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Abstract

The thesis focuses on the development of MPC algorithms for FPGA-based control of

AC electric drives and power electronics. Two algorithms are investigated: Continuous

Set Nonlinear Model Predictive Control (CS-NMPC) and Model Predictive Control with

Imposed Target Dynamic (MPC-ITD). CS-NMPC relies on modulation whereas MPC-

ITD allows to directly control power electronic converters. The proposed algorithms

enable the use of multi-parametric nonlinear optimization and improve dynamic as well

as steady state performance of the controller.

For practical implementation of algorithms, an FPGA-based platform is proposed which

allows to expedite development and verification of control algorithms. Experimental

results demonstrate high performance of the control schemes and confirm theoretical

investigations.

Kurzzusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung von modellprädiktiven Algorith-

men für mittels FPGAs geregelte Drehstromantriebe und Leistungselektronik. Hierbei

werden zwei Algorithmen untersucht: die kontinuierliche nichtlineare modellprädiktive

Regelung (CS-NMPC) und die modellprädiktive Regelung mit Vorgabe der Zieldynamik

(MPC-ITD). Während CS-NMPC ein Modulationsverfahren benutzt, erlaubt MPC-ITD

eine direkte Ansteuerung der leistungselektronischen Schaltelemente. Die vorgeschlage-

nen Algorithmen ermöglichen die Behandlung nichtlinearer Modelle und führen zu einer

verbesserten Regelgüte im dynamischen sowie stationären Betrieb.

Zur praktischen Implementierung der Algorithmen wurde zudem eine FPGA-Plattform

entwickelt, mithilfe derer Steueralgorithmen zeiteffizient entworfen und verifiziert werden

können. Experimentelle Ergebnisse belegen weitreichenden Möglichkeiten der Regelungsver-

fahren und bestätigen die theoretischen Untersuchungen.



Acknowledgements

Completing this doctoral thesis could not be possible without the help and support of

many people to whom I would like to express my deepest gratitude.

Above all, I do appreciate support and contributions of my supervisor, Professor Ralph

Kennel. He gave me this tremendous opportunity to do my doctoral research at the

institute for Electrical Drive Systems and Power Electronics. During the time I have

been working at the institute, he has been of great help to me.

I would like also to acknowledge support of Professor Hans-Georg Herzog in helping me

to evaluate my contributions. I am grateful for fruitful discussions with him and the

time which he devoted to reviewing my reports.

I am thankful for the financial support of DAAD. Furthermore, I am grateful to the

supportive staff of DAAD, the TUM International Office as well as the Graduate School.

I would like to thank my colleagues at the institute for Electrical Drive Systems and

Power Electronics for their kindness, friendship as well as their permanent enthusiasm

for the scientific discussions. In particular I would like to thank Mr. Julien Cordier and

Mr. Daniel Glose, with whom I had great time working in the same office.

I am grateful to Mr. Schuster and Mr. Kopetschny for their assistance in the laboratory.

Furthermore, I would appreciate coordination supports of Mrs. Daniela Dietmaier and

Mrs. Julia Menz.

Last, but by no means least, I thank my family for their love and patience.

ii



Contents

Acknowledgements ii

Contents iii

List of Figures viii

Abbreviations xi

Symbols xiii

I Background 1

1 Introduction 2

1.1 AC Electrical Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Electronic Based Power Converters . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Control Strategies for Electrical Drives and Power Electronics . . . . . . . 7

1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 FPGA-Based Development Platform . . . . . . . . . . . . . . . . . 11

1.4.2 Continuous Set Nonlinear Model Predictive Control . . . . . . . . 12

1.4.3 Model Predictive Control With Imposed Target Dynamic (MPC-
ITD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Induction Motor 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Mathematical Model of Induction Motor . . . . . . . . . . . . . . . . . . . 14

2.2.1 Differential Equations of Induction Motor . . . . . . . . . . . . . . 15

2.2.1.1 State Equations . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Control of Induction Motor . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Scalar Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Field Oriented Control . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Direct Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.5 Flux Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.6 Sensorless Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.6.1 Fundamental Model Based Sensorless Control . . . . . . 20

iii



Contents iv

2.3.6.2 Anisotropy Based Sensorless Control . . . . . . . . . . . . 21

3 Digital Computational Systems 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Digital Signal Processors (DSP) . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . 24

3.2.2 On-Chip Memory Blocks . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Application Software . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Real-Time Signal Processing . . . . . . . . . . . . . . . . . . . . . 26

3.3 Field Programmable Gate Array (FPGA) . . . . . . . . . . . . . . . . . . 26

3.3.1 Basic Logic Elements on FPGAs . . . . . . . . . . . . . . . . . . . 27

3.3.2 On-Chip Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Hard-Core Functional Blocks . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Embedded Hard-Core Processor . . . . . . . . . . . . . . . . . . . 30

3.3.5 FPGA Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.6 Suitability of FPGAs for Drive Applications . . . . . . . . . . . . . 32

3.3.6.1 Compactness and PCB Simplification . . . . . . . . . . . 33

3.3.6.2 Multiple Real-Time Tasks . . . . . . . . . . . . . . . . . . 33

3.3.6.3 Reliability of FPGAs for Motor Control . . . . . . . . . . 33

3.3.6.4 Scalability of FPGA-Based Design . . . . . . . . . . . . . 34

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

II FPGA-Based Real-Time System 35

4 FPGA-Based Computation 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Programming of FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Very High Speed Integrated Circuit Hardware Description Lan-
guage (VHDL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 System Level Design (SLD) . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Code Generation Tools . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Computational Performance of FPGAs . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Enhancing Computational Performance and Optimizations . . . . 40

4.3.1.1 Parallel Computing . . . . . . . . . . . . . . . . . . . . . 40

4.3.1.2 Pipeline Processing . . . . . . . . . . . . . . . . . . . . . 41

4.3.1.3 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Design and Optimizations in MATLAB/Simulink . . . . . . . . . . 44

4.4 FPGA-Based Design Methodology . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Selection of Target FPGA Chip . . . . . . . . . . . . . . . . . . . . 47

4.4.2 Soft-Core IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 Simulation and Verification Tools . . . . . . . . . . . . . . . . . . . 49

4.4.4 Experimental Tests and Instrumentations . . . . . . . . . . . . . . 49

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 FPGA Implementation of Electric Drive Models 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Data Type Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Contents v

5.2.1 Floating Point Data Type . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1.1 Performance of Floating Point Arithmetic on FPGAs . . 53

5.2.2 Fixed Point Data Type . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 FPGA-Based Model of Induction Motor . . . . . . . . . . . . . . . . . . . 54

5.3.1 Generalized Procedure for FPGA-Base Real-Time Modeling . . . . 54

5.3.2 Inverter Model for Control . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 FPGA-Based Hardware-In-the-Loop Simulation 57

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 FPGA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Host PC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Ethernet Communication Interface . . . . . . . . . . . . . . . . . . 60

6.3.2 MATLAB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Experimental Setup 62

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Controller Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2.1 Analog-Digital (AD) Converter . . . . . . . . . . . . . . . . . . . . 64

7.2.1.1 SPI Communication . . . . . . . . . . . . . . . . . . . . . 65

7.2.2 Encoder Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.2.1 Speed and Position Calculation . . . . . . . . . . . . . . . 65

7.3 Measurement Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3.1 Current Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3.1.1 Hall Effect Sensor . . . . . . . . . . . . . . . . . . . . . . 66

7.3.2 DC-Link Voltage Sensor . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4 Electrical Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5 The Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

III Nonlinear Model Predictive Control 72

8 Model Predictive Control 73

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Model Predictive Control for Power Electronic and Drives . . . . . . . . . 75

8.3 Finite-Set Model Predictive Control . . . . . . . . . . . . . . . . . . . . . 76

8.3.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.3.2 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.3.3 Constraints in FS-MPC . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4 FS-MPC for Induction Motor . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.4.1 Design of the Controller . . . . . . . . . . . . . . . . . . . . . . . . 80

8.4.1.1 Predictive Model of Induction Motor . . . . . . . . . . . 80

8.4.1.2 The Cost Function . . . . . . . . . . . . . . . . . . . . . . 81

8.4.2 FPGA-Based Implementation of FS-MPC . . . . . . . . . . . . . . 81

8.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents vi

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Nonlinear Model Predictive Control 85

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2 Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.1 Region Elimination Optimization Method . . . . . . . . . . . . . . 87

9.3 Multi-Variable Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10 Nonlinear Model Predictive Control of Induction Motor 95

10.1 Structure of the Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.1.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.1.1.1 Including Constraints . . . . . . . . . . . . . . . . . . . . 96

10.1.2 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 96

10.2 Control in Overmodulation Region . . . . . . . . . . . . . . . . . . . . . . 97

10.3 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.3.1 Computational Performance . . . . . . . . . . . . . . . . . . . . . . 99

10.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.4.1 Motor Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.4.2 Decoupling of Flux and Torque Control . . . . . . . . . . . . . . . 101

10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11 Model Predictive Control with Imposed Target Dynamic 104

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

11.2 Computational Complexity of FS-MPC for Long Prediction Horizon . . . 105

11.3 Synergetic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.3.1 Time Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.3.2 Optimal Reaching Trajectory . . . . . . . . . . . . . . . . . . . . . 107

11.4 Model Predictive Control with Imposed Target Dynamic . . . . . . . . . . 109

11.4.1 Discrete Evolution Equation . . . . . . . . . . . . . . . . . . . . . . 110

11.4.2 Cost Function of MPC-ITD . . . . . . . . . . . . . . . . . . . . . . 110

11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

12 MPC-ITD for PMSM 112

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12.2 Mathematical Model of PMSM . . . . . . . . . . . . . . . . . . . . . . . . 113

12.2.1 2-Phase Equivalent Model of PMSM . . . . . . . . . . . . . . . . . 113

12.3 FS-MPC for PMSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12.3.1 Predictive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12.3.2 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 115

12.3.3 Model-In-the-Loop Simulation of FS-MPC . . . . . . . . . . . . . . 116

12.4 MPC-ITD for PMSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.5 FPGA Implementation of MPC-ITD and Experimental Results . . . . . . 119

12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

13 Conclusion and Future Works 121

13.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

13.1.1 FPGA-Based Design . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Contents vii

13.1.1.1 FPGA-Based Rapid Prototyping . . . . . . . . . . . . . . 121

13.1.2 Control Algorithm for FPGA Implementation . . . . . . . . . . . . 123

13.1.2.1 Continuous-Set Nonlinear Model Predictive Control . . . 123

13.1.2.2 Model Predictive Control with Imposed Target Dynamic 124

13.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 125

13.2.1 Future Challenges for FPGA-Based Design . . . . . . . . . . . . . 125

13.2.2 Future Perspective of Nonlinear Model Predictive Control . . . . . 125

A CORDIC Algorithm for Park Transformation 126

A.1 CORDIC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.1.1 MATLAB Code for Park Transformation . . . . . . . . . . . . . . 126

B Analog-Digital Converter 142

B.1 Analog Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

C FPGA Implementation of PI Controller 149

D Flux Observer of Induction Motor 150

E Simulink Model of CS-NMPC for Induction Motor 152

E.1 Loop Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

E.2 Current and Flux Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 154

E.2.1 Flux Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . 155

E.3 Cost Function Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

F Parameters of the Electrical Motors 157

F.1 Permanent Magnet Synchronous Motor . . . . . . . . . . . . . . . . . . . 157

F.2 Induction Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 159



List of Figures

1.1 A three-phase and equivalent two-phase voltage source . . . . . . . . . . . 4

1.2 Transformation from 3-phase to 2-phase system . . . . . . . . . . . . . . . 5

1.3 Space vector representation of Park transformation . . . . . . . . . . . . . 5

1.4 A transistor switch with anti-parallel diode . . . . . . . . . . . . . . . . . 6

1.5 Schematic of a typical three phase 2-level VSI. . . . . . . . . . . . . . . . 7

1.6 Cascade structure of FOC for an induction motor . . . . . . . . . . . . . . 9

1.7 Cascade structure of DTC for an induction motor . . . . . . . . . . . . . . 10

2.1 Cross section of an induction motor . . . . . . . . . . . . . . . . . . . . . 15

2.2 Signal flow of an induction motor in an arbitrary reference frame . . . . . 17

2.3 Signal flow of the flux observer for an induction motor [1] . . . . . . . . . 19

2.4 Structure of the MRAS estimation strategy . . . . . . . . . . . . . . . . . 21

3.1 Functional block diagram of TMS320F28335 (source: www.ti.com) . . . . 25

3.2 Cyclone FPGA family. Source: www.altera.com . . . . . . . . . . . . . . . 27

3.3 Logic Element of Cyclone IV FPGA chip, Source: www.altera.com . . . . 28

3.4 Interconnect Fabric of Cyclone IV FPGA chip, Source: www.altera.com . 29

3.5 Embedded hard-core multiplier, Source: www.altera.com . . . . . . . . . . 30

3.6 Functional block diagram of a SoC FPGA with integrated hard-core pro-
cessor. Source : www.xilinx.com . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 RTL (Register-Transfer Level) representation of the VHDL model . . . . . 38

4.2 RTL view of the dual multiplier . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 RTL view of pipelined arithmetic operations . . . . . . . . . . . . . . . . . 42

4.4 Sharing an embedded multiplier between two data paths . . . . . . . . . . 44

4.5 GUI of the multiplier block in Simulink . . . . . . . . . . . . . . . . . . . 45

4.6 GUI of the HDL coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 A pipelined design in Simulink . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 A shared multiplier in Simulink . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 The FPGA-based design flow . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.10 The Ethernet-based Simulink interface with the controller board for de-
sign verification and instrumentations . . . . . . . . . . . . . . . . . . . . 49

5.1 Hardware model of floating point addition in Simulink . . . . . . . . . . . 52

5.2 Hardware implementation of the difference equations . . . . . . . . . . . . 55

5.3 One leg of VSI switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 FPGA-based MIL system . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 The HIL structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



List of Figures ix

6.3 HIL schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Hardware structure of the FPGA model . . . . . . . . . . . . . . . . . . . 59

6.5 HIL structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Ethernet controller in the FPGA . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Block diagram of the experimental setup . . . . . . . . . . . . . . . . . . . 63

7.2 DE2-115 FPGA development board [2] . . . . . . . . . . . . . . . . . . . . 64

7.3 I/O board for the FPGA main board designed to connect to the 40-pin
expansion header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 Signals of an optical encoder . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.5 Current measurement for the VSI . . . . . . . . . . . . . . . . . . . . . . . 67

7.6 Resistive divider circuit for the voltage measurement . . . . . . . . . . . . 68

7.7 The isolation amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.8 The 3-phase voltage source inverter . . . . . . . . . . . . . . . . . . . . . . 69

7.9 The schematic of the IPM (Source [3]) . . . . . . . . . . . . . . . . . . . . 69

7.10 Isolation of gate signals through the optocoupler . . . . . . . . . . . . . . 70

8.1 Abstract structure of MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2 An example of continuous set MPC performance . . . . . . . . . . . . . . 74

8.3 Power transistor as an ideal switch . . . . . . . . . . . . . . . . . . . . . . 76

8.4 FS-MPC for discrete systems . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.5 Voltage constraints of the voltage source inverter . . . . . . . . . . . . . . 78

8.6 Cost function optimization in FS-MPC: a graphical representation . . . . 79

8.7 Cost function optimization in FS-MPC . . . . . . . . . . . . . . . . . . . . 82

8.8 Experimental results: performance of FS-MPC for torque and flux con-
trol. The blue curve is the flux (Wb) whereas the red one corresponds to
the torque (Nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.9 Sliding Model Control for a VSI . . . . . . . . . . . . . . . . . . . . . . . . 84

9.1 Performance of FS-MPC vs. SVM based control . . . . . . . . . . . . . . 86

9.2 First and second iteration steps of the golden section method . . . . . . . 88

9.3 Two steps of the interval halving optimization . . . . . . . . . . . . . . . . 88

9.4 First order MIMO plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.5 Multi-variable optimization algorithm . . . . . . . . . . . . . . . . . . . . 91

9.6 Performance of the control algorithm maintaining circle constraint . . . . 92

9.7 Constraint of control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.8 Dynamic behavior of controller maintaining hexagon constraint . . . . . . 93

9.9 Control trajectory inside the hexagon . . . . . . . . . . . . . . . . . . . . 93

10.1 Block diagram of CS-NMPC . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.2 Space vector representation of the voltage vector to be calculated by CS-
NMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.3 The flowchart of the CS-NMPC algorithm for the induction motor . . . . 98

10.4 FPGA model of CS-NMPC for the induction motor . . . . . . . . . . . . . 99

10.5 The Simulink model of CS-NMPC for the induction motor . . . . . . . . . 100

10.6 Dynamic performance of CS-NMPC for the induction motor at startup.
VDC = 300(V ) and Imaxs = 15(A) for different gain factors GT . . . . . . . 102



List of Figures x

10.7 Dynamic performance of the torque control loop. VDC = 300(V ) and
Imaxs = 15(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.8 Dynamic performance of the flux control loop. VDC = 300(V ) and Imaxs =
15(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.1 Phase-plane of the time optimal control trajectories for umax = 1 . . . . . 108

11.2 Phase-plane of the optimal control with various reaching dynamics . . . . 109

12.1 Signal flow of the PMSM model. τs = Ls
Rs

. . . . . . . . . . . . . . . . . . 114

12.2 Block diagram model of FS-MPC . . . . . . . . . . . . . . . . . . . . . . . 115

12.3 Simulink model for Current Prediction . . . . . . . . . . . . . . . . . . . . 116

12.4 FS-MPC algorithm for PMSM . . . . . . . . . . . . . . . . . . . . . . . . 117

12.5 Hardware Model of FS-MPC for PMSM . . . . . . . . . . . . . . . . . . . 117

12.6 Dynamic performance of FS-MPC for PMSM, GT = 0.01. . . . . . . . . . 118

12.7 Measurement results of the electromagnetic torque control in transient and steady

state operation. Rotor speed is 50( rads ), sampling frequency 20(KHz). (a) and

(c) show the results of the proposed MPC-ITD while (b) and (d) represent con-

ventional FS-MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.1 Block diagram of Park transformation . . . . . . . . . . . . . . . . . . . . 141

C.1 Simulink model for PI controller . . . . . . . . . . . . . . . . . . . . . . . 149

D.1 Simulink model for flux estimation and torque calculation . . . . . . . . . 150

D.2 Simulink model of the flux observer . . . . . . . . . . . . . . . . . . . . . . 151

D.3 First order lag system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D.4 Simulink model for torque calculation . . . . . . . . . . . . . . . . . . . . 151

E.1 A screenshot of the Simulink model of CS-NMPC for the induction motor 152

E.2 Simulink model of the Loop Manager . . . . . . . . . . . . . . . . . . . . . 153

E.3 A screenshot of the Simulink model for the flux and current prediction . . 154

E.4 A screenshot of the Simulink model for the flux prediction . . . . . . . . . 155

E.5 The Simulink model for the cost function calculation . . . . . . . . . . . . 156



Abbreviations

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

FS-MPC Finite Set Model Predictive Control

ITD Imposed Target Dynamic

MIMO Multiple Input Multiple Output (system)

SISO Single Input Single Output (system)

LTI Linear Time Invariant (system)

PID Proportional Integral Derivative (controller)

SMC Sliding Mode Control

GPC Generalized Predictive Control

AC Aternative Current

DC Direct Current

PWM Pulse Width Modulation

SVM Space Vector Modulation

IM Induction Motor

PMSM Permanent Magnet Synchronous Motor

BLDC Brush Less DC (motor)

CPU Central Processing Unit

RAM Random Access Memory

DSP Digital Signal Processor

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

UDP User Datagram Protocol

FPGA Field Programable Gate Arrays

VHDL Very high speed integrated circuit Hardware Description Language

xi



Abbreviations xii

RTL Register Transfer Level

TTL Transistor Transistor Logic

ADC Analoge Digital Converter

DAC Digital Analoge Converter

IGBT Isolated Gate Bipolar Transistor



Symbols

vs, vr stator and rotor voltage vectors V

is, ir stator and rotor current vectors A

ψs ψr stator and rotor flux vectors Wb

θs, θr stator and rotor flux angles rad

Te electromagnetic torque Nm

Tl load torque Nm

Jm moment of inertia kg ·m2

P number of pole pairs −

I current magnitude A

iα, iβ current components in αβ coordinate A

id, iq current components in dq coordinate A

vα, vβ voltage components in αβ coordinate V

vd, vq voltage components in dq coordinate V

VDC DC link voltage V

Ts sampling time s

τs, τr stator and rotor time constants s

τm mechanical time constant s

Ls, ls stator inductance H

Lm, lm mutual inductance H

Lr, lr rotor inductance H

Rs, rs stator resistance Ohm

Rr, rr rotor resistance Ohm

ωr, ωe mechanical and electrical angular frequency rads−1

J cost function −

xiii



To my parents

xiv



Part I

Background

1



Chapter 1

Introduction

Electrical Machines and Energy Systems

Compared to the traditional DC motors which were widely applied for producing me-

chanical energy in automation industry, transportation and etc, AC electrical motors

such as Induction Motors (IM) and Permanent Magnet Synchronous Motors (PMSM)

have higher efficiency and power/size ratio. AC motors do not require mechanical com-

mutations. Elimination of mechanical commutation leads to a simple physical construc-

tion and robust operation. Therefore AC motors need less maintenance and show higher

reliability.

However, mathematical modeling of AC motors is nonlinear Multiple-Input Multiple-

Output (MIMO). It makes control and optimization more challenging. Furthermore,

for practical implementation of control algorithms, more computational performance

is necessary. These challenges rise interests of industrial as well as academic research

communities to investigate new ideas and methods in order to find solutions delivering

higher performance, improving reliability at the same being simple and easier to be

realized.

Advances In Power Electronic Components

Power electronic converters, such as DC-AC inverters, provide high performance and

controllable electrical energy. By invention of power transistors, it is possible to control

flow of electrical power with higher dynamic, better efficiency and at lower cost. Using

power electronic components for feeding electrical motors, however, increases number of

controlled parameters and optimization considerations.

2
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Microelectronic and Digital Computation

Power electronic itself could not be so beneficial for the electrical drive technology with-

out microelectronic based digital computational devices. Digital components, such as

microcontrollers and programmable logic devices are the essential parts in any digi-

tal control systems. Advances in the microelectronic technology allow to realize high

performance control strategies.

In absence of digital computers, analog devices had been utilized for implementation

of the control system. In theory analog devices are faster and show higher bandwidth.

However, they are restricted in dealing with the complexity of control algorithms. Aging

and change of parameters are further drawbacks of the analog controllers.

In almost every modern electrical drive, there is a computation core that takes care of a

diversity of tasks in real-time. Control of dynamic phenomenas, is the most important

part which makes the drive fulfill technological requirements. Digitalizing of the control

system has many advantages such as more intelligent human interface, easiness of fault

recording and diagnostics. To keep up with the demand of having more reliable and

flexible systems, advanced control algorithms are needed to fulfill tasks which sometimes

are contradictory, in an optimal way. Model Predictive Control (MPC) is perhaps the

best example in this regard. It is established on digital measurement and discrete control.

Furthermore, MPC enables to deal with multi-objective optimization problems.

Filed Programmable Gate Arrays

In conventional microcontrollers, the hardware architecture is fixed. Computational

tasks are first converted into elementary instructions which can be sequentially executed

by the Central Processing Unit (CPU). In contrast to that, Field Programmable Gate

Arrays (FPGA) are hardware configurable and the computational architecture can be

designed according to any specific applications. Adaptation of the architecture to the

algorithm, makes it possible to improve computational performance at the same clock

frequency. Increasing logic density and clock frequency of FPGAs allow to realize many

high performance digital systems at lower cost. Nevertheless, main challenges of utilizing

FPGAs, are the design complexity and longer development time.

Computer Aided Design Tools

Due to rapid change of technologies and high competition between manufactures, inno-

vation and time to market are of significant importance for being successful. Computer
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Aided Design (CAD) tools expedite design and development of electromechanical sys-

tems. They are widely used to improve quality of products and shorten the development

time.

For a control system, the computer simulation simplifies early correction of errors and

reduces the design iteration time. A popular simulation program which is widely used in

academic as well as industrial communities, is MATLAB/Simulink. The complexity of

control algorithms is significantly decreased by using the graphical design environment

of Simulink.

Expanding application of electrical drives and rapidly advancing drive related technolo-

gies require a comprehensive investigation of various fields for solving practical problems.

