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Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Klaus Diepold

2. Univ.-Prof. Dr.-Ing. Matthias Althoff

Die Dissertation wurde am 22.12.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
16.06.2015 angenommen.





Vorwort

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitar-
beiter am Lehrstuhl für Datenverarbeitung der Technischen Universität München, wobei
ich im Rahmen eines INI.TUM-Projektes dauerhaft im

”
Projekthaus Fahrerassistenzsys-

teme“ der AUDI AG beschäftigt war.
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Abstract

The perception of a vehicle’s environment is one of the key issues on the road towards
highly automated driving. To further increase the robustness and degree of automa-
tion of current Advanced Driver Assistance Systems, the environment perception needs
to represent all relevant environment information in sufficient accuracy while taking into
consideration the limited computing capabilities of automotive control units. Map-based
environment representations have been used to describe individual unstructured environ-
ment features at a high level of detail but also generate a high computational effort. This
thesis therefore provides several contributions to optimize the resource requirements and
to extend the contents of map-based environment representations.

The core of this thesis is the development of a generic interval-based environment rep-
resentation, which particularly simplifies the interpretation of the described environment
features. In the first part, the interval-based approach is used to realize an efficient rep-
resentation of occupancy information, which considers the inherent uncertainties of the
applied laser sensor and incorporates moving objects. In order to compare the quality
of the developed map against state-of-the-art approaches a novel map-based evaluation
scheme is developed. The experimental results indicate similar map qualities of grid- and
interval-based approaches, while the computational requirements can be diminished by
applying the new representation.

To improve the robustness of automated vehicles’ lateral control, this thesis further ad-
dresses, for the first time, the abstract environment feature of common moving object
behavior. The proposed approach uses the interval-based map for a location-dependent
description of object motions, which can then be used to extract convoy tracks. Based on
an analysis of measurement characteristics in dense traffic scenarios, the necessary sensor
models for radar and laser sensors are implemented. The developments are concluded by
an evaluation concept which allows for measuring the quality of object motion maps.

The last part of the thesis presents a concept to combine map-based environment repre-
sentations with varying contents and levels of detail. It is shown how cooperative sensor
models can improve map estimation by simultaneously using the information of different
map content layers. Furthermore, the proposed concept allows to combine and exchange
information between interval- and grid-based maps, which increases the scalability of the
entire map-based representation. Finally, a comparison to purely grid- and interval-based
representations illustrates the advantages of this approach.
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Kurzfassung

Die Wahrnehmung des Fahrzeugumfelds ist eine der Schlüsselaufgaben auf dem Weg zu
hochautomatisiertem Fahren. Um die Robustheit und den Automatisierungsgrad heutiger
Fahrerassistenzsysteme weiter zu erhöhen, muss die Umfeldwahrnehmung sämtliche rele-
vanten Umfeldmerkmale in ausreichender Güte repräsentieren und dabei die begrenzten
Rechenkapazitäten automobiler Steuergeräte berücksichtigen. Zur Beschreibung einzelner,
unstrukturierter Umfeldmerkmale haben sich kartenbasierte Umfeldrepräsentationen eta-
bliert, stellen allerdings hohe Anforderungen an Rechenleistung und Speicherbedarf. Die
vorliegende Arbeit liefert mehrere Beiträge hinsichtlich der Reduktion des Ressourcenbe-
darfs und der Erweiterung des Inhalts kartenbasierter Umfeldrepräsentationen.

Den Kern der Arbeit bildet die Entwicklung einer generischen, intervallbasierten Um-
feldrepräsentation, die sich besonders durch eine vereinfachte Interpretation der beschrie-
benen Umfeldmerkmale auszeichnet. Im ersten Teil wird dieser Ansatz zur Entwicklung
einer Belegungskarte genutzt, die sowohl die Unsicherheiten der verwendeten Sensorik
als auch dynamische Objekte korrekt behandelt. Um einen Vergleich zu gitterbasierten
Repräsentationen zu ermöglichen, werden anschließend neuartige Bewertungsmethoden
entwickelt. Die damit bestimmten Ergebnisse zeigen, dass der Einsatz von Intervallbele-
gungskarten eine Verringerung des Rechen- und Speicheraufwands bei ähnlichen Karten-
qualitäten erlaubt.

Zur robusteren Planung der Querführung automatisierter Fahrzeuge wird in dieser Ar-
beit anschließend erstmalig das abstrakte Umfeldmerkmal der Kollektivbewegung anderer
Verkehrsteilnehmer betrachtet. Der vorgestellte Ansatz basiert auf einer ortsabhängigen
Beschreibung von Objektbewegungen in einer Intervallkarte, aus der anschließend Kolon-
nenspuren extrahiert werden können. Die benötigten Sensormodelle für Radar- und Laser-
sensorik werden auf Basis einer Analyse von Messdaten in charakteristischen Verkehrssze-
narien entwickelt. Abschließend werden Bewertungsmethoden vorgestellt, mit Hilfe derer
sich die Qualität der erstellten Karten quantifizieren lässt.

Im letzten Teil der Arbeit wird ein Konzept zur Kombination kartenbasierter Umfeldre-
präsentationen mit verschiedenen Inhalten und Detaillierungsgraden erarbeitet. Es wird
gezeigt, wie durch den Einsatz kooperativer Sensormodelle die gleichzeitige Schätzung un-
terschiedlicher Kartenebenen verbessert werden kann. Das entwickelte Konzept erlaubt
weiterhin, Intervall- und Gitterkarten zu kombinieren und zwischen den Karten Informa-
tionen zu übertragen. Durch diesen Ansatz lässt sich die Skalierbarkeit der Gesamtre-
präsentation erhöhen, was durch einen abschließenden Vergleich mit rein gitter- und in-
tervallbasierten Karten verdeutlicht wird.
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1. Introduction

1.1. Automated Vehicles

The vision of autonomous vehicles has been fascinating car manufacturers and scientists
from different research areas for decades. The following introduction will motivate the
research on vehicle automation and briefly describe the historical development of increasing
vehicle automation. The remaining challenges in realizing highly automated vehicles and
the contributions of this thesis in this context will be introduced.

1.1.1. Motivation

A historical imagination about the vision of autonomous driving can be identified in figure
1.1, which depicts a famous newspaper advertisement of America’s Independent Electric
Light and Power Companies from the 1950’s. The authors of this sketch predicted that

Figure 1.1.: 1950’s newspaper commercial from America’s Independent Electric Light and
Power Companies, from [2].

1
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“electronic devices” would make completely autonomous vehicles possible, which allow
the passengers to spend time on side tasks like board games during driving. Besides the
emotional fascination and the pioneering spirit that is addressed by the self driving vehicle,
two major advantages of automated driving are advertised: “Travel will be more enjoyable.
It will be made safe.” [2].

Even from today’s point of view, there is still enormous potential in approaching the goals
of improving the level of comfort and safety for drivers. According to the German General
Statistics Office, 3600 people were killed in road traffic accidents in Germany 2012 [156].
Although this figure has never been lower since 1950, it still means that on average about
ten people are killed in road traffic every day. A “misbehavior of the vehicle’s driver”
was at least one of the recorded accident reasons in 86 % of all road traffic injuries [156].
Approaching higher degrees of vehicle automation is one of the measures to reach the
ambitious goal of further decreasing the number of fatalities.

However, the global megatrends of urbanization and increased mobility requirements are
increasingly changing the characteristics of road traffic. In major German cities, the delay
per hour driven in peak periods was up to 38 minutes in 2012, according to TomTom’s
annual congestion index [166]. Over one year, a driver loses up to 89 hours on a daily
30 minute commute due to traffic jams, the situation in other European and especially
Asian countries is even worse. In these situations, the task of driving is not perceived as
enjoyable. If a vehicle was able to assist or take over the driving task in tedious situations,
the driver would be able to deal with side tasks, which can help to improve his relaxation
and productivity.

1.1.2. Driver Assistance Systems

Since the historical vision from the 1950’s and today, major progress towards comfortable
and safe driving has been made. First of all, the passive safety of vehicles has been in-
creased enormously, for example by introducing airbag systems and optimizing the cabin.
However, it is assumed that the full potential of passive safety systems is almost realized
today [86]. The introduction of driver assistance systems has delivered further contribu-
tions to improve safety and comfort. Concerning safety issues, several active safety sys-
tems, which already try to avoid the emergence of critical situations, have been realized.
Popular examples are Electronic Stability Control (ESC) and advanced pre-crash systems
that warn the driver or even try to decelerate the vehicle after having detected a critical
situation [185]. The combination of active and passive safety approaches is commonly
denoted as integral safety [86]. Popular examples of systems that increase the driver’s
comfort are Adaptive Cruise Control (ACC) [187], Lane Departure Warning (LDW), Lane
Keeping Support (LKS), park assists and lane change assists [185]. Especially ACC, a
cruise control system that automatically adjusts the vehicle’s speed according to distances
and velocities of detected vehicles ahead, has reached significant market penetration and
is also available in compact cars nowadays.
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1.1. Automated Vehicles

Maurer [103] classifies driver assistance according to the complexity of the sensor data
interpretation into conventional systems, e.g. anti-lock braking systems, and systems with
machine perception, e.g. ACC. Similarly, the term Advanced Driver Assistance Sys-
tem (ADAS) has become established for systems which use complex signal processing
algorithms in their environment perception [36]. In [111], Naab and Reichart propose
a different classification depending on the level of intervention. They distinguish driver
assistance systems into pure warning systems, automatically intervening systems and au-
tomatically operating systems. Whereas automatically intervening systems only interfere
in dedicated, uncontrollable situations, automatically operating systems take over certain
subtasks of driving. From this point of view, ESC and pre-crash systems can be consid-
ered automatically intervening systems, while ACC or LKS are regarded as automatically
operating systems.

Another important categorization with regard to the legal assessment of automated vehi-
cles was elaborated by Gasser et al. in a project group of the BaSt1 [56]. Similar definitions
can be found in the current draft J3016 of the SAE2 International [138]. The most impor-
tant taxonomies of both reports and corresponding examples are illustrated in figure 1.2.
According to that, warning systems are assigned to the lowest level of automation, as they

No
Automation

Assistance
Function

Partial 
Automation

High
Automation

Full
Automation

LDW, 
Lane Change 

Assist

ACC,LKS, 
Park Assist

Traffic Jam
Assist

Traffic Jam
Pilot

Highway Pilot/ 
Taxi Function

Mass Production Research

Monitoring by Driver Monitoring by Vehicle

Degree of Automation

Today

Figure 1.2.: Degrees of automation in driver assistance systems, adapted from [56, 138].

do not contribute to vehicle operation directly. By contrast, pure assistance functions are
characterized by taking over either longitudinal (e.g. ACC) or lateral control (e.g. LKS)
within certain system boundaries, while the remaining task is up to the driver. In such

1Bundesanstalt für Straßenwesen - German Federal Highway Research Institute
2Society of Automotive Engineers
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systems, the driver is responsible for monitoring the mode of operation and has to be able
to take over control whenever the system boundaries are reached. Partially automated
systems take over both longitudinal and lateral control for a certain period of time. Ex-
amples for such systems are traffic jam assists, which are currently entering the market.
Still, the monitoring task and hence the responsibility to interfere in critical situations
remains with the driver. This restriction is removed in the category of High Automation,
where the vehicle additionally takes over the monitoring task and automatically recog-
nizes when the system limits are reached. Nevertheless, the driver has to finally take over
control in these situations after a limited period of time, as the system is not guaranteed
to autonomously reach a so called state of minimal risk. By contrast, Full Automation is
indicated by the ability to return to a safe state, whenever the driver is not willing or able
to take over control. Hence, the vehicle is completely responsible for the monitoring task.
In this thesis, the term highly automated vehicle will be used to describe a system that is
able to reliably take over longitudinal and lateral control for a longer period of time. A
detailed study of the required monitoring concepts is not within the scope of this thesis.

1.1.3. Highly Automated Vehicles

On their road towards the vision of full automation, car manufacturers followed the strat-
egy of incrementally increasing the available degree of automation [33]. As also visualized
in figure 1.2, today’s market-leading driver assistance systems can be located at the difficult
transition between partially and highly automated systems. In the robotics and intelligent
vehicle’s research community, several concepts of higher degrees of automation have been
examined and demonstrated in the last decades. Apart from early visions and concepts of
autonomous cars, substantial progress was first made in the 1980’s. From a historical point
of view, especially the pioneering work of Ernst Dickmanns’ group should be mentioned
[34]. In the mid 80s, they presented their first autonomous vehicle “VaMoRs”[149], which
was able to drive at speeds up to 96 km/h on empty roads by using real-time computer
vision. Another major step forward was made by the driverless car competitions of the
DARPA3 from 2004 to 2007, the DARPA Grand Challenges [147]. In 2007, the winning
vehicle “Boss” from Carnegie Mellon University [170], drove over 4 hours automated in an
urban environment. Since then, Google has gained great popularity [50] by its concepts of
a driverless car. For a more detailed discussion of especially European research projects
on automated vehicles within the last decades, the interested reader is referred to [133].

The main criticism of the presented research vehicles concerns to the applied hardware
devices. First of all, most of the research vehicles’ sensors are still too expensive and
error-prone for serial deployment, especially in approaches that are based on accurate
global positioning. Furthermore, the applied sensors, e.g. tall 3D laser scanners, can
hardly be integrated in mass production cars without abandoning today’s standards of
automotive design. Finally, the energy consumption of the required sensors and also

3Defense Advanced Research Projects Agency
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computing units has to be considered, especially in the context of the CO2 reduction
targets the European automotive industry will be faced with. Car manufacturers all over
the world are currently trying to close this gap between research and mass production.
Recently, Germany’s leading premium vehicle manufacturers have also shown concept cars
which use pre-production sensor sets and computing units. Audi has demonstrated show
cars (see figure 1.3) which allow Piloted driving in traffic jams and parking maneuvers [59].
The expression piloted driving emphasizes that the system is able to assume the driving
task whenever the driver perceives driving as tedious, comparable to the auto-pilot in a
plane. In 2013, Daimler demonstrated a reengineered Mercedes-Benz S 500 “Intelligent
Drive”. According to [29], this vehicle was able to autonomously drive about 100km on
both interurban and urban routes, but on the downside required highly accurate and up-
to-date digital map information, e.g. including the positions of traffic lights, lanes and
crossings.

Figure 1.3.: Audi’s 2013 concept car for piloted driving in traffic jams [59].

One of the main reasons, why highly automated vehicles haven’t entered the market yet is
the legal situation. The Vienna Convention on Road Traffic from 1968 requires that every
moving vehicle must have a driver that is able to control the vehicle “at all times” and “in
all circumstances” [168]. As this convention has been ratified by several states, including
all states of the European Union, similar principles can be found in current standards.
The current version of the European effective norm for steering systems (ECE R79) only
allows hands-off steering in low speed situations of up to 10 km/h [169]. In the United
States, there is no uniform jurisdiction concerning automated vehicles. Up to now, several
states have started to enact laws which regulate the testing of autonomous vehicles [59].
Besides these general homologation constraints, also possible obligations to provide proof
in the case of an accident have not decisively been clarified [97].

On the other hand, further technical issues have to be solved to bring higher degrees of
automation closer to production vehicles. The reliability and the scope of state-of-the-
art methods has to be increased, while at the same time the resource requirements must
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remain within reasonable bounds. In order to approach an analysis of the limitations of
existing technologies, the high-level system architecture of a highly automated vehicle is
introduced in figure 1.4. In the literature, detailed architectures of autonomous vehicles
have been proposed, especially under consideration of the different driving task levels
according to Rasmussen [132]. The interested reader is referred to the works of Maurer
[102], Siedersberger [149] and Stiller et al. [158]. For the purpose of this thesis, an abstract
functional architecture adapted from [133] will be used. Although there exist different
taxonomies for particular modules and tasks in the literature, the basic principles of the
major components are widely accepted and can e.g. also be found in [170] and [77]. The
terminology in this thesis will conform to the expressions used in figure 1.4.

Vehicle
Sensors

Environment
Sensors

A Priori
Knowledge

Mission
Plan

Scope of this Work

Environment 
Perception

Behavior Generation

Vehicle
Control

ActuatorsBehavior
Decision

Behavior
Planning

Vehicle
Functions

Figure 1.4.: High-level system architecture of a highly automated vehicle.

In this architecture, the flow of information starts with the perception of the environment
and one’s own vehicle state by different sensors. Taking into consideration a priori knowl-
edge, the sensor measurements are processed and fused in order to build a model of the
environment. This model will be denoted as environment representation in this thesis.
The representation is then used to infer relations, maneuvers and meanings of a traffic sit-
uation, depending on the requirements of the remaining components. Based on the result
of the perception, the knowledge of the vehicle’s functions and a predefined goal, the de-
sired behavior of the vehicle has to be generated. First, a decision-making module chooses
a reasonable maneuver from the set of currently possible maneuvers. Then, this maneuver
serves as an input for the behavior planning, which calculates a trajectory including the
desired positions and velocities. Finally, the available actuators are controlled to influence
the lateral and longitudinal motion of the vehicle in order to achieve the desired trajectory.

The contributions of this thesis can help to overcome the major technical limitations
concerning the resource requirements and reliability of existing highly automated vehicle
approaches. As also illustrated in figure 1.4, the scope of this thesis is limited to the
development of new approaches in the field of environment perception, which will be
introduced in the next section.
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1.2. Environment Perception

The perception of the vehicle’s environment is one of the key challenges in the development
of future ADASs and highly automated vehicles. In order to outline the contributions of
this paper in this research area, the following section will explain the tasks of environment
perception and define the taxonomy and architecture which will be used throughout the
thesis. Based on the previously identified general conditions, the requirements of environ-
ment representations will be formulated.

1.2.1. Environment Perception Architecture

Environment perception has been examined extensively in different research areas, includ-
ing robotics, artificial intelligence, computer vision, as well as control and automation
engineering. Concerning the development of highly automated vehicles, the ultimate goal
of this component is to provide all information about the environment that is necessary
to generate a robust automated behavior of the vehicle. According to Hofmann [66], the
task of perceiving the environment includes:

• The extraction of features from sensor data

• The development of models concerning the appearance of detected features in dif-
ferent contexts

• The development of models concerning the temporal behavior of detected features

In the research environment, this thesis originates from, the different environment per-
ception components are subdivided into primary and secondary environment perception.
This classification will also be used in this thesis.

The focus of the primary environment perception lies on the deduction of an internal
model of the physical world from the raw measurements of all integrated sensors. The
resulting model is based on a set of representations of different environment features with
different levels of abstraction. Thus, there are for example low level descriptions which
serve as intermediate representations for secondary environment perception and high level
abstractions that already include models about e.g. temporal behavior. The application
area and surrounding physical world strongly influence which aspects of the environment
have to be recognized. All aspects the primary environment representation is concerned
with will be denoted as physical environment features in this thesis. Taken as a whole,
all features have to form an approximated but consistent internal image of the vehicle’s
physical environment on a low level of abstraction.

In any driver assistance system, environment perception has to deal with a complex and
highly dynamic environment. In state-of-the-art highly automated vehicle architectures
several different features of the environment are recognized, including:

• Free spaces and obstacles around the car (occupancy information), e.g. [16, 173, 178]

7
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• All traffic participants (e.g. pedestrians, vehicles, bicyclists) including models of
their appearance, type and temporal behavior, e.g. [78, 98], [SWBH12]

• Road infrastructure including road markings [66], road surfaces [93], traffic signs
[106] and lights [57]

In the literature, also the vehicle’s state and position is sometimes considered a part of
the internal environment model [35]. Furthermore, the global position estimation and
the retrieval of digital map information can be interpreted as a subtask of the primary
environment perception.

To obtain this information, a wide range of different sensors can be applied. They vary
significantly in their physical measurement principles. Today’s most popular automotive
sensors can be categorized into ultrasonic, radar, lidar, mono cameras, stereo cameras and
time-of-flight cameras. Concerning details about the measurement principles of these sen-
sors, the interested reader is referred to section B in [185], which provides an exhaustive
overview. For the estimation of the vehicle’s state and position, there exist vehicle dynam-
ics sensors and Global Navigation Satellite System (GNSS) receivers. Besides that, digital
maps with information about road topologies can also be interpreted as a virtual sensor.
As of today, there does not exist a single sensor that is able to satisfy the requirements of
driver assistance systems with higher degrees of automation. To overcome this issue, the
common strategy is to combine several sensors with complementary measurement princi-
ples and mounting positions. This implies the need to fuse sensor data. For that purpose,
there exist several architectures which differ in their topology, synchronization and the
applied level of abstraction, a detailed study can e.g. be found in [35].

In order to satisfy the requirements of a driver assistance function, representations of
higher abstraction levels have to be inferred during the secondary environment represen-
tation (also known as situation interpretation, analysis or assessment [133]). In this step,
meanings can be assigned to represented objects by establishing relationships between dif-
ferent entities. The resulting situation representation provides information about abstract
environment features, which cannot be measured directly in the physical world. The most
popular examples in this category concern the further processing of occupancy informa-
tion. Well-known publications in this context deal with the localization as a part of the
popular SLAM problem [165, 182, 141], the extraction of road boundaries from occupancy
states [181, 71, 30, 16], a compact description of free spaces for path planning [16, 144, 145]
or the analysis of free spaces concerning evasion maneuvers [68, 135]. Detected road mark-
ings can be used to infer lanes in the vehicle’s environment, which is essential information
for highly automated vehicles, for example shown in [180, 55]. Finally, there also exist
works which try to assign roles and maneuvers to dynamic objects, for example by linking
them with topological road information [84, 69] or by learning interrelations [127]. For
this purpose, abstract environment features can also be further related on higher levels of
abstraction.

Overall, the perception system architecture illustrated in figure 1.5 will be assumed as
the basis for this thesis. In this approach, the primary environment perception consists of

8



1.2. Environment Perception

              Occupancy
              Representation

Sensor

Sensor 
Model
Sensor 
Model

              Road 
              Infrastructure
              Representation

              Ego Motion 
              Representation

Sensor 
Model

              Dynamic
              Objects
              Representation

Sensor 
Model
Sensor 
Model

Sensor 
Model

Primary Environment Perception Secondary Environment 
Perception

Sensor

Sensor

Sensor
Extractor

Extractor

Extractor

Situation
Representation

Figure 1.5.: Environment perception architecture assumed in this thesis, adapted from
[16, 135, 133].

representations of four different environment features: occupancy states, dynamic objects,
the own vehicle motion and the road infrastructure. Optionally, these modules can ex-
change information, for example the estimated ego motion. Each representation requires
the implementation of dedicated sensor models which extract features from raw sensor
measurements and update the data structures under consideration of the sensor char-
acteristics. The combination of all represented environment features yields a consistent
internal model of the environment, which can be used for several different driver assistance
functions [135]. In order to deduce the relevant data from the representations, extractors
are applied. During the secondary perception, the represented features and extraction
results are combined to infer a high-level situation representation. The internal repre-
sentation of environment features is one of the key issues in both primary and secondary
environment representations.

1.2.2. Requirements on Environment Representations

The most popular approaches to represent environment features originate from the robotics
and computer vision research community. Compared to these applications, environment
representations for driver assistance systems are faced with advanced requirements. They
result from the complex environment, the safety critical control task and the limited
computing capabilities of automotive control units. They are listed in the following:

• Accuracy: An environment model has to be able to represent knowledge from high
resolution environment measurements sufficiently accurate for driver assistance sys-
tems in varying situations. This especially addresses the ability to precisely describe
unstructured environment features that do not conform with generic models.

9
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• Ability to represent uncertainties: The representation has to be able to deal
with inherent uncertainties. These uncertainties arise from the highly unpredictable
behavior of a dynamic environment as well as the limited perception of sensors and
the resulting measurement noise. Furthermore, all environment representations use
abstractions and approximations in internal models and algorithms. Consequently,
a feasible representation should be able to reliably provide the level of uncertainty
and a measure of quality.

• Enabling of accumulation: The representation should be capable of reducing
the uncertainties about the state of the environment by the consideration of several
noisy measurements. This implies the ability to continuously and associably describe
environment features over time.

• Scalability: In this context, scalability refers to the ability of an environment rep-
resentation to adapt the level of abstraction and consequently the computational
effort to the requirements of a driver assistance system. Moreover, scalability can
also describe the capability to flexibly and uniformly deal with different sensors and
input data.

• Computational effort and memory consumption: Considering the still limited
computing capabilities and communication interfaces of today’s automotive control
units an environment representation has to be compact and easy to compute. Only
this way it is possible to simultaneously represent the different features of the envi-
ronment in an embedded device.

• Interpretability: One of the contributions of this thesis is the identification of
the interpretation effort as a quality characteristic of environment representations.
Within the scope of this paper, interpretability is defined as the effort that results
from identifying and extracting relevant data from a representation. An ideal en-
vironment representation should provide sufficient accuracy but also offer high in-
terpretability so that the other components of the system don’t have to cope with
irrelevant details. The interpretability of a representation heavily impacts the com-
putational requirements of the overall environment perception and has hardly been
considered in previous works.

Besides these requirements, a generic architecture of an environment representation is
desirable. This especially addresses the ability to deal with several environment features
and sensors as well as reusability in different driver assistance systems.

1.3. State of the Art

Having identified the structure and the requirements of the environment perception for
highly automated vehicles, this section will categorize and briefly summarize state-of-
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the-art environment representations. The identification of the limitations of existing ap-
proaches will lead to the formulation of the research problem in the following section.

1.3.1. Overview of Environment Representations

In [16], Bouzouraa provides a general classification of environment representations for
driver assistance systems into occupancy maps and model-based object descriptions. Similar
categorizations can be found in other publications. The first category is also denoted as
metric representation [191, 145] or reduced to grid-based representations [68], whereas
the second category is sometimes described as parametric [145] or feature-based [3, 119]
representation. According to Bouzouraa, occupancy maps are characterized by:

• A dense and complete partition of a part of the physical world into space elements

• A neighborhood relationship between space elements

• An unambiguous assignment of attributes to space elements

• A pose between the map and the vehicle, which allows for the interpretation of the
represented information

The best known of this type are occupancy grids, which were first mentioned by Moravec
and Elfes in 1985 [109]. In this case, the space around a robot is partitioned into equally
spaced grid cells, which provide the probability of the existence of obstacles in this space.

On the other hand, model-based object representations are composed of a possibly variable
number of objects to which states and attributes can be attached [16]. This requires the
prior definition of an object model. These models are usually compact and abstract
descriptions of environment features, which are based on assumptions and simplifications
of the real world. The most popular approach within this category is the application of
bounding box models to describe moving objects in traffic scenes (e.g. [78], [SWBH12]).
Both examples are illustratively compared in figure 1.6.

From another point of view, also occupancy maps use model assumptions if we consider
their space elements as objects. The inherent assumption is that the surrounding world
can be modeled by abstract and discretized space elements, in the case of occupancy grids
by a number of equidistant grid cells. However, the model assumptions in occupancy
maps are significantly less restrictive. Another key difference between both approaches
is the handling of sensor measurements that do not match the predefined model assump-
tions. Model-based object representations typically decline measurements if they do not
match the model, for example, if predefined shapes cannot be extracted from a laser
scan. By contrast, standard occupancy mapping approaches try to express the measured
environment as best as their model allows, for example when combining inconsistent mea-
surements within a grid cell. This is also a consequence of the most obvious difference, the
density and neighborhood relationship of the incorporated objects. Model-based object
approaches can use an arbitrary number of objects to represent the environment, while
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Figure 1.6.: Illustrative comparison of occupancy grid (left) and bounding box represen-
tation (right) of a traffic scene. Red paintings indicate the representation.

occupancy maps require a fixed dense partition of the world into objects with neighbor-
hood relationship. In short, the main differences between map- and model-based object
representations are characterized by:

• The density and neighborhood relationship of objects

• The handling of measurements that do not match the model

• The level of abstraction and model assumptions

The fundamental classification of environment representations in both categories will also
be used in this thesis. The first category will be referred to as map-based environment
representations, the term occupancy map will only be used for the representation of oc-
cupancy information, which is the knowledge about free space and obstacles. The term
occupancy grid only refers to occupancy maps which use two-dimensional Cartesian grids
to create space elements. Similar to [16], the second category of representations will be
denoted as model-based object representations.

Concerning their positioning, map-based environment representations can be further clas-
sified into two categories. For grid-based representations, Scheunert et al. [140] describe
these categories as global static grids and moving windowed global accumulation grids.
In the first category, the pose of the map in a global coordinate system is fixed. In the
second category, the map moves along with the vehicle. In this work, the categories will
be denoted as global and ego local maps. Global maps originate from mobile robot appli-
cations, where the area in which the robot moves is limited and previously known. For
the application in driver assistance systems, especially ego local maps with a guaranteed
preview area are convenient, because a persistent mapping of the complete application
area is unfeasible.

Due to these characteristics, map- and model-based object representations are typically
applied for different tasks within the primary and secondary environment perception.
Map-based approaches are particularly suitable for location dependent descriptions of
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semi- or unstructured environment features. Consequently, their main application area is
the representation of occupancy states including the highly unstructured free space around
the vehicle. On the other hand, model-based object representations show their strengths
whenever certain aspects of the environment conform well with a model. They are mostly
used to describe dynamic objects, road markings, the topological road network or inferred
abstract environment features.

Overall, there exist numerous map and model-based object representations for occupancy
states in the environment of automated robots and vehicles. A detailed discussion of
related publications regarding the previously identified requirements can be found in sec-
tion 3.1. The presented techniques differ significantly in their level of abstraction and
consequently also in their computational requirements. Concerning map-based represen-
tations, the most popular approaches rely on grid- or tree-based data structures for two-
or three-dimensional space. The general advantage of using trees instead of grids results
from the adaptable resolution and memory demand, which on the downside decreases
computational efficiency and interpretability. To overcome the high memory consumption
of equally spaced grid structures, approaches that extract or compress the represented
information have also been proposed, e.g. [144, 145, 61, 62]. They will be analyzed in
detail in section 3.1.

Concerning the description of moving objects, model-based object representations have
become a de facto standard. The underlying spatial model is typically given by simplistic
two-dimensional bounding box rectangles in case of laser and radar measurements pro-
cessing (e.g. [184, 78], [SWBH12]) or by advanced three-dimensional geometric shapes
for visual object tracking, e.g. [66, 112]. The estimation of the object dynamics is based
on different models of the longitudinal and lateral motion of a vehicle, which can either
be processed separately or together, e.g. by using the single-track-model [105]. During
the secondary environment perception, maneuvers and roles of dynamic vehicles can also
be inferred, which further improves the prediction of future behavior. There also exist
map-based approaches to describe moving objects. So called object-local occupancy maps
(e.g. [42, 140, 5]) aim to provide a more detailed description of the shape of a dynamic
obstacle.

1.3.2. Limitations of Existing Approaches

The general knowledge about surrounding free and occupied areas at a certain point in
time is a crucial piece of information for every highly automated vehicle. Model-based
object approaches can be used to provide compact and easy-to-interpret representations
of occupancy information, but have major shortcomings due to restrictive model assump-
tions, especially in unstructured environments. Map-based representations, however, use
less limiting model assumptions, but create a higher computational effort and memory
demand for processing and interpreting the data structure. One of the main disadvan-
tages of grid-based approaches is given by their high and inflexible memory consumption.
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Tree-based applications solve this problem at the expense of further increasing the in-
terpretation effort and computation times. Proposed techniques which are based on a
subsequent extraction or compression of occupancy maps do not address the problem of
simplifying the accumulation process itself. To sum up, there does not exist a represen-
tation that is able to accumulate occupancy measurements and fulfills the requirements
concerning scalability, accuracy, memory demand and computational effort. Especially the
interpretation effort of the resulting data structures has not been considered sufficiently in
the evaluation of existing approaches so far. As a consequence, state-of-the-art occupancy
maps are not adapted to the specific requirements of dedicated driver assistance systems.

In the previously introduced state-of-the-art approaches, the representation of other traffic
participants is limited to the estimation of spatio-temporal models of single objects. These
models can be used to describe the current shape of the objects as well as to predict
their future behavior. Still, all these approaches limit themselves to the description of the
current state of a single object in the physical world. In doing so, they neglect the abstract
environment information that is given by the collective behavior of traffic participants.
By contrast, a human driver adapts his or her behavior to what he or she considers
common standard behavior, for example in dense traffic scenarios around an accident site,
as illustrated in figure 1.7. By representing the collective motion of dynamic objects, an
additional input parameter for the behavior generation in driver assistance systems can
be inferred. To the author’s knowledge, a location-dependent representation of object
dynamics has not been considered in the literature so far, a discussion of related work will
be shown in section 4.1. If this information was additionally provided, taking into account
the requirements concerning simplicity and interpretation, the overall reliability of highly
automated vehicles could be further improved.

Figure 1.7.: Example for collective motion of traffic participants around an accident scene,
own vehicle painted blue.

In the literature, map-based environment representations are usually considered as in-
dependent and stand-alone sources of information. Although there exist approaches
which additionally incorporate information from model-based object representations (e.g.
[3, 18]), map-based environment representations typically consist of a single map instance
which is either aligned globally or ego locally. There does not exist an in-depth concept to
combine map-based representations with different positions or even of different contents,
for example maps that include lane markings [70], road curbs [83] or mapped camera im-
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ages [89]. In doing so, the potential to mutually benefit from the simultaneous estimation
of different environment features is neglected.

1.4. Research Problem Formulation

The identification and representation of all relevant information in the vehicle’s environ-
ment is a crucial task in realizing reliable, highly automated vehicles. Especially unstruc-
tured and location-dependent environment information is best represented in map-based
environment representations, because of their marginal model assumptions and their in-
herent location dependency.

In contrast to the previously described state of the art, map-based environment represen-
tations have to fulfill the requirements of automotive electronic control units with limited
memory and computing capabilities. This results in the need of a more compact, more
efficient and easier to interpret map-based environment representation. In spite of these
requirements, a feasible representation of the vehicle’s environment has to be able to deal
with the inherent uncertainties of sensor measurements. This includes an adequate repre-
sentation of existing uncertainties as well as the development of mechanisms to accumulate
different sensor measurements while taking into account the laws of statistics.

A representation of occupancy information is an important source of information for a
reliable and secure mode of operation of highly automated vehicles. The potential to
reduce computational requirements by applying a simplified map-based representation
for this purpose has to be systematically analyzed. In doing so, occupancy maps have
to consistently describe the static and dynamic environment of a vehicle, which is an
important requirement for an application in any driver assistance system. In order to
evaluate the results of new and state-of-the-art occupancy maps, quantifiable methods to
compare the contents and interpretability of different representations have to be developed.

To further improve the overall reliability of automated vehicles, the information about the
collective motion behavior of dynamic obstacles has to be systematically investigated. This
includes the definition of the aspects of collective motion that can be used in driver as-
sistance systems and an analysis of sensor technologies concerning their abilities to detect
this information. The objective is to obtain a map-based environment representation that
is able to accumulate measurements of moving objects and fulfills the requirements con-
cerning computational efficiency and accuracy. The quality of the represented information
and the impact of influencing factors has to be quantified.

Current approaches lack in providing an adequate concept of how to combine map-based
environment representations with different data structures, positions and contents. In
order to allow the representations to benefit from each other, concepts and mechanisms to
transfer information between maps have to be developed. In doing so, the spatio-temporal
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consistency of all the represented information has to be ensured. Again, the resulting
improvements concerning scalability, interpretability and accuracy have to be evaluated
and compared to current approaches.

1.5. Contributions

In this thesis, the structure of the environment perception and the requirements of envi-
ronment representations in highly automated vehicles have been determined. Based on a
discussion of the state of the art, the limitations and scientific gaps in existing approaches
have been identified. The general goal of this thesis is to optimize map-based environment
representations and to represent additional environment features in map-based descrip-
tions. The main contributions to the formulated research problem are illustrated in figure
1.8 and briefly summarized in the following:

• The introduction of an interval-based map framework as a generic and simplified
map-based environment representation

• The representation of occupancy information in the interval-based map

• The representation of object motion in the interval-based map in order to obtain
information about collective motion behavior

• The combination of grid- and interval-based environment representations

– with different contents to improve the estimation of environment features

– with different positions and spatial extents to enhance the scalability of the
environment representation

• The development of evaluation methods to quantify the quality of the newly devel-
oped representations

All described concepts are implemented prototypically and integrated into an existing en-
vironment perception architecture. The improvement of the developed approaches over
state-of-the-art technologies is evaluated by several different examinations. In order to
quantify the computational requirements, the resulting computation times and memory
requirements of the implemented modules are analyzed on standard PC hardware. The
quality of existing and new environment representations is compared by the application of
the evaluation methods. Finally, also the impacts of the new components on the perfor-
mance of prototypical driver assistance systems are analyzed qualitatively. Taken together,
these evaluations show a substantial improvement of the resulting environment perception
compared to previous approaches.
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1.6. Overview and Structure

The structure of this thesis is derived from the major contributions identified in the pre-
vious section and illustrated in figure 1.8. In this chapter, the general topics of vehicle
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Figure 1.8.: Major contributions and structure of this thesis.

automation and environment perception have been introduced. Based on the identified
requirements and a review of state-of-the-art approaches, the research problem has been
formulated. The major contributions of this work have been pointed out and will be dis-
cussed in chapters 3 to 5. All three chapters follow a common structure that is illustrated
in figure 1.9.

