Data Loss Prevention based on data-driven Usage Control

Tobias Wiichner
Technische Universitdit Miinchen
Garching bei Miinchen, Germany

tobias.wuechner@in.tum.de

Abstract—Inadvertent data disclosure by insiders is con-
sidered as one of the biggest threats for corporate informa-
tion security. Data loss prevention systems typically try to
cope with this problem by monitoring access to confidential
data and preventing their leakage or improper handling.
Current solutions in this area, however, often provide limited
means to enforce more complex security policies that for
instance specify temporal or cardinal constraints on the
execution of events. This paper presents UC4Win, a data
loss prevention solution for Microsoft Windows operating
systems that is based on the concept of data-driven usage
control to allow such a fine-grained policy-based protection.
UC4Win is capable of detecting and controlling data-loss
related events at the level of individual function calls. This is
done with function call interposition techniques to intercept
application calls to the Windows API in combination with
methods to track the flows of confidential data through the
system.

Keywords-data loss prevention; usage control; microsoft
windows security; dynamic data flow tracking

I. INTRODUCTION

As data has become one of the most important business
drivers in our modern information-driven society, the pro-
tection against disclosure of sensitive data is an important
goal for most companies and governmental organizations.
This is not only due to the fact that leakage of confidential
data may lead to an instant economical loss due to
competitive disadvantages, but also may severely damage
the reputation of a company and thus also may induce a
loss of customers or weakened negotiation positions with
other contractors due to damaged trust relationships.

Many security systems that try to cope with this problem
mainly focus on protecting against external attacks and
attempts to provoke data leaks from outside the companies.
Recent studies show, that so-called insider threats are at
least a similarly severe problem in terms of disclosure
of confidential data. These insider threats do not only
manifest themselves in the risk of deliberate data dis-
closure caused by social engineering or the intentional
misuse of privileges by employees. In addition, accidental
or inadvertent disclosure of sensitive information by com-
pany employees due to non-adherence to company security
guidelines or simply due to careless behavior is a most
relevant insider threat [1], [2].

Data Loss Prevention systems (DLP) aim to address the
risk of data disclosure from insiders (and some malware as

This work was supported by the DFG under grant no. PR 1266/1-1 as
part of the Priority Program SPP 1496, “RS3”

Alexander Pretschner
Technische Universitdt Miinchen
Garching bei Miinchen, Germany
alexander.pretschner@in.tum.de

well). Their main idea is to observe and control the stor-
age, movement, or handling of confidential data according
to specified security policies. A common taxonomy to
classify DLP systems is based on their their protection
scope [3]: DLP solutions that protect Data-At-Rest identify
sensitive data in persistent storage locations and, if a
security policy specifies this, removes or encrypts them
if the location is considered non-trusted; if a DLP solu-
tion considers Data-In-Use, it monitors and controls the
interaction of users and sensitive data according to applied
security policies; finally the scope Data-In-Motion means
that a DLP system monitors and controls the movement
of sensitive data at the network level.

Usage control generalizes access control to the future
handling of data once access to it has been granted.
It can be seen as a natural framework for the idea of
Data-In-Use DLP, as it aims at regulating the usage of
(confidential) data according to specified security policies
and thus also allows to prohibit unwanted events of data
leakage. However, it is more expressive with respect to
preventing data disclosure than most data loss prevention
systems, as allowed or disallowed handling of data can
be defined in a more fine granular way. While a typical
data loss protection system either allows or disallows,
say, copying data from a trusted system to a non-trusted
USB stick, a usage control solution could specify that this
copying process should only be blocked within business
hours or that at maximum five copies are allowed. In sum,
usage control offers the possibility for a more fine-granular
control of data usages and movements than typical data
loss prevention systems, allowing for the enforcement of
more complex and context-specific policies, thus establish-
ing a more flexible way of protecting against inadvertent
data disclosure. Our paper shows how one usage control
framework can be instantiated as a DLP solution.
Problem. The use of data loss prevention solutions is a
common way to prevent insider-driven inadvertent infor-
mation disclosure at endpoint systems [4]. Current data
loss prevention solutions are rather limited in terms of
flexibility of enforceable security policies [5]. For ex-
ample, they typically lack possibilities to relate different
events of potential data disclosure to each other, or specify
temporal or cardinal constraints on them, to allow for
a more differentiated enforcement. Moreover, they rarely
consider the flow of specified sensitive data items through
the system in their decision process, but most often rely
on the on-the-fly identification of sensitive data by using

pattern matching or statistical algorithms[6], [7], [8], [9],
[10]. With this approach, DLP systems are usually not
able to distinguish between individual data items and are
thus not able to identify flows of sensitive data if they are
encrypted, compressed, or otherwise obfuscated.
Solution. This paper introduces UC4Win!, a data-driven
usage control based data loss prevention solution for
Microsoft Windows. UC4Win uses function call interpo-
sition techniques to monitor user application calls to the
Windows API and match them against special security
policies in order to modify or prevent calls that may lead
to unwanted flows of confidential data. In order to detect
derived data, data flows are tracked.

Contribution. UC4Win is, to our knowledge, the first
DLP solution for Microsoft Windows that makes use of
data-driven usage control to protect against inadvertent
data leakage and that is independent of concrete data rep-
resentations. By exhibiting the concepts of usage control
and dynamic data flow tracking, UC4Win is capable of
enforcing complex conditional and fine-grained security
policies and is able to identify the propagation of individ-
ual data items through the system at any point in time. This
enables a flexible and non-intrusive protection against in-
advertent information disclosure, even in situations where
typical content-identification based DLP solutions fail due
to obfuscated, encrypted, or compressed data flows.
Organization. After a brief overview of related work
in Section II, we define our scope by introducing a
set of sample usage scenarios and discuss the resulting
requirements in Section III. We clarify the conceptual
foundations of this work in Section IV, followed by a
discussion of design decisions and the actual design of
our prototype in Section V. Finally, we present the results
of a security and performance analysis in Section VI and
conclude with a discussion in Section VII.

