
Lehrstuhl für Entwurfsautomatisierung

der Technischen Universität München

Performance Estimation in HW/SW Co-simulation

Kun Lu

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Eckehard Steinbach

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Ulf Schlichtmann

2. Univ.-Prof. Dr.-Ing. Oliver Bringmann,

Eberhard-Karls-Universität Tübingen

Die Dissertation wurde am 20. 01. 2015 bei der Technischen Universität München

eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik

am 09.11.2015 angenommen.

Abstract

Facing the high and growing design complexity in nowadays electronic systems, the need

of more efficient modeling and simulation techniques arises in the domain of virtual pro-

totypes. In the frame of this work, two major aspects of the non-functional performance

estimation in fast hardware and software co-simulation are considered. In simulating the

software, a method for annotating the source code with performance modeling codes is

proposed. This method features rich control-flow analysis of both the source code and

the cross-compiled target binary code. Based on this, it is able to annotate the source

code reliably even for an optimized target binary code. Furthermore, by considering

the memory allocation principles, memory access addresses in the target binary code

are reconstructed in the annotated source code. These two techniques combined lead to

appropriated performance estimation in the so-called host-compiled software simulation.

The second aspect concerns the simulation of transaction-level models. As a modeling

technique, the transfer of a large data block can be modeled by a vary abstract trans-

action. This work proposes a means to extract timing profiles of the highly abstract

transactions so that they can be timed appropriately. Besides that, temporal decou-

pling can be used for fast simulation of transaction-level models. In order to correctly

estimate the durations of the concurrent processes which are simulated in a tempo-

rally decoupled way, this work proposes analytical formulas to model the delays due to

access conflicts at shared resources. Together with an efficient scheduling algorithm,

this analytical method can dynamically predict and adjust the durations of concurrent

processes.

Contents

Abstract iii

1 Introduction and Background 1

1.1 Motivation . 1

1.1.1 Virtual Prototypes . 2

1.1.2 Benefits of Using HW/SW Co-Simulation 2

1.2 SW Simulation . 3

1.2.1 ISS-Based Software Simulation . 4

1.2.2 Host-Compiled SW Simulation . 5

1.2.3 Annotated Host-Compiled SW Simulation 6

1.2.4 Comparison of the Above Approaches 8

1.3 HW Modeling and Simulation . 9

1.3.1 SystemC . 9

1.3.2 Transaction-Level Modeling (TLM) 10

1.3.3 TLM+ . 11

1.3.4 Temporal Decoupling . 12

1.3.5 Transaction Level: Rethink the Nomenclature 13

1.4 Recent Development in HW/SW Co-Simulation 14

1.4.1 Academic Research and Tools . 14

1.4.2 Commercial Tools . 16

2 Challenges and Contributions 19

2.1 The Scope of This Work . 19

2.2 Challenge in Annotating the Source Code 20

2.3 Timing Estimation for TLM+ Transactions 23

2.4 Timing Estimation in Temporally Decoupled TLMs 24

2.5 State of the Art . 25

2.6 Contributions . 32

2.6.1 A Methodology for Annotating the Source Code 33

2.6.2 Construct Timing Profiles for TLM+ Transactions 33

2.6.3 Analytical Timing Estimation for Temporally Decoupled TLMs . . 34

2.6.4 Summary of Contributions . 34

2.6.5 Previous Publications . 34

3 Source Code Annotation for Host-Compiled SW Simulation 37

3.1 Structural Control Flow Analysis . 37

3.1.1 Dominance Analysis . 38

v

Contents vi

3.1.2 Post-Dominance Analysis . 39

3.1.3 Loop Analysis . 39

3.1.4 Control Dependency Analysis . 40

3.2 Structural Properties . 41

3.2.1 Loop Membership . 41

3.2.2 Intra-Loop Control Dependency 42

3.2.3 Immediate Branch Dominator . 43

3.3 Basic Block Mapping Procedure . 44

3.3.1 Line Reference From Debug Information 44

3.3.2 Matching Loops . 44

3.3.3 Translate the Properties of Binary Basic Blocks 45

3.3.4 Selection Using Matching Rules . 45

3.3.5 The Mapping Procedure . 46

3.3.6 Comparison with Other Mapping Methods 48

3.3.7 Consider Other Specific Compiler Optimizations 49

3.3.7.1 Handle Optimized Loops 49

3.3.7.2 Handle Function Inlining 51

3.3.7.3 Consider Compound Branches 52

3.4 Reconstruction of Data Memory Accesses 52

3.4.1 Addresses of the Variables in the Stack 53

3.4.2 Addresses of Static and Global Variables 53

3.4.3 Addresses of the Variables in the Heap 54

3.4.4 Handling Pointers . 55

3.5 Experimental Results . 56

3.5.1 The Tool Chain and the Generated Files 57

3.5.1.1 Input Files . 57

3.5.1.2 Performed Analysis . 57

3.5.1.3 Automatically Generated Reports 59

3.5.2 Benchmark Simulation . 75

3.5.2.1 Evaluation of the Method for Basic Block Mapping . . . 75

3.5.2.2 Reconstructed Memory Accesses 77

3.5.3 Case Study: An Autonomous Two-Wheeled Robot 78

3.5.3.1 Simulation Results . 78

4 Analytical Timing Estimation for Faster TLMs 83

4.1 Contributions and Advantages . 83

4.2 Overview of the Timing Estimation Problem 84

4.2.1 Terms and Symbols . 84

4.2.2 Problem Description . 86

4.3 Calculation of Resource Utilization . 88

4.3.1 Simulation Using Bus-Word Transactions 88

4.3.2 Simulation Using TLM+ Transactions 89

4.3.2.1 Extracting Timing Profiles of TLM+ Transactions 90

4.3.2.2 Estimated Duration of TLM+ Transactions 93

4.3.2.3 Compute the Resource Utilization 93

4.3.3 A Versatile Tracing and Profiling Tool 94

4.4 Calculation of Resource Availability . 94

Contents vii

4.4.1 Arbitration Policy with Preemptive Fixed Priorities 94

4.4.2 Arbitration Policy with FIFO Arbitration Scheme 95

4.4.3 Generalization of the Model . 95

4.4.3.1 Consideration of Register Polling 96

4.4.4 Consideration of Bus Protocols . 96

4.5 The Delay Formula . 97

4.6 Incorporate Analytical Timing Estimation in Simulation 98

4.6.1 The Scheduling Algorithm . 99

4.6.2 Modeling Support - Integrating the Resource Model 103

4.6.3 Comparison with TLM2.0 Quantum Mechanism: 104

4.7 Experimental Results . 105

4.7.1 RTL Simulation as a Proof of Concept 105

4.7.2 Hypothetical Scenarios . 105

4.7.3 Applied To HW/SW Co-Simulation 106

4.7.3.1 Description of the SW Simulation 106

4.7.3.2 Simulation of Two Processors 108

4.7.3.3 Simulation with Three Processors 110

5 Conclusion 113

A Algorithms in the CFG Analysis 117

B Details of the Trace and Profile Tool 119

B.1 The Tracing Mechanism . 119

B.2 Tracing the SW Execution . 119

B.3 Tracing the HW Activities . 121

B.4 Application of the Tracing Tool . 122

B.4.1 Results of Traced Software Execution 122

B.4.2 Results of Traced Hardware Accesses 124

List of Figures 124

List of Tables 128

Symbols 129

Index 130

Bibliography 131

Remember the mistakes

ix

Chapter 1

Introduction and Background

The design of electronic systems has seen ever increasing complexity for decades. With
the advent of multi-processor and heterogeneous architectures, the trajectory of such
growing complexity will continue for many more years to come. Traditionally, the soft-
ware development task is conducted on a hardware prototype, and the techniques such
as in-circuit emulation or debugging can be used. However, to handle the growing com-
plexity, a paradigm shift has been considered necessary since the 90’s of last century
[1–4]. The new paradigm promotes simulation model based development, giving rise to
the HW/SW co-simulation.

The following sections in this chapter are organized as follows. Firstly, Section 1.1 intro-
duces the HW/SW co-simulation and its contribution to the design and development of
nowadays embedded systems. Secondly, Section 1.2 focuses on the aspects related to SW
simulation in a co-simulation environment. It compares popular techniques of simulat-
ing the SW and puts forth the challenges considered in this work. Thirdly, Section 2.5.2
focuses on the aspects related to HW modeling, especially the inter-module communi-
cation and timing estimation. It discusses the popular hardware description language
SystemC and the technique of transaction-level modeling. Finally, the academic and
commercial progress in the domain of HW/SW co-simulation is briefly surveyed.

1.1 Motivation

According to [1], hardware and software co-simulation

“refers to verifying that hardware and software function correctly together.”

As the authors further put:

“With hardware-software co-design and embedded processors within large
single ICs, it is more necessary to verify correct functionality before the
hardware is built.”

With its popularization, the usage of HW/SW co-simulation is no longer limited to
functional verification. As shall be seen, it can bolster a rich set of design tasks, in-
cluding performance analysis, design-space exploration, etc. In the context of this work,

1

Contents 2

HW development

SW development System
integrationSystem

specification
System
partition

Performance analysis
Design verification

Debugging

System
specification

System
partition

Performance analysis
Design verification

Debugging

SW development

HW development
System

integration

Shorter development phase

Figure 1.1: Co-simulation can shorten the design flow.

HW/SW co-simulation refers to the adoption of simulation platforms in aiding any de-
sign tasks of electronic systems. In the following, the benefits of using co-simulation will
be discussed. Afterwards, the co-simulation tools and environments from academia and
industry will be briefly outlined respectively.

1.1.1 Virtual Prototypes

HW/SW co-simulation often requires the availability of virtual prototypes. A virtual
prototype refers to a simulation model that is used as the target system under develop-
ment. It is different from an emulative model which prototypes the target system on a
hardware platform such as an FPGA board. The terminology varies in literature. For
example, CoFluent Studio [5] further distinguishes the system modeling by the abstrac-
tion level, using terms such as virtual prototypes, virtual platforms or virtual systems.
In the context of this work, the term virtual prototype is used in a general sense without
such distinction.

1.1.2 Benefits of Using HW/SW Co-Simulation

Compared to emulation, simulation-based approaches are endowed with a variety of
advantages to the designers. They offer better flexibility, more cost-efficiency, higher
controllability, and better system visibility. Furthermore, they are also easier and faster
to develop. The multifaceted benefits of using co-simulation are broadly categorized in
the following.

• It shortens the development phase:

Firstly, the hardware and software development can be carried out on a simulation
platform which is available in the early development phase. Many tasks therefore

Contents 3

can be started earlier, such as architecture exploration, performance analysis, sys-
tem validation and HW/SW co-verification. Secondly, using virtual prototypes,
the HW and SW design flow can be parallelized, as shown in Figure 1.1. SW
designers do not need to wait for a working HW platform to test the SW programs
or port them to the HW. Instead, they could conduct a large portion of the de-
velopment task using virtual prototypes in the simulation platform. As seen in
industrial practice, parallelizing the HW and SW design flows indeed shortens the
development cycle to a large degree.

• It contributes to a high design quality:

A few important reasons are listed here, as to why co-simulation can contribute
to a higher design quality.

1. Due to increased visibility, debugging the HW and SW becomes easier and
can reach a fairly fine-grained level. Mechanisms can be implemented to trace
detailed system status such as the register values, events of interests, etc.

2. It facilitates the cooperation between the HW and SW development teams.
More iterations between the HW and SW design groups can be achieved,
since the effort of doing so in a co-simulation environment is much lower than
that on a real product or on an emulative prototype. It also makes the full
system integration easier to the HW and SW design groups. Besides, the
virtual prototype can help the SW designers to better understand the HW
system and develop the HW/SW interface. This eventually may reduce the
design defects within a constrained development phase.

3. Exploration of a larger design space is made feasible, which contributes to
a potentially more optimal design. This is because modeling and simulat-
ing a new system candidate can be fast. For example, to evaluate a new
HW/SW partition, the designers may be able to re-run the simulation by
only modifying a configuration file.

• It reduces the overall development cost:

Using simulation, the cost of modeling is very low. There is no need to manu-
facture the system. Modeling new HW and SW components may be cheap by
re-using legacy codes. Verification and performance analysis can also be carried
out. Therefore evaluating different design options is cheap. The cost of trial-and-
error can also be greatly reduced. Further, another feature of simulation is its
high flexibility. For example, it is easy to switch to new IP components, e.g. by
simulating and verifying certain interface functions. This makes it easier to use
new IPs and technologies which are changing fast.

1.2 SW Simulation

In this work, two main variants of software simulation that can be used in a co-simulation
environment are considered. The first one is the instruction set simulation (ISS) based
software simulation. The second is host-compiled software simulation. If the software
is annotated with performance information, the latter is then called annotated host-
compiled software simulation. This section introduces the basic principles of these soft-
ware simulation approaches.

Contents 4

...
a=x1*y1;

...

...
mul t2, t5
lh t4,2
(v0)
...

fetch()
decode()
execute()

mem()
wb()

...
push
cmp
call
...

ISS Modeltarget binarysource code simulation
host

host binary

...
push
cmp
call
...

simulation
host

host binary

a)

...
a=x1*y1;

...

source code

...
push
cmp
call
...

simulation
host

host binary

...
a=x1*y1;

...

source code

...
a=x1*y1;
cyc+=4;

...

annotated source code

b)

c)

very slow

Figure 1.2: Basic steps in different SW simulation approaches. (a) ISS-based SW sim-
ulation; (b) Host-compiled SW simulation; (c) Host-compiled SW simulation procedure

with annotated source code.

1.2.1 ISS-Based Software Simulation

An instruction set simulator (ISS) is a simulation model of the target processor. It
models the internal processing steps of a processor in interpreting and executing one
instruction, as can be seen in Figure 1.2(a). Therefore, an ISS interprets the target
binary code as the target processor would do. Being a detailed model, cycle-accurate
timing can be provided by an ISS. Before the actual hardware is available, ISS-based
software simulation can be used to provide relatively accurate performance estimation.
Even after the target hardware platform is ready, it can still be used as an alternative,
e.g. for debugging or exploring different configurations.

Several basic terms are defined in the following before a more detailed description.

The target processor is the processor that will be used in the HW system of the final
product. Common examples of a target processor include the MIPS processor [6], the
ARM processor [7], the OpenRISC processor [8], etc.

The simulation host or host machine is the machine on which the simulation is
carried out. It may use a different processor and hence the instruction set architecture
from the target processor. For example, the simulation host can be an Intel machine
with an x86 64 processor.

Contents 5

Target binary or target binary code refers to the binary code that can be executed by
the target processor.

Cross-compilation is the generation of the target binary using a cross-compiler in-
stalled on a simulation host. This compiler usually is different from the compiler used
by the simulation host.

As is depicted in Figure 1.2(a), the following steps are performed in ISS-based SW
simulation.

• Step 1: The source code firstly needs to be cross-compiled into the target binary.
This step therefore requires the availability of the cross-compiler.

• Step 2: The ISS is provided with the target binary image.

• Step 3: The whole system model consisting of the ISS and other HW modules is
compiled into a host executable.

• Step 4: Finally the simulation is performed by running the host executable. In
the simulation, the ISS interprets each binary instruction of the target binary. It
can model both the pipeline stages and corresponding memory accesses as would
be performed by the target processor.

1.2.1.1 Disadvantages of ISS-Based SW Simulation

Besides the high modeling effort, the major disadvantage of traditional ISS-based SW
simulation is that the simulation speed is relatively slow, which can make it very expen-
sive to use in some cases such as the simulation of long software scenarios. This problem
also limits the application of ISS-based SW simulation in design tasks such as design
space exploration or real-time simulation, where high simulation speed is required.

The simulation cost of ISS-based simulation can be roughly assessed by considering
the required host machine instructions to simulate one line of the source code. Several
target binary instructions can be generated from cross-compiling one source code line.
Simulating each of these instruction requires the ISS model to perform a chain of tasks
corresponding to the pipeline stages of the target processor. This translates to up to
several thousands of host machine instructions in simulating one source code line. As a
result of this high cost, usual ISS models can simulate a few millions of target instructions
on a host machine with a CPU clocked at GHz. Although there exist approaches toward
faster ISS models [9–12], another line of research based on host compilation has received
increasing popularity.

1.2.2 Host-Compiled SW Simulation

The basic steps in host-compiled SW simulation are shown in Figure 1.2(b). The source
code is directly compiled to a host executable for the simulation host. A model of the
target processor such as an ISS is completely by-passed. Such host-compiled simulation
is very fast and yet able to verify the functional correctness of the simulated software.
However, it can not provide non-functional performance estimation such as the timing
information of the software. Specifically, the missing information includes the following:

Contents 6

• For the computation aspect of the software, the timing related to the execution
time of the simulated SW becomes unknown.

• For the communication aspect of the software, the memory accesses caused by the
store and load instructions become invisible, because the accessed addresses can
not be statically obtained from the target binary code.

In the very early design phase, host-compiled simulation without performance estimation
could be used for fast functional verification. As the design proceeds, performance
estimation may become mandatory for many design tasks, including the design space
exploration, timing verification, etc. To cover these design tasks, an improved version
of host-compiled simulation has been proposed, which annotates performance modeling
codes in the original software program. This new approach is discussed in the next
section.

1.2.3 Annotated Host-Compiled SW Simulation

The basic principle of annotating the source code for host-compiled SW simulation is
to augment the source code with performance modeling codes. It aims at providing
performance analysis with sufficient accuracy while keeping high simulation speed. The
annotated codes usually include execution cycles and memory accesses, corresponding
to the computation and communication aspects of the target binary code, respectively.
After annotation, the source code can be used as a performance model of the target
binary. Therefore, through executing the annotated source code, performance estimation
and analysis can be provided in host-compiled simulation as well.

1.2.3.1 Basic Block

A basic block is the largest piece of code that has a single entry and a single exit point,
between which there exits neither a branch nor a target of a branch. Once a basic
block is entered, the contained code will definitely be executed until its exit point. For
annotated host-compiled simulation, most existing approaches perform the annotation
at the granularity of the basic blocks.

1.2.3.2 Line Reference

Using the utility from the cross-compiler tool chain, debugging information such as the
line reference can be obtained. The line reference file lists the reference line of the source
code from which an instruction in the target binary is compiled. An excerpt of a sample
line reference file is shown in the following:

CU: App.c:

File name Line number Starting address

App.c 125 0x104

App.c 124 0x108

App.c 125 0x118

App.c 119 0x12c

Contents 7

*.c

Source code

*.o

Target binary

mapping information timing information

basic block mapping static performance analysis

Source code

annotation

*.c

annotated source code

1.

2.3.

construct the
CFG

4.

Figure 1.3: Basic steps in annotating the source code.

App.c 116 0x138

...

For example, from this line reference file, it can be known that the instructions within
[0x108, 0x118), i.e. 0x108, 0x10c, 0x110 and 0x114, are compiled from line 124 in
the source code.

1.2.3.3 The Annotation Procedure

The basic steps in annotating the source code are shown in Figure 1.3. These steps are
described in the following.

1. The control-flow graphs are constructed for the source code and the target binary.

2. For each basic block in the target binary, performance information such as the
execution cycles can be extracted through static analysis.

3. With the line reference, the annotation process can reason about the mapping
from the basic blocks in the target binary to those in the source code.

4. After the mapping is constructed, the statically estimated performance modeling
code of a target binary basic block is annotated into its counterpart basic block in
the source code.

Contents 8

Afterwards, the annotated source code can be directly compiled and executed on the
simulation host. In the simulation, performance estimation is achieved by executing the
annotated codes for performance modeling.

1.2.3.4 Annotated Codes for Performance Modeling

The statically extracted codes for performance modeling cover two main aspects regard-
ing the execution of a software. One is the computation aspect and the other is the
communication aspect.

1. The computation aspect is represented by the estimated execution time or cycles of
a piece of software code. For example, if the execution of a basic block is estimated
to take be 8 cycles, then

cyc+=8

can be annotated in the counterpart basic block in the source code. The variable
cyc is initialized to zero.

2. The communication aspect is represented by the annotated memory accesses. For
example, assume the address of the accessed instruction in a target binary basic
block is 0x2100, then

iCacheRead(0x2100)

can be annotated in the counterpart basic block in the source code1.

Here, special attention needs to be given to the fact that the cache simulation
is non-functional. This means that, for a given address, the cache model only
checks whether the access causes a cache hit or miss, but does not cache any
functional data. Upon a cache miss, a transaction can be initiated to access the
memory over bus. This transaction is used to simulate the on-chip communication
related to memory accesses, thus modeling the communication aspect of the target
binary code. But, no functional data are actually transferred by this transaction.

Similar annotation holds for simulating data cache. However, the addresses of
the data memory accesses can not be statically extracted. This problem will be
detailed in Section 2.2.

1.2.4 Comparison of the Above Approaches

The main pros and cons of the previously discussed software simulation approaches
can be briefly summarized in Figure 1.4. As is shown, ISS-based SW simulation offers

1 If the size of a cache-line is fixed, then the sequentially executed instructions that fit in the same
cache-line require the instruction cache simulation for only once. For example, assume the cache-line size
is 16bytes, then for a target binary basic block with 6 instructions starting from the instruction address
0x2100, the annotation iCacheRead(0x2100, 6) suffices to simulate the instruction cache behaviour
since the instructions fit in the same cache-line corresponding to the address 0x2100. This reduces the
overhead of instruction cache simulation.

Contents 9

Timing Accuracy

Speed

ISS-based

HCS
annotated HCS

Goal

Figure 1.4: Compare different methods of SW simulation

the highest timing accuracy but relatively low simulation speed. Host-compiled SW
simulation (HCS) is very fast but can not provide performance analysis. Therefore, the
goal is to obtain an annotated source code that can be used as an accurate performance
model of the target binary. A good annotation should preserve the correct execution
order of the annotated performance modeling codes. This is hard to achieve due to
compiler optimization. For optimized target binary, the line references become neither
sufficient nor reliable. The concrete challenges are detailed in Section 2.2.

1.3 HW Modeling and Simulation

Recent hardware system modeling has witnessed the trend of moving to electronic sys-
tem level (ESL), in the need of better handling the growing design complexity. Joint
force from industry and academia has promoted the design shift to ESL. As a result
of this effort, SystemC and transaction level modeling (TLM) have been developed and
standardized. Both of them are now widely accepted. In the following, the principles
of SystemC and TLM are briefly introduced. Afterwards, the often mentioned term
abstraction level is discussed to clarify conceptual ambiguity.

1.3.1 SystemC

SystemC was defined by the Open SystemC Initiative (OSCI) and standardized by IEEE
in 2005 [13]. It is a HW description language that is developed upon C++. Specifically,
as its name suggests, SystemC is suitable in design tasks such as system-level modeling,
system-wide analysis, component-based modeling, etc. The core ingredients and features
of SystemC are summarized in the following.

• Modular design: With a few macros, it is very easy to describe and instantiate
HW modules in SystemC. The granularity of a module can vary, e.g. ranging from
an adder to a processor. A module encapsulates its internal computation and
reduces the complexity of modeling a whole system to modeling its components.

Contents 10

• Inter-module communication: In its early version, the inter-module connection
is modeled by ports, interfaces and signals. Now, with TLM 2.0, the connection is
often modeled by sockets. By connecting the modules in a top-down manner, it is
easy to model the system in a hierarchical manner.

• Modeling of computation: SystemC abstracts the modeling of the computation
in the HW modules into threads and methods. They are referred to as processes
in general unless distinction is necessary. This simplifies the system modeling task
when lower level details are not relevant. For example, the computation in an en-
cryption module can be modeled by a process containing the encryption algorithm
written in C++, without modeling the underlying adders and multipliers.

• Notion of time: Modeling of time in SystemC is straight-forward. There are two
main types of wait statements for this purpose.

1. Wait on a time variable t, such as in wait(t). Supported time units include
SC FS, SC PS, SC NS, SC MS, and SC SEC.

2. Wait on an event e, such as in wait(e). The execution of the process that
calls this wait statement will resume when the event occurs. This time can
be set by notifying the event as in e.notify(t), e.g. by some other process. It
is worthy of pointing out that it is possible to cancel the notified time of an
event and re-notify it to a new time.

A process calling wait() without argument will stall forever and will resume only
when a default event occurs that this process is sensitive to.

• Process scheduling: SystemC uses a central scheduler to schedule concurrent
processes. Each time a wait statement is called, the scheduling algorithm will be
performed. This scheduler inspects the queues of stalled processes and selects the
next process that is ready to run.

• Timing synchronization cost: After a wait statement is issued, a context switch
will be performed between the current process and the SystemC scheduler. After
checking the process queues and selecting the next runnable process, another con-
text switch will be performed from the scheduler to the next process to resume.
Such context switches are computationally very expensive, therefore frequent
timing synchronization can slow down the simulation to a great degree.

1.3.2 Transaction-Level Modeling (TLM)

Transaction-level modeling (TLM) has been introduced to simplify the modeling of inter-
module communication. To support models written in SystemC, TLM 1.0 and TLM 2.0
have been published in 2001 and 2009 respectively. The hardware virtual prototypes
modeled with the TLM technique are referred to as transaction level models (TL models),
or TLMs for short. This abbreviation is also often used in literature, but it ought not
to be confused with the term TLM.

In TLMs, transactions are used to model the data transfer between HW modules, while
the underlying complex signal protocols are abstracted away. One module can be com-
pletely agnostic to the signal interface of another module that it connects to. This not

Contents 11

only simplifies the modeling effort but also greatly improves the simulation speed as com-
pared to RTL models. Therefore TLMs are suitable for fast and early SW development,
system verification and design space exploration.

In essence, TLM is data-flow oriented modeling. Although the granularity of the data-
flow being modeled can be arbitrary, two main categories of transactions have been used
in the literature corresponding to two different abstraction levels.

1. Bus-word transactions: The data transferred by one transaction is a unit of datum
supported by the bus protocol. For example, a bus-word transaction can transfer
a byte, a word, or a burst of words. It can be regarded as a primitive transaction
that transfers a basic data unit. Handshaking signal protocols, that are respected
by the modules in the hardware implementation, are abstracted away.

2. Block transactions: The data transferred by one transaction can be increased in
size. For example, a whole data block or packet can be transferred. According to
the TLM 2.0 standard, a generic payload is used in implementing a transaction.
Within this generic payload, a pointer is passed around that points to a data
block, together with the size of the data to be transferred. One block transaction
abstracts away the software protocols of the corresponding driver functions that
implements the data transfer. Further details regarding such transactions are
explained in the next section.

1.3.3 TLM+

Initially, TLM+ [14] is proposed as a further abstraction from TLM. It regards the inter-
module communication as data-flows and provides support to bypass the underlying
software protocols. In terms of modeling, it introduces the following changes:

1. A transaction can transfer not only a bus-word, but also a large data block. This
data block can have arbitrary data type and size.

2. The corresponding driver function in the SW is simplified in a way that it calls a
single transaction to transfer a large data block. This transaction replaces a long
sequence of bus-word transactions that are invoked in the original driver function
for transferring the data block.

From now on, the term TLM+ transaction [14] is used when referring to a transaction
that transfers a large data block. TLM+ is in fact compatible to the later TLM 2.0
standard, which implements a TLM+ transaction by passing a pointer and the data
size.

In the standard TLM simulation, the transfer of a data block such as a buffer initiates a
long sequence of bus-word transactions. Expensive timing synchronization needs to be
performed before and during each bus-word transaction. Such effort is greatly reduced
in TLM+. One TLM+ transaction abstracts the sequence of bus-word transactions
into one single transaction. The changes in the driver function are exemplified using
write uart() which writes a buffer to the UART module. The snippet in List 1.1 shows
that, for each data word in the buffer, there is one iteration of handshaking protocol
involved in the standard TLM simulation. Executing this driver function will evoke a
long sequence of bus-word transactions to complete the data transfer.

Contents 12

1 i n t w r i t e u a r t (bu f f e r , s i z e) {
2 . . .
3 whi l e (i<s i z e) {
4 g e t u a r t s t a t u s r e g () ;
5 . . .
6 s e t u a r t t x d r e g (b u f f e r [i]) ;
7 . . .
8 w a i t i r q (. . .) ;
9 s e t u a r t i r q r e g (0) ;

10 }
11 }
12

Listing 1.1: Example of a driver function in standard TLM simulation

For comparison, List 1.2 shows the driver function for TLM+ simulation. The complete
while loop in List 1.1 is replaced by a single transaction as shown in line 4.

1 i n t w r i t e u a r t (bu f f e r , s i z e) {
2 g e t u a r t s t a t u s r e g () ;
3 . . .
4 s e t u a r t t x d r e g (bu f f e r , s i z e) ;
5 . . .
6 w a i t i r q (. . .) ;
7 s e t u a r t i r q r e g (0) ;
8 }
9

Listing 1.2: Example of a driver function in TLM+ simulation

1.3.4 Temporal Decoupling

1.3.4.1 Timing Simulation in Standard TLMs

Before the introduction of TLM 2.0, functional simulation and timing simulation are
intermingled with fine granularity. A process calls the wait statements before initiating a
bus-word transaction, so that the inter-module communication is correctly synchronized.
A depiction of such synchronization can be seen in Figure 1.5(a). With such fine-grained
timing synchronization, all bus-word transactions are performed at the correct global
time, therefore the simulation can capture access conflicts at shared HW modules in a
multiprocessor simulation. During a bus-word transaction, more wait statements can be
called when needed. For example, a bus can be cycle-accurate and contain a process that
synchronizes at each clock cycle. This process can arbitrate the on-going transactions
according to the bus protocols. A bus can also be un-clocked, i.e. it does not need
to wait for each clock cycle. The transactions are arbitrated with estimated durations.
This leads to a faster simulation than the cycle-accurate bus model, and timing can still
be sufficiently accurate.

Contents 13

simulated time

processor
bus

mem

local time

processor
bus

mem

simulated time

 quantum 1 quantum 2

advance of the simulated time through context switches
advance of the local time through variable addition

a. Standard SystemC simulation with lock-step timing synchronization

b. Temporal decoupling: timing is synchronized at the granularity of a large quantum
t1

Figure 1.5: Timing synchronization before and after using temporal decoupling.

1.3.4.2 Temporal Decoupling in TLMs

Fine-grained synchronization as in Figure 1.5(a) is computationally expensive due to
the incurred context switches. If the bus-word transactions need to be evoked very
frequently, then the simulation is heavily slowed down due to the timing synchroniza-
tion overhead. This can be the case if the simulated software requires frequent I/O
communication or the cache miss rate is high.

To reduce the simulation overhead, temporal decoupling (TD) is introduced in the TLM
2.0 standard [15]. In fact, this concept has already been explored in earlier works [16, 17].
With this concept, TLM 2.0 proposes the notion of local time and global time. With
temporal decoupling, the local time of a process can be larger than the global time. A
process can be simulated ahead without the need to synchronize, even before it issues a
transaction. In other words, timing synchronization is performed with a much coarser
granularity, e.g. after the functional simulation of a large piece of code or a large
quantum is reached. The basic principle of temporal decoupling is illustrated in 1.5(b).
As can be seen, a local time variable is used to register the local time. If it does not
exceed a pre-defined value of the global quantum, then no call to the wait statement is
issued. In this way, the functional simulation is decoupled with the timing simulation.
Using temporal decoupling, the number of synchronizations per thread is reduced to
one within each global quantum. Setting a larger global quantum may therefore lead to
more speed-up.

1.3.5 Transaction Level: Rethink the Nomenclature

A transaction per se may correspond to different levels of abstraction. Therefore, the
term transaction-level can cause ambiguity when describing models at different abstrac-
tion levels. In fact, since its advent, there have been opposing opinions on the appropri-
ateness of its terminology. Some [18] hold that “TLM does not denote a single level of
abstraction but rather a modeling technique”, therefore it is more appropriate to name

Contents 14

is as transaction-based modeling. Authors in [19] suggest that transactions in essence
are data-flows. They consider their modeling methodology to be data-flow abstracted
or oriented virtual prototyping. Another thought provoking work [20] even challenges
whether TLM is a buzz-word and whether it is useful enough in handling nowadays
design task.

From the perspective of inter-module communication, an abstraction level can corre-
spond to the granularity of data transfer being modeled. If the transferred data corre-
spond to the values of signals, then this abstraction is at the pin level. If the transferred
data correspond to a byte or word that fit the bus protocols, then this abstraction level
can be said to be at the bus-word level. If the transferred data correspond to a large
data block or packet, then the abstraction is at the data block or packet level. In this
work, the term transaction-level modeling is still used, despite its ambiguity. But to
distinguish the different abstraction levels, the data granularity is explicitly mentioned
together with the transaction, such as a bus-word transaction or a block transaction.

1.4 Recent Development in HW/SW Co-Simulation

The last two decades have seen prevalent development and application of the co-simulation
environments, both in academia and in industry. Being an important part in the design
task, a good co-simulation environment should meet certain requirements to effectively
aid the design process. It should cover a wide range of system configurations, in order to
support various processor types and system architectures which may be required by the
emerging heterogeneous systems. It should be able to simulate different applications. It
should also adapt to the demands of the system designers, e.g. switching among differ-
ent abstraction level. It is challenging to develop a general co-simulation environment
that meets all the requirements. This section broadly surveys both the academic and
industrial progress in bringing out new co-simulation environments.

1.4.1 Academic Research and Tools

An early work (Becker,92 [2]) proposes a co-simulation environment to enable concurrent
development of software and hardware which are written in C++ and Verilog respec-
tively. It uses Unix interprocess communication to interact software simulation with
hardware simulation.

Poseidon [3] can synthesize the hardware and software components from a predefined
system description. For timing simulation, clock cycles for the functional models need
to be provided as input to the tool.

Ptolemy [4] is a tool that precedes and shares many similarities with SystemC. It tar-
gets the platform modeling for heterogeneous components, where the concept of modular
component based modeling is raised. Computation in the modules is modeled by finite
state machines. Inter-module communication is modeled by wires and ports as in Sys-
temC.

Pia [16], developed upon Ptolemy, has several features. Firstly, it provides multiple
communication models. Secondly, it proposes an advanced scheduling mechanism. Its
scheduler supports the use of global time and local time. Therefore it is among the

Contents 15

first to propose the concept of temporal decoupling. Besides, it offers conservative and
optimistic scheduling, corresponding to two modes of timing simulation. Thirdly, it
enables the option of modeling the processor at different level of abstraction. This also
includes host compiled simulation, in which the source code is compiled directly for the
host.

The approach in [21] co-simulates HW components in VHDL and SW components in C.
It adopts a so-called multi-view library concept to encapsulate various HW/SW imple-
mentations. This is conceptually similar to raising the abstraction level.

Miami [22] is another co-simulation environment which integrates an event driven hard-
ware simulator with an instruction set simulator.

COSMOS [23, 24] is a co-simulation tool that features hardware and software interface
generation. It supports software programs written in C and hardware models written in
VHDL. Different levels of abstraction can be simulated as well. It also provides modeling
and simulation support for heterogeneous multiprocessor systems.

