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ABSTRACT
In this study we make use of Canonical Correlation Analy-
sis (CCA) based feature selection for continuous depression
recognition from speech. Besides its common use in multi-
modal/multi-view feature extraction, CCA can be easily em-
ployed as a feature selector. We introduce several novel ways
of CCA based filter (ranking) methods, showing their rela-
tions to previous work. We test the suitability of proposed
methods on the AVEC 2013 dataset under the ACM MM 2013
Challenge protocol. Using 17% of features, we obtained a rel-
ative improvement of 30% on the challenge’s test-set baseline
Root Mean Square Error.

Index Terms— Canonical Correlation Analysis, feature
selection, feature extraction, depression recognition, affect
recognition, acoustic speech processing

1. INTRODUCTION

The state-of-the-art computational paralinguistics applica-
tions are built using suprasegmental features obtained from
functionals operating on frame-level low level descriptors
(LLD) [1]. Brute-force extraction of high-dimensional potent
features is commonly encountered in competitive baseline
feature sets of the most recent computational paralinguistics
challenges [2, 3]. One such feature set is recently introduced
for the ACM Multimedia 2013 Challenge Audio-visual Emo-
tion Corpus (AVEC 2013) which is about prediction of con-
tinuous depression and affect labels from audio/visual data
[4]. In this study, we present our work with AVEC 2013
focusing on prediction of depression level using acoustic
features.

In the state-of-the-art pipeline of computational paralin-
guistics processing, high dimensional data are classified gen-
erally with Support Vector Machines (SVM) or Random
Forests (RF), which are less vulnerable to vagaries of high
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dimensionality. Though effective in certain conditions, using
high-dimensional feature vectors restricts the use of back-
end classifiers as well as intermediate feature enhancement
techniques due to the curse of dimensionality. Moreover,
high-dimensional datasets are prone to contain many irrele-
vant and redundant features, which reduces the generalization
power of any learner.

In this paper, we investigate new acoustic feature selec-
tion techniques to overcome the problem of over-fitting and
to provide a compact set of high-quality features. In ma-
chine learning, feature selection aims at finding “a minimal
yet predictive” subset of original features [5]. Feature selec-
tion techniques can broadly be categorized into filter/ranking
based methods and wrapper methods. While wrapper meth-
ods use predictors (classifiers/regressors) to assess the suit-
ability, filter based methods use a heuristic merit of a feature
(or subset) to guide the ranking process.

We handle the problem of feature selection via Canonical
Correlation Analysis (CCA), as it provides a general infras-
tructure for feature selection and extraction. Moreover, CCA
based feature reduction can be employed both with categor-
ical and continuous targets. This is important considering
the research trend in paralinguistic analysis and prediction,
which shifts partly towards continuous targets [6]. Yet, there
is a growing interest in extending CCA with applications to
acoustic speech processing [7, 8].

We present three feature selection methods using CCA.
One of the methods is related to minimum Redundancy Max-
imum Relevance (mRMR) [9] feature selection and Correla-
tion Based Feature Selection (CFS) [10], as it intends to mini-
mize internal dependence/correlation of selected features and
maximize the dependence between selected feature/set and
the target variable. In mRMR, the heuristic merit uses Mu-
tual Information (MI), which is a nonlinear measure of de-
pendence [9]. MI quantifies the information shared by two
variates in number of bits. In CFS, [10] refers to correla-
tion as a general measure of dependence not restricting it to
Pearson’s correlation. We use CSF as one of our benchmark
methods. We do not use mRMR as benchmark, as it requires
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discretization to perform well and the sensitivity to discretiza-
tion should be analyzed in a separate study. We also present
results with a CCA based feature selection that does not re-
quire greedy selection. This method is computationally the
simplest among presented CCA based feature selection meth-
ods and already has successful applications [11].

The remainder of this paper is organized as follows. In
the next section we provide background on CCA. We present
CCA based feature selection methods in Section 3. In Sec-
tion 4, we review mRMR and CFS showing their relation to
our proposed feature selection methods. Then in Section 5
we introduce the corpus and features. Experimental work is
presented in Section 6, while Section 7 concludes with future
directions.