II. RELATED WORK

Recent surveys [11], [3] show a broad spectrum of work
that concerns the problem of detecting and preventing loss
of sensitive data, often referred to as data loss prevention,
information leak prevention, or extrusion prevention. The
authors of the Pedigree system [12] propose a taint-based
information flow control approach for the network-wide
protection against the disclosure of sensitive data. This
work focuses on associating taint labels to all processes
and files of a system to enforce information-flow based
policies on them. The main difference to our work is that
Pedigree, even though it performs network-wide tracking
of data, provides very limited means to specify and enforce
policies more complex than comparing taint marks. The
work of Petkovi¢ et. al. [13] is probably closest to our
approach, as they also consider information flows at the
file system layer that are caused by function calls. The
main difference to our work is that we (1) allow for the
specification of temporal and cardinal obligations within

'A demo video can be found at:
http://www?22.in.tum.de/research/distributed-usage-control/

our policies and (2) allow representation-independent en-
forcement and are not limited to the file system level.
There are many different commercial data loss prevention
solutions, ranging from independent ones focusing on the
protection of one particular data state (endpoint, network,
storage, etc.) [10] to more sophisticated solutions that
integrate protection mechanisms for data-at-rest, data-in-
motion, and data-in-use [6], [7], [8], [9]. These solutions
mostly focus on detecting sensitive data and reporting
events of its potential disclosure, while putting less effort
into preventing such events in the first place. According
to [11], one of the reasons for that is their missing
support for correlating different monitored events, or more
general, limited ability to define and enforce complex
policies. Our work differs from such commercial solutions
as our emphasis is on preventing misuse and disclosure of
sensitive data in the first place. We are able to do so by
monitoring distinct flows of data items and by correlating
different events (in form of temporal, propositional, or
cardinal relationships between them) in order to identify
and prevent potential data loss.

In the area of usage control, enforcement mechanisms
have been instantiated for a wide range of different sys-
tems and abstraction levels. This covers implementations
for machine languages [14], for operating systems, such as
the OpenBSD [15] or the Android operating system [16],
[17], for window managers like the X11 windowing sys-
tem [18], in the context of DRM [19], and for several
legacy applications, such as the Firefox web browser [20],
the ThunderBird mail client [21], or the OpenOffice word
processor [22]. In addition, a multi-layer usage control
architecture has been proposed, to combine these solutions
in a way that allows data-centric enforcement of usage
control requirements by the combination of enforcement
mechanisms at multiple layers of abstraction [23].

Our work differs from these instantiations in that we
are able to enforce usage control policies at different
layers of data abstraction by monitoring and controlling
events at only one layer (the Windows API). In contrast
to other solutions that rely on combined event processing
from monitors at multiple layers of abstraction, we can
avoid several technical enforcement problems, e.g. induced
by the necessary monitor synchronization. This reduces
communication interfaces, which leads to a smaller attack
surface, performance improvements, and increased relia-
bility due to reduced system complexity.

Finally, the main difference between our work and the
kernel hook based work of Wang et. al. [24] is that
they handle simple, binary DRM-related constraints on
kernel function calls, while we employ a formal data-
driven usage control model to perform representation-
independent enforcement of data usage control policies
with complex temporal or cardinal constraints.

III. USE CASE AND REQUIREMENTS

To understand the scope and goals of UC4Win and
to point out the benefits of employing data-driven usage
control techniques to prevent inadvertent data leakage, we

present two sample scenarios that demonstrate the scope
of UC4Win. These sample scenarios act as a basis for the
user requirements and architectural constraints of UC4Win
and were used to align its development process with a real-
world context.

A. Scenarios

The scenarios take place in the fictional bank institute
“InsecBank”. At InsecBank the majority of accounting
clerks work in open-plan offices to offer services to
the customers. The open-plan offices are open for all
customers during business hours. As the business model
of InsecBank particularly depends on their reputation, a
disclosure of sensitive data would mean a severe loss of
reputation, as well as financial losses due to expensive law
suits or criminal use of this data. Knowing that inadvertent
data disclosure from insiders is one of the biggest infor-
mation security threats [1], InsecBank decided to employ
a usage control system as data loss prevention solution to
protect themselves against this kind of threat.

1) Scenario I1: The accounting clerks in the open-plan
offices use shared printers, which may be outside their
actual line of sight and thus also accessible by customers
during business hours. Thus, print-outs that contain sen-
sitive data may be seen or stolen by visitors, as it might
happen that clerks do not directly collect their print-outs.
To prevent unintended leakage of confidential data via
printers, InsecBank may want to enforce usage control
policies such as “Customer records in business_db.xml
must not be printed on shared printers”.

2) Scenario 2: Although most of the business processes
of InsecBank are supported by a special access-controlled
groupware, some tasks still have to be performed outside
the groupware environment. At the point where confi-
dential data leaves the controlled groupware environment,
it is not protected any longer by security mechanisms.
This means that sensitive data may leak via different
uncontrolled channels due to file copies, screenshots, or
printouts. In order to cope with this kind of data leakage
problems, InsecBank wants to enforce policies like “All
attempts to copy and paste confidential data from the
groupware system to non-trusted application should be
blocked”, “Screenshots must not be taken whenever they
contain confidential data”, or “Sensitive data may not be
copied to non-trusted external devices.”

B. Requirements

Corresponding to our bank setting with employees in
different roles (e.g. clerk, manager, system administrator)
we distinguish between two different types of users.
The majority of users are non-privileged ones without
administrator permissions and only restricted possibilities
to modify their systems (e.g. install/uninstall software,
enable/disable system services, etc.). The other group of
users, referred to as privileged ones, has administrator
permissions and is thus able to arbitrarily modify the
systems. This distinction is necessary, because we do
not want non-privileged users to modify the state of

UC4Win and only allow managers or administrators to
define and deploy usage control policies. This decreases
the possibilities for non-privileged users to circumvent the
usage control mechanisms.

