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Abstract

It is intriguing that the observed dark matter abundance in our Universe can be explained
rather naturally as thermal relic of a weakly interacting massive particle. Probably
the most popular such particle dark matter candidate is the lightest neutralino in the
Minimal Supersymmetric Standard Model (MSSM). In this thesis we study the impact
of Sommerfeld enhancements on the neutralino relic abundance calculation for heavy
neutralino dark matter in the general MSSM including co-annihilations of further nearly
mass-degenerate neutralino and chargino states. To this end we develop an effective field
theory that systematically resums the enhanced radiative corrections to pair-annihilation
rates of slowly moving neutralinos and charginos. The framework is applied to heavy
wino- and higgsino-like scenarios and models interpolating between these cases.
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Zusammenfassung

Die in unserem Universum beobachtete Dunkelmaterie kann in natürlicher Weise als ther-
misches Relikt eines schwach wechselwirkenden massiven Teilchens erklärt werden. Ein
solcher vielversprechender Dunkelmaterie-Teilchenkandidat ist das leichteste Neutralino
im Minimalen Supersymmetrischen Standardmodell (MSSM). In der vorliegenden Arbeit
wird der Einfluss der Sommerfeld-Verstärkung auf die Neutralino Reliktdichte für schwere
Neutralino Dunkelmaterie-Kandidaten im allgemeinen MSSM und unter Einbeziehung
von Co-Annihilationseffekten weiterer näherungsweise massenentarteter Neutralino- und
Chargino-Spezies untersucht. Dazu wird eine effektive Theorie entwickelt, die überhöhte
Strahlungskorrekturen in Paar-Annihilationen langsamer Neutralinos und Charginos re-
summiert. Der Formalismus wird auf Wino- und Higgsino-artige Szenarien angewandt,
sowie auf Modelle, die zwischen diesen Fällen extrapolieren.
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Chapter 1

Introduction

The existence of a cold dark matter (DM) component in our Universe is by now well
established by various observations and at all experimentally accessible scales, ranging
from the size of galaxies to galaxy clusters and large scale structures up to the largest
observable scales associated with the cosmic microwave background radiation (CMB) [1].
For instance, the fact that galactic rotation curves become approximately constant and
do not decrease with increasing distance from the galactic centre is explained by the
presence of halos of non-luminous and non-absorbing – hence dark – matter. Similar
observations and explanations in terms of dark matter exist for galaxy clusters. The
most accurate determination of the present cold dark matter density Ωcdmh

2 is related
to cosmological precision measurements and has reached percent level accuracy: from a
combination of PLANCK, WMAP, baryon acoustic oscillation (BAO) and high resolution
CMB data, a value of

Ωcdmh
2 = 0.1187± 0.0017 (1.1)

is obtained [2], where h denotes the Hubble constant in units of 100 km /(sMpc).
In spite of evidence for its existence, the nature and origin of the cold dark mat-

ter component are still unknown. The Standard Model (SM) of particle physics that
has been tested extensively by experiments and that describes so far successfully the
microscopic interactions of the constituents associated with ordinary matter (quarks,
gluons, leptons, neutrinos, the photon, the electroweak gauge bosons and the SM Higgs
boson) [1],provides no particle dark matter candidate. This in turn is one of the few
empirical evidences that the SM cannot be the fundamental theory of nature. Assuming
that dark matter has particle nature, possible extensions of the SM should therefore in-
volve a particle dark matter candidate that is stable or at least sufficiently long lived on
cosmic timescales. Furthermore this particle candidate may not interact with photons
nor take part in strong interactions, otherwise dark matter would be visible or it would
have been found in rare isotopes [3, 4].

It is intriguing that the origin of the observed cosmic cold dark matter abundance
can be explained rather naturally through thermal production and subsequent freeze-
out of a particle with weak interaction strength and a TeV scale mass, a so called
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weakly interacting massive particle (WIMP) [3,4]. This might indicate that new physics
at the TeV scale, which is needed to addresses certain formal issues in the SM such
as the stability of the electroweak scale, is also associated with a cosmic dark matter
constituent, thereby connecting problems related to the smallest and largest observable
scales. The explanation of the cosmic cold dark matter abundance in terms of a cold
relic implies that the corresponding freeze-out process in the early Universe takes place at
temperatures when the DM particles become non-relativistic. An accurate determination
of the relic density considers also the presence and freeze-out of those further species in
the early Universe, that are close-in-mass and interact with the DM candidate. The
central ingredients in the relic abundance calculation are the pair-annihilation rates of
the DM and additional nearly mass-degenerate particles. Given that the DM particles
have typical non-relativistic velocities v ∼ 0.2 c around freeze-out, the corresponding
tree-level co-annihilation cross sections can be expanded according to

σannvrel = a + b v2rel + O(v4rel) , (1.2)

where vrel = |~v1 − ~v2| is the relative velocity of the two annihilating particles in their
centre-of-mass frame. Referring to tree-level rates and keeping only the first two terms
in the expansion is often a good approximation in the relic abundance calculation.

In the simple freeze-out scenario DM pair-annihilation reactions eventually cease
when the DM number density is sufficiently diluted due to the expansion of the Universe.
However, pair-annihilation reactions can restart when DM eventually accumulates in the
present Universe due to gravitational interactions. Corresponding regions with a DM
over-density can be galactic centres, but also the sun potentially has a sufficient gravita-
tional potential to attract, capture and amass DM particles. The DM pair-annihilation
reactions occurring today in these regions are described by the same annihilation rates
(1.2) as in the early Universe. Since the typical velocities of the annihilating particles
today are however much smaller, v ∼ 10−3 c, it is often enough to consider the leading
order term a in the non-relativistic expansion of the corresponding annihilation cross
sections.

Certainly one of the most studied and probably best motivated DM candidates is
the lightest neutralino (χ0

1) in the Minimal Supersymmetric Standard Model (MSSM)
[3, 4], a sypersymmetric extension of the SM. There exist several codes that allow for
the calculation of the χ0

1 relic density in the general MSSM, currently relying on tree-
level annihilation rates and taking co-annihilation reactions with further supersymmetric
particles close in mass with the χ0

1 into account [5, 6]. The calculated relic density of a
viable χ0

1 dark matter candidate should at least not exceed the observed Ωcdmh
2 value.

The latter allows for the possibility that the cosmic dark matter is constituted by several
particle species, each contributing a certain portion to the total dark matter abundance.
From the requirement that the χ0

1 explains all observed cosmic dark matter in terms of a
thermal χ0

1 relic, stringent constraints on the MSSM parameter space can be derived [7,8].
The actual identification of a particle dark matter candidate with the cosmic con-

stituent relies on the complementarity of different experimental search strategies; for
corresponding investigations related to the χ0

1 DM candidate see for instance the recent
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publications [9,10]. The aforementioned pair-annihilation reactions in the galactic centre
or the sun would produce indirect signals of dark matter particles, revealing themselves
in cosmic or gamma ray signatures or neutrino fluxes, looked for with corresponding
space or ground-based telescopes. Direct detection experiments are searching for signals
from scattering reactions of DM particles off terrestrial detector materials. To assign
(future) signals from indirect and direct detection experiments to a certain candidate,
this particle should ideally be produced directly at a particle collider such as the Large
Hadron Collider (LHC) at CERN, which would allow to determine – or at least narrow
down – some of its properties as for instance its mass and spin. Let us mention here
that in the past several experimental collaborations working on direct and indirect DM
detection have reported the observation of signals, which they claimed could not be ex-
plained by known backgrounds or other astrophysical sources and which therefore could
be assigned to dark matter. However the explanation as dark matter signals in none
of these cases is definitely confirmed and former DM indications could later often be
attributed to underestimated background or detector effects.

In this thesis we focus on the neutralino relic abundance calculation and improve
its accuracy by systematically resuming a certain class of radiative corrections to the
relevant neutralino and chargino co-annihilation cross sections. Indeed, given the experi-
mental percent level accuracy on Ωcdmh

2, (1.1), it seems desirable to include radiative
corrections to the co-annihilation rates, which enter the relic abundance calculation
as a central ingredient and are currently afflicted with the largest uncertainties. Two
different approaches in refining the determination of the co-annihilation rates of the χ0

1

and further close-in-mass MSSM states can be distinguished. On the one hand, next-
to-leading order corrections to the co-annihilation rates are calculated in fixed order
perturbation theory in the general MSSM. The determination of the complete next-
to-leading order SUSY QCD corrections in neutralino and chargino pair-annihilations,
including co-annihilations with possibly nearly mass-degenerate sfermion states has been
finalised recently [11–15]. Moreover, the first steps in the calculation of the full next-
to-leading order electroweak corrections have been carried out [16–18]. On the other
hand there exists a class of radiative corrections that can be enhanced in non-relativistic
neutralino co-annihilation reactions and eventually requires systematic resummation up
to all orders in perturbation theory. This situation generically arises in theories that allow
for light mediator exchange between heavy non-relativistic DM particles prior to their
annihilation. The light mediator exchanges give rise to long-range potential interactions
that distort the incoming DM particles’ wave-functions away from plane waves, such
that their annihilation probability becomes larger. In terms of Feynman diagrams, the
effect is associated with amplitudes that exhibit ladder-like exchanges of the mediators
between the co-annihilating non-relativistic DM particles before the latter actually pair-
annihilate. Each loop in the corresponding diagrams involves a contribution that scales
as g2mDM/mφ, where g denotes the respective coupling, mφ the mediator mass and mDM

refers to the DM mass scale. For sufficiently light mediator masses, mφ ≪ mDM, these
terms are unsuppressed and eventually lead, after systematic resummation, to the so-
called Sommerfeld enhancement of the corresponding annihilation rate. In the MSSM
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with χ0
1 dark matter candidate the mutual exchange of electroweak gauge bosons, and to a

lesser extend light Higgs bosons, causes the Sommerfeld enhancement in heavy neutralino
pair-annihilations. Sommerfeld enhancements are associated with the non-relativistic
nature of the pair-annihilating particles. They are typically the stronger the smaller the
velocities of the particles. Consequently the relevance of the Sommerfeld enhancement
effect for χ0

1 DM has first been pointed out in context of gamma ray signatures from χ0
1

pair-annihilations in the galactic centre today [19,20], where the authors considered the
simplified scenarios of pure wino and pure higgsino χ0

1 states. Although the enhancement
effect is much milder during χ0

1 freeze-out because of the larger mean velocities (v ∼ 0.2 c)
it was found in [20] that its impact on the relic density can be significant for pure
wino χ0

1 DM. Subsequently, the Sommerfeld enhancement effect in the MSSM has been
studied extensively both in application to indirect detection and the χ0

1 relic abundance
calculation [21–27], where these analyses mainly referred to the limiting scenarios of wino-
or higgsino-like χ0

1 or even pure wino and pure higgsino χ0
1 models. In addition, in [28]

Sommerfeld enhancements were investigated in context of “minimal dark matter” models
that resemble the MSSM in the limits of pure wino and pure higgsino DM. In addition
to MSSM related studies, there have been several investigations on the Sommerfeld
enhancement effect in generic dark matter models. In particular, the measurement of
an anomalous positron excess by the PAMELA experiment in 2008 has triggered several
investigations on Sommerfeld enhancements in generic dark matter models, where the
effect was considered as a means to boost the DM annihilation rates in the present
Universe while at the same time providing electroweak scale cross sections during freeze-
out due to much milder enhancement factors at larger velocities [29].

In this thesis we address Sommerfeld enhancement effects in co-annihilation reactions
of nearly mass-degenerate neutralinos and charginos in the general MSSM, extending
previous work on the subject in several important aspects. With the term “general
MSSM” we imply that our calculations allow an application to any generic R-parity
conserving MSSM scenario. In particular, the χ0

1 can be an arbitrary admixture of
the electroweak gaugino and higgsino gauge-eigenstates, away from the strict wino and
higgsino limits. Further important improvements or extensions to existing investigations
in the literature are the following:

• We use an effective theory framework to describe the pair-annihilation reactions of
non-relativistic and nearly mass-degenerate neutralino and chargino pairs, similar
to the NRQCD approach to heavy quarkonium annihilations in [30]. An impor-
tant difference to the latter QCD case is the fact that we deal with several nearly
mass-degenerate scattering states χeaχeb . The exchange of electroweak gauge or
light Higgs bosons prior to the short-distance annihilation allows for potential
scattering transitions from an initially incoming pair χiχj to another such nearly
mass-degenerate two-particle state. In the effective theory we therefore encounter
diagonal as well as off-diagonal potential interactions. These are of Coulomb-type
for photon exchange (which corresponds to a purely diagonal potential scatter-
ing reaction) but are Yukawa-like in case of electroweak gauge boson and Higgs
exchange. We determine analytic expressions for all (off-) diagonal potential inter-
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actions at leading-order in the non-relativistic expansion.

• The effective field theory approach by construction provides a factorisation be-
tween the long-range and short-distance contributions to the co-annihilation rates.
The total pair-annihilation cross section of an incoming χiχj pair is related to
the absorptive part of the forward scattering amplitude χiχj → . . . → χe1χe2 →∑
XAXB → χe4χe3 → . . . χiχj , where XAXB denotes a pair of SM or light Higgs

particles. Due to the presence of off-diagonal potential interactions χeaχeb →
χecχed, changing the nature of the incoming two-particle state prior to annihilation,
the short-distance annihilations encoded in reactions χe1χe2 →

∑
XAXB → χe4χe3

are generically associated with off-diagonal processes as well, where the χe1χe2 pair
is not necessarily identical to the χe4χe3 pair. Off-diagonal annihilation rates were
only known in the pure wino and higgsino limits and at leading order in the non-
relativistic expansion. They have not been considered previously in applications
to the generic MSSM. We derive purely analytical results for all (off-) diagonal
short-distance annihilation rates. In the effective theory they are encoded in the
absorptive parts of Wilson coefficients and are automatically partial-wave sepa-
rated. We determine not only the leading order S-wave contributions, but also
calculate P -wave and next-to-next-to-leading order S-wave terms associated with
the term b in (1.2).

• The determination of the Sommerfeld enhancement factors for an incoming χiχj
state in a certain partial-wave configuration requires the solution of a matrix
Schrödinger equation involving matrix-valued potentials that refer to correspond-
ing (off-) diagonal potential scattering reactions. As we allow the neutralino and
chargino states in the effective theory to exhibit small mass differences, there will
be potential transitions to kinematically closed two-particle channels. If the mass
splittings between the incoming and the closed channels become larger, numerical
instabilities arise in the solution of the Schrödinger equation. We discuss a novel
method based on an appropriate reformulation of the Schrödinger problem that
solves this issue.

• The Sommerfeld factors depend on the partial wave state of the annihilating pair.
Consequently, the consistent determination of the Sommerfeld-enhanced annihi-
lation rates requires a partial wave separation of the short-distance annihilation
rates. In particular the P - and next-to-next-to-leading order S-wave contributions
to the coefficient b in (1.2) have to be known separately. Within the effective theory
we obtain such partial wave separation by construction.

A number of limitation of our framework has to be mentioned. The formalism in its cur-
rent form does not allow to cover resonant s-channel annihilations in the short-distance
rates, as the process is no longer short-distance in this case. Moreover we cannot con-
sider MSSM scenarios where co-annihilations of sfermion states are relevant in the χ0

1

relic abundance calculation, since this would require the determination of corresponding
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potentials and short-distance annihilation rates in the effective theory. Although concep-
tually straightforward, this is beyond the scope of this thesis. Both the cases of resonant
s-channel annihilations and co-annihilations with nearly mass-degenerate sfermion states
require a certain degree of tuning between mass parameters in the MSSM spectrum. In
that sense such scenarios are less generic than models with mass degeneracies between
neutralino and chargino states, which naturally occur for heavy χ0

1 with a mass of several
hundred GeV up to some TeV, since in these cases the neutralino and chargino states
arrange in approximate electroweak multiplets. In addition to the above restrictions
we do neither include the effect of running couplings nor thermal effects throughout.
Concerning thermal effects in Sommerfeld-enhanced rates, the temperature dependence
of the gauge boson masses has been considered in [22, 28]. Pair-annihilation processes
of non-relativistic neutralino and chargino states involve the two well-separated scales
associated with the particle masses on the one hand and with the non-relativistic kinetic
energies on the other hand. The running of couplings can therefore in principle be rele-
vant, but is not considered here.

The thesis is based on and in certain points extends the four publications [31–34]. Its
outline is as follows. As the rigorous analysis of Sommerfeld enhancements in χ0

1 pair-
annihilation reactions in the general MSSM requires a large portion on formal prepara-
tions before an analysis of viable generic MSSM scenarios can be performed, we prepend
with Chap. 2 an introduction to the Sommerfeld enhancement by establishing an ad-
vanced guess formula for the corresponding enhancement factors and analysing enhance-
ment effects in several simplified toy models. This allows to familiarise with the Sommer-
feld effect and to estimate the order of magnitude of enhancements that can be expected
in the later application to the neutralino and chargino sector of the MSSM. A review on
the relic abundance calculation for generic particle dark matter is subsequently given in
Chap. 3. The discussion of problems in the SM and an introduction to the MSSM is the
content of Chap. 4, where we additionally discuss the neutralino and chargino sector of
the MSSM in view of its properties relevant for our further analyses. The main part of the
thesis is contained in Chaps. 5–8, where we discuss the construction of the effective field
theory designed to describe pair-annihilation reactions of non-relativistic nearly mass-
degenerate neutralino and chargino pairs. We start in Chap. 5 with the discussion of the
relevant terms in the effective theory Lagrangian. Chap. 6 then comprises the extensive
discussion of the analytic determination of the Wilson coefficients of four-fermion opera-
tors in the effective theory encoding the hard neutralino and chargino pair-annihilation
rates. In addition we describe the numerical and analytical comparison of our results
with data from numerical codes providing corresponding tree-level annihilation rates as
well as with known analytic expressions in the literature. The terms in the effective the-
ory Lagrangian associated with potential interactions between non-relativistic neutralino
and chargino states, eventually causing the Sommerfeld enhancements, are determined
in Chap. 7. With the prerequisites of the preceding chapters at hand we can finally
give in Chap. 8 the rigorous derivation of Sommerfeld enhancements in the effective
theory: we refine the advanced-guess Sommerfeld enhancement formula from Chap. 2

10



and provide an expression for the non-relativistic expansion of neutralino and chargino
co-annihilation cross sections including Sommerfeld enhancements and taking P - and
next-to-next-to-leading order S-wave effects in the short-distance annihilation rates into
account. Further we present the novel method in the solution of matrix Schrödinger
equations that is free from numerical instabilities. In addition, we introduce a method
that allows to treat effects from very heavy neutralino and chargino states perturbatively
in the co-annihilation rates of the nearly mass-degenerate neutralinos and charginos. The
application of the developed formalism to the χ0

1 relic abundance calculation in several
popular MSSM benchmark models is contained in Chap. 9. Here we analyse in detail
the underlying physics effects in each step of the corresponding calculations, illustrating
the general use of the developed effective field theory set-up. In Chap. 10 we summarise
and draw our conclusions. Appendices A, B and C, contain results or further details on
specific parts of the calculation.
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Chapter 2

Sommerfeld enhancements in a toy
scenario

This chapter contains a first introduction to the Sommerfeld enhancement effect. A
rigorous derivation of the enhancement within the non-relativistic effective field-theory
approach is postponed to Chapter 8, after the required formalism has been developed
and the ingredients for the study of non-relativistic neutralino (co-) annihilations in the
general MSSM within this framework have been calculated. As most of the preliminary
work needed for this study is rather technical, we decide to first consider here strongly
simplified but clear and intuitive toy scenarios. These scenarios allow to introduce the
effect and motivate the need for the involved calculations within the MSSM. To this
end the pair-annihilation reaction of non-relativistic fermions in the presence of gauge
interactions starting from relativistic perturbation theory is considered in Sec. 2.1, and
the situations requiring a resummation of so-called ladder diagrams up to all orders
are discussed. Based on heuristic arguments we can then give in Sec. 2.2 a generic
expression for the enhancement of annihilation rates in the presence of long-range po-
tentials, expressed in terms of two-particle scattering wave-functions and short-distance
annihilation rates, in a model with several nearly mass-degenerate two-particle states
in the presence of (off-) diagonal potential interactions.1 This formula is then brought
into a simple form useful for further numeric studies. With this formula at hand we re-
cap the properties of the enhancement in toy scenarios with one two-particle state with
Coulomb- or Yukawa-potential interactions. Subsequently, the case of a two-state model
with small mass splitting between the states and off-diagonal (real-symmetric) potential
interactions is studied. The purpose of these toy-models is to emphasise the importance
of a precise knowledge of the mass splittings between the annihilating states and the
form of the potentials to a rigorous study of Sommerfeld enhancements. In addition it
provides us with an estimate on the order of magnitude, that we can expect from the
enhancements.

1We will see in Chap. 8 that the correct Sommerfeld enhancement formula derived therein differs
slightly from the advanced-guess expression presented here, and that the latter provides correct results
for the enhancement only, if the potentials in the corresponding Schrödinger equations are symmetric.
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Figure 2.1: (a): Ladder diagram with an arbitrary number of mutual exchanges of a
very light or massless particle (wavy propagators) between the two heavy particles (solid
propagators) prior to their hard annihilation reaction (fat vertex). Similarly, such ladder
diagrams exist in the production reaction of the heavy particle pair. (b): One-loop
amplitude, that is part of the class of ladder diagrams in (a). We choose the centre-of-
mass system of the reaction and refer to the case of non-relativistic external momenta
p1,2 in the text. ’Canonical’ routing of the momenta in the loop is indicated, where ki or k
denotes a loop-momentum. p1,2 = P/2± p, with P µ = (2Mχ+E,~0 )µ and pµ = (0, ~p )µ.

2.1 The origin of the enhancement

The Sommerfeld enhancement effect is related to a threshold singularity in pair-annihila-
tion or pair-production reactions of heavy non-relativistic particles, that allow for mutual
exchange of massless or very light (as compared to the heavy particle mass scale) me-
diators. In the regime of small particle velocities, v ≪ 1, usual relativistic perturbation
theory, relying on an expansion in the couplings α of the theory, breaks down, imply-
ing that a certain class of diagrams has to be resummed to all orders. The consistent
resummation of such contributions leads to an enhanced production- or annihilation-rate.

The set of diagrams which exhibit a singular behaviour at threshold (v → 0) is given
by the class of ladder diagrams shown in Fig. 2.1 (a).2 A full result for the corresponding
multi-loop integrals is in general not known. However, instead of a direct calculation
of each such diagram, the threshold expansion method [35] is conveniently used. The
latter is appropriate to separate contributions to a (multi-) loop-integral, that are asso-
ciated with different scaling of the loop-momenta, according to the given energy scales
of the problem. Relying on this method, the dominant contributions to each ladder
diagram can be identified and only those are subsequently taken into account in the
resummation. In such a way a rearrangement of the perturbative expansion, applicable
in the case α/v ∼ 1, is possible, leading us to an effective field theory description of
the non-relativistic pair-annihilation reaction. The explicit construction of such an ef-
fective theory for non-relativistic neutralino dark matter pair-annihilation processes will

2Singular behaviour (a so called Coulomb singularity) is obtained for massless mediator exchange.
In case of a very light mediator, the ladder diagrams are strongly enhanced and require resummation,
but they are finite at threshold.
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be discussed in Chapters 5-7. Here we want to get a better insight into the origin of
the threshold singularity and gain a qualitative understanding how to deal with it by
applying the threshold expansion method.

Consider the annihilation reaction of a particle anti-particle pair χχ of non-relativistic
Dirac-fermions with individual mass Mχ in its centre-of-mass frame. Following [35], de-
termine the large and small scales characterising the process: the non-relativistic kinetic
energy E ∼ Mχv

2, the non-relativistic momentum Mχv and the mass scale Mχ, where
Mχv

2 ≪Mχv ≪ Mχ. The loop-momentum in a diagram contributing to the annihilation
amplitude can then be distinguished to be either

hard: k0 ∼Mχ, ~k ∼Mχ ,

soft: k0 ∼Mχv, ~k ∼Mχv ,

potential: k0 ∼Mχv
2, ~k ∼Mχv ,

ultra-soft: k0 ∼Mχv
2, ~k ∼Mχv

2 , (2.1)

where this classification implies a certain ’canonical’ assignment of the routing of the
momenta in a given loop-diagram. For an explicit example, consider the 1-loop diagram
(b) in Fig. 2.1, where a (massless) gauge boson is exchanged between the χ and χ prior
to the annihilation (hence assuming, that the two particles χ, χ are oppositely charged
under an U(1) gauge group). As regards the proper annihilation, denoted with the fat
vertex, the details on the particular interaction and the number of produced final state
particles are not important here for the moment. (We will specify later the two-particle
final-states we are interested in, see Sec. 5. In any case the final-state masses are assumed
to be considerably lighter than Mχ.)

Subject to the specific ’canonical’ assignment of the momentum flow in Fig. 2.1 (b),
the expression for the amplitude is of the form

A ∼ g2M2
χ

∫
[dk]

1((
P
2
+ k
)2 −M2

χ + i0
)((

P
2
− k
)2 −M2

χ + i0
)(
k − p

)2 . (2.2)

On the right hand side, we have factored out the mass-dimension full factorM2
χ associated

with the amplitude’s numerator and then dropped the remaining dimensionless Dirac-
structure, which is unimportant to our qualitative discussion. In addition we kept the
factor g2 in the numerator, where g denotes the gauge coupling of the χ, χ states to the
gauge boson. For the external momenta p1,2 = P/2± p with P µ = (2Mχ +E,~0)µ, pµ =
(0, ~p)µ is used, where E ∼ Mχv

2 and |~p | ∼ Mχv. Finally, [dk] denotes the integration

measure. In four space-time dimensions3 it reads [dk] = d4k/(2π)4 = dk0d3~k/(2π)4. We
can now easily estimate the scaling of contributions to the threshold expansion of (2.2).

3The original amplitude obtained from Fig. 2.1 (b) is both UV- and IR-divergent, requiring regular-
isation of the 1-loop integral. Note that the right hand side of (2.2) is only UV-finite because we have
dropped the numerator structures of the original amplitude: the numerator of the full 1-loop ampli-
tude in Fig. 2.1 (b) contributes two powers of the loop-momentum in the UV, such that a logarithmic
UV-divergence results by power-counting. To properly treat the UV- and IR divergencies it is conve-
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For the region of hard loop-momenta, the integration measure scales as [dk] ∼M4
χ, and

consequently, using (2.1),

Ahard ∼ g2 . (2.3)

This indicates, that the contribution from the hard region gives rise to an ordinary
radiative correction to the χχ annihilation vertex. By direct calculation it can be shown
that the contributions to the threshold expansion of (2.2) from the soft and ultra-soft
region vanish. Therefore we do not explore the scaling of the different terms in (2.2)
in these regions here. For potential scaling of loop-momentum k we obtain [dk] ∼
M4

χ v
5. Further both the denominators of the heavy fermion propagators as well as the

denominator of the gauge boson propagator in (2.2) scale asM2
χv

2 in the potential region,
see (2.5) and (2.6) below, such that

Apotential ∼ g2

v
. (2.4)

The behaviour proportional to 1/v implies, that the potential contribution to the thresh-
old expansion will dominate and gives rise to the (Coulomb) singularity for v → 0.

Being more explicit, the threshold expansion method prescribes, that in each region
the integrand of (2.2) is expanded in those parameters, which are small in that region,
and subsequently, that integration over the loop momentum is carried out (over the
entire loop integration domain4). In the potential region, this prescription implies at
first an expansion of the propagators in the small k0 ∼ Mχv

2, with the effect that the
denominators in (2.2) are replaced by

1((
P
2
± k
)2 − M2

χ + i0
) −→ 1

2Mχ

(
E/2± k0 − ~k 2

2Mχ
+ i0

) , (2.5)

1

(k − p)2
−→ − 1

(
~k − ~p

)2 . (2.6)

nient to use dimensional regularisation. In this case the integration measure is [dk] → µ̃2ǫddk/(2π)d

= 1/(4π)2 eǫγEddk/(π)d/2, with d = 4− 2ǫ. Here µ̃ =
√
eǫγE/(4π)µ with γE = 0.577216 . . . is used and

µ denotes the renormalisation scale. We are not interested in the exact calculation of the amplitude but
rather in the scaling behaviour of contributions from a certain region of the loop-momentum as specified
in (2.1). To this end we want to apply simple power counting arguments. This is however not easily done
in dimensional regularisation, as (2.1) distinguishes time and spatial components of the four-momentum
in four space-time dimensions, and the scaling of the measure [dk] referring to d-dimensional k is not
clear in this case. Focusing on the scaling behaviour of different contributions to the amplitude it is
sufficient to consider [dk] = d4k/(2π)4 in the following and to assume that UV- and IR-divergencies are
appropriately regulated.

4The point, why this is possible is non-trivial and it requires the use of dimensional regularisation. A
rough, simple argument, why the integration of the loop momentum in each region can be extended to
the entire domain, reads as follows: After expansion in the small parameters according to the considered
region, the contributions to the integrand from other than that region give rise to scaleless integrals.
These vanish when dimensional regularisation is used.
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In the potential region, the gauge boson propagator hence gives rise to a non-local
in space but instantaneous interaction between the two heavy fermions: the Fourier-
transform of the right hand side of (2.6) leads to the familiar Coulomb potential V (r) ∝
1/r. Here, the variable r refers to the relative distance of the two fermions in config-
uration space. Proceeding in the determination of the potential region contribution to
(2.2), using the right hand side expressions in (2.5), (2.6), the k0 integration can now
be carried out easily, using contour integration methods. Note, that the two poles at
k0 = ±(~k 2/2Mχ−E/2−i0) from the heavy fermion propagators pinch the k0 integration

contour in the region of potential ~k, consequently leading to the 1/v threshold singu-
larity as already anticipated in (2.4). The threshold singularity of the integral (2.2),
originating from the region of potential loop momenta, is therefore associated with the
two internal fermion propagators going simultaneously on-shell.

Moving now to a multi-loop ladder diagram as depicted in Fig. 2.1 (a), each sin-
gle loop integral is dominated by the 1/v proportional contribution from the respective
potential loop-momentum region. This eventually requires resummation of the 1/vn pro-
portional potential region contributions to the n-ladder diagram up to all orders n in
perturbation theory. It is worth to mention, that no n-loop diagrams other than ladders
and from each loop-integral no region other than the potential loop-momentum region
will give rise to 1/vn enhanced terms: as seen for the 1-loop case above, each 1/v singu-
larity is associated with two heavy fermion propagator poles pinching the respective k0
loop-momentum contour in the potential region, when the internal fermion propagators
go simultaneously on-shell. This can only happen for ladders and, for example is not
possible, if two ladder rungs are crossed.

Finally let us discuss the case of massive mediator exchange, by assigning a mass
mφ ≪ Mχ to the gauge boson exchanged between the heavy fermion propagators in
Fig. 2.1 (a) and (b).5 This introduces an additional scale to the integrand of the 1-loop
amplitude in (2.2). As mφ is assumed to be sufficiently lighter than Mχ, our conclusions
on the contribution from the hard loop-momentum region, (2.3), are unchanged. For
small loop momenta however, the additional scale becomes relevant: the heavy fermion
propagators can still be expanded in the small quantity k20, leaving us with the same ex-
pression (2.5) as before. In the next step of calculating the contribution to the expansion
of the 1-loop amplitude we will perform the k0 integration, picking the pole from one
heavy fermion propagator. This implies k0 ∼ ~k 2/Mχ ≪ |~k |. Hence the expansion of the

gauge boson propagator becomes −1/
(
(~k − ~p )2 +m2

φ

)
instead. The Fourier transform

of the latter gives rise to a Yukawa potential interaction V (r) ∝ exp(−mφr)/r between
the two heavy fermions. Using the above expression as well as (2.5), we can now carry
out the k0 integration using contour methods as before. Thereafter we are left with a
~k-integration over an integrand, that contains not only the scale Mχv, but mφ as well.

While in the mφ = 0 case, the only left-over scale in the ~k-integration was Mχv (as

anticipated in the potential scaling rule for ~k, (2.1)), we can now distinguish the cases

5We are only interested in the case of mφ < Mχ. Otherwise, the gauge boson exchange between the
fermions would reduce to a contact interaction.
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mφ ≪ Mχv, mφ ≫ Mχv and mφ ∼ Mχv. The ~k integral will be dominated by the
respective larger scale. For mφ ≪ Mχv the mediator mass mφ becomes irrelevant, and
we expect to recover the previously obtained 1/v enhanced result for the contribution

to the 1-loop amplitude (2.4). If instead mφ ≫ Mχv, the ~k-integration will be domi-

nated by the scale ~k ∼ mφ. From simple power counting, we then obtain in this case

(~k ∼ mφ ≪Mφ) the following contribution to the threshold expansion of (2.2)

Asmall ∼ g2
1

mφ/Mχ
. (2.7)

Note that we do not refer to the contribution as ’potential’ but use the (a bit vague)

term ’small’, as the ~k-integration is not dominated by potential ~k ∼ Mχv but ’small’
~k ∼ mφ momenta here. Obviously, for a sufficiently light mediator, mφ ≪Mχ, the simple
estimate (2.7) predicts an enhanced contribution to the expansion of the amplitude as
well, which implies the need for resummation of the respective contributions to ladder
diagrams up to all orders. However, no threshold singularity is obtained for v → 0 as
in (2.4). Rather the ratio mφ/Mχ acts as an infrared cut-off, setting a maximal size
for a possible enhancement. We will see later, that our naive arguments leading to
(2.7) correctly predict a saturation of the enhancement of the (resummed) annihilation
amplitude in the v → 0 case ifmφ > 0. There are however resonance effects, considerably
enhancing the Asmall contribution with respect to the naive expectation (2.7). These are
associated with particular values of the coupling strength g and the masses mφ and Mχ

and cannot be captured in our simple discussion here. Their effect will be discussed in
Sec. 2.3.2.

In both the cases of either a small or a vanishing mediator mass, we have seen that
certain contributions to the threshold expansion of ladder diagrams are enhanced and
require resummation of the dominant contributions to all orders. The contributions are
associated with the internal fermion propagators being (close to) on-shell states, while
the mutual gauge boson exchanges become instantaneous long-range interactions, de-
scribing potential scattering reactions of the fermion pair. The need for resummation
indicates that these potential interactions cannot be treated perturbatively any longer,
requiring a rearrangement of the perturbative expansion. We enter in the construction
of a corresponding effective field theory in later chapters. Now that we have qualitatively
discussed the origin of the enhancement in non-relativistic pair-annihilation reactions,
we will proceed with the derivation of an enhancement formula for a non-relativistic par-
ticles’ pair-annihilation rate, given potential interactions from light mediator exchange
prior to their actual annihilation.

2.2 An enhancement formula for a N-state model

Let us consider a set ofN nearly mass-degenerate two-particle states (χχ)I , I = 1, . . . , N ,
in their common centre-of-mass system. The pairs (χχ)I are built from a collection of
one-particle states χi, such that all (χχ)I states in the set share the same conserved
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charges. The relative velocities in each (χχ)I system are assumed to be non-relativistic
and (potential) scattering reactions shall allow for transitions (χχ)I → (χχ)J . This
implies that the mass splittings δMJ = MJ −M1 between the lightest state (χχ)1 and
the remaining (χχ)J in the set must not be too large; in case of larger mass splittings
δMJ a heavier (χχ)J state cannot be created on-shell in (χχ)1 → (χχ)J scattering
given a non-relativistic initial state. In the reverse reaction, with a non-relativistic
on-shell initial state (χχ)J , the final (χχ)1 state would be characterised by velocities
outside the non-relativistic regime. Further we assume the presence of (“diagonal”)
long-range potential interactions between the two constituents χi, χj of each pair (χχ)I ,
accounting for (χχ)I → (χχ)I scattering, as well as off-diagonal potential interactions
that cause scattering transitions (χχ)I → (χχ)J with I 6= J . We restrict the discussion
to spherically symmetric potentials, where the latter only depend on the relative radial
coordinate in the (χχ)I systems. Arranging the N states (χχ)I in a vector, the potential
interactions can be encoded in a N ×N potential matrix with in general non-vanishing
off-diagonals. The potential matrix has to be hermitian, but it is not necessarily real-
symmetric.6

In application to co-annihilation reactions of non-relativistic neutralinos and charg-
inos, sets of (χχ)I states are obtained in the following way: at first all possible two-
particle pairs χχ are built from the individual χ0

i and χ
±
j states. The resulting pairs are

then arranged according to the two-particle states’ electric charge. Hence there are five
different charge-sectors, characterised by neutral, single-positive, single-negative, double-
positive or double-negative electric charge. Out of each charge-sector the set of those
pairs is singled out, that have a sufficiently small mass splitting to the χ0

1χ
0
1 pair. As

far as co-annihilation processes to non-relativistic χ0
1χ

0
1 annihilations are concerned, the

such defined sets contain all those two-particle states, that have to be taken into account
in non-relativistic χ0/χ± co-annihilation reactions relevant within the determination of
the χ0

1 relic abundance. The calculation of the potential matrices associated with the
different charge-sectors will be the subject of Chapter 7. For the time being we refer to
the generic case of N nearly mass-degenerate non-relativistic two-particle states (χχ)I
and leave the application to neutralino and chargino pairs for later.

A diagrammatic picture for the (χχ)I annihilation reactions that we want to describe
is given in Fig. 2.2. In the schematic diagram for the annihilation amplitude (and its
complex conjugate) depicted in the first line of Fig. 2.2, the potential interactions, that
are active between the non-relativistic (χχ)I pairs’ constituents, are indicated by the
grey rectangle. The hard annihilation process is denoted by a point-like interaction.
This implicitly assumes factorisation between the long-range potential interactions, as-
sociated with the non-relativistic kinetic energies in the (χχ)I system, and the actual

6Subject of Chapters 5 and 7, the potentials in our effective field theory description of non-relativistic
neutralino and chargino co-annihilation reactions are derived from interactions in the underlying full
theory, the MSSM. As a consequence of the hermiticity of the MSSM’s interaction Lagrangian, the
potential matrix is hermitian as well. Due to complex coupling factors in the general MSSM, off-
diagonal potentials can then be associated with complex couplings as well, such that we have to account
for hermitian and not necessarily real-symmetric potential matrices in the general case.
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Figure 2.2: Diagrammatic picture of the annihilation reactions of a non-relativistic (χχ)I
pair into a two-particle XAXB final state in the presence of long-range potential in-
teractions (wavy propagators contained in the grey boxes). Generically, the potential
scattering reactions allow for transitions (χχ)I → (χχ)J , to all accessible additional non-
relativistic states (χχ)J . The proper hard annihilation process is depicted by a single
vertex.

short-distance annihilation reaction, which is characterised by the mass scale MI of the
annihilating (χχ)I pair. The long-range potential interactions cannot be treated per-
turbatively. This implies that the well-known approach in relativistic quantum field
theory fails, where the individual incoming single-particle states, that subsequently take
part in perturbatively treated local interactions, are associated with asymptotically free
plane-wave functions. Instead, the non-perturbative nature of the potential interactions
requires the consideration of an incoming two-particle scattering wave-function corre-
sponding to the incoming (χχ)I pair, where this wave-function is a scattering solution to
a multi-state Schrödinger equation involving the N×N potential matrix. It is convenient
to use the optical theorem at the amplitude level to relate the annihilation cross section
to the imaginary part of the forward scattering amplitude, as done in the second line of
Fig. 2.2. The physical picture is then as follows: an incoming two-particle wave-function
associated with the incoming (χχ)I state gets distorted away from the free plane-wave
solution due to the presence of the potential interactions. In particular, off-diagonal
potential interactions cause transitions to any accessible nearly mass-degenerate state
(χχ)J . This implies that the actual hard annihilation reaction, which is to very good
approximation described by a local interaction, can proceed from any of these (χχ)J
states reached by prior (off-) diagonal potential scattering. Referring to the formulation
in terms of the imaginary part of the forward scattering amplitude, the hard annihilation
reaction is hence encoded in an annihilation matrix, that exhibits diagonal as well as
off-diagonal entries as a consequence of the off-diagonal potential interactions. Diagonal
annihilation matrix entries encode the absorptive part of the perturbative (χχ)J → (χχ)J
reactions, while off-diagonals refer to the absorptive part of perturbative (χχ)J → (χχ)J ′

scattering with J 6= J ′.
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While a rigorous derivation of the relation among the annihilation amplitude and the
two-particle scattering wave function as well as a sound derivation of the quantity referred
to as annihilation matrix is postponed to later chapters, the above discussion allows
us to guess the expression for the Sommerfeld enhancement factor, that describes the
enhancement (suppression) of the annihilation cross section due to attractive (repulsive)
long-range potential interactions, which cannot be treated perturbatively:

S =
ψ

(I) ∗
J (r = 0) Γ̃JJ ′ ψ

(I)
J ′ (r = 0)

ψ
(I) ∗
0 J (r = 0) Γ̃JJ ′ ψ

(I)
0 J ′(r = 0)

. (2.8)

We have introduced the matrix Γ̃, that encodes physics related to the hard perturbative
annihilation rates. The N -component vector wave-function ~ψ(I) refers to a solution of
the Schrödinger equation

(
−

~∂2

2µI
1 + V (r)

)
~ψ(I)(~r) = E ~ψ(I)(~r) (2.9)

where µI denotes the reduced mass associated with the incoming (χχ)I pair and E

indicates a certain available non-relativistic kinetic energy. ~ψ
(I)
0 gives the corresponding

solution for the free case, in absence of long-range potential interactions. The potential
matrix V encodes (off-) diagonal potential interactions, that are assumed to depend on
the radial variable r only and to vanish for r → ∞ at least as 1/r. In addition, the
diagonal entries of V also incorporate effects from the constant mass splittings δMI =
MI −M between the N two-particle states (χχ)I to a certain mass scale M . Because
the potential interactions vanish for r → ∞, the potential matrix becomes diagonal in
this limit,

VIJ(r →∞)→ δMI δIJ . (2.10)

In particular, these entries are present in the equation for the free wave-function ~ψ
(I)
0 .

The mass scaleM in the definition of δMI =MI−M can but does not need to be chosen
as the mass of the lightest state (χχ)1 out of the N -state set. In any case, however, it has
to be chosen close to the lightest state’s mass to ensure the non-relativistic nature of the
set-up. Imagine for example the case of the single positive-charged sector in neutralino-
chargino co-annihilations. Here it could proof useful to choose M as 2mχ0

1
, the mass of

the lightest neutral state χ0
1χ

0
1 and not the (typically only slightly) larger massmχ0

1
+mχ+

1

of the lightest state in the single-charged sector. In this case, the energy E in the single-
charged sector’s Schrödinger equations will refer to the kinetic energy available for the
χ0
1χ

0
1 state, E = mχ0

1
v2 with v the velocity of each χ0

1 in the centre-of-mass of the two-
particle system. The non-vanishing mass splittings contained in the diagonals of the
single-charged sector’s potential matrices then correct to the actually available kinetic
energy for each single-charged (χχ)I channel. Using such a convention for all charge
sectors in χ0/χ± (co-) annihilation reactions, the same kinetic energy E = mχv

2 will
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appear in all Schrödinger equations of the different charge-sectors. We will adapt this
convention later and hence anticipate here the identification E = mχv

2 for the kinetic
energy in the Schrödinger equation (2.9). Keep in mind, that (2.9) applies to the relative
coordinate ~r in the (χχ)I system and we have used r = |~r|. Let us first approximate
(2.9) by replacing the reduced mass µI of the given incoming pair (χχ)I by the reduced
mass µ ≡ mχ/2, typically referring to the lightest state (χχ)1 out of the N state set. In
the application to neutralino and chargino co-annihilations, mχ will denote the mass of
the lightest neutralino χ0

1. After this replacement, we arrive at a Schrödinger equation
(
−

~∂2

mχ
1 + V (r)

)
~ψ(I)(~r) = mχv

2 ~ψ(I)(~r) . (2.11)

This equation applies now to any of the possible N incoming states (χχ)I . The difference
of (2.11) with respect to (2.9) due to the replacement of the reduced mass is a higher
order effect, counting as a correction δMJmχv

2 ∼ (mχv
2)2, as the mass splittings in the

N -state set are of order of the available non-relativistic kinetic energies.
According to the scattering reaction with incoming (χχ)I state, that we want to

describe, the vector-function ~ψ(I) (~ψ
(I)
0 ) has to be a scattering solution with the following

asymptotic behaviour

ψ
(I)
J (r →∞) → cJI e

ikJz + fJI(θ, φ)
eikJr

r
, (2.12)

describing an incoming plane wave propagating along the z-direction and an outgoing
scattered spherical wave.7 The coefficients cJI should be identified with δJI , if a pure
incoming (χχ)I state is described, but for notational clarity, keeping track of different
contributions, it is convenient to consider the more general case with arbitrary cJI first
and restrict to cJI = δJI later. The coefficients fJI(θ, φ) characterise the outgoing
scattered spherical wave and due to the off-diagonal potentials they are in general not
proportional to δJI . Recall, that the determination of the enhancement (or suppression)

7 The asymptotic form (2.12) applies in case of radial potential interactions vanishing faster than
1/r in the limit r → ∞. This holds for Yukawa potentials, arising from massive mediator exchange,
which is – besides Coulomb interactions from photon exchange – the relevant potential interaction in
application to χ0/χ± pair annihilations. For Coulomb potentials (2.12) does however not apply. In our
case Coulomb potentials can arise from photon exchange only, which implies that the 1/r potentials
exclusively arise on the diagonal of the potential matrix V (r), when written in the two-particle mass-
eigenstate basis. For large values of r the matrix V (r) will then always be diagonal, containing Coulomb
potential contributions as well as constant δMJ terms only: VIJ (r ≫ 0) → (δMI + αII/r) δIJ , with
r chosen large enough, such that all contributions from the shorter-ranged (Yukawa) potentials are
negligible. Accounting for Coulomb potentials, the exp (ikJz) factor in (2.12) should be replaced by the
incoming wave-function in presence of the Coulomb potential in the JJ component of V (r). In addition,
within the expression for the spherically outgoing scattered wave in (2.12) one has to replace exp (ikJr)

by exp
(
i(kJr +

mχαJJ

2kJ
ln(2kJr))

)
. As the derivation taking Coulomb potentials on the diagonals of

V (r) into account is completely analogous to the short-rage potential case, and in particular leads to
the same result for the enhancement factor, we will for clarity refer to the asymptotic behaviour (2.12)
in the following.
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in presence of attractive (repulsive) potential interactions via (2.8) requires the knowledge

of the scattering solutions ~ψ(I) and ~ψ
(I)
0 close to the origin r ∼ 0, where the short-distance

annihilation takes place. Hence we describe next, how these scattering wave-functions
can be determined.

Following the standard procedure, ~ψ(I), ~ψ
(I)
0 are obtained as linear combinations from

a set of basis solutions to (2.11), such that the asymptotic behaviour in (2.12) is matched.
The spherical symmetry of the individual potential interactions suggests to perform a
separation of variables and construct ~ψ from

~ψ(I) =
∑

l

Pl(cos θ) ~R
(J)
l (r) A

(I)
l J (2.13)

where ~R
(J)
l (r) denotes a set of basis solutions to the radial Schrödinger equation for the

lth partial wave,

− 1

mχr2
d

dr

(
r2
d~Rl(r)

dr

)
+ V (r) ~Rl(r) +

1

mχr2
l(l + 1)~Rl(r) = mχv

2 ~Rl . (2.14)

The A
(I)
l J denote the coefficients to the basis solutions ~R

(J)
l that give the specific scattering

solutions ~ψ(I). A sum over the index J is implied. Finally Pl denotes the lth Legendre
polynomial and we have hence already taken advantage of the azimuthal symmetry of the
scattering configurations of interest. The free scattering solutions ~ψ

(I)
0 can be built in a

similar way, replacing ~R
(J)
l by ~R

(J)
0 l as well as A

(I)
l by A

(I)
0 l in (2.13). The radial functions

~R
(J)
0 l are then obtained as solutions to (2.14), with the potential matrix V (r) replaced

by the constant diagonal matrix V (r →∞), (2.10), containing only the mass splittings.
There exist 2N linearly independent solutions to (2.14) out of which N are irregular at the
origin, hence restricting us to the set of N regular solutions. The asymptotic behaviour
of the Jth component of the regular linearly independent solutions ~R(I), I = 1, . . . , N ,
is given by

R
(I)
l J (r →∞) → 1

r
(nl)JI sin

(
kJ r −

lπ

2
+ (δl)JI

)
, (2.15)

with constant coefficients (nl)JI and scattering phases (δl)JI .
8 Further, we have defined

8 Taking Coulomb potentials on the diagonal of the potential matrix V (r) into account, the asymp-

totic behaviour of the basis solutions ~R
(I)
l reads

R
(I)
l J (r →∞)→ 1

r
(nl)JI sin

(
kJr −

lπ

2
+
mχαJJ

2kJ
ln(2kJr) + (δl)JI

)
,

with constant coefficients (nl)JI and scattering phases (δl)JI as before. The r and kJ dependent term
mχαJJ

2kJ
ln(2kJr), appearing as additional argument inside the sine, accounts for the presence of a long

range Coulomb potential −αJJ/r in the JJ component of V (r). Note that the modifications on the

asymptotic behaviour of the scattering solutions ψ
(I)
J (r → ∞) in (2.12) when including Coulomb-

potentials consist in the introduction of the same type of additional contributions, namely factors

exp
(
±i(mχαJJ

2kJ
ln(2kJr))

)
, modifying the (terms in the partial-wave expansion of the) incoming plane

wave exp (ikJz) as well as the outgoing scattered spherical wave ∝ exp (ikJr)/r, see footnote 7.
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kJ =
√
mχ (mχv2 + iǫ− VJJ(r →∞)) =

√
mχ (mχv2 + iǫ− δMJ) . (2.16)

With the +iǫ prescription we implement our convention
√
−1 = +i. For completeness

and due to the slightly increased complexity in case of the matrix-valued Schrödinger
equation with its vector solutions, we write here the well known procedure to determine
the scattering wave functions in terms of the basis of partial-wave solutions in (2.13).
This is done in close analogy to [36]. In particular we adopt a similar notation as used
in this reference.

On the one hand side, using the expansion of the plane wave eikJz in terms of spherical
waves, (2.12) can be rewritten as

ψ
(I)
J (r →∞) → eikJr

r

(
cJI
2ikJ

∑

l

(2l + 1)Pl(cos θ) + fJI(θ, φ)

)

− e−ikJr

r

cJI
2ikJ

∑

l

(−1)l(2l + 1)Pl(cos θ) . (2.17)

On the other hand, starting from (2.13)

ψ
(I)
J (r →∞) → eikJr

r

(
1

2i

∑

l

(−i)lPl(cos θ)ei(δl)JJ′ (nl)JJ ′ A
(I)
l J ′

)

− e−ikJr

r

(
1

2i

∑

l

ilPl(cos θ)e
−i(δl)JJ′ (nl)JJ ′ A

(I)
l J ′

)
. (2.18)

It is convenient to establish a matrix-notation here, introducing N ×N matrices ψ and
Rl, that contain the scattering and regular (lth partial-wave) radial solutions in their
columns, respectively:

ψJI(r) = ψ
(I)
J (r) , Rl JI(r) = R

(I)
l J (r) . (2.19)

Similarly, a constant coefficient matrix Al is built, with components Al JI = A
(I)
l J . Even-

tually, introducing the matrix Ml with components

(Ml)JJ ′ = (nl)JJ ′ e−i(δl)JJ′ , (2.20)

we derive from the comparison of the respective second lines in (2.17) and (2.18) the
expression for the coefficient matrix

Al JI = il (2l + 1) (M−1
l )JJ ′

cJ ′I

kJ ′

. (2.21)

M−1
l encodes normalisations and scattering phases of the basis solutions, while the nor-

malisation of the scattering solutions for r → ∞ is assured by the dependence on the
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coefficients cJ ′I . It is worth to note, that (2.21) as well as all following steps in our deriva-
tion hold in exactly the same form for the case including Coulomb potential interactions
on the diagonal of the potential matrix V (r), where in this case the normalisations and
scattering phases encoded in M−1

l have to be extracted from the asymptotic behaviour

of the corresponding basis solutions R
(I)
l J (r →∞) as given in footnote 8.

The scattering wave-functions at the origin that appear in our guessed form (2.8) of
the Sommerfeld enhancement factor are now obtained from the columns of the matrix
ψ in the appropriate limit

ψ
(I)
J (r → 0) = ψJI(r → 0) =

∑

l

Pl(cos θ) Rl JJ ′(r → 0) Al J ′I . (2.22)

Consequently the next step is the determination of Rl(r → 0). From the lth partial-wave
radial Schrödinger equation (2.14), the behaviour Rl(r → 0) ∝ rl is inferred, supposing,
that the long-range potentials in V grow less strongly than 1/r2 for r → 0. As we will
consider Coulomb and Yukawa potential interactions, this condition is fulfilled in our
case. The usual ansatz Rl(r) = χl(r)/r allows to rewrite the radial Schrödinger equation
for the matrix-valued function χl(r)

d2

dr2
χl(r) =

(
l(l + 1)

r2
+ mχ

(
V (r)−mχv

2 1
))

χl(r) , (2.23)

and the leading terms in the expansion of matrix Rl(r) around r = 0 can be expressed
in terms of the (l + 1)th derivative of χl,

Rl(r → 0) = rl
χ
(l+1)
l (r = 0)

(l + 1)!
+ O(rl+1) . (2.24)

Analytic solutions to (2.23) can be found for the free case (where V (r) is given by the
constant diagonal-matrix V (r → ∞), (2.10)) as well as for a 1-state model with long-
range Coulomb potential interactions. Already for the case of a Yukawa potential in
a 1-state model, the equation has to be solved numerically. In the free case, relevant
for the determination of the denominator expression in the Sommerfeld enhancement
formula (2.8), the radial Schrödinger equation (2.23) can be rewritten to

r2
d2

dr2
χ0 lJI(r) + r2 k2J χ0 lJI(r) − l(l + 1)χ0 lJI(r) = 0 . (2.25)

There is no summation over the index J in (2.25), such that a system of N decoupled
equations is obtained. The free vector basis-solutions in the radial coordinate, encoded
in the columns of matrix χ0 l, can hence be chosen as ~χ

(I)
0 l J = χ0 lJI = δJI χ̃0 l, where

χ̃0 l denotes an ordinary, one-dimensional and in general complex valued wave-function.
Using the ansatz χ̃0 l =

√
r J̃0 l in (2.25), a Bessel differential equation for the function

J̃0 l results,

x2J
d2

dx2J
J̃0 l(xJ) + xJ

d

dxJ
J̃0 l(xJ) +

(
x2J − (l +

1

2
)2
)
J̃0 l(xJ) = 0 , (2.26)
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with xJ = kJ r and no summation over J . A generic solution to (2.26) is found as linear
combination of Bessel functions of the first and second kind, Jl+1/2(xJ) and Yl+1/2(xJ).

As the scattering wave-function has to be regular at xJ = 0, though, only J̃0 l(xJ ) =
Jl+1/2(xJ) is considered. Hence the N basis solutions encoded in the matrix χ0 l can be
expressed in terms of

χ0 lJI(r) = δJI c̃J
√
r Jl+1/2(kJ r) , (2.27)

where c̃J is an arbitrarily chosen normalisation constant to the Ith basis solution. Obvi-
ously, the dependence on c̃J finally has to cancel out, when the free scattering solutions
are constructed. From the known asymptotic behaviour of the Bessel functions we obtain
for r →∞

R0 l JI(r →∞) =
χ0 l JI(r →∞)

r

−→ 1

r
δJI c̃J

√
2

π kJ
sin

(
kJ r −

lπ

2

)
+ O

(
1

kJ r3/2

)
, (2.28)

as well as in the limit r → 0

R0 l JI(r → 0) −→ δJI r
l c̃J

(kJ / 2)
l+1/2

Γ(l + 3/2)
+ O

(
rl+2

)
. (2.29)

Comparing to (2.15), the constant normalisation coefficients (nl)JI hence read in the
free case (n0 l)JI = δJI c̃J

√
2/πkJ , and all scattering phases vanish, (δ0 l)JI = 0. Con-

sequently (using (M−1
0 l )JJ ′ = δJJ ′/ c̃J

√
π kJ/2 ) the free case’s coefficient matrix (2.21)

reads

A0 l JI = il (2l + 1)
δJJ ′

c̃J

√
π kJ
2

cJ ′I

kJ ′

= il (2l + 1)

√
π

2 kJ

cJI
c̃J

. (2.30)

After simple algebraic manipulations, the free scattering solutions for r → 0 are finally
obtained from

ψ0 JI(r → 0) =
∑

l

Pl(cos θ) R0 l JJ ′(r → 0) Al J ′I

−→
∑

l

Pl(cos θ) r
l il

2l + 1

(2l + 1)!!
klJ cJI . (2.31)

Let us suppose that for the interacting case with a generic potential matrix V , including
(off-) diagonal long-range potential interactions, a matrix χl of solutions has been de-
termined numerically from (2.23), subject to certain initial conditions, and the (l+1)th

derivative χ
(l+1)
l is known as well. Then the scattering solutions for r → 0 can be

generically expressed in terms of

ψJI(r → 0) =
∑

l

Pl(cos θ) r
l il

2l + 1

(l + 1)!
[χ

(l+1)
l (r = 0)]JJ ′ (M

(−1)
l )J ′I′ CI′I (2.32)
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where we have introduced the matrix C, that encodes the initial conditions (2.12) for
the incoming plane-wave part of the scattering solutions, CI′I = cI′I/kI′.

Similar to the partial-wave decomposition (2.13) of the (free) scattering solutions con-
tained in ψ(r) and ψ0(r), also the short-distance annihilation process can be arranged in
a partial-wave expansion. In the formulation of the guessed enhancement factor in (2.8),
with the configuration-space scattering wave-functions to the left and right of the quan-
tity Γ̃, such a partial-wave expansion of the latter annihilation matrix expression involves
spatial derivatives acting on the wave-functions to its left and right. Written in radial
coordinates, the lth partial-wave contribution in particular involves the lth derivatives
with respect to the radial variable r, acting on ψ∗ and ψ in (2.8), respectively. This allows
us to refine the first guess of the formula for the Sommerfeld enhancement factor. The
enhancement of the lth partial-wave annihilation rate of the incoming scattering state
(described by an incoming plane wave cJI exp(ikJz), that gets subsequently distorted
by (off-) diagonal long-range potential interactions) with respect to the corresponding
perturbative lth partial-wave rate is given by

SIl =
ψ∗
JI(r = 0) Γ̃JJ ′ ψJ ′I(r = 0) |l−wave

ψ∗
0 JI(r = 0) Γ̃JJ ′ ψ0 J ′I(r = 0) |l−wave

=

(
(2l + 1)!!

(l + 1)!

)2

[[
[χ

(l+1)
l (r = 0)]M−1

l C
]†
· Γl ·

[
[χ

(l+1)
l (r = 0)]M−1

l C
]]

II[
klJ cJI

]∗
ΓlJJ ′

[
klJ ′ cJ ′I

] . (2.33)

To describe the case of a pure incoming state (χχ)I , the identification cJI = δJI , implying
CII′ = δII′/kI for the matrix C in the numerator above has to be made. (2.33) makes
use of the r → 0 behaviour of the (free) scattering solutions contained in ψ0 and ψ
as given in (2.31) and (2.32). The quantity Γl denotes the constant coefficient matrix
encoding the hard (off-) diagonal l-wave annihilation process, that is obtained from the
corresponding appropriate partial-wave expansion of the perturbative (χχ)I → (χχ)J
amplitudes’ absorptive part.

To make use of (2.33) as it stands the combination of normalisation coefficients (nl)JI
and scattering phases (δl)JI encoded in the matrixMl, (2.20), has to be known. They can
in principle be extracted from the asymptotic form of the numerically determined solu-
tions χl, but a separate precise determination, especially of the scattering phases, is very
hard. Fortunately, the product of matrices [χ

(l+1)
l (r = 0)]M−1

l is related to quantities,
that can be determined in an easier way. As a consequence, we will finally reformulate
(2.33) in an even simpler form. To this purpose, let us consider the matrix χl(r) intro-
duced earlier, containing the regular, linear independent solution vectors to the radial
Schrödinger equation (2.23) in its columns. Following (2.24) and (2.15), the asymptotic
behaviour, that we have assigned (in absence of Coulomb potential interactions) is

χl JI(r → 0) −→ rl+1 [χ
(l+1)
l (r = 0)]JI
(l + 1)!

+ O(rl+2) , (2.34)

χl JI(r →∞) −→ (nl)JI sin(kJ r −
lπ

2
+ (δl)JI) . (2.35)
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The overall normalisation of the basis solution contained in χl is fixed by yet to define
initial conditions. A convenient choice in particular for numeric solutions is related to
conditions on χl in the r → 0 limit: by assigning appropriate values to χ

(l+1)
l (r = 0)

the r → 0 behaviour of the regular solutions (2.34) is fixed. For the time being we can
leave the question of the initial condition for the regular solutions open and come back
to this point later. In addition to the matrix χl let ηl(r) be the matrix with the irregular
solutions to (2.23) with the asymptotic form

ηl JI(r → 0) −→ δJI r
−l , (2.36)

ηl JI(r →∞) −→ TlJI e
−i kJ r , (2.37)

such that the irregular solutions asymptotically correspond to purely incoming spherical
waves.9 Tl denotes a hermitian coefficient matrix with in general non-vanishing off-
diagonal entries. The normalisation of the basis solutions in ηl is fixed by the initial
condition that is implicit in (2.36). Due to the hermiticity of the potential matrix
V †(r) = V (r), the Schrödinger equation is hermitian itself, such that the matrices χ†

l

and η†l are solutions to the hermitian conjugate radial Schrödinger equation

d2

dr2
ξ†l = ξ†l

[
l(l + 1)

r2
+ mχ

(
V (r)−mχv

2 1
)]

, (2.38)

with ξl = χl, ηl. As a direct consequence it is easily seen that the generalisation of the
Wronskian,

Wl(r) = η†l ·
(
d

dr
χl

)
−
(
d

dr
η†l

)
· χl (2.39)

is constant in r, d/drW (r) = 0.10 We can hence equate

Wl(r = 0)JI =
2l + 1

(l + 1)!

[
χ
(l+1)
l (r = 0)

]
JI

, (2.40)

with

Wl(r →∞)JI = il Tl
†
JI′ kI′ (Ml)I′I . (2.41)

This allows to obtain the relation
[
[χ

(l+1)
l (r = 0)]M−1

l

]
JI

= il
(l + 1)!

2l + 1
Tl

†
JI kI . (2.42)

9Coulomb potential interactions from photon exchange on the diagonal of the potential matrix V (r)
change the asymptotic behaviour for r →∞ in (2.35) and (2.37). In both cases we have to replace kJr
by kJr +mχαJJ/2kJ ln(2kJr) (also see footnotes 7 and 8).

10 Note that (2.39) is a generalisation of the expression Wl considered in [36]. In this reference the
potential matrix was considered to be real-symmetric, such that the transpose of the matrix η, ηT ,
appears in the corresponding expression Wl defined therein, instead of the hermitian conjugate η†. Due
to the generic hermiticity property of the Schrödinger equation, the definition of Wl with hermitian
conjugates, (2.39), looks more natural even in the case with real-symmetric potentials.
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Our final expression for the enhancement in the annihilation of the lth partial-wave
component, (2.33), subject to an incoming (χχ)I state, hence assumes the following
compact form

SIl = ((2l − 1)!!)2

[
Tl · Γl · T †

l

]
II

k2lI Γl II
, (2.43)

where we use the double factorial (2l − 1)!! =
∏l−1

i=1(2i + 1). Note that kI is always
real, as it corresponds to the momentum of the particles in the incoming scattering state
(χχ)I . Equation (2.43) is consistent with the corresponding result in [36], although T ∗

appears in the reference’s formula instead of T as in (2.43). However, [36] considered
different irregular solutions, with asymptotically outgoing (instead of incoming, (2.37))
spherical wave behaviour, while the formulation of the corresponding generalisation of
the Wronskian Wl referred to the transposed instead of the hermitian conjugate of the
irregular-solution matrix (see footnote 10). The definition of matrix T in (2.37) hence
agrees with T ∗ in [36].

Thanks to the constant Wronskian Wl, the matrix Tl, related to the irregular lth
partial-wave solutions, can be calculated from the regular solutions contained in χl only.
Without making use of the asymptotic form of the regular solutions in (2.35), we obtain

Wl(r →∞)JI −→ T †
l JJ ′ e

i kJ′r

(
d

dr
χl J ′I(r) − i kJ ′ χl J ′I(r)

) ∣∣∣
r→∞

=
[
T †
l · Ul(r →∞)

]
JI

, (2.44)

where the matrix Ul(r) is defined by the first line above,11

Ul JI(r) = ei kJr
(
d

dr
χl JI(r) − i kJ χl JI(r)

)
. (2.45)

It is now convenient to choose the initial condition for the regular solutions such that
[χ

(l+1)
l (r = 0)]JI = (l + 1)!/(2l + 1) δJI , which implies Wl(r = 0)JI = δJI , the matrix Tl

in (2.43) is obtained from

T †
l = U−1

l (r →∞) . (2.46)

As a check of (2.43) let us consider the free-case, where we should reproduce SIl = 1. We
could either directly determine the irregular solutions for the free case or calculate Tl
from (2.46). Choosing the latter option, we consider the free regular solutions χ0 lJI(r)
in (2.27), with normalisation

cl J =

√
2

π
(2l − 1)!!

1

k
l+1/2
J

, (2.47)

11Note that the exponential factor exp(ikJr) in both (2.44) and (2.45) should be replaced by
exp (i(kJr +mχαJJ/2kJ ln(2kJr))), when Coulomb potential interactions from photon exchange on
the diagonal of potential matrix V (r) are taken into account (see footnotes 7 and 8).
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such that the correct r → 0 behaviour [χ
(l+1)
l (r = 0)]JI = (l+1)!/(2l+1) δJI is obtained.

Building UlJI(r) as in (2.45), we obtain

T0 l
†
JI = U−1

0 l JI(r →∞) =
(−i)l klJ
(2l − 1)!!

δJI , (2.48)

such that

[
T0 l · Γl · T †

0 l

]
II

= T0 lIJ ΓlJJ ′ T ∗
0 lIJ ′ =

(
1

(2l − 1)!!

)2

k2lI ΓlII . (2.49)

Taken together with the prefactor and denominator in (2.43), we consistently recover
SIl = 1 for the free case.

In generic practical applications, where the Schrödinger equation (2.23) generally
has to be solved with numerical methods, the strategy in the determination of SIl is as
follows:

(1) Determine the matrix χl, containing in its columns the N regular basis solutions
to (2.23), subject to the initial conditions

[χl(r = r̂)]JI = r̂ l+1 δJI
2l + 1

. (2.50)

r̂ has to be chosen close to zero, such that the solutions will obey [χ
(l+1)
l (r = 0)]JI =

(l + 1)!/(2l + 1) δJI , which we imposed above in order to have WlJI(r) = δJI .

(2) With the matrix χl known, build the matrix Ul(r), (2.45). To catch the asymp-
totic constant behaviour of Ul(r), a large enough r∞ has to be chosen in order to
determine the constant matrix T †

l from (2.46).

