
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Luft- und Raumfahrt

Constrained Model Predictive Control
for Real-Time Tele-Operation Motion Planning

Mingming Wang

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Univer-
sität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. dr. ir. Daniel J. Rixen

Prüfer der Dissertation:

1. Univ.-Prof. Dr. rer. nat. Ulrich Walter

2. Univ.-Prof. Dr.-Ing. Alin Albu-Schäffer

Die Dissertation wurde am 14.01.2015 bei der Technische Universität München eingereicht
und durch die Fakultät für Maschinenwesen am 17.06.2015 angenommen.

Acknowledgements

The 4 years’ Ph.D life is a special and important experience in my life. It is full of passion,
hope, desperation, struggle and happiness. As a foreigner in Germany, countless people
from different countries have given me their hands to support and encourage me to success-
fully get through my Ph.D life.

The first gratitude is devoted to Prof. Walter and Prof. Luo. Prof. Walter accepted
me as one of the members in his institute and gave me great freedom to do what I am
really interested in. As my primal supervisor, Prof. Luo guides me in my research and
encourages me to go further. I thank Roberto Lampariello who gave me lots of suggestions
at the beginning of my first touch with Robotics. Many thanks to Prof. Igenbergs for his
encouragement and support. I also give my appreciation to Dr. Höhn and Dr. Rott for
their helpful counsel and enduring my Chinglish. I thank Lars for his support on computer.
Thanks to Claas for his picking me up from airport. He and Jan can always lift my spirit
in the institute. I also thank Hein and Andi for sharing their experience with me. Further
thanks to all the colleagues from Institute of Astronautics, it is the common experience with
you makes my Ph.D journey more colourful.

My German friends are a constant source of support. Evelyn, Herta, Ring, Family Yin
and Family Babara gave me lots of help. They introduced Germany to me in detail and
helped me to pass through the dark period. The time spent with them will be a beautiful
memory in my life.

The last gratitude is devoted to my family. My parents encourage me to become the one
who I want to be and always support me to go further. My wife Ling, who perfectly manage
our family and takes care of our little daughter Emily, owns my constant gratitude. It is your
love, tolerance, endurance and optimism that supports me to finish this work.

Mingming Wang
Garching, 01.07.2014

V

Zusammenfassung

Zunehmende Anforderungen an den Satelliten-Service in der Erdumlaufbahn (On Orbit Ser-
vicing, OOS) erfordern neue Technologien, um diese auszuführen. Wegen ihrer Flexibilität,
Multifunktionalität und Erweiterbarkeit sind Weltraum-Roboter eine der vielversprechend-
sten Lösungen dafür. In der vorliegenden Arbeit wird für die Teleoperations-Aufgaben
eines Weltraumroboters eine Architektur mit verteilter Echtzeit-Simulation basierend auf
einem Data Distribution Service (DDS) vorgestellt. Außerdem wird für den frei schweben-
den Roboter ein Model Predictive Control (MPC) Framework entworfen, das Kollisionen
und Singularitäten bei Roboterbewegungen vermeidet. Ziel der vorliegenden Arbeit ist,
für so eine Simulation eine allgemeine Architektur zu entwerfen, die dem Boden-Operateur
eine intuitive Erkennung ermöglicht, und ein neues MPC Framework, das die vielfachen
Einschränkungen beim Betrieb des Weltraumroboters in Betracht zieht und so die Leistung
und Effektivität verbessert.

Zu diesem Zweck wurde eine neue verteilte Echtzeitsimulation, RACOON, entwickelt,
die auf einem DDS in Matlab/Simulink/Stateflow basiert. Sie liefert dem Boden-Operateur
eine intuitive Ansicht des Roboters und erweitert die Simulations-Architektur für kollab-
orative Teleoperation, Mehrkörperdynamik, Autonomous Mission Management (AMM),
Weg- und Bahn-Planung, Bewegungskontrolle, virtuelle Realität, usw., für heutige kom-
plexe Robotikmissionen.

Zunächst wird die Dynamik des Raumroboters mit einer Baumstruktur unter Nutzung
von Konzepten aus der Graphentheorie und räumlichen Beschreibungen dargestellt, um
damit ein Nonlinear Model Predictive Control (NMPC) Model zu verwirklichen. Aus der
Topologie des Roboters wird eine Inertia Mapping Matrix (IMM) hergeleitet werden, um die
Spärlichkeit eines JSIM und die Komplexität von CRBA Algorithmen zu untersuchen und
die Dekomposition des JSIM zu unterstützen.

Danach werden für redundante Manipulatoren unter Berücksichtigung der Priorität von
Redundanz und Aufgaben die Singularitäts- und Kollisions-Probleme untersucht. Für die
Vermeidung von Singularitäten wird basierend auf dem Konzept von Handhabbarkeits-
Ellipsoiden eine sogenannte STR-Methode entwickelt. Zur Kollisionsvermeidung, wird eine
neue Zwei-Kontrollpunkte-Strategie vorgeschlagen, die Schwingung der Gelenkgeschwin-
digkeit dämpft und so eine glattere Bewegungsbahn des Roboterarms erzeugt.

In einer Anwendungsstudie wird gezeigt, wie bei der Ergreifung eines nicht koopera-
tiven Zielsatelliten ein so gestalteter NMPC einen Manipulatorarm kollisions- und singu-
laritätsfrei bewegt. Die Wirksamkeit und die Leistungsfähigkeit der hier neuen vorgeschla-
genen Methoden werden mit traditionellen Methoden verglichen. Diese Arbeit zeigt die
Machbarkeit und die berlegenheit eines eingeschränkten MPC für den Einsatz eines Wel-
traumroboters.

VII

Abstract

The increasing demands of On-Orbit Servicing (OOS) require new technologies to complete
the OOS mission. Space robot, since it is flexible, multi-functional and extendable, is one
of the most promising solutions for OOS. In this thesis, a distributed real-time simulation
architecture based on DDS has been presented for space robotic tele-operation tasks. Be-
sides, a constrained MPC framework considering system input/output, anti-collision and
anti-singularity constraints has been developed for the free-floating space robot. The objec-
tive of this thesis is to provide a general simulation architecture with intuitive perception for
the operators on ground, and a new control framework considering multiple constraints for
the application of the space robot while the performance and effectiveness are improved.

For that purpose, a new distributed real-time simulation architecture, RACOON, has
been implemented based on DDS in the environment Matlab/Simulink/Stateflow. The new
simulation architecture provides the operator on ground an intuitive view of space robot
and makes the simulation architecture open for collaborative tele-operation. As a complete
simulation system, the multi-body dynamics, AMM, path & trajectory planning, motion
control, virtual reality etc. subsystems, integrate together seamlessly to complete the whole
space robotic missions.

In order to realize the new control framework based on NMPC, firstly, the dynamics of
the space robot with tree structure using the concepts of graph theory and spatial notation
is introduced. A new IMM is derived from the topology of the space robot, which can be
employed to analyse the sparsity of the JSIM and the complexity of the CRBA algorithm,
and assist the decomposition of the JSIM. Secondly, the singularity and collision avoidance
issues of redundant manipulators are investigated considering the redundancy and task pri-
ority. A so-called STR method is developed based on the concept of manipulability ellipsoid
for singularity avoidance. For collision avoidance, a new strategy combining two control
points is proposed to restrain the vibration of joint velocity and generate smoother joint
trajectory reference. Thirdly, application of NMPC to space manipulator in capturing an un-
cooperative target satellite is investigated. The system input/output, collision/singularity
constraints in practice imposed on decision variables are translated into linear inequalities
as part of NMPC. An on-line QP algorithm with prioritized constraints is adopted to find
the optimal control efforts.

The effectiveness and performance of the new proposed methods in this thesis are demon-
strated by comparison to traditional methods. Well-designed end-effector path, together
with the NMPC guarantees the success of the space manipulator to complete the capture
of the un-cooperative target satellite. This work shows the feasibility and validity of con-
strained MPC applied in the field of space robot. Furthermore, it can be used to support
further OOS mission and space exploration.

IX

Contents

Acknowledgements V

Zusammenfassung VII

Abstract IX

List of Figures XV

List of Tables XVII

Nomenclature XIX
Acronyms . XIX
Symbols . XXII
Indices . XXIV

1. Introduction 1
1.1. Motivation . 2

1.1.1. On-Orbit Servicing . 2
1.1.2. Why Space Robotics . 3

1.2. State of the art . 4
1.2.1. OOS Technology Demonstrators . 4
1.2.2. Space Robotics Demonstrators . 7
1.2.3. Technical Challenges of Space Robotics . 10

1.3. Hypothesis and Problem Statements . 12
1.4. Scope of Work . 13

1.4.1. Research Scope within Space Robotics . 13
1.4.2. Thesis Roadmap . 13

2. Simulation System Design 17
2.1. Mission Profile . 17
2.2. Simulation Overall Design . 19

2.2.1. Racoon Design . 19
2.2.2. Simulation Environment . 20
2.2.3. Data Distribution Service . 22

2.3. RacoonSim Design . 24
2.3.1. Multi-body Dynamics . 25
2.3.2. Autonomous Mission Management . 26
2.3.3. Path & Trajectory Planning . 28
2.3.4. Motion Control . 29
2.3.5. Virtual Reality & Head-Up Display . 29

2.4. Summary . 31

XI

Contents

3. Multibody Dynamics 33
3.1. Graphy Theory . 34
3.2. Spatial Notation . 35
3.3. Dynamics Algorithm . 36

3.3.1. Lagrange Formulation . 36
3.3.2. Composite Rigid Body Algorithm . 37
3.3.3. Inertia Mapping Matrix . 38
3.3.4. Modified CRBA . 39

3.4. IMM Application . 39
3.4.1. Branch-induced Sparsity . 40
3.4.2. CRBA Computational Cost Analysis . 40
3.4.3. JSIM Factorization Analysis . 42

3.5. Case Study . 44
3.6. Summary . 47

4. Kinematic Control of Manipulator 49
4.1. Inverse Kinematics . 49

4.1.1. Redundancy and Task Priority . 49
4.1.2. General Solution for Inverse Kinematics 50

4.2. Singularity Avoidance . 51
4.2.1. Manipulability Ellipsoid . 52
4.2.2. Singular Task Reconstruction . 53
4.2.3. STR with Multiple Subtasks . 55
4.2.4. Simulation Results . 57

4.3. Obstacle Detection and Avoidance . 64
4.3.1. Collision Detection . 64
4.3.2. Collision Avoidance Strategy . 67
4.3.3. Simulation Results . 70

4.4. Summary . 74

5. Model Predictive Control 77
5.1. Model Predictive Control . 77

5.1.1. Principle and Formulation . 78
5.1.2. MPC Properties . 80

5.2. NMPC Applied to Space Robot . 81
5.2.1. Free-Floating Space Robot . 82
5.2.2. Feedback Linearization . 82
5.2.3. Observer Design . 84
5.2.4. Optimization Index . 86

5.3. Inequality Constraints . 87
5.3.1. Input/Output Constraints . 87
5.3.2. Obstacle/Singularity Constraints . 89

5.4. Quadratic Programming . 92
5.4.1. KKT Conditions . 92
5.4.2. QP with Prioritized Constraints . 93

5.5. Simulation Study . 95
5.5.1. Simulation Set-up . 95
5.5.2. Approach to the Target . 95
5.5.3. Tracking a Predefined Path . 97

XII

Contents

5.5.4. Tracking a Point on the Target . 99
5.6. Summary . 102

6. Conclusions and Future Research 105
6.1. Conclusions . 105
6.2. Future Research . 106

A. Bibliography 109

XIII

List of Figures

1.1. Engineering design MODPV loop . 1
1.2. OOS manned projects . 5
1.3. OOS unmanned projects . 7
1.4. Space roboitcs projects . 9
1.5. OOS demonstrators classification . 10
1.6. Structure of the work . 15

2.1. Mission profile of space robot . 19
2.2. Subsystems of Racoon Lab . 20
2.3. Simulation environment of Racoon . 21
2.4. DDS Structure . 22
2.5. Racoon system set-up . 24
2.6. Racoon simulation system set-up . 25
2.7. Workflow of high-level OOS missions . 27
2.8. Workflow of capture phase . 27
2.9. VRML mechanism and its interfaces . 30
2.10. GUI, VR and HUD in MCC . 31

3.1. Example of tree structure manipulators . 34
3.2. Generalized center of mass of link i . 35
3.3. Relationship among path matrix, IMM and JSIM 38
3.4. Tree configuration and corresponding JSIM of one base with 4 links 40
3.5. Humanoid and corresponding un-branched chain 44
3.6. Operations numbers of CRBA and ABA . 46
3.7. Cost ratio of CRBA and ABA . 46

4.1. Schematic diagram of inverse kinematics based on task priority 51
4.2. 3 revolute planar manipulator and its manipulability ellipsoid 53
4.3. Schematic diagram of singular task reconstruction 54
4.4. The functional behaviour of the turning parameters for singularity avoidance 55
4.5. Block scheme of STR for multiple subtasks . 56
4.6. 3 revolute planar manipulator and subtasks . 57
4.7. Singularity avoidance with single task by STR method 58
4.8. Singularity avoidance with single task by DLS method 59
4.9. Singularity avoidance with two subtasks by STR method 60
4.10. Singularity avoidance with two subtasks by DLS method 61
4.11. Singularity avoidance with two subtasks and higher gain by STR method . . . 62
4.12. Singularity avoidance with two subtasks and higher gain by DLS method . . . 63
4.13. The relationship of two line segments . 65
4.14. The relationship between line segment and triangle 66
4.15. Collision avoidance with two control points . 67

XV

List of Figures

4.16. The functional behaviour of the turning parameters for collision avoidance . . 69
4.17. 10 revolute planar manipulator and obstacles . 71
4.18. Path tracking without collision avoidance . 72
4.19. Path tracking with one control point for collision avoidance 73
4.20. Path tracking with two control points for collision avoidance 74

5.1. Schematic diagram of MPC fundamental principle 78
5.2. Basic NMPC control loop . 79
5.3. The mismatch between open-loop prediction and closed-loop behaviour . . . 81
5.4. Schematic diagram of space robot . 82
5.5. Linear feedback with NMPC for space robot . 84
5.6. Schematic diagram of anti-collision . 89
5.7. Schematic diagram of anti-singularity . 90
5.8. Unfolding the space manipulator using RMAC method 96
5.9. Unfolding the space manipulator using NMPC method 97
5.10. Tracking infinite ring with anti-collision constraints 98
5.11. Tracking line with anti-singularity constraints . 99
5.12. Relative relationship of end-effector frame and capture point frame 100
5.13. Tracking capture point on target satellite . 101
5.14. Screenshot of tracking the capture point on target 102

XVI

List of Tables

1.1. OOS overview and its typical applications (Waltz (1993)) 3
1.2. OOS manned projects . 5
1.3. OOS unmanned projects . 6

3.1. Modified composite rigid body algorithm . 39
3.2. Required operation cost of different transforms . 42
3.3. LTL and LTDL factorization algorithms . 43

4.1. Collision detection algorithms . 66

XVII

Nomenclature

Acronyms

ABA Articulated Body Algorithm

AFRL Air Force Research Laboratory

AI Artificial Intelligence

AMM Autonomous Mission Management

API Application Programming Interface

ASTRO Autonomous Space Transport Robotic Operations

ATV Autonomous Transfer Vehicle

BVH Bounding Volume Hierarchy

CAD Computer Aided Design

CESSORS Chinese Experimental Space System for On-Orbit Robotistic Services

CNES Centre National d’Etudes Spatiales

CRBA Composite Rigid Body Algorithm

CSA Canadian Space Agency

DARPA Defence Advanced Research Projects Agency

DART Demonstration of Autonomous Rendezvous Technology

DCPS Data-Centric Publish/Subscribe

DDS Data Distribution Service

DEOS DEutsche Orbitale Servicing Mission

DH Denavit-Hartenberg

DLR Deutsche Luft und Raumfahrttechnik

DLRL Data Local Reconstruction Layer

DLS Damped Least-Squares

DMC Dynamic Matrix Control

DOF degree-of-freedom

XIX

Acronyms

DOR degree-of-redundancy

ESA European Space Agency

ETS-VII Engineering Test Satellite-VII

EVA Extra-Vehicular Activities

FREND Front-end Robotics Enabling Near-Term Demonstration

FSM Finite State Machine

GEO Geostationary Orbit

GJM Generalized Jacobian Matrix

GPC Generalized Predictive Control

GPS Global Positioning System

GUI Graphical User Interface

HIL Hardware-in-loop

HST Hubble Space Telescope

HTV H-II Transfer Vehicle

HUD Head-Up Display

IDL Interface Definition Language

IMM Inertia Mapping Matrix

IMU Inertia Measurement Unit

ISS International Space Station

JAXA Japan Aerospace Exploration Agency

JSIM Joint-Space Inertia Matrix

KF Kalman Filter

KKT Karush-Kuhn-Tucker

LEO Low Earth Orbit

LP Linear Programming

MCC Mission Control Center

MPC Model Predictive Control

MPD Maximum Projection Distance

XX

Acronyms

MSS Mobile Servicing System

NASA National Aeronautics and Space Administration

NASDA NAtional Space Development Agency of Japan

NMPC Nonlinear Model Predictive Control

NRL Naval Research Laboratory

OBB Oriented Bounding Box

OBDH On-Board Data Handling

OE Orbital Express

OLEV Orbital Life Extension Vehicle

OMG Object Management Group

OOS On-Orbit Servicing

ORU Orbital Replacement Unit

PRISMA Prototype Research Instruments and Space Mission technology Advance-
ment

PUMA Programmable Universal Machine for Assembly

QoS Quality of Service

QP Quadratic Programming

RACOON Robotic Actuation, Control and On Orbit Navigation Laboratory

RacoonSim . . . Racoon Simulation

RHC Receding Horizon Control

RMAC Resolved Motion Acceleration Control

RNEA Recursive Newton-Euler Algorithm

ROKVISS RObotic Components Verification on the ISS

ROTEX Robot Technology Experiment

SMMR Solar Maximum Mission Repair

SPDM Special Purpose Dexterous Manipulator

SRMS Shuttle Remote Manipulator System

SSC Swedish Space Corporation

SSL Space Systems Laboratory

SSN Space Surveillance Network

XXI

Symbols

SSTC Shenzhen Space Technology Center

STR Singular Task Reconstruction

STS Space Transportation System

SVD Singular Value Decomposition

TFX Telerobotic Flight Experiment

TM/TC Telemetry/Telecommand

VR Virtual Reality

VRML Virtual Reality Modelling Language

XML Extensible Markup Language

XSS Experimental Satellite System

Symbols

a position vector of mass center
α0 escaping gain for singularity avoidance
αc turning parameter of repulsive motion for collision avoidance
αd weight parameter for singularity avoidance
αe turning parameter of cancelling primary task
αh turning parameter of repulsive motion for singularity avoidance
αv weight parameter for singularity avoidance
c bias vector
ca composite rigid body add
ct composite rigid body transform
cta composite rigid body transform for DH node
ctb composite rigid body transform for non-DH node
ctc composite rigid body transform for node connecting direct to the base
D0 numbers of moving links without connecting to the base
D0a numbers of moving links without connecting to the base for DH node
D0b numbers of moving links without connecting to the base for non-DH

node
D0c number of saving operations in composite rigid body transform
D1 numbers of non-zero elements above the diagonal of IMM
D1a numbers of non-zero elements above the diagonal of IMM for DH node
D1b numbers of non-zero elements above the diagonal of IMM for non-DH

node
D1c number of saving operations in vector transform
D2 sum of elements above the diagonal of IMM
dif influence zone of collision
D diagonal matrix
dsr security zone of collision

XXII

Symbols

duf unsafe zone of collision
E identity matrix
E edge set
ǫDLS threshold to active the DLS method
ηac damper coefficient of anti-collision constraint
ηas damper coefficient of anti-singularity constraint
f̄ spatial force
fx external force/torque vector
f force vector
Γ cost function
h arbitrary vector
H joint-space inertia matrix
H̄ spatial inertia matrix
Ī inertia matrix
J Jacobian matrix
J̄ matrix projection onto the null-space
J+ pseudo-inverse of Jacobian matrix
K computational cost of algorithm
K gain matrix
L Lagrangian
L lower triangular matrix
λac switching function for anti-collision constraint
λas switching function for anti-singularity constraint
λ(⋅) parent array
M inertia mapping matrix
m mass
m moment vector
M∗ augmented inertia mapping matrix
Nc control horizon
nnDH number of non-DH nodes
Np prediction horizon
O algorithm complexity representation
O obstacles set
P link set
q generalized coordinate
q̇ generalized velocity
q̈ generalized acceleration
jRi coordinate transformation matrix
jri position vector from the origin of frame i to that of frame j

R real set
Sact active set
s motion axis of generalized link
S cross product operator
σ singular value
σif influence zone of singularity
σm minimum singular value
σsr security zone of singularity
σuf unsafe zone of singularity

XXIII

Indices

τ internal joint torque vector
T kinetic energy
T path matrix
θ joint position vector

θ̇ joint velocity vector
T∗ augmented path matrix
u control input vector
um left singular vector correspond to minimum singular value
U potential energy
V vertex set
VR Voronoi region
v̄ spatial velocity
v translational velocity
vt vector transform
vta vector transform for DH node
vtb vector transform for non-DH node
vtc vector transform for node connecting direct to the base
ω angular velocity
x system states vector
xd desired end-effector path
ẋc end-effector velocity with feedback
ẋd desired end-effector velocity
ẋe end-effector velocity
ẋo obstacle avoidance velocity
ẋp end-effector modified velocity
xe end-effector path
ξ generalized force
jXi spatial transformation matrix
y control output vector

Indices

x scalar
x maximum within interval
x minimum within interval
x̂ value from estimation
x∗ values in optimum
x vector
X matrix[⋅]T transpose of ⋅

XXIV

1. Introduction

[On President Bush’s plan to get to Mars in 10 years] Stupid. Robots would do a
better job and be much cheaper because you don’t have to bring them back.

—Stephen W. Hawking

It’s the human demands and desires that stimulate the scientists and engineers to do
scientific research to explore the unknown world and build new machines working for us.
Normally, the general research procedure can be illustrated as in Figure 1.1.

People want to invent/build something new based on their demands or the motivation.
The next step would be orientation, where generally series of solutions are emerged. The
orientation phase will make our thoughts divergence, to search all possible feasible solu-
tions. As a matter of fact, since there are financing, technical, human capital etc. issues, it is
impossible to implement all of the possible solutions. Some of the resolution will be chosen
to move forward based on the specific criteria among these. A decision phase is critical to
evaluate all the possible solutions and find out the potentially best ones. Subsequently, a
model, which is also named as prototype, will be established both in digital and physical
environment. This prototyping design is used to check the feasibility of the solution, and
demonstrate the technologies and performance of the proposed design. All aspects of the
prototype, such as its hardware, software, functionality, etc. will be tested in the verification
phase. These tests will indicate the cons and pros of the design and show up whether it
meets the proposed demands and requirements. All these five steps finally form an engi-
neering design loop, which will also show in this thesis. If the prototype cannot pass the test
and fulfil the proposed demands, the design loop will proceed iteratively until the design
makes the human satisfied, where then can stop the loop.

Orientation

Prototype

Verificaiton

Motivation

Decision

MODPV

Figure 1.1.: Engineering design MODPV loop

1

1. Introduction

1.1. Motivation

The motivation of this research origins from two aspects. Objectively speaking, there are
thousands of malfunctioning satellites are currently floating in outer space which are harm-
ful for future satellite launch and space operations. In the past two decades, some of the most
extraordinary successes in space exploration have emphasized the growing importance of
On-Orbit Servicing (OOS). The challenges have moved beyond simply launching complex
spacecraft and system. What we need to face are the fully exploitation of the flight systems,
construction of large structures in situ to enable new scientific ventures, and provide sys-
tems that reliably and cost-effectively support the next step in space exploration. The vision
for OOS is straightforward to refuel, repair, or upgrade satellites after launched.

The other aspect of research motivation comes from the space race of our competitors
which are hostile to us. Just as was illustrated in Destruction and Creation by John R. Boyd in
Boyd (1987):

In a real world of limited resources and skills, individuals and groups form, dissolve
and reform their cooperative or competitive postures in a continuous struggle to remove
or overcome physical and social environmental obstacles. In a cooperative sense, where
skills and talents are pooled, the removal or overcoming of obstacles represents an im-
proved capacity for independent action for all concerned. In a competitive sense, where
individuals and groups compete for scarce resources and skills, an improved capacity for
independent action achieved by some individuals or groups constrains that capacity for
other individuals or groups. Naturally, such a combination of real world scarcity and
goal striving to overcome this scarcity intensifies the struggle of individuals and groups
to cope with both their physical and social environments.

From above illustration, one can derive that it is the cooperation and competition be-
tween individuals or organizations that motivate us to gain an improved capacity which
intensifies the struggle of individuals and groups to enhance self-development and research
activities. From this viewpoint, OOS has already become such an ability which extensively
investigated and strengthened by world wild research and academic agencies. A list of
space projects about OOS proceeded in the past and planned in the future will be described
in section 1.2.

1.1.1. On-Orbit Servicing

Since a wide spectrum of using cases exists in space, OOS would be of great benefit for space
exploration, which can reduce risk of mission failure and mission cost, increase mission per-
formance and flexibility, and enable new missions. OOS includes a variety of applications,
which can be grouped into five main operations.

2

1. Introduction

Table 1.1.: OOS overview and its typical applications (Waltz (1993))

Operations Typical Applications

Assembly Spacecraft constructions
Spacecraft update
Deployment of appendages

Orbit transfer Orbit corrections
Retrieval from orbit
Earth return

Re-supply Consumables
Components

Maintenance and repair Inspection
Modification
Cleaning and resurfacing
Tests and checkout

Special Emergencey operations
Scavenging
Attitute control

Accordingly, On-Orbit Servicing (OOS) can be defined as follows refer to Wikipedia
(2014)

OOS includes installation, maintenance, and repair work on an orbiting man-
made object (satellite, space station, space vehicle, etc.) with the aim of extending
the useful life of the target object and/or enhancing the capability of the target
(upgrade).

1.1.2. Why Space Robotics

Robotics is the branch of technology that deals with the design, construction, operation,
structural disposition, manufacture and application of robots. it is concerned with the study
of those machines which can replace human beings in the execution of a task, as regards
both physical activity and decision making.

With the advancement of science and technology, the researchers are coming up with
innovative ideas to construct robots that could simply the sophisticated tasks. Currently a
vast spectrum of robots working around our daily life, such as on shop-floor, in the operation
room, in rehabilitation centres and even at home. There are also many other applications of
robotics in area where use of human is impractical and undesirable, and these are undersea
and planetary exploration, satellite retrieval and repair, defusing of explosive devices, and
work in radioactive environments, which induced different kinds of robots, such as manipu-
lators, motion generators, loco-motors, swimming robots and flying robots that can be used
to meet above specific requirements.

Refer to Table 1.3, where an OOS spacecraft is uncrewed, and with broad variety of mis-
sions to be executed on-orbit, in combination with the unpredictable nature of the serving
missions, which call for a flexible and multi-functional flight segment. Robotic system is the

3

1. Introduction

only means available today to fulfil these requirements. The application of space robotics in
outer space has the following major advantages:

• The human operator has no needs to be on-orbit which greatly reduces the risk of
human and launch cost;

• robot with dexterous end-effector can perform different types of tasks, sch as grasp-
ing, observation, ORU exchange, assembly, etc., while other OOS technology can not
possess all these capacities simultaneously;

• With predefined interface, robot can be integrated into the spacecraft as an indepen-
dent module;

• The workspace of robot is predictable and controllable, and the operation in its workspace
is much more accurate;

• With pre-designed system or tele-operation, the space robot has the complete auton-
omy and flexibility to solve collision avoidance and emergency situation.

1.2. State of the art

After the first satellite launched into space 60 years ago, thousands of various types of space-
craft, such as communication, telemetry, observation etc. have been sent into space by dif-
ferent countries and organizations. According to the United States SSN, until the end of
2013, there are more than 21,000 objects larger than 10 cm orbiting the earth, while only 1071
satellites are operational Cain (2013). However, there are still no routine OOS procedures
provided to remove or repair these defunct objects. As a matter of fact, most malfunctioning
spacecraft require only a minor maintenance operation on-orbit to return to its operation sta-
tus. Therefore, the accomplishment of OOS missions would be of great benefit for spacecraft
operations, since a wide spectrum of applications exist as illustrated in Table 1.1.

Before going deep into discussing the topics, some of the seminal missions in the past,
present and future which helped us to define OOS are reviewed. There are two kinds of OOS
technology, one is human involved spacecraft, the other is unmanned space demonstrators,
both of which will be illustrated in the follows. Through this review, it becomes apparent
that, OOS has become a technical developing tendency as specific critical needs.

1.2.1. OOS Technology Demonstrators

The first planned OOS mission was performed in 1973 on Skylab, through EVA. After that,
refer to NASA (2010), numbers of OOS projects have been conducted with human-in-the-
loop which are listed in Table 1.2 and Figure 1.2.

4

1. Introduction

Table 1.2.: OOS manned projects

Project Time Operation Agency Project Goals

Skylab 1973 NASA Demonstration of on-orbit repair
Provide a replacement thermal
shield of Skylab
Deploy the failed solar arrays

SMMR 1980 NASA Orbit corrections
Make the standard spacecraft parts
modular
Repair and/or replace in space
Ground integration and test

Palapa B2 & Westar 6 1984 NASA Retrieved the two errant
spacecrafts through EVA
Take the satellites back to Earth for
refurbishment

HST 1990 NASA Replace Orbital Replacement
Instruments (ORIs)
Exchange Orbital Replacement
Units (ORUs)

ISS 1998 NASA, CSA, JAXA, etc. Construction
Installation
Extension

Skylab SMMR Palapa B2 & Westar 6 HST ISS

Figure 1.2.: OOS manned projects

In contrast to manned OOS missions, unmanned OOS mission for malfunctioning or
obsolete spacecraft, which reduces the risk of astronauts and has enormous economic value,
has gained significant attention. A list of the historical and recent examples of technology
demonstration activities are shown in Table 1.3 and Figure 1.3.

5

1. Introduction

Table 1.3.: OOS unmanned projects

Project Time Operation Agency Project Goals

ETS-VII 1997 NASDA Rendezvous and docking,
multi-body dynamics
Tele-operation latency, ORU
exchange and assembly of space
structure

XSS-10 2003 AFRL Demonstrate technology for
line-of-sight guidance of spacecraft

XSS-11 2005 AFRL Demonstrate technology for
autonomous rendezvous and
proximity maneuvers
Tracking and navigation

DART 2005 NASA Autonomous rendezvous
Proximity operations

OE 2007 DARPA Autonomous docking
ORU exchange

ATV 2008 ESA Autonomous rendezvous and
docking
ISS attitute reboot
Deliver food, air and water to ISS

HTV 2009 JAXA Rendezvous and berthing
Deliver food, air and water to ISS

PRISMA 2010 SSC, DLR, CNES Rendezvous and proximity
operations
Sustained formation flying

Ranger TFX On-going NASA, SSL Rendezvous and docking
Free flying telerobotic servicers for
space operations

OLEV On-going DLR Prolong the life of
tele-communication satellites
Rescue the spacecraft in a wrong
orbit

FREND On-going DARPA, NRL Test stereo photogrammetric
imaging
Debris removal

DEOS On-going DLR Far range formation flying
Autonomous rendezvous
Capture and berthing with target

CESSORS On-going SSTC On-orbit maneuvering
Repair or retrieve malfuction
satellites

6

1. Introduction

XSS-10 DART

PRISMA OLEV

ATV

XSS-11

DEOSFREND

ETS-VII

OE HTV

Ranger TFX

CESSORS

Figure 1.3.: OOS unmanned projects

1.2.2. Space Robotics Demonstrators

It has already been decades since the first robotic manipulator arm – space shuttle remote
manipulator system applied in the STS-2 mission in 1981. Here we will give a brief overview
of the past and undergoing space robotic demonstrators.