The approach in [25] combines an instruction set simulator (ISS) with an event-based
system simulator, so that the timing can be measured online instead of estimated off-
line. In addition, it uses the so-called cached timing to improve the simulation speed
of the ISS. This is in effect equivalent to temporally decoupling the simulation of one
system component.

The approach in [26] aims to integrate different IP models using a common high level
communication semantic. It can be used in a platform of a heterogeneous system, where
different IP models may be configured and simulated at different abstraction levels.

Giano [27] is another HW/SW co-simulation framework. It supports the SW execution
in two modes: (1) executing the target binary code using a simulated microprocessor;
and (2) executing VHDL code using a simulated FPGA. The simulated target system
can interact with the external environment in real time. By attaching a HW simulator,
it can simulate a HW system written in Verilog, VHDL, SystemC, and C.

Authors in [28] aim to reduce the communication overhead between simulator and emu-
lators, by avoiding communication in a period if no transactions occur in it. This period
is predicted by inspecting the software and hardware modules. The problem targeted by
this approach is automatically attenuated in system simulation, because the overhead
is only induced when transactions take place. Therefore the prediction is not necessary
any more.

A component-based simulation platform is adopted in [29]. Both the HW and the SW
are abstracted as components. Bridge components are used to ease the interface the
HW/SW components. The co-simulator can be configured by the specifications of the
components.

The simulation in [30] can be configured to provide multi-accuracy power and perfor-
mance modeling. Transaction-level modeling is used for the hardware models. The
authors modify the SystemC kernel and TLM library to enable the switching among
different trade-offs between simulation accuracy and speed.

Contents 16

The approach in [31] annotates the software program with performance modeling codes
before simulating it on the hardware modeled at transaction level. It predicts the syn-
chronization point during the simulation and uses this prediction to reduce the syn-
chronization overhead. This technique is a common practice in host-compiled software
simulation with annotated performance.

The co-simulation framework in [32] is written in SystemC. It supports the integration
of a many-core architecture, with each core modeled by an instruction set simulator.

The approach in [33] also targets many-core simulation up to the scale of a thousand
cores. For such computation-intense simulation, techniques are required to boost the
simulation speed. Adopted techniques by the authors include host-compiled execution,
distributed simulation and course-grained synchronization.

1.4.2 Commercial Tools

Seamless [34] from Mentor Graphics is an early commercial co-simulation tool. It pro-
vides the possibility to switch between ISS simulation and host-compiled simulation.
The HW system can be described at register-transfer level or at transaction level, de-
pending on the design stage. In Seamless, HW/SW communication is mediated by a bus
interface model, which handles the data transfer between the processor and memory or
I/O ports. Timing, in terms of bus cycles, can be modeled by the bus interface model.

ModelSim [35] supports hardware design languages such as Verilog, VHDL, and Sys-
temC. Basic debugging utilities such as signal-level tracing and code coverage mea-
surement are provided. Another integrated feature in ModelSim is the assertion-based
verification, using the IEEE Property Specification Language (PSL) [36].

Carbon [37] allows the plug-in of an accurate CPU model in an RTL environment. It
emphasizes on its software debugging feature that enables the designer to interactively
debug both the software and the hardware such as the processor registers.

Gezel [38–40] provides a co-simulation engine that supports a variety of processors,
including ARM cores, 8051 micro-controllers and picoblaze micro-controllers. Users can
configure multiple cores in the simulation and evaluate the design trade-offs by using
coprocessors.

VMLab [41] is a co-simulation engine mainly for virtual prototyping and simulating
the AVR models. It integrates the simulation of analog signals and provides SPICE-like
hardware description language.

CoCentric System Studio [42] from Synopsys is a development suite for system-level
design. It promotes the use of data-flow models in system modeling. The design focus
of CoCentric is on two aspects. One is to produce algorithmic models that aim to verify
the functional correctness in a very fast way. The other is the architecture modeling at
multiple abstraction levels, from system level down to pin-accurate level.

CoFluent Studio [43] from Intel specializes itself in the very early phase of the design
flow. At such an early phase, system modeling at a very abstract level can be used. For
example, it uses message-level data transfer for communication modeling and ISS-free
SW simulation for computation modeling. A typical application scenario with CoFlu-
ent is the modeling and simulation of use-cases, from which preliminary performance

Contents 17

prediction and design-space exploration could be performed. The performance metrics
that can be simulated by CoFluent include timing, power, system loads, etc. An essen-
tial value proposition of CoFluent is that, through executable specifications and highly
abstract modeling, design decisions can be made in the initial design phase before any
HW and SW development take place, thereby shortening the overall design phase.

Platform Architect [43], previously Coware now Synopsys, features system level mod-
eling and performance analysis. The inter-module communication is implemented using
transaction-level modeling techniques. The simulation is claimed to be cycle-accurate.
Adaptors are provided to interface transaction-level modules and RTL modules. It is
applied in the early architectural optimization of a multi-core system, by using task-level
or trace-driven simulation.

Chapter 2

Challenges and Contributions

In the beginning, this chapter gives an overview of the targeted challenges to tackle in
the domain of co-simulation. This overview can be regarded as the scope of this work
within which the proposed approaches can be applied. Details of each challenge will
be described. Afterwards, related approaches are discussed. Following that, proposed
solutions are summarized as the contributions of this work.

2.1 The Scope of This Work

To understand the challenges that this work aims to tackle, it is helpful to consult Fig-
ure 2.1 which coherently overviews the considered cases in a co-simulation environment,
together with existing techniques that have been applied by previous researchers in each
case to expedite the simulation.

The first case depicts the simulation of the software codes corresponding to high-level
applications. They usually reflect the computation aspect of the software. The com-
putation is mainly performed at the target processor in interpreting the instructions
and initiating memory accesses after cache misses. The technique for faster software
simulation in this case is the host-compiled simulation, which has been introduced in
the previous chapter.

The second case considers the codes at the hardware abstraction layer, with the emphasis
on device drivers. These drivers implement the communication between the CPU and
the I/O devices. In the real implementation, a driver function performs the low level
software handshake protocols that transfer data among the CPU, the memory, and
the registers of the corresponding I/O device. From a modeling perspective, a driver
function can be implemented at a high abstraction level for fast simulation. Therefore,
the technique for a faster simulation in this case is the adoption of the abstract TLM+
transactions for modeling the transfer of data blocks.

The third case relates to the simulation of a multi-processor system. Because synchro-
nization before each bus-word transaction is expensive, thus the technique for a faster
simulation in this case is to temporally decouple the simulation of the software code on
each processor, so that timing synchronization is performed only once after simulating a

19

Contents 20

cpu

interconnect

$I $D mem i/oHigh Level Application

HDL/HAL

cpu

interconnect

$I $D mem i/oHigh Level Application

HDL/HAL

cpu

interconnect

$I $D mem i/oHigh Level Application

HDL/HAL

Inter-module communication

software hardware model

a)

b)

c)

Considered technique: host-compiled software simulation

Considered technique: TLM+

Considered technique: temporal decoupling

Figure 2.1: Overview of the considered cases of system modeling and simulation.
a) Simulation of high level application codes; b) Modeling and simulation of driver
functions at the hardware dependent or hardware abstraction layer; c) Multi-processor
simulation in which temporal decoupling can be used. For these cases, the simulation

speed can be improved by using existing techniques as listed below each figure.

large piece of the software code. This technique can be used, in addition to host-compiled
simulation and TLM+ transactions, to further improve the simulation speed.

Unfortunately, the above techniques applied in each case also induce several problems
that lower the simulation accuracy. Describing these problems will be the subject of the
following sections.

2.2 Challenge in Annotating the Source Code

For performance estimation, host-compiled software simulation requires the source code
to be annotated with performance modeling codes. The basic steps in doing this have
been introduced in Figure 1.2. For a successful annotation, there are two major chal-
lenges:

Contents 21

The first one is to resolve the correct position in the source code, so that the perfor-
mance modeling codes could be annotated in that position. In practice, this translates
to mapping the basic blocks in the target binary to those in the source code. The diffi-
culty arises as a result of compiler optimization, due to which it becomes ambiguous to
determine a correct basic block mapping.

The second one is to determine the data memory access addresses, so that they can also
be annotated to enable the simulation of cache and memory accesses. These addresses
are obfuscated to extract because they can not be statically obtained from the target
binary. Following sections will detail each challenge and point out the concrete problem
to solve.

2.2.1 Timing Annotation and Basic Block Mapping

The aim of the annotation is to use the annotated source code as an accurate performance
model of the target binary. To achieve this, the following criterion should be met:

The annotated performance modeling codes in the host-compiled simulation should be
executed in a similar order as that in the ISS-based simulation of the target binary.

Such an annotation in effect embeds the control flow of the target binary code into the
annotated program, which then becomes a good performance model of the target binary
code. In this way, directly compiling and executing the annotated source code on the
simulation host will accumulate the estimated performance in a proper order. Therefore
the total execution count of each part of the annotated codes will also be correct. As a
result, host-compiled simulation will yield similar performance estimation as compared
to simulating the target binary code with an ISS.

The Mapping Problem

In the ideal case, the control-flow graph of the target binary resembles that of the source
code, leading to a one to one mapping between the basic blocks of these two codes. In this
case the annotation criterion can be largely satisfied, and the resulted annotated source
code can be used as a good performance model of the target binary. However, it is very
difficult to meet the annotation criterion if the target binary has been optimized by the
compiler. Commonly seen optimizations include code motion, branch elimination, and
loop optimization. With compiler optimization, the control-flow graphs of the source
code and the optimized target binary can be very different. It becomes obscure how
to map the basic blocks of the target binary to those of the source code, therefore a
correct annotation position of the performance modeling codes can not be determined
in a straightforward way.

The problem of an altered control-flow in an optimized target binary can be seen in
the ambiguous and erroneous line reference file. An example is shown in Figure 2.2 to
illustrate the problem. According to the line reference, the instructions in the basic
block bb2 of the target binary are compiled from several lines in the source code. These
lines correspond to the basic block sb1, sb2, and sb3. So the question is where should
the performance modeling code of bb2 be annotated in the source code? Similar problem
holds for bb3. As can be seen, bb2 is the entry basic block of the outer loop in the target
binary, therefore the correct counterpart for it should be sb2. But this mapping can not

Contents 22

0xe8 lw t0,120(sp)
.	 .	 .
0x134 move a2,t1 86
0x138 lw t1,60(sp) 102
0x13c li t3,16 86
0x140 li t0,-‐2 88
.	 .	 .
0x154 addiu v1,t1,13 102

bb2
83
...
102
86
88
86
...
102

0x158 move t3,a2 88
.	
0x164 move t1,t7 82

bb3

0x168 lh t5,0(t3) 92
.	 .	 .	
0x17c subu t4,t5,t4 93
.	 .	 .
0x18c bne a3,t0,168 90
0x190 addiu t2,t2,-‐4 90

bb4
92
...
93
...
90
90

0x194 lw t1,12(sp)
.	 .	 .	
0x438 li t0,8 88
0x43c bne t8,t0,158
0x440 addu s0,s0,v0

bb5

114
...
88
88
88

.	
0x4b4 addiu a0,a0,14 82
0x4b8 beq t3,a1,4cc 86
0x4bc sw t1,116(sp) 86

bb6

86: for (k = 1, m = 0 ...) {

sb2

88: for (i = 0; ...) {
sb3

90: for (j = 0; ...) {
sb4

92: t[j] = d[k * j] + ...
93: t[7 -‐ j] = d[k * j] -‐ ...

sb5

95: t[8] = t[0] + t[3];
.	 .	 .
114: d[1 * k] = (t[7] * r ...

sb6

82: jpegdct(short *d, ...) {
...
85: short i, j, ...

sb1

.	
0x4c4 j e8 86
0x4c8 sw v0,216(sp) 86

bb7

Source code CFG Target binary CFG

line number

line reference

Figure 2.2: Ambiguity problem in using the line reference for resolving an annotation
position. The line number corresponding to each instruction in the target binary is the

reference line from which this instruction is compiled from.

be reliably constructed by inspecting the line reference alone. Structural analysis of the
control-flow is required.

2.2.2 Annotate Memory Accesses

Codes related to memory accesses should also be annotated in the source code to enable
realistic performance analysis. With them, cache simulation can be performed. At cache

Contents 23

misses, accesses to memory over bus can be simulated, e.g. by initiating transactions.
Therefore, annotated memory accesses enable the simulation of inter-module commu-
nication. On one hand, this helps in achieving high timing estimation accuracy. On
the other hand, it contributes to a HW/SW co-simulation and may aid certain design
decisions such as the architectural exploration.

However, the addresses of data memory accesses can not be statically resolved from the
target binary code. For example, consider the following instruction in the target binary:

sw r1 t1

The only extractable information is that it corresponds to a write memory operation
to the address represented by t1. However the address can not be determined in host-
compiled simulation, since it does not interpret the target binary instructions and is
thus unable to compute the values of the registers. Without those addresses, data cache
simulation can not be performed, leading to a lowered performance estimation accuracy.
This problem has been long aware in the area of host-compiled simulation. Yet, it still
remained as a major challenge.

2.3 Timing Estimation for TLM+ Transactions

A TLM+ transaction [14] transfers a large data block, abstracting the underlying soft-
ware protocols. Fundamentals of TLM+ modeling have been introduced in Section 1.3.3.
Due to the raised abstraction level, TLM+ complicates the timing estimation. The aris-
ing timing problem is twofold.

1. Consider the illustration in Figure 2.3. One TLM+ transaction in fact corresponds
to a long sequence of bus-word transactions. But since the underlying software
protocols are not represented any more after such abstraction, it is unclear how to
estimate the duration of a TLM+ transaction. For example, assuming a TLM+
transaction that transfers 100 bytes to the UART module, what should be its
duration? Furthermore, there are various types of driver functions and software
protocols. The resulted TLM+ transactions should be timed differently for differ-
ent cases.

To tackle this problem, it is required to extract the timing characteristics of the
driver functions that implement the low-level software protocols. These timing
characteristics can be used later to time the TLM+ transactions.

2. Even if the duration of each TLM+ transaction is known, the bus-word trans-
actions within a TLM+ transaction and their occurrence time are still unknown.
These bus-word transactions may cause access conflicts with other bus-word trans-
actions at shared modules. Therefore, it is difficult to estimate the timing of the
TLM+ transactions if they overlap with other concurrent processes.

Contents 24

processor
bus

memory
I/O device

time

processor
bus

mem
I/O device

time

processor

I/O device

bus
memory

A TLM+ transaction transfers the whole buffer.

a. Bus-word transaction level modeling of the transfer of a data buffer

b. Modeling of the transfer of a data buffer with TLM+

transfer of one data unit, e.g. a word

abstraction

duration = ?

Figure 2.3: TLM+ complicates the timing estimation. a) The transfer of a buffer by
simulating a driver function that implements the low level software protocols. b) The
same transfer is implemented using a TLM+ transaction. As is shown in the dashed
box in a), multiple bus-word transactions are required to transfer a single unit of data
in this buffer. These bus-word transactions include those for memory accesses, checking
the status register of the I/O device, etc. A long sequence of bus-word transactions
need to be simulated to complete the data transfer. The larger this buffer is, the more

bus-word transactions are evoked.

delay = ?

process 2

process 1

global time

Figure 2.4: Timing estimation challenge for TLM+ transactions. Long gray bar
(thick line) represents a TLM+ transaction. Blue bars with dashed line represent the
bus-word transactions from which the TLM+ transaction is abstracted. A white bar

with dashed line represents the delay of a TLM+ transaction.

2.4 Timing Estimation in Temporally Decoupled TLMs

It is straightforward to see the timing problem induced by temporal decoupling. Con-
sider the example in Figure 2.4 that shows two concurrent processes. When temporal
decoupling is used, the bus-word transactions are no longer synchronized with the global
time. From the viewpoint of the global time, all the bus-word transactions and the func-
tional simulation within the same quantum occur in zero time. For concurrent processes
such as in multiple processor simulation, it becomes infeasible to detect which bus-word
transactions of these processes overlap e.g. at the shared bus. As a result, timing of
the conflicting bus-word transactions can not be arbitrated by conventional arbitration
policy. Timing simulation thus becomes inaccurate. If the transactions are initiated

Contents 25

more frequently, the degree of conflicts may increase and the timing inaccuracy thus
becomes higher.

Additionally, using TLM+ transactions implicitly applies temporal decoupling, because
timing synchronization is performed only once for a TLM+ transaction that corresponds
to a very long time period. But the bus-word transactions within this period are invisible,
thus it is not possible to perform standard arbitration at a shared module such as the
bus. New mechanisms are required for estimating the delay induced by conflicts at
shared modules.

2.5 State of the Art

2.5.1 Annotated Host-Compiled SW Simulation

Almost two decades ago, the idea of using host-compiled software simulation was pro-
posed by Zivojnovic and Meyr [44]. This idea has come to provide an alternative way
of software performance analysis that is faster than ISS-based simulation. Since the
advent, host-compiled software simulation has been continually researched [45–63].

The related work is chronologically summarized in Table 2.1. A majority of existing
approaches aim at annotating performance aspects into a code that will be directly
compiled for the host machine. The annotated code thus becomes a performance model
of the target binary code. Depending on the format of the annotated code, there are
mainly three categories of approaches: (1) binary-level annotation, (2) intermediate-level
annotation, and (3) source-level annotation. Besides, there also exist profiling-based
approaches. Instead of modeling a specific target binary, they use performance statistics
to annotate the source code. All of these approaches are surveyed in the following.

2.5.1.1 Binary-Level Annotation

Approaches using binary-level annotation directly transform the target binary into a
performance model for host compiled simulation [45, 46, 69]. Usually, the following
steps are involved. Firstly, the source code is cross-compiled into the target assembly
instructions. Then, the assembly code is translated into a C code. This C code can be
annotated and used as a performance model. Afterwards, the annotated C code can be
directly simulated on the host machine. The accuracy of binary-level annotation is not
affected by compiler optimization, because the performance is both extracted from and
annotated to the assembly code. This is the main reason of the proposal of binary-level
annotation.

2.5.1.2 Intermediate-Level Annotation

Some approaches annotate intermediate codes generated by the compiler, as proposed by
[47, 50, 54, 55]. The performance aspects can be estimated using the intermediate code.
They can also be extracted from the target binary and annotated in the intermediate
code. Because the intermediate code is partially optimized, the annotation is relatively
robust against compiler optimization. However, when compiling the intermediate code to

Contents 26

T
a
b
l
e
2
.1
:

A
p

p
roa

ch
es

fo
r

tim
in

g
estim

atio
n

in
h

o
st-co

m
p

iled
sim

u
la

tio
n

.
C

ells
co

lo
red

b
lu

e
are

ap
p

roach
es

u
sin

g
b

in
ary

lev
el

an
n

otation
.

C
ells

co
lo

red
p

in
k

are
a
p

p
roa

ch
es

u
sin

g
in

term
ed

iate
level

a
n

n
o
ta

tio
n

.
C

ells
co

lo
red

g
reen

a
re

a
p

p
roach

es
u

sin
g

sou
rce

level
an

n
otation

.
C

ells
colored

b
row

n
a
re

a
p

p
ro

a
ch

es
u

sin
g

sta
tistica

l
p

ro
fi

lin
g.

au
th

or
9
6

9
9

00
01

02
03

04
05

06
07

08
09

10
11

12

M
ey

r
et.al

[4
4]

[49]
[50]

V
in

cen
telli

et.al
[45

]
[52]

L
ee

[47]

P
osa

d
a
s

et.a
l

[48]
[59]

C
h

eu
g

[51]

H
w

an
g

[54]

R
osen

stiel
et.a

l
[53]

[62]

G
erin

an
d

P
etro

t
[55]

W
an

g
[64]

L
in

[58]

M
ü

ller
an

d
L

u
[60]

B
ran

d
o
lese

[65]

C
a
i

[66]

S
ch

irn
er

[67]

X
u

[68]

Contents 27

the target assembly, the compiler can still apply target-specific optimization. Therefore
there still exist mismatches in the control-flow graphs of the intermediate code and the
target binary.

2.5.1.3 Source-Level Annotation

Recently, annotating performance information in the original source code has drawn in-
creasing research effort [52, 53, 58, 60, 62]. This is also termed as source-level simulation
(SLS) by some literatures. Compared to binary-level annotation or intermediate-level
annotation, source-level annotation offers better transparency and is easier to analyze
for software designers. It also directly shows the performance figures associated with
each part of the source code. As introduced in Section 1.2.3, the annotation is usually
performed at the granularity of basic blocks. The early works on source-level annota-
tion do not perform structural analysis in mapping the basic blocks [52, 53, 58], The
annotation consults primarily the line reference file. Under the presence of compiler
optimization, such annotation can not preserve the correct execution order of the anno-
tated performance modeling codes. The annotated source code thus is not an accurate
performance model. To address compiler optimization, researchers have recently re-
sorted to structural analysis [60, 62]. For example, the approach in [62] tries to preserve
the dominance relation in mapping a binary basic block to a source basic block. How-
ever, compiler optimization often alters the dominance relation among the basic blocks.
Therefore preservation of the dominance relation can be insufficient to provide a robust
basic block mapping. Besides the dominance relation, this work also examines control-
dependency and loop membership of a basic block. They are more adequate in providing
a constraint regarding the execution order of a basic block.

2.5.1.4 Timing Extraction Based On Profiling

Besides the work above mentioned, some other approaches model the performance sta-
tistically by means of profiling [65–68, 70–72]. The profiling can be constructed at C
operation level [65, 66, 71], or task level [67, 68, 72]. For example, a recent approach [68]
performs task-based timing estimation. This means the timing information is extracted
not from the basic blocks but from the software tasks. The authors first profile each
task using Monte-Carlo simulation from which they extract the average timing for each
task.

2.5.1.5 Reconstruction of Memory Accesses

Despite some progress, there still lacks a reliable methodology regarding the reconstruc-
tion of the memory accesses from the target binary. The addresses for those accesses
should be resolved so that data cache simulation can be evoked within the annotated
source code. At cache misses, transactions can be initiated to simulate on chip commu-
nication, leading to the so-called software TLMs [51, 54, 73–75]. In [48, 60, 61, 76], this
problem is alleviated by disabling the use of data cache. Approaches in [54, 58] use ran-
dom cache misses. But cache miss rate is specific to the executed program and hard to
predict. Using random cache misses therefore can lead to timing estimation inaccuracy.
In [57], only the addresses of global data are handled. Approaches in [50, 59] use the

Contents 28

addresses of the simulation host to emulate the target memory accesses. However, data
locality can be very different in the target binary and the host binary. For example, the
stack and static variables can be compiled to very different locations for the host and
target machines. Such locality discrepancy can result in large timing errors in case the
cache misses are inappropriately simulated. Besides, the data types can be different as
well for the host and target machine. For example, the integer may be 8 bytes for the
host machine but 4 for the target machine. Therefore if an integer array is sequentially
accessed, the number of estimated cache misses using host-compilation would be approx-
imately twice as that on the target machine. Further, many data memory accesses can
not be emulated by the addresses of the simulation host, because they are ISA specific
and only visible in the cross-compiled binary. For example, when the register values are
temporally stored at the stack as in register spilling, the corresponding memory accesses
can not be emulated by host machine addresses. In [63], an abstract cache model from
worst case execution time (WCET) analysis is used. It uses a range of possible addresses
to annotate one data memory access, leading to pessimistic timing estimation. Resolv-
ing the memory accesses is further complicated by pointer dereference [55], especially
if the pointers are passed as function arguments. To the author’s best knowledge, no
approach has explicitly considered the pointer dereference problem.

2.5.2 Faster and More Abstract HW Communication Simulation

In standard TLMs which use bus-word transactions, timing is synchronized before a
transaction is evoked, so that the transactions of concurrent processes can be arbi-
trated properly. As the timing synchronization causes costly context switches, there
have been ideas toward faster simulation of transaction-level models by means of reduc-
ing the number of timing synchronization. For a simulation with such course-grained
synchronization, some approaches have been proposed to maintain the timing estima-
tion accuracy. This section surveys the works that aim at expediting the simulation of
transaction-level models and corresponding methods regarding the timing simulation.

2.5.2.1 Faster Simulation of Transaction-Level Models

Generally speaking, increasing the abstraction level can be used to achieve higher simu-
lation speed. With regard to the simulation of transaction-level models, the concept pro-
posed in TLM+ increases the level of data-flow modeling from bus-word level to packet
or data block level [14]. Conceptually similar to TLM+, other approaches [77–80] also
model the hardware system at higher abstraction level. A single abstract transaction
is used in [77] to implement end-to-end communication for fast simulation of worm-
hole switched NoC. As mentioned by the authors, timing accuracy is reduced due to
abstraction, since the timing of the abstract transaction is obtained empirically. Ap-
proaches in [78–80] further abstract the models at the granularity of tasks. They use
task graphs based simulation for evaluating task response times, memory utilization,
etc. These approaches often target early course-grained performance estimation and
architecture exploration. Usually, they can not adequately estimate the delay due to
resource conflicts in TLM+ simulation or TL simulation with temporal decoupling.

Contents 29

In addition to increasing the abstraction level, another way to speed up the simulation
is to coarsen the synchronization granularity. This is implemented in the TLM 2.0 stan-
dard [15] as a temporal decoupling technique, as introduced in Section 1.3.4.2. Readers
are referred to Section 2.4 for the timing problem induced by temporal decoupling.

2.5.2.2 Arbitrated Timing Simulation

Arbitration based approaches usually trace and store the timing of individual transac-
tions. Then they perform arbitration on long sequences of transactions, such as those
occurred within the current quantum.

Schirner et al. [81] propose a concept of result-oriented modeling. A conflict-free opti-
mistic duration is firstly used for a long transaction sequence. Afterward, retroactive
timing correction is performed successively, until the actual duration is reached. Indru-
siak et al.[82] apply the same concept to wormhole network-on-chip, where they store
the timing of packet flows and perform timing estimation thereupon.

When temporal decoupling is used, Stattelmann et al. [76] store the occurrence times of
all transactions in lists and retroactively traverse the list to arbitrate individual trans-
actions in order to correct the timing and adjust the quantum allocation. Conceptually,
this approach is similar to [81]. When the timing lists are very large due to frequent
cache misses or I/O accesses, retroactively arbitrating each bus-word transaction may
become very expensive. Besides, since the computation and communication models in
TLMs often do not provide cycle accuracy, one may argue that, in a timing inaccurate
system, it is not always advantageous to perform cycle-accurate arbitration of the bus-
word transactions. For example, suppose there exists no timing conflict between two
concurrent bus-word transactions in the simulation of a cycle-accurate model. However,
in the simulation of a transaction-level model, the occurrence times of these two trans-
actions may be different from those in the cycle-accurate simulation. Therefore, timing
conflicts may be observed between these two transactions. In this case, the arbitration
may delay one of the transaction which is not delayed in the cycle-accurate simulation.

Another problem for arbitration based approaches is that, retroactive arbitrating bus-
word transactions may not always be feasible. For example, a TLM+ transaction is in
fact an abstraction of a long sequence of bus-word transactions, whose occurrence times
might not be known. Consequently, arbitrating each individual bus-word transaction
is not possible. For timing estimation in TLM+ simulation, the authors assume that
each TLM+ transaction fully consumes the resources. Due to this assumption, the
arbitration shifts an overlapping lower priority transaction to the end of the TLM+
transaction. In the actual case, this transaction can be interleaved with the TLM+
transaction as depicted in Figure 2.5. Clearly, such arbitration leads to over-pessimistic
results.

Similar to arbitration based approaches, authors in [83] investigate the predictive timing
estimation, for the scheduling of periodic real-time tasks in host-compiled OS modeling.
Given the periods of the tasks, this approach predicts the preemption time and the
duration of the tasks. Compared to this approach, the present work does not require the
periodicity for prediction and is capable of scheduling TLM+ transactions of arbitrary
durations.

Contents 30

processor 2

processor 1
case 1

time

processor 2

processor 1

time
case 2

Figure 2.5: Timing arbitration of TLM+ transactions. Case 1: assuming fully re-
source consumption of a TLM+ transaction as in [14]; Case 2: the actual case.

2.5.2.3 Hybrid Simulative and Analytical Approaches

Hybrid approaches combine analytical performance model with simulation model [84–
87]. Bobrek et al. [84] analytically estimate the penalty during simulation for concurrent
threads that may have resource contention. Details regarding the analytical model how-
ever are not given. Authors in [86] interface the simulation model with a formal analysis
tool for investigating system-level performance, e.g. the arrival curves, delay, etc. Lahiri
et al. [85] evaluate the communication performance from timing parameters extracted
in simulation for fast design exploration. Although not proposed for TL models, these
approaches shed light on the idea of integrating analytical approaches into simulation
models. Still, there exists the need of an effective delay model and a mechanism to
handle timing dynamically for TLMs with temporal decoupling.

2.5.2.4 Analytical NoCs

For performance analysis, analytical approaches have gained much popularity in the do-
main of network-on-chips (NoCs), as can be seen in a large body of research [82, 88–98].
Some of the NoCs are modeled at transaction level. At the granularity of network flows,
these approaches aim to analyze or predict the average or worst-case packet latency,
router latency, buffer utilization, etc, under certain given traffic pattern. A major-
ity of these approaches apply queuing theory to model the NoC components such as
routers [82, 88–97], some apply the Markov chain theory [99]. Besides, a relevant work
worth mentioning is the SystemQ proposed by Sonntag et al. [100, 101]. SystemQ is
also based on queueing theory and can be used as a superset of SystemC. It enables
performance estimation for message passing architectures such as NoCs. Initially, it is
used to aid the architectural decision making at an early design phase. With later devel-
opment, it incorporates the transaction modeling to support TLMs. For this, adaptors
are inserted to collect a group of transactions into a message, which is queued at a server
and sent as a whole.

When applied to TL models of multiprocessor SoCs, the granularity of packets may
be too coarse to achieve appropriate timing estimation accuracy. This is because the
transfer of a large data block such as a packet often consists of a sequence of many
bus-word transactions, between the two of which there exists a certain time interval.
Therefore the packet transfers by different processors can be interleaved at shared re-
sources. Besides, the arbitration in detailed TL models is performed at the granularity

Contents 31

of bus-word transactions instead of TLM+ transactions. Another difference between
SoCs and NoCs is that a bus often does not have buffers, while routers usually do. With
the above consideration, a more adequate approach is required to estimate the timing of
TLMs in bus-based SoCs that are simulated with temporal decoupling. This approach
should take into account the traffic patterns within the TLM+ transactions and the
corresponding resource access characteristics to analytically estimate the delay due to
resource conflicts.

2.5.2.5 Statistical Approaches

Statistical approaches use the statistics traced during simulation to perform timing esti-
mation that is approximated in a statistical sense. Bobrek et al. [102] train a statistical
regression model with samples of resource contention. The training effort may be high
to accurately model all the contention scenarios. The model also needs to be re-trained
for each different design. In application, their approach is used for host-compiled SW
simulation on a multi-processor TLM. But a scheduler for dynamic timing rectification
is not investigated. It assumes known resource utilization in simulation, which is not
usually the case due to cache effects and the abstraction of buffer transactions.

Other approaches analyze the system performance under certain traffic distribution [103,
104]. The goal is to achieve fast and early architecture exploration. For this purpose,
it suffices to estimate the timing approximately. A clear statistical model of the re-
source conflicts is not proposed. Another approach in [105] integrates a SystemC-based
framework with a statistical memory access model to predict the performance. Authors
in [106] statistically characterize the workload to handle the increased design complex-
ity of heterogeneous multiprocessors. The resource conflicts at shared resources are not
explicitly modeled. These approaches are not directly applied to simulate a specific ap-
plication program or use-case, for which the actual traffic pattern should be simulated
and not statistically assumed.

Qian et al. [107] propose a machine learning based performance analysis framework for
NoCs. Specifically, they use a support vector regression model to predict traffic flow
latency. They need to train their model to learn the typical traffic patterns and the
average packet latency. For accurate prediction, the main features of traffic patterns
should be covered in the training data. The learning curve and the implementation
effort of porting to existing TLMs may be high.

2.5.2.6 Parallel Simulation

Also aiming at expediting the simulation speed, another line of research explores parallel
simulation [108–114]. Authors in [108] present their implementation of general mecha-
nisms such as synchronization to simulate a single SystemC model in parallel. Adjustable
quantum size is implemented, although no specific handling of timing conflicts is men-
tioned. In [109], parallel scheduling of multiple simulator is studied, with the focus is
on ensuring the correct temporal order of the discrete events received by each simulator.
In addition to scheduling, they [110] further consider the effect of load balancing for
parallel simulation. TLM with distributed timing (TLM-TD) is conceptualized in [111]
as a means to keep the notion of timing in parallel simulation. Loosely-timed TLM with
temporal decoupling is also supported, but no contention modeling is considered. Static

Contents 32

analysis at compile time is applied in [113] in order to achieve an out-of-order parallel
simulation, where the execution of parallel threads does not strictly follow the order of
events that those threads are sensitive to. In [114], more course grained parallel simula-
tion is used at task level, where each task is assigned a duration. Authors’ emphasis is
on an unmodified SystemC kernel.

2.5.2.7 Consider the Data Dependency

A general issue of transaction-level models with temporal decoupling and parallel sim-
ulation is the detection and handling of data-dependency [115–118]. Authors in [115]
put forth that certain codes can not be simulated with temporal decoupling, since func-
tional correctness would otherwise be lost. By identifying those codes, they propose a
hybrid simulator which can integrates both TLM-TD and standard TLM simulation,
in which host-compiled simulation and ISS simulation are used respectively. A data-
dependency table in [117] is used to predict the memory accesses, in order to avoid
unnecessary synchronization. Used in trace-driven simulation [116], data-dependency is
checked to determine the necessity of synchronization and scheduling of the processes.
Other approaches investigate TLMs with adaptive timing accuracy [119, 120]. A for-
mal method [118] uses model checking to identify race condition in SystemC models.
The results can then be used in scheduling the processes. In the present approach, it
is assumed that there is no data dependency in the processes that are simulated in a
temporally decoupled way. In fact, even for standard TLM simulation without temporal
decoupling, data dependency can not be guaranteed to be captured, since TLMs can
not be absolutely timing accurate anyway. However, if data dependency needs to be
considered, the above mentioned approaches can be investigated.

2.6 Contributions

Corresponding to the scope of this work shown in Figure 2.1 and the confronted chal-
lenges, the contributions of this work focus on tackling these challenges. An overview of
the proposed methodologies is given in the following.

• For host-compiled software simulation, a methodology is presented that can re-
liably annotate the source code with the performance modeling codes extracted
from an optimized target binary code. This tackles the challenges in Section 2.2.

• For timing estimation of TLM+ transactions, a method is proposed that can pro-
vide accurate timing characteristics of the TLM+ transactions. This tackles the
challenges in Section 2.3.