(3) Supposing the annihilation matrix Γl, encoding the perturbative (off-) diagonal an-
nihilation rates of the lth partial-wave states is known, calculate the enhancement
factor SIl for the incoming (χχ)I pair from (2.43).

There are numerical issues related to the solutions of the Schrödinger equation for a
multi-state system, that are delicate and require application of sophisticated methods.
We discuss the origin of the numerical problems and describe an improved method for the
numerical determination of the Sommerfeld enhancement factors, that solves the issue,
when applying the formalism developed here to multi-state systems of χ0/χ± pairs. The
technical details of this improved method are postponed to Chap. 8.4, although the data
tables for the plots presented throughout the thesis rely on the improved version. In
this chapter we will continue with simple one- and two-state toy models, in order to
illustrate the Sommerfeld effect and to make ourselves familiar with generic properties
of the enhancement in presence of Coulomb or Yukawa potentials.
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2.3 N = 1 state models with Coulomb and Yukawa

potential interactions

Before we enter a brief discussion on the well known enhancement due to Coulomb
and Yukawa potential interactions in models with only one single χχ state, let us first
deduce the general form of the N = 1 state enhancement factor Sl from the generic
N -state system expressions (2.33) and (2.43). Starting from (2.33), the enhancement
factor for the single χχ state case reduces to

Sl =

(
(2l + 1)!!

(l + 1)!

)2

∣∣∣χ(l+1)
l (r = 0)/nl

∣∣∣
2

k2l+2
=

(
(2l + 1)!!

l!

)2

∣∣∣R(l)
l (r = 0)/nl

∣∣∣
2

k2l+2
, (2.51)

with Rl(r) = χl(r)/r as usual. χl(r) is now the solution to the single state radial
Schrödinger equation as obtained from (2.23) for N = 1. The asymptotic behaviour
of χl and Rl follows from (2.35), (2.34) and (2.15), (2.24), respectively. nl denotes
the normalisation of the regular solution χl(r) in the r → ∞ limit. The linearity of
the Schrödinger equation allows us to deliberately rescale any solution χl → χ̃l = c̃ χl,
with a constant factor c̃, implying nl → ñl = c̃ nl. The effect of such a rescaling will
in particular cancel in the enhancement formula (2.51).12 The quantity k is given by
k = mχv, with mχ twice the reduced mass of the two-particle state, and v half the
(asymptotically free) incoming χχ state’s relative velocity. If the χχ state is built from
equal mass constituents, mχ obviously agrees with the corresponding single particle mass
and v gives the modulus of the single particle velocity subject to the asymptotically free
incoming states. Just as the kJ in the N -state case, k hence generically indicates the
modulus of each single particle’s momentum in the centre-of-mass of the (asymptotic)
incoming χχ system. It is interesting to note, that the dependence on the scattering
phases δl cancels in the N = 1 state Sommerfeld factor, (2.51), as opposed to the generic
N -state case, where each component χlJI(r) of the matrix encoding the regular radial
solutions can come with a different phase in its r →∞ behaviour. In general, the matrix
product in (2.33) will imply no cancellation of scattering phases. Further note, that the
l-wave enhancement factor Sl in the one-state case, (2.51), only relies on the potential
interaction and is independent of the hard annihilation rate. This no longer holds true in
the general multi-state case, where a generic annihilation matrix ΓIJ with non-vanishing
off-diagonals encodes the short-distance annihilation part of the full process: while the
denominator of SIl , (2.33) or (2.43), is proportional to the perturbative hard l-wave
annihilation rate of the (χχ)I state, encoded in ΓlII , the numerator, to the contrary, will
generally contain terms involving the hard (off-) diagonal l-wave rates ΓlJJ ′ of any states
(χχ)J , (χχ)J ′ accessible from the initial (χχ)I by potential scattering.

Imposing an asymptotic normalisation nl =
√

2/π on the radial solution χl, we re-
cover in (2.51) the l-wave enhancement formula that can be inferred from the results

12Note that the same argument applies to a global rescaling of the matrices χl and Rl in the N -state
case.
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presented in [37] (see Eq. (3.11) and (5.1) therein). The author of [38] independently
derived an equivalent result for the l-wave enhancement in a single state system (see Eq.
(21) therein), which we reproduce by selecting the regular solution χl(r) with normali-
sation nl = 1/k for r →∞.

Another equivalent form of the single χχ state enhancement factor Sl derives from
(2.43),

Sl = ((2l − 1)!!)2
|Tl|2
k2l

, (2.52)

where Tl denotes the normalisation of the irregular solution ηl(r →∞)→ Tl exp (−ikr),
with ηl(r → 0) → r−l. Tl can either be determined directly from solving for ηl, or,
equivalently, from the r → ∞ behaviour of the regular solution χl (with χl(r → 0) →
1/(2l + 1) rl+1) as given by the relations (2.45) and (2.46).

Unless it happens to be suppressed, the perturbative leading order S-wave χχ anni-
hilation-rate constitutes the dominant contribution to the total annihilation rate of non-
relativistic χχ pairs. Consequently the leading order S-wave enhancement associated
with Sl=0 has been studied extensively in the recent literature, while higher partial
waves were in first approximation legitimately neglected as higher-order effect (with the
perturbative l-wave rate scaling with a factor v2l, with v the non-relativistic velocity of
each incoming χ particle). The authors of [29] discuss the case of l = 0 wave enhancement
for a single χχ state and give the corresponding Sl=0 factor subject to a regular solutions
with χl=0(r → ∞) → sin(kr + δl), implying nl=0 = 1 in (2.51). The same expression
can be found in [39]. Sl=0 written in terms of irregular solutions ρl=0 with ρl=0(r →
∞) ∝ exp(ikr) is given in [29] and [40]. The enhancement is said to be Sl=0 = |ρl=0(r →
∞)|2/|ρl=0(r = 0)|2. This is in agreement with (2.52). First note, that our initial
condition on the irregular solution ηl=0(r), implies ηl=0(r = 0) = 1. Hence (2.52) for
l = 0 is equivalent to Sl=0 = |η(r → ∞)|2/|η(r = 0)|2. As it should be, any rescaling
of the irregular solution ηl=0(r) → c̃ ηl=0(r) will hence leave the enhancement factor
unchanged. From the r → ∞ behaviour, we obtain η∗l=0(r) ∝ ρl=0(r), such that finally
the same l = 0 enhancement factor expression as given in [29] and [40] results.

Let us conclude with the remark that recent literature on the Sommerfeld enhance-
ment for one-state χχ dark-matter systems focused on Yukawa potential interactions,
which in particular applies to the references [29, 39, 40] above. This is of course related
to the fact that the dark matter candidate has to be both electric and colour neutral,
excluding Coulomb potential interactions from photon or gluon exchange. Assuming the
dark-matter candidate together with a mediator – which causes potential interactions
in the non-relativistic χχ system – to be part of a dark sector, also here the most gen-
eral ansatz is to consider a massive mediator giving rise to a Yukawa potential. The
enhancement due to a Yukawa potential exhibits additional so called zero-energy reso-
nances, that can lead to even stronger enhancements compared to the Coulomb case.
In the next two subsections we will discuss the characteristics of the enhancement from
Coulomb and Yukawa potentials in the single χχ-state case.
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2.3.1 One-state model with Coulomb potential

χχ scattering in a Coulomb potential is among the few cases that allow to derive an exact
analytic expression for the enhancement factors Sl. Let us sketch the steps, familiar from
quantum mechanics, that lead to the determination of the regular partial-wave solutions
χl(r) to the corresponding radial Schrödinger equation,

d2

dr2
χl(r) =

(
l(l + 1)

r2
− mχ

α

r
− k2

)
χl(r) , (2.53)

which finally allow to determine the Coulomb l-wave enhancement factor. Positive (neg-
ative) α = g2/4π in (2.53), with g the coupling responsible for the Coulomb potential
interaction, refers to the case of an attractive (repulsive) potential. We will apply (2.52),
by extracting the constant factor Tl from the asymptotic r →∞ behaviour of the regular
solutions χl(r) with χl(r → 0) → 1/(2l + 1)rl+1. In order to determine χl(r) we make
the well-known ansatz

χl(r) = c rl+1 eikr ωl(r) , (2.54)

with constant c to be determined such that the above imposed χl(r → 0) behaviour is
matched. The function ωl(r) interpolates between the r → 0 and r → ∞ behaviour of
the solution χl(r), that is described by the rl+1 term and the outgoing spherical wave
exp (ikr), respectively. The resulting differential equation for ωl(r) can be written as
Kummer differential equation for wl(z),

z ω′′
l + (2l + 2− z)ω′

l(z)−
(
l + 1− i mχα

2k

)
ωl(z) = 0 , (2.55)

with z = −2ikr. The solutions regular at r = 0 are the confluent hyper-geometric
functions 1F1(l + 1 − imχα/2k, 2l + 2,−2ikr). Choosing the right r → 0 normalisation,
we find the regular solutions to (2.53) as

χl(r) =
1

2l + 1
rl+1 eikr 1F1(l + 1− imχα/2k, 2l + 2,−2ikr) . (2.56)

In order to extract Tl we need the asymptotic r →∞ behaviour of the confluent hyper-
geometric functions. The latter is found from

1F1 (a, b, |z| → ∞) =
Γ(b)

|Γ(a)|
(
eiη (−z)−a + e−iη+z za−b

)
, (2.57)

with η defined as Γ(a) = eiη |Γ(a)|. After some algebraic manipulations, this allows us
to obtain

χl(r →∞) =
(2l)! e−πmχα/4k

2l kl+1 Γ(l + 1− imχα

2k
)
sin

(
kr − lπ

2
+
mχα

2k
ln(2kr) + η

)
. (2.58)
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Hence, following (2.45) with the appropriate replacement of the factor exp(ikJr) by
exp [i(kr +mχα/2k ln(2kr))] for the Coulomb case,

Ul(r) = ei(kr+
mχα

2k
ln(2kr))

(
d

dr
χl(r) − ik χl(r)

)

=
il eiη (2l)! e−πmχα/4k

2l kl Γ(l + 1− imχα
2k

)
+O

(
1

r

)
, (2.59)

such that for the one-state case we obtain from (2.52), with T † = T ∗ = U−1(r →∞),

Sl = 22l
(
(2l − 1)!!

(2l)!

)2 ∣∣∣∣Γ
(
l + 1− imχα

2k

)∣∣∣∣
2

eπmχα/2k

=
πα/v

1− e−πα/v
l∏

j=1

(
1 +

(α/v)2

4j2

)
. (2.60)

In the last step we have used Γ(x + 1) = xΓ(x), the property Γ(x∗) = Γ(x)∗ and the
relation Γ(1 + ix)Γ(1 − ix) = πx/ sinh(πx) for real x. Finally, k = mχv allowed us to
express the Coulomb l-wave enhancement factor in terms of the fraction α/v only.

In the limit v ≫ |α| we have Sl → 1 for both the attractive (α > 0) and repulsive
(α < 0) case, as expected. For the attractive case, for very low velocities v ≪ α, the
enhancement factor scales as Sl → π(α/v)2l+1/ (22l l!2). In the leading order S-wave
(l = 0) case we hence recover the familiar πα/v behaviour of the Coulomb enhancement
for v/α≪ 1. Since the perturbative l-wave annihilation rate σ0

l vrel has a velocity depen-
dence proportional to v2l, the corresponding Sommerfeld enhanced rate σlvrel = Slσ

0
l vrel

exhibits a 1/v velocity dependence for v/α → 0, which is in particular the same for
all l-waves. Higher Sommerfeld enhanced l-wave rates are however suppressed by the
constant factor 1/l!2 (α/2)2l, that arises in the product v2lSl → πα/v × 1/l!2 (α/2)2l.
For v/α → 0, the enhanced leading order S-wave rate will hence dominate the annihi-
lation and higher l-waves can be safely neglected. As long as moderate velocities are
considered, for example v ∼ 1/3 as around freeze-out of a cold dark-matter candidate,
the v2 proportional perturbative P -wave rate possibly gives corrections to the leading
perturbative S-wave rate at the level of some percent. Since in the attractive case the en-
hancement factor Sl, (2.60), obviously increases with increasing l, P -wave enhancements
should consequently be considered in an accurate percent level calculation of annihilation
rates, where the particle velocities are of order O(0.1). This provides us with the moti-
vation to study the effect of Sommerfeld enhancements on neutralino and chargino (co-)
annihilation rates including P - and up to O(v2) S-wave enhancements in application to
the χ0

1 relic abundance calculation.
To conclude, consider the repulsive case (α < 0). In the v/|α| → 0 limit, we obtain

the familiar exponential suppression Sl ∝ exp(−π|α|/v), resulting from the need to
penetrate the Coulomb barrier. Besides the exponential suppression, the l > 0 wave
rates will be in addition reduced with respect to the l = 0 case by the same constant
1/l!2 (α/2)2l factor as in the attractive case.
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2.3.2 One-state model with Yukawa potential

In the case of a Yukawa potential V (r) = −α exp(−mφ r)/r, with α > 0 (α < 0) refer-
ring to an attractive (repulsive) interaction, the mediator mass mφ gives an additional
parameter in the Schrödinger equation and causes the potential to be short-ranged (in
the sense that it vanishes faster for r →∞ as ∝ 1/r−1 due to the exponential suppression
factor). We will restrict to the more interesting attractive case α > 0 throughout this
section, as we are primarily interested in the enhancement rather than the suppression of
annihilation rates.13 After rescaling the radial coordinate r in the one-state Schrödinger
equation by a factor αmχ, the latter contains the two dimensionless parameters

ǫv =
v

α
, ǫφ =

mφ

αmχ
, (2.61)

only. mχ denotes the common mass of the particles χ, that build up the χχ one-state
system under consideration and v is the single-particle velocity in the centre-of-mass
frame. From the discussion in Sec. 2.1 we can expect two regions in the ǫv − ǫφ plane
with different characteristics of the enhancement Sl(ǫv, ǫφ). Considering the momentum-
space propagator of the t- or u-channel exchanged mediator in the potential region,
1/(~k2+m2

φ) ∼ 1/(m2
χv

2+m2
φ), we can neglect the mediator mass as long as mφ ≪ mχv.

This condition is equivalent to ǫφ ≪ ǫv, and in the corresponding region the enhancement
is expected to be Coulomb-like. On the other hand, for mχv ≪ mφ, but still mφ ≪ mχ,
the potential derived from the mediator exchange becomes constant, leading to a velocity
independent enhancement in the region ǫv ≪ ǫφ. There is an additional effect in the
ǫv < ǫφ region leading to extra sizable enhancements, that is specific to finite range
potentials: the presence of so called “zero-energy resonances”. There exists a finite
number of bound states for a finite range potential. By varying the dimensions of such a
potential – in case of the one-state Yukawa potential encoded in the parameter ǫφ – one
can arrange for a bound state with zero-energy. If such a zero-energy bound state exists,
the scattering of an incoming state with single-particle velocity v close to zero becomes
resonant. Such a behaviour, leading to strong resonant enhancements, is familiar from
quantum mechanical scattering, for example scattering at an attractive potential well.
The resonant enhancement can be already strong, if a loose, but not exactly zero-energy
bound state exists in the spectrum of the system.

Although the Schrödinger equation for the Yukawa potential has to be solved nu-
merically, an analytic approximation can be obtained by replacing the Yukawa by the
so called Hulthén potential [38]. This allows to get some insight into the enhancement
especially in the resonance region. The Hulthén potential shows the same short- and
long-distance behaviour as the Yukawa potential and is of the form

VH(r) = − α δ e−δr

1− e−δr . (2.62)

13As a side-remark note that the case of suppression of annihilation rates due to repulsive potentials
will arise in the MSSM application in the double charged sector of χ±χ± systems. This effect, though,
turns out to play a sub-dominant role in the χ0

1 relic abundance calculation, which constitutes our major
concern in this work.

35



The parameter δ should be chosen such, that the Yukawa potential case with V (r) =
−α exp(−mφ r)/r is mimicked with sufficient accuracy. A convenient criterion fixing δ
can be obtained from the Lippmann-Schwinger equations, which determine the radial
solutions Rl(r) = χl(r)/r in presence of the Yukawa or Hulthén potential as a series in
the corresponding potential interaction. Relying on this criterion, δ is fixed in [38] by the
condition that the radial solutions Rl(r) in presence of the Yukawa and Hulthén potential
interactions agree to first order in α in the ǫv → 0 limit. This implies

∫∞
0
dr r V (r) =∫∞

0
dr r VH(r) and yields δ = π2mφ/6. The Hulthén approximation to the Yukawa

potential case becomes worse for finite kinetic energy (ǫv > 0). Yet, as we will see below,
imposing the above matching criterion that fits the parameter δ, the analytic Sommerfeld
enhancement expression obtained for the Hulthén approximation reproduces the numeric
result in the Yukawa case with ǫv > 0 within ∼ 10% accuracy. The l = 0 enhancement
formula derived from [38] and quoted for example in [36, 40] reads

SHul
l=0 =

π

ǫv

sinh
(

2πǫv
ǫ̃φ

)

cosh
(

2πǫv
ǫ̃φ

)
− cos

(
2π
√

1
ǫ̃φ
− ǫ2v

ǫ̃2
φ

) , (2.63)

where we have defined ǫ̃φ = π2/6 ǫφ. A similar expression for l > 0 waves is obtained
easily from [38], adding additional factors to the SHul

l=0 term above. As the agreement
between this Hulthén potential approximation to the Yukawa case becomes worse for
higher partial waves we do not give the expressions here. For a discussion on the poorer
agreement see [38]. From (2.63) we can see, that for an attractive potential (α > 0) and
ǫv ≪ ǫφ, resonances arise in the S-wave case if

mφ =
6α

π2 n2
mχ , n = 1, 2, . . . . (2.64)

A similar relation holds for the higher (l > 0) partial waves, with n above replaced
by n = l + 1, l + 2, . . .. This is a specific feature of the Hulthén potential and does
in particular not hold for the Yukawa potential case. In the latter case the resonance
positions of different l-waves do not coincide.14 For mφ given by (2.64), the enhancement
SHul
l=0 in the small v region is given by

SHul
l=0(ǫv → 0, ǫφ = 6/πn2) −→ π2 αmφ

6 v2mχ
, (2.65)

hence scaling as v−2, which gives rise to a much stronger enhancement compared to the
Coulomb v−1 behaviour.15 Note that despite the resonance positions being shifted in
case of the Yukawa potential, the on-resonance v−2 scaling in (2.65) also applies to the
Yukawa case.

We exemplify the features of the S-wave Sommerfeld enhancement in presence of
Yukawa and Hulthén potentials in Fig. 2.3 and Fig. 2.4. The ǫv-dependence of the

14It was argued in [38], that due to the non-coincidence of resonance positions of different l-waves in
a Yukawa potential a process could be dominated by a higher than l = 0 partial wave, if taking place
on a resonance of a l > 0 partial wave.

15The v−2 scaling of Sl(ǫv, ǫφ) at a resonance is generic also for the l > 0 partial waves.
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Figure 2.3: The S-wave Sommerfeld enhancement factor as a function of ǫv = v/α for
several fixed values of ǫφ = mφ/(αmχ). Solid curves refer to a Yukawa model with
non-resonant enhancement (two lower-most curves with ǫφ = 1, 1/20) and resonant en-
hancement due to a zero-energy (two upper-most, ǫφ = 1/1.680, 1/6.447) or loosely
(two middle curves, ǫφ = 6/4π2, 6/π2) bound state in the spectrum. Dot-dashed black
curves give the enhancement as obtained from the Hulthén potential approximation.
The dashed green line represents the Coulomb enhancement behaviour.

enhancement factor Sl=0(ǫv, ǫφ) for selected ǫφ values is shown in Fig. 2.3. While all
solid curves refer to a numeric solution for one-state Yukawa potentials characterised by
the corresponding ǫφ, we show in addition the l = 0 enhancement factor as obtained
for the Coulomb potential from (2.60) (dashed curve) as well as SHul

l=0(ǫv) from (2.63)
(dot-dashed curves). First note that for ǫv > ǫφ all Yukawa and Hulthén potential
enhancement factors Sl=0(ǫv) expectedly follow the Coulomb enhancement behaviour.
Around ǫv ∼ ǫφ a transition region is found, that connects to a specific Sl=0(ǫv) behaviour
for ǫv < ǫφ. Let us first consider the two cases ǫφ = 1 (lowest lying solid/dot-dashed
curve) and ǫφ = 1/20 (second-to-lowest lying solid/dot-dashed curve). Here the ǫv < ǫφ
region shows a non-resonant, constant enhancement pattern for both the Yukawa and
Hulthén potentials. Such a behaviour was already inferred from the discussion of massive
mediator exchange in Sec. 2.1. It is worth to note, that the enhancement saturates and in
particular never surpasses the value obtained for the Coulomb case. The analytic Hulthén
potential approximation is found to reproduce the numerically obtained enhancement
for the Yukawa potential within 10%. The remaining solid curves illustrate the case of
resonant enhancements, caused by zero-energy or loose bound states in the spectrum
of the corresponding Yukawa model. The values of ǫφ for the uppermost solid curve
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Figure 2.4: The S-wave enhancement factor in a one-state Yukawa model (solid lines)
as a function of ǫφ = mφ/(αmχ) for selected constant values of ǫv = v/α. The dashed
curve gives the approximate enhancement factor as obtained from a Hulthén potential
with constant ǫv = 10−3.

(ǫφ = 1/1.680) as well as the second solid curve from above (ǫφ = 1/6.447) are taken from
[41] and correspond to the numerically determined first two critical values, that imply
the existence of a l = 0 zero-energy bound state in the spectrum of the Yukawa model.
The corresponding dot-dashed curves, following closely the Yukawa cases, correspond to
the SHul

l=0 solutions with ǫφ = 6/π2 ≈ 1/1.645 and ǫφ = 6/4π2 ≈ 1/6.580, respectively.
The latter correspond to the first two ǫφ values that are associated with a zero energy
bound state in the Hulthén potential, see (2.64). The Hulthén approximation hence
predicts the ǫφ associated with zero-energy resonances within an accuracy of 2% in both
cases considered here. The two solid curves with ǫφ = 6/π2 and ǫφ = 6/4π2 that follow
the above-discussed Yukawa-potential resonance curves for ǫv > 3 · 10−2, but approach
a constant enhancement for smaller values of ǫv correspond to Yukawa potentials with
loose but not exactly zero-energy bound states. The fact that the enhancement factors
for these two cases approach values Sl=0(ǫv → 0) of the same order of magnitude is
purely accidental. Generically, small variation of ǫφ around a resonance value, implying
the presence of a loosely-bound state, will give rise to significantly different constant
values Sl=0(ǫv → 0). As can be seen from Fig. 2.3, the presence of loosely-bound states
can lead to enhancements, that are several orders of magnitude stronger as compared
to the non-resonant case. Depending on the considered value of the velocity it can
even be stronger than in the Coulomb case, as a consequence of the v−2 proportionality
of the resonant enhancement. This latter v−2 scaling-behaviour holds for the loosely-
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bound states in the ǫv < ǫφ regime as long as the kinetic energy of the scattering state
is significantly larger compared to the loosely-bound state’s binding energy; the latter
state can then be effectively considered as zero-energy bound state. Finally note that
despite the formal v−2 divergence of the resonant enhancement (2.65) as v → 0, the
physical enhancement is finite on resonance due to the finite width of the zero-energy
two-particle bound state. The latter width is however not taken into account in the
quantum mechanical treatment of the scattering process that we have applied here.

The l = 0 wave enhancement factor for a Yukawa-model as a function of ǫφ is shown
in Fig. 2.4, where we have fixed ǫv = 1, 10−1, 10−2, 10−3. The emergence of resonances for
ǫφ > ǫv at specific ǫφ values is apparent. The first two resonance positions are found at
ǫφ = 1/1.680 and 1/6.447 in agreement with [41]. For ǫφ < ǫv, resonances are expectedly
absent in Fig. 2.4 and with further decreasing ǫφ the enhancement factor matches the
Coulomb one for the corresponding ǫv value. For comparison, the enhancement factor
as obtained for a Hulthén potential with ǫv = 10−3 is shown in addition (dashed curve).
While the approximation agrees with the Yukawa case at the level of a few percent
around the first resonances, we find, that it reproduces the latter at the 10% level only
for smaller ǫφ values, in agreement with the results in [38, 40].

2.4 A two-state model with off-diagonal interactions

The next straightforward step in increasing the complexity of our toy-models implies
considering more two-particle states (χχ)I . Another direction would be to change the
number of potentials in the one-state case, allowing several mediators with different
masses as well as different coupling strength to the constituents of the single χχ pair.
Such kind of investigations have been carried out in [42] or [43]. We pursue the first
option and consider the case of a two-state system with states (χχ)I , I = 1, 2, that
take part in purely off-diagonal potential interactions through exchange of one single
massive mediator with mass mφ. The two states shall exhibit a small mass difference,
δM2 =M2−M1 > 0, where MI denotes the mass of the state (χχ)I . A very comprehen-
sive study of the enhancements arising for the lighter two-particle state (χχ)1 in such an
inelastic two-state model, including approximate analytic formulae, can be found in [36].
Here we will present results for the Sommerfeld enhancement obtained from numerically
solving the Schrödinger equation for the coupled two-state system, highlighting the qual-
itative features of the enhancement. For an elaborate discussion including approximate
analytical results the reader is referred to [36].

We assume that written in the mass-eigenstate basis of the two two-particle states
(χχ)1, (χχ)2, the potential matrix V (r) has the following form,

V (r) =




0 −α
r
e−mφr

−α
r
e−mφr δM2


 . (2.66)

It is convenient to use the dimensionless quantities ǫv = v/α and ǫφ = mφ /αmχ, as
given in (2.61). mχ denotes twice the reduced mass of the lighter state (χχ)1. (In
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most applications mχ is hence the mass of the single-particle constituents in (χχ)1.) In
addition we introduce the new parameter ǫδ =

√
δM2/α2mχ, associated with the mass

splitting in the two-state system.
The potential matrix (2.66) in this purely inelastic two-state system resembles the

leading order 1S0-wave potential in the neutral sector of pair-annihilating wino-like
χ0
1 dark-matter. The latter neutral sector features the two nearly mass-degenerate

two-particle states χ0
1χ

0
1, χ

+
1 χ

−
1 . Off-diagonal potential scattering χ0

1χ
0
1 → χ+

1 χ
−
1 and

χ+
1 χ

−
1 → χ0

1χ
0
1 is mediated by W -exchange. For heavy χ0

1, χ
±
1 particles, mχ ∼ O(TeV),

the mass splitting between the neutral two-particle states in the decoupling limit is
given by δMwino

2 ∼ 300MeV, independent of the wino-masses (as well as of the (de-
coupled) residual SUSY spectrum). The features of gaugino- as well as higgsino-like
χ0
1 dark-matter, including mass splittings, will be discussed in detail in later chapters.

For the time being note that purely off-diagonal potential scattering generically arises
for two-particle states built from one single Majorana fermion state (as for example the
χ0
iχ

0
i states in the MSSM), if the potential interactions are mediated by gauge bosons;

Majorana fermions cannot carry conserved charges, implying purely off-diagonal poten-
tial (χχ)I → (χχ)J 6=I scattering reactions to accessible nearly mass-degenerate states
(χχ)J 6=I . In that sense the ansatz (2.66) for the potential interactions is generic for a
two χχ-state system, with the lighter state, (χχ)1, built from a Majorana dark-matter
candidate. The above reasoning pertaining to purely off-diagonal potential scattering
does however not apply to (χχ)I states built from Dirac fermions, as for example χ+

1 χ
−
1

in the system of neutral wino-states. The major difference between (2.66) and the 1S0

potential interactions in the neutral sector of pair-annihilating non-relativistic winos is
hence the fact, that the χ+

1 χ
−
1 state allows for diagonal potential interactions mediated

by photon- and Z-exchange. These potentials will then appear in the (2, 2) component
of the corresponding potential matrix, in addition to the mass splitting δM2 as in (2.66).

In the generic case, there exists no r-independent diagonalisation of the two-state
Schrödinger equation over the complete range of r, given the potential matrix V (r) in
(2.66). Depending on the actual magnitude of the parameters ǫφ and ǫδ, there will be
two regions, where the potential interaction −α/r exp(−mφr) dominates over the mass
splitting and vice versa, separated by a transition region, where both the interaction and
the mass splitting are of the same order.

It is instructive to first consider in a bit more detail the leading order S-wave Som-
merfeld enhancement for both states (χχ)I=1,2 in case of vanishing mass splitting, ǫδ = 0,
as in this case an r-independent diagonalisation of the two-state Schrödinger equation
is possible and we can in addition gain some insight into the relevance of off-diagonal
annihilation rates in the determination of SIl . Let us rewrite the Schrödinger equation
for the matrix valued function χl(r) in the following form

d2

dx2
χl(x) =




l(l+1)
x2
− ǫ2v −e

−ǫφx

x

−e
−ǫφx

x
l(l+1)
x2
− ǫ2v + ǫ2δ


χl(x) , (2.67)

where we have introduced the rescaled radial coordinate x = αmχr, and ǫδ should
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be set to 0 for the time being. The eigenvalues and the corresponding r-independent
eigenvectors of the matrix multiplying χl(x) on the r.h.s. in (2.67) read

λ±l =
l(l + 1)

x2
− ǫ2v ±

α e−ǫx

x
, ψ± =

1√
2

(
∓1
1

)
. (2.68)

In order to determine the l-wave Sommerfeld enhancement in annihilation reactions
of incoming states (χχ)I=1,2 via (2.43), we have to determine the asymptotic x → ∞
behaviour of the irregular solutions encoded in the matrix valued function ηl(x), subject
to the initial condition ηl=0 JI(x → 0) → δJI x

−l. In the S-wave case, in particular,
ηl=0(x) can be obtained from

ηl=0(x) =
1

2



φ−(x) + φ+(x) φ−(x)− φ+(x)

φ−(x)− φ+(x) φ−(x) + φ+(x)


 , (2.69)

where φ±(x) denote scalar (irregular) wave-functions, solving d2/dx2 φ±(x) = λ±l=0 φ
±(x),

subject to the initial conditions φ±(x = 0) = 1. The columns of ηl=0(x) above then
encode those suitable linear combinations of the basis solutions φ±(x)ψ± to (2.67), that
ensure the correct ηl=0(x = 0) = 1 behaviour. It is important to note, that φ+(x)
is a solution to a single channel Schrödinger equation with repulsive Yukawa potential
interaction, while φ−(x) denotes a solution to a single channel Schrödinger equation with
attractive Yukawa potential, see the λ±l expressions in (2.68). As for the time being we
have imposed zero mass splitting, ǫδ = 0, in our toy-model, the parameters kI , (2.16), are
both given by kI=1,2 = mχv. Hence we encounter just a global phase factor exp(−iǫvx)
in the asymptotic behaviour ηl=0 JI(x → ∞) → e−iǫvx Tl=0 JI .

16 The latter phase will in
particular cancel when building Sl=0. In the ǫδ = 0 case, the S-wave enhancement in our
two-state toy-model can hence be determined from

SIl=0 =

[
ηl=0(∞) · Γl=0 · η†l=0(∞)

]
II

Γl=0 II
, (2.70)

with ηl=0(∞) obtained from (2.69). The generalisation of this expression to the l > 0
case by an appropriate rescaling of (2.70) by the factor ((2l− 1)!!)2/k2l (see (2.43)) and
the substitution of ηl=0(x) by the suitably determined ηl>0(x) in analogy to (2.69) is
straightforward.

In the final step we have to specify the annihilation matrix Γl=0 in (2.70). Let us first
consider the case, where Γl=0 is given by a 2× 2 matrix with all entries being identical.
The overall normalisation of the annihilation matrix cancels when building the ratio of

16The asymptotic form ηl=0 JI(x → ∞) → e−iǫvx Tl=0JI with outgoing spherical wave exp(−iǫvx)
applies to the matrix-valued irregular solution ηl=0(x) considered as a function of the rescaled coordinate
x = αmχr: note kr = ǫvx. The constant normalisation coefficients Tl=0JI are unchanged under the
rescaling of the radial coordinate.
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the enhanced to the tree-level rate as encoded in the (l = 0 wave) Sommerfeld factor
(2.70), and we find for both mass-degenerate states (χχ)I=1,2

SI=1,2
l=0 = |φ−(∞)|2 . (2.71)

Recall that φ−(x) corresponds to the irregular single (χχ)-state l = 0 scattering wave-
function for an attractive Yukawa potential (V (r) = −α/r exp(−mφr)), with appropri-
ate normalisation φ−(x → 0) → 1. Consequently, (2.71) just gives the ordinary single
χχ-state S-wave Sommerfeld enhancement, see the introduction to Sec. 2.3. The en-
hancement of both the (χχ)I=1,2 annihilation rates is hence simply described by the
enhancement discussed in Sec. 2.3.2. Neglecting the presence of off-diagonal annihila-
tion rates encoded in the off-diagonal entries of Γl=0 and accordingly choosing Γl=0 ∝ 1
in our toy-scenario, the result for the S-wave enhancement would instead be

S
I=1,2 (Γ∝1)
l=0 =

1

2

(
|φ−(∞)|2 + |φ+(∞)|2

)
. (2.72)

Thus the result is given by one half the enhancement factor for the (single χχ state)
attractive Yukawa potential case summed with one half the suppression factor obtained
for the corresponding repulsive Yukawa potential case. The latter suppression factor will
range between 0 and 1, such that in any case the S-wave enhancement SI=1,2

l=0 would be
underestimated when neglecting off-diagonal rates, (2.72) as opposed to the actual ‘full’
result (2.71). For sufficiently large enhancements (|φ−(∞)|2 ≫ 1) in particular, (2.72)
strongly underestimates the actual enhancement, the maximal error being a factor of
deviation . 2. This is illustrated in the left-hand plot of Fig. 2.5, where the enhancement
factors calculated from (2.71) (solid curves) and obtained from (2.72) (dotted curves),
for two different choices of ǫφ are shown. Note for comparison, that the solid curves have
already been presented, among others, in Fig. 2.3.

Once the annihilation matrix entries Γl=0 JJ ′ come with different weights, the en-
hancement factors SIl=0 for the mass-degenerate states (χχ)I=1,2 will obviously no longer

coincide. In such a generic case, the enhancements SI=1,2
l=0 can be generally expressed

in terms of linear combinations of products of the attractive and repulsive potential’s
solutions φ±(∞). For example, let us consider

Γl=0 ∝
(
1 2
2 4

)
, (2.73)

implying that the (χχ)1 state has a four times smaller tree-level annihilation rate com-
pared to (χχ)2. For the S-wave enhancements we obtain in this case

SI=1
l=0 =

1

4
| 3φ−(∞)− φ+(∞) |2 , SI=2

l=0 =
1

16
| 3φ−(∞) + φ+(∞) |2 . (2.74)

The enhancement for (χχ)1 will hence always be larger than in case (2.71), where all
Γl=0 entries where assumed to be identical. The reverse statement applies to (χχ)2: the
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Figure 2.5: Left plot : Examples for the effect of neglecting off-diagonal entries in the
annihilation matrices. The S-wave enhancement in the ǫδ = 0 case for matrices Γl=0 with
all entries being identical (solid lines) is compared to the case, where the off-diagonal
entries of Γl=0 are neglected (dotted curves). Enhancements are the same for both states
(χχ)I=1,2. Apart from the results obtained for ǫφ = 0.05 (lower two (blue) curves) and
the close-to-(first) resonance case ǫφ = 6/π2 (upper two (red) curves), the enhancement
for Coulomb potential interactions (ǫφ = 0) taking the full Γl=0 into account is shown
in addition. Also see Fig. 2.3. Right plot : S-wave enhancement for the mass-degenerate
states (χχ)1 (solid lines) and (χχ)2 (dot-dashed curves) in case of annihilation matrix
Γl=0 given in (2.73). The lower (blue) curves refer to ǫφ = 1, the upper (red) to ǫφ = 6/π2.
As a reference, the corresponding enhancements obtained for matrices Γl=0 with identical
entries are given by the dashed (grey) lines lying in between the curves for (χχ)I and
(χχ)2, respectively.

enhancement given in (2.74) is (slightly) smaller compared to (2.71). For sample values
of ǫφ this is illustrated in the right-hand plot of Fig. 2.5.

The actual expressions for both potential and annihilation matrices depend on the
interactions in the underlying model and have to be determined in a matching procedure
from the full (high-energy) theory, which for the case of the χ0/χ± sector in the MSSM
is the subject of later chapters. Here it is worth to note, that given the potential matrix
(2.66) even with in general non-vanishing ǫδ, the assumption of an annihilation matrix
Γl with all entries being identical is in fact the most consistent choice, if only gauge
interactions causing both potential scattering and annihilation reactions are assumed,
and both states (χχ)I=1,2 are built from Majorana fermions. This statement will be
confirmed when discussing potential scattering and annihilation reactions in the sub-
sector of the two neutral higgsino two-particle states χ0

1χ
0
1 and χ0

2χ
0
2. Note however,

that the neutral sector of higgsino-type two-particle states (χχ)I consists in total of four
nearly mass degenerate states, such that the results in our two-state toy-model cannot
be directly related to the neutral higgsino-sector.
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Figure 2.6: S-wave enhancement of the (lighter) (χχ)1 state in the two-state toy-model
discussed in the text as a function of ǫφ. Solid lines refer to a finite mass splitting between
the lighter and heavier state (χχ)I=1,2 with ǫδ = 0.1. Dot-dashed curves give the ǫδ = 0
case familiar from Fig. 2.4. The two upper (red) curves correspond to ǫv = 10−2, while
the two lower (blue) curves refer to ǫv = 10−1.

Let us now consider the two-state toy-model with finite ǫδ. As regards the annihi-
lation part, we choose a matrix Γl with all entries being identical, which agrees with
the situation considered as application in [36] after the derivation of generically appli-
cable analytic approximate formulae. Fig. 2.6 exemplifies the behaviour of the S-wave
enhancement for the lighter (χχ)1 state as a function of the parameter ǫφ for two dif-
ferent choices of the velocity, for the case of vanishing mass splitting ǫδ = 0 as well as
ǫδ = 0.1. The two lower (blue) curves give the case of ǫv = 0.1, the upper two (red)
refer to ǫv = 0.01. First consider the case of the upper two curves. Here the uppermost
solid line represents the case ǫv = 0.01 and ǫδ = 0.1, hence referring to a situation below
the excitation threshold for the second state (χχ)2. The next lower lying dot-dashed
curve refers to the familiar ǫδ = 0 situation. In this latter case, for ǫφ < ǫv, we are in
the non-resonant enhancement region, and Sl=0 saturates at the Coulomb-enhancement
value Sl=0 = π/ǫv, as already seen in Fig. 2.4. Such a saturation in the ǫφ < ǫv regime is
also observed for the uppermost curve, while here the enhancement (corresponding to the
below-threshold case, as ǫv ≪ ǫδ) is found to be roughly two times larger, Sl=0 ≈ 2π/ǫv.
This is in agreement with the findings in [36], where an increase of the non-resonant
enhancement in the below-threshold case by a factor of about two has also been derived
directly from the analytic approximation. Now let us come to the region of resonant
enhancement, still referring to the upper two curves with ǫv = 0.01. It can be seen from
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Figure 2.7: Left plot : Example for the possible behaviour SI=1
l=0 (ǫv) around the threshold

region for on-shell excitation of the heavier (χχ)2 state. The solid (blue) curve gives the
behaviour for ǫδ = 0.01 and ǫφ = 6/π2. The dotted (red) curve gives a corresponding
behaviour for zero mass-splitting (ǫδ = 0) and ǫφ = 0.61474, with the same asymp-
totics for ǫv far below and above the threshold region. For comparison, the Coulomb
enhancement for zero mass-splitting is shown in addition (dashed, green curve). The
results have been obtained for Γl=0 with all entries identical. Right plot : Enhancements
as a function of ǫv for both states, given an annihilation matrix of the form (2.73) and
ǫφ = 6/π2. ǫδ = 0.01 (upper, blue curves) and ǫδ = 0.1 (lower, red curves) have been
chosen. The solid (dot-dashed) curves correspond to the lighter (heavier) (χχ)I state.
For comparison, the dashed (grey) curve illustrates the case of Γl=0 with identical entries
and ǫδ = 0.01, ǫφ = 6/π2. Above threshold, in the latter case, the enhancement of the
(χχ)2 state agrees with the (χχ)1 state’s enhancement.

Fig. 2.6 that the position of the resonances in ǫφ for finite ǫδ is shifted downwards to
smaller values with respect to the ǫδ = 0 case. Furthermore, the smaller the resonant
ǫφ value, the larger the downwards shift relative to the resonance position. Moreover,
the height of each resonance turns out to be larger by a factor of about four in the
below-threshold ǫδ = 0.1 situation compared to the corresponding ǫδ = 0 case. Again,
in [36], both these observations are correctly predicted from the analytic results. The
two lower (blue) curves in Fig. 2.6 correspond to ǫv = 0.1 and ǫδ = 0.1 (upper solid line)
– directly at threshold for on-shell production of the heavier state (χχ)2 – as well as the
zero mass-splitting case (lowermost, dot-dashed curve). In the regime of non-resonant
enhancement Sl=0(ǫv = ǫδ) is found to be about two times larger than the correspond-
ing value π/ǫv for ǫδ = 0. Contrary to the previously discussed below threshold case,
however, here we do not observe any significant shift of the resonance positions in ǫφ
compared to the ǫδ = 0 situation.

To close the discussion of the two-state toy-model, the left plot in Fig. 2.7 shows the
enhancement of the lighter state (χχ)1 as a function of ǫv for ǫδ = 0.01 and ǫφ = 6/π2
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(≈ 0.607927) (solid, blue curve) and ǫδ = 0, ǫφ = 0.614747 (dotted, red curve). In the
ǫδ > 0 case, SI=1

l=0 is a non-monotonic function of ǫv, showing a ‘spike’ at threshold for
on-shell production of (χχ)2. This behaviour is a threshold effect, which occurs here on
top of resonant enhancement due to a loosely-bound state in the spectrum of the theory.
The purely resonant enhancement in the ǫδ = 0 case is illustrated by the dotted (red)
curve. The chosen ǫφ values for both curves are slightly different, reflecting the fact
that resonance positions are shifted downwards for finite ǫδ values. For comparison and
to highlight the fact, that the ǫφ values are associated with resonant enhancement, the
dashed (green) curve gives the Coulomb enhancement in the case of zero mass-splitting.
As regards the ǫδ > 0 case, the enhancement around threshold is found to be less than
twice as large as the saturated enhancement for ǫv → 0; see [36] for an analytic estimate
of this factor. It is argued in [36] that in any case the ratio of S(ǫv = ǫδ)/S(ǫv = 0)
should be bounded by two from above.

In the right-hand plot of Fig. 2.7 we show the enhancement factors for both states
(χχ)I=1,2 for an annihilation-matrix with non-identical entries of the form (2.73). Al-
though the annihilation rate of the heavier state is a factor of four larger than the
corresponding rate of the lighter state, the enhancements of the former state are found
to be a factor of about four smaller compared to (χχ)1. For comparison, the enhance-
ment for an annihilation matrix with all entries identical and fixing ǫδ = 0.01, ǫφ = 6/π2

is shown in addition (dashed, grey curve). In the latter case, SI=1
l=0 (ǫv) is found to agree

with SI=2
l=0 (ǫv) above threshold.
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Chapter 3

Relic abundance calculation

In this chapter we present the formalism needed for the determination of the relic abun-
dance of a weakly interacting massive particle χ1. We start with a brief qualitative
discussion of the phenomenon of freeze-out of the χ1’s annihilation reactions in course
of the Universe’s expansion in Sec. 3.1. The description is subsequently quantified by
introducing an (integrated) form of the Boltzmann equation, appropriate to describe the
evolution of particle number densities in the expanding Universe. In Sec. 3.2 the setting
is generalised to include the case of co-annihilations of several nearly mass degenerate
species χi, i=1,...,N . In addition a convenient form of the Boltzmann equation is derived
that treats the decrease of the number densities due to the expansion of the Universe
implicitly. A single-integral formula for the thermally averaged annihilation rate 〈σeff v〉
that enters the Boltzmann equation as central ingredient is finally given in Sec. 3.3.
The formula involves the individual annihilation rates σijv of all co-annihilating pairs
χiχj . In Chapters 6 – 8 we determine explicit expressions for the rates σijv in χ0/χ±

co-annihilations including Sommerfeld enhancements. On the one hand this chapter is
therefore a self-contained short review of the dark matter relic abundance calculation.
On the other hand all necessary formulae are provided that allow a direct calculation of
the χ0

1 relic abundance including Sommerfeld enhancements, provided the (Sommerfeld-
enhanced) rates σijv are known.

3.1 The Boltzmann equation

The standard explanation for the origin of a particle species in our present Universe
starts from the assumption of its thermal production in the very early Universe. This
implies that in these early times the species should have been in both chemical and
kinetic equilibrium with the further particle constituents of the early Universe’s thermal
plasma. Such equilibrium state requires rapid annihilation and creation processes of
the particle species as well as effective scattering reactions with the further particles
present. Note that in general, in this picture, the early Universe’s thermal plasma is
assumed to be constituted by the particle species of the Standard Model as well as
possibly additional species occurring in extensions of the SM. The expansion of the
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Universe, which can conveniently be associate with the expansion rate given by the
Hubble parameter H (H(t) = d

dt
R(t)/R(t), where R(t) denotes the scale factor as a

function of time), runs contrary to the processes that allow the maintenance of thermal
equilibrium: it dilutes the actual number densities of the species. As a consequence
interaction processes will become rare, finally leading to the fact that – depending on the
strength of the interaction rates – a certain species will no longer stay in equilibrium with
the others. Its annihilation and creation reactions stop more or less suddenly (“freeze
out”) such that its particle number eventually stays constant (“freezes in”), giving rise
to the thermal relic abundance observable today.1 As a very rough criterion this happens
when the Universe’s expansion rate H starts to dominate over the total annihilation rate
Γ of the species, H >∼Γ. Depending on the average thermal velocity of the species during
freeze-out, non-relativistic (v ≪ 1) or (semi-)relativistic (v . 1), one distinguishes cold
or warm/hot thermal dark matter. The neutralino dark matter candidate χ0

1 that we
consider in this work is a cold thermal dark matter candidate; its freeze-out should have
occurred for thermal bath temperatures around T ∼ mχ0

1
/20. Therefore we focus here

on the case of heavy cold dark matter candidates.

The first quantitative studies of the freeze-out process of a heavy particle species
focused on a possible heavy neutrino relic. They were performed in the late 1970s by
Lee and Weinberg [44] as well as independently by other authors and led to a lower
bound on the mass of a heavy neutrino species, today referred to as the “Lee-Weinberg
bound”. Since that time the theoretical description, relying on Boltzmann equations
for the particle number densities in the expanding Universe, has been subsequently re-
fined. Both improved analytical approximations and numerical solution methods have
been applied [45–47] and a consistent treatment of co-annihilations in the (roughly) si-
multaneous freeze-out process of several (nearly) mass-degenerate heavy species has been
given [48]. In addition the case of resonant annihilation reactions has been addressed [48]
and the annihilation rates entering the Boltzmann equations of the non-relativistic par-
ticles can be consistently calculated including relativistic corrections, beyond the strict
non-relativistic approximation [49]. Regarding the solution of the Boltzmann equation
and the necessary input related to the thermodynamics in the expanding Universe, the
determination of the thermal relic abundance of a particle species, which represents a
viable dark matter candidate, has become a standard calculation. It is implemented
in several computer codes, such as DarkSUSY [5] and micrOMEGAS [6]. The dominant
uncertainties in the determination of the final abundance are currently associated with
the annihilation rates entering the Boltzmann equations. These rates are an input from
the particle physics model that provides the respective particle dark matter candidate.
While the publicly available codes currently rely on tree-level annihilation rates, we aim

1In the Universe today annihilation reactions of a species that underwent freeze-out in earlier times
can start again. This may happen if due to gravitational attraction regions with a high number density
of the particular species have formed, such as for example in the halo of galaxies, in galactic centres or
possibly also in the Sun. If the particle dark matter hypothesis is true, dark matter pair-annihilation
reactions should occur in these regions, giving rise to indirect detection signals in terms of cosmic rays
or gamma ray lines. For an introduction to indirect dark matter searches see for example [3, 4].
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to study the impact of Sommerfeld-enhanced cross sections on the predicted relic abun-
dance. To this end we have developed a code that allows for the determination of the χ0

1

dark matter relic abundance including Sommerfeld enhancements. We come back to the
calculation of the rates in later chapters and proceed in this section with the derivation
of the relevant generic formulae needed in the relic abundance determination. Our fol-
lowing discussion is mainly based on the textbook [50] as well as on the articles [3] and
the more recent [4], which provide a nice review of the freeze-out of weakly interacting
massive particles.

The Boltzmann equation describes the evolution of the phase space distribution
f(pµ, xµ) of a particle species and can be expressed as

L̂[f(pµ, xµ)] = Ĉ[f(pµ, xµ)] . (3.1)

Let us in particular refer to the distribution function and corresponding Boltzmann equa-
tion of particle species χ1 in the following. In the expanding Universe the left-hand side of
(3.1) contains the covariant relativistic form of the Liouville operator acting on f(pµ, xµ).
The right-hand side is the collision term associated with all particle scatterings as well
as annihilation or creation reactions, that change the distribution function f(pµ, xµ) of
species χ1. Under the assumption of a homogeneous and isotropic Universe described by
the Friedman-Robertson-Walker metric, any phase space distribution function depends
only on time and energy, f(E = p0, t), and the Liouville operator becomes

L̂[f(E, t)] = E
∂

∂t
f(E, t) − H(t) ~p 2 ∂

∂E
f(E, t) . (3.2)

H(t) denotes the Hubble parameter. Instead of f(E, t), we will be interested in the
evolution of the particle number density

n(t) = g

∫
d3~p

(2π)3
f(E, t) , (3.3)

with g the particle’s internal (spin) degree of freedom. Dividing the Boltzmann equation
by E and integrating over the three-momentum finally leads to the integral form

dn

dt
+ 3H(t)n = g

∫
d3~p

(2π)3
1

E
Ĉ[f(E, t)] . (3.4)

After the momentum integration only those contributions to the collision term survive
that change the actual number of χ1 particles. These are related to annihilation and
creation reactions involving species χ1. As in general 2 → 2 reactions will be most
important in the thermal plasma, the relevant annihilation and creation processes are
given by χ1χ1 → XAXB and XAXB → χ1χ1 reactions. XA, XB denote any other particle
species present in the thermal bath that undergo interactions with species χ1. Here we
have implicitly assumed that the χ1 is its own anti-particle, such that the only 2 → 2
reactions changing the number of χ1s present in the thermal bath are χ1χ1 ↔ XAXB
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processes (provided that the χ1 is stable or at least sufficiently long-lived and interactions
χ1χi ↔ XAXB with other species χi changing the χ1 number are irrelevant). This applies
if the χ1 is a real scalar or Majorana fermion, while in case of a charged scalar or Dirac
fermion, χ1χ1 ↔ XAXB processes involving the anti-particle χ1 have to be considered.
There is one subtle point in the former case, which is related to symmetry factors and the
number of χ1s created or annihilated per χ1χ1 ↔ XAXB reaction. In each χ1χ1 ↔ XAXB

process the number of χ1s is changed by two, such that one might expect a factor of 2 in
front of the collision term on the right-hand side of (3.4). However, in the collision term a
symmetry factor of 1/2 has to be taken into account when the momentum integration over
the two identical particles in the (initial or final) χ1χ1 state is performed, such that these
two factors, both related to identical particle states, eventually cancel each other out. In
the following we take the cancellation of these two factors for granted and therefore write
neither of the two explicitly. Note that although (elastic) scattering χ1XA → χ1XB with
the thermal bath constituents XA,B (assumed to be in thermal equilibrium during χ1

freeze-out) does not contribute to the momentum integrated right-hand side in (3.4), it
plays an important role in maintaining species χ1 in kinetic equilibrium2 even after it
is chemically decoupled from the thermal plasma [45]. We come back to this important
feature later in this chapter. Altogether, the reactions χ1χ1 ↔ XAXB determine the
collision term in the following way:

g

∫
d3~p

(2π)3
1

E
Ĉ[f(E, t)]

⊃ −
∑

spins

∫
d3~p

2E(2π)3
d3~p ′

2E ′(2π)3
d3~pA

2EA(2π)3
d3~pB

2EB(2π)3
× (2π)4 δ(4)(p+ p′ − pA − pB)

×
(
f(E, t)f(E ′, t) |Aχ1χ1→XAXB

|2 − fA(EA, t)fB(EB, t) |AXAXB→χ1χ1
|2
)
. (3.5)

A rigorous derivation of this expression3 can be addressed within thermal field theory.
From heuristic arguments the origin of the different terms is however clear: the squared
amplitudes |Aχ1χ1→XAXB

|2 and |AXAXB→χ1χ1
|2 describe the quantum mechanical transi-

tion probabilities of reactions χ1χ1 → XAXB and XAXB → χ1χ1 and generically depend
on the four-momenta of the four particles taking place in the scattering reaction. To
obtain the transition rates, a phase space integration of the final state particles has
to be performed and a summation over the spins of all involved particles has to be
carried out. Subsequently each of these transition rates is weighted by the product of
the incoming particles’ statistical distributions (f(E, t)f(E ′, t) ≡ fχ1

(E, t)fχ1
(E ′, t) or

fA(EA, t)fB(EB, t)) and finally integrated over the initial state momenta.

2We assume the presence of such interactions, keeping the χ1 close to kinetic equilibrium, through-
out. Several authors have studied the effect of kinetic decoupling of the χ1 that occurs after chemical
decoupling if χ1XA → χ1XB reactions cease to maintain species χ1 in kinetic equilibrium, see for
example [40, 51, 52].

3Note that we have already dropped Fermi blocking and Bose stimulated emission factors in (3.5)
(for a corresponding discussion see for example [50]).

50



To proceed let us assume that apart from χ1 all thermal bath species X are in
thermal equilibrium throughout the time within which we track the evolution of the
χ1 number density. Consequently the phase space distribution fX(E, t) of such species
in the cosmic comoving frame, where the plasma is at rest as a whole, is given by the
thermal equilibrium distribution

fX, eq(E, t) =
1

exp(E/T ) + ηX
, (3.6)

where ηX is 1 (−1) if X is of fermionic (bosonic) nature. Note that we have dropped the
chemical potential µX of species X . This is in general a good approximation for the early
Universe, as the chemical potential µX is generically much smaller than the energies E
at the temperatures of interest to us: Energies in on-shell reactions χ1χ1 ↔ XAXB of
non-relativistic χ1 particles will be characterised by the scale 2mχ1

(up to corrections
of the order of the non-relativistic kinetic energy), which for a heavy cold dark matter
candidate is at least of the order of some hundred GeV to some TeV. Further, in the χ1

freeze-out process only temperatures T . mχ1
/20 are relevant. In this case the exact

expression (3.6) can be replaced in very good approximation by a Maxwell-Boltzmann
distribution, fX, eq(E, t) ≃ e−E/T , such that from energy conservation, E+E ′ = EA+EB,
the relation

fA, eq(EA, t) fB, eq(EB, t) = feq(E, t) feq(E
′, t) (3.7)

is obtained. The phase space integration related to the species XA and XB in (3.5)
can now be performed independently of fA and fB. With the definition of the Lorentz
invariant cross section we arrive at the relation

∑

spins

∫
d3~pA

2EA(2π)3
d3~pB

2EB(2π)3
× (2π)4 δ(4)(p+ p′ − pA − pB) |Aχ1χ1→XAXB

|2

= 4 g g′
√

(p · p′)2 −m2
χ1
m2
χ1

σχ1χ1→XAXB
. (3.8)

g, g′ denote the spin factors (internal degrees of freedom) of the two χ1 initial state par-
ticles. As first argued in [49], unitarity ensures that when replacing |Aχ1χ1→XAXB

|2 in
the integrand on the left-hand side by |AXAXB→χ1χ1

|2, the same right-hand side expres-
sion as in (3.8) results. Summing over all possible states XAXB, the collision term then
simplifies to

g

∫
d3~p

(2π)3
1

E
Ĉ[f(E, t)] =

−g
∫

d3~p

(2π)3
g′
∫

d3~p ′

(2π)3

[
f(E, t)f(E ′, t) − feq(E, t)feq(E

′, t)
]
× (σχ1χ1

v) . (3.9)

σχ1χ1
≡ σχ1χ1→

∑
XAXB

denotes the total annihilation cross section for χ1χ1 pair annihi-
lations and v is the Møller velocity defined as [49]

v =

√
(p · p′)2 −m4

χ1

E E ′ . (3.10)
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Note that the Møller velocity v coincides with the relative velocity vrel for anti-collinear
collisions ~p ′ ∝ ~p.

In the next step, the distribution functions f(E, t) and f(E ′, t) in (3.9) are approx-
imated by a momentum independent factor times the (chemical and kinetical) ther-
mal equilibrium Maxwell-Boltzmann distribution, that is f(E, t) = α(t)feq(E, t) with
feq(E, t) = e−E/T . The proportionality factor α(t) may depend (through its time de-
pendence) on the temperature of the thermal bath, but is independent of the particle’s
energy. As argued in [45], this approximation holds if two conditions are fulfilled. First,
the temperature of the thermal bath is already well below the mass scale of the species
χ1, T ≪ mχ1

, such that the Maxwell-Boltzmann distribution gives a good approxima-
tion to the equilibrium distribution. Second, scattering reactions χ1XA → χ1XB with
the thermal plasma constituents XA,B have to be rapid and effective enough to main-
tain species χ1 in kinetic equilibrium. In this case the momentum dependence of the
distribution function stays close to its equilibrium functional dependence and the pro-
portionality factor α(t) is momentum independent in very good approximation, see the
corresponding discussion in [45]. Under these assumptions, (3.9) can finally be cast in
the form

g

∫
d3~p

(2π)3
1

E
Ĉ[f(E, t)] = −〈σ v〉 (n2 − n2

eq) , (3.11)

with the thermally averaged total annihilation cross section

〈σ v〉 =
1

n2
eq

g

∫
d3~p

(2π)3
g′
∫

d3~p′

(2π)3
(σχ1χ1

v) feq(E, t) feq(E
′, t) . (3.12)

neq denotes the equilibrium number density obtained from the Maxwell-Boltzmann dis-
tribution feq(E, t) using (3.3). Finally, from (3.4) and (3.11), the familiar expression for
the Boltzmann equation in the expanding Universe

d

dt
n = 3H(t)n − 〈σχ1χ1

v〉
(
n2 − n2

eq

)
(3.13)

is obtained. The first term on the right-hand side accounts for the dilution of the number
density due to the Universe’s expansion and the second term accounts for the particle
physics processes that change the number of particles χ1.

3.2 Co-annihilations

In Sec. 3.1 we discussed the single χ1 species freeze-out process, which is quantified
by the evolution of the χ1 number density governed by a Boltzmann equation. In the
derivation of the central equation (3.13) it is implicitly assumed, that the remaining
constituents of the thermal bath (generically denoted with XA,B) are in chemical and
kinetical equilibrium at least until the χ1 annihilation reactions are completely frozen
out. However, this does not apply if in addition to the χ1 there are further slightly
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heavier species χi, i > 1, present, that have comparable interaction strength and interact
with the χ1. Being only slightly heavier, the species χi will be roughly as abundant
as the χ1 as long as chemical equilibrium holds.4 Given interaction rates of similar
strength, the freeze-out of species χi and χ1 will take place around the same time. In
particular the evolution of the number densities ni will affect the n1 evolution due to
coupled Boltzmann equations. This effect of co-annihilations has first been addressed
in [48], where a consistent formalism to treat co-annihilations in the relic abundance
calculation of species χ1 has been given, applicable to the limit of strictly non-relativistic
co-annihilation rates. Using the exact relativistic formulae for the annihilation rates in
the single species freeze-out from [49], [53] subsequently provided a formalism that allows
to include exact co-annihilation rates in dark matter relic abundance calculations, which
in [53] was applied to the χ0

1 relic abundance calculation in the MSSM.
Our application in Chap. 9 is the relic density calculation of O(TeV) scale χ0

1 dark
matter in the MSSM. In this case co-annihilation processes with further neutralino and
chargino species occur generically. A TeV-scale χ0

1 that reproduces the observed cold dark
matter as thermal relic has to be either wino- or higgsino-like, or a mixed wino-higgsino
state. In these cases mass degeneracies between the χ0

1 and at least its corresponding
chargino partner χ±

1 at O(GeV) or below are generic, making the consideration of co-
annihilations in the relic abundance calculation necessary.5 Following [48,53] we therefore
generalise the derivation from Sec. 3.1 here to include the effect of co-annihilations.

Consider a set of N nearly mass degenerate species χi, i = 1, . . . N, ordered according
to their increasing masses mi (mj ≤ mk for j < k). The lightest species χ1 is the dark
matter candidate. Further the existence of a conserved multiplicative quantum number is
assumed, in which all species χi shall differ from the SM particles. The latter guarantees
the stability of the dark matter candidate χ1. Within the R-parity conserving MSSM
considered in Chap. 9 R-parity takes exactly the role of this additional multiplicative
quantum number. In the following XA,B denote SM particle species and it is assumed
that these species are in chemical equilibrium throughout the freeze-out of co-annihilation
reactions of the χi. The following processes can then change the number of species χi:

χi χj ↔ XA XB , (3.14)

χi XA ↔ χj XA , (3.15)

χi ↔ χj XA XB , j < i . (3.16)

Decay processes (3.16) imply that all species χi>1 will eventually decay into the lightest

4Generically at temperature T , the equilibrium number density ni, eq of a heavier species χi will
be suppressed relative to the density n1, eq of the (non-relativistic) species χ1 by a Boltzmann factor
e−(mi−m1)/T , where mi (m1) is the mass of species χi (χ1). See the end of Sec. 3.3 for a discussion on
the origin of such Boltzmann suppression factor. For small mass splittings δmi = mi − m1 ≪ T the
number densities ni, eq and n1, eq are therefore of the same order.

5In addition to the rather natural mass degeneracies in the χ0/χ± sector for TeV-scale χ0
1 dark matter

scenarios, there are viable χ0
1 dark matter models where co-annihilations with nearly mass-degenerate

third generation sfermions (the t̃1 or τ̃1) allow to reproduce the experimentally observed dark matter
density. We focus here on χ0/χ± co-annihilations and exclude the case of additional mass degeneracies
of the χ0

1 with sfermion or Higgs states in the MSSM from our analysis.
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and stable χ1, such that the number density of the latter today is determined from the
sum over the number densities ni of all χi species, n =

∑
i=1,...N ni. While annihilation

and creation reactions (3.14) affect the total number density n of all χi species, the
decay and inverse decay processes (3.16) cannot change n. Finally scattering reactions
(3.15) affect neither n nor ni, but are important to keep the individual χi close to kinetic
equilibrium even after the species have chemically decoupled. With these preliminaries
the Boltzmann equation corresponding to (3.13), that describes the evolution of the
summed number density n =

∑
i=1,...N ni, takes the form

d

dt
n = −3H(t)n −

∑

i,j

〈σχiχj
vij〉 (ni nj − ni, eq nj, eq) . (3.17)

The χiχj annihilation cross section σχiχj
is defined by an obvious generalisation of (3.8)

and similarly the Lorentz-invariant Møller velocity vij derives from (3.10),

vij =

√
(pi · pj)2 −m2

χi
m2
χj

EiEj
. (3.18)

Note that the sum in (3.17) separately runs over i, j = 1, . . . N . Under the assumption
of rapid scattering reactions (3.15) with the SM thermal plasma it is argued in [53] that
these processes ensure, that the ratio of particle number density ni to the total particle
number density n remains close to the corresponding ratio of equilibrium quantities,

ni
n
≃ ni, eq

neq

. (3.19)

This allows the following rewriting of the Boltzmann equation:

d

dt
n = −3H(t)n − 〈σeff v〉

(
n2 − n2

eq

)
, (3.20)

with the thermally averaged effective annihilation cross section

〈σeff v〉 =
∑

i,j

〈σχiχj
vij〉

ni, eq nj, eq
n2
eq

. (3.21)

(3.20) is the generalisation of (3.13) that properly includes co-annihilations. Instead of
n it is more convenient to consider the evolution of the yield Y ,

Y =
n

s
, (3.22)

where s denotes the total entropy density, as this allows to tread the dilution effect from
the Universe’s expansion implicitly. Assuming the absence of entropy production, the
total entropy per comoving volume element, S = sR3, remains constant and the change
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of number and entropy density due to the expansion is the same, namely ds/dt = −3Hs.
From (3.20) we then obtain the Boltzmann equation for the yield,

d

dt
Y = −s〈σeff v〉

(
Y 2 − Y 2

eq

)
. (3.23)

Instead of its time evolution it is more useful to consider the change of Y with the
temperature T of the Universe’s thermal bath. This temperature is associated with
the bath of thermal photons in the Universe throughout its evolution. In particular,
introducing the dimensionless inverse scaled temperature x = mχ1

/T and noting that in
absence of entropy production

dx

dt
=

x2

mχ1

3H s
dT

ds
(3.24)

we obtain

d

dx
Y = − mχ1

3H x2
ds

dT
〈σeff v〉

(
Y 2 − Y 2

eq

)
. (3.25)

In order to determine the change of the entropy density with the thermal bath temper-
ature, ds/dT , consider the Friedmann equation

H2 =
8πGN

3
ρ , (3.26)

where GN is the gravitational constant. Freeze-out of the heavy species χi will take
place during the radiation-dominated epoch, such that the energy density ρ on the right-
hand side is dominated by relativistic degrees of freedom. It is therefore convenient to
parametrise the total energy density ρ as well as the total entropy density s by

ρ =
π2

30
geff(T ) T

4 , s =
2 π2

45
heff(T ) T

3 . (3.27)

geff and heff denote the effective degrees of freedom associated with the energy and entropy
density in the thermal bath [49]. From (3.27) the change of s with T is obtained.
(3.26) together with the parametrisation of ρ in (3.27) finally allows to relate the Hubble
parameter H to the thermal bath temperature, such that the Boltzmann equation can
be rewritten to

d

dx
Y = −

√
π

45GN
g1/2∗

mχ1

x2
〈σeff v〉

(
Y 2 − Y 2

eq

)

= − 2
√
10πmPl

15
g1/2∗

mχ1

x2
〈σeff v〉

(
Y 2 − Y 2

eq

)
. (3.28)

In the last step we have introduced the reduced Planck mass mPl related to GN via
mPl = (8πGN)

−1/2, with the numeric value mPl = 2.42888 · 1018GeV. The temperature

dependent parameter g
1/2
∗ in (3.28) is defined as

g1/2∗ =
heff√
geff

(
1 +

T

3 heff

d

dT
heff

)
. (3.29)
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Under the three assumptions that first essentially only the SM species contribute to heff
and geff at temperatures of interest,6 that second all these species behave as an ideal gas
and that third no entropy is produced, simple analytic approximations to heff and geff can
be given, see [49]. In a more accurate treatment the QCD quark-hadron phase transition

has to be taken into account [54]. The numerical results for heff, geff and hence g
1/2
∗

from such more involved calculations are tabulated and publicly available (for example
they are provided with the codes DarkSUSY [5] and micrOMEGAS [6]). When numerically
solving the Boltzmann equation to determine the χ0

1 relic abundance in some popular

MSSM scenarios in Chap. 9, we access these tabulated values of heff, geff and g
1/2
∗ . The

equilibrium yield in (3.28) is given by

Yeq =
45

4 π4

x2

heff

∑

i

gi
mi

mχ1

K2

(
x
mi

mχ1

)
, (3.30)

with K2 the modified Bessel function of the second kind of order 2, and is obtained
upon integration of equilibrium Maxwell-Boltzmann distributions for the species χi and
division by the total entropy density s in (3.27).