Before that, fundamental principles, which are necessary for the development of the new
approaches in the subsequent chapters, are briefly summarized in chapter 2. The coordi-
nate systems and coordinate transformations throughout this thesis follow a common and
consistent formulation, which is introduced in this section. Besides that, the key principles
of the collaborating environment perception modules are presented.
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Chapter 3 starts with a detailed discussion of related works concerning the representa-
tion of occupancy information for robotic and intelligent vehicle applications. Then, the
generic interval-based representation and its application to describe occupancy informa-
tion are presented. After that, the required laser sensor model and corresponding update
algorithms are derived. Another important topic is the analysis and implementation of
ego motion compensation mechanisms for ego local interval maps. Finally, the occupancy
map is also combined with model-based object tracking in order to correctly deal with
dynamic objects. To evaluate the results of the interval-based occupancy representation
and to compare both concepts, an extensive evaluation concept is proposed. For that
purpose, mechanisms to infer ideal reference maps and to quantify differences between
interval- and grid-based representations are presented.

The application of the interval-based representation to map object dynamics is the major
topic of chapter 4. After a short discussion of related research concerning the detection
of common dynamic object behavior, relevant parameters of traffic convoys for driver
assistance systems are identified and defined. Then, a generic system architecture for the
detection and description of traffic convoys is presented. The core of this approach forms
a location dependent description of object dynamics, for which two different approaches
are proposed. In order to develop suitable sensor models, a detailed analysis of laser and
radar sensor measurements in typical occlusion scenarios is performed. The evaluation of
the obtained results is based on the generation of ground truth data structures on different
levels of abstraction and the development of metrics in order to quantify deviations.

Discussion of
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Architecture
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Sensor Models
and Update 
Mechanisms

Evaluation

Development of

Figure 1.9.: Internal structure of chapters 3, 4 and 5.

Chapter 5 discusses different applications of grid maps and previous works on combinations
of map-based environment representations. In order to enable a consistent representation
of different environment features in map-based data structures, a layer concept for both
grid- and interval-based representations is proposed. The resulting advantages for co-
operative sensor models and the consequences on the previously developed ego motion
compensation mechanisms are discussed. After that, both representations are enhanced
to allow arbitrary poses between the map and the vehicle. By using this concept, a spec-
ified part of space can be covered by several different maps. Virtual sensor models are
implemented to exchange information between map- and interval-based representations.
On this basis, a scalable concept of combining map-based environment representations is
formulated. Similar to the methods used in chapter 3, reference maps and inferred metrics
are used to quantify the advantages of this methodology.
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Finally, chapter 6.1 concludes the thesis and discusses possible perspectives for future
work. Concerning the basic principles of recursive state estimation, which forms a key
aspect in handling uncertain information in the environment perception, the interested
reader is referred to appendix A. The measurement principles of the applied radar and
laser sensors are described in appendix B, the software tooling environment is introduced
in appendix C and additional experimental results can be found in appendix D.
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The following chapter will briefly introduce basic notations and principles, which will be re-
quired for the derivations in this thesis. All coordinate specifications and transformations
will be described by using consistent notations and coordinate systems. The underly-
ing homogeneous coordinates principle and coordinate system definitions will be outlined
in the next two sections. After that, key principles of other participating environment
perception subsystems will be explained.

2.1. Coordinate Notations

Homogeneous coordinates are a concept of projective geometry and typically known from
computer vision applications [14]. By using this formulation, affine transformations be-
tween coordinate systems can be formulated by a single matrix multiplication. As a
consequence, concatenated rotations and translations between several reference systems
can be described consistently and easily comprehensible.

In general, a point p in a three-dimensional Cartesian coordinate system is transformed
into a homogeneous coordinate p̃ by adding a constant fourth element:

p = [x, y, z]T → p̃ = [x, y, z, 1]T (2.1)

The translation and rotation between two coordinate systems A and B can then be de-
scribed by a homogeneous 4x4 matrix, which will be denoted as pose. The pose incorpo-
rates a translation about a vector [x, y, z]T as well as a rotation around a yaw angle ψ, a
pitch angle θ and a roll angle γ. The detailed composition of the required pose matrix is
described in appendix A.1. Given a pose B PA, we can transform any point p from the
coordinate system A to coordinate system B by the matrix multiplication

Bp̃ = B PA · Ap̃ (2.2)

with Ap̃ respectively Bp̃ describing homogeneous coordinates in the coordinate system A
respectively B. A back transformation can be accomplished by inverting the transforma-
tion matrix:

Ap̃ = APB · Bp̃ =
(
B PA

)−1 Bp̃ (2.3)
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Furthermore, a concatenation of several transformations can be simplified by multiplying
the transformation respectively back transformation matrices:

C p̃ = C PA · Ap̃ =
(
C PB · B PA

)
· Ap̃ (2.4)

Ap̃ =
(
C PA

)−1 · C p̃ =
(
B PA

)−1 ·
(
C PB

)−1 · C p̃ (2.5)

Similarly, the homogeneous coordinate principle can also be applied to two-dimensional
coordinates, which results in the following transformation:

p = [x, y]T → p̃ = [x, y, 1]T (2.6)

In that case, the pose B PA simplifies to a 3x3 matrix and is restricted to a two-dimensional
translation and a single rotation. Again, the composition of the two-dimensional pose
matrix can be found in appendix A.1.

2.2. Coordinate Systems

Throughout this thesis, several different coordinate systems will be used to process en-
vironment features and representations. They are summarized in the following list and
illustrated in figure 2.1:

• Sensor: Each sensor uses a separate coordinate system to describe its measure-
ments. Due to physical principles of laser, radar and video sensors, the resulting raw
measurements are typically provided in polar coordinate systems. In that case, the
origin of the coordinate system lies at the position of the sensor.

• Construction: The construction coordinate system is fixed on the vehicle body and
therefore independent of the vehicle’s dynamic behavior. The orientation of this
coordinate system is defined in the norm ISO 4130. It will be used to describe the
mounting position of different sensors in a vehicle by the pose ConstructionPSensor.

• USK: By contrast, the Environment Sensor Coordinate System (German: Umfeld-
sensorkoordinatensystem) (USK) 1 additionally incorporates the position and state
of the vehicle in the environment. The axis directions are defined according to the
norm DIN 70000, the origin of this system lies at the projection of the rear axis’
center on the ground. As illustrated in figure 2.1, the orientation of the x-axis de-
pends on the current local supporting surface. Consequently, also the current spring
deflections and resulting pitch and roll angles of the vehicle are included in the pose
USK PConstruction.

• Map: All map-based environment representations derived in this thesis will be de-
fined by using a separated map coordinate system. The location of the maps and
their reference system will be related to the USK. The pose MapPUSK will also be
applied to infer the position of the estimated map contents relatively to the vehicle.

1In order to avoid confusions with ESC, the German abbreviation will be used in this thesis
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• Global: The world coordinate system will be used as a reference system for all
previously described coordinate systems. Instead of a formally defined geodetic co-
ordinate system as e.g. WGS 84 [47], an abstract, earth-fixed system on a tangential
plane will be assumed. The aim of this simplified concept is to uniformly describe
transformations of any other coordinate system, e.g. changes of global map poses
GlobalPMap.
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Figure 2.1.: Illustration of coordinate system definitions in side and top view.

2.3. Environment Perception Subsystems

As already stated in the introduction, all software modules, which were implemented in the
scope of this work, were embedded into an existing environment perception architecture,
see figure 1.5. The implementation of the modules was realized in C++ by using the
ADTF, a software, which was created to simplify prototypical software development for
driver assistance system. For details about ADTF, the interested reader is referred to
appendix C and [172]. In the remainder of this chapter, the already existing subsystems
of the environment perception architecture and especially their interfaces to the map-based
environment representations will be explained.
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2.3.1. Ego Motion Estimation

The detailed knowledge about the movement of one’s own vehicle is a crucial source of
information for interpreting sensor measurements and establishing environment represen-
tations. For this purpose, the ego motion estimation module, which has been introduced
in [8], was applied in this work. In summary, the ego motion estimation builds on a fusion
of the measurements from a low-cost automotive 6-D Inertial Measurement Unit (IMU)
sensor cluster, the wheel speed sensors and the steering angle sensor. In order to quantify
the pose of the IMU to the road surface, also the measurements of the chassis lift sensors
are considered. As all incorporated sensors are part of the standard equipment of current
upper class vehicles, no additional hardware requirements result from using this module.

To determine the provided state variables, the ego motion estimation uses a discrete
Kalman Filter and a simple tire height estimation model. In this way, the pose of the
USK in the global coordinate system can be inferred:

GlobalPUSK (2.7)

The global coordinate system is reset during the initialization of the system. Furthermore,
also the pitch and roll angle of the vehicle body to the current local supporting surface
are provided. These angles are especially important to infer sensor alignments to the road
surface.

Based on interpolations of the localization history, the ego motion module is also capa-
ble of providing the transformation of the USK coordinate system between two specified
timestamps, e.g. two map update time steps k − 1 and k:

(USKk)P(USKk−1) (2.8)

This pose quantifies the position of the last cycle’s USK in the current USK, which
is of particular importance to the compensation of ego-local environment representation
between two updates.

The inaccuracies of the ego motion estimation and their influence on the quality of the ob-
tained environment representations will be discussed in the evaluation sections of chapters
3, 4 and 5.

2.3.2. Model-based Object Tracking Module

The model-based object tracking module from the perception architecture 1.5 has been
described in [SWBH12]. The provided moving objects hypotheses will be utilized in several
chapters of this thesis. Especially the close interaction between this module and the
newly developed occupancy map will be discussed in detail in section 3.4.3. The provided
object interfaces will be explained in the following. For the internally applied detection,
association and estimation algorithms, the interested reader is referred to [SWBH12].
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All detected moving objects are represented by using the “best knowledge model” [SWBH12],
which allows to fuse object hypotheses from multiple sensors with different point of views.
The goal of this approach is to represent the knowledge about a detected object without
making unnecessary assumptions about its dimensions. Therefore, each sensor represents
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Figure 2.2.: Moving object representation with RPs. All possible RPs are indicated by
red dots, the local coordinate system resulting from RP 5 is highlighted.

the dimensions of an object in a coordinate system which is considered most appropriate.
For this purpose, one of nine possible coordinate system origins, called RP, can be cho-
sen, as illustrated in figure 2.2. Each moving object is then described by a bounding box
model, which refers to the chosen RP. The entire object state vector consists of:

o = [x, y, vx, vy, ax, ay, δ, L,W ]T (2.9)

with v and a denoting the velocity and acceleration. The remaining state variables are
illustrated in figure 2.2. All provided state variables, including the motion parameters,
are quantified in relation to one’s own vehicle. With the exception of the bounding box
length and width, the object tracking module also provides the estimation variances of all
inferred state variables.

2.3.3. Reference System

For the evaluation of newly created environment representations, a reference sensor system,
which was introduced in [159, 8], will be applied. This system offers the opportunity to
simultaneously record ground truth environment data and real sensor measurements in
dedicated test scenarios. A comparison of these data can be used to quantify the quality
of sensor measurements and resulting environment representations. In doing so, also the
algorithms’ ability to deal with characteristic measurement errors can be analyzed. This
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is an important advantage over simulation-based evaluation techniques, which typically
lack in exactly modeling sensor characteristics.

In general, this approach is based on Differential GPS (DGPS) measurements of the own
vehicle, specially equipped other vehicles and surrounding static objects. In order to
overcome the limitations of DGPS concerning the availability and measurement rate, the
vehicles are additionally equipped with a highly accurate IMU. A combination of both
techniques results in localization errors within a few centimeters [159]. As these measure-
ments are still subject to measurement noise, the notions reference or ideal environment
data will be used instead of ground truth environment data in this thesis.

Figure 2.3 gives an impression of the structure and data flow of the reference system.
During the recording process, the position estimates of several moving objects can be
instantly transmitted to the ego vehicle to simplify the monitoring and further process-
ing. Together with the previously parametrized vehicle dimensions, the global position
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Figure 2.3.: Illustration of recording and processing of reference sensor data.

estimates of static and dynamic objects can be used to infer an accurate bounding box
representation of the environment in the USK coordinate system. Besides that, the refer-
ence system also provides an accurate estimate of the ego vehicle motion.

When using this approach, it must be remembered that the reference description only
contains previously measured static objects and specially equipped moving objects. In
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order to reduce the hardware and measurement effort, this technique has to be restricted
to less complex scenarios with structured environments and a small number of surrounding
vehicles.
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3. Representation of Occupancy Information

The development of a simplified environment representation of occupancy information
for ADAS applications is subject of the first main chapter of this thesis. According to
the structure proposed in the introduction, this chapter will discuss related works on
this topic, develop a novel representation, suitable sensor models as well as additionally
required compensation mechanisms, and finally evaluate the obtained results against the
state of the art.

3.1. Related Works

The first section of this chapter discusses related works on environment representations of
occupancy information. State-of-the-art approaches and proposed optimizations will be
categorized and discussed concerning the previously identified requirements on environ-
ment representations.

3.1.1. Categorization and Discussion

Overall, numerous map- and model-based descriptions of occupancy states for robotic
and ADAS applications have been proposed. Figure 3.1 gives a rough categorization of
published approaches based on their level of abstraction respectively model assumptions
and the considered dimensionality. According to the characteristics identified in the in-
troduction, map-based approaches can be found in the lower part of this figure, whereas
model-based object representations are located in the upper part. In between, there also
exist combined methods that use principles from both major categories. Additionally, fig-
ure 3.1 lists point clouds representations (e.g. [25]), which will not be considered in detail
due to their tremendous memory consumption and interpretation effort. The discussion
will start with two- and three-dimensional occupancy grids and then focus on tree- and
model-based object representations.

A) 2D Grid Maps

The approach to map the surroundings of an autonomous mobile robot was presented for
the first time by Moravec and Elfes in 1985 [109]. Their basic idea was to systematically
combine sonar range readings in a two-dimensional map, whose content improves by incor-
porating measurements from multiple points of view. The well-known term occupancy grid
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Figure 3.1.: Categorization of published representations for occupancy information.
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was first used by Elfes in [46], where also a Bayesian estimation of occupancy probabilities
was presented. Occupancy grid maps have become a de facto standard for representing the
occupancy states in the environment, both in the robotics and intelligent vehicles commu-
nity. The goal is to estimate each grid cell’s occupancy probability between 1 for occupied
and 0 for free, which signalizes that a vehicle can pass the cell. In the simplest case, the
algorithms are based on the assumption of a pure static environment and perfectly known
poses of one’s own vehicle. The most common approach is to decompose the problem of
estimating the posterior probability of a map M

p
(
M
∣∣ z1:t

)
= p (o1,1, · · · , oL,C |z1:t) (3.1)

into the separated estimation of the cells’ posterior occupancy probabilities [165]

p
(
M
∣∣ z1:t

)
=

L,C∏
l,c=1

p
(
ol,c

∣∣ z1:t

)
(3.2)

with z1:t being the sensor measurements between the first and current timestamp and ol,c
denoting the occupancy state of the cell in line l and column c. In doing so, a statistical
independence between the grid cells is assumed. This assumption prevents the modeling of
dependencies among neighboring cells, but significantly reduces the computational effort.
The estimation of a single cell’s static binary state can be solved efficiently by using the
inverse sensor model approach in the log odds formulation, see equation (A.68) in appendix
A.2.6. In this way, the update of the posterior occupancy probability simplifies to a single
addition. To overcome the limitations that result from the independence assumption,
Thrun proposed to learn occupancy grids with forward sensor models, see equation (A.61)
[163]. This approach requires the application of an expectation maximization algorithm
to maximize the overall likelihood of a map given a set of sensor measurements. Although
experimental results indicate substantial improvements, this algorithm is not able to work
incremental and is not real-time capable.

An alternative grid map estimation scheme is given by the application of the theory
of evidence, developed by Dempster [31] and Shafer [148]. The basic principle of the
Dempster-Shafer Theory (DST) is to assign belief masses to the power set of possible
states. The corresponding formulas are derived in appendix A.3, an application of the
DST for occupancy grid mapping can be found in [42, 110, 87]. In contrast to the Bayesian
estimation of posterior occupancy probabilities, the DST allows for a distinction between
conflicting and missing knowledge in the map. On the downside, the memory consumption
of the grid map increases by a factor of 3 and the map update is significantly more complex.

A rather unknown formulation of estimating occupancy states in grid maps are Fuzzy
Maps, introduced by Oriolo et. al [117]. This approach is based on two fuzzy sets F and O
and their membership functions µF (x) and µO (x), which describe free and occupied areas.
In this context, the task of mapping corresponds to computing the membership functions
for each cell of the fuzzy grid map. This methodology allows to represent conflicting
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information and dependencies between neighboring cells, but also increases the complexity
of the data structure respectively map update.

All grid-based representations provide the possibility to realize efficient ego-local maps.
Therefore, the motion of the vehicle between two map updates can be subdivided into a
translational and a rotational component. The translation of the map can be compensated
by using a two-dimensional circular buffer and subcell values [16], as illustrated in figure
3.2. A rotational change can be used to update the pose between the vehicle and map
USK PMap. In this way, complex and inaccurate interpolations can be avoided, as Weiss
discusses in [182].

4.1 Zweidimensionale Belegungsgitter

der Zellen entspricht der Anfangsausrichtung des Fahrzeugs und ist deswegen statisch. Abbildung
4.5 verdeutlicht nochmal das Prinzip der Eigenbewegungskompensation auf dem Belegungsgit-
ter.

Δy

Δx

Δx

Δy

Abbildung 4.5: Eigenbewegungskompensation auf dem Belegungsgitter

Berücksichtigung der Unsicherheit in der Eigenbewegungsschätzung

Neben den notwendigen Mechanismen für die effiziente Eigenbewegungskompensation ist die
Berücksichtigung der Unsicherheiten der Eigenbewegungsschätzung ein wichtiger Aspekt für den
Aufbau eines konsistenten und genauen Belegungsgitters. Die Daten, die die Bewegung des Fahr-
zeugs beschreiben, sind aufgrund von Unsicherheiten in den eingesetzten Sensoren fehlerbehaftet.
Ein möglicher Weg für die Berücksichtigung dieser Effekte besteht darin, die komplette Bele-
gungskarte bei jedem Schritt der Eigenbewegungskompensation mit einer zusätzlichen Unsicher-
heit zu behaften. Diese Methode ist zwar genau, würde aber einen erheblichen Rechenaufwand
mit sich bringen. Ein wesentlich effizienter Weg besteht in dem Zurückführen der Ungenauigkei-
ten der Eigenbewegungsdaten auf eine Unsicherheit in der Position des Umfeldsensors (Laser oder
Radar). Diese Unsicherheiten können dann beim Aktualisieren der Belegungskarte berücksichtigt
werden. Mit Hilfe dieser Idee können aber nur die Zellen, die von den Sensordaten aktualisiert
werden profitieren, was ein kleiner Nachteil darstellt.

4.1.3 Vorverarbeitung der Laserrohdaten

Die Vorverarbeitung der Laserrohdaten hat zum Ziel, einerseits frühzeitig Fehlmessungen zu
erkennen und somit die Sensordaten zu plausibilisieren. Anderseits werden die Messdaten in
diesem Schritt mit weiteren Informationen angereichert (z.B durch die Segmentierung der Laser-
reflexionspunkte), so dass das inverse Sensormodell möglichst viele Nutzinformationen aus den
Messungen für die Aktualisierung der Belegungskarte extrahieren kann. In den folgenden beiden
Abschnitten werden zwei der in der Arbeit eingesetzten Vorverarbeitungsschritte beschrieben.
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Figure 3.2.: Efficient ego motion compensation in grid maps, from [16].

The accuracy of grid maps mainly depends on the cell discretization. The cell size also
impacts the computational effort of the mapping algorithms, as it influences the number of
cells that have to be processed during the map update. Especially when using the log odds
formulation and the independence assumption, large occupancy grids can be calculated in
real-time [16], which is one of the main reasons for their popularity.

One of the major drawbacks of grid-based environment representations is the high memory
consumption and the lack of scalability. A grid map is not able to provide information in
different accuracies, as the cell sizes are fixed. Consequently, neither specific requirements
of driver assistance functions, nor characteristics of the environment can be exploited. The
high amount of cells also influences the interpretability of the data structure. To infer the
required information, numerous cells have to be processed. When using rotated ego-local
maps, also the alignment of vehicle and cells differs.

B) 2.5D and 3D Representations

In numerous publications, the grid-based mapping concept has been enhanced to represent
three-dimensional environment information. They can be classified into 2.5D maps and
full 3D representations.
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2.5D maps are restricted to the description of height information instead of a complete
three-dimensional representation of the environment. The most simple approach is given
by elevation maps, which estimate a single height value of the surrounding surface in
each grid cell, e.g. to extract occupancy information from 3D data [113], classify road
surfaces [116] or detect road curbs [82]. Himmelsbach et al. use a similar elevation grid as
intermediate representation to infer height information from 3D laser point clouds [65, 73],
which is not used for an accumulation process.

Besides these applications of elevation maps in intermediate representations, there also
exist publications that use maps for a temporal filtering of detected height values. Hong
et al. accumulate height values for outdoor applications from preprocessed laser and
stereo data by using a weighted average filter and measurement confidence values[72].
A more advanced approach is presented by Bouzouraa in [16], where up to three height
hypotheses are estimated in a cell by using a one-dimensional Kalman Filter (KF). The
resulting estimation variances quantify the reliability of the hypotheses.

Concerning their computational effort, scalability and discretization errors, elevation maps
can be evaluated similarly as 2D grid-based environment representations. Although these
data structures are often used as an intermediate representation, the capability of elevation
maps to accumulate uncertain measurements has been demonstrated. Supposing a driver
assistance function that requires information about free areas, an additional interpretation
step has to take place. On the other hand, the detailed information about height profiles
can improve the behavior of a highly automated vehicle, for example by detecting road
curbs.

Nevertheless, elevation maps are not able to describe occupied volumes within a cell. To
overcome this issue, Thrun et al. proposed the generation of 3D maps using polygonal
models in a grid-based data structure [164]. In the multi-level surface map approach
of Triebel et al., a cell can contain multiple surface patches, represented by the mean
and variance of the measured height and an optional depth [167]. A similar method is
demonstrated by Bouzouraa in [16]. The 3D Interval Map represents several rectangular
bars in a grid cell. The update of existing bars is based on KFs for the borders and an
additional reliability measure that is derived from the number of measured laser points. In
[126], Pfeiffer also extends the stixel world to allow several stixels along an image column.
Still, the methods mentioned so far are not able to represent three-dimensional free space.
Dryanovski et al. solve this issue in their interesting work about multi-volume occupancy
grids [41]. In each cell of this map, the measured occupied and free space is represented
in two separated lists of positive and negative volumes. In order to extract probabilistic
occupancy information for a certain point in space, the occupancy densities of the existing
positive and negative volumes have to be combined.

More detailed full 3D representations are given by Voxel1 Maps, which transfer the con-
cept of creating equidistant cells to the third dimension. First implementations for robotic
indoor environments have been demonstrated by Moravec [108], similar papers deal with

1Volumetric Pixels
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robotic outdoor environments [51, 121] or construction sites [160]. Another familiar ap-
plication area is to warp textures from camera images onto voxel maps [100]. In [18],
Bouzouraa also introduced an ego-local voxel map for an application in driver assistance
systems. According to the presented results, a 140 × 140 × 6m map can be processed
online.

In conclusion, voxel maps show similar advantages and disadvantages as two-dimensional
grid-based environment representations. Of course, the memory demand further increases
by considering additional dimensions. Moreover, also extractors have to deal with a sub-
stantially increased amount of cells. Multi-level surface maps and multi volume occupancy
grids mitigate this problem at the expense of more complex update operations.

C) Polar Maps

Another category of map-based environment representation uses polar instead of the Carte-
sian grids. These data structures are especially suitable for preprocessing radar, laser and
video sensor measurements, which are typically provided in polar coordinates due to their
measurement principles. Kang et al. used a probabilistic volume polar grid map to repre-
sent detected free spaces and obstacles from stereo vision [79]. According to them, a polar
grid can help to simplify the measurement analysis and free space computation.

Similar ideas are used in the Stixel World [7], which aims to infer a compact and flexible
representation of three-dimensional traffic situations in stereo camera disparity images. It
is based on the model assumption that the free space around the vehicle is limited by a set
of vertical rectangular sticks (stixels). In [125], Pfeiffer et al. also extended the approach
to track stixels that belong to dynamic objects over several frames.

To develop their strengths, polar maps have to be used ego locally and aligned with the
applied sensor. On the downside, ego local polar maps are not able to accumulate infor-
mation, as the transfer of information between two transformed polar grids would require
complex interpolation calculations. Concerning the remaining requirements, polar maps
can be evaluated similarly as grid-based representations. Supposing a suitable alignment,
the interpretation effort decreases as the traversability of the data structure simplifies [79].

D) Tree-based Representations

To overcome the inflexible and high memory consumption of occupancy grids, tree-based
data structures for occupancy representations have been examined extensively. In this
context, the root node of a tree represents the whole area that has to be covered by a
map. The tree’s leaf nodes describe the occupancy state of a partition of the overall space.
Each inner node of the data structure is recursively subdivided into a set of child nodes.
Depending on the number of child nodes, existing approaches can be classified by the Nd

formulation proposed in [43], which states that the volume of an inner node is split up
into N intervals in d dimensions. Common two-dimensional representations use 22-trees,
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which are also denoted as quadtrees [90], e.g. illustrated in figure 3.3. Three-dimensional
approaches are typically realized by octtrees, which correspond to 23-trees, e.g. [122, 189].

hits while at least some measurements are expected to be
misses, the resulting histogram may differ significantly from
the expected ones. We handle these cases where the sensor
measurements are more accurate than expected separately
and skip the statistical tests to prevent an unnecessary
subdivision of the cell.

B. Merging

Beside splitting, we also merge nodes to reduce the
number of leaf nodes and to achieve some kind of lossless
compression similar to [6]. The child nodes c(j) of a node
n can be merged, if all occupancy values occ(c(j)) are
either very close to 0 or very close to 1. In the first case
all child nodes are assumed to be free with a very high
probability and in the second case all child nodes are most
likely occupied. In both cases a significant change in the
probability of any child is unlikely. Hence, the region covered
by the children can also be represented by their parent node
without any information loss. This is achieved by pruning
the child nodes. The parent node n will then become a leaf
and its occupancy value is set to the mean of its former
children: occ(n) = 1

Nd

∑
occ(c(j)). This merging process is

done after each measurement update cycle for all updated
nodes that fulfill the above requirements.

Using the proposed method for splitting and merging
nodes adaptively, the cell resolution of the created map
will be adjusted adequately. Regions that are homogeneously
covered by obstacles or that are entirely free are represented
by coarse cells, while more fragmented regions are mapped
using fine-grained cells in a higher resolution. The maximum
resolution usually is restricted by the sensor noise only.
The subdivision of cells will stop automatically if no higher
precision can be achieved by further subdividing a cell due to
the sensor’s noise. Additionally, the resolution can be limited
by specifying a maximum level of subdivision.

IV. RESULTS

We have tested the proposed algorithm for adaptive reso-
lution mapping using three different sensors on our mobile
robot platform. Fig. 4 shows 2D maps that were created using
a 2D laser range finder. The maps cover an area of 26 m ×
16 m. In Fig. 4a the leaf nodes of the created Nd-tree map are
indicated. The width of the shown cells varies from 1.6 m to
0.05 m. Hence, the effective resolution of the map is 0.05 m.
This high precision takes full advantage of the accuracy
of the laser range finder. Fig. 4b shows the same Nd-tree
map, where the leaf nodes are colored according to their
occupancy value. Occupied cells are shown in white while
free cells are shown in black. Gray indicates an occupancy
value of 0.5. For those cells it is unknown whether they are
free or occupied since they have not been observed by the
laser range finder.

For comparison, a normal occupancy grid map with a
fixed resolution of 0.1 m is shown in Fig. 4c. It was created
using the same sensor data. When comparing Fig. 4b and
Fig. 4c, it becomes apparent that the Nd-tree has a higher
level of detail due to its high resolution of up to 0.05 m.
Moreover, some fine-grained structures are not even visible

(a)

(b)

(c)

Fig. 4. (a) Leaf nodes of an Nd-tree map with N = 2, d = 2 (b) Same
Nd-tree map where the leaf nodes are colored according to their occupancy
value. (white=1, black=0) (c) Grid map with a fixed resolution of 0.1 m

in the fixed-resolution grid map. Additionally, the fixed-
resolution grid map consists of 42,120 cells, while the Nd-
tree contains 21,857 nodes, where only 16,390 nodes are leaf
nodes. Hence, using our approach a reduction of approx. 50%
in the required amount of memory can be achieved for the
shown map while doubling the effective resolution.

In Fig. 5 and 6 two 3D maps are shown that were created
using the same adaptive mapping approach. Due to the
generic characteristic of the Nd-tree we were able to use the
same implementation as for creating the 2D maps above. The
three-dimensional measurements for the map in Fig. 5 were
obtained using a Kinect depth camera. The measurements
for Fig. 6 were generated using a feature-based shape-from-
motion approach [12] that is able to obtain a reconstruction
of the local surroundings using a monocular camera. Each
reconstructed feature is used as a range measurement and
inserted into the map. In both 3D maps only those cells that
were estimated as occupied are shown using different colors,
where the color codes the height of each cell.

1847

Figure 3.3.: Leaf nodes of quadtree map representing occupancy information, from [44].

A sophisticated approach for 2D and 3D robotics applications was presented by Einhorn et
al. in [43, 44]. Depending on the measurements, the presented mapping approach adapts
the depth of the tree online. Therefore, a histogram of hits and misses is calculated in
each tree node. If this histogram deviates considerably from the expected characteristic of
a free or occupied cell, the node will be split up. According to the presented results, the
number of cells is reduced by a factor of 7 compared to fixed resolution mapping. Although
a performance gain of the factor 2-3 is pointed out, absolute computation times are not
reported. Schmid et al. demonstrated the application of similar tree-based representations
for ADASs [143, 142, 141]. In [141], Schmid proposes different strategies to control the
depth of the underlying octtree data structure: For an application in pre-crash safety
systems, a stepwise level of detail is formulated, depending on the distance from the own
vehicle. For the detection of landmarks, the resolution is increased in dedicated areas.
Otherwise, a dynamic level of detail is proposed, which is based on the DST evidences of
free and occupied areas. For a 120× 120 m 2D map with a minimal cell size of 0.1 m, an
average computing time of 10 ms per cycle is reported, a 3D map with equal dimensions
and a minimal cell size of 0.2 m can be processed within 10 ms. Both variants allocate in
average between 1 and 1.5 MB of memory.

A rather unknown approach in this category are Wavelet Occupancy Grids, proposed by
Yguel et al. in [191, 192]. The basic idea of this technique is to replace the occupancy
probabilities of a grid map by a set of Haar wavelet functions. Due to the hierarchical
structure of the Haar wavelet basis, the resulting map can be interpreted as a quadtree
in 2D, respectively an octtree in 3D. Yguel et al. point out that this representation
saves about 90% of memory compared to an occupancy grid, while the computing time is
”sufficient” for a real-time processing in 2D and 3D [192].
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To sum up, the application of tree-based representations shows great advantages concern-
ing the requirements on scalability and memory consumption. Both 2D and especially 3D
data structures show a significant reduction of the memory consumption. As Schmid and
Einhorn show in their work, the accuracy and the required resources can be adapted to
the characteristics of the surroundings and to specific requirements of driver assistance
systems. On the downside, tree-based maps are confronted with a further increased com-
putational and interpretation effort. Although Schmid and Einhorn introduce advanced
node addressing schemes, major parts of the tree structures have to be traversed for updat-
ing and extracting information. This task is usually more complex and less cache-efficient
than rasterization algorithms for grid-based data structures.

E) Combined Map and Model-based Representations

According to the definitions of section 1.3.1, all representations discussed so far can unam-
biguously be classified as map-based environment representations. Between both major
categories, there also exist approaches, which try to combine the advantages of both
philosophies.

In [120], Paskin and Thrun developed a mapping algorithm with polygonal random fields,
which is inspired by the polygonal coloring problem in 2D planes. A polygonal coloring
is defined by a start anchor point and a set of edges, which represent the boundaries
between black and white regions. To obtain a map with edges between occupancy states,
the likelihood of the map given a set of range measurements is optimized by using a
sampling algorithm. Paskin et al. claim that the resulting vector representation avoids
discretization errors and can represent simple environments more compactly. On the other
hand, their approach is not able to process sensor measurements online and implies a huge
interpretation effort.

Andert et al. developed a combined grid- and feature-based occupancy map for large
outdoor environments [3]. This approach combines local occupancy grids with a global
feature-based map. Between both representations, bounding box shapes can be exchanged.
By contrast, Pandey et al.’s feature-based occupancy grid is based on a single occupancy
grid with enhanced map update procedure [119]. Before the update takes place, range
measurements are associated with predefined features in order to reduce the impact of the
grid cell independence assumption.

In [144, 145], Schreier et al. present their interesting work on parametric free space maps.
Their goal is to develop a compact and function-independent representation of free space
information. Therefore, they obtain an intermediate occupancy grid, from which the
detected free space is extracted by a combination of several familiar image processing
techniques. The outer boundary of the extracted contour is represented by a temporally
filtered B-Spline, inner boundaries are additionally described by geometric primitives.

In conclusion, Andert’s and Pandey’s contributions do not change the underlying occu-
pancy grid but improve the applied sensor models and the extraction process [3, 119].
Concerning the identified requirements, both approaches can be evaluated as occupancy
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grids. Similarly, Schreier uses an intermediate occupancy grid to estimate the contours
of the free space around the vehicle. Although this approach results in a compact envi-
ronment representation, the authors admit that the computational effort of the mapping
procedure is increased, as it includes the creation of an intermediate occupancy grid. To
the author’s knowledge, a direct estimation of spline-based representations without using
intermediate grids has not been considered so far, although there exist promising computer
vision approaches e.g. advanced active contour models [32].

F) Model-based object representations

Especially for indoor robotic applications, also purely model-based object representa-
tions have been proposed. One class within this category is the landmark-based map-
ping approach, which limits to the description of significant features in the environment
[161, 162, 4]. These maps provide a highly compact description but only aim at providing
input data for SLAM applications instead of creating a complete representation of the
surroundings. Besides that, there exist several approaches which use geometric primitives
to provide a complete 2D or 3D image of the surroundings, which can be summarized
by the term object maps [162]. So called Line maps are especially suitable to describe
structured indoor environments [21, 171, 94]. On the downside, they usually require an
offline processing after a set of measurements has been collected from a predefined area.

Basic model-based object representations have difficulties in describing semi- or unstruc-
tured features in outdoor environment, e.g. the free space in an urban scenario. They
either use limiting model assumptions or have to cope with a huge number of object
hypotheses, which eliminates the main advantages of this approach. Nevertheless, model-
based object representations have been applied to describe occupancy states for driver
assistance systems. In [96], Lundquist et al. introduce an object-based representation of
road boundaries. In [17], Bouzouraa also presents a model-based approach for free space
tracking. The free space in front of the vehicle is described by a varying number of parallel
rectangles, whose lateral borders are estimated by a 1D KF. In order to compensate the
ego-aligned rectangles, the impact of the vehicle’s rotational movement is approximated.
This approach demonstrates, how model-based principles can be enhanced to describe un-
structured environment features, and serves as an origin for the development of the 2DIM
in the following sections.

3.1.2. Summary

Table 3.1 sums up a qualitative evaluation including the advantages and disadvantages
of the discussed representations. In summary, there is no approach which simultaneously
fulfills the requirements identified in chapter 1.2.2.
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Accur. Unc. Accum. Scal. Int. Mem. Com.

Point clouds ++ −− − − −− −− −−
2D Grid Maps + + ++ − − − +

Elevation Maps + o + − − − +

Multi-Volume Grids + o + −− − − o

Voxel Maps + + ++ −− −− −− +

Polar Maps + + −− −− + − +

Quadtrees/Octtrees ++ + + ++ −− + −
PRF Mapping + − −− −− −− o −−
PFS Maps o − −− − o + −
Object Maps −− − − + + ++ +

Model-Based FST − − o + + + ++

Table 3.1.: Evaluation of representations for occupancy information.
(Accur. = Accuracy, Unc. = Uncertainties, Accum. = Accumulation, Scal. =
Scalability, Int. = Interpretability, Mem. = Memory consumption, Com. =
Computation times)
(PRF = Polygonal Random Fields, PFS = Parametric Free Space, FST = Free
Space Tracker)

3.1.3. Occupancy Grid Optimizations

In order to eliminate the high resource requirements of occupancy grids, further enhance-
ments, which do not focus on the representation itself, have been proposed. One possibility
to improve the performance of computationally complex algorithms is the application of
massively parallel GPU hardware. Yguel et al. presented an approach, in which occupancy
grid mapping is formulated as texture mapping problem, which also helps to eliminate ray
casting moire effects [190]. According to the experimental results, the application of GPU
hardware allows to fuse up to 13 high resolution laser sensors in real time. Similar work
is presented by Homm et al. in [71]. The reported computation times for updating a
512× 512 cells occupancy grid with radar and laser measurements are in the range of 5-6
ms using a GeForce 285GTX GPU.

A different approach is shown by Grewe et al. in [61, 62]. They propose a generic archi-
tecture, in which several sensors calculate intermediate occupancy grids which need to be
combined in a global fusion grid. In order to reduce the computational effort and band-
width requirements for data transmission, Grewe et al. propose a lossless compression of
occupancy grids by incremental difference data structures and run length encodings.

Both approaches try to reduce the impacts of grid mapping algorithms instead of improving
the underlying data structure itself. The application of GPU hardware offers a great
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potential to reduce the overall computation times. Nevertheless, this technique requires
an in-depth extraction concept for transferring data from and to the GPU, which is one of
the major bottlenecks in these architectures. Besides that, reasonably priced and energy-
efficient GPU hardware for safety critical calculations in automotive control units is not
yet in sight. Grewe’s approach to compress and exchange entire occupancy grids seems
inappropriate considering well-established methods that infer high-level descriptions from
map contents, e.g. free spaces and road boundaries [182, 141, 181, 71, 30, 16, 144, 145,
68, 135].