• For resolving the delay due to resource conflicts in the simulation with temporal
decoupling, an analytical timing model and an efficient scheduler is developed.
This tackles the challenges in Section 2.4.

These methodologies proposed in this work contribute to the improvement of the simu-
lation accuracy while maintaining high simulation speed. In the following, each contri-
bution is described in more detail.

Contents 33

2.6.1 A Methodology for Annotating the Source Code

To enable performance estimation in host-compiled software simulation, performance
modeling codes need to be annotated in the source code. Example of the annotated
codes include the execution cycles and the memory accesses. A confronted challenge is
to resolve a correct position in the source code to annotate the performance modeling
codes extracted from an optimized binary code. This work performs detailed structural
analysis on the control-flows of both the source code and the target binary. The per-
formed analysis can identify the dominance relation, the post-dominance relation, the
control dependency, and the loop membership for the basic blocks. Similar analyses are
also performed by the compiler in the code optimization. After these analyses, structural
properties are extracted for the basic blocks in each control-flow graph. Extracted struc-
tural properties are used as constraints in mapping the basic blocks in the source code
and the target binary code. Because the control dependency represents the condition
under which a basic block will be visited, matching the control dependency thus ensures
that the annotated codes in the source code are executed under the same condition as
the corresponding basic blocks in the target binary code. The resulting source code an-
notation is thus robust against compiler optimization. Previous approaches mainly rely
on the line reference that is unreliable under compiler optimization. To the best of the
author’s knowledge, this work is the first of its kind to utilize such thorough structural
analysis of the control-flows in annotating the source code. Details of the control-flow
analysis are shown in Section 3.2, and the subsequent basic block mapping is given in
Section 3.3.

Another difficulty in annotating the source code is that the addresses of data memory ac-
cesses can not be determined by static analysis of the target binary code. This challenge
is tackled in this work by exploiting the memory allocation mechanism. The memory
accesses are differentiated into several cases corresponding to the accesses of variables in
the stack, the variables in the heap, and the global or static variables. These variables
are located in different memory sections. Their addresses are constructed according to
such memory allocation principle. This results in high agreement to those in the target
binary. Besides, a method for resolving the addresses of the memory accesses caused by
pointer dereferences is also proposed. The effectiveness of the presented method is that it
exploits the same memory allocation mechanism that is respected by both the compiler
and the execution of a program, thus guaranteeing the correctness of the reconstructed
memory accesses. The work is elaborated in Section 3.4.

2.6.2 Construct Timing Profiles for TLM+ Transactions

This dissertation presents a simple and yet efficient method to time the TLM+ trans-
actions. This method begins with a tracing and profiling step in which the timing
characteristics of the driver functions that implement the low-level software protocols in
the data transfer. The contribution is a simple idea regarding the tracing of the start
and end of those driver functions. This idea is to use the entry and exit instruction
addresses of those driver functions. These addresses can be extracted from the target
binary with the help of debuggers. A tracer in the ISS simulation checks the address of
the simulated instruction to accurately determine start and end of the considered driver
functions. Based on this, a timing library can be constructed for those driver functions.
A TLM+ transaction therefore can be timed properly by querying this library. Besides,

Contents 34

this tracing and profiling mechanism is general and can provide versatile results for
other purposes. The developed tool-chain for the tracing and profiling is described in
Section 4.3.

2.6.3 Analytical Timing Estimation for Temporally Decoupled TLMs

The challenge of timing estimation for TLMs with temporal decoupling is tackled in this
dissertation by a novel analytical timing estimation mechanism. It introduces a timing
model, in which

• The HW modules are modeled as resources.

• The access of a resource is modeled by resource utilization.

• The allocation of a resource is modeled by resource availability.

• The timing conflicts at shared resources are modeled by a delay formula that takes
into account the resource utilization and resource availability.

To combine the analytical timing estimation with TLM simulation, a fast scheduling
algorithm is implemented. The scheduler is provided within an additional resource
model library that can be easily ported to existing TLMs. Due to the use of dynamic
event cancellation, this scheduler needs only one wait statement to schedule one timing
synchronization request of a very long time period. Therefore the simulation overhead
introduced by the scheduling algorithm is very low. This work in effect achieves hybrid
analytical and simulative timing estimation, where timing characteristics are extracted
online and analytical formula are then used for fast timing prediction. Describing this
analytical timing estimation methodology is the subject of Chapter 4.

2.6.4 Summary of Contributions

The key novelty and uniqueness of the proposed methodologies are briefly summarized:

• Thorough control-flow analysis for accurate source code annotation

• Efficient tracing and profiling for TLM+ transactions

• Novel formulas and a scheduling algorithm for fast timing estimation

Each of these ideas is among the first in the corresponding area of research.

2.6.5 Previous Publications

Initially, the work in this dissertation was part of the SANITAS project. The objective
is to solve the problems in timing estimation of TLM+ transactions. A preliminary
solution of this problem is proposed in [121]. More detailed solution and results are
published in [122]. A resulted tracing and profiling tool can provide timing charac-
teristics for TLM+ transformations. This part of the work basically accomplished the

Contents 35

original objective. In addition, the timing estimation technique is further extended for
TLMs with concurrent processes and thus resource conflicts. An analytical approach
is developed that applies formulas to model resource utilization, resource availability
and the delay [123]. A scheduler based on the resource model [124] integrates the an-
alytical estimation into the simulation of TLM+ transactions or TLMs with temporal
decoupling.

In parallel to the above work for the project, another body of this dissertation con-
tributes to the topic of source code annotation for host-compiled software simulation.
The paper [60] proposes a novel idea of exploring control-flow analysis in tackling the
compiler optimization problem. For the nodes in a control-flow graph, it can extracts
structural properties such as the dominators, post-dominators, control dependency, and
loop membership. Based upon this paper, follow-up work has been done to consider the
reconstruction of data memory accesses for data cache simulation [125], incorporation
of specific compiler optimizations [126], faster cache simulation [127], and application to
a two-wheeled robot simulation platform [128].

The above two lines of work are compatible and can be incorporated together in the
practical software simulation or full system simulation. The application codes, which
represent the computation aspect of the software, can be simulated with host-compiled
simulation, while the TLM+ transactions can be called for data transfers which represent
the communication aspect. Another publication [129], although not tightly related to
the above ones, modifies the SystemC kernel and aims at removing unnecessary context
switches.

Chapter 3

Source Code Annotation for
Host-Compiled SW Simulation

The aim of annotating the source code is to turn the annotated source code into a
performance model of the target binary. This requires the embedding or reconstruction
of the control flow of the target binary into the source code, the execution of which
hence can resemble that of the target binary. To do this, a mapping between the basic
blocks of the target binary code and the source code needs to be constructed. It may
become difficult to find this mapping if the target binary has been optimized by the
compiler. Reliably handling a target binary code with a structurally different CFG
requires structural exploration of both the CFGs of the source code and the target
binary code. Besides, even for a perfect mapping, it is still difficult to annotate the
memory accesses for cache simulation, since the accessed addresses can not be statically
known.

This chapter tackles the above mentioned challenges. Firstly, Section 3.1 introduces
the considered structural analysis and terminologies. Then, Section 3.2 discusses the
examined structural properties. Following that, Section 3.3 details the basic block map-
ping procedure using the structural properties. Afterwards, Section 3.4 presents a novel
approach that exploits the memory allocation mechanism in determining the addresses
of the memory accesses. Finally, Section 3.4 elaborates the implementation and usage
of the tool-chain developed in this work.

3.1 Structural Control Flow Analysis

The control flow graph G(N,E) is a directed graph representing the control flow of a
program, with N being the set of nodes representing the basic blocks and E being the
set of edges representing the execution order of those basic blocks. For a given CFG,
structural analysis known from compiler theory [130, 131] lays a foundation of the pro-
posed approach. Therefore, as a preliminary, this section introduces the investigated
structural analysis and the extracted structural information, which will be used in con-
structing the basic block mapping in the next section. The sample CFG is shown in
Figure 3.1(a). There is an auxiliary edge between the entry and exit node

37

Contents 38

(d) Intra-loop control dependency graphs

(b) Dominance graph (c) Post-dominance graph(a) CFG

Gno loop Gl1 Gl2

l1

l2

l3

Gdom Gpdom

Gl2,l3

n1

n2

n3

n4 n5

n8

n9 n10

n11

n12 n13 n14 n17

n15 n16

n17

n15

n16

n14

n13

n10

n11 n12 n8 n9n7

n6

n7

n6

n1

n2

n4n3 n5

n17

n15

n16

n14

n13

n10

n11

n12

n8

n9

n7

n6n1

n2

n4

n3

n5

{l1}

n17

n16

n14

n13

n11

n12

n8

n9

n7

n6

n1

n2

n4

n3

n5

n10

n15

Entry

Exit

{l2} {l2, l3}

Entry

Figure 3.1: Sample CFG and the resultant graphs given by structural analysis.

3.1.1 Dominance Analysis

Definition 3.1.1. Node nk dominates node ni, if nk is part of all paths in the CFG
from the entry node to node ni.

By definition, each node dominates itself. The set of all nodes that dominate node ni is
denoted by

dom(ni).

The dominator sets for all the nodes are computed with the algorithm in [132]. If node
ni dominates node nj and node nj dominates node nk, then node ni also dominates
node nk. Therefore the domination relation is transitive. The resulting dominance
graph Gdom is a tree, as shown in Figure 3.1(b). For simplicity, the reflexive edges
corresponding to the self-dominance relation are omitted in the dominance graph.

Contents 39

Definition 3.1.2. Immediate dominator of node ni is its parent node in the dominance
graph.

It is denoted by

idom(ni).

The immediate dominator of a node is either unique or nil (for the entry node).

3.1.2 Post-Dominance Analysis

Definition 3.1.3. Node nk post-dominates node ni, if nk is part of all paths from the
node ni to the exit node.

By definition, each node post-dominates itself. The set of all nodes that post-dominate
node ni is denoted by

pdom(ni).

The post-dominator sets can be obtained by applying domination analysis to the reverse
CFG. If node ni post-dominates node nj and node nj post-dominates node nk, then node
ni also post-dominates node nk. Therefore the post-domination relation is transitive.
The resultant post-dominance graph Gpdom is a tree, as shown in Figure 3.1(c). For sim-
plicity, the reflexive edges corresponding to the self-post-dominance relation are omitted
in the post-dominance graph.

Definition 3.1.4. Immediate post-dominator of node ni is its parent node in the post-
dominator tree.

It is denoted by

ipdom(ni).

The immediate post dominator of a node is either unique or nil (for the exit node).

3.1.3 Loop Analysis

The considered loops of a CFG in the present work correspond to the iterative program
structures that are declared by specific programming instructions such as for and while
statements. A loop represents a part of the code that can be repeatedly executed. A
loop in the CFG is denoted by lp. There are several terms associated with the loop
analysis. Details of these terms can be found in [130, 131] They are briefly explained in
the following:

Definition 3.1.5. Back edge: An edge (ni, nj) ∈ E is a back edge, if nj ∈ dom(ni).

Each back edge corresponds to a loop, while a loop may have several back edges.

Definition 3.1.6. The target node of a back edge is called the loop head.

Definition 3.1.7. The source node of a back edge is called the latching node.

For example, (n5, n2) and (n16, n6) are two back edges corresponding to loop l1 and l2
respectively.

Contents 40

Definition 3.1.8. Natural loop: The natural loop, i.e. loop body, identifies those
nodes that are part of the loop. It consists of the set of nodes that can reach the
latching node without passing through the head node plus the latching node and the
head node.

For loop lp, its natural loop is denoted as

N(lp)

For example, N(l3) = {n7, n8, n9}.
Definition 3.1.9. Exit edge: Edge (ni, nj) exits a loop lp, if ni ∈ N(lp) and nj /∈ N(lp).

For example, (n16, n17) exits loop l2.

Definition 3.1.10. Exit nodes: The exit nodes of a loop are the source nodes of all
its exit edges.

For loop lp, its exit nodes are denoted as:

X(lp).

They represent a set of branch conditions that can exit a loop. In Figure 3.1, X(l1) =
{n2}, X(l2) = {n16}, X(l3) = {n8, n9}
Definition 3.1.11. Entry edge: Edge (ni, nj) enters a loop lp if ni /∈ N(lp) and
nj ∈ N(lp).

For example, (n1, n2) enters loop l1.

Definition 3.1.12. Nested loops: lp is nested in ln if N(lp) ⊂ N(ln).

Definition 3.1.13. The parent loop of a node is the innermost loop that encloses this
node. For example in Figure 3.1, the parent loop of n7 is l3.

3.1.4 Control Dependency Analysis

Definition 3.1.14. An edge (ni, nj) ∈ E is a control edge, if nj /∈ pdom(ni).

In Figure 3.1, (n2, n3) is a control edge since n3 /∈ pdom(n2), but (n2, n6) is not since
n6 ∈ pdom(n2).

Definition 3.1.15. The source node of a control edge is called the controlling node.

With respect to the program execution, the controlling node represents a branch condi-
tion, whose evaluation controls whether its target basic blocks will be executed. There-
fore it effectively constrains the execution order of the basic blocks.

Definition 3.1.16. The control dependent nodes for a given control edge are those
nodes that will be visited if and only if that control edge is taken.

For control edge (ni, nj), its control dependent nodes can be determined by the algorithm
in [131], which inspects the post-dominator tree and checks for two cases:

1. If ni is an ancestor of nj , then the dependent nodes include the nodes on the path
from ni to nj in Gpdom plus ni and nj ;

Contents 41

Table 3.1: Example of the determination of control dependent nodes

case control edge dependent nodes

(1) (n16, n6) {n6, n7, n8, n10, n16}
(2) (n10, n11) {n11, n14}

Table 3.2: Example properties of nodes in Figure 3.1

nodes Pm(ni) Pc(ni) Pb(ni)

n1 {} {Entry} Entry

n4 {l1} {n3} n3

n8 {l2, l3} {n9} n2

n9 {l2, l3} {n8} n8

n6 {l2} {n16} n2

n10 {l2} {n16} n8

n16 {l2} {n16} n10

2. If ni is not an ancestor of nj , then the dependent nodes include the nodes on the
path from nj to the first common ancestor na of ni and nj including nj but not
na.

Examples corresponding to these two cases are given in table 3.1. Further, given a
branch node ni, the nodes that are control dependent on ni are the union of the control
dependent nodes for all the control edges that branch from ni. For example, n11, n14

and n15 are control dependent on n10 in Figure 3.1.

3.2 Structural Properties

Notice that the superscript s and b are used to distinguish the notation corresponding
to the source code and the target binary code respectively. For example, Gs and Gb

denote the CFG of the source code and the target binary code respectively. nsi denotes
node i in Gs, and nbj denotes node j in Gb. After the structural control-flow analysis,
extracted structural properties for a node in the CFG include its loop membership, its
intra-loop controlling nodes, and its immediate branch dominator. Derivation of each
property is given in the following.

3.2.1 Loop Membership

Node ni is enclosed in loop lp if it is in the loop body (natural loop) of lp. Loop
membership of a node is all the loops that enclose this node. It is used as a structural

Contents 42

ns
1

ns
2

ns
3

nb
1

nb
2

nb
3

nb
4

Source code CFG Binary code CFG

Figure 3.2: Using intra-loop control dependency as a mapping constraint is more
robust against compiler optimization than the raw control dependency

property of a node and is denoted as:

Pm(ni) = {lp|ni ∈ N(lp)}. (3.1)

Examples are given in the second column Table 3.2.

3.2.2 Intra-Loop Control Dependency

The classic control dependency graph is obtained by connecting a controlling node to
all its control dependent nodes [131]. The obtained control dependency of a node is
its dependency on the controlling nodes in the whole control-flow graph. Different from
this, this work proposes a new type of control dependency. It takes the loop membership
of the nodes into account and derives the intra-loop control dependency.

Definition 3.2.1. Intra-loop control dependency is the control dependency of node nj
on a controlling node ni, if they have the same loop membership, i.e., Pm(ni) = Pm(nj).

To show the difference between the control dependency and intra-loop control depen-
dency, consider the controlling node n16 in Figure 3.1, for which

• the control dependent nodes are {n6, n7, n8, n10, n16}, according to [131];

• the intra-loop control dependent nodes are {n6, n10, n16}.

Applying intra-loop control dependency in effect confines the consideration of control
dependency to those nodes with the same loop membership. Compared to the raw
control dependency, it is more robust against compiler optimization in terms of mapping
the basic blocks. The reason is that control dependency for nodes within a loop can
be easily altered if this loop or or another nesting loop have been transformed by the
compiler. Consider the example in Figure 3.2. The controlling nodes for ns3 in the source
code CFG are {ns2, ns3}. But for nb3 in the binary code CFG, they are {nb1, nb3, nb4}. This
unmatched control dependency impedes the mapping from nb3 to ns3.

Contents 43

Intra-loop Control Dependency Graph

Based on intra-loop control dependency, the control dependency graph can be obtained
by connecting a controlling node ni to its intra-loop dependent nodes. As can be seen
in Figure 3.1(d), the result is a set of control dependency graphs corresponding to the
set of loop memberships.

The notation GPm(ni) is used to refer to a control dependency graph that corresponds
to the loop membership of node ni. In Figure 3.1(d), the loop membership of n3 is
Pm(n3) = {l1}, hence G{l1} denotes the control dependency graph that encompasses all
the nodes that have the loop membership {l1}.

Intra-loop Controlling Nodes

Using intra-loop control dependency, another structural property can be obtained for
each node:

Definition 3.2.2. Intra-loop controlling nodes Pc(ni) of ni is simply its parent
nodes in the control dependent graph GPm(ni), expressed as

Pc(ni) = {nj |ni ∈ edge(GPm(ni))}, (3.2)

where edge(GPm(ni)) is the set of edges in GPm(ni). Usually, Pc(ni) contains only one
node. But it can contain more than one node, if a loop has multiple break statements or
if branches have a joint target in the optimized binary code. Examples of the intra-loop
controlling nodes are given in Table 3.2.

3.2.3 Immediate Branch Dominator

For the mapping process in next section, another structural property is extracted:

Definition 3.2.3. The immediate branch dominator Pb(ni) is the first encountered
ancestor of ni in Gdom that is a branch node in the original CFG.

The following recursive function calculates Pb(ni):

function selectBranchDominator(ni):
nj = parent(ni) in Gdom
if is branch(nj) in G then

return nj
else

return selectBranchDominator(nj)
end if

Branch dominator restricts the position of a node among other nodes with the same
intra-loop control dependency, thereby facilitating the mapping procedure in the next
section. For example in Figure 3.1, n6, n10 and n16 have the same intra-loop controlling
nodes, namely {n16}. But they have different immediate branch dominators, as can be
seen in Table 3.2.

Contents 44

3.3 Basic Block Mapping Procedure

The mapping procedure consists of two main steps. Firstly, it checks the line reference
to relate the structural properties of nodes in N s and N b. Secondly, it implements an
algorithm to successively select the appropriate mapping.

3.3.1 Line Reference From Debug Information

Debugging information provides a line reference file that gives the sources lines from
which an instruction is compiled, as depicted in Figure 3.3. The line references can be
expressed by a bipartite graph

GR(N s, N b, ER),

where:

• ER is the set of mapping edges from N s to N b according to the line reference.
Among the edges in ER, a subset is distinguished:

• EB ⊂ ER denotes those mapping edges that map the branch nodes in N b by the
line reference of the branch instructions.

For the example in Figure 3.3, it follows

ER = {(nb1, ns2), (nb1, n
s
3), (nb2, n

s
1), (nb3, n

s
2), (nb3, n

s
4)}

EB = {(nb1, ns2), (nb3, n
s
4)}.

3.3.2 Matching Loops

Loop lbm matches loop lsn if the branch instructions contained in the exit nodes of lbm are
compiled from the exit nodes of lsn, formally written as

∀nbi ∈ X(lbm) ∃nsj ∈ X(lsn) ((nbi , n
s
j) ∈ EB) (3.3)

In other words, two loops are matched if they are exited under the same condition. In
Figure 3.3, lb1 matches ls1 because the branch instruction (at address 0xac) in the exit
node of l1 is compiled from line 102 in the exit node of ls1. The matched loop lbm is
denoted by a mapping ML:

lbm 7→ML(lbm) (3.4)

Contents 45

0x98 lw a0,0(s2) :94

102: for (j = 0; j < iWid; j++) {

 105: ch = ibuf[numCharIn++];
 106: *((*(w + 2)) + j) = (char ...

 94: *(w + 2) = pixBuf3;

0x9c lbu a1,0(v1) :106
0xa0 addu a0,a0,v0 :106
0xa4 addiu v0,v0,1 :102
0xa8 sb a1,0(a0) :106
0xac bne v0,s4,0x98 :102
0xb0 addiu v1,v1,1 :102

0xb4 addu s0,s7,s6 :102
0xb8 li t7,-1 :102
0xbc addiu s6,s6,64 :102
0xc0 move t0,s1 :111
0xc4 bne t1,s4,0xd0 :111
0xc8 nop :111

111: if(n2==iWid) {

line referencesource line

nb
1

nb
2

nb
3

ns
3

ns
2

ns
1

ns
4

Figure 3.3: Example of the line reference provided by the debugger. (left) CFG of
source code; (right) CFG of the target binary code. Dashed lines: mapping by the
line reference (ER). Thick dashed lines: line reference mapping (EB) for the branch

instructions.

3.3.3 Translate the Properties of Binary Basic Blocks

Using EB and ML, the structural properties of a binary basic block can be translated
into a representation using basic blocks and loops in the source code.

P sm(nbi) = {lsn | (lbm, l
s
n) ∈ML ∧ lbm ∈ Pm(nbi)} (3.5)

P sc (nbi) = {nsj | (nbk, n
s
j) ∈ EB ∧ nbk ∈ Pc(nbi)} (3.6)

P sb (nbi) = {nsj | (nbk, n
s
j) ∈ EB ∧ nbk = Pb(n

b
i)} (3.7)

The translated properties can be subsequently used in the comparison with the properties
of a source basic block.

3.3.4 Selection Using Matching Rules

Determining the map for nbi is guided by several selection processes. Standard notation
from relational algebra [133] is used to define a selection:

Definition 3.3.1. Selection is a unary operation written as

σφ(N s
a), (3.8)

where N s
a is a set of source basic blocks to select from, and φ is a propositional formula

representing a matching rule of a specific structural property. The selection in (3.8)

Contents 46

selects all nsi from N s
a for which φ holds. If φ matches a specific structural property,

then applying (3.8) will select a subset from N s
a as a corresponding matching set for this

property. The examined matching rules include:

• Selection rule φm matches the loop membership:

φm := Pm(nsj) = P sm(nbi) (3.9)

Matching loop membership ensures that the delay due to executing a basic block
is accumulated correctly over iterations. An often seen case is that compiler can
move iteration invariant code before the loop body. By checking loop membership,
timing of these binary code will be annotated in the correct loop region.

• Selection rule φc matches the intra-loop controlling nodes:

φc := Pc(n
s
j) = P sc (nbi) (3.10)

This rule is important in preserving the correct execution order of the annotated
codes, because control dependency implies when a node is reached. Matching
the intra-loop controlling nodes ensures that the annotated performance modeling
code is executed under the same condition as in the target binary.

• Selection rule φb matches the immediate branch dominator:

φb := Pb(n
s
j) = P sb (nbi) (3.11)

After applying the selection rules (3.10) and (3.9), this rule may be further checked
to resolve a unique mapping node in case ambiguity still exists. For an example
of when this rule is needed, the reader is referred to Section3.2.3.

• Selection rule φr matches line reference:

φr := (nbi , n
s
j) ∈ ER (3.12)

After previous selections that match structural properties, more than one source
basic block candidates may exist. Line reference could be used as an auxiliary
constraint in determining the final mapping.

3.3.5 The Mapping Procedure

For a node nbi in Gb(N b, Eb), the task is to find a mappingM∗(nbi) in Gs(N s, Es), so that
the performance modeling code of nbi could be annotated to the source node inM∗(nbi).
The steps in determining this mapping are outlined and discussed in the following.

Step 1a: From all the source basic blocks N s, select those basic blocks by matching
the intra-loop controlling nodes (rule φc):

Nc ← σφc(N
s)

Step 1b: From Nc, select those basic blocks by matching loop membership (rule φm):

Nm ← σφm(Nc)

Contents 47

Step 1c: If |Nm| = 1, a unique match is found, thusM∗(nbi)← Nm, and the algorithm
stops. If |Nm| = 0, go to step 4. If |Nm| > 1, there are multiple source basic blocks with
the same intra-loop controlling nodes and loop membership as nbi . Further select from
Nm those basic blocks by matching the immediate branch dominator (rule φb), giving a
refined matching set:

Nb ← σφb(Nm)

Step 2: Inspect Nb: If |Nb| = 1, then M∗(nbi) ← Nb and the algorithm stops. If
|Nb| > 1, go to step 3. If |Nb| < 1, overwrite Nb with Nm and go to step 3.

Step 3: Further select from Nb those basic blocks by line reference (rule φr):

Nr ← σφr(Nb)

After previous selection, Nb contains only those basic blocks that are executed under
similar conditions as nbi . In other words, it has ruled out those inappropriate basic blocks
that may be provided by the incorrect line references of the instructions contained in nbi .
The resulting Nr from this selection therefore disregards those incorrect line references.
If |Nr| = 1, a unique match is found, thus M∗(nbi)← Nr. If |Nr| = 0 or |Nr| > 1, ni is
added to a pending set for later processing. How this pending process works is explained
with an example in Figure 3.4. Suppose Nb = {ns2, ns3} for nb2 after previous selections.
Since both (nb2, n

s
2) ∈ ER and (nb2, n

s
3) ∈ ER, Nr is still {ns2, ns3}. So nb2 is added to the

pending set. Afterwards the pending set is checked. Since nb3 is mapped to ns3 and nb2 is
mutually exclusive to nb3, nb2 can only be mapped to nb2, hence M∗(nb2) = {ns2}.

ns
1

ns
2 ns

3

nb
1

nb
2 nb

3

Figure 3.4: Handling ambiguous line reference

Step 4: No match can be found after the selection process. The reason for this case
can be the following:

• Ambiguous control dependencies: Compiler optimization can merge multiple con-
trol edges at a single node nbi , leading to control dependency ambiguity. Consider
the example in Figure 3.5(a). In the source code, a part of ns2 is identical to ns4,
therefore it is optimized into a single node nb4 in the target binary. Consequently,
nb4 has more than one controlling nodes, namely Pc(n

b
4) = {nb1, nb3}. To handle this

case, each controlling node is separately checked. This results in a one-to-many
mapping. For example, M∗(nb4) = {ns2, ns4}. This means that the performance
modeling code of nb4 should be annotated in both ns2 and ns4.

• Missing basic blocks in N s: Compiler can add a branch target to a branch basic
block in N b, therefore no counterpart for the added basic block could be found in
N s. One of such added nodes in Figure 3.5(b) is nb3. Code of ns3 is pushed into
both nb2 and nb3. No match for nb3 could be found. To handle this case, the source

Contents 48

Source code CFG Binary code CFG

ns
1

ns
2

ns
3

ns
4 ns

5

ns
6

nb
1

nb
2 nb

3

nb
4 nb

5

nb
6

ns
1

ns
2

ns
3

ns
4

ns
5

nb
1

nb
2 nb

3

nb
4

nb
5

a.

b.

ns
6

add here

Figure 3.5: Resolve ambiguous control dependencies

code needs to be augmented by adding a code block accordingly. As is shown by
the dashed arrow, an else block ns6 is added, which is merely a placeholder for
annotating the performance information of nb3.

Above selection steps give a general procedure in determining the basic block mapping.
In practice, this procedure suffices in handling of most basic blocks in the optimized
binary code. Yet, for certain specific optimizations, additional considerations besides
this general procedure need to be taken into account. The considered cases are described
in Section 3.3.7.

3.3.6 Comparison with Other Mapping Methods

The feature of the present approach is that it applies detailed structural analysis. It
matches the extracted structural properties in constraining the basic block mapping and
ensuring a correct execution order of the annotated performance modeling codes. Its
advantages over existing mapping methods can be seen in the following comparison.

Comparison with the mapping based on line reference alone

Contents 49

Line references relate the instruction with the corresponding source code line. No struc-
tural information is contained in it. Therefore, for the basic block mapping, it is the
least robust approach against the structure alteration of the CFG induced by compiler
optimization. If only line reference is used, the correct execution order of the annotated
performance modeling codes can not preserved. For example, nb2 in Figure 3.3 would be
wrongly mapped to ns1 which is outside of the loop.

Comparison with the mapping based on dominance matching

The advantages over dominance preserving mapping are threefold. (1) Dominance re-
lation is not sufficient to represent the CFG’s control structure. Two different CFGs
can have the same dominance graph, as shown in the upper part of Figure 3.6. (2)
Dominance relation is often changed by the compiler. A simple example is given in the
lower part of Figure 3.6. Due to altered dominance relation, the dominance graphs for
the source code and the binary code become different. For cases as such, only investi-
gating dominance relation is insufficient to resolve a suitable mapping between the basic
blocks in the two control flow graphs. In contrast, the intra-loop control dependency
graphs of these two CFGs are still similar. Although compiler optimization has changed
the dominance relation among the basic blocks, it still respect the control dependency
among them. Therefore, a correct mapping can be provided by inspecting the intra-loop
control dependency. (3) Dominance mapping is less restrictive than control dependency
mapping. It therefore yields more often ambiguous results.

Comparison with the raw control dependency based mapping

Consider the example in Figure 3.2. If the raw control dependency is used as in [60], the
controlling nodes for ns3 in the source code CFG are {ns2, ns3}, while those of nb3 in the
binary code CFG are {nb1, nb3, nb4}. This discrepancy impedes the mapping from nb3 to
ns3. This is not a problem if the intra-loop control dependency is used, which excludes
the control dependency of ns3 or nb3 on nodes with different loop memberships.

3.3.7 Consider Other Specific Compiler Optimizations

Besides the basic block mapping methodology discussed previously, further measures are
to be taken targeting specific compiler optimizations. These measures take into account
specific structural alterations caused by certain optimizations, so that the source code
can be annotated accordingly.

3.3.7.1 Handle Optimized Loops

To examine the influence of loop optimization to the basic block mapping, consider
several common cases of loop optimization shown in Figure 3.7.
Case 1: A loop pre-header (nb1) is inserted before entering the loop. Loop invariant
codes can be placed in the pre-header. In addition, the loop is transformed from a for
loop into a do-while loop, because the compiler identifies that the loop will be entered.
Case 2: Because the compiler detects that the loop will be entered, it peels the first
iteration which is executed before entering the loop for the remaining iterations. This
is termed as first-iteration splitting.
Case 3: A pre-test node is inserted to check whether the loop will be entered. If so, the
loop is transformed as in case 1.

Contents 50

CFG1 CFG2 dominance graph
for CFG1 and CFG2

ns
1

ns
2

ns
3

ns
4

ns
1

ns
2

ns
3

ns
4

ns
1

ns
2

source code
CFG

binary code
CFG

ns
1

ns
3

ns
2

nb
1

nb
2

nb
3

ns
3ns

2

ns
1 nb

1

nb
2

nb
3

dominance graph
of the source code

dominance graph
of the binary code

ns
3 ns

4

Figure 3.6: Checking dominance relation alone is insufficient

sb1

bb6

bb4 bb5nb
6

sb3

sb1

sb2

sb4

sb5

bb3

bb2

bb4

bb5

bb3

bb2 bb3

bb1bb1

bb4

bb3

bb5

bb6

bb2

bb1

bb7

sb6 bb6

bb7

case 1 case 2 case 3

source CFG binary CFG binary CFG binary CFG

ns
1

ns
2

ns
3 ns

4

ns
5

ns
6 nb

6

nb
1

nb
2

nb
3 nb

4

nb
5

nb
1

nb
2 nb

3

nb
4

nb
5

nb
8

nb
6

nb
1

nb
2

nb
3

nb
4 nb

5

nb
7nb

9

nb
7

Figure 3.7: Common cases of loop optimizations.

These cases can be handled in the following way. The loop pre-header basic block is
unproblematic to the present approach, because matching intra-loop control dependency
will automatically map it to a correct basic block that is outside the loop. As for the
loop pre-test basic block, a corresponding basic block can be inserted in the source code
as an annotation placeholder. The do-while transformation is already covered by the

Contents 51

...!
nIteration=0;
for(...){
 nIteration++;
 //annotation for
 if(nIteration==1){
 cycle += ...//from
 }else {
 cycle += ...//from
 }
 if(...){
 ...

void key(){...}
//annotated inline version
void key_enc_1(){...}
void key_enc_2(){...}

void enc(){
 ...
 key_enc_1();
 ...
 key_enc_2();
 ...

ns
3

nb
2

nb
6

(a) (b)

Figure 3.8: Annotate the source code in the case of (a) loop splitting and (b) function
inlining.

selection algorithm, e.g. nb5 in case 1 will be correctly mapped to ns1. Relatively more
difficult to handle is the loop splitting in case 2, in which a source code basic block
within a loop body is compiled to multiple counterparts. Each counterpart binary basic
block is executed during certain iterations. To correctly annotate the source code, the
so-called iteration count sensitive annotation is used. For this, an additional variable as
the iteration counter is annotated in the source code. Within a source code basic block,
a control statement selects among different performance modeling codes according to
the iteration counter. Take ns3 in Figure 3.7 for example, the annotation in case of first-
iteration splitting (case 2) can be conducted as shown in Figure 3.8(a). For unrolled
loops, two cases are differentiated. In the first case, the loop in the binary code is
unrolled into a single basic block. Therefore the performance modeling code for this
basic block can be annotated simply outside the corresponding loop in the source code.
In the second case, there exits branch basic blocks in each unrolled iteration, indicating
that a source basic block is compiled to one binary basic block within each iteration.
Therefore control statements are annotated to perform iteration sensitive annotation as
discussed before.

3.3.7.2 Handle Function Inlining

An inlined function is duplicated in the binary code where it is called. For annota-
tion, inlined versions of the function are created, each of which is annotated from the
corresponding part of the binary code where the function is inlined. Then, instead of
calling the original function, the caller calls the annotated version accordingly such as
in Figure 3.8(b). Here, key enc 1() and key enc 2() are the annotated versions for the
1st and 2nd calls to the inlined function key() in enc().

Contents 52

SW HW

... !
for (i = 0; i < 8; i++, d += p){
 cycle += 4; //annotation from bb3
 icRd(&ic,x10,2); icRd(&ic,0x11,2);

 for (j = 0; j < 4; j++){
 t[j] = d[k * j]+d[k*(7 - j)];
! t[7 - j] = d[k * j]-d[k*(7 - j)];
! cycle += 5; //annotation from bb4
! icRd(&ic,0x11,4);
 dcRd(&dc, d_Addr+2*(k*j));
 cycle += 2;
! dcRd(&dc, d_Addr+2*(k*(7-j)));
 ...

bu
s

iCache

dCache

Figure 3.9: Example of annotated source code for HW/SW co-simulation.