The Boltzmann equation (3.28) is the central expression in this section. For tem-
peratures x . 1 (T >∼mχ1

) all species χi should still have been in chemical equilibrium
with the plasma, which provides the boundary condition Y (x = 1) = Yeq(x = 1) for the
numerical integration of (3.28). To determine the yield Y0 associated with the number
density of the stable species χ1 today, the integration has to be carried out starting from
x = 1 to today, x0 = mχ1

/T0 ∼ O(1010) (given a TeV scale species χ1 and temperature
T0 = 2.725K = 2.34823 · 10−13GeV of the photon background radiation today). As we
will see in Chap. 9, a value x0 ∼ 108 is typically sufficient for practical purposes in the
numerical solution. From Y0 the relic abundance is finally obtained as

Ωχ1
h2 =

ρχ1

ρcr
h2 =

mχ1
s0Y0
ρcr

h2 . (3.31)

s0 denotes the entropy density today and can be determined from (3.27). The corre-
sponding heff(T0) is essentially given by the photon and neutrino degrees of freedom,
associated with the photon and neutrino background radiation today, heff(T0) = 3.9139.
The critical energy density ρcr is given by ρcr = 3H0/8πGN where H0 denotes the Hubble
parameter today. It takes the numerical value ρcr = 1.05368× 10−5 h2GeVcm−3.

3.3 Thermally averaged annihilation cross sections

In order to finally solve the Boltzmann equation (3.28), an explicit expression of the
thermally averaged effective annihilation rate 〈σeff v〉 defined in (3.21) is needed. In [49],
where the case of one particle species χ1 was considered, a single-integral formula for

6For the relic abundance calculation of a dark matter candidate with a freeze-out temperature of
some 10− 100GeV, this is certainly fulfilled.
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〈σeff v〉 in terms of Lorentz invariant quantities was derived. Subsequently the expression
was generalised to include co-annihilations in [53]. The starting point in the derivation
of the single-integral formula for 〈σeff v〉 is the defining equation (3.21), with the thermal
averages 〈σijvij〉 of the individual rates performed in the cosmic comoving frame where
the plasma is at rest as a whole. In this case the phase space distribution functions
fi, eq that enter the thermally averaged rates 〈σijvij〉 and number densities ni, eq are
given by Bose-Einstein or Fermi-Dirac distributions (3.6). As already used in Sec. 3.1
and 3.2, both distributions are well approximated by Maxwell-Boltzmann distributions
fi, eq = e−Ei/T for temperatures T ≤ mχ1

/20, that are relevant in the co-annihilating χis
freeze-out. Starting from (3.21) we can therefore write

〈σeff v〉 =
1

n2
eq

∑

i,j

gi gj

∫
d3~pi
(2π)3

∫
d3~pj
(2π)3

σijvij e
−(Ei+Ej)/T , (3.32)

with the total equilibrium number density of the co-annihilating species χi=1,...,N given

by neq =
∑N

i=1 ni, eq, and

ni, eq = gi

∫
d3~pi
(2π)3

e−Ei/T =
T

2π2
gi m

2
i K2(mi/T ) . (3.33)

gi denotes the internal degrees of freedom of species χi. Note that the individual particle
energies Ei, Ej in (3.32) explicitly refer to the cosmic comoving frame, while the cross
sections σij and the Møller velocities vij by definition are Lorentz invariant quantities.
After a convenient change of variables following [49, 53], (3.32) can be simplified to the
sum of single-integral expressions

〈σeff v〉 =
1

n2
eq

∑

i,j

gi gj
8π4

T

∫ ∞

(mi+mj)2
ds
√
s p2ij σij K1(

√
s/T ) , (3.34)

with K1 the modified Bessel function of the second kind of order 1. The integration
variable s is the Lorentz-invariant centre-of-mass energy s = (pi + pj)

2 in the individual
χiχj pair-annihilation reaction, where pi,j denote the 4-momenta of the annihilating
particles. Finally, pij is the modulus of the individual particles’ momenta in the centre-
of-mass frame of the χiχj annihilation reaction. Expressed in terms of Lorentz invariant
quantities it reads

pij =

√
(pi · pj)2 −m2

i m
2
j

s
=

1√
s

√
s2

4
− s

2
(m2

i +m2
j ) +

(m2
i −m2

j )
2

4
. (3.35)

While [53] now proceeds by interchanging summation and integration in (3.34) and in-
troduces an effective rate given by the sum over the individual integrands related to
the pairs χiχj , we follow a slightly different way and consider each integral in (3.34)
separately. In Chap. 6 and 8 we determine the product σij vrel ≡ σij vrel, ij of the anni-
hilation cross section σij times the relative velocity vrel, ij in the centre-of-mass frame of
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the annihilation reaction, rather than the separate cross sections σij . The centre-of-mass
frame relative velocity of the χiχj pair expressed in terms of Lorentz invariant quantities
is given by

vrel, ij = pij
√
s

4s

s2 − (m2
i −m2

j)
2
. (3.36)

Note that vrel, ij coincides with the Møller velocity vij in any frame where the two particles
χi, χj move collinearly. Our final result for the thermally averaged effective annihilation
cross section that enters the Boltzmann equation (3.28) and involves the individual rates
σijvrel therefore reads

〈σeff v〉 =

1

n2
eq

∑

i,j

gi gj
8π4

T

∫ ∞

(mi+mj)2
ds pij (σij vrel)

s2 − (m2
i −m2

j )
2

4s
K1(
√
s/T ) . (3.37)

In application of the presented formalism to the χ0
1 relic abundance calculation in the

MSSM in Sec. 9 we generically take all co-annihilating neutralino and chargino species
in 〈σeff v〉 into account. Note however that the contribution from a heavy channel
χiχj is typically suppressed by a factor proportional to e−(mi+mj−2m1)/T with respect
to the contribution from the lightest state χ1χ1. This (Boltzmann) suppression arises
from the asymptotic expansion of the Bessel function K1 in the integrand for large√
s/T ≫ 2m1/T ≫ 1 for temperatures T ≤ m1/20 relevant in the cold dark matter

relic abundance calculation. We determine all neutralino/chargino co-annihilation rates
σij vrel entering (3.37) in a non-relativistic (partial-wave) expansion, including O(v2rel) cor-
rections to the hard annihilation reactions in Chap. 6. The effect of Sommerfeld-enhanced
co-annihilation rates on the calculated χ0

1 relic abundance is the particular phenomeno-
logical focus of this thesis. Consequently Sommerfeld enhancements on the hard rates
of all those χiχj pairs that can be produced on-shell from reactions χ1χ1 → χiχj of
non-relativistic χ1χ1 states are included in the calculation of 〈σeff v〉 in our final analyses
in Chap. 9. Before we can enter the detailed study of some popular MSSM benchmark
models we introduce the framework needed for the calculation of Sommerfeld-enhanced
rates σijvrel in the next chapters. We finally come back to the relic abundance calculation
and apply the formulae derived here in Chap. 9.
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Chapter 4

The neutralino and chargino sector
in the MSSM

In this chapter we discuss the neutralino and chargino sector of the MSSM – in particular
the corresponding mass spectrum – in view of its properties relevant to our investigation
of Sommerfeld enhancements and the neutralino relic abundance calculation. However
before focusing on this subject we prepend in Sec. 4.1 a short discussion on problems of
the Standard Model of particle physics, followed by a basic introduction to supersym-
metry that possibly may help to solve or to change for better the aforementioned issues.
Subsequently an overview on the field content and parameters in the general MSSM is
given in Sec. 4.2. With the background of the preceding sections we finally concentrate in
Sec. 4.3 on the neutralino and chargino sector of the MSSM. We conclude in Sec. 4.4 with
some remarks on the generation of MSSM spectra to be analysed in view of Sommerfeld
enhancement effects in neutralino and chargino co-annihilations in Chap. 9, emphasising
the fact that a sound analysis requires the knowledge of the neutralino and chargino
masses and mixing matrices from on-shell renormalisation at one-loop level.

4.1 Motivations for supersymmetry and basic ideas

The Standard Model of particle physics provides the successful theoretical framework
to describe elementary interactions of the microscopic constituents associated with ‘or-
dinary’ matter – the six quark species, six lepton species, eight gluons, the electroweak
gauge bosonsW± and Z, the photon and the Standard Model Higgs boson – up to energy
scales currently testable at experiments [1].1 The largest such energy scale reached at
present is the scale of maximally 8TeV centre-of-mass energy in pp-collisions during the
first run of the Large Hadron Collider (LHC) at CERN. In 2012 the collaborations AT-
LAS and CMS running the two multi-purpose detectors at the LHC had announced the
discovery of a spin-0 particle with the properties of the long sought-after Higgs boson,

1We use the term ‘ordinary’ matter to distinguish it from the Universe’s cold dark matter component,
whose elementary constituent (or constituents) – if dark matter has particle nature – is unknown.
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the last of the particle constituents of the Standard Model that had not been observed
experimentally before.2 Further, no significant deviation of observed particle production
rates from the SM prediction has so far been found at the colliders running at the high
energy frontier.3

In spite of these successful tests the Standard Model is incomplete as it does not in-
clude gravitational interactions and is therefore considered to be the low energy effective
theory of a more fundamental theory of nature that governs the physics at the Planck
scale, where gravitational effects eventually become relevant. Several other problems re-
lated to both experimental observations and theoretical aspects of the Standard Model
suggest or directly imply that the Standard Model cannot be the fundamental theory
of microscopic interactions. For instance it is observed experimentally that contrary to
the description in the Standard Model the three neutrino species are not massless but
must have masses in the range of some eV. Similarly, the measurement of the anoma-
lous magnetic moment of the muon does not match the Standard Model prediction. In
addition there also are more formal issues that require an appropriate extension of the
theory. The probably most important ones are the so called ‘hierarchy problem’ and
the non-unification of running SM gauge couplings within the theory. Another severe
problem is the lack of a dark matter particle candidate. We briefly sketch the latter
three issues in the following.

The hierarchy problem is associated with the nowadays widely believed ansatz that
the Standard Model is an effective theory, which is valid up to a certain energy scale
where new physics effects will arise. This scale does not have to coincide with the
O(1019)GeV Planck scale but can lie in the energy range in between the electroweak
scale at O(102)GeV (typically associated with the Higgs field vacuum expectation value
v ≈ 246GeV) and the Planck scale. The hierarchy problem can be formulated as the
question how to obtain a scale v that is much smaller than the high energy scale denoting
the range of validity of the effective theory. In the perturbative renormalisation of the SM
Higgs mass, quantum corrections arise that are quadratic in the cut-off of the effective
theory. To obtain the experimentally measured value of the Higgs boson mass mH =
125.7 ± 0.4GeV [1] a sufficiently fine-tuned cancellation between the bare Higgs mass
parameter and the quantum corrections has to take place. The hierarchy problem here
manifests itself as a “fine-tuning” or naturalness problem, as the bare mass parameter
of the Higgs field and the quantum corrections have to cancel each other over several
orders of magnitude to give the experimentally measured O(102)GeV Higgs mass.

Relying on corresponding renormalisation group equations in the Standard Model
it is found that the scale dependent Standard Model gauge couplings almost (but not

2The spin of the discovered particle, its CP properties and the signal strength in experimentally
observed decay channels are so far consistent with an interpretation of the new state in terms of a
Standard Model Higgs boson, see the corresponding section in [1] and references therein.

3Until 2011 the pp̄-collider Tevatron at Fermilab was running at maximally 1.96TeV centre-of-mass
energy. The LHC at CERN reached maximally 8TeV centre-of-mass energy in run I while in run II,
scheduled for 2015, it shall operate at 14TeV centre-of-mass energy. Data from the second LHC run
will hopefully allow to get a deeper insights into the mechanism of electroweak symmetry breaking and
the role that the discovered Higgs boson plays in this context.

60



exactly) meet at some high energy scale between 1012GeV to 1018GeV. This could
be a hint that the Standard Model gauge group is actually embedded into a larger
gauge group, for instance SU(5), with only one coupling constant [55]. The larger
gauge group is associated with the so called grand unification scale, below which it is
spontaneously broken to the Standard Model gauge group SU(3)C × SU(2)L × U(1)Y .
Above the grand unification scale the symmetry associated with the larger gauge group is
however restored. The effects of the new physics that become relevant close to the grand
unification scale modify the running of the Standard Model gauge couplings such that
an exact unification of these couplings can take place, thus the notion grand unification
of gauge couplings.

We have noted before that various observations exist which imply the existence of a
cold dark matter component in the Universe. They range from the scale of galaxies to
galaxy clusters, large scale structures and finally the largest observable scales associated
with the cosmic microwave background radiation. While the nature and origin of the
observed dark matter component can be rather naturally explained in terms of a thermal
relic as discussed in Chap. 3, the Standard Model does not provide a suitable particle
candidate. The fact that the calculated thermal relic density of a weakly interacting
massive particle with O(1 TeV) mass and weak interaction strength matches the order
of magnitude of the observed cold dark matter abundance seems to indicate that new
physics, which addresses not only the problem of a missing dark matter candidate but
potentially also further problems of the Standard Model, could be related to the TeV
scale.

Several theories have been proposed that solve or amend the problems encountered
in the Standard Model. Probably one of the best motivated and certainly most studied
ideas is the concept of a supersymmetric extension of the Standard Model [1, 56–59].
Supersymmetry (SUSY) generalises the concept of symmetries in quantum field theories
by connecting bosonic and fermionic degrees of freedom. Due to formal aspects it is thus
an attractive idea. Supersymmetric transformations are space-time transformations: the
Poincaré algebra is extended to include fermionic generators. When acting on a particle
state, these fermionic generators transform a bosonic state into a fermionic one, and
vice versa, by changing the spin in units of one-half. The full symmetry of a model
is given as direct product of the supersymmetry group and possible inner symmetry
groups. Consequently the states are classified by the irreducible representations of the
supersymmetry algebra, called supermultiplets, and the irreducible representations of
the possible additional inner symmetries. Each supermultiplet must be characterised by
the same number of bosonic and fermionic degrees of freedom. Further, as supersym-
metry transformations commute with the inner symmetries, the bosonic and fermionic
constituents of the supermultiplet have to transform in the same representation with
respect to the inner symmetries. This implies that in a supersymmetric extension of the
Standard Model new particles have to be introduced to form appropriate supermultiplets
together with the Standard Model species. As long as supersymmetry is unbroken the
supersymmetric partners of the Standard Model species would be mass-degenerate with
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the latter.4 As these superpartners have not been observed experimentally supersymme-
try must be broken. We comment on possible breaking mechanisms in Sec. 4.2 in context
of the Minimal Supersymmetric Standard Model. Let us note that in minimal supersym-
metric extensions of the Standard Model only one fermionic supersymmetry generator is
considered (N = 1), such that each Standard Model particle gets exactly one supersym-
metric partner. In extended supersymmetric models more than one fermionic generator
appears in the supersymmetry algebra (N > 1).

Supersymmetric theories, in particular the mechanism that breaks the mass degenera-
cies between the Standard Model particles and their supersymmetric partners, introduce
new energy scales that can provide a solution or mitigation to the hierarchy problem. In
particular, a solution of the fine-tuning problem is possible due to the fact that the new
particles give additional contributions to the radiative corrections to the Higgs mass.
Because contributions from a bosonic and a fermionic loop (related to particles within
the same supermultiplet) come with a relative minus sign, the quadratic divergencies
can compensate each other. Such cancellation however works only as long as the super-
partners are not heavier than O(TeV). Otherwise the hierarchy problem is reintroduced.
The presence of the superpartners also changes the renormalisation group running of the
gauge couplings discussed above, such that a unification of the gauge couplings at some
high energy scale becomes possible. Finally – and for our purposes most importantly –
some of the additional particles in supersymmetric theories that enlarge the number of
particle species considered in the Standard Model are viable dark matter candidates.

Let us further point out that a supersymmetric model can eventually be extended
to include gravity by promoting to local supersymmetry transformations, where the
resulting non-renormalisable theory is called supergravity theory [60].

4.2 The MSSM: field content and parameters

The Minimal Supersymmetric Standard Model is a N = 1 supersymmetric theory based
on the Standard Model gauge group GSM = SU(3)C×SU(2)L×U(1)Y . The field content
of the Standard Model is extended by adding appropriate fermionic and bosonic partner
fields. Several reviews and textbooks on the construction and the properties of the
MSSM exist, see for example [1, 56–59] and references therein. In the calculation of
MSSM neutralino and chargino co-annihilation rates in later chapters, we refer to the
notation and conventions established in the two review articles [56] and [61], where the
latter reference focuses on the MSSM Higgs sector. In addition we rely on the set of
MSSM Feynman rules collected in [62]. All the three latter references use the same
conventions. The following brief summary on the MSSM field content is based on [62].

4The operator P 2, square of the 4-momentum operator Pµ that appears as one of the bosonic
generators in the supersymmetry algebra, is a Casimir operator of the algebra. This implies that – as
long as supersymmetry is unbroken – all states in one supermultiplet have equal mass. Note that the
operator W 2 associated with the spin of particle states is a Casimir operator of the Poincaré but not of
the supersymmetry algebra. Consequently, the supersymmetry multiplets contain states with different
spin.
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The MSSM involves three gauge supermultiplets. Each of these transforms under
GSM with respect to the adjoint representation in one of the factors SU(3)C , SU(2)L and
U(1)Y and with respect to the trivial representation in the other two. The Standard
Model gauge fields in the corresponding multiplets are accompanied by two-component
Weyl spinor fields. For instance, the first gauge multiplet refers to U(1)Y and contains
the gauge field Bµ accompanied by the two component Weyl spinor field λB, the bino.
Accordingly, the second gauge supermultiplet is related to the weak isospin SU(2)L,
comprising the three corresponding gauge fields W i=1,2,3

µ together with the three Weyl

spinors λi=1,2,3
W named winos. The third multiplet is associated with the gauge group

SU(3)C and includes the eight QCD gauge fields, the gluons, together with the eight
fermionic partners, the gluinos.

The Standard Model fermions arrange in so called chiral supermultiplets. Their
corresponding superpartners are complex scalar fields, referred to as sfermions. For
instance the left-handed quarks of the first family that come in the SU(2)L doublet
ΨI=1
Q = (uL, dL) are accompanied by the SU(2)L doublet QI=1 = (ũL, d̃L) containing the

two complex scalar fields ũL and d̃L.
In the Standard Model one SU(2)L Higgs doublet allows to give masses to the Stan-

dard Model fermions. In case of the down-type quarks or the leptons (e, µ, τ), the rele-
vant interaction terms that provide the mass terms after electroweak symmetry breaking
are Yukawa interactions involving the Higgs field. The corresponding Yukawa interac-
tions of the up-type quarks contain the complex conjugate Higgs field. In the MSSM
the respective Yukawa interactions follow from the superpotential and cannot involve
the complex conjugate of the Higgs fields, see for instance [62]. Therefore two Higgs
doublets with opposite hypercharges are needed in the MSSM to eventually generate
the Standard Model fermion masses. These two SU(2)L Higgs doublets arrange in two
different chiral supermultiplets with corresponding Weyl fermion fields called higgsinos.
After electroweak symmetry breaking the higgsinos mix with the bino and wino states
to form the electrically neutral neutralino and the charged chargino mass eigenstates.
We postpone the discussion of the neutralino/chargino sector of the MSSM to Sec. 4.3.

Certain terms in the MSSM Lagrangian are gauge invariant and allowed by super-
symmetry but imply baryon (B) and lepton (L) number violation which in turn would
lead to proton decay. The presence of such terms can be forbidden by imposing an
additional global symmetry of the model, the so called R-parity [63]

R = (−1)L+3B+2s , (4.1)

where s denotes the spin of the respective species. With this definition the Standard
Model particles have R-parity +1 while for the superpartners R = −1. For instance, all
states in a chiral supermultiplet involving Standard Model leptons have lepton number
L = 1 and baryon number B = 0; as for fermionic states 2s = 1 the lepton states in the
supermultiplet are characterised by R = +1, while for the corresponding bosonic slepton
states 2s = 0 which leads to R = −1. As a simple consequence of this symmetry we
obtain the stability of the lightest supersymmetric particle (LSP). It further implies that
all heavier supersymmetric particles will eventually decay into the LSP. It is worth to
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note that R-parity realises the type of symmetry that we have imposed in the derivation
of the relic abundance including co-annihilations in Sec. 3.2, implying that only processes
of the type (3.14)–(3.16) between SM species XA,B and superpartners χi,j can take place.
Consequently, if the LSP is electrically neutral and colourless, it constitutes a promising
cold dark matter candidate, possibly explaining the observed abundance in terms of a
thermal relic.

We have noted in Sec. 4.1 that the non-observation of superpartners that are mass-
degenerate to the SM species implies that supersymmetry has to be broken. As su-
persymmetry is a continuous space-time symmetry it can be broken either explicitly or
spontaneously. While the SUSY breaking mechanism is not yet understood on a funda-
mental level, it is known that supersymmetry very likely can only be broken by new fields
and interactions not contained within the MSSM. In a qualitative picture for the breaking
mechanism, new fields are introduced that reside in a “hidden” sector and communicate
the breaking through a weak interaction to the “visible” MSSM sector. Possible op-
tions for such communication of the SUSY breaking discussed in the literature are gauge
mediated supersymmetry breaking (GMSB) [64–67], anomaly mediated supersymmetry
breaking (AMSB) where the gaugino masses are radiatively generated at one-loop [68], or
supergravity models where the breaking is mediated through (gravitational) interactions
associated with the Planck scale. In all these cases the interactions between the “hid-
den” sector and the MSSM effectively generate additional and explicitly SUSY breaking
terms in the MSSM Lagrangian. The ignorance of the SUSY breaking mechanism can
thus be parametrised in the MSSM by introducing such explicitly supersymmetry break-
ing terms. The corresponding supersymmetry breaking (mass) parameters may not be
larger than a few TeV and the additional terms in the Lagrangian have to be “soft” su-
persymmetry breaking [69], in order to prevent that quadratic divergences are introduced
in the theory, which would spoil the solution of the hierarchy problem.

Four different classes of soft breaking terms can be distinguished [69]. At first the
class of mass terms for the scalar fields in the MSSM, comprising the Higgs fields and the
sfermions. Second, gaugino mass terms introducing the bino (M1), wino (M2) and gluino
(M3) mass parameters. Next, terms involving trilinear couplings of the scalar fields in
the MSSM that correspond to the Yukawa terms generated in the superpotential. Finally
there is a further class of terms with trilinear interactions involving the charge conjugated
Higgs fields that are called “non-analytic” terms. In our application to neutralino and
chargino co-annihilation rates in the MSSM, these “non-analytic” terms do not arise and
are thus irrelevant for our purposes. Moreover, they are often not considered as they are
absent in most supersymmetry breaking scenarios.

After elimination of unphysical degrees of freedom, the MSSM Lagrangian including
the most general form of soft breaking terms contains 105 new mass parameters, phases
and mixing angles in addition to the 19 free parameters in the Standard Model [57].
This number of free parameters can be significantly reduced taking experimental con-
straints associated with the non-observation of flavour changing neutral currents and CP
violation beyond the Standard Model into account; a corresponding discussion can, for
example, be found in [57]. A further reduction can be obtained if relations among the
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parameters are imposed, which are typically related to a certain supersymmetry break-
ing mechanism. For instance in minimal supergravity models (mSUGRA), first proposed
in [70,71], only the five parameters {m0,M1/2, A0, sgn(µ), tanβ} have to be fixed,5 where
m0 denotes the universal mass term for scalars and M1/2 the universal mass term for
gauginos at some high energy scale ΛX. The parameter A0 is the universal trilinear cou-
pling at ΛX and the parameter µ is related to the Higgs sector, similar to tanβ = v2/v1,
the ratio of the vacuum expectation values of the two Higgs doublets. Through renor-
malisation group evolution of the parameters from the scale ΛX down to the electroweak
scale the spectrum of supersymmetric states at the latter low scale is then obtained.
It is worth to stress that our results on neutralino and chargino co-annihilation rates
presented in later chapters apply to the general R-parity conserving MSSM and are not
restricted to specific constrained MSSM scenarios.

There are dedicated searches for supersymmetric particles at the LHC. However a
signature pointing to production and subsequent decay of SUSY particles has not (yet)
been found. Rather, the lower bounds for the masses of coloured supersymmetric states
could already be pushed to the TeV scale – although these predictions involve a certain
model dependency and the analyses of the data are often performed within simplified
MSSM scenarios. Lower bounds on masses of colour-neutral SUSY states are somewhat
softer, for instance in the range of some 10GeV for the lightest neutralino and around
100GeV for the lightest chargino, where these bounds manly derive from data of the
experiments at the e+e−-collider LEP that do not suffer from the enormous QCD back-
ground as corresponding LHC data. For a review and discussion on the status of the
searches as well as corresponding tables see for example [1].

4.3 The neutralino and chargino sector

After electroweak symmetry breaking SU(2)L × U(1)Y → U(1)em the gauge eigenstates
bino (λB), the three winos (λ

I=1,2,3
W ) and the four higgsinos6 Ψ1

H1
, Ψ2

H1
, Ψ1

H2
and Ψ2

H2
mix

to form four neutralino (χ0
i=1,...,4) and two chargino (χ±

j=1,2) mass eigenstates. The mixing
arises through the gaugino-higgsino Higgs coupling implying that off-diagonal terms in
the neutralino and chargino mass matrices are proportional to the vacuum expectation
values v1 and v2 of the Higgs fields. The neutralino mass term Lm

χ0
written in the basis of

the neutral two-component Weyl spinor fields with ψ̃0 = (−iλB ,−iλ3W ,Ψ1
H1
,Ψ2

H2
) reads

Lm
χ0

= − 1

2
ψ̃0TMχ0 ψ̃0 + h.c. , (4.2)

5In addition to these five parameters the gravitino mass parameter m3/2 has to be given. It can
be treated as additional independent parameter in which case the supergravity model is referred to as
constrained minimal supersymmetric extension of the Standard Model (CMSSM). Although the notion
mSUGRA and CMSSM are often used interchangeably, theories denoted as mSUGRA models originally
involved the additional constraint m3/2 = m0. See [1] for more details and references.

6The higgsinos arrange in the two SU(2)L gauge doublets ΨHi=1,2
= (Ψ1

Hi=1,2
,Ψ2

Hi=1,2
). Regarding

the position of the sub- and superscript indices specifying the doublets and their respective components,
our notation here differs from the one in [62].
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where the neutralino mass matrix Mχ0 at tree-level is given by

Mχ0 =




M1 0 −MZ cosβ sin θW MZ sinβ sin θW
0 M2 MZ cosβ cos θW −MZ sinβ cos θW

−MZ cosβ sin θW MZ cosβ cos θW 0 −µ
MZ sinβ sin θW −MZ sinβ cos θW −µ 0


. (4.3)

Here we have used tree-level relations among the Z-boson mass MZ and the Higgs field
vacuum expectations values v1,2 to express the vi-proportional off-diagonals of Mχ0 in
terms of MZ , the electroweak mixing angle θW and the ratio tanβ = v2/v1. Let us
recall from Sec. 4.2 that the terms involving the gaugino mass parameters M1 and M2

are part of the soft supersymmetry breaking terms in the MSSM Lagrangian. The
higgsino mass term proportional to the parameter µ arises from the superpotential and
is thus associated with the supersymmetry conserving part of the MSSM. We adopt the
conventions in [62] and diagonalise the neutralino mass matrix by means of the neutralino
mixing matrix ZN defined by

ZT
NMχ0ZN =




mχ0
1

mχ0
2

mχ0
3

mχ0
4


 . (4.4)

The two-component Weyl spinors κ0i in the mass eigenstate basis κ̃0 = (κ01, κ
0
2, κ

0
3, κ

0
4),

with κ̃0 = Z†
N ψ̃

0, are arranged into four four-component Majorana spinors χ0
i = (κ0i , κ

0
i ).

Let us note that ZN shall be defined such that |mχ0
i
| < |mχ0

j
| for i < j. After diagonali-

sation of Mχ0 one or several neutralino mass eigenvalues mχ0
i
can be negative. Positive

neutralino mass parameters can be easily obtained through an appropriate redefinition
of the corresponding fields and mass parameters. We comment on this case in context
of the calculation of hard neutralino and chargino co-annihilation rates in Sec. 6.1.4. It
is worth to stress already here that our effective field theory setup developed in later
chapters relies on the positiveness of all neutralino and chargino mass parameters that
are part of the effective theory.

In case of the chargino sector the four two-component spinors λ1W , λ2W , Ψ2
H1

and Ψ1
H2

have to combine to form the two four-component Dirac fermion fields χ+
j . With the

definition λ±W = 1/
√
2 (λ1W ∓ iλ2W ) the chargino mass term Lm

χ+
takes the form

Lm
χ+

= − ψ̃−TMχ+ ψ̃+ + h.c. , (4.5)

where ψ̃+ = (−iλ+W ,Ψ1
H2
) and ψ̃− = (−iλ−W ,Ψ2

H1
) as well as

Mχ+ =

(
M2

√
2MW sin β√

2MW cos β µ

)
. (4.6)

According to [62] we define the chargino mixing matrices Z± by

ZT
−Mχ+ Z+ =

(
mχ+

1

mχ+
2

)
, (4.7)
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where Z± can be determined such that the chargino mass eigenvalues are positive and
mχ+

1
< mχ+

2
. The four two-component Weyl spinors κ±i=1,2 in the mass eigenstate bases

κ̃± = (κ±1 , κ
±
2 ) are related to the gauge eigenstates ψ̃± by κ̃± = Z±†ψ̃±. Eventually, the

two four-component Dirac fermion fields χ+
i associated with the physical chargino states

χ±
i are built from the Weyl spinor fields κ±i via χ+

i = (κ+i , κ
−
i ).

Typically, the neutralino and chargino mass matrices are diagonalised numerically.
However exact analytic solutions exist in the literature [72,73]. In addition some insight
can be gained from an analytic perturbative diagonalisation of the mass matrices in the
case MW,Z ≪ |M1|, |M2|, |µ|. To this end we assume the gaugino parameters M1 and
M2 to be real positive, while µ can be either real positive or negative. Concerning the
chargino sector it is most convenient to consider the product M †

χ+Mχ+ (Mχ+M †
χ+) from

which the squared mass eigenvaluesm2
χ+
i

and the mixing matrix Z+ (Z−) can be obtained.

From a straightforward calculation under the additional assumption M2
W,Z ≪ |M2

1,2±µ2|
the following expressions for the physical (positive) neutralino masses are obtained at
second order in the perturbative diagonalisation procedure:

mχ0
1
=M1 +

sin θ2WM
2
Z (M1 + µ sin 2β)

M2
1 − µ2

+ . . . ,

mχ0
2
=M2 +

cos θ2WM
2
Z (M2 + µ sin 2β)

M2
2 − µ2

+ . . . ,

mχ0
3
= |µ|+ sgn(µ)

M2
Z(1− sin 2β)

(
cos θ2W (M1 + µ) + sin θ2W (M2 + µ)

)

2(M1 + µ)(M2 + µ)
+ . . . ,

mχ0
4
= |µ|+ sgn(µ)

M2
Z(1 + sin 2β)

(
cos θ2W (µ−M1) + sin θ2W (µ−M2)

)

2(µ−M1)(µ−M2)
+ . . . . (4.8)

Similarly, the chargino masses including second order terms in the perturbative diago-
nalisation read

mχ+
1
=M2 +

M2
W (M2 + µ sin 2β)

M2
2 − µ2

+ . . . ,

mχ+
2
= |µ|+ sgn(µ)

M2
W (µ+M2 sin 2β)

µ2 −M2
2

+ . . . . (4.9)

The masses in (4.8) and (4.9) are not necessarily given in increasing mass order; de-
pending on the actual values or the specific hierarchy that is attributed to the gaugino
masses and the µ parameter, the subscript labels i and j on the above mχ0

i
and mχ+

j
may

need to be rearranged. We further note that after diagonalisation either the third or
forth neutralino mass eigenstate comes with a negative sign whereas we give the physical
positive masses mχ0

3
and mχ0

4
above. A similar reasoning applies to the mass mχ+

2
of the

second chargino state. Eqs. (4.8) and (4.9) agree with the results first derived in [74]. For
corresponding expressions for the mixing matrices we refer the reader to this reference.7

7The correspondence between the unitary mixing matrices ZN , Z
± and the corresponding expressions

N and V, U used in [74] reads N = Z†
N , V = Z+† and U = Z−†.
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Let us however note here that under the aforementioned assumptions the neutralino and
chargino states are expectedly rather pure gaugino or higgsino states. From the above
expressions the masses of the wino-like neutralino χ0

2 and its chargino partner χ±
1 , both

associated with the wino mass parameter M2, are found to be identical at second order
in the expansion. A O(m4

Z/M1µ
2) splitting between these two masses is found by sys-

tematically extending the expansion to forth order. Therefore we can generically expect
that the splitting between the masses of wino-like states determined from tree-level mass
matrices will be particularly small for MW,Z ≪MSUSY. The situation is different in case
of higgsino-like states. Let us assume the hierarchy MW,Z ≪ |µ| ≪M1,M2. In this case
the following mass splittings between the states in the sector of higgsino-like particles
are derived from (4.8, 4.9),8

mχ+
2
−mχ0

4
≃ sgn(µ)

(
M2

Z cos2 θW
2M2

(1− sin 2β) +
M2

Z sin
2 θW

2M1

(1 + sin 2β)

)
,

mχ0
3
−mχ+

2
≃ sgn(µ)

(
M2

Z cos2 θW
2M2

(1 + sin 2β) +
M2

Z sin2 θW
2M1

(1− sin 2β)

)
, (4.10)

which are of order O(M2
Z/M1,2) but can be small if the gaugino masses are heavy com-

pared to the electroweak scale. We infer from (4.10) that in case of positive (negative)
µ the χ0

4 (χ
0
3) is the lightest of the higgsino-like neutralino and chargino states. Further,

the chargino state χ+
2 in any case constitutes the next-to-lightest of the three states

χ0
3, χ

0
4 and χ+

2 .
There are cases where the precise knowledge of the mass splittings between the neu-

tralino and chargino states is essential. This in particular applies to the processes
considered in this thesis: as exemplified in the two χχ-state toy-model in Sec. 2.4,
Sommerfeld enhancements sensitively depend on the mass splittings between the non-
relativistic two-particle states that undergo (off-) diagonal long-range interactions prior
to the actual short-distance annihilation reaction. Furthermore, mass splittings between
(nearly mass-degenerate) co-annihilating species have a significant impact on the relic
abundance calculation discussed in Chap. 3, as they give rise to Boltzmann suppres-
sion factors multiplying the individual co-annihilation rates that enter the thermally
averaged effective annihilation rate 〈σeffv〉, see the discussion in connection with (3.37).
Accordingly, a precise knowledge of the χ0/χ± mass splittings is required in both the
accurate determination of Sommerfeld-enhanced neutralino and chargino co-annihilation
rates and the subsequent χ0

1 relic abundance calculation. It turns out that the particu-
larly small tree-level mass splitting between the wino-like neutralino and chargino states
noted above is actually dominated by one-loop corrections. Under the assumption of
MW,Z < M2 ≪ M1, |µ| these radiative corrections can be almost entirely attributed to
gauge boson loops and the one-loop dominated mass splitting becomes rather model in-
dependent in this case; numerically it is found to be approximately 160MeV [75]. While

8Although the imposed hierarchy with |µ| ≪M1,2 would imply a relabelling of the masses to arrange
them in increasing mass order, we avoid such relabelling with respect to (4.8, 4.9) here for the sake of
clarity.
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the mass splitting between higgsino-like states is tree-level dominated, one-loop correc-
tions are found to give sizable – either positive or negative – corrections to the splitting
in addition [76–78]. Moreover we aim at investigating scenarios where the neutralino
and chargino mass eigenstates are given by strongly mixed gaugino and higgsino gauge
eigenstates, such that more than just two or three nearly mass degenerate χ0/χ± states
occur in the spectrum. A sound investigation of Sommerfeld enhancements in neutralino
and chargino annihilation reactions therefore typically requires the knowledge of the
χ0/χ± spectrum at one-loop level beyond the strict wino- and higgsino limits. Analytic
formulae for and an investigation on the impact of the one-loop (on-shell) corrections to
the neutralino/chargino masses can be found for instance in [75–80]. Recently the issue
of a suitable choice of renormalisation conditions in the on-shell renormalisation scheme
applicable to cases with strong mixing between the gauge eigenstates has been addressed
in [81]. In addition, the analysis has been extended to the complex MSSM, see [82–85].

4.4 MSSM spectrum generation

The formalism that we present in this thesis allows to describe Sommerfeld-enhanced
neutralino and chargino pair-annihilation rates within generic R-parity conserving MSSM
scenarios, including the most general form of flavor mixing in the squark and slepton
sector. As an input we require a MSSM spectrum that can be obtained with publicly
available MSSM spectrum generators, for example [86–88], where the parametersM1,M2

and µ among other required SUSY parameter inputs have to be specified. In constrained
MSSM scenarios, as for instance models with grand unification of gauge couplings, certain
relations among the input SUSY parameters are assumed. We would like to stress that
our setup is not restricted to such cases, but allows to analyse Sommerfeld enhancements
in χ0, χ± co-annihilations in the most general MSSM models.

Generically we require for our calculations a (slha formatted) MSSM spectrum in-
cluding mass parameters, mixing matrices and angles, typically provided as output of a
MSSM spectrum calculator. At the end of the previous section we have noted the impor-
tance of a precise knowledge of neutralino and chargino masses beyond tree-level. How-
ever the publicly available spectrum calculators do currently not provide corresponding
one-loop spectra. Moreover, parameters are usually provided in the DR-scheme, whereas
a rigorous analysis of Sommerfeld-enhanced χ0 and χ± co-annihilation processes in a
given model should refer to the on-shell mass spectrum of the neutralino and chargino
states. Results on the one-loop on-shell renormalized χ0/χ± sector of the MSSM are
available [82–85], but have not yet been implemented in public spectrum generators. For
our analysis of benchmark models discussed in Chap. 9, we have therefore been provided
by MSSM spectra with one-loop on-shell renormalised neutralino and chargino masses
and mixing matrices by a member of the collaboration [83, 84].
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Chapter 5

Effective theory description of
neutralino pair annihilations

The effective theory framework that we introduce in this chapter allows to systematically
address radiative corrections to pair-annihilation reactions of non-relativistic particle
pairs built from neutralino and chargino states. In particular it provides the basis for
a rigorous study of Sommerfeld-enhanced co-annihilation rates in the general MSSM,
where the latter are obtained from forward scattering matrix elements of χ0/χ± two-
particle states that can be calculated within the effective theory. Notably, no advanced
guess, as in Chap. 2, concerning the relation among perturbative cross sections and
corresponding enhancement factors will be necessary: in the effective theory the relation
arises naturally from matrix elements. We start with the introduction of the effective
theory Lagrangian in Sec. 5.1. Subsequently we give in Sec. 5.2 a detailed discussion
on how χ0/χ± pair-annihilation reactions are described within the effective theory. The
essential ingredients in this context are four-fermion operators in δLann, a part of the
Lagrangian of the effective theory. In the subsections Sec. 5.2.1 and Sec. 5.2.2 we provide
explicit expressions for the dimension-6 and dimension-8 four-fermion operators in δLann,
which allow to determine the hard pair-annihilation rates of non-relativistic neutralinos
and charginos including O(v2rel) corrections in an expansion in the relative velocity.

5.1 The Lagrangian in the effective theory

In order to describe the kinematics and interactions of neutralinos and charginos moving
at small velocities, we set up a non-relativistic effective theory (EFT), the non-relativistic
MSSM (NRMSSM), that contains only nearly on-shell non-relativistic neutralino and
chargino modes. Since eventually we are interested in the calculation of the χ0

1 relic
abundance including χ0/χ± co-annihilations, the neutralinos and charginos described in
the EFT approach are those whose masses are nearly degenerate with the mass mLSP

of the lightest neutralino. Effects from virtual modes, which are off-shell by an amount
larger than (mLSPv)

2, as well as effects from higher mass MSSM modes are encoded in
the Wilson coefficients of (higher-dimensional) EFT operators. As we will see below, the
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NRMSSM set-up allows to calculate inclusive pair-annihilation rates of non-relativistic
χ0/χ± states, including their mutual interaction through gauge and light Higgs boson
exchange, in a systematic expansion in coupling constants and velocity.

Our EFT ansatz is inspired by the NRQCD approach to describe inclusive annihi-
lation reactions of heavy quarkonia from [30], extending the framework in basically two
aspects. First, we account for several nearly mass-degenerate non-relativistic species
in the NRMSSM instead for only one heavy non-relativistic quark Q together with its
anti-particle Q, as in [30]. Second, in addition to Coulomb-type potential interactions
related to massless gauge boson exchange between the non-relativistic neutralino and
chargino states, we consider the case of Yukawa-like potentials, which originate from the
exchange of massive gauge bosons or light MSSM Higgses.

The effective Lagrangian of the NRMSSM reads

LNRMSSM = Lkin + Lpot + δLann + higher order terms , (5.1)

where the parts denoted with ’higher order terms’ are not relevant to us in the calculation
of χ0/χ± co-annihilation rates including Sommerfeld enhancements. In the following we
discuss the components Lkin and Lpot in turn. The third important part in the NRMSSM
Lagrangian, δLann, is discussed in detail in Sec. 5.2.

The kinetic part of the Lagrangian, Lkin, collects the terms bilinear in the two-
component spinor fields ξi and ψj = ηj , ζj, that represent the non-relativistic neutralinos
(χ0

i ) and charginos (χ−
j , χ

+
j ), respectively. For n0 ≤ 4 non-relativistic neutralino species

and n+ ≤ 2 non-relativistic chargino species the kinetic part of the NRMSSM Lagrangian
is given by

Lkin =

n0∑

i=1

ξ†i

(
i∂t − (mi −mLSP) +

~∂ 2

2mLSP

)
ξi

+
∑

ψ=η,ζ

n+∑

j=1

ψ†
j

(
i∂t − (mj −mLSP) +

~∂ 2

2mLSP

)
ψj . (5.2)

It is important to note that the mass parameters (mi, mj) of all non-relativistic neutralino
and chargino fields in LNRMSSM have to be positive. This requirement derives from the
fact that the effective Lagrangian is obtained by extracting the high-energy fluctuations,
of the order of the mass scale mLSP and larger, from the corresponding relativistic fields.
From this procedure we obtain for instance the mass difference terms mi − mLSP and
mj−mLSP for all species other than the χ0

1 (in which case the difference trivially vanishes)
in (5.2). If the mass parameter for a non-relativistic species in LNRMSSM was negative,
the mass difference mi − mLSP would give a O(mLSP) term in Lkin, opposed to the
canonical O(mLSPv

2) scaling of the remaining terms in the kinetic part of the NRMSSM
Lagrangian. This then indicates that the parametrisation used to relate the relativistic
and non-relativistic fields for the species with negative mass parameter is not appropriate.
In case that for a given MSSM spectrum one or several neutralino or chargino mass
parameters are negative, suitable redefinitions of the fields and mass parameters have to
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be performed to arrive at a spectrum with positive masses in the χ0/χ± sector. We come
back to this point in connection with explicit expressions – in terms of MSSM parameters
– for the Wilson coefficients encoding the hard annihilation reactions in the effective
theory in Sec. 6.1.4. At this point we also present appropriate field rotations which
transform to a spectrum with positive neutralino and chargino mass parameters. Finally
note that the mass differences between the χ0

i /χ
±
j species that are part of the NRMSSM

have to be much smaller than the scale mLSP to ensure the convergence of the effective
theory. In particular, the effective theory relies on a systematic expansion not only in the
non-relativistic velocity of the χ0

i /χ
±
j states but also in the mass differences between the

two-particle states involved in χiχj → χlχk scattering reactions. This manifests itself in
the basis of dimension-8 operators in Sec. 5.2.2 and is discussed extensively in context
of the MSSM matching calculation in Sec. 6.1.2.

Our EFT setup with one reference mass scale, mLSP, is suited for the description
of (neutralino) dark matter annihilation processes in the present Universe as well as
for the computation of dark matter co-annihilation reactions with further nearly mass-
degenerate neutralinos and charginos in the context of the relic abundance calcula-
tion. However, the EFT framework can easily be extended to the case where the
non-relativistic particle species are (nearly) mass-degenerate with respect to two dis-

tinct scales m
(1,2)
ref , with m

(1)
ref ≪ m

(2)
ref . In that case the mass differences (mk − mLSP)

in (5.2) have to be replaced by mk − mref, k, where each mref, k is given by one of the

scales m
(1,2)
ref . In this way an entirety of hydrogen-like two-particle states can be de-

scribed, which are built from a set of light, nearly mass-degenerate and another set of
heavy, nearly mass-degenerate particles. Our results for the hard tree-level annihilation
rates in the effective theory that we discuss in detail in Chap. 6, cover both the cases
of a set of particles nearly mass-degenerate with the neutralino LSP and a set of non-
relativistic hydrogen-like neutralino and chargino systems. In particular we exemplify
later in Sec. 6.2.5 the application of our results to tree-level annihilation reactions of two
hydrogen-like χ0/χ± two-particle systems.

The term Lpot in (5.2) summarises instantaneous but spatially non-local interactions
between the non-relativistic two-particle states χe1χe2 and χe4χe3 that arise through
exchange of Standard Model gauge bosons and Higgs particles. The two-particle states
χe1χe2 and χe4χe3 are built from all possible non-relativistic neutralino and chargino
species χei = χ0

ei
, χ±

ei
contained in the effective theory. Generically, the individual

contributions to Lpot are given by four-fermion operators whose matching coefficients
are Yukawa- and Coulomb potentials that depend on the relative distance ~r = ~x1 − ~x2
(r ≡ |~r |) in the respective two-body systems:

Lpot =

−
∑

χχ→χχ

∫
d3~r V χχ→χχ

{e1e2}{e4e3}(r) χ†
e4(t, ~x1)χ

†
e3(t, ~x1 + ~r) χe1(t, ~x1)χe2(t, ~x1 + ~r) . (5.3)

The sum ranges over all neutral, single-charged and double-charged χe1χe2 → χe4χe3
reactions, which are collected in Tab. 5.1. To obtain the explicit form of all possible
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neutral reactions single-charged reactions double-charged reactions

χ0χ0 → χ0χ0 χ0χ+ → χ0χ+ χ+χ+ → χ+χ+

χ0χ0 → χ−χ+ χ−χ0 → χ−χ0 χ−χ− → χ−χ−

χ−χ+ → χ0χ0

χ−χ+ → χ−χ+

Table 5.1: Collection of all χe1χe2 → χe4χe3 scattering reactions that we account for in
the terms Lpot and δLann of the NRMSSM Lagrangian. The labels ei on the fields χei
are suppressed in the above table. If χei represents a field χ0

ei
, the label ei can range

over ei = 1, . . . , n0, whereas ei = 1, . . . , n+ for the case of a χ±
ei
field.

four-fermion operators in (5.3), one has to replace – in all possible ways compatible
with charge conservation – the generic field symbols χei by the (two-component spinor)
fields ξei, ηei and ζei, related to the NRMSSM χ0

ei
, χ−

ei
and χ+

ei
species. In this way

all possible χe1χe2 → χe4χe3 scattering reactions between χ0/χ± two-particle pairs, built
from the NRMSSM χ0

i , χ
±
j states, are obtained and accounted for in (5.3). The super- and

subscript labels on the potentials V χχ→χχ
{e1e2}{e4e3}(r) then specify the neutralino or chargino

species (χ0
ei
, χ±

ei
) in the individual scattering reaction described by the corresponding

four-fermion operator.
In this thesis we restrict to leading-order potential interactions, in which case the

potentials depend only on the spin of the two-particle states, that is thus conserved.
The generic form of the leading-order potentials therefore reads

V χχ→χχ
{e1e2}{e4e3}(r) =

(
Ae1e2e4e3 δα4α1

δα3α2
+Be1e2e4e3

(
~S 2
)
α4α1,α3α2

) e−mφr

r
, (5.4)

where mφ denotes the mediator mass, i.e. in our application the mass of the exchanged
SM gauge boson or MSSM Higgs particle. While we have suppressed the spin indices
αi that are contracted with the corresponding spin indices of the field operators χei
in (5.3), we write them explicitly in (5.4). The total spin operator ~S is constructed
from the individual spin-operators related to the particles interacting at space-points ~x1
and ~x2, respectively: ~Sα4α1,α3α2

= ~σα4α1
/2 δα3α2

+ δα4α1
~σα3α2

/2 ≡ 1/2 (~σ ⊗ 1 + 1 ⊗ ~σ).
The four-fermion operators contained in δLann that we consider in Sec. 5.2 and that
describe the hard pair-annihilation reactions in the NRMSSM, by construction provide
a decomposition of the annihilating χχ-states according to their 2S+1LJ partial-wave
configuration with defined total spin s = 0, 1. It is therefore convenient to drop the spin
indices in the potentials and to replace the spin-operator ~S 2 that acts on the operators
corresponding to the states χe1χe2 and χe4χe3 , by its eigenvalue s(s+1) = 2s for s = 0, 1.

Details on the calculation of the Coulomb- and Yukawa-type potentials in Lpot from
the underlying MSSM interactions at leading order in the non-relativistic relative ve-
locity vrel in the χχ systems and at lowest non-vanishing order, O(g2i ), in the coupling
expansion, where gi are the generic SU(2)L×U(1)Y gauge couplings, are given in Sec. 7.
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Regarding the short-distance annihilation reactions in the effective theory, to be discussed
in the next section and in Chap. 6, we take up to O(v2rel) corrections in the velocity ex-
pansion in the effective theory into account, while we work at lowest non-vanishing order,
O(g4i ), in the expansion in the couplings.

5.2 χ0/χ± pair-annihilations in the NRMSSM

Within the NRMSSM, we aim to describe neutralino and chargino pair-annihilation
processes into two-particle final states of Standard Model and (light) Higgs particles,
which are not non-relativistic. The theory will contain effects from virtual and higher-
mass Higgs and SUSY particle modes as well, encoded in the EFT operator coefficients
and parameters. Let us note that the framework presented here is not suited to study
s-channel resonance-enhanced rates when accounting at the same time for Sommerfeld
enhancements.1 For this reason we have to choose models without s-channel resonant
enhancement for our analysis of Sommerfeld enhancements in neutralino and chargino co-
annihilation rates in Chap. 9. Finally, we exclude the case of accidental mass degeneracies
of further SUSY particles with the set of non-relativistic neutralinos and charginos. An
extension of the effective theory framework to include sfermion or Higgs states that are
nearly mass-degenerate with the χ0/χ± species in the NRMSSM and can therefore have
an impact on the χ0

1 relic density through co-annihilation effects is straightforward but
beyond the scope of this thesis.

The hard pair-annihilation reactions of heavy non-relativistic neutralinos and charg-
inos produce SM and light Higgs particle final states that are not described within
the non-relativistic effective theory, as these final states are characterised by velocities
outside the non-relativistic regime. However, since the hard inclusive pair-annihilation
processes take place within distances of order 1/mLSP, we can incorporate the short-
distance annihilation rates of non-relativistic neutralinos and charginos in the effective
theory through the absorptive part of Wilson coefficients of local four-fermion operators
in δLann, following the approach of [30]. The full annihilation rates in the non-relativistic
effective theory are then given by the absorptive part of the matrix elements of these
four-fermion operators. While the matrix elements of the operators themselves may
encode long-distance effects, giving rise to Sommerfeld enhancements, the contribution
to the hard annihilation reaction factors out in the form of the Wilson coefficient.

Let us see in more detail how this formalism is applied to our case: In contrast

1As regards the short-distance (tree-level) annihilation rates, results for the specific case of resonant s-
channel annihilation reactions can be obtained from our analytic expressions for the Wilson coefficients in
δLann (collected in Appendix A) by adding a resonance width to the corresponding s-channel propagator.
This is because the hard rates result from an on-shell matching involving an expansion around the mass
scale set by the annihilating particle states (see Sec. 6.1). However, the treatment of both Sommerfeld
enhancements and resonant s-channel annihilation requires that the corresponding s-channel propagator
is expanded around the mass scale set by the initially incoming two-particle state instead of the actually
annihilating states. A proper treatment of s-channel resonances in Sommerfeld-enhanced annihilation
rates is therefore more involved and requires modifications of our set-up.
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σij |~vi − ~vj | =

∫
dPSAB

( ∑

e1, e2

i

j

e1

e2

XA

XB

) ( ∑

e3, e4

i

j

e4

e3

XA

XB

)∗

= 2ℑ
( ∑

e1,..., e4

i

j

e1

e2

i

j

e4

e3

XA

XB

)

Figure 5.1: Diagrammatic picture for the relation among the annihilation amplitude
and the absorptive part of the corresponding forward scattering amplitude in presence
of long-range potential interactions. The latter interactions are indicated by the grey-
coloured oval.

to the application to quarkonium annihilation in QCD [30], we are going to describe
annihilations of scattering states instead of bound states and allow for more than one
non-relativistic particle species. The latter allows for the possibility that (long-range)
potential interactions lead to transitions from the initially incoming two-particle state
χiχj to another nearly on-shell non-relativistic two-particle state χe1χe2 prior to the hard
annihilation reaction.2 A diagrammatic picture for a χiχj pair-annihilation reaction of
non-relativistic χ0/χ± states is given in Fig. 5.1, where the presence of (off-) diagonal
potential scattering reactions is indicated with the grey-coloured oval.3 As we have
already noted in Sec. 2, unitarity allows to relate the phase space integrated product of
annihilation amplitudes χiχj → XAXB in the first line of Fig. 5.1 to the absorptive part
of the forward scattering amplitude χiχj → χiχj depicted in the second line, where in
our application XAXB generically denotes a pair of SM and light Higgs particles. While
the annihilation amplitudes in the first line of Fig. 5.1 involve the not non-relativistic
final state particle pairs XAXB that cannot be described in the effective theory, the
χiχj → χiχj forward scattering amplitude in the second line can be expressed in the
NRMSSM in terms of matrix elements of the four-fermion operators in δLann. The
inclusive spin-averaged annihilation cross section is then obtained in the effective theory
as

σχiχj→
∑
XAXB vrel =


1

4

∑

si, sj


 2 ℑ 〈χiχj| δLann|χiχj〉 , (5.5)

2In the following we use the term ‘off-diagonal’ to denote χe1χe2 → χe4χe3 scattering reactions,
where the incoming (χe1χe2) and outgoing (χe4χe3) particle pairs are not the same, while reactions
χe1χe2 → χe1χe2 are termed ‘diagonal’.

3Fig. 5.1 basically agrees with Fig. 2.2 discussed in Chap. 2. While in the latter chapter we intro-
duced to the Sommerfeld effect by using heuristic arguments, the effective field theory framework that
we establish here provides the basis for a rigorous derivation and subsequent analysis of Sommerfeld
enhancements in χ0/χ± pair-annihilation reactions.
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with vrel = |~vi − ~vj | the relative velocity of the annihilating particles in the centre-of-
mass frame. The matrix elements4 of the four-fermion operators in δLann account for
the (off-) diagonal long-range potential interactions between the non-relativistic χχ pairs
prior to annihilation, which causes the Sommerfeld effect. The information on the hard
annihilation reactions into all accessible XAXB final states is contained in the Wilson
coefficients of the operators, implying that the factorisation of long-range and short-
distance effects becomes manifest in the effective theory. Due to the presence of the
off-diagonal long-range potential interactions, the hard annihilation reactions, encoded
in the Wilson coefficients, are determined by the absorptive part of χe1χe2 → χe4χe3
amplitudes, as can be seen in the second line of Fig. 5.1. It is worth to stress that
the χe1χe2 particle pair is not necessarily equal to the χe4χe3 pair, such that apart
from true forward scattering reactions χe1χe2 → χe1χe2 , we encounter off-diagonal hard
χe1χe2 → χe4χe3 reactions as well.

In the following subsections we discuss the terms in δLann that describe the absorp-
tive part of hard χe1χe2 → χe4χe3 scattering reactions in the effective theory including
O(v2rel) corrections. The dimension-6 four-fermion operators given in Sec. 5.2.1 pro-
vide the leading, O(v0rel), terms in the non-relativistic expansion of hard (off-) diagonal
χ0/χ± pair-annihilations rates. Dimension-8 four fermion operators in Sec. 5.2.2, related
to P - and next-to-next-to-leading order S-wave reactions, then allow to give the corre-
sponding O(v2rel) corrections in the velocity expansion. We give the explicit expressions
of four-fermion operators in δLann and discuss generic properties of the corresponding
Wilson coefficients. The actual determination of these Wilson coefficients, at lowest
non-vanishing order in the expansion in coupling factors, from a MSSM matching calcu-
lation is postponed to Sec. 6.1. Note that the lowest non-vanishing order in the coupling
expansion, O(α2

i ), where αi = g2i /4π, corresponds to tree-level annihilation processes.
In this case the annihilation rates can be given separately for every exclusive SM or
Higgs two-particle final state XAXB, since the tree-level processes are free from infrared
divergencies. In higher orders in the couplings the formalism applies to the inclusive
annihilation cross section [30] or to suitably defined infrared-safe final states.

5.2.1 Basis of dimension-6 operators in δLann

The leading-order contributions in δLann are given by dimension-6 four-fermion opera-
tors. For instance, the specific dimension-6 four-fermion operator that encodes scattering
of a non-relativistic incoming neutralino pair χ0

1χ
0
1 in an 1S0 partial-wave state into an

outgoing χ0
1χ

0
1 state in the same 1S0 partial-wave configuration is given by

δLd=6
ann ⊃

1

4
fχ

0χ0→χ0χ0

{11}{11} (1S0) ξ†1 ξ
c
1 ξc†1 ξ1 , (5.6)

4In order to make contact with the commonly used notation in quarkonium annihilation, we abuse
notation when writing in (5.5) the matrix element of δLann instead of the corresponding forward scat-
tering amplitude. Written properly, the matrix element on the right-hand side in (5.5) should involve
the position-space integration over the interaction Lagrangian,

∫
d4x δLann(x), which implies that an

additional factor (2π)4δ(4)(pfinal−pinitial) arises when evaluating the matrix element. This factors should
however not be included in the relation (5.5).

77



where the spinor ξc is the charge conjugate of ξ, ξc = −iσ2 ξ∗, and σ2 specifies the second
Pauli matrix. Note that ξc†1 ξ1 represents the Lorentz invariant bilinear built from the
non-relativistic particle field ξ1, which destroys the incoming state of two identical χ0

1 par-
ticles. The factor 1/4 is a normalisation factor which compensates the symmetry factors
arising from the number of identical contractions in the tree-level χ0

1χ
0
1 → χ0

1χ
0
1 matrix

element. The symbol fχ
0χ0→χ0χ0

{11}{11} (1S0) denotes the Wilson coefficient corresponding to
the dimension-6 operator. We can generalise the above expression to include all possible
spin-0 and spin-1 S -wave four-fermion operators at leading order in the non-relativistic
expansion. Written in a compact form, the contribution of dimension-6 operators in
δLann reads

δLd=6
ann =

∑

χχ→χχ

∑

s=0,1

1

4
fχχ→χχ
{e1e2}{e4e3}

(
2s+1SJ

)
Oχχ→χχ

{e4e3}{e2e1}
(
2s+1SJ

)
, (5.7)

where J = s for the case of S-wave operators considered here. The first sum, taken over
all non-relativistic 2→ 2 neutralino and chargino scattering processes χχ→ χχ, implies
the consideration of neutral scattering reactions as well as single-charged and double-
charged processes. The χχ→ χχ reactions that we take into account involve the same χχ
states as in the potential scattering transitions discussed in Sec. 5.1 and therefore are as
well summarised in Tab. 5.1. The spin of the incoming and outgoing two-particle states
can be either s = 0 or s = 1, such that the terms in the above Lagrangian δLd=6

ann describe
1S0 and

3S1 partial-wave scattering reactions. The f
χχ→χχ
{e1e2}{e4e3} (

2s+1SJ) denote the Wilson

coefficients that correspond to the four-fermion operators Oχχ→χχ
{e4e3}{e2e1} (

2s+1SJ). The

indices e1 and e2 (e3 and e4) refer to the neutralino or chargino species of the incoming
(outgoing) particles, and take the values 1 to n0 for neutralino species and 1 to n+

for chargino species. Note that the order of the labels ei on the Wilson coefficients
and the operators is not accidental in (5.7). The labels on the operators are given in
the order, in which the field operators with label ei occur in the operator. In case of
the corresponding Wilson coefficients, the indices refer to the actual scattering reaction
χe1χe2 → χe4χe3 that is described by the operators. The basis of dimension-6 operators is
given in Tab. 5.2. Each χ in the labels χχ→ χχ of the operators and Wilson coefficients
in (5.7) should indicate the particular particle species χ0 and χ±, whose χe1χe2 → χe4χe3
scattering reaction is described, see Tab. 5.1. Further note, that a summation over the
indices ei is implicit in (5.7). The normalisation factor 1/4 in (5.7) ensures that the
tree-level transition matrix element for 1S0-wave scattering is given by

〈χlχk|
∫
d4x

∑

χχ→χχ

1

4
fχχ→χχ
{e1e2}{e4e3}(

1S0) Oχχ→χχ
{e4e3}{e2e1}(

1S0)(x) |χiχj〉|tree

= (2π)4δ(4)(pin − pout) 2 fχχ→χχ
{ij}{lk}(

1S0) (5.8)

for all χiχj → χlχk reactions at leading order in the non-relativistic effective theory. In
(5.8) we have assumed that the incoming and outgoing two-particle states χiχj and χlχk
both reside in an 1S0-wave configuration with normalised spin state 1√

2
(| ↑↓ 〉 − | ↓↑ 〉).
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χe1χe2 → χe4χe3 Oχχ→χχ
{e4e3}{e2e1} (

1S0) Oχχ→χχ
{e4e3}{e2e1} (

3S1)

χ0 χ0 → χ0 χ0 ξ†e4 ξ
c
e3

ξc†e2 ξe1 ξ†e4~σξ
c
e3

ξc†e2~σ ξe1

χ0 χ0 → χ−χ+ η†e4 ζ
c
e3

ξc†e2 ξe1 η†e4~σζ
c
e3

ξc†e2~σ ξe1

χ−χ+ → χ0 χ0 ξ†e4 ξ
c
e3

ζc†e2 ηe1 ξ†e4~σξ
c
e3

ζc†e2~σ ηe1

χ−χ+ → χ−χ+ η†e4 ζ
c
e3 ζc†e2 ηe1 η†e4~σζ

c
e3 ζc†e2~σ ηe1

χ0χ+ → χ0χ+ ξ†e4 ζ
c
e3

ζc†e2 ξe1 ξ†e4~σζ
c
e3

ζc†e2~σ ξe1

χ−χ0 → χ−χ0 η†e4 ξ
c
e3

ξc†e2 ηe1 η†e4~σξ
c
e3

ξc†e2~σ ηe1

χ+χ+ → χ+χ+ ζ†e4 ζ
c
e3

ζc†e2 ζe1 ζ†e4~σζ
c
e3

ζc†e2~σ ζe1

χ−χ− → χ−χ− η†e4 η
c
e3

ηc†e2 ηe1 η†e4~ση
c
e3

ηc†e2~σ ηe1

Table 5.2: Four-fermion operators for leading-order S-wave χe1χe2 → χe4χe3 transitions.
The indices ei, i = 1, . . . , 4 on the χ-fields are suppressed in the first column. In addition
to the specified operators there are redundant ones, which are obtained by interchanging
the field-operator symbols ξ, η or ζ (but not the labels) at the first and second and/or the
third and fourth position in the operator Oχχ→χχ. For example, for 1S0 χ

0χ+ → χ0χ+

operators one of the three classes of field-interchanged operators is given by the 1S0

χ+χ0 → χ+χ0 operators ζ†e4 ξ
c
e3
ξc†e2 ζe1.

A similar relation for the tree-level transition matrix element of 3S1-wave scattering in
the effective theory holds for all χiχj → χlχk reactions. Note that in order to derive (5.8)
one has to take into account relations among Wilson coefficients of different operators,
which will be deduced in the next paragraph.

There are redundancies in δLd=6
ann , (5.7), as several operators can describe one specific

scattering reaction with a χe1 and a χe2 (χe4 and χe3) particle in the initial (final) state.
This redundancy is associated with operators that arise from interchanging the single-
particle field operators at the first and second and/or third and fourth position in a
given Oχχ→χχ. The corresponding Wilson coefficients are related to each other, as they
encode the same information on a given specific scattering reaction. Consequently, the
redundancy manifests itself in symmetry relations among the Wilson coefficients under
exchange of the labels e1 ↔ e2 and/or e4 ↔ e3. These relations read

f
χe2

χe1
→χe4

χe3

{e2e1}{e4e3}
(
2s+1SJ

)
= ηs f

χe1
χe2

→χe4
χe3

{e1e2}{e4e3}
(
2s+1SJ

)
,

f
χe1

χe2
→χe3

χe4

{e1e2}{e3e4}
(
2s+1SJ

)
= ηs f

χe1
χe2

→χe4
χe3

{e1e2}{e4e3}
(
2s+1SJ

)
, (5.9)

with

ηs =

{
1 for s = 0

−1 for s = 1
. (5.10)
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5.2.2 Basis of dimension-8 operators in δLann

At next-to-next-to-leading order in the non-relativistic expansion in momenta and mass
differences,5 dimension-8 four-fermion operators contribute to δLann.