7

1. Introduction

(1993) Robot Technology Experiment (ROTEX) ROTEX (Hirzinger et al. (1994)) was a
starting shot for Germanys participation in space automation and robotics which contained
as much sensor-based on-board autonomy as possible. The space experiment was led by
DLR and ROTEX is a small, 6-axis robot mounted inside a space-lab rack, its main objec-
tive is verification of the man-machine interface as well as the joint control and the sensor
based hand controllers of the robotic application under micro gravity. During the periods
of the experiment, 4 operational modes were verified, which were automatic, tele-operation
on-board, tele-operation from ground using predictive computer graphics and tele-sensor-
programming. ROTEX showed that complex multi-sensory space robot system can be suc-
cessfully operated in a variety of different modes, which also proved that a human operator
and a robotic application can be accomplished under different levels of robot autonomy.

(1993–2005) Ranger Telerobotic Flight Experiment (TFX) Ranger (Bon and Seraji (1996,
1997))is a tele-operated space robot developed at the University of Marylands SSL. Ranger
consists of two 7 DOF manipulators with interchangeable end-effectors to perform such
tasks as change out of ORU in orbit. Its main objective was to design a servicing vehicle
capable of flying on a Pegasus launch vehicle and then constructing the neutral buoyancy
equivalent. Ranger has been redesigned for a Space Shuttle experiment, but until now has
not yet been manifested on a flight.

(1997) Engineering Test Satellite-VII (ETS-VII) ETS-VII (Inaba and Oda (2000), Oda et al.
(1996)) was another milestone in the development of space robotics technology, particularly
in the area of OOS. ETS-VII was an unmanned spacecraft developed and launched by JAXA
in November 1997. Its main objective was to test free-flying robotics technology and to
demonstrate its utility in unmanned orbital operation and servicing tasks. To obtain a global
coverage of communication in LEO operations, the signals were relayed by GEO commu-
nication satellites, which induced a larger delay in the case of ETS-VII mission. ETS-VII
validated the concepts and theories for free-flying space robots.

(2001) Canadarm2 and Dextre Canadarm (Gibbs and Sachdev (2002)), designed by CSA
for space applications, also called SRMS which stands for shuttle remote manipulator sys-
tem, is a mechanical arm that maneuvers a payload from the payload bay of the Space Shut-
tle orbiter to its deployment position and then releases it. It can also grapple a free-flying
payload and berth it to the payload bay of the orbiter. SRMS was first used on STS-2 mis-
sion in 1981. Since then it has been used more than 100 times during Space Shuttle flight
missions. Canadarm2 along with Dextre, the SPDM, is the next generation of the SRMS, for
use on the ISS. It was launched in 2001 during STS-100, both mounted on the MSS, a module
of the ISS. They are mainly used in station assembly and maintenance: moving equipments
and supplies around the station, support astronauts working in space, and servicing instru-
ments and other payloads attached to the space station.

(2005–2008) RObotic Components Verification on the ISS (ROKVISS) ROKVISS is a Ger-
man space technology experiment (Reintsema et al. (2007)) lead by DLR, which was launched
by an unmanned Russian Progress transport vehicle in 2004 and installed on the outer plat-
form of the Russian segment of ISS in early 2005. The goal of ROKVISS is the verification
of mechatronic light-weight robot joint unit for use in the OOS. In addition, a haptic-visual
tele-presence operation on the basis of a direct radio link between the space station and the
ground station has been tested and finally established.

(2007) Orbital Express (OE) The OE (Ogilvie et al. (2008)) space project was led by DARPA,
which was developed to verify technical feasibility of robotic on-orbit refuelling and re-

8

1. Introduction

configuration of satellites, as well as autonomous rendezvous, docking, and manipulator
berthing. It was launched in March 2007, after that various mission scenarios have been
conducted. The system consists of the ASTRO vehicle, and a prototype modular of next-
generation serviceable satellite, named NextSat. The ASTRO vehicle is equipped with a
robotic arm to perform satellite capture and ORU exchange operations. All the mission sce-
narios were successfully completed by July 2007.

(2013) Robonaut2 Robonaut (Peters et al. (2003)) is a dexterous humanoid robot build
and designed at NASA Johnson Space Center in Houston, Texas. It is the latest generation
of the astronaut helpers, launched to the ISS aboard space shuttle Discovery on the STS-
133 mission. It is the first humanoid robot in space. Its main goal is teaching engineers
how dexterous robots behave in space. Eventually, a variant of Robonaut 2 may be used as
an astronaut aid on the outside of ISS, which is capable of handling a wide range of EVA
tools and interfaces. Now, Robonaut2 has successfully moved for the first time in space on
October 13th, 2011.

(2014) DEutsche Orbitale Servicing Mission (DEOS) Due to a programmatic reorienta-
tion of the former TECSAS (Technology Satellite for the demonstration and verification of
Space systems) project, it is now known as DEOS (Rupp et al. (2009)), which also leads by
DLR, served as a test bed for OOS technologies, such as key robotics hard- and software
elements for advanced space maintenance and servicing. The mission will demonstrate var-
ious OOS scenarios such as rendezvous, docking, formation flight, capture, stabilization and
controlled de-orbiting of the target and servicing compound.

(2014) Front-end Robotics Enabling Near-Term Demonstration (FREND) As an succes-
sor of SUMO project (Spacecraft for the Universal Modification of Orbits), FREND (Bosse et al.
(2004)) was created under DARPA sponsorship to prove the capability of autonomously ex-
ecuting an unaided grapple of a spacecraft which was never designed to be serviced. The
capability allows nearly any satellite on-orbit to be repositioned and provides additional
benefits such as satellite life extension, refuelling, ORUs etc. Now the project is focusing on
the ground demonstration and verification for future performing on-orbit.

(2014) Chinese Experimental Space System for On-Orbit Robotistic Services (CESSORS)
CESSORS (Liang et al. (2006)) is developed by SSTC inspired by the success of previous
space robotic projects. The aim of this project is to fabricate a small satellite mounted with
robotics system to complete orbit maneuvering and implement unmanned robotic servicing
tasks, such as repair, retrieve malfunctioning satellites. Until now, CESSORS is still under
constructing.

ROTEX ROKVISS Canadarm2 with DEXTRE Robonaut2

Figure 1.4.: Space roboitcs projects

9

1. Introduction

1.2.3. Technical Challenges of Space Robotics

A possible classification of the OOS demonstrators depicted in Section 1.2 can be found
in Figure 1.5. The classification is based on two criteria. One criterion for classification
is the autonomy extent of the OOS demonstrators. The other criterion is the options for
communication of OOS demonstrators in respective orbit. Here the direct and relay to LEO
stands for a direct or relay communication link for OOS demonstrators, while direct to GEO
means a direct communication link with the satellites in the GEO orbit.

EVA

Tele-

operation

Autonomy

Direct to LEO Relay to LEO Direct to GEO

On-Orbit Planned Thesis focus

Skylab SMMR

Palapa B2 & Westar 6

HST

ISS

XSS-10

XSS-11

DART

OE

OLEV

ROTEX ETS-VIIDEOS

FREND

ATV
HTV

CESSORS

PRISMA

Ranger

TFX

ROKVISS Canadarm2

Robonaut2

Figure 1.5.: OOS demonstrators classification

Undoubtedly, robotics, tele-robotics and autonomous systems will have a considerable
potential for a wide spectrum of applications in providing a space-based infrastructure.
However, in order to complete the space missions, we have to face the fact that there are
still some technical challenges in the field of space robotics which will show us the possible
research directions and stimulate our endeavours to figure them out. Here we list some of
primary challenges in capturing a tumbling target with space robot.

• Rendezvous, proximity operations and docking to a target satellite in extreme con-
ditions

Rendezvous includes flyby of target satellite and formation keeping. Proximity op-
erations require zero relative velocity at working position. Docking drives latching
mechanisms and electrical/fluid interface into a mated condition. Major challenges

10

1. Introduction

include completing above missions optimally in all range of lighting conditions, with-
out collision and violating the actuators’ work limits.

• Object recognition and state estimation under space environment

To search and find an un-cooperative target without communication link in space is an
intractable task. After the target is detected, since there is no prior knowledge about
target, its geometry must be reconstructed with sensory data to estimate the states of
the target and determine the grasping point and capturing strategies.

• Full immersion tele-presence with haptic and multi modal sensor feedback

Tele-presence will provide the operator a physical sense of working at the place of
space robot. It must be as real as the robot working site which need multiple modal
sensor feedback, such as fully immersion displays, sound, touch, etc.

• Supervised autonomy with time-delay

Complete autonomy of robotics still relies on the advancement of AI. So a supervised
autonomy or the tele-operation would be a realistic choice. But the communication
time-delay in the control loop will degrade the ability to tele-operation. Challenges in-
clude the run-time states prediction, visualization prediction and ability to work ahead
of real-time.

• Understanding the distinctive characteristics of space robotic dynamics

Space robotics with a floating base possesses some particular properties compared to
fixed base robot. The interaction between space manipulator and it base (spacecraft)
will induce some difficulties in controller design and path planning.

• Optimized motion planning and control with various constraints during capturing
phase

All real systems have some constraints, such as input and output boundaries, possible
collision, etc. During capturing, it would be of great benefit if the system can han-
dle all these constraints optimally while achieving some optimization index. Major
challenges include developing a general framework to realize on-line path planning,
constraints handling, and optimization simultaneously.

• Verification and validation of autonomous system on-board

The software of space robots running on-orbit autonomously is a big software engi-
neering project. It includes different subsystems from various programmers. Exhaus-
tive and deep exploration of the codes has to be done before launch. Verification and
validation techniques are required to more fully assure the feasibility and reliability in
all conditions.

11

1. Introduction

1.3. Hypothesis and Problem Statements

As illustrated in section 1.2.3, in order to complete capturing an un-cooperative target satel-
lite using space robot, the major objective of this work is how to control the space robot to
execute the required missions in complex space environment. Traditional control schemes
can be classified by different objectives:

Resolved Motion Rate Controller was first proposed for a free-floating space manipulator in
Umetani and Yoshida (1989) using the GJM. Later, similar controllers designed for kinemat-
ically non-redundant and redundant manipulators can be found in Masutani et al. (1989),
Nenchev (1993), Papadopoulos and Moosavian (1994), Rekleitis et al. (2007), Xu and Kanade
(1993).

Adaptive Controller is another widely developed strategy since it can be used to overcome
the uncertainties and parameters variation issues. However, since the high non-linearity of
the dynamics of space robot, the design of the adaptive control law is not easy. The appli-
cation of adaptive control can be found in Abiko and Hirzinger (2007), Gu and Xu (1993),
Wang and Xie (2009), Xu et al. (1992), Xu (1991).

Robust Controller provides another feasible controller solution for space robot to handle
the parameters variation and unknown dynamics effects. The application of robust control
for single or dual-arm can be found in Huang et al. (2007), Pathak et al. (2008), Tang et al.
(2011), Xu et al. (1995).

Among aforementioned controllers, the possible collision and singularity issues during
motion of space robot are out of consideration, moreover, input/output constraints of the
system are also difficult to incorporate into the control schemes. Accordingly, the hypothesis
of this work is:

The conventional control framework based on traditional control strategies are not adequate
to solve the motion control issue of space manipulator in capturing another tumbling target
when obstacle and singularity issues are taken into account.

Originated from chemical processing industries, Model Predictive Control (MPC), also
referred to Receding Horizon Control (RHC), has gradually expanded its application to the
field of aerospace such as spacecraft formation keeping Manikonda et al. (1999), spacecraft
trajectory planning Richards et al. (2002), rendezvous and docking with a tumbling target
Park et al. (2011), etc. As an effective control strategy, MPC has the capacity to handle the
constraints and perform on-line optimization. Nevertheless, the application of MPC requires
an explicit system model for states prediction. Similarly, if collision and singularity issues
are considered in the design of MPC, they must be handled in advance and integrated into
the framework of controller. Therefore, the problems for this work can be listed as follows:

• The dynamics equations of the space robotic system must be derived to represent the
relationship between the states acceleration response and the given forces and torques;

• Computational efficient collision detection algorithm which can deal with multiple
convex and non-convex obstacles has to be completed when space robot works in a
complex environment;

• Singularity issue during the motion of space robot must be taken into account to im-
pede the joint from generating enormous velocity;

12

1. Introduction

• With the derived dynamics equations of space robotics system, MPC strategy can be
implemented for the space robot to perform the capturing mission.

1.4. Scope of Work

1.4.1. Research Scope within Space Robotics

With the advancement of science and technology, especially great progress in the field of
computer science, the extent of autonomy in OOS is increasing, while human operator, as
an indispensable role, will play as a monitor or supervisor role without involving direct op-
eration too much. In light of space robots currently planned by world wide space agencies,
an increase in the number and the capacity of robots applied in space missions will be a
foregone conclusion in the coming years. In summary, the concept of tele-operated and full
autonomy of space robotics, as main concern in this thesis, seems advantageous for OOS
operation, since it alleviates the operators’ workload and avoids the human involving in the
direct operations. Accordingly, refer to section 1.3, we can break our main goal down to its
particulars into the following aspects:

• Development and design of a simulation and test environment, representative for
space robotics;

• Evaluation the influence of geometry to the dynamics of space robotics;

• Provision of specific algorithms for obstacle and singularity avoidance in inverse kine-
matics control;

• Construction of a general control framework based on MPC with various constraints
for autonomous space robotics;

• Assessment of the feasibility of the proposed general control framework.

1.4.2. Thesis Roadmap

The overview of the thesis structure is presented in Figure 1.6. An introductory part about
the research motivation, state of the art, and research scope within space robotics are in-
cluded in Chapter 1.

Chapter 2 presents a new distributed real-time simulation architecture based on DDS
for space robotic autonomous and tele-operation tasks. The space mission profile and back-
ground of space robotic tele-operation are firstly recalled. Within this context, a closer look
into RACOON system overall design and simulation environment are described. The de-
tailed characters of DDS are subsequently exhibited. Next, RacoonSim system and its related
subsystems are introduced. Additionally, a user-friendly VR user interface for coexistence
of working operator and space robot is developed.

Chapter 3 focuses on a modelling scheme that uses the concepts of graph theory and
spatial notation for calculating the joint-space dynamics of general tree structure space ma-
nipulator systems. This chapter is relevant to the development of appropriate trajectory
planning and control algorithms in the following chapters.

13

1. Introduction

Chapter 4 concerns the inverse kinematics issue in velocity level. The task-priority based
inverse kinematic solution is derived from the concept of the null-space, some dexterity
measurements are also proposed for the future analysis. Moreover, obstacle and singularity
detection and avoidance are also dealt in this chapter.

Chapter 5 investigates the use of NMPC for the motion control of a space manipulator to
approach an un-cooperative target satellite in space.

Chapter 6 closes the treatment of the group verification of autonomous space robotics
with concluding remarks and future directions for continuing research.

14

1. Introduction

1. Introduction

Motivation State of the Art Thesis Scope

Racoon
2. RACOON

Mission Profile
Simulation

Environment
RacoonSimDDS

6. Summary

Conclusions Future Work

3. Multibody

Dynamics

Graph Theory

Spatial Notation

Modified CRBA

Task-Priority

Based Solution

Obstacle Avoidance

Singluarity Avoidance

MPC

Feedback Linearizaiton

State Estimation

Optimization Index

Constraints

Quadratic Programming

RacoonSim

4. Kinematic

Control

5. Nonlinear

MPC

Hypothesis

Figure 1.6.: Structure of the work

15

2. Simulation System Design

I do not fear computers. I fear the lack of them.

—Isaac Asimov

The increasing demands of satellite maintenance, on-orbit assembly and space debris re-
moval etc. call for applications of space robot to perform tasks in the particular harsh space
environment. However, it is still impossible to develop a fully autonomous space robot with
the present robotic technology until now. For this reason, an operator tele-operating space
robot from ground station becomes an option. To lengthen in duration and enlarge the scope
of tele-operation, a Geostationary Orbit (GEO) relay satellite is employed to address the
communication issue between ground station and servicer satellite. This chapter presents a
new distributed real-time simulation architecture based on Data Distribution Service (DDS)
for space robotic tele-operation tasks. The objective is to make the simulation architecture
open for collaborative tele-operation research and provide the operator an intuitive view of
space robotic tele-operation in a wide set of scenarios. The mission profile and background
of space robotic tele-operation are firstly recalled. Within this context, a closer look into
Robotic Actuation, Control and On Orbit Navigation Laboratory (RACOON) system over-
all design and simulation environment are described. Secondly, the detailed characters
of DDS, including DDS specification and its core idea of data distribution, are exhibited.
Thirdly, Racoon Simulation (RacoonSim) system, which comprises multi-body dynamics,
Autonomous Mission Management (AMM), path & trajectory planning and control subsys-
tems of space manipulator, is introduced. Additionally, a user-friendly Virtual Reality (VR)
user interface for coexistence of working operator and space robot is developed, which is
composed of 3 dimensional space mouse, joystick and Head-Up Display (HUD) as part of
the Mission Control Center (MCC). Well-designed simulation system architecture makes the
Hardware-in-loop (HIL) verification possible and can be extended easily in the future.

2.1. Mission Profile

A typical OOS mission is composed of a series of space missions. Before a specific OOS
operation is executed, some operations about spacecraft must be conducted to decrease the
relative distance between spacecraft and target satellite. During this period, lots of demon-
stration missions can also be performed such as flyby, formation flying to test the feasibility
of new sensors and technologies. After the servicer satellite moves into the work scope of the
space manipulator, space robot will take charge of the OOS mission to perform the subse-
quent mission flow. A typical OOS mission before capturing can be described as follows:

17

2. Simulation System Design

1. Attitude control The servicer satellite together with space manipulator is separated
from the upper stage of the rocket and released into space. At the beginning of its
orbital life, an attitude reconstruction procedure has to be performed to stabilize the
servicer satellite. Attitude determination equipment such as infrared horizon sensor,
sun sensor or gyroscope can be employed to assist the attitude reconstruction of the
servicer satellite.

2. Drift orbit After the success of attitude control, the servicer satellite moves into the
drift orbit phase. In this phase, orbit phasing will be conducted to regulate the orbit
of servicer into the same orbit as the target satellite or a slightly lower orbit. The
attitude of servicer satellite will be maintained, absolute navigation equipment like
star trackers, IMU and GPS receivers will be used during this phase.

3. Rendezvous At the end of the drift orbit phase, the servicer satellite is at a position
within a distance of 5 km to 300 m of the target. The phase will utilize the absolute
and relative navigation equipment like GPS, IMU, radar or lidar to guide the servicer
satellite into a range of 300 m for the future space missions.

4. Proximity When the servicer satellite moves within 300 m of the target satellite, a prox-
imity procedure starts to drive the servicer to the target from 300 m to several meters.
Besides the relative distance, the relative attitude and the relative translational and an-
gular velocities between the two satellites have to be decreased for the coming docking
mission. In this phase, the visual sensors can be added in for target tracking and mon-
itoring. The MCC will observe the whole rendezvous and proximity phases. When
the relative sensors lose the target or the service moves into an unsafe region, an emer-
gence action has to be taken autonomously or commanded by the operators.

5. Station keeping Before the action of the space manipulator, a phase named station
keeping has to be performed to guarantee the safety of the coming robotic operations.
During this phase, the target satellite will be in the workspace of space manipulator. A
control loop must be closed on board to keep the relative position and orientation out
of collision.

Once the aforementioned tasks are completed, the servicer satellite is now in the neigh-
bourhood of the target satellite and ready for the further OOS robotic operation. In order
to perform the space missions using space robot, such as on-orbit assembly or capturing a
tumbling target, the motions of space robot can be divided into 3 phases as shown in Fig-
ure 2.1: an approach phase, a tracking phase with grasping and a stabilization phase, which
will be illustrated in the following.

1. Approach The approach phase starts from an observation distance and brings the ma-
nipulator mounted on the servicer to an optimal grasping pose. After that, a tracking
phase will be proceeded. The approach phase moves space robot end-effector from an
initial position to a final position under certain constraints. The final position of the
approach phase will be the initial position of the tracking phase.

2. Tracking When space robot needs to capture or observe a certain point of a tumbling
target, a tracking mission will be required. This tracking phase aims to minimize the
residual relative velocity between the target interested point and the space robot end-
effector. The duration of the tracking phase depends on the tracking controller per-
formance, such that the end-effecotor can have sufficient time to regulate its pose and
ensure the success of tracking the target interested point. At the end of tracking phase,

18

2. Simulation System Design

neither the end-effector nor the robot joints are at rest. Their states will be the initial
value of the next phase.

3. Stabilization Once the relative pose between space robot end-effector and target in-
terested point reduces to zero and the gripper on the end-effector is closed, in order
to retain the stable attitude of the target, a stabilization phase must be carried out to
decrease the angular velocity of the target to zero and be ready for further space oper-
ations. In the stabilization phase, by exerting external forces and torques or adjusting
the internal torques of robot joints simultaneously, the relative motion between the
servicer and the target will be brought to zero.

Far Range Satellite Maneuver Close Range Operation by Space Manipulator

Rendezvous Approach Tracking Stabilization

Target
Target

Target

Servicer

Servicer

Servicer

Figure 2.1.: Mission profile of space robot

After the space manipulator completing the capture, further space operations can be car-
ried out such as inspection, de-orbit or ORU exchange, etc. In fact, besides above general
uses of space robot, there are still some other potential applications of space robot. For ex-
ample, as a result of dynamic coupling between spacecraft and space manipulator, it can be
utilized to regulate spacecraft attitude for decreasing on-board fuel consumption. Accord-
ing to the external force and torque exerted on the spacecraft, the servicer satellite will be
operated in three flying modes. If there are no forces and torques exert on the servicer, it
is termed free-floating mode. When only torque is applied to the servicer, it is called free-
flying mode. Another mode is auto-flying mode. Before-mentioned three kinds of space
phases can be performed under these three flying modes. The flying modes switch can be
controlled by the operator in terms of the particular requirements.

2.2. Simulation Overall Design

2.2.1. Racoon Design

The RACOON system is designed to assist the operator with intuitive view and validate the
feasibility and the performance of the on-going space robot project. Hence, the following
subsystems will be included in the RACOON system. A schematic diagram of RACOON
system is shown in Figure 2.2.

19

2. Simulation System Design

Figure 2.2.: Subsystems of Racoon Lab

Operator Console: It is an alias of MCC. The operator will send a series of commands
from MCC uplink to the servicer satellite via the GEO relay satellite. The communication
relay will be simulated by adding an individual node in the simulation system to relay the
information. MCC will also receive the telemetry information collected from the states of
space robot & target satellite and display them on a big screen to help the operator enhance
the awareness and understand of the real-time situation in space. The operator can also
control the space robot in real-time by joystick or 3 dimensional space mouse. A VR is
also running when the operation is proceeding. These will be introduced in detail in the
Section 2.3.5.

TM/TC: This subsystem is responsible for the signal relay between MCC and GEO re-
lay satellite. It transmits the tele-commands from MCC to the GEO relay satellite and the
telemetry information from servicer to the MCC. The information dissemination between
various nodes is based on DDS.

RacoonSim: This system contains two subsystems, one is dynamics of servicer and tar-
get, and the other is OBDH subsystem. For detailed description of RacoonSim system design
will be presented in Section 2.3.

Hardware-in-loop (HIL): This system can include different types of hardware, such as
sensors, actuators, etc. Since the expandability and scalability of the simulation system, the
proposed simulation architecture is easy to replace the software by particular hardware.

2.2.2. Simulation Environment

One of the first and major implementation solutions adopted was to build RACOON on
top of Matlab/Simulink environment (see Figure 2.3). This environment integrates suffi-
cient properties to cope with the aforementioned requirements, assuring high flexibility and
availability of existed functionality.

20

2. Simulation System Design

XML/IDL

C/C++

VRML

CAD (CATIA/SolidWorks)

Java/JavaScript

Simulink CoderSimulink

Stateflow

MATLAB

Hardware

Virtual Reality

Figure 2.3.: Simulation environment of Racoon

Normally, modern engineering design starts from the application of CAD system, such as
CATIA®or SolidWorks®. CAD can assist the designer in the creation, modification, analysis,
or optimization of a design. On the one hand, it provides the designer an efficient and
intuitive tool to improve the quality of the design and increase the productivity. On the
other hand, the objects designed by CAD will be as a basic input of VR. In this paper, VRML
is chosen to represent 3 dimensional interactive vector graphics. In order to increase the
interactivity and immersion of the operator, Java/JavaScript is integrated into VRML to deal
with the interactive event response issue. The transformation between CAD and VRML can
be implemented by using different software.

XML is a mark-up language that defines a set of rules for encoding documents in a format
that is both human-readable and machine-readable. Its main design goals are simplicity,
generality and usability over the Internet. In our design, XML is utilized to describe the
configurations and initial states of the RACOON system. Another application for XML is
DDS QoS configuration.

As a major programming language, C/C++ programming language can establish con-
nections among various applications. That’s why it is also employed here to deal with the
different interfaces of relevant applications involved in RACOON. Before simulation starts,
it proceeds the XML file to extract the configuration and initial states of RACOON simu-
lation system. Furthermore, it is employed to process the IDL file which is subsequently
involved in DDS.

At the core of RACOON simulation system is Matlab/Simulink/Stateflow/Simulink
Coder, where Simulink is a data flow graphical programming environment for modeling
and simulating multi-domain dynamic systems. A number of hardware and software prod-
ucts are available for use with Simulink. Stateflow, integrated in Simulink, provides a con-
trol logic tool to model reactive systems via state machines and flow charts. Coupled with
Simulink Coder, Simulink model can automatically generate C/C++ source code for dis-
tributed real-time simulation.

21

2. Simulation System Design

2.2.3. Data Distribution Service

Application

Data

Writer

IDL/XML

Topic TopicTopic

Subscriber Publisher Subscriber

Data

Reader

Data

Reader
Data

Reader

Communication Network

Transport Protocol

Data Store + QoS Mechanisms

Publisher

Data

Writer

Data

WriterOffered

QoS

(XML)

Required

QoS

(XML)

Offered

QoS

(XML)

Required

QoS

(XML)

Figure 2.4.: DDS Structure

The DDS OMG (2007) for real-time system is an OMG Publish/Subscribe (P/S) standard that
concentrates on scalability, real-time, dependability, high performance and interoperability
of data exchange between publishers and subscribers. It provides the communications ser-
vice programmers to distribute time-critical data between embedded and/or enterprise de-
vices or nodes. As the DDS specification describes, there are two levels of DDS interface.
One is the optional higher DLRL level, which can integrate DDS into the application layer
simply. The other is the lower DCPS OMG (2010) level. As the core of DDS, DCPS is aimed
to deliver the proper information from one node to the proper recipients efficiently. The
underlying DCPS propagates data samples delivered by publishers into a global data space,
where it is disseminated to interested subscribers. The DCPS model decouples the dec-
laration of information access intent from the information access itself, therefore enabling
the DDS middleware to support and optimize QoS enabled communication. As illustrated
in Figure 2.4, a canonical DCPS module is comprised of the following entities that supply
functionalities for a DDS application to publish/subscribe to data samples of interest.

Topic: Shared knowledge of the data types is a requirement for different application to
communicate with DCPS. Data (of any data type) is uniquely distinguished using a name
call a Topic. Topics interconnect DataWriters and DataReaders. The data samples associated
with the Topic will be passed from DataWriter to the corresponding DataReader.

Domain and DomainParticipants: In order to isolate the affection of various applica-
tions, DCPS defines a concept termed Domain to address this issue. Domain represents
logical isolated, communication network. Multiple applications running on the same sets

22

2. Simulation System Design

of hosts on different Domains are totally isolated from each other. Applications that want
to exchange data must belong to the same Domain. To belong to a Domain, DCPS APIs are
used to configure and create a DomainParticipant with a specific Domain Index. Domains
are differentiated by the Domain Index. Applications that have created DomainParticapants
with the same Domain Index belong to the same Domain. DomainParticipant includes Top-
ics, Publishers and Subscribers. Therefore all the DCPS entities belong to a Domain.

Publisher and DataWriter: The data sending side used entities call publishers and DataWrit-
ers. A DataWriter is the actual object used to send data samples. It is associated with a single
topic. A publisher is the DCPS object responsible for the actual sending data. Publisher own
and manage a group of DataWriters with similar behaviour or QoS policies. When data is
assigned to send to an application, it first calls the method on a DataWriter, the data sam-
ple is then passed to the publisher object which does actually dissemination of data on the
network.

Subscriber and DataReader: The data receiving side uses objects call subscribers and
DataReaders. A DataReader is the actual object used to receive the published data samples.
It is associated with a single topic. A subscriber is the DCPS object responsible for the actual
receiving data. Subscribers own and manage a group of DataReaders with similar behaviour
or QoS policies. When data is sent to an application, it is first processed by a subscriber, the
data sample is then stored in the appropriate DataReader.

QoS Policies: For real-time applications, the following features, such as efficiency, de-
terminism, flexible delivery bandwidth, thread awareness and fault-tolerant operations are
often required. DCPS, and thus DDS, are designed and implemented specifically to address
these requirements through the configuration parameters know as QoS policies defined by
DCPS standard. QoS policies control many aspects of how and when data are distributed
between applications. It is a significant feature of DDS for the users to configure the QoS
policies for each DDS entity or communication node. Until now, over 50 QoS policies cate-
gories are supported by DDS. Therefore, users can employ various QoS policies to control
numbers of behaviour of communication entities (DomainParticipant, Topic, Publisher/-
Subscriber, DataWriter/DataReader) utilized in your applications.

23

2. Simulation System Design

Racoon Simulation

Ethernet

TM/TC Relay Mission Control Center

Dynamics System OBDH System Hardware

DDS DDS

DDS DDS DDS

Servicer Target

Relay Algorithm

Planning Controller Sensor Actuator

VR Joystick & 3D MouseGUI

Figure 2.5.: Racoon system set-up

The entities and properties of DDS presented above bring important benefit to simu-
lation applications, such as low latency, better communication determinism and runtime
behaviour, enhanced QoS polices and wire interoperability, which makes the DDS middle-
ware a necessary choice for building a distributed real-time simulation system. The publish-
subscribe approach to distributed communications is a generic mechanism that can be em-
ployed by many different types of applications. Based on the DDS middleware used through
Ethernet and the overall design in Section 2.2.1, we developed the space tele-operation
simulator with 5 relevant subsystems running on the separate host computers. The two
subsystems in dashed rectangle in Figure 2.5 are the core simulation part which is termed
RacoonSim and will be illustrated in Section 2.3 in detail. MCC system acquires operator
inputs and gives the force and scenery feedback to the operator. TM/TC relay system cal-
culates the relative states among MCC, servicer and GEO relay satellite, and simulates the
phenomenon of signal relay among them. Hardware system incorporates the instruments
(sensors, actuators, etc.) and feedback to OBDH and Dynamic system, respectively.