1.1 AC Electrical Motors

Electrical motors are clean, controllable and efficient source of mechanical energy. Thanks

to the elimination of mechanical commutation which is the main drawback of conven-

tional DC motors, AC motors present a better operation performance with higher power

ratio and require less maintenance.

Modeling of Electrical Motors

Mathematical modeling of electrical drives is essential for designing the control system.

Over the last century several methods have been developed for simplification of modeling

of electrical drives.
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Figure 1.1: A three-phase and equivalent two-phase voltage source

In 3-phase electrical motors stator windings are placed in 120 degree from each other

making a symmetrical 3-phase system. From physical and construction point of view,
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3-phase systems have several advantages. However, since only two independent compo-

nents are sufficient to represent a two-dimensional space vector, it is more convenient to

transform 3-phase variables into a 2-phase equivalent model [4]. Clark transformation

allows to represent space vectors in a 2-phase system. In this dissertation it is relied on

the 2-phase equivalent model of electrical motors (see figure 1.2).

α

β

a

b

c

Figure 1.2: Transformation from 3-phase to 2-phase system

Coordinate Transformation

α

β

d

q

ud

uq

uα

uβ

Figure 1.3: Space vector representation of Park transformation

The electromagnetic torque is created by interacting rotor and stator flux rotating

around the air-gap. A revolutionary contribution to the modeling and control of AC

electrical motors is done by the concept of coordinate transformation usually referred

to as Park transformation [5]. It enables to change the reference frame from the stator

to a rotating reference frame in which electromechanical parameters of AC motors can

be represented as DC components. It simplifies the complicated model of AC machines

similar to the conventional DC machines.

As figure 1.3 shows, to transform the vector components into the new coordinate system

Park transformation is applied by means of the following equations:
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ud = uαcos(θ) + uβsin(θ) (1.1)

uq = uαsin(θ) + uβcos(θ) (1.2)

The so-called Field Oriented Control (FOC) is established on the idea of coordinate

transformation [6]. Furthermore, analysis of other control strategies is, more often, done

in the synchronous reference frame. It is not only important for the simplification and

better understanding of the operation principles of AC drives but also it is a suitable

tool for design of the controller and optimization [7, 8].

1.2 Electronic Based Power Converters

The semiconductor technology is base of power electronic devices which are applied for

power conversion (AC ←→ DC) or in general to control the flow of electrical energy. The

simple element widely used in rectifiers is diode. It is a switch which can be controlled by

polarity of the voltage between its two terminals. When the voltage polarity is positive,

it can be considered as a short circuit whereas for negative voltage it is open circuit.

Therefore it can be used for rectification of AC current [9].

Another basic power electronic component is transistor. A transistor can conduct elec-

trical current in one direction while it is turned on by the gate signal and its terminal

voltage is larger than a minimum value.

≈

Figure 1.4: A transistor switch with anti-parallel diode

These two components are basic elements in most power electronic devices. Figure

1.5 shows a 2-level Voltage Source Inverter (VSI) which produces controllable (variable

frequency and magnitude) 3-phase voltage, out of a constant DC source. The inverter is

connected to a 3-phase sinusoidal voltage source, through a diode bridge rectifier. The

diodes are turned on and off automatically by the potential between their terminals.

This operation principle allows rectifying the input currents. To smooth the output

voltage of the rectifier a capacitive energy storage is utilized. The DC voltage of the

capacitor is converted into a 3-phase controllable voltage by the VSI.
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There are several types of transistors differing from their physical construction. Isolated

Gate Bipolar Transistors (IGBT) are capable of switching at higher current and voltage,

satisfying a wide range of applications from low power to megawatt power range.
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Figure 1.5: Schematic of a typical three phase 2-level VSI.

1.3 Control Strategies for Electrical Drives and Power Elec-

tronics

The controller is the most important part of the electrical drives. Without proper

control, these are not capable of fulfilling useful tasks. Dynamic performance and energy

efficiency are major quality factors for the control system of electrical drives. Optimality

criteria may vary depending on the operation conditions [8]. Over the last three decades

several control schemes have been investigated for the electrical drives [6]. Nevertheless,

there are mainly two well known control methods which have received higher industrial

acceptance:

1. Field Oriented Control (FOC)

2. Direct Torque Control (DTC)

FOC is established on linear control theory whereas DTC can be considered as a nonlin-

ear controller. However, main difference between them is that FOC relies on modulation

to control the inverter [10, 11] while DTC utilizes a direct switching strategy [12].

Field Oriented Control

Before the era of digital controllers, dominating type of electrical motors widely applied

for demanding applications, used to be so-called DC motors. The reason is the simplicity

of the control design for this type of electrical drives. An important feature of DC motors
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making the control system straightforward is that in these motors the rotor magnetic

field and the stator current vector are mechanically kept in a fixed angle. It leads to

decoupling of the field and torque producing current. Therefore, the stator field and

electromagnetic torque can be controlled separately. To establish the same model for

AC electrical drives, the field orientated control (FOC) concept has been developed.

FOC relies on a mathematical transformation of flux and stator current vectors into a

new coordinate system rotating at the same speed as the rotor field. Since in steady

state operation stator current vector and rotor field are rotating at the same frequency,

these components can be treated as DC values and controlled just like in conventional

DC motors. As this transformation must be repeated at each sampling time, it requires

higher computational performance compared to the rather simple control system of the

DC motors. Nevertheless this is not a limit any more since digital controllers are capable

of doing such computations at reasonable cost today.

Cascade FOC

The cascade control concept relies on the physical notion of the electrical drives in

which the control parameters have different time constants. Electrical parameters such

as current and flux, have relatively smaller time constants compared to mechanical

variables such as speed and position. In cascade control the controller is designed in

separate cascaded loops [13].

The complexity of the mathematical model of the induction motor drive including the

inverter makes the design of the current controllers more challenging. The current

components can be controlled in both stationary reference frame or in rotor flux oriented

coordinate system [14]. Nevertheless, implementation of linear controllers shows better

performance in rotor flux oriented reference frame since current components become DC

variables at steady state condition. Another advantage of coordinate transformation is

reduction of the computational complexity.

Figure 1.6 shows the structure of a cascade control system of an induction motor drive.

FOC technique in cascade structure is widely applied for industry as a standard control

strategy. For design of the controllers, many researches have been carried out over

the last 3 decades. Most studied controller type is PID. However there are also other

strategies investigated for realization of the current controllers. Performance of the

controller has been evaluated from many aspects. In [15] a state feedback with feed

forward technique is proposed to improve the performance.
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Figure 1.6: Cascade structure of FOC for an induction motor

Another important feature of the current controller is robustness to parameter variation

and change of the operation point. Although electrical drives have relatively well under-

stood mathematical model, it is difficult to estimate exact parameters. Thus parameter

adaptation and robustness are important to be studied [16].

Direct Torque Control

In FOC, flux and torque of IM are controlled through respective stator current com-

ponents. To control stator current vector, the controller produces a reference value for

the stator voltage vector. The desired voltage vector is applied through the inverter

by means of a PWM technique [17]. Direct Torque Control (DTC) is a conceptually

different method that controls the flux and torque directly by changing the switching

state of the inverter [12, 18]. Schematic of a typical DTC for an IM is shown on 1.7.

The word Direct refers to control of the inverter without PWM. In this respect, direct

torque control methods that rely on PWM to generate the voltage vector [19], in fact,

can not be considered as DTC strategy.

Although the DTC concept was initially proposed for control of induction motors fed

by 2-level inverters, it can be extended for control of other electrical variables such as

active (reactive) power or for other converter topologies [20].

In DTC, controlled variables are kept within hysteresis bands by choosing a proper

switching pattern of the inverter. Due to that, the switching frequency is variable

depending mainly on the hysteresis bands and operation points. Since in DTC the



Chapter 1: Introduction 10

sampling frequency is much higher than the average switching frequency, the inverter

time constant is shorter than the PWM-based methods. In addition, the hysteresis

controller is faster than linear controllers which mostly are applied in FOC. Both these

characteristics, lead to higher dynamic performance of DTC [21].

ab
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Figure 1.7: Cascade structure of DTC for an induction motor

In DTC, a switching takes place when flux or torque errors exceed the hysteresis bands.

It allows to control the switching frequency dynamically by changing the hysteresis

bands. Therefore DTC is superior to PWM-based methods for higher power drives.

Nevertheless, due to variable switching frequency in DTC, the torque and current ripples

are distributed in frequency spectrum and cause acoustic noises. It is the major issue of

DTC that excited many research efforts.

Another shortcoming of DTC is so-called dead-lock when no feasible switching possibility

exists to keep the controlled variables within their respective bands [22]. It happens while

the controller is intended to reach the maximum available torque mainly in the speed

weakening region.

The DTC technique, in vast majority of cases, is studied for 2-level inverters. For

more complex topologies, such as multilevel inverters, using simple hysteresis bands is

not sufficient to solve optimization problem and extract a Look-Up Table (LUT) for

switching [23].
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1.4 Contributions of this Thesis

This thesis investigates FPGA-based algorithms for nonlinear model predictive control

of AC electrical drives and power electronics. Two control strategies are proposed:

Continuous Set Nonlinear Model Predictive Control (CS-NMPC) and Model Predictive

Control with Imposed Target Dynamics (MPC-ITD). Moreover, issues associated with

practical implementation of these algorithms on the FPGA, are discussed.

1.4.1 FPGA-Based Development Platform

In fact, early applications of FPGAs used to be mostly as glue logics on PCB boards to

interconnect digital components such as memories, buses, network drivers and processors

together. By increasing clock frequency and logic density of FPGAs and developing com-

puter aided design tools, there are increasing interests in using them for computationally

intensive applications.

FPGAs represent a freely configurable logic system being able to adapt to any com-

putational tasks. Advancing in FPGA technology increases logic density and speed of

configurable logic blocks of FPGAs on the one hand, and enables to integrate various

logic components on a single chip, on the other. For instance, many modern FPGA

chips, in addition to configurable blocks, have embedded hardcore processors, transduc-

ers, multipliers and etc that can flexibly communicate with each other or with the rest

of configurable logics, through the FPGA interconnect fabric. All these factors allow to

realize an extraordinary computational engine.

In addition to high computational performance of FPGAs, thanks to parallelism and

more point-to-point connections, they can potentially improve reliability and safety of

the design. There are many demanding industrial applications including drive control

systems, in which high performance FPGAs can be beneficial. Nevertheless, main reason

that many industries still prefer to utilize DSPs, is that development time of FPGAs is

considerably longer. In particular for drive control applications, which is the topic of

this thesis, FPGA-based development challenges can be divided into two stages: 1- De-

veloping appropriate control algorithms to efficiently make use of FPGA logic resources.

2- Creation of respective FPGA architecture, debugging and functionality verification.

In this thesis, an FPGA-based platform is introduced for developing, verification and in-

strumentation of control algorithms. At the design stage, this platform enables to carry

out Model-In-the-Loop (MIL) simulation. Thanks to high speed interface of the de-

veloped platform and its capability for extending data storage capacity using on board

memory blocks, it can be considered as a high performance co-processing engine for
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expedition of high precision simulation of power electronic and drive models. For in-

strumentation it is provided with a high performance host interface that allows data

playback at high sampling rate up to the FPGA main clock frequency.

1.4.2 Continuous Set Nonlinear Model Predictive Control

While many researches have shown that the same algorithms can be implemented on

FPGAs and obtain shorter execution time at lower cost, some algorithms are basically

more suitable for DSP implementation. It might be, of course, because of the fact

that DSP technology is more developed and more optimization techniques are available.

Pipelining and parallelization are two elementary optimization techniques which can

promote performance of the FPGA models. Nevertheless many computational tasks are

described in a way, that they can benefit neither of pipelining nor of parallelism, since

most of them are basically developed for processors which are able to fulfill tasks only

sequentially. Thus the algorithm should be properly adapted to the FPGA architecture

to obtain high computational performance.

Model Predictive Control is a computation based control strategy suitable for power elec-

tronic and drive applications. The numerical solution which we proposed for nonlinear

model predictive control of inverter fed electrical drives, is well suited for FPGA-based

implementation. The iteration based structure of the algorithm, allows to utilize the

pipelining technique for efficient usage of logic elements on the one hand and reducing

execution time on the other.

1.4.3 Model Predictive Control With Imposed Target Dynamic (MPC-

ITD)

Another control strategy being appropriate for FPGA-based realization which is pro-

posed in this thesis, is so called Model Predictive Control with Imposed Target Dynamic

(MPC-ITD). MPC-ITD is an extension of already known idea of Synergetic control in-

corporated into Model Predictive Control. Integrity of Synergetic principles in describing

dynamic phenomenas and self-organization, is utilized here to tackle problems of cost

function design and optimization of the MPC algorithm. Unlike CS-NMPC which relies

on a modulation technique to control the power electronic converters, MPC-ITD is in-

vestigated as a direct control method without a modulator. Indeed these two algorithms

address different technological demands.
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While CS-NMPC improves robustness and accuracy of control for tracking reference

values, MPC-ITD enables to reduce switching frequencies and output ripples. The

performance of the proposed algorithms is validated through experimental tests.



Chapter 2

Induction Motor

2.1 Introduction

Simple construction, low cost and high reliability of induction motors are the key factors

making them the workhorse of electric power industry. In induction motors there are

electrical circuits on both rotor and stator. Because of different rotational speeds of

the magnetic field and the rotor, an induced voltage is produced in the rotor electrical

circuit. The induced potential then causes electrical currents in the rotor windings.

Interacting between rotor currents and stator flux, an electromagnetic rotational torque

is produced that tends to rotate the rotor in the same direction as the air-gap flux.

When the rotational speeds of the rotor and air-gap flux are equal, no current will be

induced in rotor windings and consequently no torque will be produced. If the rotor

speed is higher than the rotational speed of the air-gap flux, the produced torque has

negative direction and the machine works in generator mode.

2.2 Mathematical Model of Induction Motor

Cross section of an IM is depicted on figure 2.1. For establishing mathematical model

of IM the following simplifications are considered:

• Winding of all phases have the same parameters such as inductance and resistance.

• Magnetic fields of the motor phases have a sinusoidal distribution.

• Saturation of the magnetic circuits is not considered.

14
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a, α

β
b

c

Figure 2.1: Cross section of an induction motor

For modeling of the dynamic phenomenas in 3-phase IM, more often the 2-phase equiv-

alent model in which 2 windings are placed in 90 degree position from each other, is

considered [13].

2.2.1 Differential Equations of Induction Motor

An induction motor consists of two separate electrical circuits on the rotor and stator.

These two circuits are coupled together by the air-gap magnetic field. In so-called

squirrel cage induction motor, rotor circuits are short-cut without connection to an

external supply. The rotor currents are induced by the magnetic field produced by the

stator windings [24].

Voltage equations of IM, in stator reference frame, are as follows:

vs = Rs · is +
dψs
dt

(2.1)

vr = 0 = Rr · ir +
ψr
dt
− j · pωr · ψr (2.2)

ψs = Lsis + Lmir (2.3)

ψr = Lrir + Lmis (2.4)

Te =
3

2
P (ψs ×ψr) (2.5)

dωr
dt

=
1

Jm
(Te − Tl) (2.6)
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where

j =

[
0 1

−1 0

]
(2.7)

2.2.1.1 State Equations

dψs
dt

= vs −Rs · is (2.8)

dψr
dt

= −Rr
Lm
·ψs +

Rr
Lm
· is − j · Pωr · ψr (2.9)

Te =
3

2
P (ψs ×ψr) (2.10)

Performing simple manipulations the equations can also be represented as followings:

dψs
dt

= vs −Rs · is (2.11)

dis
dt

= −Re
Le
is +

KrAr
Le

ψr −
KrPωr
Le

jψr +
vs
Le

(2.12)

Te =
3

2
P (ψs ×ψr) (2.13)

Kr =
Lm
Lr

;Le = Ls −
L2
m

Lr
;Re = Rs +Rr ·K2

r ;Ar =
Rr
Lr

(2.14)

These equations can be used to build a simulation model of IM.

In fact many of dynamic phenomenas are not considered in the fundamental model

[25, 26]. For instance saturation of iron core and anisotropies of stator and rotor cores

caused by slots are not modeled. Nevertheless this simplified model is sufficient to

investigate in the control system of IM.

2.3 Control of Induction Motor

Induction motors are widely applied for adjustable speed drives. Several control schemes

with different level of complexity and performance have been investigated.



Chapter 2: Induction Motor 17

Stator Rotor

us 1
rσ

ψr

is

kr

lm

jτσ jτσr

kr/rστr

Te

Tl

ψr

ωr

ωk

Mechanical System

Back-emf

τm

τrτ ′στ
′
σ

Figure 2.2: Signal flow of an induction motor in an arbitrary reference frame

2.3.1 Scalar Control

In addition to simple construction, induction motors have the advantage that with a

simple control system soft startup and robust operation can be ensured. The main

reason is that rotor and stator are coupled via the magnetic field. At the startup there

exists no rotor flux and it is induced just by the stator windings. Initial position of

the rotor is not necessary to know for producing electromagnetic torque. While a more

complex vector control scheme shows better dynamic performance for the torque control,

the so-called scalar control is more simple and robust to parameter variations and can

be implemented without an encoder [27].

At the steady state, speed of the motor is close to the stator frequency. Therefore it is

possible to control the rotor speed approximately by changing the stator frequency. In

scalar control method air-gap flux is assumed to be proportional to the magnitude of the

stator voltage divided by its frequency. To obtain nearly constant flux linkage, the ratio

of stator voltage amplitude to its electrical frequency (V/F ) should be kept constant.

The difference between frequency of the rotor and air-gap flux is so-called slip frequency.

In steady state condition, electromagnetic torque is almost proportional to the slip

frequency. Due to that load variations change the rotor speed. In open-loop scalar

control this effect can be compensated by estimating the slip frequency. However when

higher accuracy is required a closed-loop speed control strategy has to be adopted [28].
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To maintain high efficiency operation of the motor and minimize losses while working

at various mechanical speed, the air-gap flux must be regulated respectively [29, 30].

2.3.2 Field Oriented Control

Induction machine is a multidimensional dynamic system [24]. In rotor field oriented

coordinates, stator current vector can be split into field generating and torque pro-

ducing components. A proper control of current components allows to regulate rotor

flux and electromagnetic torque separately like in conventional DC motors [31]. This

strategy is so-called Field Oriented Control (FOC). Coordinate transformation and high

performance current control require more computational complexity than scalar control

method. Thanks to the advances in digital computing technology, FOC became one of

the industry standard control strategies [32–34].

Flux and torque producing current components have slight nonlinear inter-coupling

which must be considered to obtain a high performance torque control [13, 35].

2.3.3 Direct Torque Control

A control strategy, quite different from FOC, is so-called Direct Torque Control (DTC).

In FOC a PWM technique is applied to control the output voltage of the inverter [17].

In contrast to FOC, in DTC, the electromagnetic torque is regulated via a direct control

of the inverter switches [12]. In DTC two hysteresis controllers are implemented to

control the torque and stator flux. In addition to the more simple structure of DTC, it

provides a faster torque response [36]. However, DTC suffers from high torque ripples

and variable switching frequencies.

2.3.4 Model Predictive Control

Advancing in digital computational devices enables to realize more complex control

methods. An attractive concept which has emerged as a promising control strategy for

induction motor drives, is Model Predictive Control (MPC). Predictive control conveys

a wide definition and in practice there are many different MPC strategies. Generally,

any control technique that includes future state of the plant in calculation of the control

law can be considered as predictive control.

IM drives have a very broad application area. Due to that there are many different

requirements for the control strategy depending on any specific applications. A primary

issue which was investigated for predictive control of IM was reducing current distortion
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for inverter fed drives in high power range. Due to the thermal problem of power elec-

tronic devices, switching frequencies can not exceed few hundred Hz. For such operation

conditions the conventional PWM technique fails to maintain dynamic performance and

to generate optimal switching time for power switches. To deal with these problems, a

trajectory tracking dead-beat controller is proposed in [37]. Dead-beat control is a sim-

ple use of the prediction strategy for calculating the control law. It has been investigated

for both linear and some class of nonlinear systems [38]. In [39] a dead-beat algorithm

is employed to improve performance of DTC method for an induction motor.

Another contribution of model based prediction is to compensate computation time

delay [40]. In most of microcontrollers, execution time of the control algorithm is equal

to one sampling time. A prediction strategy enables to compensate the computation

time.

In [41] current controllers in FOC are replaced with Generalized Predictive Control

(GPC) to improve dynamic performance. Main contribution of this work is that it

shows feasibility of more complex predictive algorithms with respect to computational

performance. GPC strategy provides a systematic approach to designing the cost func-

tion and dealing with optimization problems. However, it is restricted to linear systems.

2.3.5 Flux Observer

Stator currents of induction motors can be measured by means of current sensors. How-

ever, the control algorithm requires more information about the state parameters such

as stator and rotor fluxes or mechanical speed of the rotor. Due to difficulty of placing

a flux sensor in the air-gap, almost always it is relied on an observer to estimate the flux

[42].

ψr

ωr

Lm

jτr

is

τr

Figure 2.3: Signal flow of the flux observer for an induction motor [1]

Based on the mathematical model of IM, the flux observer can be designed. Various types

of flux observers have been published for induction motors [43]. They differ depending
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on the parameters and variables needed for the design of the observer. The voltage

model observer has the advantage of not requiring electromechanical speed. However,

due to integrator drift it offers low accuracy. An observer with higher performance is the

current model observer [1]. Complex signal flow of the observer is depicted on figure 2.3.

For the current model observer, the rotor resistance plays a significant roll. Parameter

errors can appear due to inaccurate identification or changing operation points. The

Model Reference Adaptive System (MRAS) is a well known scheme for dealing with the

parameter variation [44].

2.3.6 Sensorless Control

Rotational speed of the rotor in IM is necessary for designing the flux observer. Fur-

thermore, it is required as a feedback signal for the speed control loop. It is possible to

measure the speed by means of a position or speed sensor. Using a sensor is, however,

additional cost. Moreover, due to wiring and sensor interfaces, it reduces reliability of

the drive system and needs more frequent maintenance. Modern electrical drives are

provided with a digital signal processor being able to perform millions of mathematical

operations per second. It rises interests in using numerical algorithms for estimation of

the position and speed relying on the measured terminal currents and voltages. This

technology is known as ”sensorless” control. In fact the word sensorless dose not mean

that there is no sensor in the drive at all, since almost in all schemes, current sensors

are used to measure the stator currents.

Sensorless algorithms can be categorized basically into two main groups: 1- Fundamental

model-based algorithms 2- Anisotropy-based techniques.

2.3.6.1 Fundamental Model Based Sensorless Control

The so called Fundamental model-based methods utilize the fundamental motor model

and torque and flux producing stator current harmonics to estimate the rotor speed.

Fundamental model based methods have good behavior at higher speed, however, they

show limitations at lower speed and standstill. There are several schemes developed for

model-based speed estimation of IM [43]. They can be distinguished with respect the to

parameter dependency, required dynamic performance and computational complexity.

Designing a closed-loop observer seems to have better performance and accuracy and

can handle some sort of parameter deviations. The advantage of MRAS is that it can

be also applied to nonlinear systems. IM has a well known and parametrized structure.

Furthermore stator currents can be easily measured. Relying on this information, it is

possible to design a MRAS scheme for speed estimation [45].
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In the MRAS technique for speed estimation, at first it is treated as a slow changing pa-

rameter. Rotor flux can be estimated both by the voltage model without using mechan-

ical speed and by the current model with mechanical speed as a parameter. Comparing

estimated flux of both models produces an error which can be utilized for estimation of

the speed. Thanks to the intuitiveness of parameter tuning of PI controllers, in most

publications it is adopted for adaptation of the speed in variable model of MRAS. Never-

theless, to eliminate parameter tuning of the PI controller, a sliding mode controller can

be utilized [46]. Figure 2.4 shows the structure of a typical MRAS estimator. Unlike

conventional closed-loop observers such as Kalman filter or Luenberger observer [47],

which compare output of the adaptive model directly with the plant output, in MRAS

the adaptive model is compared with a reference model of the plant with defined pa-

rameters. It offers more flexibility to utilize all available knowledge about the system in

design of the observer.

Reference Model

Adaptive Model

e

yRM

yAM

Controller

u

Figure 2.4: Structure of the MRAS estimation strategy

2.3.6.2 Anisotropy Based Sensorless Control

The major deficiency of Fundamental model-based sensorless methods, is that they need

precise information about motor parameters which may vary during operation due to

change of temperature or operation points. Another drawback of Fundamental model-

based methods is the integration drift. It is basically more challenging at low speed

region. Anisotropy-based sensorless algorithms have been widely investigated to deal

with these issues. These extract speed and position dependent anisotropy image from

measured stator current signal.

