obtain

1

ξ
− 1

ξend
=

8M2
pl

M2
(N t −N t

end) . (3.47)

By integrating
dξ

dN
=

8M2
plξ

φ2
c

, (3.48)

one obtains the number of e-folds realized along the temporal minimum

N t
end −N t

2T.M. =
φ2

c

8M2
pl

ln

(
ξend

ξ2T.M.

)
, (3.49)

where N t
2T.M. is the value of the parameter N t when ξ = ξ2T.M.. Since the unified poten-

tial (2.15) is considered as an effective description that valid below the Planck scale, the
fields φ and ψ should be sub-Planckian. Hence, the critical instability point must satisfy
φc � Mpl. From Eq. (3.49), we know that the number of e-folds realized after reaching
the temporal minimum is very small.
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Chapter 4

Non-Gaussianities from the mild
waterfall phase

4.1 Analytical results

In this section, the level of non-Gaussianities is calculated by using the δN formalism.
It is useful to denote the time of the beginning of the transition between the phases 1
and 2 occurs and the time of horizon exit of the pivot scale k∗ by t1,2 and t∗ respectively.
According to the relation between t∗ and t1,2, one can distinguish two different cases:

1. t∗ > t1,2, the pivot scale leaves the horizon in phase 2 (long waterfall phase with
N t

end −N t
∗ � 60),

2. t∗ < t1,2, horizon exit occurs in phase 1 (moderately long waterfall phase, with
N t

end −N t
∗ & 60).

4.1.1 Case 1: Horizon exit in phase 2

To evaluate the fNL parameter with the δN formalism, the first step is to compute the
number of e-folds realized during inflation with an arbitrary starting point (ξi, χi) in field
space. Then, we use this result to evaluate the quantities N,φ, N,ψ, N,φφ, N,φψ and N,ψψ

for the pivot scale k∗. Here the unperturbed background fields is denoted by (ξ∗, χ∗).
If inflation ends before the temporal minimum is reached, the trajectories in phase 2

can be rewritten as
ψ2 = ψ2

0e
2χ = 2φ2

c(ξ2 − ξ2
i ) + ψ2

0e2χi . (4.1)

As ξ → ξend and χ→ χend, this equation also gives χend. In combination with the slow-roll
equation for φ, one gets the number of e-folds realized when the fields evolve from (ξi, χi)

to (ξend, χend),

N t
end −N t

i = − M2

8M2
pl

∫ ξend

ξi

dξ

ξ2 − ξ2
i + ψ0e2χi

2φ2c

. (4.2)

By defining C ≡ −ξ2
i + ψ0e2χi/(2φ2

c), we obtain

N t
end −N t

i = − M2

8M2
pl

√
C

[
arctan

(
ξend√
C

)
− arctan

(
ξi√
C

)]
(4.3)

if C > 0, and

N t
end −N t

i = − M2

8M2
pl

√
C

[
arctanh

(
ξend√
C

)
− arctanh

(
ξi√
C

)]
(4.4)
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if C < 0.
For a given initial value ψi, we now have the freedom in specifying ψ0 and χi. In order

to accordance with the parametrization (3.31), we choose ψ2
0 exp(2χi) = 2φ2

cχ
2
i , such that

consequently
ψ2

0e2χ = 2φ2
cξ

2 (4.5)

and

ξi = − M2

8M2
pl

(
N t

end −N t
i −

M2

8M2
plξend

) . (4.6)

Note that above choice corresponds to taking C → 0. In this limit, Eqs. (4.3) and (4.4)
can be expanded in a Taylor series as

N t
end −N t

i =
M2

8M2
pl

(
1

ξend
− 1

ξi
+
|C|
3ξ3
i

− |C|
3ξ3

end

)
, (4.7)

which is a consistent generalization of Eq. (3.47). With this expression, the e-fold deriva-
tives can be calculated. Relabeling (ξi, χi)→ (ξ, χ), one then finds

N,φ =
M2

8φceξM2
pl

(
1

ξ2
− 2

3ξ2
+

2ξ

3ξ3
end

)
' M2

24φcM2
plξ

2
(4.8)

and

N,ψ =
M2

8M2
pl

(
ψ

3φ2
cξ

3
− ψ

3φ2
cξ

3
end

)
' M2ψ

24φ2
cM

2
plξ

3
. (4.9)

In the last line of above equations, we assumed that |ξ| < |ξend| and thus |ξ3| � |ξ3
end|.

This relation is well satisfied when we eventually replace ξ → ξ∗ in the present case. In
addition, the second derivatives of the leading order are given by

N,ψψ =
M2

24φ2
cM

2
pl

(
1

ξ3
− 1

ξ3
end

)
' M2

24φ2
cM

2
plξ

3
, (4.10)

N,φφ '
4M2

24φ2
cM

2
plξ

3
(4.11)

and

N,φψ = − M2ψk
8φ3

ceξM2
plξ

3
' 3

√
2M2

24M2
plφ

2
cξ

3
. (4.12)

According to the relation (4.5), we notice that

N,φ = − 1√
2
N,ψ , (4.13)
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and
N,φφ = 4N,ψψ '

4

3
√

2
N,φψ . (4.14)

Replacing (ξ, χ) by (ξ∗, χ∗) in the above derives, one can now obtain the local fNL

parameter at the pivot scale

fNL '
5

18

(
24M2

plξ∗

M2

)
' − 5

3(Nexit − M2

8M2
plξend

)
� 1 . (4.15)

where Nexit = N t
end − N t

∗ denotes the e-fold time that inflation lasts after the horizon
exit of the pivot scale. For the supersymmetric F-term and D-term models, the above
expression reduces to

fNL ' −
5

3(Nexit + 1)
. (4.16)

Typically Nexit ≈ 60 e-folds, the level of non-Gaussianities is therefore negative and very
low, e.g. fNL ≈ −0.03 for the F-term and D-term models.

Finally, there is still a situation, in which the temporal minimum for the field ψ is
reached in phase 2, need to be considered. Then, we need to evaluate

N = NT.M.
∗ +N end

T.M. , (4.17)

where NT.M.
∗ is the number of e-folds realised between t∗ and the time when the temporal

minimum is reached, and N end
T.M. is the e-fold time that fields evolve from the temporal

minimum to the end of inflation. On the trajectory, that crosses the temporal minimum
in phase 2 with an arbitrary initial condition, the value of ξ must satisfy

ξ2T.M. = −M
2

2φ2
c

−

√
M4

4φ4
c

+ ξ2
i + ψ2

i /(2φ
2
c). (4.18)

Then, one can take Eq. (4.7) and replace ξend by ξ2T.M. to calculate NT.M.
∗,φ . For the

derivatives, we again replace (ξi, χi)→ (ξ, χ) and notice that

dξ2T.M.

dξ
=

−ξ
M2

2φ2c
− ξ2T.M.

. (4.19)

An additional term −(dξ2T.M./dφi)/ξ
2
T.M. arise in the parentheses of Eq. (4.8). However,

compared to the leading term, it is negligible. With Eq. (3.49), one can obtain

N end
T.M.,φ =

φc

8M2
plξ2T.M.

dξ2T.M.

dξ
=

φc

M2
pl

O(ξ) . (4.20)

Since |ξ| < |ξend| = φ2
c/(8M

2
pl), one finds that N end

T.M.,φ � NT.M.
∗,φ , as φc � Mpl, which is

required for the validation of the effective theory description.
Similarly, the leading terms in N end

T.M.,ψ, N
end
T.M.,ψψ, N

end
T.M.,φψ and N end

T.M.,φ,φ, as well as
in fNL, are not modified when the temporal minimum is reached, except replacing ξend by
ξT.M.. Therefore, we conclude that the level of non-Gaussianities is reduced compared to
the contributions from NT.M.

∗ and impossible to increase up to an observable level.
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4.1.2 Case 2: Horizon exit in phase 1

The same as the discussion for case 1, we first consider the situation where the temporal
minimum is not reached. In the discussion of Sec. 3.4.1, we have fixed the initial value of ξ
to zero. However, in order to obtain the necessary e-folds derivatives for the δN approach,
we have to generalize our analysis for more general initial values ξi.

The slow-roll equations in phase 1 yield the trajectory

ξ2 − ξ2
i =

pφp−2
c M2(χ− χi)

4µp
. (4.21)

For the number of e-folds generated in phase 1, one has to integrate Eq. (3.34) from the
initial point (ξi, χi) until reaching the onset of phase 2 (ξ2i, χ2), which gives

N1 = N t
2 −N t

i = −µ
p(ξ2i − ξi)
pM2

plφ
p−2
c

, (4.22)

where ξ2i = −
√
ξ2
i + pφp−2

c M2(χ2 − χi)/(4µp), N t
i is the value of the parameter N t at the

initial point (ξi, χi), N t
2 its value at (ξ2i, χ2), and χ2 is given by Eq. (3.33). Then the total

number of e-folds is given by N1 + N2, where N2 are the e-folds that realized in phase 2
before the violation of slow-roll. Here, we again drop the index i on the initial field values,
i.e. (ξi, χi)→ (ξ, χ) and (φi, ψi)→ (φ, ψ). The e-fold first derivatives then can be written
as

N,φ =
1

φk
(N1,ξ +N2,ξ) , (4.23)

N,ψ =
1

ψk
(N1,χ +N2,χ) . (4.24)

For Eq. (4.24), the first term yields

N1,χ = − µp

pφp−2
c M2

pl

dξ2i

dχ
=

M2

8M2
plξ2

, (4.25)

and the second term gives

N2,χ = −pφ
p−2
c M2

16ξ2µp
dN2

dξ2i
. (4.26)

The number of e-folds elapse in phase 2 is given by Eq. (4.7) with ξ2i and χ2i instead of
ξi and χi. Then one obtains

dN2

dξ2i
=

M2

8M2
plξ

2
2i

(
1− 2

3
+

2ξ3
2i

3ξ3
end

)
' M2

24M2
plξ

2
2i

, (4.27)

and thus

N2,χ = − pφp−2
c M4

384ξ3
2M

2
plµ

p
= − 1

12χ2
N1,χ . (4.28)

The last expression is obtained by inserting the value of ξ2 from Eq. (3.38). From E-
q. (3.33)], one knows that χ2 is a large logarithm. Hence, the contribution from phase 1
dominate in Eq. (4.24). Therefore, the term N2,χ is negligible, such that

N,ψ '
M2

8M2
plξ2ψ

. (4.29)
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Now let we turn to Eq. (4.23). The two derivatives can be written as

dN1

dξ
= − µp

pM2
plφ

p−2
c

(
ξ

ξ2
− 1

)
(4.30)

and
dN2

dξ
=

dN2

dξ2i

ξ

ξ2
≈ M2ξ

24M2
plξ

3
2

, (4.31)

respectively. From Eq. (3.38), we find that

dN1

dξ
= 6χ2

(
ξ2

ξ
− 1

)
dN2

dξ
. (4.32)

Again, the derivative term come from phase 2 can be neglected, and thus N,φ reads

N,φ '
µp

pM2
plφ

p−1
c

. (4.33)

In addition, because ψ∗ � ψ2, we may use that N,φ � N,ψ.
In a similarly way, one finds that terms from phase 1 dominate the second derivatives.

Then one gets

N,ψψ = − M2

8M2
plξ2ψ2

(
1 +

1

2χ2

)
' − M2

8M2
plξ2ψ2

' − 1

ψ
N,ψ , (4.34)

N,φψ ' − M2ξ

8M2
plξ

3
2φcψ

' − 1

ξ2
2φc

N,ψ , (4.35)

and

N,φφ =
µp

pM2
plφ

p−2
c φ2

(
−1 +

ξ

ξ2
− 1

ξ2
+
ξ2

ξ3
2

)
(4.36)

' − µp

pM2
plφ

p−2
c ξ2φ2

c

. (4.37)

We know that the derivatives with respect to the inflaton field φ, as well as the contri-
bution from the number of e-folds in phase 2, are negligible since ψ∗ � ψ2 and χ2 > O(1).
Thus, the parameter fNL can be written as

fNL ' −
5

6

N,ψψ(N,ψ)2

(N,ψ)4 '
20M2

plξ2

3M2
' −

10
√
pM2

plφ
p/2−1
c

3Mµp/2
√
χ2 . (4.38)

For the F-term model, this gives

|fNL| '
5κ
√
N
√

log 2M2
pl

6
√

2πm2

√
χ2 . 0.13

√
χ2 . (4.39)
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Figure 4.1: Non Gaussianity parameter fNL as a function of κ, for the F-term model,
with from left to right m = 10−4Mpl, m = 10−3Mpl, m = 10−2Mpl, m = 10−1Mpl. The
bold dots are the numerical results using the δN formalism. The dotted horizontal line
corresponds to fNL = −5/[3(Nexit + 1)] [the approximate result from Eq. (4.38)] and the
dashed lines to Eq. (4.38), which are respectively valid for t∗ > t1,2 and t∗ < t1,2. For
simplicity, we take Nexit = 60

If the duration of waterfall is just about 60 e-folds (κ
√
N ≈ m2/M2

pl), the level of non-
Gaussianity |fNL| reaches its maximum [52]. Particle physics experiments give the upper
bound √χ2 . 6 by imposing a lower bound on m. Therefore, the absolute value of fNL

is never greater than about unity. It indicates that the level of non-Gaussianities is below
the Planck sensitivity. In FIG. 4.1 the level of local non-Gaussianities given by Eqs. (4.38)
and (4.15) are plotted as a function of κ for the F-term model with different values of m.
Replacing m by mFI, one obtains the expression of fNL for the D-term model, which is
independent of the parameter g except logarithmically through the √χ2 factor.

For the original model, it requires at least 60 e-folds realized in the waterfall phase that
imposes Mµ & 40M2

pl [50]. The parameter fNL is independent of the model parameter
Λ and φc (apart through √χ2). Hence, the maximal value of fNL is about 0.7, as for
the F-term and D-term models. For original model, the level of non-Gaussianities from
analytical approximations are given in TABLE 4.1 for various parameter sets, which cover
the qualitatively different regimes. They are also compared to the numerical results. One
may still worry about the case where the field trajectory reaches the temporal minimum
in phase 1. From the relation (3.37), we find that in this case it requires χ2 � 1, where
the quantum diffusion is dominating at the time t∗. Therefore, we conclude that this
particular case is not relevant.

At this point, we can justify our choice of a final hypersurface of constant field value
ξ = ξend, instead of a surface of uniform density. Considering only the phase 2, ψend is
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given by
ψ2

end = 2φ2
c

(
ξ2

end − ξ2
i

)
+ ψ2

i (4.40)

The shift ∆(ψ2
end) induced by perturbations of the fields at the time t∗ can be derived

with the δN formalism. For perturbations of the inflaton field, we obtain

∆(ψ2
end)

∆φ∗
= 4φcξ∗ (4.41)

while perturbations of the waterfall field lead to

∆(ψ2
end)

∆ψ∗
= 2ψ∗ = 2

√
2φcξ∗ (4.42)

At the end of inflation, the potential reads

V (φend, ψend) = Λ

(
1 + 2ξend

ψ2
end

M2

)
. (4.43)

In order to reach a surface of constant density, the shift in ψend should be compensated
by a shift in ξend, which reads

∆ξend

∆φ∗
=

8φcξ∗
M2

. (4.44)

∆ξend

∆ψ∗
=

4
√

2φcξ∗
M2

, (4.45)

For ξ∗ ' −M2/(8M2
plN∗), one obtains

∆ξend

∆ψ∗
=

√
2

2

∆ξend

∆φ∗
� 1 . (4.46)

In the limit |ξ∗| � |ξend|, we can safely neglect the shifts in Eqs. (4.8), (4.9), (4.10), (4.11)
and (4.12) that caused by the different choices for the final hypersurface.

If the pivot scale exits the Hubble radius in phase 1, the shift of ξ2
2 as ∆ξ2

2 = −∆ξ2
∗

and ∆ξ2
2 = −pφp−2

c M2∆χ∗/(4µ
p) for field perturbations can be calculated both in the

longitudinal and transverse directions. By using ∆(ψ2
end) = −2φ2

c∆ξ2
2 and then ∆ξend =

2∆ψ2
end/M

2, it is straightforward to show that

∆ξend

∆ψ∗
� 1,

∆ξend

∆φ∗
� 1 . (4.47)

In the derivatives N,φ, N,ψ, N,φφ, N,ψψ and N,φψ, the terms from the variation of the
number of e-folds in phase 1 is dominant and again the shift in the terms from phase 2
can be neglected. Therefore, our results are independent of the possible choices for the
final hypersurface.

4.2 Numerical analysis

The analytical calculations of the previous section are based on many approximations,
namely,
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1. the slow-roll approximation,

2. a sharp transition between phase 1 and phase 2,

3. the final hypersurface with a fixed field value ξ = ξend [according to Eq. (3.44)],

4. the Taylor expansion (4.7) of the number of e-folds in phase 2,

5. some terms neglected in the e-folds derivatives.

Thus, we need to check the validity and the accuracy of our results. For this purpose,
a numerical calculation base on the δN formalism has been employed. Practically, the
numerical integration is divided into four steps:

1. The exact multifield background dynamics is integrated from the critical instability
point, where we set N t = 0, until the end of inflation, such that the total number of
e-folds N t

end is obtained.

2. The background dynamics is integrated again from the critical point to the time of
horizon exit of the pivot scale k∗ = 0.05Mpc−1. Thus, the initial conditions for the
perturbations are fixed at this time.

3. A numerical integration of the field dynamic is performed from initial conditions on
a 3×3 grid of values centered on (φ∗, ψ∗) in order to determine the number of e-folds
N to reach the final hypersurface.

4. The derivatives N,i and N,ij are calculated numerically. Then, the amplitude Pζ
and the spectral tilt ns of the power spectrum of curvature perturbations as well
as the level of non-Gaussianities fNL can be computed by using Eqs. (3.9), (3.10)
and (3.13).

In order to maintain the stability of the code, the differences between the initial conditions
need to be carefully chosen. It should be sufficiently small for the numerical derivatives
N,i and N,ij to be accurate. However, at the same time, it should be sufficiently large
to ensure that the differences between the values of N is much larger than the steps of
integration (which cannot be lower than ∆N ∼ 10−4 without increasing unreasonably
time consuming).

In addition, it is particularly difficult to define the final hypersurface numerically. The
reason is that along the waterfall trajectories the variation of the false vacuum potential
is too tiny to be resolved under a limited numerical precision. Hence, we have considered
the following alternatives:

• the hypersurface at the end of the slow-roll regime, where one of the slow-roll pa-
rameters reaches unity;

• a hypersurface of uniform energy just after the end of inflation, when for example
ρend = 0.99ρinf In this case, we assume that the effects of the tachyonic preheating
are negligible, and the classical trajectories are valid down to the final hypersurface;

• a hypersurface of uniform potential energy density.
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Between these possible methods, there is no noticeable difference.
In the vicinity of the critical point, the quantum diffusion of the waterfall field is

dominant, and classical trajectories must be seen as emerging from this quantum stochastic
regime. They are valid if the classical vev of the waterfall field satisfies ψ �

√
〈ψ2

qu〉, where
ψqu is the operator for the quantum field fluctuations around the classical expectation value
ψ. In the numerical integration, the value from the process of quantum diffusion [50, 52]

ψ0 '
√
κM3

F

2
√

3π3/4(ln 2)1/4
for the F-term , (4.48)

ψ0 '
gm3

FI

8
√

3κπ3/4(ln 2)1/4
for the D-term , (4.49)

ψ0 '
√

ΛµM

96π3/2
for the original model , (4.50)

has been taken as the initial condition of the waterfall field at the critical instability point.
Moreover, we only consider the trajectory as valid when ψ � ψ0. In practice, one can
notice however that ψ0 does not enter into the dominant term among the N,i and N,ij

values (or only logarithmically), and thus its value does not change the generated level
of non-Gaussianities and the power spectrum of curvature perturbations. This has been
confirmed numerically by checking that the results are independent of ψ0 as long as it
does not vary by several orders of magnitudes.