2.3. RacoonSim Design

RacoonSim, the core of the RACOON laboratory, as shown in Figure 2.6, includes three
primary parts: dynamics, OBDH, and human-machine interface. Dynamics algorithm is
mainly responsible for simulation of 6 DOF target satellite and multiple DOF space ma-
nipulator. Human-machine interface provides a means for operator to interact with the
RacoonSim system and intensifies the ability of perception and immension. OBDH system,
which is the guarantee for completing the OOS mission, is composed of AMM, path & trajec-
tory planning, and motion controller subsystems, which will be described in the following
sections.

24

2. Simulation System Design

Multi-body Dynamics

Target

Dynamics &

Kinematics

Servicer

Space Environment

On-Board Data Handling

AMM
Autonomous Mission Management

ActuatorSensor Motion Planning

Interface with MCC

Controller

Figure 2.6.: Racoon simulation system set-up

2.3.1. Multi-body Dynamics

Multi-body dynamics modelling can be divided into two categories: operational-space dy-
namics and joint-space dynamics. Since the singularities in operational-space are unpre-
dictable, especially when space robot involved in free-floating mode, thus joint-space dy-
namics modelling is adopted. As a matter of fact, there are two kinds of dynamics in terms
of different applications: forward and inverse dynamics. In our simulation, forward and in-
verse dynamics are required to simulate the dynamics of RacoonSim system and to drive the
virtual reality for human-machine interaction. The equation of motion can be described with
the principle of Lagrangian mechanics, or the motion equations of D’Alembert, or Hamilton
mechanics.

For a serial chain manipulator, its inverse dynamics can be obtained recursively with
the computational cost of order n, O(n) in Hollerbach (1980), Luh et al. (1980b), Siciliano
(2009). On the contrary, the computational efficiency of forward dynamics depends on the
notations, recursive layers, or the computer hardware architecture. Walker and Orin have
proposed four methods in Walker and Orin (1982) expressed in normal notation for forward
dynamics. The first of them is a O(n3) algorithm while the fourth is a O(n2) algorithm.

25

2. Simulation System Design

Balafoutis in Balafoutis and Patel (1989), Balafoutis et al. (1988) derived a more efficient al-
gorithm by using orthogonal Cartesian tensors. With the concept of spatial notation, Lilly
in Lilly and Orin (1991), Lilly and Bonaventura (1995), Featherstone in Featherstone and Orin
(2000), Featherstone (2008) have developed a modified version of CRBA, which need less
computing effort. With the aid of the decoupled natural orthogonal complement, Saha
in Saha (1999) have obtained another set of motion equations based on Euler-Lagrange me-
chanics. In addition, Park, Bobrow and Sohl in Park et al. (1995), Sohl and Bobrow (2001)
provided a recursive multi-body dynamics for branched kinematic chains using the tech-
nique and notation from the theory of Lie groups and Lie algebras. McMillan and Orin
in McMillan and Orin (1995), McMillan et al. (1995) developed an ABA which produces a
O(n) forward dynamic algorithm without an explicit inverse of JSIM. On the other hand, Ro-
driguez and Jain in Rodriguez et al. (1991) applied Kalman Filtering and smoothing method
to formulate the inverse and forward dynamics using spatial notation as Featherstone.

In the field of space robotics, Vafa and Dubowsky in Vafa and Dubowsky (1990) pro-
posed a virtual manipulator technique to simplify the dynamics of space robotic system.
Dubowsky and Papadopoulos in Dubowsky and Papadopoulos (1993), Papadopoulos and
Moosavian in Papadopoulos and Moosavian (1994) developed a decoupled dynamics algo-
rithm using a minimum set of body-fixed barycentric vectors. In Xu and Kanade (1993),
Xu and Shum (1991) Xu derived the dynamics of planar manipulator with a free-floating
base. Umetani and Yoshida in Umetani and Yoshida (1989) obtained a GJM for a free-floating
space robot and provided a SpaceDyn Yoshida (1999) software for validation use. In this
thesis, we will develop a unified equation of motion for a space manipulator with general
tree-structure, based on the graph theory and spatial notation. The detailed information
about multi-body dynamics will be illustrated in chapter 3.

2.3.2. Autonomous Mission Management

In the RacoonSim, the space tasks can be conducted in manual or autonomous operational
modes. In the manual mode, an operator sends commands or utilizes joystick or other con-
trol instruments to perform the space mission. In the autonomous mode, the space mission
is conducted fully autonomously with a minimum number of interventions from the oper-
ator. Therefore, an AMM subsystem is necessary to provide the ability of autonomy for the
servicer satellite.

Refer to Brooks (1986), Rekleitis et al. (2007), one can see that AMM is fully at the core of
the OBDH system of the servicer satellite. The fully implementation of AMM relies on the
preloaded space missions, which are designed and encoded with a hierarchical FSM engine
such as Matlab/Stateflow. The concept of the hierarchical FSM allows a high-level FSM to
activate or invoke a lower-level. This supplies the capability to implement a hierarchical de-
composition of a high-level task into a sequence of lower-level tasks. Various space missions
are then considered as different states which can be switched from one to another when tele-
commands sent by the operator are triggered or specific conditions are met. These specific
conditions include the lighting condition, communication condition, thermal condition, or
the tele-commands sent by operators, etc.

26

2. Simulation System Design

Attitude control Drift orbit

Rendezvous

Proximity
Station keeping

Release

Flyby

Capture

Safe mode

De-orbit

Launch

Terminate

Figure 2.7.: Workflow of high-level OOS missions

Figure 2.7 depicts the operations sequence of the OOS missions as illustrated in sec-
tion 2.1 employing FSM. Each phase is represented by a state with related transition condi-
tions. When the conditions are met, transitions between phases will be performed to proceed
the operations sequence. Figure 2.8 illustrates the implementation of capture phase of space
manipulator with FSM. As proposed in Rekleitis et al. (2007), a soft-stop is used to pause the
process and then restart it, while a hard-stop fully terminates the process.

Waiting Enable

Approach

Tracking

Init

Stabilization
Operation

Start

Terminate
Hard-stop

Soft-stop

Figure 2.8.: Workflow of capture phase

The role of the operator is to initialize the space operations by submitting high-level
command, conduct space mission manually in real-time by using specific instruments, and

27

2. Simulation System Design

monitor the process of the servicer performing tasks. In case of emergency, the operator
could send a halt or abort command with highest priority to the autonomy engine.

2.3.3. Path & Trajectory Planning

Based on the knowledge or the preloaded task schedule, AMM determines the high-level
action of the space robot, while the motion planning subsystem generates appropriate paths
to accomplish the required tasks considering the un-structured environment and singularity
issue. Generally, the motion planning problem can be categorized into two classes of global
and local planning methods.

Global path and trajectory planning methods try to search an optimal motion which gen-
erates a safe path between initial configuration and goal configuration in the free configura-
tion space. Agrawal and Xu (1994) presented a global optimum path planning scheme based
on variational approach for redundant space manipulators. Papadopoulos and Poulakakis
(2002) introduced a planning methodology for non-holonomic mobile platform using poly-
nomials considering obstacles. Using genetic algorithms, Xu et al. (2008) developed a non-
holonomic path planing technique with the advantages of smooth path and constrained
motion of the manipulator and the disturbance to the base. In Lampariello (2010) a method
of motion planning for capturing a tumbling target is presented based on non-linear op-
timization and collision avoidance. Order 4 B-spline is adopted to parametrize the joint
trajectories. The merits of global planning methods are performance optimization and out
of singularity issue, however, on-line optimization requires fairly computational effort and
the actual end-effector path can not be predicted. When an off-line optimization is used, it
can’t deal with the un-structured environment.

Local planning methods require the inverse kinematics to reconstruct the time sequence
of joint variables. Dubowsky and Torres (1991) employed an enhanced disturbance map to
plan the manipulator’s motion for reducing the disturbances to the base. Nenchev (1992),
Nenchev and Uchiyama (1995) provided a reaction null-space to generate a motion without
influencing the attitude of the base. Yoshida (2003) proposed a similar concept, named zero
reaction manoeuvre to reduce the disturbance on the base. These local planning methods
confront inevitable singularity problems. To overcome the dynamic singularity problem,
one way is to adopt the global planning methods as illustrated before. The other way is to
develop singularity avoidance strategies. Many works have been done in this field such as
in Chiaverini (1997), Maciejewski and Klein (1988), Marani et al. (2002), Mayorga and Wong
(1988), Nakamura and Hanafusa (1986), Qiu et al. (2006), Schreiber et al. (1999). The existed
singularity avoidance strategies have the various disadvantages as introduced in Kim et al.
(2006). In this thesis, a Singular Task Reconstruction (STR) method for singularity avoid-
ance will be developed in chapter 4. Another problem that will meet in local planning
methods is the mobile obstacles in workspace of the manipulator. Until now, like sin-
gularity issue, series of publications Faverjon and Tournassoud (1987), Glass et al. (1995),
Kanehiro et al., Khatib and Burdick (1986), Kim and Khosla (1992), Maciejewski and Klein
(1985), Seraji and Bon (1999), Yunong Zhang et al. (2003), Zlajpah and Nemec (2002) have
emerged in the last 3 decades. A main problem to the existed collision avoidance strategy
is, normally only the nearest point on the manipulator to the obstacles is adopted to exe-
cute the collision avoidance, which leads to vibration of the joint velocity when the control

28

2. Simulation System Design

point switches during its motion. Two control points are employed for collision avoidance
to suppress the possible fluctuation and will be illustrate in chapter 4.

2.3.4. Motion Control

Controllers are designed and implemented for realization of planning problem by using ac-
tuators and sensors under control law. Depending on the control objectives, various control
schemes have been developed for space manipulators.

A so-called Resolved Motion Acceleration Control (RMAC) for a free-floating space ma-
nipulator was developed in Umetani and Yoshida (1989) by using the GJM. This method is
founded on two feedback loops, an inner loop based on space robot non-linear inverse dy-
namics and an outer loop operating on the tracking error. A similar control method was
also developed in Masutani et al. (1989), Papadopoulos and Moosavian (1994). Nenchev
(1993) introduced a resolved acceleration type controller based on a specific fixed-attitude
restricted Jacobian matrix to suppress the disturbance of the manipulator to the base. Adap-
tive controller is another feasible solution to fit the uncertain space environment. Gu and Xu
(1993), Xu et al. (1992), Xu (1991) proposed an adaptive control scheme for a space manipu-
lator in Cartesian space with an extended manipulator model. The demerit of this method
is that it requires the acceleration of the base. Ma and Huo (1995) introduced two adaptive
control schemes, corresponding to availability and unavailability of joint acceleration mea-
surement. It is shown that when the joint acceleration measurement is available, the zero
end-effector velocity tracking error can be guaranteed. Wang and Xie (2009) presented a
passivity based Jacobian tracking controller for free-floating space robot without involving
the measurement of the joint acceleration.

However, the conventional controller design is incapable to address the input and out-
put constraints issue and optimize the performance index on-line. More recently, controller
scheme based on MPC has received significant attention. Hedjar and Boucher (2005) pro-
posed a feedback non-linear predictive controller without on-line optimization for a two-
link rigid robot. Vivas and Mosquera (2005) described an efficient predictive functional
control of a PUMA robot. Combined with fuzzy logic, a new NMPC has been presented
in Jasour and Farrokhi (2009). Chi-Ying Lin and Yen-Chung Liu (2012) applied MPC on pre-
cision tracking control and constraint handling of mechatronic servo system. In the field of
space robotics, McCourt and Silva (2006) investigated the application of MPC for the cap-
ture of a target satellite using a deployable planar manipulator. The application of NMPC in
the field of space robotics considering singularity and collision constraints will be illustrated
in chapter 5.

2.3.5. Virtual Reality & Head-Up Display

In the RacoonSim design, how to intensify the interactivity between operator and machine
really matters a great deal. In order to provide an immersion and intuitive feeling for the
operator, development of a virtual reality system is significantly necessary. As a power-
ful tool, Virtual Reality (VR) is not only widely employed in the game industry, but also
has the potential to enhance existing trainings and operations. The programmers can build
virtual tools, vehicles, robots, even humans in a corresponding virtual environment, which

29

2. Simulation System Design

makes VR economical, reusable, and time-scalable. In fact, ISS, ETS-VII, ROKVISS etc. space
projects adopt VR method as a training tool or for the tele-operation of space robot.

As explained in section 2.2.2, the virtual model and environment rely on the previous
designed CAD model, which can be done by some commercial software, such as CATIA®,
SolidWorks®, Autodesk®, etc. The virtual model will be transformed to a particular format
which can be driven by the simulation data. A VRML language, with seamless interface to
Matlab/Simulink is chosen in this thesis. A schematic diagram about the principle of VRML
is depicted in Figure 2.9. Route manges the driving events, specific Java/Javascript applets
are added into the model to proceed the complex events and to intensify the interactivity.

CATIA/Solidworks

VRML

Interface Matlab/Simulink

Shapes (Positioning,

Rotationing, Scaling,

etc.)

Sensors

World/Background

Route

Script

Java Applet

eventTrigger

eventIn

eventDirect

eventOut

Figure 2.9.: VRML mechanism and its interfaces

For the control input of operator, joystick and 3 dimensional mouse are employed. When
a space robot task is processing, it is important for the VR system to supply the full scene
of space robot and the relative scene between the end-effector and target. The relative scene
will offer a preview on top of end-effector to target satellite. Therefore, a HUD with full
relative information and explicit vision of target satellite is built to assist the operator in
the tele-operation tasks. It is also possible to provide the operator with complementary
information to augment the VR model, such as alarm audio when collision nearly happen,
or text information about the system states. A schematic diagram of GUI, VR and HUD as
part of MCC is shown in Figure 2.10. These auxiliary subsystems play an important role in
understanding the space environment and enhancing the immersion and interactivity.

30

2. Simulation System Design

Ethernet

Operator

Figure 2.10.: GUI, VR and HUD in MCC

2.4. Summary

In this chapter, in terms of On-Orbit Servicing (OOS) missions using space robot, a real-
time distributed simulation system has been developed for autonomous OOS operation or
human-in-the-loop tele-operation. The proposed simulation architecture, integrated with
Data Distribution Service (DDS), has the capacity of adaptivity, extendibility, and multiple
goals. It is implemented in the environment of Matlab/Simulink/Stateflow, which can be
extended easily while new hardware or software add into it. At the core of the simula-
tion architecture is the Racoon Simulation (RacoonSim) to conduct the simulation of whole
OOS operation using space manipulator. The multi-body dynamics, autonomous mission
management, path and trajectory planning, and motion control subsystems are depicted in
detail. For the sake of intensifying the immersion and interactivity of operators, an auxiliary
Virtual Reality (VR) subsystem is also completed using Virtual Reality Modelling Language
(VRML).

The application of Data Distribution Service (DDS) and the commercial software envi-
ronment Matlab/Simulink/Stateflow decrease the communication latency among various
simulators subsystems and speed up the construction of the ground verification system
Robotic Actuation, Control and On Orbit Navigation Laboratory (RACOON). Moreover, the
reusable simulator is easy to modify and replace by better modules, which provides expand-
ability and scalability of this simulation architecture in the future. The RACOON system has
demonstrated in its prototype the feasibility and effectiveness of such a complex but inte-
grated environment. Future improvements will include extension to a wide range of space
scenarios and enhancement of usability and scalability.

31

3. Multibody Dynamics

Accordingly, we find Euler and D’Alembert devoting their talent and their patience to
the establishment of the laws of rotation of the solid bodies. Lagrange has incorporated his
own analysis of the problem with his general treatment of mechanics, and since his time
M. Poinsôt has brought the subject under the power of a more searching analysis than
that of the calculus, in which ideas take the place of symbols, and intelligent propositions
supersede equations.

—James Clerk Maxwell

Due to the increasing demands of On-Orbit Servicing (OOS) missions and the particular
harsh environment of space, the application of space robot has received significant attention.
In the last decades, numerous contributions have been made in the field of robot dynamics.
From a systemic viewpoint, dynamics algorithm should be formulated with a compact set
of equations for ease of development and implementation, while the greatest computational
efficiency is obtained synchronously. Generally, the dynamics algorithms are mainly con-
cerned for two particular calculations: forward dynamics and inverse dynamics. Forward
dynamics, mainly required for simulation, is concerned about the calculation of the accel-
eration response when a given force exerts on a given rigid body, on the contrary, inverse
dynamics is the calculation of the required force to drive a given rigid body to implement
a given acceleration response. Inverse dynamics is of great importance in the controller
design, trajectory planning, mechanical design, etc.

This chapter relevant to the development of appropriate trajectory planning and con-
trol algorithms, focuses on a modelling scheme that uses the concepts of graph theory and
spatial notation for calculating the joint-space forward dynamics of tree structure space ma-
nipulator systems. Firstly, the configuration description of space manipulators using graph
theory, the parent array, and path matrix are introduced. Secondly, based on the concept of
generalized link, the spatial notation and composite rigid body are presented. Thirdly, the
Composite Rigid Body Algorithm (CRBA) is exhibited. The Inertia Mapping Matrix (IMM)
is then derived from the path matrix, which can be used to analyse the sparsity of the inertia
matrix and the complexity of the CRBA algorithm. Within the context, a modified CRBA
combining ideas of IMM and spatial vector is proposed to calculate the dynamics of tree
structure space manipulators. Its computational procedure and complexity by using IMM
are analysed. Finally, a case study and comparison by using a humanoid configuration for
branched and un-branched chains particularly verify the effectiveness and potential of the
proposed modified CRBA for the space manipulators.

33

3. Multibody Dynamics

3.1. Graphy Theory

Assumptions used in this chapter are firstly listed here. An N degree-of-freedom (DOF) ma-
nipulator with n rotational joints mounted on a spacecraft (floating base) is considered. Each
rotational joint has ni DOF, therefore N = ∑n

i=1 ni. The whole mechanical chain is composed
of n + 1 rigid bodies, and has N + 6 generalized coordinates. In this chapter, we assume that
each joint has one single rotational axis along z axis, therefore N = n.

Description of interconnection structures of multi-body systems can be illustrated by
graph theory. In order to reflect the affiliation between the joints and present a more com-
pact inertia matrix, instead of using a regular numbering scheme, a depth-first numbering
scheme is adopted in this chapter. A general manipulator with tree structure can be shown
by a set of n links (vertices), numbered 1,⋯, n, a base link numbered 0 and a set of n joints
(arcs), numbered 1̂,⋯, n̂. Each arc connects two vertices, the joints are numbered such that
joint i connects body i to its parent. A general kinematic tree and a binary kinematic tree as
two examples are displayed in Figure 3.1.

1̂ 5̂

1̂2

1̂41̂31̂1

J1

J1

J1

J1

(b) binary kinematic tree

0

J1

J1

J1

J1

J1

J1

J1111111 J1

J1

J1

121212

141414

J1

J1

J1

J1

J1

J1

J1J1

J1

J1

111

222

333 444

555

666

777

888

999 101010

2̂

3̂ 4̂

6̂

7̂

8̂

9̂ 1̂0

(a) general kinematic tree

root

0

root

111

1̂

2̂

222

333

3̂

444

4̂

5̂

555

666

6̂

777

7̂

888

8̂

999

9̂

101010

1̂0

Figure 3.1.: Example of tree structure manipulators

The connectivity of a kinematic tree can be denoted by the parent array λ(⋅). It has one
entry for each mobile body, which indicates the body number of its parent. Hence, the parent
array for a general kinematic tree as shown in Figure 3.1 is λ(⋅) = {0,1,2,2,0,5,6,5,8,8}, and
λ(i) is the parent number of the body i and 0 ≤ λ(i) < i. For a specified tree structure graph,
using only the parent array λ(i) can express the configuration of the system.

One important matrix in graph theory used to illustrate the connectivity of tree structure
is the path matrix T, and its elements are defined as follows:

Tij =
⎧⎪⎪⎨⎪⎪⎩
−1 (̂i is on path between 0 and j)

0 (̂i isn’t on path between 0 and j)
(3.1)

The tree structure can uniquely be determined by the parent array λ(⋅) or the path matrix
T. There is no column in the path matrix corresponding to vertex 0. From the definition of T,

34

3. Multibody Dynamics

every row has at least one non-zero element. If Tij is the only non-zero element in row i, the
vertex j is a terminal vertex. We define nλ(i) = ∑

n
j=1∣Tji∣ denotes the number of parent links of

link i and nν(i) = ∑
n
j=1∣Tij ∣ denotes the number of offspring of link i for further application.

3.2. Spatial Notation

The so-called spatial notation was introduced and employed in Featherstone (2008). Both the
angular and linear components of physical quantities like velocity, acceleration and force are
dealt with a unified framework (e.g. 6×1 vector and 6×6 matrix). In the following, a variable
with bar represents a spatial tensor. A spatial velocity v̄ and a spatial force f̄ of link i can be
denoted as v̄i = [ωT

i ,v
T
i]T and f̄ i = [mT

i ,f
T
i]T. The spatial transformation matrix is:

jXi = [jRi 0
jRiS(jri) jRi

] (3.2)

where jXi ∈ R6×6 represents the spatial transformation matrix, jRi ∈ R3×3 stands for the
coordinate transformation matrix, from coordinate frame i to j. jri ∈ R3×1 is a position
vector from the origin of frame i to that of frame j expressed in frame i. S ∈ R3×3 is the cross
product operator, for an arbitrary 3 dimensional vector a = [ax, ay, az]T, it can be defined as

S(a) =
⎡⎢⎢⎢⎢⎢⎣

0 −az ay
az 0 −ax
−ay ax 0

⎤⎥⎥⎥⎥⎥⎦
(3.3)

J¸(i)

z¸(¸(i))

z¸(i)

a¸(i)

zi

b¸(i)

ai

J1

eC¸(i)

eCi

edi + b¸(i)

biedi
ed¸(i)

Figure 3.2.: Generalized center of mass of link i

Likewise, an inertia matrix is defined for each individual link in its own frame system.
For link i, the spatial inertia matrix H̄i, expressed in its own coordinate frame, can be repre-
sented as follows

H̄i = [Īi +miS(ai)TS(ai) miS(ai)
miS(ai)T miE3

] (3.4)

35

3. Multibody Dynamics

where Īi is the inertia of link i with respect to its gravity center. ai is the position vector
from the origin of frame i to the mass center of link i, mi is the mass of link i and E3 is a
3×3 identity matrix. For detailed description of spatial notation, refer to Featherstone (2008)
and Lilly and Orin (1991). For a composite rigid body inertia expressed by spatial notation,
it may be computed recursively based on the concept of generalized link (see Figure 3.2)
using the following equation

H̃λ(i) = iXT
λ(i)H̃i

iXλ(i) + H̄λ(i) (3.5)

where H̃i and H̄λ(i) are the spatial composite rigid body inertia for body i and spatial inertia
of body λ(i), respectively.

3.3. Dynamics Algorithm

The dynamic model can be obtained from Newtonian or Lagrange mechanics. There are sev-
eral different dynamic formulations applied in the field of multi-body dynamics: Newton-
Euler, Lagrange-Euler, D’Alembert, Hamilton. Nevertheless, all these formulations with differ-
ent representations are equivalent since they describe the same physical phenomenon. Gen-
erally speaking, the choose of dynamics formulation will depend on different objectives such
as notation simplicity, computational cost, etc. Once the dynamic formulation is determined,
corresponding motion equations about a specific multi-body system can be derived from the
formulation. This section first reviews the basic steps of Composite Rigid Body Algorithm
derived from the Lagrange formulation. Then the Inertia Mapping Matrix is obtained by
using path matrix T. A modified Composite Rigid Body Algorithm (CRBA) in terms of
Inertia Mapping Matrix (IMM) is proposed based on the spatial notation.

3.3.1. Lagrange Formulation

Not like Newton’s second law which denotes the relationship between the forces and move-
ments, Lagrange formulation is represented by energy and generalized coordinates, which
describes the relationship between forces and movements from energy aspect, has obtained
considerable applications in the field of dynamics of multi-body and complex systems. With
Lagrange formulation, the equations of motion about one complex system can be derived
in a systematic way independent of the reference coordinate frame. The Lagrangian can be
firstly represented by energy, like kinetic and potential energy, as a function of the general-
ized coordinates qi(i = 1,2,⋯, n).

L = T (q, q̇) − U(q) (3.6)

where T and U denote the kinetic and potential energies of the whole system. The Lagrange
equations can be expressed by

d

dt
(∂L
∂q̇
)T

− (∂L
∂q
)T

= ξ (3.7)

where ξ is the generalized force composed of the internal and external non-conservative
forces, such as the joint actuator torques, the joint friction torques, and the joint torques
induced by the contact with the environment.

36

3. Multibody Dynamics

In our analysis, since the space robot is in a micro gravitational environment, it is rea-
sonable to set U = 0. The kinetic energy T with a quadratic form of the generalized velocity
q̇ can be expressed by:

T =
1

2
q̇TH(q)q̇ (3.8)

Substitute equation 3.8 into equation 3.7, a general formulation derived from Lagrangian
can be denoted as

H(q)q̈ + c(q, q̇) = τ + fx (3.9)

where H(q) is the Joint-Space Inertia Matrix, q, q̇, q̈ are the vectors of joint position, joint
velocity and joint acceleration, respectively. c(q, q̇) is a bias vector containing Coriolis, cen-
trifugal and gravity terms. For the space application, the gravity term can be omitted since
the micro-gravity environment in space. τ is an internal joint force/torque vector and fx is
the external force/torque acting on the space robot.

3.3.2. Composite Rigid Body Algorithm

As was illustrated in the beginning, dynamics algorithms can be divided into two categories:
forward and inverse dynamics. To simplify the matter, the forward and inverse dynamics
can be encapsulated into two functions, FwdDyn and InvDyn:

q̈ = FwdDyn(model,q, q̇,τ ,fx) (3.10)

τ = InvDyn(model,q, q̇, q̈,fx) (3.11)

the symbol model refers to a set of data that describes a particular rigid body system, such as
its configuration, joint type, parameters of each link, etc. As explained in Walker and Orin
(1982) and Featherstone (2008), the equations of motion for a tree structure rigid body sys-
tem can be expressed in matrix form as expressed in equation 3.9. The inertia matrix H can
be derived analytically or computed numerically. The goal is to find an efficient algorithm
which is more efficient than O(n3) to compute the inertia matrix. If there is an inverse dy-
namics algorithm function InvDyn as in equation 3.11, then the non-linear terms of Coriolis
and centrifugal force vector c(q, q̇) can be calculated by

c(q, q̇) = InvDyn(model,q, q̇,0,0) (3.12)

Comparing equation 3.11 with equation 3.12 and referring to equation 3.9, we can obtain

Hq̈ = InvDyn(model,q, q̇, q̈,fx) + fx − c(q, q̇)
= InvDyn(model,q,0, q̈,0) − InvDyn(model,q,0,0,0) (3.13)

Since the velocity term q̇ and external force term fx in equation 3.13 can be cancelled out,
these vectors can be set to 0. This equation induces a simple O(n2) algorithm for calculat-
ing H, which is the first method proposed in Walker and Orin (1982). Featherstone named
method 3 in Walker and Orin (1982) as Composite Rigid Body Algorithm (CRBA) to com-
pute the inertia parameters of composite sets of rigid bodies at the outer end of the manipu-
lator chain. By setting the sets of joint velocities to 0, and the joint accelerations to 0 or a unit
vector, the column of the inertia matrix can be calculated efficiently through successive ap-
plication of inverse dynamics algorithm such as Recursive Newton-Euler Algorithm (RNEA).

37

3. Multibody Dynamics

3.3.3. Inertia Mapping Matrix

Before a detailed forward dynamic algorithm is provided, some basic information about
Joint-Space Inertia Matrix (JSIM) is presented. The path matrix expressed in equation 3.1
includes the basic configuration information of the system. It is also the reflection of the
system mass distribution, so there must be some relations between path matrix and JSIM.
Here we define the Inertia Mapping Matrix:

M = TTT (3.14)

Like the inertia matrix, M is also a symmetric and positive definite matrix. Mii reveals the
offspring number of link i, and therefore Mii = nν(i). It also reflects the number of recursion
to calculate the composite rigid body i. Next, each element in M is analysed in case of i < j
since M is symmetric. Mij = 0 denotes that link i is not the parent node of link j, which
also reflects the number of offspring links of link j, and it also represents the number of
recursions necessary to compute Hij , which can not be reduced any more. The relationship
between parent array, path matrix, IMM and JSIM is shown in Figure 3.3.

T

¸(i)

M H

Nonzero real number

Figure 3.3.: Relationship among path matrix, IMM and JSIM

With a fixed base, the matrix M can be obtained using equation 3.1 and 3.14. For space
applications, the base is not fixed but floating and requires further expansion. When the
base is floating, and since every link in the tree structure is the offspring of the base, we can
define the augmented path matrix T∗ and augmented IMM M∗ as follows

T = [−1 −11×n

0n×1 T
] (3.15)

M∗ = T∗TT∗ (3.16)

M∗
11

denotes the computational times of link 0 (base), and corresponds to a 6×6 sub-matrix in
JSIM. It also indicates the total number of mobile joints in the kinematic tree, and therefore
M∗

11
= n + 1. More details about IMM and its application will be illustrated in section 3.4.

38

3. Multibody Dynamics

3.3.4. Modified CRBA

Refer to Lilly and Bonaventura (1995), Yoshida (1997) and equation 3.9, for a floating based
robot, the general dynamics equation can be described by the following expression:

[Hb Hbm

HT
bm Hm

] q̈ + [cb
cm
] = [f b

τ
] +∑

k

JkT
e fk

e (3.17)

where Hb, Hbm and Hm are the base inertia matrix, dynamic coupling matrix and manipu-
lator’s inertia matrix, respectively. cb and cm are the Coriolis and centrifugal force vectors
of the base and manipulator, respectively. f b ∈ R6×1 and f k

e ∈ R6×1 are the generalized forces
applied on the base and end-effector k, respectively. Jk

e ∈ R6×n is the Jacobian matrix of kth

end-effector.

Considering the IMM defined in section 3.3.3, a modified CRBA is proposed here based
on spatial notation. From Figure 3.2, supposing only joint i is in motion and q̈i = 1, the total
force f i and moment mi exerted on link j (j ≤ i) can be computed by inward recursion
from the link i to the link 0. If we employ spatial notation, the spatial force f̄ i exerted on
generalized link i and the spatial force f̄ i (j ≤ i) can be computed by inward recursion. The
formulae of calculating spatial force and corresponding elements in JSIM can be expressed
by

⎧⎪⎪⎨⎪⎪⎩
f̄ i =Hisi

f̄λ(j) = λ(j)XT
j f̄ j

Ô⇒
⎧⎪⎪⎨⎪⎪⎩
(Hm)ij = sT

j f̄ j

(Hbm)i = 0XT
i f̄ i

(3.18)

where si ∈ R6×1 represents the motion axis of joint i. si can be set to [0 0 0 0 0 1]T or[0 0 1 0 0 0]T for a prismatic joint or rotational joint, respectively. The basic steps of the
modified CRBA are shown in Table 3.1.

Table 3.1.: Modified composite rigid body algorithm

Input: λ(i),model,mi, Īi,ai,bi,T,M,qini, q̇ini,τ ,f
x

step 1: c(q, q̇) = InvDyn(model,q, q̇,0,0)
step 2: for i = n,⋯ ,0

do H̃i, f̄ i

for j = i − 1,⋯ ,0

if Tij ≠ 0 do f̄ j

if Mij = 0H(i+6)(j+6) = 0
else H(i+6)(j+6) = (Hm)ij

end
end

step 3: Hb = H̃0; (Hbm)i = 0
X

T
i f̄ i

Integrate: q̈ =H−1(q)(τ + fx − c(q, q̇))

3.4. IMM Application

IMM can be employed to explore the geometry of JSIM and cost analysis of CRBA. It also
offers a general method to search the properties of JSIM and supplies an analytical tool to
explore how different topologies affect the cost.