3.2. Development of a Simplified Representation for Occupancy
Information

In order to overcome the discussed shortcomings of existing approaches, a newly developed,
two-dimensional interval-based representation will be proposed in the following sections.
This novel approach forms the key contribution of this thesis and will also be reused in
chapters 4 and 5. The following section will introduce the basic principles of the generic
environment representation, after that it will be shown, how this data structure can be
used to represent occupancy information.

3.2.1. Interval-based Environment Representation

In order to approach the goal of a simplified representation with low interpretation ef-
fort, the requirements of automated vehicle behavior generation and control have to be
understood. In general, the vehicle control is subdivided into a lateral component, which
is influenced by manipulating the steering, and the longitudinal control, which is realized
by accessing throttle and brake signals. First of all, this implies that the lateral move-
ment can be controlled considerably more accurate than the longitudinal one. Second,
most existing behavior planning approaches determine the desired longitudinal motion of
the vehicle by evaluating moving target objects, detected road markings or speed limits.
Map-based representations of free spaces and obstacles are typically used to optimize the
lateral positions of possible trajectories, e.g. to avoid obstacles in safe distances. If we
restrict to longitudinal traffic scenarios, vehicle automation hence requires a higher resolu-
tion of occupancy information in lateral direction, whereas inaccuracies and simplifications
in longitudinal direction can be accepted to a certain extent.

Consequently, the key idea of the following simplified representation is to subdivide the
2D space around the vehicle into intervals, which are aligned orthogonal to the driving
direction. In contrast to grid-based environment representations, this approach discretizes
the surrounding space only in longitudinal direction, whereas the lateral positions of en-
vironment features can be represented by continuous values. In this way, this approach
simultaneously improves the lateral accuracy and simplifies the interpretation of map con-
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3. Representation of Occupancy Information

tents on higher levels of abstraction. The underlying geometrical structure is derived from
a skeleton of 2D nodes p in the USK coordinate system 2:

S =
[
p(0), · · · ,p(n), · · · ,p(N+1)

]
(3.3)

The positions of the nodes can origin from different sources. If there exists information
about the course of the road (e.g. from digital map information or the road infrastructure
detection module, see perception architecture 1.5), maps can be “attached” to a reference
path, e.g. the center line of the currently used traffic lane. Otherwise, a straight continu-
ation is assumed, which results in equidistant nodes along the x-axis of the current USK.
Both variants are illustrated in figure 3.4 and will be referred to as curved and straight
2DIM. The idea of the straight 2DIM has already been presented in the patent application
[67] and in [WBH12, WBH13].
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Figure 3.4.: Geometrical structure of a) curved and b) straight 2DIM.

2Time index k will be left out for clarity
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3.2. Development of a Simplified Representation for Occupancy Information

The nodes of the polygonal line define the center position of the borders between the
intervals. The alignment of the borders b is given by the normalized orthogonal vector to
the central difference gradient at node n, as also illustrated in the lower part of figure 3.4:

b(n) =
c(n)∥∥c(n)

∥∥ with c(n) =

[
y(n−1) − y(n+1)

x(n+1) − x(n−1)

]
(3.4)

The intervals will be denoted by the index of the lower border interval. The complete map
at time step k is given by a tuple of N intervals, which provide a neighborhood relationship
among each other:

Mk =
(
I

(0)
k , · · · , I(n)

k , · · · , I(N)
k

)
(3.5)

In this structure, an interval can store several generic information containers of different
types. A container that describes a punctual environment feature will be called point cell,
while interval cells specify information with dimension, as also illustrated in figure 3.4. The
position and shape of these containers will be described by using interval-specific coordinate
systems, whose orientation is defined by the vector between two consecutive reference path
nodes. In this way, the lateral position of the containers is represented orthogonal to the
reference path, which implies an improved interpretability of the resulting map. The
transformation from the interval coordinate system I(n) to the USK results as3:

USK PI(n) = T

(
x(n) + x(n+1)

2
,
y(n) + y(n+1)

2

)
· RZ

(
ψ(n)

)
(3.6)

with ψ(n) = atan2
(
y(n+1) − y(n), x(n+1) − x(n)

)
(3.7)

In case of the straight 2DIM, the interval borders are given by equidistant parallels to the
vehicle’s y-axis. Consequently, the transformation task simplifies to a translation by the
longitudinal center of the interval:

USK PI(n) = T

(
x(n) + x(n+1)

2
, 0

)
(3.8)

3.2.2. Interval-based Representation of Occupancy Information

Within the scope of this work, two different concepts of representing occupancy infor-
mation in the interval-based framework have been developed. Whereas the cell-based
approach will be described and evaluated in-depth in the remaining sections of this chap-
ter, the alternative approach to represent polygonal chains will only be briefly outlined as
a suggestion for future works in the conclusion of this thesis, see section 6.1. The aim of

3The function atan2 denotes the two-argument inverse tangent function, which correctly distinguishes all
four quadrants.
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3. Representation of Occupancy Information

the cell-based approach is to model surrounding free and occupied areas by rectangular
interval cells with variable widths. The semantics of the interval cells should be similar
to conventional occupancy grid cells [165]: an occupied cell indicates the existence of an
obstacle in the enclosed area, whereas a free cell can be passed by a vehicle without a
collision. Certainly, these requirements allow a large number of possible cell specifications
and estimation schemes.

The first design decision deals with the relation between free and occupied cells. The cells
of an interval I(n) can either be managed in a single list or in separated lists for each
occupancy type, as for example used in the related problem of 3D multi-volume mapping
[41]. One obvious drawback of keeping separated lists is the occurrence of conflicting
information and blank areas, which requires a dedicated post-processing step to infer
occupancy probabilities [41]. Even if two cells of different types do not conflict and exactly
border on each other, the coinciding lateral positions of the borders have to be stored twice.
To avoid these problems, the presented approach is based on a dense list of cells, which
only contain a single position. In order to allow efficient insertions and deletions during
the update procedure, the cells are organized in a doubly linked list [85].

The second design decision concerns the representation of uncertainties. In contrast to grid
cells which only have to describe the uncertainty about the occupancy state, interval cells
additionally have to quantify the confidence of the estimated border positions. For the sake
of simplicity and an easy interpretation, a 1D Gaussian probability distribution, which is
aligned orthogonally to the border, will be assumed. Thereby, a border between two cells
can be reused for slightly different occupancy measurements and is able to represent a
smooth transition between occupancy states. In order to enable an accumulation process,
the cells also have to provide a measure of reliability. By using the posterior occupancy
probability formulation, cells of different occupancy types can be treated equally and
change their states over time. In this case, common occupancy grid state estimation
derivations (A.57) can be reused.

These considerations lead to the interval structure illustrated in figure 3.5. Formally, an
interval I(n) is defined by a tuple of M interval cells, which together completely cover the
map width:

I(n) =
(
OC(n,0), · · · ,OC(n,m), · · · ,OC(n,M)

)
(3.9)

The state x(n,m) of an occupancy cell OC(n,m) is twofold. The first state variable describes
the binary occupancy state, the second variable represents the continuous lateral end
position in the interval coordinate system I(n):

OC(n,m) =
(
o(n,m), y(n,m)

)
(3.10)

Due to the dense sequence of cells, the representation of a single lateral position per cell is
sufficient. As the first and last cell of an interval indicate the outer boundaries of the map,
their lateral positions y(n,0) and y(n,M) form a special case and do not provide variances.
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Figure 3.5.: Representation of occupancy cells in an interval and inferred continuous prob-
ability profile.

The represented knowledge about free and occupied areas can be used in two ways. On
the one hand, the border uncertainties can be neglected to directly infer distinct distances
between possible future trajectories and unknown and occupied areas. On the other hand,
a continuous posterior probability profile along the interval can also be calculated. Assum-
ing that the cell border position distributions are independent, the occupancy probability
at any position y in an interval I(n) results from the combination of the cells’ occupancy
probabilities and border distributions:

P (o|z)(y) =

M−1∑
m=0

P (o(m)|z) · P (y(m) ≤ y) · P (y(m+1) > y) (3.11)

=

M−1∑
m=0

P (o(m)|z) · Φ
(
y; ŷ(m),Var

(
ŷ(m)

))
·
(

1− Φ
(
y; ŷ(m+1),Var

(
ŷ(m+1)

)))
(3.12)

with Φ(x;µ, σ2) denoting the cumulative distribution function (cdf) of the normal distribu-
tion with mean µ and variance σ2. An exemplary resulting probability profile is illustrated
in the lower part of figure 3.5. This interpretation will be especially useful for the transfor-
mation of knowledge between different map-based environment representations in chapter
5. Please note that the probability profile does neither represent a cdf nor a probability
density function (pdf), as the occupancy probabilities along an interval do not integrate
to 1.
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3. Representation of Occupancy Information

3.3. Development of Sensor Models and Update Algorithms

An overview of the required subtasks that are necessary to recursively estimate the pro-
posed interval-based occupancy map can be found in figure 3.6. The following sections
will deal with the development of sensor models and update algorithms, which correspond
to the blue steps in figure 3.6. The aim of these components is to realize the estimation of
the map contents under consideration of the requirements concerning the computational
efficiency and the regard of the measurements’ uncertainties. After a discussion of possible
forward and inverse sensor model implementations in this context, the required algorithms
will be derived for the introduced occupancy representation. Due to the ability to measure
free spaces and object contours, the presented approach will focus on the application of
the laser sensor described in appendix B.3, but can also be adapted to support similar
range measurement sensors.

Map
Compensation Prediction

Association
&

Update
Merge

New
Measurement

Feature
Extraction

Updated 
Map

Figure 3.6.: Recursive update cycle of interval-based occupancy map.

3.3.1. Forward and Inverse Sensor Model Approaches

In general, two different probability distributions can be used to incorporate sensor mea-
surements in recursive state estimations (see also section A.2): The forward sensor model
probability P (zk|x) and the inverse sensor model probability P (x|zk). Especially when
estimating the occupancy state of a single space element, the space of possible states is
significantly smaller than the space of possible measurements. Hence, it is usually more
convenient to derive a distribution over both states given the current measurement, than
determining the distribution over all possible measurements showing one of both states,
which explains the wide dissemination of inverse sensor model occupancy mapping ap-
proaches [165]. The most popular forward sensor model approach extends the state space
to the combined occupancy state of several cells and tries to find a map which yields the
maximum sensor model probability [163]. In this general taxonomy, also the KF can be
classified as a forward sensor model-based approach for continuous state space. In this
case, the state with the maximum forward sensor model probability is derived by formu-
lating an expected measurement and modifying the current state estimate according to
the deviation between expected and real measurement [75].
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3.3. Development of Sensor Models and Update Algorithms

Both principles can be transferred to the problem of estimating occupancy cells with vari-
able sizes from range measurements. The resulting procedures are visualized in figure
3.7. The inverse sensor model approach, illustrated in the left part of the figure, tries to

a) b)

zk zk

zk
*

xk-1
^xk-1

^

Unknown

Free

Occupied

Measurement

Occupied

Free

Unknown
Cell State 

Estimate

Figure 3.7.: a) Inverse and b) forward sensor model approach for occupancy cell estimation
within an interval. Red lines and dots indicate laser beams and measurements.

estimate the cell states based on the measurement results within the interval. However,
the widespread inverse sensor model formulation (see A.2.6) is limited to the estimation of
static binary states, hence, this approach has to be restricted to the estimation of single oc-
cupancy states. Thus, an independence between the cells of an interval has to be assumed,
which is one of the main criticisms of common grid mapping algorithms [163]. The right
side of figure 3.7 shows a forward sensor model strategy, which is inspired by the KF. In
this case, the last state estimate is used to derive the expected range measurements within
an interval. The difference between the expected and real measurements can be used to
optimize the cells’ occupancy states and dimensions. On the one hand, this strategy would
allow for estimating combined occupancy states without independence assumptions. On
the other hand, the modification of occupancy states by quantifying deviations in the
high-dimensional space of possible range measurements is a highly complex task. Fur-
thermore, this method requires the development of a dedicated detection strategy, since
e.g. newly measured obstacles cannot be associated with expected measurements. Due
to these considerations and the previously introduced cell states, the developed update
mechanism is twofold: The cells’ borders are estimated by using a 1D Extended Kalman
Filter (EKF), whereas the binary occupancy state of the cells is estimated by using the
inverse sensor model approach for binary states.
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3. Representation of Occupancy Information

3.3.2. Sensor Model and Feature Extraction

Both estimation principles require a preprocessing step to infer rectangular (straight
2DIM) or trapezoidal (curved 2DIM) occupancy cells from the raw laser range measure-
ments obtained by the sensor described in appendix B.3. Therefore, the 3D multi-layer
laser scan first has to be simplified to a 2D measurement structure. Assuming that all
measurements within a channel cover the same horizontal angle range, several vertically
differing measurements can be reduced to the shortest available distance. By the restric-
tion to the obstacles that directly limit the measured free space, the computational effort
can be significantly reduced without losing the most relevant information for trajectory
planning. Overall, the measurement vector zk is reduced to a number of C range and
angle measurements:

zk =
[
z

(0)
k , · · · , z(c)

k , · · · , z(C)
k

]
(3.13)

with z
(c)
k =

[
r

(c)
k , ϑ

(c)
k , ϕ

(c)
k

]
(3.14)

with r representing the radial distance, ϑ denoting the vertical angle and ϕ being the
horizontal angle. All three values are subject to measurement errors: Inaccuracies in
the provided distances result from distortions in the physical measurement process and
discretizations during the signal processing. Uncertainties in the specification of a mea-
surement’s angle originate from the divergence of the laser beam, the reflection behavior
of the obstacles and potential blooming effects. Besides that, also the yaw and pitch angle
of the sensor’s mounting position can only be determined to a certain degree of accuracy.
In order to enable a constant transformation pose USK PSensor, these inaccuracies can also
be expressed by the measurement angles.

For the following derivations, independent zero mean Gaussian noise terms for each in-
dividual measurement quantity will be assumed. The combination of the distributions’
variances leads to the following measurement error covariance:

Rk =

Var(r) 0 0

0 Var(ϑ) 0

0 0 Var(ϕ)

 (3.15)

When restricting to measurements which result from objects that are aligned orthogonal
to the laser beams, this error covariance suitably reflects the actually occurring deviations.
Due to the non-consideration of ground measurements for the representation of occupancy
information, the negative impacts of this simplification are limited.

For the deduction of the occupancy cells, the developed sensor model considers the hori-
zontal field of view α of a measurement channel, which is mainly caused by the laser beam
divergence, see figure 3.8. If we assume that all laser reflections were caused by obstacles
that are aligned perpendicular to the ground plane, the projection of the measurements’
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vertical extent results in a minor uncertainty range. As the vertical extent of a measure-
ment also depends on several hardly identifiable factors, it will not be considered explicitly
in the sensor model. The occurring inaccuracies can be compensated by Var(ϑ).

Free

Unknown

Occupied

a) b)

Unknown

Free

Occupied

α

Figure 3.8.: Occupancy sensor model and feature extraction.

In each channel, the projected area in front of the measured distance r is considered free
space, whereas the area behind the measurement has an unknown occupancy state. If the
received echo is neither classified as ground nor clutter measurement, a reflecting obstacle
is assumed transversely to the measurement cone in distance r. After a conversion of the
polar measurements to the Cartesian USK, the inferred boundaries can be distributed
along the intervals I(n). The occupancy cells within each interval are extracted according
to the following rules, which are also depicted in figure 3.8 b):

• The position and lateral extent of laser beam reflections directly determine the bor-
ders of occupied cells. Neighboring and overlapping obstacle measurements can be
merged to enable a consistent data structure and reduce the further processing effort.

• Depending on the configuration of the 2DIM, free cells describe rectangular or trape-
zoidal areas that have been passed by laser beams without reflections. To obtain
this information, all laser beams which completely pass an interval are grouped.
The resulting regions are limited by the borders of neighboring occupied and un-
known areas, as can be seen from figure 3.8. The procedure is a generalization of
the model-based free space tracking algorithm proposed in [16].

• In order to obtain a dense data structure, the remaining areas are filled with unknown
cells containing the a priori knowledge.

An exemplary extraction result is shown in figure 3.9. For each extracted cell, an inverse
sensor model occupancy probability P (o|zk) can be modeled. In the developed implemen-
tation, this probability is inferred by a combination of two familiar principles: On the one
hand it is assumed, that the reliability of free space measurements decreases with increas-
ing distance [165]. On the other hand, the ratio between the received and theoretically
possible measurements is also considered, similar to the method developed in [16].

47



3. Representation of Occupancy Information

Figure 3.9.: Example of extracted occupancy cells from a laser scan.
For the purpose of improved clarity, only the areas behind the laser reflections
are visualized by red trapezoids. Similar to the previous illustrations, the blue
colors indicate the occupancy state of the extracted cells.

3.3.3. Update Algorithm

Having extracted cells from raw measurements, the update of existing cell information can
be realized by the same procedure for both curved and straight 2DIM. In this algorithm,
both introduced state estimation mechanisms have to be considered: The estimation of the
cell borders by a 1D EKF and the estimation of the cells’ binary occupancy state by the
inverse sensor model approach. The entire procedure is summarized in the pseudo code in
3.10 and in figure 3.11. A currently measured cell is used to improve the border position
of associable cells and to update the posterior occupancy probability of all overlapping
cells. If a measured cell cannot be assigned to an existing one, a new cell has to be
established. The association of the cells in the BorderIsAssociable()-routine is realized
by a comparison of their lateral border positions and bordering occupancy probabilities.
Furthermore, it has to be assured that the order of the cell borders cannot be changed by
an update.

A major challenge in the recursive estimation of the borders (UpdateBorderEstimate()) is
the proper treatment of measurement uncertainties. As the cell boundaries result from in-
dividual range measurements, whose noise is modeled independently, the following deriva-
tion is restricted to the estimation of a single occupancy cell border. Without loss of
generality, we further assume that the m-th cell border is determined by the left border
of the p-th range measurement, as also visualized in the left part of figure 3.11. In this
case, the state and measurement variables are defined as:

xk =
[
y

(m)
k

]
(3.16)

zk =
[
r

(p)
k , ϑ

(p)
k , ϕ

(p)
k

]T
(3.17)
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1: procedure AssociateAndUpdate(I(n), z)
2: C(Map) ← GetF irstCell

(
I(n)

)
3: for all C(Meas) extracted from z do
4: if BorderIsAssociable

(
I(n),C(Meas)

)
then

5: C(Assoc) ← AssociatedCell
6: UpdateBorderEstimate(C(Assoc),C(Meas))
7: else
8: C(Assoc) ← CreateCell(I(n),C(Meas))
9: end if

10: while C(Map) <= C(Assoc) do
11: UpdateOccupancyEstimate(C(Map),C(Meas))
12: C(Map) ← GetNextCell(C(Map))
13: end while
14: end for
15: end procedure

Figure 3.10.: Pseudo code of interval update algorithm.

zk x(k-1)

xk

[r(p),ϑ(p),φ(p)]T

y(m)

Cell State 

Estimate
Unknown

Free

Occupied

Measurement Unknown

Free

Occupied

Figure 3.11.: Visualization of interval update algorithm.

49



3. Representation of Occupancy Information

Given this relation between state and measurement, it is not possible to formulate a
function of the form z = f(x), as the position of a lateral border y(m) can result from
several range and angle combinations. In such cases, an EKF can be adapted to incorporate
a nonlinear implicit measurement equation of the form [6, 152, 112]:

g (žk,xk) = 0 (3.18)

A detailed derivation of the EKF using implicit measurement equations is introduced in
section A.2.5. Based on the identified state and measurement variables, this equation
results as:

g (žk,xk) = y
(m)
k −


0

1

0

0


T

I(n) PSensor


ř

(p)
k cos(ϕ̌

(p)
k + α/2)

ř
(p)
k sin(ϕ̌

(p)
k + α/2)

ř
(p)
k sin(ϑ̌

(p)
k )

1

 = 0 (3.19)

with I(n) PSensor describing the homogeneous transformation matrix from the sensor to
the interval coordinate system and α denoting the measurement’s horizontal field of view,
as introduced in figure 3.8. The formulation of the EKF requires the calculation of the
partial derivatives of the implicit measurement function g. The partial derivative with
respect to the state x simplifies to:

Cxk
=
∂g

∂x
(z,

∗
xk) = 1 (3.20)

The derivative with respect to the measurement z results in:

Czk
=
∂g

∂z
(zk,

∗
xk) (3.21)

= −


0

1

0

0


T

I(n) PSensor


cos(ϕ

(p)
(k) + α/2) 0 −r(p)

(k) sin(ϕ
(p)
(k) + α/2)

sin(ϕ
(p)
(k) + α/2) 0 r

(p)
(k) cos(ϕ

(p)
(k) + α/2)

sin(ϑ
(p)
(k)) r(p) cos(ϑ

(p)
(k)) 0

0 0 0


(3.22)

If we further assume the state to be static, the state transition function f becomes the
identity function and the prediction simplifies to an increase of the estimated variance:

∗
y

(m)

k = ŷ
(m)
k−1 (3.23)

Var(
∗
y

(m)

k ) = Var(ŷ
(m)
k−1) +Qk−1 (3.24)
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The enhancements of this prediction step in the context of ego motion compensation and
moving objects mapping will be discussed in the following sections. Due to the previous
derivations, the correction step of the EKF results in:

ŷ
(m)
k =

∗
y

(m)

k +Kk

(
−g
([
r

(p)
k , ϑ

(p)
k , ϕ

(p)
k

]T
, y

(m)
k

))
(3.25)

Var
(
ŷ

(m)
k

)
= (1−Kk) ·Var

(
∗
y

(m)

k

)
(3.26)

where the Kalman gain is given by:

Kk =

Var

(
∗
y

(m)

k

)
Var

(
∗
y

(m)

k

)
+Czk

RkCT
zk

(3.27)

Hence, the derived equations correspond to a 1D EKF, in which the measurement un-
certainties are transformed into the state space by the means of the Jacobian Czk

. De-
tailed results of the transformed uncertainty CzRkC

T
z in combination with varying poses

I(n) PSensor are figured in appendix A.4.1. An example of transformed border uncertainties
can be seen in figure 3.12.

Figure 3.12.: Detail view of extracted occupancy cells and transformed measurement er-
rors.
The red rectangles visualize the areas behind the laser reflections. The border
uncertainties are depicted by horizontal yellow bars.

For the update of the cells’ binary occupancy state by an inverse sensor model probability
P (o|zk), two different equations are derived in section A.2.6. The standard approach is to
convert the probabilities to logarithmic odds ratios, which simplifies the update operation
to a single addition. On the downside, the represented posterior occupancy probabilities
have to be recovered for the evaluation of the map. This is especially derogatory, as the
implementation includes a merging step, which requires a recurring comparison of regular
probability values. In this context, it turned out that the effort of repeated conversions
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between probabilities and log odds ratios is higher than the benefit of the simplified update
equation. Under the assumption of a uniformly distributed a priori occupancy probability
(P (o) = 0.5), the update in the UpdateOccupancyEstimate()-routine is thus realized by
the following equation:

p (o|z1:k) =
p (o|zk) · p (o|z1:k−1)

1− p (o|zk)− p (o|z1:k−1) + 2 · p (o|zk) · p (o|z1:k−1)
(3.28)

The computational effort of the update algorithm strongly depends on the overall number
of represented cells. Figure 3.11 already indicates that the quantity of cells can be increased
during the update process. On the one hand, the association criteria can be used to control
the resulting cell fragmentation. On the other hand, the already introduced merging
step takes place, which combines neighboring cells with similar probability values as well.
Hereby, it is important to consider the age of the cells for the merging decision, in order
to allow the emergence of new cells with conflicting information. The age and probability
differences that lead to a combination of neighboring cells can be used to conveniently
regulate the memory requirements of the resulting data structure.

3.4. Development of Mechanisms for Spatio-Temporal
Consistency

For the application of the newly developed representation in highly automated vehicles,
further developments are required. The 2DIM is particularly suitable for extraction pur-
poses if the intervals are aligned orthogonal to the future driving direction. This either
requires the repeated alignment of the map to the vehicle’s orientation or the attachment of
the map to a changing reference path estimation. Furthermore, the assumption of a purely
static environment cannot be accepted in typical ADAS scenarios. Under all described
circumstances, the spatio-temporal consistency of the representation has to be maintained:
In case of a movement of the vehicle or a changing traffic lane hypothesis between two
map updates, the previously represented information has to be transferred into the newly
aligned data structure in order to enable accumulation mechanisms. Similarly, occupancy
information belonging to moving obstacles has to be considered and transformed correctly.

3.4.1. Straight 2DIM Compensation

The ego motion compensation is a mandatory task in each ego local environment repre-
sentation that tries to incorporate knowledge from previous measurements. Therefore, the
knowledge between two transformed representations has to be transferred both accurately
and efficiently. A special challenge results from comparatively small vehicle movements
between two map updates, which individually have a negligible impact but need to be
accumulated over time. For occupancy grid maps, there exist convenient compensation
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mechanisms, which avoid interpolations by using two-dimensional circular buffers with
subcell values and introducing an additional yaw angle between map and vehicle [182, 16].
To the author’s knowledge, only grid-based ego local occupancy maps have been proposed
so far. The key challenge in the development of non-grid-based representations lies in
the development of suitable ego motion compensation algorithms. In case of the 2DIM,
a special requirement results from the fact that an additional yaw angle between vehicle
and map has to be avoided, as it would eliminate the main advantages of the interval
alignment orthogonal to the driving direction.

Formally defined, the ego motion compensation corresponds to the transformation of the
represented features between two transformed map coordinate systems. If we express the
vehicle motion by the transformation of the USK between the time indices k − 1 and k
(cf. equation (2.8) in section 2.3.1) and assume a time-dependent pose between map and
USK, the ego compensation of a homogeneous map coordinate Mapp̃ is defined as:

(Mapk)p̃ = (Mapk)P(USKk) · (USKk)P(USKk−1) · (USKk−1)P(Mapk−1) · (Mapk−1)p̃ (3.29)

In this equation, a coordinate in the last cycle’s map coordinate system is first transformed
into the last USKk−1, then into the current USKk and from there into the current map
coordinate system.

If we restrict to the compensation of a point in the interval coordinate system I(n) of a
straight 2DIM, the pose between map and USK simplifies to a translation by x(n) (cf.
(3.8)). In that case, the coordinates of the point in the new interval coordinate system
result as:

(
I
(n)
k

)
p =

[
−x(n)

k + ∆x

∆y

]
︸ ︷︷ ︸

Translation

+


((

I
(n)
k−1

)
x+ x

(n)
k−1

)
cos(∆ψ)−

((
I
(n)
k−1

)
y

)
sin(∆ψ)((
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Rotation

(3.30)

with ∆x, ∆y describing the translation of the vehicle on the road surface and ∆ψ denot-
ing the change of the vehicle’s orientation between time steps k − 1 and k. Hence, the
transformation can be subdivided into a rotation and subsequent translation.

Similar to occupancy grid algorithms, the longitudinal movement ∆x can be compensated
accurately without adapting the map cells. The key idea is to organize the intervals in a
circular buffer. Whenever the longitudinal distance exceeds one interval length, the rear-
most interval is reinitialized and logically moved to the beginning of the data structure. In
case of movements of less than one interval length, the longitudinal shift can be accumu-

lated by adapting the distance between the USK and the intervals x
(n)
k , similar to sub-pixel

values in grid-based compensation algorithms [16]. By contrast, the lateral movement ∆y
has to be compensated by adapting the borders of all represented occupancy cells.

The rotation of the vehicle impacts both the x- and y-component of represented coordi-
nates (3.30). While the y-component can also be compensated by adapting the border
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a) b) c)

Figure 3.13.: Different strategies for the transfer of cell information across interval borders:
a) Modeling of rectangular cell, b) restriction to the cells’ lateral extent and
c) reduction to a central point.

positions, a representation of longitudinal positions within an interval has not been con-
sidered so far. However, a complete disregard of longitudinal positions would result in
substantial errors, as some cells could be located in wrong intervals after large rotational
changes. To overcome this issue, one can think of several different strategies to transfer
cell information between intervals, as illustrated in figure 3.13. The most accurate solution
would be to subdivide the rectangular cells into several polygons according to the rotated
interval borders (see figure 3.13 a)). On the downside, this strategy would require to
maintain complex polygonal lines in order to correctly represent the cells’ internal shapes.
Due to the increased memory consumption and the necessity of complicated update rou-
tines, this approach conflicts with the identified computational requirements. Figure 3.13
b) illustrates a slightly simplified processing, in which only the lateral extent of a cell is
considered. Still, this strategy would require to transfer and combine information between
neighboring intervals in each system cycle once a center line has reached the border. The
third approach (see figure 3.13 c)) only considers the position of a central point to de-
cide when a cell has to be transferred to an adjacent interval. By this approximation,
the impacts of vehicle rotations can be modeled without violating the computational re-
quirements. The resulting inaccuracies strongly depend on the rotation magnitude and
the lateral extent of the occupancy cells. Nevertheless, it is important to be aware of
the impacts resulting from this simplification. Due to the missing modeling of the cells’
longitudinal extent, the compensation may lead to gaps in represented obstacles, as figure
3.14 illustrates. The impacts of this approximation will also be evaluated in section 3.5.

The overall ego compensation algorithm is summarized in figure 3.15. At first, the cell’s
central point is rotated according to the derived equations. The offset between the point
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Obstacle

Figure 3.14.: Gaps due to approximation errors in central point compensation strategy.

and the x-axis of the interval coordinate system is evaluated to decide whether a cell has
to be transferred. This subcell value will also be used for the rotation compensations in
the following cycles. After that, the cell borders are corrected by considering the rotation
and lateral movement of the vehicle. Finally, the pose between the map and the USK is
adapted in order to compensate the longitudinal motion.

I(0) I(1) I(2) I(3) I(4)
I(5) I(6)

I(0) I(1) I(2) I(3) I(4) I(5) I(6)

Mk-1

Mk

Figure 3.15.: Illustration of the straight 2DIM ego compensation algorithm. The structure
of the maps and an occupancy cell at two consecutive time steps is shown in
black respectively red. The offset between rotated central point and interval
x-axis is colored green.

The introduced compensation approach requires the translation and rotation of estimated
border positions. While the translation by a constant does not affect the variance of a
random variable, the rotation of the state estimate also requires a modification of the
estimated error variances. Given a two-dimensional Gaussian noise term with covariance
P and a rotation matrix Φ, the error covariance could be corrected to ΦPΦT . If the
provided rotation angle estimation variances are additionally considered, Φ could be re-
placed by the corresponding Jacobian. However, the introduced border state and variance
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is one-dimensional and can therefore not be adapted exactly. In order to compensate the
approximations and missing transformation, the estimated error variance is increased by
the process noise Qk−1 during the prediction step, as already shown in equation (3.24).

3.4.2. Curved 2DIM Compensation

The previous considerations on occupancy cell transformations can be adapted to the
curved 2DIM. In general, the estimation of the underlying skeleton line S in two con-
secutive time steps is independent from the motion of the vehicle. As the nodes p of the
skeleton line are provided in the USK coordinate system, the formal definition is, however,
similar to the previous case:

(
I
(n)
k

)
p̃ =

(
I
(n)
k

)
P(USKk) · (USKk)P(USKk−1) · (USKk−1)P(

I
(n)
k−1

) ·
(
I
(n)
k−1

)
p̃ (3.31)

In contrast to the straight 2DIM compensation, the transformation between the USK and
an interval I(n) consists of both rotation and translation, as already defined in equation
(3.6).

One major advantage of attaching maps to lane hypotheses is given by the fact that two
consecutive estimations of a traffic lane typically only differ in certain parts. In large areas,
the existing hypothesis about the course of a lane is usually confirmed or not updated due

I(0) I(1) I(2) I(3) I(4) I(5) I(6)

I(0) I(1) I(2) I(3) I(4) I(5) I(6)

Mk

Mk-1

Figure 3.16.: Illustration of the curved 2DIM ego compensation algorithm. The maps
respectively occupancy cells at two consecutive time steps are depicted in
black and red. Bicolored map nodes indicate unchanged skeleton points.
The offset between rotated central point and interval x-axis is colored green.
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to missing measurements, e.g. behind one’s own vehicle. In these areas, the skeleton line
can be defined by globally fixed points, such that:

p
(n)
k = (USKk)P(USKk−1) · p

(n)
k−1 (3.32)

The contents of intervals whose geometry is not changed between two map updates do not
even have to be compensated. The remaining contents can be transferred by using similar
approximations as in the straight 2DIM compensation algorithm.

The resulting procedure is illustrated in figure 3.16. As the nodes that define the two
rearmost intervals have not been modified, the compensation of occupancy cells can be
limited to the remaining intervals. Again, the offset value resulting from the rotation of a
cell’s central point indicates, whether a cell has to be transferred to an adjacent interval.
Having identified the destination interval, the border positions are adapted according to
the results of equation (3.31). The overall processing cycle remains the same as in the
straight 2DIM case.

3.4.3. Consideration of Moving Objects

One major challenge in mapping occupancy states for driver assistance applications is
the handling of dynamic objects. As already mentioned, early mapping approaches and
especially robotic applications make the assumption of a purely static environment. A vi-
olation of this condition leads to characteristic trails of moving objects, making occupancy
maps unusable in highly dynamic environments. The development of a profound concept
of how to deal with moving objects is a crucial requirement for the application of the newly
developed 2DIM for ADAS purposes and another major contribution of this thesis. In lit-
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Figure 3.17.: Black box descriptions of SLAM and DATMO, adapted from [178].

erature, the detection and tracking of dynamic objects are often considered together with
the SLAM problem, which includes a simultaneous estimation of the vehicle’s position. For
a comprehensive overview of published SLAM and DATMO approaches (also described
as Simultaneous Localization, Mapping and Moving Object Tracking (SLAMMOT)), the
interested reader is referred to [118, 178]. A black box description of the abstract prob-
lem formulations is illustrated in figure 3.17. Considering the environment perception
architecture introduced in figure 1.5, the subtasks of the entire SLAMMOT problem are
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distributed to several modules, which exchange information with each other. The devel-
opment of localization and object tracking algorithms is beyond the scope of this thesis,
the corresponding environment perception modules have been described in section 2.3.
Instead, the focus lies on the development of a module for mapping with known poses
[165] and its interaction with a model-based object tracking in order to detect and consis-
tently describe moving objects. Given these conditions, related works on the SLAMMOT
problem will be briefly described in the following.

Related Works on Occupancy Mapping in Dynamic Environments

Simplistic mapping approaches for low-dynamic indoor environments create local maps for
clusters of possible configurations, e.g. open and closed doors [155]. A more sophisticated
mechanism for outdoor applications was presented by Wolf et al. [188]. They maintain
two occupancy grids to differentiate static and dynamic parts, new observations can be
assigned to the dynamic map by finding inconsistencies between the content of the static
map and new observations. However, the overall goal of Wolf et al.’s approach is to create
a purely static map for localization tasks in dynamic scenarios.

Substantial contributions to the combined solution of the SLAMMOT problem in urban
areas have been made by Wang et al. [177, 176, 178]. A simplified system architecture from
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Figure 3.18.: High level architecture of Wang’s SLAM with DATMO algorithm, adapted
from [178] (SO = Static Object, MO = Moving Object).

their work is depicted in figure 3.18, the localization modules have been left out as they
are not in the scope of this thesis. The general idea of Wang’s approaches is to represent
the static environment by occupancy grids and moving objects by free-form objects, a
combination of feature- and grid-based description. As illustrated in figure 3.18, the laser
data processing starts with a segmentation and the association of the resulting segments to
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existing moving objects. From the remaining segments, new moving objects are detected
by using a combined consistency- and object map-based detector. All segments that belong
to moving objects are used for a MHT4 and IMM5 object tracking, the remaining segments
are added to a local occupancy grid.

A similar approach is used by Vu et al. in several works on SLAM and DATMO in
dynamic outdoor environments [174, 175, 173, 9]. Again, moving objects are represented
by bounding box models, whereas an occupancy grid describes the static environment.
The detection of moving objects is also based on finding inconsistencies between previously
observed occupancy states and new measurements. In contrast to Wang’s work, radar [175]
and stereo vision data [9] are additionally incorporated for the detection and tracking of
moving objects. Overall, the combination of grid- and model-based representations has
become a de facto standard for solving the SLAMMOT problem, e.g. also in the 2007
DARPA challenge winning vehicle [49]. Nevertheless, the approaches discussed so far
distribute the knowledge about the environment to several representations. They are not
able to consistently represent the static and dynamic environment within an occupancy
grid.

To overcome this disadvantage, Coue et al. proposed the application of Bayesian Occu-
pancy Filtering for multi target tracking [28]. Therefore, they develop a four-dimensional
occupancy grid, in which the state of each cell additionally incorporates detected veloci-
ties in order to enable a prediction of the map before the update takes place. A similar
method was proposed by Richter et al. in [136]. In order to reduce the computational
effort, they propose a hierarchical prediction of the map, depending on the represented
occupancy states.

A related, but more efficient method is presented by Bouzouraa and Hofmann in [18, 16].
This approach uses a combination of model-based object tracking and occupancy grid,
in which dedicated grid cells are associated to dynamic objects. In order to consistently
describe moving objects in the occupancy grid, the dynamic cells are predicted according to
the estimated object motion before the map update. The presented results show that the
algorithm is able to process laser and radar measurements for both 2D and 3D mapping
applications in real time. Due to the efficient and consistent representation of moving
objects, this approach forms the basis of the following 2DIM enhancements.