2. BACKGROUND: CANONICAL CORRELATION
ANALYSIS

Proposed by Hotelling [12], CCA seeks to maximize the mu-
tual correlation between two sets of variables by finding lin-
ear projections for each set. It is dened as a method to drive
feature selection/extraction in order to elicit latent semantics
by treating each view as a complex label for the other view
[13]. Mathematically speaking, CCA seeks to maximize the
mutual correlation between two views of the same seman-
tic phenomenon (e. g. audio and video of a speech) denoted
A ∈ Rn×d and B ∈ Rn×p via:

ρ(A,B) = sup
w,v

corr(wTA, vTB), (1)

where “corr” corresponds to Pearson’s correlation, w and v
correspond to the projection vectors of A and B, respectively.
Let CAB denote the cross-set covariance between the sets A
andB, and similarly let CAA denote within set covariance for
A. The problem given in eq. (1) can be re-formulated as:

ρ(A,B) = sup
w,v

wTCABv√
wTCAAw · vTCBBv

. (2)

The formulation in eq. (2) can be converted into a general-
ized eigenproblem once the terms in the denominator, i. e.
wTCAAw and vTCBBv, are constrained to unity, by observ-
ing the fact that the correlation does not depend on the scale
of projection vectors. For both linear projections (i. e. w and
v), the solution can be shown [13] to have the eigenform of:

C−1AACABC
−1
BBCBAw = λw, (3)

where the correlation appears to be the square root of eigen-
value:

ρ(A,B) =
√
λ. (4)

To attain maximal correlation, the eigenvector corresponding
to the largest eigenvalue in eq. (3) should be selected. Sim-
ilarly, by restricting the new vectors to be uncorrelated with

the previous ones, it can be shown that the projection matrices
for each set are spanned by the k eigenvectors corresponding
to the k largest eigenvalues.

There are also nonlinear extensions of CCA. Kernel CCA
(KCCA), uses the kernel trick in the same vein with SVM [13]
while Deep CCA (DCCA) is an efficient deep neural network
alternative to KCCA [7].

3. CCA BASED FEATURE SELECTION

We present three different ways of CCA based feature selec-
tion. All three methods are valid for continuous and categori-
cal targets, and can be used for feature extraction in the same
way.

3.1. Samples versus Labels CCA

When CCA is used to find the canonical correlation between
samples with high dimensionality and corresponding labels,
the resulting projection vector for features can be directly
used for feature selection. One can simply discard zero
weight (or below a threshold) features and rank the absolute
value of the remaining projection weights. This setting of
CCA is called Samples versus Labels CCA (SLCCA) [14]
and as a feature selection method it is successfully used for
fMRI analysis [11]. To the best of our knowledge however,
this method is not used in acoustic feature selection. We call
this method the SLCCA-Filter.

3.2. Minimum Redundancy Maximum Relevance CCA

We propose the minimum Redundancy Maximum Relevance
CCA (mRMR-CCA) first, which is related to CFS [10] and
mRMR [9]. The difference from these methods is that instead
of computing feature-wise internal correlations and averaging
results, we directly compute canonical correlation of a candi-
date feature against the already selected subset:

max
xj∈X−Sk−1

[ρCCA(xj , t)− ρCCA(xj , Sk−1)] , (5)

where Sk−1 denotes the already selected subset with k − 1
features, xj is a candidate feature and t is the target variable
(label). In eq. (5) the subtraction operator can be replaced
with division, to account for the relative merit with respect to
internal correlations. In our experiments, we used subtraction
based measures.

3.3. Maximum Collective Relevance CCA

Our second proposed method, Maximum Collective Rele-
vance CCA (MCR-CCA) focuses on maximizing the joint
correlation of the selected subset and the candidate feature
against the target. The redundancy in the ranked subset can
further be reduced using feature extraction. The formulation
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is similar to wrapper based forward selection, but we do not
employ a classifier:

max
xj∈X−Sk−1

[ρCCA(Sk−1 ∪ xj , t)] . (6)

4. RELATION TO PREVIOUS WORK

One of the novel methods we introduce, namely mRMR-
CCA, is inspired from CFS [10] and mRMR [9]. CFS mea-
sures the heuristic merit between a feature set S and target t
via [10]:

rS,t =
krzi√

k + k(k − 1)rii
, (7)

where k is number of features, rzi denote average correla-
tion between the features in the subset and the target variable,
and the term rii denote average inter-correlation between fea-
tures. In short, eq. (7) punishes internal correlation and fa-
vors higher average feature-target correlations. Hall (1999)
proposes several measures of dependence to compute feature-
feature and feature-target merits of a subset. When the tar-
get variable is continuous, Pearson’s correlation coefficient is
used. In our approach we simplify eq. (7), keeping the notion
of high relevance low redundancy. Similarly, mRMR drives
the feature selection in a set X , at step k maximizing the dif-
ference or ratio between relevance and redundancy terms [9]:

max
xj∈X−Sk−1

MI(xj , t)−
1

k − 1

∑
xi∈Sk−1

MI(xj , xi)