For electrical drives fed by power electronic inverters, stator voltages include high fre-

quency components generated by switching. In addition high frequency voltage signals

can be injected. Hence in the stator currents high frequency components appear which
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are modulated through the anisotropies and carry useful information for estimation of

the rotor position [48, 49].

Anisotropy-based methods received an intensive attention over the last decade [50, 51].

In any electrical motors there are several sources of anisotropies. For the anisotropy-

based rotor position (speed) estimation, information of the rotor dependent saliences

must be filtered. In drives with one dominating rotor dependent anisotropy, such as

synchronous motors, it is straightforward to extract the anisotropy image from the

stator currents. What makes practical implementation of the anisotropy-based sensorless

methods for IM challenging is that rotor dependent anisotropies are small and therefore,

it is difficult to distinguish them from measurement noises. Another challenge is the

existence of multiple anisotropies. It requires precise information about their magnitude

and frequency in order to separate them properly [52].

Numerous publications on anisotropy-based sensorless control and diversity of applica-

tions show that the anisotropies existing in almost all drives can be utilized for the

position and speed estimation.
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Digital Computational Systems

3.1 Introduction

Digital Computer is, definitely, one of the greatest inventions of the human history.

Over recent decades, digital computers have played major rolls in almost all area of our

rapidly changing society. By appearance of the first programmable computers being able

to perform user defined tasks, their computational performance as well as application

area have been constantly advancing.

In everyday life we work with hundreds of computers. Architecture of computers and

peripheral components may be different depending on applications. In this thesis two

types of digital computers are distinguished: Hardware programmable and software pro-

grammable computers. For the hardware programmable computers, the computational

task is defined as a hardware model implementable on the target device whereas for

the software programmable computers tasks should be first interpreted into instructions

executable by the computer.

This part makes a comparative evaluation of the hardware programmable versus the

software programmable computers for the control system of electrical drives.

3.2 Digital Signal Processors (DSP)

A DSP is a complete computer that provides most required hardware peripherals em-

bedded on a single chip. Integrating many peripherals such as memory blocks, memory

controllers and etc, would lead to reduction of the system cost and improvement of the

23
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computational performance. Further distinction of DSPs is the higher number of the

basic instructions which the processor is capable to perform [53].

A big area of applications for DSPs is control of electrical drives. The main requirement

for these applications is real-time operation. It demands performing all computations

within a predefined discrete time. The strategy for meeting this requirement, in a cost

effective way, is reducing the computational load of the CPU and assigning many of

the tasks to the peripherals. One of the newest DSP chips is shown on figure 3.1. It

is customized for motor drive control applications. What is noticeable about it, is its

floating-point unit making it powerful for complex mathematical calculations.

As it is illustrated on the figure, the DSP has many peripherals which are embedded on

the same chip and can perform tasks without involvement of the processor. It reduces the

computational load of the processor to execute the application program faster. Such a

compact computing system is intended to reduce the cost and increase the performance.

3.2.1 Central Processing Unit (CPU)

The CPU is responsible for controlling the program flow and executing the instructions.

A typical CPU performs arithmetic, Boolean logic, multiplication and shift operations

[53, 54].

3.2.2 On-Chip Memory Blocks

Each typical computer has a CPU which is capable of performing some elementary

instructions. However, without a set of commands that tells the computer what to do, it

is unable of doing anything. Those commands must be stored in the digital memory and

sent to the processor to be fulfilled. The speed of the computer is not only determined

by its clock frequency but also by the performance of transmitting commands from the

memory. To increase the computational performance of DSPs, the on-chip memory

is embedded closed to the accumulator unit that can communicate with a very high

bandwidth. On-chip memory is the most significant part of a DSP integrated on the

same chip and provides high communication speed for transferring data with the CPU.

The processor uses the address bus to access the on-chip memory blocks. Due to limited

storage capacity of the integrated memory blocks, efficient utilization is an important

optimization issue for DSP programming [55, 56].
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Figure 3.1: Functional block diagram of TMS320F28335 (source: www.ti.com)

3.2.3 Application Software

The application software is the soul of the DSP. It is a collection of commands that as a

whole makes the control algorithm. Thanks to the high computational performance of

DSPs and automatic code generation tools, nowadays many application programs can

be developed much easier and in shorter time [57, 58].
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3.2.4 Real-Time Signal Processing

In a computer, some tasks must be performed corresponding to events or at specific

instants of time. For that purpose an interrupt signal is sent to the CPU. However,

many interrupt signals can be generated simultaneously requiring the CPU to execute

associated tasks. The interrupt manager decides about the priority of interrupts which

must be fulfilled.

Modern DSPs are capable of performing billions of tasks per second. Timing schedule for

all these tasks are managed by a real-time kernel [59]. By increasing number of interrupts

with short periods, it is more and more difficult for a single processor to catch all of the

interrupt events. In such cases a multi-core system can improve real-time performance

and resolve interrupt handling problems [60].

The reliability of DSPs is the most important issue in particular for real-time operations.

All of aforementioned parts of a DSP can fail during operation. Analyzing failures

that can happen during operation of a processor, one thing is rather obvious: Most of

failures are because of the centralized processing structure. In other words, when only

one processor is performing all of tasks and all data should pass the same data gate, it

is very difficult to detect errors.

3.3 Field Programmable Gate Array (FPGA)

FPGAs are hardware reconfigurable devices enabling the designer to flexibly customize

the hardware architecture to create the desired embedded system. Parallelism of FP-

GAs and distributed on-chip logic resources increase the data through and enhance the

computational performance.

Although, conventional DSPs are provided with application specific logics and periph-

erals, FPGAs provide more flexibility in terms of hardware programmability and can

address a broader application area [61].

FPGAs consist of configurable logic blocks that can be interconnected to realize various

designs [62, 63]. The FPGA technology, in particular over the last decade, has been

rapidly advancing. Modern FPGAs, in addition to the configurable logic blocks and

programmable interconnect fabric, include embedded DSP blocks such as multipliers,

which can be utilized in a distributed design to promote the computational performance.
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Thanks to the unlimited reconfigurability of FPGAs, for low to medium volume pro-

ductions, they provide a cheaper solution and faster time to market as compared to the

Application Specific Integrated Circuits (ASIC). FPGA configuration takes less than

a minute and they cost anywhere around a few dollars to a few thousands of dollars

depending on logic resources and the performance [64].

Standard FPGA logic resources include:

• Configurable logic blocks

• Programmable interconnect fabric

• I/O blocks which are connected to the logic blocks through the routing interconnect

and make off-chip connections.

FPGAs have gone beyond a simple array of uniform logic elements. They offer a diver-

sity of integrated components that may be incorporated into a design, yielding a more

efficient product. Examples of such embedded hard cores are DSP blocks [65]. To ad-

dress wide range of system performance, energy efficiency and design complexity, several

FPGA families are provided [66]. Figure 3.2 shows advances in a low cost FPGA family

over the last decade. Although the FPGA is further developed from various aspects, the

cost and power consumption are significantly decreased.

Figure 3.2: Cyclone FPGA family. Source: www.altera.com

3.3.1 Basic Logic Elements on FPGAs

Basically, configurable Logic Elements (LE) of FPGAs are combination of the silicon

based transistors [67]. Due to the extremely high number of transistors, analysis of the

FPGA circuits at transistor level is too complex for programming purposes. Instead of

that, usually other units are provided in order to make an estimation of available logic

resources and design performance. Depending on the FPGA technology, the architecture
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of LE might be different [62]. For sake of simplicity we mainly investigate Cyclone FPGA

family of Altera (see figure 3.2). LEs enable to realize combinational logic functions.

They can be used also as glue logics for routing on-chip hard-cores [66].

Figure 3.3: Logic Element of Cyclone IV FPGA chip, Source: www.altera.com

Logic Array Blocks (LAB) consist of several LEs as it is shown on figure 3.4. While the

lab local interconnect can drive LEs of the same or neighboring LABs, memory block

or I/Os, the multi track interconnects (row and column interconnects) are intended for

routing of different LABs [66].

FPGA designs typically include thousands of LABs routed together by means of the

interconnect fabrics. The FPGA compiler automatically places critical design paths

such as clock signals, on faster interconnects to improve the design performance.

3.3.2 On-Chip Memory

Most of embedded computational systems require high bandwidth data storage with a

high communication rate. Thanks to the hardware programmability of FPGAs, they

can easily communicate with on-board data storage devices, however, for a more secure

and higher transferring rate, distributed on-chip memory blocks are integrated on the

FPGA. Embedded memory blocks can be utilized for realizing look up tables, storing

design parameters or sampled data.
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Figure 3.4: Interconnect Fabric of Cyclone IV FPGA chip, Source: www.altera.com

3.3.3 Hard-Core Functional Blocks

Hard-core functional blocks are implemented during the fabrication of the FPGAs. They

are not freely programmable like logic elements, however, it is usually possible to con-

figure and flexibly route them with the rest of the logic resources. Some examples of

embedded hard-cores are:

• Transceivers

• Embedded multipliers

• Phase Lock Loop (PLL)

While the maximum clock frequency of the combinational logics are usually limited

depending on number of logic elements and data paths, the hard-cores are optimized to

operate at higher clock frequencies and lower energy consumption to satisfy demanding

applications.

Figure 3.5 shows an embedded multiplier block of Cyclone IV. Input signals can be

signed, unsigned or combination of both. By means of the multiplexers, it is possible to

send input and output signals into the terminal registers or connect them without the

registers. It allows to combine several multipliers for signals larger than 18 bits. Each

register is provided with a clock, clock enable and asynchronous clear [66].
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Figure 3.5: Embedded hard-core multiplier, Source: www.altera.com

3.3.4 Embedded Hard-Core Processor

The maturity of the software technology, which in many cases has grew up as a com-

pletely independent discipline, together with the flexibility of FPGAs for hardware pro-

grammability encourage many system design industries to use FPGA logics for creating

a programmable computer architecture. Many open source design templates and pro-

gramming tools are available for soft-core processors on FPGAs. The obvious advantage

of FPGA implementation of the processor is customization of the hardware architecture.

However, for the design of the soft-core processor, it requires considerably more logic

resources compared to a hard-core processor with the same topology. Furthermore,

performance of the hard-core processor is much higher.

SoC (System-on-Chip) is a definition for customized FPGA chip with an integrated

hard-core processor. The processor is realized in hardware and can operate indepen-

dently from other programmable logic elements. Nevertheless, by means of the available

FPGA logic resources customized peripherals can be added to the processor to extend

its functionality.

Figure 3.6 shows a SoC FPGA chip with two hard-core processors. It is intended to com-

bine hardware and software flexibilities on a single chip maintaining high computational

performance.
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Figure 3.6: Functional block diagram of a SoC FPGA with integrated hard-core
processor. Source : www.xilinx.com

3.3.5 FPGA Programming

Logic resources of the FPGA must be appropriately configured to enable it performing

dedicated tasks. The FPGA program is, in fact, description of the hardware architec-

ture. For FPGA programming, Hardware Description Languages can be used. Two

main textual HDLs are VHDL (VHSIC Hardware Description Language) [68, 69] and

Verilog [70]. These two languages are most popular industry standard HDLs [71]. The

main feature of HDLs is their ability to efficiently describe hardware resources and con-

figurations at different level of complexity.
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By increasing the logic density, it becomes possible to implement more and more com-

plex digital systems. To deal with the complexity of the FPGA programing, engineers

prefer high level graphical environments such as Simulink with high capability of de-

sign automation [72] rather than textual hand coding. There are several possibilities

of using Simulink or other graphical programming tools for developing and verification

of FPGA configuration models and it is expected that number of such tools will be

increasing. Currently, the two largest FPGA vendors, Xilinx and Altera, provide high

level design tools integrated into Simulink to expedite FPGA-based development. In

addition, Mathworks offers a more universal tool, so called HDL coder, which allows to

generate HDL codes (VHDL or Verilog) from Simulink models [73].

Basic understanding of FPGA hardware structure and their principle of operation are

essential for FPGA-based design. Nevertheless, aforementioned Computer Aided Design

(CAD) tools enable to reduce the complexity of the FPGA programming.

3.3.6 Suitability of FPGAs for Drive Applications

The dominating digital computing devices for motor control applications are DSPs.

Drive industry has already more than 30 years maturity of DSP applications. Moreover

DSP vendors have also a long experience in customizing the microcontroller devices

for demanding motor control applications. Despite these facts, using FPGAs has some

advantages in terms of computational performance and design issues that make them

attractive for research and industrial applications.

An important argument against using FPGAs is relatively longer development time.

However, it is not a long term challenge, since there are always more and more skilled

engineers in the area of FPGA development. In addition the computer-based design tools

are always advancing which can be an effective way for dealing with the complexity of the

FPGA programming. Such tools can play significant roles not only for code generation

but also for verification and debugging of the code on the target FPGAs. Furthermore,

the reconfigurability of FPGAs provides the same level of design convenience as the

software in DSPs [74].

Despite the capability of the industry for integrating many digital and analog devices

on a single chip, there are some performance criteria which are not cost effective and

even not possible to obtain with state-of-the-art of the DSP technology [74].

Dynamic of the current control loop, in particular, for low power servo-drives are very

important. Due to the high bandwidth, there are still many applications in which the

conventional analog control devices are used. Digital microcontrollers usually provide
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a lower bandwidth because of the computational time delay. By using FPGAs the

digital hardware can be completely dedicated to the control algorithms. It leads to

a significantly lower computation time. Therefore in many applications FPGAs can

replace analog devices without compromising the performance.

Another application area for FPGAs is the Hardware-In-the-Loop (HIL) simulation.

High computational performance of FPGAs can be beneficial for running real-time mod-

els. Because of the short sampling time of electrical drives and power electronics, a

precision simulation is usually very time consuming. The parallel processing capability

of FPGAs can be very helpful for running computationally intensive models [75–77].

In addition to all aforementioned applications for which FPGAs provide the only feasible

solution, there are some other advantages of FPGA-based systems as alternatives versus

conventional DSP systems [74].

3.3.6.1 Compactness and PCB Simplification

The hardware programmability of FPGAs allows to integrate many system parts on a

single chip. It enables the developer to decrease number of on-board components and

reduce the PCB size, still have an universal scalable PCB design.

3.3.6.2 Multiple Real-Time Tasks

In a drive control system, there are several tasks which must be performed in real-time.

In DSP-based control systems usually only one CPU is responsible for multiple tasks.

To divide the computational power between several tasks, interrupt controllers are used.

By increasing number of interrupts, it is more likely that some interrupt events occur

simultaneously and the CPU is not able to react on all of them. Furthermore, interrupt

latencies can not be precisely controlled due to the software complexity. In contrast to

processors, in FPGAs for any tasks independent hardware resources can be dedicated.

Parallel processing of FPGAs is well suited for reducing the programming complexity

and enhancing reliability of a digital system to handle multiple real-time tasks.

3.3.6.3 Reliability of FPGAs for Motor Control

For many applications, such as aerospace and automotive industries, reliability is an

essential factor and the proper functionality of the system in the whole operation con-

ditions must be ensured.
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An important source of failures in digital control systems is the application software. In

programmable devices the distributed architecture allows the designer to isolate different

parts and in this way the errors have only localized impacts. Furthermore, self diagnostic

and error correction can be implemented much easier on FPGAs.

3.3.6.4 Scalability of FPGA-Based Design

Data width plays an important role in computational performance. Using FPGAs, it is

possible to vary data width of arithmetics as well as bus system of on-chip communication

to exploit logic resources more effectively.

3.4 Conclusion

The DSP technology has three decades maturity for the control system of electrical

motors and power electronics. Nevertheless, there are many control algorithms which

are too complex to be realized on DSPs or at least it is not cost effective. Increasing

logic density and programming tools rise interests in FPGA as an alternative.

Hardware programmability of FPGAs allows to fully dedicate the digital system to

the control algorithm. Despite the maturity of the DSP technology, diversity of motor

control applications makes it difficult to have an universal DSP meeting all requirements.

A solution is using FPGAs to have a configurable design.

Further advantage of FPGAs is the scalability. As is shown on figure 3.1 hardware

architecture of the DSP can not be changed. The floating-point unit is provided to

ensure the compatibility for larger area of applications. It on the one hand causes

wasting of so much logic resources which are not useful for many other applications.

On the other hand, several parts of the DSP, for instance the integrated AD converters,

may not be sufficient and need to be upgraded. In this respect an FPGA-based design

has superiority as it represents a fully scalable solution. It is of great importance for the

drive control with relatively long life cycle.
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Chapter 4

FPGA-Based Computation

4.1 Introduction

The early generations of FPGAs were only for a narrow application area such as very fast

and custom digital systems. Chip cost and limited logic resources were the main chal-

lenges for those FPGAs [78]. Not withstanding with limited amount of programmable

logic resources, hardware implementation of digital systems provided better performance

for very fast systems where CPU-based solutions could not meet the requirements in

terms of time constraints [79].

Nowadays the FPGA technology has reached the point that can freely integrate hundreds

of hard-cores, DSP blocks and millions of logic elements on a single chip. FPGA is in

cross section of the hardware and software technology. FPGA programming in fact

represents a physical model of the hardware. Therefore both knowledge of hardware

and software is required for the FPGA-based design.

While CAD tools and design automation simplify programming of FPGAs, there are

still many challenges and open questions. Above all is perhaps construction of system

architecture for the efficient use of FPGA resources. Design environment has also a great

impact on the effective use of logic resources and the development time. Another issue

of FPGA-based applications is estimation of the computational power. In this chapter

these topics are tried to be covered.
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4.2 Programming of FPGAs

By increasing the density of logic elements of FPGAs, effective use of available resources

becomes more and more challenging. The programming language and development

environment have significant impacts on the effective usage of logic area on the one

hand and shortening the design time on the other. To respond to the need for rapid

prototyping of new FPGA-based systems, constantly new tools for programming and

verification of FPGA configuration are introduced. Hardware Description Languages

(HDL) are industry standard tools for describing models to be implemented on FPGAs.

There are two main textual HDLs: VHDL and Verilog [63]. Basically both of them have

the same level of complexity. However, their programming styles are different. Therefore

usually one of them only is being used in any designs depending on the conventions of

the engineering groups. Aforementioned HDL programming tools provide high flexibility

for describing low level hardware configurations. Nevertheless the drawbacks of low level

HDL programming are difficulty of debugging, verification and low capability for dealing

with the design complexity.

Although for programming of small FPGAs, HDLs are the effective tools representing

high flexibility for describing the physical implementation, when dealing with complex

algorithms for the target FPGA chips with millions of programmable logic blocks, they

are very time consuming and there is a need for a programming language being capable of

representing the hardware configuration at a higher level. To keep up with this demand,

in addition to the HDLs, there are also system level configuration languages and code

generation tools allowing to reduce the development time.

4.2.1 Very High Speed Integrated Circuit Hardware Description Lan-

guage (VHDL)

An FPGA program is a configuration model of logic elements and routing between

blocks. VHDL is a textual hardware programming language that allows to describe the

hardware structure. Here a simple example of a VHDL program as well as its graphical

view is provided (see figure 4.1).

library ieee;

use ieee.std_logic_1164.all;

entity ex_1 is

port

( IN_A : in std_logic;

IN_B : in std_logic;
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IN_C : in std_logic;

OUT_A : out std_logic );

end entity;

architecture rtl of ex_1 is

begin

OUT_A <= (IN_B or IN_C) and (IN_A and IN_B);

end rtl;

Figure 4.1: RTL (Register-Transfer Level) representation of the VHDL model

4.2.2 System Level Design (SLD)

SLD tools are intended to accelerate embedded development. They can be compared

with high-level software programming languages. While VHDL is useful to develop hard-

ware configuration and create new digital components, SLD tools deal with high level

design automation and creating new design by interconnecting various IP (Intellectual

Property) cores such as processors, memory and network controllers, communication

interfaces and etc. These components are individually designed and optimized in VHDL

or Verilog then can be routed within a larger design through SLD tools [80].

Number and diversity of the IP cores are continuously increasing. In addition to the

complexity reduction and avoiding failures in large FPGA designs, SLD tools enable

design reuse. An example of SLD tools is Qsys provided by Altera. For more information

on this topic one can refer to the chapter 6 of the Quartus II handbook [81].

To address the FPGA-based design for the control engineering, there are some other

SLD tools integrated into Simulink. These provide a convenient design environment for

developing and verification of the control algorithms. Xilinx System Generator (XSG)

and DSP Builder of Altera [82] are example of such SLDs.
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4.2.3 Code Generation Tools

Code generation tools, generate the HDL codes from the conventional software models.

A very popular developing environment for control engineers is Simulink. Mathworks

provides the so-called HDL coder which enables to convert the Simulink model into

VHDL or verilog codes. It has some advantage in comparison to the other SLD tools: It

shows higher performance for simulation of models since before generation of HDL, the

whole simulation process is in the Simulink environment. Furthermore the generated

HDL code is open to the designer and can be combined with the rest of the hand coded

HDL models. And last but not least, the benefit of HDL coder is that it is more or

less universal and can be applied for all FPGA families while XSG and DSP Builder are

only for the Xilinx and Altera FPGAs respectively. Therefore, for our investigation we

utilize it for generation of VHDL codes beside hand coding.

4.3 Computational Performance of FPGAs

Dominating computational devices for motor control and power electronic applications

are Digital Signal Processors (DSPs). However, interests in FPGA-based systems are

rapidly increasing. Numerous publications on FPGAs for industrial control applications

show their outstanding computational performance[83, 84].

Major distinctions of FPGA-based systems compared to DSPs, leading to higher com-

putational performance, are the parallelism of FPGA operation principle and the possi-

bility to flexibly dedicate hardware architecture to the computational tasks. An FPGA

chip contains hardware blocks which can be freely programmed to construct the desired

embedded system [78].

FPGAs can be used for implementation of soft-core processors with custom instruc-

tions and specific peripherals. Even though by customizing the hardware architecture,

computational performance of soft-core processors can be increased [85, 86], they have

relatively low performance compared to the hard-core processors due to the considerably

lower clock frequency.

Focus of this thesis is mainly on the FPGA-based and hardware implementation of

control algorithms without involvement of a hard- or softcore processor.
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4.3.1 Enhancing Computational Performance and Optimizations

Following optimization techniques are mainly applied to FPGA-based designs:

1. Parallel processing

2. Pipelining

3. Resource sharing

FPGA-based designs should be optimized regarding different aspects: Computational

speed and logic area. Pipelining and parallel processing are related to the speed opti-

mization while resource sharing techniques address the area optimization. Suitability of

algorithms has significant impact on speed of the design as well as logic usage optimiza-

tions. Suitability of algorithms will be discussed in further chapters.

4.3.1.1 Parallel Computing

A significant advantage of FPGAs is distributed parallel processing versus centralized

sequential processing of the conventional CPU-based systems. Here the VHDL code for

two parallel multiplications is provided:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity signed_multiply is

port

(

clk : in std_logic;

a : in signed (15 downto 0);

b : in signed (15 downto 0);

c : in signed (15 downto 0);

d : in signed (15 downto 0);

result_ab : out signed (31 downto 0);

result_cd : out signed (31 downto 0)

);

end entity;

architecture rtl of signed_multiply is

begin
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process_clk: process(clk) is

begin

if rising_edge(clk) then

result_ab <= a * b;

result_cd <= c * d;

end if;

end process;

end rtl;

Behavior of this model at RTL (Register Transfer Level) is shown on figure 4.2. The

outputs are simultaneously updated when a rising clock edge takes place.

Figure 4.2: RTL view of the dual multiplier

4.3.1.2 Pipeline Processing

Pipelining is a common method to enhance data throughput of digital circuits. In a

pipelined design, tasks are broken down into several parts through register stages in

order to enable the system to be triggered at higher clock frequencies.