6 Similar to the
compact notation used for the dimension-6 four-fermion operators in (5.7), the contri-
butions from dimension-8 operators can be written as

δLd=8
ann =

∑

χχ→χχ

1

4M2
fχχ→χχ
{e1e2}{e4e3}

(
1P1

)
Oχχ→χχ

{e4e3}{e2e1}
(
1P1

)

+
∑

χχ→χχ

∑

J=0,1,2

1

4M2
fχχ→χχ
{e1e2}{e4e3}

(
3PJ
)
Oχχ→χχ

{e4e3}{e2e1}
(
3PJ
)

+
∑

χχ→χχ

∑

s=0,1

1

4M2
gχχ→χχ
{e1e2}{e4e3}

(
2s+1Ss

)
Pχχ→χχ

{e4e3}{e2e1}
(
2s+1Ss

)

+
∑

χχ→χχ

∑

s=0,1

∑

i=1,2

1

4M2
hχχ→χχ
i {e1e2}{e4e3}

(
2s+1Ss

)
Qχχ→χχ
i {e4e3}{e2e1}

(
2s+1Ss

)
. (5.11)

The fχχ→χχ
{e1e2}{e4e3}, g

χχ→χχ
{e1e2}{e4e3} and hχχ→χχ

i {e1e2}{e4e3} denote the Wilson coefficients of the cor-
responding four-fermion operators O{e4e3}{e2e1}, P{e4e3}{e2e1} and Qi {e4e3}{e2e1}, whose ex-
plicit form for the case of χ0

e1χ
0
e2 → χ0

e4χ
0
e3 scattering reactions is given in Tab. 5.3.7 As

before in (5.7), the labels ei in (5.11) range over ei = 1, . . . , n0 (resp. ei = 1, . . . , n+), if
the respective field χei in the χe1χe2 → χe4χe3 reaction refers to neutralino- (chargino-)
species. The factor 1/4 in front of the operators in (5.11) is a convenient normalisation of
transitions matrix elements in the effective theory. In addition, a normalisation factor of
1/M2 has been factored out in (5.11), such that the next-to-next-to-leading order Wilson
coefficients have the same mass dimension (−2) as the leading-order ones in Sec. 5.2.1.
The mass scale M is equal to half the sum of the masses of the χei particles involved in
the reaction χe1χe2 → χe4χe3, i.e.

M =
1

2

4∑

i=1

mei , (5.12)

such that M itself constitutes a process-specific quantity. Note that the operators
Qi (2s+1Ss) have the same structure as the dimension-6 operators O (2s+1Ss) given in

5The need for and the details on an expansion in mass differences become most obvious in the MSSM
matching calculation that leads to the determination of the Wilson coefficients of the four-fermion
operators in δLann. A corresponding discussion is therefore postponed to Sec. 6.1.2.

6Let us remark that we do not consider next-to-leading order contributions to δLann, corresponding
to dimension-7 four-fermion operators, as these encode 1S0 − 3P0,

3S1 − 1P1 and 3S1 − 3P1 transitions
which will require the addition of vrel-suppressed potential interactions in the long-range part of the
annihilation; we consider only O(v2rel) effects from the short-distance annihilation, and not those arising
from subleading non-Coulomb (non-Yukawa) potentials.

7In order to ensure the U(1)em gauge invariance of the NRMSSM, all derivatives ∂ in dimension-8
four-fermion operators O and P that act on chargino fields (ηi,ζi) have to be replaced by the corre-
sponding covariant derivative D = ∂ + i eA, where A denotes the spatial components of the photon
field Aµ.
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Oχχ→χχ(1P1) ξ†e4

(
− i

2

←→
∂
)
ξce3 · ξc†e2

(
− i

2

←→
∂
)
ξe1

Oχχ→χχ(3P0)
1
3
ξ†e4

(
− i

2

←→
∂ · σ

)
ξce3 · ξc†e2

(
− i

2

←→
∂ · σ

)
ξe1

Oχχ→χχ(3P1)
1
2
ξ†e4

(
− i

2

←→
∂ × σ

)
ξce3 · ξc†e2

(
− i

2

←→
∂ × σ

)
ξe1

Oχχ→χχ(3P2) ξ†e4

(
− i

2

←→
∂ (iσj)

)
ξce3 · ξc†e2

(
− i

2

←→
∂ (iσj)

)
ξe1

Pχχ→χχ(1S0)
1
2

[
ξ†e4ξ

c
e3 · ξc†e2

(
− i

2

←→
∂
)2
ξe1 + ξ†e4

(
− i

2

←→
∂
)2
ξce3 · ξc†e2ξe1

]

Pχχ→χχ(3S1)
1
2

[
ξ†e4σ ξ

c
e3 · ξc†e2 σ

(
− i

2

←→
∂
)2
ξe1 + ξ†e4 σ

(
− i

2

←→
∂
)2
ξce3 · ξc†e2 σ ξe1

]

Qχχ→χχ
1 (1S0) (δmM) ξ†e4ξ

c
e3
· ξc†e2ξe1

Qχχ→χχ
1 (3S1) (δmM) ξ†e4σ ξ

c
e3
· ξc†e2σ ξe1

Qχχ→χχ
2 (1S0) (δmM) ξ†e4ξ

c
e3
· ξc†e2ξe1

Qχχ→χχ
2 (3S1) (δmM) ξ†e4σ ξ

c
e3 · ξc†e2σ ξe1

Table 5.3: Explicit form of the P -wave (O) and next-to-next-to-leading order S-wave (P,
Qi) four-fermion operators contributing to χ0

e1χ
0
e2 → χ0

e4χ
0
e3 scattering reactions. Each

index ei can take the values ei = 1, . . . , n0. The P - and next-to-next-to-leading order
S-wave four-fermion operators for the remaining neutral, charged and double-charged
χe1χe2 → χe4χe3 processes are obtained by replacing the field operators ξei, i = 1, . . . , 4
above by those of the respective particle species involved. The quantity ∂ is a 3-vector

whose components are ∂i ≡ ∂/∂xi. The action of
←→
∂ on the two field operators at its

left and right is defined as ξc†eb
←→
∂ ξea ≡ ξc†eb (∂ξea) − (∂ξceb)

† ξea. The symmetric traceless

components of a tensor T ij are denoted by T (ij) = (T ij + T ji)/2− T kkδij/3. Finally, the
mass scale M is defined in (5.12) and the mass differences δm, δm are given in (5.13).

Tab. 5.2, but are proportional to the mass differences

δm =
me4 −me1

2
, δm =

me3 −me2

2
, (5.13)

computed from the masses mei in the reaction χe1χe2 → χe4χe3 . In order to ensure
convergence, the mass differences (5.13) have to be considered as O(v2rel) effects in the
non-relativistic expansion of the amplitudes. We discuss this point in context of the
matching calculation in Sec. 6.1.2. The mass splittings between the χ0/χ± species that
can be part of the NRMSSM, are therefore limited to be much smaller than mLSP, the
mass of the lightest non-relativistic state in the effective theory. This implies in turn
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that those neutralino and chargino states in a given MSSM spectrum that have mass
splittings of the order mLSP should be decoupled explicitly and integrated out. Since
δm = δm = 0 for diagonal annihilation reactions χe1χe2 → χe1χe2 (where the absorptive
parts of the respective amplitudes are related to the corresponding annihilation cross
section), the Qi (2s+1Ss) are only relevant for the computation of the off-diagonal rates.

We note that dimension-8 operators P(3S1,
3D1), which describe 3S1 → 3D1 transi-

tions, have not been included in δLd=8
ann . In the calculation of the tree-level annihilation

cross section in the centre-of-mass frame, contributions from these operators vanish,
while for the Sommerfeld enhanced annihilation cross section they will require to con-
sider a v2rel-suppressed potential interaction in the long-range part of the annihilation in
order to compensate for the change in orbital angular momentum in the short-distance
part, thus yielding a contribution to the cross section of O(v4rel).

As we have noted in Sec. 5.2.1 we construct δLann in such a way that it contains all re-
dundant operators, which arise through interchanging the single-particle field-operators
at the first and second (third and fourth) position given a specific four-fermion operator,
such that several operators describe one specific scattering reaction with a χe1 and χe2
(χe4 and χe3) particle in the initial (final) state. Consequently there are symmetry rela-
tions among the Wilson coefficients associated with the subsets of redundant operators
in δLd=8

ann , similar to the relations for leading-order S-wave coefficients in (5.9). They
read

k
χe2

χe1
→χe4

χe3

{e2e1}{e4e3}
(
2s+1LJ

)
= (−1)s+L kχe1

χe2
→χe4

χe3

{e1e2}{e4e3}
(
2s+1LJ

)
,

k
χe1

χe2
→χe3

χe4

{e1e2}{e3e4}
(
2s+1LJ

)
= (−1)s+L kχe1

χe2
→χe4

χe3

{e1e2}{e4e3}
(
2s+1LJ

)
, (5.14)

where k = f, g for P - and next-to-next-to-leading order S-wave coefficients, respectively.
Note that (5.14) generalises the leading-order S-wave relations in (5.9). Finally let us
note that similar relations as (5.14) apply for the Wilson coefficients hi, where however
an additional exchange of the particles in the definition of the mass differences δm, δm
in front of the corresponding operators Qi has to be taken into account.
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Chapter 6

The hard annihilation reactions

In Chap. 5 we have introduced the NRMSSM, an effective field theory that is de-
signed to describe scattering and annihilation reactions of non-relativistic neutralinos and
charginos. Here we will focus on the hard pair-annihilation reactions of non-relativistic
χ0/χ± states in the effective theory, which are encoded in the absorptive part of the Wil-
son coefficients of four-fermion operators in δLann, a part of the generic EFT Lagrangian
LNRMSSM. Conceptually this chapter is divided into three parts. The first part comprises
Sec. 6.1 and contains the technical details on the calculation of our purely analytic ex-
pressions for the absorptive parts of the Wilson coefficients. We describe the steps in the
calculation of the coefficients related to leading-order S-wave, P - and next-to-next-to
leading order S-wave annihilation processes and collect explicit analytic expressions for
the coefficients in terms of the underlying MSSM parameters and couplings in Appen-
dices A.1–A.3. Sec. 6.2 covers the second part, where we provide an extensive discussion
on the numerical comparison of the hard (tree-level) annihilation cross sections derived
in the NRMSSM with results from the numerical code MadGraph [89]. The third
part is contained in Sec. 6.3. Here we illustrate in an analytic sample calculation in
the pure-wino NRMSSM, how the generic results for the Wilson coefficients, collected
in Appendices A.1–A.3, have to be applied in order to obtain all (off-) diagonal hard
co-annihilation rates in this scenario.

The structure of the first part is as follows. The matching condition that relates
the perturbative χiχj → χlχk scattering amplitudes in the NRMSSM with the corre-
sponding amplitudes in the MSSM and thereby allows the determination of the Wilson
coefficients in δLann in terms of the underlying MSSM parameters and couplings is dis-
cussed in Sec. 6.1.1. The matching procedure requires an expansion of the MSSM ampli-
tudes in the non-relativistic external momenta. In addition, as we generically consider
processes χe1χe2 → χe4χe3 where the outgoing two-particle states can be different and
slightly lighter or heavier than the incoming ones, we have to perform an expansion in
mass differences of the states involved. We commend on these expansions in Sec. 6.1.2.
Subsequently we give a brief discussion on the gauge used in the calculation in Sec. 6.1.3.
Further details on the actual determination through the MSSM matching calculation and
the final form of the Wilson coefficients are provided in Sec. 6.1.4, including a master
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formula for the Wilson coefficients in terms of coupling and kinematic factors. Results
and recipes for the construction of these coupling and kinematic factors, valid in the
general MSSM, are collected in Appendices A.1–A.3.

In the second part we discuss the numerical comparison of our non-relativistic ap-
proximation to χ0/χ± pair-annihilation cross sections σvrel with corresponding results
produced with MadGraph. To this end we select several annihilation processes where
the role of the next-to-next-to-leading corrections from our analytic calculation of the
annihilation cross section is markedly different. In Sec. 6.2.1 we present two reactions
where P - and next-to-next-to-leading S-wave contributions are of the same order. Two
S-wave dominated reactions are considered in Sec. 6.2.2, followed by a P -wave domi-
nated process in Sec. 6.2.3. The case of an off-diagonal rate, where no numerical check
with MadGraph is available, is given in Sec. 6.2.4. As our effective field theory frame-
work allows to describe annihilation rates of “hydrogen-like” χχ states as well, we con-
clude by comparing results for annihilation reactions of two such “hydrogen-like” states
with MadGraph generated data in Sec. 6.2.5. The examples of Sec. 6.2 in particu-
lar illustrate the importance of separating the different partial-wave contributions to the
short-distance annihilation in view of the computation of the Sommerfeld-corrected cross
sections, including O(v2rel) corrections to the hard annihilation rates.1

In the third part we first provide in Sec. 6.3.1 a detailed derivation of the coupling fac-
tor expressions needed in the construction of the Wilson coefficients in non-relativistic
χ+
1 χ

−
1 → W+W− annihilations in the pure-wino NRMSSM. Subsequently the corre-

sponding kinematic factor expressions are derived in Sec. 6.3.2. In both sections we rely
on the conventions and notations introduced in Appendices A.1–A.3. Finally, Sec. 6.3.3
contains analytic results for all exclusive tree-level co-annihilation rates in the pure-wino
NRMSSM at O(v2rel), that are relevant in the relic abundance calculation in this scenario.

6.1 Matching calculation & Master formula

6.1.1 Matching condition

The Wilson coefficients of the four-fermion operators in δLann are determined by the
matching condition

A(χiχj → χlχk) |MSSM, perturbative =
∑ 1

4Md−6
f
(d)χχ→χχ
{e1e2}{e4e3}(

2s+1LJ)

× 〈χlχk| O(d)χχ→χχ
{e4e3}{e2e1}(

2s+1LJ) |χiχj〉 |NRMSSM, perturbative . (6.1)

1The investigation of Sommerfeld enhancements in some popular MSSM scenarios is the content
of Chap. 9, where we find that Sommerfeld-enhanced P - and next-to-next-to-leading order S-wave
corrections to the hard annihilation rates play a subdominant role in the relic abundance calculation
as compared to the effect from correctly accounting for off-diagonal (leading-order S-wave) annihilation
rates. The latter turns out to be particularly crucial in an accurate calculation of the χ0

1 relic density
including Sommerfeld enhancements, as we discuss in detail in Chap. 9.
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Here we have denoted the dimension-d four-fermion operators and their corresponding
Wilson coefficients with symbols O(d) and f (d) in order to make the notation of the
matching condition – which in particular implies a summation

∑
d≥6 – simpler. The

connection to the notation established in Chap. 5 is obvious. For instance we have the
correspondence O(d=6)(1S0) = O(1S0) and f

(d=6)(1S0) = f(1S0) as well as O(d=8)(1S0) =
P(1S0) and f

(d=8)(1S0) = g(1S0). Except for this section (Sec. 6.1), we will always use
the notation from Chap. 5 and denote the Wilson coefficients of dimension d = 6 and
d = 8 operators by f(2s+1Ss) and f(

2s+1PJ), g(
2s+1Ss), hi(

2s+1Ss), respectively. The same
applies to the notation for the dimension d = 6, 8 four-fermion operators. Recall that
the mass scale M , defined in (5.12), is a χe1χe2 → χe4χe3 process-specific quantity. Let
us finally note that any Wilson coefficient f (d) in (6.1) generically has mass dimension
−2, independent of the mass dimension d of the corresponding four-fermion operator.

For equation (6.1) to hold, we have to use the same (non-relativistic) normalisation
of the incoming and outgoing states in both the full theory and the NRMSSM. Formally
this condition is a generalisation and appropriate modification of the matching condition
set up in [30], therein used for the determination of the Wilson coefficients of four fermion
operators in the NRQCD Lagrangian. Here we will determine the contributions to the
Wilson coefficients in δLann that describe the tree-level annihilation reactions of χ0/χ±

pairs into exclusive SM and light Higgs two-body final states XAXB, which we shall
denote as f̂ (d)χχ→XAXB→χχ(2s+1LJ ). The unitarity of the S-matrix at the diagrammatic
level establishes a relation among the tree-level annihilation rate for χiχj → XAXB and
the imaginary part of the 1-loop forward-scattering reaction χiχj → XAXB → χiχj :

∫
[dPSAB] |A(χiχj → XAXB)|2 = 2 ℑ [A(χiχj → XAXB → χiχj)] (6.2)

= 2
∑ 1

4Md−6
ℑ
[
f
(d)χχ→XAXB→χχ
{e1e2}{e4e3} (2s+1LJ)

]
〈χiχj |O(d)χχ→χχ

{e4e3}{e2e1}(
2s+1LJ )|χiχj〉 .

We generalise this relation and define the absorptive part of the (off-) diagonal amplitude
A(χiχj → XAXB → χlχk) as well as the absorptive part of the Wilson coefficients in
the following way:

∫
[dPSAB] A(χiχj → XAXB)×A(χlχk → XAXB)

∗ (6.3)

= 2 [A(χiχj → XAXB → χlχk)] |absorptive

= 2
∑ 1

4Md−6
f̂
(d)χχ→XAXB→χχ
{e1e2}{e4e3} (2s+1LJ) 〈χlχk|O(d)χχ→χχ

{e4e3}{e2e1}(
2s+1LJ)|χiχj〉 ,

where we have introduced the notation

f̂
(d)χχ→XAXB→χχ
{ij}{lk} (2s+1LJ) = f

(d)χχ→XAXB→χχ
{ij}{lk} (2s+1LJ) |absorptive . (6.4)

With this definition, the absorptive part of a Wilson coefficient that encodes a χiχj →
χiχj forward-scattering reaction coincides with its imaginary part. The adjoint of the
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four-fermion operators in δLann that do not involve mass differences δm, δm in their
definition satisfy

O(d) †
{e4e3}{e2e1}(

2s+1LJ) = O(d)
{e1e2}{e3e4}(

2s+1LJ) , (6.5)

which for dimension-d operators with d = 6, 8 is easily seen from the explicit expressions
in Tab. 5.2 and Tab. 5.3. We can use this relation in order to express the absorptive
part of a Wilson coefficient f̂ (d)(2s+1LJ), defined through (6.3), in terms of full Wilson
coefficients f (d)(2s+1LJ),

−i
(
f
(d)χχ→χχ
{e1e2}{e4e3}(

2s+1LJ ) −
[
f
(d)χχ→χχ
{e4e3}{e1e2}(

2s+1LJ)
]∗)

= 2 f̂
(d)χχ→χχ
{e1e2}{e4e3}(

2s+1LJ) . (6.6)

As a trivial consequence we obtain the following relation between the absorptive parts
of the Wilson coefficients under the exchange of the particle labels:

f̂
(d)χχ→χχ
{e1e2}{e4e3}

(
2s+1LJ

)
=
[
f̂
(d)χχ→χχ
{e4e3}{e1e2}

(
2s+1LJ

)]∗
. (6.7)

The latter two relations hold for all Wilson coefficients apart from those related to
operators that involve mass difference terms δm and δm, as for example the operators
Qi=1,2 in Tab. 5.3, in which case an additional exchange of the particles in the definition
of the mass differences δm, δm in front of the corresponding operators has to be taken
into account.2

We make use of the defining relations to determine the absorptive part of the Wilson
coefficients f̂ (d=6,8)χχ→XAXB→χχ from the product of the full-theory tree-level annihilation
amplitudes integrated over the final state particles’ phase-space, as given in the first line
of (6.3). Technically this is achieved by considering all 1-loop scattering amplitudes
χiχj → XAXB → χlχk of non-relativistic χ0/χ± pairs χiχj and χlχk with a specific SM
or Higgs particle pair XAXB in the intermediate state and by applying the Cutkosky
rules [90, 91] to the XA and XB propagators. The resulting expression coincides with
the first line of (6.3). To determine the absorptive part of the Wilson coefficients, the
expression has to be expanded in the non-relativistic momenta of the external particles as
well as in their mass differences and an appropriate spin-projection has to be performed.
Further details on this expansion are provided in the following section.

6.1.2 Expansion in momenta and mass differences in δLann

Our framework allows us to consider annihilation processes of two particles with similar
mass (m ∼ m), but also annihilation reactions of hydrogen-like two particle systems,
where one particle is much lighter than the other (though still heavy enough to be
considered as non-relativistic). In order to cover both cases we adopt the convention
that particles e1 and e4 (e2 and e3) in the scattering reaction χe1χe2 → χe4χe3 of non-
relativistic two-particle states share the same mass scale m (m). m and m can be but

2Note that if δm, δm are considered as part of the corresponding Wilson coefficients and not the
operators Qi=1,2, then (6.7) also holds for the former.
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are not necessarily close to each other.3 Further we simplify the notation by replacing
the indices (e1, e2, e3, e4) by (1,2,3,4) throughout this section. With these conventions
and assignments, we define

m1 = m− δm , m2 = m− δm ,

m4 = m+ δm , m3 = m+ δm , (6.8)

with

m =
m1 +m4

2
, m =

m2 +m3

2
, (6.9)

such that the mass differences read

δm =
m4 −m1

2
, δm =

m3 −m2

2
. (6.10)

Diagonal scattering reactions χ1χ2 → χ1χ2 imply m = m1 and m = m2, and the
mass differences δm and δm obviously vanish in that case. The analytic results for
the Wilson coefficients, that we collect in the appendices A.1 and A.2, refer to the
definitions (6.8–6.10). If for a given process χiχj → χlχk it turns out that the reverse
condition, mi ∼ mk ∼ m and mj ∼ ml ∼ m, is more meaningful given the actual
values of the masses, one can make use of the symmetry properties (5.9) to relate the
Wilson coefficients for χiχj → χlχk to those of χiχj → χkχl. This would then conform
to the prescription above, i.e. m would be equal to the average of the mass of the
particle associated with field 1 and the mass of the particle associated with field 4,
m = (mi +mk)/2.

In course of the matching calculation there are a few subtleties in the expansion
in mass differences and momenta of the MSSM amplitudes, particularly related to off-
diagonal reactions. They are related to the fact that the absorptive parts of the Wilson
coefficients are obtained by matching amplitudes for the process χ1χ2 → χ4χ3 with
on-shell external states. This implies that the energy-conservation relation in the centre-
of-mass system,

√
s = E1(~p

2) + E2(~p
2) = E4(~p

′2) + E3(~p
′2) , (6.11)

with Ei(~p
2) =

√
m2
i + ~p 2 and ~p (~p ′) the incoming (outgoing) particles’ momentum in

the centre-of-mass system, is fulfilled. Using (6.8–6.10) and M ≡ m+m, the expansion
of the energy-conservation relation (6.11) for non-relativistic momenta ~p 2 and ~p ′2 reads

√
s =M − δm− δm+

~p 2

2µ
+ . . . =M + δm+ δm+

~p ′2

2µ
+ . . . , (6.12)

3Let us emphasise at this point, that we include a discussion and numerical comparison of our results
applied to hydrogen-like χχ state tree-level annihilation reactions in Sec. 6.2.5.
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where µ = mm/M and we have dropped terms of order ~p 4/µ3 and (δm/M × ~p 2/µ).
This can be rewritten as

~p ′2

2µ
=

~p 2

2µ
− 2δm− 2δm+ . . . . (6.13)

From (6.13) we see that a consistent expansion which treats both ~p 2 and ~p ′2 as small
quantities of the same order requires that the mass differences δm, δm are also formally
considered of order ~p 2/µ in the expansion of the amplitudes. Let us recall again that
only off-diagonal scattering reactions require an expansion in mass differences as in these
cases the incoming and outgoing χχ states are different. In contrast we always have
δm = δm = 0 for diagonal reactions χ1χ2 → χ1χ2.

Taking the expansion in mass differences consistently into account and relying on the
conventions established above, we can identify the two distinct energy scales associated
with a generic process χ1χ2 → XAXB → χ4χ3 of non-relativistic two-particles states.
The amplitudes are characterised by the hard scales m, m, and additionally involve the
small scales (~p 2/µ, ~p ′ 2/µ, ~p · ~p ′/µ, δm, δm) ∼ O(µv2), where v stands for the relative
velocity in the two-particle system. In order to obtain the absorptive part of the Wil-
son coefficients from the perturbative process χ1χ2 → XAXB → χ4χ3, including the
subleading O(v2) terms, we therefore proceed with the following steps.

1. Start from the 1-loop scattering amplitude χ1χ2 → XAXB → χ4χ3 with a SM or
Higgs two particle final state XAXB. The masses of the two pairs χ1χ2 and χ4χ3

have to share the same scale M = m + m and the mass differences δmi, (6.10),
have to be of the same order as typical non-relativistic kinetic energies of the pairs.
The absorptive part of the 1-loop amplitude is obtained by applying the Cutkosky
rules [90,91] to the XA and XB propagators. The result is written in terms of the
hard and small mass scales introduced above, and expanded in the small scales
retaining terms up to O(v2).

2. To O(v2) the result contains scalar products with at most two powers of ~p and ~p ′.
For the spin-1 configuration, the scalar products also involve the spin-polarisation
vectors ~n and ~n ′ of the incoming (χ1χ2) and outgoing (χ4χ3) states, respectively.
Generically the results for spin-1 incoming and outgoing states takes the form

{
c0(

3S1) + c1(
3S1) δm+ c2(

3S1) δm+ c3(
3S1) ~p

2 + c4(
3S1) ~p

′ 2 } ~n · ~n ′

+ c5(
3P0) (~p · ~n) (~p ′ · ~n ′) + c6(

3P1) [p, n]
k [p′, n′]k + c7(

3P2) p
{i nj} p ′{i n′j}

+ c8(
3S1,

3P1)n
k [p′, n′]k + c9(

3P1,
3S1) [p, n]

kn′ k

+ c10(
3S1,

3D1) p
′{i p′j} ni n′j + c11(

3D1,
3S1) p

{i pj} ni n′j , (6.14)

where we have introduced the notation [a, b]k ≡ εijkaibj and a{i bj} ≡ aibj + ajbi −
2~a · ~b δij/3, corresponding to J = 1 and J = 2 Cartesian tensors, respectively.
The spin-polarisation vector ~n is introduced by replacing the spinor matrix [ξξc†]ij
of an incoming two-neutralino state by 1√

2
~n · ~σij . Similar replacements apply to
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outgoing two-particle states and states involving charginos. Each coefficient ci is
a function of m and m. In addition the ci depend on the masses of internally
exchanged particles, that appear in the s-, t- or u-channels of the one-loop MSSM
amplitudes as well as on the XA and XB masses and coupling factors related to the
vertices of the contributing diagrams. The first term, c0, gives the leading-order
contribution, where all the others count as O(v2), according to the scaling rules
for non-relativistic particle pair annihilations that we have established above. We
have further specified the quantum numbers 3LJ of each term, which matches the
angular-momentum configuration of the incoming state, equal to that of the outgo-
ing state except for the c8−11 terms (the first quantum number between parentheses
refers then to the incoming state, the second to the outgoing one). For spin-0 in-
coming and outgoing states, the result simplifies to

c0(
1S0) + c1(

1S0)δm+ c2(
1S0)δm

+ c3(
1S0) ~p

2 + c4(
1S0)~p

′ 2 + c5(
1P1)~p · ~p ′. (6.15)

We do not consider the possibility of spin-0 to spin-1 transitions between incoming
and outgoing states in the hard annihilation process. These transitions, 3S1 → 1P1,
3P0,1 → 1S0 and 3P0,1 → 1P1, in the hard annihilation part of the full forward
scattering amplitude are also allowed at O(v) by angular-momentum conservation.
However they require spin-changing potential interactions in the long-range part of
the amplitude in order to bring the spin of the two-particle state after annihilation
back to the spin of the incoming state. Since the non-relativistic spin-changing
potentials carry an additional v-suppression, such transitions are only relevant
for the calculation of the annihilation rates at O(g2v2). In this work we ignore
O(v2) effects that arise from subleading non-Coulomb (non-Yukawa) potentials
and include only those from the short-distance annihilation. As similarly the terms
c8−11 in (6.14) require a change of the orbital angular momentum, that has to be
compensated by a potential interaction which is also v-suppressed in the non-
relativistic limit, we ignore such terms for our purposes.

3. The Wilson coefficients of the dimension-8 operators with derivatives shall also
have the symmetry property (6.7) under the exchange of the incoming and out-
going states. This is ensured by rewriting powers of ~p 2 and ~p ′ 2 in the expanded
expressions for the amplitudes by virtue of the energy-conservation relation (6.12)
as

~p 2 =
1

2
( ~p 2 + ~p ′ 2 ) +

2mm

M
( δm+ δm ) + . . . ,

~p ′ 2 =
1

2
( ~p 2 + ~p ′ 2 )− 2mm

M
( δm+ δm ) + . . . , (6.16)

such that the coefficients multiplying ~p 2 and ~p ′ 2 become equal.

4. In the last step we identify the Wilson coefficients f̂ (d=6,8)χ1χ2→XAXB→χ4χ3(2s+1LJ)
by comparing the expanded expression for the absorptive part of the MSSM ampli-
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tudeA(χ1χ2 → XAXB → χ4χ3) with the amplitude for the same process computed
with the dimension 6 and dimension 8 EFT operators in δLann.

We provide explicit analytic expressions for the building blocks of (next-to-next-to-)
leading-order S- and P -wave coefficients in the appendices A.1 and A.2. The results
are given in terms of kinematic and coupling factors, that have to be combined in a
particular way in order to obtain the Wilson coefficients. In the next section we add
a brief discussion on the gauge used in the matching calculation. Sec. 6.1.4 finally
contains the master formula, that allows to determine the absorptive parts of the Wilson
coefficients from coupling and kinematic factors. Finally note that the Wilson coefficients
refer to inclusive annihilation rates, summed over all accessible final states XAXB. Our
calculation is however performed for individual final states, which are therefore also given
separately. While only inclusive neutralino and chargino χχ co-annihilation rates are
needed in our application to the χ0

1 relic abundance calculation, our final-state separated
results can be of interest to the calculation of primary decay spectra of (Sommerfeld-
enhanced) χ0

1 dark matter annihilation in the present Universe.

6.1.3 Unitary vs Feynman gauge

The computation of the absorptive parts of the Wilson coefficients for forward-scattering
reactions, χe1χe2 → XAXB → χe1χe2 , has been performed using both the unitary and
Feynman gauge. The results agree numerically, therefore providing a useful check of our
calculation. For the off-diagonal reactions, where the incoming and outgoing states are
different, the use of unitary gauge for final states with two massive vector bosons (charac-
terised by the gauge boson mass scale MV ) in the final state introduces enhanced 1/M4

V

and 1/M2
V terms, which are proportional to the mass differences between the incoming

and outgoing particle species and which must cancel in the final result. Similarly, a can-
cellation of 1/M2

V enhanced terms in off-diagonal rates with one massive vector boson in
the final state has to take place. However, for these cancellations to occur, one has to also
expand the SUSY mixing matrices systematically in the gauge boson masses MV . In the
same way, the mass differences between the incoming and outgoing particles have to be
expanded in MV and in the differences of soft SUSY breaking parameters M1, M2, µ, if
these differences are small. The latter expansions must be done differently depending on
how many neutralinos and charginos are (nearly) mass-degenerate. The presentation of
the results computed with unitary gauge then has to distinguish among many cases and
also consider diagonal and off-diagonal terms separately, since for the diagonal terms it
is desirable to keep the full mass dependence as well as unexpanded mixing matrices. It
is therefore more convenient to use Feynman gauge for the calculation of the off-diagonal
reactions, which allows to keep the coupling matrices unexpanded and a more concise
presentation of the results. The price for this is that a large number of unphysical final
states containing pseudo-Goldstone Higgs and ghost particles has to be included. These
states XAXB are collected in Tab. 6.1.
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χχ→ χχ V V V S SS ff ηη̄

χ0χ0 → χ0χ0

χ−χ+ → χ−χ+

χ0χ0 → χ−χ+

χ−χ+ → χ0χ0

W+W−,
ZZ,
γγ, Zγ

Zh0, ZH0,
γh0, γH0,
ZG0, ZA0,
γG0, γA0,

W+G−,W+H−,
W−G+,W−H+

h0h0, h0H0, H0H0,
G0h0, A0h0

G0H0, A0H0,
G0G0, G0A0, A0A0

G+G−, G+H−,
H+G−, H+H−

uJ ūI ,
dJ d̄I ,
eJ ēI ,
νJ ν̄I

η+η̄+,
η−η̄−,
ηZ η̄Z

χ0χ+ → χ0χ+ W+Z,
W+γ

ZG+, γG+,
ZH+, γH+,

W+h0,W+H0,
W+G0,W+A0

G+h0, G+H0,
H+h0, H+H0,
G+G0, G+A0,
H+G0, H+A0

uJ d̄I ,
νJ ēI

η+η̄Z ,
ηZ η̄−,
η+η̄F ,
ηF η̄−

χ+χ+ → χ+χ+ W+W+ W+G+,
W+H+

G+G+,
G+H+,
H+H+

Table 6.1: Particle pairs XAXB in χχ→ XAXB → χχ scattering reactions (abbreviated
as χχ→ χχ), that we account for in the calculation of the absorptive part of the Wilson
coefficients. The pairs are classified according to their type: V V, V S, SS, ff and ηη̄.
Negatively charged processes, corresponding to the charge-conjugates of the singly or
doubly positively charged reactions above are not explicitly written.

6.1.4 A master formula for the Wilson coefficients

In Sec. 6.1.2 we have enumerated the steps in the determination of the absorptive parts of
the Wilson coefficients of dimension 6 and 8 operators in δLann in terms of the parameters
of the underlying full theory, the MSSM. Here we provide further details on the actual di-
agrams that we have to consider in the MSSM matching calculation. Finally we introduce
and discuss our master formula for the absorptive parts f̂ (d)(2s+1LJ) of the Wilson coeffi-
cients, that expresses the individual f̂ (d)(2s+1LJ ) in terms of a sum over products of cou-
pling and kinematic factors. With this master formula and given the results on the cou-
pling and kinematic factors collected in Appendices A.1 and A.2, any (next-to-next-to-)
leading-order S-wave or P -wave Wilson coefficient f̂(2s+1Ss), f̂(

2s+1PJ), ĝ(
2s+1Ss) or

ĥi(
2s+1Ss) related to an (off-) diagonal (tree-level) co-annihilation rate χe1χe2 → χe4χe3

can be determined.

In order to consistently treat off-diagonal rates χe1χe2 → χe4χe3 at the same time as
diagonal ones, we refer to the calculation in Feynman gauge throughout in the following.
The two-particle final states XAXB that we account for can be classified to be of vector-
vector (V V ), vector-scalar (V S), scalar-scalar (SS), fermion-antifermion (ff) or ghost-
anti-ghost (ηη̄) type. A list of all considered XAXB states, comprising all possible two
particle states built from SM gauge bosons, fermions, the MSSM Higgses and finally the
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XA

selfenergy (ss)

XBχe1

χe4

χe3

χe2

XA

triangle 1 (t1s)

XB

triangle 3 (t2s) triangle 4 (st2)triangle 2 (st1)

XAXBXB

XBXAXA
χe1

χe4

χe3

χe2

XA

box 1 (t1t2)

XB XB XA XA

XA XB

box 3 (t2t1) box 4 (t2t2)box 2 (t1t1)

XB

χe1

χe2

χe3

χe4

XA

box 1 (t1t2)

XB XB XA XA

XA XB

box 3 (t2t1) box 4 (t2t2)box 2 (t1t1)

XB

χe1

χe2

χe3

χe4

Figure 6.1: Generic one-loop diagrams in χχ → XAXB → χχ reactions. Particles XA

and XB represent any two-body final state of SM and Higgs particles, which can be
produced on-shell in χχ → XAXB annihilations. The box diagrams in the third line
arise in case of XAXB = V V, V S, SS, while the box amplitudes in the last line refer to
the case XAXB = ff .

ghost states, is given in Tab. 6.1. The determination of the absorptive part of the Wilson
coefficients for the processes χe1χe2 → XAXB → χe4χe3 requires the calculation of a large
number of Feynman diagrams. To be able to present the results in an efficient manner it is
convenient to make use of the classification in V V -, V S-, SS-, ff - and ηη̄- type XAXB

particle states and to further subdivide the contributing diagrams according to their
topology. In each of the classes under consideration there arise generic 1-loop amplitudes
with selfenergy, triangle and box topology shown in Fig. 6.1. The generic selfenergy-
diagram as well as the four generic triangle and box diagrams cover all possible kinematic
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configurations4 that can arise in a χe1χe2 → XAXB → χe4χe3 1-loop amplitude. Note
that we have assigned specific directions for the fermion flow in each diagram in Fig. 6.1,
indicated by the arrows, as it is convenient in the context of calculations involving both
Dirac and Majorana fermions, following the Feynman rules for fermion-number violating
interactions set out in [92]. The depicted fermion flows establish our convention to
arrange the external fermion states χei , i = 1, . . . , 4 in descending order, see Tab. 5.2.

We calculate analytically the absorptive part of any of the contributing selfenergy,
triangle and box amplitudes, subject to our convention for the fermion flows and following
the steps from Sec. 6.1.2. Thereby we consider generic external Majorana fermions,
generic t- and u-channel exchanged Majorana fermions or sfermions, genericXAXB states
of type V V, V S, SS, ff and ηη, and hence use generic ‘place-holder’ coupling factors
at each vertex. This allows us to determine the generic form of those terms in the
contributions to the f̂ (d)χχ→XAXB→χχ(2s+1LJ ), that are associated with the kinematics
of the χχ → XAXB → χχ reaction, where each of these kinematic terms multiplies a
certain combination of the place-holder coupling factors. In particular, these kinematic
contributions are generic in the sense that they apply to both the cases of external and
internal Majorana and Dirac fermions.

A specific diagram’s contribution to the absorptive part of a particular χe1χe2 →
XAXB → χe4χe3 MSSM 1-loop process is obtained by replacing the generic place-
holder coupling factors with their actual expressions in the above described generic
Majorana fermion 2 → 2 scattering reactions. Note that by choosing these coupling
factors properly, all χe1χe2 → XAXB → χe4χe3 processes with external and internal
Majorana or Dirac fermions can be covered, although the kinematic contributions are
calculated referring to the generic Majorana fermion 2 → 2 scattering reaction. Hence,
the absorptive part of the Wilson coefficient, which encodes the absorptive part of a
χe1χe2 → XAXB → χe4χe3 scattering reaction, with the incoming and outgoing two-
particle states in a 2s+1LJ partial-wave configuration, can be written as

f̂
(d)χe1

χe2
→XAXB→χe4

χe3

{e1e2}{e4e3} (2s+1LJ)

=
πα2

2

M2

(
∑

n

∑

i1,i2

b
χe1

χe2
→XAXB→χe4

χe3

n, i1i2
BXAXB

n, i1i2
(2s+1LJ)

+
4∑

α=1

∑

n

∑

i1,i2

c
(α)χe1

χe2
→XAXB→χe4

χe3

n, i1i2
C

(α)XAXB

n, i1i2
(2s+1LJ )

+

4∑

α=1

∑

n

∑

i1,i2

d
(α)χe1

χe2
→XAXB→χe4

χe3

n, i1i2
D

(α)XAXB

n, i1i2
(2s+1LJ)

)
. (6.17)

4The case of four different triangle and four different box diagrams in Fig. 6.1 applies to non-identical
particles XA 6= XB. For identical particles XA = XB, triangle (box) 1 and 3 as well as triangle (box) 2
and 4 coincide. In this case only one of the identical diagrams must be taken into account to compute
the corresponding f̂ (d)χχ→XAXA→χχ coefficients. This rule incorporates the symmetry factor of 1/2 in
the cross section for identical final-state particles, that one would take into account in the conventional
calculation of the tree-level χe1χe2 → XAXA annihilation rate.
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Here α2 = g22/4π, where g2 denotes the SU(2)L gauge coupling. The sums in the first
line on the right-hand side of (6.17) collect all contributions from selfenergy amplitudes.
Similarly, the second (third) line gives the triangle (box) amplitudes’ contributions. We
use the index α to enumerate expressions related to the four different triangle and box
amplitudes,5 according to the labelling of the diagrams in Figs. 6.1. Further, we indicate
the kinematic factors of the generic 2 → 2 Majorana fermion scattering amplitudes
within a given class and topology with capital letters (Bn, i1i2, C

(α)
n, i1i2

, D
(α)
n, i1i2

). These are
the quantities that include the kinematics of the process and hence encode the 2s+1LJ
partial-wave specific information. The process-specific coupling factors that multiply the
kinematic factors are denoted with lowercase letters (bn, i1i2, c

(α)
n, i1i2

, d
(α)
n, i1i2

). Depending
on the type of the particles XA and XB as well as the topology, there is a fixed number
of different coupling-factor expressions that can occur, together with the corresponding
kinematic factors. The different contributions are enumerated with the index n in (6.17)
above. Finally, in each of the processes there is a certain set of particle species that
can be exchanged in the s- or the t-channels of the contributing amplitudes. These are
labelled with the indices i1 and i2.

The generic structure of the Wilson coefficients in (6.17) suggests to give the coupling
factors and the kinematic factors separately. A recipe for the construction of the coupling
factors bn, i1i2 , c

(α)
n, i1i2

, d
(α)
n, i1i2

in any of the covered reactions is given in Appendix A.1.

Analytic results for the kinematic factors Bn, i1i2
, C

(α)
n, i1i2

, D
(α)
n, i1i2

for the leading-order
1S0 and 3S1 partial-wave configurations as well as the expressions related to 1P1 partial
waves and the combination of spin-1 P -waves, 3PJ , can be found in Appendix A.2. These
expressions depend on the masses of the external and internal particles in a particular
χe1χe2 → XAXB → χe4χe3 process. However, the kinematic factors are generic in the
sense that their form is the same for all possible external two-body states χe1χe2 and
χe3χe4 of neutralinos or charginos and all XAXB particles within one of the classes
V V, V S, SS, ff or ηη.

The coupling and kinematic factors will depend on the supersymmetric particles’
mixing matrices and masses, respectively. We adopt the same notation as in [62] and
hence introduce the chargino and neutralino mixing matrices Z± and ZN defined via

ZT
− Mχ± Z+ =

(
mχ+

1

mχ+
2

)
, (6.18)

ZT
N Mχ0 ZN =




mχ0
1

mχ0
2

mχ0
3

mχ0
4


 , (6.19)

where Mχ± and Mχ0 denote the chargino and neutralino mass matrices, respectively (for
details regarding the mass matrix expressions refer to Chap. 4 or [62]). mχ+

j
, j = 1, 2,

5For identical particles XA = XB the index α has to be taken from 1 to 2 only, see footnote 4.
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and mχ0
i
, with i = 1, . . . 4 indicate the masses in the mass eigenstate basis of charginos

and neutralinos, ordered according to increasing mass, respectively.
In order to properly apply the formulae for coupling and kinematic factors, collected

in Appendices A.1 and A.2, given a specific MSSM spectrum, it is important to note
that the NRMSSM and hence the analytic expressions for the Wilson coefficients ex-
plicitly rely on the positivity of all mass parameters. This derives from the fact that
the NRMSSM Lagrangian is obtained by extracting the high-energy fluctuations (of the
order of the particle mass) from the relativistic fields, which yields the non-relativistic
kinetic term Lkin shown in (5.2). For species other than the LSP, the procedure leads to
the mass difference terms (mi−mLSP) in (5.2). If any of the mi in Lkin. is negative, then
the corresponding mass difference counts as O(mLSP), an indication that the parametri-
sation used to relate the relativistic and non-relativistic fields for that particle species is
not the appropriate one. The simplest way to obtain the NRMSSM Lagrangian in case
that the mass mχei

of one or several of the external χei particles happens to be negative
for a given MSSM spectrum, is to perform a field redefinition of the corresponding MSSM
fields that yields mass terms with positive mass parameters. Such a field redefinition
affects the chargino and neutralino mixing matrices, which are mapped in the following
way:

Z± → Z̃± = Z± ·



√

sgn(mχ+
1
)
√

sgn(mχ+
2
)


 , (6.20)

ZN → Z̃N = ZN ·




√
sgn(mχ0

1
)
√

sgn(mχ0
2
)
√

sgn(mχ0
2
)
√
sgn(mχ0

2
)



. (6.21)

(We define
√
−1 = i.) The redefined mixing matrices Z̃± and Z̃N as well as the corre-

sponding positive mass parameters for all MSSM neutralino and chargino fields should
be used within the expressions given in Appendices A.1 and A.2.

6.2 Numerical comparison:

Tree-level annihilation rates

As first application of the results from the previous section we consider here the tree-level
pair-annihilation cross sections of non-relativistic χ0/χ± pairs, expressed in terms of the
(next-to-next-to-) leading order S-wave and P -wave Wilson coefficients f̂ (d=6,8)(2s+1LJ).
Our focus is the determination of tree-level χχ annihilation rates (in our non-relativistic
approximation, including the O(v2rel) corrections from P - and next-to-next-to-leading
order S-waves) for generic MSSM scenarios and the comparison to corresponding cross
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sections obtained from publicly available numerical codes. In Sec. 6.3, to the contrary,
we discuss the application of our analytic results for the coefficients f̂ (d=6,8)(2s+1LJ ) to
obtain purely analytic expressions for (off-) diagonal annihilation rates at O(v2rel) in the
simple limiting scenario of the pure-wino NRMSSM.

The expansion of the exclusive, spin-averaged centre-of-mass frame χe1χe2 → XAXB

tree-level pair-annihilation cross section in the non-relativistic momentum ~p of the χei
particles, written in terms of the Wilson coefficients contained in δLann, is given by

σχe1
χe2

→XAXB vrel = f̂(1S0) + 3 f̂(3S1) (6.22)

+
~p 2

M2

(
f̂(1P1) +

1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2) + ĝ(1S0) + 3 ĝ(3S1)

)
+O(~p 4) .

Here vrel = |~ve1 − ~ve2 | is the relative velocity of the χe1χe2 pair and ~vei denotes the ve-
locity of particle χei in the centre-of-mass frame of the annihilation reaction. We have

suppressed the superscripts χe1χe2 → XAXB → χe1χe2 on the Wilson coefficients f̂ (d=6,8)

in (6.22), where these expressions explicitly refer to the exclusive (tree-level) annihila-
tion rates. Further note that here and in the following we use the notation f̂(2s+1LJ),
ĝ(2s+1Ss) and ĥi(

2s+1Ss) for the Wilson coefficients f̂ (d=6,8)(2s+1LJ ), as established in
Chap. 5.

In the non-relativistic limit the relation between the relative velocity vrel and the
particle momentum ~p in the centre-of-mass frame of the χe1χe2 annihilation reaction is
approximated by

vrel = |~ve1 − ~ve2 | = |~p |
(
me1 +me2

me1me2

+O(~p 2)

)
. (6.23)

Together with (6.22), this relation allows us to express the first two coefficients, a and b,
in the Taylor expansion of the χe1χe2 → XAXB centre-of-mass frame annihilation cross
section with respect to the relative velocity,

σχe1
χe2

→XAXB vrel = a+ b v2rel + O(v4rel) , (6.24)

in terms of the partial-wave separated Wilson coefficients f̂χe1
χe2

→XAXB→χe1
χe2 (2s+1LJ)

and ĝχe1
χe2

→XAXB→χe1
χe2 (2s+1LJ). The coefficient a in the expansion is expressed in

terms of the leading-order S-wave Wilson coefficients as

a = f̂(1S0) + 3 f̂(3S1) , (6.25)

and the coefficient b can be written as the sum b = bP + bS, where

bP =
µ2
e1e2

M2

(
f̂(1P1) +

1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2)

)
, (6.26)

bS =
µ2
e1e2

M2

(
ĝ(1S0) + 3 ĝ(3S1)

)
, (6.27)
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and

µe1e2 =
me1me2

me1 +me2

(6.28)

is the reduced mass of the χe1χe2 two-particle state.
The parameters a and b in (6.24) can also be extracted numerically from computer

codes that determine the centre-of-mass frame annihilation cross sections. This is done
by considering the cross section’s behaviour for small relative velocities of the annihilat-
ing particle pair and performing a parabola fit to σχe1

χe2
→XAXB vrel, which provides the

corresponding coefficients a and b. Note, however, that a separation of the coefficient
b into its constituent P -wave, (6.26), and next-to-next-to-leading order S-wave, (6.27),
contributions cannot be achieved with the sole knowledge of the cross section. Likewise,
the separation of the S-wave contributions for the spin singlet and triplet configurations,
as performed in (6.25) and (6.27), requires intervention at the amplitude level, which is
not straightforward for the publicly available computer codes. In contrast our analytic
approach allows us to perform this separation by construction. The separate knowledge
of the different 2s+1LJ partial-wave contributions to the tree-level co-annihilation rates
is indeed essential for a precise determination of Sommerfeld enhanced neutralino co-
annihilation cross sections, because the Sommerfeld enhancements depend both on the
spin- and orbital angular momentum quantum numbers of the annihilating particle pair.
Therefore a consistent treatment of the Sommerfeld enhancement including P -wave ef-
fects requires the separate knowledge of all relevant (off-) diagonal tree-level 1S0 and

3S1

partial-wave annihilation rates both at leading and next-to-next-to-leading order, as well
as the individual (off-)diagonal tree-level 1P1 and

3PJ partial-wave annihilation rates. In
the latter case, the knowledge of the (spin-weighted) sum over the three different 3P0,
3P1 and 3P2 partial-wave Wilson coefficients,

f̂(3PJ ) =
1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2) , (6.29)

is sufficient, as long as only leading-order non-relativistic potential interactions between
the neutralino and chargino states are taken into account in the full annihilation am-
plitudes. This is because the leading-order potential interactions depend on the spin
(s = 0, 1) of the χeaχeb particle pairs taking part in the χiχj → . . . → χe1χe2 →
XAXB → χe4χe3 → . . . → χiχj scattering process, but do not discriminate among the
three spin-1 P -wave states 3PJ with different total angular momentum J = 0, 1, 2. As we
discuss in Chap. 7, we will indeed consider only the leading-order potential interactions
in our application to non-relativistic χ0/χ± pair annihilations in the χ0

1 relic abundance
calculation, such that the knowledge of the spin-weighted Wilson coefficient f̂(3PJ ) in
(6.29) is sufficient for our purposes. In Appendix A.3 we therefore give analytic results
for the kinematic factors related to the spin-weighted coefficients f̂(3PJ ) rather than
the separate spin-1 P -wave coefficients f̂(3P0), f̂(

3P1) and f̂(
3P2). However we have de-

termined the individual kinematic factors, that build the three different spin-1 P -wave
coefficients, separately. Results on those are for example included in the electronic sup-
plement, that comes with the publication [32]. Also our numerical code, that allows for
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the determination of the (off-) diagonal short-distance annihilation rates in χ0/χ± pair
annihilations and that has been developed as part of this work, contains separate results
for the spin-1 P -wave Wilson coefficients f̂(3P0,1,2).

Recently, Sommerfeld corrections including P -wave effects have been subject of study
at 1-loop [93] and with full resummation [94]. In these studies, the next-to-next-to-
leading order contributions in the expansion of the relevant (co-)annihilation rates were
assumed to be given only by P -waves. While such reasoning is justified when the leading-
order S-wave contributions to the annihilation rates are strongly suppressed with respect
to the next-to-next-to-leading order coefficients in (6.24), it does not hold for the general
case. In particular, P - and next-to-next-to-leading order S-wave terms can come with
differing signs, such that a partial compensation of different next-to-next-to-leading order
contributions to the annihilation rates may occur. We illustrate this effect in Sec. 6.2.1.

We have performed a dedicated numeric check of our results for the non-relativistically
approximated χe1χe2 → XAXB tree-level annihilation cross sections as given in (6.22,
6.24) for all initial state two-particle pairs in Tab. 5.1 into all accessible SM and Higgs
two-particle final states. To this end several MSSM spectra have been considered, which
we compute using the spectrum calculator SuSpect [86] and its implementation of the
phenomenological MSSM, a model with 27 free parameters. For each spectrum, we ob-
tain the coefficients a and b in (6.25) and (6.26, 6.27) from our analytic calculation, and
compare them with the corresponding coefficients extracted purely numerically using
MadGraph [89] to calculate the cross sections. Our results for the coefficient a agree
with the corresponding numeric expression extracted from MadGraph data at per mil
level. Similarly, we find agreement of the coefficients b derived with (6.26, 6.27) and
extracted from MadGraph data at 1% up to per mil level, where the level of agree-
ment slightly varies depending on the initial- and final-state particles. In addition, the
level of agreement on the parameter b depends on the interval of the vrel variable used
for the parabola fit to the MadGraph data, which for the numbers quoted above is
taken as vrel/c = [0, 0.4]. We find that the non-relativistic approximation is reliable
for single-particle velocities up to vei/c ∼ 0.3. For such velocities the absolute error
of the non-relativistic approximation to σχe1

χe2
→XAXB vrel with respect to the unex-

panded σχe1
χe2

→XAXB vrel expression lies within the level of a few percent. Therefore the
non-relativistic approximation has an acceptable accuracy for calculations in the early
Universe during the time of χei-decoupling, as the mean velocity of the χei in that period
was around vei/c ∼ 0.2.

In the following subsections we give several examples for the numerical comparison
with MadGraph. In addition we discuss in detail the impact of the different partial-
wave contributions on the corresponding annihilation cross section times relative velocity,
σχe1

χe2
→XAXB vrel, as obtained from our results. To this end we have selected processes

with significantly different S- and P -wave dependence. The SuSpect-generated MSSM
spectrum, that underlies all results presented in the next sections, contains a wino-like
neutralino LSP with mass mχ0

1
= 2748.92GeV, and an almost mass-degenerate wino-like

chargino partner with mχ+
1
= 2749.13GeV.
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Figure 6.2: Left plot: Numeric comparison of the non-relativistic approximation (solid
line) to the tree-level annihilation cross section times relative velocity, σ vrel, for the
χ+
1 χ

+
1 →W+W+ process with the corresponding unexpanded annihilation cross section

produced withMadGraph. Right plot: Comparison between MadGraph data and our
non-relativistic approximation (solid line) to σvrel for the χ

+
1 χ

−
1 → W+W− reaction. In

addition the dash-dotted red (dashed black) curve represents the constant leading-order
term in the non-relativistic expansion of the cross section plus the P -wave (next-to-
next-to-leading order S-wave) contribution, a + bP v

2
rel (a + bS v

2
rel). Numeric errors on

the MadGraph data are given by σ vrel/
√
N , where N = 105 gives the number of events

used in the MadGraph calculation of each cross section value.

6.2.1 χ+
1 χ

+
1 → W+W+ and χ+

1 χ
−
1 → W+W−

We start with the discussion of two exclusive tree-level annihilation cross sections that
are particularly relevant in the calculation of the neutralino LSP relic abundance for
heavy χ0

1 dark matter including co-annihilations,6 namely the annihilation rate of the
double-charged two particle state χ+

1 χ
+
1 into the exclusive final state W+W+ as well as

the exclusive reaction of the neutral two particle state χ+
1 χ

−
1 into a pair of oppositely

charged W bosons.
The plot on the left-hand side of Fig. 6.2 displays the annihilation cross section times

the relative velocity for the double-charged reaction χ+
1 χ

+
1 → W+W+. For vrel/c . 0.4

our analytic, non-relativistic approximation nicely reproduces the numeric, unexpanded
cross section σχ

+
1 χ

+
1 →W+W+

vrel determined with MadGraph. Furthermore, as the ab-
solute curvature in this reaction is rather small compared to the coefficient a, even the
absolute error that one would make in using the non-relativistic approximation instead
of the full cross section is only of the order of 2% for vrel/c ∼ 0.6. The coefficient b for
this reaction, calculated using (6.26, 6.27), is given by 1.27 · 10−27 cm s. Its P - and S-
wave contributions are of the same order and read 2.95 ·10−27cm s and −1.68 ·10−27 cm s,
respectively. Obviously they enter with opposite sign and partially cancel each other.

6A heavy χ0
1 dark matter candidate, that explains all the observed cold dark matter as thermal relic

is typically either wino- or higgsino-like or a wino-higgsino mixture. In these cases the two gauge boson
final states XAXB = V V give dominant contributions to the inclusive χχ co-annihilation cross sections
in the χ0

1 relic abundance calculation.
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Such partial compensation of the P - and next-to-next-to-leading order S-wave contri-
butions to the cross section can be seen explicitly in the right hand side plot in Fig. 6.2.
The plot displays the χ+

1 χ
−
1 → W+W− tree-level annihilation rate, where the solid

blue line corresponds to the non-relativistic approximation to the tree-level annihila-
tion cross section, σχ

+
1 χ

−

1 →W+W−

vrel, and the points correspond to the full tree-level
result obtained with MadGraph. The deviation between our approximation and the
MadGraph data is at one percent level for vrel/c ∼ 0.6 and in the per mil regime
for smaller relative velocities. In addition the composition of the non-relativistic ap-
proximation to σχ

+
1 χ

−

1 →W+W−

vrel out of P - and next-to-next-to-leading order S-wave
contributions can be directly read off from Fig. 6.2: the dash-dotted red line repre-
sents the contribution a + bP v2rel to (6.24), while the dashed black line is a + bS v2rel.
While both bP and bS are roughly of the same order of magnitude, the summed P -
wave contributions enter with a positive sign (bP c

2 = 1.86 · 10−27 cm3 s−1), whereas the
summed next-to-next-to-leading order S-wave contributions come with a negative weight,
bS c

2 = −0.88 · 10−27 cm3 s−1. It is worth noting that the sum of next-to-next-to-leading
order corrections in the χ+

1 χ
−
1 → W+W− tree-level cross section times relative velocity

gives a ∼ 6% correction to the leading-order approximation for vrel/c ∼ 0.4. For this
relative velocity, the corrections to the leading-order approximation from P -waves only
amount to ∼ 11%, while those from next-to-next-to-leading order S-wave contributions
amount to ∼ −5%. Hence, in the light of the expected future experimental precision on
the measured dark matter density, it is crucial to take these corrections into account.
Further, as generically the Sommerfeld enhancements for each of the contributing par-
tial waves are different, we consistently consider the Sommerfeld enhancements on the
different partial-wave contributions to the cross sections separately.

The fact that the P -wave terms in the two examples of Fig. 6.2 contribute with pos-
itive sign is generic: the sum of all 2s+1PJ partial-wave contributions to any χe1χe2 →
XAXB annihilation cross section has to be positive, as it results from the absolute square
of the coefficient of theO(p) terms in the expansion of the annihilation amplitude. More-
over, the separate 2s+1PJ partial-wave contributions must also be positive, since different
2s+1PJ -wave amplitudes do not interfere in the absolute square of the annihilation am-
plitude due to total angular-momentum conservation and the additional conservation of
spin in the non-relativistic regime. The next-to-next-to-leading order S-wave contribu-
tions to the χe1χe2 → XAXB annihilation cross section, however, result from the product
of leading-order and next-to-next-to-leading order S-wave contributions in the expansion
of the χe1χe2 → XAXB amplitude. There is a priori no reason why this product should
be positive, and hence negative next-to-next-to-leading order S-wave contributions to
the cross section can occur, as can be explicitly seen in the examples presented in this
section.

6.2.2 The S-wave dominated processes χ0
1χ

+
1 → tb, ud

We continue with the discussion of χ0
1χ

+
1 annihilation reactions into exclusive final states

built from a pair of fermions. The plot on the left-hand side in Fig. 6.3 depicts the
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Figure 6.3: Left plot: The non-relativistic approximation (solid line) to the tree-level
annihilation cross section times relative velocity, σ vrel, for the χ

0
1χ

+
1 → tb process com-

pared to the corresponding unexpanded annihilation cross section produced with Mad-

Graph. Right plot: Similarly to the left figure, we compare MadGraph data and
our non-relativistic approximation (solid line) to σvrel for the χ0

1χ
+
1 → ud reaction. In

addition we show the different partial-wave contributions to the cross section in our
non-relativistic approximation: the dash-dotted red (dashed black) curve represents the
constant leading-order term in the non-relativistic expansion plus the P -wave (next-to-
next-to-leading order S-wave) contribution, a + bP v

2
rel (a + bS v

2
rel). The numeric errors

on the MadGraph data are taken to be σ vrel/
√
N , where N = 105 gives the number

of events used in the MadGraph calculation of each cross section value.

annihilation reaction χ0
1χ

+
1 → tb with (massive) fermionic final states. As it receives

significant leading-order S-wave contributions, this annihilation process is also relevant
in the neutralino LSP relic abundance calculation including co-annihilation processes.
Here it turns out that the b coefficient is S-wave dominated, as the contributions from
P -waves are suppressed by five orders of magnitude. Such suppression also arises for the
exclusive ud final state (generically for all χ0

1χ
+
1 → ff reactions). We discuss the reason

for this P -wave suppression below. Let us stress here that our analytic results for the
Wilson coefficients include the full mass dependence of the final state particles and can
be applied to MSSM scenarios with flavour off-diagonal sfermion generation mixing as
well.

The right-hand plot in Fig. 6.3 shows results for the S-wave dominated tree-level
χ0
1χ

+
1 → ud annihilation process, also of importance in the neutralino relic abundance

calculation including co-annihilations. Here we display again explicitly the separate con-
tributions from P - and next-to-next-to-leading order S-waves, which makes the domi-
nance of S-wave contributions particularly apparent. The dashed black line, representing
the a+ bS v

2
rel contribution to the non-relativistic expansion of the annihilation rate with

bS c
2 = −0.78 · 10−27 cm3 s−1, basically coincides with the solid blue line, which corre-

sponds to the complete non-relativistic approximation (6.24). MadGraph produced
data for the χ0

1χ
+
1 → ud tree-level annihilation rate are shown in addition, illustrating

once again the nice agreement of the non-relativistic approximation with the unexpanded
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tree-level cross section results for relative velocities up to vrel/c ∼ 0.6.
It is worthwhile to understand the suppression of P -waves with respect to the next-to-

next-to-leading order S-wave contributions in the χ0
1χ

+
1 → tb, ud processes (generically

χ0
1χ

+
1 → ff for the given MSSM spectrum) as well as the composition of the correspond-

ing coefficients bS out of their 1S0 and
3S1 partial-wave contributions: First note, that in

the case of vanishing final state masses, mu = md = 0, the contributions to both a and
bS can be attributed solely to 3S1 partial waves. The absence (or more generally the sup-
pression in mq/M , q = u, d) of 1S0 partial-wave contributions both in the leading-order
coefficient a and in bS is a helicity suppression effect. The helicity suppression argument
applies to all 2s+1LJ partial-wave reactions with J = 0, as the final state of a massless
(left-handed) quark and a massless (right-handed) anti-quark in its centre-of-mass sys-
tem cannot build a total angular-momentum state J = 0. Hence both 1S0 as well as

3P0

partial-wave contributions are helicity suppressed.
The suppression of 1P1,

3P1 and
3P2 partial-wave contributions that proceed through

single s-channel gauge boson or Higgs exchange is related to either factors of ∆m =
(mχ0

1
−mχ+

1
)/(mχ0

1
+mχ+

1
) or to vertex couplings that vanish in the exact SU(2)L sym-

metric limit. Similarly, contributions from t-channel exchange amplitudes introduce
∆m factors or coupling factor combinations that lead to vanishing contributions in the
SU(2)L symmetric theory (case of 1P1 waves), or are additionally suppressed (as it is the
case of 3P1 and 3P2 partial-wave configurations) by the masses of t-channel exchanged
sfermions, since the mass scale of the latter is above 5TeV in the MSSM scenario con-
sidered. Consequently, as the initial two particle state in the reactions χ0

1χ
+
1 → tb, ud

consists of two wino-like particles with |∆m| ∼ 4 · 10−5, the 1P1,
3P1 and 3P2 partial

waves give suppressed contributions to the tree-level annihilation rate.

6.2.3 The P -wave dominated reaction χ+
2 χ
−
2 → h0h0

An example of a P -wave dominated process is provided in the left plot of Fig. 6.4. It
corresponds to the tree-level χ+

2 χ
−
2 → h0h0 annihilation, wherein S-wave contributions

vanish, such that the process is purely P -wave mediated in the non-relativistic regime
(the coefficient bP c

2 is given by 9.94·10−29 cm3 s−1). The absence of S-wave contributions
can be explained by CP and total angular-momentum conservation in the χ+

2 χ
−
2 → h0h0

reaction.7 The CP quantum number of the final two-particle state h0h0 is given by
CP = (−1)L = (−1)J , as the total angular momentum of a h0h0 state coincides with
its orbital angular momentum and the parity of such a state is given by P = (−1)L,
while its charge conjugation is C = 1. In case of the annihilating χ+

a χ
−
a two-particle

state the JPC quantum numbers are 0−+ for a 1S0 partial-wave configuration and 1−−

for a 3S1 partial-wave state. Hence, for the χ+
a χ

−
a state, CP = −1 is realised in case of

S-waves for the J = 0 configuration, and CP = +1 for J = 1, which are opposite to

7The following reasoning applies to all possible χ+
a χ

−
a → XAXB annihilation reactions with two CP -

even MSSM Higgs particles in the final state, XAXB = h0h0, h0H0, H0H0. Note that CP is conserved
in these reactions if the mixing matrices in the chargino sector are real, which is the case for the scenario
we consider.
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Figure 6.4: Left plot: Numeric comparison of the non-relativistic approximation (solid
blue curve) to the tree-level annihilation cross section times relative velocity, σ vrel, for the
P -wave dominated χ+

2 χ
−
2 → h0h0 reaction to data for the corresponding unexpanded an-

nihilation cross section produced with MadGraph. Numeric errors on the MadGraph

data are taken to be σ vrel/
√
N , where N = 105 gives the number of events used in the

MadGraph calculation of each cross section value. The dash-dotted red and dashed
black lines represent the constant leading-order term plus the P -wave or the next-to-
next-to-leading order S-wave contribution, a + bP v

2
rel or a + bS v

2
rel, respectively. Note

that the a+bP v
2
rel contribution and the non-relativistic approximation coincide, as there

are no S-wave contributions in this particular annihilation reaction. Right plot: Off-
diagonal annihilation rate Γ for the reaction χ+

1 χ
−
1 → W+W− → χ+

2 χ
−
2 . The solid line

includes all contributions to Γ up to next-to-next-to-leading order in the non-relativistic
expansion. It is obtained from (6.30) assuming that p and p′ are parallel to each other.
The constant dotted blue line gives the leading-order approximation to Γ. Summing the
P - or the (momentum-dependent) next-to-next-to-leading order S-wave contributions to
the constant S-wave terms (given by the leading order plus the terms proportional to δm
and δm) yields the dash-dotted red or the dashed black line, respectively. The curves

are plotted against the relative velocity v
(in)
rel of the incoming state χ+

1 χ
−
1 .

the CP quantum numbers of a h0h0 final state with the same total angular momentum.
The same reasoning explains the absence of 3P1 annihilations in any of the processes
χ+
a χ

−
a → XAXB with XAXB = h0h0, h0H0, H0H0, as the JPC quantum numbers of the

3P1 partial-wave configuration of the incoming χ+
a χ

−
a states are 1++, hence CP = +1 for

J = 1. This is opposite to the CP quantum number of the two CP -even Higgs boson
final state with total angular momentum J = 1.

Let us finally note that there are also no contributions from 1P1 partial waves in the
process shown in the left plot in Fig. 6.4. This feature is generic to χ+

a χ
−
b → XAXB

annihilations with identical scalar particles in the final state, XAXB = h0h0, H0H0.
The argument relies on the statistics of the final state identical bosons, and applies
to all χ+

a χ
−
b incoming states and not only to particle-anti-particle states χ+

a χ
−
a : Bose

statistics forbids the two identical final state scalars to be in a J = L = 1 state, as the
corresponding two-particle wave-function for odd total angular momentum J would be
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anti-symmetric. This argument can also be used to explain the absence of the J = 1 3S1

and 3P1 states in a χ+
a χ

−
b → h0h0, H0H0 annihilation reaction.

Generically, if the coefficient a in the expansion (6.24) is suppressed with respect to
the coefficient b, the curvature and hence the corresponding non-relativistic annihilation
process is P -wave dominated. This property derives from the fact, that the leading-
order coefficient a is related to the product of the leading-order S-wave contributions
to the tree-level annihilation amplitude with its complex conjugate. As the next-to-
next-to-leading order S-wave contributions to the coefficient b result from the product of
leading-order with next-to-next-to-leading order S-wave contributions in the annihilation
amplitudes, a suppressed coefficient a indicates a small next-to-next-to-leading order S-
wave contribution to the coefficient b as well.