We have plotted in FIG. 4.1 both numerical and analytical results of the level of non-
Gaussianities as a function of κ for the term model with different values of m in the range
10−4Mpl < m < 0.1Mpl. From this figure, we find that numerical and analytical results
agree well in the regime fNL < −0.03 and m . 0.01Mpl. For larger values, in the regime
t∗ < t1,2, since the e-fold derivatives with respect of the inflaton φ become important, our
approximation given by Eq. (4.38) is not valid anymore and the |fNL| parameter takes
lower values. For the D-term model, where the parameter fNL is nearly independent of
the model parameter g, one can draw identical conclusions. Finally, for the original model,
there are two additional dimensions for the parameter space. With our numerical method,
it is very difficult to explore the parameter space entirely. However, we have made a
comparison of numerical and analytical results for a few sets of parameters corresponding
to the different regimes that is presented in TABLE 4.1. This confirms the agreement
between the analytical approximations and the numerical results.
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Chapter 5

Power spectrum of curvature
perturbations

5.1 Using the δN formalism

With Eqs. (3.9) and (3.10), one can calculate the amplitude and spectral tilt of the
power spectrum of curvature perturbations. Besides the e-fold derivatives that have been
calculated in the previous chapter, the field derivatives at the time t∗ of horizon exit of
the pivot scale are also needed for the calculation of the spectral index.

5.1.1 Case 1: Horizon exit in phase 2

In this case where t∗ > t1,2, we find

dφ

dN t
= −

8M2
plφcξ

2

M2
= − 1

3N,φ
, (5.1)

dψ

dN t
=
√

2
8M2

plφcξ
2

M2
= − 1

3N,ψ
. (5.2)

Using Eq. (3.10), we obtain

ns − 1 '
32ξ∗M

2
pl

M2
' − 4(

Nexit − M2

8M2
plξend

) . (5.3)

Here ε∗ is neglected since it is tiny when observable scales exit the horizon near the
critical instability point. Moreover, the amplitude of the power spectrum of curvature
perturbations is given by

Pζ(k∗) '
ΛM4

16× 242π2M6
plφ

2
cξ

4
∗
'

4ΛM2
pl(Nexit − M2

8M2
plξend

)4

9π2M2φ2
c

(5.4)

The expressions of ns and Pζ(k∗) recover the results of Refs. [51, 52] in coarse picture
where the waterfall trajectories are considered as effective single field. Therefore, the case,
that horizon exit of the pivot scale occurs in phase 2, is effectively single field. For the
F-term and D-term models, the power spectrum is red tilted. However, the spectral index
is too small when compared to CMB observations. For the original model, there is a free
parameter Λ. In principle, the value of spectral index can be increased up to ns ' 0.94

by increasing Λ. However, in this case, the energy scale of inflation is near the limit of
the B-mode polarization search in the CMB. Moreover, for the case where the temporal
minimum is reached before the end of inflation, our discussion is still valid and ξend can
be replaced by ξ2.TM in Eq. (5.3).
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5.1.2 Case 2: Horizon exit in phase 1

In the case where t∗ < t1,2, one finds

dφ

dN t
= −

pφp−1
c M2

pl

µp
= − 1

N,φ
, (5.5)

dψ

dN t
= −

8M2
plψξ

M2
= − ξ

N,ψξ2
. (5.6)

By neglecting the derivative with respect to φ, one obtains the dominant term for the
spectral index,

ns − 1 '
16M2

plξ∗

M2
. (5.7)

When ξ∗ → ξ2, it connects continuously to the spectral index for t∗ > t1,2. In FIG 5.2, we
have plotted the spectral index as a function of κ and different values of M for the F-term
model. The value of spectral index first is lower than expected for effectively single field
trajectories. The reason for this behavior is that |ξ2|, and thus |ξ∗|, first increases with
κ. Then it is creasing when the horizon exit occurs deeper in phase 1. When ξ∗ → 0, the
spectral index increase up to the unit. Therefore, in this case, one can find a regime of
parameter space where the value of spectral index is in accordance with CMB observations.
Now, let we turn to the amplitude of the power spectrum which is given by

Pζ(k∗) '
ΛM2µp

192π2pM6
plφ

p−2
c χ2ψ2

∗
. (5.8)

In the limit t∗ ' t1,2, one can replace ψ∗ = ψ0 exp(χ2), such that the amplitude reads

Pζ(k∗, t∗ ' t1,2) ' Λµ2p

48π2p2M6
plφ

2p−2
c χ2

, (5.9)

and it is connected to the amplitude in Eq. (5.4) for t∗ > t1,2. As the horizon exit of the
pivot scale occurs deeper in phase 1, the amplitude grows exponentially as

Pζ(k∗)× exp

[
2χ2

(
1− N t

∗
2

N2
1

)]
, (5.10)

where N1 is the number of e-folds that realized in phase 1 and N∗t is the number of e-folds
between the critical instability point and the horizon exit of the pivot scale k∗. Hence, in
the limit t∗ ' 0, the amplitude reaches it maximum,

Pζ(t∗ ' 0) ' ΛM2µp

192π2p2M6
plφ

p−2
c χ2ψ2

0

, (5.11)

which is typically larger than unity. It is important to note that one cannot modify the
amplitude of the curvature power spectrum without changing its spectral index since ψ∗
in Eq. 9.6 is related to ξ∗ through the waterfall dynamics in phase 1. From previous dis-
cussions, we know that the value of ψ0 is given by Eqs. (4.48), (4.49) or (4.50) from the
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process of quantum diffusion, and χ2 only depends logarithmically on the model parame-
ters which is typically of order unity. In the case where horizon exit of observable modes
in phase 1 and Nend & 60, i.e. for parameter values κ ∼ M2/M2

pl or Mµ ∼ M2
pl, the

amplitude of curvature power spectrum is several orders of magnitude larger than CMB
observations.

For the F-term model, the spectrum amplitude as a function of κ is plotted in FIG. 5.1
with different values of m. In combination with FIG. 5.2, it explicitly shows that the
exponential growth of the amplitude prevents it to be in agreement with CMB observations
when the spectral index is in the allowed range of CMB observations. As mentioned in
the previous Chapter, the case, where the temporal minimum is reached in phase 1, is not
relevant because of the quantum diffusion.

5.2 From the numerical integration of multifield perturba-
tions

The numerical methods for multifield perturbations were explained in Sec. 3.3.2. In the
numerical integration, we can follow the sub-horizon and super-horizon evolution of the
fields along the waterfall trajectories. Furthermore, the contributions of the field to the
rescaled adiabatic and entropic perturbations, which are respectively defined as [77]

δπa =
φ̇δφ√
φ̇2 + ψ̇2

+
ψ̇δψ√
φ̇2 + ψ̇2

, (5.12)

δπe =
ψ̇δφ√
φ̇2 + ψ̇2

+
φ̇δψ√
φ̇2 + ψ̇2

. (5.13)

can be identified. For the F-term model, the evolution of curvature, rescaled adiabatic and
entropic perturbations are plotted in Figs. 5.3 and 5.4 for the case t∗ > t1,2 and t∗ < t1,2,
respectively. Moreover, we find that the behaviors for the original and D-term models are
similar to that for the F-term model. In the case t∗ > t1,2, the curvature perturbations
freeze out after horizon exit as expected in effective single-field description. Besides, we
also note that in the sub-horizon regime, the adiabatic perturbations produced by δφ

with δψ initially set to zero are identical to the isocurvature perturbations produced by
δψ with δφ initially set to zero, and vice versa. This equivalence is expected because
of the independent evolution of the field perturbations with identical amplitudes in the
sub-horizon regime and because

δπa = cos θδφ− sin θδψ , (5.14)

δπe = sin θδφ+ cos θδψ , (5.15)

where θ is the angle between a tangent vector of the field trajectory and the φ = 0

direction.
In the case t∗ < t1,2, super-horizon curvature perturbations are enhanced by entropic

perturbations during phase 1 and then frozen out during phase 2. This is due to the strong
enhancement of the amplitude of the power spectrum in Eq. (5.10) obtained within the
δN formalism.
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For comparison, we have added numerical results of the amplitude and the spectral
index of the curvature power spectrum for the F-term model into Figs. 5.1 and 5.2 re-
spectively, for the same parameters as the analytical approximations. In general, we find
agreement between the different methods. Moreover, these plots show the violation of the
prediction of curvature perturbations from the effectively single-field dynamics. For the
D-term model, the results are very similar.

In TABLE 4.1, the power spectrum and spectral index have been compared in the
original model for some parameter sets which correspond to the different regimes. In
the case t∗ < t1,2, there is a high discrepancy (up to 40%) between the numerical and
analytical results for the spectrum amplitude. Since we assume a sharp transition between
phase 1 and 2 in the analytic approximation, the quantity N t

2−N t
end cannot be computed

with a very good precision. However, a tiny modification of this quantity can cause a huge
difference in the spectrum amplitude in phase 1. Therefore, such a substantial discrepancy
is not relevant. In the regime where t∗ > t1,2, numerical and analytical results agree well.
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Figure 5.1: Spectrum amplitude of curvature perturbations derived from the analytic
approximations based on the δN formalism (Hubble exit in phase 1: dashed), from the
numerical integration (points), and assuming effectively single field trajectories (solid) as
a function of the κ parameter for the F-term model, for a pivot scale k∗ = 0.05Mpc−1,
and from left to right, m = 10−3/10−2/10−1.

Figure 5.2: Spectral index of the power spectrum of curvature perturbations derived from
the analytic approximations based on the δN formalism (Hubble exit in phase 1: dashed
/ phase 2: short dashed), derived from the numerical integration (points), and assuming
effectively single field trajectories (solid), as a function of κ for the F-term model, for a
pivot scale k∗ = 0.05Mpc−1, and from left to right, m = 10−3/10−2/10−1.
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Figure 5.3: Evolution of the power spectrum of curvature perturbations (black) as well as
of rescaled adiabatic (dashed) and entropic (dotted) perturbations, generated respectively
by initial perturbations of φ (blue and red curves) and ψ (green and yellow curves), and the
power spectrum of curvature perturbations (black curve) for a pivot scale k∗ = 0.05Mpc−1

and F-term model with parameters m = 10−3 and κ = 5× 10−8 which correspond to the
case t∗ > t1,2.

Figure 5.4: Evolution of the power spectrum of curvature perturbations (black) as well as
of rescaled adiabatic (dashed) and entropic (dotted) perturbations, sourced respectively by
initial perturbations of φ (blue and red curves) and ψ (green and yellow curves), and the
power spectrum of curvature perturbations (black curve) for a pivot scale k∗ = 0.05Mpc−1

and F-term model with parameters m = 10−3 and κ = 3× 10−7 which correspond to the
case t∗ < t1,2.
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Conclusion

In this part, we have evaluated the level of non-Gaussianities, as well as the amplitude and
the tilt of the power spectrum of curvature perturbation, both analytically and numerically
for the unified potential of hybrid inflation models in a mild waterfall phase. The unified
potential (2.15), which is based on a common parametrization, characterizes the super-
symmetric F-term and D-term hybrid models as well as the original model. For the F-term
and D-term models, the mild waterfall phase can only occur in the weak coupling regime
i.e. κ .M2/M2

pl, whereas it happens when µM > M2
pl for the original model. In order to

provide effective field theory description is valid, we consider only the sub-Planckian field
case. Duration of the mild waterfall phase is required to be more than 60 e-folds, such
that possible cosmological defects are stretched outside the observable universe. In our
discussion, we have distinguished two different cases. The first case is that the horizon
exit of observable modes occurs in phase 2 where the waterfall terms dominate the slope
of the potential in the valley direction (t∗ > t1,2). In the second case, this horizon-crossing
happens in the phase 1 where the slope of the inflationary valley dominates (t∗ < t1,2).

In the generic case 1 (t∗ > t1,2), we find that the effective single-field description is
valid for all models. The level of non-Gaussianities is nearly independent of the model
parameters with fNL ≈ −5/(3(Nexit + 1)) ≈ −0.03. Moreover, for the amplitudes and
the spectral index of curvature power spectrum, we find agreement with the results of
Refs. [50, 51, 52]. Note that the spectral index ns = 1 − 4/Nexit is typically outside
and below the bounds imposed by CMB observations. Therefore, this regime is strongly
disfavored.

In the case 2 where the model parameters are tuned such that t∗ < t1,2, the effective
single-field description is no longer valid. We find that the absolute value of local fNL can
increase up to unity that is in the allowed regime from the Planck experiments. Howev-
er, due to the effects of entropic modes, the power spectrum of curvature perturbations
is strongly enhanced by several orders of magnitude up to a maximal amplitude larger
than unity. This enhanced curvature power spectrum cannot satisfy the constraints of
CMB observation and the upper bound of primordial black hole formation at the same
time. Contrary to what was thought before [50, 51, 52], it is therefore impossible to find
parameters in agreement with CMB observations.
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Introduction

Observations of CMB anisotropies have been dramatically improved in angular resolution
and sensitivity over two decades. The observed power spectrum of curvature perturba-
tions is nearly Gaussian and scale-invariant in consistent with the generic prediction of
inflation models [19, 20]. The most recent Planck observation [78] have measured the
CMB angular power spectrum up to the lowest multipole, whereas the Atacama Cos-
mology Telescope [79], and the South Pole Telescope [80] observe smaller scales up to
multipoles l = lmax ∼ 3000. This range of angular scales corresponds to the k-modes of
density perturbations klmax = 2 × 10−4Mpc−1 . k . 0.2Mpc−1 = klmin, which is about
7 ≈ ln k`max/k`min e-folds of expansion in the context of inflation. The modes of larger
scales are still super-horizon, while the smaller scale modes are highly suppressed due
to the Silk damping. Therefore, both earlier and later periods of the inflationary epoch
remain inaccessible to observations.

In order to explore the physics of small-scales for the inflationary epoch, other signals
and observational techniques must be envisaged. One example is the 21cm angular pow-
er spectra from the dark age and the subsequent reionisation (see e.g [81, 82, 83, 84]).
Another is the distortions of the CMB black-body radiation which is less futuristic and
potentially interesting. Spectral distortions can be induced by energy injection into the
CMB photons through several processes [85, 86, 87], such as the dissipation of primor-
dial acoustic modes, the decay or the annihilation of relic particles, the evaporation of
primordial black holes, recombination radiations, the interaction of CMB photons with
ordinary matter after recombination [85] and structure formation. Future CMB distortion
experiments are plausible to probe modes in the range 8 . k . 104Mpc−1. This means
that the epoch of inflation is accessible to observations up to 17 e-folds.

In general, any perturbations in the primeval plasma during the tightly coupled regime
and towards its end can generate spectral distortions of CMB. However, at very early
time (redshifts z & 2× 106), distortions are completely erased by thermalization which is
very efficient. Fortunately, spectral distortions generated at lower redshifts may survive
and still be observable today. Usually, CMB spectral distortions are classified as two
types: µ-distortions and y-distortions. The µ-distortions are characterized by a frequency-
dependent chemical potential µ(ν), whereas y-distortions are characterised respectively by
a reduction/increase of the intensity at low/high frequencies that mostly associated with
SZ clusters. Moreover, µ-distortions dominate until z ≈ 2 × 105, while y-distortions
dominate at redshifts z . 1.5× 104. At the intermediate regime 1.5× 104 . z . 2× 105,
there is a phase of the so-called Comptonized intermediate i-distortions where µ- and y-
distortions are mixed [88, 89]. From the COBE-FIRAS experiment, the upper bound for
µ- and y-distortions are y < 1.5× 10−5 and µ < 9× 10−5 in 95% C.L.. Recently, the next
generation experiment, Primordial Inflation Explorer (PIXIE) [53], has been proposed to
improve these limits by approximately three orders of magnitude. Besides, the sensitivity
to spectral distortions can be still improved by one order of magnitude compared to PIXIE
in the next-to-next generation of experiments, such as the Polarized Radiation Imaging
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and Spectroscopy Mission (PRISM) [54, 55].
To forecast possible constraints on the power spectrum of curvature perturbations

with its amplitude and spectral index as well as the running of spectral index, some
progresses have been made recently for various experimental configurations [89, 90, 91].
It shows that if the value of spectral index can be extended to scales probed by CMB
distortions, the PIXIE experiments of CMB distortions cannot reach the sensitivity to
improve current constraints. However, it is still unclear whether new constraints will arise
for specific models with enhanced power spectrum at the distortion scales. In addition,
curvaton scenarios, where a curvaton field can induce the curvature perturbations as well
as inflaton, has also not yet been studied.

In this part, we are interested in the dissipation of primordial acoustic waves due to
Silk damping. In this case the energy in sound waves is dissipated into the CMB monopole,
which generates specific distortions of the CMB black-body spectrum [89, 90, 91, 92, 93].
Such distortions in principle reveal some information about primordial curvature pertur-
bations at the scale much smaller than that of CMB anisotropy experiments. Moreover, we
adopt a model-orient approach evaluating the level of CMB distortions by the modified
idistort template [88] and performing Markov-Chain-Monte-Carlo (MCMC) parame-
ter estimation by the Greens package [94]. We introduce the different types of CMB
distortions and the expected sensitivity of the PIXIE and of PRISM-class experiments
respectively in Chapter 6 and 7. Then, we have examined all 49 single-field inflation mod-
els listed in Ref. [27] and find out the models that predict an enhanced power spectrum
at small scales for certain parameter space. In Chapter 8, the level of CMB distortions
are evaluated for each of these models. In Chapter 9, we study three effective scenarios
of multifield inflation: softly turning, suddenly turning and mild waterfall trajectories.
Besides, a specific curvaton model is investigated in Chapter 10. Finally, we summarize
our findings in the Conclusion.
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Chapter 6

µ-type, y-type and intermediate
i-type CMB distortions

6.1 The thermal SZ effect

The thermal SZ effect [95] means the effect that CMB photons are Comptonized by very
hot electrons in the deep gravitational well formed by clusters of galaxies. Typically, the
temperature of electrons exceeds the temperature of photons by more than eight orders
of magnitudes. This effect induces a y-type distortion to the CMB black-body radiation
where the change in the intensity reads

∆I(ν) = y
xex

ex − 1

[
x(ex + 1)

ex − 1
− 4

]
I0(ν) , (6.1)

where x ≡ hν/(kBT0), ν is the frequency, kB, h the Boltzmann and Planck constants, T0

is the CMB black-body temperature and I0(ν) is its intensity. The key parameter y is
given by the integral

y =

∫
kBTeneσTa

2H

mec2
dη , (6.2)

where me, Te and ne are respectively the electron mass, temperature and number den-
sity, σT is the Thomson cross-section and η the conformal time. In common, due to
y-distortions, the intensity of the CMB is reduced at frequencies where the Rayleigh-
Jeans limit is valid and increased in the Wien part of the spectrum. Typical values of y
for the thermal SZ effect in galaxy clusters are y ∼ 10−4. Note that y-distortions can also
be induced by energy injection before the epoch of recombination, but the changes in the
intensity should still have the form of Eq. (6.1).