Interaction of Occupancy Map and Model-based Object Tracking

The main philosophy of the architecture introduced in figure 1.5 is to consider the en-
vironment perception system as a combination of experts with different tasks, strengths
and weaknesses. All participating subsystems interact closely and support each other
in case they require information which is easily provided by any other subsystem. The
occupancy map is capable of representing detailed information about free, occupied and

4Multiple Hypothesis Tracking
5Interacting Multiple Model
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unknown areas with unstructured boundaries. The model-based object tracking module
utilizes shape and motion models to estimate state vectors of moving objects including
alignment, velocity and acceleration. As already described in [16] and [SWBH12], both
approaches can benefit from each other and hence improve the quality of the resulting
environment representation. On the one hand, the occupancy map can help to classify the
dynamic state of raw range measurements in order to reduce erroneous object hypotheses
and associations in the tracking module. On the other hand, the estimated state vectors
can be used to correctly represent moving objects in the occupancy map. Optionally, the
accumulated object shapes in the occupancy map can also be used as feedback for the
model-based object tracking. These general principles can be adapted straightforwardly
to the interval-based occupancy map. Figure 3.19 shows the resulting interaction between
both modules in a message sequence chart. The individual subtasks will be described in
the course of this section.

2D Interval Map Model-Based Object Tracking

Range Measurements

Cell Prediction

Motion Classification

Moving Object Association

Map Update

Object Prediction

Classified Range 
Measurement

Object List

Feature Extraction

Object Association and Update

Track-Management

Figure 3.19.: Message sequence chart showing the interaction between 2DIM and model-
based object tracking.

In order to allow for a special treatment of moving objects, the previously introduced oc-
cupancy cells have to be expanded by a binary dynamic state dk ∈ D = {static, dynamic}
[16]. Formally, the estimation of the time-dependent occupancy probability modifies to:

p (ok|z1:k) =
∑
dk∈D

p (ok|z1:k, dk) · p (dk|z1:k) (3.33)

In case of a dynamic cell, the posterior occupancy probability depends on the occupancy
probability at the previous position and the probability of having moved to the new po-
sition. For a detailed derivation of the involved probability distributions, the interested
reader is referred to [16].
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Prediction

All cells which are associated to the same moving object form a group of dynamic cells
and have to be predicted according to the estimated state vector and error covariance. As
introduced in section 2.3.2, the object tracking module provides the state vector of moving
objects including velocities and accelerations in relation to one’s own vehicle. However, the
prediction of occupancy cells has to be performed by using global velocity and acceleration
values relative to the ground. An accurate conversion can be realized in three steps:

• The motion of the detected moving objects has to be transformed from the rotating
USK coordinate system into a stationary reference frame, taking into account the
angular velocity of one’s own vehicle, as derived in appendix A.5.

• By adding up the estimated ego velocity and acceleration, the absolute motion of
dynamic obstacles can be inferred.

• In order to finally deduce the motion at a specific map cell, also the estimated yaw
rate of the moving object has to be considered. Under consideration of the lever
between the required position and the object’s reference point, this transformation
can also be realized by using the equations described in appendix A.5.

The resulting velocity (abs)v and acceleration (abs)a can be used to predict the longitudinal
and lateral position of a dynamic cell in the map. In x-direction, the previously introduced
central point can be moved to determine the containing interval. In y-direction, the cell
borders have to be shifted according to:

∗
yk+1 = f

([
ŷk ôk

]T)
=
[
1 T T 2/2

] ŷk
(abs)vy
(abs)ay

 (3.34)

with ôk denoting the estimated state vector of the associated object including position,
alignment, velocities and accelerations. By linearizing f at the estimated border position
and object state, the modification of the border variance can be approximated as follows:

Var(
∗
yk+1) =

(
∂f

∂x
(x̂)

)
Cov(x̂)

(
∂f

∂x
(x̂)

)T
(3.35)

with x̂ =
[
ŷk ôk

]T
(3.36)

Assuming independence between the border position and estimated object states, the
required covariance matrix results as:

Cov(x̂) =

[
V ar(ŷk) 0

0 P̂ k

]
(3.37)
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where P̂ k denotes the estimation error covariance of the object tracking module. The
resulting calculation rules are listed in appendix A.5.

In order to further consider the uncertainty about a dynamic cell’s motion, the predicted
occupancy values can be modified by an attenuation mechanism, which decreases the prob-
ability value towards the a priori value of 0.5. In the experiments, this method considerably
improved the robustness of the cell prediction algorithm. All described calculations are
integrated in the prediction step described in figure 3.6. After this processing, the map
represents the expected environment at the current time step.

Motion Classification

The consistency-based assignment of dynamic states to raw range measurements plays
an essential role in most combined SLAM and DATMO algorithms [188, 177, 176, 178,
174, 175, 173, 9]. Recently, Nuss et al. particularly examined the advantages of using
DST occupancy maps for this classification task [114, 115]. In terms of the introduced
perception architecture (figure 1.5), this task is performed by the map module as it provides
the best information about occupancy states in the environment. The classification result
is exchanged with the object tracking module in order to reduce the number of erroneous
moving object hypotheses, a formal derivation of the improved object generation can be
found in [SWBH12].

This common principle can be adapted to the 2DIM. Taking into account the lateral
extent of the laser echos (see figure 3.8 a), the measured line segments can be compared
to the predicted 2DIM:

• All measurements that hit a dynamic cell are marked as dynamic.

• The remaining measurements are classified according to the map’s occupancy val-
ues. In case the measurement overlaps several cells with different probabilities, the
maximum value is processed.

– If the resulting probability is below a predefined threshold tfree, it is assumed
that an obstacle has moved into a previously free space. Hence, the measure-
ment is classified as dynamic.

– If the value exceeds the threshold toccupied, the measurement is categorized as
static.

– In all other cases, the measurement is classified as unknown.

The accuracy of consistency-based motion classification mainly depends on the sensor
characteristics and the motion to be detected. The theoretical and practical limitations of
this approach have been examined by Matthaei et al. in [101]. To overcome the well-known
shortcomings, the motion classification can additionally incorporate radar measurements,
which provide reliable data about the radial velocity of detected obstacles. For details
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of this approach, the interested reader is referred to [SWBH12]. Figure 3.20 shows an
example of a laser scan classified by using a 2DIM.

Figure 3.20.: 2DIM-based motion classification of raw range measurement and correspond-
ing video screenshot
Red dots indicate dynamic measurements, black dots static measurements
and yellow dots unknown measurements. The red boxes show the corre-
sponding hypotheses from the model-based object tracking module.

Association and Update

Based on the classified range measurements, the object tracking module provides an up-
dated list of moving objects as described in section 2.3.2. By a simple comparison to the
specified bounding boxes, range measurements can be associated to moving objects in the
2DIM. If a measurement is assigned to a dynamic obstacle, the object’s ID will be stored
in the updated occupancy cell in order to enable a prediction in the subsequent system
cycle. Cells with differing object IDs will not be merged during the update and merge
steps introduced in figure 3.6.
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Thus, moving objects can be consistently described by both model-based object tracker
and map-based occupancy representation. The additional description of moving objects
by dynamic occupancy cells allows to accumulate their shape without using restrictive
model assumptions, as also illustrated in figure 3.20. Optionally, the accumulated shape
can also be used to improve the model-based estimation of object states [16] or to build
local object maps.

3.5. Evaluation

In order to analyze the characteristics of the newly developed representation and to quan-
tify the differences to existing grid-based maps, this thesis further covers the development
and application of several occupancy map evaluation approaches. Possible error sources
of occupancy representations have been identified by Bouzouraa and Grewe et al. and can
also be transferred to the interval-based mapping approach [16, 63]:

• Errors in the data processing: Both grid- and interval-based mapping approaches
discretize the vehicle’s environment and use approximations, e.g. simplified mea-
surement transformations and independence assumptions.

• Sensor-specific errors: In addition to measurement noise, also inaccurately deter-
mined mounting positions, measurement timestamps or latencies can lead to errors
in the resulting representation.

• Erroneous ego motion estimation: The quality of the ego motion estimation directly
impacts the accuracy of the ego motion compensation. Occurring errors impair the
temporal accumulation of occupancy states in the map, as the information from
different time steps does not match. According to the simulation results presented
in [16], grid mapping algorithms are especially sensitive to this kind of error.

Furthermore, the task of quantifying the quality of a Grid Map’s content has also been
examined in several publications for robotics and driver assistance applications. In [16],
Bouzouraa develops GM quality measures with and without taking into account prere-
corded ground truth knowledge. Grewe et al. classify existing evaluation techniques
depending on whether they consider the map’s suitability for dedicated applications [63].
Similar distinctions can be found in the robotics area, where a map’s “usefulness” is often
evaluated in addition to map- or cell-based quality metrics [27, 10].

This categorization will also be used in the further course of this section. First, a map-
based evaluation approach will be developed, which aims at quantifying an application
independent quality of interval- and grid-based maps. Then, the impacts of applying the
newly developed approach will be tested in a pre-crash ADAS function. As the map-based
evaluation approach has to be restricted to a small number of structured environment
scenarios, the obtained mapping results are qualitatively compared in real-world scenarios,
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too. Finally, the interpretability of 2DIM and GM will be quantified and the evaluation
will be summarized.

3.5.1. Objectives

Based on the identified error sources and the general requirements on environment per-
ception for highly automated vehicles (see section 1.2.2), the developed interval-based
occupancy map will be compared to a state-of-the-art occupancy grid implementation
concerning the following questions:

• Given ideal sensor data, which quality can the environment representation actually
achieve? How do the proposed approximations and discretizations influence the
quality of the map?

• How does the application of real sensor measurements affect the quality of the map?

• What is the impact of using erroneous ego motion data on the map’s quality?

• What are the memory and computational requirements of the representation? How
do the approximations and discretizations change the computational effort?

• How does the interpretability of the map influence the computational requirements
of the entire system?

• What are the effects of the occupancy map on the behavior of specific ADASs?

3.5.2. Map-based Quality Evaluation

The basic idea of the map-based evaluation approach is to calculate a map’s quality by
quantifying the similarity to a ground truth representation. That way, the shape and po-
sition of all represented occupancy areas can be incorporated without limiting to a specific
application. The particular challenge in this evaluation is to consider the characteristic
distribution of probability values and the different geometries of the compared represen-
tations. The approach will be developed according to the structure illustrated in figure
3.21.

Generation of 
Evaluation Features

Reference

Calculation of 
Metrics

Analysis
GM

2DIM

Figure 3.21.: Structure of map-based quality evaluation.
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Reference Map

Whereas the ground truth for robotic mapping applications is typically given by archi-
tectural blue prints [27], outdoor applications require to precisely measure obstacles in
a predefined testbed [16, 63]. The introduced reference sensor system (see section 2.3.3)
allows to simultaneously record highly accurate measurements of surrounding moving and
static obstacles as well as the corresponding real sensor measurements. In contrast to
purely simulation-based evaluations, the provided ideal environment data can also be
used to analyze the algorithms’ ability to deal with characteristic sensor effects.

The resulting positions and shapes of static and dynamic obstacles are used to infer an
ideal reference map, which should depict the best possible map describing the current
environment. As also the reference sensor system is subject to measurement inaccuracies,
the term reference map will be used in the following to emphasize that this map does not
represent a perfect theoretical ground truth. In contrast to a direct comparison to the
reference object shapes, this approach allows to obtain more reasonable comparison results,
as the reference map e.g. considers the sensor characteristics and occlusion conditions. For
this purpose, a high resolution occupancy grid is created according to the steps presented
in [16]:

• Compensation of the map by using highly accurate ego motion estimation.

• Generation of ideal range measurements based on the provided reference object
positions and shapes.

• Update of the map by optimized sensor models, which consider the improved accu-
racy of the reference measurements.

Generation of Evaluation Features

One of the key issues in comparing the resulting representations to the reference map is to
establish comparability between different map formats. The occupancy cells of interval-
and grid-based representations have considerably different shapes. Furthermore, the align-
ment and sizes of two compared representations may differ. In order to quantify the
similarity of two maps, the contained occupancy values have to be transformed into com-
parable evaluation features. For this purpose, two different strategies have been developed
in the scope of this work.

Figure 3.22 a) shows a beam-based sampling approach, which is derived from [16]. For
details, the interested reader may also refer to [Sei13]. The key idea of this method is
to sample the map’s probability values in equally spaced radial distances to the center of
the USK. Figure 3.22 b) illustrates the calculation of a separate evaluation grid. In each
cell of this grid, the average of all overlapped occupancy probabilities is represented. For
specific analyses of free and occupied areas, also the minimum and maximum probabilities
could be inferred. In case of the GM, these values can be determined by using well-known
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a) b)

Figure 3.22.: a) Beam-based and b) grid-based evaluation feature generation.

scanline algorithms [20], in case of the 2DIM the required information can be gained by
intersecting the evaluation grid cells with the interval cell borders. In contrast to the
beam-based sampling, this approach is able to generate dense evaluation features of the
compared maps.

Calculation of metrics

By using one of both approaches, a vector of comparable probability values can be calcu-
lated from both the reference map and a representation under evaluation. In the further
course, they will be denoted as Ri and Ei. In order to assess the deviations of the ex-
tracted probabilities with regard to the overall quality of a representation, an appropriate
metric has to be applied. Due to the similarity of occupancy grids to greyscale images,
the application of image correlation coefficients has repeatedly been proposed for this pur-
pose [10, 11, 27]. However, the presented results indicate that the standard algorithms can
hardly be transferred to the task of benchmarking occupancy maps [63]. Besides that, sev-
eral pixel-to-pixel comparison schemes for occupancy probabilities have been introduced,
including:

• The occupied and free cells ratio [63, 26, 80]:

Mocc = (NE∧R
occ /NR

occ), Mfree = (NE∧R
free /N

R
free)

with N denoting the number of cells.

• Spearman’s rank correlation coefficient [16]:

Mρ =
∑

i(rk(Ri)−rk(R))(rk(Ei)−rk(E))√∑
i(rk(Ri)−rk(R))2

∑
i(rk(Ei)−rk(E))2

with rk() denoting the rank of a probability value, for the calculation rule see [91].
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• The sum of squared errors (in combination with normalization maps, e.g. [27]):

MSSE =
∑

i(Ri − Ei)2

• The map score [99]:

MScore =
∑

i(1 + log2(RiEi + ¬Ri¬Ei))

Although the approach of counting the correctly determined occupied and free cells does
consider the meaning of the occupancy probabilities, the exact probability differences do
not influence the resulting metric value. Especially in case of the occupied cells, this value
furthermore only is restricted to a small fraction of the entire map. The rank correlation
coefficient, instead, considers the distribution of the values in both vectors, but also does
not quantify the exact distances between the compared probabilities. As a consequence,
a scaling error between two compared probability vectors would not be penalized by this
coefficient. However, a map with more significant free and occupied probabilities should
achieve a higher evaluation metric value.

For a better understanding of the remaining approaches, figure 3.23 illustrates the resulting
map scores and squared errors when comparing two probabilities Ri and Ei. The left
graph shows that the highest overall map scores are obtained by similar probability values.
Additionally, the scores are improved with increasing distance from the probability 0.5.
Consequently, this metric rewards both low probability deviations and significant free
and occupied map areas. By contrast, the squared error distance in the right part of
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Figure 3.23.: Comparison of possible results of map score and squared error metric.

figure 3.23 does not incorporate the semantics of the compared values. Nevertheless, a
stronger emphasis of free and occupied areas can be achieved by subsequently weighting
the calculated distances by the deviation of the compared probabilities from 0.5. In the
course of this section, this approach will be denoted as weighted sum of squared errors.

To be able to compare maps with different sizes, the following experiments will focus on
the calculation of the averaged map score and the averaged weighted sum of squared errors,
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which result from dividing the defined metrics by the number of compared cells. Please
note that the resulting map score values can only be compared within a single scenario, as
the maximum achievable map score depends on the distributions of the probability values
in the corresponding reference map.

Experiment 1: Evaluation with Ideal Sensor Data

The goal of the first evaluation experiment is to examine the limitations of interval- and
grid-based mapping approaches independent of the effects of real sensor measurements.
For that purpose, different representations of occupancy information have been created by
using ideal range measurements and compared to the reference map. A detailed description
of the corresponding reference scenarios can be found in appendix D.1, the scenarios will
be referred to as S1a to S1c.

In order to investigate the effects of the environment discretizations, maps with different
cell size respectively interval height configurations have been evaluated by using the grid-
based evaluation feature generation and the previously introduced metrics. For a better
understanding of the resulting values, figure 3.24 illustrates the development of both met-
rics for several straight 2DIMs with different interval heights in scenario S1a. During the
middle section of this scenario, the vehicle’s surroundings only consist of the guardrail at
the side of the road, which explains that the metric values indicate identical map qualities
independent of the interval height configurations. Towards the end of the recording, the
surrounding stationary vehicles reach the mapping area and generate better quality levels
for 2DIMs with reduced interval heights.
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Figure 3.24.: Development of averaged map scores and averaged weighted squared errors
for straight 2DIMs with different interval height configurations in scenario
S1a.

The obtained interval-based representations have been compared to a GM, which was
based on the approach proposed in [16]. Due to the applied ego compensation algorithm
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and the required center position of the ego vehicle (see 3.2), the grid maps had to be set
to a size of 140 × 140 m to guarantee a preview area of 70 m. Since the developed 2DIM
ego compensation mechanism allows a flexible positioning of the ego vehicle and does not
change the orientation of the map over time, the map size can be set as the required area
of coverage. For the evaluations in this section, a required mapping area providing at least
70 m in front of the vehicle and 20 m behind the vehicle while 30 m width was assumed.

Table 3.2 summarizes the averaged quality metric values, computation times and memory
consumptions of grid- and interval-based occupancy representations with different dis-
cretization sizes in scenario S1a. Since the provided 2DIM discretization sizes restrict to
the longitudinal direction, a comparison of a GM and 2DIM with an equal discretization
size of 0.5 m shows quality advantages for the interval-based representation. A further in-
crease of the interval height to 1 m results in almost identical quality metric values, which
are still above those of a GM with a cell size of 0.5m. Nevertheless, the best overall quality
values can be achieved by applying high-resolution grid-based representations, which on
the downside require a substantially increased computational effort. The provided memory
sizes in table 3.2 refer to the maximum memory required for the internal representation
of the map contents during the processing of the recorded scenario. Whereas a GM’s
memory demand is predefined by the number and size of the grid cells, the consumption
of a 2DIM depends on the number of actually required interval cells. The listed memory
sizes illustrate significant benefits from the application of interval-based representations.

Map Discr.
[m]

MS WSE CT
[ms]

MR
[MByte]

GM

0.1 0.61 0 3.1 9.8

0.2 0.61 0.01 1.2 2.5

0.5 0.56 0.03 0.4 0.6

Straight
2DIM

0.5 0.60 0.02 0.8 0.1

1.0 0.60 0.02 0.6 0.05

2.0 0.58 0.03 0.4 0.03

Table 3.2.: Comparison of ideal occupancy map evaluation metrics with different dis-
cretization sizes in scenario S1a.

(Discr. = Discretization size, cell sizes of GM / interval heights of 2DIM, MS
= Averaged Map Score - Higher values indicate better map qualities, WSE
= Averaged Weighted Squared Errors - Lower values indicate better map
qualities, CT = Computation Time 6, MR = Memory Requirement)

6All computation times in this thesis were measured on a laptop with Intel Core i7-3840QM CPU with
16 GB RAM.
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In further examinations, a GM cell size of 0.2 m and a 2DIM interval height of 1 m
turned out as a reasonable compromise between the requirements of highly automated
ADAS functions and the computational efforts. The remaining investigations will be
based on these map configurations. Table 3.3 summarizes the measured metric values,
computation times and memory consumptions for the scenarios S1a, S1b and S1c. In
addition to the previous analysis, the table also lists the results of a curved 2DIM, whose
reference path was based on a simple estimation of the future trajectory depending on
the current ego yaw rate. As the vehicle is moving in a straight line in scenario S1a,

Scenario Map Discr.
[m]

MS WSE CT
[ms]

MR
[MByte]

S1a

GM 0.2 0.61 0.01 1.2 2.5

Straight 2DIM 1.0 0.60 0.02 0.6 0.05

Curved 2DIM 1.0 0.60 0.02 1.6 0.06

S1b

GM 0.2 0.69 0.01 1.2 2.5

Straight 2DIM 1.0 0.55 0.06 0.6 0.05

Curved 2DIM 1.0 0.57 0.05 1.7 0.07

S1c

GM 0.2 0.66 0.01 1.4 2.5

Straight 2DIM 1.0 0.65 0.02 0.6 0.07

Curved 2DIM 1.0 0.65 0.02 1.6 0.07

Table 3.3.: Comparison of ideal occupancy map evaluation metrics in different scenarios.

straight and curved mapping approaches result in almost identical representations and
quality evaluations. However, the complex coordinate transformations of the extensive
laser range measurements into the interval coordinate system significantly increase the
computational effort of the curved mapping approach. The additional description of the
differing interval geometries only slightly increases the memory consumption.

Due to the curved approach of the stationary vehicles in scenario S1b, the ego compen-
sation mechanisms have to deal with larger rotational changes of the ego vehicles than
in the other scenarios. Consequently, the measured quality values indicate a larger dis-
tance between interval- and grid-based representations, which can be explained by the
introduced approximations for the transfer of cell information across interval borders (see
section 3.4.1). By the application of the curved 2DIM, the impacts of the approximation
can be diminished, as the orientation of the intervals along the estimated future trajectory
reduces the compensation effort. Figure 3.25 illustratively compares the resulting ideal
straight and curved 2DIM in scenario S1b. The obtained results in scenario S1c are, de-
spite of the included dynamic lane changing maneuver, very similar to those of scenario
S1a. Here the measured map qualities of grid- and interval-based maps are almost identi-
cal as well, whereas the computation time of the straight 2DIM is significantly lower than
those of the GM and curved 2DIM.
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Figure 3.25.: Ideal straight and curved 2DIM during approach of stationary vehicles in
scenario S2b.
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Experiment 2: Evaluation with Real Sensor Measurements

The second experiment aims to compare grid- and interval-based representations of oc-
cupancy information obtained by using real laser range measurements and the previously
introduced ego motion estimation (see section 2.3.1). By that, the ability of both ap-
proaches to deal with characteristic sensor effects can be quantified. The evaluation setup
is identical to the previous experiment: A high resolution grid obtained by ideal range and
ego motion measurements will be used as reference map. In order to compare represen-
tations with different geometries to the reference map, evaluation grids will be extracted.
Their cells are finally compared by using the map score and weighted squared difference
metric. The evaluation was performed in the reference scenarios S1a to S1c.

Figure 3.26 gives a first impression of the characteristic differences of the resulting grid- and
interval-based representations in scenario S1a. Furthermore, the positions and dimensions
of the reference objects are depicted by red lines and boxes. Once more, this comparison
illustrates both the advantages and disadvantages of the interval-based mapping approach:
One the one hand, the longitudinal distances to the stationary vehicles are, of course,

(a) (b)

Figure 3.26.: Resulting grid- and interval-based occupancy representations in scenario S1a.
Red lines and boxes indicate reference objects.

better described in the grid-based representation. On the other hand, the lateral distances
represented in the 2DIM are not subject to discretization errors and consequently more
clearly accumulated and easier to determine.

Table 3.4 summarizes the averaged performance metrics and resource requirements of
the maps when using real laser range measurements and standard ego motion estima-
tion data. Overall, the measured quality values show similar distances between grid- and
interval-based representations as in the previous experiment, the application of real sensor
data does consequently not result in explicit advantages or disadvantages for one of both
approaches. In scenario S1a, the interval-based map achieves an even slightly better per-
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Scenario Map Discr.
[m]

MS WSE CT
[ms]

MR
[MByte]

S1a

GM 0.2 0.38 0.17 1.3 2.5

Straight 2DIM 1.0 0.39 0.17 1.0 0.12

Curved 2DIM 1.0 0.39 0.17 2.3 0.14

S1b

GM 0.2 0.39 0.21 1.3 2.5

Straight 2DIM 1.0 0.29 0.27 0.9 0.11

Curved 2DIM 1.0 0.31 0.26 2.3 0.14

S1c

GM 0.2 0.39 0.18 1.3 2.5

Straight 2DIM 1.0 0.38 0.20 1.1 0.13

Curved 2DIM 1.0 0.38 0.20 2.4 0.14

Table 3.4.: Comparison of occupancy map evaluation metrics in different scenarios.

formance evaluation than the grid-based. The greatest difference between both techniques
can still be determined in scenario S1b.

Concerning the computation times, the application of real sensor measurements reduces
the gap between interval- and grid-based mapping approach. This can be explained by the
fragmented and incomplete detection of the environment by the laser sensor in contrast
to ideal range measurements. Due to these characteristics, the number of cells per inter-
val is increased, which raises the processing effort of the developed update mechanisms.
Furthermore, also the memory consumption of the 2DIMs is substantially increased. Nev-
ertheless, the measured quantities are still around 100 KByte, which is about 20 times
smaller than the static memory requirement of the compared grid map.

The same experiment has also been performed by using the ego motion data obtained by
the reference system instead of the introduced ego motion estimation module. However,
the modified setup did not significantly change the measured map quality metrics. In all
three reference scenarios, the characteristic ego motion estimation errors only had a small
influence on the mapping results, especially in comparison to the inaccuracies caused by
the laser measurements and the approximations in the developed algorithms.

3.5.3. Application-dependent Quality Evaluation

To further investigate the impacts of applying grid- and interval-based environment rep-
resentations, the behavior of a collision avoidance system presented in [135] has been
analyzed. Based on extracted occupancy states, this function evaluates different evasion
trajectories and derives a potential crash distance. The calculated trajectory spaces in sce-
nario S1a are compared in figure 3.27. Potential crash distances can so be estimated, which
are also illustrated in figure 3.28. A value of 0 indicates that any crash can be avoided.
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Besides small deviations, the illustrated distances and the inferred function trigger are
similar in both setups. In all tested recordings of this scenario, the collision avoidance
system showed a similar behavior, consequently, there are no disadvantages for this ADAS
function when using the interval-based map.

(a) (b)

Figure 3.27.: Space of possible evasion trajectories derived from a) grid- and b) interval-
based occupancy representation.
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Figure 3.28.: Crash distance estimations derived from grid- and interval-based occupancy
representation.

3.5.4. Mapping Results in Real World Scenarios

As already stated before, the previously described experiments cannot provide a complete
evaluation of the developed algorithms, as the application of the reference system always
has to be restricted to structured scenarios with limited complexities. Therefore, the
application of interval-based occupancy maps has also been tested in complex real-world
highway and urban scenarios. Although this investigations do not allow to quantify an
absolute quality of a map by a comparison to a reference map, the deviations between
occupancy GMs and 2DIMs can still be quantified by using the previously introduced
extraction mechanisms and metric calculations.

As expected, the largest deviations between grid- and interval-based representations have
been observed when taking bends, due to the approximations in the developed ego com-
pensation algorithms. As already observed in the reference scenario S1b, the impacts
of these inaccuracies can be reduced by applying the curved 2DIM in combination with
a sound prediction of the vehicle’s future trajectory. An example, in which the curved
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mapping approach improves the obtained results, can be seen in figure 3.29. In this case,
the estimation of the future trajectory perfectly matches the actual course of the road,
which improves both the map quality and the required computation times. When driving
straight ahead, which is especially the case in the extensively investigated dense traffic sce-
narios on highways, only minor differences between the straight 2DIM and state-of-the-art
GMs could be observed.

Figure 3.29.: Representation of occupancy information in curved 2DIM.

Due to the mainly unstructured surroundings, the gap between the computation times
of interval- and grid-based approach further decreases in complex urban scenarios and
highway scenarios. In a five minute long urban reference file, the average computation
time of both GM and straight 2DIM was about 1.4 ms, whereas the creation of the curved
2DIM took about 3 ms. The memory consumption of the interval-based maps was about
200 kByte in each tested scenarios, which is still about ten times smaller than the static
2.5 MByte of the compared GM. A key factor in representing the surrounding occupancy
states in complex dynamic scenarios is the correct consideration of moving objects. The
introduced concept of combining the 2DIM with a model-based object-tracking allows to
obtain occupancy representations, in which both static and dynamic objects are consis-
tently represented. By this functional enhancements, the average computation times of
both 2DIM and GM are raised by less than 0.1 ms, which is mainly caused by the dynamic
classification of the laser range measurements and the prediction of the dynamic cells. All
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previously provided memory quantities already include the additional amount of memory
that is necessary to assign occupancy cells to moving objects.

3.5.5. Interpretability

Although the measured computation times of GM and straight 2DIM in complex scenarios
are approximately at the same level, processing interval-based occupancy representations
further offers great advantages. According to the previously introduced architecture (see
figure 1.4), the map-based description of occupancy states only serves as an intermediate
representation for the extraction of information with higher levels of abstractions dur-
ing the secondary environment perception, e.g. road boundary polylines [16] or compact
descriptions of free spaces [135, 145]. During this process, the previously defined inter-
pretability of the provided data structure has a major impact on the resource requirements
of the entire environment representation. Only if the relevant information of the represen-
tation can easily be identified, a further step towards an efficient environment perception
in highly automated vehicles can be made.

For most extraction purposes during the secondary environment perception, e.g. the
previously mentioned road boundary extractor, it is especially advantageous to extract
the estimated occupancy probabilities along the past and future trajectory of the ego
vehicle. Also collision avoidance functions as [135] benefit from a representation of the
surrounding occupancy states in the current ego vehicle coordinate system, as several
different possible evasion trajectories can be evaluated with reasonable effort. In case of
the 2DIM, this extraction can be realized by a simple iteration over the represented cells
within a map interval. Whenever the required occupancy states need to be determined

a) b)

Figure 3.30.: Rasterization of a GM for a) straight and b) curved extraction.

within the current ego coordinate system, the straight 2DIM can be applied, in case of a
required extraction along a predicted trajectory, the curved 2DIM can be used. When using
a GM instead, the direction-specific extraction of occupancy states requires to rasterize
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the data structure by several Bresenham lines, as e.g. described in [135, 16] and also
illustrated in figure 3.30. According to [135, 16], a gapless rasterization of all represented
occupancy values in the required preview area has to be based on lines along and across
the required direction.

In the following analysis, the computation times of an implemented extractor, which de-
termines surrounding obstacles by a simple probability threshold comparison, have been
used as a measure to quantify and compare the interpretability of grid- and interval-
based representations. According to the previously derived rasterization principles, the
occupancy states of GM have been extracted both along a straight line and a predicted
trajectory and compared to the extraction from a straight respectively curved 2DIM. In
all cases, the extraction covered an area from 20 m behind to 70 m in front of the vehicle
with 30 m width. Figure 3.31 illustrates and compares the measured computation times
for the mapping and extraction process. Whereas the iteration over the interval-based

0 2 4

2DIM

GM

Computation Time in [ms]

Straight Extraction/Mapping

0 2 4

2DIM

GM

Computation Time in [ms]

Curved Extraction/Mapping

Mapping
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Figure 3.31.: Comparison of mapping and extraction computation times of GM and 2DIM.

occupancy cells took less than 0.1 ms, the rasterization of the obtained grid maps took 1.7
ms respectively 1.9 ms and thus longer than the computation time of the actual mapping
process. This leads to a significant performance advantage of the straight 2DIM over the
GM when comparing the overall computation times. Also the curved 2DIM benefits from
the simplified interpretation of the represented occupancy states. By the application of
this map, the main computational effort is transferred from the extraction to the creation
of the representation, which finally results in a reduction of the entire computation times.

3.5.6. Summary

Concerning the previously mentioned goals of the occupancy map evaluation, the following
conclusions can be made:

• At the same discretization size, ideal interval-based maps provided better quality
metric values than comparable grid-based maps. Overall, the representation of con-
tinuous values in lateral direction allows to operate 2DIMs at higher discretization
sizes than GMs. In the curved reference scenarios, the quality differences between
GM and straight 2DIM are increased, which can be explained by the approximations
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in the developed ego compensation algorithms. The impacts of these inaccuracies
can be diminished by applying the curved mapping approach.

• The application of real sensor measurements did not significantly change the dis-
tances between the measured quality metric values of GMs and 2DIMs. Conse-
quently, both approaches are equally able to deal with characteristic sensor effects.

• In comparison to the inaccuracies in the laser range measurements and the data
processing, the ego motion estimation errors did only have a minor impact on the
mapping results in the tested reference scenarios. Concerning the effects of these
errors, no characteristic difference between the interval- and grid-based mapping
approach could be observed.

• In the reference scenarios, the computation times of a straight 2DIM were below
those of a compared GM, whereas the creation of a curved 2DIM took about 30 %
longer. In unstructured urban scenarios the computation times of straight 2DIM
and GM were approximately at the same level, the computation times of the curved
2DIM were considerably higher. The memory consumption of all interval-based maps
were at least ten times lower than the compared grid-based map.

• A tested collision avoidance function provided equal trigger times for grid- and
interval-based maps in all tested scenarios.

• By the improved interpretability of interval-based maps, the complexity of the sec-
ondary environment perception can be significantly reduced. If we additionally con-
sider the extraction process, the computation times of a curved 2DIM outperform
those of a comparable GM and its extractor. On the downside, the application of
a 2DIM requires the commitment to a predicted trajectory. Whenever several sub-
stantially different extraction directions have to be considered, e.g. at junctions or
in parking scenarios, a more general and direction-independent grid-based represen-
tation offers advantages.
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Motion Behavior

One of the main contributions of this thesis is the development of a novel approach to
represent the information about collective motion in the vehicle’s environment in an early
stage of the perception process. By using this information, the overall reliability of highly
automated vehicles can be further improved, as the interpretation of other environment
features simplifies and additional input parameters for the lateral and longitudinal control
can be generated.

4.1. Related Works

As already stated in the introduction, existing environment perception approaches mainly
aim to estimate the current state of single moving objects in a traffic scene. A detailed
discussion of model-based object representations is not in the scope of this thesis. Besides
section 2.3.2, [178, 78, 184, 124] may serve as an introduction to the subject of multi-sensor
object detection and tracking. For the derivations in this chapter, the object hypotheses
from the previously introduced tracking module (see section 2.3.2) will be used as input
data. The interpretation and deduction of relationships between moving objects usually
take place on higher levels of abstractions during the secondary environment perception.
Apart from a few exceptions, the collective behavior of several traffic participants has not
been considered for this purpose.

In military applications, the identification of moving vehicles’ common behavior has been
examined with different goals. In this case, the focus typically lies on processing point
source objects without spatial extension from airborne GMTI 1 radar sensors. In order to
reduce the computational load of processing extensive ambiguous data, an important task
is to detect and track clusters of moving objects. Waxman et al. give a comprehensive
overview over published approaches in this field [179]. In this context, Pollard et al.
propose the detection of convoys, which is according to their definition “a group of vehicles
traveling together for mutual support and protection” [128, 129]. For that purpose, they
analyze the vehicle positions and velocities in a dynamic Bayesian network. Similar works
deal with an improvement of convoy tracking by using road-maps [48], the detection of
convoy merging sites [139] or an optimized recognition of convoy-splitting scenarios [23].

1Ground Moving Target Indicators
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As both the requirements and the available input data differ significantly from driver
assistance applications, the described concepts can hardly be transferred.

Besides that, there also exist few patent applications which describe the deduction of
simplistic collective object behavior for ADAS purposes. Patents [123] and [64] propose
an advanced target object selection for ACC systems. Therefore, both approaches model
traffic lane hypotheses, which are adapted according to the detected moving objects, for
example by analyzing measured lateral velocities. The resulting lane hypothesis can then
be used to determine a suitable target object for the longitudinal control in ACC sys-
tems. However, these simple approaches are restricted to the adaptation of an initial
lane hypothesis by detected objects and do not consider the entire trajectories of dynamic
objects.

One possible application of road traffic convoy tracks has already been described by Reichel
et al. in [134, 133], whereas the deduction of this information has been left open. In the
presented approach, the parallelism of detected traffic convoys has been used as an input
feature for classifying convoy merging maneuvers. According to the presented results, this
input feature considerably improves the classification result, the developed algorithm leads
to a classification error of 9.08%.

4.2. Development of an Architecture and Representation of
Common Object Motion Behavior

Having identified the scientific gap and possible application scenarios of representing collec-
tive motion information for ADAS purposes, the following sections deal with the question
of which information can be inferred from surrounding traffic participant behavior and
how this information can be adequately represented.

4.2.1. Definition of Represented Information

An example of a traffic situation in which an automated vehicle should adapt to the
collective behavior of the surrounding traffic participants has been introduced in figure
1.7, section 1.3.2. Due to an accident, the vehicles begin to form traffic convoys whose
courses deviate from the traffic lanes defined by the road markings. In this situation, a
human driver adapts to the behavior of the surrounding vehicles. In doing so, he or she
preferably does not rely on a single leading vehicle, as it may deviate from the standard
behavior, e.g. by performing a lane change maneuver.

In order to utilize this abstract information for ADAS purposes, feasible quantities of
collective vehicle behavior have to be identified first. Within the scope of this thesis, the
following definitions have been developed:
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Ego

Convoy Track Centers

Convoy Track Borders

Figure 4.1.: Top view illustration of extracted convoy track centers and borders in a dense
traffic highway scenario.

• All collective behavior quantities refer to traffic convoys, which have to be established
by at least two vehicles. In this way, the influence of single vehicles, which possibly
do not conform to the standard behavior, is eliminated. Vehicles are assigned to a
common convoy if and only if their trajectories overlap and their motion directions
as well as their velocities are similar. These constraints allow to model multiple
convoys at the same location, e.g. intersecting convoys at junctions.

• The convoy track center represents the center line of the average motion within a
convoy. The center line has to incorporate both the covered positions and the driven
directions and velocities respectively.