3.3.7.3 Consider Compound Branches

One additional problem can be caused by complex compound branches. In the source
code, one basic block containing a compound branch such as

if(weight==1&&(k1>1||k2<-1)),

may be compiled into several branch basic blocks in the binary code. All these branch
basic blocks are compiled from the same line, hence it is difficult to relate the binary
branch basic block to the actual comparison operation in the compound condition. On
the other hand, it would also be fairly intrusive to annotate each comparison in the
compound condition. To handle this case, the branch basic blocks in the binary code
are considered as a single basic block, from which the worst-case performance is extracted
to annotate the corresponding compound branch in the source code.

3.4 Reconstruction of Data Memory Accesses

To enable HW/SW co-simulation, memory accesses also need to be extracted from the
target binary and annotated into the source code for cache simulation. One example of
such annotated source code is shown in Figure 3.9. The variables ic and dc denote the
instruction and data cache respectively. When cache misses occur, transactions over the
bus can be invoked for data communication modeling. It is straightforward to extract
the addresses for instruction memory accesses, since they are statically known. However,
the problem of resolving the addresses of data memory accesses persists, even though
the control-flow of the target binary can be accurately modeled in the source code. A
solution of this problem has been pending for a long time. This work tackles this problem
by exploiting the underlying memory allocation mechanism. Since compiler also respects
this mechanism, the present approach provides a robust and precise way to reconstruct
the memory accesses, which contributes to the high accuracy of data cache simulation.

Contents 53

Three major sections are considered in allocating memory to a program: (1) the section
stack for local variables, (2) the data section for global/static variables, and (3) the heap
section for dynamically allocated data. Furthermore, pointer dereference and pointer
arithmetic can also be handled, This is a problem considered hard for host-compiled SW
simulation [55]. In the tool-chain, an enhanced cparser [134] is used to parse the source
code and extract syntax information, such as function signatures and local variables.
Also, binary utilities are used to obtain debug information, such as the symbol table
containing the addresses of static variables. Details of how each case is handled are given
in the following.

3.4.1 Addresses of the Variables in the Stack

Stack memory stores primarily local variables, spilled registers and function arguments.
Register spilling, due to the limited number of registers, often happens when entering or
exiting a function. The addresses of the stack data are referenced by the stack pointer
(sp). The value of sp is decreased or increased when a function is entered or exited. So
the stack address of a function is dynamic, depending on when the function is called. To
trace such dynamics, a variable sp is annotated in the source code. Its value is updated
at the entrance and exit of a function based on the local stack size of the function. As
shown in the annotated source code in Figure 3.10, the local stack size of the function is
80 as indicated in the target binary code. Thus the variable sp is added and subtracted
by 80 respectively at the function entrance and exit. To determine the addresses for
stack data, two cases are considered:

1. The data are explicitly addressed by the sp register in the binary instructions, as
in Figure 3.10.

2. The data are not explicitly addressed by the sp register, as in the instruction “sw
v0 v1” in Figure 3.11.

For case 1, the value of the annotated variable sp can be directly used to calculate the
accessed addresses (see Figure 3.10). The initial value 0x1000 of sp is defined in the
boot-loader by the designer.
For case 2, the syntax of the source code needs to be examined. For example in Fig-
ure 3.11, the instruction “sw v0 v1” in the binary code is compiled from the source
code to store a variable to b[i]. Although the accessed address in the instruction is sp
implicit, b[i] is a local variable and thus locates in the local stack of the function. Thus,
the accessed address is calculated as sp+40+4∗i, where sp+40, provided by the cparser,
is the base address of the array b[8] and 4 ∗ i is the offset address of b[i], assuming the
size of an integer for the target machine is 4 bytes.

3.4.2 Addresses of Static and Global Variables

The data section stores static and global variables. Their addresses are stored in a
symbol table in the ELF file, which is provided by the debugger. The symbol table
is used to resolve the addresses related to static and global variables. In the example
of Figure 3.12, the instruction at 0x500 loads the variable arr[i]. Since arr is a global
variable, the symbol table is queried to obtain the base address 0x3010 of arr. Then, with
the help of a parser of the source code, the actual address is calculated as 0x3010 + 4∗ i.

Contents 54

 sp = 0x1000; //init of sp
 ...
 foo(...){
 sp -= 80;
 dCacheWrite(sp+76);

 dCacheRead(sp+68);
 sp += 80;
 }

annotated source code

 <foo>:
 0x14c addiu sp sp -80
 0x150 sw s2 76(sp)
 0x154 sw s1 72(sp)
 0x158 sw s0 68(sp)
 ...
 0x300 lw s2 76(sp)
 0x304 lw s1 72(sp)
 0x308 lw s0 68(sp)
 0x30c addiu sp sp 80
 0x310 jr //return

save
register
context

restore
register
context

 0x150 WRITE ADDR=sp+76
 0x154 WRITE ADDR=sp+72
 ...

extracted addresses

foo (...){
 ...
}

source code target binary codecross
compile

Figure 3.10: Stack data with sp-explicit addresses.

foo (...){
 int a[10], b[8];
 for (i;;){ ...
 b[i] = x;
 ...

 foo:
 ...
 0x3a0 sw v0 v1
 ...

foo
 a : sp
 b : sp+40
 ...

 0x3a0 WRITE ADDR=sp+40+4*i
 ...

address extraction for local variables

line ref.

syntax
info.

source code target binary codelocal variable table

extracted
addresses

Figure 3.11: Stack data with sp-implicit addresses.

3.4.3 Addresses of the Variables in the Heap

The heap section stores the dynamically allocated variables. This involves the OS sup-
port such as malloc and free, which have not been considered previously [53, 58, 60, 61].
To handle this case, the growth of the heap in the target memory space is simulated,
by the same algorithms of heap initialization and allocation used in the target operat-
ing system. As a result, the addresses returned by malloc can be directly used as the
addresses of dynamically allocated heap variables in the target binary. For example,
consider the following code snippet:

1 // extract addresses of the variables in the heap

2 1 ptr = malloc (100);

3 2 ptr_addr = OSMalloc (100); // annotated

4 3 ptr[i] = weight;

5 4 dCacheWrite(ptr_addr+i); // annotated

The malloc in line 1 will call the normal memory allocation algorithm of the host
machine. The OSMalloc in line 2 will call the same heap allocation algorithm used by

Contents 55

 int arr[100] = ...

 foo (...){
 for (i;;){ ...
 a=arr[i];
 ...

foo:
 ...
 0x500 lw v0 v1
 ...

 0x500 READ ADDR=0x3010+4*i
 ...

symbol table source code target binary code

extracted
addresses

Elf file
 arr : 0x3010
 ... syntax

info. line ref.

address extraction for global variables

Figure 3.12: Extracted addresses for memory accesses corresponding to static or
global variables.

the OS of the target machine. The resultant variable ptr addr is per se the address
of the allocated memory in the target memory space. It is then used to calculate the
address of the considered heap variable. The calculated address is then used for data
cache simulation as shown in line 4.

3.4.4 Handling Pointers

It was believed in [55] that addresses related to pointer dereference are very difficult to
be determined. Here a method to extract the addresses related to pointer dereferences
is shown. In this method, a variable is annotated to simulate the pointed address, as
exemplified by the variable ptr addr in Figure 3.13(a). At pointer assignment, the
simulated pointer address is updated. At pointer dereference, the address can thus be
annotated by using the simulated address.

The addresses become statically indefinite when they are passed as function arguments
or pointer arithmetic is used. One example of the first issue is given in Figure 3.13(b).
Function A(int *buf) takes a pointer as its input argument, which is then used to
address the variable. However, A(int *buf) can be called by different callers with
different pointer values. This means the address pointed by buf can be resolved only by
the callers during the execution of the program. To handle this, the function signature is
augmented with additional arguments. These additional arguments are placeholders for
the actual addresses, which are to be provided by the caller according to each function
call. As exemplified in the right part of Figure 3.13(b), B() calls A(int *buf) twice by
passing pointers to a local and a global variable respectively. In the annotated source
code, B() also passes corresponding addresses in each call. With them, the actual
memory accesses can be subsequently constructed in A().

When pointer arithmetic is used, the pointed address is changed. To trace the pointed
address, the value of the pointer has to be changed accordingly. In the given example
of Figure 3.13(c), buf addr holds the value of buf in the target binary. Corresponding

Contents 56

A (int *buf){
 for (i;;){
 x = *buf;
 buf++;
 ...

A (int *buf, int buf_addr){
 for (i;;){
 x = *buf;
 dc_read(buf_addr);
 buf++; buf_addr+=4;
 ...

 int buf_global[...] = ...

 A (int *buf){
 for (i;;){ ...
 x = buf[i];
 ...

 B(...){
 int buf_local[...] = ...
 A(buf_global);
 A(buf_local);
 ...

 int buf_global[...] = ...

 A (int *buf, int buf_addr){
 for (i;;){ ...
 x = buf[i];
 dc_read(buf_addr+4*i);
 ...

 B(...){
 int buf_local[...] = ...
 A(buf_global, 0x3100);
 A(buf_local, sp+400);
 ...

(b) Pass the pointer value as a function argument

(c) Simulate the pointer arithmetic

 char A[200];
 char B[200];

 if(...){ptr=A; ptr_addr=sp+400; }
 else {ptr=B; ptr_addr=sp+200; }
 ptr[i]=x; dc_write(ptr_addr+i);

 char A[200];
 char B[200];

 if(...) { ptr=A;}
 else { ptr=B;}
 ptr[i]=x;

(a) Update the pointer value

source code annotated source code

Figure 3.13: Handle different cases of pointer dereference.

to buf++, the annotated buf addr+=4 simulates the new address after the pointer incre-
ment, therefore buf addr represents the actual accessed address which can be used in
the data cache simulation.

3.5 Experimental Results

The experimental results will be presented in three parts. First, from an implementation
perspective, Section 3.5.1 describes the developed tool for automatic source code anno-
tation. It will detail the usage of this tool from the required input files, to the performed
analysis and the corresponding class diagram. Examples of generated reports will also
be given. Second, from a verification perspective, Section 3.5.2 uses the tool to annotate

Contents 57

benchmark programs. ISS-based simulation and the host-compiled simulation are car-
ried out. The estimated performances in different simulations are compared to evaluate
the present approach. Finally, from an application perspective, Section 3.5.3 presents a
complex virtual platform for an autonomous two-wheeled robot. Control algorithms run
on the hardware system to balance the robot and to follow a red line. Host-compiled
simulation is applied so that the simulation can run in real-time, while the performance
of the control algorithms can be estimated with suitable accuracy.

3.5.1 The Tool Chain and the Generated Files

The main steps when using the tool chain are depicted in Figure 3.14. Firstly, several
input files are made available for further analysis. Secondly, structural analysis is per-
formed for the CFGs of both the source code and the target binary. Thirdly, basic block
mapping takes place. Finally, the source code is annotated based on previous results.
These steps are detailed in the following.

3.5.1.1 Input Files

The tool chain requires the following files to be available:

• The original source code files to be annotated. In the examined case, the source
codes are written in C.

• The assembly code of the target binary code, which is obtained by cross-compiling
the source code.

• The line reference file provided by the binary utilities of the cross-compiler.

3.5.1.2 Performed Analysis

As shown in Figure 3.14, following analyses are performed:

• The source code file is provided to a customized C code parser based on the
pycparser [134]. This parser primarily performs two tasks:

1. It constructs the control-flow graphs of the parsed source code functions.

2. It extracts syntax information such as the function signature and the local
variables.

• The target assembly code is also parsed by a parser which primarily performs two
tasks:

1. It constructs the control-flow graphs of the parsed binary code functions.
To do this, it parses the target instructions for the branch instructions and
subsequently identifies the entry and exit instructions for all the basic blocks.

2. It performs static analysis for each basic block of the target binary code. This
provides the estimated execution cycles of each binary basic block.

Contents 58

ParsingParsing

 void Task1{
 while(!flag){
 k1=arr[idx];
 ...

0000008c <Task1>:
 8c: addiu sp,sp,-24
 90: sw s0,16(sp)

file_name line address
App.c 46 0x8c
App.c 57 0x94
...

Source Code Target Binary Code Line Reference

read-elf

Mapping

Annotation

 void Task1{
 sp -= 24;
 cyc += 14;
 dCacheWr(sp+16); ...
 while(!flag){
 ...

Annotated Source Code

Annotation

cross compile

CFG analysisCFG analysis Performance analysis

Figure 3.14: Main structure of the tool chain

• Given a control-flow graph (CFG) of the source code or the target binary code,
the CFG analyzer performs structural analysis of the CFGs. It then and assigns
corresponding structural properties to each node of a CFG. Performed analyses
include:

(a) Dominance analysis.

(b) Post-dominance analysis.

(c) Loop analysis.

(d) Control dependency and intra-loop control dependency analysis.

(e) Extracting the structural properties for each basic block based on the above
structural analysis.

• With the extracted structural properties, the mapper is used to complete the
basic block mapping by matching those properties as described in Section 3.2.
Finally, based on the basic block mapping and the static performance analysis,
the annotator generates the annotated source code.

For introducing the implementation details, a diagram of several main classes used in
the tool-chain is illustrated in Figure 3.15. In this diagram, the B-parser instantiates
a set of functions that are parsed from the target binary code. Each function instance
contains a set of basic blocks which further consists of a set of instructions. A function
instance also owns a control flow graph instance whose nodes and edges represent the

Contents 59

+ functions : list
+ asmFile : file
+ elfFile: file
......

+ label : string
+ bbs: list
+ cfg: obj
+ reportDir: string

+ label : string
+ entryAddress : hex
+ exitAddress : hex
+ instructions : list
+ targetAddress : list
+ isBranchBB : bool
+ annotationInfo : string
+ lineReference : list
+ sbbByLineRef : list
+ sbbOfBranch : list
+ cfgProperty : dict
+ cfgPropertyB2S : dict
+ mappingInfo : list

+ getLabel()
......

Binary BBBinary FunctionB Parser

+ parse()
......

+ getBBList()
......

+ functions : list
+ cFile : file
......

+ label : string
+ bbs: list
+ signature: obj
+ locals: list
+ callee: list
+ entryLine: string
+ exitLine: string
+ cfg: obj
+ reportDir: string

+ label : string
+ lines: list
+ functionCalls: list
+ branchStack: list
+ isBranchBB : bool
+ hasBraces: bool
+ cfgProperty : dict
+ cfgNode : obj
+ mappingInfo : list
+ annotationInfo : string

+ returnType: string
+ args: list
...

+ getLabel()
......

Source BBC FunctionC Parser Function Signature

+ parse()
......

+ getBBList()
......

+ type: string
+ name: string
+ line: int

Local Variable

+ nodes: list
+ edge: list
+ loops: list
+ domTree : obj
+ postDomTree : obj
+ CDG: obj
+ hammocks: list

CFG

+ cfgAnalysis()
......

+ name: string
+ title: string

LatexReporter

+ addFigure()
+ addTable()
......

+ raw: string
+ addr: hex
+ code: string
+ regs: list
+ lineReference: list
+ isBranchBB : bool
+ memRead: bool
+ memWrite: bool
+ annotationInfo : string

Instruction

+ getInstAddr()
......

+ label: string
+ dominators: set
+ postDominators: set
+ loopMember: set
+ dependentOn: set
+ parents: list
+ children: list
+ cfgProperty: dict

CFG Node

+ getLabel()
......

+ label: string
+ head: string
+ tail: string
+ type: int
+ isBackEdge: bool

CFG Edge

+ setType()
......

+ label: string
+ headNodes: list
+ exitNodes: list
+ naturalLoop: set
+ latchingNodes: set
+ entryEdges: set
+ exitEdges: set

CFG Loop

+ getExitNodes()
......

Binary
code
parsing

Source
code
parsing

Report
generation

Control
flow
analysis

Figure 3.15: A diagram showing the main classes for the parsing and CFG analysis.

basic blocks of this function and their connections. The CFG class implements the
structural analyses previously described. The report class in the diagram can be used
by a function instance to convert the analysis results into figures or tables in a latex
file that is further compiled a pdf format report. Similar steps also hold for the source
code parsing and analysis. Examples of the generated reports are given in the following
Section.

3.5.1.3 Automatically Generated Reports

The generated reports are exemplified here with the analysis of a function called edge.
In the following reports, basic block i in the source code is denoted by sbi. A loop in
the source code is denoted by loop sbi where sbi is the head node of this loop. Similarly,
basic block j in the binary code is denoted by bbj.

Contents 60

From the source code, the parser extracts syntactic information such as the local vari-
ables and the branch conditions. Corresponding reports are given in Table 3.3 and
Table 3.4 respectively. The local variables are used in determining the memory access
addresses for data located in the local stack of the function as described in Section 3.4.
The compound branch conditions are used in handling the complex branches in the tar-
get binary code. Several branch basic block in the CFG of the target binary code can
be regarded as a single basic block if they are all compiled from a compound branch in
the source code.

After parsing, the control-flow graph of this function can be generated, as shown in
Figure 3.16. Structural analysis of this control-flow graph is performed, resulting in
several reports including a dominance graph, a post-dominance graph, the loop analysis,
the intra-loop control dependency graph, and the structural properties of the basic
blocks. These reports are given in Figure 3.17, Figure 3.18, Table 3.5, Figure 3.19, and
Table 3.7, respectively. In the property Table 3.7, the columns Pm, Pb, and Pc correspond
to the examined structural properties defined in Section 3.2. The column Psc gives the
controlling nodes obtained according to the standard control dependency. Notice that
the loop analysis can merge two loops in case they have the same head node. This is
the case for the merged loop with the head node sb8. The natural loop of the merged
loop is the union of that of the two loops.

The CFG of the target binary code is shown in Figure 3.20. As has been shown for the
source code CFG, analysis of the control-flows is performed. The obtained structural
properties of the basic blocks are listed in Table 3.8. The translated properties are
shown in Table 3.9. They are derived according to the procedure in Section 3.3.2 and

Table 3.3: Parsed local variables

variable type variable name line number

int i 73

int j 73

int n1 73

int n2 73

int iWid 74

int iLen 74

int k1 75

int k2 75

char ch 76

char unsigned ** w 77

char unsigned * temp 78

char unsigned tmp 78

int y1 79

int y2 79

int unsigned zn2 80

int [3] buf 90

int numCharIn 97

int numCharOut 98

Contents 61

Table 3.4: Control node list in the function

node type condition compound line

sb2 for n1 < iLen No 99

sb3 for j < iWid No 102

sb5 for n2 < iWid No 111

sb7 for k1 <= 1 No 116

sb8 for k2 <= 1 No 119

sb9 if ((n2 + k2) < 0) || (((n2 + k2) - 1) > iWid) Yes 120

sb12 if y1 < 0 No 129

sb14 if y2 < 0 No 132

sb16 if y1 > y2 No 135

Table 3.5: Loop analysis results

loop back edges natural loop entry edges exit edges

loop sb3 (sb4,sb3) {sb3,sb4} (sb2,sb3) (sb3,sb5)

loop sb7 (sb8,sb7) {sb8,sb9,sb10,sb7,sb11} (sb6,sb7) (sb7,sb12)

loop sb8 (sb10,sb8)(sb11,sb8) {sb10,sb11,sb8,sb9} (sb7,sb8) (sb8,sb7)

{sb6,sb7,sb5,sb8,sb9,sb14,

loop sb5 (sb19,sb5) sb15,sb16,sb17,sb10,sb11, (sb3,sb5) (sb5,sb20)

sb12,sb13,sb18,sb19}
{sb2,sb3,sb6,sb7,sb4,sb5,

loop sb2 (sb20,sb2) sb8,sb9,sb20,sb14,sb15, (sb1,sb2) (sb2,sb21)

sb16,sb17,sb10,sb11

sb12,sb13,sb18,sb19}

Section 3.3.3. As can be seen, these properties are represented using the source code
basic blocks or loops, thus they can be compared against those in Table 3.7. Now, the
procedure in Section 3.3 can be carried out. It checks the properties for the considered
basic blocks in Table 3.7 and Table 3.9, and determines the basic block mapping. Re-
sults of the successively selected matching sets in this mapping procedure are given in
Table 3.10. They correspond to the selection process described in Section 3.3.5.

Several remarks can be made for the above analysis and results. Firstly, the standard
control dependency is very different from the intra-loop control dependency introduced
in this work. This difference can be seen in Table 3.7 and Table 3.8, where the last two
columns in each table differ from each other. The reason for this difference is that, the
standard control dependency is derived from the overall CFG and takes into account
the control dependency of a basic block on another one which can have a different loop
membership. For an optimized binary code, this CFG-wide control dependency often
does not match to that in the source code, as shown in this example. Therefore, if the
mapping procedure compares the standard control dependency, the mapping of many
binary basic blocks will not be found. In contrast, the intra-loop control dependency is

Contents 62

well preserved across the source code and the optimized binary code, thus contributing
to a successful basic block mapping.

Secondly, after applying all the selection steps, there can still be multiple candidate
source code blocks. For example, the basic block bb4 has the same properties with sb3
and sb4. It also has line references from both of them. In this case, bb4 will be mapped
to only one of them, but not both. The final mapping for bb4 is sb3, since both of them
are the exit nodes of the corresponding loops. In other cases, if the multiple candidates
are sequential to each other, only one of them will be selected. Two basic blocks are
sequential to each other, if any path from the entry to the exit of the code either visits
both or none of them. This condition can be identified, if the first one dominates the
second one and the second one post-dominates the first one. From the perspective of
performance estimation, putting the annotated codes in either of the two sequential
basic blocks would provide same result.

Thirdly, although a mapping is usually found after matching the properties, there may be
exceptions. One reason is due to erroneous line references. As can be seen in Figure 3.21,
the line reference for bb12, bb13, and bb19 is sb7, which is wrong. Therefore, matching
the intra-loop control dependency of bb19 and bb13 would map them to sb7, as shown
in the first column of Table 3.10. But this mapping is revoked after further checking
the loop membership as seen in the second column of Table 3.10, since bb19 and sb7
have different loop memberships. In the end, according to step 4 in Section 3.3.5, they
are mapped to sb13 and sb13a respectively, where sb13a is an added else block as a
place-holder for annotation. The wrong line references for bb13 and bb19 also lead to a
mapping from bb14 to sb12, instead of to the correct one sb16. This would not affect the
accumulated performance estimation, since sb12 and sb16 are sequential to each other.
It has been observed in practice that the line reference of one instruction can incorrectly
overwrite that of another instruction, as a side effect after certain optimization technique
has been applied. This problem of wrong line reference is believed to be a bug of the
compiler or the debugging utilities. Some researchers have considered this issue by
correcting those incorrect line references [135]. Another seemingly more effective way to
fix this bug is to directly modify the tool-chain of the cross compiler.

Contents 63

Entry

sb1

Exit

sb2

sb3 sb21

sb4sb5

sb6 sb20

sb7

sb8 sb12

sb9

sb10

T

sb11

F

sb13

T

sb14

F

sb15

T

sb16

F

sb17

T

sb18

F

sb19

Figure 3.16: Control-flow graph of the source code

Contents 64

Entry

sb1 Exit

sb2

sb3 sb21

sb4 sb5

sb6 sb20

sb7

sb8 sb12

sb9 sb13 sb14

sb10 sb11 sb15 sb16

sb17 sb18 sb19

Figure 3.17: The dominance graph

Contents 65

Exit

Entry sb21

sb2

sb1 sb20

sb5

sb3 sb19

sb4 sb16 sb17 sb18

sb14 sb15

sb12 sb13

sb7

sb6 sb8

sb9 sb10 sb11

Figure 3.18: The post-dominance graph

Contents 66

{ loop_sb2,
 loop_sb5,
 loop_sb7,
 loop_sb8 }

{ loop_sb2,
 loop_sb3 }

{}

{ loop_sb2,
 loop_sb5,
 loop_sb7 }

{ loop_sb2,
 loop_sb5 }

{ loop_sb2}

Intra-loop
control
dependency
graphs

Loop
m

em
berships

F
ig
u
r
e
3
.1
9
:

A
set

o
f

g
en

era
ted

in
tra

-lo
o
p

co
n
tro

l
d

ep
en

d
en

cy
grap

h
s.

Contents 67

Entry

Exit

bb1

bb2

bb4

bb3 bb5

bb6

bb7

bb8

bb9

bb10

bb11

bb12

bb13 bb19

bb14

bb20

bb15

bb16

bb17

bb18

Figure 3.20: Control-flow graph of the target binary code

Contents 68

Source code CFGBinary code CFG

sENTRY

sb1

sEXIT

sb2

sb3sb21

sb4 sb5

sb6 sb20

sb7

sb8 sb12

sb9

sb10

T

sb11

F

sb13

T

sb14

F

sb15

T

sb16

F

sb17

T

sb18

F

sb19

bENTRY

bb1

bEXIT

bb2

bb4

bb3 bb5

bb6

bb7

bb8

bb9

bb10

bb11

bb12

bb13 bb19

bb14

bb20

bb15

bb16

bb17

bb18

Figure 3.21: Line references

Contents 69

Source code CFGBinary code CFG

sENTRY

sb1

sEXIT

sb2

sb3 sb21

sb4 sb5

sb6 sb20

sb7

sb8 sb12

sb9

sb10

T

sb11

F

sb13

T

sb13a

F

sb14

sb15

T

sb16

F

sb17

T

sb18

F

sb19

bENTRY

bb1

bEXIT

bb2

bb4

bb3 bb5

bb6

bb7

bb8

bb9

bb10

bb11

bb12

bb13 bb19

bb14

bb20

bb15

bb16

bb17

bb18

Figure 3.22: Resulted basic block mapping graph

Contents 70

Table 3.6: Structural properties of the basic blocks

node label Pm Pc Pb

Entry {} {} Entry

sb1 {} {Entry} Entry

sb2 {loop sb2} {sb2,Entry} Entry

sb3 {loop sb2,loop sb3} {sb2,sb3} sb2

sb4 {loop sb2,loop sb3} {sb3} sb3

sb5 {loop sb5,loop sb2} {sb2,sb5} sb3

sb6 {loop sb5,loop sb2} {sb5} sb5

sb7 {loop sb7,loop sb5,loop sb2} {sb7,sb5} sb5

sb8 {loop sb7,loop sb5,loop sb2,loop sb8} {sb8,sb7} sb7

sb9 {loop sb7,loop sb5,loop sb2,loop sb8} {sb8} sb8

sb10 {loop sb7,loop sb5,loop sb2,loop sb8} {sb9} sb9

sb11 {loop sb7,loop sb5,loop sb2,loop sb8} {sb9} sb9

sb12 {loop sb5,loop sb2} {sb5} sb7

sb13 {loop sb5,loop sb2} {sb12} sb12

sb14 {loop sb5,loop sb2} {sb5} sb12

sb15 {loop sb5,loop sb2} {sb14} sb14

sb16 {loop sb5,loop sb2} {sb5} sb14

sb17 {loop sb5,loop sb2} {sb16} sb16

sb18 {loop sb5,loop sb2} {sb16} sb16

sb19 {loop sb5,loop sb2} {sb5} sb16

sb20 {loop sb2} {sb2} sb5

sb21 {} {Entry} sb2

Exit {} {} Entry

Contents 71

Table 3.7: Source node properties

label Pm Pb Psc Pc

sb1 {} Entry {Entry} {Entry}
sb2 {loop sb2} Entry {sb2, Entry} {sb2}
sb3 {loop sb2, loop sb3} sb2 {sb2, sb3} {sb3}
sb4 {loop sb2, loop sb3} sb3 {sb3} {sb3}
sb5 {loop sb5, loop sb2} sb3 {sb2, sb5} {sb5}
sb6 {loop sb5, loop sb2} sb5 {sb5} {sb5}
sb7 {loop sb7, loop sb5, loop sb2} sb5 {sb7, sb5} {sb7}
sb8 {loop sb7, loop sb5, loop sb2, loop sb8} sb7 {sb8, sb7} {sb8}
sb9 {loop sb7, loop sb5, loop sb2, loop sb8} sb8 {sb8} {sb8}
sb10 {loop sb7, loop sb5, loop sb2, loop sb8} sb9 {sb9} {sb9}
sb11 {loop sb7, loop sb5, loop sb2, loop sb8} sb9 {sb9} {sb9}
sb12 {loop sb5, loop sb2} sb7 {sb5} {sb5}
sb13 {loop sb5, loop sb2} sb12 {sb12} {sb12}
sb14 {loop sb5, loop sb2} sb12 {sb5} {sb5}
sb15 {loop sb5, loop sb2} sb14 {sb14} {sb14}
sb16 {loop sb5, loop sb2} sb14 {sb5} {sb5}
sb17 {loop sb5, loop sb2} sb16 {sb16} {sb16}
sb18 {loop sb5, loop sb2} sb16 {sb16} {sb16}
sb19 {loop sb5, loop sb2} sb16 {sb5} {sb5}
sb20 {loop sb2} sb5 {sb2} {sb2}
sb21 {} sb2 {Entry} {Entry}

Contents 72

T
a
b
l
e
3
.8
:

B
in

a
ry

n
o
d

e
p

ro
p

erties

lab
el

P
m

P
b

P
sc

P
c

b
b

1
{}

E
n
try

{E
n
try}

{E
n
try}

b
b

2
{
lo

op
b

b
2}

E
n
try

{E
n
try,

b
b

17}
{b

b
17}

b
b

3
{
lo

op
b

b
2,

lo
o
p

b
b

4}
b

b
4

{b
b

4}
{b

b
4}

b
b

4
{
lo

op
b

b
2,

lo
o
p

b
b

4}
E

n
try

{E
n
try,

b
b

4,
b

b
17}

{b
b

4}
b

b
5

{
lo

op
b

b
2}

b
b

4
{E

n
try,

b
b

17}
{b

b
17}

b
b

6
{
lo

op
b

b
2,

lo
o
p

b
b

6}
b

b
4

{E
n
try,

b
b

17,
b

b
16}

{b
b

16}
b

b
7

{
lo

op
b

b
2,

lo
o
p

b
b

7,
lo

op
b

b
6}

b
b

4
{E

n
try,

b
b

11,
b

b
17,

b
b

16}
{b

b
11}

b
b

8
{
lo

op
b

b
2,

lo
o
p

b
b

8,
lo

op
b

b
7,

lo
op

b
b

6}
b

b
4

{E
n
try,

b
b

11,
b

b
10,

b
b

17,
b

b
16}

{b
b

10}
b

b
9

{
lo

op
b

b
2,

lo
o
p

b
b

8,
lo

op
b

b
7,

lo
op

b
b

6}
b

b
8

{b
b

8}
{b

b
8}

b
b

1
0
{
lo

op
b

b
2,

lo
o
p

b
b

8,
lo

op
b

b
7,

lo
op

b
b

6}
b

b
8

{E
n
try,

b
b

11,
b

b
10,

b
b

17,
b

b
16}

{b
b

10}
b

b
1
1
{
lo

op
b

b
2,

lo
o
p

b
b

7,
lo

op
b

b
6}

b
b

10
{E

n
try,

b
b

11,
b

b
17,

b
b

16}
{b

b
11}

b
b

1
2
{
lo

op
b

b
2,

lo
o
p

b
b

6}
b

b
11

{E
n
try,

b
b

17,
b

b
16}

{b
b

16}
b

b
1
3
{
lo

op
b

b
2,

lo
o
p

b
b

6}
b

b
12

{b
b

12}
{b

b
12}

b
b

1
4
{
lo

op
b

b
2,

lo
o
p

b
b

6}
b

b
12

{E
n
try,

b
b

17,
b

b
16}

{b
b

16}
b

b
1
5
{
lo

op
b

b
2,

lo
o
p

b
b

6}
b

b
14

{b
b

14}
{b

b
14}

b
b

1
6
{
lo

op
b

b
2,

lo
o
p

b
b

6}
b

b
14

{E
n
try,

b
b

17,
b

b
16}

{b
b

16}
b

b
1
7
{
lo

op
b

b
2}

b
b

16
{E

n
try,

b
b

17}
{b

b
17}

b
b

1
8
{}

b
b

17
{E

n
try}

{E
n
try}

b
b

19
{
lo

op
b

b
2,

lo
o
p

b
b

6}
b

b
12

{b
b

12}
{b

b
12}

b
b

2
0
{
lo

op
b

b
2,

lo
o
p

b
b

6}
b

b
12

{b
b

13,
b

b
19}

{b
b

13,
b

b
19}

Contents 73

T
a
b
l
e
3
.9
:

B
in

ar
y

n
o
d

e
p

ro
p

er
ti

es
tr

a
n

sl
a
te

d
a
cc

o
rd

in
g

to
S

ec
ti

o
n

3
.3

.2
a
n

d
3
.3

.3

la
b

el
P
m

P
b

P
sc

P
c

b
b

1
{}

E
n
tr

y
{E

n
tr

y
}

{E
n
tr

y
}

b
b

2
{l

o
op

sb
2}

E
n
tr

y
{E

n
tr

y,
sb

2
}

{s
b

2}
b

b
3

{l
o
op

sb
2,

lo
op

sb
3}

sb
3

{s
b

3
}

{s
b

3}
b

b
4

{l
o
op

sb
2,

lo
op

sb
3}

E
n
tr

y
{E

n
tr

y,
sb

3,
sb

2
}

{s
b

3}
b

b
5

{l
o
op

sb
2}

sb
3

{E
n
tr

y,
sb

2
}

{s
b

2}
b

b
6

{l
o
op

sb
2,

lo
op

sb
5}

sb
3

{E
n
tr

y,
sb

2,
sb

5
}

{s
b

5}
b

b
7

{l
o
op

sb
2,

lo
op

sb
7,

lo
op

sb
5}

sb
3

{E
n
tr

y,
sb

7,
sb

2,
sb

5}
{s

b
7}

b
b

8
{l

o
op

sb
2,

lo
op

sb
8,

lo
op

sb
7,

lo
op

sb
5}

sb
3

{E
n
tr

y,
sb

7,
sb

8,
sb

2,
sb

5}
{s

b
8}

b
b

9
{l

o
op

sb
2,

lo
op

sb
8,

lo
op

sb
7,

lo
op

sb
5}

sb
9

{s
b

9
}

{s
b

9}
b

b
1
0
{l

o
op

sb
2,

lo
op

sb
8,

lo
op

sb
7,

lo
op

sb
5}

sb
9

{E
n
tr

y,
sb

7,
sb

8,
sb

2,
sb

5}
{s

b
8}

b
b

1
1
{l

o
op

sb
2,

lo
op

sb
7,

lo
op

sb
5}

sb
8

{E
n
tr

y,
sb

7,
sb

2,
sb

5}
{s

b
7}

b
b

1
2
{l

o
op

sb
2,

lo
op

sb
5}

sb
7

{E
n
tr

y,
sb

2,
sb

5
}

{s
b

5}
b

b
1
3
{l

o
op

sb
2,

lo
op

sb
5}

sb
7

{s
b

7
}

{s
b

7}
b

b
1
4
{l

o
op

sb
2,

lo
op

sb
5}

sb
7

{E
n
tr

y,
sb

2,
sb

5
}

{s
b

5}
b

b
1
5
{l

o
op

sb
2,

lo
op

sb
5}

sb
16

{s
b

16
}

{s
b

16
}

b
b

1
6
{l

o
op

sb
2,

lo
op

sb
5}

sb
16

{E
n
tr

y,
sb

2,
sb

5
}

{s
b

5}
b

b
1
7
{l

o
op

sb
2}

sb
5

{E
n
tr

y,
sb

2
}

{s
b

2}
b

b
1
8
{}

sb
2

{E
n
tr

y
}

{E
n
tr

y
}

b
b

19
{l

o
op

sb
2,

lo
op

sb
5}

sb
7

{s
b

7
}

{s
b

7}
b

b
2
0
{l

o
op

sb
2,

lo
op

sb
5}

sb
7

{s
b

7,
sb

7
}

{s
b

7,
sb

7
}

Contents 74

T
a
b
l
e
3
.1
0
:

P
ro

g
ressively

selected
m

a
p

p
in

g
sets

la
b

el
σ
φ
c

σ
φ
m

σ
φ
b

σ
φ
r

fi
n

al
m

ap
p

in
g

b
b

1
sb

1
,

sb
21

sb
1,

sb
21

sb
1

sb
1

b
b

2
sb

2
,

sb
20

sb
2,

sb
20

sb
2

sb
2

b
b

3
sb

3
,

sb
4

sb
3,

sb
4

sb
4

sb
4

b
b

4
sb

3
,

sb
4

sb
3,

sb
4

sb
3,

sb
4

sb
3

b
b

5
sb

2
,

sb
20

sb
2,

sb
20

sb
2

b
b

6
sb

5
,

sb
6,

sb
1
2
,

sb
1
4
,

sb
1
6,

sb
19

sb
5,

sb
6,

sb
12,

sb
14,

sb
16,

sb
19

sb
5

sb
5

b
b

7
sb

7
sb

7
sb

7

b
b

8
sb

8
,

sb
9

sb
8,

sb
9

sb
9

sb
9

b
b

9
sb

1
0
,

sb
1
1

sb
10,

sb
11

sb
10,

sb
11

sb
11

sb
11

b
b

10
sb

8
,

sb
9

sb
8,

sb
9

sb
8

sb
8

b
b

11
sb

7
sb

7
sb

7

b
b

12
sb

5
,

sb
6,

sb
1
2
,

sb
1
4
,

sb
1
6,

sb
19

sb
5,

sb
6,

sb
12,

sb
14,

sb
16,

sb
19

sb
12

sb
12

b
b

13
sb

7

b
b

14
sb

5
,

sb
6,

sb
1
2
,

sb
1
4
,

sb
1
6,

sb
19

sb
5,

sb
6,

sb
12,

sb
14,

sb
16,

sb
19

sb
12

sb
12

b
b

15
sb

1
7
,

sb
1
8

sb
17,

sb
18

sb
17,

sb
18

sb
17

sb
17

b
b

16
sb

5
,

sb
6,

sb
1
2
,

sb
1
4
,

sb
1
6,

sb
19

sb
5,

sb
6,

sb
12,

sb
14,

sb
16,

sb
19

sb
19

sb
19

b
b

17
sb

2
,

sb
20

sb
2,

sb
20

sb
20

sb
20

b
b

18
sb

1
,

sb
21

sb
1,

sb
21

sb
21

sb
21

b
b

19
sb

7

b
b

20
sb

7

Contents 75

3.5.2 Benchmark Simulation

3.5.2.1 Evaluation of the Method for Basic Block Mapping

An example of generated basic block mapping is shown in Figure 3.23. Two mapping
results generated by two different methods for the same jdct program are given in Fig-
ure 3.23(a) and Figure 3.23(b) respectively. In both parts, the sub-graph Gs and Gb

represent the CFG of the source code and the binary code respectively. The edges from
the nodes in Gb to the nodes in Gs represent the mapping edges. As can be seen in the
left part, the line reference becomes ambiguous due to compiler optimization. For exam-
ple, the basic block nb2 and nb5 in the target binary code contains instructions compiled
from multiple source code blocks that are in different loops. By matching the intra-
loop control dependency, the annotation position of each binary basic block is correctly
resolved as seen in the right part. Matching the dominators would not yield a good
mapping. For nb3, its dominator is nb2 which is not a branch node. Most instructions of
nb2 are compiled from ns3 which dominates ns4. However, mapping nb3 to ns4 to preserve
the dominance is incorrect, because ns4 is in the innermost loop while nb3 is not. Simply
using the line reference to map nb3 to ns3 is not always reliable, because it could also have
line references to ns4 in other cases. It is only through checking the intra-loop control
dependency that a robust mapping can be achieved.