The maximum delay of the combinatorial logics between two adjacent registers must

be less than one clock period. At rising edge of the clock, the current value of the

input signal of the register is delivered to the next pipeline stage. Pipelining reduces

the complexity of the timing analysis as well. Below a pipelined VHDL design and

corresponding RTL model are provided.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity pipeline_design is

port

(clk : in std_logic;
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a : in signed (15 downto 0);

b : in signed (15 downto 0);

c : in signed (15 downto 0);

d : in signed (15 downto 0);

result_sum : out signed (31 downto 0));

end entity;

architecture rtl of pipeline_design is

signal result_ab : signed (31 downto 0);

signal result_cd : signed (31 downto 0);

begin

process(clk) is

begin

if(clk ’event and clk = ’1’) then

result_ab <= a*b;

result_cd <= c*d;

result_sum <= result_ab + result_cd;

end if;

end process;

end rtl;

Figure 4.3: RTL view of pipelined arithmetic operations

4.3.1.3 Resource Sharing

Computational power of FPGAs is mainly limited by number of available on-chip logic

blocks. In software based systems, execution time and number of instructions has almost

a linear proportional relationship. For FPGAs this is more complex [87]. To utilize logic

resources of FPGA efficiently, more often it is needed to share them between various data
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paths. Here VHDL code of a shared multiplier is provided . Figure 4.4 illustrates RTL

model of the shared multiplier. The input multiplexers enable to share the multiplier

core between two data paths. According to the state of the multiplexers, the output is

selected.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity shared_multiply is

generic

(

DATA_WIDTH : natural := 32

);

port

( clk : in std_logic;

a_1 : in signed ((DATA_WIDTH -1) downto 0);

a_2 : in signed ((DATA_WIDTH -1) downto 0);

b_1 : in signed ((DATA_WIDTH -1) downto 0);

b_2 : in signed ((DATA_WIDTH -1) downto 0);

result_1 : out signed ((2* DATA_WIDTH -1) downto 0);

result_2 : out signed ((2* DATA_WIDTH -1) downto 0)

);

end entity;

architecture rtl of shared_multiply is

signal sw : std_logic := ’0’;

signal sw_d : std_logic;

signal result :signed ((2* DATA_WIDTH -1) downto 0);

begin

process (clk) is

variable a : signed ((DATA_WIDTH -1) downto 0);

variable b : signed ((DATA_WIDTH -1) downto 0);

begin

if(clk ’event and clk = ’1’) then

sw <= not sw;

if(sw = ’1’) then

a := a_1;

b := b_1;

else

a := a_2;

b := b_2;
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end if;

result <= a*b;

sw_d <= sw;

if(sw_d = ’1’) then

result_1 <= result;

else

result_2 <= result;

end if;

end if;

end process;

end rtl;

Figure 4.4: Sharing an embedded multiplier between two data paths

4.3.2 Design and Optimizations in MATLAB/Simulink

Graphical programming of MATLAB/Simulink has received a wide acceptance in par-

ticular as a rapid control prototyping tool [57, 88, 89]. By advancing in code generation,

in many applications generated code from Simulink is used to program target control

devices not only for prototyping but also at production stage. In addition to C code gen-

eration possibility that mainly addresses DSP-based target control hardware, Simulink

is also provided with the HDL coder enabling to generate VHDL or Verilog models for

implementation on FPGAs. Since graphical programming of Simulink provides a good
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overview of different signal paths and subsystems, it is well suited for representation of

HDL entities. Furthermore, Graphical User Interface (GUI) of MATLAB is an intuitive

tool for parametrization of models as illustrated on figure 4.5.

To enable the HDL coder to generate VHDL code of a given Simulink model, it must be

converted into fixed-point data type since the current version dose not support floating-

point data type (2012b) [90]. In Simulink environment, a unit delay represents a register

and can be used for synchronization and pipelining. Figure 4.7 shows pipelined arith-

metics in Simulink. For convenience the reset, clock and enable signals are hidden in

Simulink models. However these signals will be included in the generated VHDL code.

Resource sharing in Simulink is demonstrated on figure 4.8.

To declare data type conversion and pipelining for hardware implementation of com-

plex mathematical functions, Simulink model of the Park transformation is provided in

appendix A.

Figure 4.5: GUI of the multiplier block in Simulink
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Figure 4.6: GUI of the HDL coder

Figure 4.7: A pipelined design in Simulink
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Figure 4.8: A shared multiplier in Simulink

4.4 FPGA-Based Design Methodology

FPGAs have emerged as solutions for many computationally intensive algorithms. There

are several typical issues which must be considered for every FPGA-based design [74,

91]. The primary challenge for FPGA implementation of computational systems is

determining whether FPGA is a right choice compared to other alternatives. In terms

of computational performance, FPGAs are superior for most of applications with fixed

computational tasks. The main reason is that FPGAs allow to dedicate the hardware

architecture to the algorithms.

Depending on the design complexity different methodologies can be applied. The signif-

icant aims of a design methodology are minimizing the development time and utilizing

hardware resources more efficiently [92]. Importance of these two issues may differ

depending on the application. For mass production, the hardware cost plays a more im-

portant role while for low quantity production and prototyping, the development time

has a bigger impact on the end product cost. The typical design process is described on

figure 4.9.

4.4.1 Selection of Target FPGA Chip

The diversity of FPGA applications implies customizing logic resources to meet specific

requirements [93]. Hard cores are the major elements for enhancing FPGA performance

during manufacturing. Some FPGA chips are customized for use in the applications

with high signal processing and arithmetic operations. These FPGA chips are provided

with high number of embedded multipliers and DSP blocks.
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Verification of the algorithm
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pipeline and parallel stages
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Figure 4.9: The FPGA-based design flow

4.4.2 Soft-Core IP

As the density of FPGAs increases, the challenge for the design reuse and the capability

of synthesis at system level become more important. Considering a single chip with

millions of programmable logic elements, the main design challenge is system level inte-

gration and a structural design reuse rather than performing low level optimization. By

using parameterizable IP cores, the development time can be dramatically decreased.

Since in this thesis, we mainly rely on MATLAB/Simulink HDL code generation tool,

instead of conventional IP cores provided for FPGAs, we create our own Simulink library

to enable design reuse and expedite model development process. One example of the

library block frequently used for the implementation of the control algorithms is the Park

transformation. Its Simulink model optimized for VHDL code generation, is provided

in appendix A.
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4.4.3 Simulation and Verification Tools

Functionality validation of algorithms is possible in Simulink environment. For test

of HDL models, Mathworks provides a tool, so-called HDL Co-Simulation. to ensure

timing requirement of the design on target FPGA, TimeQuest Analyzer available within

Quartus II [81] can be used.

For a more realistic test of HDL codes on the target FPGA we propose an FPGA-based

hardware platform that allows Model-In-the-Loop simulation.

Figure 4.10: The Ethernet-based Simulink interface with the controller board for
design verification and instrumentations

4.4.4 Experimental Tests and Instrumentations

Experimental test is the most important part of any control algorithms. Signal vi-

sualization and GUI (Graphical User Interface) in Simulink environment can be also

exploited for instrumentation. In order to transfer experimental data to/from Simulink,

we propose an Ethernet-based serial communication between MATLAB/Simulink envi-

ronment and the FPGA control board. All data are sampled with an arbitrary sampling

frequency up to 50 MHz and sent to Simulink. From Simulink also user commands and

parameters can be sent to the control board during run time.
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Since the personal computer is not capable of performing real-time tasks, data is stored

on memory blocks available on the control board and transfered as soon as the PC

is ready to accept the new packet. In this way, all samples are safely transmitted

to Simulink for data playback and further processing purposes. A Screenshot of the

Simulink model for FPGA-based Model-In-the-Loop and instrumentation is shown on

figure 4.10. It will be further described in chapter 6 and 7.

4.5 Conclusion

High logic density and programmability of FPGAs represent extraordinarily high com-

putational performance.

Thanks to parallelism and hardware implementation of all tasks, FPGAs are able to

manage precise timing requirements which are necessary for real-time systems.

There are various tools available for development and verification of FPGA-based de-

signs. MATLAB/Simulink is a graphical programming environment which enables to

deal with complexity of FPGA-based development and allows to generate HDL codes

from Simulink models.

For experimental test and instrumentation, the Ethernet-based communication interface,

enabling to transfer manipulated parameters to the FPGA chip and sampled signals from

the FPGA, is proposed. It provides state-of-the-art of instrumentation capabilities for

FPGA based development at much lower cost. Thanks to high sampling rate of the

FPGA, it can practically replace a commercial laboratory oscilloscope as well.
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FPGA Implementation of Electric

Drive Models

5.1 Introduction

Hardware adaptability of FPGAs makes them powerful for real-time implementation of

computationally intensive models with very short sampling time. The hybrid notion

of modern electrical drives, which include both discrete and continuous parts, requires

very short integration steps to properly model dynamic behavior of power electronics

[94]. FPGA-based implementation of the electrical drive models allows to reduce the

simulation time. Furthermore, it is useful for real-time Model-In-the-Loop tests of the

FPGA-based control algorithms.

5.2 Data Type Conversion

Hardware reconfigurability of FPGAs allows to finely customize computational architec-

ture and to efficiently utilize logic resources. Most important optimization parameters

for mathematical computation on digital devices are data type and bit-width. Higher

number of bits leads to larger logic area and consequently lower performance. Because

of the significance of these parameters, HDLs support various data types and flexible

choose of bit-width.
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Figure 5.1: Hardware model of floating point addition in Simulink

5.2.1 Floating Point Data Type

Floating-point provides higher flexibility and programming convenience. In contrast to

fixed-point, in floating point data type the scaling factor is dynamically set for each value

in order to exploit highest possible precision. It is at the cost of higher computational

burden. Floating-point arithmetics need more hardware resources [95]. In most of the

modern digital processors the floating-point unit is intended to provide the program-

ming flexibility. Although existing FPGA chips are mainly facilitated with embedded



Chapter 5: FPGA Implementation of Electric Drive Models 53

hardware multipliers for fixed-point data type, in the future they will be more and more

floating-point oriented to meet the requirements of the demanding applications [96–98].

Floating point implementation increases portability and scalability of the design [99].

FPGAs are often combined with processor in a hardware-software co-design. Since most

of processors are facilitated with floating point units, a floating point FPGA simplifies

the communication [100].

5.2.1.1 Performance of Floating Point Arithmetic on FPGAs

Hardware model of the floating-point adder is depicted on figure 5.1. This model is

optimized so that it can be converted into VHDL code by means of the HDL coder

tool. As the model shows, implementation of the floating-point operations needs extra

logic resources. It leads to larger design and higher clock latencies compared to the

fixed-point. Pipelining technique can improve performance of the floating-point blocks.

However, depending on the FPGA architecture it is not always possible to achieve best

routing possibility to maintain the demanding performance.

Hardened floating-point arithmetics which are well optimized during manufacturing, can

provide higher performance compared to a soft implementation using configurable logic

blocks of the FPGA. At the moment a few families of FPGAs are provided with hardcore

floating-point arithmetics. Because of the importance it is anticipated that in the future

more FPGA chips will be facilitated by embedded standard floating-point arithmetics.

5.2.2 Fixed Point Data Type

Fixed-point data type is a way to represent fractional values usually in base two [101].

The reason is that digital computation is established on base 2 and multiplication and

division by two can be simply realized using shift registers.

A value in fixed point must be necessarily an integer. Therefore for representation of the

fractional part, a scaling factor is required. Precision of fixed-point numbers depends on

the bit-width and correct choice of the scaling factor. For conversion of signals with a

known range of variation, the best possible scaling factor can be easily calculated. Due

to the limit of available bit-width for processing and storage of data, usually losing some

information is unavoidable. Nevertheless, such precision is, in most cases, acceptable.

Thanks to the simple hardware model and higher performance, more often fixed-point

data type is preferred, unless floating-point hardened arithmetic blocks are available.



Chapter 5: FPGA Implementation of Electric Drive Models 54

5.3 FPGA-Based Model of Induction Motor

Capability of FPGAs for parallel processing and their flexibility to be dedicated to

various hardware topologies make them suitable for implementation of computationally

complex models with high sampling frequencies in real-time.

While control algorithms are implemented on FPGA, an FPGA-based model of electrical

drives is necessary for the Model-In-the-Loop simulation.

5.3.1 Generalized Procedure for FPGA-Base Real-Time Modeling

Assume that the dynamic plant is described with the following set of nonlinear differen-

tial equations:

ẋ = A(t) · x+ b(t) · u (5.1)

where ẋ = [dx1
dt

dx2
dt ...

dxn
dt ]T is the derivative of the state variable vector, x = [x1 x2 ... xn]T

vector of state variables, A(t) the state matrix, b(t) the input matrix, and u the input

vector.

Using the forward Euler technique difference equations can be derived:

ẋ =
x(k + 1)− x(k)

Ts
(5.2)

x(k + 1) = x(k) + Ts ·A(k) · x(k) + Ts · b(k) · u(k) (5.3)

Representation of the system of difference equations can be further simplified as:

x(k + 1) = x(k) + Ã(k) · x(k) + b̃(k) · u (5.4)

The block diagram of 5.4 is shown also on figure 5.2.
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Figure 5.2: Hardware implementation of the difference equations

The objective of the FPGA implementation is to achieve very short integration step.

While we rely on pipelining to improve the performance, the central part of the model

should be realized only in one register stage to ensure the shortest integration path.

The term Ã(k) · x(k) represents back emf of the motor. Since it has a relatively lower

dynamic compared to VSI, this part can be implemented with a longer sampling time.

To meet the timing constraint without reducing the clock frequency, it is necessary to

pipeline the computational model. Pipelining causes the computational delay which is

negligible.

5.3.2 Inverter Model for Control

One of main contributions of FPGA implementation is that the simulation can be real-

ized in real-time even for a very short sampling time. The integration step of the model

is smaller than time constant of the power electronic switches. It allows including most

of switching transient effects and pulse width modulation as well as the switching dead

times. To avoid short circuit between upper and lower transistors, dead-time is added

to the gate signals and during this time both transistors are turned off (see figure 5.3).

It means no active voltage vector is applied. Depending on the direction of the current

i, one of anti-parallel diodes conducts and determines the output voltage.

5.4 Conclusion

In this chapter the focus was on the application of FPGAs for real-time modeling of

electrical drives systems. Extremely high computational performance of FPGAs gained
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from the parallelism and distributed architecture, enables to obtain a very short sampling

time and ensure more realistic simulation.

The data type has a significant impact on the computational performance of the hard-

ware model. Floating-point data type reduces the complexity of the implementation

since no effort is needed for conversion and scaling. However, the floating-point arith-

metics require more logic resources. The further drawback of floating-point operations

is the higher number of clock latencies.

Even though available logic resources on FPGAs allow to realize all arithmetics in float-

ing point, for the implementation of the mathematical model of electrical drives, the

fixed-point data type shows better performance and requires less CLB and DSP blocks.

A generalized approach for real-time modeling of electrical drives is investigated. It en-

ables to build the hardware model from the standard differential equations, maintaining

short integration steps.
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FPGA-Based

Hardware-In-the-Loop Simulation

6.1 Introduction

During and after production of control devices, several tests must be done to verify

correctness of both hardware and software functionalities. Majority of such tests are

not reproducible or it is not cost effective to perform them on real drives. Hardware-

In-the-Loop (HIL) systems are hardware emulators that replace real plants in most of

operation and failure conditions [102].

Depending on the Device Under Test (DUT), different specifications are needed for the

HIL system [103–105]. Electrical drives consist of several parts: control unit, power

electronics, electrical motor and mechanical load. For verification of the drive under

particular load condition, the HIL must replace the mechanical load, whereas to confirm

operation of the power electronic part, the electrical motor must be emulated [102]. Here

the focus is on the signal level HIL mainly for verification of the control unit.

6.2 Hardware Architecture

As shown on figure 6.1, the real-time model can be used for the Model-In-the-Loop

(MIL) simulation. In MIL scheme the controller and the drive model are implemented

on the same FPGA. However, unlike the offline simulation, it is in real-time operation

and enables to verify control algorithms on the target FPGA.
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Distinction of HIL is that it enables to test the control algorithm as well as the hardware

including signal conditioning interfaces (see figure 6.2).

MILController

FPGA chip area

Figure 6.1: FPGA-based MIL system

HILController

Isolation / signal conditioning

Figure 6.2: The HIL structure

Since we are going to realize a HIL simulator at signal level, some signal conditioning

analog and digital components are required to connect the HIL with the controller. The

simplified schematic of the HIL board is represented on figure 6.3. DAC interfaces are

used for generating voltage and current measurement signals.

The Ethernet interface is intended on the board to realize high speed communication of

the HIL with the host PC. The high speed Ethernet communication allows instrumen-

tation and on-line parameterization.
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Figure 6.4: Hardware structure of the FPGA model

6.2.1 FPGA Model

Figure 6.4 shows top entities of the FPGA model of the proposed HIL system. The high

speed communication within FPGA, is mainly done through the high bandwidth point-

to-point connections. However, for the lower speed communication, the bus system is

used to save logic resources. The real-time model of the motor and the power electronic

converter is developed in Simulink and VHDL codes are obtained by means of HDL coder,

whereas the DAC interface and Ethernet controller are developed directly in VHDL.
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6.3 Host PC Interface

A very important part of a Rapid Control Prototyping (RCP) platform, is the user

interface. We rely on an ordinary Personal Computer (PC) with Windows and MAT-

LAB/Simulink. On the host PC, Simulink is used to visualize and analyze the results or

set parameters of the HIL model running on the FPGA. The system has several parts

as shown on figure 6.5.

HIL
Controller

Figure 6.5: HIL structure

6.3.1 Ethernet Communication Interface

For communication between the host computer and the HIL, a serial interface is de-

signed that can sample and store data within FPGA and send it to the PC. One of

the advantages of using FPGA, is its flexibility to implement various communication

standards. The Ethernet is a high performance serial interface frequently used for net-

working. There exist several Ethernet protocols. Here we use UDP communication

protocol which is also supported by MATLAB.

The bandwidth of the Ethernet is sufficient to transfer data with MATLAB on-line for

tuning the parameters and observation of the slow changing variables. However for

higher sampling rate for instance oversampling up to the FPGA main clock frequency,

it is not sufficient. To ensure that no data will be lost due to the lower communication

rate, we utilize on-chip and on-board memory blocks to store the sampled data. The

Ethernet controller then transfer samples as soon as the PC is ready to accept a new

data packet. Therefore no data is missing while sampling with very short intervals.

6.3.2 MATLAB Interface

MATLAB/Simulink is widely used for model-based design and graphical programming.

Since the control algorithms are developed in Simulink, it makes the experimental ver-

ification of algorithms easier while it is also used for instrumentation and analysis of

experimental data. Bringing the experimental results in the Simulink environment en-

ables to employ MATLAB tools for further analysis.
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6.4 Conclusion

In this chapter the full FPGA-based HIL system is introduced. It enables to emu-

late behavior of power electronics, electrical motors and measurement boards, at signal

level. The proposed platform is simple, cost effective and flexible. It can be utilized for

education and research on power electronic as well as drive control applications.

The high computational performance and unlimited hardware reconfigurability of FP-

GAs, make them interesting for HIL applications. Thanks to the hardware programma-

bility various standard or custom communication interfaces can be realized. It allows to

implement high performance analog-digital conversion and signal conditioning circuits,

which are essential parts of any HIL simulators. To realize a robust data playback on the

host PC even at extremely high sampling rate up to the FPGA main clock frequency,

on-board as well as on-chip memory blocks are utilized. It underlines further advantage

of using FPGAs for control and HIL applications, which is the high performance memory

interface.
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Experimental Setup

7.1 Introduction

A very powerful way for early evaluation of control algorithms is the computer-based

simulation. As investigated in the previous chapters, simulation can be extended to

real-time HIL models which can verify not only control algorithms but also the control

hardware. Simulation-based validation is, however, limited to the correctness of the

mathematical model of the physical plant. Since all phenomenas in a real plant can

not be modeled, an experimental setup is also needed for a comprehensive evaluation of

the algorithm as well as the control hardware. This chapter introduces the experimen-

tal setup which will be used for the practical implementation of the algorithms being

proposed in the next part of this thesis.

A platform for research and prototyping must be facilitated with high computational

power so that it dose not require so much code optimization effort. Due to the high

number of applications for industrial digital control and the demand for prototyping

new methods, there are many commercial solutions which offer a user friendly developing

environment and expedite development and verification of control algorithms. High cost

is, of course, one of the problems which make them not affordable for many education

and research institutes. Commercial systems usually do not provide state-of-the-art in

terms of digital hardwares. The reason is their long development time. Due to that, it

takes longer time for industrial rapid prototyping solutions to keep up with the latest

computational technology. Because of these reasons some time is devoted to the design

and realization of the custom rapid prototyping platform for the current research. In this

chapter the high performance FPGA-based experimental setup is discussed which can

be programed either directly using standard HDL languages (to ensure portability of the

HDL models) or using the graphical programming environment of MATLAB/Simulink.
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Since the first commercial FPGAs, their logic density and operation clock frequency have

been significantly increased. At the same time, the price of FPGAs has been decreasing.

Although the first generation of FPGAs have addressed very specific applications only,

now they can overcome conventional DSPs even in many cost sensitive applications

such as motor control. Furthermore, hardware programmability of FPGAs allows to

gain very high computational performance by dedicating the hardware architecture to

the algorithm. Therefore for many applications with high computational complexity

increasing attention is paid to the FPGAs.

A simplified schematic of the experimental setup is depicted on figure 7.1.

IM

VSI

Ethernet-JTAG IGBT driver signal

Incremental Encoder

PC – User Interface
FPGA CONTROL 

BOARD

Current Measurement

Figure 7.1: Block diagram of the experimental setup

7.2 Controller Board

Computation engine on the control board is the Cyclone IV Altera FPGA chip [66].

For research and education many development boards with all required components for

building desired digital systems are available. There are tens of development boards

from Altera with the same I/O standard and connectors. Therefore, relying on the

development board enables to create a universal and upgradeable platform. In the

previous chapters we introduced the FPGA-based digital control system developed with

various functionalities for Hardware-In-the-Loop test and real-time simulation. It is

relied on the same board to design the controller. The controller board is connected to

the measurement, encoder and power stage boards through the interface board. The

main board is DE2-115 accommodating the Cyclone IV FPGA chip [2]. Here we just

describe the interface board designed and manufactured at our lab in particular for this

project.
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Figure 7.2: DE2-115 FPGA development board [2]

ADC

GPIO, TTL 3,3 V

Encoder PWM
Interface Interface

Figure 7.3: I/O board for the FPGA main board designed to connect to the 40-pin
expansion header

7.2.1 Analog-Digital (AD) Converter

The voltage and current measurement boards provide analog signals which must be

converted into digital. Since these signals are utilized as feedbacks in the control loop,

dynamic performance and bit-resolution of the AD converters have a big impact on

the performance of the controller. An AD converter of Texas Instrument is chosen [106]
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providing high bit-resolution and sampling rate. It is sufficient to perform oversampling.

As it is demonstrated in [107], oversampling can significantly improve quality of the

current measurement. The main features of the AD converter are listed here:

• 2.7-V to 5.5-V Analog Supply, Low Power: 15.5 mW

• 1 (MHz) Sampling Rate

• Excellent DC Performance

• 16-bit Resolution

• Excellent AC Performance at f = 10 (kHz)

• Built-In Conversion Clock (CCLK)

• Unipolar Input Range: 0 (V ) to VREF

7.2.1.1 SPI Communication

High performance serial communication capability of the FPGA, allows to connect many

peripherals with various communication protocols. A well known peripheral interface

for point-to-point data transmission is SPI (Serial Peripheral Interface). A hardware

configuration program is developed which allows to configure the AD chip and read the

converted data via SPI. The VHDL code is provided in the appendix B.

7.2.2 Encoder Interface

The speed and position of the motor can be measured by different types of sensors

depending on the accuracy and dynamic required for the control system [108]. A well

known position sensor is optical encoder that converts the position information into bit

stream signals. Since the output signals of the encoder are differential, they should be

first converted into single ended TTL signals. For the encoder interface the differential

driver is implemented on the board [109].

7.2.2.1 Speed and Position Calculation

The encoder provides 3 signals: A, B and Z. In each rotor revolution, 1024 pulses of A

and B signals are produced, which are 90 degree out of phase. Combination of A and

B gives a two-bit signal describing state of the encoder. In positive direction the state

increments as enumerated on the figure 7.4, while in negative direction, it decrements.



Chapter 7: Experimental Setup 66

Therefore the direction of the rotation can be simply detected. On the line Z, the

encoder generates one pulse per mechanical revolution of the rotor, so that an initial

position can be defined for the encoder.

To decode these signals into speed and position information, duration of the encoder

pulses should be measured. A Simulink model is developed which can be directly con-

verted into VHDL code by means of the HDL coder. It includes also a spike filter to

eliminate the environment noises. In addition, the speed signal is further smoothed

using a digital low-pass filter.

1 2 3 4 1 2 3 4 1 2 3 4 1

A

B

State

Figure 7.4: Signals of an optical encoder

7.3 Measurement Board

The measurement board accommodates current and voltage sensors which are needed

for measuring currents of the inverter as well as the DC link voltage as it is indicated

on figure 7.5.