To allow for a comprehensive and non-intrusive protec-
tion against information leakage related insider threats, we
want UC4Win to be able to control all system events that
have the potential to cause the disclosure of confidential
data. As we do not want security policies to be restricted
to only specify constraints on specific representations of
data (e.g., one specific file), we in addition demand the
enforcement to be done independent of the representation
of the to-be protected data (e.g., also for any copy of the
file, or windows that show parts of that file). Based on
the proposed scenarios and the targeted application area
of UC4Win, we thus define this set of relevant system
events as all events that correspond to: (i) modifications
of the file system (e.g. creating, deleting, reading, or
writing files); (ii) modifications of the user interface (e.g.
displaying data on the screen, taking screenshots); and (iii)
communication with peripheral devices (e.g. printing). The
focus of UC4Win is on the enforcement of already defined
security policies on the usage of sensitive data. Therefore,
the identification of sensitive data and the generation of
respective security policies is outside this paper’s scope.

1V. BACKGROUND
A. Usage Control

Usage control is a generalization of the concept of
access control to what happens to data after access to it has
been granted [25]. This is done by enforcing provisions
and obligations on its usage, typically specified within
usage control policies that state what must and what
must not happen to the data upon future usage [26].
Examples for such policies are “delete data after 30 days”,
“reduce quality of video upon distribution”, or “notify
owner upon access”. The compliance with these policies is
then either enforced in a detective way, which means that
violations are only detected (and potentially reported) but
not prohibited, or in a preventive way, where violations of
a policy are prohibited in the first place.

These data items are represented at different layers of
abstraction within a system. The data contained inside a
picture for example, may be at the same time represented
at the file system level (e.g. within picture.jpg), as part
of a window (e.g. within the main window of a picture
editor), and within a particular area of the memory of the
corresponding process (e.g. as part of the editor’s heap).
We often want to enforce usage control requirements for
all representations of a data item; thus we do not want the
policy definition to be bound to particular representations.

To enforce usage control requirements on a real system,
they have to be first translated into a more formal and
machine-readable format. With the Obligation Specifi-
cation Language (OSL) [27], a general-purpose usage
control policy language, one can specify obligations and
provisions at the level of events. Such policies consist of
two parts. The event declaration part defines all events

that can potentially occur within the context of a particular
system. The second part of such a policy contains one or
more preventive or detective usage control mechanisms.
These mechanisms are defined as event-condition-action
(ECA) rules and specify obligations and provisions, based
on the previously defined events. Listing 1 depicts the
abstract syntax of these ECA rules [17].

Listing 1: Abstract OSL Policy Syntax

Policy::= eventDeclaration,
{PreventiveMechanism | DetectiveMechanism}+;

PreventiveMechanism ::= Event, Condition,
AuthorizationAction,
{ExecuteAction};

DetectiveMechanism ::= Event, Condition,
{ExecuteAction};

Event ::= actionName, {paramMatch};

paramMatch ::= paramName, value, [type]l;

type ::= containerUsage | dataUsage;

Condition ::= PL | TL;

PL ::= true | false | xPathEval(S) | eventMatch

not (PL) | and(PL,PL) | or(PL,PL) | implies(PL,PL);

TL ::= PL | not(TL) | and(TL,TL) | or (TL,TL)

| implies(TL,TL) | since(TL,PL) | always(TL)

| before(N,TL) | during(N,TL) | within(N,TL)

| replim(N,N,N,PL) | repmax(N,PL) | repsince(N,PL,TL);

AuthorizationAction ::= allow | inhibit | {Modifier};

Modifier ::= paramName, value;

ExecuteAction ::= notify | execute;

The formal semantics of the OSL language and the
question on how to derive implementation-level policies
are outside the scope of this paper. At this point we thus
only discuss the essential ideas. For a detailed discussion
please refer to the available literature [27], [28], [29].

In order to verify the compliance of a particular event
with a usage control policy, the event name and its
parameters are first matched against the respective Event
part of the policy. If the event matches, the Condition part
of the policy is evaluated. The Condition part consists
of propositional or past temporal logic formulas that
may contain nested logical, cardinal, temporal, or XPath
expressions. The always(a) operator of OSL corresponds
to the always operator of LTL, the since(a,b) evaluates to
true if b has always been true since a was true the first
time, and the before(n,a) evaluates to true if a was true
n time steps before. The OSL operators during(n,a) and
within(n,a) are generalizations of the LTL next operator,
where during(n,a) is true if a was always true within
the last n time steps, and within(n,a) if a was at least
one time true within the last n steps. The OSL cardinal
operators can entirely be modeled within LTL, neverthe-
less they are explicitly defined to reduce complexity. The
replim(l,m,n,a) operator evaluates to true if a was true at
least 1 times and at most m times within the last n time
steps, while repmax(n,a) is true if a was true at most n
times in the past. Finally repsince(n,a,b) is true, if a has
been true at most n times since b evaluated to true for
the first time. If the Condition part evaluates to true, the
event execution is, according to the AuthorizationAction
part of the policy, either allowed, inhibited, or the event

has to be modified prior to its execution. Also additional
actions may be executed, if the ExecuteAction part of
the policy specifies it. With the full expressiveness of
linear temporal logic together with macros for cardinalities
and xPath expressions, OSL allows to specify fine-grained
usage control policies at the level of events. To increase the
expressiveness even more and to allow to specify policies
on events whose parameters are related to data instead of
concrete representations, the type flag in the policy can be
set to dataUsage instead of containerUsage. This marks a
specific parameter to represent a data item and thus to be
considered in the data flow tracking.

B. Dynamic Data Flow Tracking

The representations of data in our context are runtime-
dependent due to continuous data flows through the sys-
tem, triggered by the execution of events. To formally
model these data flows we employed a generic transition
system based dynamic data flow model, as introduced
in [18], [15]. Its main idea is the representation of data
flows between different data containers within a system,
modeled by the tuple (C, D, P, A, F, R, %, ¢) and initiated
by the execution of system events. C' refers to the set of all
containers in the system that may contain data (e.g. files,
processes, windows, or the clipboard) and can be seen as
sources and sinks of all data flows. The set D contains
all abstract to-be protected data items (e.g. customer
records, a song, or a picture), independent of their concrete
representation. The set of principals P denotes all active
entities of the system that actually trigger the execution of
events (in our context these are the user processes). The
set of actions A models all events that potentially cause a
flow of data (e.g. reading or writing a file, copying data to
the clipboard, or taking a screenshot). The naming set F’
consists of identifiers that uniquely address the containers
of set C (e.g. file/window handles, or process IDs). A
system state ¢ € X is defined by three mappings: the
storage mapping s of type (C' — 2P) that models the
containment relation between data and containers; the alias
mapping [of type (C' — 2¢) that models the relationship
between different containers; and the naming relation f of
type (P x F' — C) that uniquely identifies the containers.
Therefore the set of all possible states of the system is
defined by ¥ := (C — 2P) x (C — 2°)x (P x F — O),
where the initial state ¢ consists of three empty mappings.
Finally the transition relation R contains all state transi-
tions, defined by R C ¥ x P x A x X, that are initiated
by actions, triggered by principals.