Exit Exit

a. b.

ns
1

ns
2

ns
3

ns
4

ns
5ns

6

ns
7

ns
1

ns
2

ns
3

ns
4

ns
5ns

6

ns
7

nb
1

nb
2

nb
3

nb
4

nb
5

nb
6

nb
7nb

8

nb
1

nb
2

nb
3

nb
4

nb
5

nb
6

nb
7 nb

8

GbGs GbGs

Figure 3.23: Mapping graph for the jdct program: a) the mapping edges according
to the line reference file; b) the mapping graph generated by the present approach

Contents 76

In the simulation, the HW system is modeled in SystemC at transaction-level. As the
reference model, an interpretive ISS from [136] is used, which supports MIPS ISA. Firstly,
the programs are cross-compiled with optimization level O2 and simulated by the ISS.
Then the annotated programs provided by the present approach are directly compiled
for the simulation host, which is an Intel quadcore 2.33GHz machine running Linux. The
simulated cycles in the ISS simulation and host-compiled simulation are compared, which
are summarized in Table 3.11. The column rHCS, dHCS and cHCS correspond to the
host-compiled simulation (HCS) using line reference based mapping, dominance relation
based mapping and the intra-loop control dependency based mapping respectively. The
line reference based mapping maps a binary basic block to the source basic block from
which most its instructions are compiled from. Compared to the ISS simulation, the
simulated cycles for certain simple programs such as iir and r2y can be well estimated
by all three types of mapping. However, for more complex programs, the line reference
mapping gives large estimation error. Dominance based mapping is not robust against
compiler optimization, and the corresponding annotated source code can not be used as
a reliable performance model. This can be seen by the large estimation error for the edge
program. For the aes program, although the overall estimated cycles are close to the ISS
simulation for the dominance based mapping, the timing is actually not well estimated
for the internally called functions. In the simulation using the present approach, not
only the overall timing but also the internal timing are correctly estimated. This is
proved by a vcd file tracing all the start and end times of the called functions.

Table 3.11: Comparison of simulated cycles.

SW ISS rHCS err.(%) dHCS err.(%) cHCS err.(%)

iir 98590 98481 -0.1 98481 -0.1 98481 -0.1

r2y 134159 132919 -0.92 132919 -0.92 132919 -0.92

fir 233939 248910 -12.9 226740 0.57 233448 -0.2

jpegdct 97418 69247 -27.4 101078 5.9 97475 0.06

isort 89910 109295 22.3 90469 1.2 89996 0.1

aes 12896 10947 15.1 12952 0.43 12867 0.22

edge 1046074 1316336 26.04 804189 -23 1050527 -1.32

Table 3.12: Comparison of data cache simulation accuracy

$I: Naccess/Nmiss $D: Nread/Nwrite/Nmiss

SW ISS cHCS ISS cHCS

iir 76229/13 76226/13 15257 / 5256 / 71 15257 / 5256 / 69

r2y 114772/19 114772/18 2057 / 2063 / 517 2057 / 2061 / 518

fir 189980/13 189731/13 30254 / 1903 / 424 30254 / 1902 / 427

jpegdct 66877/45 66895/45 16261 / 11256 / 99 16261 / 11203 / 100

isort 73139/6 73177/6 8146 / 7953 / 26 8152 / 7953 / 27

aes 7551/71 7564/70 1665 / 1160 / 49 1676 / 1159 / 51

edge 879263/16 880443/15 155019 / 8397 / 281 155081 / 8396 / 279

Contents 77

(a) ISS-based simulation of the rgb2yuv program.

(b) cHCS simulation of the rgb2yuv program.

Figure 3.24: Traced transactions over bus during the execution of rgb2yuv.

3.5.2.2 Reconstructed Memory Accesses

To examine the annotated memory accesses and cache simulation, the transactions over
the bus are traced. Other statistics are also examined, including the memory access count
and cache miss count. The statistics are given in Table 3.12. From these results, it can be
seen that host-compilation with annotated source code achieves almost identical cache
access numbers and miss rates as compared to the ISS simulation. This indicates that
the memory accesses are annotated at the proper positions. For example, ISS simulation
shows that there are 30254 and 1903 data cache read and write operation in the program
fir(). Similar numbers are measured in host-compiled simulation. Moreover, it also
indicates that the memory access addresses are properly reconstructed. To further prove
that the reconstructed memory addresses are correct, the incidence times of the cache
misses are examined in the traced transactions. Similar bus access patterns are observed
in both the ISS and host-compiled simulation of all the programs. This feature is also
useful to arbitrate conflicting transactions in multi-processor simulation. For example,
Figure. 3.24 shows the traced transactions for the program rgb2yuv, together with the
start and end of the executed functions. In this program, a color conversion algorithm is
performed on an image buffer. Then the converted frame is written to an output buffer,
which is dynamically allocated in the heap. It can be seen that the bus access patterns
in both simulations show high agreement. Another example is given in Figure 3.25,
showing the traced transactions when simulating the edge program, which detects edges
from an image frame. High resemblance of the pattern of transactions is again observed
in both simulations. Similar observation also holds for other programs.

Additionally, the accessed memory addresses have been traced in the ISS-based simula-
tion and the host-compiled simulation. Comparing the addresses in the two simulations
shows that in most cases the annotated addresses in host-compiled simulation equal
those in ISS simulation. A few address discrepancies occur within some inlined func-
tions where the binary codes of an inlined function and its caller are together optimized
and the debugger gives wrong source-line references for a few instructions. However,
overall the estimated cache miss rate and pattern exhibit suitably accuracy. This proves
that the memory accesses are successfully reconstructed. The simulation speed-up is
shown in Table 3.13. The speed-up over ISS simulation ranges from 16 up to 87. If it is
not necessary to trace the occurrence time of the transactions, then the source code can
be simulated without calling the wait statement for timing synchronization before in-
voking a transactions. Doing so will further improve the simulation speed-up. Designers
can decide how the simulation should be performed.

Contents 78

(a) ISS-based simulation of the edge program.

(b) cHCS simulation of the edge program.

Figure 3.25: Traced transactions over bus during the execution of edge.

Table 3.13: Speed-up of host-compiled simulation over ISS simulation.

SW fir iir jdct isort aes r2y edge

speed-up 55 61 36 46 16 44 87

3.5.3 Case Study: An Autonomous Two-Wheeled Robot

A virtual platform is developed in this case study to simulate an autonomous two-
wheeled robot. The robot needs to navigate in a virtual 3D environment by following
a red line. This is realized by several tasks that control the direction and balance of
the robot. Host-compiled simulation is applied for fast development and simulation of
the controlling tasks in the software. The main components of the simulation platform
are given in Figure 3.26(a). The dashed block shows the hardware and software compo-
nents, which are prototyped in SystemC and TLM 2.0. The employed ISS supports the
OpenRISC architecture. It is wrapped in a TLM model of the hardware system. Details
of the implementation can be found in [137].

The main controlling tasks are shown in Figure 3.26(b). The pathControl task deter-
mines the new heading direction and velocity of the robot. It is executed after each
received camera frame. During its executions, transactions are sent over the bus to read
the sensor values. The motionControl [138] task balances the robot and calculates the
torque values of the two wheels to achieve the targeted heading direction and velocity.
It is executed periodically, for example every 3ms. During its execution, it reads the
sensors and writes the actuators via transactions. The SW is compiled with the opti-
mization level O2. The overall temporal order of the executed software tasks is sketched
in Figure 3.26(c). The most complex and timing critical task is the pathControl, which
contains 7 loops and 100+ basic blocks. Once it completes, the new heading direction
and velocity are updated, which will subsequently be used in the motionControl to
calculate the new torque values sent to the actuator of each wheel. In this case, timing
becomes indispensable to assess the effectiveness and quality of the control task.

3.5.3.1 Simulation Results

In the study of the control tasks of the robot, the designer needs to simulate many
different shapes of lines, environments and system configurations. Each simulation takes
millions of cycles to simulate, therefore timed host-compiled simulation is especially

Contents 79

physical
model

sensors

actuators

real-time
control SWcameraJava virtual

environment

Timer ISR

Camera ISR

RGB channel splitting pixel thresholding path detection velocity/orientation control

motion control (balancing)

frame fetching

(a)

(b)

motionControl() pathControl()

motionControl

pathControl

frame 1 frame 2

Camera IRQ

Timer IRQ

fetchFrame

(c)

Figure 3.26: The virtual simulation platform: (a) Main components in the platform;
(b) Software tasks that run on the underlying hardware system; (c) Illustration of the

execution order of the software tasks

necessary in this long-scenario simulation. To evaluate the usefulness of timed host-
compiled simulation, the following aspects are considered: (1) It should be able to reveal
the correct system dynamics of the robot. (2) It should be able to provide approximate
timing estimation. (3) It should be sufficiently fast, so that the simulation can be
carried out in real time. In the experiment, the physical status parameters of the robot
and the timing of the control tasks are traced in both ISS-based simulation and timed
host-compiled simulation (HCS) for comparison.

In the first experiment, the robot needs to follow a line in an in-door environment. The
simulated x-y coordinates of the robot are given in Figure 3.27(a). These curves lie
in close proximity to the red line that the robot is supposed to follow. This verifies
the functional correctness of the line recognition and path control algorithm. Besides
the functional verification, designers also need to inspect physical status of the robot
to better evaluate the quality of the control algorithm. For example the pitch angle
can provide information regarding the stability of the robot. The results regarding the
physical status parameters of the robot are given in Figure 3.27(b), Figure 3.27(c), and

Contents 80

0 2 4 6 8 10 12 14 16 18

−6

−4

−2

0

x(m)

y
(m

)

ISS HCS

(a) Position

0 50 100 150 200

−0.1

0

0.1

index of sampled frame

p
it
ch

an
gl
e
(r
a
d
)

ISS utHCS tHCS

(b) Pitch angle

0 50 100 150 200

−10

−5

0

index of sampled frame

or
ie
n
ta
ti
on

an
gl
e
(r
a
d
)

ISS HCS

(c) Orientation angle

0 50 100 150 200

0

1

2

index of sampled frame

ve
lo
ci
ty

(m
/s
)

ISS utHCS tHCS

(d) Velocity

Figure 3.27: Experiment using line 1: Simulated status parameters of the robot.

Figure 3.27(d), which plot the pitch angle, the orientation angle and the velocity of the
robot, respectively. It can been seen that the fluctuation of the curves shows suitable
agreement with that in ISS-based simulation. Similar consistency is observed for other
parameters, including the torque values sent by the motion control task to the actuators.

In the second experiment, the robot needs to follow a line with different curvature in
an out-door environment. The simulated x-y coordinates of the robot are given in
Figure 3.28(a). The traced physical status parameters are shown in Figure 3.28(b),
Figure 3.28(c), and Figure 3.28(d). As in the previous experiment, the results in timed
host-compiled simulation exhibit similar system dynamics as those in ISS-based simula-
tion.

To examine the correctness of the annotated timing, the measured execution cycles for
the path control task frames in ISS-based simulation and timed host-compiled simulation
(HCS) are given in Figure 3.29. In most cases, the estimated cycles in HCS match well
with those in ISS-based simulation. The maximum estimation error is about 12% for
the sampled frame 210.

To test the simulation speed, a 60 seconds scenario is simulated. This corresponds to
a simulated time period of 60 seconds. The simulation finishes in about 20 seconds
in timed host-compiled simulation. However, it takes around 10 minutes in ISS-based
simulation. This implies a speed-up of about 30x, which is very high considering that the
virtual environment rendering is also performed in HCS. Therefore, real-time simulation
with well estimated timing is achieved in the HCS using the proposed approach.

Contents 81

0 5 10 15 20

0

10

20

30

x(m)

y
(m

)

ISS HCS

(a) Position

0 20 40 60 80 100

−0.1

0

0.1

index of sampled frame

p
it
ch

an
gl
e
(r
a
d
) ISS HCS

(b) Pitch angle

0 20 40 60 80 100

0

1

2

index of sampled frame

or
ie
n
ta
ti
on

an
gl
e
(r
a
d
)

ISS HCS

(c) Orientation angle

0 20 40 60 80 100

0

1

2

index of sampled frame

ve
lo
ci
ty

(m
/s
)

ISS HCS

(d) Velocity

Figure 3.28: Experiment using line 2: Simulated status parameters of the robot.

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 50 100 150 200 250 300 350

C
yc

le
s (

m
ill

io
n)

Frame index

ISS
HCS

 Sampled frames

 C

yc
le

s (
m

ill
io

n)

 ISS
 tHCS

no line detected

 index of sampled frame

 c

yc
le

s (
m

ill
io

n)

 ISS
 HCS

Figure 3.29: Estimated cycles for the path control task in ISS based and host-compiled
simulation.

To conclude, the experimental results show that the timed host-compiled simulation
can simulate both timing and system dynamics with suitable accuracy. This satisfies
the aforementioned criterion, proving its usefulness. Additionally, due to its fast speed,
simulating long software scenarios becomes affordable. Different design options, such as
changing the task scheduling algorithm, clock frequencies, and control parameters, can
be validated much faster than using ISS-based simulation.

Chapter 4

Analytical Timing Estimation for
Faster TLMs

Subsequent to the new modeling techniques such as TLM+ and temporal decoupling
which aim at faster and more abstract TLMs, the confronted challenge of maintaining
timing simulation accuracy needs to be tackled. In this chapter, Section 4.1 briefly
summarizes the advantages of the present approach. Then, the challenge of timing
estimation is formally described in Section 4.2, in which it is decomposed into three
sub-problems. Following that, the solution to each sub-problem is presented. Firstly,
Section 4.3 elaborates the extraction of resource utilization. Secondly, Section 4.4 details
the calculation of resource availability. Thirdly, using these two terms, Section 4.5
applies a novel analytical formula in estimating the delay induced by resource conflicts.
Furthermore, Section 4.6 discusses the implementation of the proposed approach in an
on-line scheduler, so that it can be used in combination with existing transaction-level
models. At last, Section 4.7 applies the approach for experimental evaluation.

4.1 Contributions and Advantages

This work presents an analytical approach for timing estimation. It features analyti-
cal formulas that model the resource utilization, resource availability and delay due to
resource conflicts. The timing estimation is implemented by a scheduler which enables
dynamic timing adjustment during simulation. The advantages of the present analytical
timing estimation are summarized as follows:

• Timing estimation is provided by formulas that take into account the average
timing characteristics, instead of performing conventional arbitration of bus-word
transactions.

• Because it does not arbitrate the bus-word transactions, it does not require that
the occurrence times of the bus-word transactions should be known. This not only
saves the effort of tracing the bus-word transactions, but also is especially advan-
tageous when it is not feasible to do so. For example, in the case where TLM+
transactions are used, the underlying bus-word transactions are not modeled and
their exact occurrence times are therefore unknown.

83

Contents 84

• Granularity of timing synchronization can be determined on demand during simu-
lation. This is achieved by the scheduling algorithm that dynamically adjusts the
end time of each timing synchronization. Therefore, it does not require a global
quantum with pre-configured value.

• The computation overhead of the scheduling algorithm is very low. Therefore the
speed-up gained by using temporal decoupling can be preserved. Rescheduling is
performed by dynamic event cancellation and re-notification. Therefore, only a
single SystemC wait is required to schedule a synchronization request of a very
long period.

• This methodology is implemented as a library that conforms to the TLM 2.0
standard. Existing TLM VPs can be easily ported.

• It proposes a methodology for extracting the timing profiles of TLM+ transactions.
These timing profiles are used in estimating the duration of a TLM+ transaction
and its resource utilization.

4.2 Overview of the Timing Estimation Problem

4.2.1 Terms and Symbols

Using temporal decoupling, in effect, divides a SystemC process into large code parts
and piecewise simulates each code part. The simulation of each code part is separated
into two phases regarding the functional and temporal aspects:

• In the first phase, functional simulation is carried out in a un-timed way. Dur-
ing this phase, timing information may be collected without actually resorting to
timing synchronization. The transactions that take place in this phase are also
un-timed.

• In the second phase, timing simulation is performed by issuing a timing synchro-
nization request for the duration of the codes simulated in the first phase. Now,
after such a request is issued, the task is to estimate additional delay due to re-
source conflicts. According to the estimated delay, timing adjustment can be made
to the actual duration of the corresponding phase of functional simulation.

The present timing estimation methodology features analytical formulas that model
the timing conflicts at shared resources. This methodology is agnostic to when each
individual bus-word transaction occurs during the functional simulation. It requires only
the timing information such as the accumulated access time collected during simulation.

The terms and symbols used by the analytical timing estimation methodology are given
in the following. Afterwards, the considered timing estimation problem will be decom-
posed into three sub-problems.

R is a set of resources corresponding to the set of system modules in a transaction-level
model. One resource is denoted as R, with R ∈ R. The total number of resources
is denoted by Nr.

Contents 85

t1 t2 t3 t4 timet5 t6

S1(t1) S1(t5)

S2(t1) S2(t3)

Figure 4.1: Example scenario of considered abstract timing requests.

Abstract timing request: An abstract timing request models the timing aspects of
a piece of code. In contrast to the standard SystemC wait statement, an abstract
timing request does not only contain a simple time interval, but also other timing
information related to the computation and communication aspects such as the
execution time and resource access time. The timing information may be gathered
during the un-timed simulation, which corresponds to a very long time period
including a sequence of bus-word transactions. Or, it may correspond to a TLM+
transaction that transfers a large data block.

Si denotes one abstract timing request that is initiated by initiator i. Additionally,
the notation Si(t) is used to explicitly refer to Si that starts at time t. In Fig-
ure 4.1, S1(t1) and S1(t5) represent two synchronization requests starting at t1 and
t5 respectively.

The considered temporal properties for Si include:

pi denotes the requested duration, assuming there is no delay caused by timing conflicts
at shared resources. For S2(t1) in Figure 4.1, p2 = t2 − t1.

di denotes the overall delay that is experienced by Si. For S2(t1) in Figure 4.1, d2 =
t3 − t2.

di,m represents the delay for Si at resource Rm.

ui is a vector of resource utilization demanded by Si, expressed as ui = [ui,1 ui,2 ... ui,Nr]T .
The utilization ui,m ∈ [0, 1] models how much a resource Rm is accessed by Si.
For example, for the given resource utilization graph in Figure 4.2, it follows that
u1 = [0.2 0.4 0.2]T . This vector can also be interpreted as a use case of the resources
in terms of timing.

ai is a vector of resource availability for Si, expressed as: ai = [ai,1, ai,2, ..., ai,Nr]. The
availability ai,m ∈ [0, 1] quantifies how much a resource is accessible to Si under
the presence of resource conflicts. In Figure 4.2, for the given resource availability
graph, it follows that a2 = [0.6 0.7 0.8]T .

The set of ongoing abstract timing requests seen at time t is denoted by S(t). In Fig-
ure 4.1, S(t1) = {S1(t1),S2(t1)}, where both S1(t1) and S2(t1) start at t1. Likewise, at time
t5, S(t5) = {S1(t5),S2(t3)}, where S1(t5) starts at t5 and S2(t3) starts at t3. With a given
S(t), following terms are described.

Contents 86

0.1

R3 R3

0.2 0.1
0.4 0.3
0.2 0.2

u1 u2

U =

0.2

0.4

0.1

0.3

0.2

0.9

1.0

0.8

0.6

0.7

A

a1 a2
0.9 0.6
1.0 0.7
0.8 0.8

=

Resource utilization graph Resource availability graph

R2

R1

R2

R1

0.8

S1

S2

S1

S2

Figure 4.2: Exemple resource utilization and availability matrices.

U is a resource utilization matrix, with U = [u1,u2, ...,uNS
], where Ns is the number

of ongoing abstract timing requests. U is a matrix representation of an equivalent
resource utilization graph. An example is given in Figure 4.2-left.

A is a resource availability matrix composed of the resource availability vectors, with
A = [a1,a2, ...,aNS

]. An example is given in Figure 4.2-right.

p is a vector of the requested durations assuming no access conflicts, written as p =
[p1, p2, ..., pNS

].

d is a vector of the delays of the abstract timing requests, written as d = [d1, d2, ..., dNS
].

4.2.2 Problem Description

Now the problem can be stated as such: Given a set of abstract timing requests S(t) at
time t, estimate the additional delays due to resource conflicts for all abstract timing
requests and hence determine their actual durations. The task of delay estimation is
further decomposed into three sub-tasks, as outlined in Figure 4.3. Details of each
sub-task are described below.

1. In step 1, timing characteristics are extracted during the functional simulation,
in order to calculate the resource utilization for each abstract timing request and
the utilization matrix U of S(t). The extracted timing parameters for an abstract
timing request include the requested duration without conflicts and the total access
time to each resource. Notice that it does not store the incidence time of each
individual bus-word transaction.

2. In step 2, the task is to estimate the resource availability for each abstract tim-
ing request, in order to obtain the availability matrix A of S(t). Instead of being

Contents 87

U

A

d

step 1

step 2

step 3

Extract timing characteristics to
calculate resource utilization

Estimate resource availability

Estimate delay due to resource
conflicts

Multi-processor TLM simulation
with temporal decoupling

D
yn

am
ic

 (
re

)s
ch

ed
ul

in
g

Figure 4.3: Decomposition of the problem into three sub-problems.

explicitly simulated, resource availability is derived from the overall resource uti-
lization of the ongoing abstract timing requests. The derivation should consider
aspects that may influence the way a resource is granted, such as the arbitration
policy, bus protocol, etc.

3. In step 3, the task is to estimate the delay for each Si in S(t). This estimation
takes as input parameters the remaining conflict-free duration, resource utilization
and resource availability. First, it estimates the delay di,m of Si at each individual
resource Rm:

di,m = φ(pi, ui,m, ai,m), (4.1)

where φ is a delay estimator that models the delay due to resource conflicts. Then
it calculates the overall delay di. The estimated duration of Si is therefore pi + di.
Combining these operations, this step can be written as:

d = Φ(p,U,A), (4.2)

meaning that the delays d for all abstract timing requests are estimated from the
timing parameters p,U and A. With the estimated delay, the end time of each
abstract timing request can be subsequently adjusted.

During simulation, the above tasks need to be performed each time an abstract timing
request is issued, which can change the scenario of resource availability for other ongoing

Contents 88

abstract timing requests. Therefore, as depicted in the figure, an additional requirement
is to perform dynamic rescheduling, through which the analytical timing estimation can
be integrated with simulation.

4.3 Calculation of Resource Utilization

Resource utilization represents the degree of timing usage of a certain resource. It is
averaged as the total access time over a certain time period. Extracting these timing
parameters further depends on the way how the system is modeled. It is necessary to
distinguish the levels of abstraction. For a TLM+ transaction that transfers a large data
block, timing characteristics of the corresponding driver function should be extracted
off-line, e.g. by profiling. When using bus-word transactions and temporal decoupling,
timing characteristics should be collected on-line. There two cases are elaborated in the
following.

4.3.1 Simulation Using Bus-Word Transactions

One bus-word transaction transfers a unit of data that fits the bus protocol, such as a
byte, a word or a burst of words. Usually, bus-word transactions occur when data are
fetched from or stored to memory due to cache misses or when the processor directly
communicates with other system modules. Let T denote a a bus-word transaction, and
τm(T) denote T ’s access time of resource Rm. For Si consisting of a long sequence of
bus-word transactions, a trace T can represent those transactions:

T = {T1, T2, ..., TN}.

Notice that it is not required to trace when exactly each bus-word transaction occurs.
Next, the total access time Γm of a resource Rm during Si is calculated as:

Γm =

N∑
j=1

τm(Tj)

On the other hand, the duration of Si assuming no resource conflicts is given by:

pi = tcomp + tcomm = tcomp +

N∑
i=1

τ(Ti),

where tcomp is the locally accumulated computation time and τ(Ti) is the conflict-free
duration of the bus-word transaction Ti.

With the above results, the utilization ui,m of Rm demanded by Si is obtained:

ui,m =
Γm
pi
.

Contents 89

Dev1
STAT reg
CTRL reg
ICU reg

DATA reg

MEM

B

U

S
CPU

read(Dev1,
buf,100)

OS
Dev1_drv

$D

$I

B

U

S

Dev1
STAT reg
CTRL reg
ICU reg

DATA reg

MEM
CPU

read(Dev1,
buf,100)

OS
Dev1_drv

$D

$I

(a) Before abstraction: many word transac-
tions evoked by the driver function

(b) After abstraction: complete data block
transferred in a single TLM2.0 transaction.

transaction of a bus word transaction of a data block

void read(dev1, buf, 100){
 ...

for(...){
readReg(dev1, tmp);
readReg(dev1, buf[i]);
...

}
}

before abstraction

void read(dev1, buf, 100){
 ...

readBuf(dev1, buf, 100);
}

after abstraction

Figure 4.4: TLM+ transactions: concept and implementation.

4.3.2 Simulation Using TLM+ Transactions

The concept of more abstract transactions, termed as TLM+ transactions, has been
recently proposed [14]. As shown in Figure 4.4, one single TLM+ transaction can transfer
a very large data block. Such abstraction bypasses the underlying driver functions, thus
saving modeling and computation effort. Compared to the bus-word transactions which
abstract away the HW signal handshaking between two modules, the TLM+ transactions
abstract away the SW protocols between two modules.

However, it becomes difficult to extract timing information of the TLM+ transactions,
since a great amount of detail is missing due to abstraction. For example, to transfer
a data block of 100 words from memory to an I/O module, there may be thousands of
instructions executed by the corresponding driver function and hundreds of bus-word
transactions initiated during the transfer. After abstraction, the transfer is implemented
by a single transaction, within which the lower level timing information is invisible. As
a result, it is unclear how to calculate the duration and resource utilization for such
a TLM+ transaction. Previously, it has not been proposed how to extract sufficient
timing characteristics for the block transactions. Designers often count on empirical
values for timing estimation [14, 139]. In addition, because the underlying bus-word
transactions are invisible in a TLM+ transaction, it becomes difficult to arbitrate the
timing if resource conflicts exist between a TLM+ transaction and other overlapping
processes. In the present approach, timing estimation is based on the overall resource

Contents 90

access time and does not require the availability of the occurrence time of individual
bus-word transactions. Therefore it can tackle the challenge of timing estimation in
case TLM+ transactions are used.

In the following, a method that can extract the timing information from the original
driver functions is presented. With these information, the TLM+ transactions can be
timed with sufficient accuracy. There are two main steps performed in this method.

4.3.2.1 Extracting Timing Profiles of TLM+ Transactions

In the scope of this work, TLM+ transactions are abstracted from driver functions that
implement the low-level software protocols for the data transfer. The profiling process
will extract timing characteristics of the corresponding driver functions. The tool chain
is given in Figure 4.5. As marked in the figure, each step is described in the following.

1. A profile function is constructed, which calls the driver functions of different types
to transfer different data blocks. These driver functions implement the detailed
SW protocols for the data transfer.

2. Finding the entry and exit addresses: Using debugging information, the
addresses of the instruction in the cross-compiled binary are known. Then this tool
parses this address file and extracts the addresses of the entry and exit instruction
of all functions, including the driver functions.

• The entry instruction is the first instruction of the function body, as the one
at address 0x100 in List 4.1.

• The exit instructions are those corresponding to the return of the function,
such as those at address 0x340 and 0x4a0 in List 4.1. 1

Here, the address 0x100 is the offset address of this function in the binary code
compiled from the source code file. The translation unit corresponding to the
source code file will be compiled to a base address in the final executable. The
base address can be obtained by the read-elf utility. Assuming a base address
0x2000, then the entry and exist addresses for the example function are therefore
0x2100 and 0x2344, 0x24ac.

1 00000100 <foo >:

2 100: 8f890000 lw t1 ,0(gp) <-- entry

3 104: 27 bdffe8 addiu sp ,sp ,-24

4 108: 308400 ff andi a0 ,a0 ,0xff

5 10c: 000419 c2 srl v1 ,a0 ,0x7

6
7

8
9 340: 03 e00008 jr ra

10 344: 00000000 nop <-- exit

11
12

1For a MIPS ISA, the instruction immediately following a branch instruction will always be executed
once the branch instruction is executed. This is because the compiler swaps the branch instruction and
the one preceding it in the original code for performance improvement. Therefore, although the jr is the
return instruction, the real exit instruction is the one after it.

Contents 91

13
14 4a8: 03 e00008 jr ra

15 4ac: a043000e sb v1 ,14(v0) <-- exit

16
17

Listing 4.1: Entry and exit instructions.

The entry and exit addresses are referred to as the instruction space boundaries
(ISB). A exemplary file of the extracted (ISB) is given in List 4.2.

1 // function address boundaries of the driver functions

2 Function read_aes entry: 0x1034 exit: 0x10a4

3 Function write_aes entry: 0x10b4 exit: 0x1124

4 Function read_camera entry: 0x13b0 exit: 0x13fc

5 Function write_camera entry: 0x140c exit: 0x147c

6 Function read_lcd entry: 0x2ee4 exit: 0x2f54

7 Function write_lcd entry: 0x2f64 exit: 0x2fa4

8 Function write_sif entry: 0x35bc exit: 0x364c

9 Function read_sif entry: 0x3650 exit: 0x3738

10 Function read_dmac entry: 0x1718 exit: 0x171c

11 Function write_dmac entry: 0x1720 exit: 0x1724

12 // function address boundaries of other functions

13 Function OS_ISR entry: 0x95c exit: 0x960

14 Function init_device entry: 0x964 exit: 0x9b8

15 Function init_isr entry: 0x9bc exit: 0x9cc

16 Function openf entry: 0xa94 exit: 0xab4

17 Function closef entry: 0xab8 exit: 0xad8

18 Function initf entry: 0xadc exit: 0xafc

19 Function ioctlf entry: 0xb00 exit: 0xb20

20 Function writef entry: 0xb24 exit: 0xb44

21 Function readf entry: 0xb48 exit: 0xb68

22 Function strncat entry: 0x3bd8 exit: 0x3c20 0x3c4c

23 Function memcpy entry: 0x3d58 exit: 0x3d90 0x3dc0

24 Function memmove entry: 0x3dc4 exit: 0x3df4 0x3e20

25 Function memcmp entry: 0x3e24 exit: 0x3e50 0x3e58

26 Function memset entry: 0x3e5c exit: 0x3e84

27 Function strcpy entry: 0x3b40 exit: 0x3b5c

28

Listing 4.2: Extracted entry and exit addressses of all functions.