6.2 Before recombination: distortions induced by energy re-
lease

Before the epoch of recombination, energy injection can break the thermal equilibrium
for photons in the primeval plasma, even though electrons and ions remain in thermal
equilibrium because of Coulomb collisions. There are four phases can be distinguished,

1. At z & 2× 106: the efficiency of Compton scattering is enough to maintain thermal
equilibrium between photons, electrons, and baryons. The injected energies are
redistributed over the entire spectrum of photons. The Maxwellian distribution of
electrons is also maintained by Compton scattering. The chemical potential is driven
to zero by double Compton scattering and Bremsstrahlung. Hence, the distribution
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Figure 6.1: Compton parameter as a function of redshift, yγ(zinj). The dash lines are the
boundaries of the different types of CMB distortions. Figure from [88]

of CMB photons is almost prefect black body even if in the presence of massive
energy injection.

2. At 2× 105 . z . 2× 106: double Compton scattering and Bremsstrahlung process-
es are inefficient in creating photons, whereas kinetic equilibrium is maintained by
Compton scattering. If energy injected into the primeval plasma by some process,
such as dissipating acoustic waves, evaporation of primordial black holes and de-
cay/annihilation of relic particles, then the distribution of photons depart from the
black body to a Bose-Einstein distribution with a chemical potential µ. This is the
so-called µ-type distortions.

3. At 1.5×104 . z . 2×105: kinetic equilibrium with photons can only be established
partially by Compton scattering. If an energy injected, then the distortions induced
in the CMB black body spectrum are of the intermediate i−type, where the CMB
spectrum is Comptonized and not Bose-Einstein spectrum anymore.

4. At z . 1.5 × 104: kinetic equilibrium cannot be established since the efficiency of
Compton scattering is very low. In the presence of energy injection, deviations to
the black body CMB spectrum would be in the form y−type distortions.

The relation of Compton parameter and different types of distortion is shown explicitly in
FIG. 6.1. The various types of distortions can be employed to distinguish between models
and energy injection processes. More detailed discussions can be found in Ref. [85] and
other references.
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6.3 Distortions from dissipating acoustic waves in the Silk-
damping tail

After re-enter the particle horizon, density perturbations induce acoustic wave of ordinary
matter. If the mean free path of photons is comparable to the acoustic wavelength, the
tail of the CMB power spectrum will be damped by the diffusion of photons. This process
is called as Silk damping (also known as photons diffusion damping). During the Silk
damping, the energy initially stored within acoustic oscillations is dissipated into the
CMB monopole.

Let we define the fractional dissipated energy Q ≡ ∆E/E. In the tight coupling
regime, the evolution of Q satisfies [93]

dQ

dt
' 9

4

d(1/k2
D)

dz

∫
dk3

(2π)3
k2P γi (k)e−k

2/k2D , (6.3)

where P γi (k) ≡ 4Pζ(k)/(0.4Rν+1.5), Rν = ρν/(ρν+ργ) ' 0.4, and kD is the Silk damping
scale. The dissipated energy Q depends on the power spectrum of curvature perturbations
Pζ . In order to compute the total modifications of the CMB spectrum induced by energy
injection which is described by the functionQ(t), we employ the idistort template [88] to
solve the Kompaneets equation numerically. In addition, a modified version of the Greens
code [94] has been used for the estimation of standard power spectrum parameters with a
MCMC method.
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Chapter 7

Sensitivities of the PIXIE and
PRISM-class experiments

In 2011, the PIXIE experiment [53] was proposed as an NASA Explorer class mission. One
major scientific goal to constrain the tensor-to-scalar ratio r to the order 10−3 by measuring
the B-mode polarization of the CMB on large angular scales. Another important objective
is to probe the spectral distortion of the CMB black body spectrum. The PIXIE will
map the absolute intensity and the linear polarization of the CMB, as well as measure
its absolute frequency spectrum in 400 spectral channels from 30 GHz to 6 THz. The
instrument sensitivity to the unpolarized signal in each frequency bin will be

δIPIXIE
ν = 5× 10−26Wm−2Sr−1Hz−1 , (7.1)

which will allow a detection of distortions characterized by [53]

µ = 5× 10−8 and y = 1× 10−8 at 5σ . (7.2)

Typically, spectral distortions due to reionsation and structure formation have a max-
imum δIν = 10−23Wm−2Sr−1Hz−1, single-field slow-roll models with no running δIν ∼
10−25Wm−2Sr−1Hz−1, while recombination radiations predict that spectral distortions do
not exceed δIµ ∼ 10−26Wm−2Sr−1Hz−1. In FIG 7.1, it shows some typical distortion
spectra. From the figure, one can find that distortions due to reionsation and structure
formation vanish for frequencies close to ν ' 200GHz. It is a window for the detection of
distortion from inflation or from decaying particles.

For standard single field models with no significant running, the scalar power spectrum
on distortion scales can be obtained by extrapolating that to CMB anisotropy scales.
In this case, the distortions are not detectable by the PIXIE experiment. However, in
Ref. [89], forecasts for the amplitude and spectral index of the scalar spectrum have been
done with a Fisher matrix method at the pivot scale kd = 42Mpc−1, which lies in the
middle of the range of perturbation modes that can be probed with CMB distortions.
In order to estimate scalar power spectrum parameters at the same pivot scale, we have
employed a Bayesian MCMC approach based on the Greens code [94] with the fiducial
values are given by the best fit of Planck. Besides, we take the fiducial value of the
CMB monopole temperature as T0 = 2.7263K, and define the variation as ∆∗ ≡ ∆T =

(T − T0)/T0. Then, we marginalize over ∆∗, as well as yre which corresponds to the y-
distortions generated during reionization and large scale structure formation. In FIG. 7.2,
we have shown the marginalized posterior probabilities. Note that the strongly non-
Gaussian shape of the likelihood in the plane (As − ns), indicates that the Fisher matrix
method is not reliable. For spectral index values close to unity around the scale kd,
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Figure 7.1: Spectral distortions induced by various sources and 1σ sensitivity for PRISM
(dotted) for different designs. Figure from Ref. [54]

1 < ns . 1.1, we find that the lowest scalar power spectrum amplitude, that can be
detected at 95 % C.L., is approximately

Pζ(kd = 42 Mpc−1) ≈ 2.8× 10−9 for PIXIE . (7.3)

In addition, the Polarized Radiation Imaging and Spectroscopy Mission (PRISM) [54,
55] has been proposed in 2013 as an L-class ESA mission. Although it has been rejected,
the best instrumental configuration PRISM still can be a good example of the possible
ultimate next to next generation of CMB distortion experiment. The sensitivity of PRISM
is of the order of ten times better than PIXIE

δIPRISM
ν = 6.5× 10−27Wm−2Sr−1Hz−1 (7.4)

for frequencies ν < 600GHz which are the most relevant to CMB distortions. From
FIG. 7.1, one find that the 1σ sensitivity of PRISM is close to the predicted signal from
recombination lines. Therefore, it can measure the scalar power spectrum at distortion
scales with a good accuracy. Moreover, it also improves the constraints on the spectral
index running, which is defined as

nrun =
d log ns
d log k

, (7.5)

to the order of 10−3 [96]. Nevertheless, the instrumental sensitivity of PRISM is not enough
for the most general single field models of which the values of running are of second order
in slow-roll parameters. By employing a MCMC analysis based on the package Greens
[94], we illustrate a projection for the anomalously large running observation in FIG. 7.3,
with the fiducial values nrun = 0, yre = 4×10−7, ∆∗ = 0 and Pζ(kp) = 2.20±0.06×10−9,
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Figure 7.2: Forecast for the parameters As, ns, yre and ∆∗ at kd = 42 Mpc−1, for PIXIE
configuration, using a MCMC sampling method with the Greens code [94]. The 1-D and
2-D posterior marginalized probability density distributions are illustrated in the figure,
for a fiducial model given by the best fit of Planck, with no running, and yfid

re = 4× 10−7.
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Figure 7.3: Projected exclusion bounds on nrun for a PRISM-class experiment which is
ten times more sensitive than in Eq. (7.1).

ns(kp) = 0.960 ± 0.007 at the CMB anisotropy pivot scale kp = 0.05 Mpc−1. Then, we
confirm that the instrumental sensitivity of a PRISM-class experiment can be ten time
better than that of PIXIE, and |nrun| >∼ 4× 10−3 can be excluded at 95% C.L.

The next two chapters are dedicated to evaluating the level of CMB distortions for
inflationary scenarios and to compare with the detectable limit given by Eq. (7.3). The
possible detectability by an ultimate experiment like PRISM is also discussed.
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Chapter 8

Testing single-field inflation with
CMB distortions

In this chapter, we first build up three criteria for identifying single-field models that may
induce an observable level of CMB distortions. With these criteria, we examine the 49
single-field models listed in Ref. [27] for all the possible regime, and find that only few of
them may lead to CMB distortions at observable level by the proposed experiments. For
each of these models, the regime of parameter space, which predict an increase in power
for the curvature perturbation at the CMB scales, are found out. Then, the spectrum
of µ-type and i-type distortions are evaluated for some relevant parameter sets with a
modified version of the idistort code [88] and compared with the expected sensitivity
of the PIXIE experiment. The y-type distortions are not interested, because one cannot
distinguish the contribution from the pre-combination era to that from the SZ effect.

8.1 Criteria for observable CMB distortions

The single-field inflation scenario and its power spectrum of curvature perturbations are
discussed in Sec. 1.2. The first and second slow-roll parameters are given by Eqs. (1.22)
and (1.23) respectively. Here, we adopt a more accurate form of the spectral parameters
(amplitude and spectral index) beyond slow-roll approximation but still at first order in
slow-roll parameters. The spectrum amplitude reads [97]

Pζ(k) =
H2
k

8π2M2
plε1k

[1− 2(C + 1)ε1k − Cε2k] , (8.1)

and the spectral index
ns(k) = 1− 2ε1k − ε2k , (8.2)

where C ≡ γE + ln 2 − 2 ' −0.7296 and γE is the Euler-Mascheroni constant. The
quantities with subscript k are evaluated at the time tk of horizon exit of mode k, i.e.
when k = a(tk)H(tk).

At the anisotropy scales, the Planck results[20] strongly constrains the values of am-
plitude and spectral index of the power spectrum of curvature perturbations. At the pivot
scale kp = 0.05 Mpc−1, it gives

Pζ(kp) = 2.20± 0.06× 10−9, ns(kp) = 0.960± 0.007 . (8.3)

As already mentioned, the CMB distortions experiments can look into a scale that much
smaller then the anisotropy scales. However, due to the instrumental sensitivity, only if
the amplitude of the power spectrum is enhanced at the distortion scales, the distortions
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can be detected by the PIXIE experiment. Therefore, three necessary criteria can be
imposed to inflation model to satisfy the Plank constraints and to induce an observable
level of CMB distortions:

1. There exists a phase where ε2 < −2ε1 < 0 : This condition ensures that the am-
plitude of power spectrum will be increased (i.e. a locally blue spectrum) at some
scales. Broad classes of inflation models are ruled out by this restriction, such as
Higgs inflation, natural inflation, exponential SUSY inflation, Logamediate inflation
(for which ε2 < 0 is possible but with ε2 & −2ε1 only).

2. A phase with ns < 1 must be followed by a stage with ns > 1 : This condition
ensures that the blue spectrum appears after the phase where the spectral index is
in agreement with CMB anisotropy observation (i.e. the spectrum is red at the scale
kp). Hence, we can eliminate models where ns > 1 at all times, and models with
blue spectrum only at scales that larger than the pivot scale kp (e.g. Supergravity
Brane inflation, Brane SUSY breaking inflation). In addition, to avoid external
inflation (infinite or extremely large number of e-folds) phase at the inflection point
(ns = 0), we imposes an additional criterion that ε1 6= 0 (in other words, there is no
point where the slope of the potential is vanishing) between these two phases. This
criterion permits to eliminate MSSM Inflation and Inflection Point inflation models.

3. ns = 0.960±0.007 at kp = 0.05Mpc−1 and ns > 1 at kd = 42Mpc−1: This criterion is
the most restrictive one. The first condition is inherited from the Planck constraints
while the second one is a sufficient, but not necessary, condition for the enhancement
of the power spectrum at CMB distortions scales. The pivot distortion scale kd =

42Mpc−1 lies in the middle of the range of modes that can be probed with CMB
distortions. The choice to kd is arbitrary. In principle, if ns > 1 on scales kp < k <

kd, one can also obtain a sufficient increase of power on distortion scales. However,
we did not find any single-field model in practice where the scalar power spectrum
is enhanced only for scales within this range. Besides, there is no condition for the
amplitude of the power spectrum at the pivot scale, since it can be adjusted by
rescaling the potential without modifying the field evolution.

It is hard to apply the third criterion directly since it requires evaluating spectral pa-
rameters on the relevant scales by integrating field trajectories. Nevertheless, by imposing
the first two criteria, most single-field models are excluded, and only five of them survive.
They are

• Hybrid inflation in the valley (VHI)

• Generalized minimal supersymmetric model (GMSSM)

• Generalized renormalisable inflection point inflation (GRIPI)

• Running mass inflation (RMI)

• non-canonical Kähler inflation (NCKI)

In the following sections, we have a discussion to explore the parameter space of these
models in detail and to evaluate the level of CMB distortions from them.
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8.2 Hybrid inflation in the Valley (VHI)

The original hybrid model is already discussed in Sect. 2.1. Hybrid inflation in the valley
refers to the inflationary phase that is driven by the inflaton as the waterfall field 〈ψ〉 = 0.
It ends at the critical point then the waterfall field triggers a tachyonic instability. This
scenario can be described by the effective one-field potential (2.2) which is plotted in the
top left panel of FIG. 8.1. By substituting the potential (2.2) into Eqs. (1.22) and (1.23),
we obtain the slow-roll parameters

ε1 =
2M2

plx
2

µ2 (1 + x2)2 , (8.4a)

ε2 =
4M2

pl

(
−1 + x2

)
µ2 (1 + x2)2 , (8.4b)

where we have defined x ≡ φ/µVHI. They are also plotted in FIG. 8.1 for various values
of µVHI. In order to maintain the slow-roll dynamics, we consider only parameter values
µVHI & 1.5Mpl. Moreover, in order to induce a red spectrum at anisotropy scales and a blue
spectrum on small scales, the regime of parameter space must be chosen carefully. Modes
of CMB anisotropy scales exit the particle horizon close to the point where φ = µVHI,
at which ε1 = O(0.1) and |ε2| < ε1, such that a red spectrum of scalar perturbations is
expected. A few e-folds later, it goes into the vacuum dominated regime where ε1 � 1

and ε2 < 0, and the spectral index turns to blue. The power spectrum of curvature
perturbations is therefore enhanced on small scales that may induce observable CMB
distortions.

In the slow-roll inflation scenario, by integrating

dφ

dN
= −M2

pl

d lnV

dφ
(8.5)

one obtains the number of e-folds realized some field value φ and the end of inflation at
φend = φc,

N(φ)−Nend = −
µ2

VHI

4M2
pl

[
x2 + 2 ln(x)

]
+
µ2

VHI

4M2
pl

[
x2

end + 2 ln(xend)
]
. (8.6)

Obviously the number of e-fold Nk for the field value φk at which the mode k exit the hori-
zon, before the end of inflation can be obtained by inverting this relation. For simplicity,
the number of e-folds realized at the pivot scale of CMB anisotropy is set to be indepen-
dent of the energy scale of inflation and the details of the reheating process as Nkp = 60.
Thus, once φk is obtained, it is straightforward to compute the spectral parameters for
the mode k by using Eqs. (8.1), (8.2) and (8.4).

There are two free parameters µVHI and xend for the VHI. In order to apply the third
criterion from Sect. 8.1, the spectral index in the plane (µVHI, xend) is calculated for both
anisotropy pivot scale kp = 0.05 Mpc−1 and distortion pivot scale kd = 42Mpc−1. The
time of horizon exit of kd is about 6.7 e-folds earlier than that for kp. In FIG. 8.2, we have
plotted the contours for the spectral index on the scale kd. Furthermore, the contours
of 95% C.L. constraints from Planck at the scale kp are also plotted. As it can be seen
from this figure, there is a region of parameter space, which goes from µVHI ≈ 4.2Mpl and
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Figure 8.1: Top left: original hybrid potential. Top right and bottom left: first and second
slow-roll parameters ε1 and ε2. Bottom right: scalar spectral index ns as a function of φk
with a horizontal band corresponds to the Planck 95% C.L. constraints. The parameter
values in the diagrams for ε1,2 and ns are µVHI = 3Mpl (dotted), µVHI = 4Mpl (dashed)
and µVHI = 5Mpl (solid). Note that in the region close to φk/µVHI = 1, the power
spectrum of curvature perturbations is red-tilted, but becomes blue-tilted a few e-folds
later (i.e. at smaller values of φk.)

log10 xend ≈ −12 up to µVHI ≈ 7Mpl and log10 xend ≈ −7, can be in agreement with the
Planck data and induce an in crease of power on distortion scale at the same time. In
this region, the field values of the critical point φc = xendµVHI are much below the Planck
mass.

Then, three representative parameter sets are selected from the region identified in
FIG. 8.2. We have plotted the resulting scalar power spectrum as a function of the e-fold
time (the scale of mode) in FIG. 8.3, and the resulting spectrum of distortions in FIG. 8.4.
From FIG. 8.3, we see that the amplitude of the power spectrum grows exponentially on the
distortion scales. It can be one order of magnitude larger than the amplitude on anisotropy
scales. According to Eq. (7.3) for PIXIE, distortions corresponding such enhancement are
detectable at more than 5σ confidence level. This is confirmed in FIG. 8.4. The maximally
enhanced amplitude corresponds to the level of µ-distortions µ & 10−7 which is far above
5σ detection level of PIXIE. However, one can not distinguish those µ-distortions from
other possible sources, such as evaporation of primordial black holes and dark matter
decay/annihilation. Therefore, the spectrum of intermediate i-type distortions is also
plotted, in order to distinguish between different origins of the signal. During inflation,
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Figure 8.2: Contours of spectral index values from ns = 0.94 up to ns = 1.15 for the
hybrid inflation in the valley with Nkp = 60 in the plane µVHI - log10(φc/µVHI), evaluated
at the scale kd = 42Mpc−1. The area between the solid red contours is consistent with
the Planck measurement of the spectral index at kp = 0.05 Mpc−1 at 95% C.L.. The
corresponding contours evaluated at the scale kd are included (dotted red) in order to
show how the spectral index changes when the scale varies.

perturbation modes of smallest scales re-enter the horizon earlier than that of larger scales
and contribute to energy injection in the primeval plasma at earlier time. Therefore,
enhanced power spectrum in the smallest distortion scales induce more µ-distortions, while
the enhancement on the largest distortion scales corresponds to more i-type distortions.
Then, it is easy to understand the behaviour in FIG. 8.4 where the i-type distortions
dominate over the µ-type in the case of a limited enhancement of the power spectrum.
With Eq. (7.1), we find that the signal of i-type distortions is detectable by PIXIE at
more than 5σ along the band with φc . 10−9Mpl, and at about 2σ if φc . 10−8Mpl. Even
if the µ-distortions are dominant, the level of i-type distortions does not decrease and is
still detectable. For the sensitivity of a PRISM-class experiment, which is ten times better
than PIXIE, a precise parameter estimation should be allowed and the probed parameter
space would be extended to the entire band identified in FIG 8.2. Finally, we conclude
that CMB distortions that induced by the original hybrid model in the fast water fall
regime with a transition between the field-dominated and the vacuum dominated regime
occurs Nk ≈ 55 e-folds before the end of inflation, can be observed by PIXIE, only if the
inflaton field is super-Planckian and in a fine-tuned regime of the parameter space.
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Figure 8.3: Amplitude of the power spectrum of curvature perturbations for three pa-
rameter sets: µVHI = 5Mpl and log10(φc/µVHI) = −10 (blue), µVHI = 5.5Mpl and
log10(φc/µVHI) = −9 (red), µVHI = 6.Mpl and log10(φc/µVHI) = −8 (brown). The blue
region corresponds to scales observable with standard CMB angular observations where-
as the red region corresponds to scale that can be probed with CMB distortions. This
amplitude can be normalised to Pζ(kp) = 2.× 10−9 by a suitable choice of the parameter
Λ.