39

3. Multibody Dynamics

3.4.1. Branch-induced Sparsity

Once the topology and numbering scheme of an n single-axis joints manipulator is set, the
geometry of the JSIM can be obtained from IMM immediately. For a kinematic tree with
branches, certain elements of the JSIM will automatically be zero. The number of such zeros
can be a large fraction of the total. This phenomenon is called branch-induced sparsity as de-
fined in Featherstone (2008). The number of zeros depends on the topology of the kinematic
tree, and the zero’s location depends on the topology and the numbering scheme. Taking a
space robot with 4 links mounted on a floating base as an example, its total spanning tree
solutions and corresponding inertia matrix are displayed in Figure 3.4.

J1

J1

J1

J1

0

J1

J1

J1

J1

0

J1J1

J1

J1

0 0

J1 J1 J1 J1J1

J1 J1

J1

0

J1

J1 J1 J1

0

J1J1

J1J1

0 0 0

J1 J1J1

J1

J1

J1

J1

J1

= nonzero submatrix
= zero submatrix

Figure 3.4.: Tree configuration and corresponding JSIM of one base with 4 links

From the IMM and its related JSIM it is easy to seek some other properties of JSIM. That
is, for any arbitrary link i in the manipulator, its motion will only be controlled by its parent
links and the base (In fact, base is the parent link of all the other links). The motion of
link j(j ≠ i) is independent of link i if there are no accesses between j and i without passing
through the base. The interrelationship of their motion is only dependent on the base, which
means, if we want to use link j to influence the motion of link i, the only method is using the
dynamic coupling between link j and the base, it can’t control the motion of link i directly.
When the base is fixed, these tow links will be totally independent of each other. The JSIM
can therefore be decoupled.

3.4.2. CRBA Computational Cost Analysis

IMM can be used to explore the sparsity of inertia matrix as explained in section 3.4.1. It
can be employed to analyse the computational cost of the CRBA as well. This section illus-
trates a cost formula for the CRBA, for the case of a tree structure manipulator with general
geometry, general inertia parameters, revolute joints and an optional floating base.

As described in Table 3.1, if Mij = 0, which indicates that link i is not in the branch of link
j, consequently induces Hij = 0. If Mij ≠ 0, Hij requires Mij times of recursive calculations
from the outer ends of manipulator chain to link i itself. Consider the algorithm expressed
in Table 3.1, it calculates every non-zero element of JSIM. In order to obtain the exact com-
putational cost of CRBA, we first define D0 = ∑n

i=1min(1, nλ(i) − 1) = M11 − 1 to indicate the

40

3. Multibody Dynamics

numbers of moving links without connectivity to the base and D1 = ∑n
i=1(nλ(i) − 1) = ∑n

i=2Mii

to show the numbers of non-zero elements above the diagonal of IMM. The depth of the tree
will influence the computational complexity. If nλ(i) has an upper limit dmax, then we can
obtain 0 ≤ D0 ≤ n − 1 and 0 ≤ D1 ≤ n(dmax − 1). The cost of CRBA represented by KCRBA

depends on D0 and D1 rather than directly on n and can be denoted as

KCRBA = D0(ca + ct) +D1vt (3.19)

where the symbol ca, ct and vt stand for composite rigid body add, composite rigid body
transform and vector transform, respectively. When D0 = 0 happens, this means every mo-
bile body connects to the fixed base directly. Then the JSIM is a diagonal matrix, which
requires the least computational cost, and so the theoretical minimum complexity of CRBA
is O(1). When there are no branches in the kinematic tree, the JSIM is dense, D0 = n and
D1 = n(n − 1)/2, which requires the maximum computational cost. This provides a compu-
tational cost estimation of CRBA

O(1) ≤ KCRBA ≤ O(n3) (3.20)

In fact, most of the practical system have a value of D0 that is either equal to or less than
the maximum possible value. For example, the asymptotic complexity of CRBA for a binary
kinematic tree as shown in Figure 3.1 is O(nlog(n)) Featherstone (2005).

Many investigations have been made to find the minimum-cost implementations for op-
erations ca, ct and vt. However, the minimum cost for ct and vt mainly depends on how
the link coordinate frame are defined. This is another aspect that makes the situation more
complicated for a tree structure robot. The minimum cost for ct and vt relied on the co-
ordinate frame located in accordance with a set of Denavit-Hartenberg (DH) parameters
(Denavit and Hartenberg (1955)), in which case the coordinate transformation expression
by λ(i)Ri can be realized via the successive application of two axis screw transforms: one
aligns with the x-axis and the other aligns with z-axis. However, if a link connects more
than one offspring link, then only one offspring link can possess the benefit of transforma-
tion with DH parameters. We define DH nodes and non-DH nodes, for those nodes have
and do not have the benefit of DH parameters, respectively. The number of non-DH nodes
can be determined by path matrix, if the offspring nodes of link i is nν(i), then the number
of non-DH can be denoted by

nnDH =
n

∑
i=1

max(0, nν(i) − 1) = n − 1 − n−1

∑
i=1

∣Ti,i+1∣ (3.21)

where the number of non-DH nodes nnDH equals to the number of zeros in the super-
diagonal of path matrix T. For the un-branched case, nν(i) ≤ 1 denotes that there are no
non-DH nodes in the tree. Using the subscripts a and b to represent the DH node and non-
DH node, the cost of CRBA can be expressed by

KCRBA = D0a(ca + cta) +D1avta +D0b(ca + ctb) +D1bvtb (3.22)

Equation 3.19 and 3.22 are the cost formulae of computing JSIM with fixed base, however,
when a floating base exists, some more reductions can be made since 3 of DH parameters
between link i and its parent link λ(i) can be set to 0, if link λ(i) happened to be a floating
base McMillan et al. (1995). Therefore the operations on each affected ct and vt transforms

41

3. Multibody Dynamics

can be decreased. We define here a new set to indicate the set of DH nodes that are offspring
of a floating base. If we define D0c and D1c to count the number of saving operations in ct

and vt, respectively, then the final cost formula of KCRBA with a floating base is then

KCRBA = D0a(ca + cta) +D1avta +D0b(ca + ctb) +D1bvtb −D0cctc −D1cvtc (3.23)

Let mp and ad be the symbol to represent the operation of multiplication and addition,
respectively. The minimum cost for ca operation is 10mp for spatial notation. The minimum
cost operations for ct and vt of spatial notation are listed in Table 3.2. For further details
on efficient implementations of ct and vt with different node types (DH nodes or non-DH
nodes), see (Featherstone, 2008).

Table 3.2.: Required operation cost of different transforms

ct Operation cost vt Operation cost

cta 32mp + 33ad vta 20mp + 12ad
ctb 47mp + 48ad vtb 24mp + 18ad
ctc 18mp + 21ad vtc 12mp + 8ad

Considering the spatial notation, the cost of CRBA can be expressed as follows

KCRBA =D0a(32mp + 43ad) +D1a(20mp + 12ad)
+D0b(47mp + 58ad) +D1b(24mp + 18ad)
−D0c(18mp + 21ad) −D1c(12mp + 8ad)

(3.24)

Employing path matrix T and IMM M from section 3.1 and section 3.3.3, the expression
for D0a, ⋯, D1c can be denoted by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0a = D0 −D0b = ∑n−1
i=1 ∣Ti,i+1∣

D1a = ∑n−1
i=1 Mi,i+1

D0b =M11 − 1 −∑n−1
i=1 ∣Ti,i+1∣

D1b =D1 −D1a = ∑n
i=2Mii −∑n−1

i=1 Mi,i+1

D0c = 1
D1c =maxi∈[2,n]Mii

(3.25)

Substituting equation 3.25 into equation 3.24, the exact computational cost of CRBA
based on spatial notation can be obtained. Their application and analysis will be illustrated
in section 3.5.

3.4.3. JSIM Factorization Analysis

As illustrated in previous sections, in order to calculate the forward dynamics of space robot,
three steps have to be adopted to complete the calculation in equation 3.9:

(1) Calculate the bias vector c(q, q̇);

(2) Compute JSIM H(q);

42

3. Multibody Dynamics

(3) Inverse of JSIM H−1(q);

In general, the computational cost of c(q, q̇) and H(q) are O(n) and O(n2), where their algo-
rithms correspond to inverse dynamics algorithm – RNEA and forward dynamics algorithm
– CRBA, respectively. For the sake of resolving step (3) (i.e. inverse of JSIM), a factorization
process should be firstly taken into account. A UDUT factorization algorithm in Saha (1997)
has been proposed to explore the various properties of the factorization, but without con-
sidering branch-induced sparsity. If we try to factorize JSIM H using a standard Cholesky
or LDLT factorization (H = LLT or H = LDLT), then it will treat the resulting factor matrix
as dense, which can’t reflect the branch-induced sparsity clearly. Therefore, the equivalent
LTL and LTDL factorization algorithms will be adopted here.

As illustrated in section 3.4.1, IMM can be used to explore the sparsity of inertia matrix
induced by the system topology, it can assist matrix factorization as well. The relation-
ship between JSIM and IMM can be established by H = LTL and M = TTT. Which means,
the path matrix T, as an upper triangular matrix, has the same sparsity pattern as the ma-
trix LT. The special property of a LTL or LTDL factorization, when applied to a matrix
with branch-induced sparsity, is that the factorization proceeds without fill-in as introduced
in Featherstone (2005). In other word, every branch-induced zero element in JSIM remains
zero throughout the factorization process. Therefore, the resulting factor matrix L is also
sparse and the branch-induced zero element can be ignored directly during the factoriza-
tion process. Given any n × n symmetric, positive-definite matrix H and its path matrix T

defined by equation 3.1, the algorithm in Table 3.3 will perform an optimal, sparse LTL and
LTDL factorization on H and will display how different topologies influence the computa-
tional cost from matrix factorization standpoint.

Table 3.3.: LTL and LTDL factorization algorithms

LTL factorization LTDL factorization

for k = n,⋯ ,1 do
Hkk =

√
Hkk

for i = λ(k),⋯ ,1 do
Hki = −TikHki/Hkk

end
for i = λ(k),⋯ ,1

for j = i,⋯ ,1 do
Hij =Hij + TjiHkiHkj

end
end

end

for k = n,⋯ ,1 do
for i = λ(k),⋯ ,1 do
a = −TikHki/Hkk

for j = i,⋯ ,1 do
Hij =Hij − aHkj

end
Hki = a

end
end

In order to obtain the exact computational cost of CRBA, D0 and D1 were defined in
section 3.4.2. Additionally, a new quantity D2 is defined to express the sum of elements
above the diagonal of IMM as follows

D2 =
n

∑
i=1

nλ(i)(nλ(i) − 1)/2 = n

∑
i=1

n

∑
j=i+1

Mij (3.26)

The value of D2 reflects the computational cost of LTL or LTDL factorization. When there
are no branches in the kinematic tree, the JSIM and IMM both are dense, resulting in D2 =

43

3. Multibody Dynamics

(n3 − n)/6, which requires the maximum computational cost for factorization. If nλ(i) has an
upper limit dmax, then we can obtain 0 ≤ D2 ≤ ndmax(dmax − 1)/2. The computational cost of
sparse LTL and LTDL factorization can be denoted by

KLTL = n ⋅ sqrt +D1 ⋅ div +D2(mp + ad) (3.27)

KLTDL =D1 ⋅ div +D2(mp + ad) (3.28)

where the symbol sqrt and div represent square-root calculations and divisions, respectively,
while subtractions are treated as additions for cost purpose.

After factorization, another procedure to implement step (3) is back-substitution. The
calculation of L−1x and L−Tx will be considered, where x is a general vector. The compu-
tational cost of back-substitution for LTL factorization is 2n ⋅ div + 2D1(mp + ad), which for
LTDL factorization is n ⋅ div + 2D1(mp + ad). These computational cost analysis will be used
in section 3.5 for comparison to verify the performance and effectiveness of the proposed
CRBA.

3.5. Case Study

This section illustrates the effect of branches on the computational cost of forward dynamics
based on aforementioned computational cost analysis. Two rigid body systems are consid-
ered: one is a humanoid composed of 1 single 6-DOF rigid torso and 4k-DOF (k = 1,2,⋯,6)
limbs regarded as the branched system, the other is an un-branched chain system with a
floating base as shown in Figure 3.5. Both systems have 4k + 1 mobile bodies, 4k single-axis
revolute joints, 1 floating base and in total 4k+6 DOF. Therefore, the only difference between
them is one is branched and the other is not.

J1

J1

J1

J1

J1

J1

J1
J1

J1

J1
J1

J1

J1

J1 J1

J1

J1 J1

J1 J1

J1 J1J1

J1

0

torso

J1 J1

J1 J1

0

root

J1 J1

J1 J1J1 J1

0

J1 J1

limbs

1 DOF limb 2 DOF limb

6 DOF limb

0 J1 J1 J1 J1 0 J1 J1 J1 0 J1 J1J1 J1 J1

Humanoid System

Un-branched System

4 DOF 8 DOF 24 DOF

root root

rootrootroot

torso torso

limbs

limbs

Figure 3.5.: Humanoid and corresponding un-branched chain

44

3. Multibody Dynamics

To calculate the exact operations of different algorithms, we first need to evaluate the
various quantities for the branched and un-branched systems based on equation 3.25. Ac-
cording to the definition of augmented path matrix T∗ and augment IMM M∗, the quantities
D0, D0, . . . , D1c for branched and un-branched systems can be computed as follows

D(branched) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D0 = 4k D1 = 2k(k + 1)
D0a = 4k − 3 D1a = 2k2 − k

D0b = 3 D1b = 3k
D0c = 1 D1c = k

(3.29)

D(un − branched) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D0 = 4k D1 = 2k(4k + 1)
D0a = 4k D1a = 2k(4k + 1)
D0b = 0 D1b = 0
D0c = 1 D1c = 4k

(3.30)

Substituting the various D quantities into equation 3.24, the computational cost of CRBA
for humanoid and un-branched systems can be list as follows: (40k2 + 168k + 27)mp and(24k2 + 206k + 24)ad for humanoid; (160k2 + 120k − 18)mp and (96k2 + 164k − 21)ad for un-
branched chain.

The comparison of CRBA applied to branched and un-branched systems is performed.
Figure 3.6 shows the operations number of these calculations without considering the addi-
tion cost (#ad = 0). One can see that, with small number of DOF, i.e. n ≤ 10, the computa-
tional cost for branched and un-branched system is nearly the same. However, as the DOF
increases, the computational cost for un-branched system increases more rapidly than that
for branched system. Figure 3.7 shows the cost ratio of CRBA applied to branched and un-
branched systems, which indicates that, the CRBA runs more quickly on branched system
than on the equivalent un-branched chain. The cost ratio increases as the number of mo-
bile joints increases. When n ≥ 22, CRBA runs more than twice as quickly on the branched
system than on the equivalent un-branched chain.

To verify the performance of proposed algorithm in this chapter, the ABA is utilized to
compare with modified CRBA. As introduced in section 3.4.3, in order to solve the forward
dynamics problem using CRBA, three steps have to be performed. The most efficient algo-
rithm for calculating c(q, q̇) is RNEA proposed in Balafoutis and Patel (1989), which needs(93n − 69) multiplications and (81n − 66) additions. To calculate the cost of the inverse of
JSIM H−1(q), LTDL factorization and back-substitution algorithm expressed in section 3.4.3
is adopted. For an n × n general symmetric, positive matrix, the cost of factorization and
back-substitution is D1 ⋅ div + D2(mp + ad) and n ⋅ div + 2D1(mp + ad). When the branch-
induced sparsity of JSIM is considered and div = mp is assumed, the cost of JSIM inverse
with sparsity is (3D1 +D2 + n)multiplications and (2D1 +D2) additions.

The algorithm of Articulated Body Algorithm (ABA) expressed in McMillan et al. (1995)
is used for comparison reason. The computational cost formula for an un-branched chain
with a floating base is (224n − 30)mp + (205n − 37)ad. To obtain an exact computational cost
for the humanoid, a correction of (66mp + 57ad) is applied to account for the additional
transformation cost at each non-DH node.

45

3. Multibody Dynamics

10 14 18 22 26 30
0

5000

10000

15000

Degree of freedom (#ad=0)

O
pe

ra
tio

ns

un−branched CRBA
un−branched ABA
branched CRBA
branched ABA

Figure 3.6.: Operations numbers of CRBA and ABA

10 14 18 22 26 30
1

1.4

1.8

2.2

2.6

3

Degree of freedom

R
at

io

un−branched #ad=0
un−branched #ad=mp
branched #ad=0
branched #ad=mp

Figure 3.7.: Cost ratio of CRBA and ABA

Figure 3.6 shows the operations number of ABA and CRBA applied to branched and
un-branched system without considering the addition cost (#ad = 0). One can see that,
when only small number of DOF is considered, i.e.n ≤ 10, both CRBA and ABA applied to
branched and un-branched system have almost the same computational efficiency. When
only un-branched chain is considered, ABA is much faster than CRBA on condition that

46

3. Multibody Dynamics

n > 10, especially when n ≥ 14. The cost ratio between CRBA and ABA for un-branched chain
increases as the number of mobile joints increases. But if there are branches in the kinematic
tree, ABA runs only slightly faster than CRBA even when n = 30. The ratio between CRBA
and ABA for branched system increase slowly as the number of mobile joints increases. The
CRBA is only about 14% slower than the ABA assuming ad = mp, or 17% slower assuming
ad = 0 when n = 30. One can therefore conclude that, O(n3) algorithms are still competitive
with O(n) algorithms, providing there is sufficient branching in the kinematic tree.

3.6. Summary

This chapter presents a detailed JSIM algorithm and its computational analysis for a space
robot with tree structure, and therefore makes the following contributions:

• It combines graph theory and spatial notation, and proposes an IMM and a modified
CRBA;

• It employs IMM to explore branched-induced sparsity and explicitly offers the com-
putational cost of JSIM;

• It provides a decomposition algorithm to assist the inverse of JSIM considering IMM.
Its computational cost is also analysed.

The branched-induced sparsity of the inertia matrix depends on the system topology
and numbering scheme. The complexity of calculating the JSIM is estimated between O(1)
and O(n3) by using IMM. The case study shows that for two systems with equal numbers of
DOF, the calculation cost for the branched system is much lower than for the un-branched
chain. According to the comparison, it shows that when there is efficient branching in the
kinematic tree, O(n3) algorithms are still competitive with O(n) algorithms even at high
value of n. Furthermore, this approach provides a more intuitive way of understanding the
properties of the JSIM and its computational complexity. The general dynamic formulation
presented here is an essential element of the constrained motion model developed for space
manipulators and will be employed in the following chapters for kinematic analysis and
controller design.

47

4. Kinematic Control of Manipulator

A single idea, if it is right, save us the labor of an infinity of experiences.

—Jacques Maritain

This chapter focuses on the kinematics analysis of the redundant manipulator at ve-
locity level considering singularity and obstacle avoidance issues. A manipulator moving
in its workspace without enough degree-of-freedom (DOF) will have limited applications,
therefore, redundant manipulator receives wide spread attention in the research academia
and industry. The application of redundant manipulators often faces the following issues:
completing multiple subtasks synchronously, possible emergence of singularity of the ma-
nipulator during its motion and existence of obstacles in the workspace of the manipulator,
etc. In this chapter, inverse kinematics analysis with multiple prioritized subtasks is firstly
reviewed. A so-called Singular Task Reconstruction (STR) method is developed based on
the concept of manipulability ellipsoid for singularity avoidance. When the manipulator
moves in an unstructured environment with obstacles, a collision avoidance strategy con-
sidering two control points is proposed to restrain the vibration of joint velocity and gen-
erate smoother joint trajectory reference. The proposed singularity and collision avoidance
strategies are demonstrated by simulation works.

4.1. Inverse Kinematics

Inverse kinematics refers to determining the joint parameters to realize a required configu-
ration of the manipulator or enable the end-effector to track a predefined path in task-space.
In this section, we analyse the inverse kinematics of multiple prioritized subtasks at velocity
level for redundant manipulator. As illustrated in section 3.1, an N DOF manipulator with
n rotational joints is considered. In this chapter, we assume that each joint has one single
rotational axis along z axis, therefore N = n.

4.1.1. Redundancy and Task Priority

The degree-of-redundancy (DOR) for fixed base robot has been defined as the difference be-
tween the DOF of the manipulator and the number of end-effector task variables. In general,
6 DOF manipulator can meet the end-effector task-space motion requirements. However, in
practice, there are some other tasks as well as end-effector task to fulfil synchronously, such
as joint range limits, singularity and collision avoidance, etc. When considering free-floating
space manipulator, base motion control by using manipulator’s redundancy can be regarded

49

4. Kinematic Control of Manipulator

as additional manipulator’s task. These additional tasks call for system redundancy to meet
the aforementioned requirements.

Supposing a general case at velocity level is taken into account. If there are m tasks
required for the manipulator, each task need mi task variables, then the total number of
task variables M = ∑m

i=1mi. According to the definition of degree-of-redundancy (DOR),
three cases of redundancy can be distinguished in reference to the total number of task
variables M and the number of manipulator DOF N . The first case can be characterized
by N < mini∈[1,m]mi, which indicates that, there are not sufficient DOF to satisfy even the
simplest task with the minimum number of task variables, without mentioning residual re-
dundancy available for other tasks. This case is highly unusual, and primary of theoretical
interest. The second case can be denoted as N ≥ M . In this case, besides the required task
variables, there will be some additional redundancy left to satisfy certain criteria. For the
third case, mini∈[1,m]mi ≤ N < M , the available DOR will not suffice to accomplish all the
tasks concurrently, although the manipulator may contain some redundancy with reference
to one single task.

As aforementioned the third case, if it is impossible to accomplish all the tasks com-
pletely, since the shortage of DOF, then it would be reasonable to perform the most sig-
nificant task preferentially and the less significant tasks as much as possible using the re-
maining DOR. Different tasks required can be categorized into a list of subtasks with var-
ious level of significance, and this was firstly defined as tasks with the order of priority
in Nakamura et al. (1987). Even for a 6 DOF manipulator, the subtasks decomposition be-
tween position and orientation is highly favourable. It will enlarge the workspace of the
primary subtask by allowing incompleteness for the second subtask. Redundancy analy-
sis and application based on the concept of task priority will be discussed in the following
section.

4.1.2. General Solution for Inverse Kinematics

Let θ̇ = (θ̇1,⋯ , θ̇n)T ∈ Rn×1 and ẋ = (ẋ1,⋯ , ẋm)T ∈ RM×1 denote the joint-space and task-space
manipulator, the relationship between these two spaces can be established by using Jacobian
matrix, and hence can be expressed by the following formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

J1θ̇ = ẋ1

J2θ̇ = ẋ2

⋯

Jmθ̇ = ẋm

(4.1)

where Ji ∈ Rmi×n is the Jacobian matrix of the ith manipulator task. If task 1 is chosen as the
primary task, the other tasks will be treated as the secondary tasks. Generally, the primary
task should be ensure to accomplish, and thereby holds the highest priority. Based on the
significance of tasks, total m tasks can thus form a top-down hierarchy. For an arbitrary task
mi, suppose that there are sufficient DOF to perform this task, the solutions can be described
as follows:

θ̇ = J+i ẋi + (En − J
+
i Ji)hi (4.2)

50

4. Kinematic Control of Manipulator

where J+i ∈ R
n×mi is the pseudo-inverse of Ji. (En −J+i Ji) is the null-space of Ji and hi ∈ Rn×1

is an arbitrary vector. If the priority of the tasks is taken into account, in order to fulfil
all the m tasks expressed in equation 4.1, a recursive algorithm can be adopted to solve the
priority based inverse kinematics problem at velocity level. In accordance with equation 4.2,
enabling i = 1 and substituting this equation into the second task ẋ2 gives the solution of h1:

h = J̄+x̄2 + (En − J̄
+
2 J̄2)h2 (4.3)

where J̄2 = J2(En − J+1J1) represents the projection of J2 onto the null-space of J1, x̄2 = ẋ2 −
J2J

+
1
ẋ1 indicates the modification of secondary task due to the existing of the first subtask.

Accordingly, the solution sufficing to coordinate exactly subtask 1 and 2 in joint-space can
be denoted by

θ̇ = J+1 ẋ1 + J̄
+
2
˙̄x2 + (En − J

+
1J1)(En − J̄

+
2 J̄2)h2 (4.4)

Employing equation 4.4, the second subtask will be performed without influencing the
first one. Accordingly, substituting the obtained solutions from upper tasks into the succes-
sive task sequentially, the solution meeting total m subtasks can be represented as follows:

θ̇ = J+1 ẋ1 + J̄
+
2
˙̄x2 + J̄

+
3
˙̄x3 +⋯ + (En − J

+
1J1)(En − J̄

+
mJ̄m)hm (4.5)

The last term En − J̄+mJ̄m in equation 4.5 is the projection matrix with respect to J1,⋯ ,Jm,
which is symmetric and idempotent. A schematic diagram of this algorithm is shown in
Figure 4.1. Equation 4.5 reveals the inverse kinematics solution considering the priority of
subtasks. This solution will be utilized in singularity and collision avoidance as a foundation
in the following sections.

_ = J
+

1
_x1 + (E

n
¡ J

+

1 J1)h1

J1
_ = _x1

h1

Start

Output

J2
_ = _x2

J
m¡1

_ = _x
m¡1

J
m

_ = _x
m

h2

h
m¡1

h
m

_ = J
+

1
_x1 + ¢ ¢ ¢ + (En ¡ (²)+(²))h2

_ = J
+

1
_x1 + ¢ ¢ ¢ + (E

n
¡ (²)+(²))h

m¡1

_ = J
+

1
_x1 + ¢ ¢ ¢ + (En ¡ (²)+(²))hm

Figure 4.1.: Schematic diagram of inverse kinematics based on task priority

4.2. Singularity Avoidance

None consideration about the singularity of Jacobian matrix has been taken in section 4.1.
Singularity appears when the set of joint configuration θ∗ make the Jacobian matrix J(θ∗)

51

4. Kinematic Control of Manipulator

rank-deficient. It occurs not only at the boundary of the workspace, but also in the workspace
of the manipulator. The pseudo-inverse of J(θ∗) cannot be determined at such configura-
tion. Singularity limits the application of inverse kinematics to solve joint velocity near such
configuration, moreover, in the neighbourhood of singularity, even a small velocity change
in task-space requires an enormous joint velocity change in joint-space, which leads to large
tracking error and is also harmful for the structure of manipulator.

As an inherent characteristic of articulated manipulator, singularity is an inevitable is-
sue during the manipulator tracking a path defined in its task-space. In this section, a new
Singular Task Reconstruction method was proposed based on the concept of manipulabil-
ity ellipsoid to solve kinematic and algorithmic singularity problems. The basic idea is
like the geometric method in Jinhyun Kim et al. (2004), Kim et al. (2006), Qiu et al. (2006):
through projecting the desired task onto the direction of manipulability ellipsoid princi-
pal axis when the manipulator approaches its singular configuration, the modified task can
drive the manipulator out of its singularity region, and guarantee path tracking performance
simultaneously. Moreover, this algorithm can be simply extended in the framework of task-
priority based method. Based on a real-time evaluation of singular value and eigenvector,
this method does not require a preliminary knowledge of the singular configuration. The
performance and effectiveness of the proposed singular task reconstruction algorithm are
validated by simulation works. The method illustrated here is also the cornerstone of con-
straint conversion expressed in chapter 5.

4.2.1. Manipulability Ellipsoid

During the mechanical design and task execution of the manipulator, large dexterity is re-
quired for better manipulation. However, when the chosen dexterity approaches 0, the ma-
nipulator has entered into the neighbourhood of the singularity. Various of dexterity mea-
sures have been proposed, such as manipulability measure in Yoshikawa (1984), condition
number in Klein and Blaho (1987), etc. A good review is listed in Klein and Blaho (1987).
Among these measures, the most effective dexterity measure for singularity is the minimum
singular value σm of Jacobian matrix J which can be gained through SVD:

J =UΣVT (4.6)

Σ =

⎡⎢⎢⎢⎢⎢⎣
σ1

⋱ 0m×(n−m)

σm

⎤⎥⎥⎥⎥⎥⎦
(4.7)

where U = [u1,⋯ ,um]T is an m×m real unitary orthogonal matrix, σ1,⋯ , σm are the singular
values of J with the relationship σ1 ≥ σ2 ≥ ⋯ ≥ σm ≥ 0, and VT, the transpose of V =[v1,⋯ ,vn] is an n×n real unitary matrix. The m columns of U and n columns of V are called
left-singular vectors and right-singular vectors of J, respectively.

Since J maps velocities from joint-space to task-space by linear transformation, for the

joint velocity within unit norm ∥θ̇∥2 = θ̇Tθ̇ ≥ 1, refer to Walker (1994) a corresponding ma-
nipulability ellipsoid can be defined in Rm:

ẋe
T(JTJ)−1ẋe ≤ 1 (4.8)

52

4. Kinematic Control of Manipulator

This definition forms an ellipsoid with its semi-axes in the directions of the columns of
U, and the length of the semi-axes are the corresponding singular values in Σ. Figure 4.2
exemplifies the manipulability ellipsoid of a planar manipulator with 3 revolute joints.

YI

§I XI

 1

 2

 3
_xe = J _

_ 1

_ 2

_ 3

u1

¾1

u2

¾2

v1

v2

v3

_ = J
+ _xe

Figure 4.2.: 3 revolute planar manipulator and its manipulability ellipsoid

Along the direction of the major axes of the manipulability ellipsoid, larger end-effector
velocity can be generated, on the contrary, smaller end-effector velocity can be obtained
when along the direction of the minor axes of the manipulability ellipsoid. Therefore, if all
the singular values are nearly equal, which means, the manipulability ellipsoid is almost
a sphere, the end-effector can move isotropically along all the directions of the task-space.
When the minimum value σm is 0, end-effector can not move along the direction of the
minor axes, a singularity occurs at such configuration. Contrarily, when σm moves away
from zero, no attention should be paid for the singularity issue. In the following section, the
minimum singular value σm and it corresponding left-singular vector um will be utilized for
the purpose of singularity avoidance.

4.2.2. Singular Task Reconstruction

From the definition of the manipulability ellipsoid in equation 4.8, it can be seen that a
singularity emerges when σi = 0 along the ith principal axis direction. Generally speaking,
the minimum singular value σm of J has a special significance since it is the only accurate
measure of proximity to a singularity. Physically, σm depicts the ratio of task-space velocity
and joint-space velocity in the direction for which it is hardest to move. The direction is
given by the corresponding output left-singular vector um. Therefore, if we modify the path
along the mth principal axis, one can obtain end-effector’s singularity-free path as follows:

ẋp = ẋe − (ẋe ⋅um)um = (Em −umum
T)ẋe (4.9)

where ẋe ⋅um represents the projection of the given task ẋe along the unit vector um.