The semantics of this system are modeled via traces,
where a trace maps abstract points in time to a set of
states. For a more detailed discussion of the syntax and
semantics of the employed model please refer to [18], [15].

V. DESIGN

A. Options for Monitoring

All NT kernel based Windows systems consist of a user
mode and a kernel mode part. In principle all processes
whose execution is triggered by non-privileged users are

executed in the user mode part and have to make use of
the Windows API if they want to invoke low-level kernel
functionality. This for example includes reading or writing
to files, creating or manipulating windows, or invoking
network functionality. As a consequence, all user related
actions could be intercepted at both system layers, which
enables a wide range of possibilities to deploy our event
monitors. Although a deployment within the kernel mode
layer is thinkable, this option suffers from several draw-
backs. First of all, the Windows NT kernel itself and the
corresponding Native API are only sparsely documented,
which complicates modifications like the integration of a
usage control component. A more compelling argument
is that we might lose the ability to enforce more high-
level policies that, for example, specify constraints on user
interface events. The reason for this is that the Native
API’s purpose is to provide low-level functionality and
thus, in contrast to the Windows API, lacks high-level
functions for tasks like user interface manipulation.

As our focus is on the protection against inadvertent
disclosure by normal system users, which boils down to
preventing user processes from invoking functions that
might lead to unwanted data flows, the deployment at the
user mode layer is the more reasonable choice. Conse-
quently, the interception of user application calls to the
Windows API was the natural way of archiving this goal.
There are different ways to realize the interception of
function calls from to the Windows API. One of the
simpler ones is the modification of source code or binaries
of all to-be monitored programs to allow to intercept and
control all relevant function calls. We did not choose this
solution, as it would require us to modify all programs in
the targeted context which might not all be a-priori known
and their modification in many cases problematic due to
missing source code. The main drawback of this solution is
its necessary restriction to a fixed set of user applications,
which is unacceptable for a generic DLP solution.

The second option is the direct replacement of the
Windows API library files with custom ones that include
our monitoring functionality. The replacement libraries
could then conditionally forward the calls to the original
Windows API library files. While this solution does not
limit the enforcement to a particular set of applications,
it suffers from limitations like conflicts with integrity
protection mechanisms (e.g. the Windows File Protection).

The third option is the use of function call interposition
techniques. They are based on runtime manipulations of
calls to external functions within the memory of the target
process to reroute the calls to a custom detouring library.
This library can then perform arbitrary computations and
thus implement the monitoring functionality before it
invokes the original function call destination and returns
to the calling process. Figure 1 depicts this process for
the example of a CreateFile Windows API function call.
The upper half of the picture illustrates the respective
function call without and the lower half with function call
interposition. The main benefit of this technique is that
it neither requires the replacement of system libraries nor

Target process Detouring dll . Target library
(notepad.exe! monitor.dIl) Trampoline kernel32.dlI
T T i]
1 1 i i
| 1 |]
Case A: 1 1 CreateFile | 1
Normal [L L »
function | 1 fileHandle 1 |
invokation KE-——————————e e b |
! i | |
—————— —_— Y ——- 7T —— -7 =
1 jump 1 1 |
| | | |
] 1 1
| | |]
| | | |
| | |
C: B: (AN .
D:tsoeure " i | Pre-processing i i
function : : jump } }
invokation 1 e — |
| | 1 CreateFile 1
| | »
H 1 fileHandle i
| | | |
| | i i
| | |
! D Post-processing | !
i fileHandle ! i i
K mmmmmmmm e 4 i i
| | | |
| | l i

Figure 1: Function Call Interposition

any static modifications of the involved applications. Also,
the interception can be completely done at runtime which
allows an efficient and flexible monitoring by targeting
the interception to the relevant processes and functions.
Based on these considerations we chose function call
interposition for the event monitoring of UC4Win.

B. Design

UC4Win is an instantiation of a generic representation-
independent usage control architecture [28] and consists
of three main components, depicted in Figure 2: the
Policy Enforcement Point (PEP), responsible of intercept-
ing events and enforcing usage restrictions on them; the
Policy Decision Point (PDP), in charge of deciding about
the admission of the intercepted events; and the Policy
Information Point (PIP) that implements the data flow
model and maintains the connection between data and its
representations within the system.

Operating System Usage Control Core
© Policy Information Point
User process \{ 096"’ (PIP)
Policy Enforcement Point
€ _H (PEP) Y, D>Rep
%
Ar/ = V‘ ¥
Win32 API / O@o- Policy Decision Point
olka % (PDP)

Figure 2: Conceptual View

Starting with the interception of a user-mode application
call to one of the relevant Windows API functions (E),
the PEP temporarily blocks its execution and forwards
the event to the PDP, including the parameter values
of the intercepted function call (Notify). The PDP then
decides whether to allow, inhibit, or modify the execution
(Decide), by matching it against the corresponding usage
control policies. This evaluation step may require the
PDP to communicate with the PIP, whenever one of the
deployed policies makes restrictions on the usage of all
representations of a data item (e.g. all file copies or
windows containing data from business_db.xml) rather
than on only one particular representation of it (e.g. only

business_db.xml itself). In these cases, the PDP queries the
PIP for all representations of that data item (D — Rep)
to assess if the intended function call violates usage
constraints on one of these representations. Based on the
PDP’s decision, the PEP then either unblocks and contin-
ues the function call execution (Allow: E), modifies some
of its parameter values (Modify: E — E’), or completely
stops the further execution (Inhibit: E). Optionally, if a
policy demands it, the PEP may execute additional actions
(A) (e.g. a user notification). In cases where the function
call was executed, the PEP notifies the PIP about that event
(Update), which then in turn makes the corresponding
changes to the internal data flow model, based on the data
flow semantics of the respective function call.