 ,
(8)

where MI(x, y) is mutual information between random vari-
ables x and y. In KCCAmRMR, Sakar et al. [15] improved
mRMR feature selection using correlated functions of vari-
ables (i. e. projections attained by CCA) weighted with cor-
responding correlations with the target variable. In our work,
we completely replace MI with CCA. Moreover, CCA not
only eliminates discretization for continuous targets, but also
is capable of handling multiple targets in the feature reduction
process.

We next introduce the data for experimental validation.

5. AVEC 2013 DATABASE

5.1. Depression Corpus

AVEC 2013[4] uses a subset of the audio-visual depressive
language corpus (AVDLC), which includes 340 video clips
of subjects performing a Human-Computer Interaction task
while being recorded by a webcam and a microphone. In
AVDLC, the total number of subjects is 292 and only one
person appears per clip, i. e. some subjects feature in more
than one clip. The speakers were recorded between one and
four times, with a period of two weeks between the measure-
ments. Table 1 summarizes basic statistics of the corpus [4].

Table 1. Statistics of the AVDLC [4]
Property Statistic

# of Clips 340
# of Subjects 292

Range of Clip Length 20-50 min.
Mean Clip Length 25 min.

Total Duration 240 hours
Age Range of Subjects 18-63 years

Mean±Std of Age of Subjects 31.5±12.3 years
BDI-II Score Range 0-45

Recorded behavior includes speaking out loud while solv-
ing a task, counting from 1 to 10, read speech (excerpts of
a novel and a fable), singing in German, telling a story from
the subjects’ own past (the best event and a sad event from
childhood). The depression levels were labeled per clip us-
ing Beck Depression Inventory-II (BDI-II) [16], a subjective
self-reported 21 item multiple-choice inventory.

For the AVEC 2013 challenge, the recordings were split
into three partitions: training, development, and test sets of
50 recordings each, respectively.

5.2. Baseline Acoustic Feature Sets

The AVEC 2013 audio baseline feature set, which is an ex-
tended set of features with respect to AVEC 2012 [2], consists
of 2 268 features. Due to space limitations, the reader is re-
ferred to the challenge paper [4] for the details of the LLDs
and functionals.

The audio features are computed on short episodes of au-
dio data. Since the Challenge dataset contains long contin-
uous recordings, three segmentations have been performed:
1) voice activity detection (VAD) based 2) overlapping short
fixed length segments (3 seconds) and, 3) overlapping long
fixed length segments (20 seconds). For VAD segmentation,
pauses of more than 200 ms are used to split speech activ-
ity segments. In short and long segmentation, the windows
are shifted forward at a rate of one second. Functionals are
then computed over each segment. Together with the per in-
stance computation of functionals, the baseline feature set is
provided in 4 versions to grasp relatively short-long acoustic
characteristics of speech intended for depression and affect
tasks. See Table 2 for the distribution of instances.

Table 2. Instance Distribution per Partition and Segmentation
# Train Dev Test

Per Clip 50 50 50
VAD Seg 6015 5763 5946
Short Seg 23863 23513 23824
Long Seg 23439 23087 23399
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6. EXPERIMENTAL WORK

In our experiments we used the AVEC 2013 [4] challenge
baseline feature set focusing on the depression sub-challenge.
We used the WEKA [17] implementation of CFS with “Best
First” search and Bagging-REPTree (BRep) from the same
package as classifier. The hyper-parameters of both meth-
ods are left as default. As detailed before, we followed the
training, development and testing protocol of the challenge.
Therefore, we optimized the investigated feature selection
methods on the development set and finally used the optimal
setting for predicting labels on the sequestered test set.

6.1. Results and Discussion

For developing candidate hypotheses and selecting the best
features for challenge test set, we utilized the training and de-
velopment set. Baseline acoustic features using Support Vec-
tor Machine Regressor (SVR) with linear kernel gives Mean
Absolute Error (MAE) of 8.66 and Root Mean Square Error
(RMSE) of 10.75 for the development set [4].