Figure 8.4: Spectrum of intermediate (dashed) and µ-type (solid) spectral distortions,
for the HVI and the parameter sets as in Fig. 8.3. They correspond, respectively, to
µ = 1.7 × 10−7 (blue), µ = 8.5 × 10−8 (red) and µ = 2.5 × 10−8 (brown). The signal is
observable by PIXIE at more than 5σ in the first two cases, and at about 2σ in the latter
case.
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8.3 Non-canonical Kähler inflation (NCKI)

In the ordinary F-term and D-term hybrid models, the flat direction of the potential
is lifted radiative loop corrections and supergravity corrections that are induced by a
canonical Kähler potential. Higher order operators may give additional corrections to the
potential. If the Kähler potential is non-canonical, it will generate an extra mass term for
the inflaton, and become hilltop inflation. The potential reads

V (φ) = Λ
(
1 + α lnx+ βx2

)
, (8.7)

where x = φ/Mpl. The parameter α is dimensionless and positive, whereas β is of order
O(1) and can either be positive or negative. The NCKI potential encompasses a large
variety of models, e.g. it recovers the original hybrid model in the limit α → 0 and
recovers the potential with a purely radiatively lifted flat direction as β → 0. Moreover,
inflation can proceed in many different ways for the NCKI potential. In the case of β > 0,
inflation can be driven by field rolls back along the potential that increase monotonously
with |φ|, and it ends with a waterfall instability. For β < 0 case, the field evolves both
sides from the maximum of potential will occur inflation. The slow-roll parameters for the
present model is given by [27]

ε1 =

(
α+ 2βx2

)2
2 [αx log(x) + βx3 + x]2

, (8.8a)

ε2 =
2
[
(5α− 2)βx2 + α log(x)

(
α− 2βx2

)
+ α(α+ 1) + 2β2x4

]
[αx log(x) + βx3 + x]2

(8.8b)

and are plotted in FIG. 8.5 for several parameter sets. Note that only if β > 0, the
second slow-roll parameter ε2 can take negative values. According to our first criterion
in Sec. 8.1, we need only to consider the case where β > 0. We have also plotted the
spectral index in FIG. 8.5. We find that the power spectrum is blue when the field φ

takes intermediate values. In the NCKI model, inflation can stop by two different ways: i)
the field trajectory reaches the critical point φc where the potential develops a tachyonic
instability, which is assumed to be instantaneous, ii) the slow-roll conditions are violated.
In order to identify the end of inflation in the second case, we take ε2 = 1 as the condition
that is well approximated by the field at

φend =
√

2α . (8.9)

The number of e-folds and field values at horizon exit can be obtained numerically
by integration Eq. (8.5) in the slow-roll approximation. In FIG. 8.6, we have plotted the
spectral index value for the pivot scale of distortions kd = 42Mpc−1 in the 2-dimensional
parameter space. By imposing the 95% C.L. Planck constraints at the pivot scale kp =

0.05Mpc−1, we identify a very thin band in parameter space for the parameters α up to
α ' 10−3 and 10−2 . β . 10−1 where the induced power spectrum is coincided with
observations and enhanced on distortion scales. However, as shown in FIG. 8.7 and 8.8,
the increase of power cannot exceed one order of magnitude, and the signal of distortions
is not detectable. One should also notice that the transition of the spectral index from red
to blue between the scales kd and kp requires a trans-Planckian inflaton field during the
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Figure 8.5: Top left: potential of the NCKI model for the parameters α = 0.1, β = 1

(blue, solid) and α = 0.1, β = −0.1 (red, dotted). Top right: first slow-roll parameter
ε1. bottom left: second slow-roll parameter ε2. Bottom right: spectral index value as a
function of φk. The parameter sets in the plots for ε1, ε2, ns are: α = 0.1, β = 1 (blue,
solid); α = 0.1, β = −1 (blue, dotted); α = 0.1, β = 0.1 (red, solid); α = 0.1, β = −0.1

(red, dotted); α = 0.1, β = 0.01 (green, solid); α = 0.1, β = −0.01 (green, dotted).

horizon exit of these scales. This might contradict the assumptions about the validity of
SUSY as an effective field theory, which requires field to be sub-Planckian. Moreover, we
notice that the approximation for potential (8.7) is valid only if α� Λ1/3/[26π14/3M

4/3
pl ],

cf. the detailed form of the F-term potential in Ref. [46]. Thus, this constraint has been
indicated in FIG. 8.6, and rules out parts the parameter space which satisfies the third
condition from Sec. 8.1 from the outset.

8.4 Generalized MSSM inflation (GMSSM)

The Minimal Supersymmetric Standard Model (MSSM) inflation that was proposed in Re-
f. [98] induce an eternal inflation at the inflection point where the first slow-roll parameter
ε1 vanishes. Therefore, it is ruled out by the second criterion from Sec. 8.1. However, the
Generalized MSSM Inflation (GMSSM) [27] scenario with only an approximate inflection
point [99] is still survived. The GMSSM model can be parameterized as

V (φ) = Λ

(
x2 − 2

3
αx6 +

1

5
αx10

)
, (8.10)
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Figure 8.6: Contours of spectral index values for the NCKI model, at kd = 42 Mpc−1.
The area between the solid red contours is in agreement with the Planck constraints on
ns for the pivot scale of CMB anisotropies kp = 0.05 Mpc−1. The dashed red contours for
the scale kd are added (dotted red) to illustrate how the spectral index changes when the
scale varies. To the left of the green, solid and almost vertical line, the approximation of
the radiative correction to the potential in the form (8.7) is not valid.

where x ≡ φ/φ0 and α is a dimensionless parameter. The power terms of x comes from
the lowest order soft and non-renormalizable operators which lift the flat direction in the
MSSM [98]. If α = 1, the potential recovers the original MSSM model which features an
exact inflection point. As α > 1, it develops a maximum. Inflation can occur for three
different field trajectories (evolve toward both sides of the maximum and from the large
field regime toward decreasing field values). For α < 1, the potential is monotonous. There
is no inflection point and only one possible inflationary regime. The different possibilities
are represented in FIG. 8.9. The slow-roll parameters read [27]

ε1 =M2
pl

450
[
α
(
x4 − 2

)
x4 + 1

]2
φ2

0x
2 [α (3x4 − 10)x4 + 15]2

, (8.11a)

ε2 =M2
pl

60
(
αx4

{
x4
[
α
(
3x8 + 20

)
− 78

]
+ 40

}
+ 15

)
φ2

0x
2 [α (3x4 − 10)x4 + 15]2

. (8.11b)

Note that for α < 9/25, the second slow-roll parameter ε2 is always positive since
the potential is convex everywhere. With our first criterion from Sec. 8.1, this case can
be rejected. In the standard situation [98, 99], it requires φ � Mpl during inflation to
valid the effective field theory description. Moreover, in the MSSM scenario, we have
Λ ∼ M

3/2
pl m

5/2
SUSY and φ0 ∼ M

3/4
pl m

1/4
SUSY. Therefore, inflation can only proceed in the

vicinity of the approximate inflection point (or the vicinity of the local maximum point),
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Figure 8.7: Amplitude of power spectrum of curvature perturbations for the NCKI model
with α = 10−6 and β = 10−1.2. Those parameter values lie in the region where the ap-
proximation of the radiative corrections is not valid but are representative of the strongest
possible enhancement of power on CMB distortion scales considering an effective potential
of the form of Eq. 8.7.

Figure 8.8: Intermediate and µ-distortions (respectively dashed and solid line) as a func-
tion of frequency for the NCKI model with α = 10−6 and β = 10−1.2. They correspond
to µ = 8.9× 10−9 and y = 5.5× 10−9 and can not reach the detectability by PIXIE. They
are nevertheless enough for the sensitivity of a PRISM-class experiment.
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Figure 8.9: Field potential (top left) for the GMSSM model with α = 1.5 (red), α = 1

(blue) and α = 0.5 (yellow). First and second slow-roll parameters (respectively top
right and bottom left) and spectral index value as a function of φk (bottom right), for
φ0 = (100, 50, 25)Mpl (respectively blue, red and green) and α = 0.5, 1 (respectively
dashed and solid). A blue tilted phase (ns > 1) follows a red-tilted phase (ns < 1) in the
case α < 1 and φ0 �Mpl.

and α ' 1, such that the value of the second slow-roll parameter is not much larger than
unity during inflation. Besides, the second slow-roll parameter ε2 can only pass from
negative to positive values during inflation that implies a blue spectrum on the large scale
and a red spectrum on smaller scales. Therefore, this regime cannot lead to a detectable
level of distortions for PIXIE.

Nevertheless, if we allow the effective theory description breaks down due to a super
Planckian field value φ � Mpl and take α < 1, then the value of ε2 pass from positive
to negative and then again become positive. In this case, inflation is also viable since
ε1 � 1. Hence, it is an interesting regime. For this regime, the slow-roll parameters and
spectral index is presented in FIG. 8.9. Inflation ends at the point xend '

√
2Mpl/φ0 by

violation of the slow-roll conditions. Again, we integrate the Klein-Gordon equation (8.5)
in the slow-roll approximation to obtain the value of inflaton φk at horizon exit for the
given mode. Then, we can evaluate the values of spectrum index at the two pivot scale
kp = 0.05Mpc−1 and kd = 42Mpc−1, which are illustrated in FIG. 8.10. One can observe
that the spectral index on the scale kd is always below unity if the Planck constraints are
imposed. As a consequence, the third criterion from Sec. 8.1 cannot be satisfied with this
regime. We can therefore conclude that the model cannot lead to any detectable spectral
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Figure 8.10: Spectral index value in the parameter space for the GMSSM model, for the
pivot scale of CMB anisotropies kp = 0.05 Mpc−1 and of CMB distortions kd = 42 Mpc−1.
Between the solid red contours is the area allowed by the Planck constraints. The same
contours for the scale kd (dashed red) visualize how the spectral index changes when the
scale varies.

distortion of the CMB spectrum.

8.5 Generalized renormalizable inflection point inflation (GRIP-
I)

The potential of GRIPI is very similar to the GMSSM scenario except the differ in power,
which reads

V (φ) = Λ

(
x2 − 4

3
αx3 +

1

2
αx4

)
, (8.12)

where we define x ≡ φ/φ0. The dimensionless parameter α distinguishes the model from
the renormalizable inflection point inflation (RIPI) scenario, which has an exact inflection
point. The theoretical motivations for the GRIPI are also similar to the GMSSM case.
The potential of GRIPI can be given by the MSSM with three additional superfields
representing right handed neutrinos. In this case, the A-term is cubic, and it requires
φ0 ∼ 1014 GeV to keep the soft SUSY-breaking mass in the anticipated range [100]. The
field potential is plotted in FIG. 8.11. In the case where α = 1, it recovers the RIPI model.
When α > 1, the potential develops a maximum and, as for the GMSSM model, there are
three possible inflationary regimes, whereas if α < 1 the potential increases monotonously
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Figure 8.11: Field potential (top left) for the GRIPI model with α = 0.8/1/1.2 (respec-
tively in yellow, blue and red). First and second slow-roll parameters (respectively top
right and bottom left), as well as spectral index value as a function of φk (bottom right),
for the parameters φ0 = 10Mpl (blue), φ0 = 20Mpl (red) and φ0 = 40Mpl (green), and
α = 0.5 (solid) or α = 1 (dashed). As for the GMSSM model, a phase with ns > 1 occurs
between two phases with ns < 1 when α < 1 and φ0 �Mpl.

and there is no exact inflection point. The slow-roll parameters are given by [27]

ε1 = M2
pl

72 [α(x− 2)x+ 1]2

φ2
0x

2 [αx(3x− 8) + 6]2
, (8.13)

ε2 = M2
pl

24 (αx {xα [3(x− 4)x+ 16] + 3x− 16}+ 6)

φ2
0x

2 [αx(3x− 8) + 6]2
. (8.14)

They are presented in FIG. 8.11, as well as the spectral index as a function of φk. Because
of the same reasons as the GMSSM case, the standard regime with φ0 � Mpl cannot
lead simultaneously to a red spectrum on CMB anisotropy scales and a blue spectrum on
distortion scales. Although the regime where φ0 & Mpl with α < 1 is not well-motivated
in the original SUSY framework, it can be considered as a toy model and is interesting in
the view of CMB distortions.

As for the GMSSM model, inflation ends at xend '
√

2Mpl/φ0 by violation of the
slow-roll conditions. The field value φk at the horizon exit of mode k can be determined
by integration the Klein-Gordon equation in the slow-roll approximation. Then, we have
evaluated the spectral index in the two-dimensional parameter space of the model for the
scales kp and kd. Those are illustrated in FIG. 8.12. As for the GMSSM case, the spectral
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Figure 8.12: Contours of Spectral index values for the GRIPI model evaluated for the pivot
scale of CMB distortions k = 42Mpc−1 (right). To the left of the solid red contour, there
is the Planck-allowed region for the spectral index evaluated at the scale kp = 0.05 Mpc−1.
The same contours at the scale kd (dashed red) visualize how the spectral index changes
when the scale varies.

index on distortion scales cannot be larger than unity after imposing the 95 % C.L. Planck
constrains. Therefore, we conclude that the model cannot induce any observable distortion
of the CMB black-body spectrum.

8.6 Running-mass inflation (RMI)

This model is base on the supersymmetric framework with a flat direction of the potential
that is lifted by a soft-SUSY breaking mass term [101, 102, 103, 104, 105]. The higher
order terms are suppressed since the inflaton field is sub-Planck where φ � Mpl. Loop
logarithmic corrections are embedded into the tree level potential that reads [27]

V (φ) = Λ

[
1− c

2

(
−1

2
+ ln

φ

φ0

)
φ2

M2
pl

]
, (8.15)

where the dimensionless parameter c can be either positive or negative. With the assump-
tion of a Hubble-scale soft mass m ' H, one can estimate that c . 0.1 [27]. When φ = φ0,
the potential develops a maximum for the case c > 0, and develops a minimum for c < 0.
The potential is present in FIG. 8.13. There are four inflationary regimes which named
as RMI1, RMI2, RMI3 and RMI4 in Ref. [27]. RMI1 corresponds to c > 0 and φ < φ0

(field evolves from the maximal potential point to small field values); RMI2 to c > 0 and
φ > φ0 (field evolves from the maximal potential point towards large values); RMI3 to
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c < 0 and φ < φ0 (inflation proceeds from small field toward the minimum) and RMI4
corresponds to c < 0 and φ > φ0 (inflation proceeds from large field toward the minimum).
The slow-roll parameters read

ε1 =
8c2x2 ln2

(
x
φ0

)
[
−2cx2 ln

(
x
φ0

)
+ cx2 + 4

]2 , (8.16)

ε2 =
8c
{

ln
(
x
φ0

) [
2cx2 ln

(
x
φ0

)
− cx2 + 4

]
+ cx2 + 4

}
[
−2cx2

(
x
φ0

)
+ cx2 + 4

]2 , (8.17)

where x ≡ φ/Mpl. Together with spectral index as a function of φk, they are presented in
FIG. 8.13.

In the RMI2 regime, the second slow-roll parameter is always positive which leads to
a red scalar power spectrum. Thus, this regime is not interested in the present context.
In contrast, the first two criteria of Sec. 8.1 can be satisfied in RMI1, RMI3 and RMI4
regimes. Therefore, we discuss on them respectively with a numerical integration on
the slow-roll dynamics. Furthermore, for a PRISM-class probe, a useful parameter s =

c log(φ0/φ∗)|k=kp can be introduced following Ref. [105]. Then, one obtains

s =∓ ce−cNkkp log c2 , for RMI1 and RMI2 , (8.18a)

s =− ce−cNkkp log(1− c2) , for RMI3 and RMI4 . (8.18b)

(Note that for RMI1,2,3, c2 > 0, while for RMI4, c2 < 0.) Thus, one can relate the bounds
from FIG. 7.3 to the model parameters with the relations ns = −2c+ 2s and nrun = 2sc.
Earlier projections which is not based on MCMC analysis have been done in Ref. [90].

8.6.1 RMI1: c > 0, φ < φ0

In the RMI1 regime, inflation ends by violation of the slow-roll conditions when trajec-
tories reach the point φ ' φ0 exp[−6(1 + 1/2c)]. However, this value is exponentially
suppressed since c . 1. In practice, we consider that inflation ends before this point with
a tachyonic waterfall instability which is triggered by some auxiliary fields. Moreover, we
have assumed that the waterfall phase is instantaneous. Nevertheless, it introduces an
additional parameter φc which is the field value at the critical point. Here, we define the
dimensionless parameter c2 ≡ φc/φ0, and focus on the regime φ0 < Mpl.

For the case φ0 = 0.1Mpl, the prediction for the scalar spectral index at the scales kp

and kd in the plane (c, c2) are illustrated in FIG. 8.14. Note that the contours change
insignificantly when varying φ0 in the range φ0 < Mpl. From this figure, one can observe
that the blue tilted spectral at the distortion scales are impossible to be consistent with
the 95 % C.L. constraints of Planck. Therefore, we conclude that the RMI1 regime does
not give rise to any observable distortion of the CMB spectrum.

8.6.2 RMI3: c < 0, φ < φ0

In the RMI3 regime, the minimum of potential locates at φ = φ0. Inflation is realized when
the inflaton field rolls from small values toward the minimum, and stops at the critical
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Figure 8.13: Field potential (top left) for the RMI, for φ0 = 0.5Mpl, c = 1 (blue) and
c = −1 (red). First and second slow-roll parameters (respectively top right and bottom
left) as well as spectral index as a function of φk (bottom right) are represented for
the parameters φ0 = 0.5Mpl and c = 0.1 (solid blue), φ0 = 0.2Mpl and c = 0.1 (solid
red), φ0 = 0.5Mpl and c = 0.2 (solid green), φ0 = 0.5Mpl and c = −0.1 (dotted blue),
φ0 = 0.2Mpl and c = −0.1 (dotted red), φ0 = 0.5Mpl and c = −0.2 (dotted green).

point φc < φ0 where a tachyonic instability is triggered. For convenience, the additional
parameter c2 is defined as φc = (1− c2)φ0.