C. Instantiation of the Data Flow Model

To track the flow of data induced by the execution of
user-mode process calls to the Windows API, we adopted
the dynamic data flow model introduced in Section IV-B
to our Microsoft Windows specific context. Due to our
focus on user-mode process calls to the Windows API,
we instantiate the set of principals P as the set of active
user-mode processes, identified by their unique process ID
P := PID. The set of containers C' is instantiated as the
set of all windows, processes, files, output devices, and the
clipboard that may contain data. Therefore it is defined as
C:= CWindows U CFiles U CDem'ces) CClipboard) myp,
where m,, denotes the process memory container of pro-
cess p. Also we instantiate the set of names F’ as all unique
identifies for these containers, namely the set of window,
device and file handles, as well as (absolute) file names,
with F':= FwHandle U FfNam,e U FfHandle U FdHandle U
Faname. We define the set of actions A as all Windows
API functions that potentially induce a flow of data from
or to the identified containers. For the sake of simplicity,
neither the set of containers C' nor the set of actions A is
complete. We hence restrict the modeling to the following
subset. In general, it is a daunting task to model the
complete Windows API with thousands of documented
functions. In practice, it is also not necessary to do so
to cover the common cases of inadvertent information
disclosure. The semantics of these actions, expressing the
way their execution modifies the state of the data flow
model, are defined as follows. For the sake of simplicity,
the signatures of the actions do not exactly correspond to
the real Windows API function and are either modified or
used in an abstracted manner, whenever parameters have
no significance in terms of the induced data flows.

To model the information state changes, we need some
additional notation to update the corresponding functions.
For any mapping m : S — T and variable x € X C S,
we define m[z < exprlzex = m/ withm’ : S — T
such that m/(y) = expr if y € X and m/(y) = m(y)
otherwise. We apply function composition for multiple
updates on disjoint sets, with simultaneous and atomic
replacements (the semicolon is syntactic sugar):

MT1 4= eTPry ;... ;T < €TPTe, JuieXy, . zneX, =
MLy < €TPry,]z, ex, © ... 0 M[T1 ¢ eTPry, | eX, -

[* will denote the transitive reflexive closure of alias
function .

CreateFile: The CreateFile Windows API function is
used to open a file, specified via its absolute file name,
and returns a handle to this file upon execution. Therefore
it has to be invoked prior to any write or read operation
on that file.

vse[c 2P Wie[c 2% vre [PxF -l
Vp € P,Vfn € Frname,Vfh € Fraandie:

((s,1, f),p,CreateFile(fh, fn),

(s;0, f[(p, fh) < f(p, f)])) € R

ReadFile: The ReadFile function is used to read data
from a file, identified via the passed file handle. Upon
execution, there is a data flow from the file to the memory
of the calling process. Therefore we model a data flow
from the file container to the process memory m, and
all referenced containers (e.g. windows that belong to that
process), indexed by the transitive reflexive closure [* of
the alias function of m,. As we in general cannot know
where the sensitive data within the file is located, we have
to do a coarse-grained estimation, assuming that all data
flows into the process memory.

Vs € [C—>2D] Vi€ [C—>20] Yf € [PxF — (],
Vp € P,VYfh € Frraandie:

((s,1, f),p, ReadFile (fh),

(slt < s(f(p, 1)) Us)]iep(m,) 1)) €R

WriteFile: The WriteFile function is used to write data
to a file, identified via the passed file handle. Again we
have to conservatively model the data flows, as we cannot
asses which parts of the process memory are written to
the file.

Vs € [C—>2D] Vi e [C—>20] Yf e [PxF (],
Vp € P,Vfh € Fraandie:

((s,1, f),p, WriteFile (fh),

(slf(p, fn) <= s(f(p, fn)) Us(mp)] 1, f)) € R

CreateWindow: The CreateWindow function has to be
invoked to create a new window to assemble the user
interface of a process. As any change to the process
memory may indirectly induce a flow of data to its
windows, we model this flow by a directed alias relation
between process memory m,, and all its windows. We have
to do this over-approximation in the alias modeling, as
we cannot deduce at the level of function calls to which
particular window the data has flown. For the same reason
we also have to assume that the complete process data has
flown into a new window container upon creation.

Vs € [CHQD] vie [0%20] Vf e [PxF (],
Vp S P, Vwh € Fyrandie:
((s,1, f),p,CreateWindow (wh) ,

(s [£ (p.wh) = s(m,)]
Ly < L(my) U f (o, wh)], f) € R

TakeScreenshot: There exists a variety of functions
to create a dump of all currently visible windows. To
cover all of them we introduce the abstract TakeScreenshot
function that models their common principle of transfer-
ring a dump of the content of all visible windows to the
clipboard. Conceptually it is triggered whenever one of the
various methods of taking a screenshot is executed, and
results in a data flow from all visible windows, indexed
by the set of window handles wh,;s, to the clipboard.

vse o 27| vie o2 vrelPxF -],
Vp € P, VC € Celipboard7vwhvis g Cwindmus :
((s,1, f),p, TakeScreenshot(whyis),

(sle |J s(f@)L f)eR

tEwhy g

SetClipboardData: The SetClipboardData function al-
lows to transfer arbitrary data to the system clipboard.
Thus, it leads to a flow of data from the calling pro-
cess memory container m, to the clipboard container
¢ € Ceipboard- We again have to take a coarse estimation,
assuming that all data within a process container flows
into the clipboard container. The clipboard only contains
one data item per time, so its content gets replaced upon
function call.