• The convoy track borders represent the borders of the complete traversed area of
a convoy. Hence, the right border results from the rightmost convoy participant,
whereas the left border is defined by the leftmost vehicle.

Figure 4.1 illustrates an exemplary dense traffic scenario with several vehicles and their
past trajectories. According to the defined criteria, two convoys can be identified, the
corresponding convoy track centers and borders are depicted by red lines. Due to the
constraints concerning the motion direction and the minimum number of vehicles, the
black depicted trajectory is not incorporated into a convoy track until the lane change
maneuver of the corresponding vehicle is finished. Apart from the illustrated case, the
developed concepts can also be applied to opposing and cross traffic scenarios. However,
the high relative velocities of opposing vehicles and the limited detection ranges of state-of-
the-art onboard sensors make it difficult to detect multiple vehicles at coincident positions.

The inferred convoy information can be used for various ADAS applications. First of
all, the center line of one’s own convoy can serve as an additional and independent in-
put parameter for lateral vehicle control. For that purpose, also the detected borders of
one’s own and neighboring convoys can help to deduce corridors, within which the vehi-
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cle has to remain. Besides spatial information, average velocity profiles can be extracted
from detected convoys in order to improve longitudinal control or recommend beneficial
traffic lanes. Looking further ahead, convoy information can also be used to realize over-
taking assistance systems and safety systems that detect non-standard vehicle behavior
[HBW14d, HBW14b, HBW14c, HBW14a].

Concerning the introduced classification into primary and secondary environment percep-
tion, the deduction of convoy information can be interpreted as a task of the secondary
perception: The represented knowledge about the physical environment feature of moving
objects is used to infer an abstract environment feature about their collective motion.
However, this deduction does not require a high-level interpretation of the represented
environment knowledge, but is restricted to a mutual assignment of similar object trajec-
tories. The resulting information can also help to simplify other tasks within the secondary
environment perception, e.g. the interpretation of detected road markings.

4.2.2. Interval-based Representation of Common Motion Information

The key idea of the developed convoy track approach is to map the detected moving
object motions in an interval-based representation. In accordance with the introduced
architecture 1.5, the represented knowledge can then be used to extract continuous convoy
information. A high-level architecture of the entire approach is illustrated in figure 4.2.
As input data for the mapping process, model-based object hypotheses derived from radar
and laser measurements will be used.

Model-based
Object Tracking

Mapping of Moving 
Object Motion

Extraction of 
Convoy Information

Radar

Laser

Figure 4.2.: Convoy track detection architecture.

The location-dependent description of detected object motions in a map-based environ-
ment representation offers several advantages over pure model-based convoy detection
approaches. Although most trajectories of individual vehicles could be represented ac-
curately with generic models, their application would require complex association and
fusion algorithms to deduce common motion information. By contrast, the utilization of a
map-based representation allows for the accumulation of multiple detected object motions
without restricting to models about vehicle trajectories and convoy shapes. Due to the
semi-structured character of the required information, the previously introduced straight
and curved 2DIM are especially suitable for this application. Therefore, the map needs
to be adapted to contain cells which represent detected moving object motion at specific
locations in the vehicle’s environment. The contribution of the represented motion cells
to continuous traffic convoys is then derived during the extraction process.
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The available input data provide heterogeneous information about the longitudinal and
lateral extent of moving objects. The radar-based object hypotheses mostly consist of
a single reflection point and do not include reliable information about object contours.
Laser-based object measurements on the other hand contain contour information, which
may however be incomplete due to occlusions or object locations in the border area of the
sensor’s field of view. For that reason, all object bounding boxes are provided by using
the best knowledge model (see section 2.3.2), which allows to choose a suitable coordinate
system for describing object dimensions. Similarly, the heterogeneous information about
moving object motion has to be represented uniformly within the 2DIM.

y

Interval Cell

r (m)c (m)l (m)c (m+1)

Point Cell

Figure 4.3.: Representation of different motion cells within an interval.

Therefore, a motion cell contains three optional lateral positions which can be estimated
according to their observability: the left and right border positions l respectively r and the
center position c. Hence, the detected motion can be represented by point or interval cells,
depending on the available information. As also illustrated in figure 4.3, all attributes refer
to the longitudinal center of the interval, the entire motion cell is formally defined as:

MC(n,m) =
(
c(n,m), l(n,m), r(n,m), φ(n,m), v(n,m)

)
(4.1)

with φ denoting the moving direction and v being the velocity magnitude. By incorporat-
ing the information of moving directions and velocities, the association between motion
cells as well as the convoy extraction process significantly simplify. Furthermore, the ad-
ditional consideration of cell directions can help to decrease the impacts of the interval
discretization. As all input data are provided by bounding boxes, the lateral boundaries
of the trajectories can be represented without further approximations. Remaining inaccu-
racies appear at the longitudinal boundaries of the represented trajectories, which can be
regarded as negligible if the trajectories are assumed to be continuable.

In contrast to the occupancy cells derived in the previous chapter, the motion cells do
not incorporate a dedicated existence probability of the represented environment feature.
In this case, the resulting estimation variances will be used as a measure of reliability.
This approach has already been used in several approaches in [16] and turned out to be
sufficient for this application.
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Similar to the previous application, an interval of a straight or curved 2DIM contains a
variable number of motion cells:

I(n) =
(
MC(n,0), · · · ,MC(n,m), · · · ,MC(n,M)

)
(4.2)

However, the cells within an interval are not required to be organized in a dense list in this
case. This allows to model gaps and overlapping areas between neighboring motion cells,
e.g. to represent motions with different directions at the same position. Concerning the
identified characteristics of map- and model-based representations (see section 1.3.1), the
interval data structure can, strictly speaking, not be classified as a map-based representa-
tion, as the described space elements are not dense and lack in providing a neighborhood
relation in lateral direction. On the other hand, the description of the motion cells ful-
fills the requirements of a low level of abstraction and especially does not make use of
restrictive model assumptions.

4.3. Development of Sensor Models and Update Algorithms

Within the scope of this thesis, a scalable concept for detecting convoy track information
from laser and radar sensors has been developed. For details concerning the physical mea-
surement principles of the available sensors, the interested reader is referred to appendices
B.2 and B.3. The applied double Third Generation Long Range Radar (LRR3) system is
able to measure visually occluded moving objects, which is an essential prerequisite for a
reliable detection of collective vehicle motion. On the other hand, the laser sensor provides
detailed information about object contours and hence spatial extensions of trajectories and
resulting traffic convoys. The following section begins with an analysis of the provided
measurements of both sensors. After that, the sensor fusion concept, the sensor models
and the update algorithms will be derived.

4.3.1. Sensor Data Analysis

An analysis of the provided measurements for the detection of convoy tracks requires the
generation of reference objects in characteristic dense traffic scenarios. For that purpose,
two different strategies have been applied in the experiments for this thesis, both are illus-
trated in figure 4.4. The upper part of the figure shows the application of the introduced
reference system (see section 2.3.3). All target vehicles transmit their global position to
the ego vehicle, where the bounding boxes of the preceding vehicles can be inferred under
consideration of the a priori knowledge about the vehicle dimensions. The lower part of
the figure shows a novel strategy. In this case, each vehicle uses a laser sensor to measure
the preceding vehicle. After exchanging the relative locations of preceding objects, the
contours of visually occluded objects can be composed in the ego vehicle. On the one
hand, this approach allows for generating reference objects without using expensive IMU
and DGPS hardware, on the other hand, the obtained bounding boxes are, of course,
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b)

Figure 4.4.: Reference object generation for measurement analysis.

significantly less accurate. Due to the large levers and the propagation of the estimation
errors, especially the deduced orientation of laser-based object hypotheses turned out to
be imprecise. In the following examinations, a combination of both strategies will be used:
Up to three vehicles are equipped with IMU and DGPS hardware, additional vehicles are
incorporated by available environment sensors, in order to increase the overall number of
reference objects.

An exemplary comparison of the obtained reference objects and the laser-based object
hypothesis from the ego vehicle is shown in figure 4.5. The dimensions of the provided
bounding boxes strongly depend on the visibility conditions. Due to the output of solely
predicted hypotheses and the rule-based innovation of length and width (see [SWBH12]),
the objects can temporarily extend into occluded areas. The incorporation of the filtered
state variables for the estimation of motion cells will be discussed in detail in section 4.3.3.
Due to the optical measuring principle, completely visually occluded objects cannot be
detected by the laser sensor.
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Figure 4.5.: Comparison of reference objects and laser-based object hypotheses.

By contrast, the applied double LRR3 system can utilize multipath propagations of the
electromagnetic waves to detect several occluded moving targets. On the downside, the
sensor is restricted to providing a tracked reflection point instead of accurate bounding
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(a) Unoccluded vehicle
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(b) Completely occluded vehicle
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(c) Partially occluded vehicle with direct line of sight

Figure 4.6.: Comparison of reference objects and radar-based object measurements.
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boxes. The sensor’s detection range and separation efficiency, as well as the distribution
of the provided reflection point have been examined in [16, 104]. Within this thesis, a
detailed analysis of radar measurements in dense traffic scenarios with occluded objects
has been conducted. An excerpt of the results is shown in figure 4.5, additional graphs are
provided in appendix D.3.2. As already indicated in [16], the range of potential reflection
point locations is especially large when objects with lateral offsets are detected in close
proximity to the sensor, e.g. vehicles in neighboring lanes. Depending on the visibility
conditions, the reflection point tends to be located at the corners and wheel arches of the
vehicle [104], which considerably complicates the interpretation of the measurement.

In case of a free line of sight to a vehicle that moves in radial direction, the location of the
provided reflection point is normally distributed along the vehicle’s rear [16]. Figure 4.6
a) illustrates the corresponding test setup and a histogram of the recorded measurements
within a 60 second sequence. The peak of the reflection points is located at the lateral
center of the reference object with a small longitudinal offset to the border of the bounding
box. Regarding the lateral distribution, the hypothesis of a normal distribution with mean
0 can be accepted by a chi-squared test for a significance level of 5%. Similar measurement
characteristics result from completely occluded vehicles, as the test results in figure 4.6
b) indicate. Apart from an increased variance, the obtained reflection points are similarly
distributed, a chi-squared test again indicates a normal distribution of the lateral offsets.
As soon as one of the two radar sensors is able to establish a direct line of sight to parts
of the occluded vehicle, the distribution of the reflection points significantly changes. In
that case, the number of measurements in the visible part of the object increases, as the
example of a partially occluded vehicle in 4.6 c) illustrates. A systematic distribution of
the reflection points under these conditions could not be found during the experiments,
especially as the provided object hypotheses are subject to tracking delays and constant
visibility conditions are hardly reproducible.

Ego Ego

a) b)

Figure 4.7.: Ambiguity in the interpretation of radar reflection points.

The described effects complicate the interpretation of radar reflection points in typical
traffic convoy scenarios. A key problem is illustrated in figure 4.7: Even if the contour of
the leading vehicle can be reconstructed from laser measurements, it cannot be derived un-
ambiguously whether a radar measurement rather refers to the corner or center of another
vehicle. Due to the radar sensors’ mounting positions and the lateral offsets of vehicles
in real world traffic convoys, these partial occlusion scenarios occur more frequently than
complete occlusions of preceding vehicles. In order to improve the mapping results in
these situations, the implemented sensor model additionally increases the lateral variance
of the created motion cell whenever a potential partial occlusion is detected.
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4.3.2. Embedding in Perception Architecture

For the mapping process, the measurements of both sensors can either be processed to
model-based object representations in a central object fusion module or in separate track-
ing modules, as illustrated in figure 4.8. Regardless of the chosen approach, all object
lists are provided by using the best knowledge model interface, which was introduced in
section 2.3.2.

Object
Fusion

Radar

Laser

Object Tracking
2D 

IntervalMap

Radar

Laser Object Tracking

2D 
IntervalMap

a) b)

Figure 4.8.: Comparison of possible object list inputs for convoy track detection.

From the 2DIM’s point of view, the advantages of processing previously fused object tracks
are:

• The measurement interpretation simplifies, as measurements of identical objects
from different sensors are already fused.

• The object lists can be processed without further synchronization effort, which oth-
erwise results from out-of-sequence measurements due to the different latencies and
cycle times of the laser and radar sensors.

• The data transmission effort is decreased.

On the other hand, the application of several sensor specific object lists also provides
benefits:

• The object hypotheses can be unambiguously assigned to the sensors. Hence, sensor-
specific effects can be considered in particular.

• There is no preselection of measured objects, all obtained object hypotheses are
available for the detection of convoy tracks.

• Additional latencies due to repeated filter applications can be avoided.

Within the scope of this thesis, sensor models for both strategies have been developed.
In the sensor model for fused objects, a set of rules was used to assign the provided
hypotheses to the measuring sensor. Due to ambiguities in that decision and internal
object fusion parameters that could not be influenced, the processing of sensor-specific
object lists provided slightly better results. For that reason, the developments in the
following sections will restrict to the second approach.
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4.3.3. Sensor Model

As the described model-based object representations are already inferred under the as-
sumption of normally distributed measurement and estimation errors, the key idea of the
developed sensor models is to reuse the provided object lists for an estimation of the
motion cells (4.1) by EKFs. Therefore, the developed algorithms have to consider the
identified characteristics of the provided input data and the general requirements for the
application of a KF.

Decorrelation of Tracked Objects

Both radar sensor and laser-based object tracking provide independent lists of tracked
objects and estimation covariances. When re-using these results as input data for another
filter, a possible cross-correlation of the estimated state vectors and error covariances (in
this context often together referred to as tracks [40]) from different modules as well as
different timestamps has to be considered. In particular, the correlation of the provided
estimation covariances violates the KF’s requirement on temporally uncorrelated white
measurement noise [112, 40]. This general problem has been examined extensively for the
task of fusing several sensor-level tracks to a global-level track, which is commonly known
as track-to-track fusion [1]. Drummond et al. identified three possible sources for cross-
correlated error covariances in sensor-level tracks [40], from which two can be transferred
to the task of estimating 2DIM motion cells in the described scenario:

• If both input sources use similar state transition models, the process noises of the
provided local tracks are cross-correlated. Since the process noise affects the estima-
tion results of the local trackers, their estimation errors are also correlated.

• All provided local tracks incorporate the knowledge about previous measurements
of the target. If these results are used to repeatedly update the motion cells in
the 2DIM, local and global tracks share a common measurement error history and
are hence cross-correlated. This effect can be compared to a repeated update of
the motion cells by the same measurements, which the KF always considers as new
information.

For track-to-track fusion applications, numerous approaches to dealing with cross-correlated
tracks have been published, an overview and a categorization can be found in [38]. Besides
the basic approach to avoiding correlations by periodically restarting global-level tracks,
existing methods can be classified into two major categories [38, 112]:

• The first category of approaches fuses the correlated local tracks at the global level
under consideration of the track-to-track cross-correlation resulting from both previ-
ously introduced sources. According to Seeliger et al., this category mainly comprises
three methods [146]:
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– The recursive calculation of the cross-correlation matrix, which significantly
increases the processing and communications effort in track-to-track fusion sys-
tems [22].

– The covariance intersection method, which either requires a convex optimization
or the determination of an approximate solution [146].

– The Information Matrix Fusion (IMF) algorithm [24], which is sometimes ap-
plied without taking into account the cross correlation between two local tracks
[1] in order to simplify the calculations at the expense of neglecting correlations
due to common motion models.

• The second approach is to remove the cross-correlation between sensor-level and
global-level tracks by exchanging locally decorrelated information between the track-
ers (sometimes denoted tracklets [40, 112]). The most popular representatives of this
category are the inverse information filter and Frenkel’s methods [52, 53]. On the
one hand, these methods require less adaptations and cause only little computa-
tional extra effort, on the other hand, they only remove correlations due to the
common measurement history. Enhancements concerning the second matter have
been introduced in [39].

Due to the significantly reduced complexity and published results that suggest that the
impact of common process noise can be neglected in most object tracking applications
[112], the decorrelation of the tracked object lists has been realized by calculating locally
decorrelated tracklets. The application of Frenkel’s methods especially allows for the in-
tegration of the track decorrelation into existing KF or EKF implementations, at which
the decorrelation can be easily switched on and off for evaluation purposes. In the follow-
ing, the main principles of Frenkel’s methods will be briefly summarized, for an in-depth
discussion of this decorrelation approach, the interested reader is referred to [37, 22].

The key idea of Frenkel’s methods is to use two state estimates of a local tracker in order
to infer an equivalent measurement u and a measurement covariance U which represent
the gain of information between both estimates. As the calculated covariances are not
correlated, the obtained results can be used to update a global-level track, in this case the
motion cells of the 2DIM. For this purpose, Frenkel proposed two different approaches.
The first method, which is also known as inverse KF [52, 53], allows for the calculation
of equivalent measurements in the existing state space to avoid further transformations
and will therefore be used in the following derivation. The developed decorrelation imple-
mentation is based on a particularly efficient reformulation of this method by Drummond
[39].

Since the radar- and laser-based object lists are transmitted to the 2DIM after each sensor
measurement, the derivation of the equations is restricted to the consideration of two
consecutive local tracker time steps j and k. In this case, the equivalent measurement uk
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and measurement covariance Uk can be calculated from the provided estimates x̂k and
P̂ k as follows:

uk =
∗
xk +Ak

(
x̂k −

∗
xk

)
(4.3)

Uk = (Ak − I)
∗
P k (4.4)

with Ak =
∗
P k

(
∗
P k − P̂ k

)−1

(4.5)

Hence, a decorrelation of the provided object lists can only be realized if either the pre-

dicted object states
∗
xk and estimation covariances

∗
P k are provided, or these quantities

can be inferred from the last cycle’s estimates x̂j and P̂ j by a familiar state transition
model. Concerning the applied radar sensor, neither predicted object states nor informa-
tion about the internally used state transition model were available for the developments
in this thesis. As the assumption of an arbitrary motion model does not seem appropriate,
the decorrelation of the object tracks has only been realized for the laser-based hypotheses
obtained from the environment perception tracking module introduced in section 2.3.2.

In practice, the motion cell representations obtained with activated and deactivated ob-
ject track decorrelation showed only minor differences. This behavior can be explained
by the low inertia of the applied object tracking module as well as the limited duration
the motion cells remain within the 2DIM. Furthermore, no feedback between the global
and local trackers takes place in this application, which is one of the major challenges
in the decorrelation of track-to-track fusion architectures [112]. In the implementation,
additional challenges resulted from rule-based adaptions of several object state variables
within the applied tracking module. Whenever a provided state variable or related error
covariance term does not result from a KF-based innovation, a feasible equivalent mea-
surement cannot be inferred by applying equations (4.3) - (4.5). As a consequence, the
motion cell estimation has to rely on correlated input data in these cases.

Update Algorithm

Due to the assumption of normally distributed measurement and estimation errors, the
available object tracks respectively deduced equivalent measurements are provided as mul-
tivariate Gaussian distributions and hence satisfy the input requirements of an EKF-based
estimation of motion cells. Besides the preceding decorrelation of the input data, the
overall estimation cycle conforms to the update of the 2DIM with occupancy information,
which was introduced in the previous chapter, see figure 3.6.

First of all, the represented map has to be compensated, either due to a movement of
the ego vehicle or because of changes in the reference path estimation. Both procedures
will be explained in detail in section 4.4.1. Then, the represented motion cell states
are predicted according to the EKF equations which will be derived in following. After
having extracted the relevant features from the object lists, the first task in the correction
step is to associate the measured motion cell hypotheses with the existing ones. For this
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decision, the Mahalanobis Distance [137] between the complete state vectors of existing
and new cells is calculated, which significantly improves the association and extraction
results in comparison to a restriction to the lateral positions. All associable measurements
are incorporated into existing motion cell state vectors according to the rules that will be
derived in the following two sections. The remaining measurements are used to establish
new motion cells.

Finally, also a subsequent cell management step takes place, in which similar motion cells
are fused to simplify the further processing of the map. Furthermore, cells whose predicted
variances exceed a predefined threshold are rejected, as the represented information about
traffic convoys might be outdated.

Sensor Model for Radar Object Lists

The application of an EKF requires the formulation of a measurement equation which
extracts the relevant information from the provided object lists while taking into account
the provided uncertainties. Although the obtained radar object lists may contain rough
estimates about the lateral extent of detected vehicles, the map update is restricted to
the lateral center of the motion cells’ state vectors (4.1) in this case. The previous anal-
ysis showed that the location of radar reflection points on vehicles cannot be determined
unambiguously. Concerning this matter, the developed approach assumes that the radar
objects represent the lateral center of vehicle rears, which applies at least to the major-
ity of the provided objects, especially in scenarios without occlusions. In case a partial
occlusion is detected, the lateral variance of the measurement is additionally increased.
Formally, the state variables and the measurement vector are defined as:

xk = [c, v, φ]T (4.6)

zk =
[
p,(rel) v, δ, L

]T
(4.7)

with p being the position of the radar reflection point in the USK, (rel)v describing
the object’s relative velocity, δ being the object’s direction of movement and L denoting
the object’s length. As the motion cells’ state variables always refer to the longitudinal
center of the intervals, the input objects have to be extrapolated to the next center line.
Whenever a bounding box length is specified, the object’s center line can be used to
calculate intersections with all overlapped interval center lines, as illustrated in figure 4.9.
In this way, each intersection point can be quantified by the object’s normalized directional
vector and an inferred λ-value, see also figure 4.9.

Similar to the sensor model in the previous chapter, this derivation does not allow to
formulate a measurement function of the form z = f(x). Again, the relation between the
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Figure 4.9.: Feature extraction from radar object bounding boxes.

introduced measurement and state vector can be used to formulate an implicit measure-
ment equation [6, 152, 112] for each intersected interval 2:

g (žk,xk) =

cv
φ

−
0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1



I(n) PUSK

˜̌p+ λ

cos(δ̌)

sin(δ̌)

0




Obj PUSK ·(abs) ˜̌v

δ̌ − ψ(n)

 = 0 (4.8)

with ψ(n) denoting the orientation of the n-th interval, as introduced in the previous
chapter. In this equation, the object’s yaw angle and the calculated coordinates at an
intersection point are transformed from the USK in the interval coordinate system. Fur-
thermore, the provided relative USK velocity (rel)v is first transformed into an absolute
velocity (abs)v, and then converted into the object’s longitudinal velocity, which corre-
sponds to the velocity magnitude if we assume negligible slip angles. The representation
of this direction-independent value allows an intuitive interpretation of the velocities along
an extracted convoy and avoids further compensations of this state variable.

Similar to the occupancy map sensor model, the partial derivative of the implicit mea-
surement equation with respect to the state vector results in an identity matrix I, which
simplifies the prediction step to:

∗
xk = x̂k−1

∗
P k = P̂ k−1 +Qk−1 (4.9)

with Qk−1 denoting the process noise, which can be used to compensate for the inherent
approximations of the developed approach. It is important to note that the proposed
state transition model does not change the motion cells’ states, as the cells represent the
stationary information about the detected motion instead of the moving object itself.

2Due to the available input data, the derivation of sensor models is restricted to 2D homogeneous coor-
dinates in this chapter
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Based on the implicit measurement equation (4.8) and its partial derivative with respect
to the measurement Czk

, the following EKF correction step for state vectors of existing
motion cells can be deduced:

x̂k =
∗
xk +Kk

(
−g(uk,

∗
xk))

)
(4.10)

P̂ k = (I −Kk)
∗
P k (4.11)

with Kk =
∗
P k

(
∗
P k +Czk

UkC
T
zk

)−1

(4.12)

with uk and Uk denoting the inferred equivalent measurement respectively equivalent
measurement error covariance. As in the previously introduced sensor model, the im-
plicit measurement derivation leads to a standard EKF-update equation, in which the
measurement uncertainties are transformed into the state space by the Jacobian Czk

.

In practice, further improvements can be achieved by additionally generating motion cells
from an object’s trajectory between two map updates. Taking into account the previous
object location, a virtual measurement along the driven trajectory can be generated. Es-
pecially in scenarios with high object velocities, this approach improved convoy extraction
results.

Sensor Model for Laser Object Lists

As shown in the previous sensor data analysis, the applied laser sensor is able to accurately
detect object contours of completely visible preceding vehicles. According to the intro-
duced object interface (2.3.2), all objects are described by using the coordinate system
in which the detected bounding box can be best described. However, the object tracking
module does not provide information on whether the bounding box is an estimate of the
entire dimensions of an object. Only if a bounding box represents the complete width of
an object, both border state variables l and r of an associated motion cell are observable
and should be updated. If this condition is not considered for the 2DIM update, partial
object bounding boxes will significantly deteriorate the motion cell width estimations.

In order to derive the information about the completeness of the bounding box estima-
tions, the developed sensor model processes a simple occlusion analysis, whose result in
an example scenario is illustrated in figure 4.10. For each provided bounding box, the
radial distance and the covered angular range in the sensor’s polar coordinate systems
are calculated. By comparing the angular range of an object’s rear to all closer located
objects, potential occlusions can be detected. Whenever these angular ranges border on
each other, an unobstructed view of the object’s rear cannot be ensured. In this way, com-
plete and potential left- respectively right-sided occlusions can be inferred. Fragmented
occlusions have not been observed in the available object lists and have therefore not been
considered in detail.

Only if the occlusion analysis indicates that a bounding box represents an estimate about
the entire object width, the complete motion cell state vector including the borders l and
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Figure 4.10.: Occlusions analysis of laser-based object bounding boxes.
Due to the illustrated laser beams, a potential right-sided occlusion of the
red bounding can be inferred.

c(n,m)
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Figure 4.11.: Feature extraction from laser object bounding boxes.
The moving object in the upper part is considered occluded and can there-
fore only be used to estimate the cell’s left border, motion direction and
magnitude. By contrast, the lower object is considered completely visible,
all motion cell state variable are updated.
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r can be estimated. In this case, the reduced state vector (4.6) is updated similar to
the radar sensor model. By contrast, the left and right boundary are inferred by using
a rule-based heuristic, as they represent the maximum outer boundaries of all vehicles
that have contributed to a motion cell. An example of this procedure is illustrated in the
lower part of figure 4.11. Whenever the preceding analysis infers a possible occlusion of
a bounding box, the observability of the motion cell’s center and both borders cannot be
guaranteed. Consequently, the estimation has to be restricted to the motion direction,
motion magnitude and the visible border. An example for this behavior can be seen in the
upper part of figure 4.11. Although the potentially occluded border can be temporarily
stored in the cell, it should not be used as an origin for further estimations. By this
distinction, the quality of the resulting border estimates can be improved substantially.

Similar to the radar sensor model, the driven trajectories between two map updates can
also be used to establish virtual object measurements. Due to the reduced cycle time of
the laser sensor, this approach is only reasonable in scenarios with high object velocities
and small interval height configurations.

4.4. Development of Compensation Mechanisms and Extractors

Due to the convenient cell alignment, the 2DIM framework allows to represent information
about common object motion with low interpretation and computational effort. On the
downside, this approach requires the ascertainment of the spatio-temporal consistency of
the represented information whenever the vehicle moves respectively the reference path
estimation changes. After the development of the necessary compensation mechanisms,
this section further describes the key principles of the convoy track extractor, which has
already been introduced in the system architecture, see figure 4.2. By the application of
this module, the required continuous information about the shape of surrounding traffic
convoys can finally be inferred.

4.4.1. Modeling Longitudinal Information in Motion Cells

Due to the modified cell state vectors and semantics of the motion cells, the previously
developed occupancy map compensation mechanisms need to be adapted. The derivations
in the occupancy map chapter (3.4.1) showed that the translational ego motion between
two straight 2DIM updates can be conveniently compensated by shifting the lateral cell
coordinates and the map’s circular interval buffer. However, the compensation of vehicle
rotations and reference path changes in case of the curved 2DIM require the inclusion of
longitudinal information within the interval cells.

Similar to the occupancy cells, one can think of several possible strategies with varying
complexities to model this additional information. As the motion cells have a limited
width and incorporate information about their orientation, the rotational changes can
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be compensated with less approximation errors than in the occupancy 2DIM. Figure
4.12 illustrates three different approaches and the resulting transfer of information across
interval borders. The most general and accurate solution would be to represent a cell’s

a) b) c)

Figure 4.12.: Different strategies to model longitudinal information in 2DIM motion cells:
a) Longitudinal extent of both borders, b) longitudinal extent of center line
and c) reduction to a single offset value.

longitudinal extent by two values for each cell border, as shown in part a) of figure 4.12. On
the downside, this approach would require a large amount of memory and complex merge
operations whenever parts of cells are transferred across intervals. As the detailed shape
of the convoy tracks’ ends is not of major importance, strategy b) seems a reasonable
compromise between computational effort and accuracy. In this case, the longitudinal
start and end of the motion cell’s center line have to be represented. Still, this method
requires frequent cell transfer and merge operations. This disadvantage is eliminated in
strategy c), where the longitudinal information is restricted to a single x-offset per cell.
However, this approximation may lead to gaps between bordering cells after rotations with
large angles or lever arms, as already pointed out in section 3.4.1. Within the scope of this
thesis, strategies b) and c) have been implemented and evaluated. Although the required
computation times of both approaches differed significantly, the obtained representations
led to similar convoy results, as the developed extraction algorithm is able to bridge motion
cell gaps. Detailed comparisons will be shown in section 4.5.2.
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4.4.2. Compensation Algorithms for Straight and Curved 2DIM

For reasons of clarity, the derivations in this section will be restricted to the represen-
tation of a single longitudinal x-offset, as also illustrated in figure 4.13. The remaining
compensation strategies can easily be deduced from the presented formulas. As all cell
state variables refer to the longitudinal interval center, the first step during the compen-
sation is to infer subcell rotation points from the last x-offset and direction ϕ. In case of

the center state variable c, the rotation point within the interval coordinate system I
(n)
k−1

of the last map Mk−1 can be calculated by:

(
I
(n)
k−1

)
c̃k−1 =

xk−1

ck−1 + tan(φk−1) · xk−1

1

 (4.13)

This point can then be transformed into an interval coordinate system I
(n)
k of the new

map Mk:x̌č
1

 =

(
I
(n)
k

)
c̃k−1 =

(
I
(n)
k

)
P(USKk) · (USKk)P(USKk−1) · (USKk−1)P(

I
(n)
k−1

) ·
(
I
(n)
k−1

)
c̃k−1

(4.14)

In case of the straight 2DIM, these transformations simplify to a rotation between both
USKs and translations into the interval coordinate systems. After calculating the cell ori-
entation φ̂ in the new interval, the rotated point has to be extrapolated to the longitudinal
interval center in order to derive the compensated state variables:[

x̂k−1

ĉk−1

]
=

[
x̌

č− tan(φ̂k−1) · x̌

]
(4.15)

with φ̂k−1 = φk−1 − (ψ
(n)
k − ψ(n)

k−1) (4.16)

The resulting x-offset indicates whether a cell has to be transferred into an adjacent map
interval. Similar to the center state variable, the border state variables l and r can also
be compensated. When using compensation strategy c), all three lateral state variables
are rotated under the assumption of a common x-offset.

Based on the example of a curved 2DIM, figure 4.13 illustrates the entire compensation
procedure. Overall, the compensation algorithms for motion cells provided even more
accurate results than those for occupancy cells. On the one hand, this can be explained
by the reduced cell widths and the additional consideration of cell alignments. On the
other hand, the represented information is not strictly limited in the longitudinal direction
and mostly continues along interval borders. Consequently, occurring inaccuracies in the
longitudinal direction do not necessarily distort the extraction result.
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Figure 4.13.: Illustration of compensation algorithm for 2DIM with motion cells.

4.4.3. Convoy Track Extraction

The pure estimation of 2DIM cells that represent the locations of common vehicle motion
does not yet provide the required information about existing traffic convoys and their
center tracks respectively outer boundaries. Only after connecting several cells with similar
attributes along a common path, the represented information can be used to infer the
desired continuous convoy information. According to the architecture presented in figure
4.2, this step takes place in a separate extractor.

As the focus of this thesis mainly lies on the development of new environment representa-
tions, the extraction algorithm will be only briefly outlined in the following. The key idea
of the algorithm is to identify traffic convoys by concatenating motion cells along several
map intervals depending on the similarity of their state vectors (4.1). In challenging sce-
narios, the concatenation results can be further improved by incorporating a priori models
about convoy shapes, road courses or extraction results from previous cycles. In order to
fulfill the requirement of detecting the common motion behavior of several traffic partici-
pants, the extraction has to be restricted to motion cells which have been confirmed by at
least two vehicles. Whenever a determined chain of confirmed cells exceeds a predefined
limit, the combination of all cells is considered a valid traffic convoy. For each convoy,
the contained state vectors can be assembled to polygonal chains representing the average
center line and maximum outer boundaries. Moreover, an average velocity profile along
the convoy can also be inferred.

For further processing during the secondary environment perception and behavior gener-
ation, the resulting polygonal lines can optionally be converted into a parametric repre-
sentation. Due to their wide dissemination in the geometric design of roads, which mainly
results from the assumption of continuous steering angles, clothoid models have been ap-
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4. Representation of Common Object Motion Behavior

plied for this purpose in the scope of this thesis. The detailed approach to inferring the
clothoid parameters from the previously determined polygonal chains is described in ap-
pendix A.6. An example of the extracted convoy track center clothoids from a 2DIM in
an urban scene is illustrated in figure 4.14.

Motion Cell 

Center

Motion Cell with Borders

Based on a Single Vehicle

Confirmed

Motion Cell with Borders

and Average Velocity:

0 km/h 60 km/h

Moving Object 

Bounding Box

Extracted

Convoy Track Center

Figure 4.14.: Convoy track extraction results from a 2DIM with motion cells.

4.5. Evaluation

As the representation of common object motion behavior has not been considered so far,
the presented contributions cannot be evaluated by a direct comparison to state-of-the-art
approaches. Nevertheless, the validation of the obtained results requires the development
of an evaluation system by which the quality of the representation and the extraction
results can be quantified. By this contribution of this thesis, the performance of different
sensors, the developed algorithms and future enhancements can be compared.
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After identifying the objectives of the evaluation, a quantitative evaluation scheme for
representations of common object motion will be developed in the following sections. As
this approach has to be restricted to a limited number of reference scenarios, additional
qualitative evaluations will be described afterwards. Finally, also the beneficial effects of
using common object behavior information in highly automated vehicles will be illustrated
and the evaluation will be summarized.

4.5.1. Objectives

The guiding questions of the evaluation are similar to the objectives identified in section
3.5.1:

• Can the information about common object motion be suitably described in a map-
based environment representation?

• What are the impacts of typical laser and radar measurement errors on the obtained
results?

• How does the incorporation of erroneous ego motion estimation affect the obtained
results?

• What are the memory and computational requirements of the representation?

• How do the introduced approximations and possible algorithm variations, especially

– the decorrelation of the input data

– different ego motion compensation approximations

influence the quality of the map?

4.5.2. Quantitative Evaluation

Similar to the previously developed occupancy map, the key idea of the evaluation ap-
proach is to quantify the quality of the obtained results by a comparison to an inferred
reference representation. For this purpose, the introduced combination of reference system
and environment sensors from section 4.3.1 can be applied, as it allows to simultaneously
record real sensor measurements and highly accurate reference data of multiple surround-
ing moving objects.

Taking into account the system architecture from figure 4.2, the quality of the obtained
results can be evaluated on different levels of abstraction. Figure 4.15 gives an overview
of several possible evaluation strategies. On the one hand, an ideal reference map can be
derived from the captured reference data and be used to evaluate 2DIMs that result from
real sensor measurements and different possible algorithms (figure 4.15 A). In this way,
the quality of the map-based representation of detected object motions can be quantified.
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Figure 4.15.: Different evaluation strategies concerning the representation of common ob-
ject motion behavior.

On the other hand, the evaluation of the obtained results can also be realized by analyz-
ing the resulting convoy track parameters, for instance the average center line clothoid
approximations (figure 4.15 B). This information can be determined by either extracting
information from the reference map or directly inferring the desired parameters from the
object lists without map-based representations, as illustrated in the right part of figure
4.15.

As the focus of this thesis mainly lies on the development of new map-based environ-
ment representations, the following approach is restricted to an evaluation of the obtained
2DIMs. For further works concerning the evaluation of clothoid-based representations of
traffic convoy information, the interested reader is referred to [19]. The structure of the
developed map-based evaluation conforms to the architecture introduced in figure 3.21
and consists of the reference map creation, the establishment of comparability and the
quantification of deviations by newly developed metrics. The different steps will be de-
scribed in the following sections. The results of selected evaluation experiments will be
shown and discussed afterwards.

Reference Map

The goal of this step is to infer a map-based representation of the provided reference object
motions, which serves as a ground truth for the evaluation of different 2DIMs. Due to
the bounding box shape of the provided moving objects, the desired information can be
described with sufficient accuracy within an interval-based map with directional cells. As
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Figure 4.16.: Reference 2DIM with motion cells showing a lane change maneuver.

not all test setups were able to provide a reference path estimation, the ideal map was
realized by a straight 2DIM with decreased interval sizes in order to reduce the impacts
of discretization errors.

However, the reference map should not be created by using the previously developed sensor
models and compensation algorithms, as they are adapted to sensor-specific data and make
use of approximations. In order to obtain the most accurate result, all received reference
objects are stored within a pre-processing module of the 2DIM. After transforming all
stored object states into the current USK, the object rectangles can be assigned to the
different map intervals. Within each interval, the measurements of different vehicles are
added to a common motion cell whenever their average state vectors are similar. By this
computationally expensive approach, an accurate reference map can be inferred without
using cell compensation approximations. An example of a reference map showing a lane
change maneuver is illustrated in figure 4.16, the corresponding scenario is described in
appendix D.2. The resulting map already indicates the good suitability of the developed
approach to represent the required information: Due to the consideration of the motion
directions in the map cells, the course of the lane-changing vehicle can easily be separated
from the remaining trajectories. As a result, the common motion of the vehicles continuing
straight can be inferred from the confirmed motion cells in the map.