6.2.4 The off-diagonal χ+
1 χ
−
1 →W+W− → χ+

2 χ
−
2 rate

In order to discuss the importance of the non-relativistic corrections to not only the cross
sections but also the off-diagonal annihilation rates, we generalise the definition of the
annihilation rates to include off-diagonal reactions. We define the centre-of-mass frame
tree-level annihilation rate Γ associated with the (off-) diagonal χe1χe2 → XAXB →
χe4χe3 scattering reaction as the product of the χe1χe2 → XAXB tree-level annihilation
amplitude with the complex conjugate of the tree-level amplitude for the χe4χe3 →
XAXB annihilation reaction, integrated over the final XAXB particles’ phase space8 and
averaged over the spin states of the respective incoming particles χei, i = 1, . . . , 4. In the
latter spin-average it is assumed that the χe1χe2 and χe4χe3 pair reside in the same spin
state.9 The external χeaχeb states are further taken to be non-relativistic normalised
in order to match with the definition of the annihilation cross section times relative
velocity in case of diagonal reactions χe1χe2 → XAXB → χe1χe2. In terms of the Wilson
coefficients of the four-fermion operators, the expansion of the annihilation rate Γ in the
non-relativistic momenta and in the mass differences δm, δm, is then given by

Γχe1
χe2

→XAXB→χe4
χe3 = f̂(1S0) + 3 f̂(3S1) (6.30)

+
δm

M

(
ĥ1(

1S0) + 3 ĥ1(
3S1)

)
+
δm

M

(
ĥ2(

1S0) + 3 ĥ2(
3S1)

)

+
p · p ′

M2

(
f̂(1P1) +

1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2)

)

8 The product of tree-level annihilation amplitudes has to be multiplied with an additional symmetry
factor of 1/2 if the final state particles are identical, XA = XB.

9In the calculation of Sommerfeld enhanced χiχj → XAXB pair-annihilation rates through the imag-
inary part of the χiχj → . . . → χe1χe2 → XAXB → χe4χe3 → . . . → χiχj forward scattering reaction,
the assumption that the incoming and outgoing particle pairs in the χe1χe2 → XAXB → χe4χe3 short-
distance annihilation part have the same spin state implies that just leading-order potential interactions
in the χiχj → . . . → χe1χe2 and χiχj → . . . → χe4χe3 scattering reactions are considered, since the
long-range potentials are spin-diagonal only at leading order and hence pass the spin-configuration of
the incoming χiχj pair to the χe1χe2 and χe4χe3 pairs. Note that we restrict to the case of leading-order
potential interactions in this work, see Sec. 7.
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+
p 2 + p ′ 2

2M2

(
ĝ(1S0) + 3 ĝ(3S1)

)

+ O
(
(p 2 + p ′ 2)2, (p · p ′)2, p (′)2δm, p (′)2δm, δm δm

)
,

where p and p ′ correspond to the momenta of the χe1 and χe4 particle, respectively, in
the centre-of-mass frame of the reaction. To shorten the notation we have suppressed
in (6.30) the label “χe1χe2 → XAXB → χe4χe3” on the Wilson coefficients f̂ , ĝ and
ĥi. As we study annihilation rates of non-relativistic χeaχeb particle pairs, the mass
differences δm and δm have to be (at most) of the order of the χeaχeb non-relativistic
kinetic energy, as argued in Sec. 6.1.2. Note that the non-relativistic expansion (6.30)
incorporates this convention and assumes that δm, δm ∼ O(p2/M). In case of diago-
nal χe1χe2 → XAXB → χe1χe2 scattering reactions, the definition of the corresponding
annihilation rate Γ obviously coincides with the definition of the spin-averaged centre-
of-mass frame tree-level χe1χe2 → XAXB annihilation cross section times relative ve-
locity,S σχe1

χe2
→XAXB vrel, and the expansion in (6.30), with p ′ = p, reduces to the

non-relativistic expansion of σχe1
χe2

→XAXB vrel as given in (6.22).
As an example for an off-diagonal rate Γ we show in the right-hand plot in Fig. 6.4

the off-diagonal annihilation rate associated with the process χ+
1 χ

−
1 → W+W− → χ+

2 χ
−
2 ,

which is relevant, for instance, in the calculation of the (exclusive) Sommerfeld-enhanced
χ0
1χ

0
1 →W+W− and χ+

1 χ
−
1 → W+W− co-annihilation cross sections. The mass splitting

between the χ±
1 and χ±

2 charginos is given by 324.18GeV in the MSSM scenario con-
sidered, which results in rather large mass differences, namely δm = δm = 162.09GeV.
In this case, the Wilson coefficients h1 and h2, that are proportional to δm and δm,
lead to a 1% positive correction to the constant leading-order rate. This positive
shift corresponds to the difference between the leading-order approximation to the an-
nihilation rate Γ (first line in (6.30), dotted blue line in the right plot in Fig. 6.4),
and the complete non-relativistic result for Γ including next-to-next-to-leading cor-
rections (solid blue line) at zero momentum. The corrections induced by the terms
proportional to δm, δm turn out to be somewhat smaller than the naive expectation
δm/M = δm/M = 2.78%, but represent nevertheless the dominant next-to-next-to-
leading order correction up to vrel/c ∼ 0.16. For larger relative velocities, the P - and
next-to-next-to-leading order S-wave terms provide larger contributions to the absorp-
tive part of the χ+

1 χ
−
1 → W+W− → χ+

2 χ
−
2 scattering amplitude. This is indicated

by the dash-dotted red and dashed black curves, which result from the addition of the
constant S-wave contributions (first two lines in (6.30)) and the P -wave contributions
(third line in (6.30)) or the momentum-dependent S-wave next-to-next-to-leading terms
(fourth line in (6.30)), respectively. The correction to the leading-order Γ rate due to
the P - and next-to-next-to-leading order S-wave terms amounts to a 7% for vrel/c = 0.4.

Note that no comparison with public numeric codes providing results for (tree-level)
χχ → XAXB annihilation rates is available for the off-diagonal annihilation rates. The
calculation of the partial-wave decomposed off-diagonal annihilation rates therefore con-
stitutes one of our main results regarding the hard annihilation reactions in the effective
theory. The relevance of off-diagonal annihilation rates in the calculation of Sommerfeld
enhanced co-annihilation amplitudes in context of the χ0

1 relic abundance calculation is in

105



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.20

1.25

1.30

1.35

vrel�c

10
27
Σ

v r
el
@c

m
3 �

sD

Χ1
0Χ3

0 ®W+H-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

vrel�c

10
33
Σ

v r
el
@c

m
3 �

sD

Χ1
+Χ2
- ® H+H-

Figure 6.5: Numeric comparison of the non-relativistic approximation (solid line) to σ vrel
for the two neutral hydrogen-like two-body states χ0

1χ
0
3 → W+H−(left) and χ+

1 χ
−
2 →

H+H−(right) to data produced with MadGraph. Again, we take the errors on the
MadGraph data to be σ vrel/

√
N , where N = 105 gives the number of events used

in the MadGraph calculation of each cross section value. The process on the right-
hand side is dominated by P -wave annihilations. The underlying MSSM spectrum is the
same as in the plots in Fig. 6.2 – 6.4, where the masses of the χ0

3 and χ−
2 are given by

mχ0
3
= 3061.99GeV and mχ−

2
= 3073.31GeV. The mass of the Higgs particles H± takes

the value mH± = 167.29GeV.

particular investigated in Chap. 9. There we discuss in detail the effect on Sommerfeld-
enhanced co-annihilation rates when off-diagonal rates are wrongly neglected or correctly
included in the calculation.

6.2.5 Annihilation cross sections of “hydrogen-like” χχ states

The plots in Fig. 6.5 show that our results can not only be used to describe pair anni-
hilations of nearly mass-degenerate incoming particles χe1χe2 → XAXB, but also apply
to annihilations of a non-relativistic “hydrogen-like” χe1χe2 two-particle system of non-
degenerate-in-mass constituents. We will not investigate such systems further in later
chapters. However we like to emphasise with the following two examples, that our results
allow to describe the tree-level annihilation reactions of such non-relativistic χχ states
as well and to very good accuracy. Let us note that we use the notion “hydrogen-like”
to refer to two-particle states with non-degenerate-in-mass constituents, where the mass
difference between the two constituents is larger than several 100GeV.

The plot on the left hand side in Fig. 6.5 corresponds to the pair annihilation of a
hydrogen-like χ0

1χ
0
3 state into a W+H− final state, with mχ0

3
= 3061.99GeV, which is

dominated by leading-order S-wave contributions. The curvature is driven negative by
the next-to-next-to-leading order S-wave contributions bS to the coefficient b, given by
bS c

2 = −5.29 · 10−28 cm3 s−1. The P -wave contributions are however of the same order
and read bP c

2 = 1.30 · 10−28cm3 s−1.
The right plot in Fig. 6.5 again refers to a hydrogen-like incoming two-body system,

χ+
1 χ

−
2 , where the mass of the second chargino is given bymχ−

2
= 3073.31GeV. In this case
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the annihilation χ+
1 χ

−
2 → H+H− is P -wave dominated: the P -wave contribution bP to

the coefficient b is given by bP c
2 = 2.48·10−31 cm3 s−1. Both the leading and next-to-next-

to-leading order S-wave contributions are strongly suppressed and of O(10−33 cm3/s).

6.3 Application of the analytic results at O(v2
rel):

A pure-wino NRMSSM sample calculation

In this section we illustrate the usage of the analytic kinematic and coupling factor
results collected in Appendices A.1–A.3. To this end we consider the idealised pure-wino
NRMSSM, which allows to present compact analytic results. First we give a detailed
end-to-end calculation of the non-relativistic annihilation cross section for the χ+

1 χ
−
1 →

W+W− reaction including up to O(v2rel) effects. We start from the construction of
the coupling factors in this process in Sec. 6.3.1 and continue in Sec. 6.3.2 with the
determination of the corresponding kinematic factors and the final approximation to
the annihilation cross section. In Sec. 6.3.3 we subsequently provide the results for
the Wilson coefficients needed to determine all exclusive (off-) diagonal co-annihilation
rates χe1χe2 → XAXB → χe4χe3 in the decoupling limit of the pure-wino scenario.
To the best of our knowledge the analytic results for the P - and O(v2rel) S-wave (off-)
diagonal annihilation rates in the pure-wino NRMSSM have not been given before in
the literature and were first published in [32]. They can be of interest in the study
of next-to-next-to-leading order effects in Sommerfeld-enhanced pure-wino dark matter
annihilations in the Early Universe.

Later in Chap. 9 we will compare results on Sommerfeld-enhanced co-annihilation
rates in the relic abundance calculation for wino-like χ0

1 dark matter to corresponding
results within the pure-wino NRMSSM. As we will discuss in detail, the knowledge of
all off-diagonal rates is crucial for an accurate determination of the χ0

1 relic abundance
including Sommerfeld enhancements. Furthermore we will show that the precise value
of the calculated relic density depends on the details of the spectrum, such that results
from a study in the pure-wino limit do not directly apply to scenarios with wino-like χ0

1.
Nevertheless the pure-wino NRMSSM allows to give a clear illustration how the Wilson
coefficients are constructed from our analytic results. In addition, generic properties of
wino-like χ0

1 scenarios can be deduced from the pure-wino NRMSSM results.

The pure-wino (toy-)NRMSSM scenario is characterised by the mass-degenerate
SU(2)L fermion triplet states χ0

1, χ
±
1 (winos) with mass scale M2 > 0, where the latter

denotes the soft SUSY-breaking wino mass.10 All other SUSY mass parameters includ-

10As regards the hard annihilation rates, the pure-wino states χ0
1 and χ±

1 can be treated as mass-
degenerate: The hard pure-wino χχ annihilation reactions are characterised by the scale 2M2. The
χ+
1 /χ

0
1 mass splitting, δmχ+

1

= mχ+

1

− mχ0
1
≪ M2, is O(160MeV) in the pure-wino limit [80], and

therefore gives subleading contributions to the hard rates forO(TeV) pure-wino states. In the application
of our results to generic MSSM scenarios we treat the external state masses in the hard annihilation cross
sections exactly – in the pure-wino NRMSSM we use mχ+

1

= mχ0
1
= M2. However, as far as the long-

range potential interactions and the corresponding Schrödinger equations are concerned, the one-loop
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ing the Bino soft mass M1 and the Higgsino mass parameter µ as well as all sfermion
mass parameters are assumed to be much larger than M2, namely M1, |µ| ≫ M2. Con-
sequently all heavier states χ0

i , i = 2, 3, 4 and χ±
2 as well as all sfermion states are

treated as completely decoupled. According to the SU(2)L symmetric limit the SU(2)L
gauge bosons as well as all Standard Model fermions are treated as massless in the hard
annihilation rates, in agreement with the complete mass-degeneracy between the non-
relativistic states χ0

1 and χ
±
1 . The neutralino and chargino mixing matrix entries relevant

to the calculation in the pure-wino NRMSSM read

Z̃N i1 = δi2 , Z̃± i1 = δi1 , (6.31)

where the Z̃N , Z̃± derive from the conventionally defined neutralino and chargino mixing
matrices ZN , Z± by accounting for a potentially necessary rotation to positive mass
parameters in the NRMSSM, as defined through (6.20, 6.21). Such a rotation does
however not affect the above mixing-matrix entries relevant in the pure-wino NRMSSM
withM2 > 0. Finally, let us introduce the notationmχ =M2 for the only mass parameter
present in the annihilation rates of the pure-wino NRMSSM scenario.

6.3.1 Coupling factors

In this section we strongly rely on the generic rules to construct the coupling factors set
out in Appendix A.1. In order to follow the discussion below it is therefore recommend-
able to first read the corresponding chapter in the appendix, where the construction of
coupling factors in the generic case is discussed and our notation is established. The
application of the generic rules to the coupling factors in the χ+

1 χ
−
1 →W+W− process in

this chapter will then give a nice illustration on the construction of the coupling factors.

In Appendix A.1 we note that each of the coupling factors bn, c
(α)
n , d

(α)
n in (6.17) related

to a specific χe1χe2 → XAXB → χe4χe3 reaction is given by a product of two coupling
factors associated with the two vertices occurring in the tree-level annihilation amplitude
A(0)
χe1

χe2
→XAXB

and the complex conjugate of another such two-coupling factor product

related to the tree-level amplitude A(0)
χe4

χe3
→XAXB

. The building blocks of the bn, c
(α)
n , d

(α)
n

relevant in χ+
1 χ

−
1 → XAXB annihilation rates are therefore given by the (axial-) vector

or (pseudo-) scalar vertex factors in the χ+
1 χ

−
1 → XAXB tree-level annihilation ampli-

tudes. Since our results for the kinematic factors refer to Feynman gauge, in order to
determine the annihilation rates into a physical W+W− final state we have to consider
χ+
1 χ

−
1 annihilations into the exclusive final states XAXB = W+W−,W+G−,W−G+,

G+G−, η+η+, η−η−, with G± the charged pseudo-Goldstone Higgs and η± the charged
ghost particles. In the pure-wino NRMSSM, the only non-vanishing amplitudes are
given by the diagrams depicted in Fig. 6.6, which we should compare with the generic

mass splitting between the slightly heavier χ±
1 states and the χ0

1 is accounted for also in the pure-wino
NRMSSM. This one-loop mass splitting counts at the same order as the typical non-relativistic kinetic
energies in reactions of non-relativistic pure-wino χχ states.
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diagram t2

χ0
1

W+
µ

W−
ν

χ−1

χ+
1

ig2V
µ(t2)
e1i1

ig2V
ν(t2)
e2i1

diagram s

χ+
1

χ−1 W+
µ

W−
ν

Xi = Z, γ

χ+
1

χ−1

Xi = Z, γ

G+

G−

diagram s

ig2V
σ(s)
e1e2

ig2 cW+W−Xi LWWXi ig2 cG+G−Xi LGGXi

ig2V
σ(s)
e1e2

ghost loop diagram

χ+
1

χ−1

η±

η±

Xi1 = Z, γ

ig2V
σ(s)
e1e2

ig2 cηηXi1 LηηXi1

Xi2 = Z, γ

ig2 cηηXi2 LηηXi2

Figure 6.6: Amplitudes contributing to the physical χ+
1 χ

−
1 →W+W− annihilation reac-

tion in Feynman gauge. Note the fermion flow, that has been fixed to match with the
conventions established in Fig. A.1 in Appendix A.1.

χχ→ XAXB diagrams drawn in Fig. A.1 in order to extract the coupling factors in ac-
cordance to the conventions established in Appendix A.1. In particular note the fermion
flow in the diagrams in Fig. 6.6, which coincides with the convention used in the generic
χe1χe2 → XAXB diagrams in Fig. A.1. In the case of diagram t2 in Fig. 6.6, which

contributes both to the box and triangle coupling factors, d
(α)
n, i1i2

and c
(α)
n, i1i2

, the vertex

factors V
ρ(t2)
ei read

V
µ(t2)
e1i1

= γµ
(
vW∗
e1i1

+ aW∗
e1i1

γ5
)
, V

ν(t2)
e2i1

= γν
(
vWe2i1 + aWe2i1γ5

)
, (6.32)

where e1, e2 = 1 as these indices refer to the external states χe1 = χ+
1 and χe2 = χ−

1 . In
the pure-wino NRMSSM, the only possible t-channel exchanged particle in diagram t2
is χ0

1, therefore i1 = 1. Comparing to the generic vertex factor V
ρ(d)
ei = γρ(r

(d)
ei + q

(d)
ei γ5),

we identify the expressions that substitute the respective place-holder couplings r
(d)
ei and

q
(d)
ei :

(
{r(t2)e1i1

, q
(t2)
e1i1
}, {r(t2)e2i1

, q
(t2)
e2i1
}
)
→

(
{vW∗

11 , a
W∗
11 }, {vW11 , aW11}

)
. (6.33)

Let us obtain first the coupling factors d
(α)
n, i1i2

related to the four box amplitudes shown
in the third row of Fig. 6.1. As there is no t-channel exchange diagram t1, the only
non-vanishing coupling factors d

(α)
n, i1i2

are those with label α = 4: d
(4)
n, i1i2

expressions arise
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from the product of coupling factors in χe1χe2 → XAXB annihilation diagrams of type
t2 with the complex conjugate of the coupling factors associated with χe4χe3 → XAXB

annihilation via diagram type t2.
11 The constituent coupling factors for the d

(4)
n, i1i2

in
χ+
1 χ

−
1 →W+W− → χ+

1 χ
−
1 scattering are collected in the following table:

α = 4 :
(
{r(t2)e1i1

, q
(t2)
e1i1
}, {r(t2)e2i1

, q
(t2)
e2i1
}, {r(t2)∗e3i2

, q
(t2)∗
e3i2
}, {r(t2)∗e4i2

, q
(t2)∗
e4i2
}
)

→
(
{vW∗

11 , a
W∗
11 }, {vW11 , aW11}, {vW∗

11 , a
W∗
11 }, {vW11 , aW11}

)
. (6.34)

Selecting one element from each of the four subsets and multiplying these selected el-
ements with each other gives rise to the d

(4)
n, i1i2

. The label n denotes a string of four
characters, that indicates which coupling (type r or q) was selected from the ith subset
in (6.34). For instance

d
(4)χ+

1 χ
−

1 →W+W−→χ+
1 χ

−

1

rrrr, 11 = vW∗
11 v

W
11v

W∗
11 v

W
11 . (6.35)

Turning to the coupling factors in triangle and selfenergy amplitudes, c
(α)
n, i1i2

and bn, i1i2 ,
they receive contributions from the s-channel diagrams in Fig. 6.6. We proceed in a
similar way as done for the diagram t2 and identify the following coupling factors for the
case of single s-channel Z-exchange (first line) and single s-channel γ-exchange (second
line):

V
σ(s)
11 = γσ

(
vZ11 + aZ11γ5

)
, cW+W−Z = cW ,

V
σ(s)
11 = γσ (vγ11 + aγ11γ5) , cW+W−γ = sW . (6.36)

The building blocks for the bn, i1i2 , c
(α)
n, i1i2

and finally these expressions themselves can now

be obtained in a similar manner as described for the d
(α)
n, i1i2

expressions. However, before
proceeding with their explicit construction, significant simplifications can be performed
by noting that the pure-wino NRMSSM exhibits a particularly simple coupling structure:
the (axial-)vector couplings of χ0

1 and χ
±
1 to the Standard Model gauge bosons are given

by

vW11 = 1 , aW11 = 0 , vγ11 = −sW , aγ11 = 0 ,

vZ11 = −cW , aZ11 = 0 . (6.37)

With the vanishing of all axial-vector couplings the only non-vanishing coupling factor
d
(α)
n, i1i2

for χ+
1 χ

−
1 →W+W− → χ+

1 χ
−
1 in the pure-wino NRMSSM hence reads

d
(4)χ+

1 χ
−

1 →W+W−→χ+
1 χ

−

1

rrrr,11 = 1 . (6.38)

The absence of a t-channel exchange diagram t1 implies, that only c
(α)
n, i1i2

factors with
α = 3, 4 can be non-vanishing, as these are built from vertex coupling factors associated

11For further conventions on the enumeration label α see Appendix A.1.
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with diagram type t2 and diagram type s, see Fig. 6.1. In the pure-wino NRMSSM, we
find the following expressions

c
(α=3,4)χ+

1 χ
−

1 →W+W−→χ+
1 χ

−

1

rrr, 1Z = −c2W , c
(α=3,4)χ+

1 χ
−

1 →W+W−→χ+
1 χ

−

1

rrr, 1γ = −s2W , (6.39)

and all other c
(α)
n, 1i2

vanish. Finally, the non-zero factors bn, i1i2 read

brr, ZZ = c4W , brr, Zγ = brr, γZ = c2W s
2
W , brr, γγ = s4W , (6.40)

where we have suppressed the superscript χ+
1 χ

−
1 → W+W− → χ+

1 χ
−
1 to shorten the

notation. A similar procedure leads to the coupling factors in χ+
1 χ

−
1 → XAXB rates

with the (unphysical) final states XAXB = G+G−, η+η+ and η−η−. We quote the non-
vanishing results for the coupling factors related to χ+

1 χ
−
1 → G+G− → χ+

1 χ
−
1 reactions:

brr, ZZ =
1

4

(
c2W − s2W

)2
, brr, Zγ = brr, γZ =

s2W
2

(
c2W − s2W

)
,

brr, γγ = s4W . (6.41)

In case of χ+
1 χ

−
1 → η+η+ → χ+

1 χ
−
1 and χ+

1 χ
−
1 → η−η− → χ+

1 χ
−
1 reactions we find in both

cases the same result (again suppressing the process-specifying superscripts):

brr, ZZ = c4W , brr, Zγ = brr, γZ = c2W s
2
W , brr, γγ = s4W . (6.42)

6.3.2 Kinematic factors

As for the coupling factors, the kinematic factors Bn, i1i2 , C
(α)
n, i1X

, D
(α)
n, i1i2

reduce to very
simple expressions in the pure-wino NRMSSM. Again we rely in this section on conven-
tions introduced in the appendices, in particular in Appendices A.2 and A.3. For the
notation used in the following, the reader is therefore referred to these chapters.

As the hard annihilation reactions in the pure-wino NRMSSM refer to the limit of
vanishing SU(2)L gauge boson masses, the relevant (mass) parameters in any of the
χe1χe2 → XAXB → χe4χe3 scattering reactions with χea = χ0

1, χ
±
1 read

m = m = mχ , M = 2 mχ , ∆AB = 0 ,

β = 1 , P s
Z,γ = 1 , P1AB =

1

2
. (6.43)

Further, the rescaled quantity m̂i1,2 in the pure-wino limit reads m̂1 = 1/2 if it refers to
the χ0

1 or χ
±
1 species and it vanishes if related to Z and γ, m̂Z,γ = 0. Taking the relations

(6.43) into account, we obtain concise analytic results for the kinematic factors relevant
in χ+

1 χ
−
1 → XAXB → χ+

1 χ
−
1 scattering. These are collected in Tab. 6.2. Note that we

have given only those kinematic factors that are associated with non-vanishing coupling
factors in the physical χ+

1 χ
−
1 →W+W− → χ+

1 χ
−
1 reaction. Assembling and inserting the

above results into the master formula (6.17) we find the results for the absorptive part
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1S0
3S1

1P1
3PJ

1S
(p2)
0

3S
(p2)
1

BV V
rr,V V (

2s+1LJ) 0 − 19
6

0 0 0 152
9

C
(α=3,4)V V
rrr,1V (2s+1LJ ) 0 − 4

3
0 0 0 64

9

D
(4)V V
rrrr,11(

2s+1LJ) 2 2
3

8
3

56
3

−32
3

−32
9

BSS
rr,V V (

2s+1LJ) 0 1
3

0 0 0 −16
9

Bηη
rr,V V (

2s+1LJ) 0 − 1
12

0 0 0 4
9

Table 6.2: Kinematic factors for partial-wave reactions up to O(v2rel) in the pure-wino
NRMSSM, relevant for the determination of the χ+

1 χ
−
1 → W+W− annihilation rate. The

subscript label V on the kinematic factors B and C above refers to both the cases of Z
and γ single s-channel exchange in the (tree-level) annihilation amplitudes. The results
for the kinematic factor B in the last line apply to ηη = η+η+, η−η−.

of the Wilson coefficients that provide the χ+
1 χ

−
1 → W+W− annihilation cross section

(6.24). For 3S1 annihilation we have

f̂
χ+
1 χ

−

1 →W+W−→χ+
1 χ

−

1

{11}{11} (3S1)

=
πα2

2

4m2
χ

(
∑

n=rr

∑

i1,i2=Z,γ

b
χ+
1 χ

−

1 →W+W−→χ+
1 χ

−

1

n, i1i2
B V V
n, i1i2(

3S1)

+
∑

α=3,4

∑

n=rrr

∑

i1=1,i2=Z,γ

c
(α)χ+

1 χ
−

1 →W+W−→χ+
1 χ

−

1

n, i1i2
C

(α) V V
n, i1i2

(3S1)

+
∑

α=4

∑

n=rrrr

∑

i1,i2=1

d
(α)χ+

1 χ
−

1 →W+W−→χ+
1 χ

−

1

n, i1i2
D

(α)V V
n, i1i2

(3S1)

+
∑

n=rr

∑

i1,i2=Z,γ

b
χ+
1 χ

−

1 →G+G−→χ+
1 χ

−

1

n, i1i2
B SS
n, i1i2(

3S1)

+
∑

η=η±

∑

n=rr

∑

i1,i2=Z,γ

b
χ+
1 χ

−

1 →ηη→χ+
1 χ

−

1

n, i1i2
B ηη
n, i1i2

(3S1)

)

=
πα2

2

4m2
χ

(
(
c4W + c2W s

2
W + s4W

)
×
(
−19

6

)
+ 2

(
−c2W − s2W

)
×
(
−4
3

)
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+ 1× 2

3
+

1

4
× 1

3
− 2× 1

12

)

=
1

48

πα2
2

m2
χ

, (6.44)

where we have summed over all (unphysical) final states in Feynman gauge, XAXB =
W+W−, G+G−, η+η+, η−η−, that contribute to the physical χ+

1 χ
−
1 →W+W− rate in the

pure-wino NRMSSM scenario. In case of the 1S0 annihilation reaction only the pieces
related to the α = 4 box amplitude contribute, and the only non-vanishing coupling
factor d

(4)
n, i1i2

is d
(4)
rrrr ,11 given in (6.38), therefore

f̂
χ+
1 χ

−

1 →W+W−→χ+
1 χ

−

1

{11}{11} (1S0) =
πα2

2

4m2
χ

d
(4)χ+

1 χ
−

1 →W+W−→χ+
1 χ

−

1

rrrr,11 D
(4) V V
rrrr, 11(

1S0)

=
πα2

2

2m2
χ

. (6.45)

Finally, the absorptive parts of the O(v2rel) partial-wave Wilson coefficients read

f̂
χ+
1 χ

−

1 →W+W−→χ+
1 χ

−

1

{11}{11} (1P1) =
2πα2

2

3m2
χ

, f̂
χ+
1 χ

−

1 →W+W−→χ+
1 χ

−

1

{11}{11} (3PJ ) =
14πα2

2

3m2
χ

,

ĝ
χ+
1 χ

−

1 →W+W−→χ+
1 χ

−

1

{11}{11} (1S0) = − 8πα2
2

3m2
χ

, ĝ
χ+
1 χ

−

1 →W+W−→χ+
1 χ

−

1

{11}{11} (3S1) = − πα2
2

9m2
χ

. (6.46)

Following (6.24), the non-relativistic expansion of the χ+
1 χ

−
1 → W+W− annihilation

cross section in the pure-wino NRMSSM is given by

σχ
+
1 χ

−

1 →W+W−

vrel = a + (bP + bS) v
2
rel + O(v4rel)

=
9

16

πα2
2

m2
χ

+

(
1

3
− 3

16

)
πα2

2

m2
χ

v2rel + O(v4rel) ,

=
9

16

πα2
2

m2
χ

+
7

48

πα2
2

m2
χ

v2rel + O(v4rel) . (6.47)

The values for the parameters a, bP and bS, that one obtains for a pure-wino NRMSSM
mass scale mχ = 2748.92GeV read a = 3.06 · 10−27 cm3 s−1, bP c

2 = 1.81 · 10−27 cm3 s−1

and bS c
2 = −1.02 · 10−27 cm3 s−1. The mass scale mχ agrees with the neutralino LSP

mass of the MSSM scenario introduced in Sec. 6.2. The latter MSSM scenario features a
small but non-vanishing Higgsino admixture to the wino-like χ0

1 and χ±
1 : the Higgsino-

like neutralino and chargino states are not at all decoupled but reside at the scale of
∼ 2.9−3TeV. Thus we should not expect the results for the wino-like scenario of Sec. 6.2
to be approximated by the pure-wino NRMSSM. This is in fact what the comparison of
the parameters a, bP and bS for the χ+

1 χ
−
1 → W+W− annihilation cross section shows:

the corresponding parameters in the MSSM scenario investigated in Sec. 6.2 were given
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by a = 2.65 · 10−27 cm3 s−1, bP c
2 = 1.86 · 10−27 cm3 s−1, bS c

2 = −0.88 · 10−27 cm3 s−1.
The results for the S-wave parameters a and bS in the pure-wino χ+

1 χ
−
1 → W+W−

reaction are a bit larger, which is a consequence of the larger couplings of the pure-
wino neutralino and chargino states to the SU(2)L gauge bosons and the absence of
t-channel annihilation into the (unphysical) final state G+G−. Due to the non-decoupled
higgsino-like neutralino states in the scenario of Sec. 6.2 the latter contribution is present
and interferes destructively with the corresponding s-channel exchange contribution also
present in the pure-wino NRMSSM limit. This leads to a suppression of the a and
bS cross section parameters in the wino-like scenario of Sec. 6.2 with respect to the
pure-wino NRMSSM. On the contrary the parameter bP turns out to be somewhat
larger in the Sec. 6.2 scenario which traces back to the non-vanishing P -wave t-channel
annihilations into G+G− final states that are absent in the pure-wino NRMSSM. Note
that the χ+χ− →W+W− annihilation cross section for the Sec. 6.2 scenario in addition
exhibits non-vanishing contributions from the (unphysical) V S = W±G∓ final states not
present in the pure-wino NRMSSM. These are however suppressed with respect to the
XAXB = W+W−, G+G− contributions.

6.3.3 Exclusive pure-wino NRMSSM co-annihilation rates

We conclude the discussion of the short distance (tree-level) annihilation rates in the
pure-wino NRMSSM by collecting results for all exclusive (physical) XAXB final state
contributions to the Wilson coefficients f̂ , ĝ that determine the (off-) diagonal co-an-
nihilation rates χe1χe2 → XAXB → χe4χe3 in this scenario. The non-relativistic expan-
sion of the respective exclusive rates can then be obtained from (6.22) and (6.30). For
convenience we write the pure-wino NRMSSM Wilson coefficients as

f̂ χe1
χe2

→XAXB→χe4
χe3

(
2s+1LJ

)
=

πα2
2

m2
χ

cχe1
χe2

→XAXB→χe4
χe3

(
2s+1LJ

)
. (6.48)

In case of the next-to-next-to-leading order S-wave coefficients we establish a similar
notation with f̂ replaced by ĝ on the l.h.s. of (6.48) and the 2s+1LJ = 1S0,

3S1 label of

the factor c on the r.h.s. substituted by 1S
(p2)
0 , 3S

(p2)
1 . Note that the Wilson coefficients

ĥi always vanish in the hard annihilation rates in the pure-wino NRMSSM due to the
complete mass-degeneracy of the χ0

1 and χ±
1 states.

At the beginning of Sec. 6.3 we have already noted, that the calculation of the
hard annihilation rates in the pure-wino NRMSSM toy-scenario refers to massless SM
gauge bosons and SM fermions. These can hence appear as possible XAXB final state
particles in the χe1χe2 → XAXB → χe4χe3 reactions. As far as the Higgs-sector is
concerned we present in this section results that refer to the decoupling limit [95] in
the underlying MSSM scenario: we assume a SM-like CP -even Higgs boson h0 in the
low-energy spectrum of the theory while the heavier Higgs states A0, H0, H± are entirely
decoupled (mA0 ∼ mH0 ∼ mH+ ≫ mχ ≫ 0). As generically mh0 < mZ at tree-level
in the MSSM, the h0 is consequently treated as massless in the pure-wino NRMSSM
hard annihilation rates. According to their overall charge the (co-)annihilation processes
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χ+
1 χ

−
1 → χ+

1 χ
−
1 reactions

physical final state XAXB c(1S0) c(3S1) c(1P1) c(3PJ ) c(1S
(p2)
0 ) c(3S

(p2)
1 )

W+W− 1
2

1
48

2
3

14
3

− 8
3

−1
9

ZZ c4W 0 0 28
3
c4W − 16

3
c4W 0

Zγ 2 c2Ws
2
W 0 0 56

3
c2W s

2
W −32

3
c2Ws

2
W 0

γγ s4W 0 0 28
3
s4W −16

3
s4W 0

Zh0 0 1
48

0 0 0 − 1
9

qq 0 1
8

0 0 0 − 2
3

l+l−, νν 0 1
24

0 0 0 − 2
9

∑
XAXB

3
2

25
24

2
3

14 −8 − 50
9

χ0
1χ

0
1 → χ0

1χ
0
1 reactions

W+W− 2 0 0 56
3

− 32
3

0

χ0
1χ

0
1 → χ+

1 χ
−
1 and χ+

1 χ
−
1 → χ0

1χ
0
1 reactions

W+W− 1 0 0 28
3

− 16
3

0

Table 6.3: c(2s+1LJ) factors that enter the contributions to the pure-wino NRMSSMWil-
son coefficients in neutral χe1χe2 → XAXB → χe4χe3 processes with exclusive (physical)
final states XAXB. In case of χ+

1 χ
−
1 → XAXB → χ+

1 χ
−
1 rates where several two-particle

final states XAXB are accessible the inclusive result is also given.

can be arranged into three charge-sectors: neutral, positive and double positive charged.
The results for the corresponding (double) negative charged reactions are identical to
the results for (double) positive charged processes. We collect our results for the factors
c(2s+1LJ) in Tables 6.3–6.4.

In case of inclusive leading-order 1S0 and 3S1 (co-) annihilations we find agreement
between the results of Tables 6.3–6.4 and the corresponding expressions given in [20] for
the same scenario. In addition, we reproduce the leading-order 1S0 wave annihilation
rates into the exclusive final states W+W−, ZZ, Zγ and γγ given by the same authors
in [19], apart from the W+W− off-diagonal rates, where our findings are a factor of 2
larger. We emphasise once again, that the results for the P - and O(v2rel) S-wave Wilson
coefficients are new.
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χ0
1χ

+
1 → χ0

1χ
+
1 reactions

physical final state XAXB c(1S0) c(3S1) c(1P1) c(3PJ ) c(1S
(p2)
0 ) c(3S

(p2)
1 )

W+Z 1
2
c2W

1
48

2
3
c2W

14
3
c2W − 8

3
c2W −1

9

W+γ 1
2
s2W 0 2

3
s2W

14
3
s2W − 8

3
s2W 0

W+h0 0 1
48

0 0 0 −1
9

ud 0 1
4

0 0 0 − 4
3

νl+ 0 1
12

0 0 0 − 4
9∑

XAXB
1
2

25
24

2
3

14
3

− 8
3

− 50
9

χ+
1 χ

+
1 → χ+

1 χ
+
1 reactions

physical final state XAXB c(1S0) c(3S1) c(1P1) c(3PJ ) c(1S
(p2)
0 ) c(3S

(p2)
1 )

W+W+ 1 0 0 28
3

− 16
3

0

Table 6.4: c(2s+1LJ) expressions associated with the pure-wino NRMSSM Wilson coef-
ficients in exclusive single charged χ0

1χ
+
1 → XAXB → χ0

1χ
+
1 reactions (upper table) and

in double charged χ+
1 χ

+
1 → XAXB → χ+

1 χ
+
1 processes (lower table). The last line in the

upper table is the corresponding inclusive result.

Let us add a further note on an analytic comparison of our results with known expressions
in the literature, which refers to exclusive χ0

e1χ
0
e1 tree-level annihilation rates: in [96],

the authors have performed a calculation of the neutralino relic abundance in minimal
supergravity models. In the appendix, they give a complete summary of all partial-wave
separated tree-level helicity amplitudes in χ0

1χ
0
1 → XAXB pair annihilations. These com-

prehensive results for tree-level neutralino LSP pair-annihilation rates are also referenced
and (partly) quoted in the (SUSY) particle dark matter reviews [3] and [4], and easily
extend to χ0

e1
χ0
e1
→ XAXB annihilations. Hence, these results allow for an explicit ana-

lytic check of our expressions for the different partial-wave contributions to a neutralino
χ0
e1χ

0
e1 → XAXB annihilation cross section. The partial-wave coefficients that can be

cross-checked in that way correspond to 1S0-,
3P0-,

3P1- and
3P2-wave χ

0
e1
χ0
e1
→ XAXB

annihilation reactions, and the leading-order and next-to-next-to-leading order 1S0-wave
contributions can be compared separately. Since the results in [96] cover only the case
of χ0

1χ
0
1 → XAXB reactions, we cannot cross-check our results for 3S1 and 1P1 partial

wave reactions, which are absent in identical particle pair-annihilations. Our expres-
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sions for the partial-wave separated χ0
e1
χ0
e1
→ XAXB annihilation cross sections into all

possible SM and Higgs final states, obtained from (6.22), agree with the corresponding
terms derived from the helicity amplitudes in [96]12. Let us finally note that our results
for annihilations into a pair of fermions include the case of flavour-off-diagonal sfermion
mixing as well, which is covered in [3] and [4], but was not yet included in [96], wherein
only flavour-diagonal right-left sfermion mixing was taken into account, although it is
straightforward to extend these results to the general flavour-off-diagonal case.

12The only minor discrepancies that we find are related to P -wave contributions: our results for 3P1-
wave χ0

e1χ
0
e1 → H+H− annihilations correspond to a factor 2 instead of a factor 4 in the second term

of Eq. (A27b) in [96]. In the case of 3P0-wave χ
0
e1χ

0
e1 → f f̄ reactions, our results correspond to a factor√

2/3 instead of a factor
√
6 in the second term in the first line of Eq. (A29b) in [96].
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Chapter 7

Long-range potential interactions

The instantaneous but spatially non-local long-range potential interactions that even-
tually cause the Sommerfeld enhancement of χχ pair-annihilation cross sections in the
non-relativistic regime are encoded in the part Lpot of the effective field theory La-
grangian LNRMSSM introduced in Sec. 5.1. In (5.3) we have already given the generic
form of the contributions to Lpot. Here we explicitly determine the coefficients of the
four-fermion operators in Lpot at leading order in the non-relativistic expansion, which
are given by Yukawa- and Coulomb-potentials associated with electroweak gauge or Higgs
boson mediator particles. The corresponding matching calculation that provides explicit
analytical expressions for the potentials in terms of MSSM parameters and couplings
is the content of Sec. 7.1, where we use the example of potential Z-boson exchange
to illustrate the procedure. Explicit expressions that allow to build all leading-order
NRMSSM potentials are collected in Appendix B. In Sec. 7.2 we subsequently discuss
the representation of potential interactions as well as hard annihilation reactions in the
NRMSSM in terms of corresponding potential and annihilation matrices. This requires
the definition of a suitable basis of NRMSSM two-particles states (χχ)I=1,...,N . The two
possible choices, one basis which contains and counts as different the states χe1χe2 and
χe2χe1 with non-identical particles χea and χeb, the other where the redundant states
χe2χe1 are absent, are discussed in Sec. 7.2.1. To complete the presentation of results
related to the pure-wino NRMSSM in Sec. 6.3 we finally provide in Sec. 7.2.2 explicit
analytic expressions for the potential and annihilation matrices in that scenario, using
both the basis with and without redundant χχ states.

7.1 NRMSSM potentials: Matching calculation

In Sec. 2.1 we have discussed ladder diagrams in non-relativistic χχ → χχ scattering
with light mediator exchange in order to understand the origin of the Sommerfeld en-
hancement effect starting from amplitudes in the full theory. The enhancement effect
could be attributed to particularly large contributions to the individual loop integrals
in the ladder diagram that arise in the region where the loop momenta have potential
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χe1

p ′ − p

χe4

χe2 χe3χj

χi
P
2
+ p

P
2
− p

pi

pj

Figure 7.1: Box subgraph of a characteristic diagram with multiple ladder-like exchanges
of vector and Higgs bosons among intermediate χχ states. Arrows in this picture indicate
the direction of the labelled momenta.

scaling behaviour, see (2.1).1 Before we enter the actual matching calculation let us first
slightly generalise here the discussion of Sec. 2.1 to include the case of potential scat-
tering reactions χe1χe2 → χe4χe3 of two-particle states χe1χe2 and χe4χe3 that exhibit
small mass differences. To this end consider Fig. 7.1 that generalises the example in
Sec. 2.1 (Fig. 2.1) to the case of several nearly mass degenerate χeaχeb states. We fix
conventions such that in the centre-of-mass system of the initially incoming χiχj pair
with individual momenta pi and pj and total momentum P = pi + pj = (

√
s,~0 ) the

loop momentum p′ that is related to the box with fermions χe4 and χe3 is the relative
momentum of the χe4χe3 pair, p′ = (p4 − p3)/2. This implies that the momentum of the
exchanged boson in the χe1χe2 → χe4χe3 scattering reaction is given by the difference
of the relative momentum p′ of the χe4χe3 and the relative momentum p of the χe1χe2
pair. For the loop momenta defined in this way the scaling rules in (2.1) apply and the
contributions to the loop integrals from potential momenta give rise to enhancements
as discussed in Sec. 2.1. In particular we have the following scaling of the 0-component
of the momentum p′ in the potential region, p′ 0 ∼ ~p ′ 2/mLSP ≪ mLSP and similar for
p. At leading order in the expansion of the boson propagator 1/((p′ − p)2 −m2

φ) in the
potential region we therefore obtain the expression −1/((~p ′ − ~p )2 + m2

φ) with mφ the
mass of the exchanged boson. It is this energy-independent propagator which gives rise
to the instantaneous but spatially non-local potential interactions. The expression in
particular agrees with the corresponding term derived in Sec. 2.1. The important addi-
tional feature with respect to the previous discussion is that here the term (p′0 − p0)2
that has been dropped at leading order in the potential region expansion of the gauge
boson propagator involves contributions proportional to the mass differences squared,
(m4 −m1)

2 or (m3 −m2)
2. The latter terms are consistently neglected, as mass differ-

ences between the NRMSSM states are assumed to be of order ~p 2
ij/mLSP ∼ O(mLSPv

2)
at most, where pij = (pi − pj)/2 denotes the incoming χiχj state’s relative momentum.

1Let us recall from Sec. 2.1 that the classification of the loop momentum to be hard, soft, potential
or ultra-soft requires a certain canonical routing of the loop momenta in the ladder diagrams, which we
use in Fig. 2.1 of Sec. 2.1 and, as well, in Fig. 7.1 of this section.
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χe1

q = p ′ − p

χe4

χe2 χe3

χ0χ0 → χ0χ0

χ+χ+ → χ+χ+

χ0χ+ → χ0χ+

χ+χ− → χ+χ−

χ0χ− → χ0χ−

(a) (b) (c) χ−χ− → χ−χ−

χ0χ0 → χ+χ−

Figure 7.2: The three different tree-level diagrams with t-channel boson exchange that
generate the leading-order potential among non-relativistic neutralinos and charginos.
According to the arrows in the neutralino/chargino lines that indicate the fermion flow,
each diagram contributes only to the scattering processes specified below.

After this generic discussion regarding the form of the propagator of the exchanged po-
tential boson we will now determine the terms in the effective theory Lagrangian that
encode the corresponding potential interaction in χe1χe2 → χe4χe3 scattering reactions
of NRMSSM neutralino and chargino states.

Similar to the procedure for hard annihilation reactions in Sec. 6.1 we determine the
coefficients encoding potential interactions in the NRMSSM by means of a matching
calculation of corresponding EFT and MSSM amplitudes. As we are interested in the
determination of leading-order potential interactions in the EFT, we have to consider
tree-level χe1χe2 → χe4χe3 on-shell scattering amplitudes with gauge boson or Higgs
particle exchange in the MSSM, which have to be expanded to leading order in non-
relativistic momenta and mass differences, according to the non-relativistic expansion
introduced in Sec. 6.1.2. In the following we use the example of Z-boson exchange in
χe1χe2 → χe4χe3 tree-level scattering to illustrate the relevant steps in the matching cal-
culation. Results for all possible mediator particles that can be exchanged in the MSSM,
comprising the electroweak gauge bosons W±, Z and the photon as well as the Higgs
particles – as long as the latter are sufficiently lighter than the NRMSSM neutralino and
chargino states (see the discussion in Sec. 2.1) – can be found in Appendix B. Fig. 7.2
comprises the three tree-level diagrams with different fermion flow that generically have
to be considered in the matching calculation. The vector (v) or axial-vector (a) inter-
action vertex of two neutralinos or charginos with the Z-boson that is relevant in our
sample calculation of the Z-boson exchange potential can be generically written as

g2 χei [vijγ
µ + aijγ

µγ5]χej Zµ , (7.1)

where the two fields χeiχej are either given by χ0
ei
χ0
ej

or χ+
ei
χ+
ej
. The χχZ-interaction in

the MSSM arises also in case of the hard χeiχej → XAXB annihilation reactions discussed
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in Chap. 6 and explicit expressions for the vertex factors vij and aij are provided in
Appendix A.1.2.2

As regards the determination of the leading-order Z-exchange potential we start from
the on-shell scattering amplitude in Fig. 7.2(a) and expand the full-theory amplitude in
the small relative momenta ~p, ~p ′ ∼ mLSPvrel ∼ MZ as well as in p0, p′ 0 ∼ mLSPv

2
rel,

keeping only the leading-order terms. This implies an expansion of the Dirac bilinears
u(p4)Γu(p1)u(p3)Γ̃u(p2) associated with the amplitude, where Γ and Γ̃ stand for a certain
combination of the structures 14×4, γµ, γ5, q/ with q = p4 − p1 = p2 − p3, as well as a
corresponding expansion of the Z-boson propagator

−i
q2 −M2

Z

(
gµν −

qµqν
M2

Z

)
+

qµqν
M2

Z

−i
q2 − ξM2

Z

, (7.2)

here defined in Rξ-gauge. At leading order the non-relativistic expansion of the former
product of Dirac bilinears is equivalent to the following replacements in the full-theory
amplitude:

γµ ⊗ γµ → 1⊗ 1 , γµγ5 ⊗ γµγ5 → −σi ⊗ σi ,
γµγ5 ⊗ γµ , γµ ⊗ γµγ5 → 0 ,

q/⊗ q/→ −(me4 −me1)(me3 −me2) 1⊗ 1 ,

q/⊗ q/γ5 , q/γ5 ⊗ q/ , q/γ5 ⊗ q/γ5 → 0 . (7.3)

While the expressions on the left-hand side in these replacement rules are understood to
act on the four-component spinors associated with the on-shell fields at the upper and
lower interaction vertex in Fig. 7.2(a), the right-hand side terms should be understood as
matrices acting on the two-component Pauli spinors of the corresponding non-relativistic
neutralino or chargino fields. Accordingly, the latter spin operators written in component
notation read σi⊗σi ≡ σiα4α1

σiα3α2
and 1⊗1 ≡ δα4α1

δα3α2
. Note that as already remarked

in Sec. 6.1, the matching procedure implies the use of the non-relativistic normalisation
u(pea)u(pea) = 1 of the four-component spinors. Finally let us point out that the relation
in the third line in (7.3) is obtained using the equation of motion for the spinors. The
non-relativistic scaling of the corresponding term is discussed below. Using (7.3) the
leading-order term in the non-relativistic expansion of amplitude Fig. 7.2(a) with Z-
boson exchange is given by

(Fig.3a)Z =
−ig22

~q 2 +M2
Z

[(
1 +

δme4e1 δme3e2

M2
Z

)
vZe4e1v

Z
e3e2

1⊗ 1− aZe4e1a
Z
e3e2

σi ⊗ σi
]

+
ig22

~q 2 + ξM2
Z

δme4e1 δme3e2

M2
Z

vZe4e1v
Z
e3e2

1⊗ 1 . (7.4)

2Similarly, the vertex factors related to χχW+ and χχγ interactions as well as the scalar (s) and
pseudo-scalar (p) vertex factors associated with χχ-Higgs three-point interactions can be found in this
appendix. All such interactions can arise in potential χe1χe2 → χe4χe3 tree-level scattering reactions
and the corresponding vertex factors enter the explicit expressions for the respective potentials from
gauge boson (Z,W±, γ) or Higgs particle (h0, H0, A0, H±) exchange collected in Appendix B.
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For simplicity this expression refers to the case of χ0χ0 → χ0χ0 or χ+χ+ → χ+χ+

scattering reactions where the type of (axial-)vector couplings at both the upper and
lower vertices in Fig. 7.2(a) is the same, namely either related to χ0χ0Z or to χ+χ−Z
three-point interactions. The extension to χ0χ+ → χ0χ+ processes where the vector and
axial-vector couplings related to both the χ0χ0Z and χ+χ−Z vertex arise is straightfor-
ward.

Before we comment on the expression in the first line in (7.4) that involves the
product of mass differences, δme4e1δme3e2 , let us first discuss the term in the second
line. This term arises from the ξ-dependent term in the Z-boson propagator in (7.2).
Due to gauge invariance it has to cancel against the contribution from Goldstone boson
A0

2 ≡ G0 exchange, where the Goldstone boson mass is given by mG0 = ξM2
Z . Such

cancellation takes place as certain relations among the vector and scalar couplings of
the neutralinos and charginos hold within the MSSM: the leading-order contribution in
the non-relativistic expansion of the amplitude Fig. 7.2(a) with scalar boson φ exchange
reads

(Fig.3a)φ =
ig22

~q 2 +m2
φ

sφe4e1s
φ
e3e2

1⊗ 1 . (7.5)

Pseudo-scalar interactions do not survive in (7.5) because at leading order in the non-
relativistic expansion the replacements 1 ⊗ γ5, γ5 ⊗ 1, γ5 ⊗ γ5 → 0, relevant in the case
of amplitudes with scalar particle exchange, complement among others the replacement
rules in (7.3). For a cancellation of the ξ-dependent terms in (7.4) and (7.5) the condition

δme4e1 δme3e2

M2
Z

vZe4e1v
Z
e3e2 + sG

0

e4e1s
G0

e3e2 = 0 (7.6)

must hold, implying that the relations vZij (mi − mj)/MZ = ±isG0

ij must be fulfilled.
The latter relations can be proven using the explicit expressions of the couplings vZ

and sG
0

in terms of mixing matrices and couplings given in Appendix A.1.2, as well
as the diagonalisation properties of the mixing matrices. Consequently we can drop
the ξ-dependent contributions in (7.4) together with the Goldstone boson G0-exchange
contributions (7.5). Similar cancellation take, for instance, place in case of potential
χe1χe2 → χe4χe3 scattering with W+- and G+-exchange, such that we can eventually
consider only ξ-independent contributions to the potential interactions that are related
to the exchange of physical states, leaving out the case of potential Goldstone bosons in
the diagrams of Fig. 7.2.

As regards the δme4e1δme3e2 proportional term in the first line of (7.4) – which is re-
lated to expressions involving q/⊗q/ in the unexpanded full-theory amplitude – it typically
yields a very small contribution, since the effective theory contains only those species
that give rise to mass differences δm ∼ O(mLSPv

2
rel). Even for a spectrum with heavy χ0

1

where mLSPv
2
rel ≫MZ is possible for non-relativistic NRMSSM states, the δme4e1δme3e2

proportional term gives O(1) contributions at most due to suppressed vector couplings.
This can be seen in the decoupling limit mLSP → ∞. As long as the mass differ-
ence δmeaeb refers to particles χea , χeb within the same electroweak multiplet it scales
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as δmeaeb ∼ M2
EW/mLSP, such that the mass difference terms in (7.4) are suppressed as

δmeaeb/MZ ∼ MEW/mLSP. If to the contrary the particles χea , χeb belong to different
multiplets, the terms δmeaeb/MZ can be large but are multiplied by suppressed couplings
vZeaeb ∼ MEW/δmeaeb following (7.6). Finally let us note that the axial-vector couplings
go to zero in the decoupling limit such that the gauge-independent, off-diagonal terms
in square brackets in the first line in (7.4) are in this case given by the pseudo Goldstone
boson couplings −sG0

e4e1s
G0

e3e2.
Instead of performing the same non-relativistic expansion again in order to obtain the

leading-order terms for amplitudes (b) and (c) with Z-boson or neutral scalar φ exchange
in Fig. 7.2 we can derive them directly from the corresponding expressions for amplitude
(a) in (7.4) and (7.5). Only certain labels on the vertex factors as well as signs in front
of these factors have to be interchanged, where the corresponding replacement rules can
be obtained by a simple adaption of the rules 1. and 2. given in Appendix A.1.2: If
the fermion flow on a line of diagram (b) or (c) is reversed with respect to amplitude
(a) we need to interchange the labels on the corresponding vertex factors (for instance,
Xe3e2 → Xe2e3 to go from (a) to (b)) and change the sign of the corresponding vector
coupling. In this way we obtain

(Fig.3b)Z =
ig22

~q 2 +M2
Z

[ (
1 +

δme4e1 δme3e2

M2
Z

)
vZe4e1v

Z
e2e3 1⊗ 1+ aZe4e1a

Z
e2e3 σ

i ⊗ σi
]

− ig22
~q 2 + ξM2

Z

δme4e1 δme3e2

M2
Z

vZe4e1v
Z
e2e3

1⊗ 1 ,

(Fig.3b)φ =
ig22

~q 2 +m2
φ

sφe4e1s
φ
e2e3

1⊗ 1 , (7.7)

as well as

(Fig.3c)Z =
−ig22

~q 2 +M2
Z

[(
1 +

δme4e1 δme3e2

M2
Z

)
vZe1e4v

Z
e2e3

1⊗ 1− aZe1e4a
Z
e2e3

σi ⊗ σi
]

+
ig22

~q 2 + ξM2
Z

δme4e1 δme3e2

M2
Z

vZe1e4v
Z
e2e3

1⊗ 1 ,

(Fig.3c)φ =
ig22

~q 2 +m2
φ

sφe1e4s
φ
e2e3 1⊗ 1 . (7.8)

Similar expressions for the leading-order contributions to potential χe1χe2 → χe4χe3
scattering processes generated by photon exchange can be obtained from the above Z-
boson exchange case by replacing the corresponding vector couplings (vZ → vγ), setting
the axial-vector couplings as well as the force carrier mass to zero and keeping only the gµν
dependent part of the propagator in (7.2). The expressions related to pseudo-Goldstone
boson G0 exchange in (7.5, 7.7) and (7.8) can generically be applied to neutral Higgs
boson (h0, H0, A0) exchange by appropriate replacements of the coupling factors and the
boson mass. The case of W±-boson and charged scalar boson (H±, G±) exchange arises
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in χ0χ0 → χ±χ∓, χ±χ∓ → χ0χ0 and χ0χ± → χ±χ0 processes. Note that when applying
the results in (7.4, 7.5, 7.7, 7.8) to these cases we have – apart from the replacements
of masses – to hermitian conjugate the coupling matrices at vertices involving either an
initial χ+ or a final χ0. This prescription follows from the fact that we provide the vertex
factors for incoming χ0

j and outgoing χ+
i in the χ0χ±W± and χ0χ±H±

m vertex factors in
Appendix A.1.2; our notation therein is such that the first index in the corresponding
vector (scalar) and axial-vector (pseudo-scalar) coupling is related to the outgoing χ+

i ,
while the second index refers to the incoming χ0

j , see Fig. A.3.
The results provided so far in (7.4, 7.5) as well as in (7.7) and (7.8) refer to the leading-

order potentials in momentum-space. The Schrödinger equation that takes into account
the resummation of potential gauge and Higgs boson exchange in the ladder diagrams
such as Fig. 7.1 (or Fig. 2.1(a) of Sec. 2.1) will however be written in coordinate-space,
see Chap. 2 and Chap 8. The corresponding coordinate-space potentials are obtained
from the momentum-space expressions above by Fourier transformation

V χχ→χχ
{e1e2}{e4e3}(r) =

∫
d3~q

(2π)3
ei~q·~x i T χχ→χχ

e1e2e4e3(~q
2) , (7.9)

where T χχ→χχ
e1e2e4e3

denotes the momentum-space amplitude as given in equations (7.4, 7.5,
7.7, 7.8) and r ≡ |~x|. From the identity

∫
d3~q

(2π)3
ei~q·~x

1

~q 2 +m2
=

e−mr

4πr
, (7.10)

we obtain the well-known Yukawa-type potentials for amplitudes that involve the ex-
change of a massive mediator with mass m. In case of a massless force carrier, m = 0,
(7.10) gives the Coulomb potential.3

Before presenting the final form of the leading-order coordinate-space potentials in
the NRMSSM we rewrite the spin operator σi ⊗ σi that appears in the potentials with
gauge boson exchange as

σi ⊗ σi = 2(~S 2 − ~s 2
1 − ~s 2

2 ) = 2~S 2 − 3 (1⊗ 1) , (7.11)

where ~s1 (~s2) denotes the spin operator acting on the particles χe4 and χe1 (χe3 and
χe2) at the upper (lower) vertices in the diagrams in Fig. 7.2. In the second equality
we have replaced ~s 2

1,2 by s(s + 1) (1⊗ 1) = 3/4 (1⊗ 1) for the neutralino and chargino

species. ~S denotes the total spin operator acting on the total spin of the incoming and
outgoing neutralino and chargino pairs χeaχeb ,

~S = ~s1+~s2 ≡ 1/2 (~σ⊗1+1⊗~σ). In the

basis of eigenstates of total spin of the χeaχeb pairs we can replace ~S 2 by its eigenvalue
S(S + 1) (1 ⊗ 1) = 2S (1 ⊗ 1) for S = 0, 1, where in particular 1 ⊗ 1 is the identity
operator. Eventually, referring to the basis of total spin we can write the leading-order
coordinate-space potentials in the NRMSSM in the generic form

V χχ→χχ
{e1e2}{e4e3}(r) = (ae1e2e4e3 − (3− 4S) be1e2e4e3)

e−mXr

r
, (7.12)

3Let us note that the +iǫ prescription in the gauge boson propagators of the full theory provides the
necessary regularisation for the m = 0 case in (7.10).
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for exchange of a gauge boson X with mass mX among the incoming and outgoing pairs
χe1χe2 and χe4χe3 . The coefficient be1e2e4e3 is solely built from a product of two axial-
vector couplings as can be seen from the terms involving σi⊗σi in the momentum-space
potentials in (7.4, 7.7, 7.8), together with the relation (7.11). Consequently, be1e2e4e3
vanishes for the case of leading-order potentials from scalar boson and photon exchange.
A spin-dependence of a generic leading-order potential (7.12) thus arises only in presence
of corresponding non-vanishing axial-vector couplings. We collect explicit expressions for
all leading-order NRMSSM potentials from electroweak gauge boson, photon and light
Higgs exchange in Appendix B.

7.2 Matrix representation of NRMSSM potentials

Both the labels on the potentials V χχ→χχ
{e1e2}{e4e3}(r) that arise as coefficients of the four-

fermion operators in Lpot as well as the labels on the Wilson coefficients f̂χχ→χχ
{e1e2}{e4e3} of

the four-fermion operators in δLann refer to two-particle states χe1χe2 and χe4χe3. By
analysis of the perturbative expansion of the χiχj → XAXB annihilation amplitude
with ladder-like gauge and Higgs boson exchanges in the non-relativistic limit, we will
show later in Sec. 8.2 that the amplitude can be written as a product of potentials (7.12)
times non-relativistic two-particle propagators related to the corresponding intermediate
χeaχeb pairs, integrated over corresponding loop momenta and finally multiplied by an

appropriate short-distance Wilson coefficient f̂ encoding the actual hard annihilation.
All parts in this amplitude expression refer to χeaχeb two-particle states rather than the
individual χea and χeb particles. The annihilation reactions including the Sommerfeld
enhancement – arising due to the presence of long-range potential interactions which
require a consistent resummation of all amplitudes with potential ladder exchanges –
are therefore conveniently described using a basis of two-particle states. Considering
such a two-particle state basis it is convenient to speak of potential matrices as well as
annihilation matrices instead of their components, the potential interactions (7.12) and
the absorptive parts of the Wilson coefficients f̂ discussed in Chap. 6: the entries of the
matrices are related to a corresponding specific potential or Wilson coefficient f̂ referring
to the 2→ 2 scattering reaction of two-particle basis states χe1χe2 → χe4χe3 .

In context of the heuristic discussion of Sommerfeld enhancements and the corre-
sponding Schrödinger equation for certain toy scenarios in Chap. 2 we started already
from a two-particle state basis. In the NRMSSM we now have to construct the two-
particle state basis from the individual neutralino and chargino species in the effective
theory. There are two options, one where states χeaχeb and χebχea built from non-
identical particles are considered as different, the other where the redundant second
state is not considered. Depending on the convention chosen there are certain combi-
natorial factors that have to be taken into account when building from the potentials
V χχ→χχ
{e1e2}{e4e3}(r) and absorptive parts of Wilson coefficients f̂χχ→χχ

{e1e2}{e4e3} the correspond-
ing potential and annihilation matrices. We discuss the two bases and the implications
for the potential and annihilation matrices in Sec. 7.2.1. Subsequently we provide as an
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example in Sec. 7.2.2 the potential and annihilation matrices in the pure-wino NRMSSM.

7.2.1 The two possibles bases of χχ states in the NRMSSM

In the discussion of NRMSSM two-particle states we generically have to take five different
(electric) charge sectors into account, as two-particle states built from neutralino and
chargino species can have electric charge Q = 0,±1,±2. In each charge sector Q we
encounter a certain total number N|Q| of different two-particle states,4 which depends
on the choice of the two-particle state basis. In the following we discuss two different
choices for such basis, termed “method-1” and “method-2” basis, in turn.

In case of n0 neutralino and n+ chargino states in the NRMSSM we encounter n2
0

neutralino pairs, χ0χ0, and 2n2
+ neutral χ±χ∓ states, where we counted as different the

states χeaχeb and χebχea for non-identical species χea , χeb, that arise from interchanging
the particles at the first and second position in the χχ state. Consequently we obtain
N0 = n2

0+2n2
+ neutral two-particle states. Similarly, the charge Q = ±1 sectors comprise

N1 = 2n0n+ two-particle states and in case of Q = ±2 we have N2 = n2
+. If for a given

MSSM spectrum the masses of the four neutralino and the two chargino species are, for
instance, so close to each other that all these species have to be taken into account in the
NRMSSM, we confront n0 = 4 and n+ = 2. This implies that potential scattering and
annihilation reactions between N0 = 24 neutral two-particle states have to be considered
in the Q = 0 sector. Correspondingly, the single and double charged sectors involve
N1 = 16 and N2 = 4 interacting χχ states. Written explicitly we have to consider in this
“n0 = 4 and n+ = 2” example the N0 = 24 neutral states

χ0
1χ

0
1, χ

0
1χ

0
2, χ

0
1χ

0
3, χ

0
1χ

0
4, χ

0
2χ

0
1, χ

0
2χ

0
2, χ

0
2χ

0
3, χ

0
2χ

0
4, χ

0
3χ

0
1, . . . , χ

0
4χ

0
4,

χ+
1 χ

−
1 , χ

+
1 χ

−
2 , χ

+
2 χ

−
1 , χ

+
2 χ

−
2 , χ

−
1 χ

+
1 , χ

−
1 χ

+
2 , χ

−
2 χ

+
1 , χ

−
2 χ

+
2 , (7.13)

as well as the following N1 = 16 states in the two charge Q = ±1 sectors,

χ0
1χ

±
1 , χ

0
1χ

±
2 , χ

0
2χ

±
1 , χ

0
2χ

±
2 , χ

0
3χ

±
1 , χ

0
3χ

±
2 , χ

0
4χ

±
1 , χ

0
4χ

±
2 ,

χ±
1 χ

0
1, χ

±
2 χ

0
1, χ

±
1 χ

0
2, . . . , χ

±
2 χ

0
4 , (7.14)

and finally the N2 = 4 states in the Q = ±2 charge sectors,

χ±
1 χ

±
1 , χ

±
1 χ

±
2 , χ

±
2 χ

±
1 , χ

±
2 χ

±
2 . (7.15)

The entirety of all N0 + 2N1 + 2N2 = 64 states in (7.13 – 7.15) defines the “method-1
basis” of two-particles states in our “n0 = 4 and n+ = 2” example. The adaption to
the case of n0 ≤ 4 and n+ ≤ 2 neutralino and chargino species in the NRMSSM is
straightforward. Note that the order of states in each charge sector in (7.13 – 7.15) is
of course a matter of convention. By using the method-1 basis of two-particle states

4Note that our notation implies |Q| = 0, 1, 2; the total number of states in the single-positive and
single-negative, Q = ±1, (double-positive and double-negative, Q = ±2) charge sector obviously agrees
and is denoted by N1 (N2).
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in the NRMSSM – that is by treating χeaχeb and χebχea for non-identical particles χea
and χeb as different – we can in the construction of potential and annihilation matrices
directly use the expressions for potentials and Wilson coefficients as derived in Sec. 7.1
and Chap. 6: In the calculation of χiχj → XAXB annihilation amplitudes with ladder-
like exchanges there are no additional combinatorial factors to be taken into account in
front of potentials V or Wilson coefficients f̂ as long as we consider and sum over all
method-1 basis states that are part of the same charge sector as the annihilating χiχj
pair.