Vs € [C—> QD} vie [c = 20} Vf € [PxF = C],
Vp € P, Ve e Cclipboard:
((s,1, f),p, SetClipboardData (c) ,

(s [c — s(mp)} UL, f)eER

GetClipboardData: The GetClipboardData function is
used to fetch data from the system clipboard. It is modeled
by the transfer of the complete clipboard content of ¢ €
Cllipboara to the calling process memory container and all
its aliased containers [*(m,,).

vse o 2P| vie o2 vre[PxF -],
Vp € P,Vc € Celipboard:

((s,1, f),p, GetClipboardData (c) ,

([t 5(6) Us(@))yere gy s f) € R

CreateDC: The CreateDC function is used to retrieve
a handle to a graphical output device (e.g. a printer) and
thus is invoked if a process starts a printing job. Therefore,
whenever a call to the CreateDC function is made, we

assume that all data within the memory container m, of
the calling process flows into the output device container,
addressed by its unique device name.

Vs € [C—> zD] Vi€ [c—> 20} Yf e [PxF (],
Vp e }D7 Vdn S FdName,Vdc S FdHandle :
((s,1, f),p,Create DC(dn, dh),

(s[f(p, dn) <= s(f(p, dn)) U s(my)],
L, fl(p,dh) < f(p,dn)])) € R

With this set of data flow semantics we are able to
model the influences of all relevant Windows API function
calls on the data flow system state. All functions within the
scope of our system that we did not explicitly model here
boil down to one or more of the introduced functions. The
recv() and send() WinSock network functions for example
have the same data flow semantics as the ReadFile and
the WriteFile functions.

D. Policy Enforcement

Coming back to our initial setting and scenarios, we
now demonstrate how UC4Win enforces usage control
policies at runtime. Listing 2 shows the (slightly simpli-
fied) XML representation of the ECA rule that models the
usage control policy “Customer records in business_db.xml
must not be printed on shared printers” from our first
scenario. As we want this usage control policy to apply
to all representations of the data in business_db.xml,
we need to ensure that all data flows that origin from
business_db.xml are tracked. This is ensured by using the
type="dataUsage” flag of the FileName parameter within
the trigger part of the mechanism. The PDP recognizes this
parameter to represent the initial representation of a data
item. Upon policy deployment, the PIP is notified to track
any data flow from this initial container. At runtime, if an
event is to be executed on a specific container, the PIP
will be queried if this container contains the data inititally
represented in file business_db.xml.

Listing 2: Example Policy

<preventiveMechanism name="BlockLeak">
<trigger action="CreateDC" index="ALL" isTry="true">
<a:paramMatch name="lpszDriver"
value="winspool"/>
<a:paramMatch name="lpszDevice"
value="SharedPrinter"/>
<a:paramMatch name="FileName"
value="business_db.xml" type="dataUsage"/>
</trigger>
<condition> <True/> </condition>
<authorizationAction>
<inhibit/>
</authorizationAction>
<action name="notify">
<a:parameter name="title" value="UC Alert!" />
<a:parameter name="msg"
value="Printing confidential data not allowed." />
</action>
</preventiveMechanism>

Figure 3 depicts the basic steps of this data initialization
and policy enforcement process. If for example a word-
pad process wants to print data from business_db.xml, it
invokes the CreateDC function prior to starting a new
printing job. This invocation is intercepted and blocked
by the PEP, which forwards it to the PDP. The PDP
then successfully matches the intercepted event against the
mechanism, because the file name parameter references
the business_db.xml file and the printer name parameter
indicates a shared printer as target device. As the Con-
dition part of the mechanism evaluates to true, the PDP
returns with an Inhibit response to the PEP (as specified
in the AuthorizationAction part of the policy) which then
blocks the printing attempt and triggers a user notification
(as specified in the Action part). If, after that, data is for ex-
ample copied via the clipboard from the wordpad process
to another, say notepad process, the corresponding data
flow (originating from business_db.xml) is recognized. In
case the notepad process then tries to print this data, the
policy also matches on the corresponding event invocation
so that the printing is inhibited as well.

getDatalDforlnitialRepresentation(business_db.xml)

UniqueDataldentifier

CreateDC

: > MatchEvent

IsRepresentationinstanceOfData(wordpad, UniqueDataldentifier)

Y

Inhibit

T

Figure 3: Policy Enforcement Workflow

With this policy we thus effectively prevented user
attempts to print data from business_db.xml on shared
printers. Due to space limitations, we did not make use
of the full expressiveness of the used policy language
in this example mechanism. For instance, we did not
specify any temporal or cardinal constraints within the
Condition parts of the policies. However, by doing so, we
could easily reduce the strictness of our policies by, say,
allowing a maximum of three print-outs of data from busi-
ness_db.xml. This might make sense in situations where
we want to lessen the level of security in favor of a reduced
interference with user workflows. We see this flexibility in
the policy definition and enforcement as one of the main
benefits and contributions of UC4Win in comparison to
other DLP solutions. For more complex policy examples
please refer to [17]. At this point please note that the
expressiveness of the proposed policy language also allows
us to specify much more differentiated reactions on policy
violations. Instead of simply denying the execution of
such events we for example could notify the user of the
potential security breach to increase his awareness while
at the same time minimizing interference with workflows.