As for RMI1, contours of the spectral index at the scale kd in the plane (c, c2), to-
gether with the Planck 95 % C.L. constraints at the scale kp are presented in FIG. 8.15
for the case φ0 = 0.1Mpl. Contrary to RMI1, there is a narrow region of parameter s-
pace where c ∼ O(0.1) and c2 < 0.01 can lead to a blue spectrum on distortion scales
and satisfies the Planck constraints simultaneously. The scalar power spectrum and the
resulting distortions for two representative parameter sets are plotted in FIG. 8.17 and
FIG. 8.18 respectively. Then, we find that the level of spectral distortions induced by
the enhancement of scalar power spectrum, cannot be detected by PIXIE. However, it is
detectable by an experiment with instrumental sensitivity of the PRISM class. Moreover,
note that for the small values of c2, the power spectrum on the largest observable scales is
also enhanced due to the abrupt variation of the spectral index. Furthermore, note that
as long as φ0 < Mpl, our results are independent of the value of φ0.
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Figure 8.14: Spectral index for the RMI1 regime, with φ0 = 0.1Mpl, evaluated for the
pivot scale of CMB distortions k = 42Mpc−1 and Planck-allowed region for the spectral
index evaluated at the scale kp = 0.05 Mpc−1 (red). The corresponding contours at the
scale kd are added (dashed red) to illustrate how the spectral index changes when the
scale varies. The white region correspond to values of φk too close of φ0 to be numerically
tractable. In this case the spectral index is well approximated by ns = 1− 2εk ' 1− 4c.

8.6.3 RMI4: c < 0, φ > φ0

In the RMI3 regime, inflation is realized when the inflaton field rolls from large values
toward the minimum φ = φ0, and stops at the critical point φc > φ0 where a tachyonic
instability is triggered. As for RMI3, the parameter c2 is defined as φc = (1 − c2)φ0.
Contrary to RMI1 and RMI3 cases, the shape of the contours of the spectral index depends
on the value of φ0 in the RMI4 regime. In FIG. 8.16, we have illustrated the contours for
φ0 = Mpl and φ0 = 0.1Mpl, and again, imposed the Planck limits. As φ0 . 0.1Mpl, there
is no overlap between the region of ns(kd) > 1 and the Planck bound. However, when
φ0 ∼ Mpl, there can be a very narrow-overlapped band. Since inflation proceeds at the
field value close to the Planck mass, the flatness of the potential is destroyed by SUGRA
corrections. Even thought in this case, one cannot obtain a sufficient increase of power
(illustrated in FIG. 8.17) to induce detectable distortions in the CMB frequency spectrum
as shown in FIG. 8.18.
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Figure 8.15: Same as in FIG. 8.14, for the RMI3 regime, with φ0 = 0.1Mpl.

Figure 8.16: Same as in FIG. 8.14, for the RMI4 regime, with φ0 = Mpl (left) and
φ0 = 0.1Mpl (right).
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Figure 8.17: Amplitude of power spectrum of curvature perturbations for the RMI3 and
RMI4 regimes with c2 = 10−4, c = − log10(−0.8) (RMI3, blue), c2 = log10(−2.6), c = −0.1

(RMI3, red) and c2 = 10−3, c = − log10(−0.9) (RMI4, brown). This amplitude can be
normalized by a suitable choice of Λ.

Figure 8.18: Intermediate and µ-distortions (respectively dashed and solid line) as a func-
tion of frequency for the RMI model, same parameters as in FIG. 8.17. They correspond to
µ = 6.9×10−9, y = 6.4×10−9 (blue), µ = 8.4×10−9, y = 5.2×10−9 (red), µ = 3.9×10−9,
y = 5.8× 10−9 (brown). In all cases the signal is below the 2σ sensitivity of PIXIE.

75



76



Chapter 9

Testing multi-field inflation with
CMB distortions

The recent CMB anisotropy experiments [19, 20] still allow for multifield inflation models
which can arise naturally from SUSY, GUT and string landscape. In multifield inflation
scenarios, the isocurvature perturbations usual induce curvature perturbations as well as
the adiabatic ones when field trajectories present some turns in field space. In this case, the
field perturbations are no longer frozen on super-horizon scales. Therefore, a substantial
level of non-Gaussianity is potentially generated, and the power spectrum of curvature
perturbations is modified simultaneously. If an increase of power occurred on small scales,
it might induce a detectable level of distortion of CMB spectrum. In this chapter, we
consider three simple models of effective two-field scenarios:

• a softly turning trajectory,

• a suddenly turning trajectory,

• a mild waterfall trajectory.

Our analyses are base on analytical approximations which are derived in the literature
[106, 107, 108, 109].

9.1 Softly turning trajectory

It is common to classify entropic (or isocurvature) and adiabatic field components [73]
by their alignment orthogonal or parallel to the field trajectory respectively. The scalar
power spectrum can be derived by several methods, such as the δN formalism [44, 74], the
closed time path (CTP, also known as “in-in” or Schwinger-Keldysh) formalism[110], the
effective field theory [111], etc. For the effective two-field inflation with a softly turning
trajectory, one can identify three different cases,

• Both fields are almost massless: The curvature perturbations are related to the
adiabatic perturbations, where the contribution of entropy modes is neglectable. It
can be directly described by the single-field slow-roll dynamics with a small level of
non-Gaussianity;

• The mass of isocurvature component is heavy (miso � H): In order to realize slow-
roll inflation, the mass of the adiabatic component must be sufficiently small. In
this case, isocurvature perturbations decay quickly. It can be treated as effectively
single field ;
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• The isocurvature mass is of the order of or larger than the Hubble rate (miso ' H):
It is called as quasi effectively single field, where entropy modes can take effect on
the scale power spectrum on a broad range of scales.

In this section, we focus on the third case which can leads to an increase of power at
distortion scales. In addition, we assumed the turning on the field trajectory starts at
the time t1 and ends at the time t2 with a constant isocurvature mass miso as well as a
constant angular velocity. Thus, for modes exit the horizon during the turn, the power
spectrum of curvature perturbations is given by [106, 107]

Pζ =
H4

4π2R2θ̇2

1 + 8C(µiso)

(
θ̇

H

)2
 , (9.1)

where µiso ≡
√
m2

iso/H
2 − 9/4, R is the curvature radius of the turn in the field space,

and θ(t) is the angle between the tangent vector to the trajectory and the initial direction
of the trajectory. In the regime miso > 3H/2, the function C(µ) can be well approximated
by C(µ) = 1/4µ2 [107].

At the starting point of the turn, one has φ̇ = Rθ̇. Thus, the standard expression
for the spectrum amplitude of curvature perturbations is recovered. Under the slow-roll
approximation, the first slow-roll parameter can be expressed by the radius R and the
angular velocity θ̇ as ε1 = φ̇2/(2H2M2

pl). Then, one can obtain

θ̇2

H2
=

ε1
R2

. (9.2)

Hence, the enhancement factor is proportional to ∼ ε1M
2
pl/(µ

2
isoR

2). In the case where
ε1 � 1 and µ ' O(1), it requires R .

√
εMpl to generate a significant increase of pow-

er. Moreover, if ε1 ' O(0.1), it requires R . O(0.1)Mpl to potential induce observable
distortions in the CMB spectrum with a enhanced power spectrum. In both cases, the
value of R cannot exceed the typical value of field variation within the time of one e-fold,
∆σ ∼

√
εMpl. This small R indicates that the turn lasts less than one e-fold, and it cannot

have any significant change on the resulting spectral distortions compared with that for
a trajectory with no turn. Therefore, we can conclude that the multifield inflation with
a softly turning trajectories cannot induce an observable level of CMB distortions for the
PIXIE experiment. To illustrate this result, the amplitude of power spectrum has been
plotted in FIG. 9.1 for several parameter sets, with the adiabatic field variation during the
turn ∆σ = R and with the number of e-folds Nt when the turn occurs. The corresponding
CMB distortions are represented in FIG. 9.2. Note that the signal of CMB distortions at
maximum is detectable with a PRISM-class experiment.

In fact, the formula (9.1) which should be applied only for constant turn trajecto-
ries, not strictly suit the case where the turn lasts less than one e-fold. Besides, the
effect of damped oscillations or a bump-like shape that is generated at the onset of the
turn [112, 113] is also not taken into account. However, the previous discussion gives a
qualitative result for an ideal situation where the turn is slow enough. We left full nu-
merical calculations of scalar power spectrum for the case of softly turning trajectories as
future work.
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Figure 9.1: Spectrum amplitude of curvature perturbations as a function of the e-fold
time of horizon exit, for softly turning trajectories, for µiso = 1 (which gives a maximum
enhancement), with Nt = 50 (blue, brown and red curves) and Nt = 55 (green), and
∆Nt corresponding to ∆σt = R. Blue and Green curves are for ε1/(µisoR)2 = 1 and
ε1 = 0.1, the yellow curve is for ε1/(µisoR)2 = 10 and ε1 = 10−5 and the red curve is for
ε1/(µisoR)2 = 0.1 and ε1 = 10−3.

Figure 9.2: Spectrum of intermediate (dashed) and µ-type (solid) spectral distortion for
the effective model of a softly turning trajectory and the same parameters as in FIG. 9.1.
The spectra for these parameter sets are superimposed and actually do not significantly
differ from that of a single-field trajectory with constant ns. They lead to µ = 5.0× 10−9

and y = 5.4 × 10−9. In the case of µiso = 1 (green), which corresponds to a maximal
enhancement of power, i-type and µ-type distortions are respectively about two times or
three times larger, but nevertheless should below the sensitivity of PIXIE (µ = 1.47×10−8

and y = 5.4×10−9). When the enhancement is close to maximal, the generated distortions
could nevertheless be detected by a PRISM-class experiment.
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9.2 Suddenly turning trajectory

In the case of suddenly turning trajectories, modifications of the power spectrum of cur-
vature perturbations are very sharp and not detectable since the duration of the turn is
much less than one e-fold. However, there are two effects on the scalar power spectrum
resulted by a transverse heavy field which is excited by the sudden turn and induce high-
frequency field oscillations [108, 109]. One of these effects is the so-called deformation
effect where the Hubble parameter is modified, whereas the other is the mixing of adia-
batic and entropic modes that is called as the conversion effect. For models with canonical
kinetic terms, the corresponding power spectrum is characterized by a very clear peak at
the turning scale since the parametric resonance caused by the two effects exactly cancel
out each other. We are interested in the situation where the power spectrum is enhanced
on the distortion scales and remains unaffected prior to the turn. Therefore, we employ
the analytical approximation [109]

Pζ(k) = P0
ζ (k)

[
1 + µisoα

2 (sinxt − xt cosxt)
2

x3
t

]
, (9.3)

where xt ≡ k/kt, µiso ≡
√
m2

iso/H
2 − 9/4 and α is the angle of sudden turn in the field

space. The mode kt exit the horizon at the time Nt during the turn. This formula is valid
for the heavy isocurvature mass cases where miso & 10H.

The behaviour of the function f(xt) ≡ (sinxt−xt cosxt)
2/x3

t is illustrated in FIG. 9.3.
It reaches the maximum at xt ' 2.46 with f(2.46) ' 0.43, then damped with a series of
oscillations. The frequency of the oscillations in the power spectrum is fixed by the model,
whereas their amplitude is controlled by µα2. Serval examples are represented in Fig. 9.4
for the scales of CMB distortions. Note that important deviations from Eq. (9.3) would
be shown by a full numerical analysis after a few oscillations [109, 114, 115]. However,
those deviations do not affect the signal of distortion that mostly comes from the first
three oscillations. In fact, even if one cuts the oscillations in scalar spectrum after three
or four oscillations, the distortion spectrum changes only at the percent level.

Due to the oscillatory behaviour of the scale power spectrum, Eq. (7.3) which assumes
a power-law shape with a nearly unity spectral index, is no longer applicable. We have
to employ the expected sensitivity of PIXIE which is given by Eq. (7.2). The distortion
spectra is represented in Fig. 9.5. One can observe that for the case µisoα

2 ∼ 102, the
signal of distortion is observable at 5σ confidence level, whereas the case of µisoα

2 ∼ 10

cannot give rise to a detection at more than about 2σ. Therefore, for angles α . π/2, it
requires

miso & O(100)H (9.4)

for leading to a detectable level of CMB distortions. Moreover, the turn should be initiated
at the distortion scales. We notice that the level of intermediate distortions is greater than
that of the µ-type. This is because of the damping of the oscillations in the spectrum,
which reduces the smallest scales contribution to the distortion signal. Note that the ratio
between µ-type and i-type distortions also depends on the turning scales.

In conclusion, if the bound of Eq. (9.4) is satisfied and if the turn occurs at about
50-55 e-folds before the end of inflation, the signal of CMB distortion from sudden turn-
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Figure 9.3: Function f(xt).

Figure 9.4: Amplitude of Power spectrum of curvature perturbations as a function of
horizon the exit time, for suddenly turning trajectories, with Nt = 55 (blue and red
curves) and Nt = 50 (yellow and green curves), and for µisoα

2 = 100 (blue and yellow)
and µisoα

2 = 10 (red and green).

ing trajectories is observable with PIXIE. For a PRISM-class experiment, the bound of
Eq. (9.4) can be reduced by about one order of magnitude.

9.3 Mild waterfall trejectory

As we discussed in part I, the hybrid inflation with a mild waterfall phase which lasts more
than 60 e-folds is disfavoured by the CMB anisotropy observations, due to the important
contribution from entropic modes. In this section, we consider an intermediate case where
duration of the waterfall phase is 20 . N . 60 e-folds. Here, we employ the unified
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Figure 9.5: Spectrum of intermediate (dashed) and µ-type (solid) spectral distortions
for the effective model of a sudden-turning trajectory, and same parameter values as in
FIG. 9.4. The spectra corresponding to µisoα

2 = 100 is detectable by PIXIE at more than
5σ, whereas in the two other cases they reach no more than the 2σ level.

potential for F-term and D-term models, which reads

V (φ, ψ) = Λ

[(
1− ψ2

M2

)2

+
φ

µ
+

2φ2ψ2

φ2
cM

2

]
, (9.5)

where as in Eq. (2.15), the global minima locates at ψ = ±M and φ = 0, and φc is the
position of critical instability point. Then, we look for a region of the parameter space
where the scale power spectrum is in agreement with observations on CMB anisotropy
scales, and enhanced by more than one order of magnitude (which leads to a detectable
level of CMB distortions) on distortion scales.

As we know from chapter 5, the dynamics in phase 2 can be described as effective single
field theory. Therefore, we focus on the case where the horizon exit occurs in phase 1. In
this case, the analytical approximation of the amplitude of scale power spectrum is given
by

Pζ(k) ' ΛM2µφc

192π2M6
plχ2ψ2

k

, (9.6)

where ξ and χ are defined as φ = φc exp(ξ) ' φc(1 + ξ) and ψ = ψ0 exp(χ). As in part I,
the phase 1 connects to phase 2 at the point (ξ2, χ2) with

χ2 ≡ ln

(
φ

1/2
c M

2µ
1/2
1 ψ0

)
. (9.7)

For mode k exit the horizon in phase 1, one can obtain the relations

ξk = −M2
pl(Nk +N2)/(µ1φc) (9.8)

χk = 4φcµ1ξ
2
k/M

2 , (9.9)
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Figure 9.6: Power spectrum for curvature perturbations of the mild waterfall model, with
Π = 250/300/350 (respectively green, red and blue lines).

by solving the slow-roll dynamics. Besides, the quantum stochastic fluctuations of the
waterfall field at the critical point reads√

〈ψ2
0〉 =

(
Λ
√

2φcµ1M

96π3/2

)1/2

. (9.10)

The duration of phase 2 can be approximately written as

N2 = − M2

8M2
pl

√
C

[
arctan

(
ξend√
C

)
− arctan

(
ξ2√
C

)]
, (9.11)

with C ≡ −xi22 + ψ2
0 exp[2χ2]/(2φ2

c) and ξend = −M2/(8M2
pl).

Assembling all these ingredients, the power spectrum of curvature perturbations now
can be calculated. Note that for the modes leave the particle horizon a few e-folds before
the critical point is reached, Eq. (9.6) is also applicable, since these super-horizon modes
are still affected by entropic perturbations from the phase 1 of the waterfall. Also note that
the amplitude of the power spectrum is determined by the combination of the parameters
Π ≡M(φcµ1)1/2/M2

pl. For various values of Π, the amplitude of scalar power spectrum is
presented in Fig. 9.6. We find that the power spectrum can be significantly increased on
CMB distortion scales within the range

250 . Π2 . 350 , (9.12)

while it keeps a nearly scale invariant amplitude on CMB anisotropy scales. The resulting
spectral distortions have been plotted in FIG. 9.7. We find that given the bound Eq.s (7.2)
and (7.3), this enhancement give rise to a detectable signal at about 2σ of confidence level
by the PIXIE experiment.
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Figure 9.7: Spectrum of intermediate (dashed) and µ-type (solid) spectral distortion for
the mild waterfall model, with Π = 350 (left panel), Π = 300 (right panel, red line) and
Π = 250 (right panel, green line). In the first case the signal cannot be observed, whereas
the latter two cases are detectable by PIXIE at about 2σ level. These parameter sets lead
respectively µ-type and y-type distortions at the level µ = 1.93×10−6, 1.90×10−8, 6.79×
10−9 and y = (6.64, 5.32, 5.32)× 10−9.
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Chapter 10

Testing a curvaton model with CMB
distortions

The curvaton scenario is another way to generate a red tilted spectrum on the largest
CMB angular scales, and a blue tilted spectrum on the smaller scales. For a massive
curvaton, small scale modes experience less damping after the horizon exit than that of
larger scales. Thus, a blue spectrum is expected. In order to satisfy all criteria from Sect.
8.1, we assume that the mass of curvaton is of order (but somewhat blow) the Hubble
parameter and that the curvaton spectrum dominant over the inflaton spectrum at the
scale kd = 42Mpc−1, but it is subdominant for kp = 0.05Mpc−1. The mass of curvaton
can be considered as a dynamical, Hubble-induced mass.

The massive curvaton still satisfies Klein-Gordon equation with normalized solutions
for its momentum modes read

σ(kc, η) = −H∗η
√
πη

4
H(1)
ν (−|kc|η) , (10.1)

where

ν =

√
9

4
− m2

σ

H2
∗
. (10.2)

Here, the comoving momentum kc ≡ ak, where k is the physical momentum. Moreover,
the Hubble parameter H∗ is considered as a constant during inflation, which is always
valid for small-field models. At the end of inflation, the power spectrum of curvaton
perturbations is given by

Pδσ(k, tend) =
|kc|3

2π2
σ2(kc, ηend) =

|k|3

8πH

∣∣∣H(1)
ν (|k|/H)

∣∣∣2 ≈ H2

4π2
(|k|/H)3−2ν , (10.3)

where tend denotes the comoving time of the end of inflation. Before the curvaton oscilla-
tion start, the power spectrum is damped

Pδσ(k, t) = Pδσ(k, tend)e
−

t∫
tend

dt 2m
2

3H

, for tend < t < tosc , (10.4)

where tosc is the comoving time where H ≈ mσ and the oscillation of the curvaton field
start. Similarly, the background curvaton evolves as

σ(t) = σ(tend)e
−

t∫
tend

dtm
2

3H

, for tend < t < tosc . (10.5)
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In sudden decay approximation, the curvaton finally decays at the time tdec, and con-
tributes to the cosmic fluid as a fraction Ωσdec of the critical density. The power spectrum
of curvature perturbations caused by curvaton can be computed by the δN formalism
[74, 116] which gives

Pζσ(k) =Pδσ(k, tosc)
4

9
Ω2
σdec

(
1

σ(tosc)

)2

= Pδσ(k, tend)
4

9
Ω2
σdec

(
1

σ(tend)

)2

(10.6)

≈aσ
(
|k|
kpivot

)n(σ)
s −1

,

where

aσ =
H2
∗

9π2σ2(tend)
Ω2
σdec

(
kpivot

H∗

)3−2ν

. (10.7)

Note that the additional damping of the curvaton field after inflation [Eqs. (10.4,10.5)]
is canceled in this expression. In addition, provide H∗ & mσ, the epoch of damping is
not quantitatively important, since the curvaton oscillations begin soon after the end of
inflation. Thus, a strong blue tilted curvature power spectrum can be obtained.