Establishing Comparability

As the quality of both straight and curved interval-based maps needs to be evaluated, the
next step is to generate evaluation features which allow for the comparison of maps with
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4. Representation of Common Object Motion Behavior

different geometries. The key idea of the developed approach is to identify the represented
motion cells along lateral lines in equidistant longitudinal USK distances, as the extraction
from a straight 2DIM is then simplified to the determination of the intervals within which
the sample lines are located. The entire sample generation process for both straight and
curved 2DIMs is shown in figure 4.17. Assuming the evaluation of a curved 2DIM, the

Figure 4.17.: Extraction of evaluation features from straight and curved 2DIMs containing
motion cells.

required information needs to be determined by intersecting the sample lines with the
represented motion cells, as also illustrated in the right part of figure 4.17. The extracted
motion cells along the sample lines can then be used as input features for the comparison
of a reference map and evaluated map.

Calculation of Metrics

As the representation of motion cells within a map interval can be characterized as model-
based object representation, the problem of comparing extracted motion cells is strongly
related to evaluations of multi-target object tracking systems. For this application, the de-
velopment of metrics to quantify the difference between a set of ground truth objects and
determined tracks has been investigated in numerous publications. According to Bashir et
al., they can be classified into frame-based metrics, which are computed independently for
each frame of a sequence, and object-based metrics, which consider the complete trajectory
and lifespan of an object [12]. As the 2DIM motion cells do not obtain a trajectory and
their meaning considerably differs from tracked objects, the analysis of existing implemen-
tations is limited to frame-based metrics. They are mainly derived from the well-known
confusion matrix entries of a binary classifier and calculate the number of True Posi-
tives (TP) (hits), False Negatives (FN) (misses) and False Positives (FP)[12, 150]. By
contrast, the number of correct model-based track absences (True Negatives (TN)) can
only be derived indirectly. Several popular works deal with the incorporation of the de-
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scribed values into a single measure, e.g. the widespread evaluation metrics MOTP3 and
MOTA4 [13].

However, most of these approaches assume an unambiguous association between the
ground truth and tracked objects, which is not tenable especially for the evaluation of
motion cells. Possible association ambiguities are mostly evaluated by object-based met-
rics [151, 153], or by counting the number of multiple assignments, e.g. in case of the
metrics multiple trackers and multiple objects [150]. A more sophisticated approach is
presented by Kasturi et al. in [81]: In order to quantify spatiotemporal overlaps, they
establish an optimal one-to-one correspondence between ground-truth and system output
objects by calculating a metric distance matrix.

The idea of finding an unambiguous mapping between ground-truth and estimated ob-
jects also forms the basis of the newly developed motion cell evaluation metrics. As this
problem corresponds to finding a matching with minimal costs in a complete bipartite
graph, a one-to-one mapping with optimal Mahalanobis Distances can be found by using
the Hungarian algorithm in O

(
n4
)

[157, 92]. The association between reference and es-
timated cells can then be accomplished by comparing the inferred optimal distances to
a predefined threshold. Based on this result, the quantities TPs, FNs and FPs can be
inferred despite possibly unambiguous associations. In order to summarize the obtained
results, these values can further be used to calculate the combined metrics precision and
recall, which represent the number of correctly detected cells in relation to all represented
cells respectively reference cells:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(4.17)

Optionally, both metrics can also be combined into the so called F1-Score [130]:

F1 = 2 · Precision ∗Recall
Precision+Recall

(4.18)

Besides these descriptions of the availability of motion cells, a second evaluation com-
ponent aims to quantify the similarity of the associated cells. For all motion cell state
variables, mean distance values are calculated. They will be denoted as center, border,
angle respectively velocity error and can be quantified either for individual intervals or as
an average value for the complete map.

Experiment 1: Straight motion cell 2DIM quality evaluation

The aim of the first investigation in this section is to analyze and compare the quality
of several straight 2DIMs obtained by real sensor measurements in different scenarios. A
detailed description of the evaluated test cases can be found in appendix D.2, the scenarios
will be referred to as S2a to S2e.
3Multiple Object Tracking Precision
4Multiple Object Tracking Accuracy
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4. Representation of Common Object Motion Behavior

For scenario S2a, a simulated traffic convoy without lateral offsets, figure 4.18 gives an
impression of the characteristic differences between the ideal reference map and the ac-
tually achievable representation. The most obvious deviations in the front section of the
maps result from the available object information: While the reference map incorporates
the knowledge about the entire object dimensions at any point in time, the evaluated map
has to rely on the provided laser and radar sensor measurements. Due to the visibility
conditions in scenario S2a, the laser object list is restricted to the preceding vehicle, the
remaining vehicles can be deduced from the corresponding radar reflection points, which
are neither continuously available nor provide information about the vehicle shapes (see
section 4.3.1).

Figure 4.18.: Comparison of reference (top) and test map (bottom) in scenario S2a.

In order to generate comparable evaluation features, the previously introduced sampling
mechanism was configured to extract motion cell information at a distance of 1 m in the
range between 25 m behind and 75 m in front of the vehicle. If we apply the developed
metrics to compare the extracted samples, the resulting values reflect errors caused by
sensor measurements and the developed processing algorithms. Figure 4.19 shows the
development of several selected metrics during an exemplary recording of S2a. Due to the
absence of false positive motion cells in all resulting maps, the precision value is constantly
1, whereas the recall value fluctuates around a rate of 0.8. As the visibility conditions are
constant in the analyzed scenario, all depicted metrics are relatively stable over the entire
recording. The average distance error of the estimated motion cell centers is below 0.2 m,
the average border error below 0.5 m, the average alignment error below 3◦.
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Figure 4.19.: Resulting evaluation metric values in scenario S2a.

109



4. Representation of Common Object Motion Behavior

For a better understanding of the resulting values and the underlying differences between
reference and evaluated maps, figure 4.19 also illustrates the average precision and recall
values along the longitudinal sampling positions. According to that, the recall value
decreases with an increasing distance from the vehicle, which indicates that the deviations
between both maps are mainly caused by the limited detections of the applied sensors in
large distances. For all sample lines below a longitudinal distance of 5m to the vehicle,
neither false positive nor false negative motion cells were detected.

The analysis of the remaining scenarios S2b-S2e provided overall similar results, the av-
eraged metric values are summarized in table 4.1. In comparison to S2a, the evaluation
of the scenarios S2b and S2c resulted in increased recall values, which can be explained
by the improved radar sensor detections of laterally shifted preceding vehicles. On the
downside, the evasion maneuver in S2b has a negative impact on the average motion cell
alignment error, whereas the shifted vehicles in S2c decrease the quality of the extracted
lateral positions, which is mainly the result of misinterpreted radar reflection points. Con-
cerning the precision and recall values, the evaluation of S2d provided identical values as
S2a. However, the motion cells originating from the vehicle in the neighboring lane are
sometimes fused with motion cells from the preceding vehicles, which impacts the overall
lateral position errors. The additional consideration of lane change maneuvers in scenario
S2e increased the resulting recall values but also the cell alignment errors due to inaccurate
object alignment estimations during the turning maneuvers. As table 4.1 also indicates,

Scenario F1 Prec. Rec. CE
[m]

BE
[m]

AE
[◦]

VE
[m/s]

CT
[ms]

MR
[kByte]

S2a 0.83 1.00 0.71 0.25 0.45 0.96 0.61 0.11 3.0

S2b 0.88 0.95 0.81 0.19 0.36 1.77 1.02 0.11 3.4

S2c 0.88 0.99 0.82 0.48 0.69 1.08 0.47 0.11 3.8

S2d 0.83 1.00 0.71 0.51 0.69 1.32 0.59 0.12 5.7

S2e 0.92 0.99 0.83 0.29 0.42 2.39 0.49 0.12 5.6

Table 4.1.: Comparison of calculated metric values in different scenarios.
(F1 = F1-Score, Prec. = Precision, Rec. = Recall, CE = Cell Center Error,
BE = Cell Border Error, AE = Cell Angle Error, VE = Cell Velocity Error,
CT = Computation Time 5, MR = Memory Requirement)

the average computation times for the complete 2DIM update cycle were considerably be-
low 0.2 ms. Similar to the occupancy map evaluations, the provided memory sizes refer to
the maximum memory required for the internal data representation during the processing
of a recorded file. For these evaluations, the map size was set to 180 × 40 m (x × y) at a
longitudinal interval discretization of 3 m.

5All computation times in this thesis were measured on a laptop with Intel Core i7-3840QM CPU with
16 GB RAM.
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Experiment 2: Variation of Interval Discretization

In order to investigate the impact of the longitudinal discretization on the map quality,
scenario S2e has been additionally evaluated with different interval height configurations,
this time at a map size of 100 × 40 m. The resulting metric values are summarized in

Interval
Height [m]

F1 Prec. Rec. CE
[m]

BE
[m]

AE
[◦]

VE
[m/s]

CT
[ms]

MR
[kByte]

1 0.90 0.99 0.82 0.27 0.40 2.31 0.49 0.12 10.0

2 0.90 0.99 0.83 0.27 0.40 2.30 0.49 0.12 5.1

3 0.90 0.99 0.83 0.29 0.42 2.39 0.49 0.11 3.5

4 0.90 0.98 0.84 0.29 0.41 2.32 0.49 0.11 2.7

10 0.91 0.96 0.86 0.32 0.45 2.32 0.56 0.11 1.2

Table 4.2.: Comparison of average metric values with different interval height configura-
tions in scenario S2e.

table 4.2. For interval heights between 1 and 4 m, almost identical metric values were
measured, which indicates that the required information can be represented very roughly
in longitudinal traffic scenarios. Negative discretization effects occur at a large interval
height of 10 m, when the cell center, border and velocity errors are slightly increased. The
measured computation times and memory requirements are overall very low, which is also
an effect of analyzing simplified reference scenarios with a limited number of vehicles. The
effects of applying the developed mechanisms in real world traffic scenarios will be shown
section 4.5.3.

All in all, the calculated metric values do not sufficiently represent the ability of the map
to describe longitudinal positions, e.g. the starting position of lane change maneuvers. In
order to represent this information adequately, the interval discretization was set to 3 m
in the remaining experiments.

Experiment 3: Variation of Ego Motion Estimation

The goal of the third investigation is to determine the sensibility of the developed approach
to characteristic ego motion estimation errors. For that purpose, several test scenarios have
been performed by using the conventional ego motion estimation (see section 2.3.1) and
the highly accurate reference system (see section 2.3.3). For the calculation of the metric
values, the map interval height has been set to 3 m, the evaluation samples were drawn at
a distance of 1 m in a range between -25 m and +70 m in the USK. The resulting values
for the test scenarios S2a and S2f are listed in table D.1 in appendix D.3.1.

For scenario S2a, the averaged metric values show hardly any difference. As the ego
vehicle is moving in a straight line in this case, the ego motion estimation errors are
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very low and mainly concern the estimation of the longitudinal movements, which does
obviously not affect the measured map quality. Due to the curve in scenario S2f, the
ego motion estimation becomes more challenging, especially the determination of the yaw
angle differences between two map updates. These errors affect the results of the motion
cell association, consequently also the measured metric values deteriorate, as table D.1
illustrates.

Experiment 4: Decorrelation of input data

The next experiment aims to quantify the effects of using correlated and decorrelated
object data for the estimation of 2DIM motion cells. As already stated in section 4.3.3,
the track decorrelation could only be realized for laser-based object tracks, which were
provided by the introduced object tracking module (see section 2.3.2). For the evalua-
tion, scenario S2e has been tested with two different approaches: In the first approach,
the estimated object states were directly used as input data for the motion cell estima-
tion, whereas in the second approach, they were replaced by the calculated equivalent
measurements, according to the equations derived in section 4.3.3.

The resulting metric values in table D.2 in the appendix do not indicate a clear advantage
of one of both strategies. While the lateral distance errors marginally increase when using
object tracks, the precision and recall values deteriorate when using equivalent measure-
ments. This particular disadvantage can be explained by missing object detections, which
may be compensated by predicted hypotheses in case of using tracked objects. On the
other hand, using correlated input data and hence violating the KF application require-
ments only has little effect on the resulting map qualities, which can be attributed to the
strong influence of the measurements to the provided object hypotheses and their par-
tially inaccurate error covariance values, as already suggested in section 4.3.3. Concerning
the computation times, the calculation of equivalent measurements causes a manageable
additional effort.

Experiment 5: Different Modeling of Longitudinal Information

In chapter 4.4.1, two different strategies for modeling longitudinal information in motion
cells have been proposed: A simplified approach, in which the longitudinal information
is reduced to a single offset value per cell, and a more complex variant, in which the
longitudinal extent of the center line is modeled by a start and end point. For a better
understanding of both strategies, figure 4.20 compares two exemplary maps recorded in
scenario S2f. For the sake of clarity, the visualization is restricted to the motion cell
center lines in both cases. While the x-offset positions in the upper map in figure 4.20 are
indicated by a horizontal bar, the lower map illustrates the cells’ longitudinal extent by
two arrows. The main disadvantage of the simplified approach is obvious: Due to the ego
motion compensation in this curved scenario, some intervals contain duplicate cells with
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Figure 4.20.: Comparison of different approaches for modeling longitudinal information in
motion cells: point (top) and line (bottom) approach.

identical lateral positions but different x-offsets. By explicitly modeling the longitudinal
extent of a cell, this effect can be avoided.

The calculated metric values in table D.3 confirm this impression. By using the longitu-
dinal line approach, precision and recall ratios as well as the average state variable errors
are improved. On the downside, this strategy also increases the memory demand and
computation times. Although the measured figures are still very low, the calculation ef-
fort increases by approximately 30 %. As already indicated in section 4.4.1, both maps in
figure 4.20 lead to identical convoy track extraction results, as the developed extraction
algorithm is robust against duplicate cells and gaps.

Experiment 6: Curved 2DIM evaluation

The great advantages of attaching a map-based representation of common object motions
to the road infrastructure can be recognized from the example in figure 4.21. The illus-
tration compares two different 2DIMs which have been created during the approach of
a roundabout. While the straight map in the upper part of the figure is carried along
the ego vehicle, the curved 2DIM in the lower part of the figure has been attached to
the approached roundabout. For this experiment, the information about the position and
radius of the roundabout originated from a preceding measurement with a highly accu-
rate localization system. Similarly, the required parameters can also be inferred by using
onboard sensors and digital map information [131].
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Figure 4.21.: Comparison of straight (top) and curved (bottom) 2DIM at a roundabout
scene.
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The comparison of both maps illustrates the advantages of aligning the 2DIM intervals
orthogonal to the road direction. In case of the straight map, the crossing vehicles move
parallel to the interval direction, which complicates the association and interpretation of
the emerging motion cells. By contrast, the curved map alignment allows to conveniently
accumulate the common motion of the surrounding vehicles and the extracted convoy
information can e.g. be used to determine the exits from the roundabout.

This qualitative impression can be confirmed by the resulting evaluation metric values in
the curved scenario S2f, see table 4.3. For this experiment, the alignment of the curved
map was based on a simple estimation of the future trajectory depending on the current
ego yaw rate. All listed map quality metric values show an improvement by applying the

Approach F1 Prec. Rec. CE
[m]

BE
[m]

AE
[◦]

VE
[m/s]

CT
[ms]

MR
[kByte]

Straight 2DIM 0.79 0.81 0.77 0.72 0.85 2.98 0.48 0.11 3.0

Curved 2DIM 0.83 0.89 0.78 0.70 0.83 2.80 0.48 0.11 7.9

Table 4.3.: Comparison of average metric values with straight and curved 2DIM in scenario
S2f.

curved mapping approach. Of course, the description of the curved interval geometries also
considerably raises the memory consumption of the map. Concerning the computation
times, a similar value was measured for both variants, which can be explained by two
effects which offset each other: On the one hand, the curved map requires more complex
coordinate transformations, on the other hand, the compensation effort of transferring
motion cells across interval borders is reduced.

4.5.3. Qualitative Evaluation in Traffic Jam Scenarios

Besides the quality evaluations in artificial reference scenarios, the detection and processing
of convoy tracks has been tested extensively in complex real-world scenarios to improve
the perception of the road infrastructure. In the secondary environment perception, the
resulting information can be considered as an additional input to infer corridors, within
which an automated vehicle has to stay. This especially offers the advantage of replacing
missing information and validating the plausibility of conventional information sources for
lateral vehicle control e.g. detected road markings from camera images or road boundaries
in occupancy maps. As the details about the further processing of convoy information
would exceed the scope of this thesis, the interested reader is referred to the publication
[BHN+12], which presents a rule-based algorithm for fusioning convoy track, road marking
and road boundary information.

A characteristic traffic situation, in which the additional consideration of convoy tracks
turned out to improve the robustness of the lateral vehicle control are highway traffic
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Figure 4.22.: 2DIM with motion cells and extracted convoy tracks (thin blue lines) in a
highway traffic jam scenario.

jams. In these situations, the detection of road markings and road boundaries is especially
complicated due to occlusions by surrounding vehicles. Furthermore, the collective motion
of the vehicles may also deviate from the lanes that are defined by the road markings, as
already introduced by the accident scene example in figure 1.7.

Due to the high number of surrounding vehicles in traffic jam scenarios, the developed
approach usually succeeds in detecting convoy tracks in both ego and neighboring lanes.
Figure 4.22 shows an example of a 2DIM and the extracted convoy track center lines
in a three-lane highway traffic jam. The major differences in the obtained test results
mainly concern the preview length of the detected convoy tracks. Lane change maneuvers,
changing occlusion conditions and the described effects of the radar reflection points can
complicate the correct association of the motion cells at large distances.

An important measure to improve the extracted convoy track lengths in these situations
has already been outlined during the definition of the motion cell state vectors (see section
4.2.2): By incorporating the motion direction and velocity for the association of new object
measurements to existing motion cells, the separation of different queuing lanes can be
simplified. To give an impression of the impacts of this enhancement, figure 4.23 compares
two 2DIMs obtained with and without using object velocities for the association decisions.

In comparison to the artificial reference scenarios, the high number of surrounding vehicles
in traffic jams also causes slightly increased resource requirements. During the tests, the
maximal memory demand for the internal representation of the map was about 17 KB
whereas the average computation time was below 0.2 ms.
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a) b)

Figure 4.23.: Resulting 2DIMs in a highway traffic jam scenario a) without and b) with
using velocities for the association decisions.

4.5.4. Summary

Based on the described experiments, the following conclusions concerning the previously
identified goals of the evaluation can be made:

• The developed concept of mapping common object motions in a 2DIM and extracting
continuous convoy tracks succeeded in gaining the required information in artificial
reference scenarios and real world traffic jams.

• When comparing the reference maps to 2DIMs with radar- and laser-based motion
cells, the following main differences can be observed:

– Due to occlusions, the estimation of motion cell borders is usually restricted to
the direct environment of the vehicle.

– In comparison to the reference maps, also the preview area of the estimated
motion cell centers is reduced, as the radar sensors are not able to reliably
detect all surrounding occluded vehicles.

– In large distances, the uncertainties about the actual positions of the radar re-
flection points can lead to wrong associations and consequently reduced convoy
track preview lengths.

– Inaccuracies in the provided object motion directions from the laser and espe-
cially radar sensors can lead to difficulties in separating lane change maneuvers
from convoys.

• In longitudinal traffic scenarios, the characteristic ego motion estimation errors did
not have a negative impact on the 2DIM quality. In curved scenarios, inaccurate
estimations of the vehicle’s yaw movement may impede the motion cell association
and hence deteriorate the mapping results.
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4. Representation of Common Object Motion Behavior

• In all tests, the measured computation times of the mapping process were below 0.2
ms, while the memory demand for the internal map representation was below 20
KB. Both quantities are very low, even in the context of automotive control units.

• The decorrelation of laser-based object tracks improved the motion cell state vector
errors in the artificial reference scenarios. In real-world scenarios, no characteristic
visual differences could be determined.

• The explicit modeling of the motion cells’ longitudinal extent improves the map
quality at the expense of also increasing the computational requirements. However,
the advanced and simplified compensation approach lead to similar convoy track
extraction results.

• Similar to the representation of occupancy information, the curved mapping ap-
proach demonstrates great potential, as the mapping results are improved, the com-
pensation effort is reduced and the interpretation of the represented information is
further simplified.

Beyond that, the general approach of inferring convoy tracks from common object motion
turned out as an essential additional input for the behavior generation of highly automated
vehicles. Especially in dense traffic application scenarios, the additional consideration of
convoy track information significantly improved the robustness of the vehicle’s lateral
control.
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5. Combinations of Map-based Environment
Representations

In the preceding chapters, the conventional grid mapping approach has been enhanced
to a new generic map-based environment representation, which is capable of describing
occupancy states and moving object motions. These advancements raise the question
of how to integrate several map-based environment representations into the environment
perception architecture of a highly automated vehicle. The aim is to optimally apply the
newly developed approaches with regard to the identified representation characteristics
and the overall requirements on the environment perception process.

5.1. Related Works

In the literature, several strategies concerning the combination of multiple occupancy grids
for robotic and ADAS applications can be found. In one of the first publications about
occupancy grid mapping [45], Elfes proposed a system architecture for mapping unstruc-
tured robot environments, which is also depicted in figure 5.1. He introduced a multi-level

4.3. The  Resolution  Axis 

Finally, along the Resolution Axis,  we again start with the Sensor- 
Level  Local  Map and generate a progression of maps with  increasingly 
less detail. This allows certain kinds of computations to be performed 
either at lower levels of resolution with correspondingly less 
computational expense, or else enables operations at coarser levels to 
guide the problem-solving activities at finer levels  of resolution. 

The most detailed sonar maps that can be obtained from the method 
outlined in  Section 3 (considering the intrinsic limitations of the sensors) 
have a  cell  size of 0.1 X 0.1 ft  , For navigation purposes, we have 
typically been using a 0.5 ft grid for indoors and a 1.0 ft grid for 
outdoors. Nevertheless, several operations on the maps are expensive 
and are done more quickly at even lower levels of resolution. For these 
cases we reduce higher resolution maps by an averaging process that 
produces a coarser description. One example of an application of this 
technique is  the  Map Matching procedure described in [ll], where two 
Local  Maps bcing compared with each other are first matched at a  low 
level of detail. The result then constrains the search for a  match at  the 
next higher level of resolution. 
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Figure 4-1: Multiple Axis  of Representation of Sonar Maps. 

4.1. The  Abstraction  Axis 

The first kind of sonar map built from the sonar range data uses the 
Probabilisfic representation described earlier. A two-dimensional grid 
covering a limited area of interest is used. This map is derived directly 
from the interprctation of the sensor readings and is, in  a  sense, the 
description closest to the real  world. It serves as the basis from which 
other kinds of representations are derived. Along  the Abstraction Axis, 
this data-intensive description is also defined as the Sensor Level Map. 

The next level  is  called the Geomefric Level. It is built by scanning the 
Sensor  Level  Map and identifying blobs of cells with  high OCCUPIED 
confidence factors. These are merged into uniquely labeled objects with 
explicitly represented polygonal boundarics. If nccded, the same can be 
done with ~ M F ~ Y  areas. 

The third is thc Symbolic Level, where maps of larger areas (typically 
Global Maps) are described using a graph-like representation. This 
description bcars only  a  topological equivalence to the real  world. Nodes 
represent "interesting" areas, wherc more dctailed mapping information 
is necessary or available,  while edges correspond to simpler or 
"uninteresting" areas (navigationally spcaking), such  as corridors. 

Different kinds of problem-solving activities are better performed on 
different levels of abstraction. For example.  global path-planning (such 
as how  to get from one building wing to another) would be done on the 
symbolic  level,  while  navigation through a  specific  office or lab uses the 
sensor-level  map,  where  all the detailed information about objects and 
free space, as well  as the associated certainty factors, is stored. 

4.2. The  Geographical  Axis 

In order to be able to focus on specific geographical areas and to 
handle portions of as  well as complete maps, we define a hierarchy of 
maps with  increasing degrees of coverage. Progressing along the 
Geographical Axis, we start with Views, which are maps gcnerated from 
scans taken from the current position,, and that describe the area  visible 
to the robot from that place. As the vehicle  moves,  several Views are 
acquired and integrated into a Local Map. The latter corresponds to 
physically delimited spaces such as labs or offices,  which define a 
connected region of visibility. Global Maps are sets of  several Local 
Maps, and cover  wider  spaces  such  as  a  whole  wing of a building, with 
labs, offices, open areas, corridors, etc. 

5. Overall  System  Architecture 
To provide a context for these multiple dcscriptions, we prescnt in this 

Scction the overall architecture of the Bolpllitl Sonar-Based Mapping and 
Navigation system (Fig. 5-1). The function of  the major modulcs and 
their interaction with the various sonar map representations [7] is 
described below: 
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Figurc5-1: Architecture of the Sonar Mapping and Navigation 
System. 
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Figure 5.1.: Multiple axis of occupancy map representations, from [45].
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5. Combinations of Map-based Environment Representations

description of the surrounding occupancy states by several maps that differ along an ab-
straction, geographical and resolution axis. In this terminology, the accumulation takes
place in the sensor-level local map, which can be restarted with either increased or de-
creased resolution if desired. Similar to the introduced extraction concept (see figure 1.5),
representations with higher levels of abstraction are inferred to fulfill the requirements of
the path planning. Along the geographical axis, several local maps can be combined to a
global map which covers wider spaces, e.g. the robots entire field of application.

Related concepts can also be found in more recent publications. In general, tree-based
mapping approaches, whose advantages and disadvantages have been analyzed in detail in
section 3.1, can be interpreted as a combination of several maps which have been varied
along the resolution axis. Montemerlo and Thrun introduced a similar approach called
multi-resolution pyramids for outdoor robot terrain mapping, in which the subdivision
into multiple representations becomes more obvious [107]. In order to improve the real-
time capability and to optimize the memory consumption of mapping applications, further
variations along the geographical axis have been proposed. In [89], Konrad et al. presented
a subdivision of the overall mapped area into grid patches, whose locations are identified
in a global coordinate system. Whenever the vehicle leaves a grid patch, the left patch
is written to the hard disk and a new patch is initialized or reloaded depending on the
vehicle’s previous locations. With the same objective and mechanisms, Wang proposed to
generate several stationary local maps along the trajectory of a vehicle [178]. Besides that,
several independent object-local maps are used to accurately describe the shape of moving
objects. The idea of attached object-local maps has also been presented in [140, 42, 5].

To the author’s knowledge, the presented approaches concerning this matter are restricted
to the introduced combinations of multiple occupancy grids. Although grid-based maps
have also been used for other contents, e.g. to represent road markings [70], height informa-
tion [72, 16] or perspectively mapped camera images [88], a combination and simultaneous
estimation of these map contents has not been considered so far. Due to the restriction to
grid-based representations, combinations of maps with different geometries have neither
been investigated in existing approaches.

5.2. Architecture of Combined Representations

The underlying idea of the developed approach is to consider the entire map-based en-
vironment representations as a set of several map instances, which, themselves, contain
multiple map layers with different contents. One exemplary realization of this concept is
illustrated in figure 5.2.

The contained map instances can use different environment discretizations, either the
conventional grid-based or the newly developed interval-based approach. All included
map layers have to conform to the chosen discretization type, but may offer deviating
resolutions, at least within certain limitations that will be derived in the following section.
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Figure 5.2.: Exemplary combination of several map-based environment representations.

Besides the previously introduced map contents about occupancy information and moving
object motion, an existing implementation for the accumulation of perspectively mapped
brightness transitions in camera images [Dü15] has been used for the evaluation of the
developed concept.

The location of a map instance can be defined either in the global coordinate system,
which results in a stationary environment representation, or in the USK, which yields an
ego-local representation, as the reference system is carried along one’s own vehicle. In the
illustrated example, the high-resolution grid in the lower part of the figure is assumed to
be stationary, while the remaining map instances are attached to the vehicle. Globally
fixed maps are especially useful to represent detailed knowledge about stationary points
of interest. On the other hand, ego-local maps allow for providing representations with
constant preview areas and comparatively low memory requirements.

Overall, this concept offers several advantages for the application in the environment per-
ception of a highly automated vehicle: Due to the combination of map instances with
different representation types, the developed approaches can be deployed according to
their identified strengths and weaknesses as well as the available computational resources.
Furthermore, the aggregation of several ego-local and stationary maps allows to consid-
erably improve the scalability of the entire map-based environment representation, which
has been identified as an essential requirement earlier in this thesis. By considering sev-
eral map layers within the map instances, the represented environment features can be
estimated under consideration of the remaining map layers and hence mutually benefit.

The following sections first explain the combination of layers with different contents within
a map instance. Afterwards, the aggregation of multiple map instances and the transfer
of information between them will be discussed. Both major sections follow the general
structure that was provided in the introduction, see figure 1.9.
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5. Combinations of Map-based Environment Representations

5.3. Combinations of Map Layers

The motivation for estimating multiple map-based environment representations within a
single module is to prevent the repeated execution of common tasks, e.g. buffering and
interpolating ego motion data, and to improve the estimation of the represented environ-
ment features. A key aspect in improving the representations’ estimation is to enable an
easy and efficient access between different map contents. In this regard, the combina-
tion of several content layers within a single map module in the environment perception
architecture offers two major advantages. First, the information between the layers can
be exchanged without causing additional data transmission effort, which is an important
aspect especially due to the memory demands of map-based representations. Second, the
module-internal layer integration enables to ensure special constraints concerning the com-
pensation and geometries of the layers, which can be used to simplify the comparability
of the represented map cells.

The developed concept allows differing cell sizes in the map layers, but requires that the
ratio between each two discretization sizes is a whole number. Furthermore, it specifies
that all map layers are equally compensated and hence provide a consistent alignment at
any point in time. Assuming an example configuration with two GM layers with large
and small cell sizes (see figure 5.3 a), these rules guarantee that the area of any larger cell
can always be congruently represented by a fixed number of small cells. Consequently,
the probability value that corresponds to a large cell can be inferred by simply averaging
all determined small cell probabilities, without using further interpolation calculations.
These principles can be applied to both grid- and interval-based map representations. In
case of the 2DIM these rules refer to map interval sizes, whereas in case of the GM the
cell sizes are regulated. An illustration of possible map layer configurations can be found
in figure 5.3.

a) b)

Figure 5.3.: Possible configurations of a) grid- and b) interval-based layer discretization
sizes.

122



5.3. Combinations of Map Layers

5.3.1. Development of Sensor Models and Update Mechanisms

In order to enable a mutual access between layers with different contents, the map instance
has to be extended to include layer-specific coordinate system locations USK PLi . If the
update of map layer i can be improved by considering the estimated environment feature
in layer j, the first step is to infer the pose between the layers’ coordinate systems:

Lj PLi = Lj PUSK · USK PLi (5.1)

For reasons of efficiency, this static pose can be calculated before the map update takes
place in each processing cycle. In case of a GM, this pose is used to transform the corner
coordinates of a cell in layer i to layer j. Due to the previously described constraints, this
transformation either yields a single cell in layer j or defines the corners of a rectangular cell
grid, whose probability values can be averaged. In case of the 2DIM, the pose between
the layers can be used to determine the corresponding map interval in layer j. The
required interval cells have to be determined by comparing the continuous lateral cell
border positions.

The so inferred existence probability of the environment feature x(j) can be taken into
account for the estimation of existence probability of feature x(i). Formally, the additional
feature consideration modifies the required probability density to:

p(x(i)|z1:k) =
∑
x(j)

p(x(i)|x(j), z1:k) · p(x(j)|z1:k) (5.2)

= p(x(i)|x(j), z1:k) · p(x(j)|z1:k) + p(x(i)|¬x(j), z1:k) · (1− p(x(j)|z1:k)) (5.3)

Whereas the term p(x(j)|z1:k) is given by the represented probability values in layer j,
the remaining terms would require further recursive estimation processes, e.g. by using
the inverse sensor model equations (A.56) and (A.57). The additional estimations of both
values would increase the original computation time and memory demand by roughly a
factor of three. An application of the efficient log-odds estimation scheme would further
require repeated back-transformations of the resulting log odds ratios in order to determine
the finally desired probability p(x(i)|z1:k) according to equation (5.3). Especially in case
of large grid-based representations, this additional effort heavily impacts the real-time
capability of the entire approach. Therefore, the incorporation of additional environment
features was limited to simplistic rule-based adaptions of the conventional inverse sensor-
model probabilities in the experiments for this section.

5.3.2. Development of Mechanisms for Spatio-Temporal Consistency

The consideration of multiple map layers further requires to adapt the compensation
mechanisms of ego local maps. In order to assure an identical alignment of the compared
cells, all map layers have to be simultaneously compensated before any update takes place.
The same principle applies to the compensation of the curved 2DIM due to a changed
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5. Combinations of Map-based Environment Representations

reference path. The entire sequence of processing steps within a map instance is illustrated
in figure 5.4. In contrast to a separate mapping of different environment features, the
repeated compensation of all map layers increases the combined computational effort of
all map-based representations. However, due to the efficiency of the introduced grid-
and interval-based map compensation mechanisms, the advantages of the simplified access
between the map layers outweigh this additional compensation effort.

Ego Motion Compensation

Ego Motion Compensation

Li Lj

Li Data

Map Instance

Layer 

Update

Layer 

Update

Lj Data

T
im

e

Figure 5.4.: Compensation procedure in multi-layer map-based environment representa-
tion.

5.3.3. Exemplary Application

Possible improvements of simultaneously estimating several map content layers can be
found in an example illustrated in figure 5.5. In the first layer of this map instance,
conventional laser-based occupancy states were mapped. The second layer was used to
accumulate unspecific brightness transitions [112], which were detected in camera images
and projected onto the map ground plane. This information can be used to detect the
borders of accessible road areas, as e.g. the boundaries of road surfaces and ground veg-
etation typically result in camera image brightness transitions [Dü15]. However, these
transitions can also be detected on elevated obstacles, e.g. preceding vehicles or roadside
structures. In this case, the information of the occupancy layer can be used to improve
the estimation of the desired environment feature: As elevated objects are represented by
occupied areas in the first map layer and the required road surface boundaries are located
on the assumed ground plane, the update of the brightness transition layer can be reduced
to free areas. Figure 5.5 compares the resulting representations c) with and d) without
additionally considering occupancy layer information. The illustrated maps demonstrate
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a)

b)

c) d)

Figure 5.5.: Comparison of a) occupancy representation and brightness transition maps c)
with and d) without using occupancy information. b) shows the corresponding
video screenshot.
Similar to the occupancy map, bright green colors in the brightness transition
map indicate high existence probabilities of relevant transitions.
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5. Combinations of Map-based Environment Representations

that the combination of both layers significantly reduces the number of unfeasible bright-
ness transitions on the side of the road. Consequently, the results of the subsequent road
infrastructure detection can be improved.

5.4. Combinations of Different Representations

Having identified the internal structure of grid- and interval-based map instances, the fol-
lowing sections propose an approach for the aggregation and interaction of several map
instances, which is another major contribution of this thesis. As ADAS functions typically
have different perception requirements within certain areas in the vehicle’s environment,
a combination of multiple map instances can help to decrease the resulting computational
effort while still providing sufficiently accurate data. By this strategy, one of the main dis-
advantages of solely grid-based environment representations can be eliminated. In order to
achieve this goal, the first task is to extend both grid- and interval-based representations
to support uniformly configurable map locations within the vehicle’s environment. The
quality of a combined representation can then be improved by transferring information
about common environment features between neighboring map instances. For that pur-
pose, virtual sensor models, which transform environment features between different kinds
of representations, have to be developed. Finally, the previously introduced compensation
mechanisms have to be enhanced in order to assure the spatio-temporal consistency of the
combined representations while taking into account possible correlation issues.

5.4.1. Flexible Positional Relationships of Representations

In the previous course of this thesis (see section 3.1), existing occupancy grid approaches
have been reviewed concerning their suitability for ego-local representations. The ego
compensation mechanism presented by Bouzouraa and Weiss [16, 182] turned out to be
particularly efficient for this purpose. Their approach is based on locating the vehicle
in the map’s middle cell and compensating translational movements by shifting a two-
dimensional circular buffer, whereas rotational changes are used to adapt the alignment of
the vehicle to the data structure. In the following, this mechanism will be extended and
common positioning principles for both available representations will be developed, which
is an essential prerequisite for the realization of flexible combined map-based representa-
tions.

In order to provide a consistent formal description, the location and temporal behavior
of a grid map will also be described by using the pose MapPUSK . The movement of the
vehicle between two time steps k and k + 1, which corresponds to the modification of the
USK, changes this pose in the following way:

MapP(USKk+1) = MapP(USKk) · (USKk)P(USKk+1) (5.4)
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Depending on the desired behavior of the map, there are two possible ways to deal with
the updated pose. In case of a stationary map, this pose and the corresponding map data
structure do not need to be further modified. In this way, the map can be located at a
fixed global position, to which the ego vehicle moves relatively.

In case of an ego-local map, the data structure has to be compensated until the result-
ing pose (Mapk+1)P(USKk+1) satisfies the predefined criteria. Assuming the compensation
principle from [16, 182], this criterion corresponds to the requirement that the vehicle has
to be located at the center of the map. Consequently, the map’s circular buffer is shifted
until the pose’s translational component conforms to the middle cell. This approach can
also be extended to enable larger or smaller preview widths than half the map size. In this
case, the ego compensation mechanism consists of two steps, as also illustrated in figure
5.6:

• In the first step (see figure 5.6 b), the desired ego vehicle cell has to be determined
under consideration of the required preview area by virtually rotating the map center
around the vehicle.