VI. EVALUATION

A. Security

In order to allow an effective protection against in-
formation disclosure, a DLP solution must not be easily
modified, disabled, or circumvented. The purpose of this
security analysis is therefore to identify potential vul-
nerabilities from an attacker’s point of view and assess
their impact on the overall security of UC4Win. As
our intention is the protection against inadvertent data
disclosure in a business context, we focus the analysis on
potential ways of circumventing or disabling our system
that could be exploited by normal users without malicious
intention. Our attacker model is thus that of a normal
employee that unintentionally discloses sensitive infor-
mation, due to careless behavior and non-adherence to
security guidelines. Additional assumptions of our security
analysis are: i) the attacker does not have administrator
privileges; ii) the underlying Windows operating system
is free of vulnerabilities; iii) the policy storage is tamper-
proof and cannot be modified in any way by non-privileged
users. The first and most fundamental assumption i) is
in our opinion justified, as it is not typical for normal
employees in a business context to be given administrator
privileges. We are aware that assumption ii) is very strong
as Windows can not be considered completely fault free,
still it has to be taken as faults at this level always lead to
an insecure system. Assumption iii) can be easily ensured
with standard Windows access control mechanisms.
Attacks on the Policy Enforcement: The most obvious
way of circumventing the enforcement of UC4Win is to in-
terfere with its function call interposition mechanisms. We
only intercept a limited subset of the complete Windows
API, therefore an easy way to do so is to use functions that
are not intercepted by UC4Win. As the chosen selection
of intercepted functions covers the Windows API call
behavior of common Windows programs (e.g. Microsoft
Office), we do not see this as a high risk. We could
cope with this threat by explicitly specifying all allowed
processes with a known set of potential API calls (via
a respective usage control policy). The second option to
circumvent the enforcement of UC4Win is the manipu-
lation of the interception mechanism itself. Possibilities
include the manipulation of the memory of the monitored
processes to remove the injected function re-routing mech-
anisms, or to launch a Man-in-the-Middle attack on the
communication between the monitored processes and the
PEP. Both attacks are not feasible under the taken assump-
tions as the manipulation of the process memory requires
elevated privileges and the communication between the
different UC4Win components is secured via encrypted
IPC channels.

Attacks on the Policy Evaluation: UC4Win in theory
could also be circumvented by manipulating the used
security policies. Because assumption iii) demands that
the physical data storage (the UC4Win policy folder in the
file system) is protected against manipulation by normal
users, the naive modification of the persistent policies

can be ruled out. By deploying malicious policies to the
PDP, an attacker could still circumvent the data protection
mechanisms of UC4Win. As the policy management func-
tionality of UC4Win is only accessible with administrator
permissions, this attack is also not feasible within our
context. The manipulation of the policies at runtime within
the PDP’s memory is again not possible due to the inability
to modify the process memory without elevated privileges.
Finally, the data item initialization phase between PDP and
PIP could be manipulated in order to prevent the effective
policy evaluation. Again, we assume the attack to not be
feasible due to the used encrypted IPC communication.
Attacks on the Availability: The most obvious way to
attack the availability of UC4Win to disable its protection
is the usage of Denial-of-Service attacks. Flooding its
components with a high load of events by artificially
generating Windows API calls can significantly slow down
the UC4Win process itself. In extreme cases this would
cause the operating system to kill the UC4Win process if
it exceeds the maximum response time. To cope with this
problem, a system running UC4Win could be configured
in a way that it reboots whenever a UC4Win process
exits unexpectedly. While this countermeasure reduces the
threat of sensitive data disclosure, it is not very practicable
due to its negative effects on the system stability.

B. Performance

As a significant performance overhead of a DLP solu-
tion induces a bad user experience, we analyzed the perfor-
mance of UC4Win, measuring its behavior in terms of rel-
ative computation time overhead. This measurements were
done under different configurations: i) without UC4Win;
ii) UC4Win without deployed policies; iii)) UC4Win with
deployed policies. To get an idea of the performance under
realistic conditions and in extreme situation of stress,
we conducted two distinct types of performance tests.
For the first test type we specified a security policy that
was triggered whenever data was read from or written
to a specific file. To simulate a realistic user behavior
we used a macro script that opened this file, added
some characters, and saved it again. For this test type,
the time for the execution of the complete macro was
measured. The second test type was a typical stress test
where we step-wise increased the pressure on UC4Win by
artificially generating CreateFile events in 1000 function
call packages. Here, the time for the execution of each
function call package was measured. To minimize envi-
ronmental influences on the measurements, we conducted
all performance tests within a virtual machine installation
of Windows 7 SP1 x86 with 4 GByte of RAM and a
2 GHz single-core CPU, using the same virtual machine
snapshot for all tests and configurations. All tests were
executed 100 times and their arithmetic mean used for
the further calculations. Table I depicts the results of both
test types, showing the relative computation time overhead
of the tests with respect to the non-UC configuration
1). The small measured overhead of the macro test can
be explained by the fact that the amount of time that

Table I: Performance Evaluation results

] [NouC | ii) UC - Pol [iii) UC + Pol |
100.00% | 117.32% 122.12
100,00% | 52597% 579,05

Macro

Stress

was spent for the monitored function calls themselves,
compared to the overall execution time of the macro, was
relatively small. As the stress test almost entirely consists
of intercepted events, the measured performance overhead
is correspondingly much higher. The big step between
the measurements of configuration i) and ii), compared
to the small step between ii) and iii) indicates that the
main overhead stems from the function call interposition
mechanism.

While the overhead under stress conditions may appear
prohibitive, the overhead in the “normal” use case can be
considered acceptable, because it is barely noticeable. In
other words, the overhead cannot be considered a show
stopper for our DLP solution.

VII. DISCUSSION AND CONCLUSION

In this paper we introduced UC4Win, a data loss
prevention solution for Microsoft Windows. Because this
solution instantiates a more general usage control frame-
work, it exhibits the expressiveness of data-driven usage
control to allow for a fine-grained enforcement of security
policies against data loss. Technically, our solution works
on the basis of Windows API function calls. By using
function call interposition we are able to intercept these
calls, evaluate their DLP policy compliance, and block or
modify them upon detected policy violations. To allow
a comprehensive representation-independent data leakage
prevention we incorporated a dynamic data flow model
to track flows of sensitive data through the system. In
contrast to other DLP solutions that mainly work on
the identification of sensitive data instead of tracking
their propagation, we are able to identify individual data
items at any point in time, regardless of their current
representation. This enables us to precisely specify and
enforce policies on individual data items, which allows
a very fine-grained data leakage prevention. Apart from
data leakage, caused by internals, UC4Win also provides
means to detect and prevent data disclosure by malware,
as both happen through the same intercepted API calls.