Equation 4.9 guarantees that the manipulator leaves the singularity region, but suffers
a big performance loss. In order to improve the performance of singularity avoidance, a
weight factor αv is introduced to equation 4.9:

ẋp = (Em −αvumum
T)ẋe (4.10)

where αv is a turning parameter according to the quantity of the minimum singular value
σm. As shown in Figure 4.3, if σif is a predefined threshold stands for the influence zone and

53

4. Kinematic Control of Manipulator

σuf for the unsafe region, then αv can be defined as follows referring to Maciejewski and Klein
(1985), Zlajpah and Nemec (2002):

αv =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 σm > σif

1

2
(1 + cos(πσm−σuf

σif−σuf
)) σuf < σm ≤ σif

1 σm ≤ σuf

(4.11)

_xp

¾if

¾uf

um

um¡1

¾m

¾min = 0

Desired Path

Reconstructed Path

Singularity

Figure 4.3.: Schematic diagram of singular task reconstruction

When σm initially is smaller than the unsafe threshold, equation 4.10 will not guarantee
an escape from the singular region and will induce large tracking error. In order to overcome
this drawback, we add a third term, a turning parameter αh into equation 4.10:

ẋp = (Em −αvumum
T)ẋe + αhum (4.12)

which causes a repulsive action driving the manipulator out of the neighbourhood of the
singularity. The turning parameter αh can be defined as follows:

αh =
⎧⎪⎪⎨⎪⎪⎩
0 σm > σuf

α0(σuf − σm) σm ≤ σuf

(4.13)

where α0 is the escaping gain for singularity avoidance. In fact, one should only consider the
Singular Task Reconstruction when the scalar product ẋe ⋅ um ≤ 0 and σm ≤ σif . Therefore,
the Singular Task Reconstruction (STR) method can be expressed as follows:

ẋp = (Em −
1 − sgn(ẋe ⋅um)

2
αvumum

T) ẋe + αhum (4.14)

54

4. Kinematic Control of Manipulator

¾m¾uf ¾if

®0

®v

®h

0

1

Figure 4.4.: The functional behaviour of the turning parameters for singularity avoidance

Equation 4.14 reflects a geometrical concept: no matter where the manipulator is initially
in the unsafe zone or approaches to the singularity region, the modified task-space path
will push the system away from the singular region autonomously. Neglecting the null-
space motion, i.e. h = 0, and considering single task case, the inverse kinematic solution in
equation 4.2 becomes:

θ̇ = J+ẋp (4.15)

4.2.3. STR with Multiple Subtasks

In section 4.1.2, we have derived inverse kinematics in velocity level for multiple subtasks
with various task-priorities. Here the application of STR will extend to the inverse kine-
matics taking account of task-priority. First, two subtasks case are considered. Refer to
equation 4.4, when J+

1
can not be determined, i.e. kinematic singularity of the first subtask

occurs, or when J̄2 meets its own singularities, the algorithm singularity issue emerges, it is
absolutely critical to adopt necessary reactions to prevent such singularities from happen-
ing. In this chapter, the STR method will be applied to both subtasks recursively. Then the
kinematic and algorithmic singularities of J1 and J̄2 can be removed autonomously. For us-
ing the STR method, a Singular Value Decomposition (SVD) algorithm is required to obtain
the minimum singular value σm and corresponding left-singular vector um.

As depicted in equation 4.4, neglecting the null-space motion, the joint-space velocity
can be divided into two parts:

θ̇ = θ̇1 + θ̇2 = J+1 ẋ1p + J̄
+
2
˙̄x2p (4.16)

The first subtask ẋ1 is reconstructed as ˙̄x1p by using STR method for singularity avoidance:

J1 =U1Σ1V
T
1 (4.17)

ẋ1p = ẋ1 −
1 − sgn(ẋ1 ⋅um1)

2
αvum1u

T
m1ẋ1 + αhum1 (4.18)

Likewise, the modified second subtask ˙̄x2 can be reconstructed as:

J̄2 = Ū2Σ̄2V̄
T
2 (4.19)

55

4. Kinematic Control of Manipulator

˙̄x2p = ˙̄x2 −
1 − sgn(˙̄x2 ⋅ ūm2)

2
αvūm2ū

T
m2

˙̄x2 + αhūm2 (4.20)

When we extend the STR method to multiple subtasks with task-priority, referring to
equation 4.5, the generalized formulation can be denoted as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ̇ = ∑m
i=0 θ̇i

θ̇i = J̄+i ˙̄xip

J̄i = JiJ
∗
i

J∗i = J
∗
i−1 − J̄

+
i−1J̄i−1

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ̇0 = 0
ẋ0 = 0
J0 = 0
J∗
0
= En

(4.21)

where ˙̄xi = ẋi−Jiθ̇i−1 represents the ith subtask modification with respect to its higher prior-
ity subtasks. When a singularity is detected in J̄i, the STR approach will be executed on the
subtask ˙̄xi, which can be described as follows:

J̄i = ŪiΣ̄iV̄
T
i (4.22)

˙̄xip = ˙̄xi −
1 − sgn(˙̄xi ⋅ ūmi)

2
αvūmiū

T
mi

˙̄xi + αhūmi (4.23)

¹J0 J
¤

1

J
¤

0

J0

¹J1 J
¤

2J1

¹J2 J
¤

3J2

STR TMIK _x1

_¹x1p _¹x1
_ 1

_ 0

STR TMIK _x2

_¹x2p _¹x2
_ 2

¹Jm
EndJm

STR TMIK _xm

_¹xmp
_¹xm

_ m

J
¤

m

_ m¡1

TM: Task Modification

IK: Inverse Kinematics

STR: Singular Task Reconstruction

_

Figure 4.5.: Block scheme of STR for multiple subtasks

Accordingly, in the multiple subtasks cases, all of the singularities, no matter kinematic
or algorithmic, can be handled by applying the STR method recursively. The schematic
block diagram of the STR method for multiple subtasks referring to equation 4.5 is depicted
in Figure 4.5.

56

4. Kinematic Control of Manipulator

4.2.4. Simulation Results

In this section, we demonstrate the effectiveness of our proposed STR method by presenting
some simulation results. A 3 revolute manipulator was adopted in this study for verification
purpose (see Figure 4.6). Two simulation cases were executed considering kinematic and
algorithmic singularities. In order to show the performance of the STR method, widely-used
singularity avoidance approach, i.e. Damped Least-Squares (DLS) method with numerical
filtering is employed for comparison reason.

J+DLS = J+(JJT + λ2umum
T)−1 (4.24)

λ2 =
⎧⎪⎪⎨⎪⎪⎩
0 σm > ǫDLS

(1 − (σm
ǫDLS
)2)λ2

max σm ≤ ǫDLS

(4.25)

where λ is a weighting factor, also referred to as the damping factor, which can be applied
to set the relative importance of the minimum residual criterion versus the norm of the
solution. λmax denotes the maximum value of damping factor λ. ǫDLS is the threshold to
activate the DLS method for singularity avoidance.

o

y

x

 2

l1

l2

l3

rPrimary Task

Secondary Task

workspace

 1

 3

(x0; y0)

Figure 4.6.: 3 revolute planar manipulator and subtasks

In the simulation, the link length in Figure 4.6 is set to l1 = l2 = 0.35 and l3 = 0.26. The
primary task is tracking a circle in x − y plane with center (x0, y0) = (0.70,0.00) and radius
r = 0.30. The simulation sample time is 1 millisecond.

Due to the truncation error accumulation, the inverse kinematic solutions as given in
section 4.1.2 are expected to suffer from typical numerical drift problem when implemented
in discrete time. This drawback can be overcome by replacing the end-effector velocity ẋe

with a feedback correction term as in Siciliano (2009):

ẋc = ẋd +Kike = ẋd +Kik(xd −xe) (4.26)

where Kik ∈ Rn×n is a positive definite (usually diagonal) gain matrix, and e denotes the
task-space error between the desired and the actual end-effector position.

57

4. Kinematic Control of Manipulator

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x(m)

y
(m

)

(a) Task in x−y Plane

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

Time(s)

∆
x
(m

)

(b) Task−Space Error

x error
y error

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(s)

σ
m

(c) Minimum Singular Value

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(s)

θ̇
(r
a
d
/
s)

(d) Joint Velocity

Joint 1
Joint 2
Joint 3

Figure 4.7.: Singularity avoidance with single task by STR method

58

4. Kinematic Control of Manipulator

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x(m)

y
(m

)

(a) Task in x−y Plane

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

Time(s)

∆
x
(m

)

(b) Task−Space Error

x error
y error

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(s)

σ
m

(c) Minimum Singular Value

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

10

Time(s)

θ̇
(r
a
d
/
s)

(d) Joint Velocity

Joint 1
Joint 2
Joint 3

Figure 4.8.: Singularity avoidance with single task by DLS method

The first simulation is with only single task as the primary task depicted in Figure 4.6.
The desired task is to track a circle in its workspace in 10 seconds. Some part of the desired
task are lying outside the workspace, which ultimately results in encountering kinematic
singularity. Simulations with the proposed STR method and DLS method are performed for
comparison purpose.

We choose α0 = 20, σif = 0.05, σuf = 0.02, Kik = diag(100,100) as turning parameters of
the STR method. For DLS approach with numerical filtering, ǫDLS = 0.05 and λmax = 0.1 are
chosen for the best task performance.

Figure 4.7 and Figure 4.8 show the results of tracking one circle in task-space for the
STR and DLS methods, respectively. Obviously, the task-space errors in x and y directions
are almost the same for both methods. However, the DLS method suffers from an over-
shoot problem after the manipulator moves out of the singular region. In addition, the STR
method maintains the minimum singular value of about 0.02 corresponding to the lower
limits of σuf , the DLS method does not possess such an ability. Furthermore, the joint veloc-
ities from the DLS method are about 4 times larger as compared to the STR method when a
singularity occurs. Of course, larger joint velocities are undesirable since they may harm the
structure of the manipulator.

59

4. Kinematic Control of Manipulator

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x(m)

y
(m

)

(a) Task in x−y Plane

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

Joint 1
Joint 2
Joint 3

4 4.5 5 5.5 6
−2

−1.5

−1

−0.5

0

0.5

1

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

Time(s)

∆
x
1
(m

)

(c) Primary Task−Space Error

x error
y error

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(s)

σ
m

(d) Primary Task Minimum Singular Value

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

∆
x
2
(m

)

(e) Secondary Task−Space Error

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Time(s)

σ
m

(f) Secondary Task Minimum Singular Value

Figure 4.9.: Singularity avoidance with two subtasks by STR method

60

4. Kinematic Control of Manipulator

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x(m)

y
(m

)

(a) Task in x−y Plane

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

Joint 1
Joint 2
Joint 3

4 4.5 5 5.5 6
−2

−1.5

−1

−0.5

0

0.5

1

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

Time(s)

∆
x
1
(m

)

(c) Primary Task−Space Error

x error
y error

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(s)

σ
m

(d) Primary Task Minimum Singular Value

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

∆
x
2
(m

)

(e) Secondary Task−Space Error

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Time(s)

σ
m

(f) Secondary Task Minimum Singular Value

Figure 4.10.: Singularity avoidance with two subtasks by DLS method

To verify the performance of the STR method applying in multiple subtasks with task-
priority, a secondary task is introduced as shown in Figure 4.6, while the primary task is still
to track a circle as depicted previously. The secondary task x2 is to keep the orientation of
the end-effector equal to 90 ○. Figure 4.9 and Figure 4.10 show the results of completing two
subtasks in task-space using the STR and DLS methods with control gains K1 = diag(1.5,1.5)
and K2 = 0.5, respectively. One can see that, STR method generates smoother joint velocity
than DLS approach. Moreover, primary task-space error is smaller for STR method, while
the minimum singular value for J1 is maintained about 0.02 as defined beforehand. Since
the conflict between the primary and secondary tasks, both kinematic and algorithmic sin-
gularities emerge, while STR method successfully drives the matrix J̄2 out of the singular

61

4. Kinematic Control of Manipulator

region.

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x(m)

y
(m

)

(a) Task in x−y Plane

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

Joint 1
Joint 2
Joint 3

4 4.5 5 5.5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

Time(s)

∆
x
1
(m

)

(c) Primary Task−Space Error

x error
y error

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(s)

σ
m

(d) Primary Task Minimum Singular Value

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

∆
x
2
(m

)

(e) Secondary Task−Space Error

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Time(s)

σ
m

(f) Secondary Task Minimum Singular Value

Figure 4.11.: Singularity avoidance with two subtasks and higher gain by STR method

62

4. Kinematic Control of Manipulator

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x(m)

y
(m

)

(a) Task in x−y Plane

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

40

50

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

Joint 1
Joint 2
Joint 3

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

Time(s)

∆
x
1
(m

)

(c) Primary Task−Space Error

x error
y error

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(s)

σ
m

(d) Primary Task Minimum Singular Value

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

∆
x
2
(m

)

(e) Secondary Task−Space Error

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Time(s)

σ
m

(f) Secondary Task Minimum Singular Value

Figure 4.12.: Singularity avoidance with two subtasks and higher gain by DLS method

In order to test the robustness of the proposed STR method, another simulation is con-
ducted with the same turning parameters as above while only the control gains K1 = diag(4,4)
and K2 = 0.5 are reassigned for primary task and secondary task, respectively. The results
are shown in Figure 4.11 and Figure 4.12 for the STR method and DLS method, respectively.
A larger control gain speeds the task-space error convergence up and decreases the task-
space error concurrently. One can see that, the STR method still possesses the advantages
of smoother joint velocity, maintaining minimum singular value of primary and secondary
tasks as preplanned. On the other hand, for the DLS method, an oscillation appears when
kinematic and algorithmic singularities happen simultaneously, where the minimum singu-
lar value of J̄2 varies drastically and the primary task-space error increases accordingly. The

63

4. Kinematic Control of Manipulator

rapid fluctuation in joint velocity requires huge joint acceleration to accomplish such task
which is highly unwelcome in a real-world situation. This simulation reveals the robustness
of the STR method while the DLS method is more sensitive to the control gains.

From the simulation results on single task and two subtasks with task-priorities, the
effectiveness and robustness of the STR method are demonstrated through simulation stud-
ies. When the manipulator is in the neighbourhood of a singularity, the selected minimum
singular value and its corresponding left singular vector guarantee the effectiveness and
robustness of the proposed STR method.

4.3. Obstacle Detection and Avoidance

In order to perform various missions effectively, the motion control of robotic manipulators
in the presence of workspace obstacles has been a prime concern over the past few decades.
The existed solution to this problem, termed as collision avoidance, is normally considered
as a planning problem can be roughly categorized into the two classes of global and local
planning methods. As was described in section 2.3.3, global planning methods try to search
an optimal collision-free motion for the robots which generates a safe path between initial
and goal configuration in the free configuration space. Its computational cost is expensive
and grows dramatically as the number of manipulator’s joints increase. Moreover, global
methods are only suitable for structural and static environments which aren’t the case for
general space missions. The un-modelled and moving obstacles call for the on-line planning
and control which entails local planning strategy as a main research topic. In this section, we
propose a new collision avoidance strategy with two control points to suppress the possible
fluctuation problems induced by the control point switch. Two control points are chosen to
prevent collision between the manipulator and the obstacles and vibration issues.

4.3.1. Collision Detection

Before a collision avoidance strategy taking effect, what matters most is how to detect the
moving obstacles nearby. Normally, object detection algorithms involve 3 dimensional space
modelling problem and can be classified into two categories of Bounding Volume Hierarchy
(BVH) and space decomposition algorithms as illustrated in Ericson (2005). Both two algo-
rithms use the hierarchical structure to reduce the number of intersection tests of the geo-
metrical elements and enhance the on-line computational efficiency. Comparing space de-
composition algorithm with BVH algorithm, the former one needs more memory to restore
and less flexibility which often applied in the sparse environment with equally distributed
objects, while BVH method, which is applicable to use in the complex environment to calcu-
late the possible collision, has gained a wide spectrum of attention both in academic research
or industrial application. Before we go into the detection algorithm in detail, let us first recall
the definition of the strictly convex objects and Voronoi region.

Strictly convex objects. LetO represent a closed subset of R3 and X(O) be the interior of
(greater open subset of) O. O is strictly convex if and only if λA + (1 − λ)B ∈ X(O), ∀A ∈ O,
∀B ∈ O and 0 < λ < 1.

64

4. Kinematic Control of Manipulator

Voronoi region VR(Y) for feather Y . A Voronoi region associated with a feather Y is a
set of points that are closer to Y than any other feather.

Strictly convex for an object is a strong condition and hardly always keeps true. For ex-
ample, a convex polyhedron is not strictly convex, since the linkage of two points on one
facet is not inside of the X(O). Normally, in the detection algorithm, only the minimum
distance and corresponding control point are calculated for collision avoidance. This is ad-
equate for strictly convex objects, however, not enough for the general objects, since in the
physical environment, most of the objects can not be regarded as the strictly convex objects.
Traditionally, only sphere, ellipsoid, etc. are strictly convex. The existence of none strictly
convex objects makes the control point on object move not in a continuous way. If this
happens frequently, a vibration will appear since the switch of the control point. A simple
example about this phenomenon is introduced in Kanehiro et al..

In order to overcome this drawback, in literature Kanoun et al. (2009) the authors have
employed multiple velocity damper constraints to suppress the possible robot arm vibra-
tion during its motion with obstacles in the workspace. However, this method requires an
extensive computational cost for constraints processing. In this chapter, we developed a
lightweight collision detection and avoidance algorithm referring to our daily life. Consid-
ering one people wants to take a dish out of a cabinet, when he puts his arm in the cabinet,
he not only concerns the nearest point between his arm and cabinet, but also controls the
other point’s motion which is also on his arm. If both two points are out of collision, he does
not care about the other part of his arm between this two points, because he is very sure
that non collision will happen once the two different control points on his arm are without
touching the cabinet. Therefore, before we develop our own collision avoidance strategy, an
obstacle detection algorithm whose outputs are the two control points of minimum distance
and so-called Maximum Projection Distance (MPD), should be firstly developed. Here we
will first describe the detection algorithm between two line segments and then expand its
application into more complex circumstances.

Figure 4.13 listed the possible relationship between two line segments. The line segment
consists of one edge E and two vertices V i(i = 1,2), 3 dimensional space around the line seg-
ment can be divided into 3 Voronoi regions. A moving edge can be in each of the Voronoi
regions, or lie in more than one Voronoi region at the same time. Consequently, the mov-
ing edge has to be separated into several line segments by clipping function VR clip. The
pseudo code of detection algorithm between two line segments is shown in Table 4.1.

V1
V2

E0

E
E

E

Figure 4.13.: The relationship of two line segments

65

4. Kinematic Control of Manipulator

The detection algorithm between two line segments is the foundation to devise further
complex detection algorithms. When the obstacle is not a strictly convex object, it can be
treated as a polyhedron composed of a set of basic facets like triangles. Figure 4.14 displays
the relationship of a moving edge and a triangle. One can see that, the 3 dimensional space
is divided into 7 Voronoi regions by the triangle. If the moving edge lies in the separate
Voronoi region, one can calculate the two control points with different functions. When it
lies in more than one Voronoi region, a clipping algorithm VR clip has to be employed be-
forehand to search for the two control points. The detection algorithm between line segment
and triangle is listed in Table 4.1.

F

E1

V1

E2

V2

E3

V3

E

E

E

Figure 4.14.: The relationship between line segment and triangle

Table 4.1.: Collision detection algorithms

fun lineseg lineseg fun lineseg triangle

Input: E ,E0 Input: E ,T
Output: control pair (P1, P2) Output: control pair (P1, P2)
pair = ∅, p tmp = ∅;
for X ∈ {V1,V2,E0}
Z = VR clip(X ,E)
If Z ∈ {V1,V2} do

p tmp = p tmp ∪ fun point edge(Z,E)
else

p tmp = p tmp ∪ fun edge edge(Z,E)
end
pair = min max(p tmp)

end

pair = ∅, p tmp = ∅;
for X ∈ {V1,V2,V3,E1,E2,E3,F}
Z = VR clip(X ,E)
If Z ∈ {V1,V2,V3} do

p tmp = p tmp ∪ fun point edge(Z,E)
elseif Z ∈ {E1,E2,E3} do

p tmp = p tmp ∪ fun edge edge(Z,E)
else

p tmp = p tmp ∪ fun face edge(Z,E)
end
pair = min max(p tmp)

end

66

4. Kinematic Control of Manipulator

Once the fundamental detection algorithms are developed, for no strictly convex poly-
hedron, its interaction detection can be implemented by decomposing the polyhedron into
a set of triangular faces with a hierarchical structure such as Oriented Bounding Box (OBB)-
Tree. Then the algorithm proposed here can be used to calculate the two control points on
different polyhedra. The algorithms will also be employed in section 5.3.2 as part of passive
constraints integrated into Nonlinear Model Predictive Control (NMPC).

4.3.2. Collision Avoidance Strategy

As shown in Figure 4.15, let P and O represent robotic links and obstacles, respectively, and
the pair (P1, P

′
1
) and (P2, P

′
2
) denotes the two control points regarding to the closest distance

and MPD between P2 andO1. The collision avoidance strategy is to assign the control points
P1 and P2 on the manipulator a motion component that moves the manipulator away from
the obstacles. As depicted in Figure 4.15, the avoidance strategy is carried out only when
the control points come into the neighbourhood of the obstacles. Here an influence distance
dif is defined to represent the range of activating avoidance strategy. From another aspect,
the collision avoidance strategy should have minimum impact on the primary end-effector
task. Since it is supposed that the manipulator is working in un-constructed and dynamic
environment with obstacles, it is necessary to have some sensors used to detect the possible
obstacles and implement the trajectory planning on-line.

end--effector

O1

n1

P1

P2

n2

O

O2

P1

P2

P 0

1

P 0

2

Figure 4.15.: Collision avoidance with two control points

We first consider one control point case. Refer to Maciejewski and Klein (1985), the pri-
mary task of end-effector ẋe and the secondary task of obstacle avoidance ẋo can be de-
scribed by the following equations:

⎧⎪⎪⎨⎪⎪⎩
ẋe = Jeθ̇

ẋo = Joθ̇
(4.27)

A common solution about multiple subtasks when task-priority is considered can be found
in section 4.1.2. Here, a solution to meet both goals can be depicted as follows without

67

4. Kinematic Control of Manipulator

considering the null-space motion h = 0:

θ̇ = J+e ẋe + J̄
+
o(ẋo − JoJ

+
e ẋd) (4.28)

where J̄o = Jo(En − J+eJe) is the projection of matrix J̄o on the null-space of Je. Each term
in the proceeding equation has an simple interpretation. The first term J+e ẋe guarantees the
implementation of the primary task (normally, ẋc = ẋd +K(xd − xe) is employed instead of
ẋe for tracking stability reasons). The second term, which is projected on the null-space of
the end-effector’s Jacobian matrix, depicts the motion of the control point without influenc-
ing the motion of the end-effector. The term JoJ

+
e ẋd describes the motion of control point

induced by the end-effector motion, and the matrix J̄o which combines the null-space of
the end-effector and the control point, is utilized to transform the assigned velocity of the
control point from operational-space to the joint-space.

Considering the Cartesian space, if we want to activate the collision avoidance strategy
and assign a velocity to the control point, then ẋo should be a 3 dimensional vector, which
means Jo ∈ R3×n. This will require 3 additional DOR to complete the avoidance in a 3 dimen-
sional Cartesian space. Nevertheless, not every manipulator has 3 DOR for the purpose of
collision avoidance. This issue can be resolved by the geometric projection method as intro-
duced in Zlajpah and Nemec (2002). In fact, the obstacle avoidance strategy only requires to
control the escape velocity in the direction of the line connecting the control point with the
correspondent point on the obstacle, this is just one dimensional constraint and one DOR
would be sufficient to avoid the possible collision. The derivative of the distance ∥P1P

′
1
∥ can

be denoted by the following equation if the obstacle is steady:

ḋ1 = ⟨Joθ̇,n1⟩ = ⟨θ̇,nT
1Jo⟩ (4.29)

n1 is the unit vector
P1P

′

1

∥P1P
′

1
∥ and notation ⟨u,v⟩ refers to the inner product of vector u and

v. Now we use Jd = nT
1
Jo as a new Jacobian matrix to replace Jo in equation 4.28, then

velocity ẋo and nT
1
JoJ

+
e ẋd become scalar. Consequently, the calculating of Moore-Penrose

pseudo-inverse of nT
1
J̄o is much faster since now it can be expressed as follows:

(nT
1 J̄o)+ = J̄T

on1(nT
1 J̄oJ̄

T
on1)−1 (4.30)

There is no need to inverse any matrix in computing the pseudo-inverse of nT
1
J̄o since

nT
1
J̄oJ̄

T
on1 is scalar. This of course saves a lot of computation effort in the trajectory plan-

ning. Recall the equation 4.28, the new inverse kinematic solution to complete primary task
and collision avoidance can be expressed by:

θ̇ = J+e ẋe + (nT
1 J̄o)+(ẋo −n

T
1JoJ

+
e ẋd) (4.31)

A hidden issue of above solution is the possible singularity where the Jacobian matrix Je or
nT

1
J̄o lose its rank. When a singularity happens, the joint velocity will go to infinity which

is not welcome. This problem can be tackled by employing the DLS method or the STR
method developed in section 4.2.2.

In above analysis, only the nearest point between link and obstacle is taken into account,
the switch between the control points results in bounce at some configurations when two
objects are not strictly convex. However, we do not want to treat the control point P2 as
the third subtask. This is because normally for the simplicity and economical reasons, not
so many DOR are available in a redundant manipulator. Hence, a better way would be,

68

4. Kinematic Control of Manipulator

choosing a new control point P0 on the manipulator which combines the information of the
two control points P1 and P2 for the purpose of collision avoidance. Furthermore, the new
control point P0 should be moved on the manipulator continuously. It can be calculated as
follows:

P0 =
dif − d1

2dif − d1 − d2
P1 +

dif − d2
2dif − d1 − d2

P2 (4.32)

where d1 = ∥P1P
′
1
∥ and d2 = ∥P2P

′
2
∥ are the distance between P1 and obstacle, P2 and obstacle,

respectively. The corresponding unit vector n0 for escaping from the obstacles is equal to n1

while the control point P1 is more critical. The desired critical point velocity ẋo = αcvo, vo is
the assigned nominal velocity and αc is the obstacle avoidance gain which depends on the
critical distance to the obstacles:

αc =
⎧⎪⎪⎨⎪⎪⎩
(dsr

d1
)2 − 1 d1 < dsr

0 d1 ≥ dsr
(4.33)

dsr defines another critical distance named security distance. If the manipulator is too close
to the obstacles d1 ≤ duf , the primary task ẋe should be cancelled which is controlled by
turning parameter αe. The unsafe distance duf can be a predefined quantity or be yielded
according to the dynamic properties of the manipulator.

For smoother motion, the magnitude of ẋo should be 0 at dsr. Then the solution for the
inverse kinematics in conjunction with obstacles avoidance can be expressed as:

θ̇ = αeJ
+
e ẋe +αd (Jd(En − J

+
eJe))+ (αcvo − JdJ

+
e ẋd) (4.34)

The turning parameter αd can be defined as follows:

αd =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 d1 ≥ dif
1

2
(1 + cos(π d1−dsr

dif−dsr
)) dif ≤ d1 < dsr

1 d1 ≤ dsr

(4.35)

The functional behaviour of turning parameters αc, αd and αe is shown in Figure 4.16.

dduf dif

®c

dsr

®d®e

0

1

Figure 4.16.: The functional behaviour of the turning parameters for collision avoidance

From equation 4.34 and Figure 4.16, one can see that, after the control point P1 enters into
the influence zone, i.e. d1 < dif , the avoidance strategy begins to influence the configuration

69

4. Kinematic Control of Manipulator

of the manipulator. However, only part of the homogeneous solution is included. As the
distance between control point and the obstacles decreases, more homogeneous solution is
exerted which diminishes the relative velocity between control point and the obstacles from
dif to dsr. Once the control point is in the range of the dsr, a bounce velocity ẋo is assigned
and the complete homogeneous solution is included. This avoidance strategy will assure
the control point move out of the dangerous zone and guarantee the smooth transition even
when the control point P1 switches during the motion of the manipulator. Equation 4.34
is designed for a single obstacle, when there are more than one obstacle in the workspace,
since the shortage of DOR, one can not treat different obstacles as multiple subtasks. If the
equation 4.34 is still in use without modification, the frequent switching of the control points
on the manipulator will also result in oscillation in joint velocities. This discontinuity of joint
velocity is highly unwelcome since it maybe harmful for the structure and actuators of the
manipulator. To improve the performance, a weighted sum of the homogeneous solution
considering all the obstacles in the influence zone can be expressed by:

θ̇ = αeJ
+
e ẋe +

no

∑
i=1

wiαdi (Jdi(En − J
+
eJe))+ (αcivo − JdiJ

+
e ẋd) (4.36)

no is the number of the obstacles in the influence zone, the weighting factor wi can be defined
as:

wi =
dif − d1i

∑no

i=1(dif − d1i) (4.37)

The definition of weighting factor wi shows the relative significance of the different obstacles
in the influence zone. When one obstacle is much closer than the others, i.e. d1i → 0, then
its corresponding weight factor increases and the velocity at that control point ramps up as
well.

4.3.3. Simulation Results

To verify the effectiveness and performance of the proposed method in this chapter, simu-
lation results are presented by using a 10 revolute planar manipulator. The primary task is
to move the end-effector across a corridor. A schematic diagram of the simulation is illus-
trated in Figure 4.17. The widely used collision avoidance method in Zlajpah and Nemec
(2002) is employed here with same turning parameters for comparison reason. For the sim-
ulation of our proposed collision avoidance method, the link length in Figure 4.17 is set to
l1 = l2 = ⋯ = l10 = 0.1m. The kinematic control gain K = diag(50,50). The desired end-
effector trajectory is xd = [0.2266,0.2539 + 0.11t]T during 5 seconds and the motion of the
manipulator has been constrained by two obstacles. The simulation sample time is set to 10
milliseconds.

70

4. Kinematic Control of Manipulator

O

y

x

Obstacle 2Obstacle 1

Primary Task

l1

l2

l3

l10

l7

l6

l5l4

l8

l9

Figure 4.17.: 10 revolute planar manipulator and obstacles

The parameters of dif , dsr, duf are set to 0.1m, 0.05m and 0.02m. The assigned nominal
velocity is vo = 5m/s. The results of path tracking without control point, with one control
point and with two control points are shown in Figure 4.18, Figure 4.19 and Figure 4.20,
respectively. One can see that, when no collision avoidance strategy is applied, some links
will collide with the second obstacle when the manipulator tracking the desired path. If one
or two control points are considered, the manipulator can autonomously avoid the possible
collision during its motion. The task-space tracking error with one control point, two control
points and without control point are equally the same, which means, the successful collision
avoidance strategy will not affect the primary task since it is completed in the null-space of
the primary task’s Jacobian matrix. No matter one control point or two, the minimum dis-
tance between different links and obstacles reveals the effectiveness of the avoidance strate-
gies. The minimum distance between links and obstacles is constrained without moving
into the predefined security zone dsr. The main difference between the traditional collision
avoidance method and the proposed method lies in the generation of joint velocity. One
can see that, at 3.73s, 4.56s and 4.80s, the joint velocity endures a sharp change because of
the control point switch. This discontinuity will result in large jerk in the acceleration level
which is highly unexpected. While with the proposed method, in virtue of the autonomous
regulation of control points, smoother joint velocities are generated without discontinuity.
The proposed algorithm also provides us an intuitive way to understand and can be ex-
panded to further application. The idea of regulating two control points will be adopted in
section 5.3.2.