The “method-2 basis” that we discuss next has the advantage that it contains less
two-particle states than the corresponding method-1 basis. In return the potentials and
annihilation matrices to be used in the calculation of χiχj → XAXB annihilation rates in
the method-2 basis have to be calculated from the method 1 expressions (directly related
to the potentials taken from Sec. 7.1 and Wilson coefficients from Chap. 6) by accounting
for certain combinatorial factors and combinations of different method-1 matrix entries.
The method-2 basis is built from all χχ states that differ pairwise with respect to the
individual particle content. This implies that only one of the states χeaχeb and χebχea
for different particle species χea,b is considered as a basis state, the other is redundant
and ignored. While this prescription is still ambiguous as it is not specified which two-
particle state should be dropped, we define the method-2 basis such that it contains only
those neutral two-particle states χ0

eaχ
0
eb
with ea ≤ eb, where the individual particles χ

0
ea,b

are part of the n0 NRMSSM neutralino species. Further all neutral states χ+
eaχ

−
eb

built
from the n+ NRMSSM chargino states are part of the basis, while states χ−

eb
χ+
ea are not.

In the single-charged sectors Q = ±1 we include states χ0
eaχ

±
eb
in the method-2 basis and

accordingly neglect the redundant states χ±
eb
χ0
ea . Finally, as in case of two-neutralino

states, the χ±
eaχ

±
eb

pairs in the charge Q = ±2 sectors are part of the basis if ea ≤ eb.

With this definition we obtain Ñ0 = n0(n0+1)/2+n2
+ neutral two-particle basis states as

well as Ñ1 = n0n+ and Ñ2 = n+(n++1)/2 basis states in the charge Q = ±1 and Q = ±2
sectors, respectively. The method-2 basis is then given by the entirety of Ñ0 + Ñ1 + Ñ2

states. In case of the example with n0 = 4 and n+ = 2 discussed above for method-1,
we obtain the following Ñ0 = 14 neutral states in the method-2 basis,

χ0
1χ

0
1, χ

0
1χ

0
2, χ

0
1χ

0
3, χ

0
1χ

0
4, χ

0
2χ

0
2, χ

0
2χ

0
3, χ

0
2χ

0
4, χ

0
3χ

0
3, χ

0
3χ

0
4, χ

0
4χ

0
4,

χ+
1 χ

−
1 , χ

+
1 χ

−
2 , χ

+
2 χ

−
1 , χ

+
2 χ

−
2 , (7.16)

the following Ñ1 = 8 states in each of the two single charged (Q = ±1) sectors,

χ0
1χ

±
1 , χ

0
1χ

±
2 , χ

0
2χ

±
1 , χ

0
2χ

±
2 , χ

0
3χ

±
1 , χ

0
3χ

±
2 , χ

0
4χ

±
1 , χ

0
4χ

±
2 , , (7.17)

and finally the Ñ2 = 3 double charged states in the each of the two double-charged
(Q = ±2) sectors,

χ±
1 χ

±
1 , χ

±
1 χ

±
2 , χ

±
2 χ

±
2 . (7.18)

The reduction of the number of states contained in the method-2 basis with respect to
the corresponding method-1 basis is more significant the larger the numbers n0 and n+
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of neutralino and chargino states in the NRMSSM. It is in particular maximal for the
case n0 = 4 and n+ = 2 considered above.

While, for instance, we have two potential matrix entries corresponding to the scat-
tering reactions χe1χe2 → χe4χe3 and χe1χe2 → χe3χe4 in method-1, where the latter
is the so-called “crossed” contribution which differs from the former for χe3 6= χe4 , we
encounter only one potential matrix entry in case of method-2, as one of the states χe4χe3
or χe4χe3 is absent in the corresponding basis. For the following discussion let us denote
a state in the method-2 basis by (χχ)e1e2 in order to distinguish it from a method-1
basis state, which we will still write as χe1χe2 . We obtain the potential matrix entries

V
(χχ)→(χχ)
{..}{..} in the method-2 basis from the method-1 entries V χχ→χχ

{..}{..} in the following way:

e1 6= e2 and e4 6= e3 : V
(χχ)→(χχ)
{e1e2}{e4e3} = V χχ→χχ

{e1e2}{e4e3} + (−1)L+S V χχ→χχ
{e1e2}{e3e4} ,

e1 6= e2 and e4 = e3 : V
(χχ)→(χχ)
{e1e2}{e4e4} =

√
2 V χχ→χχ

{e1e2}{e4e4} ,

e1 = e2 and e4 6= e3 : V
(χχ)→(χχ)
{e1e1}{e4e3} =

√
2 V χχ→χχ

{e1e1}{e4e3} ,

e1 = e2 and e4 = e3 : V
(χχ)→(χχ)
{e1e1}{e4e4} = V χχ→χχ

{e1e1}{e4e4} . (7.19)

Note that the labels {e1e2} and {e4e3} on the method-2 potential entries obviously have
to refer to states (χχ)e1e2 ≡ χe1χe2 and (χχ)e4e3 ≡ χe4χe3 contained in the method-2
basis. The factor (−1)L+S in front of the method-1 potential entry associated with the
crossed diagram in the first line of (7.19) arises from the product (−1)×(−1)L×(−1)S+1:
the first factor (−1) is associated with Wick ordering and the exchange of e3 ↔ e4 leads to
a change of sign in the relative momentum that translates into the factor (−1)L as well as
to a factor (−1)S+1 in the spin wave function. In addition to the rules in (7.19) there is a
further prescription to be considered in the construction of the method-2 potential entries
that is related to the fact that two identical spin-1/2 particles χea cannot form a two-
particle state (χχ)eaea = χeaχea with odd L+S, i.e. with quantum numbers 3S1 and

1P1

in the case at hand. Entries that refer to such a (χχ)eaea state in the method-2 potentials
have to be set to zero. In this way we prevent that a non-zero annihilation amplitude for
a forbidden partial-wave state of two-identical particles is obtained through a transition
to an intermediate allowed state, such as for example (χ0χ0)11 → (χ+χ−)11 → XAXB,
where the χ+

1 χ
−
1 pair can but the χ0

1χ
0
1 pair cannot form a 3S1 or

1P1 state. In method-1
there is no such additional prescription needed as a priori certain cancellations between
different contributions to a forbidden annihilation amplitude of identical particles are
effective: For instance, in addition to the term χ0

1χ
0
1 → χ+

1 χ
−
1 → XAXB in the above

example there is a corresponding contributions from χ0
1χ

0
1 → χ−

1 χ
+
1 → XAXB. The

symmetry properties of the Wilson coefficients – encoding the hard χ±
1 χ

∓
1 → XAXB

annihilations – under exchange of the particle labels, (5.9, 5.14), then guarantee the
mutual compensation of the two contributions for reactions with odd L+S in method-1.
Contrary to the potentials in method-1, the just described prescription together with
the rules in (7.19) implies that the method-2 potentials depend already at leading order
in the non-relativistic expansion on the orbital angular momentum L.

Similar to the case of potential matrices let us introduce the notation Γχχ→χχ
{..}{..} (

2S+1LJ)
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to denote an annihilation matrix entry corresponding to the method-1 two-particle state
basis, while Γ

(χχ)→(χχ)
{..}{..} (2S+1LJ) denotes the corresponding expression referring to the

method-2 basis. In case of the method-1 basis the annihilation matrix entries are
directly obtained from the absorptive parts of the Wilson coefficients f̂ that we pre-
sented and discussed in Chap. 6: Γχχ→χχ

mn (2S+1LJ) ≡ f̂χχ→χχ
mn (2s+1LJ ), where the la-

bels m,n are compound two-particle indices m,n ≡ {eaeb} and can refer to all pos-
sible χeaχeb method-1 basis states. However, similar to the case of the potential ma-
trix entries related to the method-2 basis, there are certain additional factors that
have to be accounted for in the construction of the corresponding method-2 annihi-
lation matrices. An annihilation matrix entry that refers to the absorptive part of the
hard (χχ)e1e2 → (χχ)e4e3 ≡ (χχ)m → (χχ)n (off-) diagonal forward scattering reac-
tion of method-2 basis states in a 2S+1LJ wave configuration is given by the product
Γχχ→χχ
mn (2S+1LJ) ≡ (1/

√
2)nid × f̂χχ→χχ

mn (2S+1LJ), with nid = 1, 2 if the states (χχ)e1e2
or/and (χχ)e4e3 are built from identical particles and nid = 0 otherwise.

7.2.2 Pure-wino NRMSSM potential & annihilation matrices

In order to provide an explicit example for the construction of the potential and annihi-
lation matrices related to the method-1 and method-2 bases described in the preceding
section, we give here the corresponding expressions for the neutral sector of the pure-wino
NRMSSM introduced in Sec. 6.3.

From the results for the potentials in Appendix B we obtain the following expression
for both the Spin-0 and Spin-1 potential matrices in the Q = 0 sector within method-1:

V
(1)
Q=0(r) =




0 −α2
e−MWr

r
−α2

e−MWr

r

−α2
e−MWr

r
−α

r
− α2 c

2
W

e−MZr

r
0

−α2
e−MWr

r
0 −α

r
− α2 c

2
W

e−MZr

r


 , (7.20)

where the matrix indices (m,n = 1, 2, 3) correspond to the following three neutral states
χ0
1χ

0
1, χ

+
1 χ

−
1 , χ

−
1 χ

+
1 contained in the method-1 pure-wino NRMSSM basis. In applications

to MSSM spectra beyond the pure-wino limit we will generically encounter two different
method-1 potential matrices, corresponding to the S = 0 and S = 1 case, respectively.
As however axial-vector couplings vanish in the pure-wino NRMSSM and the differ-
ence between the Spin-0 and Spin-1 potentials is solely attributed to the latter (see the
discussion after (7.12)), there is effectively only one leading-order pure-wino NRMSSM
potential matrix, (7.20), within method-1.

According to the rules in (7.19) and the prescription given in the paragraph following
these rules, the L- and S-dependent leading-order potentials in the Q = 0 sector within
method-2 read

V
(2)
Q=0,evenL+S(r) =

(
0 −

√
2α2

e−MWr

r

−
√
2α2

e−MWr

r
−α

r
− α2 c

2
W

e−MZr

r

)
, (7.21)
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V
(2)
Q=0,oddL+S(r) =

(
0 0

0 −α
r
− α2 c

2
W

e−MZr

r

)
, (7.22)

and the matrix indices (m,n = 1, 2) now refer to the two neutral method-2 basis states
(χ0χ0)11 = χ0

1χ
0
1, (χ

+χ−)11 = χ+
1 χ

−
1 .

From the results for the absorptive parts of the Wilson coefficients in the pure-wino
NRMSSM in Sec. 6.3 we immediately obtain the annihilation matrices within method-1.
Let us first introduce the following 3× 3 matrices

AevenL+S =




2 1 1

1 3
2

3
2

1 3
2

3
2


 , AoddL+S =




0 0 0

0 1 −1
0 −1 1


 . (7.23)

Referring to the same ordering of basis states as for the corresponding method-1 potential
matrix (7.20), the leading-order S-wave annihilation matrices are then given by

Γ(1)[f̂(1S0)] =
πα2

2

m2
χ

AevenL+S , Γ(1)[f̂(3S1)] =
25

24

πα2
2

m2
χ

AoddL+S . (7.24)

The respective O(v2rel) annihilation matrices read

Γ(1)
[ f̂(1P1)

M2

]
=

1

6

πα2
2

m4
χ

AoddL+S , Γ(1)
[ f̂(3PJ )

M2

]
=

7

3

πα2
2

m4
χ

AevenL+S ,

Γ(1)
[ f̂(1S(p2)

0 )

M2

]
= −4

3

πα2
2

m4
χ

AevenL+S , Γ(1)
[ f̂(3S(p2)

1 )

M2

]
= −25

18

πα2
2

m4
χ

AoddL+S. (7.25)

It is nicely seen from (7.23, 7.24, 7.25) that entries in the method-1 annihilation matrices,
which differ only in the replacement χ+

1 χ
−
1 ↔ χ−

1 χ
+
1 as incoming or outgoing state are

equal up to a factor (−1)L+S, which is related to the symmetry properties of the Wilson
coefficients under exchange of labels, see (5.9) and (5.14).

By applying the rules for the construction of the method-2 annihilation matrices
from the corresponding method-1 expressions as set out in Sec. 7.2.1 we first deduce the
following 2× 2 matrices Ã from the 3× 3 matrices A in (7.23),

ÃevenL+S =

(
1 1√

2
1√
2

3
2

)
, ÃoddL+S =

(
0 0

0 1

)
. (7.26)

According to the same ordering of basis states as used in the presentation of the cor-
responding potential matrices in (7.21, 7.22), we then obtain the following method-2
annihilation matrices related to leading-order S-wave processes

Γ(2)[f̂(1S0)] =
πα2

2

m2
χ

ÃevenL+S , Γ(2)[f̂(3S1)] =
25

24

πα2
2

m2
χ

ÃoddL+S . (7.27)
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The latter results together with (7.21, 7.22) have been presented before in [19, 20]. The
expressions (7.27) obviously follow from (7.24) by the replacements A → Ã. In the
same way, replacing A → Ã in (7.25), the corresponding method-2 O(v2rel) annihilation
matrices are obtained that have not been given before in the literature.

From the results for the pure-wino NRMSSM Wilson coefficients presented in Sec. 6.3
and the generic expressions for the potential interactions given in Appendix B, the
annihilation and potential matrices in the pure-wino NRMSSM within the remaining
Q = ±1,±2 charge sectors can be similarly obtained.
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Chapter 8

Sommerfeld enhancement

In this chapter we finally come to the rigorous derivation of the non-relativistic χ0/χ±

pair-annihilation cross section including Sommerfeld enhancements within the non-relati-
vistic effective theory that we have developed in the preceding Chaps. 5 – 7. The structure
of this chapter is as follows. In Sec. 8.1 we start from the annihilation cross section in
the effective theory written in terms of matrix elements of the four-fermion operators
in δLann and their corresponding Wilson coefficients. From this we derive a convenient
form of this central expression given by a sum over products of Sommerfeld enhancement
factors times the corresponding Wilson coefficients encoding the partial-wave dependent
hard annihilation rates. The Sommerfeld enhancement factors themselves involve two-
particle wave functions in presence of the potential interactions, subject to a certain
partial-wave configuration of the incoming particle pair, as well as corresponding Wilson
coefficient expressions. In the course of rewriting the cross section we thus provide a
refined, rigorous definition of the Sommerfeld enhancement factors first introduced in
Chap. 2.

At two points in Sec. 8.1 we make use of relations whose detailed derivation is post-
poned to later sections. The first point concerns the relation between the operator
matrix elements and two-particle wave functions – appearing in the Sommerfeld en-
hancement factors – that we address in Sec. 8.2: we first establish here the connection
between the pair-annihilation matrix element and the Green function associated with
the annihilating non-relativistic two-particle state. Elementary scattering theory and
the Lippmann-Schwinger equation subsequently provide the link to the two-particle wave
functions that are solutions to a corresponding multi-state Schrödinger equation. Even-
tually a form of the Sommerfeld enhancement factors of use in practical calculations is
derived. As all expressions related to the determination of the Sommerfeld factors and
non-relativistic pair-annihilation cross sections refer to two-particle states, we can make
use of the method-1 and method-2 two-particle state bases introduced in Sec. 7.2.1.
In Sec. 8.3 we therefore rewrite the definition of the Sommerfeld factors in terms of
quantities associated with the one or the other basis. The equivalence of results on the
Sommerfeld factors derived within the two methods is shown in Appendix. C.

It is worth to stress already here that the final expression for the Sommerfeld en-
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hancement factors in terms of scattering wave function solutions of a corresponding
Schrödinger equation differs slightly with respect to the advanced-guess formula from
Chap. 2: if the hermitian potential matrix in the Schrödinger equation is not in ad-
dition real-symmetric (Vij = V ∗

ji 6= Vji), the scattering wave function solutions in the
Sommerfeld factor formula have to be replaced by their complex conjugates with respect
to the expression in Chap. 2.1 The steps to numerically determine the Sommerfeld fac-
tors for a system of coupled scattering states (χχ)i=1,...,N by solving a multi-component
Schrödinger equation are however easily obtained by adaption of the steps given at the
end of Sec. 2.2. It turns out, though, that this method suffers from severe numerical
instabilities in the application to χ0/χ± co-annihilation processes in the general MSSM.
The origin of these instabilities is discussed in Sec. 8.4 and an improved method that
allows to resolve the issue is introduced.

The second missing derivation of a relation presupposed in Sec. 8.1 is presented in
Sec. 8.5, which treats the relation between the matrix elements of the next-to-next-
to-leading and the leading-order S-wave four-fermion operators. Eventually, Sec. 8.6
contains the description of a method that allows to perturbatively include the effects
from heavier neutralino and chargino states that are not part of the NRMSSM in the
last potential loop of ladder-amplitudes prior to the actual pair annihilation.

8.1 Sommerfeld-corrected annihilation rates

In Chap. 5 we have given the generic formula for the inclusive spin-averaged centre-of-
mass frame χiχj annihilation cross section in terms of matrix elements of the operators
contained in δLann, see (5.5). Here we start from this equation and explicitly insert the
dimension-6 and dimension-8 four-fermion operators from δLann in the forward-scattering
matrix element. In this way we obtain the following expression for the inclusive χiχj
annihilation cross section in the non-relativistic effective theory:

σχiχj→
∑
XAXB vrel =


1

4

∑

si, sj


 2 ℑ 〈χiχj| δLann|χiχj〉

=
1

8

∑

si, sj

{ (
f̂(1S0) +

δm

M
ĥ1(

1S0) +
δm

M
ĥ2(

1S0)

)
〈χiχj | O(1S0) |χiχj〉

+

(
f̂(3S1) +

δm

M
ĥ1(

3S1) +
δm

M
ĥ2(

3S1)

)
〈χiχj | O(3S1) |χiχj〉

+
ĝ(1S0)

M2
〈χiχj | P(1S0) |χiχj〉 +

ĝ(3S1)

M2
〈χiχj| P(3S1) |χiχj〉

1In the analysis of Sommerfeld enhancements in the toy scenarios of Chap. 2 we have considered real
potentials, such that all results discussed in context of these toy models remain valid. In the MSSM
application, though, we generically encounter potential matrices that are not real-symmetric.
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+
f̂(1P1)

M2
〈χiχj | O(1P1) |χiχj〉 +

3 f̂(3PJ )

M2
〈χiχj| O(3P0) |χiχj〉

}

+ higher order contributions . (8.1)

Again we use vrel = |~vi − ~vj| to denote the (modulus of the) relative velocity of the
annihilating particles χi and χj in their centre-of-mass frame.2 The contributions to
(8.1) denoted with ‘higher order’ are related to four-fermion operators in δLann with
mass dimension 9 and higher, which are suppressed with respect to the dimension-6 and 8
four-fermion operators and therefore safely neglected. The incoming and outgoing states
in (8.1) are non-relativistically normalised, which implies that for the free single-particle
momentum eigenstates of the NRMSSM neutralinos and charginos the normalisation
〈 ~p | ~p ′ 〉 = (2π)3δ(3)(~p − ~p ′) holds. We have used a short-hand notation in (8.1), that
allows a concise representation of the different contributions: we suppress the labels on
the four-fermion operators and their corresponding Wilson coefficients that indicate the
specific (off-) diagonal χe1χe2 → χe4χe3 scattering reaction to which these quantities
refer. In addition the sum symbol over all such (off-) diagonal χχ → χχ reactions,
compatible with the charge of the incoming χiχj state, has been omitted. Written in
full form the first term in (8.1) for instance reads

1

8

∑

si, sj

∑

χχ→χχ

f̂χχ→χχ
{e1e2}{e4e3}(

1S0) 〈χiχj | Oχχ→χχ
{e4e3}{e2e1}(

1S0) |χiχj〉 . (8.2)

In the following we will always omit the sum symbol
∑

χχ→χχ and imply summation over
repeated indices ei if those appear in an expression. Let us further recall from Sec. 5.2.2
that the quantitiesM , δm and δm that come with the dimension-8 four-fermion operators
in (8.1) denote χe1χe2 → χe4χe3 process-specific quantities.

In order to obtain the second equality in (8.1) we used the fact that

ℑ
[
f(2S+1LJ) 〈χiχj| O(2S+1LJ) |χiχj〉

]
= f̂(2S+1LJ) 〈χiχj | O(2S+1LJ) |χiχj〉 , (8.3)

which follows from (6.5) and (6.6). A similar relation obviously holds for the next-
to-next-to-leading order S-wave operators P(2S+1SS). The forward-scattering matrix
elements of the three spin S = 1 P -wave operators, 〈χiχj|O(3PJ=0,1,2)|χiχj〉, agree apart
from simple spin-weighted factors, as long as only leading-order potential interactions
that do not change the spin and orbital angular momentum of the incoming χiχj state
are considered in the calculation. Since our analysis is restricted to leading-order po-
tentials we have therefore already expressed the spin S = 1 P -wave contributions to the

2As already noted in context of (5.5) (see footnote 4 in Chap. 5) also here we abuse notation
to make contact with the common notation used in quarkonium annihilations and write in (8.1)
the matrix elements of the operators δLann, O(2S+1LJ) and P(2S+1LJ) instead of the correspond-
ing forward-scattering amplitudes. The proper way to write the relation (8.1) would involve the
configuration-space integrated quantities,

∫
d4x δLann,

∫
d4xO(2S+1LJ) and

∫
d4xP(2S+1LJ) in the

forward-scattering matrix elements on the right-hand side instead of the sole operators. The additional
factors (2π)4 δ(4)(pinitial − pfinal) that then arise when evaluating the matrix elements should however
not be included in the relation to the cross section (8.1).
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annihilation cross section in (8.1) in terms of the matrix element of the operator O(3P0)
multiplied by f̂(3PJ ), the appropriate spin-weighted sum of the three spin-1 P -wave
Wilson coefficients introduced in (6.29).

Note that we immediately obtain the exclusive tree-level annihilation cross sections
(6.22) from (8.1), when the matrix elements are evaluated for the perturbative case
(neglecting long-range potential interactions contained in Lpot) and when the Wilson
coefficients are determined at O(α2

i ). At this order infrared divergences are absent such
that (8.1) applies separately for each exclusive final state XAXB. Consequently, as we
have explicitly used in Chap. 6, the contributions to the Wilson coefficients f̂ , ĝ and ĥi
from χχ→ XAXB → χχ reactions can be given separately and therefore allow to obtain
the non-relativistic expansion of the exclusive χiχj → XAXB tree-level annihilation cross
section including O(v2rel) contributions.

Eventually we want to rewrite (8.1) such that the non-relativistic expansion of the
χiχj pair-annihilation cross section is expressed in terms of a sum over products of Wilson
coefficients – encoding the short-distance annihilations – and their corresponding partial-
wave dependent Sommerfeld enhancement factors, which are related to the long-range
effects. To this end we proceed in three steps. First we express the matrix elements of the
operators in terms of non-relativistic wave-functions and their derivatives evaluated at
the origin, a procedure well known from quarkonium physics. Subsequently we provide
the definition of the Sommerfeld enhancement factors in terms of Wilson coefficients and
the non-relativistic wave-functions, which refines the corresponding definition in Chap. 2.
From this we finally obtain the desired expression for the χiχj pair-annihilation cross
section, that explicitly involves the Sommerfeld enhancement factors.

In the first step we start from the matrix elements of the four-fermion operators and
insert the operator |0〉〈0| that projects onto the NRMSSM vacuum state, the Fock space
state that involves no neutralinos and charginos. For instance, the matrix element of the
dimension-6 operator O(1S0) is with this insertion written as

〈χiχj | Oχχ→χχ
{e4e3}{e2e1}(

1S0) |χiχj〉 = 〈χiχj |χ†
e4
χce3|0〉〈0|χ

c †
e2
χe1 |χiχj〉

=
[
〈ξc†j ξi〉

(
ψ

(0,0)
e4e3,ij

+ ψ
(0,0)
e3e4,ij

)]∗
〈ξc†j ξi〉

(
ψ

(0,0)
e1e2,ij

+ ψ
(0,0)
e2e1,ij

)
. (8.4)

Note that the relation in the first line is exact at the level of terms that we include in
Lkin+Lpot. With the second equality in (8.4) we define ψ

(L=0,S=0)
eaeb,ij

, the χeaχeb-component
of a scattering wave function related to the incoming χiχj state with centre-of-mass
energy

√
s, orbital angular momentum L = 0 and total spin S = 0, evaluated for

zero relative distance and normalised to the free scattering solution. The quantities
ξi, ξj denote the two-component Pauli spinors of the incoming particles and we use the
notation 〈 .. 〉 to indicate the trace in spin space. The relation between the matrix element
〈0|χc †e2χe1 |χiχj〉 and the wave functions in (8.4) is generalised in the following way to the
case of 2S+1LJ partial-wave reactions:

〈0|χc†e2ΓK
[
− i

2

←→
∂
]
χe1|χiχj〉 = 〈ξ

c†
j Γξi〉K[~p ]

(
ψ

(L,S)
e1e2, ij

+ (−1)L+S ψ(L,S)
e2e1, ij

)
, (8.5)
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where Γ = 12×2 in case of total spin S = 0 and Γ = ~σ for S = 1. Further, K denotes
a polynomial in relative momentum ~p = ~pij of the incoming χiχj pair (or, accordingly,
derivatives in position space) corresponding to a given angular momentum L. Generi-

cally, the multi-component wave-function ~ψ
(L,S)
ij encodes the effect of all (off-) diagonal

potential interactions that involve the incoming non-relativistic χiχj pair in a 2S+1LJ
partial-wave state as well as all possible further (intermediate) neutralino and chargino
NRMSSM two-particle states with the same charge and within the same partial-wave
configuration. In the perturbative case, where the potential interactions in Lpot are ne-

glected, the wave functions reduce to ψ
(L,S)
eaeb,ij

→ δeai δebj. This can be checked explicitly
by direct calculation of the matrix elements of the operators in the perturbative case,
which in particular leads to the result for the tree-level annihilation cross section in
(6.22). The explicit determination of the wave functions from the matrix elements on
the left-hand side in (8.5) is postponed to Sec. 8.2. Here we use the relation (8.5) to
express the spin-averaged annihilation cross section (8.1) in terms of the non-relativistic
wave functions,

σχiχj→
∑
XAXB vrel

=
[
ψ

(0,0)
e4e3, ij

]∗(
f̂(1S0) +

δm

M
ĥ1(

1S0) +
δm

M
ĥ2(

1S0) + ĝκ(
1S0)

)
ψ

(0,0)
e1e2, ij

+ 3
[
ψ

(0,1)
e4e3, ij

]∗(
f̂(3S1) +

δm

M
ĥ1(

3S1) +
δm

M
ĥ2(

3S1) + ĝκ(
3S1)

)
ψ

(0,1)
e1e2, ij

+ ~p 2
ij

[
ψ

(1,0)
e4e3, ij

]∗ f̂(1P1)

M2
ψ

(1,0)
e1e2, ij

+ ~p 2
ij

[
ψ

(1,1)
e4e3, ij

]∗ f̂(3PJ )

M2
ψ

(1,1)
e1e2, ij

, (8.6)

where we have used the spin sums

1

2

∑

si,sj

〈ξc†j ξi〉 〈ξc†j ξi〉∗ = 1 ,
1

2

∑

si,sj

〈ξc†j σkξi〉 〈ξc†j σℓξi〉∗ = δkℓ , (8.7)

as well as the symmetry properties (5.9, 5.14) of the Wilson coefficients. The relative
momentum ~pij of the two non-relativistic particles χi and χj in the χiχj two-particle
state is related to the available centre-of-mass energy

√
s by

~p 2
ij = 2µij (

√
s−Mij) + O(~p 4

ij ) , (8.8)

with µij the reduced and Mij the total mass of the two-particle system. In addition we
use in (8.6) the following relation between the matrix elements of the next-to-next-to-
leading and the leading-order S-wave operators P(2S+1SS) and O(2S+1SS),

ĝ(2S+1SS)

M2
〈χiχj | P(2S+1SS) |χiχj〉 = ĝκ(

2S+1SS) 〈χiχj | O(2S+1SS) |χiχj〉 , (8.9)

with

ĝκ {e′1e′2}{e′4e′3}(
2S+1SS) =

ĝ{e1e2}{e4e3}(
2S+1SS)

2M2

(
κ∗e1e2,e′1e′2δe4e3,e

′
4e

′
3
+ δe1e2,e′1e′2κe4e3,e′4e′3

)
(8.10)
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and the parameter κ defined as

κe1e2,e′1e′2 = ~p 2
e1e2

δe1e2,e′1e′2 + 2µe1e2α2

∑

a

mφa c
(a)
e1e2,e′1e

′
2
. (8.11)

The sum in the second term in (8.11) runs over all potential scattering reactions χe′1χe′2 →
χe1χe2 arising from φa-mediator exchange. The corresponding coefficients c

(a)
e1e2,e′1e

′
2
are

collected in Tab. B.1. The definition for the relative momentum ~p 2
e1e2

in (8.11) follows
from (8.8). The derivation of relation (8.9) is postponed to Sec. 8.5. Let us however
note here, that the simpler form 〈χχ| P(2S+1SS) |χχ〉 = ~p 2 〈χχ| O(2S+1SS) |χχ〉 familiar
from NRQCD applications to heavy quarkonium is obtained from (8.9 – 8.11), when
the theory contains just one single two-particle state and the exchanged bosons φa are
massless.

As second step in our derivation of a χiχj cross section formula involving products of
Sommerfeld enhancement factors and Wilson coefficients, we provide now the definition
of the Sommerfeld enhancement factor for an incoming χiχj state with centre-of-mass
energy

√
s, spin S and orbital angular momentum L. The enhancement factor is asso-

ciated with Wilson coefficients (or suitable combinations of Wilson coefficients) f̂ , that
encode the corresponding short-distance annihilations subject to the given total spin S
and orbital angular momentum L, and defined by the ratio

Sij [f̂(
2S+1LJ)] =

[
ψ

(L,S)
e4e3, ij

]∗
f̂χχ→χχ
{e1e2}{e4e3}(

2S+1LJ )ψ
(L,S)
e1e2, ij

f̂χχ→χχ
{ij}{ij}(

2S+1LJ )|LO
. (8.12)

This definition has to be understood such that according to the expressions in the expan-
sion of the cross section (8.6), for instance, the combinations f̂(1P1)/M

2 and f̂(3PJ )/M
2

appear as arguments of the corresponding Sij . In case of leading-order S-waves the argu-

ments are simply given by f̂(1S0) and f̂(
3S1). It is worth to recall at this point that the

mass scale M that comes with the Wilson coefficients of dimension-8 operators in δLann

derives from the masses of the particles χei=1,...,4
to which the respective Wilson coefficient

f̂ refers. With the subscript “LO” in the denominator of (8.12) we indicate that only that
contribution to f̂(2S+1LJ) that is leading order in the coupling α2, O(α2

2), should be kept
in the corresponding expressions. As far as our application is concerned, this prescrip-
tion is only relevant to us for the case of enhancement factors associated with next-to-
next-to-leading order S-wave annihilations, Sij [ĝκ(

2S+1SS)], where we have to set the α2

proportional term in κ to zero, so that ĝχχ→χχ
κ{ij}{ij}(

2S+1SS)|LO = ~p 2
ij/M

2
ij ĝ

χχ→χχ
{ij}{ij}(

2S+1SS).

However note that definition (8.12) generically allows to incorporate the higher-order
(hard) radiative corrections to the short-distance part of the annihilation into the Som-
merfeld factor. Though not explicitly indicated in (8.12) it is important to note that the
Sommerfeld enhancement factors depend on the available centre-of-mass energy

√
s or,

equivalently, the relative velocity vrel of the incoming χiχj state.
As third and final step, using the definition (8.12), we parametrise the non-relativistic

expansion of the inclusive χiχj pair-annihilation cross section in (8.1) in terms of Som-
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merfeld enhancement factors and Wilson coefficients:

σχiχj→
∑
XAXB vrel = Sij [f̂h(

1S0)] f̂
χχ→χχ
{ij}{ij}(

1S0) + Sij[f̂h(
3S1)] 3 f̂

χχ→χχ
{ij}{ij}(

3S1)

+
~p 2
ij

M2
ij

(
Sij[ĝκ(

1S0)] ĝ
χχ→χχ
{ij}{ij}(

1S0) + Sij [ĝκ(
3S1)] 3 ĝ

χχ→χχ
{ij}{ij}(

3S1)

+ Sij

[ f̂(1P1)

M2

]
f̂χχ→χχ
{ij}{ij}(

1P1) + Sij

[ f̂(3PJ )

M2

]
f̂χχ→χχ
{ij}{ij}(

3PJ )
)
, (8.13)

where in addition to the spin-weighted sum f̂(3PJ ) of spin S = 1 P -wave Wilson coeffi-
cients defined in (6.29), we introduced the following combinations of Wilson coefficients

f̂h(
1S0) = f̂(1S0) +

δm

M
ĥ1(

1S0) +
δm

M
ĥ2(

1S0) ,

f̂h(
3S1) = f̂(3S1) +

δm

M
ĥ1(

3S1) +
δm

M
ĥ2(

3S1) . (8.14)

The non-relativistic expansion of the inclusive χiχj tree-level annihilation cross section is
recovered from (8.13) by setting all Sommerfeld enhancement factors to one. In this case
the cross section formula contains only those Wilson coefficients that refer to diagonal
χiχj → χiχj reactions. Wilson coefficients related to off-diagonal rates – in particular

the coefficients ĥi=1,2 that vanish for diagonal reactions – can only enter the Sommerfeld

enhancement factors. This is why the symbols f̂h appear only as arguments of the factors
Sij in (8.13).

8.2 NR matrix-elements & the Schrödinger equation

In this section we provide the missing derivation of the relation between the matrix
elements and wave functions in (8.5). We proceed in three steps: first a relation between
the matrix elements and corresponding momentum space two-particle Green functions
is established. Second, we move to the corresponding coordinate-space Green functions
and, third, use elementary scattering theory to obtain an expression involving scattering
wave functions instead of the Green functions.

The non-relativistic matrix element in (8.5) systematically includes long-range po-
tential interactions, which cannot be treated perturbatively but require a resummation
up to all orders. We have noted in Chap. 2 that the corresponding contributions to the
matrix element are obtained from a resummation of the potential region contributions
to ladder diagrams such as Fig. 8.1. To extract the relevant expressions from the full
theory ladder diagrams we can perform similar replacements as in Sec. 2.1, (2.5, 2.6),
for the (ladder bar) fermion and (ladder rung) boson propagators. Let us recall however
that compared to Chap. 2 we consider here the case of several nearly mass degenerate
fermion states, where the corresponding mass differences shall be of the same order as
the non-relativistic kinetic energy of the external states. We write the on-shell momenta
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pi + ka
ma1pi
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mj −pj + ka
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Γ

e1

e2

Figure 8.1:

pi and pj of incoming NRMSSM states χi and χj in Fig. 8.1 as

~pi =
µij
mj

~P + ~p , ~pj =
µij
mi

~P − ~p , (8.15)

where µij denotes the reduced mass of the χiχj pair and ~P and ~p are its total and relative

momentum, respectively. The latter fulfil |~P |, |~p | ≪ µij such that the centre-of-mass
energy in the non-relativistic χiχj annihilation reaction is given by

√
s = mi +mj + E ≡ 2mLSP + E , E =

~p 2

2µij
, (8.16)

where we have neglected higher-order terms in the non-relativistic expansion. The vari-
able E introduced above measures the available non-relativistic kinetic energy with re-
spect to the reference scale 2mLSP given by two times the mass mLSP = mχ0

1
of the

lightest neutralino state. The introduction of such common scale will prove useful in the
following. Since we allow for small mass differences among the NRMSSM neutralino and
chargino states χi, χj, with mi +mj − 2mLSP ∼ mLSPv

2, both energies E and E scale as
E ∼ E ∼ mLSPv

2.
The potential region expansion that we now perform on the full theory ladder-diagram

expression again refers to canonical routing of momenta as indicated in Fig. 8.1. We
noted in Chap. 2 and discussed in detail in Chap. 7 that the potential region expansion
of the boson propagators associated with the ladder rungs in Fig. 8.1 leads to potential
interactions between the fermion pairs in the ladder bars. Let us in particular consider
the loop that involves the two states χa1 and χa2 with masses ma1 and ma2 as well
as the exchanged boson with four-momentum k. We denote the corresponding loop
momentum with ka. It is worth to note that the boson momentum k is given by the
difference of the loop momentum ka and the loop momentum of the previous loop in the
ladder diagram. The potential interaction associated with the exchanged boson depends
only on the spatial components of its four-momentum, ~k, but not on k0. Since this
generically applies to all boson mediated potential interactions, it is eventually possible
to perform the integration over the zero-components of the loop-momenta. In particular,
after a consistent potential region expansion of the χa1 and χa2 propagators, neglecting
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systematically all higher order contributions, we obtain
∫
dk0a
2π

2ma1

(pi + ka)2 −m2
a1
+ iǫ

2ma2

(−pj + ka)2 −m2
a2
+ iǫ

=
−i

E − [Ma − 2mLSP]− (~p+~ka)2

2µa

. (8.17)

In the potential region expansion of the propagator denominators in the first line we
treated the mass differences between the states along the upper or lower fermion line in
the diagram Fig. 8.1 as small, ma1 − mi ∼ ma2 − mj ∼ mLSPv

2. However we do not
require that the mass differences ma2 −ma1 and mj −mi are small.3 Further note that
within our leading-order approximation we can equivalently substitute the reduced mass
µa of the χa1χa2 pair in the kinetic energy term in the denominator of (8.17) by µij or
mLSP/2, or any other NRMSSM two-particle state reduced mass.

After the systematic potential region expansion of the full-theory ladder diagrams
and subsequent integration over the zero-components of the loop momenta we obtain an
expression given by products of two-particle propagators (8.17) associated with χa1χa2
pairs times corresponding momentum-space potential interactions from boson exchange.
This potential region contribution to the full theory amplitude agrees with the non-
relativistic matrix element including the non-perturbative potential interactions, such
that we can write

〈0|χc†e2ΓK
[
− i

2

←→
∂
]
χe1 |χiχj〉 = 〈ξc†j Γξi〉

× lim
Ê→E

(−1)
(
Ê − ~p 2

2µij

) ∫
d3~q

(2π)3
K[~q ]

(
G̃ie(~p, ~q; Ê) + (−1)L+S G̃iē(~p, ~q; Ê)

)
, (8.18)

where we have introduced the compound index notation with index i referring to the
χiχj states and index e (ē) associated with the state χe1χe2 (χe2χe1). This compound
notation will be used frequently below. The function G̃ in (8.18) is given by

G̃ab(~p, ~q;E) = − δab

E − [Ma − 2mLSP]− ~p 2

2µa

(2π)3δ(3)(~p− ~q )

+
1

E − [Ma − 2mLSP]− ~p 2

2µa

iHab(~p, ~q;E)
1

E − [Mb − 2mLSP]− ~q 2

2µb

(8.19)

and

Hab(~p, ~q;E) = i

∞∑

n=0

∫ [ n∏

i=1

d3~ki
(2π)3

]
V̂ aa1(~k1)

1

E − [Ma1 − 2mLSP]− (~p+~k1)2

2µa1

3This implies that the formalism can be applied to hydrogen-like two-particle states with mutual
boson exchange as well. In our application to the χ0

1 relic abundance calculation including χ0/χ± co-
annihilations, however, we necessarily encounter mej −mej ∼ mLSPv

2 for all states in the set of nearly
mass degenerate NRMSSM neutralino and chargino states.
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× V̂ a1a2(~k2 − ~k1) . . .
1

E − [Man − 2mLSP]− (~p+~kn)2

2µan

V̂ anb(~q − ~p− ~kn) . (8.20)

The n = 0 contribution to the sum in (8.20) involves no integration and we have to

additionally set ~k0 = 0 as well as a0 = a. Let us discuss the individual terms arising
on the right-hand side of (8.18) in the following, starting with the function G̃. The
first contribution to G̃, explicitly written in (8.19), accounts for the bare two-particle
propagator with no potential boson exchanges. A term with given n in Hab, (8.20), then
refers to a corresponding (n + 1)-loop ladder diagram involving (n+ 1) potential boson

exchanges, where the momentum-space potentials V̂ ab(~k ) that we derived in Chap. 7
comprise the potential propagators of the exchanged bosons together with the coupling
factors from the two corresponding vertices. In (8.18) we have further used that applying
the on-shell conditions for the external spinors the Dirac structures in the numerator of
the full theory ladder diagrams can be reduced in the potential region to the expression
ξc†j Γξi with two-component spinors ξi,j. The 2 × 2 matrix Γ is either given by Γ = 1
or ~σ, in which case either the total spin S = 0 or 1 momentum-space potentials have
to be used in the above equations. Eventually this will cause the spin S dependence of
the wave functions ψ

(L,S)
e1e2,ij

. The dependence on the orbital angular momentum L enters
through the polynomial K[~q ] in (8.18) with K = 1 in the (leading-order) L = 0 case
and K = ~q for L = 1. The limiting procedure Ê → E is required in (8.18) as the
factor [Ê − ~p 2/(2µij)] vanishes for Ê = E, while the function G̃ab(~p, ~q; Ê) is singular

at Ê = E. The latter singularity is associated with scattering states with relative-
momentum kinetic energy E. Finally note that the integration over ~q in (8.18) refers to
the last loop integration before annihilation of the states χe1χe2 and χe2χe1.

The function G̃ab(~p, ~q;E) is the momentum space Green function of a correspond-
ing Schrödinger operator. By explicit calculation one easily checks that the following
Lippmann-Schwinger equation for G̃ab(~p, ~q;E) holds,

(
~p 2

2µa
− [E −Ma + 2mLSP]

)
G̃ab(~p, ~q;E)

+

∫
d3~k

(2π)3
V̂ ac(~k ) G̃cb(~p− ~k, ~q;E) = δab (2π)3 δ(3)(~p− ~q ) . (8.21)

In our second step we now move to the corresponding configuration space Green function
Gab(~r, ~r ′;E) that is related to (8.19) by Fourier transformation. Accordingly, it fulfils
the Schrödinger equation

(
−
~∇ 2

2µa
− E

)
Gab(~r, ~r ′;E) + V ac(r)Gcb(~r, ~r ′;E) = δab δ(3)(~r − ~r ′) , (8.22)

where we have introduced the coordinate-space potential

V ac(r) = V̂ ac(r) + δac
[
Ma − 2mLSP

]
(8.23)

142



that includes effects from mass-differences between the co-annihilating NRMSSM two-
particle states with respect to the common mass scale 2mLSP set by the lightest pair,
χ0
1χ

0
1. In addition we used already that the potentials that we consider in the NRMSSM

are spherically symmetric, V̂ (~r ) = V̂ (r).
In our last step we establish the connection between the Green function Gab(~r, ~r ′;E)

and corresponding scattering wave functions by making use of relations from elementary
scattering theory. To this end we define the matrix-valued Green operators

G(Ê) =
1

H − Ê − iǫ
, G0(Ê) =

1

H0 − Ê − iǫ
. (8.24)

H and H0 denote the interacting and the free Hamiltonian of the Schrödinger problem
with the momentum eigenstates

H|~p+, a〉 = ~p 2

2µa
|~p+, a〉, H0|~p , a〉 =

~p 2

2µa
|~p , a〉 . (8.25)

The dimensionality of the operators G,G0 is related to the number of two-particle
NRMSSM basis states (χχ)a = χa1χa2 in a given charge sector. Therefore the momentum
eigenstates in (8.25) also carry a corresponding compound index a that indicates a spe-
cific basis state χa1χa2 . The states |~p+, a〉 refer to exact stationary scattering solutions
of the interacting Hamiltonian, whereas states |~p, a〉 correspond to plane wave solutions
of the respective free system where long-range potential interactions are neglected. Note
that in the latter case the coordinate space potentials (8.23) are solely given by mass
difference terms. The representation of the stationary scattering states |~p+, a〉 in the
basis of corresponding plane wave states is given by the momentum-space wave function
[ψ̃E(~q )]ab = 〈~q, a|~p+, b〉. Further, we obtain from the Lippmann-Schwinger equation the
relation |~p+, a〉 = GG−1

0 |~p , a〉. Using the defining relation (8.5) for the wave functions

ψ
(L,S)
e1e2,ij

as well as (8.18) we can thus derive

K[~p ]ψ
(L,S)
e1e2, ij

= lim
Ê→E

(−1)
(
Ê − ~p 2

2µij

) ∫
d3~q

(2π)3
K[~q ] G̃ie(~p, ~q; Ê)︸ ︷︷ ︸

〈~p,i|G(Ê)|~q ,e〉

= lim
Ê→E

∫
d3~q

(2π)3
K[~q ] 〈~p, i|

(
~p 2

2µij
− Ê

)

︸ ︷︷ ︸
〈~p,i|G−1

0 (Ê)

G(Ê)|~q , e〉 =
∫

d3~q

(2π)3
K[~q ] [ψ̃E(~q )]

∗
ei . (8.26)

From the comparison with (8.5) and using that K[~q ] = 1 (K[~q ] = ~q ) for orbital angular
momentum L = 0 (L = 1) we finally obtain

ψ
(0,S)
e1e2, ij

= [ψE(0)]
∗
e1e2, ij

and ~p ψ
(1,S)
e1e2, ij

= −i [~∇ψE(0)]∗e1e2, ij . (8.27)

The coordinate-space wave function ψE(~r )e1e2,ij evaluated at zero relative distance in
(8.27) carries two compound indices, ij and e1e2. The index ij refers to the incoming
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χiχj pair described by the incoming plane wave two-particle state |~p, i〉 with kinetic
energy E in the centre-of-mass frame of the annihilation reaction. Consequently, the
compound index e1e2 indicates the component of the full scattering wave function with
incoming χiχj pair that refers to the χe1χe2 state. The latter e1e2 component is picked

out (at ~r = 0) by the annihilation operator that defines ψ
(L,S)
e1e2,ij

through (8.5). The
coordinate space scattering wave functions [ψE(~r )]a,ij are obtained as solutions of the
matrix Schrödinger equation

([
−
~∇ 2

2µa
−E

]
δab + V ab(r)

)
[ψE(~r )]b,ij = 0 (8.28)

with the matrix-valued coordinate-space potentials obtained from (8.23). The initial
condition for a solution ψE(~r )b,ij has to be chosen such that the asymptotic incoming
state refers to the χiχj pair. Due to our assumption on the mass splittings between
the NRMSSM states to be of O(mLSPv

2), we can replace the reduced mass µa in (8.28)
by the reduced mass mLSP/2 in the lightest NRMSSM two-particle system χ0

1χ
0
1. The

difference is an O(v2) effect which we consistently neglect in the part of the annihilation
rates that is associated with the long-range effects. Let us recall that we have performed
the same approximation in Sec. 2.2, see (2.9, 2.11) and the corresponding discussion
therein. Consequently, we have to determine within our non-relativistic approximation
the wave functions [ψE(~r )]a,ij that are solutions of the Schrödinger equation

([
−

~∇ 2

mLSP

−E
]
δab + V ab(r)

)
[ψE(~r )]b,ij = 0 , (8.29)

with initial conditions chosen such that [ψE(~r )]b,ij refers to the asymptotic incoming
states χiχj.

It is important to note that the relation among the wave functions ψ
(L,S)
e1e2,ij

and
[ψE(0)]e1e2,ij in (8.27) involves a complex conjugation. Using (8.27) in the refined defini-
tion of the Sommerfeld factor in (8.12), we therefore conclude that the advanced-guess
Sommerfeld enhancement formula from Chap. 2, (2.8, 2.33), was correct up to complex
conjugation of the scattering wave function appearing therein.4 While this has con-
sequences for the enhancement formulae, we can however directly use all results from
Chap. 2 that are related to the scattering solution wave functions [ψE(~r )]b,i.

5 Taking

4Let us mention that the appearance of the complex conjugated scattering wave function [ψ̃E(~q )]
∗
ei

in (8.26) is related to the convention used for the left and right states in the definition of the Green
function (8.19). When using the opposite convention we would end up with a wave function [ψ̃E(~q )]ei
in (8.26), but with V ba instead of V ab in the corresponding Schrödinger equation (8.29). Note that the
solutions ψE(~r ) and [ψE(~r )]

∗ are identical for real-symmetric potentials, such that the correct result for
the Sommerfeld enhancement factor would be obtained even if the conventions for the Green function
and the potential were not consistently taken care of: this is the case for the toy model results in
Chap. 2. In the MSSM, however, we encounter in general complex-hermitian potential matrices.

5Within the NRMSSM we have established the convention to use lowercase letters for the compound
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the normalisation convention for ψ(L,S) noted in context of its definition in (8.5) into
account, we derive the following relation from (2.31) and (2.32),

ψ
(L,S)
e,i =

(2L+ 1)!!

(L+ 1)!
[χ

(L+1)
L (0)]∗eb

[M−1
L ]∗bi

kL+1
i

. (8.30)

χL denotes the regular L-th partial wave solution to the radial Schrödinger equation
related to (8.29). The wave numbers ki are given by

ki =
√
mLSP (E + iǫ− δMi) , (8.31)

where δMi =Mi−2mLSP is the mass splitting of the two-particle state (χχ)i with respect
to the state χ0

1χ
0
1. As E measures the non-relativistic kinetic energy with respect to the

scale 2mLSP, the definition (8.31) agrees with (2.16). Finally, the definition of ML is
obtained from (2.20). Using (2.42), we eventually obtain the relation

ψ
(L,S)
e1e2,ij

= i−L (2L− 1)!!
[T TL ]ei
kLi

, (8.32)

which expresses ψ(L,S) in terms of the transpose of the coefficient matrix TL associated
with the large r behaviour of the singular radial solutions, see (2.37).

With these preparations we can rewrite the Sommerfeld enhancement factor (8.12)
using the matrix TL as

Si[f̂(
2S+1LJ)] =

(
(2L− 1)!!

kLi

)2
[T ∗
L]ie′ f̂

χχ→χχ
ee′ (2S+1LJ ) [T

T
L ]ei

f̂χχ→χχ
ii (2S+1LJ)|LO

=

(
(2L− 1)!!

kLi

)2
[TL]ie f̂

χχ→χχ
ee′ (2S+1LJ ) [T

†
L]e′i

f̂χχ→χχ
ii (2S+1LJ)|LO

. (8.33)

In the second line we have just reordered the factors in the numerator. With the latter
rewriting we arrive at our final expression for the Sommerfeld enhancement factors, that
allows for the following clear reading from left to right: The ie component of the first
matrix factor in the numerator, [TL]ie, is associated with the e-state component of the (L
partial-wave) scattering wave function at the origin that refers to incoming two-particle
state i. This matrix component is multiplied with the Wilson coefficient f̂ee′ encoding
the absorptive part of the forward scattering reactions from state e to state e′. Finally,
the factor [T †

L]e′i is associated with the complex conjugate of the e′ states’ component of
the wave function referring to incoming state i. This notation has the advantage that all

indices denoting the two particle channels, (χχ)i, opposed to capital letters, (χχ)I , in Chap. 2. In the
latter chapter the notation ψ(~r )JI was used to refer to scattering solutions of a corresponding matrix
Schrödinger equation with incoming two-particle state (χχ)I , where the label J used to indicate the
component of the wave function related to the two-particle state (χχ)J . Here, the same quantity is
denoted with [ψE(~r )]j,i, where according to our notation convention the compound index i is associated
with the incoming pair (χχ)i and the index j picks the component corresponding to the (χχ)j state.
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quantities appear in the same order, from left to right, as in the diagrammatic pictures
for the corresponding processes such as Fig. 5.1. The matrix TL can be determined by
following the first two steps proposed at the end of Sec. 2.2. In Sec. 8.4 we discuss the
issue of numerical instabilities associated with the strategy of Sec. 2.2 and present an
improved method for solving the problem. Before, we replace in the next section the
Wilson coefficients that appear in the definition (8.12) and in the conveniently rewritten
form (8.33) of the Sommerfeld enhancement factors by appropriate annihilation matrices
introduced in Sec. 7.2.

8.3 Sommerfeld factors in the method-1 and 2 bases

In Sec. 7.2 we have argued that pair-annihilation processes of non-relativistic neutralino
and chargino states including long-range potential interactions can be described by two-
particle propagators (as explicitly seen in the previous section), two-particle state poten-
tial interactions and the final hard two-particle annihilation reaction, such that the use
of a two-particle states basis is obvious. Correspondingly we introduced potential and
annihilation matrices subject to the so-called method-1 or method-2 two-particle state
bases, see Sec. 7.2.1. Here we come back to these bases and present a form of the Som-
merfeld enhancement factors defined in (8.12), that involves the matrix representations
of potential scattering and annihilation reactions introduced in Sec. 7.2.

Let us first note that the derivation in Sec. 8.1 – and therefore in particular the
definition of the Sommerfeld enhancement factors (8.12) as well as the final form of the
cross section (8.13) – can be directly related to the method-1 two-particle state basis:
The definition of the operators in the parts Lpot and δLann of the NRMSSM Lagrangian
is such, that all redundant operators that arise when interchanging the labels e1 ↔ e2
or/and e4 ↔ e3 of a given specific operator are again part of Lpot or δLann, respectively.
This implies that the intermediate states χeaχeb and χebχea of non-identical species χea,b
can arise and are in particular treated as different in the calculation of the χiχj state’s
forward scattering amplitude (8.1). In (8.5) this can, for instance, be seen explicitly

as both the wave function components ψ
(L,S)
e1e2,ij

and ψ
(L,S)
e2e1,ij

appear. According to the
definition of the annihilation matrices Γ in method-1 at the end of Sec. 7.2.1 we can
therefore immediately rewrite the definition of the Sommerfeld enhancement factors given
in (8.12) to

Si[f̂(
2S+1LJ)] =

[
ψ

(L,S)
bi

]∗
Γcb[f̂(

2S+1LJ)]ψ
(L,S)
ci

Γii[f̂(2S+1LJ )]|LO
, (8.34)

where the wave functions are determined from (8.27) and (8.29), and the potential matrix
in the Schrödinger equation should obviously refer to the method-1 basis. The indices in
(8.34) are compound two-particle indices labelling the method-1 basis states; the label
i, for example, refers to the two indices ij that denote the incoming two-particle state
χiχj . The expression corresponding to (8.33) that involves the matrix TL as well as the
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annihilation matrix Γ[f̂(2S+1LJ)] reads

Si[f̂(
2S+1LJ )] =

(
(2L− 1)!!

kLi

)2
[TL]ie Γee′[f̂(

2S+1LJ)] [T
†
L]e′i

Γii[f̂(2S+1LJ)]|LO
. (8.35)

Similar to the replacements of all (off-) diagonal Wilson coefficients by the corresponding
entries of method-1 annihilation matrices in (8.34, 8.35), we can further substitute the
Wilson coefficients f̂χχ→χχ

{ij}{ij} and ĝχχ→χχ
{ij}{ij} in the non-relativistic expansion of the χiχj

annihilation cross section (8.13) by the diagonal entries in the corresponding method-1
annihilation matrices Γ. In this way the cross section is expressed in terms of quantities
that solely refer to the method-1 basis.

In Appendix C we show by means of an example that using method-2 potentials and
annihilation matrices in the calculation of the right-hand side of (8.34, 8.35) yields the
same expression as in the method-1 calculation. Equation (8.34) therefore generically
provides the definition of the Sommerfeld enhancement factors using either method-1 or
method-2 potentials and annihilation matrices. As the CPU time for the determination
of the Sommerfeld factors significantly increases the larger the number of two-particle
states to be treated in the corresponding Schrödinger equation, it is often advantageous to
calculate the factors using method-2 expressions. It has to be noted in that case, though,
that contrary to the method-1 calculation the expansion of the cross section (8.13) is not
simply expressed in terms of the Sommerfeld factors times the corresponding diagonal
entries of the method-2 annihilation matrices. The latter involve certain prefactors with
respect to the Wilson coefficients, see the definition in Sec. 7.2.1, which have to be taken
into account when rewriting (8.13) in terms of method-2 quantities.

8.4 Solution of the Schrödinger equation: improved

method

At the end of Sec. 2.2 a strategy was proposed that in principle allows for the numerical
determination of the Sommerfeld enhancement factors in an N two-particle state model
through the calculation of the matrix χl(r).

6 This matrix contains in its columns the N
regular linearly independent basis solutions to the system’s radial Schrödinger equation
subject to initial conditions at the origin, see (2.50). From χl(r) the matrix Ul(r),
(2.45), related to χl(r) and its derivative, is constructed and subsequently inverted. In
the asymptotic limit r → ∞ the expression U−1

l (r) approaches the constant matrix T †
l ,

(2.46), which finally determines the Sommerfeld enhancement factors (8.33, 8.35). In
our practical applications where the Schrödinger equation is solved up to some finite
r∞ (and the stability of the obtained U−1

l (r∞) against varying and increasing r∞ is

6In Chap. 2 we have used the lowercase letter l in order to refer to the orbital angular momentum
quantum number of a χχ state, while we have established the notation with capital letter L in the
NRMSSM. Since in this section we refer to results from Chap. 2, we adopt the lower case notation here.
In the remaining sections of this chapter we return to the capital letter notation.
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checked), severe numerical instabilities occur in the determination of the Sommerfeld
factors. These are related to the behaviour of the radial wave function solutions encoded
in χl(r), eventually implying that the inversion of the matrix Ul(r∞) cannot be performed.
We describe the origin of the instabilities next and subsequently present an improved
method that solves the issue.

The numerical instabilities are associated with the presence of kinematically closed
two-particle channels. As we allow for scenarios with N two-particle states (χχ)a that
are not necessarily mass-degenerate to a high degree, the condition for channel a to
be closed, 2mLSP + mLSPv

2 −Ma < 0, is easily fulfilled either for sufficiently low LSP
velocity v or for states with larger7 mass splittings δMa =Ma−2mLSP. For a qualitative
discussion of the origin of the numeric instability let us consider the radial Schrödinger
equation (2.23) for a system with (at least) one kinematically closed channel. The
components in the matrix-valued function of regular basis solutions, χl(r), which refer
to a kinematically open channel have an asymptotically oscillating behaviour in the limit
r →∞. Contrarily, the components that refer to a kinematically closed channel b involve
an exponentially growing contribution for r → ∞, which is proportional to eκbr with
κb =

√
mLSP[Mb − (2mLSP + E)]. Due to the strong exponential growth in the limit of

large r we can already expect a strong growth of the ‘closed-channel’ components of χl(r)
for intermediate ranges of r. When the system of coupled differential equations (2.23)
is integrated a numerical problem arises from the fact that the closed-channel solutions
mix into the differential equations for the open-channel solutions through off-diagonal
potentials. The strong growth of the closed-channel solutions can cause them to entirely
dominate the right-hand side of the differential equations (2.23) already for moderate r
and eventually linear independence of solutions with different initial conditions is lost
due to limited numerical accuracy. As soon as the columns of χl(r∞) become linearly
dependent, an inversion of the related matrix Ul(r∞) becomes impossible and therefore
the Sommerfeld enhancement factors that require the knowledge of U−1(r∞) cannot be
obtained.

A rough criterion for the described numerical issue to appear can be derived by
considering explicitly the product V (r)ab χl bi(r) of the off-diagonal potential-matrix entry
V (r)ab with the closed-channel component solution χl bi(r), that mixes into the differential
equation for an open-channel component χai(r) in (2.23). The potentials in the off-
diagonals of the matrix V (r) are of Yukawa-type, proportional to e−MEWr/r, where MEW

denotes the mass scale of the electroweak gauge bosons and light Higgses that mediate
the potential scattering. As the solution χl bi(r) involves an (asymptotic) exponentially
growing component, the product of the off-diagonal potential with χl bi(r) will involve a
contribution proportional to e(κb−MEW)r/r. If the exponent is positive this contribution

7In wino- or higgsino-like χ0
1 scenarios the (χχ)a states are highly mass-degenerate within some

100MeV or only a few GeV, respectively. Our aim is to cover also those cases where the mass splittings
become larger, of the order of some 10 to even some 100GeV. Note that the mass splittings cannot be
too large, as our approach requires that all (χχ)a states, that are treated exactly in the Schrödinger
equations, are non-relativistic for a given available centre-of-mass energy

√
s = 2mLSP+mLSPv

2. If the
splittings become large, however, the Sommerfeld effect is less relevant as well.
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can start to dominate the right-hand side of the Schrödinger equation (2.23) for the
open-channel solution χl ai(r) in the range of intermediate r. The condition for a positive
exponent reads

Mb −
(
2mLSP +mLSPv

2
)
>

M2
EW

mLSP
, (8.36)

and is easily satisfied in our case as we are interested in scenarios with mLSP ≫ MEW,
unless the states (χχ)a included in the calculation are very degenerate within a few GeV
or even less.

Instead of calculating U−1
l (r∞) by matrix-inversion we will now propose an improved

method that allows to obtain U−1(r∞) in another way, thereby solving the issue of nu-
merical instabilities in the calculation of the Sommerfeld enhancement factors. We apply
this new method, which is based on an adaptation of the reformulation of the Schrödinger
equation problem described in [97], in the numerical calculation of Sommerfeld enhanced
χ0/χ± (co-) annihilation rates throughout this thesis. In order to review the relevant
steps of [97] and to describe the essential points in our adaptation to the Sommerfeld en-
hancement factor determination, let us start from the radial Schrödinger equation (2.23)
for a system of N coupled states (χχ)a and rewrite it in terms of the dimensionless
variable x = mLSP v r,

[χ′′
l (x)]ai =

(
l(l + 1)

x2
δab +

[
V (x)

E
− 1

]

ab

)
[χl(x)]bi , (8.37)

with E = mLSPv
2. It is convenient to separate the asymptotically non-vanishing, con-

stant part of V (x) by defining V (x) = Vinf + V̂ (x) where Vinf is diagonal and contains
the constant mass splittings while V̂ (x→∞)→ 0. Further the matrix χl(x) specifically
refers in the following to the matrix that contains the N regular radial wave-function
solutions in its columns, subject to the initial conditions given in (2.50). Our first step
in following [97] consists in the ansatz8

[χl(x)]ai = fa(x)αai(x) − ga(x) βai(x) (no sum over a) , (8.38)

where the 2N functions fa, ga are known analytic solutions of simplified decoupled sec-
ond order differential equations and α(x) and β(x) denote matrix-valued x-dependent
functions (hence ‘variable phases’). In our application as well as in [97] the functions
fa, ga are solutions to the N decoupled free Schrödinger equations

h′′a(x) =

(
l(l + 1)

x2
− k̂2a

)
ha(x) , (8.39)

with ha = fa, ga, and the dimensionless wave numbers k̂a =
√
1− δMa/E. We choose

the free solutions fa, ga as the following linear combinations of regular
√
xJl+1/2(x) and

8For a better readability we suppress the label l that specifies the partial-wave state on the functions
fa, ga, αai and βai throughout this section.
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irregular
√
xYl+1/2(x) Bessel functions,

fa(x) =

√
πx

2
Jl+1/2(k̂ax) , ga(x) = −

√
πx

2

(
Yl+1/2(k̂ax)− iJl+1/2(k̂ax)

)
. (8.40)

From the asymptotic behaviour of the Bessel functions in the limit r → 0 we obtain

fa(x→ 0) →
√
π

2

(k̂a/2)
l+1/2

Γ(l + 3
2
)

xl+1 , ga(x→ 0)→
√

1

2π

Γ(l + 1/2)

(k̂a/2)l+1/2
x−l , (8.41)

which allows to check that the Wronskian of each of the N pairs fa, ga of free solutions
is normalised to one,

f ′
a(x) ga − fa(x) g

′
a = 1 (no sum over a) . (8.42)

With the ansatz (8.38) we have doubled the set of unknown functions. This artificially
introduced freedom is eliminated by imposing the conditions

fa(x) α
′
ab(x)− ga(x) β ′

ab(x) = 0 (no sum over a) . (8.43)

From the above definitions we can now obtain a set of coupled first order differential
equations for the matrix-valued functions α(x) and β(x),

α′
ai(x) = ga

V̂ab
E

(fb(x)αbi(x) − gb(x) βbi(x)) , (8.44)

β ′
ai(x) = fa

V̂ab
E

(fb(x)αbi(x) − gb(x) βbi(x)) . (8.45)

As these equations couple different components of α(x) and β(x) the second step fol-
lowing [97] is the introduction of the matrix-valued function M̃(x) defined through
βai(x) = M̃ab(x)αbi(x). The first order differential equations for the components of
M̃ ,

M̃ ′
ab(x) =

(
faδan − M̃angn

) V̂nm
E

(
fmδmb − gmM̃mb

)
, (8.46)

couple different components of M̃(x) but do no longer involve components of the matrix
α(x). Instead of solving the set of differential equations for M̃ and subsequently for α(x)
yet another pair of matrix-valued functions is now defined through

Ñab = fagaδab − gaM̃abgb , α̃ai =
αai
ga

, (8.47)

that satisfy the first-order differential equations

Ñ ′
ab = δab +

(
g′a
ga

+
g′b
gb

)
Ñab − Ñac

V̂cd
E

Ñdb , (8.48)
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α̃′
ai = Zab α̃bi with Zab ≡ −

g′a
ga
δab +

V̂ac
E

Ñcb . (8.49)

The initial conditions that we have imposed on χl(r̂) for r̂ close to zero in (2.50) translate
into

Ñab(x̂) =
x̂

2l + 1
δab , α̃ai(x̂) = δai x̂

l , (8.50)

with dimensionless x̂ = mLSPvr̂.
Up to here the described procedure was close to [97]. In the last step we now come

back to our starting point, the determination of U−1(r∞). By making use of the various
functions introduced above we obtain the relation

[χ′
l(x)]ai = α̃ai(x) +

g′a
ga

[χl(x)]ai , (8.51)

which, as we will see in a few lines, allows us to relate Ul(x → ∞) to α̃(x→ ∞). First
recall from the definition

Uai(x) = eik̂ax
(
[χ′
l(x)]ai − ik̂a[χl(x)]ai

)

= eik̂axα̃ai + eik̂ax
(
g′a(x)

ga(x)
− ik̂a

)
[χl(x)]ai . (8.52)

The difference g′a(x)/ga(x)− ik̂a vanishes for large x. Specifically for the cases l = 0, 1,
which are relevant in our application to the NRMSSM, we have

g′a(x)

ga(x)
− ik̂a =





0 l = 0

− 1

x(1 − ik̂ax)
l = 1

. (8.53)

This implies that Ul(x) and α̃(x) are asymptotically trivially related by

Ul ai(x)
x→∞
= eik̂axα̃ai(x) , (8.54)

and the matrix T †
l that occurs as ingredient in the definition of the Sommerfeld enhance-

ment factor can be obtained from

[T †]ai = [U−1(x∞)]ai = e−ik̂ix∞ [α̃−1(x∞)]ai , (8.55)

for sufficiently large x∞. The crucial improvement of the described procedure consists in
the important observation that without having first to calculate and then to invert α̃(x),
the matrix α̃−1(x) can be directly obtained as a solution of the first-order differential
equations

[α̃−1 ′(x)]ia = − [α̃−1(x)]ibZba , [α̃−1(x̂)]ia = δia x̂
−l , (8.56)

which follow directly from (8.49), where also the definition of Z is given.
To summarise, the following three steps have to be performed in order to determine

the Sommerfeld enhancement factors with the improved method:
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(1) Solve the first-order differential equations for Ñab in (8.48) with initial conditions
specified in (8.50) for every b = 1, . . . , N .