• In the second step (see figure 5.6 c), the map’s circular buffer is shifted until the
desired center cell reaches the actual center of the map.

a) b) c)

Time Step k-1 Time Step k Time Step k

Ego Rotation Compensation

Adopted Cell

Resetted Cell

Desired Map 

Center

Figure 5.6.: Compensation of ego-local grid maps with increased preview area.

Due to the fixed coupling of the map’s orientation to the ego vehicle, the developed ego
compensation mechanism for the straight 2DIM is slightly more complex. The rotational
component of the pose between map and USK is eliminated in every update cycle by
rotating back all represented cells. The translational changes of the pose are compensated
by laterally shifting the map cells and longitudinally shifting the map’s circular interval
buffer. With this technique, ego-local 2DIMs can also be located with arbitrary trans-
lational offsets to the ego vehicle. Similar to grid-based maps, this principle can easily
be extended to enable stationary interval-based representations. In this case, the pose
between map and USK is updated in every processing cycle without changing the map
contents.

By using the introduced methods, several ego-local and stationary map instances of differ-
ent types can be aggregated. Figure 5.7 shows an example of grid- and straight interval-
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Figure 5.7.: Illustration of coordinate systems and poses for stationary and ego-local GMs
and 2DIMs.
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based map instances including their coordinate systems respectively poses and illustrates
the different behavior of ego-local and stationary map instances in two consecutive time
steps. Curved 2DIMs will not be considered for the combination of map instances in this
chapter, as their location and geometrical configuration are defined by the reference path
estimation module and hence cannot be modified. However, the derived principles can
easily be adapted to incorporate curved 2DIMs.

5.4.2. Development of Sensor Models and Update Mechanisms

During the operation of aggregated map-based representations, several contained map in-
stances may temporarily or permanently overlap. In these situations, overlapping map
instances can be used as a virtual sensor in addition to the already available sensors. If
this transfer correctly considers the requirements for fusing estimated environment states
and the characteristics of the contained representations, the quality of the combined repre-
sentation can be further improved. Therefore, the following section deals with the question
of how to exchange map contents while avoiding the fusion of correlated state estimates.
Afterwards, the required algorithms for transforming contents from different representa-
tions will be developed. While a transfer between two transformed regular grids can be
accomplished by well-known image transformation techniques (e.g. bilinear interpolation),
the transformation between grid- and interval-based contents requires to develop new algo-
rithms, which correctly consider the represented uncertainties and satisfy the introduced
computational requirements. The examples and illustrations in this section are restricted
to the combination of several occupancy representations, as both grid- and interval-based
map instances for this application were developed and described in the previous course of
this thesis. However, the derived principles can easily be adapted to other map contents,
e.g. motion cells or video-based brightness transitions.

Exchanging Map Contents

Each individual map instance accumulates the knowledge about the contained environment
features by using all available sensor measurements up to the current time step. Similar
to the previously discussed track-to-track fusion applications (see section 4.3.3), the cross-
correlation of the estimated map states has to be considered when exchanging information
between map instances. The impact of neglecting this correlation is best explained by using
the example illustrated in figure 5.8. This figure shows a grid cell that incorporates the
state estimate of an overlapping interval cell for its own estimation of the same environment
feature in every cycle of the system. As both cells use the same sensor measurements,
the state estimates at time step k share a common measurement history and are thus
correlated. As the illustrated measurement histories in the lower part of the figure show,
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Figure 5.8.: Impacts of neglecting common measurement histories of exchanged map con-
tents.

exchanging the correlated estimates leads to a systematic overvaluation of previous sensor
measurements in the resulting grid cell state. Due to this imbalance, the final resulting
state estimate deteriorates by additionally incorporating information from overlapping cell
states.

Nevertheless, the proposed concept of aggregating multiple ego-local and global map in-
stances offers several opportunities to exchange information between map cells without
common measurement histories. If we consider an ego-local GM instance as illustrated
in figure 5.9, the movement of the ego vehicle causes a repeated reinitialization of those
cells, which are appended in front of the data structure. As the recursive state estimation
equation A.68 suggests, these cells are initialized with the a priori existence probability of
the considered environment feature, which is typically chosen to be 0.5. In this situation,
the state of an overlapping map cell can be incorporated without causing the problem of
fusing estimates with common measurement histories. As can be seen in figure 5.9, the
overlapping cells’ content from the previous system cycle can serve as previous knowledge
for all new cells. If this information exchange is limited to the initialization of a new cell,
it can be guaranteed that all sensor measurements are only incorporated once.

In the same way, this principle can also be used to generate previous knowledge for newly
appended intervals in ego-local 2DIMs or newly created stationary map instances. More

k-1Time Step

Map Cells

Measurement Histories

- Without Transfer

- With Transfer

k

1 k-1...1 k-1...

k+1

1 k...k 1 k-1... 1 k+1...k k+1

1 k-1... 1 k...k 1 k+1...k k+1

Figure 5.9.: Impacts of using overlapping map content a priori knowledge for newly ini-
tialized map cells.
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generally, this method can always be applied when a map instance requires a priori knowl-
edge in areas where another map instance exists. The beneficial effects of replacing the a
priori probability by previous knowledge from overlapping map instances will be evaluated
in section 5.4.4.

Virtual Interval Sensor Model for Grid-Based Maps

The task of the virtual interval sensor model is to transform the content of a 2DIM
interval into a number of newly initialized square cells of a GM. As the example in
figure 5.10 illustrates, the eligible cells can be located either completely or partially within
the interval borders. In order to avoid complex intersection calculations, the developed
approach unambiguously assigns the grid cells to single 2DIM intervals depending on their
center position. Due to the comparably small grid cell sizes, this approach turned out to
be sufficiently accurate. The center and corner coordinates of each so determined grid cell
can be transformed into a 2DIM interval coordinate system by using the following poses:

I(n)
p = I(n) PUSK · USK PGrid · Gridp (5.5)

The entire computational effort resulting from these coordinate transformations can be
reduced by making use of the constant distances between the nodes of a rotated regular
grid. Due to this characteristic, it is sufficient to transform the coordinates of a single cell
and to determine the translation between the cells in the target coordinate system. The
coordinates of the remaining cells can then be inferred by combining the transformed cell
and the resulting transformation vector, as also illustrated in the left part of figure 5.10.

P

y

a) b) c)

Figure 5.10.: Virtual sensor model for transferring information from interval- to grid-based
representations.

Having identified the coordinates of the cell corners in a 2DIM interval coordinate system,
a minimum and maximum lateral position of the cell can be determined. Based on these
borders, the required probability value can be deduced from the represented interval cells.
In doing so, the different representations of occupancy state uncertainties have to be con-
sidered: While the 2DIM cells explicitly describe an uncertainty about their lateral borders
by quantifying a variance, the GM implicitly represents this information by gradations of
the cell probabilities. Therefore, the previously introduced probability profile along the
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interval’s y-axis (see section 3.2.2, equation (3.12)), which incorporates both occupancy
probabilities and border variances, should be used for this purpose. An exact calcula-
tion of the average probability value in the lateral range of the grid cell would require to
determine the integral of the probability profile, as illustrated in the right part of figure
5.10. In view of the complexity of the probability profile equation (3.12), the developed
implementation uses a simplification to estimate the required probability. The evaluation
of the probability profile is restricted to the lateral start and end position, the required
probability results from averaging both values. Furthermore, only directly adjoining bor-
der variances are considered for the calculation of the probability profile equation (3.12).
Due to the low influence of more distant borders and the overall limited grid cell sizes,
this approximation provides sufficiently accurate results.

Virtual Grid Sensor Model for Interval-based Maps

In contrast to the previous case, the target data structure does not provide predefined cell
sizes and equidistant sampling locations when transferring information from grid-based
representations to a newly initialized 2DIM interval. The introduction of an artificial
lateral sampling rate would eliminate the major advantage of the continuous cell border
positions in interval-based representations. Consequently, the task of the virtual grid
sensor model is to determine both the existence probabilities and lateral extents of interval
cells from overlapping grid cells. In addition, the variances of the detected borders have
to be specified by analyzing the gradation of the grid cell probabilities.

The developed transfer algorithm is based on a repeated application of Bresenham’s line
algorithm, a well-known line rasterization technique from the area of computer graphics,
which is e.g. in [74] described in detail. This approach is particularly suitable for an
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y y

a) b) c) d)

Figure 5.11.: Virtual sensor model for transferring information from grid- to interval-based
representations.

efficient analysis of grid-based environment representations, as it is restricted to integer
additions, subtractions and bit shift operations. In order to extract the grid map content
according to the alignment of a 2DIM interval, the first step of the developed algorithm is to
determine a Bresenham line between the upper corners of the interval, as also visualized
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in figure 5.11 a). Similar to the previous case, the coordinates of these corners can be
transformed by combining the USK poses of both maps. The resulting cells can then be
used to analyze the grid cell probabilities within a certain range of the interval’s y-axis.
For that purpose, these cells serve as start coordinate for another Bresenham line parallel
to the intervals x-axis, which is shown in figure 5.11 part b). As this procedure might leave
gaps between the parallel vertical Bresenham lines, the performance of the algorithm can
be optimized by using the extended Bresenham algorithm, which has been proposed in [16].
In this way, it can be guaranteed that every cell within the interval borders is considered
for the transfer of information between both representations.

Due to the introduced semantics of the 2DIM occupancy interval cells, which requires
that a cell represents the most critical occupancy probability within the enclosed area, the
maximum probability values along the vertical Bresenham lines have to be determined for
the further processing. Thus, the final result of the rasterization process is a polygonal
chain describing the probability profile along the interval’s y-axis, as illustrated in part c)
of figure 5.11. The lateral distances between the chain’s nodes depend on the discretization
of the grid and the alignment between both representations. In case of equally aligned
grid and interval geometries, the resulting distances are constant and correspond to the
grid’s cell sizes.

In the last step, the resulting profile has to be converted into multiple interval cells includ-
ing occupancy probabilities, border positions and variances. In doing so, it is important to
limit the number of emerging interval cells, as it significantly influences the computational
and memory requirements of the interval-based representation. Therefore, the determined
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Figure 5.12.: Example of an extracted probability profile polygonal line and the deter-
mined cell-based probability profile.
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probability value transitions should be quantified by cell border variances to the greatest
possible extent. The developed conversion strategy is twofold, figure 5.12 illustrates an
example of an extracted polygonal chain and the determined interval cell probability pro-
file. First, the transitions between homogeneous probability value ranges are identified by
approximating the polygonal chain’s first derivative by the central difference quotient. The
extreme values of the resulting derivative indicate the 2DIM interval cell borders, which
are illustrated by vertical red dotted lines in the example, and can e.g. be determined
by a simple threshold comparison. The determination of the transitions’ variances in the
second phase corresponds to an optimization problem, whose target function is given by
the sum of differences between the extracted probability values and the finally resulting
probability profile function. Once more, the illustrated example emphasizes the advan-
tages of applying the 2DIM for this purpose: Due to the representation of coherent areas
and their transitions, the occupancy states can be described significantly more compact
than in the polygonal chain resulting from the grid-based map.

5.4.3. Development of Mechanisms for Spatio-Temporal Consistency

The newly created possibility to transfer contents between several map instances raises
the question of how to integrate this step into the existing update procedures of the
available occupancy maps. Furthermore, it has to be investigated how the spatio-temporal
consistency of multiple map instances within an aggregated environment representation
can be assured without significantly increasing the computational requirements, especially
in comparison to an individual processing of the involved map instances.

Figure 5.13 shows a generic update cycle for occupancy maps that has been extended by
the optional transfer of overlapping map contents. For both interval- and grid-based rep-

Ego
Compensation

Transfer of 
Overlapping Map

Contents

Prediction of 
Map Cells

Map Update
by Sensor 

Measurements

New
Measurement

Updated 
Map

Figure 5.13.: Extended recursive update cycle of map instance in a combined map-based
environment representation.

resentations, this cycle begins with the compensation of the ego motion. Strictly speaking,
this step also applies to stationary map instances, where the pose between the map and
the vehicle has to be adapted according to the previously derived equations. During the
compensation, several cells or intervals need to be reinitialized as the map’s circular buffer
is shifted. For each of these cells, it can then be investigated, whether the required a priori
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probability can be improved by the content of an overlapping map instance. Whenever the
involved map instances share a common moving object list, the transfer of map contents
may also include the information of the cells’ dynamic states. For this reason, the predic-
tion of the map cell states (see section 3.4.3) should be performed after the transfer took
place, in order to create the possibility to additionally consider the transferred dynamic
cells. Finally, the entire representation is updated with the new sensor measurements and
can be used for display or extraction purposes.

Still, the proposed update procedure does not answer the question of how to deal with
multiple map instances within an aggregated representation. As derived in the previous
section, the transfer of overlapping contents for the improvement of a priori probabilities
requires at least two map instances:

• One map instance, whose ego compensation has led to newly initialized cells that
have not been updated in the current system cycle yet

• At least one overlapping map instance that has not been updated in the current
cycle so that the accumulated knowledge from the last time step can be transferred

This formulation already indicates that the processing order of the individual map in-
stances has a significant impact on the possibilities to exchange map contents. Figure
5.14 shows an example of four aggregated map instances including their positions at two
consecutive time steps. If we consider M (a) and M (b), the map content can only be ex-
changed after the compensation of M (a) has been finished and before the update of M (a)

and the compensation of M (b) takes place. The same applies to the improvement of the a
priori knowledge in map instance M (b) by using the accumulated contents from M (c) and
M (d). A simple approach to guarantee the availability of non-updated overlapping map
information would be to buffer all represented contents before the map instance update
cycle is processed. However, the illustrated example already indicates that this additional
effort can be avoided by conveniently choosing the processing order of the individual map
instances.

In order to autonomously derive this processing order, the expansion areas of all partic-
ipating ego-local map instances need to be determined without executing the actual ego
compensation algorithms. In figure 5.14, the predicted expansion areas are framed by solid
red lines. By intersecting these areas with all overlapping representations, a binary relation
between maps with transfer possibilities can be established. Based on this relation, we can
build a directed graph, whose nodes represent the aggregated map instances, as illustrated
in the lower part of figure 5.14. Whenever the resulting graph does not contain directed
cycles, a topological ordering of the nodes and hence a compensation order of the map
instances can be directly inferred. The determination of graph cycles and the topological
ordering can be solved in linear time by using well-known graph theory algorithms, which
are e.g. described in [157]. In case this analysis reveals the existence of a directed cycle,
the exchange of map contents requires to buffer the content of at least one participating
map instance.
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Figure 5.14.: Influence of the map compensation order onto the possibility to exchange
map contents.

Having determined a final processing order, each substep of the update cycle from figure
5.13 has to be processed for all map instances until the subsequent steps takes place.
Only in this way, it can be assured that overlapping map instances contain the required
information for improving the a priori knowledge of an ego-local representation.

5.4.4. Evaluation

Similar to the evaluation of the newly developed interval-based representation in chapter
3, the beneficial effects of applying an aggregated map-based representation in ADASs
need to be analyzed and quantified. Using the example of occupancy information, this
section will systematically compare selected combined representations to conventional grid-
and interval-based representations. Besides the previously identified goals to evaluate
the quality, resource requirements and the interpretability of the compared maps, the
presented experiments will investigate the following questions:

• Does a combined map-based representation equally satisfy the requirements of an
ADAS function as conventional representations, while simultaneously reducing the
resource requirements?
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• What is the impact of transferring contents between aggregated map instances, on
quality, and on the resource requirements of the entire representation?

In order to determine the quality of combined map-based representations, the previously
proposed map-based evaluation scheme will be reused. As already introduced in figure
3.21, this approach consists of three sub-steps: the reference map creation, the estab-
lishment of comparability and the calculation of metric values. Similar to section 3.5, a
high-resolution occupancy grid, obtained by measurements of the reference system, will
be used as an ideal map for the quality quantification. In contrast to the experiments in
chapter 3, the compared probability values will be extracted with a beam-based evaluation
feature generation technique (see figure 3.22), where the beams have an angular distance
of 1◦ and sample the maps at a distance of 0.2 m. By this strategy, the calculation of the
required probability values in overlapping areas of the aggregated maps simplifies. The
determined probability differences between the reference and evaluated map will then be
rated by the previously introduced metrics map score and weighted sum of squared errors.

Experiment 1: Evaluation with Ideal Sensor Data

According to the approach from chapter 3, the first part of the evaluation analyzes the
limitations of combined grid- and interval-based occupancy representations independent
from the effects of real sensor measurements. The results in this section were obtained
by using ideal reference measurements in the occupancy test scenarios S1a and S1b (see
appendix D.1).

Figure 5.15.: Configuration of evaluated combined occupancy maps. The red box illus-
trates the guaranteed coverage of the grid-based representation.

For the evaluations of the combined occupancy maps, we will assume a required detection
area of 20 m width from 50 m behind to 70 m in front of the vehicle. In the following
comparisons, this area will be covered by a purely grid-based representation, a purely
interval-based representation and three different combinations of both approaches, which
will be denoted as A,B and C. The basic idea of the combined representations is illustrated
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in figure 5.15: Whereas the direct environment of the vehicle is mapped by an ego-local
high-resolution GM, the more distant areas behind and in front of the vehicle are covered
by two separated 2DIMs. In this way, a high accuracy at close range, a large coverage
of the entire map and reduced resource requirements can be achieved at the same time.
The difference between the three options considered lies in the preview area of the central
GM: Configuration A guarantees a grid-based representation within a square around the
vehicle with an edge length of 20 m, whereas configuration B and C provide edge lengths
of 30 respectively 40 m. Due to the rotation behavior of the grid-based representation,
the dimensions of the entire GM have to be larger than the guaranteed preview areas, as
also illustrated in figure 5.15. For detailed derivations of the required map dimensions the
interested reader is referred to [Sei13].

Scenario Map Discr. MS WSE CT MR

(Dimensions in [m]) [m] [ms] [MByte]

S1a

GM 0.2 0.62 0.0060 0.8 2.5

2DIM 1.0 0.60 0.019 0.5 0.05

Comb. A (20×20 GM) 1.0 - 0.2 - 1.0 0.61 0.010 0.8 0.14

Comb. B (30×30 GM) 1.0 - 0.2 - 1.0 0.61 0.0092 0.8 0.27

Comb. C (40×40 GM) 1.0 - 0.2 - 1.0 0.61 0.0088 0.9 0.44

S1b

GM 0.2 0.67 0.0067 0.8 2.5

2DIM 1.0 0.55 0.052 0.5 0.05

Comb. A (20×20 GM) 1.0 - 0.2 - 1.0 0.57 0.039 0.8 0.16

Comb. B (30×30 GM) 1.0 - 0.2 - 1.0 0.59 0.031 0.9 0.28

Comb. C (40×40 GM) 1.0 - 0.2 - 1.0 0.61 0.026 0.9 0.45

Table 5.1.: Comparison of ideal combined occupancy map evaluation metrics in scenarios
S1a and S1b.
(Discr. = Discretization size, cell sizes of GM / interval heights of 2DIM, MS =
Averaged Map Score - Higher values indicate better map qualities, WSE = Av-
eraged Weighted Squared Errors - Lower values indicate better map qualities,
CT = Computation Time 1, MR = Memory Requirement)

Table 5.1 lists the averaged quality metrics and resource requirements obtained by using
ideal reference measurements in the scenarios S1a and S2b. As expected, the ideal quality
values of the combined map configurations range between those of the purely grid- and
the purely interval-based representation, the larger the central GM, the better the inferred
quality assessments. Except the standard 2DIM, all map configurations provided almost
identical computation times for the mapping process, which indicates that the developed
map transfer algorithms do not generate a considerable additional effort. Concerning

1All computation times in this thesis were measured on a laptop with Intel Core i7-3840QM CPU with
16 GB RAM.
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the memory requirements, it appears that the incorporation of any interval-based map
significantly reduces the resulting resource demands.

Experiment 2: Evaluation with Real Sensor Measurements

Similar to chapter 3.5, the aim of the second part of this evaluation is to quantify the
quality of combined occupancy maps obtained by using real laser range measurements
and the standard ego motion estimation module (see section 2.3.1). Unlike in the previous
experiment with ideal measurements, the accumulation of the range measurements has
an important role in this case, which especially allows to investigate the impact of the
transfer of information between the aggregated representations.

Figure 5.16 illustrates the differences between two obtained combined representations with
and without exchanging map contents. By replacing the a priori knowledge of the central
GM by the contents of the front 2DIM, the accumulation of free and occupied areas in
the vehicle’s direct environment is significantly accelerated. For the application of a rear
2DIM as in the proposed configurations, the exchange of estimated map contents is even
an compulsory requirement, as the map is outside the laser sensor’s measurement range.

As the applied 2DIMs use a significantly higher discretization size than the central GM, the
transfer from interval- to grid-based representation has been parametrized with different
weighting factors w, which attenuate the extracted probabilities p2DIM towards the a
priori probability 0.5:

pGM = 0.5 + (p2DIM − 0.5) · w (5.6)

Figure 5.17 compares the map score developments of map configuration A with different
map exchange parametrizations in scenario S1b. First of all, the measured values indicate
a substantial improvement of the map qualities by the developed approach of transferring
map contents between the combined representations. Overall, a direct adoption of the
extracted probability values from the front 2DIM to the central GM provided the best
quality results. The disadvantages of transferring attenuated probability values are hence
more serious than the negative impacts of directly adopting coarsely discretized 2DIM
contents. Consequently, this parametrization will be used for all combined representations
in the further course of this evaluation section.

Table 5.2 summarizes the averaged metric values, computation times and maximum mem-
ory consumptions of all evaluated occupancy maps in scenarios S1a and S1b. The resulting
quality values show a similar picture as in the previous experiment with ideal sensor data:
The assessments of the combined map configurations are between those of the purely
grid- and interval-based maps, but the quality gaps between the combined and grid-based
representations decrease by the application of real sensor measurements. The measured
computation times for the mapping process are overall very similar, except those of a
purely interval-based representation. However, the final evaluation of the representations’
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Figure 5.16.: Comparison of combined occupancy maps a) without and b) with exchanging
map contents.

• A: Missing free space information due to the lack of transfer into the rear 2DIM.
• B: Slow accumulation of free space information due to the lack of transfer into the

central GM.
• C: Missing free space information due to temporary occlusion.
• D: Improved accumulation of free space information due to the transfer of a priori

knowledge.
• E: Coarse representation of the vehicle’s contour due to the transfer of a priori

knowledge.
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Figure 5.17.: Development of measured map scores in scenario S1b with different map
exchange parameters.
w denotes the weighting factor, which attenuates the probabilities during the
transfer from interval- to grid-based representations.

computational effort requires to also consider their interpretation effort, which will be an-
alyzed in detail at the end of this section. Concerning the memory consumptions listed in
table 5.2, the application of combined representations leads to a substantial improvement
compared to GMs.

One of the main motivations for the development of combined map-based representations
was to fulfill varying accuracy requirements in different subregions of the vehicle’s en-
vironment. This can e.g. result from the requirements of several ADAS functions that
utilize different preview areas and use a common environment perception. By using the
beam-based probability value extraction scheme, the previously applied evaluation ap-
proach implicitly assigns a higher weighting factor to map errors in the direct vicinity
of the vehicle, as the sampling accumulates at the center of the extraction. In order to
simulate differing requirements of one or more ADAS functions, the resulting metric val-
ues can additionally be multiplied by a weighting mask that distinguishes between the
errors in the close range, which is e.g. used for an accurate evasion trajectory evaluation,
and those in far range, which can e.g. be required for a course road boundary detection.
When applying this mask, combined representations achieve a similar quality evaluation
as purely grid-based evaluations, although the size of the computationally intensive GM
is decreased.

Concerning the measured computation times, it is again important to incorporate the
extraction effort of the occupancy representations. If we consider the sole computation
times of the mapping process in a file including a more unstructured urban environment,
the combined map configurations even slightly increase the computational effort in com-
parison to a GM. However, the evaluation section in chapter 3 already indicated that
a representation’s interpretability can be substantially improved by applying the newly
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Scenario Map Discr. MS WSE CT MR

(Dimensions in [m]) [m] [ms] [MByte]

S1a

GM 0.2 0.50 0.11 1.2 2.5

2DIM 1.0 0.46 0.13 0.8 0.12

Comb. A (20×20 GM) 1.0 - 0.2 - 1.0 0.49 0.12 1.2 0.33

Comb. B (30×30 GM) 1.0 - 0.2 - 1.0 0.50 0.12 1.2 0.45

Comb. C (40×40 GM) 1.0 - 0.2 - 1.0 0.50 0.11 1.3 0.61

S1b

GM 0.2 0.51 0.14 1.2 2.5

2DIM 1.0 0.37 0.22 0.8 0.11

Comb. A (20×20 GM) 1.0 - 0.2 - 1.0 0.46 0.16 1.2 0.32

Comb. B (30×30 GM) 1.0 - 0.2 - 1.0 0.48 0.15 1.2 0.42

Comb. C (40×40 GM) 1.0 - 0.2 - 1.0 0.49 0.15 1.3 0.57

Table 5.2.: Comparison of combined occupancy map evaluation metrics in scenarios S1a
and S1b.

developed interval-based approach. In order to quantify and compare the data structures’
interpretabilities, the previously introduced simple obstacle extraction (see section 3.5.5)
has been applied to all tested map configurations, figure 5.18 summarizes the resulting
measurements. In the overall view, the computation times of the combined representations
range between those of the purely grid- and interval-based representations. The additional
consideration of the extraction effort clearly shows the negative impact of GMs, even when
combined with other 2DIMs. In comparison to a pure GM, the resource requirements can

0 0.5 1 1.5 2 2.5 3 3.5

Config. C

Config. B
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2DIM

GM

Computation Time in [ms]

Mapping

Extraction

Figure 5.18.: Comparison of mapping and extraction computation times of combined oc-
cupancy maps.
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be reduced by applying a combined map configuration, at which the size of the configura-
tions’ central GM can be used to control both the resulting accuracies and computational
effort.

Summary

The potential of combining different map-based environment representations has been
examined by evaluating and comparing three exemplary occupancy map configurations
against purely grid- and interval-based representations. For that purpose, the previously
developed map-based evaluation scheme and the occupancy reference scenarios have been
reused. As the tested map configurations consist of a close range GM and two far range
2DIMs, the measured map-qualities range between those of a purely grid- and a purely
interval-based representation, for both using ideal and real sensor measurements. If we
simulate differing accuracy requirements of one or more ADAS functions by an additional
weighting mask, a combined map configuration is able to provide similar map qualities as a
GM, while simultaneously reducing the memory requirements and computation times, es-
pecially when incorporating the extraction process. The developed mechanisms to transfer
accumulated environment features between grid- and interval-based representations turned
out to have a beneficial impact on the resulting map qualities and had little effect on the
measured computation times.

Overall, the proposed concept of combining grid- and interval-based representations also
offers the possibility to dynamically instantiate high resolution maps in dedicated regions of
interest around the vehicle, which has not been evaluated and compared against existing
approaches in-depth. Nevertheless, the static combination of close range GMs and far
range 2DIMs already enables a substantially improved scalability in comparison to state-
of-the-art grid-based representations.
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6.1. Conclusion

A further increase of current ADASs’ robustness and degree of automation requires an en-
vironment perception which provides information about all relevant environment features
in sufficient accuracy while simultaneously satisfying the requirements concerning the com-
putational effort and the interpretability of the obtained results. Due to their weak model
assumptions, map-based environment representations are especially suitable for describ-
ing complex and unstructured environment features at a high level of detail. However,
state-of-the-art environment perception approaches mainly use map-based representations
for the description of occupancy information and are restricted to the application of grid-
based representations, which suffer from substantial disadvantages with respect to their
computational effort, scalability and interpretability. Concerning these scientific gaps, this
thesis provides several contributions.

In chapter 3, two different versions of a novel and generic environment representation were
proposed: the straight and curved 2D Interval Map. It was shown, how these represen-
tations can be used to accumulate occupancy information in the vehicle’s surroundings
and how the uncertainties of the applied laser sensor can be considered in the applied
EKF-based estimation scheme. After that, different ego compensation mechanisms, which
enable the instantiation of ego-local map instances, have been developed. By enhancing
the developed approach concerning the additional consideration of moving objects, a cru-
cial requirement for the application of the interval-based occupancy map in highly dynamic
traffic scenarios has been fulfilled. Finally, a new map-based evaluation scheme, which al-
lows to quantifiably compare different representations of occupancy information, has been
developed. In comparison to a reference GM implementation, the 2DIM achieved similar
quality assessments, while the memory demands and the computational effort including
the data structure’s interpretation were significantly reduced.

The simplified map-based environment representation has then been used to detect a newly
identified abstract environment feature: the common motion behavior of surrounding traf-
fic participants. After identifying and defining the relevant convoy track information, a
system architecture to infer the required information has been proposed and the accu-
mulation of the object measurements in 2DIM motion cells has been described. For the
development of the necessary sensor models, characteristic laser and radar measurement
effects have been analyzed in typical dense traffic occlusion scenarios. In order to cor-
rectly incorporate filtered object hypotheses in the 2DIM estimation process, a concept
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of decorrelating object tracks by calculating equivalent measurements has been presented.
To determine the observability of the estimated motion cell state variables, an occlusion
calculation has been proposed. The chapter has been concluded with the development of
a map-based evaluation scheme, which allows to compare the map qualities when using
different algorithm parametrizations or switching between curved and straight mapping
approaches. Moreover, the beneficial impacts of using convoy track information during
the behavior generation of highly automated vehicles have been outlined.

The developments of chapters 3 and 4 raise the question of how to combine different
map-based environment representations with varying contents in a common environment
perception architecture. For that purpose, chapter 5 proposes a concept that consists
of two key ideas. Concerning the combination of different contents, a layer concept was
proposed, which enables to realize cooperative sensor models that simultaneously use the
information of several map layers to improve the estimation of represented environment
features. Concerning the aggregation of representations, a concept to flexibly position
and deploy multiple representations in the vehicle’s surroundings has been presented.
For that purpose, virtual sensor models, which transfer a priori knowledge between grid-
and interval-based maps under consideration of the represented uncertainties, have been
developed. The conducted quality evaluations showed that a combination of multiple
representations is able to specifically fulfill the requirements of ADAS functions, while
the computational requirements can be decreased in comparison to a purely grid-based
map. By combining both ideas, a further step towards scalable multi-purpose map-based
environment representations can be taken.

6.2. Future Works

The contributions of this thesis open up a variety of perspectives for future works. First of
all, the developed framework for map-based representations, including the 2DIM and the
concept of combining multiple maps, can be used to represent further environment features
that can only be insufficiently described by using model-based object approaches. A
promising example is the map-based accumulation of perspectively mapped image features,
that can be used to improve the detection of the road infrastructure in complex urban
environments.

Within the scope of work, an alternative way to represent dense environment features
(e.g. occupancy states) within a 2DIM interval has been outlined and shall therefore be
mentioned here as an inspiration for subsequent investigations. The key idea of this ap-
proach is to directly model the existence probability profile along the lateral axis of an
interval. In that case, the content of an interval would be defined by a number of point
cells vn which represent the vertices of a polygonal chain that approximates the proba-
bility profile, as also illustrated in figure 6.1. In this model, both the lateral uncertainty
about the positions and the uncertainty about the existence of an environment feature
are represented by the polygonal chain. This model could help to realize a compact and
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Figure 6.1.: Exemplary representation of occupancy information by polygonal chain. The
blue dots illustrate the nodes of the polygonal line, whereas the red dotted
lines indicate the occupancy state transitions.

straightforward update procedure, as the association problem between existing and new
information significantly simplifies.

In the field of mapping common object motions and detecting convoy tracks, it would
be interesting to investigate the results obtained by using unprocessed input data. By
mapping raw laser and radar measurements, the described violations of the applied esti-
mation principles concerning temporally correlated input data can be avoided. Within the
2DIM-framework, this information could further be fused with detections of other sensors,
e.g. optical flow from image sequences.

Finally, also the presented concept of combining different map-based environment repre-
sentations creates further research opportunities. As stated before, this concept would also
allow for dynamically instantiating high-resolution occupancy maps at dedicated regions
of interest. In order to take these decisions, a control mechanism that simultaneously
considers the requirements of the ADAS functions, the structure of the surrounding en-
vironment and the available resources has to be developed. In this way, the proposed
concept of combining grid- and interval-based representations can be used to optimally
exploit the available computational resources.

147





A. Mathematical Appendix

This section lists fundamental mathematical principles and derivations that are needed
for the development of the representations, sensor models, compensation mechanisms and
extraction algorithms in this thesis.

A.1. Homogeneous Coordinates

Throughout the thesis, the homogeneous coordinates principle is used to describe coordi-
nate transformations, e.g. between the coordinate system of a sensor and a representation.
The incorporated transformation matrices are listed in the following.

A.1.1. 3D Homogeneous Coordinates

The transformation pose for three-dimensional homogeneous coordinates from a coordinate
system A to the coordinate system B is defined by the following 4× 4 matrix:

B PA =


BRA

BpA

0 0 0 1

 (A.1)

Here, the vector BpA denotes the origin of the coordinate system A expressed in coordi-
nates of the system B. Similarly, the rotation matrix BRA describes the orientation of
the system A in system B. According to the norm DIN 70000, the yaw-pitch-roll order
convention will be used for the creation of the rotation matrix in this work. Consequently,
the rotation matrix is defined by:

BRA = RZ (ψ) · RY (θ) · RX (γ) (A.2)

with ψ being the yaw angle, θ the pitch angle and γ the role angle. Considering BpA as
a translation vector [x, y, z]T , we can also express the pose B PA as:

B PA = T (x, y, z) · RZ (ψ) · RY (θ) · RX (γ) (A.3)

149



A. Mathematical Appendix

The rotation matrix around the z-axis with yaw angle ψ is defined as:

RZ (ψ) =


cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1

 (A.4)

The rotation matrix around the y-axis with pitch angle θ is defined as:

RY (θ) =


cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

 (A.5)

The rotation matrix around the x-axis with roll angle γ is defined as:

RX (γ) =


1 0 0 0

0 cos γ − sin γ 0

0 sin γ cos γ 0

0 0 0 1

 (A.6)

The translation by a vector t = [x, y, z]T can be realized by the matrix:

T (x, y, z) =


1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

 (A.7)

A.1.2. 2D Homogeneous Coordinates

In case of two-dimensional homogeneous coordinates, the pose B PA simplifies to a 3 × 3
matrix:

B PA =

 BRA
BpA

0 0 1

 (A.8)

In contrast to the three-dimensional case, the matrix BRA only has to express the rotation
around the yaw angle ψ:

BRA = RZ (ψ) (A.9)

150



A.2. Recursive State Estimation

In summary, the application of the pose reduces to a two-dimensional translation and a
single rotation:

B PA = T (x, y) · RZ (ψ) (A.10)

The rotation matrix around the z-axis with yaw angle ψ is defined as:

RZ (ψ) =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (A.11)

The translation by a vector t = [x, y]T can be realized by the matrix:

T (x, y) =

 1 0 x

0 1 y

0 0 1

 (A.12)

A.2. Recursive State Estimation

A key concept of dealing with uncertain sensor measurements in the perception of the
environment is the principle of recursive state estimation. The most important formulas
and notations will be summarized in the following.

A.2.1. Model

The basic task of the approaches explained in the following is to estimate a system’s state
x, which cannot be observed directly, but derived from unsure sensor measurements z.
In general, this state can be either static or dynamic and is optionally influenced by a
control vector u. Assuming a discrete time system, the evolution of the system state at
time index k can be modeled by a state transition function f :

xk = f (xk−1,uk,wk−1) (A.13)

with wk−1 being the system noise, which describes an uncertainty about the state transi-
tion model. This model is based on the Markov assumption, which states that xk incorpo-
rates the entire knowledge from previous states (also known as complete state assumption
[165]). Consequently, the state xk only depends on the previous state xk−1 and the control
vector uk.

Similarly, the observation process can be described by a measurement function h:

zk = h (xk,vk) (A.14)
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xk-1 xk xk+1

uk-1 uk uk+1

zk-1 zk zk+1

Figure A.1.: Dynamic Bayesian network illustrating the state transition and measurement
process.

with vk denoting the measurement noise. Figure A.1 illustrates both models in a dynamic
Bayesian network.

Due to several conditional independencies in these relationships, we can simplify the prob-
ability distribution over a state xk:

p (xk|x0:k−1,u1:k, z1:k−1) = p (xk|xk−1,uk) (A.15)

Similarly, the probability distribution over the measurement zk simplifies to:

p (zk|x0:k,u1:k, z1:k−1) = p (zk|xk) (A.16)

A.2.2. Bayes Filter

The final goal of state estimation is to determine an unbiased estimate x̂k of the state xk
in each system cycle:

E (x̂k) = E (xk) (A.17)

Therefore, the a posteriori probability density function over all possible states given the
observable measurements and control vectors has to be calculated:

p (xk|z1:k,u1:k) (A.18)

The most general solution to this problem is the recursive Bayes Filter formulation [165].
In this algorithm, the determination of the desired probability is subdivided into two
essential steps. In the first step, the so called a priori or predicted probability distribution
is calculated from all possible system states at time index k−1 and the most recent control
input:

p (xk|z1:k−1,u1:k) =

∫
p (xk|xk−1,uk) p (xk−1|z1:k−1,u1:k−1) dxk−1 (A.19)
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In the second step, the a priori probability and the observed measurements are used to
derive the a posteriori probability. This calculation is described as update, correction or
innovation in the literature:

p (xk|z1:k,u1:k) = η p (zk|xk) p (xk|z1:k−1,u1:k) (A.20)

with η denoting a normalization constant which assures that the resulting probabilities
integrate to 1.