We first used SVR (Linear Kernel, C=0.0001) and Bag-
ging REPTree (V = 0.001) as classifiers on VAD segmented
features. In all our experiments we tested five feature settings:
1) All Baseline Features (denoted All) together with selected
sets using 2) SLCCA-Filter 3) mRMR-CCA 4) MCR-CCA
and as independent benchmark 5) Correlation Based Feature
Selection (CFS). Over five feature settings, we obtained better
results with BRep (mean RMSE 11.15) against SVR (mean
RMSE 12.24) with an order-of-magnitude less training time.
So, we choose BRep as regressor.

We next experimented with five feature settings in all four
segmentations. Considering the computational complexity of
CCA (whose bottleneck is inversion of covariance matrix of
samples, which scales cubicly with the number of selected
features) we used the first 100 ranked features for MCR-CCA
and mRMR-CCA. Once the threshold is determined, the num-
ber of features for SLCCA-Filter is automatically determined
after a single application of CCA between the whole fea-
ture set versus the continuous depression labels. To probe
the SLCCA-filter performance, we tested a set of thresholds
10−2, 10−3, 10−4, 10−5, 10−6. The best development set re-
sults were obtained with a threshold of 10−5. A summary of
experiments is given in Table 3. In accordance with the re-
sults reported in [4], we observe that the long segmentation
provides the best results for the depression task. Moreover,
the simplest CCA based selection method, namely SLCCA-
Filter, yields the best RMSE results in all segmentations. The
number of selected features with SLCCA-Filter ranges from
387 (long seg) to 467 (short seg) with segmented sets. How-
ever, due to increased nullity of covariance (with 50 samples
as opposed to 2 268 dimensions) in per instance set, the num-
ber of features contributing to covariate is found to be 49.

Focusing on long segmentation, we tested the first 400

Table 3. Development Set Performances per Feature Setting
and Segmentation

VAD SEG SHORT SEG
MAE RMSE MAE RMSE

All 9.01 11.25 8.37 10.42
SLCCA-Filter 9.13 11.15 7.99 10.36

MCR-CCA 9.31 11.54 8.73 10.86
mRMR-CCA 9.47 11.48 8.93 10.83

CFS 9.31 11.42 8.55 10.57

LONG SEG PER CLIP
MAE RMSE MAE RMSE

All 7.93 10.24 9.75 11.89
SLCCA-Filter 7.84 10.22 8.92 11.00

MCR-CCA 8.27 10.72 9.81 11.55
mRMR-CCA 8.80 10.98 9.11 11.01

CFS 8.24 10.22 9.30 11.46

ranked features for MCR-CCA and mRMR-CCA. The results
were not found to improve considerably over the first 100 fea-
tures: 8.13 MAE, 10.3 RMSE for MCR-CCA and 8.40 MAE
and 10.97 RMSE for mRMR-CCA. Moreover, union and in-
tersection of the selected feature sets pairwise did not improve
over the performance of the SLCCA-Filter, individually.

We therefore used SLCCA-Filter method with long seg-
mentation to train a model for challenge test set. We ob-
tained 7.83 MAE and 9.78 RMSE, improving challenge base-
line test set RMSE performance (14.12) 30%, relative. These
results also compare favorably to the best test set result of
Meng et al. [18] (10.96 RMSE using audio-visual fusion) and
Cummins et al. [19] (10.17 RMSE by using only audio infor-
mation). Interestingly, unlike these recent studies that report
better development set results using more complex systems,
the development set performance of our computationally ef-
ficient SLCCA-Filter system is highly indicative of test set
performance. Thus, SLCCA-Filter is thought to achieve the
intended goal of avoiding over-fitting.

7. CONCLUSIONS AND FUTURE WORK

In this study, we presented two novel CCA based feature
selection methods to reduce the massive dimensionality ob-
served with the state-of-the-art acoustic feature sets in affec-
tive computing. We experimented on the recently published
AVEC 2013 set to predict depression level. Results revealed
that the computationally simple CCA based feature selection
method worked the best on the development set. Using only
17% of original features, the SLCCA-Filter system yielded
30% decrease of RMSE over the baseline on challenge test
set, advancing the state-of-the-art on this data. Extending the
work with Kernel CCA, and testing the introduced methods
on other emotion datasets comprise our nearest future work.
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