In general, the inflaton induced curvature power spectrum can be parameterized as

Pζinf(k) = ainf

(
|k|
kpivot

)n(inf)
s −1

. (10.8)

The total spectrum of curvature perturbations is given by adding up contributions from
inflaton and curvaton linearly [116], which reads

Pζ(k) = Pζinf(k) + Pζσ(k) . (10.9)

In the context of CMB distortions, we can treat the amplitude and tilt of the power
spectrum as free parameters. Note that the level of non-Gaussianity depends on the
fraction Ωσdec by [116] 3

5fNL = 3
4(Pζσ/Pζ)2/Ωσdec. Thus, one cannot tune aσ by adjusting

the value of Ωσdec deliberately. However, the value of aσ can be adjusted by changing
σ(tend) through initial conditions. In addition to criteria from Sect. 8.1, the strongly
enhanced scalar spectrum should also consistent with the constraints from ultracompact
minihalos (UCMHs) [117] and primordial black holes (PBHs) [118].

The bound from UCMHs is [117]

Pζ(|kUCMH|) < PUCMH , (10.10)

where

PUCMH ≈ 5× 10−8 and |k|UCMH ≈ 5× 107Mpc−1 . (10.11)

The scale |k|UCMH corresponds to NUCMH
e ≈ 21 after the horizon exit of pivot scale

kp. Since the power spectrum of curvature perturbations is dominated by the blue-tilted
curvaton spectrum on the scales around |k| ≈ |kUCMH|, constraints from UCMHs on larger
scales are fulfilled spontaneously provide the lation (10.10) is satisfied.
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Figure 10.1: Constraints on aσ and n
(σ)
s . The blue region is excluded due to the non-

observation of PBHs, relation (10.12), the red region is excluded due to constraints from
UCMHs, relation (10.10). Above the brown region, the power spectrum from the curvaton
is comparable or larger than the power spectrum from inflaton at the smallest scales
relevant for CMB distortions, which is more precisely stated by relation (10.13). The
white region therefore indicates the parameter space that is of interest in view of future
observations of CMB distortions.

Similarly, the constraint from PBHs is [118]

Pζ(|k|) < PPBH , where PPBH ≈ 5× 10−2 . (10.12)

This constraint works for all scales that exit the Hubble horizon during inflation. Again,
because of the blue-tilted power spectrum on small scales, one need only to fulfill the
constraints on the smallest scales. Here, we take the scale around NPBH

e ≈ 50 e-folds after
the horizon exit of anisotropy pivot scale.

The constraints (10.10,10.12) are illustrated in FIG 10.1. Assuming n(inf)
s = 0.96, the

region for

Pζσ = Pζinf (10.13)

at the smallest CMB distortions scale (Ne ≈ 14 e-folds after the horizon exit of the pivot
scale kp) is identified. For three parameter sets in the allow region from FIG 10.1, the
total power spectrum of curvature perturbations and the resulting CMB distortions have
been plotted in FIG. 10.2 and FIG. 10.3 respectively. Then, we find that the level of CMB
spectrum distortions is not observable by PIXIE after imposing the Planck constraints.
Nonetheless, for a PRISM-class experiment, we employ a MCMC analysis with fiducial
values aσ = 0, n(inf)

s = ns(kp) and Pζinf(kp) = Pζ(kp) are given by the central values of
Planck from Eq. (8.3), and yre = 4 × 10−7, ∆∗ = 0. The projected bounds on aσ, % is
presneted in FIG. 10.4, where % = aσ/ainf . One can find that a 60% contamination of
the scalar perturbations from a curvaton with a blue spectrum, can be ruled out by a
PRISM-class probe at 95% C.L.
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Figure 10.2: Power spectrum of curvature perturbations for the curvaton scenario, for
three parameter sets in the white region of FIG. 10.1: log10 aσ = −10, nσs = 1.2 (blue),
log10 aσ = −10, nσs = 1.3 (red) and log10 aσ = −9, nσs = 1.2 (brown).

Figure 10.3: Spectrum of intermediate (dashed) and µ-type (solid) spectral distortion for
the curvaton model and same parameter values as in FIG. 10.2.
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Figure 10.4: Projected exclusion bounds on the curvaton model from a PRISM-class
experiment.

89



90



Conclusion

In this part, we have briefly reviewed on different types of CMB spectral distortions and
the expected sensitivities for the future PIXIE and PRISM-class experiments. Then, an
exhaustive model-oriented analysis was performed for inflation in scope of µ-type and
intermediate i-type CMB distortions which are caused by energy injection to the primeval
plasma from the dissipation of acoustic waves before the epoch of recombination. The
y-type distortions are not of interest, since it is dominated by other sources which are
produced in the stage posterior to recombination, such as the thermal SZ effect. We
found that only few models can give rise to an observable level of CMB distortions for the
PIXIE experiment.

For all 49 single-field modes listed in Ref. [27], only one of them can induce a pow-
er spectrum of curvature perturbations satisfying the Planck constraints on the CMB
anisotropy scales and getting sufficiently enhanced at the distortion scales simultaneously.
This model is the original hybrid inflation in the valley with a super-Planckian inflaton
field. When inflation proceeds from the field dominated regime towards the false vacuum
dominated regime, a blue spectrum at smaller scales is generally predicted. However, we
found that the region of parameter space inducing a power spectrum satisfies all criteria in
Sect. 8.1 simultaneously need to be fine-tuned. Nevertheless, the situation can be greatly
improved for a PRISM-class experiment with the sensitivity ten time higher than PIXIE.
In principle, the PRISM experiment can detect the signal of CMB distortions from models
with a large running of spectral index which causes a substantial change in power between
anisotropy and distortions scales, for example the Non-Canonical Kähler and the Running
Mass inflation models.

In addition, we have examined three effective multi-field inflation scenarios: a softly
turning, a suddenly turning and a mild waterfall trajectory. We found that the latter two
scenarios can generate CMB distortions at a level to be probed by PIXIE. In the cases
of suddenly turning trajectories, the scalar power spectrum develops a peak and then ex-
periences damping oscillations at a scale close to the turn. Only if the turn is initiated
at the scales of CMB distortions, a detectable signal of distortion can be generated. For
the hybrid models with a mild waterfall phase, a peak in the power spectrum of curvature
perturbations was shown to emerge. We focused on the case with the duration of the
waterfall phase of about 40 e-folds and determined the parameter range which generate
an observable signal of CMB distortions for the PIXIE experiment. Besides, distortions
induced by trajectories with a soft turning can be still detectable by a PRISM-class exper-
iment in a tuned region of parameter space. Moreover, we remark that one can distinguish
different models by the ratio between µ-type and i-type distortions.

Finally, we tested the curvaton scenarios where the blue spectrum from massive curva-
ton is dominant at distortion scales and subdominant at anisotropy scales. Imposing the
constraints from the ultra compact minihalos, we found that curvaton scenarios cannot
lead to a detectable level of CMB spectral distortion for the PIXIE experiment. However,
a PRISM-class experiment can be used to constrain its parameter space in the context of
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CMB distortions.
From our analysis, one can find that only very few inflation models with fine-tuned

parameter sets can induce detectable CMB distortion signals for the future experiments.
Even if µ- or i-type distortions are discovered in the future, one might still need to consider
other potential sources such as energy injection from evaporation of primordial black holes
or decay/annihilation of relic particles.
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Introduction

In the previous two parts, the field and curvature perturbations are investigated at the
linear order, which coincide with the sensitivity of recent CMB anisotropy experiments.
The effects of loop corrections have not yet been observed. Nonetheless, these are at least of
conceptual interest, and they may leave signatures observable e.g. by future observations of
21 cm radiation in the high redshift region (z ∼ 50) [119]. But, perturbation theory breaks
down due to IR effects for some important special cases, such as for massless scalar fields
or arguably for gravitons. For simplicity, people usual consider loop corrections to field
perturbations in a pure de Sitter spacetime, where the duration of inflation is infinite. On
a de Sitter background, quantum fluctuations of a free massless scalar field which couples
to gravitation minimally feature a IR divergence due to the redshift of k-modes of the
field [120]. The deeper reason is that the Bunch-Davies vacuum, which is commonly used,
is not de Sitter invariant, and a de Sitter invariant vacuum is missing [121, 122]. However,
the situation may changed for an interaction scalar field theory.

The first resummation of quantum fluctuations of a scalar field on de Sitter background
has been done by Starobinsky and Yokoyama [123, 124] with the stochastic approach. In
this approach, the short-wavelength modes are treated as a stochastic noise to the horizon-
size modes which are approximately considered as classical. For a massless φ4 theory,
the resummation of contribution from all loop orders which gives a finite IR correlation
indicates the IR divergence should be self-regulatory. In addition, the author derives an
invariant quantum state to leading IR order for massless φ4 theory in Euclidean de Sitter
space in Ref. [125]. It is confirmed in Ref. [126] with a loop expansion and the necessary
resummation. Moreover, it argues that the Euclidean quantum field theory (QFT) result
agrees with the result from stochastic approach for scalar fluctuations in Lorentzian de
Sitter space [123, 124]. A similar agreement is pointed out for the propagators between
Euclidean and Lorentzian de Sitter space in Ref. [127]. Nevertheless, beyond the leading
IR approximation, the massive field correlations for large separations on the Euclidean de
Sitter background are characterized by an exponentially decaying behaviour [128, 129].
However, for the massless case, this decay behaviour cannot be confirmed yet [130].

Therefore, people might ask several questions for the quantum field theory (QFT) on
Lorentzian background: i) Do the field correlations decay at large distance? ii) The IR di-
vergence is self-regulatory or not? iii) What is the role of the stochastic approximation in a
full QFT calculation? etc. To answer these questions, one usually employ the CTP formal-
ism [131, 132] as an appropriate tool in the QFT framework. In this formalism, the field
evolves both forward and backward in time. Thus, we also refer to it as Amphichronous
QFT. With the Amphichronous QFT, many work have been done with a wide range of
methods, such as ordinary perturbation theory [133, 134, 135, 136, 137, 138, 139, 140],
the Hartree-Fock method [141, 142, 143] ,a large N expansion in O(N)-symmetric theo-
ries [144, 145, 146, 147, 148, 138], the Wigner-Weisskopf method [149], functional renor-
malisation group techniques [150] or other partial resummation schemes [151]. However
the non-perturbative resummation, which is readily performed in the Stochastic approach,
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does not appear to be recovered by these approaches.
In this part, we try to answer above-mentioned question with the φ4 theory which has

been most widely studied. The Lagrangian is given by

L =
√
−g
[

1

2
gµν(∂µφ)(∂νφ)− V (φ)

]
, (10.14)

with the potential

V (φ) =
1

2
m2φ2 +

λ

4!
φ4 . (10.15)

where m is the mass of scaler field. The scalar field minimally couples to gravitation
through the metric. In order to obtain significant IR enhancement for superhorizon modes,
we restrict that the mass of field is much smaller than the Hubble parameter, i.e. m2 �
H2. Moreover, we focus on a 4-dimensional spacetime with metric in global and conformal
coordinates reads [152]

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) = a2(η)(dη2 − dx2 − dy2 − dz2), (10.16)

where the scale factor a of spacetime is given by a = −1/(Hη) = exp(Ht). A de Sitter
invariant length function is defined as [133, 153]

y(x;x′) = a(η)a(η′)H2∆x2 =
∆x2

ηη′
= −4sin2

(
1

2
H`(x;x′)

)
, (10.17)

where ∆x2 = (η−η′)2− (x−x′)2, x is the spatial-vector. The length ` along geodesic can
be purely imaginary for a time-like separation y > 0, be real for a space-like separation
−4 < y < 0, and be complex for a separation cannot connect by geodesics.

With the above setup, this part is organized as following: In chapter 11, we have a
brief review on the Fokker-Planck method that is used by Starobinsky and Yokoyama
to resum leading IR fluctuations. Besides, we develop a diagrammatic expansion for
the stochastic method based on the Langevin equation. In chapter 12, based on the
first principle of QFT, we extract the leading IR behaviours from the propagators of the
scalar field and show the agreement on diagram contributions between both stochastic
and field theoretic approaches up to two loops order. Then, the equivalence between field
theoretical and stochastic diagrams at leading IR order is proved in chapter 13 up to all
orders. The resummation in chapter 14 gives the same result as in Refs. [123, 124]. Finally,
we summarize out results and possible implications in the Conclusions.
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Chapter 11

Stochastic approach

In the stochastic approach [123, 124], the scalar field φ can be divided into a long wave-
length part φ̄ and a short wavelength part respect to a IR cutoff εa(t)H, as following

φ(x, t) = φ̄(x, t) +

∫
d3k

(2π)3/2
θ(|k| − εa(t)H)

[
akφk(t)e−ik·x + a†kφk

∗(t)eik·x
]
, (11.1)

where θ(z) is a Heavi-side function, ε � 1 is a small constant, and φk(t) are free mode
functions for φ. The long wavelength part of the field can be treated as a classical field [154,
155], whereas the short wavelength part is quantum.

From the Klein-Gordon equation �φ+ ∂V
∂φ = 0, one can obtain the Langevin equation

for the long wavelength part φ̄ [56]

˙̄φ+
1

3H

∂V (φ)

∂φ
= ξ(t), (11.2)

where ξ(t) is a Gaussian stochastic noise which satisfies

〈ξ(t)〉 = 0, and 〈ξ(t)ξ(t′)〉 =
H3

4π2
δ(t− t′). (11.3)

11.1 Fokker-Planck equation and the IR correlation

With the Langevin equation (11.2), one can derive the Fokker-Planck equation by defining
the one-point probability distribution function (PDF) for long wavelength part φ̄ as

P (χ, t) ≡
〈
δ(χ− φ̄)

〉
. (11.4)

Note that the PDF is time dependent. Thus, one can act with a time derivative on it and
obtains

∂

∂t
P (χ, t) = − ∂

∂χ

〈
(χ− φ̄) ˙̄φ

〉
=

∂

∂χ

(
1

3H
P (χ, t)

∂V (χ)

∂χ

)
− ∂

∂χ

〈
δ(χ− φ̄)ξ(t)

〉
, (11.5)

In order to obtain the second line of this equation, the Langevin equation has been substi-
tuted. Note that exp[−

∫
2π2

H3 ξ
2(t)dt′] is a probability distribution function of the stochastic

noise term ξ. Thus, the second term of Eq. (11.5) can be written as

〈
δ(χ− φ̄)ξ(t)

〉
=

∫
D[ξ(t′)]

{
δ(χ− φ̄)ξ(t) exp

[
−
∫

2π2

H3
ξ2(t′)dt′

]}
= −H

3

8π2

∂

∂χ

〈
δ(χ− φ̄)

〉
. (11.6)
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Substituting this equation into Eq. (11.5), one then obtains the Fokker-Planck equation
for the PDF of φ̄ which reads,

∂

∂t
P (ψ, t) =

1

3H

∂

∂ψ

(
P (ψ, t)

∂V (ψ)

∂ψ

)
+
H3

8π2

∂2

∂ψ2
P (ψ, t). (11.7)

Here we denote P (ψ, t) ≡ P [φ̄(x, t)] ≡ P [φ]. Solving this equation will give the knowledge
of field evolution on the de Sitter background. In the late time limit, the field goes into a
static equilibrium, while its PDF which becomes to be time independent reads [123, 124]

%(φ) = N e−
8π2

3H4 V (φ) , (11.8)

where N is the normalization for
∞∫
−∞

dφ%(φ) = 1 . (11.9)

Therefore, leading IR correlation can be given by the equal time expectation value of φ2

as

〈φ2〉 =

∞∫
−∞

dφφ2%(φ) =
3H4

8π2m2
− 9λH8

128π4m6
+

9λ2H12

256π6m10
+ · · · , (11.10)

for the potential (10.15). This perturbative expansion is valid only if the coupling is not
very strong, i.e. λ� m4/H4. Nevertheless, for the case where the scalar field is massless
(m→ 0), one obtains [124]

〈φ2〉 =

√
3

2π

Γ
(

3
4

)
Γ
(

1
4

) H2

√
λ
, (11.11)

after resuming the contribution to all loop orders. It shows that classical stochastic
perturbations emerge in the inflationary universe even at late time. Furthermore, we
point out that the stochastic approach can be also used to derive quantitative result-
s [144, 156, 157, 158, 159].