71

4. Kinematic Control of Manipulator

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x(m)

y
(m

)

(a) Task in x−y Plane

0 1 2 3 4 5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

0 1 2 3 4 5
−1

0

1

2

3

4

5

6

7
x 10

−4

Time(s)

∆
x
(m

)

(c) Task−Space Error

x error
y error

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time(s)

d
m
in
(m

)

(d) Minimum Distance

Figure 4.18.: Path tracking without collision avoidance

72

4. Kinematic Control of Manipulator

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x(m)

y
(m

)

(a) Task in x−y Plane

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

0 1 2 3 4 5
−1

0

1

2

3

4

5

6

7
x 10

−4

Time(s)

∆
x
(m

)

(c) Task−Space Error

x error
y error

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time(s)

d
m
in
(m

)

(d) Minimum Distance

Figure 4.19.: Path tracking with one control point for collision avoidance

73

4. Kinematic Control of Manipulator

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x(m)

y
(m

)

(a) Task in x−y Plane

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

0 1 2 3 4 5
−1

0

1

2

3

4

5

6

7
x 10

−4

Time(s)

∆
x
(m

)

(c) Task−Space Error

x error
y error

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time(s)

d
m
in
(m

)

(d) Minimum Distance

Figure 4.20.: Path tracking with two control points for collision avoidance

4.4. Summary

Two primary issues concerning for robotic manipulator have been resolved in this chap-
ter based on the concept of task-priority and the pseudo-inverse redundancy resolution. A
general recursive algorithm of inverse kinematics for multiple subtasks with different task-
priorities is first presented and analysed. In view of the general inverse kinematics solution,
singularity avoidance and collision avoidance are illustrated in this chapter and can be con-
cluded as follows:

• The loss of independent DOF at singular position is an inherent property of articulated
manipulators. A so-called Singular Task Reconstruction (STR) method based on the
concept of velocity manipulability ellipsoid has been designed and applied for task-
space path tracking. With the proposed STR method, less overshoot, more predictable
minimum singular value and smaller & smoother joint velocities are achieved as com-
pared to the typical Damped Least-Squares (DLS) approach. The simulation studies
show significant improvements in single task or multiple subtasks with kinematic and
algorithm singularities. With the intuitive geometric interpretation of manipulability
ellipsoid, as a generalized and robust method, the STR method can be easily applied
to non-redundant and redundant manipulators with different types of singularities.

74

4. Kinematic Control of Manipulator

• An inevitable issue during motion of space manipulator in its workspace is collision
avoidance. Conventional methods have the demerits of oscillation of the manipulator
due to the switch of the control point on the manipulator when the objects can not
be treated as the strictly convex objects. An extra control point corresponding to the
Maximum Projection Distance (MPD) together with the nearest point of the minimum
distance is employed to suppress the possible fluctuation of the manipulator. The in-
teraction test between line segment and line segment, rectangle, circle is implemented
to provide the fully information of the two control points. An avoidance strategy is
derived based on the general inverse kinematics solution using the two control points
and the geometrical projection method. The new obstacle detection and avoidance
strategy does not require too many DOR to complete the collision avoidance, even
only 1 DOR can handle the collision avoidance problem with multiple obstacles. Sim-
ulation results demonstrate the performance of the proposed method when compared
to the traditional collision avoidance algorithm.

75

5. Model Predictive Control

Authority in science exists to be questioned, since heresy is the spring from which new
ideas flow.

—John C. Polanyi

This chapter investigates the application of Nonlinear Model Predictive Control (NMPC)
to space manipulators in capturing an un-cooperative target satellite in space. How to con-
trol the motion of space manipulator with high accuracy and various constraints is a sig-
nificant guarantee for the completion of the demanded space tasks. The fundamental idea
and mathematical formulation of MPC is firstly introduced. In order to apply MPC to space
robot, a feedback linearisation procedure is conducted to transform the non-linear system
into a linear one. In addition, how to handle the different types of constraints in controller
design is another primary concern. The constraints appear in practice imposed on deci-
sion variables are categorized into three classes: physical/security constraints, operational
constraints and passive constraints. These constraints, together with varied priorities, con-
stitute a new Quadratic Programming (QP) searching algorithm. A recursive state estima-
tor regarding the minimum variance states estimation from Kalman Filter (KF) is derived.
The controller has been implemented for a 7 DOF kinematically redundant manipulator in-
stalled on a 6 DOF free-floating satellite via simulation studies considering singularity and
obstacles in the workspace of the space manipulator. Real-time end-effector approaching to
target, path tracking and capturing target, particularly verify the effectiveness and prospect
of the proposed NMPC strategy for space robot.

5.1. Model Predictive Control

MPC refers to a wide spread class of control strategies that apply an explicit model to
predict the response of a plant. Originated from 1970s, MPC, also referred to RHC, has
been widely employed in the field of chemical processing industries as an effective con-
trol strategy to deal with multi-variable constrained control problems. The interests in
MPC and RHC started to surge only in the 1980s after exposition of the first papers on ID-
COM Richalet et al. (1978) and DMC Cutler and Ramaker (1980), and the first comprehen-
sive publication of GPC Clarke et al. (1987a,b). In the past two decades, various formula-
tions about MPC have been developed for linear and non-linear systems Morari and H. Lee
(1999), Qin and Badgwell (2003), that found successful applications especially in process in-
dustries Camacho and Bordons (2004), Maciejowski (2002).

77

5. Model Predictive Control

5.1.1. Principle and Formulation

The fundamental principal of the MPC is fairly similar as our human interaction with the
external environment. A prediction over finite horizon is always performed in our brains
based on our knowledge about the environment, i.e. modelling of our environment, to-
gether with the real-time perception of the environment. An on-line open-loop optimization
procedure employing the current (estimated) state as a new start point is conducted consid-
ering various constraints, such as our motion ability, without collision, etc. Subsequently, a
decision will be made by our brains to determine an optimal solution of current situation.
These procedures are performed all the time when we have some interactions with the oth-
ers and the external environments. This predication-optimization-action pattern is also the
cornerstone of the MPC strategy. A schematic diagram of the fundamental principle of the
MPC can be depicted in Figure 5.1.

u

x

t t + ± t + Nc t + Np

Closed-loop

state

Closed-loop

input

Predicted state x̂

Open-loop input û

Past Future

Control horizon

Prediction horizon

Reference r

Figure 5.1.: Schematic diagram of MPC fundamental principle

As illustrated before, the fundamental idea of MPC is using a prediction model and nu-
merical optimization methods on-line to obtain a sequence of control inputs that minimizes
a pre-defined cost function over a finite time horizon, while subjects to certain constraints
concurrently. Choosing moment t as a start point to analyse, at instant t, concerning new
obtained measurements and the current system states estimated by the additional designed
observer, the controller begins to predict the future dynamic behaviour of the system over
a prediction horizon Np, next, the optimal input over a control horizon Nc (Nc ≤ Np) is de-
termined through optimizing a pre-determined open-loop cost function Γ. If there are no
disturbance and no model mismatch, when Np goes into infinite, a global optimal solution
about control input will be generated. Then one can apply the control input sequence gen-
erated at t = 0 to the system and obtain an optimal performance. However, this is only an
nominal case used to analyse which is hardly happen in practice. The external disturbances,

78

5. Model Predictive Control

inaccuracy in modelling/identification will always exist in a real system which aggravate
the difficulty of controller design.

Due to the external/internal disturbance and model-plant mismatch,the dynamic be-
haviour of the system prediction will differ from the true system. In order to incorporate
feedback mechanism, only the first control input obtained through open-loop optimization
will be adopted until the next measurement becomes available. When a new measurement is
obtained at the time t+δ. Such procedure: measurement-estimation-prediction-optimization
will be repeated to search for the new optimal control input sequence in a “receding horizon
”manner. Another aspect should be pay attention is the control input. In above analysis,
the control input will be generated through an on-line optimization expressed in arbitrary
function, one can also employ some basic functions to represent the control input as people
in the Fourier transformation does. In Wang (op. 2009) Laguerre function is used as the ba-
sic function to construct the control input series. The basic NMPC control loop is shown in
Figure 5.2.

NMPC

System Model

Receding Optimization

Cost Function Constraints

u
Plant

State Estimator
x̂

yr

Figure 5.2.: Basic NMPC control loop

The response and output of a continuous time system with multiple states can be de-
scribed by non-linear differential equations in a vector form:

⎧⎪⎪⎨⎪⎪⎩
ẋ = fc(x) + gc(x)u
y = hc(x,u) (5.1)

Continuous time system can be used to analyse while in simulation, a discrete time system
has to be employed which can be depicted as follows:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = fd(x(k)) + gd(x(k))u(k)
y(k + 1) = hd(x(k + 1),u(k + 1)) (5.2)

Normally, system outputs and control input can not have infinite value, they must yield
some boundary constraints where u(t) ∈ U and y(t) ∈ Y . In addition, when a system is
operating in an environment, especially for a mechanical system, how to avoid the possible
obstacles in workspace could constitute another class of constraints. Considering all these
constraints, the general NMPC algorithm can be described from a theoretical point of view:

79

5. Model Predictive Control

u = arg
u
min Γ(k)

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k∣k) = x(k)
u(k + j∣k) = u(k +Nc∣k), j ≥ Nc

x(k + j + 1∣k) = fd(x(k + j∣k),u(k + j∣k))
y(k + j∣k) = hd(x(k + j∣k),u(k + j∣k))
ymin ≤ y(k + j∣k) ≤ ymax

umin ≤ u(k + j∣k) ≤ umax

g(x(k + j∣k)) ≤ 0

(5.3)

where j ∈ [0,Np − 1]. x, y and u represent system states, outputs and control inputs, respec-
tively. The notation a(i∣j) describes the value of vector a at the instant i predicted at the
instant j(j < i). The two functions, fd(x(k + j∣k),u(k + j∣k)) and hd(x(k + j∣k),u(k + j∣k))
stand for the discrete prediction model and measurement model, while the control input u
and system output y yield to their corresponding lower and upper bound. The inequality
equation g(x(k + j∣k)) ≤ 0 represents additional constraints, such as security constraints,
terminal constraints, etc. The cost function Γ(k) is a scalar function which is usually deter-
mined in terms of the control effort and the derivation between the predictive and the de-
sired outputs. The optimization procedure must be solved at each sampling time k to obtain
a sequence of optimal control inputs as {u∗(k + 1∣k),⋯,u∗(k +Nc∣k)}. When different con-
straints are taken into account during optimization, a QP procedure, as will be presented in
section 5.4 must be employed to gain the optimal control inputs. When the optimal solution
u∗(k) to the optimization issue described in equation 5.3 exists, the open-loop optimization
will be proceeded at each sampling instant, the the nominal closed-loop system employing
the optimal control input can be described by:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = fd(x(k)) + gd(x(k))u∗(k)
y(k + 1) = hd(x(k + 1),u∗(k + 1)) (5.4)

5.1.2. MPC Properties

In Mayne et al. (2000), the relationship between MPC and traditional optimal control is il-
lustrated. It shows, MPC essentially solves the standard optimal control issue in a finite
horizon. The main difference between MPC and other controllers is, MPC determines the
optimal solution on-line for the current plant, rather than solve the control law off-line.
When an open-loop prediction horizon is used, the trajectory of the input and output of
the closed-loop system will differ from the predicted trajectories, even there are no distur-
bance and model mismatch. This is because the plant dynamics behaviour is predicted at
the current sampling instant only for a certain time interval. The phenomenon is described
in Figure 5.3 where the shade area is the feasible region defined by the constraints.

80

5. Model Predictive Control

x1

x2

x(0) = x̂(0)
x(0 + k) = x̂(k)

x̂(0 + Np)

x̂(k + Np)

Figure 5.3.: The mismatch between open-loop prediction and closed-loop behaviour

The key difference of MPC and standard controller design makes MPC possesses a series
of properties:

• An explicit non-linear model is required in NMPC for prediction;

• Various constraints such as input, output, collision, etc can be integrated into NMPC;

• A specialized cost function can be predisposed and optimized on-line in NMPC;

• An on-line optimization of the open-loop control issue is necessary for the application
of NMPC;

• An open-loop prediction in NMPC differs from the closed-loop behaviour.

The characteristics of NMPC show us its advantages in industrial applications, such as
the ability of constraints handling, multi-variable controller design and on-line optimiza-
tion. However, on the other side, it also imports two consequences: the first one is the per-
formance objective function to be minimized on-line over finite horizon does not guarantee
the optimal solution of closed-loop system behaviour; the second problem is the closed-
loop system maybe un-stable because of the difference between finite horizon prediction
and closed-loop behaviour.

5.2. NMPC Applied to Space Robot

As illustrated in section 2.3, the application of NMPC in the field of space robotics is re-
ally rare. In Hirzinger et al. (1989), Inaba and Oda (2000), Oda et al. (1996), the prediction
information was employed to assist the operators to complete the tele-operation without
involving the control loop. In this chapter, NMPC will be applied to a free-floating space
robot trying to capture a tumbling target satellite as shown in Figure 5.4.

81

5. Model Predictive Control

§I : inertia frame

§0 : base frame

§e : end-e®ector frame

CM : Center of Mass

XI

YI

ZI

X0 Y0

Z0

Xe Ye

Ze

System CM

rC0

re

rC2
J1

J2

J3

Jn

Base CM

b0 ½0

b2

bn

a1

a2

an

½n

rCS

§I

§e

§0

b1
Target

Servicer

Figure 5.4.: Schematic diagram of space robot

5.2.1. Free-Floating Space Robot

The dynamics of space robot with general structure is introduced in chapter 3 and expressed
by equation 3.17. Before a contact between servicer and target occurs, there is no external
forces applied on the end-effector, i.e. f e = 0. If no actuators are activated to regulate
the servicer satellite position and attitude, f b = 0, the whole space robot system (base and
manipulator) is under the free-floating mode. The motion of the manipulator and the base
is intricately coupled and governed by the law of momentum conservation. Let l0 ∈ R6×1 be
the initial momentum of the system with respect to the inertial frame, it can be expressed
by:

l0 =Hbẋb +Hbmθ̇ = 0 (5.5)

By substituting equation 5.5 into the kinematic mapping of the end-effector ẋe = Jbẋb + Jeθ̇,
the velocity of the end-effector can be given as follows:

ẋe = Jgθ̇ = Jeθ̇ − JbH
−1
b Hbmθ̇ (5.6)

where Jg ∈ R6×n is termed the Generalized Jacobian Matrix (GJM) in Umetani and Yoshida
(1989), Yoshida (1997). The dynamics formulation of free-floating space robot can be de-
scribed by:

τ =H(θ)θ̈ + c(θ, θ̇) (5.7)

where H(θ) = Hm −H
T
bmH

−1
b Hbm ∈ Rn×n and c(θ, θ̇) = cm −HT

bmH
−1
b cb ∈ Rn×1 are the general-

ized inertia matrix and the non-linear force and torque vector for free-floating space robot,
respectively.

5.2.2. Feedback Linearization

Continuous or discrete non-linear model expressed in equation 5.1 and 5.2 can be employed
to predict the future behaviour of the plant, however, it is still hard to integrate this non-
linear model for NMPC design. A feedback linearisation procedure is conducted through

82

5. Model Predictive Control

non-linear coordinate transform and non-linear state feedback to obtain a local linear model.
Consider the continuous time state-space model expressed in equation 5.1, using Taylor
expansion at the point (x0,u0,y0), a so-called Jacobian linearisation method can be obtained:

⎧⎪⎪⎨⎪⎪⎩
ẋ = (∂fc(x0)

∂x
+ ∂gc(x0)

∂x
u0) (x −x0) + gc(x0)(u −u0)

y − y0 =
∂hc(x0)

∂x
(x −x0) (5.8)

One should note that Jacobian method is an exact approximation of the non-linear model
at (x0,u0), however, a control law based on the Jacobian model at such point may yield
degraded performance and robustness problems at other points.

Feedback linearisation provides us a powerful technical tool to convert the original non-
linear model to an exact linear one over a large set of operation conditions. There are two
methods for feedback linearisation, one is input-output linearisation, the other is state-space
linearisation. Both approaches rely on two operations: non-linear coordinate transformation
and non-linear state feedback. In the input-output linearisation, the map between the actual
output and the transformed input is linearised. When the dimension of transformed states
variables is less than the system states, input-output linearisation method is restricted to use
only the so-called zero dynamics are stable. The goal of state-space linearisation is to linear
the map between the entire system states and the transformed inputs. This can be achieved
when the dimension of the transformed states equals to the system states. A linearised
controller can be then synthesized for the new linear input-state model.

Considering an n-dimensional non-linear system as depicted in equation 5.1 without

using the subscript, if we assume β = Φ(x) and the artificial output ŷ = ĥ(x), then the new
coordinate βk through transformation can be obtained by the following expression:

βk =Φk(x) = Lk−1
f ĥ(x) 1 ≤ k ≤ n (5.9)

The system model represented by the new coordinates can be described by:

β̇1 = β2

β̇2 = β3

⋮ ⋮

β̇n = b(β) + a(β)u
ŷ = β1

(5.10)

where Lk−1
f

g(x) is the Lie derivative of g(x). a(β) = LgL
n−1
f

ĥ[Φ−1(β)] and b(β) = Ln
f
ĥ[Φ−1(β)].

If the function a(β) ≠ 0 throughout the operation region, the new control input can be ex-
pressed by:

u =
β̇n − b(β)
a(β) (5.11)

As a result, the new coordinate transformation β = Φ(x) linearises the map between the
transformed input and each of the system states.

In our NMPC law design, in order to obtain the linear system model, above state-space
feedback linearisation is proceed due to the existence of the highly non-linear effect and
coupling terms in equation 5.7. The designer can then devise an outer loop control under the

83

5. Model Predictive Control

new framework to meet the conventional controller design requirements, such as tracking
error, model mismatch, and so forth. Obtaining such a linearised controller is guaranteed
by the specific form of space robot dynamics since the inertia matrix H(θ) can be inverted
at any robot configuration. Through non-linear state feedback of equation 5.7, the control
input τ under linearised controller can be denoted by:

τ = Ĥ(θ)u + ĉ(θ, θ̇) (5.12)

where u = θ̈ stands for a new input vector. Ĥ(θ) and ĉ(θ, θ̇) are the estimation of inertia

matrix H(θ) and non-linear force vector c(θ, θ̇), respectively. In the ideal case, i.e. without

any model mismatch, Ĥ = H and ĉ = c. Therefore we obtain a linear and decoupled system

with simple second-order differential dynamics. if we choose x = [θ, θ̇]T as the system states,
the linear form of dynamic equation 5.7 can be given by:

⎧⎪⎪⎨⎪⎪⎩
ẋ =Acx +Bcu

y = Ccx +Dcu
(5.13)

where Ac = [0n,En;0n,0n], Bc = [0n,En]T, Cc = E2n, and Dc = [0n,0n]T. The new control
input u = Ĥ−1(τ − ĉ). With the aforementioned linear form dynamics of space robot, a
NMPC strategy with linear feedback for space robot is shown in Figure 5.5.

NMPC

System Model

Receding Optimization

Cost Function Constraints

 d

q
_q

Space Robot
u

Disturbance

¿

ĉ(;

_)

Ĥ()

Task Distribution

Trajectory Planning

State Estimator
x̂

Figure 5.5.: Linear feedback with NMPC for space robot

5.2.3. Observer Design

In this chapter, state-space feedback linearisation technique is used to generate a corre-
sponding linear system model. The current state (or state estimation) is applied as an initial
condition to predict the system dynamic behaviour and integrate into the on-line optimiza-
tion procedure to get an optimal control solution. Normally, since full states of the non-linear
system can’t be directly measured in most cases, how to reconstruct the system states from
the current observations will be of the primary concern in this section. The method of es-
timating un-known system states based on the measurement, in a cybernetics context, is
termed an observer. A system state observer is not inherently included in the implementa-
tion of NMPC which gives us free choice in design of state observer.

Consider the discrete linear system expressed in equation 5.13 with additional distur-
bance to the system states and measurements. The discrete linear system with disturbance

84

5. Model Predictive Control

can be expressed by

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) =Adx(k) +Bdu(k) +w(k)
y(k) = Cdx(k) + v(k) (5.14)

where w(k) ∈ R2n×1 and v(k) ∈ Rn×1 are the disturbance vector to state and measurements,
respectively. The state disturbance vector models un-determined disturbance to the system
behaviour that affects the system states, while the measurement disturbance vector repre-
sents the measuring error caused by the sensor noise. The covariance matrix of w(k) and
v(k) can be defined by:

⎧⎪⎪⎨⎪⎪⎩
E{w(k)w(j)T} = Λδ(k − j)
E{v(k) v(j)T} = Γδ(k − j) (5.15)

where δ(t) is the Dialac function. If the pair (Cd,Ad) is observable, a sequential or recursive
solution using the information only from the previous sample time can be constructed:

⎧⎪⎪⎨⎪⎪⎩
x̂(k∣k) = x̂(k∣k − 1) +Kob(k)(y(k) −Cdx̂(k∣k − 1))
x̂(k∣k − 1) =Adx̂(k − 1∣k − 1) +Bdu(k − 1) (5.16)

The system state estimations come from the predicted state estimation and the current
output measurement. The differences between the predicted output Cdx̂(k∣k − 1) and the
current output y(k)multiply the gain matrix Kob(k) forms a correction to the predicted state
estimation. How to design the gain matrix in terms of various criteria results in different
state observers. Common pole placement or the Luenberger observer Maciejowski (2002),
Wang (op. 2009) can be used to achieve required performance. However, if the poles are set
too small, the rapid decay of the reconstruction error is satisfied, otherwise, it also amplify
the measurement noise and modelling error. Therefore, the chosen of gain matrix Kob and
the poles of the observer must be very careful.

In this chapter, a Kalman Filter (KF) method Huang et al. (2009), Lee and Ricker (1994)
of state estimation which takes measurement noise and modelling error into account is em-
ployed. It is a minimum mean square error method which uses series of observed measure-
ment to produce more accurate estimates of system states containing noise. Consider the
state disturbance and measurement noise expressed in equation 5.14, if we also assume that
the initial state x̂(0) is an independent, normally distributed random variable with covari-
ance P(0), the recursive estimator in equation 5.16 produces state estimation with minimum
variance. In the probabilistic formulation, the covariance matrix depicts the expected mag-
nitudes of the disturbance to the system state and measurements. The ratio between the
covariance of the system state disturbance and measurement noise will undoubtedly affect
the determination of the gain matrix Kob. If the covariance of measurement noise is rela-
tively large, the measurements are relatively uncertain and the feedback correction to the
model prediction should be small. On the contrary, the measurements are relatively certain
and should have more weight of the feedback correction. Consequently, the Kalman Filter
gain Kob(k) at sampling time k can be denoted as:

Kob(k) = P(k)CT
d(CdP(k)CT

d +Γ)−1 (5.17)

The covariance matrix P(k) is propagated using the discrete filtering Riccati equation:

P(k + 1) =AdP(k)AT
d +Λ −AdP(k)CT

d(CdP(k)CT
d +Γ)−1CdP(k)AT

d (5.18)

85

5. Model Predictive Control

The initial covariance matrix P(0) can be determined by:

E{[x(0) − x̂(0)][x(0) − x̂(0)]T} = P(0) (5.19)

In the filtering Riccati equation, the first two terms AdP(k)AT
d + Λ represent a priori

predicted estimate covariance of the system states at sampling time k. The remaining term
describes the contribution of the output measurement in updating (a posteriori) estimate
covariance, which generally decreases the covariance. As was illustrated before, if the pair(Cd,Ad) is observable, Λ and Γ are positive definite, and P(0) is non-negative definite, as k
goes to infinite, the recursive in equation 5.18 tends to a constant matrix.

P(∞) =Ad(P(∞) −P(∞)CT
d(CdP(∞)CT

d +Γ)−1CdP(∞))AT
d +Λ (5.20)

This matrix is termed as steady-state discrete Raccati matrix. The KF gain Kob(∞) at steady-
state can be then expressed by:

Kob(∞) = P(∞)CT
d(CdP(∞)CT

d +Γ)−1 (5.21)

Like in the design of Luenberger observer, all the eigenvalues of (Ad −Kob(∞)Cd) are guar-
anteed to be smaller than 1, which indicates, a nominal stable state observer is thereof well
designed. The state estimator introduced in this section will be used in the following sec-
tions to provide a more accurate estimation of system states.

5.2.4. Optimization Index

According to the NMPC algorithm expressed in equation 5.3, an appropriate cost function
Γ(k)must be chosen to obtain the local optimal control law. Generally, the cost function not
only should include direct relation with the tracking error between the predictive controlled
output ŷ(k + i∣k) and the reference trajectory r(k + i∣k), but also should contain the control
inputs effort ∆û(k + i∣k). Then a cost function with quadratic form can be described by:

Γ(k) = Np

∑
i=1

∥ŷ(k + i∣k) − r(k + i∣k)∥2Q(i) +
Nc−1

∑
i=0

∥∆û(k + i∣k)∥2T(i) (5.22)

where Q(i) and T(i) are the weight matrices of tracking error and control effort, respec-
tively. If we define Y (k) = [ŷ(k + 1∣k),⋯, ŷ(k +Np∣k)]T, R(k) = [r(k + 1∣k),⋯,r(k +Np∣k)]T,
and ∆U(k) = [∆û(k∣k),⋯,∆û(k +Nc − 1∣k)]T, then the cost function Γ(k) can be written as
follows:

Γ(k) = ∥Y (k) −R(k)∥2Q + ∥∆U(k)∥2T (5.23)

where Q = diag([Q(1),⋯,Q(Np)]) and T = diag([T(1),⋯,T(Nc − 1)]). Here if we define:

Y (k) =Φx(k) +Υu(k − 1) +Θ∆U(k) (5.24)

Consider the system discrete model expressed in equation , the matrices Φ, Υ and Θ can be
expressed by:

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CdAd

⋮
CdA

Nc

d

CdA
Nc+1
d

⋮

CdA
Np

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Υ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CdBd

⋮

∑Nc−1
i=0 CdA

i
dBd

∑Nc

i=0CdA
i
dBd

⋮

∑
Np−1
i=0 CdA

i
dBd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CdBd ⋯ 0

⋮ ⋱ ⋮

∑Nc−1
i=0 CdA

i
dBd ⋯ CdBd

∑Nc

i=0CdA
i
dBd ⋯ ∑1

i=0CdA
i
dBd

⋮ ⋱ ⋮

∑
Np−1
i=0 CdA

i
dBd ⋯ ∑

Np−Nc

i=0 CdA
i
dBd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.25)

86

5. Model Predictive Control

In consideration of equation 5.24, let us define a new variable ε(k) as follows:

ε(k) =R(k) −Φx(k) −Υu(k − 1) (5.26)

then the cost function Γ(k) can be denoted by the following equation:

Γ(k) = ∥Θ∆U(k) − ε(k)∥2Q + ∥∆U(k)∥2T = Γconst +∆U(k)Tϑ +∆U(k)TM∆U(k) (5.27)

where Γconst = ε(k)TQε(k), ϑ = −2ΘTQε(k) and M = ΘTQΘ + T. Without considering
the constraints imposed on ∆U , the optimal control ∆U∗ = −1

2
M−1ϑ can be used. When

various constraints about ∆U are taken into account and expressed by linear inequalities
G∆U ≤ g, the optimization of NMPC strategy turns out a Quadratic Programming (QP)
problem which will be introduced in section 5.4 in detail.

5.3. Inequality Constraints

None constraints are considered in the previous sections. In practice, all processes are sub-
ject to certain constraints. Sensors have their own limited scopes, and actuators have limited
field of action. Furthermore, security, environmental and operational conditions are often
defined by the intersection of certain constraints for safety or economic reasons. Therefore,
the control system will be implemented under a list of constraints. These facts make the
introduction of constraints in the cost function to be minimized necessary. In view of the
cost function expressed in equation 5.27, the optimal control issue with different kinds of
constraints over the receding horizon is denoted as a Quadratic Programming problem:

∆U∗(k) =min
∆U

∆U(k)TM∆U(k) +ϑT∆U(k)
subject to G∆U(k) ≤ g (5.28)

How to solve this QP problem will be depicted in section 5.4. Subsequently, we will concen-
trate on translating various constraints into inequality equations and obtained the matrix G

and vector g.

5.3.1. Input/Output Constraints

Generally, bound in the amplitude of the control input τ (t) and limits in the output y(t)
will be taken into account:

⎧⎪⎪⎨⎪⎪⎩
τmin ≤ τ (t) ≤ τmax ∀t

ymin ≤ y(t) ≤ ymax ∀t
(5.29)

Considering feedback linearization in section 5.2.2 and control limits in equation 5.29,
there is no linear relationship between new input u(t) and real control input τ (t). Thanks to
the positive symmetric inertia matrix H, the new control input boundary umax =H−1(τ − c)
and umin = H−1(τ − c), where τ and τ are the corresponding torque vectors fulfil control

87

5. Model Predictive Control

input boundary expressed in equation 5.29. Since the JSIM H is symmetric, positive definite,
it can be decomposed as follows:

H = PDP−1 = [p1,⋯ ,pn]
⎡⎢⎢⎢⎢⎢⎣
σ1

⋱
σn

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
pT
1

⋮
pT
n

⎤⎥⎥⎥⎥⎥⎦
(5.30)

and its inverse can be described as:

H−1 = (PDP−1)−1 = PD−1P−1 = [p1,⋯ ,pn]
⎡⎢⎢⎢⎢⎢⎣

1

σ1

⋱
1

σn

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
pT
1

⋮
pT
n

⎤⎥⎥⎥⎥⎥⎦
(5.31)

If we project the vector τ (t) on the direction of the eigenvector pi, the torque vector can
be expressed by:

τ = ζ1p1 + ζ2p2 +⋯+ ζnpn (5.32)

where ζi = ⟨τ ,pi⟩. Since the term H−1τ at sampling time k is constant, then the boundary of
new control input can be translated into a Linear Programming (LP) problem:

⎧⎪⎪⎨⎪⎪⎩
uimax = arg

ζ
max 1

σi
ui ⋅ ζ

uimin = arg
ζ
min 1

σi
ui ⋅ ζ

subject to τmin ≤ Pζ ≤ τmax (5.33)

The new control input vector u(t) expressed in discrete time at sampling time k yields
its own amplitude boundaries can be described by

umin ≤ u(k − 1) +∆u(k) ≤ umax (5.34)

when all the control input vector over the receding horizon Nc are taken into account, the
new control input constraints can be expressed as follows:

{ ΩNc
u(k − 1) +Ψ∆U(k) ≤ΩNc

umax

ΩNc
u(k − 1) +Ψ∆U(k) ≥ΩNc

umin
(5.35)

where the matrices ΩNc
and Ψ can be denoted as:

ΩNc
=

⎡⎢⎢⎢⎢⎢⎣
En

⋮
En

⎤⎥⎥⎥⎥⎥⎦
∈ RnNc×n, Ψ =

⎡⎢⎢⎢⎢⎢⎣
En

⋮ ⋱
En ⋯ En

⎤⎥⎥⎥⎥⎥⎦
∈ RnNc×nNc (5.36)

Likewise, consider the output boundaries in equation 5.29, suppose Yp = Φx(k)+Υu(k−
1) and ΩNp

= [E2n,⋯,E2n]T ∈ R2nNp×2n, the new input vector u(k) yields the boundaries of
output y(t) can be denoted as:

{ Yp +Θ∆U(k) ≤ ΩNp
ymax

Yp +Θ∆U(k) ≥ ΩNp
ymin

(5.37)

88

5. Model Predictive Control

5.3.2. Obstacle/Singularity Constraints

The presence of the obstacles and singularities in the workspace of the manipulator restricts
the full ability of the manipulator. Generally, there are three classes of primary solutions
for collision and singularity avoidance issues. The first solution is to treat them as a plan-
ning problem as was widely analysed in chapter 4. The second solution to solve these
problems is adding an additional cost function in the optimization issue, as was discussed
in Camacho and Bordons (2007), Jasour and Farrokhi (2009). The third solution, which is
also the most reasonable one, is to regard them as motion constraints imposed on the opti-
mization issue Fan-Tien Cheng et al. (1994), Faverjon and Tournassoud (1987), Kanehiro et al.,
Kanoun et al. (2011), since the existence of them limits the volume and form of the feasible
workspace region. In this section, we will elaborate on how to translate the singularity and
collision problems into different linear inequalities used in the optimization issue.