7.3.1 Current Sensors

The quality of current sensors directly affects the controller performance. Currents can

be measured by means of Hall effect sensors. Hall effect sensors provide high bandwidth

satisfying the requirements of the current control loop.

7.3.1.1 Hall Effect Sensor

The output current of the Hall sensor is proportional to the measured current. The input

and output currents are physically isolated from each other as they are just connected

through the magnetic field. Due to that it does not need additional isolation and the
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Figure 7.5: Current measurement for the VSI

output signal can be directly connected to the control board. According to [110] hall

effect sensors have the following characteristics making them appropriate for the current

control loop:

• Wide frequency range

• Good overall accuracy

• Fast response time

• Low temperature drift

• Excellent linearity

7.3.2 DC-Link Voltage Sensor

The voltage signal can be measured by the resistance divider circuit. As shown on figure

7.6, the Vout is proportional to the input voltage at much lower level. However a proper

isolation is needed to avoid possible damage of the control board. This can be done

through the isolation amplifier which is demonstrated on figure 7.7. More technical

information about the isolation amplifier can be found in its data sheet [111].
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Figure 7.6: Resistive divider circuit for the voltage measurement

V1 V2

GND2
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Figure 7.7: The isolation amplifier

7.4 Electrical Machines

Focus of the current research is mainly on the control of AC electrical motors. Two types

of AC motors being studied here are Permanent Magnet Synchronous Motor (PMSM)

and Induction Motor (IM). Experimental investigations of the proposed control strate-

gies are done on the commercial electrical motors. On the laboratory setup two motors

are coupled together so that one of them can be used to produce mechanical load torque.

The load drive is controlled by the commercial inverter whereas the test motor is con-

trolled by the proposed FPGA-based controller. Parameters of the electrical motors are

provided in appendix F.

7.5 The Power Stage

The power stage is connected to the grid trough a controllable three-phase transformer.
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Voltage Source Inverter

Figure 7.8 depicts the three-phase VSI consisting of the IGBT switches and diodes. To

switch off (on) each IGBT, it needs the gate control signal which is generated by the

control board.

+

−

va vb vc

S1

S2

S3 S5

S4 S6

Figure 7.8: The 3-phase voltage source inverter

Intelligent Power Module (IPM)

The 2-level voltage source inverter is assembled using the IPM manufactured by Mit-

subishi. The six IGBT switches are integrated into one pack. The gate drivers are

embedded making a compact solution [3].

Figure 7.9: The schematic of the IPM (Source [3])
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Isolation Board

The outputs of the controller board are gate signals for the power transistors. These

signals should be connected to the IPM through a proper electrical isolation to protect

the control board from high voltages. The isolation is realized using optocouplers as

shown on figure 7.10.

GND1 GND2

Figure 7.10: Isolation of gate signals through the optocoupler

Over-Current Protection

The over-current protection can easily be realized inside the FPGA. The function of the

over-current protection is to switch off all of IGBTs when an over-current fault happens.

The fault might occur due to the possible errors in the algorithm or a damage to the

motor.

In addition the IPM provides the self-protection unit which switches off the faulty tran-

sistor and generates a fault signal for the control board. The fault signal can also be

used to detect failures and switch off all transistors.

7.6 Conclusion

For verification of the control algorithms the experimental setup is designed based on

the FPGA-based rapid prototyping platform. It is a cost effective setup providing high

computational performance. Its main features are as follows:

• High computational performance

• Suitable for hand coding or using code generation tools
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• It is provided with Ethernet-based host PC interface for visualizing and analyzing

experimental results

Commercial solutions require high hardware and software costs which might be not

affordable for the research institutions. On the other hand, the technology of digital

computational devices is rapidly evolving and due to the long development time, com-

mercial rapid prototyping systems usually are not facilitated with the state-of-the-art of

the computational technology. In the proposed scheme each individual component can

be upgraded to improve the performance of the setup, if needed.

A Simulink user interface is developed allowing to set the parameters of the control

board and visualize the variables with high sampling frequency up to 50MHz. These

features make the experimental setup appropriate for the practical investigations.
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Chapter 8

Model Predictive Control

8.1 Introduction

Model Predictive Control (MPC) is an emerging control strategy established on the dig-

ital and optimal control theory [112]. The discrete notion of MPC makes it appropriate

for implementation on digital controllers. Several algorithms for model predictive con-

trol have been developed [113, 114]. The concept of MPC, as its name suggests, is a

model-based design strategy which is the special case of the optimal control techniques

developed in 1960 and later [115]. MPC offers a systematic solution for the control

problem of MIMO plants with some sort of nonlinearities such as constraints on the

inputs and state variables.

In principle, any control method that optimizes the control action taking into account

the predicted behavior of the controlled plant, can be considered as predictive control.

For Linear Time Invariant (LTI) systems, there is a classical definition for MPC with

the quadratic performance index which can be analytically solved:

J(k) =
H∑
i=0

(
x(k + i)Qx(k + i) + u(k + i)Ru(k + i)

)
(8.1)

where u(k) and x(k) are vector of inputs and state variables respectively, i time index,

H prediction horizon, Q and R matrices of weighting factors.

Figure 8.1 shows the simplified view of the MPC controller. J(k) is a scalar function

determining the dynamic and steady state performance of the controller. y(k) is the
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MPC Plant

y(k)u(k)J(k)

Figure 8.1: Abstract structure of MPC

vector of measurable outputs. Hence the MPC block includes an observer to estimate

vector of the state variables x(k).

t(Ts)

u(t)

y(t), y(t)∗

Figure 8.2: An example of continuous set MPC performance

The MPC has the following basic advantages:

• It provides simple principles for the design of the controller.

• The flexible cost function can easily include vast majority of the control objectives

• MPC enables to compensate the dead-times of different notions

• It is well suited to the MIMO systems

• MPC can effectively compensate the measurable disturbances

For some sort of nonlinearities, for instance the existence of constraints over the control

actions and state variables, systematic approaches for solving the optimization problem



Chapter 8: Model Predictive Control 75

have been developed [114–116]. However these methods suffer, mainly, from the com-

putational complexity and are not realizable in real-time. Computational burden is the

main challenge for the practical implementation of most MPC algorithms.

8.2 Model Predictive Control for Power Electronic and

Drives

The first publications on MPC for the electrical drive applications, are [117–119]. In

these works, the predictive control principles ware investigated for the direct control of

power converters, mainly to minimize the switching frequencies and losses.

Among the direct control strategies, DTC can be also categorized as a type of predictive

control [120]. In DTC there is no well formulated predictive model for choosing the

switching states, however, it relies on some sort of prediction of the drive behavior.

Absence of the internal model for DTC restricts optimization capability of the controller

compared to the MPC methods.

For quite a long time, there have been no major publications on MPC for electrical drive

applications because of two reasons: MPC potential contributions were not broadly

known to the drive industry and research community. The second reason was high

computational burden of the optimization algorithms restricting them for the practical

implementations. Investigation of MPC is refreshed by the review and reconsideration

of MPC opportunities done in [120].

By advancing in power electronics and digital controllers, MPC became more attractive

as a modern control strategy for the drive applications. There are some interesting

contributions that practically realized MPC strategies to improve dynamic and static

performance of the current control [41, 121]. Unlike the initial publications on MPC for

electrical drives, in these works, a PWM-based approach is investigated to improve the

dynamic performance of the controller rather than minimizing the switching losses. It

shows that the drive industry may gain more from MPC than was expected.

Despite advances in the digital microcontroller technology, due to the computational

complexity, classical MPC is still not feasible to be realized on industrial drive systems.

Even with offline calculation capability of the Explicit Model Predictive Control, it

still requires a huge computational engine and is not interesting for drive systems [122,

123]. The computational complexity is a major drawback of any digital controller since

it implies additional hardware cost and reduces the reliability. Nevertheless it is not
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the only challenge for the conventional MPC strategies. The basic MPC methods are

established on linear models and just extension of them enables to include constraints.

It degrades accuracy of the control for nonlinear systems such as electrical drives and

power electronics.

Over the last decade, intensive efforts were devoted to another group of MPC strategies

relying on discrete notion of power electronic devices. These methods can be considered

as extensions to the direct control strategies initialized during 80’s [12, 117, 124]. Two

main concepts for direct control of converters can be distinguished: One approach is

the so-called Finite Set Model Predictive Control (FS-MPC) proposed in [125]. Another

MPC technique is the Model Predictive Direct Torque Control (MPDTC) [126].

FS-MPC and MPDTC share the idea of enumeration of the feasible switching states.

Nevertheless they have a very important difference which is including the hysteresis band

in MPDTC. It enables MPDTC to perform long horizon prediction and obtain outstand-

ing results in particular for medium-voltage drives [127]. It shows the importance of

combination of the MPC strategy with other control concepts to insert pre-optimization

assumptions. Some recent publications on FS-MPC also investigate including calcu-

lated trajectories to decrease the computational effort of FS-MPC for longer prediction

horizon [128].

8.3 Finite-Set Model Predictive Control

The simple concept of FS-MPC and its capability to handle constraints and multiple

variable control problems, have encouraged many researchers to investigate it for vast

majority of applications [129]. High dynamic of power electronic devices compared to

the time constant of electrical motors allows to consider them as ideal switches (see

figure 8.3) and neglect the switching transient.

≈

Figure 8.3: Power transistor as an ideal switch

In the three phase 2-level VSI, combination of states of the power electronic switches

leads to 8 output voltage vectors. Assume that the switching state can be changed only

at the sampling instants, behavior of the system over the next sampling interval can be

predicted through the knowledge of its current state, disturbances and the new state
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of the inverter switches. In FS-MPC the cost function is calculated for any change of

switching state, so that optimal switching can be attained by minimization of the cost

function.

t(Ts)

u(t)

y(t), y(t)∗

Figure 8.4: FS-MPC for discrete systems

8.3.1 Cost Function

The performance index in FS-MPC, as considered in most publications, is a scalar

mathematical function reflecting all control objectives with respective weighting factors

[129]. It defines the performance criterion for the drive control system.

J(k) = |xp1 − x
ref
1 |+ |x

p
2 − x

ref
2 |...|x

p
n − xrefn | (8.2)

8.3.2 Prediction Model

Minimizing the cost function requires a mathematical model of the plant being able to

predict its future behavior. Using the mathematical model enables to include available

information in the optimization process. In particular for the drive and power electronic

systems, a mathematical model can be developed by means of the differential equa-

tions. Using Euler approximation, prediction model can be extracted from differential

equations of the plant:
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dx

dt
≈ xk+1 − xk

Ts
(8.3)

8.3.3 Constraints in FS-MPC

Constraints exist almost in all practical systems. The important advantage of FS-MPC

is its flexibility to include different terms in the cost function.

2
3VDC α

2
3VDC · 0.86

β

Figure 8.5: Voltage constraints of the voltage source inverter

Only voltage vectors which are inside the hexagon shown on figure 8.5 can be generated

by the inverter. For a sinusoidal output voltage, the magnitude of the voltage is limited

to 2
3VDC · 0.86. It leads to the following constraint:

√
u2α + u2β ≤

2

3
VDC · 0.86 (8.4)

For operation on the overmodulation region the whole hexagon area must be considered

[17]. In FS-MPC the voltage constraint is inherently included since only feasible voltage

vectors are taken into account in the optimization.

In addition to the limits of the control, there are also constraints referring to the state

variables such as currents, fluxes and the torque. To avoid saturation as well as over

current problems, magnitude of the stator currents must be kept within the allowed

band.
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Imax ≤ Ilim (8.5)

Tmax ≤ Tlim (8.6)

To maintain the constraints over the state variables, penalty terms can be imposed into

the cost function to exclude all control actions violating the constraint conditions [129].

gc =

{
0 |xp| < xmax

∞ else
(8.7)

8.4 FS-MPC for Induction Motor

Depending on the switching states of the power electronic switches, the voltage source

inverter feeding the induction motor is capable of producing a finite number of voltage

vectors. In the direct control methods such as DTC [12] and FS-MPC, [125], the output

variables can be controlled by the appropriate selection of the switching states. In DTC,

the switching states are selected according to the lookup table whereas in FS-MPC the

performance index is used to calculate the optimal voltage vector. The cost function

enables to include secondary control goals [130].

Tk Tk+1 Tk+2 Tk+3

v1
v2

v3

v4

v5
v6

v7

x(t)

Figure 8.6: Cost function optimization in FS-MPC: a graphical representation



Chapter 8: Model Predictive Control 80

As figure 8.6 shows, depending on state of the system, each voltage vector may lead to

different slope on output variables which in case of the induction motor are the flux and

electromagnetic torque. For simplicity here only one variable is illustrated.

8.4.1 Design of the Controller

8.4.1.1 Predictive Model of Induction Motor

Dynamic phenomena in IM can be described using the differential equations 8.8 - 8.12.

vs and vr are voltage vectors of the stator and rotor respectively, is and ir stator and

rotor current vectors, ψs and ψr stator and rotor flux vectors, ωr mechanical speed, Rs

and Rr stator and rotor resistances, Ls and Lr stator and rotor inductances, Lm mutual

inductance, Te the electromagnetic torque, p the number of pole pairs.

vs = Rs · is +
dψs
dt

(8.8)

vr = 0 = Rr · ir +
ψr
dt
− j · pωr · ψr (8.9)

ψs = Ls · is + Lm · ir (8.10)

ψr = Lr · ir + Lm · is (8.11)

Te =
3

2
P (ψs × is) (8.12)

where

j =

[
0 1

−1 0

]
(8.13)

Using the forward Euler approximation the difference equations are obtained:

is(k + 1) = is(k) + Ts · (−Re
Le
is(k) + KrAr

Le
ψr(k)− Krpωr(k)

Le
· jψr(k) + vs(k+1)

Le
)

(8.14)

ψs(k + 1) = ψ(k) + Ts · (vs(k + 1)−Rs · is(k + 1)) (8.15)

Te(k + 1) =
3

2
P · (ψs(k + 1)× is(k + 1)) (8.16)



Chapter 8: Model Predictive Control 81

where Ts is the sampling time. Equations 8.15 - 8.16 are used to predict the future

behavior of the controlled variables (is , ψs and Te ) for the given control action. As

mechanical time constant is considerably larger than electrical, for torque control loop

mechanical speed can be treated like a slowly varying parameter:

dωr
dt
≈ 0 (8.17)

8.4.1.2 The Cost Function

Primary objective of the torque and flux controller in IM, is tracking respective reference

values. It can be reflected in the following cost function:

J = |ψrefs − ψps |+GT · |T refe − T pe |+ gI (8.18)

where GT is the gain factor of the torque, ψrefs , ψps reference and predicted value of

the flux, T refe , T pe reference and predicted value of the torque and gI the discontinuous

function imposed into the cost function for realizing the current limit:

gI =

{
0 |Isp| < Imaxs

∞ else
(8.19)

8.4.2 FPGA-Based Implementation of FS-MPC

The computation time has a big impact on the performance of the controller. Reducing

the computation time makes it possible to have an immediate action after measurement

and calculation of the control.

Hardware programmability of the FPGA allows to fully dedicate it to the control algo-

rithm. It leads to significant reduction of the execution time. Pipelining and parallelism

are the two main techniques which can be effectively used to improve the computational

performance of the FPGA. Thus important part of any FPGA-based design, is the hard-

ware architecture. In fact, iteration based structure of FS-MPC makes it suitable for

the FPGA implementation. Figure 8.7 shows the functional block diagram of FS-MPC

on the FPGA.

The input clock trigger launches the execution. System clock frequency is 100(MHz).

In the first block, all possible voltage vectors are generated by the state counter which

restarts each time the clock trigger appears. The clock latency for this block is one.
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Figure 8.7: Cost function optimization in FS-MPC

The prediction model calculates the torque and flux for each voltage vector. Discrete

model of IM is utilized for the prediction. This block has 6 clock latencies. The number

of the clock latencies is associated with the pipeline stages.

In the cost function optimization block, the performance index is minimized and the

respective voltage vector is selected as the optimal value (vαβ(opt)). Clock latencies

for these block are 18. Relatively higher number of clock latencies is due to CORDIC

algorithm for calculation of predicted flux magnitude. However, in this block only a few

embedded multipliers are utilized.

In the output update block, new voltage vectors which must be applied over the next

sampling interval, is updated each time the trigger edge appears. Number of clock

latencies for the output update block is 2.

All simultaneous operations are done in parallel to minimize the total clock latencies.

Since prediction model and the cost function for all voltage vectors are identical, the

design is pipelined so that it can be efficiently reused for all voltage vectors.

To synchronize the voltage update with the last calculation, this block is fed by the

execution trigger delayed by (N + P ) clocks. N corresponds to the total number of

voltage vectors and P number of pipeline stages. The total pipeline stages are 27. It leads

to 34 clock latencies. Since system clock is 100(MHz), computation time of FS-MPC is

only 340(ns). Such calculation time can be safely neglected without compensation.

The proposed architecture for FS-MPC algorithms, can be applied for different types

of electrical drives as well as many converter topologies. It needs just to modify the

prediction model and the cost function accordingly.



Chapter 8: Model Predictive Control 83

8.4.3 Experimental Results

To demonstrate tracking performance of FS-MPC in practice, experimental tests are

carried out for the induction motor fed by the 2-level voltage source inverter.
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Figure 8.8: Experimental results: performance of FS-MPC for torque and flux control.
The blue curve is the flux (Wb) whereas the red one corresponds to the torque (Nm).

Figure 8.8 shows the dynamic as well as steady state performance of FS-MPC for tracking

of reference values. The blue curve corresponds to the flux whereas the red curve is the

electromagnetic torque. Although FS-MPC enables to control mean value of the torque

and flux at the desiered level, it suffers from high torque ripples. This problem is widely

mentioned for FS-MPC in many publications [131].

High ripples are due to the fact that the controller is intended to change the switching

state only at the sampling instants in contrast to the PWM-based methods wherein

switching time is precisely calculated within the sampling interval. Nevertheless, FS-

MPC has many advantages. It is inherently nonlinear and flexible to include many

control goals. Further benefit of FS-MPC, as shown here, is its simple structure for

implementation on the FPGA maintaining high computational performance.

8.5 Discussion

FS-MPC provides a very intuitive way for the modeling of the power electronics and its

flexible cost function allows to include also secondary objectives. Since there are other

control strategies that rely on the discrete nature of the controlled system, it makes

sense to carry out a comparison. One of the prior works is Variable Structure (VS) or

so-called Sliding Mode Control (SMC). In SMC, the control is changed in accordance
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to the output error. Poor steady state performance is the major drawback of SMC.

However, the controller is usually robust to the parameter deviation and in many cases

the model parameters are not needed at all. It makes SMC a universal solution in many

applications. In SMC, the concept of order reduction and stable invariant manifolds

are the basic philosophy of the controller design. It is assumed that number of control

parameters is equal to the number of variable structures. It is due to the very general

optimization criteria defined in SMC which is mainly asymptotic stability of the closed

loop system. As figure 8.9 shows, for the sliding motion on the hyperplanes, in the 2-

level VSI there are more than one discrete control available at the same time. FS-MPC

is obviously superior to SMC in utilizing all these degrees of freedom.

In fact, the model independent property of SMC can be also a restriction which prevents

to include the available information of the plant in design of the controller. This is of

great importance in particular for the power electronic and drive systems for which a

mathematical model is in most cases available.
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Figure 8.9: Sliding Model Control for a VSI

FS-MPC has the capability of utilizing additional degrees of freedom which are available

in many power electronic systems to improve the dynamic and steady state performance.



Chapter 9

Nonlinear Model Predictive

Control

9.1 Introduction

FS-MPC investigated in the previous chapter, inherently includes constraints and dis-

crete nature of the power electronic as well as nonlinearities of the drive model. In

FS-MPC, the optimization is performed for a set of feasible controls associated with

the switching states of power electronics. Flexibility of FS-MPC in choosing the cost

function, makes it applicable for various power electronic and drives systems. It has a

relatively simple optimization strategy that allows to include several control objectives

in the cost function. The main limit of FS-MPC is that the computational complexity

rises exponentially by increasing the prediction horizon and with only one step predic-

tion it suffers from high ripples of the output variables. Higher ripples at steady state

operation are due to the fact that switching time is only at sampling instants in con-

trast to the SVM-based methods that can precisely calculate the switching time with

minimum ripples as is depicted on figure 9.1.

To reduce output ripples, optimal switching time must be applied to the inverter. Opti-

mality of the duty cycles should be assured considering a combination of at least three

switching states, as shown on figure 9.1. Using the modulator, the switching time can be

separately optimized independent from the control algorithm. Since the sampling time

is constant in FS-MPC, it requires a very long prediction horizon to attain the optimal

switching time for a sequence of three vectors. For 3 step prediction, as it is illustrated

on the figure, equal duty cycles cause higher torque ripples compared to the space vector

modulation.
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Figure 9.1: Performance of FS-MPC vs. SVM based control

To keep the advantages of FS-MPC such as flexibility, simplicity and high dynamic per-

formance, an effective optimization algorithm is investigated which allows to calculate

the optimal continuous voltage vector including all nonlinearities of the model. Further-

more, the proposed algorithm enables to maintain constraints in order to achieve the

maximum performance of the inverter in all operation regions.

9.2 Nonlinear Optimization

Vast majority of practical systems are nonlinear. Many methods have been developed

to deal with nonlinear and multi variable optimization challenges. Important features

for a solution are the level of complexity and the implementability on digital computers,

since these devices are dominating tools for performing numerical calculations.

Although many iterative techniques such as Newton-Raphson’s, for solving mathematical

problems, have been developed before the age of computers, they have received more

and more attention after invention of digital computers. The reason is that iterative

strategies usually consist of simple steps which must be repeated several times until a

solution with a desiered accuracy can be found. This attribute makes such methods

appropriate for implementation on digital computers.

Attempts to find a generalized strategy being valid for all nonlinear systems usually

fail due to unpredictability of the global behavior. Effectiveness of solutions mainly

depends on the structure of nonlinear models. Many engineering systems need to be

studied in a limited operation range and optimization should be done only for bounded
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parameters. Relying on such practical considerations leads to significant reduction of

the computational complexity.

9.2.1 Region Elimination Optimization Method

Region elimination methods are effective in particular for constrained and bounded

nonlinear optimization problems [132]. There are several region elimination techniques

that differ depending on the region reduction ratio and the initialization strategy. In

most optimization problems a function must be minimized over a predefined interval.

A big advantage of the region reduction is that it does not imply excessive complexity

such as calculation of derivatives or interpolation. Therefore, these algorithms are easily

realizable.

Golden section method suggests the optimal interval reduction ratio for finding extremum

point of an unimodal and one dimensional function over a bounded interval. Assume

that f(x) is to be minimized over the interval [a, b]. At each step xa and xb points are

selected so that:

(b− a)

(xb − a)
=

(xb − a)

(xa − a)
= R (9.1)

R =

√
5− 1

2
(9.2)

where R is so-called golden ratio. At first iteration f(x) must be calculated at two points

while at each further iteration it needs to be calculated only once. Golden section method

is optimized with respect to the reduction ratio and calculation burden in particular for

unimodal functions.

Interval halving also known as bisection method relies on region reduction principle as

well. Bisection method requires calculation of f(x) for three points at first step and

then two points per iteration. It has, however, a more simple strategy for choosing the

intervals just by dividing the previous interval by 2 which can be easily done in digital

computers using a shift register.
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Figure 9.2: First and second iteration steps of the golden section method
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Figure 9.3: Two steps of the interval halving optimization

9.3 Multi-Variable Optimization

MPC often requires optimization of the cost function with respect to multiple parame-

ters. The region reduction optimization technique investigated in the previous section

can be extended to multi-variable optimization as well.

Figure 9.4 shows a simple MIMO system.

dx

dt
= − 1

τx
x+

1

τx
ux (9.3)

dy

dt
= − 1

τy
y +

1

τy
uy (9.4)
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Figure 9.4: First order MIMO plant

Above equations represent a simplified current control loop of an electrical motor. The

control variable is the stator voltage vector supposed to the following constraint:

u2x + u2y < U2 (9.5)

Consider one step prediction horizon, the following cost function can be derived to ensure

reference value tracking:

J = |xref − x(k + 1)|+ |yref − y(k + 1)| (9.6)

where xref , yref , x(k + 1), y(k + 1) are reference and predicted values. By Euler ap-

proximation predictive model is obtained from initial differential equations of the plant:

x(k + 1) = x(k)− Ts
τx
x(k) +

Ts
τx
ux(k) (9.7)

y(k + 1) = y(k)− Ts
τy
y(k) +

Ts
τy
uy(k) (9.8)

Ts and k stand for sampling time and sampling instant respectively. Substituting initial

system equations into the cost function leads to:
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J =

∣∣∣∣xref − (x(k)− Ts
τx
x(k) +

Ts
τx
ux(k)

) ∣∣∣∣+

∣∣∣∣yref − (y(k)− Ts
τy
y(k) +

Ts
τy
uy(k)

) ∣∣∣∣
(9.9)

By optimization of this cost function at the time instant k, a control vector [ux uy]
T

is obtained which can be applied over the sampling interval k + 1 to ensure tracking of

the reference values (xref , yref ) with the minimum error. The calculated control vector

must fulfill the constraint condition as well.