(2) Solve the first-order differential equations (8.56) in order to determine α̃−1.

(3) Determine T † from (8.55) for several x∞ and check (by varying and increasing x∞)
that T † is independent of x∞ within a certain target accuracy.

In order to exemplify the need of and the actual improvement due to the ‘improved
method’ we consider the Sommerfeld enhancements in the 1S0 and 3PJ partial-wave
annihilations of the χ0

1χ
0
1 channel for a MSSM spectrum with wino-like χ0

1 LSP. The χ0
1

mass is given by mχ0
1
= 2749.4GeV and the mass of its wino-like chargino partner reads

mχ0
1
= 2749.61GeV. The next-lightest χ0/χ± state χ0

2 is bino-like and about 200GeV
heavier, mχ0

2
= 2950.25GeV. We chose a velocity v = 0.012, slightly below the threshold

for on-shell production of the χ+
1 χ

−
1 state. First the S- and P -wave Sommerfeld enhance-

ments Sχ0
1χ

0
1
[f̂(1S0)] and Sχ0

1χ
0
1
[f̂(3PJ )] are calculated as functions of x∞ by using the ‘old

method’ of Sec. 2.2 and keeping only the two states χ0
1χ

0
1 and χ+

1 χ
−
1 in the Schrödinger

equation and annihilation rates. The S-wave (P -wave) S(x∞) is given by the dashed red
curve in the upper left (right) plot in Fig. 8.2. After rapid variations of S(x∞) in the
region of small x∞ – in the S-wave case with a peak structure – the respective functions
S(x∞) reach a plateau and stay at constant values S(∞), which determine the actual 1S0

and 3PJ enhancement factors. If the about 400GeV heavier and kinematically closed
χ0
1χ

0
2 state is now included in the Schrödinger equation and annihilation rates, the de-

termination of S(∞) fails as can be seen from the solid blue curves in both upper plots
in Fig. 8.2. For x∞ slightly larger than 1 both functions S(x∞) drop to 0 after a few
spikes. A solution for larger x∞ values where S(x∞) should stabilise cannot be obtained.
The two lowermost plots in Fig. 8.2 contain the results on S(x∞) using the ‘improved
method’. S(x∞) can now be evolved for sufficiently large x∞ also when the χ0

1χ
0
2 state is

included. In case of the 1S0 wave enhancement in the lower left plot, the solid red and
solid blue curves – corresponding to S(x∞) for the case of two and three χχ-states in
the Schrödinger equation and annihilation rates – cannot be distinguished on the scale
of the plot. Indeed the obtained Sommerfeld enhancement values S(∞) = 199.59 for
the two χχ-state and S(∞) = 199.72 for the three χχ-state case differ only by a tiny
amount. A similar result is obtained in the case of the 3PJ enhancement factor. Also
here the two solid red and blue curves for the two and three χχ-state case lie on top
of each other and a plateau is reached for x∞ > 50 with S(x∞) ≈ 4.31. In the P -wave
case we show in addition in the lower left plot the dashed curve that corresponds to the
‘old-method’ solution for the two χχ-state case. The agreement of all three curves for
large x∞ values is obvious but there is a visible deviation for x∞ < 10. The deviation
is due to the fact that the matrices U and α are trivially related only for x → ∞, see
(8.54). This implies that the Sommerfeld factors calculated in the ‘old’ and improved
method agree in general only for sufficiently large x∞. While the agreement is exact for
the S-wave case, the difference vanishes as 1/x2∞ for P -waves, as can be inferred from
(8.53). As with the improved method there is no severe numerical restriction on the
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Figure 8.2: Comparison of the performances in determining the Sommerfeld enhancement
factors by the method described at the end of Sec. 2.2 and by the improved method from
Sec. 8.4. Upper two plots: The enhancement factors S ≡ Sχ0

1χ
0
1
[f̂(1S0)] (left plot) and

S ≡ Sχ0
1χ

0
1
[f̂(3PJ )] (right plot) as a function of x∞ for v = 0.012 obtained from the

prescription given at the end of Sec. 2.2. Relevant details on the corresponding MSSM
spectrum with wino-like χ0

1 are given in the text. The dashed red curves give S(x∞)
when only the two states χ0

1χ
0
1 and χ

+
1 χ

−
1 are kept. The solid blue curves result when in

addition the state χ0
1χ

0
2 is included. In this case the evaluation fails in both the S- and

P -wave case for x∞ > 2 and no reliable result for the enhancements factors is obtained.
Lower two plots: As in the upper row but now using the improved method to determine
the enhancement factors. The solid red and solid blue curves are for the case of two and
three χχ-channels in the Schrödinger equation and annihilation matrices and lie on top
of each other on the scale of the plots. In addition the dashed red curve in the right plot
gives the two χχ-state S(x∞) as in the upper left plot.

value of x∞, the deviation can always be made sufficiently small. In the chosen wino-like
χ0
1 model this can be nicely seen in the lower left plot. Thus also the P -wave Sommerfeld

enhancement factors can be determined within a sufficient accuracy with the improved
method.

As the χ0
2 state in the considered MSSM scenario here is bino-like, it is rather weakly

coupled to the wino-like states χ0
1, χ

±
1 . It is therefore expected that including the χ0

1χ
0
2
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state in the Schrödinger equation and annihilation rates has very little effect on the en-
hancements of the χ0

1χ
0
1 channel as explicitly confirmed by the calculation in the improved

method.

8.5 Second-derivative operators

In this section we come back to the derivation of the second relation presupposed in
Sec. 8.1, which is (8.9), and that concerns the connection between the matrix elements
of next-to-next-to-leading order (Pχχ→χχ

{e4e3}{e2e1}(
2S+1SS)) and corresponding leading-order

(Oχχ→χχ
{e4e3}{e2e1}(

2S+1SS)) S-wave operators. Explicit expressions for the latter operators are

collected in Tab. 5.3 and Tab. 5.2, respectively. In order to confirm (8.9) we show that

〈0|χc†e2Γ
(
− i

2

←→
∂
)2
χe1|χiχj〉 = κ∗ee′ 〈0|χc†e′2Γχe′1|χiχj〉 . (8.57)

Labels e, e′ are compound indices referring to the two-particle states χe1χe2 and χe′1χe′2,
respectively. The definition of κ has been given in (8.11). For completeness we quote it
here again in compound index notation:

κ ee′ = ~p 2
e δee′ + 2µeα2

∑

a

mφac
(a)
ee′ . (8.58)

Making use of (8.18) and (8.26), we can rewrite the left-hand side in (8.57) as

〈0|χc†e2Γ
(
− i

2

←→
∂
)2
χe1|χiχj〉 = 〈ξ

c†
j Γξi〉

∫
d3~q

(2π)3
~q 2
(
[ψ̃E(~q )]

∗
ei + (−1)S [ψ̃E(~q )]∗ēi

)
, (8.59)

where the compound index ē refers to the state χe2χe1, while e, as noted before, is used to
label the corresponding state χe1χe2 . In order to simplify the integral on the right-hand
side we apply the momentum-space version of the Schrödinger equation (8.28), which
leads to

∫
d3~q

(2π)3
~q 2 [ψ̃E(~q )]

∗
ei = 2µe(2mLSP −Me + E)

∫
d3~q

(2π)3
[ψ̃E(~q )]

∗
ei

− 2µe

∫
d3~q

(2π)3
d3~k

(2π)3
[V̂ ee′(~k )]∗ [ψ̃E(~q − ~k )]∗e′i . (8.60)

The explicit form of the momentum-space potentials, associated with gauge boson and
light Higgs particle exchange, is given by

V̂ ee′(~k ) = 4πα2

∑

a

c
(a)
ee′

~k2 +m2
φa

, (8.61)

where mφa denotes the mass of the exchanged mediator, and the corresponding coeffi-

cients c
(a)
ee′ are those collected in Tab. B.1. The sum extends over all gauge boson and
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Higgs mediator particles that can be exchanged in a specific χe1χe2 → χe′1χe′2 potential
scattering reaction.

We can factorise the two integrations in the second line of (8.60) by performing the

shift ~q → ~q + ~k. Using dimensional regularisation, the linearly divergent integral over
momentum ~k can then be evaluated to the finite result

∫
dd−1~k

(2π)d−1

1

~k2 +m2
φ

d→4
= −mφ

4π
. (8.62)

Consequently, the right-hand side of (8.59) can be rewritten as

〈0|χc†e2
(
− i

2

←→
∂
)2
χe1 |χiχj〉 = 〈ξ

c†
j Γξi〉

∫
d3~q

(2π)3
[ψ̃E ]

∗
e′i(~q )

×
[
2µe(2mLSP −Me + E)δe′e + 2µeα2

∑

a

mφac
(a) ∗
ee′

]
+ (−1)S {e→ ē}

= 〈ξc†j Γξi〉
∫

d3~q

(2π)3
[ψ̃E ]

∗
e′i(~q )

(
κ∗ee′ + (−1)S κ∗ēe′

)
. (8.63)

In the last equality we have used that the relative momentum associated with the two-
particle system χe1χe2, ~pe, is given by ~p 2

e = 2µe(2mLSP−Me+E), such that the term in
square brackets in the second line yields κ∗ee′, see (8.58). Next, let us write the integrand
in (8.63) as

[ψ̃E ]
∗
e′i(~q )

(
κ∗ee′ + (−1)S κ∗ēe′

)
= κ∗ee′ [ψ̃E ]

∗
e′i(~q ) + (−1)S κ∗ēē′ [ψ̃E ]∗ē′i(~q ) , (8.64)

where the index over which summation is carried out in the second term on the right-
hand side has been renamed from e to ē. Since the potentials for χe1χe2 → χe′1χe′2 and

χe2χe1 → χe′2χe′1 scattering involve the same coupling structure, the relation c
(a)
ee′ = c

(a)
ēē′

holds, which implies κēē′ = κee′. This allows to eventually obtain

〈0|χc†e2
(
− i

2

←→
∂
)2
χe1|χiχj〉 = κ∗ee′ 〈ξc†j Γξi〉

∫
d3~q

(2π)3

(
[ψ̃E ]

∗
e′i(~q)+ (−1)S [ψ̃E ]∗ē′i(~q )

)
. (8.65)

The summation in the above expression runs over the two-particle states indicated with
the primed labels; while e′ (related to χe1χe2) is varied, the associated label ē′ (referring
to χe2χe1) changes accordingly. The right-hand side of (8.65) agrees with the right-hand
side in (8.57), such that the latter relation is proven.

With this relation between the matrix elements of next-to-next-to-leading order and
leading-order S-wave operators it is possible to define the effective Wilson coefficients ĝκ,
(8.9, 8.10), that come with the matrix elements of corresponding leading-order S-wave
operators. Let us finally note that the second term in κee′, (8.58), would be absent, if
all exchanged mediator particles would be massless. In the NRMSSM only the potential
from photon exchange involves a massless mediator, such that there are typically non-
vanishing contributions to the second term related to electroweak gauge boson or Higgs
exchange potentials.
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In Sec. 2.1 we have argued that ladder amplitudes with exchange of massive mediators
give only rise to enhanced radiative corrections, if the mediator mass is much smaller
than the masses of the non-relativistic states in the ladder bars. Accordingly, in the
NRMSSM only those contributions to the potentials are relevant that arise from gauge
boson or Higgs particle φ exchange with mass mφ ≪ mLSP. As can be seen explicitly

from the momentum space potential expression V̂ (~k ) in (8.61), heavy φb exchange leads
to strongly suppressed contributions to the full potential. Effectively, heavy mediator ex-
change thus results in a suppressed local (χ†χ)2 potential interaction. The dominant con-
tributions to (8.61) arise from light φa exchange with mφa scaling as the non-relativistic

3-momentum |~k| ∼ mLSPv. This implies that the contributions to κ related to the light
mediators φa are parametrically of the same order, since Me − 2mLSP ∼ E ∼ mLSPv

2

and α2mφa ∼ vmEW ∼ mLSPv
2. To the contrary, heavy Higgs boson contributions to

the last term in κ can become large, although the corresponding potential interaction
itself is irrelevant. The origin of such unphysical power-counting breaking contribution
is the linearly divergent integral (8.62). The simplest solution to eliminate such unphys-
ical terms is to decouple heavy Higgs bosons by not including them in the long-range
NRMSSM potentials discussed in Chap. 7. The decoupling of the corresponding heavy
states gives rise to the above mentioned local interaction terms, which count as O(v2)
corrections to the NRMSSM long-range potential interactions. As we have neglected
O(v2) corrections to the expressions associated with the long-range effects throughout,
we consistently neglect the local potential interactions from heavy mediator exchange.
In practical applications, given a specific MSSM spectrum, we eliminate Higgs boson ex-
change contributions to the potentials (and thus to κ) if the corresponding Higgs masses
fulfil mH > 0.5mLSP, unless mH < 100GeV. Let us remind however, that s-channel ex-
change of heavy Higgs states is taken into account in the absorptive parts of the Wilson
coefficients.

8.6 Approximate treatment of heavy channels

In the preceding sections we have developed a formalism that allows for the calculation
of Sommerfeld-corrected co-annihilation rates of non-relativistic, nearly mass-degenerate
neutralino and chargino pairs. Consequently, when accounting for Sommerfeld correc-
tions on the neutralino and chargino pair-annihilation cross sections in the χ0

1 relic abun-
dance calculation, we first have to determine the set of those neutralino and chargino
pairs χχ for a given MSSM spectrum, which are nearly mass-degenerate with the lightest
such pair, χ0

1χ
0
1. For these “light” χχ states Sommerfeld-enhanced annihilation rates are

subsequently calculated by means of (8.13) which implies solving corresponding multi-
state Schrödinger equations. The latter take the potential and annihilation reactions
among the non-relativistic and nearly mass-degenerate light χχ pairs with the same
electric charge and within the same partial wave configuration into account.

Given a specific MSSM spectrum, there will be in general several “heavy” χχ pairs
that do not fulfil the requirement to be nearly mass-degenerate with the χ0

1χ
0
1. These
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states cannot be part of the NRMSSM neutralino and chargino two-particle pairs. In
principle we should thus exclude them a priori, such that they do not appear in the
Schrödinger equations and NRMSSM Wilson coefficients. However when keeping those
heavy χχ states in the EFT ladder diagrams there should be little effect on the en-
hancements of the light χχ channels, as the EFT two-particle propagators (8.17) for
heavy states (χχ)h with masses Mh ≫ 2mLSP cannot go on-shell and therefore do not
cause an enhancement effect. Consequently, it is possible to keep these heavy channels
as internal states in the series of ladder-diagrams, as long as this does not lead in turn
to numerical problems in the solution of the corresponding Schrödinger equations. Since
the improved method described in Sec. 8.4 addresses and solves the issue of numerical
instabilities associated with closed channels in the solution of the Schrödinger equation,
there is from the point of view of numerical accuracy no reason why closed heavy chan-
nels could not be included in the potentials and annihilation matrices. In particular,
there is the possibility that a heavy χχ state has a larger tree-level annihilation rate
than the light two-particle channels, such that the annihilation contributions from the
heavy channel can effectively enhance the annihilation rate of a light state. To include
such effects it is desirable to keep closed heavy channels in the Schrödinger equations.

However, practical limitations on the number of channels that can be treated exactly
in the Schrödinger equations are imposed by CPU time considerations. For example, if
for a given MSSM spectrum and non-relativistic scattering energy E the calculation of
the factor S[f̂(1S0)] for the χ

0
1χ

0
1 channel within method 2 takes 0.1 s if two channels are

included in the corresponding matrix Schrödinger equation, the CPU time increases to
14 s for four included two-particle channels and becomes 5min for 8 channels. Eventually,
including all 14 neutral two-particle channels within method-2, the determination of this
specific S[f̂(1S0)] takes nearly three hours.9 Even for fixed scattering energy there are
typically several open channels for which Sommerfeld enhancement factors have to be
calculated. Moreover, the determination of the thermally averaged annihilation cross
sections entering the relic abundance calculation requires an integral over the scattering
energy. In our application to the χ0

1 relic abundance calculation, CPU considerations
therefore restrict the number of two-particle channels that can be treated exactly in the
Schrödinger equations.

In order to cover the case of strong annihilation contributions of closed heavy chan-
nels to a light channel’s annihilation rate we allow that heavy channels appear in the
last potential loop before annihilation in the series of ladder-diagrams with incoming
light χχ state. However, we neglect heavy channels in all ladder bars apart from the last
loop. This is motivated by non-relativistic power-counting, which shows that there is a
suppression factor of the order [E/(Mh − 2mLSP)]

a when a light two-particle channel in
the ladder-diagram is replaced by a heavy channel, where a = 1/2 for the contribution
in the last loop before annihilation and a = 3/2 for contributions inside the ladder. In
the following we describe how the last potential loop contributions of heavy channels
can be absorbed into an effective annihilation matrix. In the determination of the Som-

9The quoted numbers are strongly model and scattering energy E = mLSPv
2 dependent. They are

meant as an example to illustrate the effect of the strong increase in CPU time.
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merfeld enhancement factors we thus solve the Schrödinger equations referring to the
smaller number of light channels only and use in (8.34, 8.35) the yet to define effective
annihilation matrices that include potential one-loop effects from heavy channels.

Let us start by dividing the N two-particle basis states (χχ)a in a given charge sector
into n light states treated exactly in the corresponding Schrödinger equations and N −n
heavy states that we only include in the last potential loop.10 In the following we use
the compound index h = {he1he2} to refer to one of the N − n heavy states. Extending
(8.18) to include the contribution from a heavy channel in the last potential loop before
annihilation, we write

〈0|χc†h2ΓK
[
− i

2

←→
∂
]
χh1 |χiχj〉 = 〈ξc†j Γξi〉 lim

Ê→E
(−1)

(
Ê − ~p 2

2µij

)

×
∫

d3~q

(2π)3

∫
d3~k

(2π)3
K[~q ] V̂ lh(~q − ~k) 1

E − [Mh − 2mLSP]− ~q 2

2µh

G̃il(~p,~k; Ê)

+ (−1)L+S {h→ h̄} , (8.66)

where summation over the compound index l that refers to the light states is implied.
Further, G̃il denotes the Green function for the Schrödinger operator associated with
the n × n problem of light states. The momentum-space potential V̂ lh encodes the
potential scattering from the light states (χχ)l to the heavy state (χχ)h that undergoes
annihilation. Let us now consider the operator matrix elements similar to (8.66), but
this time for all and not only the heavy state operators, multiplied by the corresponding
absorptive parts of Wilson coefficients, f̂ . Making use of (8.26) and taking the heavy
channels in the last loop into account as in (8.66), we obtain

f̂ee′ 〈0|χc†e2ΓK
[
− i

2

←→
∂
]
χe1|χiχj〉 = 2 〈ξc†j Γξi〉

∫
d3~q

(2π)3
[ψ̃E ]

∗
li(~q )

×
[
f̂le′K[~q ] + f̂he′

∫
d3~k

(2π)3
K[~k ] V̂ lh(~k − ~q ) 1

E − [Mh − 2mLSP]− ~k 2

2µh

]
, (8.67)

where the index l runs over the n light and the index h over the N − n heavy channels.
The equality in (8.67) holds only if heavy channels contribute exclusively to the last
loop of the ladder-amplitudes prior to annihilation. The form of the right-hand side in
(8.67) suggests to rewrite and appropriately simplify the term in square brackets such
that it eventually describes an effective annihilation matrix f̂ eff

le′K[~q ]. To this end we
use the explicit form of the momentum-space potentials (8.61). The integration over

10Let us recall that we include all neutralino and chargino species in the determination of the relic
density; however, for the co-annihilation cross sections of heavy neutralino and chargino pairs we use
tree-level instead of Sommerfeld-enhanced rates. Contributions of the heavy channels to the thermally
averaged effective rate 〈σeffv〉 are strongly Boltzmann-suppressed and thus typically negligible, unless
there is a particular enhancement of the corresponding annihilation rate (such as for example in resonant
annihilation), that compensates the Boltzmann suppression.
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the loop-momentum ~k can then be performed and the expression in square brackets in
(8.67) is subsequently written as

f̂ eff, right
ll′ = f̂ll′ + Ilh f̂hl′ , (8.68)

where summation over the compound index h referring to the heavy channels is carried
out. For a better readability we have suppressed the 2S+1LJ wave dependence of the
Wilson coefficients f̂ = f̂(2S+1LJ) and f̂ eff = f̂ eff(2S+1LJ) in the last equations. The
expression Ilh in the second term in (8.68) depends on the orbital angular momentum L
of the corresponding partial wave configuration and is given by

Ilh = α2

∑

a

c
(a)
lh (−2µh) IL

(
2µh(Mh − [2mLSP + E]− iǫ), mφa , ~q

2
)
. (8.69)

A dependence on the total spin enters through the coefficients c(a) of the spin-dependent
leading-order potentials. In case of leading-order S-wave matrix elements, where L = 0
and K[~q ] = 1, the function IL=0 in (8.69) takes the following form:

I0(y,m, ~q
2) =

i

2
√
~q 2

ln
i(m2 − y + ~q 2) + 2m

√
~q 2

i(m2 − y − ~q 2) + 2
√
y ~q 2

. (8.70)

In the P -wave case with L = 1 and K[~q ] = ~q we obtain

I1(y,m, ~q
2) =

√
y −m
2~q 2

+
i(m2 − y + ~q 2)

2(~q 2)3/2
ln
i(m2 − y + ~q 2) + 2m

√
~q 2

i(m2 − y − ~q 2) + 2
√
y ~q 2

. (8.71)

In (8.68) we have used the superscript label “right” to indicate that with (8.67) we have
considered the first half of the corresponding full NRMSSM χiχj forward scattering
matrix element. Accounting in the same way for the second half, we eventually arrive at
the following effective Wilson coefficients

f̂ eff
ll′ = f̂ll′ + Ilh f̂hl′ + I∗l′h f̂lh + IlhI

∗
l′h′ f̂hh′ . (8.72)

The expression f̂ eff
ll′ = f̂ eff

ll′ (
2S+1LJ ) encodes the hard (off-) diagonal tree-level annihilation

reaction of light χχ states, (χχ)l →
∑
XAXB → (χχ)l′ , supplemented by potential one-

loop corrections that involve the heavy channels (χχ)h prior to annihilation into the
SM and light Higgs particle final states XAXB. The result f̂ eff,right

ll′ in (8.68) is thus
associated with the (χχ)l tree-level annihilation amplitude plus the potential one-loop
correction arising from heavy channels inside the loop before annihilation. If we take
the index h in (8.68) to run over all (χχ)a pairs in the corresponding charge sector and
not only the heavy channels, then the expression f̂ eff,right

ll′ is related to the leading-order
non-relativistic approximation to the full one-loop annihilation amplitude for incoming
(χχ)l state, which has also been obtained by direct expansion in [93].11

11It can be checked that the loop integrals IS,P defined in [93] are equal to (2π|~q |) I0,1. Let us note that
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While (8.72) introduces effective Wilson coefficients accounting for potential one-loop
corrections from heavy channels, this expression still involves the factors Ilh and I∗l′h,
which in turn imply a dependence on the momentum ~q of the last potential loop before
annihilation. In the evaluation of (8.67) the knowledge of the full momentum-space wave
function ψ̃E(~q ) would therefore be needed and not just the corresponding position-space
expression and its derivative at the origin. However, we only want to absorb one-loop
corrections of heavy channels (χχ)h with mass-splittings Mh − 2mLSP ≫ E into the
effective Wilson coefficients in (8.72). The typical relative momentum ~q over which
the last potential-loop integration is carried out scales as ~q 2 ∼ mLSPv

2, such that we
can expand the integrals IL in (8.70, 8.71) in

√
~q 2/(Mh − 2mLSPv

2). We keep only the
leading-order terms in this expansion, in which case the expressions I0,1 simplify to the
following momentum independent terms

I0(y,m, ~q
2) → 1√

y +m
, I1(y,m, ~q

2) → 2
√
y +m

3(
√
y +m)2

. (8.73)

Using these approximations in (8.69) we obtain

Ilh|L=0 = −2µhα2

∑

a

c
(a)
lh√

yh +mφa

, (8.74)

Ilh|L=1 = −2µhα2

∑

a

c
(a)
lh

2
√
yh +mφa

3(
√
yh +mφa)

2
, (8.75)

where yh = 2µh(Mh − [2mLSP + E] − iǫ). Inserting these expressions in the definition
(8.72) of the effective Wilson coefficients f̂ eff

ll′ finally provides us with effective Wilson
coefficients that can be used to obtain local effective annihilation matrices, following
the prescriptions in Sec. 7.2.1. We will use these effective annihilation matrices in the
Sommerfeld factors (8.34, 8.35) in order to incorporate effects from heavy channels in
the last potential loop in the annihilation reactions of light incoming (χχ)l pairs.

The adaption of the above steps to the case of second-derivative S-wave operators
is somewhat more involved, since it requires the application of the equation of motion
discussed in Sec. 8.5 to the factor K[~k 2] in (8.67). In writing

~k 2 = 2µh

(
2mLSP + E −Mh −

[
2mLSP + E −Mh −

~k 2

2µh

])
(8.76)

in [93] additional terms proportional to the mass differences between the incoming and the virtual χs in
the loop are kept in the non-relativistic expansion, originating from the numerator of the full one-loop
amplitude. As we separate in our formalism the long-distance from the short-range physics, the latter
mass difference terms can contribute to O(v2) corrections to the long-distance part – which we neglect
– or to O(v2) corrections to the short-distance annihilations. We have kept the latter contributions by
taking all mass-difference terms δm, δm in the Wilson coefficients into account, see Chaps. 5 and 6. It
is worth to add that there are further sources of terms proportional to mass differences that have been
neglected in [93] and in our approach. For instance, there is the anti-particle pole contribution in the
q0-integration of the full amplitude which we neglect as it belongs to a class of O(v2) corrections to the
long-range interactions. In [93] these corrections from the anti-particle pole have been omitted as well.
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and noting the corresponding steps in Sec. 8.5 we finally obtain the following result for
the effective Wilson coefficients associated with second-derivative operators:

ĝeffκ,ll′ = ĝκ,ll′

+
1

2

[
Ilh,D2

ĝhl′

M2
+ I∗l′h,D2

ĝlh
M2

+ Ilh|L=0I
∗
l′h′,D2

ĝhh′

M2
+ Ilh,D2I∗l′h′|L=0

ĝhh′

M2

]
. (8.77)

The expression Ilh,D2 introduced above reads

Ilh,D2 = 2µhα2

(
(2mLSP + E −Mh)(−2µh)

∑

a

c
(a)
lh√

yh +mφa

+
∑

a

mφa c
(a)
lh

)
. (8.78)

Note that a dependence on the spin S = 0, 1 is implicit through the coefficients c(a)

associated with the spin-dependent leading-order potentials (8.61). Further let us note
that the mass scale M in each term in (8.77) is defined by the masses of the two χχ
pairs specified by the indices of the accompanying Wilson coefficients ĝ. For the generic
definition of this process-specific mass scale see (5.12).

This concludes the presentation of our EFT set-up, which allows to determine Som-
merfeld-enhanced co-annihilation rates of a set of nearly mass-degenerate “light” χχ
pairs including effects from heavy channels in the last potential loop before annihilation.
In Chap. 9 we apply this formalism to the calculation of the χ0

1 relic abundance including
Sommerfeld enhancements, providing a detailed study for several MSSM benchmark sce-
narios. In that chapter we will also address the question how the neutralino and chargino
two-particle states should be divided into light and heavy channels. If not noted oth-
erwise, the potential one-loop corrections from heavy channels will be included in the
analysis by using corresponding effective annihilation matrices obtained from (8.72) and
(8.77) in the formula for the Sommerfeld enhancement factors. At the end of Chap. 9 we
will additionally discuss the comparison of the relic abundance results when heavy chan-
nels are treated approximately in the last potential loop of corresponding co-annihilation
rates with the respective result, where those heavy channels are taken into account ex-
actly in the Schrödinger equations. In anticipation of results from Sec. 9.5 let us note
that the perturbative treatment of effects from heavy states for the MSSM scenario
studied therein gives a very good approximation to the results where the heavy states
are considered exactly in the Schrödinger equations. From this we conclude that the
approximate treatment of heavy states is often a good approximation to the result from
full resummation. However, this does not imply that either of the two, the approximate
or exact treatment, is a good approximation to the true one-loop corrections from heavy
channels. Generically we cannot expect that we obtain a good approximation to the full
one-loop results with heavy internal states, if we use the non-relativistic approximation
in the potential region for the latter, because the non-relativistic expansion breaks down
for large mass splitting terms [Mh−2mLSP]. Nevertheless, as noted before, heavy channel
loops are at least suppressed by (E/[Mh − 2mLSP])

1/2 with respect to the light channel
contributions. As the impact of heavy states on the Sommerfeld enhancements of light
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(χχ)l channels is in any case rather small, we decide to include their effect by using the
effective Wilson coefficients (8.72, 8.77).
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Chapter 9

Benchmark models in the general
MSSM

In the preceding chapters we have developed a non-relativistic MSSM effective theory
framework, the NRMSSM, that allows to systematically address the calculation of en-
hanced radiative corrections in pair-annihilation rates of non-relativistic and nearly mass-
degenerate neutralino and chargino states in the general MSSM. The focus has been on
the construction of the effective theory and on a detailed description of the relevant
technical aspects in the NRMSSM calculation of Sommerfeld-enhanced rates. Here we
apply the framework to several well-motivated MSSM scenarios with heavy neutralino
LSP and investigate in particular the impact of Sommerfeld enhancements on the χ0

1

relic abundance calculation. The underlying physics effects are analysed in detail in
each step of the calculation, which allows to illustrate the general use of our effective
theory set-up applicable in the general MSSM. Furthermore, the question of viability of
popular MSSM scenarios in light of a consistent treatment of the Sommerfeld effect can
be addressed.

We choose to consider three scenarios taken from the set of Snowmass pMSSM bench-
mark models [98]. These models pass all constraints from so far unsuccessful SUSY
searches at the LHC, additional collider, flavour and precision measurement bounds as
well as constraints from dark matter direct detection experiments and indirect searches.
The neutralino LSP relic abundance within these models, calculated from perturbative
annihilation rates, is not larger than the WMAP bound, but can be smaller than the ex-
perimentally measured value. The latter allows for the case that neutralino dark matter
does not make up all the cosmic cold dark matter. In addition to these benchmark scenar-
ios we investigate the Sommerfeld enhancements in neutralino/chargino co-annihilations
in a set of models interpolating between a scenario with almost pure-higgsino χ0

1 to
a wino-like χ0

1 model. The MSSM spectra for the models on this “higgsino-to-wino”
trajectory are generated with DarkSUSY [5]. As our work allows for the first time a
consistent study of the Sommerfeld effect on the relic abundance calculation for mod-
els with mixed wino-higgsino neutralino LSP we provide an extensive discussion of the
Sommerfeld effect in such a scenario.
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We start our analysis in Sec. 9.1 with the investigation of a wino-like χ0
1 benchmark

model taken from the set of Snowmass pMSSM benchmark scenarios in [98]. Sec. 9.2
contains the analysis of a corresponding higgsino-like χ0

1 Snowmass model. In both cases
we compare to results obtained in the well-studied “pure” wino and higgsino scenarios
where the χ0

1 is assumed to be part of an unbroken SU(2)L triplet or two unbroken
SU(2)L doublets. As Sommerfeld enhancements have been studied extensively in the
particular case of a pure wino χ0

1 in the literature, we address the question of the validity
of conclusions inferred from these pure wino and higgsino scenarios to wino- and higgsino-
like χ0

1 spectra in the general MSSM. In Sec. 9.3 the effect of Sommerfeld enhancements
in co-annihilations of wino-like neutralino and chargino states in a bino-like χ0

1 pMSSM
benchmark scenario is considered. A “higgsino-to-wino” trajectory is defined in Sec. 9.4,
by introducing 13 models that interpolate between a higgsino- and wino-like χ0

1 spectrum
while the relic density calculated from perturbative rates is kept fixed. Our discussion
here is focused on the spectra and the obtained relic abundances omitting particular
details on the Sommerfeld enhanced co-annihilation cross sections. The specific features
of the Sommerfeld effect for a mixed wino-higgsino χ0

1 are subsequently studied in detail
in Sec. 9.5, where the selected spectrum is one of the trajectory models of the preceding
section.

9.1 Wino-like χ0
1

Wino-like χ0
1 dark matter arranges into an approximate SU(2)L fermion triplet together

with the two chargino states χ±
1 . In the SU(2)L × U(1)Y symmetric limit the triplet

would be assigned zero hypercharge. All states χ0
1, χ

±
1 share the same O(TeV) mass

scale, characterised by the wino mass parameter M2, mχ ∼ |M2|. As discussed in
Sec. 4.3, electroweak symmetry-breaking introduces a small mass splitting between the
neutral and the charged components of the triplet; the tree-level mass splitting happens
to be very small, O(m4

W/m
3
SUSY), and the one-loop radiative corrections dominate over

the tree-level splitting.

A pMSSM scenario with wino-like χ0
1 is provided by the SUSY spectrum with model

ID 2392587 in [98]. A measure for the wino fraction of a given neutralino LSP state is the
square of the modulus of the neutralino mixing-matrix entry ZN 21. For the Snowmass
pMSSM scenario 2392587 the χ0

1 constitutes a rather pure wino, |ZN 21|2 = 0.999, with
a mass mLSP ≡ mχ0

1
= 1650.664GeV. The mass of the chargino partner χ±

1 is given by
mχ+

1
= 1650.819GeV, such that δm = mχ+

1
−mχ0

1
turns out to be 0.155GeV. Without

any modification these values are taken from the spectrum card provided by [98] where
the mass parameters refer to the DR-scheme. As the precise sub O(GeV)-scale χ0

1χ
±
1

mass splitting is an essential ingredient in the calculation of the Sommerfeld-enhanced
co-annihilation rates we have to assume an accuracy of the given mass spectrum at the
level of 10MeV for our analysis of the Sommerfeld enhancement in the pMSSM scenario
to be meaningful. A rigorous analysis of Sommerfeld-enhanced co-annihilation processes
in a given model should refer to the on-shell mass spectrum of the neutralino and chargino
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states instead of DR-parameters, where a sub-GeV scale precision of the mass parameters
requires the consideration of one-loop renormalised quantities. For reference purposes,
however, we do not modify the publicly available DR-spectra of [98] for all three pMSSM
models discussed here.

In the context of minimal dark matter models [28], wino dark matter is realised as the
neutral component of an approximate SU(2)L triplet state as well. In contrast to MSSM
scenarios with wino-like χ0

1, the SU(2)L triplet minimal dark matter models (referred
to as “pure-wino” models in the following) consider interactions of the dark matter
states with the electroweak gauge bosons only. Two-particle final states in minimal
dark matter pair-annihilation reactions are hence given by pairs of SM particles and
the SM Higgs boson and all heavier states above the minimal dark matter mass scale
are treated as completely decoupled. Such a scenario agrees with the decoupling limit
in a MSSM scenario with wino-like χ0

1 LSP. To the contrary, the wino-like pMSSM
model that we consider here features non-decoupled sfermion states at the 2 − 3TeV
scale with non-vanishing couplings of the χ0

1 and χ±
1 to sfermions and to the (heavier)

Higgs states, though the latter are suppressed with respect to the couplings to the gauge
bosons, because any Higgs-χχ (tree-level) interaction takes place between the gaugino-
component of the one and the higgsino-component of the other χ. As the higgsino-like
neutralino and chargino states in the pMSSM model under consideration reside at the
O(3.9TeV) scale any Higgs-χχ interaction plays a sub-dominant role in our analysis of
pair-annihilation reactions of the wino-like χ0

1 and χ±
1 states. Due to the non-decoupled

sfermion states though, some annihilation rates in the wino-like χ0
1 pMSSM scenario are

reduced with respect to the pure-wino dark matter case.

In the calculation of the relic abundance we have to take into account all possible
two-particle co-annihilation reactions between the (approximate) SU(2)L triplet states
χ0
1, χ

±
1 . In addition, in the pMSSM model 2392587, the bino-like χ0

2 is only about 8%
heavier than the χ0

1, mχ0
2
= 1781.37GeV. Hence the χ0

2 is a potentially relevant co-
annihilating particle as well. It turns out though, that this state eventually plays no role
for the relic abundance, as the corresponding cross sections are strongly suppressed with
respect to those of the wino-like particles χ0

1 and χ±
1 due to the much weaker couplings

of the bino-like χ0 to gauge bosons and to the remaining χ0/χ± states. All remaining
heavier particles in the pMSSM scenario lie above the 2TeV scale, so they are already
Boltzmann suppressed and hence practically irrelevant during the χ0

1 freeze-out.

Sommerfeld enhancements on the co-annihilation rates are taken into account by in-
cluding in the multi-state Schrödinger equations, discussed in context of the NRMSSM
in Chap. 8, all χχ two-particle states with mass smaller than Mmax = 2mχ0

1
+mχ0

1
v2max,

where we set vmax = 1/3. This choice is motivated by the fact that vmax roughly cor-
responds to the χ0

1’s mean velocity around freeze-out, hence these states are potentially
relevant for co-annihilation processes, and can still be produced on-shell in a χ0

1χ
0
1 scat-

tering process. The remaining heavier two-particle states with mass above Mmax are
included in the computation of the Sommerfeld enhancement of the lighter states in
the last loop before the annihilation, following the method developed in Sec. 8.6. The
χχ-channels, whose long-distance interactions are treated exactly, can be classified ac-
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cording to their total electric charge. The sector of neutral two-particle states comprises
the χ0

1χ
0
1 and χ+

1 χ
−
1 channels. In the pMSSM scenario considered here, this sector con-

tains in addition the χ0
1χ

0
2 state. In the single-charged and the double-charged sectors

of a pure-wino dark matter scenario there is only one state present in each sector, χ0
1χ

+
1

(χ0
1χ

−
1 ) and χ

+
1 χ

+
1 (χ−

1 χ
−
1 ), whereas in the pMSSM scenario we have to add in addition

a second state with χ0
1 replaced by χ0

2, in agreement with the rule above that defines the
channels which enter the Schrödinger equation. Since the bino-like neutralino essentially
neither couples to the wino-like particles nor to gauge bosons, and because sfermion
states are rather heavy, potential interactions as well as tree-level annihilation reactions
involving the bino-like χ0

2 are strongly suppressed with respect to the corresponding in-
teractions with wino-like particles χ0

1, χ
±
1 . As a consequence, χ0

2 plays essentially no role
for Sommerfeld enhancements, and we focus the discussion that follows on the channels
built from the wino-like χ0

1 and χ±
1 states only.

In each of the charge sectors long-range interactions due to potential exchange of
electroweak gauge bosons, photons and light Higgses are present.1 Potential W -boson
exchange leads to a Yukawa potential interaction that induces transitions between the
χ0
1χ

0
1 and the χ+

1 χ
−
1 state in the neutral sector. Hence the part of the neutral sector

consisting of the channels χ0
1χ

0
1 and χ+

1 χ
−
1 is characterised by a potential matrix with

non-vanishing off-diagonals which are of the same strength as the diagonal entries. As
the incoming χ0

1χ
0
1 pair cannot build a 3S1 or 1P1 state, potential interactions are re-

sponsible for transitions between the two neutral states χ0
1χ

0
1 and χ+

1 χ
−
1 in a 1S0 or 3PJ

configuration.
In Fig. 9.1 we plot the enhancement (σSFv)/(σpertv) of annihilation rates including

long-range interactions, σSFv ≡ σSFvrel, with respect to the perturbative tree-level result,
σpertv ≡ σpertvrel, for the two-particle states χ0

1χ
0
1 and χ+

1 χ
−
1 in the neutral sector of the

model as a function of the velocity vLSP of the incoming χ0
1’s in their centre-of-mass

frame. We define the velocity vLSP by
√
s = 2mχ0

1
+ mχ0

1
v2LSP with

√
s the available

centre-of-mass energy. The spin-averaged inclusive tree-level annihilation rates σpertv
are calculated in the non-relativistic approximation

σpertv = a + b v2 + O(v4) , (9.1)

and are obtained from the appropriate sum over the exclusive rates in (6.24) including
O(v2rel) effects. In case of the χ0

1χ
0
1 state the relation between the relative velocity v and

vLSP is given by v = 2 vLSP. For χ
+
1 χ

−
1 annihilation reactions the relation is

v = 2Re
√
mχ0

1
/mχ+

1
[v2LSP − 2 δm/mχ0

1
] . (9.2)

The coefficients a and b in (9.1) are determined from the absorptive part of partial-wave
decomposed Wilson coefficients as discussed in Chap. 6. In case of the Sommerfeld-

1Potentials from Higgs exchange are negligible compared to the leading contributions from gauge
bosons in the pMSSM scenario with wino-like χ0

1, again because in any Higgs-χχ vertex the gaugino
component of one χ is coupled to the higgsino component of the other χ. In the wino-like χ0

1 Snowmass
model the lowest-lying χ’s relevant for the Sommerfeld effect are rather pure wino-like χ0 and χ± states
with a very small higgsino component.
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Figure 9.1: The enhancement of the χ0
1χ

0
1 and χ

+
1 χ

−
1 annihilation cross sections for Snow-

mass model 2392587 relative to the perturbative tree-level rate, (σSFv)/(σpertv). The
solid lines refer to the calculation of the Sommerfeld-enhanced rates with off-diagonal
entries in the annihilation matrices Γ properly included. The dashed curves show the
enhancement with respect to the perturbative cross sections when off-diagonal annihi-
lation rates are not considered. The dotted curve labelled “pure–Coulomb enh.” shows
the enhancement from photon exchange only in the χ+

1 χ
−
1 channel.

enhanced rates σSFv each partial wave contribution to the tree-level cross section (9.1)
gets multiplied by an enhancement factor related to the two-particle wave-function of the
respective incoming state, see (8.13). Unless otherwise stated, Sommerfeld-enhanced re-
sults include the one-loop corrections from heavy χχ-states in the last potential loop, fol-
lowing the approximation discussed in Sec. 8.6. The results for the wino-like pMSSM sce-
nario hence include perturbative corrections from heavy χχ-pairs involving the higgsino-
like χ0

3,4 and χ±
2 particles. The effects of the latter nevertheless amount only to a neg-

ligible per mil level deviation on σSFv. This can be traced back to the fact that the
higgsino states lie at the rather high mass scale of around 3.9TeV and thus are basically
decoupled. The (σSFv)/(σpertv) curves in Fig. 9.1 show some characteristic features,
which we describe next. As there is a small mass splitting between the χ0

1 and the χ±
1 ,

the threshold for the on-shell production of the heavier neutral state χ+
1 χ

−
1 opens at

vLSP/c ≃ 0.014. Well below this threshold, the enhancement for the χ0
1χ

0
1 system is

velocity-independent and of O(10). This saturation effect is characteristic for Yukawa-
type interactions in the kinematic regime where the relative momentum of the incoming
state is well below the mass scale of the mediator: this is the case for the χ0

1χ
0
1 state at

very small velocities, where off-diagonal Yukawa potentials are generated by W -boson
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exchange with mχ0
1
vLSP ≪ mW . The actual strength of the enhancement is, however,

a combined effect of the off-diagonal Yukawa potential from W -exchange that allows
for χ0

1χ
0
1 → χ+

1 χ
−
1 transitions and the QED Coulomb interaction in the (kinematically

closed) χ+
1 χ

−
1 channel. At velocities vLSP just below the χ+

1 χ
−
1 threshold resonances in

the χ0
1χ

0
1 channel can be observed. While the main plot in Fig. 9.1 displays a curve

smoothed over this region, we show in the small sub-figure a close-up of the resonance
pattern. The existence of resonance enhancements at the threshold of a heavier chan-
nel is well-known and has been described for instance in [36]. However, opposed to
the pattern in the close-up in Fig. 9.1 no oscillating behaviour was found in [36], as
only Yukawa potentials were considered. In fact the oscillatory pattern is related to the
photon exchange in the χ+

1 χ
−
1 subsystem. Going to even larger velocities, above the

χ+
1 χ

−
1 threshold, the enhancement in the χ0

1χ
0
1 channel decreases, approaching one as we

depart from the non-relativistic regime. Turning to the enhancement in the χ+
1 χ

−
1 chan-

nel, it shows quite a different behaviour right above its threshold compared to the χ0
1χ

0
1

system at small velocities: instead of approaching a constant value, the enhancement
factor for χ+

1 χ
−
1 rises increasingly as the velocities of the χ±

1 get smaller. Such a be-
haviour is expected in the presence of long-range Coulomb-potential interactions, where
the enhancement does not saturate because the mediator is massless. Indeed, the pho-
ton exchange between the charged constituents of the neutral χ+

1 χ
−
1 pair dominates the

potential interactions in the regime of very small velocities: the Yukawa potentials be-
come very short-ranged and thus negligible compared to the Coulomb-interaction. The
dotted (black) curve in Fig. 9.1 displays the enhancement factor in the χ+

1 χ
−
1 system

arising from Coulomb interactions due to photon exchange only. For small velocities the
pure-Coulomb enhancement factor diverges as 1/vχ+

1
. The true enhancement curve, that

involves all potential interactions affecting the χ+
1 χ

−
1 system asymptotically reaches this

Coulomb-like behaviour for velocities directly above the χ+
1 χ

−
1 threshold.2 For larger

velocities in the χ+
1 χ

−
1 system the presence of the Yukawa potentials leads to a larger

enhancement than in case of Coulomb interactions only.

The dashed curves in Fig. 9.1 show the enhancements (σSFv)/(σpertv) for the χ0
1χ

0
1

and χ+
1 χ

−
1 states when off-diagonal terms in the annihilation matrices are (incorrectly)

left out. This can lead to a . 30% underestimation of the actual enhancement in the
χ0
1χ

0
1 channel. The effect is less pronounced for the χ+

1 χ
−
1 channel, as in this case the

cross section also gets significant contributions from 3S1 annihilations and not just from
1S0 ones. As the 3S1 sector is purely diagonal, the effect of off-diagonals, relevant in the
case of 1S0 wave annihilations, becomes milder for the spin-averaged total cross section
σSFv. It is worth to stress that the overall order of magnitude of the enhancements is
O(10), and becomes O(102) in the resonance region around the χ+

1 χ
−
1 threshold.

The quantity that enters the Boltzmann equation for the neutralino number den-
sity is the thermally averaged effective annihilation rate 〈σeffv〉. Fig. 9.2 shows 〈σeffv〉

2Note that in spite of the ∝ 1/vχ+

1

divergence, the enhanced cross sections lead to a finite result

in the average over the thermal velocity distribution due to the v2
χ+

1

term in the integration measure,
∫
R3 d

3~vχ+

1

=
∫
dΩ
∫∞

0 dvχ+

1

v2
χ+

1

.
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Figure 9.2: The thermally averaged effective annihilation rate 〈σeffv〉 as a function of the
scaled inverse temperature x = mχ0

1
/T in case of Snowmass model 2392587. The two

upper (red) curves correspond to the Sommerfeld-enhanced annihilation cross sections
including (solid line) or neglecting (dashed line) the off-diagonals in the annihilation
matrices. The lower (blue) curve represents 〈σeffv〉 obtained from perturbative (tree-
level) cross sections.

as defined in (3.37) as a function of the inverse scaled temperature x = mχ0
1
/T . The

lower solid (blue) curve represents the perturbative (tree-level) annihilation rates while
the upper solid and the dashed (red) lines refer to Sommerfeld-enhanced cross sections
including and neglecting off-diagonal annihilation rates, respectively. The plot can be
divided into several regions with different characteristics. Let us first note that for
x . 10 the depicted behaviour of 〈σeffv〉 is unphysical. The mean velocity of the anni-
hilating particles in the plasma scales as

√
1/x and hence is no longer non-relativistic

for x<∼10 while the results of our framework strictly apply only to non-relativistic χχ
pair-annihilations, i.e. for x & 10. Around x ∼ 20 the annihilation rates of χ0

1 and χ+
1

can no longer maintain chemical equilibrium and the particles start to decouple from the
thermal plasma. Hence only the region above x ∼ 20 is important for the calculation
of the relic abundance. Around x & 104 the number densities of the χ±

1 are so strongly
Boltzmann suppressed with respect to the χ0

1 number density despite the small mass
splitting that the rates of the charginos basically play no role in the effective rate 〈σeffv〉,
which is then essentially given by χ0

1χ
0
1 annihilations. Note that we can estimate the

point of chargino decoupling between x ∼ 104 − 105 from the ratio of the Boltzmann
distributions nχ+

1
/nχ0

1
∝ exp(−δm/mχ0

1
x), taking the O(10−1GeV) mass splitting into
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Figure 9.3: Thermally averaged effective annihilation rates 〈σeffv〉 as a function of the
scaled inverse temperature x = mχ0

1
/T . The two upper (red) curves refer to a calculation

with Sommerfeld-enhanced cross sections while the two lower (blue) curves represent the
perturbative results. Solid lines correspond to the Snowmass pMSSM scenario 2392587
and dot-dashed curves show the results for the pure-wino scenario.

account. After χ±
1 decoupling, 〈σeffv〉 including the Sommerfeld enhancements becomes

constant, which we can infer from the constant enhancement factor for the χ0
1χ

0
1 sys-

tem for very low velocities shown in Fig. 9.1. Before χ±
1 decoupling, 〈σeffv〉 including

the Sommerfeld enhancements rises with increasing x due to the contributions from the
charginos but also due to the velocity-dependent enhancement on the χ0

1χ
0
1 system it-

self for larger relative velocities. On the contrary, the perturbatively determined 〈σeffv〉
shows a constant behaviour before and after χ±

1 decoupling with a rise only around the
decoupling region; the contributions that dominate the perturbative cross sections in the
non-relativistic regime are the velocity-independent leading-order S-wave terms.

Fig. 9.3 compares the thermally averaged effective rates 〈σeffv〉 as calculated from the
wino-like pMSSM scenario and from a pure-wino SU(2)L triplet minimal dark matter
model with the same χ0

1 mass. In the pure-wino model the mass splitting between the
χ0
1 and χ±

1 has to be kept in the Schrödinger equation as it is of the same order as
the non-relativistic kinetic energy and the potentials. However in the hard annihilation
rates the mass splitting is a subleading effect and is neglected; the annihilation matrices
in the pure-wino model depend on the χ0

1 mass only. Let us recall that we have given
corresponding analytic expressions for the potential and annihilation matrices in the
pure-wino model in Sec. 7.2.2. While the rates for χ0

1χ
0
1 annihilations agree at per mil
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Figure 9.4: The ratios of the yield Y/Ypert as a function of x = mχ0
1
/T , where Y is

calculated including the Sommerfeld enhancement on the χχ annihilation rates while
Ypert just uses the perturbative ones. The solid (blue) and dashed (black) curves give
the results for the Snowmass model 2392587 including and neglecting off-diagonal anni-
hilation rates, respectively. The dot-dashed (red) curve corresponds to Y/Ypert(x) in the
pure-wino model.

level, the cross sections involving χ±
1 are generically larger by factors of O(1) in the pure-

wino model as compared to the pMSSM wino-like model. This can be mainly traced back
to the destructive interference between t-channel sfermion and s-channel Z (and Higgs-
boson) exchange amplitudes in χ+

1 χ
−
1 → ff annihilations in the pMSSM scenario case,

while the t-channel sfermion exchange amplitudes are absent in the pure-wino model.
In addition the pure-wino case neglects all final state masses which in particular gives
rise to larger annihilation rates into the tt̄ and electroweak gauge boson final states as
compared to the pMSSM scenario, where the non-vanishing masses of all SM particles
are taken into account. This accounts for the deviation between the curves in Fig. 9.3
before χ±

1 decoupling.
Finally we consider the yield Y = n/s, defined in (3.22) as the ratio of the number

density n of all co-annihilating particle species divided by the entropy density s in the
cosmic co-moving frame. As discussed in Chap. 3, the dependence of the yield on the
scaled inverse temperature x = mχ0

1
/T is governed by the Boltzmann equation (3.28),

and the χ0
1 relic abundance is obtained from the yield today, see (3.31). In Fig. 9.4 we

show the ratio of the yield Y calculated from Sommerfeld-enhanced cross sections in both
the pMSSM and the pure-wino model to the corresponding results using perturbative
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cross sections, Ypert, as a function of x.

First note, that the denominator Ypert in the ratio Y/Ypert differs for the pMSSM and
the pure-wino model, which is a consequence of the different effective rates 〈σeffv〉, see
Fig. 9.3. Further, in case of the pMSSM scenario we show results corresponding to a
calculation of Y including and neglecting off-diagonal annihilation rates. Around x ∼ 20
the yields including Sommerfeld enhancements start to depart from the corresponding
perturbative results; the enhanced rates delay the freeze-out of interactions, which leads
to a reduction of the yield Y compared to the perturbative result Ypert. The most drastic
reduction in Y/Ypert occurs between x ∼ 20 and x ∼ 103. In this region the enhancement
factors on the cross sections are of O(10) (and not yet O(102) as for very large x), leading
to Y/Ypert values that deviate from 1 by a few 10%. For x & 105 the fraction Y/Ypert
stays constant, meaning that at these temperatures the particle abundances in both the
perturbative and Sommerfeld-enhanced calculation are frozen in. In case of the wino-like
model we find that the relic densities calculated from the yield today read Ωperth2 = 0.112
and ΩSFh2 = 0.066. Hence taking into account the Sommerfeld effect leads to a reduction
of the calculated relic abundance of around 40%. On the other hand, neglecting the off-
diagonal annihilations in the calculation of Sommerfeld-enhanced rates overestimates the
relic density by 15% compared to the correct ΩSFh2. Let us recall that the relic density
calculated without corrections from heavy χχ-states in the last potential loop differs
from the ΩSFh2 value quoted above at most at the per mil level. Due to overall larger
hard annihilation rates in the pure-wino model, the calculated relic density including
Sommerfeld-enhanced rates turns out to be ΩSF

pure-wh
2 = 0.034, while the corresponding

perturbative result is Ωpert
pure-wh

2 = 0.056.

A quantification of the theoretical error on such numbers is difficult. In conventional
tree-level calculations of annihilation cross sections and the ensuing determination of relic
densities neglecting radiative corrections, the results on the relic densities are supposed
to be accurate to O(5%) in the absence of enhanced corrections due to non-relativistic
scattering, large Sudakov logarithms, or, potential strong-interaction effects for quark
and gluon final states. The latter two restrictions still apply when the Sommerfeld effect
is included. Further, our computation of the Sommerfeld effect itself neglects O(v2)
corrections to the scattering potentials as well as ordinary, non-enhanced corrections
to the short-distance annihilation coefficients. Hence the accuracy of the Sommerfeld-
corrected annihilation cross sections and relic densities is presumably again at the O(5%)
accuracy level at best.

9.2 Higgsino-like χ0
1

The higgsino-like neutralino χ0
1 arises as the lightest out of four mass eigenstates χ0

1,2, χ
±
1

related to two SU(2)L fermion doublets. Note that the hypercharges of the two SU(2)L
doublets are given by Y = ±1/2 respectively, which ensures the electric neutrality of the
χ0
1. The common mass scale of the χ0

1,2, χ
±
1 states is set by the O(TeV) higgsino mass

parameter, mχ ∼ |µ|. Electroweak symmetry breaking introduces a tree-level splitting
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between mχ0
1
and the masses of the three heavier states of O(m2

Z/mLSP) ∼ O(1GeV), see
the corresponding discussion in Sec. 4.3. This is considerably larger than the tree-level
mass splitting in the wino-like χ0

1 case; in particular loop corrections play a sub-dominant
role in the mass splittings of higgsino-like neutralinos and charginos.

As an example of this class of models we consider the Snowmass pMSSM scenario
with ID 1627006 [98], that features a higgsino-like χ0

1 LSP with mχ0
1
= 1172.31GeV and

higgsino fraction |Z31|2 + |Z41|2 = 0.98. The heavier higgsino-like states χ±
1 and χ0

2 have
a mass splitting of δmχ+

1
= 1.8GeV and δmχ0

2
= 9.5GeV to the χ0

1 mass. Again, all
pMSSM spectrum parameters are taken without any modification from the corresponding
Snowmass (slha) model-file 1627006 provided by [98].

As in Sec. 9.1, it is instructive to compare the pMSSM scenario with higgsino-like
χ0
1 and co-annihilating χ0

2 and χ±
1 to a model with pure-higgsino χ0

1,2, χ
±
1 states and

completely decoupled sfermions and heavy Higgses. We refer to the latter scenario as
“pure-higgsino” model; such model is also discussed in the context of Minimal Dark
Matter [28]. Pure-Higgsino states interact only with the SM gauge bosons W±, Z, γ but
not with the Higgs bosons. The accessible final states in 2→ 2 co-annihilation reactions
of pure higgsinos are hence given by particle pairs formed out of SM gauge bosons and
fermions as well as of the (SM-like) Higgs h0, where all these SM particles are taken
to be massless, and only SM gauge bosons and higgsinos appear as intermediate states
in tree-level annihilations. The co-annihilation rates of the higgsino-like χ0

1,2, χ
±
1 states

in the pMSSM scenario 1627006 happen to be larger than the corresponding reactions
in the pure-higgsino case. This can be traced back to the presence of non-decoupled
sfermion and Higgs states in the higgsino-like χ0

1 pMSSM model and in particular to
non-decoupled wino-like states χ0

3, χ
±
2 at the scale of 1.6 TeV.

In the determination of the χ0
1 relic abundance for this pMSSM scenario includ-

ing co-annihilations only the higgsino-like states are relevant. Other heavier states are
already sufficiently Boltzmann-suppressed during χ0

1 freeze-out. Hence we neglect the
co-annihilations of the lightest sfermion states τ̃1 and ν̃3, with masses around 1.44TeV,
although we include co-annihilation reactions of all heavier χ0/χ± states. Yet the latter
have basically no effect on the χ0

1 relic density, as their abundances are already suffi-
ciently suppressed at χ0

1 decoupling. Obviously, in the pure-higgsino scenario only the
co-annihilations between the higgsino-like species χ0

1,2, χ
±
1 are taken into account for the

calculation of the relic abundance.

We consider Sommerfeld corrections to all co-annihilation rates between two higgsino-
like particles in both the pMSSM scenario 1627006 and the pure-higgsino model by treat-
ing all channels built from the states χ0

1,2, χ
±
1 exactly in the corresponding Schrödinger

equations. Moreover, the remaining heavier χ0/χ± two-particle states in the higgsino-
like pMSSM scenario are treated perturbatively in the last potential loop according to
the method developed in Sec. 8.6. In case of the pure-higgsino model though, all heavier
states are considered as completely decoupled. Dividing the co-annihilation reactions into
sets corresponding to total electric charge, we identify a neutral sector with the four two-
particle states χ0

1χ
0
1, χ

0
1χ

0
2, χ

0
2χ

0
2 and χ

+
1 χ

−
1 . The single-positive (negative) charged sector

contains the two states χ0
1χ

+
1 , χ

0
2χ

+
1 (χ0

1χ
−
1 , χ

0
2χ

−
1 ), whereas the double-positive (double-
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Figure 9.5: Enhancement factors (σSFv)/(σpertv) in the four most relevant two-particle
channels χ0

1χ
0
1, χ

+
1 χ

−
1 , χ

0
1χ

0
2 and χ0

1χ
+
1 of Snowmass model 1627006. The enhancement

factor for the additionally relevant channel χ0
1χ

−
1 agrees with the one for the χ0

1χ
+
1 pair.

Solid lines refer to the calculation of the Sommerfeld-enhanced rates with off-diagonal
terms in the annihilation matrices properly included. Dashed curves show the enhance-
ment when the off-diagonal annihilation rates are neglected.

negative) charged sector features only one two-particle state relevant in co-annihilations
with the higgsino-like χ0

1 dark matter candidate: χ+
1 χ

+
1 (χ−

1 χ
−
1 ). Note that annihila-

tions of the latter double-charged states χ+
1 χ

+
1 and χ−

1 χ
−
1 are absent in the pure-higgsino

model due to hypercharge conservation in this SU(2)L×U(1)Y symmetric limit, as they
have a non-zero hypercharge, namely Yχ±χ± = ±1. In contrast, in the higgsino-like χ0

1

pMSSM case with broken U(1)Y symmetry, annihilations of the double-charged channels
into a W+W+ or W−W− pair are possible, though the rates are suppressed by a factor
∼ mW/mχ0

1
compared to the magnitude of the neutral sector’s leading rates.

Fig. 9.5 shows the enhancement (σSFv)/(σpertv) of the individual cross sections for
those channels that have the most relevant contribution to the relic abundance calcu-
lation, that is χ0

1χ
0
1, χ

+
1 χ

−
1 , χ

0
1χ

0
2 in the neutral sector, and χ0

1χ
+
1 in the single-charged

sector (χ0
1χ

−
1 gives the same contribution). First note that the enhancements are only of

O(1), opposed to O(102) enhancements in case of the wino-like model in Sec. 9.1. This
can be explained due to the larger mass splittings to the next-to-lightest states χ±

1 , χ
0
2 in

the higgsino-like χ0
1 case and the fact that the couplings to SM gauge bosons and (light)

Higgs particles are generically smaller for higgsinos than for winos. The enhancement
of the χ0

1χ
0
1 rate as a function of the velocity vLSP shows again the saturated, velocity-
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independent behaviour typical for Yukawa type potentials in the low velocity regime well
below the thresholds of the heavier two-particle states. As in the wino-model, both the
off-diagonal Yukawa potential and the (diagonal) Coulomb potential in the kinematically
closed χ+

1 χ
−
1 channel contribute here to the actual size of the enhancement. At larger

velocities, two resonance regions at the thresholds for χ+
1 χ

−
1 and χ0

2χ
0
2 production are

visible (the χ0
2χ

0
2 channel opens up at vLSP/c ≃ 0.127; the ratio (σSFv)/(σpertv) for this

channel is very close to 1, and is not shown in Fig. 9.5). One might ask why no resonance
at the χ0

1χ
0
2 threshold is visible in the χ0

1χ
0
1 channel: recall that Fermi-statistics forbids

the χ0
1χ

0
1-pair to build the totally symmetric partial-wave configurations 3S1 and

1P1. In
case of unbroken SU(2)L × U(1)Y symmetry it turns out, though, that the χ0

1χ
0
2 pair

can build 3S1 and 1P1 configurations but not 1S0 and 3PJ states. Hence there are no
off-diagonal entries in the neutral potential matrices encoding χ0

1χ
0
1 ⇌ χ0

1χ
0
2 interactions

in the pure-higgsino limit. Departing from the SU(2) × U(1)Y symmetric limit gives
rise to χ0

1χ
0
2 contributions to the enhancement (σSFv)/(σpertv) in the χ0

1χ
0
1 channel that

are however suppressed by (mW/mχ0
1
)3 with respect to the leading contributions; this

explains why no χ0
1χ

0
2 threshold effect is visible in Fig. 9.5. Such restrictions due to

non-accessible partial-wave configurations do not exist for the next-to-lightest neutral
two-particle state χ+

1 χ
−
1 , and resonances at the thresholds of all co-annihilating neutral

χχ-pairs heavier than the χ+
1 χ

−
1 are visible in the latter channel in Fig. 9.5. Further-

more, note the 1/vχ+
1
Coulomb-type enhancement in the χ+

1 χ
−
1 channel directly above its

threshold caused by potential photon-exchange between the χ+
1 and χ−

1 . The Coulomb
potential surpasses the potentials from massive gauge boson and Higgs exchange at very
small velocities in the χ+

1 χ
−
1 channel, but for moderate velocities both the Coulomb and

the (off-)diagonal Yukawa interactions are relevant. Turning to channel χ0
1χ

0
2, the corre-

sponding enhancement (σSFv)/(σpertv) increases as the velocity decreases. In particular,
there is no saturation of the enhancement directly above threshold, because the lighter
channels χ0

1χ
0
1 and especially χ+

1 χ
−
1 are always kinematically open and accessible from

an on-shell χ0
1χ

0
2 state via off-diagonal potential interactions.

The ratio (σSFv)/(σpertv) for the charged state χ0
1χ

+
1 that is additionally plotted in

Fig. 9.5 (lowermost magenta line) shows that the Sommerfeld effect can also produce
corrections that reduce the perturbative result. For the channel χ0

1χ
+
1 the negative

correction arises from the interference of amplitudes where, after multiple electroweak
and Higgs boson exchanges, the state that annihilates into the light final state particles
is the same as the incoming one, χ0

1χ
+
1 , with amplitudes where the actual state that

annihilates is χ0
2χ

+
1 . In the EFT formalism such interferences arise from the off-diagonal

annihilation terms χ0
1χ

+
1 → χ0

2χ
+
1 and χ0

2χ
+
1 → χ0

1χ
+
1 , combined with the off-diagonal

potential term for χ0
1χ

+
1 → χ0

2χ
+
1 . The dashed magenta curve in Fig. 9.5 refers to

the situation where off-diagonal short-distance rates are neglected in the calculation of
the Sommerfeld enhanced χ0

1χ
+
1 annihilation cross section. It is nicely seen that the

destructive interference effect disappears in this case and the ratio (σSFv)/(σpertv) is
always positive. The enhancement in the χ0

1χ
+
1 channel also saturates as its on-shell

production threshold is approached. This should be the case as the χ0
1χ

+
1 channel is

the lightest in the single positive-charged sector, and its behaviour should be similar to
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the one of the lightest neutral channel, χ0
1χ

0
1, directly above threshold. However, such

saturation is not visible in Fig. 9.5 because there we plot the χ0
1χ

+
1 cross section as a

function of vLSP and not as a function of the relative velocity of the channel, related to
the latter by v2 = 2(mχ0

1
+mχ+

1
)/(mχ0

1
mχ+

1
)×(mχ0

1
v2LSP−2δm).3 Let us also mention that

the dip in the χ0
1χ

+
1 cross section caused by interference effects is located at the velocity

where the other state included in the Schrödinger equation for this charge sector, χ0
2χ

+
1 ,

opens up.
As we have already noted in context of the χ0

1χ
+
1 channel above, the dashed curves

in Fig. 9.5 show the results for the corresponding enhancements of the pMSSM scenario
1627006 when off-diagonal annihilation rates are neglected. This disregard would lead
to an underestimation of the actual enhancement due to the long-range potential in-
teractions of around 30% in the χ0

1χ
0
1 channel. The effect is much milder for the χ0

1χ
0
2

and χ+
1 χ

−
1 pairs and is explained by the contributions of 3S1 partial-wave annihilations

to the cross sections (absent for the identical particle-pair channel χ0
1χ

0
1); off-diagonal

3S1 annihilation rates are suppressed relative to the leading (diagonal) rates by an order
of magnitude, due to destructive interference effects between sfermion and gauge boson
exchange amplitudes. Hence, as off-diagonals play a minor role in 3S1 annihilations,
their effect in the spin-averaged cross sections σSFv will also be less pronounced. As the
conclusions on the enhancements in case of the pure-higgsino χ0

1 model are similar to
the results in Fig. 9.5 we do not show a corresponding plot here. Let us mention though
again, that the hard co-annihilation rates in the pure-higgsino model are a few percent
smaller than in the higgsino-like χ0

1 model. Furthermore, the off-diagonal rates for 3S1

annihilations in the system of χ0
1χ

0
2 and χ

+
1 χ

−
1 states are of the same order of magnitude

as the diagonal ones.
Fig. 9.6 shows the thermally averaged effective annihilation rate 〈σeffv〉 as a func-

tion of the inverse scaled temperature x. The lower solid (blue) curve represents the
result using perturbatively calculated rates, while the upper two (red) curves with solid
and dashed line style refer to computations with Sommerfeld-enhanced cross sections
including and neglecting off-diagonal annihilation rates, respectively. Again the region
for x . 10 is unphysical, as the co-annihilating particles’ mean velocities are outside the
non-relativistic regime. Due to larger mass splittings between the higgsino-like neutralino
and chargino states, the decoupling of the heavier states χ±

1 and χ0
2 takes place already

around x ≃ 103. As can be seen from Fig. 9.6, the Sommerfeld effect enhances the ther-
mally averaged effective annihilation cross section by 3% up to 25% with respect to the
perturbative result in the region of x around 10− 103 which is most relevant in the relic
abundance calculation. The effect of correctly treating off-diagonal annihilation rates is
most essential for large values of x in the range 104− 108, where 〈σeffv〉 would be under-
estimated by around 25% if off-diagonals were neglected in the hard annihilation rates.
In the region x = 10−103 the effect of off-diagonal rates is also noticeable, leading to an
overestimation of 〈σeffv〉 that reaches 6% if off-diagonal rates are not taken into account.