As was illustrated in chapter 4, when only the nearest point is considered in collision
avoidance strategy, an oscillation will occur since the switching of the control point on
the manipulator. In order to overcome such drawback, the other control point, named
Maximum Projection Distance (MPD) point is used to adjust the control point on the manip-
ulator. Here, these two points will also be employed to form two independent constraints
imposed on the manipulator to suppress the possible vibration. A schematic diagram of the
two constraints is shown in Figure 5.6.

duf

n1

dif
P1

P1 P
0

1

d1

dsr

P
0

2

O1

P2

n2

d2

Figure 5.6.: Schematic diagram of anti-collision

Let us recall an inequality named velocity damper proposed in Faverjon and Tournassoud
(1987), Kanehiro et al., refer to Figure 5.6, if the distance d between the control points and
the obstacle enters into the influence zone defined by dif , the following constraints can be
imposed on the motion of the manipulator:

λacḋ ≥ −ηac
d − duf
dif − duf

(5.38)

89

5. Model Predictive Control

where 0 < ηac < 1 is damper coefficient for adjusting convergence speed. λac is a switching
function to control whether current anti-collision constraint function uses or not, because
in some cases, like in capturing phaser, the interact face between the gripper and the target
satellite is constrained by the collision avoidance. The switching function can be expressed
as:

λac =
⎧⎪⎪⎨⎪⎪⎩
0 constraint is not considered

1 constraint is considered
(5.39)

Given the initial condition d(0) ≥ duf , and in terms of λac = 1, the following inequality can be
derived:

d(t) ≥ duf + (d(0) − duf)e− ηact

dif−duf ≥ duf ∀t > 0 (5.40)

Expression in equation 5.40 assures that the distance between the control point and the
obstacles constrained by velocity damper will be never smaller than duf . Similarly, dsr is the
security distance as defined in chapter 4, once d < dsr, the inequality constraint expressed in

equation 5.38 will become hard constraint and will be illustrated in section 5.4. Note that ḋ is
constrained by inequality 5.38, when the control point Pi enters into influence zone (d ≤ dif),

a linear inequality constraint over the manipulator’s velocity θ̇ can be obtained:

λac⟨JT
Pi
ni, θ̇⟩ ≥ ⟨ṙP ′

i
,ni⟩ − ηac di − duf

dif − duf
(5.41)

_xe

¾sr

¾if

¾uf

ui

ui¡1

¾i

¾i = 0

Desired Path

Constrained Path

Singularity

Figure 5.7.: Schematic diagram of anti-singularity

Likewise, we also want to translate the singularity issue into a linear inequality con-
straint as in equation 5.41. From the definition of the manipulability ellipsoid in equation 4.8,
refer to Figure 5.7, it can be perceived that singularity emerges when the singular value of
the Jacobian matrix σi = 0 along the ith principal axis direction. It also means, one can drive

90

5. Model Predictive Control

the manipulator far from singularity point through regulating the change rate of singular
value appropriately as the obstacle avoidance. The change rate of singular value σi can be
obtained through projecting the task-space velocity xe in the direction of the principal axis
ui:

σ̇i = ⟨Jθ̇,ui⟩ (5.42)

If we define σif , σsr, σuf influence distance, security distance, and unsafe distance as been
done in collision avoidance, recall the velocity damper the following constraint will be de-
fined:

λasσ̇i ≥ −ηas
σi − σuf

σif − σuf

(5.43)

λas and ηas are the switching function and turning parameter for velocity damper. As il-
lustrated in equation 5.40, give the initial condition σi(0) > σuf and λas = 1, the following
inequality can be derived:

σi(t) ≥ σuf + (σi(0) − σuf)e− ηast

σif−σuf ≥ σuf ∀t > 0 (5.44)

Expression in equation 5.44 assures that the singular value σi will never smaller than σuf .

A linear inequality constraint for singularity issue over the manipulator’s velocity θ̇ can be
obtained:

λas⟨JTui, θ̇⟩ ≥ −ηas σi − σuf

σif − σuf

(5.45)

Next, we use the anti-collision and anti-singularity constraints to construct the matrix G

and vector g. Assuming that Nk
ac anti-collision constraints are activated at sampling time

k, the new control input u(k) yields the velocity damper constraint in equation 5.41 can be
expressed by:

Θv
ac [CvdAdx(k) +CvdBdu(k)] ≥Duf (5.46)

where Cvd = [0n,En], the matrix Θv
ac and vector Duf can be denoted as:

Θv
ac =

⎡⎢⎢⎢⎢⎢⎢⎣

λ1
acn

T
1
JP1

⋮

λ
Nk

ac
ac nT

Nk
ac
JP

Nk
ac

⎤⎥⎥⎥⎥⎥⎥⎦
, Duf =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⟨ṙP ′
1
,n1⟩ − ηac d1−duf

dif−duf

⋮

⟨ṙP ′
Nk
ac

,nNk
ac
⟩ − ηac dNk

ac
−duf

dif−duf

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.47)

If we define yvp = CvdAdx(k) +CvdBdu(k − 1) and Θvb = [CvdBd,0n,⋯ ,0n] ∈ Rn×nNc , ac-
cording to equation 5.46, let Dvp =Θv

acyvp and Θac =Θv
acΘvb, equation 5.46 can be expressed

by:

Dvp +Θac∆U(k) ≥Duf (5.48)

Similarly, the anti-singularity constraints can be treated as follows. If there are Nk
as anti-

singularity constraints are activated at instant k, the control input u(k) yield the velocity
damper constraints in equation 5.45 can be expressed by:

Σvp +Θas∆U(k) ≥ Σuf (5.49)

91

5. Model Predictive Control

where Σvp = Θv
asyvp and Θas = Θv

asΘvb. The matrix Θv
as and vector Σuf can be expressed as

follows:

Θv
as =

⎡⎢⎢⎢⎢⎢⎢⎣

λ1
asn

T
1
J

⋮

λ
Nk

as
as nT

Nk
as
J

⎤⎥⎥⎥⎥⎥⎥⎦
, Σuf =

⎡⎢⎢⎢⎢⎢⎢⎣

−ηas
σ1−σuf

σif−σuf

⋮

−ηas
σ
Nk
as
−σuf

σif−σuf

⎤⎥⎥⎥⎥⎥⎥⎦
(5.50)

After a variety of constraints are expressed by linear inequalities as in equations 5.35,
5.37, 5.48 and 5.49, the quantities of G and g can be detived as follows:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ

−Ψ
Θ

−Θ
−Θac

−Θas

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΩNc
umax −ΩNc

u(k − 1)
−ΩNc

umin +ΩNc
u(k − 1)

ΩNp
ymax −Yp

−ΩNp
ymin +Yp

Dvp −Duf

Σvp −Σuf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.51)

To complete a given task with optimization, the inequality constraints denoted by equa-
tions 5.35, 5.37, 5.48 and 5.49 should be integrated into the optimization problem. Of course,
for collision avoidance, each link of the manipulator and every obstacle in workspace, also
between two different links yield inequality 5.41, which implies series of anti-collision con-
straints will be imposed on the manipulator regarding to the relative relationship of two
arbitrary mobile objects in workspace. For singularity avoidance, every singular value can
be chosen to yield inequality 5.45, which indicates that anti-singularity constraints will be
activated according to the relative distance to the singular configuration. These linear in-
equalities will be employed in QP problem as will be illustrated in section 5.4.

5.4. Quadratic Programming

As was indicated in section 5.1, the implementation of NMPC is not a trivial matter and is ir-
refutably a more complicated task than the commissioning of conventional control schemes.
Leadingly, the designed controller has to solve a non-linear QP problem with linear con-
straints as shown in equation 5.28 to gain a sequence of optimal control effort ∆U∗(k)
through searching in the current feasible region. A variety of methods are commonly used
including active set, interior point, augmented Lagrangian as introduced in Maciejowski
(2002), Nocedal and Wright (2006), Wang (op. 2009). The choice of algorithm to solve QP
needs to consider the special structure of the NMPC problem.

5.4.1. KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions are first order necessary conditions for a solu-
tion in non-linear optimization programming. The necessary conditions for QP problem in

92

5. Model Predictive Control

equation 5.28 given by KKT conditions can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M∆U +ϑ +GTλ = 0
G∆U − g ≤ 0
λT(G∆U − g) = 0
λ ≥ 0

(5.52)

where the vector λ is the Lagrangian multipliers. The inequality constraints expressed in
equation 5.28 may be composed of inactive constraints and active constraints. The constraint
Gi∆U ≤ gi is called active if Gi∆U = gi and inactive if Gi∆U < gi. The active set Sact made
up of the active constraints, plays a significant role in optimization theory since it determines
which constraints will influence the finial result of optimization Nocedal and Wright (2006).
If the active set Sact can be determined, the KKT conditions can be expressed in another way:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∆U +ϑ +∑i∈Sact G
T
actλact = 0

Gi∆U − gi = 0 i ∈ Sact
Gi∆U − gi < 0 i ∉ Sact
λi ≥ 0 i ∈ Sact
λi = 0 i ∉ Sact

(5.53)

Obviously, if the ith constraint is active, an equality constraint Gi∆U = gi can be imposed
on the cost function which can be solved with Lagrange multiplier method. On the contrary,
Gi∆U < gi denotes that the constraint is satisfied, thus it is inactive and can be discarded.
An active set method, called Hildreth’s Quadratic Programming procedure Wang (op. 2009),
will be employed in our NMPC design.

5.4.2. QP with Prioritized Constraints

During the optimization operation, the feasible region defined in the decision variables by
the active set of constraints may be empty due to the model-mismatch, external disturbance,
and noise or artificially fault. Such a problem, will stop the standard QP procedure with-
out output which is unacceptable for a controller in real-time provided to the space robot.
In Qin and Badgwell (2003), it is depicted that, when a predicted input violates the bound-
ary in the DMC-plus algorithm, it is set to its limits and the computation continues. Another
solution to the infeasibility is first solve the QP problem without constraints and then clip
to yield hard constraints. These methods prevent violation of hard constraints, but involves
a loss of performance and the solutions do not satisfy the KKT necessary conditions for
optimality.

The infeasibility problem, maybe lead to instability of the control-loop, motivates the aca-
demic community to develop new techniques as introduced in Rawlings and Muske (1993),
Scokaert and Rawlings (1999), Vada et al. (2001), Zheng and Morari (1995) aimed at recover-
ing feasibility without violating hard constraints. In these techniques, how to handle con-
straints is at the core of solving QP infeasibility problem. The linear constraints imposed on
decision variables can be categorized into three classes:

93

5. Model Predictive Control

• Physical/Security constraints: These limits should never be surpassed and are usually
associated to the device physical functioning or the security warranty. For instance, the
input bound of τ (t) expressed in equation 5.35 pertains to this kinds of constraints and
will be treated as hard constraints.

• Operational constraints: These limits are fixed by the operators as bounds within
which the decision variables are expected to maintain appropriate operating condi-
tions. They can be violated in certain circumstance and be treated as soft constraints
such as the limits of output y(t) denoted in equation 5.37.

• Passive constraints: Unlike physical/security or operational constraints which are im-
posed on the decision variables at all the time, the passive limits will only be triggered
when the decision variables slide into its influence zone, such as the distance between
the link and obstacle enters into the collision influence zone, or the configuration of
the manipulator comes into a influence zone of singularity. Under this circumstance,
they can be considered as soft constraints and violated to some extent. Once the deci-
sion variables enter into the security zone, the corresponding constraints turn to hard
constraints and can’t be violated any more. Actually, anti-singularity and anti-collision
constraints in the robotic motion can be translated into suchlike passive constraints.

Like the prioritized tasks illustrated in chapter 4, the constraints belong to different cat-
egories do not possess the same priority. If we use Ghc∆U(k) ≤ ghc and Gsc∆U(k) ≤ gsc to
represent hard and soft constraints respectively, and assign different priorities to various soft
constraints according to their relative significance, the QP problem defined in equation 5.28
can be rewritten as follows:

∆U∗(k) =min
∆U

∆U(k)TM∆U(k) +ϑT∆U(k) + ρ∆gT
sc∆gsc

subject to

hard constraints

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(k∣k) = x(k)
x(k + j + 1∣k) = fd(x(k + j∣k),u(k + j∣k))
u(k + j∣k) = u(k +Nc∣k), j ≥ Nc

Ghc∆U(k) ≤ ghc, j ≤ Np

soft constraints

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S1 ∶ G1

sc∆U(k) ≤ g1
sc

⋮ ⋮ j ≤ Np

Sns
∶ Gns

sc∆U(k) ≤ gns
sc

(5.54)

where the constraint sets {S1,⋯ ,Sns
} are constructed while constraint set Si has higher pri-

ority than Si+1. Refer to Nocedal and Wright (2006), Vada et al. (1999), Wang (op. 2009), an
algorithm solving QP problem subject to the constraints with priorities is presented as fol-
lows:

(1) Employing Hildreth’s QP procedure to solve the QP optimization problem defined in
equation 5.54 only with hard constraints. If there is not a feasible solution, go to step
(2); else, go to step (3).

(2) Checking existence of a solution to the first hard constraints at current sampling time
without prediction, since the current hard constraints are more important than the
predicted constraints. If no solution exists, solve the QP problem without constraints,
then clip the solution to yield hard constraints. This ensures the continuation of the
computation with some performance loss. Else, employ the solution as an input to the
plant.

94

5. Model Predictive Control

(3) Checking existence of a solution to the complete QP problem in equation 5.54. If there
is a feasible solution, the optimal control effort is determined. Else go to step (4).

(4) Set k = 1, from the highest priority constraints set S1, check existence of a solution to
hard constraints and constraint set {S1,⋯,Sk}, if a feasible solution is found, k = k + 1
and go to step (4). Else, if no feasible solution is found, {S1,⋯,Sk} can’t be satisfied
simultaneously, go to step (5).

(5) Step (4) revealed {S1,⋯,Sk−1} are satisfied while {Sk,⋯,Sns
} can’t be satisfied. Com-

pute the optimal slack variables ∆gsc to minimize the violation of constraint sets {Sk,⋯,Sns
}

and replace {Sk,⋯,Sns
}with {S ′k,⋯,S ′ns

}, such that the renewed sets {S1,⋯,Sk−1,S ′k,⋯,S ′ns
}

are satisfied. Go to step (6).

(6) At this step, there exists a solution which fulfils the constraint sets {S1,⋯,Sk−1,S ′k,⋯,S ′ns
}.

Now, we can minimize the performance index in equation 5.54 subject to these con-
straints and output the optimal solution ∆U∗(k).

The softening constraints offer additional region for the control input, to some extent, it
expands the feasible region of the decision variables. And, the constraints with priorities
enable the most significant constraints execute as much as possible, which also enlarges the
feasible region of the control input.

5.5. Simulation Study

In this section, the robotic mission from approach to capture the target using space robot will
be implemented applying the proposed NMPC strategy. Four simulations, approach to the
target, tracking a line with singularity, tracking a infinite ring with obstacles and tracking
& capturing a point target, are executed to verify the performance and effectiveness of our
NMPC method.

5.5.1. Simulation Set-up

The NMPC algorithm implemented with a non-linear model and receding optimization,
is employed for the space robot to complete the approach, tracking and capturing target
missions. The tuning parameters relevant to NMPC are the sampling period, prediction
horizon Np, control horizon Nc and the input and output weights matrices Q(i) and T(i).
The sampling time is set to 0.01s. According to the inaccuracy of long-term prediction and
high burden of computation, the prediction horizon Np = 20 and the control horizon Nc = 5.
The ratio between weights matrices Q(i) and T(i) indicates the importance of tracking error
and control effort. Here we choose Q(i) = En and T(i) = 0.05En.

5.5.2. Approach to the Target

As illustrated in chapter 2, once the servicer satellite comes into the neighbourhood of the
target satellite and ready for the robotic mission, the first robotic mission would be un-
folding the manipulator to an optimal grasping pose. The space manipulator is initially at

95

5. Model Predictive Control

its folding configuration θ0 = [0,−π
2
,0,0,0,0,0]T. After receiving tele-commands from the

ground station or certain requirements are satisfied, the motors will be activated and will
deploy the manipulator to a specific position θ0 = [0, π4 ,0, 2π5 ,0,−π

6
,0]T in 4 seconds ready for

further robotic missions. For each joint motion, a quintic polynomial trajectory as set point
expressed in the following equation is employed:

r(t) = b0 + b1t + b2t2 + b3t3 + b4t4 + b5t5 (5.55)

where bi(i = 0,⋯ ,5) represents the polynomial coefficients of the planned trajectory based
on the inverse kinematics and the duration of the trajectory.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time(s)

θ
(r
a
d
)

(a) Joint Position

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

0 2 4 6 8 10
−0.015

−0.01

−0.005

0

0.005

0.01

Time(s)

∆
θ
(r
a
d
)

(c) Joint Error

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

Time(s)

τ
(N

.m
)

(d) Joint Torque

Figure 5.8.: Unfolding the space manipulator using RMAC method

The widely used RMAC strategy as introduced in Luh et al. (1980a), Siciliano (2009),
Umetani and Yoshida (1989) is employed for comparison reason. Both two strategies are im-
plemented in the simulation environment Matlab®/Simulink® as part of RACOON system.
Figure 5.8 and Figure 5.9 show the simulation results of the RMAC and NMPC methods, re-
spectively. One can see that, both methods can complete the unfolding task successfully,
while NMPC strategy holds extra advantages. The residue error of joint position and veloc-
ity are larger using RMAC than using NMPC. Besides, joint toques violates its ranges using
RMAC as comparing Figure 5.8(d) with Figure 5.9(d).

96

5. Model Predictive Control

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time(s)

θ
(r
a
d
)

(a) Joint Position

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

θ̇
(r
a
d
/
s)

(b) Joint Velocity

0 2 4 6 8 10
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time(s)

∆
θ
(r
a
d
)

(c) Joint Error

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

Time(s)

τ
(N

.m
)

(d) Joint Torque

Figure 5.9.: Unfolding the space manipulator using NMPC method

5.5.3. Tracking a Predefined Path

Two simulations will be conducted independently in this section to show the collision and
singularity avoidance ability of the proposed NMPC strategy. For demonstration, two pre-
defined tasks and three artificial obstacles are employed to test the effect of collision and
singularity avoidance.

In order to test the collision avoidance, three additional obstacles, two spheres and one
cylinder are located in the workspace of the space manipulator. The primary task of the
end-effector is to track a path with the form of infinite ring in 10 seconds. The simulation
results are shown in Figure 5.10. One can see that, the tracking task does not completely
conducted since the existence of the obstacles. When the manipulator approaches to the
obstacles, the anti-collision constraints are activated to impede the occurrence of possible
collision. The minimum distances between the manipulator and the obstacles are strictly
constrained by the pre-defined unsafe distance duf . Three anti-collision constraints are ac-
tivated during the tracking task. After collision avoidance, the NMPC strategy continues
to conduct the required task as much as possible as shown in Figure 5.10(c) and (d). The
joint position and joint velocity also fulfil the output constraints as shown in Figure 5.10(e)
and (f). The simulation results demonstrate that the proposed constrained MPC algorithm
is satisfactory for obstacle avoidance especially when more than one obstacles in workspace
of the manipulator.

97

5. Model Predictive Control

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

y(m)

z
(m

)

(a) Task in y−z Plane

10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time(s)

d
(m

)

(b) Minimum Distance

10 12 14 16 18 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time(s)

∆
r
(m

)

(c) Position Error

10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

∆
η
,∆

ǫ

(d) Orientation Error

10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2

Time(s)

θ
(r
a
d
)

(e) Joint Position

10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

θ̇
(r
a
d
/
s)

(f) Joint Velocity

Figure 5.10.: Tracking infinite ring with anti-collision constraints

The second simulation is to test the singularity avoidance ability of the proposed NMPC
strategy. The path is set to track a line in the workspace of space manipulator within 10
seconds. Without adopting any measure for singularity issue, the singularity will occur at
18th second. Like the anti-collision constraints, an anti-singularity constraint is activated at
that moment to prevent the manipulator from sliding into the singular configuration. The
minimum singular value σm is restricted at its unsafe quantity σuf . The tracking error for
position and orientation is promising, while the joint position and joint velocity also fulfil
the output constraints as shown in Figure 5.11(e) and (f). The oscillation in joint velocity is
induced by the damper coefficient λas. Some trade-off must be taken to choose the optimal
value of λas.

98

5. Model Predictive Control

0.24 0.25 0.26 0.27 0.28 0.29
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

y(m)

z
(m

)

(a) Task in y−z Plane

10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Time(s)

σ

(b) Singular Value

10 12 14 16 18 20
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

Time(s)

∆
r
(m

)

(c) Position Error

10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

∆
η
,∆

ǫ

(d) Orientation Error

10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

Time(s)

θ
(r
a
d
)

(e) Joint Position

10 12 14 16 18 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time(s)

θ̇
(r
a
d
/
s)

(f) Joint Velocity

Figure 5.11.: Tracking line with anti-singularity constraints

5.5.4. Tracking a Point on the Target

After the space robot unfolding its configuration and approaching to the target, in order
to capture one point on the target with the end-effector, a tracking mission that can guide
the end-effector to the capture point with appropriate orientation should be planned very
carefully. As shown in Figure 5.12, the objective of this phase is to adjust the relative position
and orientation between the end-effector frame and capture point frame as close as possible.
In this simulation we assume that the full states of the capture point can be obtained from
the sensors mounted on the servicer satellite or the manipulator.

99

5. Model Predictive Control

Jn

Xe

Ye

Ze

XI

YI

ZI

re

Xc

Yc

Zc

Xt

Yt

Zt

rc

Figure 5.12.: Relative relationship of end-effector frame and capture point frame

For the sake of simplification, tracking the capture point is decomposed into two sub-
tasks. The first subtask is tracking the capture point without considering the translational
and rotational motion along x axis. This will drive the end-effector rightly locate in the
rear of the capture point and be ready for the next step mission, such as surveillance, tar-
get state estimation, etc. If Rc = [nc sc ac] denotes the rotation matrix of the capture point
and Re = [ne se ae] the rotation matrix of the end-effector frame, the first subtask can be
represented as follows:

⎧⎪⎪⎨⎪⎪⎩
ṙe = ṙc +KP (rc − re) = [0, ṙcy +KPy(rcy − rey), ṙcz +KPz(rcz − rez)]T
ωe = ωc +KO(ne ×nc) = [0,ωcy +KOy(nc1ne3 − nc3ne1),ωcz +KOz(nc2ne1 − nc1ne2)]T

(5.56)

where ṙc and ṙe are the velocity vectors of the capture point and end-effector, respectively.
KP and KO are the control gain matrix for position and orientation, respectively.

After x axis of the end-effector frame aligns with x axis of the capture point frame, a
second subtask can be activated to drive the end-effector close to the capture point. The
finger of the end-effector will be activated to open for the coming capturing mission during
this phase. Although the second subtask is mainly to reduce the relative translational and
rotational error along x axis, since the motion of the target satellite, a feedback of motion
along y and z axis are also required to compensate the drifting error. The designed path for
the second subtask can be given by:

⎧⎪⎪⎨⎪⎪⎩
ṙe = ṙc +KP (rc − re)
ωe = ωc +KO(ηeǫc − ηcǫe − S(ǫc)ǫe) (5.57)

where {ηc,ǫc} and {ηe,ǫe} are the unit quaternions associated with the rotation matrix Rc

and Re, respectively. During this phase, NMPC strategy with anti-collision and anti-singularity
constraints developed in this chapter is employed to complete both subtasks. Figure 5.13

100

5. Model Predictive Control

shows the simulation results of tracking a certain point on the target satellite. The reference
path of the end-effector is generated by using equation 5.56 and equation 5.57. The rela-
tive position and relative quaternion between the frame of the end-effector and the capture
point are shown in Figure 5.13(c) and (d). The two frames finally coincide with each other
after the two subtasks are executed subsequently. The joint position and velocity fulfil the
output constraints as shown in Figure 5.13(e) and (f). Figure 5.14 shows the screenshot of
the tracking and capturing phase by using the proposed NMPC strategy. The end-effector
successfully accomplishes the required task and captures the target.

10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

ṙ
(m

/
s)

(a) End−Effector Position Reference

10 12 14 16 18 20
−0.5

0

0.5

1

Time(s)

ω
(r
a
d
/
s)

(b) End−Effector Orientation Reference

10 12 14 16 18 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time(s)

∆
r
(m

)

(c) Relative Position

10 12 14 16 18 20
−0.5

0

0.5

1

Time(s)

∆
η
,∆

ǫ

(d) Relative Quaternion

10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2

Time(s)

θ
(r
a
d
)

(e) Joint Position

10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(s)

θ̇
(r
a
d
/
s)

(f) Joint Velocity

Figure 5.13.: Tracking capture point on target satellite

101

5. Model Predictive Control

t=10s t=11s t=12s

t=13s t=15s t=16s

t=17s t=18s t=19s

Figure 5.14.: Screenshot of tracking the capture point on target

The designed tracking motion for the end-effector guarantees the success of the end-
effector moving to the capture point and adjusting the capture point in the middle of the
end-effector. Once the end-effector frame coincides with the frame of capture point, the
fingers of end-effector can be closed to complete the capturing phase.

5.6. Summary

The application of Nonlinear Model Predictive Control (NMPC) to capture another target
satellite using space manipulator is investigated in this chapter. NMPC originates from
chemical processing industry and spreads its applications to other fields. The principle and
formulation of NMPC is illustrated in detail. Since the non-linearity of the free-floating space
robot, feedback linearisation technique is used to decouple the non-linear system. System
observer based on Kalman Filter (KF) algorithm is developed to estimate the system states

102

5. Model Predictive Control

when modelling error and measurement error are taken into account. The NMPC strategy
utilizes a quadratic function as its optimization index, and combines various of constraints,
which forms an on-line constrained Quadratic Programming (QP) problem. In this chapter,
input/output constraints, obstacle/singularity constraints are successfully translated into
linear inequalities as part of the QP problem. Different constraints are categorized into di-
verse constraints with unequal priorities for dealing with the possible infeasibility during
on-line optimization. Four simulations, approach to the target, tracking a infinite ring, track-
ing a line and tracking a point on the target are performed to verify the proposed method. As
one can see that, not only the traditional input/output constraints are considered, but also
the obstacle/singularity constraints are taken into account. This means, on the one hand,
anti-collision and anti-singularity problems can be treated as planning problems as intro-
duced in chapter 4, on the other hand, it can also be treated as control constraints to limit
the control input in a reasonable way. The simulation results convincingly demonstrated the
proposed control framework in the application of space robot.

103

6. Conclusions and Future Research

There are now three types of scientists: experimental, theoretical and computational.

—Silvan S. Schweber

As a high potential solution for future On-Orbit Servicing (OOS) missions, the use of
space robot introduces series of challenging issues to implement such a system working in
outer space. This chapter concludes and discusses the results in the previous chapters. The
advantages and disadvantages of the proposed methods are analysed. Furthermore, the
possible research directions in the future are listed to enhance and pursue this thesis.

6.1. Conclusions

Capturing an un-cooperative target satellite by using space manipulator is the main concern
in this thesis. For that purpose, at the beginning of this work, a distributed real-time simula-
tion system, RACOON has been established for space robotic technique demonstration. The
proposed RACOON system can simulate the scenario of space robot and offer the operators
on ground intuitive information, such as text, image and VR etc. which enhances the percep-
tion ability of the operators. Moreover, the reusable simulator is easy to modify and replace
by better modules or related hardware, which provides expandability and scalability of this
simulation architecture in the future.

As a complex multi-body system, the dynamics of space robot possesses specific dy-
namic equations. Considering the effect of the system topology to its dynamics, spatial
notation and graph theory are used to construct the dynamics equation of the space robot
with general tree structure. From path matrix and parent array, an IMM is derived which
has the same pattern as the JSIM. The IMM reveals the influence of the system topology
to its dynamics. As a symmetric, positive definite matrix, IMM can be used to explore the
branched-induced sparsity and to analyse the computational cost of CRBA. The complexity
of calculating the JSIM is estimated between O(1) and O(n3) by using IMM. The proposed
algorithm is competitive when there is sufficient branching in the kinematic tree.

The characteristics of the outer space introduce some special properties to the space
robot. One of them is the dynamic coupling between the space manipulator and the space-
craft when none external forces and torques applied on the spacecraft. Besides, the moving
target satellite requires real-time collision avoidance when the space manipulator approach
and track the target in its workspace. Furthermore, the un-predictable singularity may occur
when the manipulator tries to track the path defined in Cartesian space. Traditional meth-
ods consider the collision and singularity avoidance issues mainly as path planning problem
without thinking the constraints of the system input and output. In this thesis, from path

105

6. Conclusions and Future Research

planning and control aspects, the singularity and collision avoidance issues are investigated
independently.

At the path planning level, the proposed STR method for singularity avoidance utilizes
the minimum singular value σm as singular measurement and left-singular vector as pro-
jection direction to reconstruct the path expressed in task-space. With the proposed STR
method, less overshoot, more predictable minimum singular value, robustness and smaller
& smoother joint velocities are achieved as compared to the typical DLS method. For colli-
sion avoidance, a new control point, MPD point is introduced into the collision avoidance
strategy when non strictly convex objects are considered to suppress the possible fluctuation
of the joint velocities. The new collision avoidance strategy ensures the continuous change of
the control point, which also guarantees the smoother joint velocities. The new approaches
for collision and singularity avoidance can be expanded to fixed-base manipulator or space
manipulator.

At the motion control level, NMPC strategy was chosen as the motion control method
for free-floating space robot. As a finite horizon, on-line optimized control strategy, NMPC
successfully resolves the system input and output boundary conditions. Furthermore, using
velocity damper, the collision and singularity issues are also translated into linear inequal-
ities and integrated into the NMPC. An on-line QP with prioritized constraints is adopted
to search the optimal control effort over the prediction horizon. Simulation results show
that the proposed NMPC strategy can successfully fulfil multiple constraints and complete
the required task as much as possible. To capture a point on the moving target satellite,
a two-stage path of the end-effector is generated and implemented using constrained MPC
strategy. As a result, the issues in path planing become various constraints in motion control,
which is fairly similar as our human interaction with external environment. One drawback
of NMPC is its computational burden which is caused by the on-line predication and QP
algorithm.

6.2. Future Research

How to realize capturing an un-cooperative target satellite is still a challenging issue until
now. The simulation system RACOON and the control framework based on NMPC provide
the first step into space robotic research field involving input/output boundary conditions,
collision/singularity avoidance for the space robotic missions. The possible research ques-
tions arising from this work can be listed as follows:

• Estimation and prediction of the states of the target satellites without prior knowl-
edge. Full and perfect states are assumed to be known during this work, which is
not the case in practice. How to estimate the states of the target accurately is a big
issue in capturing. The accuracy of the estimation will influence the success of the
capture. One should widely use multiple sensors on-board and data integration tech-
nique to compute the kinematic and dynamic parameters of the target. Moreover, the
prediction of the target is also a considerable aspect that can be imported to the control
loop Lampariello and Hirzinger (2013).