11.2 Diagrammatic expansion of the correlators

Although one can obtain perturbative results from the Fokker-Planck equation like Eq.
(11.10), it is not easy to get any intuition for connecting them with the QFT. A dia-
grammatic expansion is therefore needed. Start from the Langevin equation 11.2 with
functional (path integral) techniques [160], the expectation value of an operator O[φ] can
be written as

〈O[φ]〉 =

∫
D[ξ]e−

1
2

∫
dtξ2 4π2

H3

∫
D[φ]O[φ]δ(φ̇+ ∂φV/3H − ξ)J [φ] . (11.12)

Here J [φ] =
∣∣∣Det

[
δ
δφ

(
φ̇+ ∂φV/3H − ξ

)]∣∣∣ is the Jacobian of the delta function with
respect to the field.To evaluate the determinant, the time interval is discretized in N time
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steps of extent ∆t such that φi = φ(ti) and ξi = ξ(ti) with i = 0, . . . , N . Then the
determinant can be rewritten as J = |DetJij | where

Jij =
∂

∂φj

(
φi − φi−1

∆t
+
∂φV (φi−1)

3H
− ξi−1

)
. (11.13)

Note that a retarded regularization for the operator has been chosen, i.e. all field φ and
the stochastic force ξ are computed at the start of each time-step. With this choice,
the diagonal elements of Jij are Ji,i = 1

∆t and the only other non-zero elements are the
Ji,i−1 entries. Note that the 1

∆t factors can be absorbed into the measure D[ξ] with an
appropriate normalization. Thus, we obtain that J [φ] = 1. Furthermore, the partition
function is given by

Z ≡
∫
D[ξ]e−

1
2

∫
dtξ2 4π2

H3

∫
D[φ]δ(φ̇+ ∂φV/3H − ξ) = 1 . (11.14)

By introducing an auxiliary field ψ and integrating out the noise ξ, it can be rewritten as

Z =

∫
D[φ]D[ψ]e

−
∫
dt
{

i
H2 ψ

(
φ̇+

∂φV

3H

)
+ 1

8π2H
ψ2
}
. (11.15)

Then, with the potential (10.15), we rewrite the above equation in a more symmetric form

Z =

∫
D[φ]D[ψ]e

−i
∫
dt

 1
2

(
φ, ψ

) 0 1
H2 (−∂t + m2

3H )
1
H2 (∂t + m2

3H ) − i
4π2H

φ
ψ

+ λ
3!
ψφ3

3H3



≡
∫
D[φ]D[ψ]e

−i
∫
dt

 1
2

(
φ, ψ

)
G−1

0

φ
ψ

+ λ
3!
ψφ3

3H3


, (11.16)

Note that λ
3!
ψφ3

3H3 represents the interaction vertex in the Feynman rules. Moreover, the
matrix of free propagators G0 is defined as

G0(t, t′) =

(
〈φ(t)φ(t′)〉 〈φ(t)ψ(t′)〉
〈ψ(t)φ(t′)〉 〈ψ(t)ψ(t′)〉

)
≡
(

F (t, t′) −iGR(t, t′)

−iGA(t, t′) 0

)
. (11.17)

The null entry in G0 is because of the non-dynamical nature of the pure auxiliary field
ψ. From the relation G0 ?G−1

0 (t, t′) = I2x2δ(t, t
′), we find that GR,A are the retarded and

advanced propagators for the operator 1
H2 (∂t + m2

3H )

GR(t, t′) = GA(t′, t) = H2e−
m2

3H
(t−t′)Θ(t− t′) , (11.18)

whereas the statistical correlator F (t, t′) = 〈φ(t)φ(t′)〉 is the two-point function of φ

F (t, t′) =
3H4

8πm2

(
e−

m2

3H
|t−t′| − e−

m2

3H
(t+t′)

)
, (11.19)

with the initial condition F (0, 0) = 0. Note that for a massless scalar field, one obtains
F (t, t) ≈ H3

4π t which grows linear with time. The perturbative expansion breaks down due
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−iGR(t, t′) −iGA(t, t′) F (t, t′)

−i λ
3H3

∫
dτ

Figure 11.1: The elements of stochastic diagrams. The vertex factor is chosen for which
the assembled diagrams are divided by their symmetry factor.

to this secular behaviour [120, 161, 162, 163] for large enough time in the massless limit.
If the stochastic process (inflation) take place early enough, F (t, t′) reduces to

F (t, t′) =
3H4

8π2m2
e−

m2

3H
|t−t′|. (11.20)

We discuss in further detail in chapter 14 the important massless case m2 = 0. Now, we
obtain a full set of Feynman rules that is presented in FIG 11.1. Thus, the diagrams con-
tributions for the leading IR correlation can be computed perturbatively for the case where
λ� m4/H4. As an example, here we calculate the contributions from Feynman diagrams
up to second order that is illustrated in FIG. 11.2. The calculations are straightforward
in the late time limit, which give

〈φ2〉sg =− λ 9H8

128π4m6
, (11.21a)

〈φ2〉ca =λ2 27H12

2048π6m10
, (11.21b)

〈φ2〉sgsg =λ2 27H12

2048π6m10
, (11.21c)

〈φ2〉ss =λ2 9H12

1024π6m10
. (11.21d)

Summing all contributions, we obtain

lim
t→∞
〈φ(t)2〉 =

3H4

8π2m2
− λ 9H8

128π4m6
+ λ2 9H12

256π6m10
. (11.22)

One may notice that this result coincides with Eq. 11.10. This coincidence implies that
our diagrammatic expansion is valid at least up to two loop orders. In the next chapter,
this result is also compared with the counterpart from the Amphichronous QFT method.
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+

〈φ2〉sg

+

〈φ2〉ca

+

〈φ2〉sgsg

+ +

〈φ2〉ss

Figure 11.2: The stochastic diagrams up to two loops. Vacuum bubbles are zero by
construction. Note that they are topologically identical in form to the CTP diagrams
in the Keldysh basis but with the three-wiggle vertex removed. This corresponds to a
semiclassical approximation. The labels refer to the topology of the diagrams: seagull,
cactus, double seagull and sunset.
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Chapter 12

Field theoretic approach

12.1 Basic setup

As we stated, the IR correlation can be also evaluated by an Amphichronous QFT ap-
proach. In this framework, the Amphichronous time evolves both forward and backward,
and finally returns to the initial time [131, 132]. When the field corresponds to the forward
(backward) branch, we denote it as φ+ (φ−). The free propagators are given by solving
the Klein-Gordon equation

a4
(
∇2
x −m2

)
i∆(0)fg(x;x′) = fgδfg iδ4(x− x′) , (12.1)

where f, g = ± are CTP indices and (∇x)µ is the covariant derivative with respect to x.
Here, we employ the ε-prescriptions

∆xT
2
(x;x′) = ∆x++2

(x;x′) =(|η − η′| − iε)2 − |x− x′|2 , (12.2a)

∆x<
2
(x;x′) = ∆x+−2

(x;x′) =(η − η′ + iε)2 − |x− x′|2 , (12.2b)

∆x>
2
(x;x′) = ∆x−+2

(x;x′) =(η − η′ − iε)2 − |x− x′|2 , (12.2c)

∆xT̄
2
(x;x′) = ∆x−−

2
(x;x′) =(|η − η′|+ iε)2 − |x− x′|2 , (12.2d)

to describe the causal properties of the correlation functions. The superscripts ± are CTP
indices that come from the length function (10.17). For the Amphichronous propagators,
the superscript T (T̄ ) denotes (anti-) time ordering, whereas the superscript > (<) indi-
cates that operators evaluated at the coordinate x (x′) appear on the left (right) within
the expression for an expectation value. In common, the propagators i∆−+ and i∆+− are
called as Wightman functions, whereas propagator i∆(0)++ (i∆(0)−−) are known as (anit-
)Feynman propagators. For more details on developments and cosmological applications
of the Amphichronous QFT (CPT formalism), see Ref. [110, 164, 165, 166, 167, 168, 169,
170, 171].

The Klein-Gordon equation (12.1) can be expressed as a function of the length function
(10.17) as

a4(x)H2

[
−4y

(
1 +

y

4

) d2

dy2
− 8

(
1 +

y

2

) d

dy
− m2

H2

]
i∆(0)fg(y(x;x′)) = fgδfgiδ4(∆x) .

(12.3)

The exact solution of this equation is given by Eq. (A.1). In the IR enhanced case where
m2 � H2, the free propagators can be approximately written as

i∆(0)fg(y) =
H2

4π2

− 1

yfg
+

3H2

2m2

(
− 1

yfg

) 1
3

m2

H2

+O
(
y−2m

2

H2

) . (12.4)
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The process of approximation is shown in appendix A. We are interested in the second term
in the square bracket which is IR enhanced when m2 � H2. With the ε-prescriptions,
this term can be written as

3H2

2m2
(−y)−

n
3

m2

H2 =
3H2

2m2

(
1− i

n

3

m2

H2
arg(−y)

)
|y|−

n
3

m2

H2 +O
(
m2

H2

)
, (12.5)

for the small cases where m2 � H2. Here, we have introduced an integer number n . 4

which do not change the IR properties of the free propagator, and can be considered as
the powers of propagator in Feynman diagrams. Note that the power term of |y| can be
expanded as

|y|−
n
3

m2

H2 = 1− n

3

m2

H2
log |y|+O

((
n

3

m2

H2
log |y|

)2
)
. (12.6)

This expansion indicates that all basic propagators i∆(0)++, i∆(0)−+, i∆(0)+− and i∆(0)−−

acquire a nearly constant IR-enhancement 3H4/(8π2m2) for

|y| � exp(3H2/m2) . (12.7)

For larger value of |y|, the IR-enhancement mildly decays which is crucial for regulating the
vertex integrals in Feynman diagrams. Moreover, the imaginary parts of free propagators
are characterized by a series of argument function of de Sitter invariant length with CTP
indices that read

i arg(−y++(x;x′)) = iπϑ(∆x2) , (12.8a)

i arg(−y−+(x;x′)) = iπϑ(∆x2)sign(∆x0) , (12.8b)

i arg(−y+−(x;x′)) = −iπϑ(∆x2)sign(∆x0) , (12.8c)

i arg(−y−−(x;x′)) = −iπϑ(∆x2) . (12.8d)

Until now, all the discussion works in the ± basis (or known as Wightman basis). In
order to compare with the stochastic approach within statistical and advanced/retarded
propagators, a transformation from the Wightman to Keldysh basis [132] is need. The
transformation matrix is given by

U =
1√
2

(
1 1

1 −1

)
, (12.9)

such that the field components become(
φ

ψ

)
= U ·

(
φ+

φ−

)
=

1√
2

(
φ+ + φ−
φ+ − φ−

)
. (12.10)

Meanwhile, the free propagators are transformed into

U.

(
i∆T i∆<

i∆> i∆T̄

)
.U † =

(
i∆< + i∆> i∆T − i∆<

i∆T − i∆> 0

)
(12.11)

≡
(

F (x, x′) −iGR(x, x′)

−iGA(x, x′) 0

)
, (12.12)
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where the retarded and advanced propagators GR,A(x, x′) as well as F (x, x′) are defined
in the last equality. To obtain the first equality, the CTP relation

i∆T + i∆T̄ = i∆< + i∆> , (12.13)

is applied. Knowing the full expression of the free propagators in the Wightman basis,
one can extract their leading order in IR enhancement, i.e. their leading order in H2/m2.
Using these expressions and Eq. (12.11), it follows that, in the Keldysh basis, the free
propagators can be expressed as

−iGR,A(x, x′) = i∆(0)R,A(x, x′) =
H2

4π2

(
− i

2

)
arg yR,A|y|−

m2

3H2 , (12.14)

F (x, x′) = i∆(0)>(x, x′) + ∆(0)<(x, x′) =
3H4

4π2m2
|y|−

m2

3H2 , (12.15)

where the retarded/advanced argument function of y is given by

arg yR(x, x′) = arg yA(x′, x) = 2πϑ(η − η′)ϑ((η − η′)2 − (x− x′)2) . (12.16)

Note that as m → 0, the statistical function exhibit an IR divergence. Note also that
propagators decay for large separations i.e. large value of y. However, as the mass of field
m → 0, the decay of IR fluctuation can be slow enough to break down the perturbation
expansion.

For the diagrammatic expansion, the Feynman rules for the vertices are still missing.
In order to obtain them, we start from the CTP effective action

S[φ+, φ−] =

∫
d4x[L(φ+)− L(φ−)] . (12.17)

In the Keldysh basis, it reads

S[φ+, φ−] =

∫
d4x
√
−g[

1

2
(ψÔφ+ φÔψ)− 1

2

λ

3!
(φ3ψ + φψ3)] , (12.18)

with the kinetic operator

Ô = ∂2
t + 3H∂t −

∇2

a2
+m2. (12.19)

The full set of Feynman rules for the Amphichronous QFT in Keldysh basis is presented
in FIG 12.1. One can notice that in comparison with the stochastic approach, there
is an additional type of vertices φψ3, which at least connects three retarded/advanced
propagators. Since the causal propagators are not IR enhanced (cf. Eq. (12.14) ), this
type of vertices leads to a smaller degree of IR enhancement than the φ3ψ vertex. Thus,
diagrams with a φψ3 vertex can be neglected at the leading IR order.

12.2 IR correlation up to two-loop order

With the QFT Feynman rules, one can directly compute the diagram contributions to IR
correlation up to second order of λ (at coincident point) for the case of a massive field
with weak interaction where λ � m4/H4 which preserves the perturbative expansions.
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−iGR(x, x′) −iGA(x, x′) F (x, x′)

−iλ2
∫
d4x a4(x) −iλ2

∫
d4x a4(x)

Figure 12.1: The elements of the QFT Feynman diagrams. The vertex factor is also chosen
for which the assembled diagrams are divided by their symmetry factor. It is similar to
Fig. 11.1 except the extra ψ3φ vertex and the 4-dimensional vertex integral.

When ignoring diagrams with any φψ3 vertex, the QFT diagrams are identical to the
stochastic diagrams. Therefore, FIG 11.2 also describes the QFT diagrams up to the
second order. In the QFT method, each vertex integration is of the form as a typical
convoluting integral in the past lightcone of the late time point. The calculation of seagull
diagram is straightforward which has been shown in appendix B as an example. It is
much more complicated for computing higher order diagrams contributions such as double
seagull and sunset diagrams. When a vertex connects several other points (vertices), there
are too many unknown parameters in the convoluting integral which make the spatial
integration becomes practically impossible. However, this problem can be solved for two-
loop diagrams by a Lorentzian transformation with respect to the de Sitter invariance.
Note that there are only three different points (include vertices and coincident external
points) in a two loop diagram. We denote them as x, x′ and x1. In the process of vertex
integration on x1, one can rotate the other two points x and x′ to be coincided in space,
i.e. x = x′, and perhaps be different in time. The non-local spatial integration therefore
reduces to a local form as in the convolution integral of seagull diagram. Then, the diagram
contributions to the leading IR correlation can be straightforwardly calculated in the late
time limit up to two loops order, which give

〈φ2〉sg =− λ 9H8

64π4m6
, (12.20a)

〈φ2〉ca =λ2 27H12

1024π6m10
, (12.20b)

〈φ2〉sgsg =λ2 27H12

1024π6m10
, (12.20c)

〈φ2〉ss =λ2 9H12

512π6m10
. (12.20d)

One would soon notice that the contribution from each diagram is identical to its coun-
terpart from stochastic approach, except a factor of 2. To explain this problem, let us
consider an arbitrary Feynman diagram with an integer number N of vertices. In this
Feynman diagram, there are 2N + 1 internal and external propagator lines in total. Since
every vertex comes with a retarded (or advance) propagator, the total number of statis-
tical propagators is N − 1. The N + 1 statistical propagators will give a factor of 2N+1
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to the Feynman diagram. However, the N vertices give a factor of 2−N . Thus, the field
theoretical approach gives a factor of 2 enhancement for every diagram in the Keldysh
basis. This enhancement comes from the scale choice in transformation (12.9). We will
have more discussion on this scaling problem in the following chapter. Nonetheless, the
agreement between stochastic and Amphichronous approaches at two-loop order strongly
indicates that these two methods may be equivalent, at leading IR order.
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Chapter 13

Equivalence between field theoretical
and stochastic diagrams at leading

IR order

13.1 Reduction of QFT Diagrams to the Stochastic Form

In order to find equivalence between stochastic and field theoretical approach to all loop
orders, we look into the propagators (12.14) and (12.15) in the Keldysh basis of QFT. One
would find that they have the same power term of de Sitter invariance length function
which determines the spatial dependence of leading IR correlation. This power term can
be rewritten as

|y|−
m2

3H2 =

∣∣∣∣ ηη′

(η − η′)2 − (x− x′)2

∣∣∣∣ m
2

3H2

=

(
ηη′

(η − η′)2

) m2

3H2
∣∣∣∣ 1

1− δ2

∣∣∣∣ m
2

3H2

, (13.1)

where δ2 = (x−x′)2
(η−η′)2 . As we know from the convolution integral (see appendix B), inte-

gration for large time separation region (i.e. |t − t′| � 1/H) gives leading IR enhanced
contributions of the order H2

m2 , whereas for other regions are of the sub-leading order. Base
on the approximation

ηη′

(η − η′)2
=

e−H|t−t
′|

1 + e−2H|t−t′| − 2e−H(t+t′)
≈ e−H|t−t

′| , (13.2)

the term in the parentheses of eq (13.1) can be written as e−
m2

3H
|t−t′| in the large time

separation region. since m2 � H2, one can expand∣∣∣∣ 1

1− δ2

∣∣∣∣ m
2

3H2

= 1 +O
(
m2

H2

)
, (13.3)

in the regimes

δ2 � 1− exp(−3H2

m2
) and 1 + exp(−3H2

m2
)� δ2 � 1 + exp(

3H2

m2
). (13.4)

In the region (13.4), the power term (13.1) can be approximately by

|y|−
m2

3H2 = e−
m2

3H
|t−t′| ×

(
1 +O

(
m2

H2

))
. (13.5)

Thus, the field theoretical propagators (12.14) and (12.15) can be written as

F (x, x′) =
3H4

4π2m2
e−

m2

3H
|t−t′|, (13.6)
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and

GR(x, x′) = GA(x′, x) =
H2

4π
θ(t− t′)θ((η − η′)2 − (x− x′)2)e−

m2

3H
(t−t′). (13.7)

We note that apart from a factor of 2, Eq. (13.6) is identical to the statistical propagator
F (t, t′) in stochastic method (11.20), which is space independent. We also note that only
one retarded/advanced propagator is involved in each vertex integral in the leading IR
order calculation. Thus, the term 1

4πθ((η−η
′)2− (x−x′)) can be absorbed into the vertex

integral according to

− i
λ

2

∫
d4x′a4(x′)

1

4π
θ((η−η′)2−(x−x′)) = −i

λ

6

∫
dη′

(η − η′)3

H4η′4
≈ −i

λ

6H3

∫
dt′ . (13.8)

The latter approximation is valid since the large time separation region dominates the
temporal integration, as we discussed above. Then, the retarded and advanced propagators
can be effectively expressed as

GR(x, x′) = GA(x′, x) = θ(t− t′)H2e−
m2

3H
(t−t′), (13.9)

whereas the effective vertex contribution is −i λ
6H3

∫
dt′. Now, the elements of diagrams

from both methods are identical except a factor 2 in the statistical function and a factor
1/2 in the vertex coefficients. These discrepancies can be compensated by rescaling the
QFT field in Keldysh basis φ → φ/

√
2 and ψ →

√
2ψ. Then, ignoring the ψ3φ vertex, φ

corresponds to the average field between the forward and backward time contours φ →
(φ+ + φ−) /2, whereas ψ is equivalent to the auxiliary field in the stochastic approach.
GR and GA are unaffected, whereas the statistical propagator F and the vertex ψφ3 now
coincide with the expressions from the Stochastic approach.

13.2 Contributions Close to the Light Cone and at Large
Spatial Separations

We have shown that QFT Feynman diagrams are identical to the stochastic ones when the
leading order approximation (13.3) is valid. However, this approximation is problematic
for regions a) in the vicinity of the lightcone

1− α exp(−3H2

m2
) < δ2 < 1 + α exp(−3H2

m2
), (13.10)

and b) the large spacelike separation i.e. δ2 � 1,

δ2 > 1 +
1

α
exp(

3H2

m2
), (13.11)

where 1 � α � exp(3H2

m2 ) is a constant. In order to justify the conclusion from the
previous section, we have to estimate the error from these regions. For this purpose, we
consider a general form of the integration of the vertex x′,

I({xi}) = −i
λ

2

∫
d4x′a4(x′)

H2

4π
ϑ(η′ − η1)ϑ((η′ − η1)2 − (x′ − x1)2)

× |y(x′, x1)|−
m2

3H2 |y(x′, x2)|−
m2

3H2 |y(x′, x3)|−
m2

3H2 |y(x′, x4)|−
m2

3H2 . (13.12)
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Here the vertex x′ is connected with another vertex (or external point) x1 by a causal
propagator and is connected with other points by statistical propagators. The power
terms can be written in the form of Eq. (13.1) with δ2

i = (xi−x′)2
(ηi−η′)2 where i = 1, 2, 3, 4.