In order to simplify inclusion of the constraint, parameters are redefined as:

ux = R · cos(θ) (9.10)

uy = R · sin(θ) (9.11)

where

−
√
U2 < R <

√
U2 (9.12)

0 < θ < π (9.13)

The halving interval strategy is extended for multiple-variable by multiplexing all re-

gions. Extension of optimization increases number of calculations exponentially:

N = 2P (9.14)

where P and N are number of parameters and calculations respectively. The system has

2 parameters. Therefore at each step the cost function must be calculated for 4 set of

control variables. The flowchart of the optimization algorithm is depicted on figure 9.5.

Figure 9.6 shows performance of the closed-loop system for tracking of the reference

values. The defined constraint is maintained throughout the control. Since the cost

function has periodic behavior with respect to θ, the search region for it can be divided

in more than two regions to improve resolution of the solution.
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START

∆θ = { θmax−θmin
4

,− θmax−θmin
4

}; ∆R = {Rmax−Rmin
4

,−Rmax−Rmin
4

}

R0 = Rmax+Rmin
2

; θ0 = θmax+θmin
2

L = 0

J0 = J(R0, θ0)

∆θ = ∆θ · 2−L

∆R = ∆R · 2−L

i = 1; j = 1

θ = θL + ∆θi

Calculate cost function
J =?

R = RL + ∆Rj

J < J0

i = 2

j = 2

L = 12

RL+1 = R

θL+1 = θ

J0 = J

Roptimal = RL+1

θoptimal = θL+1

Joptimal = J0

END

L = L+ 1 j = j + 1 i = i+ 1

Figure 9.5: Multi-variable optimization algorithm
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Figure 9.6: Performance of the control algorithm maintaining circle constraint

The example provided here can demonstrate a simplified current control loop of electrical

drives. The imposed constraint, in fact, refers to voltage limit of the converter. In three

phase electrical drive systems fed by VSI, feasible voltage vectors are limited inside

the hexagon. To verify the effectiveness of the optimization algorithm for maintaining

such type of dynamic constraints which can not be simply considered in initial search

intervals, the same simulation is carried out considering the new constraint.

As it is depicted on figure 9.7, considering the whole hexagon, the maximum value of uy

is the same as for the circle, whereas the maximum value of ux is increased to:

umaxx =
1

cos(π/6)
·R (9.15)

All points which violate the constraint condition are excluded by giving a large cost

function value.

Trajectory of the control signal is depicted on figure 9.9. The optimization algorithm is

able to derive maximum available control within the hexagon to achieve the best possible

performance. In the cost function a gain factor larger than 1 can be interpreted as a

higher priority given to x whereas a gain factor lower than 1 means less importance for

x compared to y. For this investigation, the gain factor is set to 2 and as expected the

faster response for x is attained.
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Figure 9.8: Dynamic behavior of controller maintaining hexagon constraint
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Figure 9.9: Control trajectory inside the hexagon
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9.4 Discussion

An optimization algorithm based on the region elimination strategy is investigated.

Major advantage of the proposed method is its applicability for a wide class of nonlinear

optimization problems. For sake of simplicity, investigations are carried out on a linear

system with input constraints. Nevertheless results are also valid for nonlinear systems.

Iterative structure of the region elimination optimization makes it suitable for FPGA

implementation. In general many parts of the optimization algorithm is independent

from the cost function. It allows to create a scalable FPGA model usable for different

drive types. It is an important aspect since FPGA models require relatively longer

development time.



Chapter 10

Nonlinear Model Predictive

Control of Induction Motor

In this chapter Nonlinear Model Predictive Control of IM is investigated based on the

optimization algorithm proposed in the previous chapter. Furthermore, practical issues

associated with the FPGA implementation are discussed.

10.1 Structure of the Controller

SVMCS −NMPC

IM

J(k)
v, θ

ωr

+ −VDC

Ia
Ib

S1
S2
S3

ωrefr ψrefs , T refe

Figure 10.1: Block diagram of CS-NMPC

Structure of the proposed MPC strategy is depicted on figure 10.1. Since the controller

solves the optimization problem for a continuous control set, we refer to it as Continuous

Set Nonlinear Model Predictive Control (CS-NMPC). Although it shares the same cost

95



Chapter 10: Nonlinear Model Predictive Control of Induction Motor 96

function with FS-MPC, the optimization algorithm enables to calculate a continuous

voltage vector which can be applied through the modulator.

10.1.1 Cost Function

FS-MPC algorithm is already applied to diversity of drives types and power electronic

topologies. The most significant feature of FS-MPC is its capability to include several

control objectives simultaneously. For induction motor drive the primary control task

is to keep the torque and stator flux at determined levels. In FS-MPC, the absolute

errors are directly used in the cost function. In CS-NMPC it is relied on the same cost

function:

J = |ψps − ψrefs |+GT |T pe − T refe | (10.1)

where J is the cost function to be minimized, GT the design parameter, ψps , ψ
ref
s , T pe

and T refe reference and predicted values of the stator flux and electromagnetic torque.

The gain factor GT is the only design parameter. Compared to the cascade control, in

which at least 4 parameters are required to be tuned, it represents a more simple design

strategy by reducing the number of parameters.

10.1.1.1 Including Constraints

Various types of constraints can be included into the cost function simply by adding

penalty terms [133]:

Ci =

{
∞ violating constraint

0 else
(10.2)

This additional term enables to exclude all solutions that lead to violation of the con-

straint. It can maintain constraints of the state as well as control variables.

10.1.2 Optimization Algorithm

The task of the optimization algorithm is calculating a voltage vector which minimizes

the cost function over the next sampling interval. In the previous chapter a numerical

optimization method is investigated. To apply the same strategy, optimization task is

first broken down into calculation of phase and magnitude of the optimal voltage vector
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as shown on figure 10.2. All voltage vectors located within the hexagon are feasible and

can be produced by the inverter.

α

β

θ

V

Figure 10.2: Space vector representation of the voltage vector to be calculated by
CS-NMPC

The procedure proposed here for calculation of the optimal voltage vector with respect

to the cost function is not so much depended on the form of the cost function. The

calculation consists of finite number of iterations. At each iteration, it evaluates a set

of voltage vectors and choose a vector with minimum cost function like what is done

in FS-MPC. However, in CS-NMPC test vectors don’t have necessarily direct physical

interpretations.

After each iteration the new sub-optimal voltage vector is calculated and the search

region is reduced around it. The algorithms is terminated when the search region is

small enough. Due to the fact that at each step the search region is divided by 2, 12

iteration is sufficient to obtain 12-bit resolution.

10.2 Control in Overmodulation Region

The aim of the overmodulation is to extract maximum possible volt-time out of the

voltage source inverter. Maximum available voltage which can be achieved by a linear

controller, is the circular area within the hexagon. Since the inverter voltage is not

distributed uniformly along the stator windings, any further increase of the output

voltage leads to current distortion which must be compensated properly to decrease its

influence on the current control loop [134]. However such compensation causes additional

complexity for the controller.
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Figure 10.3: The flowchart of the CS-NMPC algorithm for the induction motor

Thanks to the high dynamic performance of the CS-NMPC there is no need for coor-

dinate transformation. Furthermore it provides a direct torque and flux control which

simplifies operation in overmodulation region. To maintain maximum available voltage

vector, the voltage constraint should be extended to the whole hexagon area.

10.3 FPGA Implementation

Modularity of the CS-NMPC algorithm decreases complexity of the FPGA model. It can

be separated into subcomponents so that functionality of each part can be individually

verified. Furthermore, structure of the optimization algorithm is independent of the
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cost function and drive type. Therefore, a generalized and scalable FPGA model can be

created which is able to be parametrized and reproduced for various applications.

In previous chapters two main design environments are discussed: 1- Conventional HDL

model development environment using low level hardware description languages such

as VHDL 2- Model base design in the Simulink environment relying on the HDL coder

tool of Mathworks, for code generation. At different stages of the thesis, CS-NMPC is

implemented in both mentioned environments. The structure being discussed here is

valid for VHDL hand codding as well as Simulink model. Figure 10.4 shows functional

block diagram of the FPGA implementation.
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Figure 10.4: FPGA model of CS-NMPC for the induction motor

10.3.1 Computational Performance

The structure of CS-NMPC enables to effectively use pipelining technique and enhance

computational performance of the algorithm. A further improvement of the computa-

tional performance is possible thanks to parallel processing of the FPGA.

The whole CS-NMPC model is developed in Simulink and through the HDL coder tool,

corresponding VHDL code for FPGA configuration, is generated. Graphical program-

ming of Simulink provides a clear overview of the algorithm and makes it very convenient

to synthesize the model. More importantly such graphical overview is helpful for orga-

nizing pipeline stages. Figure 10.5 shows a screenshot of the Simulink model. Further

information regarding subsystems is provided in appendix E.

Between each pair of adjacent pipeline registers, there should be as much combinatorial

logic as the maximum time constraint dose not exceed one clock period. This time

constraint can be roughly estimated with respect to the complexity of operations, signal

paths and performance of the target FPGA. Therefore, complicated timing analysis for

each model is not necessary.
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Figure 10.5: The Simulink model of CS-NMPC for the induction motor

Calculation of execution the time is straightforward just by counting pipeline stages,

number of test vectors and iterations. The calculation time will be as follows:

tc =
I · (N + P + 1)

fclk
(10.3)

where tc is execution time, I number of iteration, N number of voltage vectors, P

pipeline stages and fclk clock frequency of the FPGA.

As the Simulink model shows, one iteration consists of 42 pipeline stages and in each

iteration, 14 voltage vectors are evaluated. For an acceptable accuracy, 12 iterations,

corresponding to 12 bit resolution, are sufficient. Since the FPGA clock frequency is 100

MHz, computation time will be 6.72(µs).



Chapter 10: Nonlinear Model Predictive Control of Induction Motor 101

10.4 Experimental Results

To practically demonstrate the dynamic performance of CS-NMPC for controlling elec-

tromagnetic torque and stator flux of the induction motor, it is realized on the exper-

imental setup. Detail of the setup is provided in chapter 7. On the control board the

Cyclone IV FPGA chip is intended to execute the control algorithm.

The induction motor fed by the voltage source inverter is used as test drive whereas the

induction motor controlled through an industrial inverter is intended to provide the load

torque.

For speed measurement, the incremental encoder is installed on the motor shaft. Stator

currents are measured through the Hall sensors. A flux observer is designed to estimate

rotor and stator fluxes. Formulation as well as FPGA implantation of the observer are

provided in appendix D

10.4.1 Motor Startup

Figure 10.6 shows the dynamic performance of CS-NMPC for the induction motor,

at startup. Controlled variables are torque and stator flux while the controller must

maintain voltage and current constraints.

At startup stator flux is zero and the stator current must initialize the flux. Afterwards

the electromagnetic torque can be produced. In the classical field oriented control,

torque and flux are controlled in separate loops.

As figure 10.6 shows , with the only control parameter of CS-NMPC, dynamic behavior

of the torque and stator flux can be managed. Choosing a larger GT leads to a faster

dynamic of the torque still maintaining the same constraints.

10.4.2 Decoupling of Flux and Torque Control

The stator flux must be properly controlled to maintain maximum performance and

energy efficiency of the drive. Figures 10.7 and 10.8 demonstrate that CS-NMPC suc-

cessfully decouples flux and torque control. In all operation regions, the performance of

torque and flux control can reach physical limits. Such superior performance is achieved

at lower complexity and design challenges.
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Figure 10.6: Dynamic performance of CS-NMPC for the induction motor at startup.
VDC = 300(V ) and Imaxs = 15(A) for different gain factors GT .
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Figure 10.8: Dynamic performance of the flux control loop. VDC = 300(V ) and
Imaxs = 15(A)
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10.5 Discussion

Control of induction motors is more challenging compared to other drive types. The

reason is complexity of the mathematical model which is highly nonlinear. The con-

ventional approach to control of induction motors is linearization of the motor model

and applying linear control concepts. Such simplifications lead to lower performance

and energy efficiency. The proposed control method enables to synthesize the controller

without linearizing the model.

The cost function of CS-NMPC used for optimization is very flexible and many control

tasks can be simultaneously included by imposing additional terms.

Structure of the optimization algorithm in CS-NMPC is similar to FS-MPC. The number

of test vectors is increased to include those vectors which have no direct physical inter-

pretations, in order to calculate a quasi continuous voltage vector. Therefore, the same

hardware structure is also applicable for the FPGA implementation of the optimization

algorithm.



Chapter 11

Model Predictive Control with

Imposed Target Dynamic

11.1 Introduction

MPC algorithms being studied in this dissertation, mainly rely on one step prediction.

The computational complexity is the main limit for real-time implementation of MPC

algorithms for longer prediction horizons, especially for nonlinear systems.

However, computational complexity of MPC is not the only design challenge. Other

issues, associated with MPC applications, are parametrization and definition of the

performance criteria. For classical control methods such as PID, controller attributes

have explicit relation with the design parameters. In MPC, performance of the controller

can be manipulated through the gain factors. Nevertheless, an insightful approach for

calculation of the gain factors, which can maintain a predefined dynamic behavior of the

controlled plant, is still not available. Due to that design of the cost function is mainly

based on empirical techniques.

In this chapter order reduction and concept of invariant manifolds are investigated as

useful tools for dealing with the aforementioned challenges of MPC.
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11.2 Computational Complexity of FS-MPC for Long Pre-

diction Horizon

FS-MPC treats the hybrid plants as variable structure systems with finite states. Finite

states considered in FS-MPC are naturally inherited from the discrete notion of power

electronics. Nevertheless unlike pulse width modulation that allows only to control mean

values within the time discrete interval, FS-MPC falls into the group of the direct control

strategies and potentially can lead to higher dynamic performance and lower switching

frequencies [125, 129].

Similar approach, prior to FS-MPC, is Sliding Mode Control (SMC) [135–137]. However

FS-MPC has following advantages which make it superior to SMC:

• Chattering problem of controller outputs can be decreased.

• Dealing with higher degrees of freedom in choosing the finite control set is possible.

• Additional control objectives can be included into the cost function of FS-MPC.

There are some heuristic ways for dealing with the computational complexity of FS-

MPC by applying pre-optimization to exclude some of the possible states and reduce

the computational effort. In [128] a continuous-set model predictive control strategy

with off-line optimization is applied to bound optimal control trajectories. For FS-MPC

only voltage vectors are considered which are located near the pre-calculated trajectory.

This is an interesting approach that allows to combine well-known continuous-set MPC

with FS-MPC to reduce the computational complexity for longer prediction horizons.

The main remark to this solution is that the MPC method applied for pre-optimization

is still computationally complex and has many problems of practical implementation.

Furthermore it degrades flexibility of FS-MPC in choosing the cost function since both

control algorithms should have the same performance index for combination to make

sense.

Another way for reducing the computational complexity of FS-MPC is investigated in

[126], wherein a bounded control output is taken and the controller is allowed to switch

only if it goes out of the bounded area in the next sampling time. This is, in fact,

a predictive hysteresis control and consequently the output ripples is to be set by the

designer or calculated from a supervisory control and the predictive algorithm reduces

the number of switchings over the prediction horizon. In other words, it reduces the

optimization effort at the cost of omitting the flexible cost function of FS-MPC and

declining the number of objectives.
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11.3 Synergetic Control

Synergetic theory is established by H. Haken to describe nonlinear behaviors in quantum

physics. The aim of the synergetic theory is explaining nonlinear and stochastic behavior,

self-organizing and pattern formation in highly nonlinear dynamics of different notions

[138–141]. Th synergetic concept tries to abstract universal principle for the so-called

self-organization in many natural systems. According to the synergetic theory moving

from an unstable state to a new equilibrium condition happens through an enormous

reduction of the system order. However, this transitional process is governed by only

few so-called order parameters.

A. A. Kolesnikov applied the idea of the synergetic to formulate a nonlinear control

method. To illustrate the definition of order parameter, Kolesnikov relies on the invariant

manifolds by means of which he describes the lower order dynamics [142], [143] [144].

The synergetic control strategy proposed by Kolesnikov has been widely investigated for

control of vast majority of practical systems [145–148].

In fact, invariant manifolds are well known in control science and there are also other

approaches established on the similar concept. A more recent study of the invariant

manifolds and the notion of order reduction for dealing with control of nonlinear dy-

namics is the Invariant and Immersion (I&I) technique proposed by A. Astolfi et. al.

[149]. However, in their paper more effort is devoted to mathematical formulation of

the I&I controller. Work of A. Kolesnikov, which is also prior to I&I, has tried to find

a link in the modern physics and focuses on physical insight into the control theory.

A. A. Kolesnikov calls the controller based on the synergetic approach ”Analytical Design

of Aggregative Regulators” (ADAR) [141]. The word analytical refers to the systematic

approach of the synergetic control in designing the controller whereas the aggregation

reflects the order reduction property of it [141, 149, 150].

11.3.1 Time Optimal Control

An interesting problem in applied control, is a plant consisting of a double integrator.

It can describe many practical systems. Here, the well known time optimal solution to

this problem is investigated, mainly, to show order reduction property of the control law

[144].
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ẋ1 = x2 (11.1)

ẋ2 = u (11.2)

where u is subject to the following constraint:

|u| < umax (11.3)

Optimal control of the system with respect to the dynamic performance is:

u(x1, x2) = −umaxsign ϕ(x1, x2) (11.4)

ϕ(x1, x2) = x1 +
0.5

umax
x2|x2| (11.5)

The minimum-time solution represents a switching control law. In [151, 152] it is applied

to realize Direct SPeed Control (DSPC) of an inverter fed induction motor. Figure 11.1

shows the phase-plane of the closed-loop system. Independent from initial points, all

trajectories tend to the invariant ϕ(x1, x2) = 0 and then move along it to the origin.

The closed-loop dynamic can be divided into two intervals. The first interval is the

second-order system described by the initial equations. The second one begins as the

trajectory hits the manifold ϕ(x1, x2) = 0. After reaching this invariant, the order

reduction takes place and from this point to the origin the closed-loop system can be

described by the first-order dynamic as follows [144]:

ẋ1|ẋ1| = −2umaxx1 (11.6)

Primary observation of this example is that, optimal control law for a linear system is

highly nonlinear. Further and more significant observation is the order reduction notion

of the closed-loop system.

11.3.2 Optimal Reaching Trajectory

Time optimal solution to the double integrator requiems extremely fast switching of the

controller which is practically not realizable. Declining the switching frequency leads to
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x2

x1
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√
−2x
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√

2x

Figure 11.1: Phase-plane of the time optimal control trajectories for umax = 1

undesired ripples of the controlled variables.

In fact a major part of the controller is definition of the lower order target dynamic. In

[144], a generalized evolution equation is proposed, ensuring reaching to the lower order

target system:

T · dϕ
dt

+ ϕ = 0 (11.7)

T > 0 (11.8)

where T is the design parameter. Significance of the new formulation is highlighting

the order reduction attribute of the optimal solution. The evolution equation specifies

behavior of the system only before approaching the optimal manifold ϕ = 0. Although

here a first-order equation is considered, it should not be necessarily linear.

In this example, the design parameter can illustrate switching frequency of the controller.

Solving the evolution equation leads to the new control law:
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u =

(
−x1 −

0.5

umax
x2|x2| − T · x2

)
· umax
T · |x2|

(11.9)

u ≤ umax (11.10)

As figure 11.2 shows, the obtained control law enables approaching the manifold ϕ = 0

through a smooth transition. The reaching trajectory is manageable by the design

parameter.

T ↑

ϕ = 0

x2

x1

Figure 11.2: Phase-plane of the optimal control with various reaching dynamics

11.4 Model Predictive Control with Imposed Target Dy-

namic

The essential part of the synergetic control is defining a lower order target dynamic. As

it is demonstrated through the example, the synergetic control has a strong link to the

optimal control. The control law obtained by means of generalized evolution equation,

ensures the order reduction and reaching the same invariant manifold as the time optimal

solution.
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Unlike the time optimal solution, the synergetic control law is in continuous form. How-

ever such behavior is not available for most drive systems because of switching notion of

the power electronics and discretization of the controller. We extend the control scheme

from the previous section to make it capable of evaluating time discrete control as well

finite number of switching states to select the best possible reaching trajectory with

respect to the design parameter.

11.4.1 Discrete Evolution Equation

By means of the forward Euler approximation method, the evolution equation 11.7 can

be converted into the following predictive form:

T
ϕ(k + 1)− ϕ(k)

Ts
+ ϕ(k + 1) = 0 (11.11)

where ϕ is the invariant manifold describing the reduced order target dynamic, Ts dis-

crete time, k sampling instance, T design parameter.

Solution of 11.11 leads to a digital control law that reduces the tracking error with

respect to the desiered dynamic performance defined by T , until the manifold ϕ = 0 is

reached, afterwards behavior of the closed-loop system can be described by the lower

order target dynamic.

11.4.2 Cost Function of MPC-ITD

Advantage of the derived control law from 11.7 as continuous or 11.11 as digital form, is

that they are not necessarily limited to −umax and umax and can take continuous values

to ensure any desired reaching trajectories.

Since control actions in power electronics are bounded and only a finite control set is

applicable, the calculated trajectory may not be feasible meaning that it dose not exist

among natural trajectories of the system. To predict the optimal natural trajectory, the

following cost function must be minimized with respect to the feasible control set:

J =

∣∣∣∣T ϕ(k + 1)− ϕ(k)

Ts
+ ϕ(k + 1)

∣∣∣∣ (11.12)
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11.5 Conclusion

In this chapter formulation of MPC-ITD for discrete and hybrid systems is investigated.

Basic design steps of MPC-ITD are definition of a lower order target dynamic that

fulfills technical and technological requirements and afterwards calculation of the optimal

trajectory which from any initial condition converges to the defined target dynamic. The

discretized evolution equation is proposed that leads to the nonlinear predictive control

law. Constraints of controlled variables as well as the control are inherently included in

the proposed scheme.

Conventional algorithms of FS-MPC basically enumerate all combinations of the finite

control set over the prediction horizon. It requires a huge computational burden which

is, in most cases, not realizable or will not be cost effective for the drive applications.

In the MPC-ITD scheme there is no need for long prediction horizon since optimality of

the predefined trajectories can be ensured independently.

Even though the proposed scheme requires inclusion of the additional terms into the cost

function, but it must be emphasized that MPC-ITD introduces an insightful strategy

for deigning the cost function. It has two major benefits:

• MPC-ITD is a more insightful approach and gives the physical interpretations for

calculation of the additional parameters. It simplifies the design process for control

engineers.

• The proposed algorithm reduces the complexity of design and tuning of the con-

troller. It is an important aspect in particular for MIMO systems.
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MPC-ITD for PMSM

12.1 Introduction

High efficiency and dynamic performance of Permanent Magnet Synchronous Motors

(PMSM), make them an excellent alternative for demanding applications. In PMSMs,

the magnetic field is produced by permanent magnets mounted on the rotor. Therefore

iron losses are less than induction motors. Furthermore PMSMs provide high perfor-

mance and torque density.

In contrast to DC motors, for PMSMs decoupling of stator currents and the magnetic

field is done by power electronic devices and control algorithms. Control of PMSMs

relies on similar concepts as for IM. Different control schemes have been published for

PMSMs. Thanks to many advantages of the model predictive control, this has been

widely investigated for PMSM as well.

Direct control of power electronic switches as an alternative to PWM-based control tech-

niques has some advantages. A direct switching strategy can lead to higher dynamic

performance since the PWM delay time is eliminated. Another interesting feature which

can be gained by applying a direct switching strategy is that the average switching fre-

quency can be significantly decreased without compromising the dynamic performance.

It is important in particular for higher power range where switching frequencies are

extremely limited.

MPC-ITD developed in the previous chapter is an extension of MPC that includes

order reduction concept of the synergetic control. The new formulation suggests an

insightful approach for design of the cost function. To demonstrate effectiveness of
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the proposed control strategy, its application for a PMSM drive is investigated. To

maintain direct control of the power electronics, feasible switching states are included

in the optimization.