• Determination of the capture point. It is another challenging issue for capture. When
the target satellite is moving and rotating, how to find a feasible capture point is the

106

6. Conclusions and Future Research

key to guarantee the success of capture. This involves collision, manipulability, in-
put/output boundary conditions of the space robot.

• Robust stability of the NMPC strategy. The nominal stability of the MPC can be
obtained by adding terminal constraint, terminal weighting matrix or contraction con-
straint as illustrated in Mayne et al. (2000), Rawlings and Muske (1993), Zheng and Morari
(1995). The NMPC strategy in this work assumes that the plant to be controlled and
the model for prediction are the same without considering model mismatch. The in-
fluence of the plant uncertainty to the robust stability should be carefully analysed and
pursued. Some techniques that synthesis robust NMPC can be found in Kothare et al.
(1996), Mayne et al. (2000)

• Faster collision detection algorithm. The collision detection algorithm is very time
consuming especially when multiple non-convex obstacles are in the workspace. An-
other application of collision detection would be the contact between the space robot
and the target satellite. These requires faster and more accurate collision detection
algorithms.

• Contact theory. Once the frame of the capture point on the target coincides with the
frame of the end-effector, the fingers of the end-effector will be activated to perform
close action to complete the grasp. Nevertheless, due to the measurement noise, model
mismatch or external disturbance, there will be still some residual relative velocities
between end-effector and the capture point. A contact will occur when the fingers of
the end-effector close. The effect of the contact to the space robot and the target satellite
has to be investigated seriously to ensure safety and successful capture.

• Post-capture stabilization and further operations. After the capture is done, a post-
capture stabilization should be performed to decrease the rotational velocity of the
target satellite. During this phase, the attitude control of the servicer satellite has to be
activated to realize the stabilization of servicer and target as a whole. The space ma-
nipulator will be used for further OOS operations, such as assembly, ORU exchange,
repair etc. which require the developers to synthesis all the demanded mission elabo-
rately.

In summary, the presented work in this dissertation provides a simulation tool for the
coming space robotic operations and opens the window to a field of studies in MPC appli-
cation to space robot.

107

A. Bibliography

S. Abiko and G. Hirzinger. An adaptive control for a free-floating space robot by using
inverted chain approach. In 2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2236–2241. IEEE, 2007. ISBN 978-1-4244-0912-9.

O.P Agrawal and Y. Xu. On the global optimum path planning for redundant space manip-
ulators. IEEE Transactions on Systems, Man, and Cybernetics, 24(9):1306–1316, 1994.

C.A Balafoutis and R.V Patel. Efficient computation of manipulator inertia matrices and
the direct dynamics problem. IEEE Transactions on Systems, Man, and Cybernetics, 19(5):
1313–1321, 1989.

C.A Balafoutis, R.V Patel, and P. Misra. Efficient modeling and computation of manipulator
dynamics using orthogonal Cartesian tensors. IEEE Journal on Robotics and Automation, 4
(6):665–676, 1988.

B. Bon and H. Seraji. On-line collision avoidance for the Ranger telerobotic flight experiment.
In Proceedings of IEEE International Conference on Robotics and Automation, pages 2041–2048.
IEEE, 1996. ISBN 0-7803-2988-0.

B. Bon and H. Seraji. Real-time model-based obstacle detection for the NASA Ranger Teler-
obot. In Proceedings of International Conference on Robotics and Automation, pages 1580–1587.
IEEE, 1997. ISBN 0-7803-3612-7.

Albert B. Bosse, W. J. Barnds, Michael A. Brown, N. G. Creamer, Andy Feerst, Carl G. Hen-
shaw, Alan S. Hope, Bernard E. Kelm, Patricia A. Klein, Frank Pipitone, Bertrand E.
Plourde, Brian P. Whalen, Jr.Peter Tchoryk, and Melissa Wright. SUMO: Spacecraft for
the universal modification of orbit. In Spacecraft Platforms and Infrastructure, pages 36–46.
SPIE, 2004.

John R. Boyd. Destruction and creation. The Operational level of war. U.S. Army Comand
and General Staff College, [Ft. Leavenworth and Kan.], 1987.

R. Brooks. A robust layered control system for a mobile robot. IEEE Journal on Robotics and
Automation, 2(1):14–23, 1986.

Fraser Cain. How Many Satellite are in Space?, 2013. URL
www.universetoday.com/42198/how-many-satellites-in-space/.

Eduardo F. Camacho and Carlos Bordons. Model predictive control. Advanced textbooks in
control and signal processing. Springer, London [u.a.], 2004. ISBN 978-0-85729-398-5.

Eduardo F. Camacho and Carlos Bordons. Nonlinear Model Predictive Control: An Intro-
ductory Review. In Rolf Findeisen, Frank Allgöwer, and Lorenz T. Biegler, editors, Lecture
Notes in Control and Information Sciences, pages 1–16. Springer Berlin Heidelberg, Berlin
and Heidelberg, 2007. ISBN 978-3-540-72698-2.

109

www.universetoday.com/42198/how-many-satellites-in-space/

A. Bibliography

Chi-Ying Lin and Yen-Chung Liu. Precision Tracking Control and Constraint Handling of
Mechatronic Servo Systems Using Model Predictive Control. IEEE/ASME Transactions on
Mechatronics, 17(4):593–605, 2012.

S. Chiaverini. Singularity-robust task-priority redundancy resolution for real-time kinematic
control of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3):398–410,
1997.

D.W Clarke, C. Mohtadi, and P.S Tuffs. Generalized Predictive Control—Part II Extensions
and interpretations. Automatica, 23(2):149–160, 1987a.

D.W Clarke, C. Mohtadi, and P.S Tuffs. Generalized predictive control—Part I. The basic
algorithm. Automatica, 23(2):137–148, 1987b.

C. R. Cutler and B. L. Ramaker. Dynamic Matrix Control - A Computer Control Algorithm.
In Joint Automatic Control Conference, 1980.

J. Denavit and R. S. Hartenberg. A Kinematic Notation for Lower-Pair Mechanisms Based
on Matrices. Trans. ASME, J. Appl. Mech., 22(2):215–221, 1955.

S. Dubowsky and E. Papadopoulos. The kinematics, dynamics, and control of free-flying
and free-floating space robotic systems. IEEE Transactions on Robotics and Automation, 9(5):
531–543, 1993.

S. Dubowsky and M.A Torres. Path planning for space manipulators to minimize spacecraft
attitude disturbances. In Proceedings. 1991 IEEE International Conference on Robotics and
Automation, pages 2522–2528. IEEE Comput. Soc. Press, 1991. ISBN 0-8186-2163-X.

Christer Ericson. Real-time collision detection. Morgan Kaufmann series in interactive 3D
technology. Elsevier, Amsterdam and Boston, 2005. ISBN 1558607323.

Fan-Tien Cheng, Wei-Ming Wang, and Fan-Chu Kung. Priority considerations for multiple
goals of redundant manipulators. In Proceedings of IEEE International Conference on Systems,
Man and Cybernetics, pages 264–269. IEEE, 1994. ISBN 0-7803-2129-4.

B. Faverjon and P. Tournassoud. A local based approach for path planning of manipulators
with a high number of degrees of freedom. In Proceedings. 1987 IEEE International Con-
ference on Robotics and Automation, pages 1152–1159. Institute of Electrical and Electronics
Engineers, 1987.

R. Featherstone. Efficient Factorization of the Joint-Space Inertia Matrix for Branched Kine-
matic Trees. The International Journal of Robotics Research, 24(6):487–500, 2005.

R. Featherstone and D. Orin. Robot dynamics: equations and algorithms. In Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings, pages 826–834. IEEE, 2000. ISBN 0-7803-5886-4.

Roy Featherstone. Rigid body dynamics algorithms. Springer, New York and N.Y, 2008. ISBN
0387743146.

Graham Gibbs and Savi Sachdev. Canada and the International Space Station program:
overview and status. Acta astronautica, 51(1-9):591–600, 2002.

110

A. Bibliography

K. Glass, R. Colbaugh, D. Lim, and H. Seraji. Real-time collision avoidance for redundant
manipulators. IEEE Transactions on Robotics and Automation, 11(3):448–457, 1995.

Y.-L Gu and Y. Xu. A normal form augmentation approach to adaptive control of space robot
systems. In [1993] Proceedings IEEE International Conference on Robotics and Automation,
pages 731–737. IEEE Comput. Soc. Press, 1993. ISBN 0-8186-3450-2.

R. Hedjar and P. Boucher. Nonlinear Receding-Horizon Control of Rigid Link Robot Manip-
ulators. International Journal of Advanced Robotic Systems, page 1, 2005.

G. Hirzinger, J. Heindl, and K. Landzettel. Predictive and knowledge-based telerobotic con-
trol concepts. In Proceedings. 1989 International Conference on Robotics and Automation, pages
1768–1777. IEEE Comput. Soc. Press, 1989. ISBN 0-8186-1938-4.

G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl. ROTEX-the first remotely controlled
robot in space. In Proceedings of the 1994 IEEE International Conference on Robotics and Au-
tomation, pages 2604–2611. IEEE Comput. Soc. Press, 1994. ISBN 0-8186-5330-2.

John M. Hollerbach. A Recursive Lagrangian Formulation of Maniputator Dynamics and a
Comparative Study of Dynamics Formulation Complexity. IEEE Transactions on Systems,
Man, and Cybernetics, 10(11):730–736, 1980.

P. Huang, J. Yan, J. Yuan, and Y. Xu. Robust control of space robot for capturing objects using
optimal control method. In 2007 IEEE International Conference on Informaiton Acquisition,
pages 397–402. IEEE Comput. Soc. Press, 2007. ISBN 1-4244-1220-X.

Rui Huang, Sachin C. Patwardhan, and Lorenz T. Biegler. Robust extended Kalman filter
based nonlinear model predictive control formulation. In Proceedings of the 48h IEEE Con-
ference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference,
pages 8046–8051. IEEE, 2009. ISBN 978-1-4244-3871-6.

N. Inaba and M. Oda. Autonomous satellite capture by a space robot: world first on-orbit
experiment on a Japanese robot satellite ETS-VII. In Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings,
pages 1169–1174. IEEE, 2000. ISBN 0-7803-5886-4.

Ashkan M. Jasour and Mohammad Farrokhi. Path tracking and obstacle avoidance for re-
dundant robotic arms using fuzzy NMPC. In 2009 American Control Conference, pages
1353–1358. IEEE, 2009. ISBN 978-1-4244-4523-3.

Jinhyun Kim, G. Marani, Wan Kyun Chung, and Junku Yuh. A general singularity avoid-
ance framework for robot manipulators: task reconstruction method. In IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, pages 4809–4814
Vol.5. IEEE, 2004. ISBN 0-7803-8232-3.

Fumio Kanehiro, Florent Lamiraux, Oussama Kanoun, Eiichi Yoshida, and Jean-Paul Lau-
mond. A Local Collision Avoidance Method for Non-strictly Convex Polyhedra.

Oussama Kanoun, Florent Lamiraux, Pierre-Brice Wieber, Fumio Kanehiro, Eiichi Yoshida,
and Jean-Paul Laumond. Prioritizing linear equality and inequality systems: Application
to local motion planning for redundant robots. In 2009 IEEE International Conference on
Robotics and Automation, pages 2939–2944. IEEE, 2009. ISBN 978-1-4244-2788-8.

111

A. Bibliography

Oussama Kanoun, Florent Lamiraux, and Pierre-Brice Wieber. Kinematic Control of Redun-
dant Manipulators: Generalizing the Task-Priority Framework to Inequality Task. IEEE
Transactions on Robotics, 27(4):785–792, 2011.

O. Khatib and J. Burdick. Motion and force control of robot manipulators. In Proceedings.
1986 IEEE International Conference on Robotics and Automation, pages 1381–1386. Institute of
Electrical and Electronics Engineers, 1986.

J.-O Kim and P.K Khosla. Real-time obstacle avoidance using harmonic potential functions.
IEEE Transactions on Robotics and Automation, 8(3):338–349, 1992.

Jinhyun Kim, Giacomo Marani, Wan Kyun Chung, and Junku Yuh. Task reconstruction
method for real-time singularity avoidance for robotic manipulators. Advanced Robotics,
20(4):453–481, 2006.

C. A. Klein and B. E. Blaho. Dexterity Measures for the Design and Control of Kinematically
Redundant Manipulators. The International Journal of Robotics Research, 6(2):72–83, 1987.

Mayuresh V. Kothare, Venkataramanan Balakrishnan, and Manfred Morari. Robust con-
strained model predictive control using linear matrix inequalities. Automatica, 32(10):
1361–1379, 1996.

Roberto Lampariello. Motion Planning for the On-orbit Grasping of a Non-cooperative Tar-
get Satellite with Collision Avoidance. In 10th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space (i-SAIRAS 2010), 2010.

Roberto Lampariello and Gerd Hirzinger. Generating feasible trajectories for autonomous
on-orbit grasping of spinning debris in a useful time. In 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 5652–5659. IEEE, 2013. ISBN 978-1-4673-6358-7.

Jay H. Lee and N. Lawrence Ricker. Extended Kalman Filter Based Nonlinear Model Predic-
tive Control. Industrial & Engineering Chemistry Research, 33(6):1530–1541, 1994.

Bin Liang, Cheng Li, Lijun Xue, and Wenyi Qiang. A Chinese Small Intelligent Space Robotic
System for On-Orbit Servicing. In 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4602–4607. IEEE, 2006. ISBN 1-4244-0258-1.

K. W. Lilly and D. E. Orin. Alternate Formulations for the Manipulator Inertia Matrix. The
International Journal of Robotics Research, 10(1):64–74, 1991.

K.W Lilly and C.S Bonaventura. A generalized formulation for simulation of space robot
constrained motion. In Proceedings of 1995 IEEE International Conference on Robotics and
Automation, pages 2835–2840. IEEE, 1995. ISBN 0-7803-1965-6.

J. Luh, M. Walker, and R. Paul. Resolved-acceleration control of mechanical manipulators.
IEEE Transactions on Automatic Control, 25(3):468–474, 1980a.

J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-Line Computational Scheme for Mechanical
Manipulators. Journal of Dynamic Systems, Measurement, and Control, 102(2):69, 1980b.

B. Ma and W. Huo. Adaptive control of space robot system with an attitude controlled
base. In Proceedings of 1995 IEEE International Conference on Robotics and Automation, pages
1265–1270. IEEE, 1995. ISBN 0-7803-1965-6.

112

A. Bibliography

A. A. Maciejewski and C. A. Klein. Obstacle Avoidance for Kinematically Redundant Ma-
nipulators in Dynamically Varying Environments. The International Journal of Robotics Re-
search, 4(3):109–117, 1985.

Anthony A. Maciejewski and Charles A. Klein. Numerical filtering for the operation of
robotic manipulators through kinematically singular configurations. Journal of Robotic Sys-
tems, 5(6):527–552, 1988.

Jan M. Maciejowski. Predictive control: With constraints. Prentice Hall, Harlow and England
and New York, 2002. ISBN 9780201398236.

V. Manikonda, P.O Arambel, M. Gopinathan, R.K Mehra, and F.Y Hadaegh. A model pre-
dictive control-based approach for spacecraft formation keeping and attitude control. In
Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), pages 4258–4262.
IEEE, 1999. ISBN 0-7803-4990-3.

G. Marani, Jinhyun Kim, Junku Yuh, and Wan Kyun Chung. A real-time approach for sin-
gularity avoidance in resolved motion rate control of robotic manipulators. In Proceedings
2002 IEEE International Conference on Robotics and Automation, pages 1973–1978. IEEE, 2002.
ISBN 0-7803-7272-7.

Y. Masutani, F. Miyazaki, and S. Arimoto. Sensory feedback control for space manipulators.
In Proceedings. 1989 International Conference on Robotics and Automation, pages 1346–1351.
IEEE Comput. Soc. Press, 1989. ISBN 0-8186-1938-4.

D.Q Mayne, J.B Rawlings, C.V Rao, and P.O.M Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789–814, 2000.

R.V Mayorga and A.K.C Wong. A singularities avoidance approach for the optimal local
path generation of redundant manipulators. In Proceedings. 1988 IEEE International Con-
ference on Robotics and Automation, pages 49–54. IEEE Comput. Soc. Press, 1988. ISBN
0-8186-0852-8.

Richard A. McCourt and Clarence W. de Silva. Autonomous Robotic Capture of a Satellite
Using Constrained Predictive Control. IEEE/ASME Transactions on Mechatronics, 11(6):
699–708, 2006.

S. McMillan and D.E Orin. Efficient computation of articulated-body inertias using succes-
sive axial screws. IEEE Transactions on Robotics and Automation, 11(4):606–611, 1995.

S. McMillan, D.E Orin, and R.B McGhee. Efficient dynamic simulation of an underwater
vehicle with a robotic manipulator. IEEE Transactions on Systems, Man, and Cybernetics, 25
(8):1194–1206, 1995.

Manfred Morari and Jay H. Lee. Model predictive control: past, present and future. Com-
puters & Chemical Engineering, 23(4-5):667–682, 1999.

Y. Nakamura, H. Hanafusa, and T. Yoshikawa. Task-Priority Based Redundancy Control of
Robot Manipulators. The International Journal of Robotics Research, 6(2):3–15, 1987.

Yoshihiko Nakamura and Hideo Hanafusa. Inverse Kinematic Solutions With Singularity
Robustness for Robot Manipulator Control. Journal of Dynamic Systems, Measurement, and
Control, 108(3):163, 1986.

113

A. Bibliography

NASA. On-orbit satellite servicing study: Project report. National Aeronautics and Space Ad-
ministration. Goddard Space Flight Center, 2010.

D. Nenchev. A controller for a redundant free-flying space robot with spacecraft attitude/-
manipulator motion coordination. In Proceedings of 1993 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’93), pages 2108–2114. IEEE, 1993. ISBN 0-7803-
0823-9.

D. N. Nenchev. Restricted Jacobian Matrices of Redundant Manipulators in Constrained
Motion Tasks. The International Journal of Robotics Research, 11(6):584–597, 1992.

D.N Nenchev and M. Uchiyama. Singularity-consistent path tracking: a null space based
approach. In Proceedings of 1995 IEEE International Conference on Robotics and Automation,
pages 2482–2489. IEEE, 1995. ISBN 0-7803-1965-6.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, Berlin and New
York, 2 edition, 2006. ISBN 978-0-387-30303-1.

M. Oda, K. Kibe, and F. Yamagata. ETS-VII, space robot in-orbit experiment satellite. In Pro-
ceedings of IEEE International Conference on Robotics and Automation, pages 739–744. IEEE,
1996. ISBN 0-7803-2988-0.

Andrew Ogilvie, Justin Allport, Hannah Michael, and John Lymer. Autonomous Satellite
Servicing Using the Orbital Express Demonstration Manipulator System. In Proc. of the 9th
International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS
’08), pages 25–29, 2008.

OMG. Data Distribution Service for Real-time Systems: Version 1.2, 2007. URL
http://www.omg.org/spec/DDS/1.2.

OMG. The Real-time Publish-Subscribe Wire Protocol DDS Interoperabil-
ity Wire Protocol Specificiation (DDS-RTPS): Version 2.1, 2010. URL
http://www.omg.org/spec/DDS-RTPS/2.1/.

E. Papadopoulos and I. Poulakakis. On path planning and obtacle avoidance for nonholo-
nomic platforms with manipulator: a polynomial approach. The International Journal of
Robotics Research, 21(4):367–383, 2002.

Evangelos Papadopoulos and S. Ali A. Moosavian. Dynamics and control of space free-
flyers with multiple manipulators. Advanced Robotics, 9(6):603–624, 1994.

F.C Park, J.E Bobrow, and S.R Ploen. A Lie Group Formulation of Robot Dynamics. The
International Journal of Robotics Research, 14(6):609–618, 1995.

H. Park, S. D. Cairano, and I. Kolmanovsky. Model predictive control for spacecraft ren-
dezvous and docking with a rotating/tumbling platform and for debris avoidance. In
2011 American Control Conference, pages 1922–1927. IEEE, 2011.

P. M. Pathak, R. P. Kumar, and A. Mukherjee. A scheme for robust trajectory control of space
robots. Simulation Modelling Practice and Theory, 16(9):1337–1349, 2008.

R.A Peters, C.L Campbell, W.J Bluethmann, and E. Huber. Robonaut task learning through
teleoperation. In 2003 IEEE International Conference on Robotics and Automation, pages 2806–
2811. IEEE, 2003. ISBN 0-7803-7736-2.

114

http://www.omg.org/spec/DDS/1.2
http://www.omg.org/spec/DDS-RTPS/2.1/

A. Bibliography

S.Joe Qin and Thomas A. Badgwell. A survey of industrial model predictive control tech-
nology. Control Engineering Practice, 11(7):733–764, 2003.

Changwu Qiu, Qixin Cao, and Yijun Sun. Redundant Manipulator Control with Constraints
for Subgoals. In 2006 IEEE International Conference on Automation Science and Engineering,
pages 212–217. IEEE, 2006. ISBN 1-4244-0310-3.

J.B Rawlings and K.R Muske. The stability of constrained receding horizon control. IEEE
Transactions on Automatic Control, 38(10):1512–1516, 1993.

Detlef Reintsema, Klaus Landzettel, and Gerd Hirzinger. DLR’s Advanced Telerobotic Con-
cepts and Experiments for On-Orbit Servicing. In Manuel Ferre, Martin Buss, Rafael
Aracil, Claudio Melchiorri, and Carlos Balaguer, editors, Springer Tracts in Advanced
Robotics, pages 323–345. Springer Berlin Heidelberg, Berlin and Heidelberg, 2007. ISBN
978-3-540-71363-0.

Ioannis Rekleitis, Eric Martin, Guy Rouleau, Régent L’Archevêque, Kourosh Parsa, and Eric
Dupuis. Autonomous capture of a tumbling satellite. Journal of Field Robotics, 24(4):275–
296, 2007.

J. Richalet, A. Rault, J.L Testud, and J. Papon. Model predictive heuristic control. Automatica,
14(5):413–428, 1978.

Arthur Richards, Tom Schouwenaars, Jonathan P. How, and Eric Feron. Spacecraft Trajectory
Planning with Avoidance Constraints Using Mixed-Integer Linear Programming. Journal
of Guidance, Control, and Dynamics, 25(4):755–764, 2002.

G. Rodriguez, A. Jain, and K. Kreutz-Delgado. A Spatial Operator Algebra for Manipulator
Modeling and Control. The International Journal of Robotics Research, 10(4):371–381, 1991.

Thomas Rupp, Toralf Boge, Reinhard Kiehling, and Sellmaier Florian. Flight Dynamics
Challenges of the German On-Orbit Servicing Mission DEOS. In 21st International Sympo-
sium on Space Flight Dynamics, 2009.

S. K. Saha. Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal
Complement Matrices. Journal of Applied Mechanics, 66(4):986, 1999.

S.K Saha. A decomposition of the manipulator inertia matrix. IEEE Transactions on Robotics
and Automation, 13(2):301–304, 1997.

G. Schreiber, M. Otter, and G. Hirzinger. Solving the singularity problem of non-redundant
manipulators by constraint optimization. In Proceedings 1999 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. Human and Environment Friendly Robots with High In-
telligence and Emotional Quotients (Cat. No.99CH36289), pages 1482–1488. IEEE, 1999. ISBN
0-7803-5184-3.

Pierre O. M. Scokaert and James B. Rawlings. Feasibility issues in linear model predictive
control. AIChE Journal, 45(8):1649–1659, 1999.

H. Seraji and B. Bon. Real-time collision avoidance for position-controlled manipulators.
IEEE Transactions on Robotics and Automation, 15(4):670–677, 1999.

115

A. Bibliography

Bruno Siciliano. Robotics: Modelling, planning and control. Advanced textbooks in control and
signal processing. Springer, London, 2009. ISBN 9781846286414.

Garett A. Sohl and James E. Bobrow. A Recursive Multibody Dynamics and Sensitivity
Algorithm for Branched Kinematic Chains. Journal of Dynamic Systems, Measurement, and
Control, 123(3):391, 2001.

X. Tang, C. Tang, and H. Li. A backstepping robust control method for free-floating
space robot system with dual-arms. In 2011 IEEE International Conference on Robotics and
Biomimetics, pages 761–765. IEEE Comput. Soc. Press, 2011. ISBN 978-1-4577-2136-6.

Y. Umetani and K. Yoshida. Resolved motion rate control of space manipulators with gen-
eralized Jacobian matrix. IEEE Transactions on Robotics and Automation, 5(3):303–314, 1989.

Jostein Vada, Olav Slupphaug, and Bjarne A. Foss. Infeasibility Handling in Linear MPC
Subject to Prioritized Constraints. In Proceedings of the 14th World Congress, IFAC, IFAC
conference proceedings, pages 163–168. Published for the International Federation of Au-
tomatic Control by Pergamon, 1999. ISBN 9780080427553.

Jostein Vada, Olav Slupphaug, and T. A. Johansen. Optimal Prioritized Infeasibility Han-
dling in Model Predictive Control: Parametric Preemptive Multiobjective Linear Program-
ming Approach. Journal of Optimization Theory and Applications, 109(2):385–413, 2001.

Z. Vafa and S. Dubowsky. The Kinematics and Dynamics of Space Manipulators: The Virtual
Manipulator Approach. The International Journal of Robotics Research, 9(4):3–21, 1990.

A. Vivas and V. Mosquera. Predictive Functional Control of a PUMA Robot. In ACSE-05
Conference Proceedings, pages 35–40. ICGST, 2005.

I.D Walker. Impact configurations and measures for kinematically redundant and multiple
armed robot systems. IEEE Transactions on Robotics and Automation, 10(5):670–683, 1994.

M. W. Walker and D. E. Orin. Efficient Dynamic Computer Simulation of Robotic Mecha-
nisms. Journal of Dynamic Systems, Measurement, and Control, 104(3):205, 1982.

Donald M. Waltz. On-orbit servicing of space systems. Orbit, a foundation series. Krieger Pub.
Co., Malabar and Fla, original ed. edition, 1993. ISBN 9780894640025.

H. Wang and Y. Xie. Passivity based adaptive jacobian tracking for free-floating space ma-
nipulators without using spacecraft acceleration. Automatica, 45(6):1510–1517, 2009.

Liuping Wang. Model predictive control system design and implementation using MATLAB R©.
Advances in industrial control. Springer, London, op. 2009.

Wikipedia. On-Orbit Servicing, 2014. URL de.wikipedia.org/wiki/On-Orbit_Servicing.

W. Xu, Y. Liu, B. Liang, Y. Xu, C. Li, and W. Qiang. Non-holonomic path planning of a free-
floating space robotic system using genetic algorihtm. Advanced Robotics, 22(4):451–476,
2008.

Y. Xu, H.-Y Shum, J.-J Lee, and T. Kanade. Adaptive control of space robot system with an
attitude controlled base. In Proceedings 1992 IEEE International Conference on Robotics and
Automation, pages 2005–2010. IEEE Comput. Soc. Press, 1992. ISBN 0-8186-2720-4.

116

de.wikipedia.org/wiki/On-Orbit_Servicing

A. Bibliography

Y. Xu, Y. Gu, Y. Wu, and R. Sclabassi. Robust control of free-floating space robot systems.
International Journal of Control, 61(2):261–277, 1995.

Yangsheng Xu. Adaptive control of space robot system with an attitude controlled base, vol-
ume CMU-RI-TR-91-14 of Technical report. Carnegie Mellon University. The Robotics Institute.
Carnegie Mellon University, the Robotics Institute, Pittsburgh and Pa, 1991.

Yangsheng Xu and Takeo Kanade. Space robotics: Dynamics and control, volume 188 of The
Kluwer international series in engineering and computer science. Kluwer Academic Publishers,
Boston, 1993. ISBN 9780792392651.

Yangsheng Xu and Heung-Yeung Shum. Dynamic control of a space robot system with no thrust
jets controlled base, volume CMU-RI-TR-91-33 of Technical report. Carnegie Mellon University.
The Robotics Institute. Carnegie Mellon University, the Robotics Institute, Pittsburgh and
Pa, 1991.

K. Yoshida. A general formulation for under-actuated manipulators. In Proceedings of the
1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics
for Real-World Applications. IROS ’97, pages 1651–1657. IEEE, 1997. ISBN 0-7803-4119-8.

K. Yoshida. The SpaceDyn: a MATLAB toolbox for space and mobile robots. In Proceedings
1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Envi-
ronment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289),
pages 1633–1638. IEEE, 1999. ISBN 0-7803-5184-3.

K. Yoshida. Engineering Test Satellite VII Flight Experiments for Space Robot Dynamics and
Control: Theories on Laboratory Test Beds Ten Years Ago, Now in Orbit. The International
Journal of Robotics Research, 22(5):321–335, 2003.

T. Yoshikawa. Analysis and Control of Robot Manipulators with Redundancy. In M. Brady
and R. Paul, editors, Robotics Research The First International Symposium, pages 735–747.
MIT Press, 1984.

Yunong Zhang, Jun Wang, and Youshen Xia. A dual neural network for redundancy reso-
lution of kinematically redundant manipulators subject to joint limits and joint velocity
limits. IEEE Transactions on Neural Networks, 14(3):658–667, 2003.

A. Zheng and M. Morari. Stability of model predictive control with mixed constraints. IEEE
Transactions on Automatic Control, 40(10):1818–1823, 1995.

L. Zlajpah and B. Nemec. Kinematic control algorithms for on-line obstacle avoidance for
redundant manipulators. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tem, pages 1898–1903. IEEE, 2002. ISBN 0-7803-7398-7.

117

	Front Page
	Acknowledgements
	Zusammenfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	Symbols
	Indices

	Introduction
	Motivation
	On-Orbit Servicing
	Why Space Robotics

	State of the art
	OOS Technology Demonstrators
	Space Robotics Demonstrators
	Technical Challenges of Space Robotics

	Hypothesis and Problem Statements
	Scope of Work
	Research Scope within Space Robotics
	Thesis Roadmap

	Simulation System Design
	Mission Profile
	Simulation Overall Design
	Racoon Design
	Simulation Environment
	Data Distribution Service

	RacoonSim Design
	Multi-body Dynamics
	Autonomous Mission Management
	Path & Trajectory Planning
	Motion Control
	Virtual Reality & Head-Up Display

	Summary

	Multibody Dynamics
	Graphy Theory
	Spatial Notation
	Dynamics Algorithm
	Lagrange Formulation
	Composite Rigid Body Algorithm
	Inertia Mapping Matrix
	Modified CRBA

	IMM Application
	Branch-induced Sparsity
	CRBA Computational Cost Analysis
	JSIM Factorization Analysis

	Case Study
	Summary

	Kinematic Control of Manipulator
	Inverse Kinematics
	Redundancy and Task Priority
	General Solution for Inverse Kinematics

	Singularity Avoidance
	Manipulability Ellipsoid
	Singular Task Reconstruction
	STR with Multiple Subtasks
	Simulation Results

	Obstacle Detection and Avoidance
	Collision Detection
	Collision Avoidance Strategy
	Simulation Results

	Summary

	Model Predictive Control
	Model Predictive Control
	Principle and Formulation
	MPC Properties

	NMPC Applied to Space Robot
	Free-Floating Space Robot
	Feedback Linearization
	Observer Design
	Optimization Index

	Inequality Constraints
	Input/Output Constraints
	Obstacle/Singularity Constraints

	Quadratic Programming
	KKT Conditions
	QP with Prioritized Constraints

	Simulation Study
	Simulation Set-up
	Approach to the Target
	Tracking a Predefined Path
	Tracking a Point on the Target

	Summary

	Conclusions and Future Research
	Conclusions
	Future Research

	Bibliography