Thus the spatial integration in Eq. (13.12) take the form∫
d3x′ϑ((η′ − η1)2 − (x′ − x1)2)

4∏
i=1

∣∣∣∣∣ 1

δ̃2
i

∣∣∣∣∣
ε

= 4π(η1 − η′)3

∫ 1

0
d|δ̃1|δ2

1

4∏
i=1

∣∣∣∣∣ 1

δ̃2
i

∣∣∣∣∣
ε

, (13.13)

where δ̃2
i = 1− δ2

i and ε = m2

3H2 . If all separations x′ − xi satisfy the condition (13.4), we

approximately take
∣∣∣ 1
δ̃2i

∣∣∣ε ≈ 1, and only the term 4π
3 (η1 − η′)3 in eq (13.13) can be passed

to the temporal integration.
Now, let we consider the case where some δ2s lies in the vicinity of lightcone (13.10). In

this case, the near lightlike δ2s can be treated as equal and denoted as δ2
j , since the regime

is extremely narrow. We use d|δ̃j | as a variable of integration. Then, the integration in
Eq. (13.13) can be written as

2

∫ 1
2
αe−1/ε

0
d|δ̃j |δ2

j

∣∣∣∣∣ 1

δ̃j

∣∣∣∣∣
2nε

=
2δ̃3−2nε
j

3− 2nε

∣∣∣∣∣
1
2
αe−1/ε

0

, (13.14)

where n = 1, 2, 3, 4 is the number of nearly light-like separations. Therefore, compared to
the leading IR correlation, contributions from the vicinity of lightcone are exponentially

suppressed by a factor αe−
3H2

m2 . This suppression arises from the spatial integration due
to the narrow width of the integration region.

In addition, we turn to cases of large separations that is defined by relation (13.11).
First of all, we have to specify the up-limit of δ2. Note that due to the causality, all vertices
in Feynman diagrams must locate in the past-lightcone of the late time limit point x. If
we set the spatial vector of x to be ~x = ~0 and the comoving time as η0, then for any vertex
x1, the norm of its spatial vector |x1| cannot be large than its comoving time η1 − η0.
Hence, the spatial separation between two points x1 and x2 must be less than or equal the
sum of their comoving time, i.e. (x1−x2)2 ≤ (η1 +η2−2η0)2 (as illustrated in FIG 13.1).
Thus,the upper-bound of δ2 is given by

δ2(x′, xi) =
(x′ − xi)

2

(η′ − ηi)2
≤ 1 +

4η′ηi + 4η2
o − 4ηo(η

′ + ηi)

(η′ − ηi)2
, (13.15)

whereas the lower bound is from relation (13.11) in the form exp(1/ε)/α ≤ δ2. Solving
this inequality, one find that η′ has to be in the range (thin strip)

ηi − 2
√
αe−

1
2ε (ηo − ηi) ≤ η′ ≤ ηi + 2

√
αe−

1
2ε (ηo − ηi) , (13.16)

in which the separation satisfies relation (13.11) and maintains the causality. Moreover,
from inequality (13.11), the upper-bound for the power term (13.1) can be also obtained

|y(x, x′)|−ε ≤ αεe−1

(
(η2 − η′2)

ηη′

)−ε
. (13.17)

Then, the upper-bound of the convolution integral (13.12) can be estimated by replacing
the power terms for large δ2 separation with its maximal value in Eq. (13.17) and taking
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Figure 13.1: Two-dimensional sketch of the maximal spatial distance between two vertices
in the late time limit leading IR correlation.

approximation (13.5) for others. Then, the integrand becomes spatially independent,
and the domain of temporal integration is given by inequality (13.16) which is extremely
narrow. After doing the vertex integration, the final result is proportional to α1+εe−1− 1

ε ,
which is exponentially suppressed. Detailed calculations of this case are shown in the
appendix C. In this case, the exponential suppression behavior is due to the narrow width
of the domain of temporal integration.

Until now, one may worry about the mixing case where some separations lie in the
vicinity of lightcone and some separations with a large value of δ2 at the same time. How-
ever, it is not a matter. Because vertex integrals for near lightcone regions are exponential
suppressed by the domain of spatial integration, whereas the integrals for large δ2 sepa-
rations are exponentially suppressed by the domain of temporal integration, the mixing
of them should still exhibit an exponential suppression. Therefore, we conclude that the
approximation (13.5) is applicable for leading IR calculations in the late time limit. Hence,
the field theoretical approach is fully equivalent to the stochastic one at the leading IR
order.

112



Chapter 14

Resumming the QFT in the late
time limit

As we mentioned before, perturbation expansion breaks down in the small mass limit
m2 → 0. In this case, a resummation on the contributions from all loop order diagrams is
needed. However, this task is very challenging for the field theoretical approach, because
vertex integrals in higher loop diagrams can be extremely complicated. For example,
if there is a vertex connected with four other different vertices, then the corresponding
spatial integration cannot be calculated out analytically. Fortunately, we know that the
QFT Feynman diagrams are identical to the stochastic ones at the leading IR order.
Therefore, one can find out the result of field theoretical approach by resumming the
contributions from stochastic diagrams, which is much easier to do.

In order to do the resummation, we start from the functional partition function in
Eq. (11.16). One can easily integrate over the auxiliary field ψ, which gives

Z =

∫
D[φ] e

− 2π2

H3

∫ T
0 du

(
φ̇+

∂φV

3H

)2
=

∫
D[φ] e

− 2π2

H3

∫ T
0 dt

(
φ̇2+2φ̇

∂φV

3H
+
(
∂φV

3H

)2)
, (14.1)

where the boundaries of the integral is specified in the exponential term. Then, it can be
written as

Z =

∫ +∞

−∞
dφT e−

4π2

3H4 V (φT )
∫
D[φt<T ]e−

2π2

H3 S[φ] (14.2)

with

S[φ] =

∫ T

0
dt

[
φ̇2 +

(
∂φV

3H

)2
]
, (14.3)

where φT ≡ φ(T ) and the initial condition φ(0) = 0, V [0] = 0 is assumed. Besides, we
have split the path integral in terms of an integral over the evolving φ from time 0 → T

and a further integration over the final field at the time T . Since we are interested in the
late time limit, where the field is in a static equilibrium, we can make use of the steepest
descent method. At late-time, the integral dominated by the path φ0(t) extremising the
pseudo-action S, i.e. δS

δφ

∣∣∣
φ=φ0

. The latter condition is equivalent to

φ̈0 −
1

9H2
∂φV ∂

2
φV

∣∣∣∣
φ=φ0

= 0. (14.4)

Moreover, since we integrate over physical configuration, the solution has to satisfy the
following conditions φ0(0) = 0 and φ0(T ) = φT . Integrating the above equation yields

φ̇0
2 − 1

9H2

(
∂φV |φ=φ0

)2
= E, (14.5)
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where E is an integration constant which is constrained by the boundary boundary con-
dition φ0(T ) = φT . For the potential (10.15), we have ∂φV (φ)|φ=φ0(0)=0 = 0. Therefore,
the value of E tend to zero as T → ∞. More precisely, from the boundary conditions
φ(0) = 0 and φ(T ) = φT , it is easily to obtain the relation ET ≤ φT /T . Thus one finds
that ET → 0 at the late time T → ∞. Therefore, in the late time limit, the pseudo
action (14.3) can be expressed as

S[φ0] =2

∫ T

0
dt φ̇0

2
=

2

3H

∫ T

0
dt φ̇0 ∂φV |φ=φ0

=
2

3H
V (φT ) , (14.6)

Here, the boundary conditions φ0(0) = 0 and φ0(T ) = φT are used. Substituting Eq. (14.6)
into Eq. (14.3) and relabeling φT = ϕ, we obtain the late time partition function

Z =

∫ +∞

−∞
dϕ e−

8π2

3H4 V (ϕ) , (14.7)

which is the same to the one-point distribution function in Ref. [124]. It means that our
result is in agreement with the result from the Fokker-Planck method. Note that the choice
of initial conditions corresponds to the initial of the inflation at the time t = 0, where is
no significant fluctuations. Note also that in fact, we are working on the resummation of
the stochastic diagrams. Therefore, it convinces us that the diagrammatic expansion of
the stochastic method is valid for all loop orders.
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Conclusion

In this part, we have computed the leading IR correlation 〈φ(x)φ(x)〉 at coincide point both
perturbatively to second order in coupling and with a non-perturbative resummation using
field theoretical and stochastic approaches. As for the stochastic approach, we had a brief
introduction to the Fokker-Planck equation method by Starobinsky and Yokoyama. Then,
a diagrammatic expansion for the stochastic has been developed and found agreement with
both Fokker-Planck equation method and the field theoretical approach. In addition, by
extracting the leading IR contributions from free QFT propagators in Keldysh basis,
the QFT Feynman diagrams have been proved to be identical to stochastic diagrams.
Finally, we resummed the diagram contributions on the IR correlation up to all loop
orders. This indicates the agreement between stochastic and field theoretical approach is
generally valid. Moreover, this agreement should also be applicable to a O(N) scalar field
theory, where the perturbative expansion does not necessary need to be truncated. The
equivalence of both methods indicates that one can calculate the leading fluctuations by
stochastic method to avoid more complicated convolution integrals in the framework of
QFT. However, one should note that the stochastic approach can give only the leading
order IR correlation whereas the field theoretical in principle can obtain the correlation
functions at every order of m2/H2. Therefore, the field theoretical approach provides
insights into the dynamical behaviour of the scalar field on the de Sitter background.
Moreover, since the field theoretical approach is based on the first principle of QFT, it
also provide more understanding for the approximations in the stochastic approach. Since
the scalar model can serve as a toy model for the gravitation [120], this work might be
helpful to build a quantum gravity with general invariant gauge in de Sitter space.
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General conclusion and perspectives

In this manuscript, we have demonstrated many aspects of primordial scalar fluctua-
tions during inflation.

In the first part, we have investigated the level of non-Gaussianity and power spectrum
of curvature perturbations for the original and supersymmetric F-term and D-term hybrid
inflation models with a mild waterfall phase. We find that due to the significant contribu-
tion of entropy modes, these models cannot satisfy the CMB angular constraints on the
level of non-Gaussianity and power spectrum of curvature perturbations simultaneously,
in the cases where the waterfall last N & 60. Here, we note that the enhancement in the
level of non-Gaussianity during the epoch of reheating [172] is not taken into account. In
fact, it is very challenging to apply the δN formalism on a tachyonic preheating phase.
Moreover, in the case where the duration of waterfall is 1 < N . 60, it gives a modification
on the slow-roll prediction of inflation along the valley. We leave this case for future work.
Finally, we remark that the observable predictions for the quantum diffusion regime [159]
which is near the critical instability point have not been derived. In this regime, quantum
fluctuations of both inflaton and waterfall fields dominate over the classic motions. It
requires a new method (stochastic or QFT method from part III) to give the observable
predictions.

In the second part, we have examined inflation models and curvaton scenarios with
CMB spectral distortions. We find that only one single-field model (hybrid inflation in the
valley) can give rise to an observable level of CMB distortion for the PIXIE experiment. In
addition, the PIXIE experiment can detect the signal of distortions generated by multi-field
inflation models with sudden turning trajectories or with mild waterfall (20 . N . 60)
trajectories as well. For the next to next generation (PRISM-class) experiment, which is
about ten times sensitive to PIXIE, the situation is improved. In principle, all models
with a large value of running of spectral index can induce detectable CMB distortions to
the PRISM-class experiment. One should notice that our discussion focus on the CMB
distortions sourced by the dispersion of acoustic wave in the primeval plasma. There are
still other sources of energy injection to the CMB photons in the epoch before prior to the
recombination, such as decay/annihilation of relic particles and evaporation of primordial
black holes. Therefore, even if the µ-type and intermediate i-type distortions are detected
in the future, one will not be able to relate them directly to the primordial fluctuations
during inflation. Moreover, in the process of our calculation, we choose some representative
parameter sets in the allowed region of parameter space for every model. However, it still
possible that some particular points (or fine-tuned region) in the parameter space are



not missed. A full MCMC analysis is therefore expected. Nevertheless, some additional
constraints for some models are not considered, such as UCMH and PBH constraints for
the hybrid inflation with a mild waterfall phase.

In the third part, we have computed quantum fluctuations of a light scalar field
(m2 � H2) in the late time limit by stochastic and field theoretic approaches respec-
tively. We find agreement between both approaches at the leading IR order of m2/H2.
Note that both stochastic and field theoretic approaches are time dependent that can be
used to study the time-evolution of scalar fluctuations. However, in principle, the field
theoretical approaches can evaluate the fluctuation up to all orders, whereas the stochastic
approach is only available for the leading IR order. The sub-leading IR order would be
interesting, since it may reveal the behaviour of dispersion of fluctuations and the classic
to quantum transition. Moreover, the field theoretic method can also be applied to study
the interplay between UV and IR effects which may settle the controversy over adiabatic
subtraction [173, 174, 175, 176]. As stated in Ref. [120], the gravity field on de Sitter back-
ground exhibits a similar IR divergence as the scalar field. Therefore, the field theoretic
approach is potentially used to investigate quantum fluctuations of gravitons in a general
de Sitter invariant gauge as well.
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Appendix A

Long-distance behaviour of the
propagator

The well-known solution to Eq. (12.3) reads

i∆(0)(y) =
Γ
(
D−1

2 + ν
)

Γ
(
D−1

2 − ν
)

(4π)
D
2 Γ
(
D
2

) HD−2
2F1

(
3

2
+ ν,

3

2
− ν; 2; 1 +

y

4

)
, (A.1)

where

ν =

√(
D − 1

2

)2

− m2

H2
, (A.2)

and D is the dimension of spacetime. In this manuscript, we work in a four-dimension
spacetime. However, for a generic discussion, we leave D as a parameter. In order to
extract the leading behaviour for large y, we employ the transformation formula

2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 +

y

4

)
(A.3)

=

(
−y

4

)−D−1
2
−ν

Γ
(
D
2

)
Γ(−2ν)

Γ
(
D−1

2 − ν
)

Γ
(

1
2 − ν

) 2F1

(
D − 1

2
+ ν,

1

2
+ ν; 1 + 2ν;−4

y

)

+

(
−y

4

)−D−1
2

+ν
Γ
(
D
2

)
Γ(2ν)

Γ
(
D−1

2 + ν
)

Γ
(

1
2 + ν

) 2F1

(
D − 1

2
− ν, 1

2
− ν; 1− 2ν;−4

y

)
.

For the hypergeometric functions, we apply the series expansion

2F1(α, β; γ; z) =
Γ(γ)

Γ(α)Γ(β)

∞∑
n=0

Γ(α+ n)Γ(β + n)

Γ(γ + n)

zn

n!
, (A.4)

according to their definition. For D = 4, one obtains

i∆(0)(y) =H2

(
1

16π2
− 1

24π2

m2

H2
+O

(
m4

H2

))(
−y

4

)− 5
2

+ν
(A.5)

+H2

(
3H2

8π2m2
− 7

24π2
+O

(
m2

H2

))(
−y

4

)− 3
2

+ν

+H2O
(
m2

H2

)(
−y

4

)− 7
2

+ν
+ · · · .

For arbitraryD, the higher order terms are suppressed due to a large value of y. Therefore,
the leading behavior is given by

i∆(0)(y) =
1

2(D − 1)KH2

(
−y

4

)−1− m2

(D−1)H2
+

1

m2K

(
−y

4

)− m2

(D−1)H2
+ · · · , (A.6)
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where

K =
2π

D+1
2

Γ
(
D+1

2

)
HD

. (A.7)
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Appendix B

Seagull diagram contribution to
leading IR correlation

The seagull diagram ( presented in FIG 11.2 ) consist of one vertex and two external
points. As we are interested in the IR correlation for coincide points in the late time limit.
The contribution from seagull diagram can be directly given by a convolution integral,
which reads

〈φ2〉sg =− i
λ

2

∫
d4x′a4(x′)(−iGR(x, x′))(F (x, x′)F (x′, x′)) (B.1)

=− λ

4

(
3H4

4π2m2

)2(
H2

4π2

)∫
d4x′a4(x′)

∣∣y(x;x′)
∣∣− 2

3

m2

H2 ϑ((η − η′)2 − (x− x′)2)ϑ(η′ − η)

(B.2)

=− λ

4

(
3H4

4π2m2

)2(
H2

2π

) η∫
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dη′
1

H4η′4

∫
d3x′ϑ((η − η′)2 − (x− x′)2)

×
(

ηη′

[(η − η′)2 − (x− x′)2]

) 2
3
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H2
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2
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) η∫
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3
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3
m2

H2

η
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≈− λ 9H8

64π4m6
.

In the process of calculation, we notice that the temporal integral in the region η′ ∼ η

contributes in the sub-leading order.
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Appendix C

Vertex integral for large spacelike
separations

In the convoluting integration (13.12), point x′ is running over the past lightcone of x1 due
to the θ functions. Let us now consider one of the other points, say x2. According to the
inequality (13.16), a large δ2

2 corresponds to the region between the two red dashed lines
in Figure C.1. In this region, the power term y(x′, x2)−ε is bounded by (13.17), where
ε = m2

3H2 . Assuming that x3 and x4 are out of the strip between the dashed lines, we can
obtain an upper bound to the integral by replacing all the power terms with the r.h.s. of
(13.17). Thus, the upper limit of the vertex integration in this strip is given by

I ≤ −i
λ

2

∫ η2+2η2
√
αe−

1
2ε

η2−2η2
√
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1
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0
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η1η′

)−ε(
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η2η′
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η3η′
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)−ε
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√
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√
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1
2ε

η2−2η2
√
αe−

1
2ε

∝ α1+εe−1− 1
ε . (C.1)

In the temporal integration, we have used the large time separation assumption for the
power terms except (η2 − η′). For calculating the leading IR fluctuation in the late time
limit, this assumption is valid because the invalid regions give only sub-leading contribu-
tions. Moreover, one can do similar integrations for the strip of large δ2 around points x3

and x4 respectively. Even if strips for points overlap, one can still replace the power terms
by their upper limit, and the exponentially suppressed behaviour will not be changed in
the temporal integration. Therefore, we can conclude that the vertex integration for large
δ regime is exponentially suppressed and can be safely ignored.

125



Figure C.1: Sketch for large δ2 regime. The domain of vertex integration is the past
lightcone of x1. The large δ2 region for y(x′, x2) is the narrow stripe inside the red dashed
lines.
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Appendix D

Notations and conventions

Here, we briefly list the general notations and conventions used in this manuscript

a(t) or a(η) Scale factor in Robertson-Walker metric, which indicates
the size of the universe.

K A constant represented the spatial curvature.
In common, we take K = 0.

overdot · Derivative with respect to the coordinate time t.

′ Derivative with respect to the conformal time η.

H ≡ ȧ/a Hubble parameter.

H ≡ a′/a Conformal Hubble parameter.

N Number of e-folds, also used as the e-fold time.

dh ≈ H−1 Radius of the particle horizon, also called Hubble radius.

εn, n = 1, 2, · · · Slow roll parameters.

Ψ and Φ Bardeen potentials (gravitational potentials).

ζ Curvature perturbation.

Pζ Power spectrum of curvature perturbations.

ns Spectral index.

Bζ Bispectrum of curvature perturbations.

fNL Non-Gaussianity parameter.
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kp ≡ 0.05Mpc−1 Pivot scale for CMB angular observations.

kd ≡ 42Mpc−1 Pivot scale for CMB distortion observations.

∆I Change in the intensity caused by CMB distortions.

γE = 0.5772 Euler-Mascheroni constant.

y(x, x′) De Sitter invariant length function.

〈φ2〉 Correlation function of coincident points.
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