12.2 Mathematical Model of PMSM

For design of any model-based control strategy, a proper model of the controlled plant

is crucial. Differential equations are used to derive the dynamic model.

12.2.1 2-Phase Equivalent Model of PMSM

The dynamic of a surface mounted PMSM (Ld = Lq) can be demonstrated by the

2-phase equivalent model.

us = Rs · is +
dψs
dt

(12.1)

where us = [usα usβ]T and is = [isα isβ]T are the stator voltage and current vectors,

Rs stator resistance and ψs the stator flux linkage. In fact ψs represents the air-gap

flux. In PMSM, the air-gap flux is produced by the stator windings and the permanent

magnets mounted on the rotor:

ψs = Ls · is +ψr (12.2)

The magnitude of the rotor flux is almost constant. Flux linkage of permanent magnets

in stator reference frame can be described as:

ψr =

[
cos θ − sin θ

sin θ cos θ

][
Ψm

0

]
(12.3)

where ψr = [ψrα ψrβ]T is the rotor flux linkage in the stator coordinate, Ψm magnitude

of the flux produced by the permanent magnets.

dis
dt

= us ·
1

Ls
− Rs
Ls
· is −

1

Ls
· dψr
dt

(12.4)
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dψr
dt stands for the back emf and can be calculated as follows:

dψr
dt

= jωe ·ψr (12.5)

j =

[
0 −1

1 0

]
(12.6)

where ωe is the electrical speed of the rotor. Electromagnetic torque can be described

as:

Te =
3

2
P (ψs × is) (12.7)

where Te is the electromagnetic torque, P number of pole pairs. Block diagram of PMSM

is depicted on figure 12.1.

us 1
Rs

3
2P

jτs

Te

Tl

ωr
ωe

Mechanical System

τm

τs
is

ls

j
ψm

ψs

P

Figure 12.1: Signal flow of the PMSM model. τs = Ls
Rs

12.3 FS-MPC for PMSM

Due to the simple and intuitive concept of FS-MPC it was investigated for vast majority

of applications. To provide a means for comparison of the proposed control method,

here we briefly study FS-MPC scheme for PMSM. For more information on this topic,

one can refer to [153].
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FS-MPC
ψrefs

ψr is

observer

ωr, θr

ωr

ωrefr

VDC
+ -

T refe

PMSM

ωr

Figure 12.2: Block diagram model of FS-MPC

12.3.1 Predictive Model

Optimization of FS-MPC requires a discrete model of PMSM. The model can be devel-

oped based on the differential equations:

is(k + 1) = is(k) + Ts ·
(
us(k) · 1

Ls
− Rs
Ls
· is(k)− 1

Ls
· jωe ·ψr(k)

)
(12.8)

ψs(k + 1) = ψs(k) + Ts · (us(k)−Rs · is(k)) (12.9)

Te(k + 1) =
3

2
P · (ψs(k + 1)× is(k + 1)) (12.10)

Accordingly the predictive model can be built in Simulink and converted into VHDL

code by the HDL coder tool. The Simulink model for current prediction is depicted on

figure 12.3.

12.3.2 Optimization Algorithm

In FS-MPC discrete notion of VSI is directly included in the optimization. Depending

on the prediction horizon, at each sampling time a sequence of voltage vectors are calcu-

lated, however, only the first vector is applied [129]. The computational complexity of

the FS-MPC algorithm exponentially increases for longer prediction horizon. Therefore

only one step prediction is mostly considered [133].
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Figure 12.3: Simulink model for Current Prediction

In many scientific papers a processor-based computational system are utilized for im-

plementation of the algorithm. Due to that the computational delay must be explicitly

compensated to ensure proper operation of FS-MPC. Even though it might be not chal-

lenging to eliminate or reduce the effect of the delay, it leads to extra complexity of

the algorithm. In our digital platform thanks to the computational performance of the

FPGA, the computation time is only a fraction of the sampling interval. It allows to

obtain nearly ideal results.

The proposed hardware model of FS-MPC for IM (see figure 8.7), which was demon-

strated in chapter 8, is compatible to be used for FS-MPC of PMSM. It requires only

modification of the prediction model and the cost function.

12.3.3 Model-In-the-Loop Simulation of FS-MPC

To evaluate FS-MPC algorithm, FPGA-based MIL simulation is carried out. In the MIL

scheme the control algorithm as well as the drive model are implemented on the FPGA.

Short integration step of the drive model on the FPGA, allows to realize a more precise

simulation model including switching dead-time of the inverter.
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Figure 12.4: FS-MPC algorithm for PMSM
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Figure 12.5: Hardware Model of FS-MPC for PMSM

Dynamic performance of FS-MPC for PMSM is shown on figure 12.6.
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Figure 12.6: Dynamic performance of FS-MPC for PMSM, GT = 0.01.

12.4 MPC-ITD for PMSM

As the first step of designing MPC-ITD for PMSM, the target dynamic needs to be

defined. The control objective is keeping the electromagnetic torque and stator flux at

the reference levels. In PMSM the air-gap flux is mainly produced by the permanent

magnets mounted on the rotor. The stator windings are responsible only for producing

torque component of the current iq. However, in field weakening region, stator current

should also contribute to the air-gap flux.

Invariant manifolds reflecting the control task can be described as follows:

ϕ1 = Te − T refe (12.11)

ϕ2 = ψs − ψrefs (12.12)

where Te, T
ref
e , ψs and ψrefs are electromagnetic torque and flux linkage and their

reference values.

Accordingly the evolution equation can be written as:
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σ1
dTe
dt

+ Te − T refe = 0 σ1 > 0 (12.13)

σ2
dψs
dt

+ ψs − ψrefs = 0 σ2 > 0 (12.14)

where Te and ψs are the torque and flux respectively, σ1 and σ1 are design parameters.

These differential equations describe a dynamic system with equilibrium point of Te =

T refe , ψs = ψrefs and the design parameters are related to the stability and reaching

time for falling into the equilibrium point. Based on the formulation introduced in the

previous chapter the following predictive dynamic equation can be derived:

(
σ1
Ts

+ 1

)
· Te(k + 1) =

σ1
Ts
Te(k) + T refe (k + 1) (12.15)(

σ2
Ts

+ 1

)
· ψs(k + 1) =

σ2
Ts
ψs(k) + ψrefs (k + 1) (12.16)

where Ts is the sampling time. The task of the controller is tracking this target dynamic

by minimizing the following cost function:

J =

∣∣∣∣(σ1Ts+1)·Te(k+1)−T refe (k+1)−σ1
Ts
Te(k)

∣∣∣∣+∣∣∣∣(σ2Ts+1)·ψs(k+1)−ψrefs (k+1)−σ2
Ts
ψs(k)

∣∣∣∣
(12.17)

Since the gain factor is omitted in the cost function, normalized values of the controlled

variables must be used.

12.5 FPGA Implementation of MPC-ITD and Experimen-

tal Results

For experimental validation, MPC-ITD is implemented on the FPGA-based laboratory

setup. The inverter is designed in the lab whereas the test motor is a commercial

PMSM. Results of the torque control are shown on figure 12.7. As expected, compared

to conventional FS-MPC, ripples of controlled variables are considerably reduced. It is

interesting to notice that both ripples and switching frequencies are decreased at the

same time. In FS-MPC only tracking errors are included in the cost function. In addition
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to the dynamic error, MPC-ITD includes the predicted derivative of the error into the

performance index. It allows to further optimize the reaching trajectories without the

need for long prediction horizons.
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Figure 12.7: Measurement results of the electromagnetic torque control in transient
and steady state operation. Rotor speed is 50( rads ), sampling frequency 20(KHz).
(a) and (c) show the results of the proposed MPC-ITD while (b) and (d) represent

conventional FS-MPC.

12.6 Conclusion

In this chapter the MPC-ITD algorithm is investigated for the PMSM drive. The im-

posed target dynamic enables to modify the cost function of FS-MPC. The new cost

function gives an insight into gain factor calculation with respect to the defined perfor-

mance criteria.

By defining a target dynamic the MPC algorithm is able to find natural trajectories with

global optimality by only one step prediction horizon. It allows to reduce the switching

frequencies of the VSI at the same time improve steady state performance of the torque

and flux control.

Optimization algorithm of MPC-ITD has the same level of complexity as FS-MPC. It is

easily realizable on FPGAs. Thanks to parallelism and pipelined implementation of the

FPGA model, the computational performance is very high and the computation time

can be neglected.
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Conclusion and Future Works

In the work presented here applications of nonlinear model predictive control for the

electrical drives, with focus on FPGA-based implementation, have been investigated.

Advancing in automation technology requires more and more controlled electrical drives.

The bandwidth and accuracy of the control system must be improved to meet techni-

cal and technological requirements. In this respect new control algorithms and digital

hardware are studied.

13.1 Summary of Contributions

13.1.1 FPGA-Based Design

One topic being investigated in this PhD research is FPGA-based design. By advancing

in the hardware programmable devices, there are increasing attentions paid to FPGAs

for high performance real-time computation. In this direction some contributions are

made to deal with challenges of FPGA-based development in particular for electrical

drive and power electronic applications.

13.1.1.1 FPGA-Based Rapid Prototyping

FPGA programming is in the cross section of the hardware and software engineering.

HDL programs describe a physical structure of digital circuits which must be realized

by means of configurable logic blocks available inside the FPGA chip. To ensure proper

operation of the FPGA, it requires on the one hand hardware design considerations
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to confirm stability and timing constraints and logical functionality test on the other.

Due to parallelism and distributed architecture of FPGAs, a precise computer-based

emulation of FPGAs is too complex and in reality the target FPGA chip has to be used

for the design verification.

Thanks to the capability of FPGAs to adapt to algorithms and to perform parallel tasks,

the computational performance of FPGA-based systems is higher than state-of-the-art of

hard-core processors even using low cost FPGA devices at much lower clock frequencies.

In addition, more point-to-point connections potentially can improve the reliability and

safety of the FPGA-based systems.

Despite all these advantages, programming of FPGAs and design verification are main

challenges for expanding their applications. In the present research, a hardware platform

is proposed for rapid prototyping and functionality test of algorithms on the target

FPGA. In the proposed scheme, data are sampled at each FPGA clock event and then

sent to the Simulink model. Since FPGA is much faster than Simulink model, data

is stored in on-chip and on-board memory blocks and then is sent to the host PC for

playing back synchronized with the Simulink model. Unlike similar commercial solutions

such as FPGA-In-the-Loop provided by Mathworks, our solution supports multi-clock

design.

Indeed design environment and choose of HDLs for the FPGA programming plays a ma-

jor role in the FPGA-based development time. Standard HDLs are VHDL and Verilog.

These are textual hardware configuration languages. They represent high flexibility to

access hardware resources and optimization of resource usage. However, for rapid pro-

totyping, the graphical modeling tools are preferred. Model-based design tools are in

particular well prepared for design automation and dealing with complexity and most

importantly documentation of the FPGA-based projects.

Throughout this thesis, both VHDL hand coding and using HDL coder of Mathworks

are considered. Almost all of hardware models are created using VHDL and in Simulink

as well. While VHDL hand coding gives more flexibility and better FPGA resource

optimization, using HDL coder has the following benefits:

• Fixed point data type and data type conversion can be easier handled.

• Simulink is more developed for dealing with the complexity and hierarchical design.

• Parametrization of models in Simulink is more flexible.

• Off-line simulation capability of Simulink allows to verify logical correctness and

synchronization of entities, before implementing on the target FPGA device.
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At the time HDL coder can be helpful mainly for rapid prototyping. For end implemen-

tations hand coding is more efficient with respect to the logic area usage and speed of

the design.

13.1.2 Control Algorithm for FPGA Implementation

FPGAs increase the computational performance since the hardware model can be well

adapted to any control algorithms. There are two main techniques for optimization and

enhancing the computational performance of FPGAs: Pipelining and parallelism. To

effectively make use of these strategies, control algorithms must be properly adapted

to the FPGA as well. Thus, part of the thesis was devoted to developing of control

algorithms being suitable for the FPGA implementation.

In this thesis two control methods for electric drives have been investigated. An iteration-

based numerical solution is proposed for Continuous Set Model Predictive Control (CS-

NMPC). It allows to utilize logic resources efficiently. Pipelining architecture of the

FPGA-model of CS-NMPC enables to reduce the execution time. The total computation

time is less than 10 µs which can be safely neglected.

Another control method, being investigated here, is so-called Model Predictive Control

with Imposed Target Dynamic (MPC-ITD). While CS-NMPC calculates duty cycle of

power electronic switches within a fixed modulation period, MPC-ITD directly outputs

switching state of the inverter so that the modulator can be eliminated. Computation

time is a crucial factor for any control strategy. It is even more significant for direct

control of the inverter. Thanks to the FPGA-based implementation and well optimized

hardware architecture, execution time of MPC-ITD is less than 1 µs and can be safely

neglected considering the time constant of the drives.

13.1.2.1 Continuous-Set Nonlinear Model Predictive Control

The numerical solution developed for cost function optimization of CS-NMPC allows to

include all nonlinearities and constraints of the model. Further control objectives can

be included in the optimization process simply by imposing additional terms into the

cost function.

For the same control tasks, compared to classical controllers such as PID, number of

design parameters is reduced. For control of the flux and torque, CS-NMPC needs only

one gain factor to be tuned.
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CS-NMPC is implemented on the FPGA-based experimental platform to control torque

and flux of a commercial IM. In addition to its high performance, CS-NMPC enables to

decouple torque and flux control loops.

13.1.2.2 Model Predictive Control with Imposed Target Dynamic

For direct control of the inverter so-called FS-MPC method is developed over the recent

years. The main idea of FS-MPC is to put finite state of the inverter directly into the

cost function. At each sampling time switching state of the inverter is changed so that

the cost function is minimized. Thanks to the flexibility of FS-MPC for including several

goals into a single cost function, generality of the concept and intuitiveness of parameter

tuning, it has received high acceptance from research communities.

Cost function design and calculation of the gain factors are the most reported challenges

of FS-MPC. Cost function design is, in particular for relatively complex systems of sig-

nificant importance, since FS-MPC provides no direct connection between the controller

performance and the design parameters. This is the divergence of FS-MPC from tra-

ditional control methods such as PID. To deal with these issues the concept of order

reduction is proposed.

The MPC-ITD provides a more insightful approach to the design of the cost function. To

demonstrate performance of the proposed algorithm, experimental tests on the PMSM

drive are carried out. For direct switching strategies, output ripples and the average

switching frequency of the inverter are two main evaluation factors. In fact, from physic

of motors these parameters are usually contradictory i.e. reducing switching frequencies

leads to higher torque and flux ripples. Thanks to the improvement of switching time

with respect to the defined reference target dynamic, MPC-ITD makes it possible to

reduce switching frequencies and ripples at the same time.

The important feature of MPC-ITD compared to FS-MPC, is that instead of static

output error it considers the tracking error with respect to the predefined target dynamic.

It improves global optimality of the closed-loop system.

Even though additional parameters are included in the cost function, MPC-ITD provides

physical interpretations which simplify the design and tuning of the controller.
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13.2 Future Research Directions

The aim of doing research in engineering disciplines is mostly developing new methods

to solve practical problems or improving existing solutions. Nevertheless through the

research new challenges and motivations for further investigations are discovered. Such

findings are, perhaps, as important as the obtained results.

13.2.1 Future Challenges for FPGA-Based Design

Opportunities and challenges of the FPGA applications are tightly related to each other.

Considering rapidly increasing performance and logic resources offered by the FPGA

technology, it is obviously a need for automatic code generation to reduce the devel-

opment time. Existing HDL code generators have poor optimization capabilities and

still for an effective usage of the logic resources, the designer must be involved in the

low level design considerations. While application area of FPGAs is permanently ex-

panding, developing FPGA-based design automation tools shall encourage more research

interests.

Advances in nano-technology enable to integrate configurable logic elements, hard-cores

and analog components in a single chip. It simplifies PCB design and improves reliability

of embedded systems. Nevertheless design complexity is increased. Effective usage of

the chip resources and rapid prototyping require respective computer aided design tools.

13.2.2 Future Perspective of Nonlinear Model Predictive Control

Results obtained in this work show effectiveness of the nonlinear model predictive control

methods for electrical drives and power electronics. The proposed algorithms and the

FPGA-based implementation guidelines can be extended to various drive types and

power electronic systems.



Appendix A

CORDIC Algorithm for Park

Transformation

A.1 CORDIC Algorithm

CORDICs are iteration-based algorithms for numerical calculation of trigonometric func-

tions. The main feature of the CORDIC algorithms is the simple hardware implemen-

tation. Pipelining is an effective technique for enhancing the performance and data

throughput of the iteration-based algorithms.

Simulink incorporates many graphical and textual programming tools. The so-called

MATLAB Function block enables to integrate embedded MATLAB codes into the

Simulink models. It supports Fixed Point as well as Bit-Wise operations. Further-

more it can be converted into VHDL by means of HDL coder. For more detail the

reader can refer to the Simulink help.

A.1.1 MATLAB Code for Park Transformation

While graphical programming language of Simulink is appropriate for having a clear

overview of the model, textual programming of MATLAB is more compact and portable.

moreover it can be synthesized with various text editor tools.

As it can be seen from the provided code here, the CORDIC model of Park transforma-

tion consists of 16 pipeline stages. The MATLAB code is optimized so that it can be

converted into VHDL by means of the HDL coder tool.

126



Appendix A: CORDIC Algorithm for Park Transformation 127

% Author: Saeid Saeidi

% EAL -TUM

% MATLAB Version: R2012b

function [d, q]= fcn(a,b,theta)

%Defining persistent variables

%In VHDL , persistent variables will appear as Signals

persistent i1

persistent i2

persistent i3

persistent i4

persistent i5

persistent i6

persistent i7

persistent i8

persistent i9

persistent i10

persistent i11

persistent i12

persistent i13

persistent i14

persistent i15

persistent i16

% %

persistent i1n

persistent i2n

persistent i3n

persistent i4n

persistent i5n

persistent i6n

persistent i7n

persistent i8n

persistent i9n

persistent i10n

persistent i11n

persistent i12n

persistent i13n

persistent i14n

persistent i15n

persistent i16n
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% %

persistent a1

persistent a2

persistent a3

persistent a4

persistent a5

persistent a6

persistent a7

persistent a8

persistent a9

persistent a10

persistent a11

persistent a12

persistent a13

persistent a14

persistent a15

persistent a16

% %

persistent b1

persistent b2

persistent b3

persistent b4

persistent b5

persistent b6

persistent b7

persistent b8

persistent b9

persistent b10

persistent b11

persistent b12

persistent b13

persistent b14

persistent b15

persistent b16

% %

persistent beta1

persistent beta2

persistent beta3

persistent beta4

persistent beta5

persistent beta6

persistent beta7

persistent beta8

persistent beta9
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persistent beta10

persistent beta11

persistent beta12

persistent beta13

persistent beta14

persistent beta15

% %

persistent a1n

persistent a2n

persistent a3n

persistent a4n

persistent a5n

persistent a6n

persistent a7n

persistent a8n

persistent a9n

persistent a10n

persistent a11n

persistent a12n

persistent a13n

persistent a14n

persistent a15n

persistent a16n

% %

persistent b1n

persistent b2n

persistent b3n

persistent b4n

persistent b5n

persistent b6n

persistent b7n

persistent b8n

persistent b9n

persistent b10n

persistent b11n

persistent b12n

persistent b13n

persistent b14n

persistent b15n

persistent b16n

% %

persistent beta1n

persistent beta2n

persistent beta3n



Appendix A: CORDIC Algorithm for Park Transformation 130

persistent beta4n

persistent beta5n

persistent beta6n

persistent beta7n

persistent beta8n

persistent beta9n

persistent beta10n

persistent beta11n

persistent beta12n

persistent beta13n

persistent beta14n

persistent beta15n

% %

%Initialization of Persistent Variables

%After generating VHDL this part will be located in the RESET

if isempty(a1)

a1 = fi(0, numerictype(a), hdlfimath );

a2 = fi(0, numerictype(a), hdlfimath );

a3 = fi(0, numerictype(a), hdlfimath );

a4 = fi(0, numerictype(a), hdlfimath );

a5 = fi(0, numerictype(a), hdlfimath );

a6 = fi(0, numerictype(a), hdlfimath );

a7 = fi(0, numerictype(a), hdlfimath );

a8 = fi(0, numerictype(a), hdlfimath );

a9 = fi(0, numerictype(a), hdlfimath );

a10 = fi(0, numerictype(a), hdlfimath );

a11 = fi(0, numerictype(a), hdlfimath );

a12 = fi(0, numerictype(a), hdlfimath );

a13 = fi(0, numerictype(a), hdlfimath );

a14 = fi(0, numerictype(a), hdlfimath );

a15 = fi(0, numerictype(a), hdlfimath );

a16 = fi(0, numerictype(a), hdlfimath );

% %

b1 = fi(0, numerictype(b), hdlfimath );

b2 = fi(0, numerictype(b), hdlfimath );

b3 = fi(0, numerictype(b), hdlfimath );

b4 = fi(0, numerictype(b), hdlfimath );

b5 = fi(0, numerictype(b), hdlfimath );

b6 = fi(0, numerictype(b), hdlfimath );

b7 = fi(0, numerictype(b), hdlfimath );

b8 = fi(0, numerictype(b), hdlfimath );

b9 = fi(0, numerictype(b), hdlfimath );
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b10 = fi(0, numerictype(b), hdlfimath );

b11 = fi(0, numerictype(b), hdlfimath );

b12 = fi(0, numerictype(b), hdlfimath );

b13 = fi(0, numerictype(b), hdlfimath );

b14 = fi(0, numerictype(b), hdlfimath );

b15 = fi(0, numerictype(b), hdlfimath );

b16 = fi(0, numerictype(b), hdlfimath );

% %

beta1 = fi(0, numerictype(theta), hdlfimath );

beta2 = fi(0, numerictype(theta), hdlfimath );

beta3 = fi(0, numerictype(theta), hdlfimath );

beta4 = fi(0, numerictype(theta), hdlfimath );

beta5 = fi(0, numerictype(theta), hdlfimath );

beta6 = fi(0, numerictype(theta), hdlfimath );

beta7 = fi(0, numerictype(theta), hdlfimath );

beta8 = fi(0, numerictype(theta), hdlfimath );

beta9 = fi(0, numerictype(theta), hdlfimath );

beta10 = fi(0, numerictype(theta), hdlfimath );

beta11 = fi(0, numerictype(theta), hdlfimath );

beta12 = fi(0, numerictype(theta), hdlfimath );

beta13 = fi(0, numerictype(theta), hdlfimath );

beta14 = fi(0, numerictype(theta), hdlfimath );

beta15 = fi(0, numerictype(theta), hdlfimath );

% %

a1n = fi(0, numerictype(a), hdlfimath );

a2n = fi(0, numerictype(a), hdlfimath );

a3n = fi(0, numerictype(a), hdlfimath );

a4n = fi(0, numerictype(a), hdlfimath );

a5n = fi(0, numerictype(a), hdlfimath );

a6n = fi(0, numerictype(a), hdlfimath );

a7n = fi(0, numerictype(a), hdlfimath );

a8n = fi(0, numerictype(a), hdlfimath );

a9n = fi(0, numerictype(a), hdlfimath );

a10n = fi(0, numerictype(a), hdlfimath );

a11n = fi(0, numerictype(a), hdlfimath );

a12n = fi(0, numerictype(a), hdlfimath );

a13n = fi(0, numerictype(a), hdlfimath );

a14n = fi(0, numerictype(a), hdlfimath );

a15n = fi(0, numerictype(a), hdlfimath );

a16n = fi(0, numerictype(a), hdlfimath );

% %

b1n = fi(0, numerictype(b), hdlfimath );

b2n = fi(0, numerictype(b), hdlfimath );

b3n = fi(0, numerictype(b), hdlfimath );
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b4n = fi(0, numerictype(b), hdlfimath );

b5n = fi(0, numerictype(b), hdlfimath );

b6n = fi(0, numerictype(b), hdlfimath );

b7n = fi(0, numerictype(b), hdlfimath );

b8n = fi(0, numerictype(b), hdlfimath );

b9n = fi(0, numerictype(b), hdlfimath );

b10n = fi(0, numerictype(b), hdlfimath );

b11n = fi(0, numerictype(b), hdlfimath );

b12n = fi(0, numerictype(b), hdlfimath );

b13n = fi(0, numerictype(b), hdlfimath );

b14n = fi(0, numerictype(b), hdlfimath );

b15n = fi(0, numerictype(b), hdlfimath );

b16n = fi(0, numerictype(b), hdlfimath );