By using these equations and an initial a priori probability at time index 0, the a posteriori
probability distribution over all possible states can be calculated recursively. For a detailed
derivation of the Bayes Filter, the interested reader may e.g. refer to [165]. The deduction
is based on repeated applications of the aforementioned Markov assumption and Bayes’
theorem, which allows the fundamental conversion of conditional probabilities.

A.2.3. Kalman Filter

In 1960, Kalman presented his realization of a Bayes Filter for continuous state estimation
in discrete time linear Gaussian systems [75]. Kalman and Bucy also adapted the filter
to time continuous systems in [76]. Due to the mostly constant cycle times of the applied
sensors in this thesis, the following derivations restrict to the discrete KF.

First of all, the KF is a Gaussian Filter, in which all represented probability density
functions are given by multivariate normal distributions:

p (x) = N (µ,Σ) = det (2πΣ)−
1
2 exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
(A.21)

Gaussian probability distributions over the state space can be compactly described in
closed form by their mean µ and covariance Σ, which is also known as moments parametriza-
tion. As the covariance matrix Σ is symmetric per definition, there also exist optimizations
which are restricted to the representation of an upper triangular covariance matrix [15].
Another advantage is given by the unimodality of the multivariate Gaussian distribution.
The guaranteed existence of a single maximum value significantly simplifies the interpre-
tation of the estimation results. Finally, Gaussian distributions also provide the essential
characteristic that a linear transformation of the distribution results in another Gaussian
distribution.

Due to this characteristic, the KF assumes linear relationships in the measurement (A.14)
and state transition (A.13) functions. As a consequence, both equations can be formulated
in the state space:

xk = Φk−1xk−1 +Gk−1uk +wk−1 (A.22)

zk = Ckxk + vk (A.23)
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where system noise wk and measurement noise vk are assumed to be uncorrelated zero
mean Gaussian white noise with covariance matrices Qk and Rk:

wk ∼ N (0,Qk) (A.24)

vk ∼ N (0,Rk) (A.25)

E
(
wkv

T
k

)
= 0 (A.26)

Given this model, the KF allows to recursively calculate the posterior state estimate and
corresponding error covariance. According to the Bayes Filter principle, the prediction

step derives an a priori estimate of the state
∗
xk and error covariance

∗
P k on the basis of

the state transition model:
∗
xk = Φk−1x̂k−1 +Gk−1uk (A.27)
∗
P k = Φk−1P̂ k−1Φ

T
k−1 +Qk−1 (A.28)

In the innovation step, both a priori estimates are corrected by the current observation
zk. The influence of the residuum between predicted and actual measurement to the new
estimate is determined by the so called Kalman gain Kk:

x̂k =
∗
xk +Kk

(
zk −Ck

∗
xk

)
(A.29)

P̂ k = (I −KkCk)
∗
P k (A.30)

with Kk =
∗
P kC

T
k

(
Ck

∗
P kC

T
k +Rk

)−1

(A.31)

Given a linear Gaussian system with exactly known covariances, the Kalman filter is
guaranteed to provide an optimal state estimate. For a detailed derivation of the presented
equations, the interested reader is referred to [165].

A.2.4. Extended Kalman Filter

The EKF extends the principles of the KF to systems with nonlinear state transition
functions f (A.13) and measurement functions h (A.14) [183]. Similar to the previous

case, these functions can be used to initially calculate an a priori state estimate
∗
xk and

an expected measurement
∗
zk:

∗
xk = f (x̂k−1,uk,0) (A.32)
∗
zk = h(

∗
xk,0) (A.33)

The key concept of the EKF is a linearization of both nonlinear functions around the

predicted state
∗
xk and the predicted measurement

∗
zk:

xk ≈
∗
xk + Φk−1(xk−1 − x̂k−1) + Γk−1wk−1 (A.34)

zk ≈
∗
zk +Ck (xk − ∗

xk ) + Λk vk (A.35)
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In these equations, Φk−1 and Ck denote the Jacobians of the functions f and h with
respect to the state vector x. Similarly, Γk−1 and Λk are the Jacobians of the related
noise terms:

Φk−1 =
∂f

∂x
(x̂k−1,uk,0) Ck =

∂h

∂x
(
∗
xk,0) (A.36)

Γk−1 =
∂f

∂w
(x̂k−1,uk,0) Λk =

∂h

∂v
(
∗
xk,0) (A.37)

For the sake of simplicity, Γk−1 and Λk are assumed to be the identity I in most deriva-
tions. In this case, the prediction and correction equations are similar to the KF. In the
prediction step, the state transition matrix is replaced by the corresponding Jacobian,
whereas the state estimate is calculated by using the nonlinear transition function:

∗
xk = f (x̂k−1,uk,0) (A.38)
∗
P k = Φk−1P̂ k−1Φ

T
k−1 +Qk−1 (A.39)

Similarly, the measurement matrix is replaced by the corresponding Jacobian in the correc-
tion step. The nonlinear measurement function is used to calculate the residuum between
expected and new measurement:

x̂k =
∗
xk +Kk

(
zk − h(

∗
xk,0)

)
(A.40)

P̂ k = (I −KkCk)
∗
P k (A.41)

with Kk =
∗
P kC

T
k

(
Ck

∗
P kC

T
k +Rk

)−1

(A.42)

Due to the linearizations, the EKF does not fulfill the requirements of solely normally
distributed random variables. In contrast to the KF, the obtained results are therefore
not guaranteed to be optimal [112].

A.2.5. Implicit Measurement Equation

However, it is not always possible to assign the states x of a system to exactly one mea-
surement z, which prevents the formulation of a function z = f(x). In order to solve this
problem, the EKF can be extended to incorporate an implicit measurement equation, as
introduced in [6, 152]. The following derivations are adapted from [112]. The key idea of
this approach is given by the description of the relation between state and measurement
in a nonlinear implicit measurement equation:

g (žk,xk) = 0 (A.43)

The current measurement zk results from z̃k and a zero mean Gaussian white noise:

zk = žk + vk (A.44)

vk ∼ N (0,Rk) (A.45)
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A linearization of equation (A.43) at the current measurement zk and the predicted state
∗
xk yields:

g(žk,xk) ≈ g(zk,
∗
xk) +Czk

(žk − zk) +Cxk
(xk −

∗
xk) ≈ 0 (A.46)

with the Jacobians Czk
and Cxk

being defined as:

Czk
=
∂g

∂z
(zk,

∗
xk) (A.47)

Cxk
=
∂g

∂x
(zk,

∗
xk) (A.48)

The rearranged equation (A.46) can be interpreted as a measurement equation with a
newly defined measurement yk and the corresponding measurement noise sk:

−g(zk,
∗
xk) +Cxk

∗
xk︸ ︷︷ ︸

yk

= Cxk
xk +Czk

(žk − zk)︸ ︷︷ ︸
sk

(A.49)

Due to the general covariance calculation rule

Cov(AX) = ACov(X)AT (A.50)

and equation (A.45), the measurement error covariance of sk results as:

Cov(sk) = Czk
RkC

T
zk

(A.51)

Assuming the measurement yk from (A.49), the residuum between predicted and real
measurement simplifies to:

yk −Cxk

∗
xk = −g(zk,

∗
xk) (A.52)

Based on these derivations, the update equations of an EKF with implicit measurement
equation can be formulated as:

x̂k =
∗
xk +Kk

(
−g(zk,

∗
xk))

)
(A.53)

P̂ k = (I −KkCxk
)

∗
P k (A.54)

with Kk =
∗
P kC

T
xk

(
Cxk

∗
P kC

T
xk

+Czk
RkC

T
zk

)−1

(A.55)

A.2.6. Static Binary State

Another well-known application of the Bayes Filter deals with the estimation of a binary
static state. These models are typically used to deduce unchangeable environment features
from a set of erroneous measurements z1:k, e.g. during the estimation of a grid cell’s
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occupancy state. The desired probability distribution can be reformulated by using Bayes’
theorem and the Markov assumption:

p
(
x
∣∣ z1:k

)
=
p
(
zk
∣∣ x, z1:k−1

)
· p
(
x
∣∣ z1:k−1

)
p
(
zk
∣∣ z1:k−1

) (A.56)

=
p
(
zk
∣∣ x) · p (x ∣∣ z1:k−1

)
p
(
zk
∣∣ z1:k−1

) (A.57)

Due to the unchangeable state, control operations uk and the time index of the state
variable x are neglected. As there are only two possible state values, the following equation
applies:

p
(
x
∣∣ z1:k

)
= 1− p

(
¬x
∣∣ z1:k

)
(A.58)

Based on these relationships, two different recursive estimation algorithms can be formu-
lated.

The first approach is based on the forward sensor model p (zk|x), which quantifies the
probability of all possible measurements given a state:

p
(
x
∣∣ z1:k

)
=
p
(
zk
∣∣ x) · p (x ∣∣ z1:k−1

)
p
(
zk
∣∣ z1:k−1

) (A.59)

=
p
(
zk
∣∣ x) · p (x ∣∣ z1:k−1

)∑
x′ p
(
zk
∣∣ x′) · p (x′ ∣∣ z1:k−1

) (A.60)

=
p
(
zk
∣∣ x) · p (x ∣∣ z1:k−1

)
p
(
zk
∣∣ x) · p (x ∣∣ z1:k−1

)
+ p

(
zk
∣∣ ¬x) · p (¬x ∣∣ z1:k−1

) (A.61)

Given the forward sensor models for both possible states, the desired state probability
distribution can be calculated recursively.

By contrast, the second approach is based on the inverse sensor model p (x|zk), which
specifies the distribution over possible states depending on the current measurement:

p
(
x
∣∣ z1:k

)
=
p
(
zk
∣∣ x) · p (x ∣∣ z1:k−1

)
p
(
zk
∣∣ z1:k−1

) (A.62)

=
p
(
x
∣∣ zk) · p (zk) · p

(
x
∣∣ z1:k−1

)
p (x) · p

(
zk
∣∣ z1:k−1

) (A.63)

Still, this equation includes probabilities, which are difficult to determine. By using the
corresponding equation for the opposite state ¬x

p
(
¬x
∣∣ z1:k

)
=
p
(
¬x
∣∣ zk) · p (zk) · p

(
¬x
∣∣ z1:k−1

)
p (¬x) · p

(
zk
∣∣ z1:k−1

) (A.64)
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we can further simplify the probability update. The most popular approach is based on
the so called log odds formulation lk(x), which can be derived by dividing (A.63) by (A.64):

p
(
x
∣∣ z1:k

)
p
(
¬x
∣∣ z1:k

) =
p
(
x
∣∣ zk)

p
(
¬x
∣∣ zk) · p (¬x)

p (x)
·
p
(
x
∣∣ z1:k−1

)
p
(
¬x
∣∣ z1:k−1

) (A.65)

p
(
x
∣∣ z1:k

)
1− p

(
x
∣∣ z1:k

) =
p
(
x
∣∣ zk)

1− p
(
x
∣∣ zk) · 1− p (x)

p (x)
·

p
(
x
∣∣ z1:k−1

)
1− p

(
x
∣∣ z1:k−1

) (A.66)

log
p
(
x
∣∣ z1:k

)
1− p

(
x
∣∣ z1:k

) = log
p
(
x
∣∣ zk)

1− p
(
x
∣∣ zk) + log

1− p (x)

p (x)
+ log

p
(
x
∣∣ z1:k−1

)
1− p

(
x
∣∣ z1:k−1

) (A.67)

lk (x) = log
p
(
x
∣∣ zk)

1− p
(
x
∣∣ zk) + log

1− p (x)

p (x)
+ lk−1 (x) (A.68)

Assuming that l0 (x) = 0.5 , we can simplify the recursive state estimation equation in
this formulation to:

lk (x) = log
p
(
x
∣∣ zk)

1− p
(
x
∣∣ zk) + lk−1 (x) (A.69)

By using this formulation, the computational effort of updating the a-posteriori state
estimate is reduced to a single addition.

Besides that, the desired probability p
(
x
∣∣ z1:k

)
can also be inferred from equation (A.66)

without using log odds ratios:

p (x|z1:k) =
p (x|zk)

1− p (x|zk)
· 1− p (x)

p (x)
· p (x|z1:k−1)

1− p (x|z1:k−1)
· (1− p (x|z1:k)) (A.70)

⇒ p (x|z1:k) =

p(x|zk)
1−p(x|zk) ·

1−p(x)
p(x) ·

p(x|z1:k−1)
1−p(x|z1:k−1)

1 + p(x|zk)
1−p(x|zk) ·

1−p(x)
p(x) ·

p(x|z1:k−1)
1−p(x|z1:k−1)

(A.71)

=

p(x|zk)
1−p(x|zk) ·

1−p(x)
p(x) ·

p(x|z1:k−1)
1−p(x|z1:k−1)

(1−p(x|zk))·p(x)·(1−p(x|z1:k−1))
(1−p(x|zk))·p(x)·(1−p(x|z1:k−1)) +

p(x|zk)·(1−p(x))·p(x|z1:k−1)
(1−p(x|zk))·p(x)·(1−p(x|z1:k−1))

(A.72)

=
p (x|zk) · (1− p (x)) · p (x|z1:k−1)

(1− p (x|zk)) · p (x) · (1− p (x|z1:k−1)) + p (x|zk) · (1− p (x)) · p (x|z1:k−1)
(A.73)

Under the assumption of a uniformly distributed a priori state probability, this approach
results in a slightly more complex recursive update rule:

p (x|z1:k) =
p (x|zk) · p (x|z1:k−1)

(1− p (x|zk)) · (1− p (x|z1:k−1)) + p (x|zk) · p (x|z1:k−1)
(A.74)

For the sake of readability, the recursively estimated probabilities can be redefined:

pk =
p (x|zk) · pk−1

(1− p (x|zk)) · (1− pk−1) + p (x|zk) · pk−1
(A.75)
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A.3. Dempster-Shafer Theory

As stated in section 3.1, the key principle of the DST is to assign belief masses to the
power set of possible states Ω. Based on these values, the belief and plausibility of an
element A of Ω can be derived. The belief bel (A) is given by the sum of all masses m of
subsets of A. The plausibility pl (A) is given by the sum of all masses that intersect A:

bel (A) =
∑

B|B⊆A

m (B) pl (A) =
∑

B|B∩A6=∅

m (B) (A.76)

In case of an occupancy grid cell, the power set of possible states Ω results as:

2Ω =



∅

O : occupied

F : free

U : unknown = {occupied, free}

(A.77)

from which the mass of the empty set is zero by definition. Based on Dempster’s rule of
combination, these belief masses can be updated by using the following equations [42]:

m1:k+1(O) =
m1:k(O) ·mk+1(O) +m1:k(U) ·mk+1(O) +m1:k(O) ·mk+1(U)

1−m1:k(O) ·mk+1(F )−m1:k(F ) ·mk+1(O)
(A.78)

m1:k+1(F ) =
m1:k(F ) ·mk+1(F ) +m1:k(U) ·mk+1(F ) +m1:k(F ) ·mk+1(U)

1−m1:k(O) ·mk+1(F )−m1:k(F ) ·mk+1(O)
(A.79)

m1:k+1(U) = 1−m1:k+1(O)−m1:k+1(F ) (A.80)

A.4. Transformation of Measurement Uncertainties

The developed sensor models in this thesis transform the uncertainties of the input data
into the obtained representations. The derived formulas are summarized in the following
two sections.

A.4.1. Occupancy Map Sensor Model

Let Cz be the partial derivative of the implicit measurement equation with respect to the
current measurement from (3.22), R be the measurement error from (3.15) and I(n) PSensor
be the following pose between sensor and interval coordinate system:

I(n) PSensor = T (x, y, z) · RZ (ψ) · RY (θ) (A.81)
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Then, the transformation of the measurement error into the state space results as 1:

CzRC
T
z =

Var(ϕ) (r cos(ϕ+ α/2) cos(ψ)− r sin(ϕ+ α/2) cos(θ) sin(ψ))2

+Var(r) (sin(ϕ+ α/2) cos(ψ) + sin(θ) sin(ϑ) sin(ψ) + cos(ϕ+ α/2) cos(θ) sin(ψ))2

+r2Var(ϑ) cos(ϑ)2 sin(θ)2 sin(ψ)2 (A.82)

If we further neglect the pitch angle in the pose between sensor and interval coordinate
system:

I(n) PSensor = T (x, y, z) · RZ (ψ) (A.83)

the transformed error simplifies to:

CzRC
T
z =

Var(ϕ)(r cos(ϕ+ α/2) cos(ψ)− r sin(ϕ+ α/2) sin(ψ))2

+Var(r) ( cos(ϕ+ α/2) sin(ψ)+ sin(ϕ+ α/2) cos(ψ))2 (A.84)

A.4.2. Sensor Model for Motion Cells

Given the implicit measurement equation (4.8), the partial derivative Cz with respect to
the measurement vector formulated in 4.7 results as:

Cz =

− sin(ψ(n)) − cos(ψ(n)) 0 0 λ sin(ψ(n)) cos(δ)− λ cos(ψ(n)) cos(δ)

0 0 − cos(δ) sin(δ) vy cos(δ) + vx sin(ψ(n))

0 0 0 0 −1


(A.85)

with φ, vx, vy denoting the measured object’s angle and velocity components and ψ(n)

representing the angle of the updated interval in the USK.

A.5. Velocities and Accelerations in Rotating Coordinate
Systems

When converting the motion of a model-based object hypothesis into the static cells of
a map-based environment representation, the rotational behavior of an object has to be
considered. Formally, this problem corresponds to a transformation of velocities and
accelerations between rotating coordinate systems.

1Time index k has been left out for the sake of clarity
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Let r′ be a coordinate in a reference frame S′ that rotates around its origin with angular
velocity ω. The velocity and acceleration within the rotating reference frame is given by
the first and second time derivative, which will be denoted as:〈

dr′

dt

〉
=
[
vx′ , vy′ , vz′

]T
(A.86)〈

d2r′

dt2

〉
=
[
ax′ , ay′ , az′

]T
(A.87)

The corresponding coordinate r in a stationary frame S can be calculated by the inverse
rotation matrix:

r = (RZ (ωt))−1 r′ (A.88)

Due to the angular velocity ω, the velocity of r in the stationary frame changes to [60]:

dr

dt
=

〈
dr′

dt

〉
+ ω × r (A.89)

with × denoting the vector cross product. Based on this transformation, the acceleration
at r in the stationary frame can be derived as [60]:

d2r

dt2
=

d

dt

〈
dr′

dt

〉
+
d

dt
(ω × r) (A.90)

=
d

dt

〈
dr′

dt

〉
+
dω

dt
× r + ω × dr

dt
(A.91)

(A.89)
=

d

dt

〈
dr′

dt

〉
+
dω

dt
× r + ω ×

〈
dr′

dt

〉
+ ω × (ω × r) (A.92)

(A.89)
=

〈
d2r′

dt2

〉
+
dω

dt
× r︸ ︷︷ ︸

0
if ω const.

+ 2

(
ω ×

〈
dr′

dt

〉)
︸ ︷︷ ︸

Coriolis
Acceleration

+ω × (ω × r)︸ ︷︷ ︸
Centrifugal
Acceleration

(A.93)

If we apply these results to a coordinate in a system that rotates with constant yaw rate
ψ̇ around the z-axis of a stationary frame, the velocity in the stationary frame results as:vxvy

vz

 =

vx′vy′
vz′

+

0

0

ψ̇

×
xy

0

 =

vx′ − ψ̇yvy′ + ψ̇x

vz′

 (A.94)

Similarly, the acceleration in the stationary frame results as:axay
az

 =

ax′ay′
az′

+ 2


0

0

ψ̇

×
vx′vy′
vz′


+

0

0

ψ̇

×

0

0

ψ̇

×
xy

0


 (A.95)

=

ax′ − 2ψ̇vy′ − ψ̇2x

ay′ + 2ψ̇vx′ − ψ̇2y

az′

 (A.96)
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A. Mathematical Appendix

If we further apply these results to the prediction of a 2DIM cell border position by the
lateral velocity and acceleration of an associated object, the new lateral border position
can be derived as:

∗
yk+1 = f (x̂k) =

[
1 T T 2/2

]ŷkvy′ + ψ̇x

ay′ + 2ψ̇vx′ − ψ̇2y

 (A.97)

with x̂k =
[
ŷk x′ y′ vx′ vy′ ax′ ay′ ψ̇

]T
(A.98)

with x′, y′ being the object’s position, vx′ , vy′ being the object velocity in the object coor-
dinate system, ax′ , ay′ being the object acceleration in the object coordinate system and
ψ̇ denoting the object’s yaw rate. Assuming a diagonal error covariance matrix Cov(x̂k),
whose entries are given by the estimation variances of the introduced state vector elements,
the application of this function modifies the variance of a border position as follows:

Var(
∗
yk+1) =

(
∂f

∂x
(x̂k)

)
Cov(x̂k)

(
∂f

∂x
(x̂k)

)T
(A.99)

=Var(ŷk)+

V ar(x′)ψ̇2 T 2 + Var(y′)ψ̇4T 4/4 + Var(vx′)ψ̇
2T 4+

Var(vy′)T
2 + Var(ay′)T

4/4 + Var(ψ̇)(Tx′ + (T 2(2v̇x′ − 2ψ̇y′))/2)2 (A.100)

A.6. Clothoid Approximations

For a compact representation of extracted convoy tracks from a 2DIM with motion cells
the application of clothoid approximations is proposed in this thesis. Formally, a clothoid
is defined as a curve, whose radius of curvature r is inversely proportional to the curve
length l:

r =
a2

l
(A.101)

with a being a fixed positive constant. Given this prerequisite, the complete track can be
exactly described by: [

x

y

]
= a
√
π

∫ t

0

[
cos πξ

2

2

sin πξ2

2

]
dξ with t =

l

a
√
π

(A.102)

The curvature of the resulting path is composed of an initial curvature c0 and a change of
curvature c1:

c(l) = c0 + c1 · l (A.103)
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A.6. Clothoid Approximations

In order to infer clothoids from a set of (x, y)-pairs, a method presented by Reichel in
[133, appx. E] was applied within the scope of this thesis. In this approach, a Taylor
approximation of the equation A.102 is used to formulate equations of the form:

y =
[

1
2x

2 1
6x

3 x 1
]


c0

c1

tan(ζ)

dy

 (A.104)

with ζ and dy being the direction and lateral offset of the clothoid. Given a set of more than
four (x, y)-pairs of an extracted polygonal chain, an overdetermined equation system can
be established to infer an optimal clothoid approximation. This equation system can then
be solved by using common methods of linear algebra, e.g. calculating the pseudoinverse
matrix.
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B. Vehicles and Sensors

The following sections briefly describe the sensor configuration of the test vehicle that was
used to obtain the measurement data for the developments in this thesis. After that, the
key principles of the applied radar and laser sensors will be described.

B.1. Test Vehicle Sensor Configuration

For a prototypical implementation and validation of the developed approaches, real sensor
data from an available test vehicle were used. Besides state-of-the-art ADAS-sensors, the
vehicle was equipped with a close-to-production automotive laser scanner and additional
laser respectively video sensors for the areas right and left to the vehicle. Figure B.1
illustrates the entire sensor configuration. The conventional sensor set consists of

Front Laser

SRR

SRR

LRR

LRR

Side 
Camera/Laser

Side 
Camera/Laser

Front 
Camera

Figure B.1.: Illustration of the test vehicle sensor configuration.

• Two LRR3 sensors in the vehicle’s front, which are used for an ACC system

• A video camera, which is able to detect road markings, traffic signs and other vehicles

• Two Short Range Radar (SRR) sensors in the vehicle’s rear, which are part of a
blind spot detection system
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B. Vehicles and Sensors

The developments in this thesis focused on the utilization of the laser- and radar sensors
in the vehicle’s front area. The corresponding measurement principles will be described
in the following.

B.2. Radar

Since the market launch of first ACC systems in 1998, automotive Radio Detection and
Ranging (RADAR) sensors have gained an enormous popularity. Today, there exists a
wide range of mass production radar sensors, which are mainly categorized according to
the applied modulation methods and receiving antenna technologies [186]. Concerning the
signal modulation, a distinction is made between continuous wave and impulse RADAR
systems as well as between amplitude and frequency modulated signals. Regarding the
receiving antennas, there exist mechanically or electronically scanning systems and con-
ventional fixed beam sensor arrays. All RADAR measurements presented in this work were
obtained by using a Bosch double LRR3 system [95]. Therefore, the following section is
restricted to a brief outline of the applied Frequency Modulated Continous Wave (FMCW)
measurement principle.

Continuous wave radar systems transmit harmonic wave functions, which are defined as:

ut(t) = At · cos (2πf0t+ ϕ0) (B.1)

with amplitude At, frequency f0 and phase ϕ0. In general, all three parameters can be
used for modulations. The received signal has a different amplitude Ar and a phase shift
ϕr. Furthermore, it also includes the Doppler frequency, which depends on the change of
the measured object’s radial distance ṙ:

ur(t) = Ar · cos (2π(f0 + fDoppler)t+ ϕr) (B.2)

with fDoppler = −2ṙf0/c (B.3)

with c denoting the speed of light.

FMCW radar systems continuously change the currently transmitted frequency ω in linear
ramp waveform:

ω(t) = ω0 +mω(t− t0) (B.4)

with ω0 being the initial frequency and mω denoting the gradient of the ramp. An example
of a transmitted positive ramp signal is shown in a time-frequency-diagram in figure B.2 a).
The received signal is shifted along the time axis due to the distance of the measured object
and along the frequency axis due to the Doppler effect. The mixing of the transmitted
and received signals results in the following low frequency signal component [186]:

u(t)lt,r =
1

2
ArAt cos

((
2ω0

c
ṙ +

2mω

c
r

)
t+

2r

c
ω0 +

(
2r

c

)2

mω

)
(B.5)
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B.2. Radar

ut(t): Transmitted Signal 

ur(t): Received Signal

Frequency

Time

r

r

Doppler 

Shift

Difference 

Frequency Δf

Difference 

Frequency 

Δf

a) b)

Phase

Shift

Figure B.2.: FMCW radar signal characteristics of an approaching object, adapted from
[186].

The so called difference frequency of this signal can be processed to infer a linear rela-
tionship between the radial distance r and the radial velocity ṙ of a measured object, as
illustrated in figure B.2 b). By using another, preferably negative ramp signal, the rela-
tive distance and velocity of a single object can be identified unambiguously. In order to
measure multiple objects, several different ramp signals have to be used [186].

The LRR3 uses this modulation technique in the frequency band between 76 and 77 Ghz
to measure objects in a distance range between 0.5 and 250 m at an opening angle of
30◦ [186]. The angle of the identified objects is determined by comparing the obtained
measurements to the sensor specific characteristics of the integrated four beam antenna.
In the applied double LRR3 setup, both sensors have asymmetric sensor characteristics in
order to improve the close range detection [95]. After having extracted the radial distance,
velocity and azimuth angle, all echos that belong to a common object are clustered. These
object hypotheses are tracked over time to improve the quality of the finally resulting
object list. For the experiments in this thesis, only temporally filtered radar object lists
were available.

The major advantages of radar sensors are given by their high detection range, precise
velocity measurements and robustness against weather conditions. On the downside, the
applied LRR3 sensor is not able to provide exact contours of surrounding objects or
information about free spaces. The provided object list includes echos from static targets
as well as visible and occluded dynamic objects. Due to the combination of two sensors,
also rough estimates about the dimensions of the preceding vehicle can be inferred. In
state-of-the-art driver assistance sensor setups, radar measurements are also fused with
video information to improve the detection accuracy. A detailed analysis of the radar
object list in dense traffic scenarios is presented in section 4.3.1.
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B. Vehicles and Sensors

B.3. Lidar

Instead of electromagnetic waves, Light Detection and Ranging (LIDAR) sensors use light
waves to infer positions of surrounding objects. Automotive sensors typically restrict to
infrared light with wavelengths between 850 nm and 1000 nm [58]. Overall, there exist
two major time of flight measurement principles: The application of modulated light, e.g.
in Photonic Mixer Device (PMD) sensors, and the utilization of pulsed laser light sources
[154]. Due to the available sensors in the scope of this thesis, the following explanations
will be restricted to the second approach, which is also illustrated in figure B.3.

Transmitter

Receiver

P

P

t

t

t1

t2

Φ0

Φr

1

2

Figure B.3.: Laser pulse time of flight measurement, adapted from [154].

In this case, the measurement process starts with the transmission of a short light impulse.
The emitted light output Φ0 is either absorbed (Φa), diffusely scattered (Φs) or reflected
to the measurement unit (Φr), which is typically realized by an APD1 or PIN2 diode [58]:

φ0 = Φs + Φa + Φr (B.6)

The fraction of the reflected light Φr depends on the radial distance r as well as the angle,
size and reflectivity of the measured object and the surrounding atmosphere [54]. As a
rule of thumb, the received light energy scales with 1/r2 if the illuminated area is larger
than the entire measured object and with 1/r4 otherwise [154].

As illustrated in figure B.3, the distances of possibly multiple measured targets can be
inferred from the received light signal curve. An analysis of the incoming echo pulse
widths can help to recognize invalid targets, e.g. due to fog, rain or dirt on the sensor. In
laser scanner systems, the emitted light beam is additionally deflected in order to enlarge
the overall detection area. As a consequence, the measurements of the different channels
are not exactly taken at the same time. Besides that, there also exist approaches, which

1Avalanche PhotoDiode
2Positive Intrinsic Negative
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B.3. Lidar

utilize several light sources or uniformly illuminate the detection area by a flash light, e.g.
described in [16].

For the experiments in this thesis, a close-to-production automotive laser scanner was
applied. In order to provide a high-resolution scan of the surroundings, the sensor takes
multiple measurements in several vertical layers l and horizontal channels c. The entire
scan at time index k is composed of L× C individual range measurements:

zk =
[
z

(0,0)
k , · · · , z(l,c)

k , · · · , z(L,C)
k

]
(B.7)

with z
(l,c)
k =

[
r

(l,c)
k , ϑ

(l)
k , ϕ

(c)
k

]
(B.8)

with ϑ
(l)
k denoting the vertical angle and ϕ

(c)
k being the horizontal angle of the range

measurement. Due to the divergence of the emitted laser beam and the receiving unit’s
detection zone, each measurement covers a specific horizontal and vertical angular range,
which is denoted as α and β in this thesis. Consequently, the reflecting obstacle can
be located within a spherical quadrilateral. By an analysis of the detected echo pulse
characteristics and the distribution of the neighboring measurements, the sensor already
provides a classification of the reflection into the categories valid, ground and clutter.

In contrast to the previously introduced radar sensors, high resolution laser scanners are
able to provide detailed information about contours of surrounding objects and free spaces,
which is an essential requirement for highly automated vehicles. On the downside, the
measurements do not include velocity information and deteriorate with bad visibility con-
ditions. The overall detection range depends on the intensity of the emitted light pulse,
the sensitivity of the receiving unit, the characteristics of the measured object and the
surrounding atmosphere.
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C. Software Tooling Environment

All software modules which were created in the scope of this work were implemented by
using ADTF, a framework, which allows an improved development of software prototypes
for driver assistance systems. The basic idea of ADTF is to implement modules, called
filters, in a predefined C++ structure, which can then be combined and parametrized in
a graphical user interface. An example of this interface can be seen in figure C.1. These

Figure C.1.: Illustration of filters and pin connections in ADTF graphical user interface.

filters can exchange information by transmitting and receiving data packets via pins, as
also illustrated in the screenshot of the development environment in figure C.1. Besides
that, filters can also be triggered by timers and may additionally provide interfaces for
procedure calls.

One major advantage of using ADTF for ADAS software development is the simplified
transition between online and offline operation. For the online mode, ADTF offers a
wide range of I/O devices, which allow for accessing sensors and vehicle bus systems. The
provided data can either be used to record a file or to directly operate the developed filters.
Consequently, software modules can be implemented offline and tested online in a vehicle
without any further migration effort. For more details about the applied framework, the
interested reader is referred to [172].
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D. Additional Experimental Results

The last section of the appendix offers descriptions of the used reference test scenarios and
additional experimental results.

D.1. Occupancy Map Test Scenarios

The reference scenarios that have been used to evaluate and compare new and state-of-
the-art occupancy representations are shown in figure D.1. Scenario S1a aims to simulate
an ending lane due to a scene of accident in a dense traffic highway scenario. In order
to evaluate the ability of the developed representations to deal with ego vehicle rotations,
scenario S1b extends scenario S1a by a curved approach to the traffic lanes. Scenario S1c
additionally includes an evasive maneuver when the vehicle reaches the scene of accident,
which allows to test representations’ behavior during dynamic ego movements.

Ego

S1a

Eg
o

S1b

Ego

S1c

Figure D.1.: Test scenarios for occupancy map evaluations.
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D. Additional Experimental Results

D.2. Convoy Track Test Scenarios

The reference scenarios which have been used to evaluate the 2DIM with collective motion
information are illustrated in figure D.2 and additionally described in the following listing:

• S2a: Three vehicles in front of the ego vehicle are driving in a straight convoy without
lateral offset.

• S2b: Three vehicles in front of the ego vehicle are driving in a convoy and equally
evade an obstacle.

• S2c: Three vehicles in front of the ego vehicle are driving in a convoy with a small
lateral offset in order to simulate realistic dense traffic scenario.

• S2d: Two vehicles in front of the ego vehicle are driving in a convoy without lateral
offset, another vehicle is driving in a neighboring lane.

• S2e: Two vehicles in front of the vehicle are permanently driving in a convoy, whereas
another vehicle continuously changes the lane in order to enter and leave the convoy.

• S2f: Three vehicles in front of the ego vehicle are driving in a convoy without lateral
offset on a circular path.
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D.2. Convoy Track Test Scenarios

Ego 1 2 3S2a

Ego
1

2

3

Ego 1
2

3S2c

Ego

1

2 3S2d

3S2b
21Ego

Ego

1

2 3S2e

S2f

1

Figure D.2.: Test scenarios for convoy track evaluations.
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D. Additional Experimental Results

D.3. Additional Convoy Track Evaluation Results

This section provides further sensor data analysis plots and evaluation metric tables con-
cerning the mapping of common object motions.

D.3.1. Additional Evaluation Metric Tables

Table D.1 summarizes the obtained metric value differences between using the reference
and standard ego motion module in the test scenarios S2a and S2f.

Scenario Ego Motion
Estimation

F1 Prec. Rec. CE
[m]

BE
[m]

AE
[◦]

VE
[m/s]

S2a Standard 0.91 0.99 0.84 0.28 0.40 2.32 0.47

S2a Reference 0.91 0.99 0.83 0.28 0.41 2.25 0.49

S2f Standard 0.79 0.76 0.81 0.22 0.46 2.58 0.36

S2f Reference 0.75 0.73 0.77 0.65 0.78 2.84 0.43

Table D.1.: Comparison of metric values resulting from different ego motion estimation
approaches.
(F1 = F1-Score, Prec. = Precision, Rec. = Recall, CE = Cell Center Error,
BE = Cell Border Error, AE = Cell Angle Error, VE = Cell Velocity Error,
CT = Computation Time, MR = Memory Requirement)

Table D.2 illustrates the measured metric values concerning the application of correlated
and decorrelated input data.

Input Data F1 Prec. Rec. CE
[m]

BE
[m]

AE
[◦]

VE
[m/s]

CT
[ms]

Tracked

Objects

0.91 0.99 0.84 0.28 0.41 2.31 0.49 0.12

Equivalent
Measurements

0.89 0.96 0.82 0.26 0.39 2.55 0.49 0.14

Table D.2.: Comparison of average metric values with different input data in scenario S2e.

Finally, table D.3 shows the differences between using the point and line approach for the
modeling of the motion cells’ longitudinal extent.
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D.3. Additional Convoy Track Evaluation Results

Compensation
Model

F1 Prec. Rec. CE
[m]

AE
[◦]

VE
[m/s]

CT
[ms]

MR
[kByte]

Point 0.78 0.82 0.74 0.67 3.16 0.49 0.06 2.1

Line 0.81 0.86 0.77 0.64 3.11 0.46 0.08 2.6

Table D.3.: Comparison of average metric values with different compensation strategies in
scenario S2f.

D.3.2. Sensor Data Analysis

In addition to the graphs presented in section 4.3.1, figure D.3 provides histograms and
Quantile-Quantile-Plots for the lateral distribution of radar reflection point locations in
different occlusion scenarios. The Quantile-Quantile-Plots illustrate that the assumption
of a normally distributed lateral reflection point location cannot be maintained in partial
occlusion scenarios.
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D. Additional Experimental Results

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

objy in [m]

F
re
qu

en
cy

−3 −2 −1 0 1 2 3
−0.6

−0.4

−0.2

0

0.2

0.4

Standard Normal Quantiles

Q
u
a
n
ti
le
s
o
f
S
a
m
p
le
s

(a) Unoccluded vehicle
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(b) Completely occluded vehicle
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(c) Partially occluded vehicle with direct line of sight

Figure D.3.: Histograms and Quantile-Quantile-Plot of lateral radar reflection point loca-
tions on a vehicle’s rear in different occlusion scenarios. The dotted lines in
the histograms indicate the lateral borders of the vehicle.
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der Wahl einer Fahrspur, 2014. Deutsches Patent- und Markenamt,
DE102014002115.7.

[HBW14c] Ulrich Hofmann, Mohamed Essayed Bouzouraa, and Tobias Weiherer. Ver-
fahren zum Betrieb eines Sicherheitssystems eines Kraftfahrzeugs, 2014.
Deutsches Patent- und Markenamt, DE102014002113.0.

[HBW14d] Ulrich Hofmann, Mohamed Essayed Bouzouraa, and Tobias Weiherer.
Verfahren zum Betrieb eines zur wenigstens teilweise automatischen
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