While the concepts behind UC4Win in our opinion
effectively prevent data disclosure at the level of Windows
API calls, our prototype is still work-in-progress and thus
has certain limitations. First of all its data loss prevention
effectiveness almost entirely depends on the quality of the
used security policies and the precise definition of the to-
be protected data. This is in particular crucial as UC4Win
itself is, in contrast to many other DLP solutions, not able
to automatically identify sensitive data. In addition to that,
the definition of such security policies is not a trivial task,
as the used temporal logic based policy language is far
from being intuitively usable by non-experts. Neverthe-
less, there have recently been promising advances in the

research on easing this definition task [29]. Besides these
policy based issues, the necessary over-approximations in
the dynamic data flow tracking in some cases lead to
label creep problems in a way that non-sensitive data is
mistakenly considered sensitive. This problem could at
least partially be solved by the employment of heuristics
and declassification strategies, which is matter of current
research. The conducted security analysis indicates, that
although UC4Win is not easy to circumvent under the
taken assumptions, it cannot be considered secure in a
more general case. This means that UC4Win might not be
able to withstand sophisticated attacks, and thus may not
be suitable to defend against data disclosure by malicious
attackers such as hackers.

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

[12]

REFERENCES

“Insider risk management: A framework approach to inter-
nal security.” www.rsa.com/document.asp?doc_id=10388,
last accessed April 2012.

M. McCormick, “Data theft: A prototypical insider threat,”
in Insider Attack and Cyber Security, vol. 39 of Advances
in Information Security, pp. 53—68, Springer US, 2008.

M. B. Salem, S. Hershkop, and S. J. Stolfo, “A survey
of insider attack detection research,” in Insider Attack
and Cyber Security, vol. 39 of Advances in Information
Security, pp. 69-90, Springer US, 2008.

S. Liu and R. Kuhn, “Data loss prevention,” IT Profes-
sional, vol. 12, no. 2, pp. 10-13, 2010.

H. Balinsky, D. Perez, and S. Simske, “System call inter-
ception framework for data leak prevention,” in Proc. of
EDOC’11, pp. 139 —148, 29 2011-sept. 2 2011.

“Mcafee total protection for data loss prevention.”
http://www.mcafee.com/us/resources/solution-briefs/
sb-total-protection-for-dlp.pdf, last accessed May 2012.

“Sophos data protection suite.” http://www.
sophos.com/en-us/medialibrary/PDFs/factsheets/
sophosdataprotectionsuitedsna.pdf, last accessed May
2012.

“Rsa data loss prevention suite.” http://www.rsa.com/
products/DLP/sb/9104_DLPST_SB_0311.pdf, last
accessed May 2012.

“Mydlp.” http://www.mydlp.com/, last accessed May 2012.

“Symantec data loss prevention for endpoint.”
http://www.symantec.com/content/en/us/enterprise/fact_
sheets/b-dlp_for_endpoint_DS_21189146.en-us.pdf, last
accessed May 2012.

A. Shabtai, Y. Elovici, L. Rokach, A. Shabtai, Y. Elovici,
and L. Rokach, “A taxonomy of data leakage prevention
solutions,” in A Survey of Data Leakage Detection and
Prevention Solutions, SpringerBriefs in Computer Science,
pp- 11-15, Springer US, 2012.

M. B. T. Yogesh Mundada, Anirudh Ramachandran and
N. Feamster, “Practical dataleak prevention for legacy
applications in enterprise networks,” tech. rep., Georgia
Institute of Technology, 2011.

(13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

M. Petkovic, M. Popovic, 1. Basicevic, and D. Saric, “A
host based method for data leak protection by tracking
sensitive data flow,” in Proc. of ECBS’12, pp. 267-274,
april 2012.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm,
S. Okasaka, N. Narula, N. Fullagar, and G. Inc, “Native
client: A sandbox for portable, untrusted x86 native code,”
in Proc. of SP’07, 2007.

M. Harvan and A. Pretschner, “State-based Usage Control
Enforcement with Data Flow Tracking using System Call
Interposition,” in Proc. of NSS’09, pp. 373-380, 2009.

G. Bai, L. Gu, T. Feng, Y. Guo, and X. Chen, “Context-
aware usage control for android,” in SecureComm’10,
pp. 326-343, 2010.

D. Feth and A. Pretschner, “Flexible data-driven security
for android,” in To appear in Proc. of SERE’12, 2012.

A. Pretschner, M. Biichler, M. Harvan, C. Schaefer, and
T. Walter, “Usage control enforcement with data flow
tracking for x11,” in Proc. of STM’09, pp. 124-137, 2009.

“Adobe livecycle rights management es.” http:
/Iwww.adobe.com/products/livecycle/rightsmanagement/
indepth.html, last accessed April 2012.

P. Kumari, A. Pretschner, J. Peschla, and J.-M. Kuhn,
“Distributed data usage control for web applications: a
social network implementation,” in Proc. of CODASPY’11,
pp. 85-96, 2011.

M. Lorscher, “Data usage control for the thunderbird mail
client,” Master’s thesis, University of Kaiserslautern, 2012.

C. Schaefer, T. Walter, A. Pretschner, and M. Harvan,
“Usage control policy enforcement in OpenOffice.org and
information flow,” in Proc. of ISSA’09, p. 393, 2009.

E. Lovat and A. Pretschner, “Data-centric multi-layer usage
control enforcement: A social network example,” in Proc.
of SACMAT’11, pp. 151-152, 2011.

Y. Wang, Y. Shen, and J. Pan, “Usage control based on
windows kernel hook,” in Proc. of ICIMT 09, pp. 264 —
267, 20009.

J. Park and R. Sandhu, “The UCON ABC usage control
model,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 1, pp. 128-
174, 2004.

A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Wal-
ter, “Mechanisms for Usage Control,” in Proc. of ASI-
ACCS’08, pp. 240-245, 2008.

M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Wal-
ter, “A policy language for distributed usage control,” in
Computer Security ESORICS 2007, vol. 4734 of Lecture
Notes in Computer Science, pp. 531-546, Springer Berlin
/ Heidelberg, 2007.

A. Pretschner, E. Lovat, and M. Biichler, “Representation-
independent data usage control,” in Proc. of STM’11, 2011.

P. Kumari and A. Pretschner, “Deriving implementation-
level policies for usage control enforcement,” in Proceed-
ings of the second ACM conference on Data and Applica-
tion Security and Privacy, Proc. of CODASPY’12, (New
York, NY, USA), pp. 83-94, ACM, 2012.