% %

beta1n = fi(0, numerictype(theta), hdlfimath );

beta2n = fi(0, numerictype(theta), hdlfimath );

beta3n = fi(0, numerictype(theta), hdlfimath );

beta4n = fi(0, numerictype(theta), hdlfimath );

beta5n = fi(0, numerictype(theta), hdlfimath );

beta6n = fi(0, numerictype(theta), hdlfimath );

beta7n = fi(0, numerictype(theta), hdlfimath );

beta8n = fi(0, numerictype(theta), hdlfimath );

beta9n = fi(0, numerictype(theta), hdlfimath );

beta10n = fi(0, numerictype(theta), hdlfimath );

beta11n = fi(0, numerictype(theta), hdlfimath );

beta12n = fi(0, numerictype(theta), hdlfimath );

beta13n = fi(0, numerictype(theta), hdlfimath );

beta14n = fi(0, numerictype(theta), hdlfimath );

beta15n = fi(0, numerictype(theta), hdlfimath );

% %

i1n = ufi(0,1,0);

i2n = ufi(0,1,0);

i3n = ufi(0,1,0);

i4n = ufi(0,1,0);

i5n = ufi(0,1,0);

i6n = ufi(0,1,0);

i7n = ufi(0,1,0);

i8n = ufi(0,1,0);

i9n = ufi(0,1,0);

i10n = ufi(0,1,0);

i11n = ufi(0,1,0);

i12n = ufi(0,1,0);

i13n = ufi(0,1,0);

i14n = ufi(0,1,0);
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i15n = ufi(0,1,0);

i16n = ufi(0,1,0);

% %

i1 = ufi(0,1,0);

i2 = ufi(0,1,0);

i3 = ufi(0,1,0);

i4 = ufi(0,1,0);

i5 = ufi(0,1,0);

i6 = ufi(0,1,0);

i7 = ufi(0,1,0);

i8 = ufi(0,1,0);

i9 = ufi(0,1,0);

i10 = ufi(0,1,0);

i11 = ufi(0,1,0);

i12 = ufi(0,1,0);

i13 = ufi(0,1,0);

i14 = ufi(0,1,0);

i15 = ufi(0,1,0);

i16 = ufi(0,1,0);

end

% %

%Definition of Constant Values

p = fi(pi,numerictype(theta), hdlfimath );

p2 = fi(pi/2, numerictype(theta), hdlfimath ); %1.570796

p2m = fi(-pi/2, numerictype(theta), hdlfimath );

theta0 = fi(theta ,numerictype(theta), hdlfimath );

%Determining section of the theta

%--------- # First pipeline stage

if(theta0 <= fi(p2m ,numerictype(theta), hdlfimath ))

beta1n = fi(theta0 + p,numerictype(theta), hdlfimath );

i1n = ufi(0,1,0);

elseif(theta0 >= fi(p2 ,numerictype(theta), hdlfimath ))

beta1n = fi(theta0 - p,numerictype(theta), hdlfimath );

i1n = ufi(0,1,0);

else

beta1n = theta0;

i1n = ufi(1,1,0);

end
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a1n = fi(a, numerictype(a), hdlfimath );

b1n = fi(b, numerictype(b), hdlfimath );

%--------- # Second pipeline stage

if(beta1 <fi(0, numerictype(theta), hdlfimath ))

a2n = fi(a1 + b1 , numerictype(a), hdlfimath );

b2n = fi(b1 - a1 , numerictype(b), hdlfimath );

beta2n = fi(beta1 + fi (0.78539816339745 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a2n = fi(a1 - b1 , numerictype(a), hdlfimath );

b2n = fi(b1 + a1 , numerictype(b), hdlfimath );

beta2n = fi(beta1 - fi (0.78539816339745 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Third pipeline stage

if(beta2 <fi(0, numerictype(theta), hdlfimath ))

a3n = fi(a2 + bitsra(b2 ,1), numerictype(b), hdlfimath );

b3n = fi(b2 - bitsra(a2 ,1), numerictype(a), hdlfimath );

beta3n = fi(beta2 + fi (0.46364760900081 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a3n = fi(a2 - bitsra(b2 ,1), numerictype(a), hdlfimath );

b3n = fi(b2 + bitsra(a2 ,1), numerictype(b), hdlfimath );

beta3n = fi( beta2 - fi (0.46364760900081 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Fourth pipeline stage

if(beta3 <fi(0, numerictype(theta), hdlfimath ))

a4n = fi(a3 + bitsra(b3 ,2), numerictype(a), hdlfimath );

b4n = fi(b3 - bitsra(a3 ,2), numerictype(b), hdlfimath );

beta4n = fi(beta3 + fi (0.24497866312686 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else



Appendix A: CORDIC Algorithm for Park Transformation 135

a4n = fi(a3 - bitsra(b3 ,2), numerictype(a), hdlfimath );

b4n = fi(b3 + bitsra(a3 ,2), numerictype(b), hdlfimath );

beta4n = fi( beta3 - fi (0.24497866312686 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Fifth pipeline stage

if(beta4 <fi(0, numerictype(theta), hdlfimath ))

a5n = fi(a4 + bitsra(b4 ,3), numerictype(a), hdlfimath );

b5n = fi(b4 - bitsra(a4 ,3), numerictype(b), hdlfimath );

beta5n = fi( beta4 + fi (0.12435499454676 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a5n = fi(a4 - bitsra(b4 ,3), numerictype(a), hdlfimath );

b5n = fi(b4 + bitsra(a4 ,3), numerictype(b), hdlfimath );

beta5n = fi(beta4 - fi (0.12435499454676 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Sixth pipeline stage

if(beta5 <fi(0, numerictype(theta), hdlfimath ))

a6n = fi(a5 + bitsra(b5 ,4), numerictype(a), hdlfimath );

b6n = fi(b5 - bitsra(a5 ,4), numerictype(b), hdlfimath );

beta6n = fi( beta5 + fi (0.06241880999596 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a6n = fi(a5 - bitsra(b5 ,4), numerictype(a), hdlfimath );

b6n = fi( b5 + bitsra(a5 ,4), numerictype(b), hdlfimath );

beta6n = fi(beta5 - fi (0.06241880999596 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Seventh pipeline stage

if(beta6 <fi(0, numerictype(theta), hdlfimath ))

a7n = fi(a6 + bitsra(b6 ,5), numerictype(a), hdlfimath );

b7n = fi(b6 - bitsra(a6 ,5), numerictype(b), hdlfimath );

beta7n = fi( beta6 + fi (0.03123983343027 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );
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else

a7n = fi(a6 - bitsra(b6 ,5), numerictype(a), hdlfimath );

b7n = fi(b6 + bitsra(a6 ,5), numerictype(b), hdlfimath );

beta7n = fi(beta6 - fi (0.03123983343027 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Eighth pipeline stage

if(beta7 <fi(0, numerictype(theta), hdlfimath ))

a8n = fi(a7 + bitsra(b7 ,6), numerictype(a), hdlfimath );

b8n = fi(b7 - bitsra(a7 ,6), numerictype(b), hdlfimath );

beta8n = fi(beta7 + fi (0.01562372862048 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a8n = fi(a7 - bitsra(b7 ,6), numerictype(a), hdlfimath );

b8n = fi(b7 + bitsra(a7 ,6), numerictype(b), hdlfimath );

beta8n = fi(beta7 - fi (0.01562372862048 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Ninth pipeline stage

if(beta8 <fi(0, numerictype(theta), hdlfimath ))

a9n = fi(a8 + bitsra(b8 ,7), numerictype(a), hdlfimath );

b9n = fi(b8 - bitsra(a8 ,7), numerictype(b), hdlfimath );

beta9n = fi( beta8 + fi( 0.00781234106010 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a9n = fi(a8 - bitsra(b8 ,7), numerictype(a), hdlfimath );

b9n = fi( b8 + bitsra(a8 ,7), numerictype(b), hdlfimath );

beta9n = fi(beta8 - fi( 0.00781234106010 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Tenth pipeline stage

if(beta9 <fi(0, numerictype(theta), hdlfimath ))

a10n = fi(a9 + bitsra(b9 ,8), numerictype(a), hdlfimath );

b10n = fi(b9 - bitsra(a9 ,8), numerictype(b), hdlfimath );

beta10n = fi(beta9 + fi (0.00390623013197 , numerictype(theta ),...
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hdlfimath),numerictype(theta), hdlfimath );

else

a10n = fi(a9 - bitsra(b9 ,8), numerictype(a), hdlfimath );

b10n = fi(b9 + bitsra(a9 ,8), numerictype(b), hdlfimath );

beta10n = fi( beta9 - fi (0.00390623013197 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Eleventh pipeline stage

if(beta10 <fi(0, numerictype(theta), hdlfimath ))

a11n = fi(a10 + bitsra(b10 ,9), numerictype(a), hdlfimath );

b11n = fi(b10 - bitsra(a10 ,9), numerictype(b), hdlfimath );

beta11n = fi(beta10 + fi (0.00195312251648 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a11n = fi(a10 - bitsra(b10 ,9), numerictype(a), hdlfimath );

b11n = fi(b10 + bitsra(a10 ,9), numerictype(b), hdlfimath );

beta11n = fi(beta10 - fi (0.00195312251648 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Twelfth pipeline stage

if(beta11 <fi(0, numerictype(theta), hdlfimath ))

a12n = fi( a11 + bitsra(b11 ,10), numerictype(a), hdlfimath );

b12n = fi(b11 - bitsra(a11 ,10), numerictype(b), hdlfimath );

beta12n = fi( beta11 + fi (0.00097656218956 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a12n = fi(a11 - bitsra(b11 ,10), numerictype(a), hdlfimath );

b12n = fi( b11 + bitsra(a11 ,10), numerictype(b), hdlfimath );

beta12n = fi(beta11 - fi (0.00097656218956 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Thirteenth pipeline stage

if(beta12 <fi(0, numerictype(theta), hdlfimath ))

a13n = fi( a12 + bitsra(b12 ,11), numerictype(a), hdlfimath );

b13n = fi(b12 - bitsra(a12 ,11), numerictype(b), hdlfimath );
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beta13n = fi( beta12 + fi (0.00048828121119 ,numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a13n = fi(a12 - bitsra(b12 ,11), numerictype(a), hdlfimath );

b13n = fi( b12 + bitsra(a12 ,11), numerictype(b), hdlfimath );

beta13n = fi(beta12 - fi (0.00048828121119 ,numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Fourteenth pipeline stage

if(beta13 <fi(0, numerictype(theta), hdlfimath ))

a14n = fi( a13 + bitsra(b13 ,12), numerictype(a), hdlfimath );

b14n = fi(b13 - bitsra(a13 ,12), numerictype(b), hdlfimath );

beta14n = fi( beta13 + fi( 0.00024414062015 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a14n = fi(a13 - bitsra(b13 ,12), numerictype(a), hdlfimath );

b14n = fi( b13 + bitsra(a13 ,12), numerictype(b), hdlfimath );

beta14n = fi(beta11 - fi( 0.00024414062015 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Fifteenth pipeline stage

if(beta14 <fi(0, numerictype(theta), hdlfimath ))

a15n = fi( a14 + bitsra(b14 ,13), numerictype(a), hdlfimath );

b15n = fi(b14 - bitsra(a14 ,13), numerictype(b), hdlfimath );

beta15n = fi( beta14 + fi (0.00012207031189 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

else

a15n = fi(a14 - bitsra(b14 ,13), numerictype(a), hdlfimath );

b15n = fi( b14 + bitsra(a14 ,13), numerictype(b), hdlfimath );

beta15n = fi(beta14 - fi (0.00012207031189 , numerictype(theta ),...

hdlfimath),numerictype(theta), hdlfimath );

end

%--------- # Sixteenth pipeline stage

a16n = fi(a15 * sfi( 0.60725293538591 ,18 ,17) , numerictype(a), hdlfimath );

b16n = fi(b15 * sfi( 0.60725293538591 ,18 ,17) , numerictype(b), hdlfimath );
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%Output Update of Registers

i2n = i1;

i3n = i2;

i4n = i3;

i5n = i4;

i6n = i5;

i7n = i6;

i8n = i7;

i9n = i8;

i10n = i9;

i11n = i10;

i12n = i11;

i13n = i12;

i14n = i13;

i15n = i14;

i16n = i15;

% %

a1 = a1n;

a2 = a2n;

a3 = a3n;

a4 = a4n;

a5 = a5n;

a6 = a6n;

a7 = a7n;

a8 = a8n;

a9 = a9n;

a10 = a10n;

a11 = a11n;

a12 = a12n;

a13 = a13n;

a14 = a14n;

a15 = a15n;

a16 = a16n;

% %

b1 = b1n;

b2 = b2n;

b3 = b3n;

b4 = b4n;

b5 = b5n;

b6 = b6n;

b7 = b7n;

b8 = b8n;

b9 = b9n;

b10 = b10n;
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b11 = b11n;

b12 = b12n;

b13 = b13n;

b14 = b14n;

b15 = b15n;

b16 = b16n;

% %

beta1 = beta1n;

beta2 = beta2n;

beta3 = beta3n;

beta4 = beta4n;

beta5 = beta5n;

beta6 = beta6n;

beta7 = beta7n;

beta8 = beta8n;

beta9 = beta9n;

beta10 = beta10n;

beta11 = beta11n;

beta12 = beta12n;

beta13 = beta13n;

beta14 = beta14n;

beta15 = beta15n;

% %

i1 = i1n;

i2 = i2n;

i3 = i3n;

i4 = i4n;

i5 = i5n;

i6 = i6n;

i7 = i7n;

i8 = i8n;

i9 = i9n;

i10 = i10n;

i11 = i11n;

i12 = i12n;

i13 = i13n;

i14 = i14n;

i15 = i15n;

i16 = i16n;

% %

%Generating output

if(i16 == ufi(0,1,0))

d = -a16;
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q = -b16;

else

d = a16;

q = b16;

end

PT

α

β

θ

d

q

1

2

3

1

2

Figure A.1: Block diagram of Park transformation



Appendix B

Analog-Digital Converter

B.1 Analog Digital Converter

--- Author: Saeid Saeidi

--- EAL -TUM

---

---

--- ONLY ONE CHANNEL IS AQUAERED PER EOC PERIOD

--- The output data type is sfi (16 ,10)

LIBRARY ieee;

LIBRARY IEEE;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_signed.all;

entity ADC_8330_0CH is

port(CLK : in std_logic;

RST : in std_logic;

EOC : in std_logic;

SDO : in std_logic;

CONFG : in std_logic_vector (15 DOWNTO 0);

CONVST_N : out std_logic;

CS_N : out std_logic;

SCLK : out std_logic;

SDI : out std_logic;

DATA_A : out std_logic_vector (15 DOWNTO 0) --sfi (16 ,10)

);
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end entity ADC_8330_0CH;

architecture DATA_GEN of ADC_8330_0CH is

SIGNAL DATA_ADS : STD_LOGIC_VECTOR (16 DOWNTO 0);

SIGNAL DATA_OUT : STD_LOGIC_VECTOR (16 DOWNTO 0);

SIGNAL DATA_ADS_OUT : STD_LOGIC_VECTOR (15 DOWNTO 0);

SIGNAL DATA_ADS_32_OUT : STD_LOGIC_VECTOR (31 DOWNTO 0);

SIGNAL DATA_ADS_16_OUT : STD_LOGIC_VECTOR (15 DOWNTO 0);

SIGNAL RD_WR : STD_LOGIC := ’0’;

SIGNAL COUNTER : std_logic_vector (8 DOWNTO 0) := "000000000";

SIGNAL CONFIG_REG : std_logic_vector (15 DOWNTO 0);

SIGNAL CONFIG_COUNTER : std_logic_vector (15 DOWNTO 0) := CONV_STD_LOGIC_VECTOR (0 ,16);

SIGNAL CYCLE_ST : STD_LOGIC_VECTOR (1 DOWNTO 0) := "00";

begin

-- - -*****************************************

COUNT : process (CLK)

VARIABLE COUNTER_N : STD_LOGIC_VECTOR (8 DOWNTO 0);

VARIABLE CS_OUT : STD_LOGIC;

begin

if (CLK ’event and CLK=’1’) then

if(EOC = ’1’ and CYCLE_ST = "00") then

CYCLE_ST <= "01";

CONFIG_COUNTER <= CONFIG_COUNTER + 1;

end if;

if(CYCLE_ST = "01") then

if(COUNTER < CONV_STD_LOGIC_VECTOR (20 ,9)) then

COUNTER_N := COUNTER + 1;

else

CYCLE_ST <= "00";

COUNTER_N := CONV_STD_LOGIC_VECTOR (0 ,9);

end if;

end if;
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------------------------------------

if(COUNTER_N = CONV_STD_LOGIC_VECTOR (0,9)) then

CS_OUT := ’1’;

elsif(COUNTER_N < CONV_STD_LOGIC_VECTOR (20 ,9)) then

CS_OUT := ’0’;

else

CS_OUT := ’1’;

end if;

------------------------------------

CASE COUNTER_N IS

WHEN CONV_STD_LOGIC_VECTOR (1,9) =>

SDI <= CONFIG_REG (15);

WHEN CONV_STD_LOGIC_VECTOR (2,9) =>

SDI <= CONFIG_REG (14);

WHEN CONV_STD_LOGIC_VECTOR (3,9) =>

SDI <= CONFIG_REG (13);

WHEN CONV_STD_LOGIC_VECTOR (4,9) =>

SDI <= CONFIG_REG (12);

WHEN CONV_STD_LOGIC_VECTOR (5,9) =>

SDI <= CONFIG_REG (11);

WHEN CONV_STD_LOGIC_VECTOR (6,9) =>

SDI <= CONFIG_REG (10);

WHEN CONV_STD_LOGIC_VECTOR (7,9) =>

SDI <= CONFIG_REG (9);

WHEN CONV_STD_LOGIC_VECTOR (8,9) =>

SDI <= CONFIG_REG (8);

WHEN CONV_STD_LOGIC_VECTOR (9,9) =>

SDI <= CONFIG_REG (7);

WHEN CONV_STD_LOGIC_VECTOR (10 ,9) =>

SDI <= CONFIG_REG (6);

WHEN CONV_STD_LOGIC_VECTOR (11 ,9) =>
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SDI <= CONFIG_REG (5);

WHEN CONV_STD_LOGIC_VECTOR (12 ,9) =>

SDI <= CONFIG_REG (4);

WHEN CONV_STD_LOGIC_VECTOR (13 ,9) =>

SDI <= CONFIG_REG (3);

WHEN CONV_STD_LOGIC_VECTOR (14 ,9) =>

SDI <= CONFIG_REG (2);

WHEN CONV_STD_LOGIC_VECTOR (15 ,9) =>

SDI <= CONFIG_REG (1);

WHEN CONV_STD_LOGIC_VECTOR (16 ,9) =>

SDI <= CONFIG_REG (0);

WHEN OTHERS =>

SDI <= ’0’;

END CASE;

COUNTER <= COUNTER_N;

-------------------------------

CASE COUNTER is

WHEN CONV_STD_LOGIC_VECTOR (1,9) =>

DATA_ADS (15) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (2,9) =>

DATA_ADS (14) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (3,9) =>

DATA_ADS (13) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (4,9) =>

DATA_ADS (12) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (5,9) =>

DATA_ADS (11) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (6,9) =>

DATA_ADS (10) <= SDO;
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WHEN CONV_STD_LOGIC_VECTOR (7,9) =>

DATA_ADS (9) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (8,9) =>

DATA_ADS (8) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (9,9) =>

DATA_ADS (7) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (10 ,9) =>

DATA_ADS (6) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (11 ,9) =>

DATA_ADS (5) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (12 ,9) =>

DATA_ADS (4) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (13 ,9) =>

DATA_ADS (3) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (14 ,9) =>

DATA_ADS (2) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (15 ,9) =>

DATA_ADS (1) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (16 ,9) =>

DATA_ADS (0) <= SDO;

WHEN CONV_STD_LOGIC_VECTOR (17 ,9) =>

DATA_ADS (16) <= SDO;

WHEN OTHERS =>

DATA_OUT <= DATA_ADS;

END CASE;

end if;

-------------------------------

SCLK <= CLK and (not CS_OUT) ;

CS_N <= CS_OUT;

end process;
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-- - -*****************************************

-- - -*****************************************

config : process(CLK , RST) is

begin

if(RST = ’1’ or CONFIG_COUNTER = CONV_STD_LOGIC_VECTOR (0 ,16)) then

CONFIG_REG <= CONFG;

RD_WR <= ’1’;

elsif(CONFIG_COUNTER = CONV_STD_LOGIC_VECTOR (1 ,16)) then

CONFIG_REG <= "0000000000000000";

RD_WR <= ’1’;

else

CONFIG_REG <= "1101000000000000";

RD_WR <= ’0’;

end if;

end process;

-- - -*****************************************

-- - -*****************************************

-- - -*****************************************

CH_DATA : process (CLK) is

variable TO_BITV : STD_LOGIC_VECTOR (31 DOWNTO 0);

variable MULT_DATA : STD_LOGIC_VECTOR (31 DOWNTO 0);

begin

if(CLK ’EVENT and CLK = ’1’) THEN

if(RD_WR = ’0’ )then

DATA_ADS_OUT <= DATA_OUT (15 DOWNTO 0) - CONV_STD_LOGIC_VECTOR (32768 ,16);

MULT_DATA := (DATA_ADS_OUT *CONV_STD_LOGIC_VECTOR (13107 ,16));

TO_BITV := (TO_BITVECTOR(MULT_DATA) sra 13);

DATA_ADS_32_OUT <= TO_STDLOGICVECTOR(TO_BITV );
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DATA_ADS_16_OUT <= DATA_ADS_32_OUT (15 DOWNTO 0);

end if;

DATA_A <= DATA_ADS_16_OUT;

end if;

end process;

CONVST_N <= ’1’;

end DATA_GEN;



Appendix C

FPGA Implementation of PI

Controller

Fixed point model of the parameterizable PI controller is illustrated on figure C.1. The

red lines show signal paths of the proportional part, which represents the critical com-

putational delay.

Figure C.1: Simulink model for PI controller
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Appendix D

Flux Observer of Induction Motor

Figure D.1 shows Simulink model for the rotor and stator flux estimation and torque

calculation. This model is optimized for VHDL code generation by the HDL coder tool.

Clock frequency of this model is set to 10 MHz which is relatively low. It allows longer

signal paths without necessity of so many pipeline registers.

Figure D.1: Simulink model for flux estimation and torque calculation

Structure of the flux observer is shown on figure D.2. Two first order lag blocks are used

to realize behavior of the rotor model.
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Figure D.2: Simulink model of the flux observer

Figure D.3: First order lag system

Figure D.4: Simulink model for torque calculation



Appendix E

Simulink Model of CS-NMPC for

Induction Motor

Figure E.1: A screenshot of the Simulink model of CS-NMPC for the induction motor
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E.1 Loop Manager

Figure E.2: Simulink model of the Loop Manager



Appendix E: Simulink Model of CS-NMPC for Induction Motor 154

E.2 Current and Flux Prediction

Figure E.3: A screenshot of the Simulink model for the flux and current prediction
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E.2.1 Flux Prediction Model

Figure E.4: A screenshot of the Simulink model for the flux prediction
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E.3 Cost Function Model

Figure E.5: The Simulink model for the cost function calculation



Appendix F

Parameters of the Electrical

Motors

F.1 Permanent Magnet Synchronous Motor

Rated power Pn 2.7 (kW )
Rated torque Tn 8.5 (Nm)
Rated voltage Vn 400 (V )
Rated current In 5 (A)
Pole pairs p 3
Rated speed ωn 3000 (rpm)
Stator resistance Rs 1.3 (ohm)
Stator inductance Ls 9 (mH)
PM Flux ψm 0.41 (Wb)

Table F.1: Parameter of the PMSM
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F.2 Induction Motor

Symbol Value

Pn Rated power 2,2 (kW)
Vn Rated voltage 230 (V)
In Rated current 7,98 (A)
Fn Rated frequency 50 (Hz)
p Pole pairs 1
Tn Rated torque 7,4 (Nm)
ωn Rated speed 2840 (rpm)
Rs Stator resistance 2,7389 (ohm)
Rr Rotor resistance 2,1385 (ohm)
Ls Stator self inductance 328 (mH)
Lr Rotor self inductance 328 (mH)
Lm Mutual inductance 317 (mH)
Θ Moment of inertia 0.007 kgm2

Table F.2: Parameters of the induction motor
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