3. A timing accurate ISS is used to simulate the profile function. For the tracing
purpose, a SW monitor is added to the ISS. At the start of simulation, the SW
monitor reads in all the ISBs.

4. During the simulation, if the SW monitor detects that the instruction interpreted
by the ISS enters or exits a function (e.g. jal or jr instruction for a MIPS CPU),
then it checks the address against those extracted ISBs. In this way, the start and
end of the driver functions, can be traced exactly.

In addition, the bus-word transactions are traced so that the accesses to the re-
sources during the driver functions are obtained.

5. As a result, a trace file is generated from which timing characteristics are extracted
during the execution of each driver function. This trace file provides timing models

Contents 92

Profile.c

*.bin

write_uart:
entry: 0x100
exit: 0x200 ... cross

compile

debug

SW monitor
...

trace
file

...

//Apps
...
write_pkg(uart, buf1, 100); Profile

library
type compiled for host CPU

timing

1	 2	

3	
4	 5	

profiling timed simulation

Figure 4.5: A tool-chain to profile the driver functions and extract timing character-
istics of the TLM+ transactions.

of the driver functions and hence can be used to time the TLM+ transactions. For
each type of driver functions, this profile contains:

• λave: the average time to transfer one unit of data in the block.

• {λ1, λ2, ..., λNR
}, with λi being the average time a resource Ri is accessed

during the transfer of one unit of data.

• {addr1, addr2, ...}: the addresses of instructions during the execution of the
driver function. These addresses will be used later for instruction cache sim-
ulation.

Notice that the driver function involves the transfer but not the processing of the data
block. Therefore, it can be assumed that the duration of the driver function is approx-
imately linear to the size of data block, since it is not dependent on the value of the
transferred data. This is in accordance with the general idea of separating the compu-
tation and communication in TLMs.

1 write(dev1 , buf , size){

2 //1. a TLM2.0 transaction

3 ...

4 gp ->set_data_ptr(reinterpret_cast <UCHAR*>(buf));

5 gp ->set_data_length(size);

6 socket ->b_transport(*gp , delay);

7
8 //2. get timing from the profile library (plib)

9 ty=getDriverType(’drv1 write ’);

10 p = plib.getStaticDuration(ty ,size);

11 timeIMem = plib.penaltyICache ();

12 timeDMem = plib.penaltyDCache ();

13 p += timeDMem + timeIMem;

14 timeBus = plib.getAccessTime(ty , busID , size);

15 timeBus += timeDMem+timeIMem;

16 ...

17 }

Listing 4.3: Sample of a TLM+ transaction with annotated timing.

Contents 93

4.3.2.2 Estimated Duration of TLM+ Transactions

With the profile of the timing characteristics, the timing of the TLM+ transactions
can be annotated and estimated in simulation. An example is given in List 4.3. As
can be seen, in line 6, a single TLM+ transaction is used to transfer a complete data
block, based on the OSCI TLM 2.0 standard. After performing this un-timed TLM+
transaction, timing is estimated by additional codes in line 9 to 15. The type of the
driver functions is used to query the profile library. The required duration pi of a TLM+
transaction is given by

pi = pstatic + pdynamic, (4.3)

where pstatic is a statically estimated part of the duration and pdynamic is a dynamically
estimated part capturing the cache miss penalty. These two terms are computed in the
following way.

• pstatic is computed as
pstatic = Tave ∗Nsize, (4.4)

where Nsize is the size of the data block. For the examined driver functions in
the code inherited from [124], the transfer time is approximately linear to the
size of the transferred data block. It is also possible that the statically estimated
duration is dependent on the data size. For example, the duration can increase
differently within different ranges of the data size. This case can also be handled
by modifying 4.4 accordingly:

pstatic =
r∑
i=1

(Tavei ∗Ni), (4.5)

where i is the index of each range, Tavei is the averaged transfer time for one

data unit in a certain range, and Ni is the size of each range with Nsize =
r∑
i=1

Ni.

Before the transfer, the driver function may need to complete certain initialization
handshaking with device. If necessary, this additional time can be added as an
offset time to the estimated duration.

• pdynamic is the timing penalty given by the instruction and data cache simulation.
The accessed addresses for the instruction cache simulation are those that are ex-
tracted in the timing profile. The accessed addresses for the data cache simulation
are obtained by means of the method discussed in Section 3.4.

4.3.2.3 Compute the Resource Utilization

After the estimation of the duration of a TLM+ transaction, the utilization of each
resource for this transaction can be obtained by dividing the total resource access time
by the estimated duration.

For a resource Rm corresponding to a peripheral I/O module, the access time is not
influenced by the cache penalty. Its total access time is estimated as

Γm = λm ·Nsize. (4.6)

Contents 94

The utilization of this resource is

ui,m =
Γm
pi
. (4.7)

For a resource Rn such as the bus, its total access time is increased by reading or writing
a cache-line at cache misses. So this time is calculated as follows:

Γn = λn ·Nsize + pdynamic. (4.8)

The resource utilization is given by:

ui,n =
Γn
pi
. (4.9)

Similar calculation holds for the resource utilization of instruction or data memory.

4.3.3 A Versatile Tracing and Profiling Tool

The trace and profile tool-chain as described in Figure 4.5 is not limited to providing
the timing characteristics of the driver functions. Instead, this tool has been made very
versatile in its features. It can provide non-intrusive, multi-level tracing and profiling
results in ISS-based software simulation. The comprehensive results may be helpful in
expediting the design process. For example, a traced dynamic function call graph can
identify hot-spot in the subroutines; memory access pattern can aid the decision of cache
configuration; and the resource contention tracing can be used to select the arbitration
policy. Details and results regarding the features and usage of this tool are given in
Appendix B.

4.4 Calculation of Resource Availability

Resource availability aims to provide a metric that measures how much a resource is
accessible within a period of time. Its value is not explicitly simulated but rather ap-
proximated using other timing parameters. In this work, the calculation of resource
availability depends on the resource utilization of ongoing abstract timing requests.
Further, several other aspects also exert influence on resource availability, such as ar-
bitration policy, interrupt handling and bus protocols. They are also considered in the
calculation.

4.4.1 Arbitration Policy with Preemptive Fixed Priorities

Let S1 and S2 be issued by initiator 1 and 2 respectively. Assume initiator 1 has higher
priority than initiator 2, then the resource availability at Rm for S1 and S2 are calculated
as:

a1,m = 1; a2,m = 1− u1,m. (4.10)

For S1, resource Rm is fully available. For S2, resource Rm is less available if S1 demands
more resource utilization, indicating more delay to S2 at Rm as shall be seen later.

Contents 95

Now suppose a third initiator with lower priority issues a timing synchronization request
for S3. To calculate its resource availability, the combined resource utilization u(1,2),m

of Rm demanded by initiator 1 and initiator 2 is computed:

u(1,2),m = u1,m + u
′
2,m, (4.11)

where u1,m remains as before and u
′
2,m is a modified resource utilization of S2 considering

its prolonged duration. The calculation of u
′
2,m and u(1,2),m makes use of the delay

formula. Therefore it is given later in (4.18) after the introduction of the delay formula
in Section 4.5. The resource availability at Rm for S3 is a3,m = 1 − u(1,2),m, which is
then substituted in (4.14) for delay estimation.

4.4.2 Arbitration Policy with FIFO Arbitration Scheme

This section considers the first-in-first-out (FIFO) arbitration policy. Assume initiator 1
and 2 have the same priority. For FIFO arbitration scheme, the transactions of initiator
1 may delay or may be delayed by the transactions of initiator 2. For a fixed resource
utilization of S2 at Rm, the more S1 accesses Rm, the more often its transactions will
win in the arbitration. In accordance with this consideration, the resource availability
of S1 and S2 at Rm is symmetrically derived as:

a1,m = (1− u2,m) +
u1,m

u1,m + u2,m
· u2,m

a2,m = (1− u1,m) +
u2,m

u2,m + u1,m
· u1,m

(4.12)

In the above equation,
u1,m

u1,m+u2,m
can be thought of as a weight that measures how often

the access to Rm is granted to S1 against S2. For example, assume u1,m = 0.6 and
u2,m = 0.3, it follows a1,m = 1− 0.3 + 0.6

0.6+0.3 · 0.3 = 0.9.

If there are three initiators with the same priority, the resource availability for their
abstract timing requests can be symmetrically calculated in a similar way:

a1,m = 1− u(2,3),m +
u1,m

u1,m + u2,m + u3,m
· u(2,3),m

a2,m = 1− u(1,3),m +
u2,m

u1,m + u2,m + u3,m
· u(1,3),m

a3,m = 1− u(1,2),m +
u3,m

u1,m + u2,m + u3,m
· u(1,2),m,

(4.13)

where u(i,j),m = min(ui,m + uj,m, 1) is the combined resource utilization of Rm for
Si and Sj . For example, assume u1,m = 0.5, u2,m = 0.3, u3,m = 0.2, then a1,m =
1− (0.2 + 0.3) + 0.5

0.5+0.2+0.3 · (0.3 + 0.2) = 0.75.

4.4.3 Generalization of the Model

Analytical modeling techniques offer the advantage that the formulas can be modified
or generalized to incorporate the modeling of different aspects of the system. For the
present model, this can be achieved by reasoning about the influence of the considered as-
pect on the resource utilization and resource availability. Section 4.4.1 and Section 4.4.2

Contents 96

polling

time[us]50 6540

Figure 4.6: Handle ISR in calculating resource availability.

have demonstrated the modeling of arbitration policies by using corresponding formu-
las. This section further gives another two examples regarding the generalization of the
present analytical model in handling particular cases in practice.

4.4.3.1 Consideration of Register Polling

In transferring one data unit of a data block, a driver function may need to use an
interrupt service routine (ISR). If a polling policy is implemented in handling the data
communication with peripheral devices, the ISR keeps invoking transactions to check the
status register of the device. After the ready state is set in the status register, the transfer
of the next data unit can be initiated and the polling is carried out in a similar way. The
duration it takes for the device to become ready upon receiving the data depends on the
data processing algorithm implemented on the device. This duration is independent of
the ISR. Therefore even the transactions for register polling are delayed, the duration
of the ISR may be unaffected. For example, assume the 3rd to 7th transactions in
Figure 4.6 correspond to register polling. Also, assume the HW device being polled will
set its status register to ready at 65us. Even if the polling transactions are delayed by
the transactions of other higher priority initiators, the polling in the ISR will still end
at 65us.

Based on these considerations, the calculation of resource utilization and availability
should be adjusted accordingly. For a lower priority initiator, the transactions related
to register polling do not count when calculating its resource utilization, thus not con-
tributing to the delay. For a higher priority initiator, the transactions related to register
polling within are considered as its resource utilization when calculating the resource
availability and delay of other abstract timing requests issued by lower priority initiators.

4.4.4 Consideration of Bus Protocols

In most common cases, the system bus is a shared resource. When advanced bus proto-
cols are used, the calculation of resource utilization needs to be adjusted. For example,
according to AMBA AHB bus protocols, slow and split-capable slaves may split the
transactions and thus free the bus. Further, an initiator can lock the bus and thus can
not be preempted after it has been granted to use the bus. Also, address and data
phases are pipelined in AHB protocols. Preemption of lower priority initiator happens
when the data is ready for the current beat of its burst transaction.

To handle these protocols, it needs to be distinguished how the resource utilization and
resource availability are affected by one protocol. In case of split transactions, the split
slots are not considered when calculating the bus utilization of higher priority initiators.

Contents 97

As for bus-locking transactions of a lower priority initiator, the resource availability for
a higher priority initiator needs to be reduced by the resource utilization due to those
bus-locking transactions. Similarly, this availability needs also to be reduced by the
average percentage of a beat in the resource utilization of a lower priority initiator.

4.5 The Delay Formula

Due to timing conflicts at shared resources, the actual duration of a abstract timing
request is usually longer than its optimal duration. To model this, a formula is proposed
for estimating the delay given the resource utilization and the resource availability.

Before deriving the formula, the influences of resource utilization and availability on the
delay are reasoned about. Roughly speaking, for a fixed resource availability less than
1, the delay increases if the resource utilization increases, since more resource conflicts
may occur. For a fixed resource utilization larger than 0, the delay increases if the
resource availability decreases. More specifically, it is hypothesized in deriving the delay
formula that the delay increases linearly with respect to the resource utilization, and
hyperbolically with respect to the resource availability.

To model the above two relations, let’s consider the delay di,m at a resource Rm for a
timing request Si. The delay formula is expressed as:

di,m = φ(pi, ui,m, ai,m)

=
1

ai,m
· ui,m · pi − ui,m · pi

= (
1

ai,m
− 1) · ui,m · pi

(4.14)

In the above formula, ui,m · pi can be thought of as the total access time of resource Rm
required by Si within its required duration pi. Since the resource Rm is not fully available
(ai,m < 1), the actual access time of this resource time is prolonged to 1

ai,m
·ui,m ·pi. The

delay at this resource is therefore given by the difference between the prolonged access
time and the optimal access time. As can be seen from the formula, the delay is linear
to the resource utilization and hyperbolic to the resource availability, which complies
with the relations that have previously reasoned about. The overall delay for Si is

di =
r∑
i=1

di,m, (4.15)

with r being the number of shared resources. This delay formula is simple and yet
efficient in terms of complexity and accuracy, as will be demonstrated in the experiments.

Consider a simple example: let pi = 1ms, ui,m = 0.3, and ai,m = 0.6, then it follows:

di,m = (1
0.6 − 1) · 0.3 · 1ms = 0.4

0.6 · 0.3 · 1ms = 0.2ms.

Assume Rm is the only shared resource, then di = 0.2ms. Therefore the duration of Si
will be prolonged to pi + di = 1ms+ 0.2ms = 1.2ms.

For an arbitration scheme with fixed priorities, assume initiator 2 has lower priority
than initiator 1. Substituting the resource availability a2,m from (4.10) into the delay

Contents 98

formula gives

d2,m = (
1

a2,m
− 1) · u2,m · p2

=
u1,m

1− u1,m
· u2,m · p2

(4.16)

It can be seen that, for a larger resource utilization u1,m demanded by the higher priority
initiator, delay d2,m becomes larger as expected.

Suppose there exists another request from S3 which has the lowest priority. To estimate
its delay, the combined resource utilization for S1 and S2 at resource Rm is calculated
as

u(1,2),m = u1,m + u2,m ·
p2

p2 + d2
(4.17)

The second term in the right side of the above equation represents the resource utilization
of S2 seen by S3. It is less than u2,m, since certain resource accesses of S2 are blocked by
those of S1, leading to a reduced resource utilization of S2 experienced by S3. Assume
Rm is the only shared resource, thus d2 = d2,m. Substituting (4.16) in (4.17) gives

u(1,2),m = u1,m + u2,m ·
p2

p2 + d2

= u1,m +
u2,m · p2

p2 +
u1,m

1−u1,m · u2,m · p2

= u1,m +
1

1
u2,m

+
u1,m

1−u1,m

≤ u1,m +
1

1 +
u1,m

1−u1,m
= 1

(4.18)

Similarly, for FIFO arbitration policy, substitute the resource availability from (4.12)
into (4.14) for delay estimation. For example, assume u1,m = u2,m = 0.4, therefore
a1,m = 0.8 according to (4.12). Therefore, based on (4.14), it follows

d1,m = (
1

0.8
− 1) · 0.4 · p1 = 0.1 · p1.

To handle other specific traffic distributions or specific bus protocols, corresponding
adjustments can be made in the calculation of the resource utilization or availability.
The same delay formula as in (4.14) can still be applied.

4.6 Incorporate Analytical Timing Estimation in Simula-
tion

The next step is to integrate the present analytical timing estimation method into a sim-
ulation framework for transaction-level models. Realizing this integration raises several
requirements. First, the simulation overhead of applying the timing estimation should
be low. This requirement is met by an efficient scheduling algorithm in Section 4.6.1.
Second, the implementation should provide flexible usability. This is achieved by using
a stand-alone resource model library, which handles the non-functional aspects such as

Contents 99

timing, making timing estimation transparent to functional simulation. In addition,
this library is compatible to the SystemC and TLM standards, therefore it can be easily
ported to existing models. Details are described in 4.6.2.

4.6.1 The Scheduling Algorithm

The scheduling algorithm is implemented by a central scheduler, which is contained in
the resource model layer [14]. It is a central scheduler in the sense that the utilizations of
all resources and all ongoing abstract timing requests are visible to the scheduler. Since
one abstract timing request involves not just one but multiple resources, a central sched-
uler is therefore a more efficient and straightforward implementation than distributed
schedulers. The task of this central scheduler is to ensure that the abstract timing
requests finish at the correct time. Each time the synchronization of a new abstract
timing request is issued, the scheduler is called to estimate its duration and adjust the
durations of other ongoing abstract timing requests, by calculating the delay due to the
resource conflicts among them. For the description of the algorithm, the following term
is introduced:

Synchronization point: it refers to the time when the scheduler is called to perform
the scheduling algorithm.

A synchronization point occurs each time the communication scenario is changed, i.e.
when a new abstract timing request is issued. To describe the principle of the scheduling
algorithm, recall the problem to be solved in (4.2) of Section 4.2.2:

d = Φ(p,U,A).

It is this task that the scheduling algorithm needs to perform. In doing so, the scheduler
performs two main sub-tasks.

1. Timing parameter update: At each synchronization point, the timing parame-
ters of the ongoing abstract timing requests need to be updated before performing
timing estimation. Updated timing parameters include the remaining durations
and the resource utilization matrix U. The calculation takes into account how
much time has elapsed since the last synchronization point. Subsequently, the re-
source availability matrix A is recalculated, by using the formulas in Section 4.4.

2. Delay estimation and rescheduling: New delay and duration are estimated
for each abstract timing request, by substituting the updated resource utilization
and availability in the delay formula. Finally, the abstract timing requests are
dynamically rescheduled, so that they will terminate at the correct time.

To illustrate the timing dynamics in the scheduling process, consider a hypothesized
system with two initiators. Assume that a fixed priority arbitration scheme is used,
with initiator 1 having higher priority than initiator 2. The communication scenarios
under consideration are shown in Figure 4.7. In the following, the steps performed by
the scheduling algorithm at each synchronization point are described.

Contents 100

t1

@

t2 t3 t4 t5

t2

@t1

S1(t1) S1(t2)

S2(t2)

Figure 4.7: Example of the dynamic rescheduling feature.

• At time t1, two abstract timing requests S1(t1) and S2(t1) are initiated by initiator 1
and 2 respectively. S1(t1) requires a duration p1, with p1 = (t2−t1). S2(t1) requires a
duration p2, with p2 = (t3− t1). Suppose initiator 1 calls the scheduling algorithm
first to schedule S1(t1). Because of its higher priority, the end time of S1(t1) is
scheduled to t2, i.e. an optimal duration with no delay. Next, initiator 2 calls the
scheduling algorithm to schedule S2(t1). At this time, S(t1) = {S1(t1),S2(t1)}. For
illustrative purpose, assume there are conflicts at two shared resources and the
utilization matrix reads as follows:

U =

[u1 u2

0.4 0.2

0.3 0.5

]
(4.19)

where u1 = [0.4, 0.3]T and u2 = [0.2, 0.5]T are the resource utilization of S1(t1)

and S1(t1) respectively. Substituting (4.19) in the formula (4.10) gives the resource
availability matrix:

A =

[a1 a2

1 0.6

1 0.7

]
(4.20)

For S2(t1), its delays at each resource can be obtained using the formula (4.14):[
d2,1

d2,2

]
=

[
φ(p2, u2,1, a2,1)

φ(p2, u2,2, a2,2)

]
≈

[
0.13 · p2

0.21 · p2

]
(4.21)

Here d2,1 = φ(p2, u2,1, a2,1) = (1
a2,1
− 1) · u2,1 · p2 ≈ 0.13 · p2 is the delay of S2(t1)

at resource 1 and d2,2 = 0.21 · p2 is the delay at resource 2. The total delay
d2 = d2,1 + d2,2 ≈ 0.34 · p2. Therefore, the end time of S2(t1) is scheduled to t5,
with t5 ≈ t1 + p2 + 0.34 · p2.

• At time t2, the end event of the abstract timing request S1(t1) expires. Then initia-
tor 1 resumes its execution. It executes the next piece of code in a temporally de-
coupled way, after which it issues a new abstract timing request S1(t2) for synchro-
nization. Now the scheduling algorithm is called again, with S(t2) = {S1(t2),S2(t1)}.
Assuming the resource utilization of S1(t2) is u1 = [0.2, 0.1]T , the utilization matrix

Contents 101

at t2 is:

U =

[u1 u2

0.2 0.2

0.1 0.5

]
(4.22)

Update the resource availability using (4.22) and (4.10):

A =

[a1 a2

1 0.8

1 0.9

]
(4.23)

Besides, the remaining duration of S2(t1) also needs to be updated as well:

p2 ←
t5 − t2
t5 − t1

· p2,

where t2 and t1 represent the current and previous synchronization points respec-
tively, t5 represents the currently scheduled end time. The interpretation of the
update of the remaining duration is that, it finds out how much the duration of
this request has been effectively conducted from the previous to the current syn-
chronization point, thus only taking into account the remaining duration in the
following calculation. Now, similar as in (4.21), the delay for S2(t1) is recalculated

as [d2,1, d2,2]T = [0.05 · p2, 0.06 · p2]T , resulting in d2 = 0.11 · p2. Therefore the end
event of S2(t1) is scheduled at t4, with t4 = t2 + p2 + 0.11 · p2.

It is worth pointing out that the end event of a abstract timing request can be
rescheduled to an earlier time, if the resource utilization of other abstract timing
requests decreases, such as in the illustrated case.

• At time t4, the end event of S2(t1) expires. Simulation of the process on initiator 2
resumes, leading to a new abstract timing request S2(t4). Afterwards the scheduling
algorithm will run again to determine the timing of this and other ongoing abstract
timing requests in a similar manner as discussed above.

No synchronization is performed at time t3 or t5. Time t3 is the optimal end time
for S2(t1). The time difference t4 − t3 measures the final delay for S2(t1). Time t5
is the estimated expire time for the end event of S2(t1). It is set at t1 but canceled
at t2.

Formally, the scheduling algorithm is outlined in Algorithm 4.1. It is called each time
a new abstract timing request needs to be scheduled. The task for updating on-going
abstract timing requests is implemented in lines 6 to 15.

Firstly, the resource utilization matrix is updated. The remaining durations of all on-
going abstract timing requests are re-estimated.

Secondly, using the updated resource utilization, the schedule recalculates the resource
availability, according to the method in Sec 4.4.

The task for delay and duration estimation is implemented in lines 17 to 27. Using the
just updated parameters, it estimates the delay (line 21) according to the delay formula
described in Sec 4.5.

Contents 102

Additionally, there is a SystemC event associated with an abstract timing request. This
event represents the time that the abstract timing request terminates. It is dynamically
canceled and re-notified (line 25 and 26), effectively adjusting the actual duration.

Finally, a wait statement is called to wait until the end event of this abstract timing
request expires. This algorithm needs to be performed only once to schedule one abstract
timing request. Notably, no matter how many times the re-scheduling is performed,
only one wait statement is needed to schedule one abstract timing request due to the
use of dynamic event cancellation. Because the time-consuming wait statement is used
only once, the implemented algorithm imposes very low computation overhead, thus
guaranteeing the efficiency of the scheduling algorithm.

Algorithm 4.1 The Scheduling Algorithm

1: // called to schedule a new abstract timing request
2: Snew := the newly issued abstract timing request
3: S(t) := ongoing abstract timing requests seen at time t
4: Si.endEvent := a SystemC event associated with Si
5:

6: // update ongoing abstract timing requests
7: for Si ∈ S(t1) do
8: pi ← UpdateDuration(Si)
9: ui ← UpdateResourceUtilization(Si)

10: end for
11: for Si ∈ S(t) do
12: for Rm ∈ R do
13: ai,m ← GetAvailability(U, i,m)
14: end for
15: end for
16:

17: // timing estimation, resolve conflicts
18: for Si ∈ S do
19: pi := remaining duration of Si
20: for Rm ∈ R do
21: di,m := GetDelay(pi, ui,m, ai,m) // as in (4.14)
22: end for
23: Di ←

∑|R|
m=1 di,m

24: pi ← pi +Di

25: Si.endEvent.cancel() // dynamic re-scheduling
26: Si.endEvent.notify(pi)
27: end for
28:

29: // the single call to the expensive wait() statement
30: wait(Snew.endEvent)
31:

32: // finally Snew.endEvent expires.
33: return

Contents 103

R1 R2

R3 R4

R5

resource model: a non-functional layer

original transaction-level model

register resource
set priority
request resource usage
synchronization
...

Figure 4.8: A resource model library ported to TLMs as a non-functional layer for
timing estimation.

4.6.2 Modeling Support - Integrating the Resource Model

The central scheduling algorithm is implemented in a resource model layer. The resource
model encapsulates the handling of non-functional properties such as timing. In this
sense, it can be viewed as an additional timing layer parallel to the functional simulation
of the original transaction-level model (see Figure 4.8). The resource model layer is
coded into a stand-alone library, thus it is easily portable to existing transactions-level
models. Besides, it is compatible to the SystemC standards and does not require any
modification to the SystemC kernel or TLM library.

Integrating the resource model to existing transaction-level models requires fairly low
coding effort. Each system module simply derives itself from a base resource class
rm resource, as in List 4.4. Then it is able to call a set of functions provided by the
resource model library. At instantiation, the base resource class registers itself to the
central resource layer, receives a resource id, and sets its priority if needed. If the system
module is an initiator, it additionally owns an instance of an abstract timing request,
for which the timing parameters need to be set for synchronization purpose. Now,
the simulation can be carried out with clear separation of the functional and timing
aspects. In the functional simulation, an initiator can execute a large code block of
its thread without calling the wait statements, e.g. in line 5 of Listing 4.4. During
the thread execution, the local time and the access time of the resources can either be
accumulated (Section 4.3.1) or queried from a timing profile library (Section 4.3.2.1).
Then, for the timing simulation, the initiator issues a synchronization request to the
resource model, e.g. in line 8 of Listing 4.4. The resource model maintains a set of
the ongoing abstract timing requests. Upon receiving a synchronization request, it calls
the scheduling algorithm described in Algorithm 4.1, which dynamically determines
and adjusts the actual durations of all ongoing abstract timing requests. When to
issue the synchronization request can be determined by the programmer. For example,
synchronization points can be set before and after the execution of certain functions.

1 class ModuleX: public sc_module , public rm_resource

2 ...

Contents 104

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
el

ay
 (n

s)

Bus usage of initiator 1

ubus,2=0.1
ubus,2=0.2
ubus,2=0.3
ubus,2=0.4
ubus,2=0.5
ubus,2=0.6
ubus,2=0.7
ubus,2=0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Bus usage of initiator 2

ubus,1=0.1
ubus,1=0.2
ubus,1=0.3
ubus,1=0.4
ubus,1=0.5
ubus,1=0.6
ubus,1=0.7
ubus,1=0.8

Bus utilization of initiator 1 Bus utilization of initiator 2

u2,bus
u2,bus
u2,bus
u2,bus
u2,bus
u2,bus
u2,bus
u2,bus

u1,bus
u1,bus
u1,bus
u1,bus
u1,bus
u1,bus
u1,bus
u1,bus

Figure 4.9: Delay of the synchronization request of processor 1 with respect to dif-
ferent resource usage scenarios

3 void thread_1{

4 ...

5 functionA (); // functional simulation

6 rm_useResource(bus_id , sumBusAccessTime);

7 ...

8 rm_sync(duration); // timing

9 ...

Listing 4.4: Porting the resource model to existing transactions-level models.

4.6.3 Comparison with TLM2.0 Quantum Mechanism:

The TLM2.0 standard also has a built-in support for using temporal decoupling. For
this, a global quantum needs to be predefined. Usually, the predefined value of the global
quantum is quite large, when compared with the clock period. During the simulation,
synchronization between different processes is performed at the granularity of the global
quantum. That means a process keeps its execution until its local time exceeds the
global quantum. Only then the context-switching is performed so that another process
can resume its execution. In contrast to the quantum mechanism, the present approach
supports on-demand synchronization, meaning that one process can call the scheduling
algorithm only when it needs to. It does not require a pre-determined granularity of
synchronization. Such on-demand synchronization offers more modeling flexibility and
simulation efficiency.

Contents 105

4.7 Experimental Results

4.7.1 RTL Simulation as a Proof of Concept

RTL models are usually clocked, thus temporal decoupling is not used. Nevertheless,
cycle accurate RTL simulation is used here to demonstrate the influence of resource
utilization and availability on the delay. Two initiators are connected to an AMBA
AHB bus. They use a random traffic generator to transfer data over the bus. Preemptive
arbitration is used, where initiator 2 has higher priority.

With no resource conflicts, the number of transactions sent by initiator 1 within 1ms is
approximately constant for a given traffic density. With resource conflicts, the delay is
measured as the additional time for initiator 1 to finish the same number of transactions.
This measurement is conducted in various traffic scenarios, by varying the bus utilization
of each initiator. As shown in Figure 4.9(a), for a fixed bus utilization of initiator
2, the delay is approximately linear to the bus utilization of initiator 1. As shown
in Figure 4.9(b), for a fixed bus utilization of initiator 1, the delay is approximately
hyperbolic to the bus utilization of initiator 2. Both the linear and hyperbolic curvatures
conform to the delay model as in (4.10)and (4.14). The results therefore validate the
adoption of the analytical delay estimation.

4.7.2 Hypothetical Scenarios

In this experiment, hypothetical scenarios of different resource conflicts are simulated.
The simulation results are used as illustrations of the fundamental principles of the
proposed delay estimation approach and the scheduling algorithm. Three initiators
are connected to a shared resource that uses fixed priority arbitration with a priority
configuration: initiator 1 > initiator 2 > initiator 3. Concurrently, each initiator issues
a synchronization request with a requested duration of 1ms. The resource utilization
of these requests varies around a pre-defined value within certain time periods. For
example, within the time interval [0s, 0.1s] in Figure 4.10(a), the resource utilization for
each synchronization request of initiator 2 is around 40%. For the lower priority initiator
2 and initiator 3, their synchronization requests will be delayed. Their actual durations
are plotted in Figure 4.10(b), which is obtained by applying the delay formula in the
scheduler. It can be seen that, for a lower priority initiator, its synchronization request is
delayed more if the resource utilization of this initiator or another higher priority initiator
increases. Moreover, this figure also shows that the duration is adjusted dynamically.
Take initiator 3’s the synchronization request pointed by the arrow for example. At first,
it overlaps with initiator 1’s synchronization request with a resource utilization around
0.2. Before it finishes, the next synchronization request of initiator 1 begins with a
resource utilization around 0.35. Because each synchronization request will cause the
scheduling algorithm in Algorithm 4.1 to update and reschedule all ongoing requests,
the request of initiator 3 is therefore rescheduled to a later time, indicating more delay.
Details regarding such dynamic adjustment have been given in Section 4.6.1. Similar
observation can also be made for the synchronization request pointed by arrow 2.

Contents 106

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ra

ff
ic

 d
en

si
ty

 (
bu

s
ut

ili
za

tio
n)

Time (s)

Bus utilization of initiator 1
Bus utilization of initiator 2
Bus utilization of initiator 3

(a) Different resource utilization scenarios.

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ur

at
io

n
(m

s)

Time (s)

1

2

Actual duration of the requests of initiator 2
Actual duration of the requests of initiator 3

(b) Actual durations of the synchronization requests.

Figure 4.10: Estimated timing in hypothetical scenarios.

4.7.3 Applied To HW/SW Co-Simulation

This experiment demonstrates how the analytical timing estimation can be used in
a co-simulation environment, with host-compiled software simulation on a multipro-
cessor TLM. The architecture of the employed TLM virtual prototype is sketched in
Figure 4.11.

4.7.3.1 Description of the SW Simulation

Section 2.1 has already briefly listed the considered cases of software simulation in the
scope of this work. For the sake of clarity, this section gives a more detailed description
regarding how the software and its performance are simulated in the present approach,
before presenting the experimental results.

There are two types of temporal decoupling applied in the software simulation. The
first type corresponds to the simulation of application software. In the domain of host-
compiled SW simulation, previous approaches use bus-word transactions to simulate the

Contents 107

CPU1

dmem1

ICUUART1

cameraimem1

bridge

$I $D

AES

cpu subsystem 1 2 3

UART2

Figure 4.11: VP architecture modeled with TLM.

memory accesses after cache misses or the accesses to other hardware modules. An ex-
ample is given in Figure 4.12(a). As can be seen, the expensive wait statement is called
to synchronize the estimated cycles before inter-module communication, such as cache
line refilling or accesses to peripheral devices. Then the transactions are evoked. Arbi-
tration can be performed for each bus-word transaction to resolve timing conflicts. Such
fine-grained synchronization may incur large simulation overhead, in case of frequent
cache misses or peripheral accesses. For this reason, it is necessary to simulate the SW
in a temporally decoupled way. As shown in Figure 4.12(b), neither wait statements nor
transactions take place at cache misses. Leaving out these transactions will not alter
the functional correctness of the simulation, since they do not carry functional data as
already explained in Section 1.2.3.4. The number of cache misses is accumulated. In the
present approach, the requested duration of a large code block is calculated by summing
the accumulated cycles and the cache miss penalty. The accumulated cache miss counts
are also used to calculate the utilization of a resource such as the bus. Then, with these
timing parameters, a synchronization request is issued to the scheduler, which performs
the proposed scheduling algorithm described in Section 4.6.1 to determine the delay and
hence the actual duration.

The second type corresponds to the usage of TLM+ transactions, which implicitly ap-
ply temporal decoupling. The requested durations of these TLM+ transactions can be
obtained by using their timing profiles, which are constructed according to the method
in Section 4.3.2.1. In simulation, after a TLM+ transaction is carried out, a timing syn-
chronization request will be issued to the scheduler. The scheduler estimates its actual
duration by taking into account the resource utilization of other ongoing synchronization
requests as described in Section 4.6.1.

In practice, the above two cases can happen in one software program. For example,
the program calls a function to encrypt a data block and then transfers the encrypted
data to a UART module. Firstly, the encryption function is simulated with temporal
decoupling. Then, the duration of this encryption function is estimated by issuing a
timing synchronization request to the scheduler. Secondly, the data transfer is simulated
by a TLM+ transaction, which is timed by a subsequent timing synchronization request
issued to the scheduler as well.

In the following experiments, different communication scenarios and priority schemes
are tested. From the experimental data, timing accuracy and simulation speed-up are
examined to evaluate the efficacy of the proposed approach. In particular, it will be
shown that (i) the analytical timing estimation can ensure high timing accuracy when

Contents 108

 func1{
 ...
 for(...){
 tmp=key[i]*arr[i];
 ...
 cyc+=6;
 dCacheRd(arr_addr+i);
 ...
 }

 read(...){
 //check hit or miss
 ...
 if(miss){
 wait(cyc-cyc_old);
 cyc_old=cyc;
 //start a transaction
 memRead(...);
 ...

 read(...){
 ...
 if(miss){
 nMissRdDCache++;
 }
 }

 func1{
 ...
 for(...){
 tmp=key[i]*arr[i];
 ...
 cyc+=6;
 dCacheRd(arr_addr+i);
 ...
 sync()
 }

Cache modelAnnotated SW

Cache modelAnnotated SW

a

b

MEM

B
U

S

TLM

Figure 4.12: Host-compiled SW simulation (a) conventional simulation using standard
TLM without using temporal decoupling (b) modified for fast simulation with analytical

timing estimation.

temporal decoupling is used and (ii) it introduces very low simulation overhead thus
preserving the high speed-up.

4.7.3.2 Simulation of Two Processors

The experiment is set up as such: processor 1 filters a new buffer by using the fir algo-
rithm, and then writes the results to the UART module, so on and so forth. Concurrently,
processor 2 reads a frame from the camera, performs color conversion (rgb2yuv) on each
pixel, and then continues with the next frame. A fixed priority scheme is used, with
processor 2 having a higher priority than processor 1. The simulation is performed in
3 modes: (1) In TLM mode, the conventional host-compiled simulation is used, as in
Figure 4.12(a). (2) In TLM+TD mode, temporal decoupling is used as in Figure 4.12(b).
But there is no consideration of the delay due to the access conflicts at shared resources.
(3) In TLM+TD+DM mode, temporal decoupling is used. The proposed delay model
(DM) and scheduling algorithm are applied for timing estimation.

For in-depth analysis, the functions and corresponding bus accesses of processor 1 and
processor 2 in TLM simulation are traced, as shown in Figure 4.13. In the zoomed-in
figure, processor 1 is executing the driver function write uart, during which it initiates
transactions for communicating with the memory or UART. Concurrently, processor
2 is executing the driver function readCamera in the first half of the figure and the
application rgb2yuv in the second. It can be seen that, when executing read camera,
processor 2 initiates transactions more frequently than executing rgb2yuv, due to heavy

Contents 109

 read_camera() is in execution
rgb2yuv() is in execution

refill a cache line access a register of UART

1 2 3 4 5 6 7 8

Figure 4.13: Traced functions and HW accesses in standard TLM simulation using
bus-word transactions.

 700000

 720000

 740000

 760000

 780000

 800000

 820000

 1 2 3 4 5 6 7 8 9 10

D
ur

at
io

n
(n

s)

Index of function call

Durations of the function call to write_uart().

delay

TLM
TLM+TD

TLM+TD+DM

Figure 4.14: Timing comparison for write uart().

I/O communication and frequent cache-line refilling. Therefore, transactions of pro-
cessor 1 are delayed more when processor 2 is executing read camera. This can be
reflected in the measured durations of processor 1’s calls to write uart in Figure 4.14.
The 2nd, 4th and 7th calls are delayed more, since they overlap more with the execution
of read camera by processor 2. Furthermore, it can also be seen that the estimated
delays in TLM+TD+DM simulation match very well with those in TLM simulation.
This means the proposed delay formula and the scheduling algorithm have successfully
modeled the timing related to resource conflicts and dynamically resolved the duration
of each code block simulated with temporal decoupling.

The overall simulation results are given in Table 4.1. In TLM+TD mode, the simulation
is 19 times faster than TLM mode, demonstrating the speed-up due to temporal decou-
pling. However, the timing is underestimated by 7%, because the transactions of the
lower priority processors are not delayed by the resource conflicts. In TLM+TD+DM
mode, the reduced timing estimation error (-0.8%) verifies the efficacy of the proposed
analytical timing estimation approach. At the same time, the simulation speed is close
to that of TLM+TD simulation. This implies an negligible overhead caused by the
scheduling algorithm. To sum up, this experiment shows that integrating analytical
timing estimation into the simulation with temporal decoupling is capable of retaining
both the timing accuracy and the simulation speed-up.

Contents 110

Table 4.1: Multiprocessor simulation results.

Sim. mode TLM TLM+TD TLM+TD+DM

Cycles 306M 288M 303M

Err(%) - -7 -0.8

Exe. time (s) 8.81 0.47 0.48

Speed-up. - 19 18.4

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

x 10
5

Index of function call.

D
ur

at
io

n
[n

s]

Comparing the duration of write_uart()

0 5 10 15 20 25 30
−30

−20

−10

0

10

Index of function call

E
rr

or
 [%

]

Timing error of each call to write_uart()

TLM
TLM+TD
TLM+TD+DM

TLM+TD
TLM+TD+DM

Figure 4.15: Durations of processor 3’s calls to write uart() under FIFO arbitration
scheme.

4.7.3.3 Simulation with Three Processors

This experiment examines the delay estimation under different arbitration schemes with
relative high degree of conflicts. It is set up as such: processor 1 keeps writing new
buffers of various lengths to the UART1 module; processor 2 keeps reading a buffer
from the AES module; processor 3 keeps writing new buffers of variant lengths to the
UART2 module. To stress the proposed approach, the data cache is disabled and polling
is used by the interrupt service routine in the driver functions for the I/O devices. This
results in heavy traffic and thus frequent access conflicts at the shared bus.

Test scenario 1: A FIFO arbitration scheme is used. Resource availability is calculated
according to (4.13). For each processor, the durations of the function calls are measured
in each simulation mode. For processor 3, the measured durations of its calls to the
write uart() function are given in Figure 4.15. As can be seen, timing in TLM+TD
simulation is quite underestimated, with the errors fluctuating around 14%. In contrast,

Contents 111

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

x 10
5

Index of function call.

D
ur

at
io

n
[n

s]

Comparing the duration of write_uart()

0 5 10 15 20 25 30
−30

−20

−10

0

10

Index of function call

E
rr

or
 [%

]

Timing error of each call to write_uart()

TLM
TLM+TD
TLM+TD+DM

TLM+TD
TLM+TD+DM

Figure 4.16: Durations of processor 3’s calls to write uart() under fixed priority
arbitration scheme.

timing in TLM+TD+DM simulation is very well estimated, with most errors in the
range of (−2%, 2%). Over a long time period, the timing error for the accumulated
duration in TLM+TD+DM simulation is below 1%. Similar results are also obtained
for the estimated durations of the function calls of processor 1 and processor 2.

Test scenario 2: A fixed priority arbitration scheme is used, with the priority assign-
ment processor 1>processor 2>processor 3. In this case, the function calls of processor
3 should be delayed more, compared with the previous test scenario. The measured
durations are given in Figure 4.16. In TLM+TD simulation, the timing is now under-
estimated by around 20% for most of the calls and up to 30% for a few of them. In
TLM+TD+DM simulation, the absolute timing errors in most cases are below 5%, with
a few approaching 10%. The relative large timing error for an individual call is because
there can be certain offset to the start time of this call, which leads to variation of the
resource availability in this offset period. But speaking from the accumulated duration
over a long period, the timing estimation exhibits high accuracy with an error below
3%.

The simulation speed-up offered by using TLM+ transactions depends on two factors.
The first is represented by the simulation cost in transferring one unit of data in the
data block, where the software protocol for this transfer is implemented based on bus-
word transactions. The second is the size of the data block. Since the whole data
block can be transferred by just a single TLM+ transaction, therefore the larger the
data block is, the more speed-up a TLM+ transaction can lead to. Assume there are
K bus-word transactions required to transfer one unit of data in the simulation using

Contents 112

bus-word transactions. This corresponds to at least K synchronization effort needed to
synchronize before and during the bus-word transactions. Further, assume the size of
the data block is N . As a result, when a TLM+ transaction is used to transfer this
data block, the simulation speed in terms of modeling this transfer will be improved by
approximately K × N times. The value of K depends on the software protocols. In
practice, it can be up to a few hundreds or thousands [14]. The value of N depends on
the application. It can range from a few bytes as in transferring data to an encryption
module, to a few hundreds of bytes as in transferring data to a serial interface. In some
examined cases, a speed-up of three orders of magnitude or more can be reached [14, 121].
The net contribution of TLM+ transactions to the overall simulation efficacy depends on
the proportion of the data transfer in the simulated software. This contribution is high
in those applications where a large amount of data needs to be frequently transferred
such as in the simulation of a communication network.

Chapter 5

Conclusion

The last few decades has seen a design trend of using simulative models to handle the
ever increasing design complexity. More and more design tasks are carried out on vir-
tual prototypes. Using virtual protocols expedites the development, reduces the cost
and offers high flexibility. Following this need, techniques and tools have emerged for
efficient modeling and simulation of the software and hardware of the system under de-
sign. The work in this dissertation has put forth several methodologies. They cover two
principal aspects in simulating the software and the underlying hardware model. One
corresponds to the performance estimation in faster software simulation. For this, there
has been a line of research investigating host-compiled software simulation. The other
corresponds to the timing estimation in faster modeling of the inter-module communica-
tion. Representative work includes the proposal of highly abstract TLM+ transactions
and the application of temporal decoupling. Although these lines of research contribute
to a faster simulation, problems of degraded simulation accuracy are encountered. The
proposed methodologies tackle these problems.

Performance Estimation in Host-Compiled Software Simulation

Driven by detailed structural analysis of the control-flows, this work proposes a method-
ology that can reliably annotate the source code from an target binary code that has
been optimized by the compiler. Through control-flow analysis, structural properties
are extracted for the basic blocks of both the source code and the target binary code.
Examined structural properties include loop membership, control dependency, the dom-
inance relation, and the post-dominance relation. The control dependency analysis is
combined with the loop analysis to identify the intra-loop control dependency. These
properties provide useful insight regarding the execution order of the basic blocks. For
each basic block in the binary code, its structural properties are progressively checked
in the selection of a most appropriate counterpart basic block in the source code. This
resolves the correct position in the source code to annotate the performance estimation
codes extracted from a basic block in the binary code. The annotated source code by
this means can serve as a good performance model of the target binary. Therefore, in the
host-compiled simulation, the codes related to performance estimation will be accumu-
lated in an appropriate oder. Compared to the annotation approaches that only resort to
the line reference file or the dominance relation, the present methodology is more robust
against compiler optimization and hence leads to more accurate performance estimation
of the simulated software.

113

Contents 114

To accurately resolve the addresses of data memory accesses, the key idea in this work is
to exploit the memory allocation mechanism. The compiler respects this mechanism in
assigning addresses to the binary load and store instructions. This lays a solid theoretical
basis for the present approach and therefore ensures the preciseness of the extracted
memory addresses. This approach considers three major sections accounting for data
memory accesses during the execution of a program, namely the stack, data and heap
sections. The address is resolved by considering in which section the accessed variable is
located. For variables in the stack, a variable is annotated in the source code to simulate
the stack pointer. When a function is called or returned, this variable is modified
according to the stack size of the function. Hence, this simulated stack pointer can be
used to dereference the address of the accessed variable. For static or global variables,
their addresses are obtained explicitly from the debugging information. These addresses
can be directly used for cache simulation. For variables in the heap, the growth of the
heap is simulated by using the same memory allocation algorithm as in the target binary
code. Therefore the value returned by this algorithm can be directly used as the allocated
address in the heap. The present approach is also able to handle pointer dereferences,
even if the pointers are used as function arguments. With accurately reconstructed data
memory accesses, it is possible for the data cache model to simulate when a cache miss
occurs. This is helpful in the simulation of a multi-processor model, which requires the
availability of the occurrence times of the transactions after cache misses, so that the
access conflicts at shared resources can be realistically resolved.

The control-flow analysis and the source code annotation are automated by a tool in
this work. Further development of this tool may involve the addition of new features to
handle very specific compiler optimizations or path-based annotation. For path-based
annotation, the performance modeling codes are extracted from a long path, instead of
a single basic block. Path-based annotation may also be necessary to handle certain
complex compiler optimizations. One example is the optimization of multiple branch
basic blocks such as joining their target basic blocks. The code region containing these
branch basic blocks can be identified by finding the hammocks. Then, the paths within
this region are enumerated. Each path corresponds to a sequence of branch conditions.
For annotation, a path in the source code corresponding to a same sequence of the branch
conditions needs to be found. Finally, the performance estimation extracted for the path
in the binary code is annotated in the corresponding path of the source code. For other
specific optimizations such as loop-tiling, the corresponding loop in the source code may
need to be transformed for annotation. Another alternative could be to directly modify
the compiler, so that it provides the necessary information regarding what optimization
has been performed and which basic blocks are affected. This information could make
it much easier to annotate the source code.

A Method to Time TLM+ Transactions

To time TLM+ transactions, a straightforward solution is to find out the timing char-
acteristics of the corresponding driver functions that implement the low-level software
protocols, from which the TLM+ transactions are abstracted. This was the task of this
work at the beginning of the SANITAS project. The difficulty is to identify the start
and end of the driver functions when the software is executed by an ISS. The proposed
idea is to inspect the entry and exit instruction addresses of those driver functions. A
tool is developed that can provide the addresses of the entry and exit instructions of any
functions, through static analyzing the target binary code. By comparing the instruc-
tion addresses with those entry and exit addresses, this method is able to trace the exact

Contents 115

start and end of the executed driver functions in ISS-based simulation. As a result, the
timing profiles of them can be constructed.

Analytical Timing Simulation for Temporally Decoupled TLMs

For a transaction-level model that is simulated using temporal decoupling, the durations
of the concurrent processes are hard to simulate. Timing estimation becomes even more
difficult, if TLM+ transactions are used concurrently with other processes. The under-
lying bus-word transactions in a TLM+ transaction are invisible, since they have been
abstracted away. Therefore, using temporal decoupling or TLM+ transactions hides the
timing information that is required by the conventional arbitration scheme to resolv-
ing timing conflicts at shared resources. An analytical timing estimation methodology
is proposed for the timing estimation problem. It abstracts the accesses of hardware
modules as resource utilization. Then the resource availability is calculated. Taking
the resource utilization and resource availability, a delay formula is proposed to model
the effect of timing conflicts at a shared resource. Additionally, an efficient scheduling
algorithm integrated in a resource model library dynamically adjusts the duration of a
synchronization request. Even this synchronization corresponds to a very long period,
the expensive SystemC wait statement is called only once. With this methodology, tim-
ing is simulated without the need of tracing the bus-word transactions or performing
bus-word transaction based arbitration. It also supports on-demand timing synchroniza-
tion, and is free from the use of a pre-defined global quantum. Currently, the analytical
timing estimation is used for concurrent processes among which there exists no data
dependency. If this is not the case, new treatment needs to be added. For example, if
two TLM+ transactions access a shared memory region, one of them may need to wait
until the other one finishes. This can be modeled by reducing the resource availability
to zero for the waiting transaction.

General Consideration and outlook

These methodologies can be used in a combined way in the hardware and software
co-simulation. Certain parts of the software can be simulated using host-compiled simu-
lation. Other parts that involve data transfer between the memory and other peripheral
devices can be simulated using TLM+ transactions. In the simulated of a multi-processor
model, each software on a processor can be simulated in a temporal decoupled way,
whereby timing is dynamically and analytically estimated by the present scheduler.

The tools developed in this work can also be applied in a broader way for system model-
ing and performance analysis. Task level performance modeling can be incorporated in
the annotation process. Traffic patterns for the tasks may be parameterized. Resource
utilization for a given task can be derived from the traffic density among the resources.
Because the analytical timing estimation is not restricted to transaction-level simulation,
performance metrics can also be estimated without simulation, given the extracted tim-
ing characteristics. To incorporate specific design aspects, the analytical formulas, such
as the one for modeling resource availability, may need to be modified. Such extension
should not be difficult to achieve in the analytical timing estimation framework, which
is flexible in terms of adding new features.

Appendix A

Algorithms in the CFG Analysis

The dominance analysis implemented in the present tool-chain adopts a simple and fast

algorithm by Cooper [140], to which the readers are referred for detailed description

or explanation. The pseudo code of this algorithm is given in Algorithm A.1. Before

identifying the dominators, it first constructs a reverse post-order node set. This set is

denoted by NR. Then it initializes the dominator set for each node to be the whole node

set. Following this, the while loop completes the dominator construction (from line 1 to

line 30). Until this step, the dominator set for each node has already been completely

found. However, this dominator set is unordered. Based on this, the following step

until line 44 orders the node according to their dominance relation. This results in a

dominator tree. It does so by progressively inspecting the nodes at a larger depth. When

finished, the ancestors for a node in this tree are thus its ordered dominator set.

The post-dominance analysis is exactly the same as the dominance analysis, but per-

formed on a reversed CFG where the directions of the edges are reversed. So, the root

node of the obtained post-dominance tree is the Exit node of the original CFG.

117

Appendix Graph analysis algorithms 118

Algorithm A.1 Find the ordered dominator set for all nodes in a CFG

1: N := the set of nodes in the CFG
2: NR := a reverse post-order of the nodes in N, see [140]
3:

4: for ni ∈ N do
5: dom(ni)← N // initialized as the full node set
6: end for
7:

8: changed← True
9: while changed do

10: changed← False
11: for ni ∈ NR do
12: firstprec← True
13: newset← ∅
14: // intersecting all dominator sets of the predecessors of the node
15: for nk ∈ parent(ni) do
16: if firstprec == True then
17: newset← dom(nk)
18: firstprec← False
19: else
20: newset← newset ∩ dom(nk)
21: end if
22: end for
23: newset.add(ni) //A node dominates itself by definition
24: //Check if the domination set has changed in this iteration
25: if newset 6= dom(ni) then
26: dom(ni)← newset //Update the dominator set
27: changed← True
28: end if
29: end for
30: end while
31:

32: // connect the nodes according to the dominance relation to form a tree
33: Td := a dominance tree initialized with a single root node
34: height = max([dom(ni).size, for ni ∈ N])
35: for i ∈ [2, hight+ 1] do
36: for ni ∈ N do
37: if i == dom(ni).size then
38: Nd ← Td.getNodesAtDepth(i− 2)
39: dominator ← dom(ni) ∩Nd

40: Td.addEdge(dominator, ni)
41: end if
42: end for
43: end for
44: return

Appendix B

Details of the Trace and Profile

Tool

B.1 The Tracing Mechanism

The class hierarchy of this tracing and profiling mechanism is shown in Figure B.1.

A tracer class is used to model different events of interest such as the execution of a

function, the access to a hardware module, etc. Each tracer contains a profiler that

enables online profiling. A tracer can be classified either as state-less or state-based.

A state-less tracer is mainly for tracing activities related to a single event such as a

time-out event. A state-based tracer is associated with several variable related to state

registration. A bi-state tracer is used to model activities that have a start event and

a stop event. Examples include a transaction, the execution of a software or hardware

function. A multi-state tracer can trace the accesses to a queue where different states

corresponds to the current queue length. It can also trace multiple concurrent accesses

to a shared resource. In addition, some timing verification tasks can be performed as

well by using the states of a tracer. For example, a bi-state tracer is not allowed to start

again if it is already in the start state. Also, the end state can be specified to happen

within a certain time interval after the start state.

B.2 Tracing the SW Execution

This tool supports multi-level software tracing and profiling, including the function level,

basic block level and instruction level. Such panoramic analysis has not been reported

by previous tools. To trace the software execution, the ISS forwards the address and

type of the executed instruction to a monitor. By checking the type and address, the

monitor further calls a corresponding tracer. Following SW tracers are considered.

1. At instruction level: the execution frequency of instructions is profiled according

to their types. This profiling can be done for the whole application program or for

a specific function.

119

Appendix Graph analysis algorithms 120

Tracer

+write(val)
 setEvent(evtName)
 setProperty(attr,val)
 registerVCD(f)
 profiler

Profiler

+ onStart()
 onStop()

+ useMode

StateTracer	

...

NonStateTracer	

 ...	

UseTracer

+ setRequest(t)

SWTracer

+ check(addr,
 nextAddr, type)
 enter()
 progress()
 ...

...

cpu

 + SWMonitor
 + tracers

SWMonitor

+ check(addr, nextAddr,
 instrType)
+ readAddrBoundary()

+ list<SWBehavior*> fb
+ SWTracer* lb
+ file AddrBoundary

SWProfiler

 + onProgress()

mem

+ tracers

HW Tracing
Tracing and profiling library

SW Tracing
: A has B; A B A is B; A B :

TraceWriter
(singleton)

+ dumpTrace(...)

Function
Address

Boundary

Tracefile
(database)

FuncTrace

 ...

BranchTrace

 ...

read

write

bus

+ tracers

LoopTrace

 ...

Figure B.1: Overall class hierarchy of TraPro.

2. At loop or basic block level: timing statistics of the loops are profiled such as their

activation counts and looped count per activation. The traces of branch instruc-

tions include its taken/non-taken status, which is also profiled. Additionally, the

dynamic control flow graph can be constructed.

3. At function level: The start and end of each function can be traced. A dynamic

function call graph can be constructed. In this graph, for a caller function, the

number of calls and accumulated time of execution of its callee are provided.

This information is not available with static call graph analysis and is of great

importance for the designer to inspect and analyze the performance of individual

tasks.

Tracing the functions: From the target assembly code, entry and exit addresses of

the functions can be parsed. There is only one entrance of a function, which is its first

instruction. There can be multiple exits of a function. Taking a MIPS instruction set for

Appendix Graph analysis algorithms 121

example, the exits correspond to the jr (jump and return) instructions, taking a MIPS

instruction set for example. As is shown in Figure B.1, the SW monitor traces the

executed functions by checking the address and type of each executed instruction. If the

instruction is a function call jal, then the monitor compares the address to be jumped

to against all the function entry addresses. If the instruction is the return of a function,

then the monitor compares its address with all the exit addresses of the functions. If

neither case is true, then it accumulates the number of instructions for the functions

that are currently being executed.

Tracing the loops: From the control-flow graph of the target binary code, all loops can

be statically identified. Therefore the instruction addresses of the loop head instructions,

loop latch instructions, and the next instruction when a loop exits are known. With

these addresses, the software monitor can detect the entry and exit of a loop, similar

to the case of function tracing. Besides, each time a loop latch instruction is executed,

one iteration of the loop is finished and the loop tracer will be informed. The executed

loops are stored in a stack-like structure. A loop is popped from the stack when it exits.

Tracing the branches: To trace the taken or not-taken status of the branch instruc-

tions, the monitor inspects the next instruction address after a branch instruction. If it

is the target address of the branch, then this branch is taken, otherwise not taken.

B.3 Tracing the HW Activities

To trace the access to a hardware module, a UseTracer is used (see the upper left in

Figure B.1). It can trace timing information such as the request time, delay and duration

of a transaction that accesses a certain hardware module. In TLM2.0, a transaction is

initiated as transport(gp, t), where gp and t represent a generic payload and a time

variable respectively. The variable t is used to store the request time. The transaction

can be delayed, resulting in a longer duration than the request time. A UseTracer has

a method useRequest(t) which is called to register the request time before a transaction

starts. When a transaction stops, the UseTracer is informed to automatically calculate

the delay.

An example of using the UseTracer to trace the access to a hardware in case of a

transaction is demonstrated in List B.1. The original transport() call is wrapped by the

methods of the UseTracer class. The method write(1) is called after a transaction is

received. The method write(-1) is called after a transaction is complete. The number

of overlapping requests at a shared resource can be traced.

1 class CPU: public sc_module ...

2 UseBhv u; // behavior declaration

3 ...

4 int write(addr , data){

5 tlm:: tlm_generic_payload x;

6 ...

7 u.setProperty("Addr", addr);

8 u.write (1); // start: will set start time

9 busport.transport(x,t);

Appendix Graph analysis algorithms 122

LUI 29
BEQ 40
DIV 40
MFHI 40
SW 77
SRL 144
ANDI 216
LW 278
SUBU 289
ADDU 426
BNE 449
ADDIU 818
XOR 991
SB 998
SLL 1022
LBU 1340

29

40
40

40

77 144

216
278

289

426

449

818

991

998

1022

1340

LUI

BEQ

DIV

MFHI

SW

SRL

ANDI

LW

SUBU

ADDU

BNE

ADDIU

XOR

SB

SLL

LBU

Figure B.2: Instruction profile of the application program.

10 u.useRequest(t); //set request time

11 u.write(-1); //stop: will calculate delay

12 ...

13 }

14 //At the initiation of the cpu class

15 CPU (...):

16 //set owner and type of the behavior

17 u(_name ,"X_WRITE")

18 ...

Listing B.1: Example of tracing resource contention

B.4 Application of the Tracing Tool

B.4.1 Results of Traced Software Execution

To show the results generated by this trace and profile tool, an AES encryption algorithm

is simulated on a ISS-based model. Results related to the computation aspects of the

program are given in this section, while those related to the communication aspects are

in the next section.

The instruction profiling is shown in Figure B.2. As is shown, the LBU, SLL, SB, XOR

instructions consume over 50% in the overall executed instructions. Such information

can be useful in selecting the CPU’s micro architecture.

The traced loops are shown in Table B.1. The first row gives the addresses of the loop

head instructions. The second row shows how many times the loop is activated. The

third row shows the total number of executed instructions for each loop. From the

Appendix Graph analysis algorithms 123

Addr 1114 1c8 750 9c0 90c 6e0 6ec 1240 a04 be0 898 7dc 250 8ac 650 2d4 354

lCnt 2 3 3 3 3 12 3 31 3 15 27 27 120 8 27 39 10

iCnt 12 34 58 58 70 76 91 93 94 151 522 630 760 944 1656 1939 2400

Table B.1: Instruction and iteration counts for different loops.

0
10
20
30
40
50
60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Figure B.3: Iteration count profile. The x-axis is the number of entrance to this loop.
The y-axis gives the iterations count each time this loop is entered.

A1c8

TK,3

A1e8NT,1 A250NT,1

A354

A274

TK,10

A2d4

TK,40A268

TK,10

NT,30A258 TK,40

A184 NT,1
NT,40

TK,120

TK,39

Figure B.4: Dynamic control flow of KeyExpansion().

entry

main

1,344560

initf

1,2930 loadModules

1,41700

openf

1,700

openDrivers

1,480

initDevices

1,16150 App1

1,277410

closeDrivers

1,450

closef

1,700

init_sif

1,6060

init_aes

1,2510

init_icu

1,18260

init_dmac

1,2580

5,28640

instance

4,120

init_device

6,5940

open_icu

1,350

1,30

38,1140

doEncAES

1,267650

initAES

1,9380

1,30

close_icu

1,350

32,960

init_interrupt

32,5120 4,120

init_dma

4,640

OS_AsmIrqEnable

1,60

Cipher

1,162750

KeyExpansion

1,104520

MixColumns

9,77310

OS_AsmIrqDisable

1,60

Figure B.5: The dynamic function call graph, with edges colored by execution time.

table, the loops that have high activation counts or executed instruction counts can be

identified. These loops can be examined more closely. For example, the iteration count

profile for a loop with its head address at 0x2d4 is given in Figure B.3. It can be seen

that this loop is entered 39 times. These information may help the designers to revise

the loops in the source code.

From tracing the taken/non-taken status of branch instructions, a dynamic control-flow

graph can be constructed. An example is given in Figure B.4. In this figure, a node

consist of the address of a branch instruction. The label of edge indicates how many

times the branch is taken (TK) or not taken (NT).

List of Figures 124

Figure B.6: The traced functions.

Based on the function tracing, a dynamic function call graph during the software sim-

ulation can be constructed. An example is given in Figure B.5. The label of an edge

denotes the number of function calls and the execution time of the called function. The

edges are colored according to the execution time of the callee function. This figure

shows the dynamics of function activation and can be used to examine the computa-

tional cost of the sub-routines. A waveform-style figure of all traced functions are shown

in Figure B.6. This figure provided by the software monitor. It sets the value of a

corresponding signal to high or low when it detects the entry or exit of a function by

inspecting the address of the executed instruction.

B.4.2 Results of Traced Hardware Accesses

The traced memory accesses are profiled over a two dimensional time-address plane. For

a resolution of (10us, 64B), the resulted profile shows the memory access time within

every time interval of 10us and an address interval 64Bytes. The resulted profile vi-

sualizes memory access patterns in different memory sections, including the instruction

memory, the static data section, the stack and the heap section. Example results are

given in Figure B.7. For clarity, the address is offset to the minimum address in the

corresponding profile. Such memory access patterns are useful in aiding the design of

memory hierarchy such as determining the size and associativity of the cache.

The concurrent accesses to a hardware module can be examined after the simulation. An

experiment with 3 CPUs connected to a shared bus is conducted. A sample waveform

is given in Fig B.8. The first signal in this figure is the number of access requests on

this bus. A value larger than 1 indicate access conflicts. The other signals represent

the transaction durations of each CPU. For example, at time 22.52us, there are 3 access

requests on the bus, due to CPU1’s write data request, CPU2’s write data request and

CPU3’s read data request, respectively.

List of Figures 125

(a) Instruction memory access profile. (b) Static data access profile.

Figure B.7: Memory access profiles

Figure B.8: Bus conflicts when using 3 CPUs.

List of Figures

1.1 Co-simulation environment can shorten the design flow. 2

1.2 Basic steps in different SW simulation techniques. 4

1.3 Basic steps in annotating the source code. 7

1.4 Compare different methods of SW simulation 9

1.5 Comparison of timing synchronization. 13

2.1 Overview of the considered cases. 20

2.2 Ambiguity problem in using the line reference. 22

2.3 TLM+ complicates the timing estimation. 24

2.4 Timing estimation in temporally decoupled TMLs. 24

2.5 Timing arbitration of TLM+ transactions. 30

3.1 Sample CFG and the resultant graphs given by structural analysis. 38

3.2 One reason of using intra-loop control dependency. 42

3.3 Example of the line reference. 45

3.4 Handling ambiguous line reference . 47

3.5 Resolve ambiguous control dependencies 48

3.6 Checking dominance relation alone is insufficient 50

3.7 Common cases of loop optimizations. 50

3.8 Annotation for loop splitting and function inlining. 51

3.9 Example of annotated source code for HW/SW co-simulation. 52

3.10 Stack data with sp-explicit addresses. 54

3.11 Stack data with sp-implicit addresses. 54

3.12 Addresses for static variables. 55

3.13 Handle pointer dereference . 56

3.14 Main structure of the tool chain . 58

3.15 A class diagram. 59

3.16 Control-flow graph of the source code . 63

3.17 The dominance graph . 64

3.18 The post-dominance graph . 65

3.19 A set of generated intra-loop control dependency graphs. 66

3.20 Control-flow graph of the target binary code 67

3.21 Line references . 68

3.22 Resulted basic block mapping graph . 69

3.23 Example mapping graph for jdct . 75

3.24 Traced transactions over bus during the execution of rgb2yuv. 77

3.25 Traced transactions over bus during the execution of edge. 78

3.26 The virtual simulation platform . 79

126

List of Figures 127

3.27 Experiment using line 1: Simulated status parameters of the robot. 80

3.28 Experiment using line 2: Simulated status parameters of the robot. 81

3.29 Estimated cycles for the path control task 81

4.1 Example scenario of considered abstract timing requests. 85

4.2 Exemple resource utilization and availability matrices. 86

4.3 Decomposition of the problem into three sub-problems. 87

4.4 TLM+ transactions: concept and implementation. 89

4.5 The timing profiling tool-chain. 92

4.6 Handle ISR in calculating resource availability. 96

4.7 Example of the dynamic rescheduling feature. 100

4.8 Porting the timing estimation layer to TLMs. 103

4.9 Timing of processor 1 with different resource utilization. 104

4.10 Estimated timing in hypothetical scenarios. 106

4.11 VP architecture modeled with TLM. 107

4.12 Comparison of the timing estimation accuracy. 108

4.13 Traces in TLM simulation with bus-word transactions. 109

4.14 Timing comparison for write uart(). 109

4.15 Timing results under FIFO arbitration scheme. 110

4.16 Timing results under fixed priority arbitration scheme. 111

B.1 Overall class hierarchy of TraPro. 120

B.2 Instruction profile of the application program. 122

B.3 Iteration count profile. The x-axis is the number of entrance to this loop.
The y-axis gives the iterations count each time this loop is entered. 123

B.4 Dynamic control flow of KeyExpansion(). 123

B.5 The dynamic function call graph, with edges colored by execution time. . 123

B.6 The traced functions. 124

B.7 Memory access profiles . 125

B.8 Bus conflicts when using 3 CPUs. 125

List of Tables

2.1 Timing estimation approaches in host-compiled simulation 26

3.1 Example of the determination of control dependent nodes 41

3.2 Example properties of nodes in Figure 3.1 41

3.3 Parsed local variables . 60

3.4 Control node list in the function . 61

3.5 Loop analysis results . 61

3.6 Structural properties of the basic blocks 70

3.7 Source node properties . 71

3.8 Binary node properties . 72

3.9 Binary node properties translated according to Section 3.3.2 and 3.3.3 . . 73

3.10 Progressively selected mapping sets . 74

3.11 Comparison of simulated cycles. 76

3.12 Comparison of data cache simulation accuracy 76

3.13 Speed-up of host-compiled simulation over ISS simulation. 78

4.1 Multiprocessor simulation results. 110

B.1 Instruction and iteration counts for different loops. 123

128

Symbols

ni a node in a CFG

Gs(N s, Es) CFG of the source code

Gb(N b, Eb) CFG of the binary code

N s a set of the source code basic block

N b a set of the binary code basic block

nsi basic block in the source code CFG

nbi basic block in the binary code CFG

dom(ni) dominator set

pdom(ni) dominator set

idom(ni) immediate dominator

ipdom(ni) immediate post-dominator

li a loop in the CFG

N(li) the natural loop of li

Eli the entry edge of li

Xli the exit edge(s) of li

Pm loop membership property

Pc intra-loop controlling node property

Pb immediate dominate property

ER mapping edges line reference

EB mapping edges line reference for the branch instruction

φc selection by matching control dependency

φm selection by matching loop membership

φm selection by matching branch dominator

φr selection by matching line reference

Si a timing synchronization request

uij resource utilization of Si at resource Rj

aij resource availability of Si at resource Rj

dij delay of Si at resource Rj

129

Index

abstraction level, 13

back edge, 39

basic block, 6

block transaction, 11

bus-word transaction, 11

control dependent node, 40

control edge, 40

controlling node, 40

cross-compilation, 5

delay formula, 97

dominance, 38

dominator, 38

global time, 13

host machine, 4

immediate branch dominator, 43

immediate dominator, 39

immediate post-dominator, 39

intra-loop control dependency, 42

ISS, 4

latching node, 39

line reference, 6

local time, 13

loop entry edge, 40

loop exit edge, 40

loop exit node, 40

loop head, 39

loop latching node, 39

loop membership, 41

loop nesting, 40

natural loop, 40

nested loops, 40

parent loop, 40

post-dominance, 39

post-dominator, 39

rescheduling, 99

resource, 84

resource availability, 85, 94

resource utilization, 85, 88

scheduling algorithm, 99

selection operator, 45

simulation host, 4

synchronization point, 99

SystemC, 9

target binary, 5

target processor, 4

temporal decoupling, 13

time quantum, 13

timing profile, 90

TL models, 10

TLM, 10

TLM+, 11

TLM+ transaction, 11

TLMs, 10

transaction-level modeling, 10

variables in the data section, 53

variables in the heap, 54

variables in the stack, 53

virtual prototype, 2

130

Bibliography

[1] J.A. Rowson. Hardware/software co-simulation. In Design Automation, 1994. 31st

Conference on, pages 439–440, 1994.

[2] D. Becker, R. K. Singh, and S. G. Tell. An engineering environment for hard-

ware/software co-simulation. In Design Automation Conference, DAC ’92. ACM,

1992.

[3] R.K. Gupta, C.N. Coelho, and G. De Micheli. Synthesis and simulation of digital

systems containing interacting hardware and software components. In Design Au-

tomation Conference, 1992. Proceedings., 29th ACM/IEEE, pages 225–230, 1992.

[4] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems. Int. Journal of Computer

Simulation, 1994.

[5] Value Proposition of CoFluent Studio. http://www.intel.de/content/www/de/

de/cofluent/cofluent-difference.html. [Online; accessed 20-July-2013].

[6] Plasma CPU. http://opencores.org/. [Online; accessed 19-July-2013].

[7] RealView ARMulator Instruction Set Simulator. http://arm.com/. [Online; ac-

cessed 19-July-2013].

[8] OpenRISC 1200. http://openrisc.net/or1200-spec.html. [Online; accessed

19-July-2013].

[9] Jianwen Zhu and Daniel Gajski. A retargetable, ultra-fast instruction set simula-

tor. In Design, Automation and Test in Europe (DATE), 1999.

[10] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt. nstruction set compiled simu-

lation: a technique for fast and flexible instruction set simulation. In ACM/IEEE

Design Automation Conference (DAC), 2003.

[11] Rainer Leupers, Johann Elste, and Birger Landwehr. Generation of interpretive

and compiled instruction set simulators. In IEEE/ACM Asia and South Pacific

Design Automation Conference (ASP-DAC), 1999.

[12] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich Meyr,

and Andreas Hoffmann. A universal technique for fast and flexible instruction-set

architecture simulation. In ACM/IEEE Design Automation Conference (DAC),

2002.

131

http://www.intel.de/content/www/de/de/cofluent/cofluent-difference.html
http://www.intel.de/content/www/de/de/cofluent/cofluent-difference.html
http://opencores.org/
http://arm.com/
http://openrisc.net/or1200-spec.html

Bibliography 132

[13] IEEE. IEEE Standard SystemC Language Reference Manual, 2005.

[14] W. Ecker, V. Esen, and M. Velten. TLM+ modeling of embedded HW/SW sys-

tems. In Design, Automation and Test in Europe (DATE), 2010.

[15] OSCI. OSCI TLM-2.0 Language Reference Manual, 2009.

[16] Ken Hines. Pia: A framework for embedded system co-simulation with dynamic

communication support. Technical report, University of Washington, 1996.

[17] K. Hines and G. Borriello. Optimizing communication in embedded system co-

simulation. In Hardware/Software Codesign, 1997. (CODES/CASHE ’97), Pro-

ceedings of the Fifth International Workshop on, pages 121–125, 1997.

[18] Wikipedia. Transaction-level modeling. http://en.wikipedia.org/wiki/

Transaction-level_modeling. [Online; accessed 21-July-2013].

[19] Wolfgang Ecker, Stefan Heinen, and Michael Velten. Using a dataflow abstracted

virtual prototype for hds-design. In Design Automation Conference, 2009. ASP-

DAC 2009. Asia and South Pacific, pages 293–300. IEEE, 2009.

[20] H-J Schlebusch, Gary Smith, Donatella Sciuto, Daniel Gajski, Carsten Mielenz,

Christopher K Lennard, Frank Ghenassia, Stuart Swan, and Joachim Kunkel.

Transaction based design: Another buzzword or the solution to a design problem?

In Design, Automation and Test in Europe Conference and Exhibition, 2003, pages

876–877. IEEE, 2003.

[21] C.A. Valderrama, A. Changuel, P. V. Raghavan, M. Abid, T. Ben Ismail, and

A.A. Jerraya. A unified model for co-simulation and co-synthesis of mixed hard-

ware/software systems. In European Design and Test Conference, 1995. ED TC

1995, Proceedings., pages 180–184, 1995.

[22] R. Klein. Miami: a hardware software co-simulation environment. In Rapid System

Prototyping, 1996. Proceedings., Seventh IEEE International Workshop on, pages

173–177, 1996.

[23] C.A. Valderrama, F. Nacabal, P. Paulin, and A.A. Jerraya. Automatic generation

of interfaces for distributed c-vhdl cosimulation of embedded systems: an indus-

trial experience. In Rapid System Prototyping, 1996. Proceedings., Seventh IEEE

International Workshop on, pages 72–77, 1996.

[24] C. Liem, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya. System-on-a-chip

cosimulation and compilation. Design Test of Computers, IEEE, 14(2):16–25,

1997.

[25] Jie Liu, Marcello Lajolo, and Alberto Sangiovanni-Vincentelli. Software timing

analysis using hw/sw cosimulation and instruction set simulator. In Proceedings of

the 6th international workshop on Hardware/software codesign, CODES/CASHE

’98, pages 65–69. IEEE Computer Society, 1998. ISBN 0-8186-8442-9.

http://en.wikipedia.org/wiki/Transaction-level_modeling
http://en.wikipedia.org/wiki/Transaction-level_modeling

Bibliography 133

[26] Guang Yang, Xi Chen, F. Balarin, H. Hsieh, and A. Sangiovanni-Vincentelli. Com-

munication and co-simulation infrastructure for heterogeneous system integration.

In Design, Automation and Test in Europe, 2006. DATE ’06. Proceedings, vol-

ume 1, pages 1–6, 2006.

[27] Alessandro Forin, Behnam Neekzad, and Nathaniel L. Lynch. Giano: The two-

headed system simulator. Technical report, Microsoft Research, 2006.

[28] Moo-Kyoung Chung and Chong-Min Kyung. Enhancing performance of hw/sw

cosimulation and coemulation by reducing communication overhead. Computers,

IEEE Transactions on, 55(2):125–136, 2006.

[29] Ping Hang Cheung, Kecheng Hao, and Fei Xie. Component-based hardware/soft-

ware co-simulation. In Digital System Design Architectures, Methods and Tools,

2007. DSD 2007. 10th Euromicro Conference on, pages 265–270, 2007.

[30] G. Beltrame, D. Sciuto, and C. Silvano. Multi-accuracy power and performance

transaction-level modeling. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 26(10):1830–1842, 2007.

[31] Jinyong Jung, Sungjoo Yoo, and Kiyoung Choi. Fast cycle-approximate mpsoc

simulation based on synchronization time-point prediction. Design Automation

for Embedded Systems, 2007.

[32] S. Cordibella, F. Fummi, G. Perbellini, and D. Quaglia. A hw/sw co-simulation

framework for the verification of multi-cpu systems. In High Level Design Valida-

tion and Test Workshop, 2008. HLDVT ’08. IEEE International, pages 125–131,

2008.

[33] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,

J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for mul-

ticores. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th

International Symposium on, pages 1–12, 2010.

[34] Heiko Huebert. Seamless co-verification environment user’s and reference manual,

1996.

[35] Mentor Graphics. ModelSim. http://www.mentor.com/products/fpga/model.

[Online; accessed 20-July-2013].

[36] IEEE. IEEE Standard for Property Specification Language (PSL), 2010. [Online;

accessed 20-July-2013].

[37] Carbon simulator. http://www.carbondesignsystems.com/. [Online; accessed

20-July-2013].

[38] GEZEL. GEZEL Hardware/Software Codesign Environment. http://rijndael.

ece.vt.edu/gezel2/index.html, 2005. [Online; accessed 19-July-2013].

[39] Patrick Schaumont and Ingrid Verbauwhede. A component-based design environ-

ment for esl design. IEEE Design and Test of Computers, pages 338–347, 2006.

http://www.mentor.com/products/fpga/model
http://www.carbondesignsystems.com/
http://rijndael.ece.vt.edu/gezel2/index.html
http://rijndael.ece.vt.edu/gezel2/index.html

Bibliography 134

[40] Patrick Schaumont, Doris Ching, and Ingrid Verbauwhede. An interactive codesign

environment for domain-specific coprocessors. ACM Trans. Des. Autom. Electron.

Syst., pages 70–87, 2006.

[41] AMcTools. VMLAB: a virtual prototyping IDE. http://www.amctools.com/

vmlab.htm, 2009. [Online; accessed 19-July-2013].

[42] Synopsis. CoCentric System Studio. http://www.synopsys.com/Tools/Pages/

default.aspx. [Online; accessed 20-July-2013].

[43] Intel. CoFluent Studio. http://www.intel.com/content/www/us/en/cofluent/

intel-cofluent-studio.html. [Online; accessed 20-July-2013].

[44] Vojin Zivojnovic and Heinrich Meyr. Compiled HW/SW co-simulation . In

ACM/IEEE Design Automation Conference (DAC), 1996.

[45] M. Lajolo, M. Lazarescu, and A. L. Sangiovanni-Vincentelli. A compilation-based

software estimation scheme for hardware/software co-simulation. In International

Conference on Hardware Software Codesign, 1999.

[46] J. R. Bammi, W. Kruijtzer, L. Lavagno, E. Harcourt, and M. T. Lazarescu. Soft-

ware performance estimation strategies in a system-level design tool. In Interna-

tional Workshop on Hardware/Software Codesign (CODES), 2000.

[47] J. Y. Lee and I. C. Park. Timed compiled-code simulation of embedded soft-

ware for performance analysis of SOC design. In ACM/IEEE Design Automation

Conference (DAC), 2002.

[48] H. Posadas, F. Herrera, P. Sanchez, E. Villar, and F. Blasco. System-level perfor-

mance analysis in SystemC. In Design, Automation and Test in Europe (DATE),

2004.

[49] Kingshuk Karuri, M.A.A.Faruque, Stefan Kraemer, Rainer Leupers, Gerd Ascheid,

and Heinrich Meyr. Fine-grained Application Source Code Profiling for ASIP

Design. In ACM/IEEE Design Automation Conference (DAC), 2005.

[50] Torsten Kempf, Kingshuk Karuri, Stefan Wallentowitz, Gerd Ascheid, Rainer Le-

upers, and Heinrich Meyr. A SW performance estimation framework for early

system-level-design using fine-grained instrumentation. In Design, Automation

and Test in Europe (DATE), 2006.

[51] E. Cheung, H. Hsieh, and F. Balarin. Framework for fast and accurate performance

simulation of multiprocessor systems. In IEEE International High Level Design

Validation and Test Workshop, 2007.

[52] Trevor Meyerowitz, Alberto Sangiovanni-Vincentelli, Mirko Sauermann, and Do-

minik Langen. Source-Level Timing Annotation and Simulation for a Heteroge-

neous Multiprocessor. In Design, Automation and Test in Europe (DATE), 2008.

[53] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High-performance timing

simulation of embedded software. In ACM/IEEE Design Automation Conference

(DAC), 2008.

http://www.amctools.com/vmlab.htm
http://www.amctools.com/vmlab.htm
http://www.synopsys.com/Tools/Pages/default.aspx
http://www.synopsys.com/Tools/Pages/default.aspx
http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-studio.html
http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-studio.html

Bibliography 135

[54] Yonghyun Hwang, S. Abdi, and D. Gajski. Cycle-approximate Retargetable Per-

formance Estimation at the Transaction Level. In Design, Automation and Test

in Europe (DATE), 2008.

[55] P. Gerin, M. M. Hamayun, and F. Petrot. Native MPSoC co-simulation environ-

ment for software performance estimation. In International conference on Hard-

ware/Software codesign and system synthesis, 2009.

[56] Lei Gao, Jia Huang, Jianjiang Ceng, Rainer Leupers, Gerd Ascheid, and Heinrich

Meyr. Totalprof: A Fast and Accurate Retargetable Source Code Profiler. In

CODES ISSS, 2009.

[57] A. Pedram, D. Craven, and A. Gerstlauer. Modeling Cache Effects at the Trans-

action Level. In IESS, 2009.

[58] Kai-Li Lin, Chen-Kang Lo, and Ren-Song Tsay. Source-Level Timing Annotation

for Fast and Accurate TLM Computation Model Generation. In IEEE/ACM Asia

and South Pacific Design Automation Conference (ASP-DAC), 2010.

[59] H. Posadas, L. Diaz, and E. Villar. Fast Data-Cache Modeling for Native Co-

Simulation. Asia and South Pacific Design Automation Conference (ASP-DAC),

2010.

[60] Daniel Mueller-Gritschneder, Kun Lu, and Ulf Schlichtmann. Control-flow-driven

Source Level Timing Annotation for Embedded Software Models on Transaction

Level. In EUROMICRO Conference on Digital System Design (DSD), September

2011.

[61] Stefan Stattelmann, Oliver Bringmann, and Wolfgang Rosenstiel. Fast and Ac-

curate Source-Level Simulation of Software Timing Considering Complex Code

Optimizations. Design Automation Conference (DAC), 2011.

[62] S. Stattelmann, O. Bringmann, and W. Rosenstiel. Dominator homomorphism

based code matching for source-level simulation of embedded software. In

International conference on Hardware/Software codesign and system synthesis

(CODES+ISSS), 2011.

[63] S. Stattelmann, G. Gebhard, C. Cullmann, O. Bringmann, and W. Rosenstiel.

Hybrid Source-Level Simulation of Data Caches Using Abstract Cache Models. In

Design, Automation and Test in Europe (DATE), 2012.

[64] Z. Wang and Andreas Herkersdorf. An efficient approach for system-level tim-

ing simulation of compiler-optimized embedded software. In ACM/IEEE Design

Automation Conference (DAC), July 2009.

[65] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Source-Level Execution

Time Estimation of C Programs. In CODES, 2001.

[66] L. Cai, A. Gerstlauer, and D. Gajski. Multi-Metric and Multi-Entity Characteri-

zation of Application for Early System Design Exploration. In IEEE/ACM Asia

and South Pacific Design Automation Conference (ASP-DAC), 2005.

Bibliography 136

[67] G. Schirner, A. Gerstlauer, and R. Doemer. Abstract, Multifaceted Modeling of

Embedded Processors for System Level Design. In IEEE/ACM Asia and South

Pacific Design Automation Conference (ASP-DAC), 2007.

[68] Yang Xu, Bo Wang, Ralph Hasholzner, Rafael Rosales, and Juergen Teich. On Ro-

bust Task-Accurate Performance Estimation. In ACM/IEEE Design Automation

Conference (DAC), 2013.

[69] A. Bouchhima, P. Gerin, and F. Petrot. Automatic Instrumentation of Embedded

Software for High Level Hardware/Software Co-Simulation. In IEEE/ACM Asia

and South Pacific Design Automation Conference (ASP-DAC), 2009.

[70] P. Giusto, G. Martin, and E. Harcourt. Reliable estimation of execution time of

embedded software. In Design, Automation and Test in Europe (DATE), 2001.

[71] M. S. Oyamada, F. Zschornack, and F. R. Wagner. Applying neural networks to

performance estimation of embedded software. Journal of Systems Architecture,

2008.

[72] Henning Zabel and Wolfgang Mueller. Increased Accuracy through Noise Injection

in Abstract RTOS Simulation. In Design, Automation and Test in Europe (DATE),

2009.

[73] I. Moussa, T. Grellier, and G. Nguyen. Exploring SW performance using SoC

transaction-level modeling . In Design, Automation and Test in Europe (DATE),

2003.

[74] S. Yoo, G. Nicolescu, L. Gauthier, and A.A. Jerraya. Building Fast and Accurate

SW Simulation Models Based on Hardware Abstraction Layer and Simulation En-

vironment Abstraction Layer. In Design, Automation and Test in Europe (DATE),

2003.

[75] Eric Cheung, Harry Hsieh, and Felice Balarin. Memory subsystem simulation in

software TLM/T models. In IEEE/ACM Asia and South Pacific Design Automa-

tion Conference (ASP-DAC), 2009.

[76] Stefan Stattelmann, Oliver Bringmann, and Wolfgang Rosenstiel. Fast and Accu-

rate Resource Conflict Simulation for Performance Analysis of Multi-Core Systems.

In Design, Automation and Test in Europe (DATE), 2011.

[77] A. Kohler and Martin Radetzki. A SystemC TLM2 model of communication in

wormhole switched Networks-On-Chip. In Forum on Specification and Design

Languages (FDL), 2009.

[78] T. Arpinen, Erno Salminen, Timo Hamalainen, and Marko Hnnikaninen. Per-

formance evaluation of UML2-modeled embedded streaming applications with

system-level simulation. EURASIP Journal on Embedded Systems, 2009.

[79] Chi-Fu Chang and YarSun Hsu. A System Exploration Platform for Network-

on-Chip. In International Symposium on Parallel and Distributed Processing with

Applications (ISPA), 2010.

Bibliography 137

[80] S. Le Nours, A. Barreteau, and O. Pasquier. A state-based modeling approach for

fast performance evaluation of embedded system architectures. In IEEE Interna-

tional Symposium on Rapid System Prototyping (RSP), 2011.

[81] G. Schirner and R. Doemer. Fast and Accurate Transaction Level Models using

Result Oriented Modeling. In IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), 2006.

[82] Leandro S. Indrusiak and Osmar M. dos Santos. Fast and accurate transaction-

level model of a wormhole network-on-chip with priority preemptive virtual chan-

nel arbitration. In Design, Automation and Test in Europe (DATE), 2011.

[83] Parisa Razaghi and Andreas Gerstlauer. Predictive OS Modeling for Host-

Compiled Simulation of Periodic Real-Time Task Sets. IEEE Embedded System

Letters (ESL), 2012.

[84] Alex Bobrek, Joshua Pieper, Jeffrey Nelson, JoAnn M. Paul, and Donald E.

Thomas. Modeling shared resource contention using a hybrid simulation/ana-

lytical approach. In Design, Automation and Test in Europe (DATE), 2004.

[85] K. Lahiri, A. Raghunathan, and S. Dey. Design space explo- ration for optimiz-

ing on-chip communication architectures. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2004.

[86] Simon Kuenzli, Francesco Poletti, Luca Benini, and Lothar Thiele. Combining

simulation and formal methods for system-level performance analysis. In Design,

Automation and Test in Europe (DATE), 2006.

[87] Alex Bobrek, JoAnn M. Paul, and Donald E. Thomas. Stochastic contention level

simulation for single-chip heterogeneous multiprocessors. IEEE Transactions on

Computers, 2010.

[88] Umit Ogras and Radu Marculescu. Analytical Router Modeling for Networks-on-

Chip Performance Analysis. In Design, Automation and Test in Europe (DATE),

2007.

[89] Umit Ogras, Paul Bogdan, and Radu Marculescu. An Analytical Approach for

Network-on-Chip Performance Analysis. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2010.

[90] Mingche Lai, Lei Gao, Nong Xiao, and Zhiying Wang. An accurate and efficient

performance analysis approach based on queuing model for network on chip. In

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2009.

[91] Nikita Nikitin and Jordi Cortadella. A performance analytical model for Network-

on-Chip with constant service time routers . In IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD), 2009.

[92] S. Foroutan, Y. Thonnart, R. Hersemeule, and A. A. Jerraya. An analytical

method for evaluating Network-on-Chip performance. In Design, Automation and

Test in Europe (DATE), 2010.

Bibliography 138

[93] Youhui Zhang, Xiaoguo Dong, and Weimin Zheng. A Performance Model for

Network-on-Chip Wormhole Routers. Journal of Computers, 2012.

[94] Jih-Ching Chiu, Kai-Ming Yang, and Chen-Ang Wong. Analytical Modeling for

Multi-transaction Bus on Distributed Systems. Algorithms and Architectures for

Parallel Processing, 2012.

[95] S Foroutan, Y. Thonnart, and F. Petrot. An Iterative Computational Technique for

Performance Evaluation of Networks-on-Chip. IEEE Transactions on Computers,

2012.

[96] Erik Fischer, Albrecht Fehske, and Gerhard P. Fettweis. A Flexible Analytic

Model for the Design Space Exploration of Many-Core Network-on-Chips Based on

Queueing Theory . In International Conference on Advances in System Simulation

(SIMUL), 2012.

[97] Vinitha A. Palaniveloo and Arcot Sowmya. Formal estimation of worst-case com-

munication latency in a Network-on-chip. In IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), 2012.

[98] Abbas Eslami Kiasari, Zhonghai Lu, and Axel Jantsch. An Analytical Latency

Model for Networks-on-Chip. IEEE Transactions on VERY LARGE SCALE IN-

TEGRATION Systems (TVLSI), 2013.

[99] S. Foroutan, Y. Thonnart, R. Hersemeule, and A. A. Jerraya. A Markov chain

based method for NoC end-to-end latency evaluation. In IEEE International Sym-

posium on Parallel and Distributed Processing (IPDPS), 2010.

[100] Soeren Sonntag, Matthias Gries, and Christian Sauer. SystemQ: A Queuing-Based

Approach to Architecture Performance Evaluation with SystemC. In International

Conference on Embedded Computer Systems: Architectures, Modeling, and Simu-

lation (SAMOS), 2005.

[101] Soeren Sonntag, Matthias Gries, and Christian Sauer. SystemQ: Bridging the gap

between queuing-based performance evaluation and SystemC. Design Automation

for Embedded Systems, 2007.

[102] A. Bobrek, JoAnn M. Paul, and Donald E. Thomas. Shared resource access at-

tributes for high-level contention models. In ACM/IEEE Design Automation Con-

ference (DAC), 2007.

[103] Kalle Holma, Mikko Setaelae, Erno Salminen, Marko Haennikaeinen, and Timo D.

Haemaelaeinen. Evaluating the model accuracy in automated design space explo-

ration. Microprocessors and Microsystems, August 2008.

[104] Chafic Jaber, Andreas Kanstein, Ludovic Apvrille, Amer Baghdadi, and Renaud

Pacalet. High-level system modeling for rapid hw/sw architecture exploration. In

IEEE International Symposium on Rapid System Prototyping (RSP), 2009.

[105] Hans-Peter Loeb and Christian Sauer. Fast SystemC Performance Models for the

Exploration of Embedded Memories. Advances in Design Methods from Modeling

Languages for Embedded Systems and SoC, 2010.

Bibliography 139

[106] M. Otoom and J. M. Paul. Workload Mode Identification for Chip Heterogeneous

Multiprocessors. International Journal of Parallel Programming, 2012.

[107] Zhiliang Qian, Dacheng Juan, Paul Bogdan, and Radu Marculescu. SVR-NoC: A

Performance Analysis Tool for Network-on-Chips Using Learning-based Support

Vector Regression Model. In Design, Automation and Test in Europe (DATE),

March 2013.

[108] Christoph Roth, Oliver Sander, Matthias Kuehnle, and Juergen Becker. HLA-

based simulation environment for distributed SystemC simulation . In Interna-

tional ICST Conference on Simulation Tools and Techniques (SIMUTools), 2011.

[109] Rauf Khaligh and Martin Radetzki. Efficient Parallel Transaction Level Simulation

by Exploiting Temporal Decoupling. Analysis, Architectures and Modelling of

Embedded Systems, 2009.

[110] Rauf S. Khaligh and Martin Radetzki. A dynamic load balancing method for

parallel simulation of accuracy adaptive TLMs. In Forum on Specification and

Design Languages (FDL), 2010.

[111] A. Mello, I. Maia, A. Greiner, and F. Pecheux. Parallel simulation of systemC

TLM 2.0 compliant MPSoC on SMP workstations. In Design, Automation and

Test in Europe (DATE), 2010.

[112] Rainer Doemer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-core par-

allel simulation of system-level description languages . In IEEE/ACM Asia and

South Pacific Design Automation Conference (ASP-DAC), 2011.

[113] Weiwei Chen, Xu Han, and Rainer Doemer. Out-of-order parallel simulation for

ESL design. In Design, Automation and Test in Europe (DATE), 2012.

[114] Giovanni Funchal and Matthieu Moy. Modeling of time in discrete-event simulation

of systems-on-chip. In IEEE/ACM International Conference on Formal Methods

and Models for Codesign (MEMOCODE), 2011.

[115] L.G. Murillo, J. Eusse, J. Jovic, and Rainer Leupers. Synchronization for hybrid

MPSoC full-system simulation. In ACM/IEEE Design Automation Conference

(DAC), 2012.

[116] Kuen-Huei Lin, Siao-Jie Cai, and Chung-Yang Huang. Speeding up SoC virtual

platform simulation by data-dependency-aware synchronization and scheduling . In

IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC),

2010.

[117] Yu-Fu Yeh, Shao-Lun Huang, Chi-An Wu, and Hsin-Cheng Lin. Speeding Up

MPSoC virtual platform simulation by Ultra Synchronization Checking Method.

In Design, Automation and Test in Europe (DATE), 2011.

[118] Nicolas Blan and Daniel Kroening. Race analysis for SystemC using model check-

ing. ACM Transactions on Design Automation of Electronic Systems (TODAES),

2010.

Bibliography 140

[119] Rauf S. Khaligh and Martin Radetzki. Modeling constructs and kernel for parallel

simulation of accuracy adaptive TLMs . In Design, Automation and Test in Europe

(DATE), 2010.

[120] Parisa Razaghi and Andreas Gerstlauer. Automatic timing granularity adjustment

for host-compiled software simulation. In IEEE/ACM Asia and South Pacific

Design Automation Conference (ASP-DAC), 2012.

[121] Kun Lu, Daniel Mueller-Gritschneder, Wolfgang Ecker, Volkan Esen, Michael Vel-

ten, and Ulf Schlichtmann. An Approach toward Accurately Timed TLM+ for

Embedded System Models . In edaWorkshop, May 2011.

[122] Kun Lu, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. Accurately Timed

Transaction Level Models for Virtual Prototyping at High Abstraction Level. In

Design, Automation and Test in Europe (DATE), March 2012.

[123] Kun Lu, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. Analytical Timing

Estimation for Temporally Decoupled TLMs Considering Resource Conflicts. In

Design, Automation and Test in Europe (DATE), March 2013.

[124] W. Ecker, V. Esen, and M. Velten. TLM+ modeling of embedded HW/SW sys-

tems. In Design, Automation and Test in Europe (DATE), 2010.

[125] Kun Lu, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. Memory Access Re-

construction Based on Memory Allocation Mechanism for Source-Level Simulation

of Embedded Software. In IEEE/ACM Asia and South Pacific Design Automation

Conference (ASP-DAC), January 2013.

[126] Kun Lu, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. Hierarchical Con-

trol Flow Matching for Source-level Simulation of Embedded Software. In IEEE

International Symposium on System-on-Chip, October 2012.

[127] Kun Lu, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. Fast Cache Simula-

tion for Host-Compiled Simulation of Embedded Software. In Design, Automation

and Test in Europe (DATE), March 2013.

[128] Daniel Mueller-Gritschneder, Kun Lu, Erik Wallander, Marc Greim, and Ulf

Schlichtmann. A Virtual Prototyping Platform for Real-time Systems with a Case

Study for a Two-wheeled Robot. In Design, Automation and Test in Europe

(DATE), March 2013.

[129] Kun Lu, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. Removal of Unnec-

essary Context Switches from the SystemC Simulation Kernel for Fast VP Simula-

tion. In International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAMOS), July 2011.

[130] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Mass., 1975.

[131] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Depe-

dence Graph and Its Use in Optimization. ACM Transactions on Programming

Languages and Systems, 9(3):319.–349, 1987.

Bibliography 141

[132] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A Simple, Fast Domi-

nance Algorithm. Software Practice and Experience, 4:1–10, 2001.

[133] T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Computer

science. Springer, 2011. ISBN 9781441988348.

[134] pycparser. http://code.google.com/p/pycparser, 2011.

[135] Stefan Stattelmann, Alexander Viehl, Oliver Bringmann, and Wolfgang Rosenstiel.

Reconstructing Line References from Optimized Binary Code for Source-Level

Annotation. In Forum on specification and Design Languages, 2010.

[136] Plasma CPU Model. http://www.opencores.org/projects/mips, 2011.

[137] Embecosm Limited. The OpenCores OpenRISC 1000 Simulator and Tool Chain:

Installation Guide., 2008.

[138] K. Pathak, J. Franch, and S. K. Agrawal. Velocity and position control of a

wheeled inverted pendulum by partial feedback linearization. IEEE Transactions

on Robotics, 2005.

[139] Manoj Ariyamparambath, Denis Bussaglia, Bernd Reinkemeier, Tim Kogel, and

Torsten Kempf. A Highly Efficient Modeling Style for Heterogeneous Bus Archi-

tectures. In IEEE International Symposium on System-on-Chip, 2003.

[140] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. A simple, fast dominance

algorithm. Software Practice and Experience, 4:1–10, 2001.

	Abstract
	1 Introduction and Background
	1.1 Motivation
	1.1.1 Virtual Prototypes
	1.1.2 Benefits of Using HW/SW Co-simulation

	1.2 SW simulation
	1.2.1 ISS-Based Software Simulation
	1.2.1.1 Disadvantages of ISS-based SW simulation

	1.2.2 Host-Compiled SW Simulation
	1.2.3 Annotated Host-Compiled SW Simulation
	1.2.3.1 Basic block
	1.2.3.2 Line reference
	1.2.3.3 The Annotation Procedure
	1.2.3.4 Annotated Codes for Performance Modeling

	1.2.4 Comparison of the above approaches

	1.3 HW Modeling and Simulation
	1.3.1 SystemC
	1.3.2 Transaction-Level Modeling (TLM)
	1.3.3 TLM+
	1.3.4 Temporal Decoupling
	1.3.4.1 Timing Simulation in Standard TLMs
	1.3.4.2 Temporal Decoupling in TLMs

	1.3.5 Transaction Level: Rethink the Nomenclature

	1.4 Recent Development in HW/SW Co-Simulation
	1.4.1 Academic Research and Tools
	1.4.2 Commercial tools

	2 Challenges and Contributions
	2.1 The scope of this work
	2.2 Challenge in Annotating the Source Code
	2.2.1 Timing Annotation and Basic Block Mapping
	2.2.2 Annotate Memory Accesses

	2.3 Timing Estimation for TLM+ Transactions
	2.4 Timing Estimation in Temporally Decoupled TLMs
	2.5 State of the Art
	2.5.1 Annotated host-compiled SW Simulation
	2.5.1.1 Binary-Level Annotation
	2.5.1.2 Intermediate-Level Annotation
	2.5.1.3 Source-Level Annotation
	2.5.1.4 Timing Extraction Based on Profiling
	2.5.1.5 Reconstruction of Memory Accesses

	2.5.2 Faster and more abstract HW communication simulation
	2.5.2.1 Faster Simulation of Transaction-Level Models
	2.5.2.2 Arbitrated Timing Simulation
	2.5.2.3 Hybrid Simulative and Analytical Approaches
	2.5.2.4 Analytical NoCs
	2.5.2.5 Statistical Approaches
	2.5.2.6 Parallel Simulation
	2.5.2.7 Consider the Data Dependency

	2.6 Contributions
	2.6.1 A Methodology for Annotating the Source Code
	2.6.2 Construct Timing Profiles for TLM+ Transactions
	2.6.3 Analytical Timing Estimation for Temporally Decoupled TLMs
	2.6.4 Summary of contributions
	2.6.5 Previous Publications

	3 Source Code Annotation for Host-Compiled SW Simulation
	3.1 Structural control flow analysis
	3.1.1 Dominance analysis
	3.1.2 Post-dominance analysis
	3.1.3 Loop analysis
	3.1.4 Control dependency analysis

	3.2 Structural Properties
	3.2.1 Loop membership
	3.2.2 Intra-loop control dependency
	3.2.3 Immediate branch dominator

	3.3 Basic block mapping procedure
	3.3.1 Line reference from debug information
	3.3.2 Matching loops
	3.3.3 Translate the properties of binary basic blocks
	3.3.4 Selection using matching rules
	3.3.5 The mapping procedure
	3.3.6 Comparison with other mapping methods
	3.3.7 Consider other specific compiler optimizations
	3.3.7.1 Handle optimized loops
	3.3.7.2 Handle function inlining
	3.3.7.3 Consider compound branches

	3.4 Reconstruction of data memory accesses
	3.4.1 Addresses of the variables in the stack
	3.4.2 Addresses of static and global variables
	3.4.3 Addresses of the variables in the heap
	3.4.4 Handling pointers

	3.5 Experimental Results
	3.5.1 The tool chain and the generated files
	3.5.1.1 Input Files
	3.5.1.2 Performed analysis
	3.5.1.3 Automatically generated reports

	3.5.2 Benchmark simulation
	3.5.2.1 Evaluation of the method for basic block mapping
	3.5.2.2 Reconstructed memory accesses

	3.5.3 Case Study: An Autonomous Two-wheeled Robot
	3.5.3.1 Simulation results

	4 Analytical Timing Estimation for Faster TLMs
	4.1 Contributions and Advantages
	4.2 Overview of the Timing Estimation Problem
	4.2.1 Terms and Symbols
	4.2.2 Problem Description

	4.3 Calculation of resource utilization
	4.3.1 Simulation Using Bus-Word Transactions
	4.3.2 Simulation Using TLM+ transactions
	4.3.2.1 Extracting timing profiles of TLM+ transactions
	4.3.2.2 Estimated Duration of TLM+ transactions
	4.3.2.3 Compute the resource utilization

	4.3.3 A versatile tracing and profiling tool

	4.4 Calculation of resource availability
	4.4.1 Arbitration policy with preemptive fixed priorities
	4.4.2 Arbitration policy with FIFO arbitration scheme
	4.4.3 Generalization of the Model
	4.4.3.1 Consideration of register polling

	4.4.4 Consideration of bus protocols

	4.5 The delay formula
	4.6 Incorporate Analytical Timing Estimation in Simulation
	4.6.1 The scheduling algorithm
	4.6.2 Modeling support - integrating the resource model
	4.6.3 Comparison with TLM2.0 quantum mechanism:

	4.7 Experimental Results
	4.7.1 RTL Simulation as a Proof of Concept
	4.7.2 Hypothetical Scenarios
	4.7.3 Applied to HW/SW Co-Simulation
	4.7.3.1 Description of the SW Simulation
	4.7.3.2 Simulation of Two Processors
	4.7.3.3 Simulation with Three Processors

	5 Conclusion
	A Algorithms in the CFG Analysis
	B Details of the Trace and Profile Tool
	B.1 The Tracing Mechanism
	B.2 Tracing the SW Execution
	B.3 Tracing the HW Activities
	B.4 Application of the Tracing Tool
	B.4.1 Results of Traced Software Execution
	B.4.2 Results of Traced Hardware Accesses

	List of Figures
	List of Tables
	Symbols
	Index
	Bibliography