3If the χ0
1χ

+
1 cross section behaves as σSFv ≃ a + bv2 close to threshold, the saturation is visible

because of the zero slope of this function at v = 0; in terms of vLSP it reads σSFv = a + b′(v2LSP − c),
which does not have a zero slope at the threshold of the channel, vLSP =

√
c.
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Figure 9.6: The thermally averaged effective annihilation rate 〈σeffv〉 as a function of
the scaled inverse temperature x = mχ0

1
/T for the pMSSM Snowmass model 1627006

with higgsino-like χ0
1. The upper two (red) curves refer to the Sommerfeld-enhanced

cross sections: the solid line includes the off-diagonal annihilation rates while the dashed
curve does not. The lowermost (blue) curve corresponds to the perturbative result.

The latter difference with respect to the true result is traced back to the contribution
to 〈σeffv〉 of the charged χ0

1χ
+
1 channel, which in the absence of off-diagonal annihilation

terms does not get the negative interference term that lowers the Sommerfeld-corrected
cross section, see Fig. 9.5. Once the χ±

1 particles are decoupled, the contributions of the
channels χ0

1χ
±
1 to 〈σeffv〉 basically vanish. The much larger enhancement in the χ0

1χ
0
1

cross section when off-diagonal rates are consistently taken into account then explains
why the correct 〈σeffv〉 result crosses the dashed line for x>∼103 in Fig. 9.6.

Finally, Fig. 9.7 shows the ratio Y/Ypert. The solid (blue) and dashed (black) curves
refer to calculations within the pMSSM Snowmass model 1627006 with off-diagonal an-
nihilation reactions included and neglected, respectively. The dot-dashed (red) line ap-
plies to the pure-higgsino model. The relic abundances that we calculate within the
pMSSM Snowmass model read Ωperth2 = 0.108 if perturbative annihilation reactions
are considered and ΩSFh2 = 0.100 taking Sommerfeld-enhanced rates into account. Ac-
counting for the long-range potential interactions hence leads to a reduction of 8% on the
predicted relic density for the pMSSM higgsino-like χ0

1 model. Neglecting off-diagonal
rates in the pMSSM Snowmass model calculation reduces the relic abundance to a value
ΩSF, no-offh2 = 0.096. This is because the effective thermal average cross section without
the off-diagonal rates is larger in the region where chemical decoupling takes place, see

177



1 100 104 106 108

0.75

0.80

0.85

0.90

0.95

1.00

x = mΧ � T

Y
�

Y
pe

rt

model 1627006

no off-diag. G

pure higgsino

Figure 9.7: The ratio of the yields Y/Ypert, where Y is calculated including Sommerfeld
enhancements on the annihilation rates and Ypert uses purely perturbative rates. The
solid (blue) line corresponds to the calculation within the pMSSM Snowmass model
1627006 with higgsino-like χ0

1, that includes off-diagonal annihilation rates. The dashed
(black) line gives the same result but with neglected off-diagonal rates. The dot-dashed
curve is the result (with off-diagonal rates) obtained for the pure-higgsino model.

Fig. 9.6. The error on ΩSFh2 when disregarding off-diagonal rates therefore amounts
to an underestimation of 4% in this case. The Sommerfeld-enhanced rates without the
one-loop corrections from heavy χχ-states in the last potential loop before annihilation
give a 1% deviation on the final ΩSFh2 result. In contrast, the relic abundances in the
pure-higgsino model, obtained using perturbative or Sommerfeld-enhanced rates, almost
coincide, namely Ωpert

pure-hh
2 = 0.127 and ΩSF

pure-hh
2 = 0.126, where the latter result includes

the off-diagonal rates. As can be expected, the overall smaller annihilation rates in the
pure-higgsino scenario lead to a larger relic abundance than in the higgsino-like pMSSM
scenario. The fact that the perturbative yield surpasses the Sommerfeld-corrected one
right after chemical decoupling in the pure-higgsino model is explained by the slightly
smaller 〈σeffv〉 in the Sommerfeld-corrected result in that region of x, which is in turn
produced by the Sommerfeld suppression in the charged channels χ0

1χ
±
1 . Overall, there is

a strong cancellation between cross section enhancement in the neutral and suppression
in the charged channels, leading to an almost vanishing net Sommerfeld correction.
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9.3 Light scenario

Light neutralino dark matter with a relic abundance of the order of the observed value
is realised for a χ0

1 with a sizable bino component. The bino is a SU(2)L singlet with
zero hypercharge. As for a pure bino there are no interactions with electroweak gauge
bosons nor photons we can already expect that there will be essentially no long-range
potential interactions for the bino-like χ0

1 and hence no Sommerfeld enhancements in
χ0
1χ

0
1 annihilations. Yet it is interesting to confirm this expectation and to investigate

the relevance of Sommerfeld enhancements in possible co-annihilations with (slightly)
heavier neutralino and chargino states. As an example for such a bino-like χ0

1 we chose to
study the pMSSM Snowmass model with ID 2178683 that features wino-like NLSP states
with masses around 6% heavier than the χ0

1 state: mχ0
1
= 488.8GeV, mχ0

2
= 516.0GeV

and mχ+
1
= 516.2GeV.

In the calculation of the χ0
1 relic abundance we consider co-annihilation reactions

among all χ0/χ± two-particle states, although only the two-particle annihilations be-
tween the states χ0

1,2, χ
±
1 are relevant since the higgsino-like states χ0

3,4, χ
±
2 lie at the

2TeV scale and their abundances are strongly Boltzmann-suppressed at χ0
1 freeze-out.

The lightest sfermions are the τ̃1 and ν̃τ with masses around 770GeV and we neglect
their effect in the relic abundance.

Sommerfeld corrections on the co-annihilation cross sections from all two-particle
states built from χ0

1,2 and χ±
1 are determined exactly through the solution of the corre-

sponding Schrödinger equations in each charge sector. The outcome for the enhancement
(σSFv)/(σpertv) in the neutral sector, which entails the two-particle states χ0

1χ
0
1, χ

0
1χ

0
2,

χ0
2χ

0
2 and χ+

1 χ
−
1 , is shown in Fig. 9.8. Solid (dashed) curves correspond to a calculation

with (without) off-diagonal annihilation rates in the Sommerfeld-enhanced reactions.
Due to the absence of interactions with the electroweak gauge bosons in case of a pure-
bino state, the χ0

1 of the pMSSM Snowmass model 217868 also experiences basically no
long-range potential interactions and there is essentially no coupling between the bino-
like χ0

1 and the NLSP χ0
2. As a consequence, both the absolute (perturbative as well

as Sommerfeld-enhanced) χ0
1χ

0
1 and χ0

1χ
0
2 annihilation rates are strongly suppressed and

there is no enhancement in these reactions; the ratio (σSFv)/(σpertv) is equal to one in
both cases. As it cannot be inferred from Fig. 9.8, let us note in addition that the abso-
lute χ0

1χ
0
1 (χ0

1χ
0
2) annihilation cross section is suppressed with respect to the dominant

χ0
2χ

0
2 and χ+

1 χ
−
1 rates by four (two) orders of magnitude.

In the subsystem of the neutral wino-like two-particle channels χ0
2χ

0
2 and χ+

1 χ
−
1 , the

Sommerfeld enhancement due to long-range potential interactions is effective, see the
corresponding curves in Fig. 9.8. Note that χ0

2 and χ±
1 co-annihilations should still be

relevant in the χ0
1 relic abundance calculation within the pMSSM scenario 2178683, as

the threshold velocities for χ0
2χ

0
2 and χ

+
1 χ

−
1 on-shell production are vχ0

1

<∼ 0.34 c and thus

of the order of typical χ0
1 velocities during thermal freeze-out. This scenario provides

an example showing that the criterion established before for including long-distance
effects among two-particle states with masses smaller than Mmax = 2mχ0

1
+mχ0

1
v2max and

vmax = 1/3 should not be considered rigidly. Rather it has to be reassessed according to

179



Χ1
+Χ1
-

Χ1
0 Χ1

0

Χ1
0 Χ2

0

Χ2
0 Χ2

0

0.320 0.325 0.330 0.335 0.340 0.345

1

2

3

4

5

vLSP � c

Σ
SF

v
�
Σ

pe
rt

v
model 2178683

no off-diag. G

Figure 9.8: (σSFv)/(σpertv) for the neutral-sector states in the light scenario (Snowmass
model 2178683). Solid (dashed) curves show the enhancement for the case of properly
included (wrongly neglected) off-diagonal annihilation rates.

the given MSSM spectra to avoid overlooking interesting effects. Consequently, in order
to account for the wino-like subsystem formed by the states χ0

2χ
0
2 and χ+

1 χ
−
1 we have

set vmax = 0.34 in the light scenario. At very small velocities the enhancements in the
χ0
2χ

0
2 and χ

+
1 χ

−
1 channels show the characteristics discussed already for the wino model in

Sec. 9.1: In the χ0
2χ

0
2 system we find resonances just below the χ+

1 χ
−
1 threshold, smoothed

out in Fig. 9.8. The strength of the enhancement below and above this resonance region
is a combined effect of the (off-diagonal) Yukawa and the diagonal Coulomb potential
interactions in the χ+

1 χ
−
1 system. In particular the enhancement is finite below the χ+

1 χ
−
1

threshold. To the contrary, the χ+
1 χ

−
1 channel shows the typical Coulomb-like 1/vχ+

1

enhancement from the dominating photon-exchange potential at velocities directly above
its on-shell production threshold. Opposed to theO(102) enhancements found in Sec. 9.1,
the overall enhancements of the neutral wino-like two-particle channels here reach factors
of O(1) only. These less pronounced enhancements result from the lower masses of the
wino-like states, since as mχ0

1
decreases the Yukawa potentials from electroweak gauge

boson exchange eventually become short-ranged as compared to the Bohr radius of the
system proportional to (mχ0

1
αEW)−1, where αEW = g22/(4π) and g2 denotes the SU(2)L

gauge coupling.

Fig. 9.9 displays the effective annihilation cross section 〈σeffv〉(x). The dominance of
the wino-like χ0

2, χ
±
1 particle annihilation rates by more than three orders of magnitude

before their decoupling near x ∼ 100 is clearly visible. The Sommerfeld enhancement
affects only the annihilation of the wino-like particles and thus disappears for x > 100.
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Figure 9.9: The thermally averaged effective rate 〈σeffv〉(x) within the pMSSM Snowmass
model 2178683 with Sommerfeld enhancements (upper red curve) and in the perturba-
tive computation (lower blue curve). The result from disregarding off-diagonal rates in
the Sommerfeld-enhanced processes is plotted by the dashed line. However the latter
curve basically overlays with the upper (red) curve in this plot. This is because the
Sommerfeld-enhanced 〈σeffv〉(x) is dominated by the χ0

2χ
0
2 and χ+

1 χ
−
1 rates (before χ0

2

and χ±
1 decoupling), and the effect of disregarding off-diagonals in the latter gives a

correction of around 10% only, see Fig. 9.8.

Although the Sommerfeld factors for these channels lead to O(1) enhancements of the
cross sections above the threshold near vLSP ∼ 1/3, similar in magnitude to the model
with wino-like LSP for the same velocities, the thermal average over vLSP dilutes the
enhancement, since the cross section for the heavy channels vanishes below the threshold.
Nevertheless, the small enhancement visible in Fig. 9.9 occurs precisely in the x range
most relevant for freeze-out. The effect of co-annihilations with the wino-like NLSP
states therefore leads to a reduction of the yield when taking into account Sommerfeld
enhancements with respect to the perturbative case, as is shown in Fig. 9.10. The
relic density with perturbative annihilation rates is found to be Ωperth2 = 0.120. There
is a ∼ 15% reduction of this result when considering the Sommerfeld-enhanced rates,
ΩSFh2 = 0.102. The latter sizable reduction of the relic density is attributed purely to
the co-annihilating heavier wino states. Note that in the sector of wino-like states the
potentials from massive gauge boson and photon exchange are equally important for the
Sommerfeld enhancement, while in the χ+

1 χ
−
1 system the Coulomb potential dominates

over the Yukawa potentials only for very small velocities of the charginos. Neglecting
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Figure 9.10: The ratio of the yields Y/Ypert, where Y is calculated including the Som-
merfeld enhancement on the annihilation rates and Ypert refers to the corresponding
perturbative calculation. The solid (blue) line includes off-diagonal rates while in the
dashed (black) curve these have been neglected.

the perturbative correction from the heavier χχ-states not included in the Schrödinger
equation leads essentially to no difference (below per mil level) in the relic density, as the
heavy higgsino-like χ0

3,4, χ
±
2 species lie at the scale of around 2TeV. If no off-diagonals

in the calculation of Sommerfeld-enhanced rates were considered, the relic abundance
would be overestimated by 3.5%.

9.4 Higgsino-to-wino trajectory

In case of the wino-like χ0
1 model of Sec. 9.1 we have seen that the relic abundance

including Sommerfeld enhancements on the co-annihilation rates is reduced by about
40% with respect to the result calculated from tree-level annihilation rates. In contrast,
the model with higgsino-like χ0

1 in Sec. 9.2 shows a less strong reduction, which is how-
ever still of the order of ΩSFh2/Ωperth2 ≈ 0.9. The difference in the reduction factor
ΩSFh2/Ωperth2 between the wino- and the higgsino-like χ0

1 model was explained by the
smaller Sommerfeld enhancements in the latter case due to larger mass splittings be-
tween all co-annihilating particles and the fact that the potential interactions happen
to be generically weaker for higgsino-like compared to the wino-like χ0

1 models. In ad-
dition, we observed a Sommerfeld suppression effect in the single-charged sector of the
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pure higgsino scenario as well as the higgsino-like Snowmass model. Departing from
the scenarios with rather pure wino, higgsino or bino χ0

1, we may ask ourselves about
the features of a model with χ0

1 LSP that contains both significant wino and higgsino
contributions. It is worth to recall here that previous work in the literature focused on
the wino- or higgsino-like χ0

1 cases only, due to the lack of expression for potentials and
annihilation matrices for a generically composed χ0

1 state. Our results allow for the first
time to perform a rigorous study of Sommerfeld enhancements in χχ pair-annihilations
within models with mixed gaugino and higgsino composition of the co-annihilating neu-
tralinos and charginos. We find it particular instructive to consider a series of models
in the MSSM parameter space that describes the transition from a model with higgsino-
like χ0

1 to a model with primarily wino-χ0
1. In the following we will refer to this series

of models as models on a “higgsino-to-wino” trajectory. We are interested in the case
of reductions of ΩSFh2 relative to Ωperth2 by & 10% here and hence will not consider a
significant bino-admixture to the χ0

1; as we have seen in Sec. 9.3 the bino-like χ0
1 itself

does not experience any Sommerfeld enhancement. In such a situation a reduction of
ΩSFh2 can only arise due to co-annihilating particles with Sommerfeld-enhanced rates,
see for example the model discussed in Sec. 9.3 with co-annihilating wino-like NLSPs.

In order to define the models for the higgsino-to-wino trajectory, we should note first
that the proper choice of the two SUSY parameters µ and M2 controls the higgsino and
wino content of the mass eigenstate χ0

1. In order to avoid a bino-admixture to the χ0
1

state we will choose the parameter M1, that controls the neutralinos’ bino-content, to
be sufficiently larger than both µ and M2 throughout this section. Our setup excludes
accidental mass degeneracies of the MSSM sfermions with the χ0

1, which implies that the
actual parameters of the sfermion sector play a minor role in the choice of adequate mod-
els on the trajectory. Let us recall that the sfermion sector is irrelevant for Sommerfeld
enhancements in our setup, as the latter are caused by potential gauge boson and light
Higgs exchange between neutralino and chargino two-particle states prior to the hard
annihilation reactions. The sfermion sector parameters only affect the precise value of
the hard (tree-level) annihilation rates. The sfermion – basically the stop – sector how-
ever controls the value of the Higgs h0 mass and we will adjust its parameters such that
the experimental value for mh0 is reproduced within 2.5% accuracy. Yet matching the
precise experimental Higgs mass value is in fact not important to us here, as potential
exchange from the h0 gives always a subleading contribution to the potentials compared
to the effects from SM gauge boson exchange.

In order to generate MSSM scenarios on a higgsino-to-wino trajectory we hence make
the following choice for MSSM input parameters in the spectrum generation:

• fix a common sfermion mass scale of 9 TeV,

• set the trilinear couplings to At = Ab = 9TeV,

• fix mA0 = 500 GeV and

• choose tan β = 15.
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All other trilinear couplings are assumed to vanish. The gluino mass parameter M3

is fixed by M3 = αs/(sin(θw)αe)M2, but this choice is completely irrelevant to our
discussion. To avoid a significant bino-admixture to the χ0

1 we further restrict to models
with M1 = 10M2. This leaves us with yet-to-choose parameter pairs in the µ − M2

plane. We require that the trajectory models allow for an explanation of the observed
cosmic cold dark matter in terms of the neutralino relic abundance without including
radiative corrections: in order to do so we employ the program DarkSUSY [5] and identify
(µ,M2) pairs such that the DarkSUSY calculated relic density ΩDSh2 matches the most
accurate determination obtained from the combination of PLANCK, WMAP, BAO and
high resolution CMB data, Ωcdmh

2 = 0.1187 ± 0.0017 [2]4, which we quoted already in
Chap. 1. In such a way we define 13 models on the higgsino-to-wino trajectory. The
position of these models in the µ −M2 plane is shown in Fig. 9.11. For each of the 13
models, given the pairs (µ,M2) as well as the remaining input parameters defined above,
we run our code and determine the corresponding relic densities including and neglecting
Sommerfeld effects. The comparison between our perturbative results Ωperth2 with the
corresponding DarkSUSY expressions ΩDSh2 provides a cross-check of our perturbative
calculation.

There is one important point to note concerning the MSSM spectrum generation
from the SUSY input parameters. The DarkSUSY spectrum calculated from the in-
puts refers to tree-level DR-parameters. It is well-known and has been noted before in
Chap. 4 that the mass splitting between a wino-like neutralino and its chargino partner
is dominated by radiative corrections; the leading one-loop contribution to the splitting
is of O(160MeV) and dominates over the O(1MeV) tree-level contribution. Both for the
calculation of the Sommerfeld enhancements and in the determination of the relic abun-
dance including co-annihilations a precise knowledge of the mass splitting between the
χ0
1 LSP and the NLSP particles is crucial and in a rigorous analysis we should therefore

consider the spectra determined with one-loop accuracy. To this end we have been pro-
vided by one-loop on-shell renormalised SUSY spectra for all 13 models on the trajectory
by a member of the collaboration [83,84]. The values of the input parameters µ,M2, . . .
are the same as for the corresponding calculation within DarkSUSY with the difference
that for the one-loop on-shell spectrum generation these inputs are considered as on-shell
parameters and no renormalisation group running of the mass parameters is performed.
Hence there are small differences in the values for the masses and mixing-matrix en-
tries between the spectra that we use in our code and the corresponding DarkSUSY
spectra. In particular the mass splittings between the χ0

1 LSP and the NLSPs obtained
from the on-shell masses renormalised at one-loop can be significantly different from the
splittings derived using tree-level DR-parameters. There exist different renormalisation
schemes for on-shell renormalisation in the neutralino/chargino sector [82–85]: for all
trajectory models apart from model 8 the on-shell renormalisation has been performed
requiring that the values of the two chargino masses as well as the heaviest (in all our
models bino-like) neutralino mass at one-loop are given by their tree-level values (“CCN-

4Note that the DarkSUSY collaboration claims an error of 5% on the relic densities calculated from
their code.
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Figure 9.11: The µ−M2 plane with the 13 models defining the higgsino-to-wino trajec-
tory, indicated with diamonds. All trajectory models lie on the iso-contour for constant
relic density ΩDSh2 = 0.1187 calculated with DarkSUSY. As reference we also show the
iso-contours of constant relic densities ΩDSh2 = 0.095 (lowermost contour-line) 0.15 and
0.3 (uppermost iso-contour).

scheme”). Such a scheme works well as long as the two charginos are rather pure wino-
and higgsino-like states. As soon as the charginos are (strongly) mixed wino-higgsino
states - as in case of our model 8, where the input parameters µ and M2 happen to be
very close to each other - a more suitable scheme is obtained when only one chargino, one
lighter neutralino and the heaviest bino-like neutralino mass are fixed to their tree-level
value (“CNN scheme”).

For each of the 13 models on the trajectory we list the input parameters µ and M2

in Tab. 9.1, together with the one-loop renormalised LSP mass mχ0
1
as well as the one-

loop on-shell mass splitting δmχ+
1
= mχ+

1
− mχ0

1
. The χ±

1 is the NLSP in all models

considered in this section. As additional information we give the χ0
1’s wino fraction

|ZN 21|2 and collect the results for ΩSFh2 including Sommerfeld effects as well as for the
suppression ΩSFh2/Ωperth2 of the former relic density with respect to the perturbative
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ID µ/GeV M2/GeV mχ0
1
/GeV δmχ+

1
/GeV |ZN 21|2 ΩSFh2 ΩSFh2

Ωperth2

1 1171.925 3300.000 1169.957 0.876 0.001 0.1157 0.974
2 1185.224 2800.000 1169.427 0.958 0.001 0.1129 0.970
3 1208.699 2300.000 1205.096 1.057 0.003 0.1136 0.956
4 1233.685 2000.000 1228.674 1.129 0.006 0.1119 0.943
5 1300.000 1661.705 1289.890 1.203 0.026 0.1074 0.908
6 1400.000 1593.100 1382.390 1.153 0.076 0.1016 0.860
7 1600.000 1688.240 1569.117 0.971 0.203 0.0922 0.776
8 1900.000 1909.355 1844.126 0.601 0.458 0.0791 0.661
9 2304.666 2200.000 2172.690 0.266 0.826 0.0680 0.550
10 2600.000 2333.7034 2320.986 0.183 0.955 0.0503 0.394
11 2800.000 2360.2715 2352.475 0.166 0.982 0.0530 0.412
12 3300.000 2365.830 2362.264 0.158 0.996 0.0635 0.494
13 3800.000 2363.500 2361.254 0.157 0.998 0.0644 0.503

Table 9.1: Information on the models on the higgsino-to-wino trajectory. The first
column is the model ID while the second and third column contain the input parameter
values for µ and M2. The one-loop on-shell renormalised χ0

1 LSP mass is given in
the fourth column and we provide the one-loop mass splitting to the lighter chargino,
δmχ+

1
= mχ+

1
− mχ0

1
in the fifth column. The χ±

1 are the NLSP states in all models

considered here. In the sixth column the wino fraction, |ZN 21|2, of the χ0
1 is specified.

The second-to-last and the last columns give the relic density including Sommerfeld-
enhanced cross sections as well as the suppression factor of the ΩSFh2 with respect to
the perturbative result Ωperth2. The results including the Sommerfeld enhancements
involve corrections from heavier χχ-pairs in the last potential loop.

result. Both ΩSFh2 and Ωperth2 are calculated from our programs, and the latter shows
small deviations of the order of a few percent from the DarkSUSY value ΩDSh2 = 0.1187.
As can be read off Tab. 9.1 we can categorise the models on the trajectory to feature either
a higgsino-like χ0

1 with wino fraction below 10% but a higgsino fraction |ZN 31|2+ |ZN 41|2
above 0.9 (models 1−6), a mixed wino-higgsino χ0

1 where both the wino and the higgsino
fraction lie within 0.1 − 0.9 (models 7 − 9) or a predominantly wino-like χ0

1 with wino
fraction above 0.9 (models 10 − 13). For all models we collect the relic density results
Ωperth2 and ΩSFh2 in Fig. 9.12. The bars with dotted (black) hatching indicate Ωperth2.
Bars with solid-line (red) and dashed (blue) hatching give the corresponding results
including Sommerfeld enhancements with and without off-diagonal rates, respectively.
In particular for the higgsino-like models 1−6 but also for models 7−9 our relic densities
Ωperth2 agree very well with the relic density ΩDSh2 = 0.1187 calculated with DarkSUSY
for the same set of input parameters. The latter relic density value is indicated by the
black horizontal line and the grey horizontal band comprises all values deviating at most
by 5% from the ΩDSh2 value. For the wino-like models our relic density results deviate
by <∼ 8% from the corresponding DarkSUSY value.
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Figure 9.12: Relic densities Ωh2 for models 1 − 13 on the higgsino-to-wino trajectory
calculated with our code. The charts with dotted (black) hatching are the perturba-
tive results Ωperth2. Bars with dashed (blue) and solid-line (red) hatching refer to a
calculation with Sommerfeld-enhanced cross sections neglecting and properly including
off-diagonal rates, respectively. The grey shaded band comprises Ωh2 values within 5%
around the mean experimental value Ωcdmh

2 = 0.1187 [2]. The latter value is indicated
by the black horizontal line and agrees with the DarkSUSY result for all 13 MSSM
models on the trajectory.

Let us discuss the characteristics of the models in the three different classes cor-
responding to their wino and higgsino admixture in turn. The models 1 − 6, with
predominant higgsino composition, resemble the higgsino model of Sec. 9.2. This applies
also to the corresponding shapes of the Sommerfeld-enhanced rates σSFv, 〈σeffv〉, as well
as to the yields Y/Y pert, that we do not show here. The reduction in the relic density
when taking the Sommerfeld effect into account ranges from 3% to 14% for trajectory
models 1−6. Models 1−3, with a 3% to 4% reduction are close to a pure-higgsino limit
behaviour, whereas models 4 − 6 yield a similar outcome as for the Sec. 9.2 higgsino-
like χ0

1 Snowmass model. The potential interactions among all two-particle states built
from the higgsino-like particles χ0

1,2, χ
±
1 have been accounted for exactly by solving the

corresponding multi-state Schrödinger equation in models 1 − 6. This is in agreement
with the criterion introduced in Sec. 9.1 that considers the long-distance effects among
all χχ-states with mass smaller than Mmax = 2mχ0

1
+mχ0

1
v2max, where vmax = 1/3 is of

the order of the χ0
1’s mean-velocity during freeze-out. Heavier χχ channels enter the

calculation through the perturbative corrections to the annihilation rates of the lighter
channels treated exactly, and their tree-level co-annihilation rates are also included in
the calculation of the χ0

1 relic density, as done in the previous sections. The effect of
neglecting off-diagonal annihilation rates in the determination of ΩSFh2 yields an error of
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about 9% to 3% for models 1−5, underestimating the true result. In case of model 6 the
ΩSFh2 results obtained when neglecting or correctly including off-diagonal annihilation
rates happen to agree. This can be understood from the Sommerfeld suppressions in the
two single-charged sectors that arise when correctly accounting for off-diagonal annihi-
lation rates and that can lead to a partial compensation of enhancements encountered
in the neutral sector. While there is no suppression effect if off-diagonal annihilation
rates are neglected, also the Sommerfeld enhancements in the charge-neutral sector are
milder in that case, see for instance Fig. 9.5. Relic density results with and without
off-diagonal annihilation rates can therefore accidentally agree, as it happens for model
6. If corrections from heavier states in the last potential loop were not included in the
calculation of the relic abundance, the corresponding result would be larger by 2% for
model 1 to 6% for model 6 as compared to the ΩSFh2 values quoted in Tab. 9.1. As
expected, the latter effect gains importance as the mass splitting of the heavier states to
the higgsino-like χ0

1,2 and χ
±
1 becomes smaller; while the wino-like states χ0

3, χ
±
2 in model

1 are rather heavy (m ∼ 3.3TeV), these states have a mass of about 1.6TeV in case of
model 6.

For models 7−9 with mixed wino-higgsino χ0
1, where the wino content increases with

higher model ID, Fig. 9.12 shows a reduction of ΩSFh2 the larger the wino admixture
of the χ0

1. The ratio ΩSFh2/Ωperth2 ranges from ∼ 0.78 for model 7 over ∼ 0.66 for
model 8 and gives ∼ 0.55 in case of model 9. In the region of mixed wino-higgsino χ0

1,
where the masses of the states χ0

1,2,3, χ
±
1,2 lie close to each other, more two-particle states

have been considered exactly in the multi-state Schrödinger equation. Precisely, the set of
neutral χχ-states considered in the Schrödinger equations for model 7 comprises the seven
states χ0

1χ
0
1, χ

+
1 χ

−
1 , χ

0
1χ

0
2, χ

0
2χ

0
2, χ

0
1χ

0
3, χ

±
1 χ

∓
2 , while for model 8 the state χ0

2χ
0
3 is included

in addition, and for model 9 only the six states χ0
1χ

0
1, χ

+
1 χ

−
1 , χ

0
1χ

0
2, χ

0
1χ

0
3, χ

±
1 χ

∓
2 are treated

exactly in the neutral sector. While in the three models 7−9 (particularly in the neutral
sector), the mutual interaction among a large number of channels is solved through
the Schrödinger equations, it is mainly the larger wino fraction of the χ0

1 that controls
the increasing relevance of the Sommerfeld enhancements on the final relic abundance.
While the wino fraction of the χ0

1 in model 7 is 20% it becomes 46% for model 8 and
finally reaches 83% in case of model 9. The larger wino admixture of both the χ0

1 and
χ±
1 states also manifests itself in the decreasing mass splitting δmχ+

1
between these two

states, ranging from 0.971GeV (model 7) over 0.601GeV (model 8) to only 0.266GeV
(model 9). A larger wino component of the χ0

1 implies stronger potential interactions
between the co-annihilating channels, in particular the χ0

1χ
0
1 and χ

+
1 χ

−
1 , where the latter

is composed of χ±
1 states with similar wino fraction as the χ0

1. The stronger potential
interactions finally lead to a more pronounced Sommerfeld enhancement effect for models
with larger wino admixture to the χ0

1 state. Neglecting off-diagonal annihilation rates
would lead to a result enhanced by 5% (model 7), 10% (model 8) and 14% (model 9)
with respect to the actual ΩSFh2 values given in Tab. 9.1. On the other hand, corrections
to the Sommerfeld-enhanced rates from heavy χχ-states in the last potential loop reduce
the final relic abundances ΩSFh2 for models 7−9 by around 2−4%. The latter reduction
is not as large as for model 6, despite the fact that the mass differences in models 7−9 are
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smaller. This is simply because there are less heavy channels contributing perturbatively
now, as more χχ-states have been considered exactly in the Schrödinger equation.

Finally let us consider the subclass of wino-like χ0
1 models with IDs 10 − 13. Here

we account for Sommerfeld effects on the annihilation rates for χχ-states built from
the wino-like χ0

1 and χ±
1 particles. The Schrödinger equations in the neutral sector for

models 10 − 13 hence contain the two states χ0
1χ

0
1 and χ+

1 χ
−
1 only. The models can be

further subdivided into two groups with different impact of Sommerfeld enhancements:
in case of models 10 and 11, ΩSFh2 is significantly reduced by around 60% with respect to
the result from a perturbative calculation. This happens to be the strongest reduction
we find along the trajectory. The reason for the especially pronounced Sommerfeld-
enhanced annihilation rates in case of models 10 and 11 can be attributed to the presence
of a zero-energy resonance [19] in the χ0

1χ
0
1 annihilation channel: as already discussed,

for velocities well below the χ+
1 χ

−
1 threshold the enhancement in the χ0

1χ
0
1 system is

controlled by the Yukawa potential due to electroweakW -exchange. As any short-ranged
potential, a Yukawa-potential features a finite number of bound states. By varying the
potential’s strength and range it is possible to arrange for the presence of a bound
state with (almost) zero binding energy [19] (see also [36]). In the presence of such a
(loosely) bound state, the scattering cross section for incoming particles with very low
velocities is strongly enhanced. Let us remind that we have discussed such zero-energy
resonances associated with Yukawa-type potentials in context of our toy model analyses
in Sec. 2.3.2 and Sec. 2.4. The presence of a (loosely) bound-state in models 10 and
11 leads to O(104) enhancements in the χ0

1χ
0
1 channel for velocities below the χ+

1 χ
−
1

threshold and eventually translates into the pronounced reduction of about 60% of the
relic density. If off-diagonal annihilation rates were not taken into account, the ΩSFh2

result would be larger by about 25% (model 10) and 23% (model 11), thus representing
a rather large effect for both models: Off-diagonal annihilation rates are particularly
important if the corresponding off-diagonal potential interactions are sufficiently strong.
In wino-like χ0

1 models, the only sector with relevant off-diagonal potential interactions is
given by the two neutral states χ0

1χ
0
1 and χ

+
1 χ

−
1 in a 1S0 wave configuration.

5 For models
10 and 11, where the neutral χ0

1χ
0
1 channel experiences particularly large enhancements

due to the presence of a (loosely) bound state resonance related to the off-diagonal W -
exchange potential, also the impact of off-diagonal annihilation rates is therefore found to
be significant. Regarding the corrections from heavier χχ-states treated perturbatively
in the last potential loop, they are rather mild: ΩSFh2 would be smaller by around 3%
without this effect. Compared to model 6, where we found a corresponding 6% reduction
in ΩSFh2, this suggests that the effect from heavier χχ-states in the last potential loop is
most significant if these states are built from wino-like particles. The latter have in overall
stronger (off-) diagonal annihilation rates compared to higgsino-like states with similar
mass. Let us recall that the effect from heavier χχ-states in the last potential loop was at
the per mil level in case of the pMSSM scenarios in Secs. 9.1 and 9.3 and around 1% for
the higgsino-like scenario in Sec. 9.2, because heavier states were essentially decoupled

5To a lesser extent, as it constitutes higher partial waves, also the 3PJ configurations are important.
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in these models, opposed to the case for the models on the higgsino-to-wino trajectory.

At last, for models 12 and 13 we find a reduction of ΩSFh2 relative to Ωperth2 of
roughly 50% in both cases. This is still larger than the 40% reduction arising in case of
the wino-like χ0

1 pMSSM Snowmass model discussed in Sec. 9.1. To explain this effect
note first that although the input value µ differs for models 12 and 13, this does not
affect the parameters of the corresponding wino-like sectors. The masses of both χ0

1

and χ±
1 as well as their wino fractions are essentially the same in model 12 and 13, see

Tab. 9.1. We can hence expect that the results for the χ0
1 relic abundance calculation

are very similar for both models. The presence of a zero-energy resonance in the χ0
1χ

0
1

annihilation channel is still noticeable for models 12, 13 – although it is less pronounced,
as increasing the χ0

1 mass moves us away from the exact resonance region. To conclude
with the comparison to the wino-like χ0

1 pMSSM Snowmass model in Sec. 9.1, recall
that the mass of the wino-like χ0

1 there was mχ0
1
= 1650.664GeV; in that case the

Yukawa potential does not exhibit (almost) zero-energy bound states. Consequently no
additional strong resonant enhancement takes place, such that in comparison to the wino-
like models on the trajectory the Sommerfeld effect on the relic density is less prominent
in Sec. 9.1, though still around 40%. Finally the calculated relic density ΩSFh2 for both
models 12 and 13 is increased by 17% and 16%, respectively, if off-diagonal annihilations
are neglected. Not including the one-loop effects from heavy χχ-states increases the
corresponding results for ΩSFh2 in Tab. 9.1 by 2% in both cases.

9.5 Mixed wino-higgsino χ0
1

As our framework allows for the first time to investigate Sommerfeld enhancements of
χχ co-annihilations in scenarios with a χ0

1 in an arbitrary wino-higgsino admixture, let
us discuss here in more detail the mixed wino-higgsino χ0

1 trajectory model with ID 8
considered in the previous section. Recall from section 9.4 that the neutral sector of the
Schrödinger equation for this model is composed of the eight states χ0

1χ
0
1, χ

+
1 χ

−
1 , χ

0
1χ

0
2,

χ0
2χ

0
2, χ

0
1χ

0
3, χ

±
1 χ

∓
2 , χ

0
2χ

0
3.

Fig. 9.13 shows the enhancements (σSFv)/(σpertv) in the two neutral channels χ0
1χ

0
1

and χ+
1 χ

−
1 with (solid lines) and without (dashed lines) off-diagonal annihilation rates.

The characteristic velocity-independent enhancement from the W -exchange Yukawa po-
tential in the low velocity regime of the χ0

1χ
0
1 channel is visible, as well as the Coulomb-

type 1/vχ+
1
enhancement for the χ+

1 χ
−
1 system at very low velocities. Long-range potential

interactions, although stronger than in case of higgsino-like χ0
1 models are still weaker

than in case of a wino-like set of states χ0
1, χ

±
1 ; as a consequence enhancement factors

of O(1 − 10) result. We do not show (σSFv)/(σpertv) for the remaining six neutral two-
particle states in Fig. 9.13, but the resonance regions below their corresponding on-shell
production thresholds can be seen as small enhancements in the χ0

1χ
0
1 and χ+

1 χ
−
1 chan-

nels. The threshold for χ0
1χ

0
2 production opens at vLSP/c ≃ 0.18 but is hardly visible in

the curves for channels χ0
1χ

0
1 and χ

+
1 χ

−
1 in Fig. 9.13. We can notice a broader (smoothed-

out) resonance region around vLSP/c ≃ 0.25, which comprises the thresholds for the four
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Figure 9.13: Enhancements (σSFv)/(σpertv) in the two neutral channels χ0
1χ

0
1 and χ+

1 χ
−
1

of model 8 of the wino-to-higgsino trajectory discussed in Sec. 9.4. Solid (dashed) curves
refer to the results with (without) off-diagonal annihilation rates included.

channels χ0
2χ

0
2, χ

0
1χ

0
3 and χ±

1 χ
∓
2 . Finally, the χ0

2χ
0
3 threshold shows up at vLSP/c ≃ 0.30.

The enhancements for these channels, not shown in Fig. 9.13, are somewhat smaller than
for the cases of χ0

1χ
0
1 and χ+

1 χ
−
1 . Eventually, at vLSP/c ≃ 0.35 the threshold for on-shell

production of the χ0
3χ

0
3 state is visible in the χ+

1 χ
−
1 channel. The χ0

3χ
0
3 state is among

the heavy states considered perturbatively in the last potential loop for the calculation
of the annihilation rates of the channels treated exactly in the neutral sector.

Note that apart from the bino-like χ0
4 state, which is very heavy (mχ0

4
∼ 19 TeV) and

– being bino-like – couples very weakly to the gauge bosons and the other χ0/χ± species,
all χ states in the neutralino/chargino sector are relevant in co-annihilation reactions for
the χ0

1 relic abundance calculation of model 8.

The thermally averaged effective annihilation rates 〈σeffv〉(x) including (upper solid
(red) line) and neglecting (dashed red line) off-diagonal rates in the Sommerfeld-enhanced
cross sections are depicted in the upper panel of Fig. 9.14. The corresponding perturba-
tive result is given by the lower solid (blue) curve. The perturbative annihilation rates of
two-particle states χχ heavier than the χ0

1χ
0
1 pair are larger than the perturbative rate of

the latter, leading to a drop in the perturbative 〈σeffv〉(x) curve after decoupling of the
heavier co-annihilating χχ states. As can be already inferred from Fig. 9.13, the effective
rate including Sommerfeld enhancements turns out to be larger than the corresponding
perturbative result by factors of at most O(1− 3) in the x range x = 10 . . . 103 relevant
to the relic abundance calculation. These enhancements finally give rise to the behaviour
of the ratio of yields Y/Ypert shown in the lower panel of Fig. 9.14. Including Sommerfeld
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Figure 9.14: Upper panel : The effective thermally averaged annihilation rate 〈σeffv〉(x)
for trajectory model 8. The two upper (red) curves show the 〈σeffv〉(x) behaviour if Som-
merfeld enhancements are taken into account with/without (solid/dashed) off-diagonal
rates. The lower solid (blue) curve gives the perturbative result. Lower panel : The ratio
of the yields Y/Ypert for the trajectory model with ID 8 with off-diagonal rates (solid
blue line) and without (dashed black line).
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neutral χχ-states χ0
1χ

0
1 χ+

1 χ
−
1 χ0

1χ
0
2 χ0

2χ
0
2, χ

0
1χ

0
3 χ±

1 χ
∓
2 χ0

2χ
0
3 χ0

3χ
0
3 χ+

2 χ
−
2

Mχχ [GeV] 3688 3689 3745 3802 3803 3858 3915 3916

charge ±1 states χ0
1χ

±
1 χ0

2χ
±
1 χ0

1χ
±
2 , χ

0
3χ

±
1 χ0

2χ
±
2 χ0

3χ
±
2

Mχχ [GeV] 3689 3746 3802 3859 3916

charge ±2 states χ±
1 χ

±
1 χ±

1 χ
±
2 χ±

2 χ
±
2

Mχχ [GeV] 3689 3803 3916

Table 9.2: χχ-states and corresponding masses Mχχ in model 8, ordered according to
their electric charge, that are relevant in the calculation of the χ0

1 relic abundance Ω
SFh2.

Two-particle states involving the bino-like neutralino χ0
4 are not shown. As their masses

Mχχ lie above the scale of 20TeV, they are irrelevant in the calculation of Sommerfeld
enhancements to the lighter χχ-channels and in the determination of the χ0

1 relic abun-
dance. The vertical double lines separate the states with masses below 3762 GeV and
above 3893 GeV.

corrections on the co-annihilation rates leads to a reduction of the relic density by 34%.
For this model the effect of neglecting off-diagonal rates in the relic abundance calcula-
tion turns out to be milder than in the wino-like χ0

1 models: with the off-diagonal entries
we get ΩSFh2 = 0.0791 while neglecting these would lead to a value larger by 10%.

It is interesting to analyse the impact on the calculated relic abundance ΩSFh2 when
the number of channels included in the multi-state Schrödinger equation is changed, or
the number of heavier states contributing to corrections from the last potential loop
is varied. Let us recall that the results presented so far in this section correspond to
calculations where all χχ-states with masses belowMmax = 3893GeV are treated exactly
in the Schrödinger equation,6 while the remaining heavier states are included only at tree-
level and in the last loop near the annihilation vertex in the Sommerfeld-corrected rates
of the lighter states. Further we have considered δm2 corrections in the potentials for
the channels included in the Schrödinger equation but not in the approximate treatment
of the heavier states; these δm2 corrections are associated with the factors λZ/W in
the building blocks for the potential interactions given in Appendix B, Tab. B.1. In
order to compare the cases where the number of channels treated in the Schrödinger
equation is changed, we neglect these δm2 corrections in the potentials throughout in
the following, so that all cases are computed with the same potential. We calculate ΩSFh2

for the cases of Mmax = 3762GeV and Mmax = 3893GeV, corresponding to vmax = 0.2
and 1/3, as well as for Mmax = ∞. In the latter case all χχ-channels are taken into
account in the Schrödinger equation. To investigate the accuracy of the approximate
treatment of heavier states in the last potential loop compared to the case where these

6From the definition Mmax = 2mχ0
1
+mχ0

1
v2max the quoted value Mmax = 3893GeV for trajectory

model 8 is obtained by setting mχ0
1
= 1844GeV (see Tab. 9.1) and vmax = 1/3.
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ΩSFh2 Mmax = 3762GeV Mmax = 3893GeV Mmax =∞
Mcut = 3762GeV 0.0858 — —
Mcut = 3893GeV 0.0817 0.0816 —
Mcut =∞ 0.0804 0.0801 0.0801

Table 9.3: Relic abundances ΩSFh2 in trajectory model 8 with a different number of
channels accounted for in the Schrödinger equation and with a different number of heavy
χχ-states treated approximately in the last potential loop. Two-particle channels χχ
with masses belowMmax are included in the Schrödinger equations. One-loop corrections
of heavier χχ-channels with masses between Mmax and Mcut are accounted for, while
all χχ-channels heavier than Mcut are ignored. All results are derived neglecting δm2

corrections in the potentials.

states are accounted for exactly in the Schrödinger equation, we introduce the variable
Mcut ≥ Mmax. χχ-states with a mass larger than Mcut are ignored completely. States
with mass belowMmax are included in the Schrödinger equation exactly, while those with
mass betweenMmax andMcut are treated approximately through the one-loop corrections
in the last potential loop. The relevant χχ-states together with their masses are given
in Tab. 9.2, from which the number of exactly and approximately treated states in each
charge sector for each of the cases covered in Tab. 9.3 can be read off. The results on
ΩSFh2 that we obtain for our three choices forMmax and forMcut set toMcut = 3762GeV,
3893GeV and Mcut =∞ are collected in Tab. 9.3.

Let us first discuss the ΩSFh2 values on the diagonal of Tab. 9.3, which display the
effect of increasing the number of states in the Schrödinger equation while ignoring
one-loop corrections from heavier states. Expectedly ΩSFh2 decreases the larger Mmax.
There are more χχ-channels for which Sommerfeld enhancements on their individual
annihilation cross sections are taken into account. This leads to an increase of the
thermally averaged effective rate 〈σeffv〉 entering the Boltzmann equation, which in turn
decreases the relic abundance. By increasing Mmax by the steps indicated in Tab. 9.3 the
resulting ΩSFh2 is reduced by 5% and 2% respectively. The effect on ΩSFh2 from more
channels in the Schrödinger equations is rather mild as compared to the 33% reduction
with respect to the tree-level relic density.7 The milder reduction mainly derives from
the fact that the Sommerfeld enhancement of the heavier channels’ cross sections is less
pronounced than in case of the most relevant lighter channels χ0

1χ
0
1, χ

+
1 χ

−
1 and χ0

1χ
±
1 .

Further, as noted previously, the heavier χχ-channels enter the thermally averaged rate
〈σeffv〉 with a Boltzmann suppression factor such that their contribution is generically
sub-dominant, unless the individual rates are particularly enhanced. The main effect
that leads to the respective 5% and 2% change of ΩSFh2 comes from the slight increase
of the Sommerfeld-enhanced cross sections of the dominant light channels χ0

1χ
0
1, χ

+
1 χ

−
1

and χ0
1χ

±
1 when more states appear in the potentials of the Schrödinger equations.

7Dropping the δm2 terms in the potential slightly increases the relic density for model 8 from the
value quoted in Tab. 9.1, ΩSFh2 = 0.0791 to ΩSFh2 = 0.0801, which implies ΩSFh2/Ωperth2 = 0.670.

194



Let us now consider the reduction of ΩSFh2 for fixed Mmax and increasing Mcut. This
happens because the effect of heavier channels amounts to a positive correction to the
Sommerfeld-enhanced cross sections: the dominant potential interactions are attractive,
such that the heavier states in the last potential loop typically give an additional positive
contribution. For instance we find a significant reduction of ΩSFh2 by 5% from 0.858
to 0.817, when for Mmax = 3762GeV the value of Mcut is increased from 3762GeV to
3893GeV. This indicates that the newly added heavier states in the last loop give a
large positive contribution to the Sommerfeld-enhanced cross sections of the χχ-states
in the Schrödinger equation. When CPU considerations make the restriction to fewer
states treated in the Schrödinger equation necessary, the approximate treatment of heavy
channels should give a reasonable approximation to the case where these heavy channels
are included fully in the Schrödinger equation. This is nicely confirmed by the num-
bers shown in Tab.9.3: when the states with mass between 3762GeV and 3893GeV
are treated approximately, the reduction of ΩSFh2 from 0.0858 to 0.0817 is very close
to the value 0.0816 obtained from the exact treatment of all states with mass below
3893GeV. The same observation holds for the comparison between the approximate
treatment of all states with masses above 3762GeV, ΩSFh2 = 0.0804, and the exact
result ΩSFh2 = 0.0801. The agreement becomes even better when the the perturbative
treatment involves only the heavier channels with mass above 3893GeV.
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Chapter 10

Conclusions

We have studied the impact of Sommerfeld enhancements on co-annihilation rates of non-
relativistic and nearly mass-degenerate heavy neutralino and chargino pairs, considering
in particular the effect on the χ0

1 relic abundance calculation.

For a systematic investigation in the general MSSM, where the χ0
1 is an arbitrary

admixture of the electroweak-eigenstate gauginos and higgsinos, we have constructed a
non-relativistic effective field theory, the NRMSSM, that is designed to calculate the
enhanced radiative corrections to pair-annihilation rates of close-in-mass neutralino and
chargino states with small relative velocities. The NRMSSM shares similarities with the
NRQCD framework applied to heavy quarkonium annihilation. An important difference
is the presence of several heavy neutralino and chargino species with small mass differ-
ences in the NRMSSM in contrast to a single heavy quark together with its anti-quark in
NRQCD. Further, massive mediator exchange occurs among the heavy neutralino and
chargino NRMSSM states, where the mediator particles are given by the electroweak
gauge bosons, the photon and the light Higgs bosons subject to the underlying MSSM
spectrum. Apart from the photon, which is associated with diagonal Coulomb-type po-
tentials, the mediator particles generate diagonal as well as off-diagonal Yukawa-type
potential interactions that allow for potential scattering transitions between two close-
in-mass particle pairs built from the NRMSSM neutralino and chargino states.

In the NRMSSM the neutralino and chargino co-annihilation cross sections are ob-
tained from the imaginary part of scattering matrix elements of four-fermion operators.
Factorisation of short-distance and long-range effects in the annihilation processes is au-
tomatically provided in the effective theory: the short-distance annihilation is encoded
in the absorptive parts of the Wilson coefficients of the four-fermion operators, while
the matrix-elements of the latter operators contain the long-range effects causing the
Sommerfeld enhancements of the full annihilation rate. The weak coupling nature of
the involved electromagnetic and electroweak potential interactions allows to explicitly
calculate the matrix elements of the four-fermion operators.

Due to the presence of off-diagonal potentials, the NRMSSM short-distance annihila-
tion reactions are characterised by diagonal as well as off-diagonal rates. We have derived
purely analytical expressions for all such (off-) diagonal non-relativistic annihilation rates
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up to corrections of O(v2rel) and at leading order in the expansion in couplings. The di-
agonal rates thus reproduce the tree-level annihilation cross sections of non-relativistic
neutralino and chargino pairs including the O(v2rel) P - and next-to-next-to-leading order
S-wave effects. We have performed a dedicated comparison of our results to numerical
data for the pair-annihilation rates obtained with the code MadGraph, showing a good
reliability of our non-relativistic approximation up to relative velocities of vrel ≃ 0.4 c.
Our comprehensive results for the (off-) diagonal NRMSSM annihilation rates extend
previously known expressions in several aspects. First, off-diagonal short-distance rates
in Sommerfeld-enhanced annihilation reactions were only consistently included in the
simple limiting scenarios of pure wino and pure higgsino χ0

1. Further, the effect of Som-
merfeld enhancements on P - and next-to-next-to-leading order S-wave rates has not
been considered before. It is worth to mention that a partial-wave separation of the
short-distance rates, which is needed for a consistent treatment of the partial-wave de-
pendent Sommerfeld enhancements, is obtained in the NRMSSM by construction, in
particular disentangling the O(v2rel) short distance P - and next-to-next-to-leading order
S-wave rates.

As regards the potential interactions, we have presented analytic results for all (off-)
diagonal leading-order potentials between the NRMSSM neutralino and chargino states,
accounting for electroweak gauge boson as well as light Higgs boson exchange. A central
expression in our NRMSSM framework is formula (8.13) that gives the Sommerfeld-
corrected annihilation rate of a pair χiχj of NRMSSM states including O(v2rel) corrections
in the short-distance part; it generalises the non-relativistic approximation to the tree-
level annihilation cross section, σχiχj

vrel = a+b v2rel, by taking Sommerfeld enhancements
into account.

The determination of the partial-wave dependent Sommerfeld enhancement factors
requires the solution of a multi-state Schrödinger equation containing potential matrices
that are related to the (off-) diagonal potential interactions among the NRMSSM states.
We have described a novel method to solve the Schrödinger equation in order to obtain
the Sommerfeld factors, that is free from numerical instabilities associated with the
presence of kinematically closed heavier two-particle channels. In addition we have
suggested an approximate treatment of very heavy two-particle states, which are not
part of the set of NRMSSM neutralinos and charginos: by introduction of appropriate
effective short-distance rates, certain heavy-channel contributions to the annihilation
reactions of the NRMSSM states can be incorporated.

As application of our effective theory framework we have presented a detailed inves-
tigation of Sommerfeld enhancements in the χ0

1 relic abundance calculation for several
benchmark models with heavy neutralino LSP in the general MSSM. Our analysis is fo-
cused on three pMSSM benchmark models with wino-, higgsino- and bino-like χ0

1 taken
from [98]. Since our framework allows for the first time a consistent investigation of
Sommerfeld enhancements in neutralino/chargino co-annihilations for χ0

1 states with ar-
bitrary gaugino and higgsino mixture, we have additionally defined a “higgsino-to-wino”
trajectory in the parameter space of the general MSSM. This trajectory is given by a set
of 13 DarkSUSY generated spectra interpolating between the cases of a higgsino- to a
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wino-like χ0
1 spectrum. In scenarios with wino-like χ0

1 we have found sizable 40% to 60%
reductions of the relic density when accounting for Sommerfeld-enhanced co-annihilation
rates with respect to the calculation with corresponding perturbative cross sections. The
reduction is found to be much milder, of the order of 3% to 14%, in case of the studied
higgsino-like χ0

1 models. These results are in agreement with previous investigations in
the literature in the pure-wino and pure-higgsino limits. In general the relic abundance
obtained including the Sommerfeld effect is reduced the more the stronger the wino ad-
mixture to the χ0

1. Cases of particular pronounced effects are related to the existence of
loosely or zero-energy bound states in the spectrum of the corresponding model. Our
investigations show that the precise value of the calculated relic density depends on
the particular details of the spectrum, such that results from a study in the pure-wino
or pure-higgsino χ0

1 scenarios do not apply directly. Interestingly, the Sommerfeld en-
hancements in the co-annihilating sector of a bino-like χ0

1 can affect the result on ΩSFh2

at the 10% level, which is found for the studied benchmark model with bino-like χ0
1

and slightly heavier wino-like χ±/χ0 states. The knowledge of precise mass splittings
between the co-annihilating neutralinos and charginos is essential in the calculation of
Sommerfeld-enhanced rates and will typically require the knowledge of spectra with a
one-loop on-shell renormalised neutralino/chargino sector.

With the analyses of Sommerfeld enhancements in neutralino/chargino co-annihilations
in several MSSM scenarios we have shown the general features of the enhancement ef-
fect and its particular relevance regarding the neutralino relic abundance calculation.
Our results imply that Sommerfeld enhancements have to be taken into account when
deriving MSSM parameter space constraints on heavy neutralino dark matter from a
combination of direct and indirect dark matter searches, collider constraints and the
additional requirement to reproduce or at least not overproduce the observed cosmic
dark matter abundance in terms of a χ0

1 relic. Our effective theory framework allows for
corresponding future investigations of the parameter space of the general MSSM in view
of the relevance of Sommerfeld enhancements in the χ0

1 relic abundance calculation.
It is worth to stress that the NRMSSM that we have developed in this thesis provides

the first – and at the moment the only available – technique to account for Sommerfeld
enhancements in neutralino and chargino co-annihilations in the general MSSM with
arbitrary χ0

1 composition. The method can be extended to other WIMP dark matter
models provided the necessary model-dependent inputs, that is the potential and anni-
hilation matrices, are known.
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Appendix A

Absorptive parts of Wilson
coefficients of dimension-6 and 8
operators in δLann

In this appendix we collect explicit expressions for the coupling and kinematic factors,
that are the building blocks entering the master formula (6.17) for the absorptive parts
f̂ (d=6,8)(2s+1LJ ) of the Wilson coefficients related to χe1χe2 → XAXB → χe4χe3 processes.
We discuss the coupling factors in Sec. A.1, where we first present a recipe for the coupling
factor construction in Sec. A.1.1. In order to unambiguously fix our conventions we
subsequently give in Sec. A.1.2 explicit expressions for the MSSM vertex factors, that
appear as constituents of the coupling factors of the Wilson coefficients. As an example,
how the recipe of Sec. A.1.1 is applied we finally discuss in Sec. A.1.3 the derivation of
coupling factors c

(α)
n,i1V

, that are related to χ−
e1
χ+
e2
→W+G− → χ0

e4
χ0
e3

reactions.
Analytic expressions for the kinematic factors arising as constituents of the absorp-

tive parts f̂(2s+1SJ) of leading order S-wave Wilson coefficients are given in Sec. A.2.
The subsections A.2.1 – A.2.5 contain the respective results for exclusive final states
of type XAXB = V V, V S, SS, ff, ηη. Likewise we present in Sec. A.3 analytic results
for the kinematic factors related to coefficients f̂(2s+1LJ) in P -wave reactions, where the
subsections A.3.1 – A.3.5 again refer to XAXB = V V, V S, SS, ff, ηη, respectively. While
expressions for the kinematic factors for 1P1 partial-wave configurations are written ex-
plicitly, we give in case of the three spin s = 1 P -wave configurations 3PJ=0,1,2 results,
that refer to the spin-weighted coefficients introduced in (6.29), namely

f̂(3PJ ) =
1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2) . (A.1)

Results for kinematic factors that arise in next-to-next-to-leading order S-wave coeffi-
cients ĝ(2s+1Ss) and ĥi(

2s+1Ss) are lengthy and therefore not given explicitly in a separate
appendix. Together with the kinematic factors presented here they are collected in the
electronic supplement, that comes with [32]. Note that in addition to the kinematic
factors for the spin-weighted P -wave coefficients, (A.1), the supplement also contains
results related to the three individual spin s = 1 P -wave configurations 3PJ=0,1,2.
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Figure A.1: Generic tree-level amplitudes in χχ → XAXB annihilations, referring to
V V, V S and SS-type final state particles XAXB. The generic form of s-channel exchange
diagrams for XAXB = ηη̄ final states agrees with the s-channel diagram above. The
vertex-factors V

ρ(d)
ei are defined as V

ρ(d)
ei = γρ(r

(d)
ei + q

(d)
ei γ5), if attached to a three-point

vertex with a gauge boson (with Lorentz-index ρ), and V
ρ(d)
ei = (r

(d)
ei +q

(d)
ei γ5), if associated

with a vertex that involves a scalar particle XA, XB or Xi. Here the expression r
(d)
ei (q

(d)
ei )

either denotes a vector or scalar (an axial-vector or pseudo-scalar) type of coupling factor.
For the definition of cABXi

and the Lorentz structures LABXi
we refer to Tab. A.1 below.

A.1 Coupling factors

A.1.1 Coupling factor construction

By construction, the absorptive part f̂ (d)χe1
χe2

→XAXB→χe4
χe3 of an individual Wilson

coefficient is associated with the product A(0)
χe1

χe2
→XAXB

× (A(0)
χe4

χe3
→XAXB

)∗ of Born-

level annihilation amplitudes A(0) related to χeiχej → XAXB reactions, integrated over

the XAXB two-particle phase space, see (6.3). Each of the tree-amplitudes A(0)
χχ→XAXB

receives contributions from diagrams with t-channel neutralino or chargino exchange as
well as from diagrams with s-channel Higgs-particle or gauge boson exchange, such as
the generic diagrams shown in Fig. A.1. In case of fermionic final states XAXB, instead
of neutralino or chargino t-channel exchange, t-channel sfermion-exchange occurs, as
depicted in Fig. A.2. Note, that in Fig. A.1 and Fig. A.2 we have established a specific
fermion flow, which in particular coincides with the convention for the fermion flow
associated with the incoming two particles in the 1-loop amplitudes in Fig. 6.1.

A contribution to the amplitudeA(0)
χχ→XAXB

involves a product of two coupling factors,
coming from the two vertices in the tree-level diagrams. The generic form of these vertices
is indicated in Fig. A.1 and Fig. A.2. It is especially convenient to write all vertex
factors in any of the amplitudes contributing to the non-relativistic χχ → XAXB →
χχ scattering-processes as a combination of (axial-) vector or (pseudo-) scalar coupling
factors, instead of using left- and right-handed couplings, as it is common in calculations
related to the MSSM. The reason for that is, that in the non-relativistic limit either the
contributions to the annihilation amplitudes involving the axial-vector (pseudo-scalar)
coupling will be suppressed with respect to the corresponding contributions related to
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Figure A.2: Generic tree-level amplitudes in χχ → XAXB annihilations, with XAXB =
f IfJ . For the definition of V

ρ(d)
ei see Fig. A.1. The generic vertex factor V

(d)
Kei is defined

as V
(d)
Kei = r

(d)
Kei + q

(d)
Keiγ5, such that the r

(d)
Kei (q

(d)
Kei) denote coupling factors of scalar

(pseudo-scalar) type.

the vector (scalar) coupling, or vice versa, such that the use of (axial-) vector and
(pseudo-) scalar couplings allows for a clearer understanding of leading and suppressed
contributions in the non-relativistic scattering regime that we aim to study.

Each of the coupling factors bn, c
(α)
n and d

(α)
n that occur in the master formula (6.17)

for the f̂ (d)(2s+1LJ ), is given by a product of two coupling factors, r or q, arising in an

individual diagram in A(0)
χe1

χe2
→XAXB

, and the complex conjugate of another such two-

coupling factor product originating fromA(0)
χe4

χe3
→XAXB

. In the following, we give a recipe

how to construct the coupling factors in (6.17) for a specific χe1χe2 → XAXB → χe4χe3
reaction, such that taken together with the leading-order S-wave kinematic factors in
Sec. A.2 and the P -wave expressions1 in Sec. A.3, they allow to determine the absorptive
part of the corresponding Wilson coefficients f̂ (d=6,8)(2s+1LJ ):

1. Draw all tree-level diagrams that contribute to χe1χe2 → XAXB and χe4χe3 →
XAXB annihilation amplitudes, analogous to the generic diagrams sketched in
Fig. A.1 or Fig. A.2. In particular, assign the same fermion flow as indicated for
the generic diagrams.

2. Determine the process-specific (axial-) vector and/or (pseudo-) scalar coupling fac-

tors, that arise instead of the generic q
(d)
ei or r

(d)
ei place-holder expressions at the

generic amplitudes’ vertex factors. As the χχ→ XAXB processes may involve Ma-
jorana as well as Dirac fermions, and the latter involve a conserved fermion-number
flow, note the following rules:

a) If the direction of the fermion-number flow related to a Dirac particle coincides

1The results on the next-to-next-to-leading order S-wave kinematic factors are quite lengthy. There-
fore they are provided in an electronic supplement to [32] rather than written explicitly in an appendix.
Note that the electronic supplement collects all leading-order S-wave, P -wave and next-to-next-to-
leading order S-wave kinematic factors related to χe1χe2 → χe4χe3 reactions in the NRMSSM.
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with the direction of the fermion flow (fixed as in Fig. A.1 and Fig. A.2), the
χχ → XAXB process specific coupling factors at the vertices are directly de-
duced from the corresponding interaction terms in the underlying Lagrangian.
These coupling factors are given later in (A.4–A.10).

b) Otherwise, if the fermion-number flow is antiparallel to the indicated fermion
flow, vector coupling factors at vertices attached to a Dirac fermion line, are
given by a factor−1 times the expression for the vector coupling given in (A.4–
A.6). Axial-vector, scalar and pseudo-scalar coupling factors are unchanged
with respect to case a) above.

3. Build all possible two-coupling factor products, including possible signs related to
vector couplings, as far as the case in 2b) above applies, that can arise in each
single diagram.

4. Multiply each of the two-coupling factor products, that arise in the A(0)
χe1

χe2
→XAXB

amplitude, with the complex conjugate of each of the two-coupling factor products,
arising in A(0)

χe4
χe3

→XAXB
. As a result, all possible coupling factor combinations that

can occur in f̂ (d=6,8)χe1
χe2

→XAXB→χe4
χe3 are obtained.

Rule 2b) arises in the following way for the case of diagram s in Figs. A.1-A.2: according
to our convention for the fermion flow in Fig. A.1, we obtain an expression −v(p1)Γu(p2)
for the incoming particles’ spinor chain if the case under 2b) applies, where Γ denotes
the involved Dirac-matrix structure. The minus sign accounts for our convention for the
order of the external fermion states. This expression can be rewritten as

−v(p1)Γu(p2) = v(p2)C ΓTC−1u(p1) , (A.2)

wherein C denotes the charge conjugation matrix. Using

C ΓTC−1 =

{
−Γ for Γ = γµ ,
Γ for Γ = 1, γ5, γµγ5 ,

(A.3)

the origin of the minus sign rules for vector couplings under 2b) above becomes obvious.
For diagrams with t-channel exchange, a similar derivation also confirms rule 2b).

Let us introduce the shorthand aã to indicate the diagrams a and ã in the χe1χe2 →
XAXB and χe4χe3 → XAXB processes, respectively, to which the coupling factors in
a specific coupling factor combination are related. Both a and ã can be given by s, t1
or t2, see Figs. A.1–A.2. Coupling factor combinations originating from ss lead to the
b factors, that correspond to the generic selfenergy-amplitude in Fig. 6.1.2 We label
coupling factor combinations, that originate from t1s, st1, t2s and st2 with the superscript
α = 1, . . . , 4, respectively. These coupling factor combinations, related to one t-channel

2Note, that in case of identical particles XA = XB, all coupling factor expressions b have to be
multiplied with a symmetry factor 1/2, which incorporates the symmetry factor associated with the
selfenergy amplitudes in case of identical particles XA = XB in the loop.
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and one s-channel exchange diagram give rise to the c(α) expressions in (6.17). The
α = 1, . . . , 4 label-convention for the specific coupling factor combinations allows to
correctly allocate the c(α) to their corresponding generic triangle-amplitude ‘triangle α’
in Fig. 6.1. Coupling factor combinations originating from t1t2, t1t1, t2t1 and t2t2 are
labeled with superscript α = 1, . . . , 4, and give rise to the d(α) expressions. As in case of
the c(α), this convention correctly assigns d(α) expressions to their corresponding ‘box α’
amplitude in Fig. 6.1.

We introduce the index n in order to label the different coupling factor combinations
for a given fixed aã. Each individual n is given by a character-string, where the ith
character gives the type (r or q) of the coupling factor which is related to the ith vertex
in the particular diagram aã in Fig. 6.1. The vertices of box-amplitudes are enumer-
ated according to the respective attached external particles χei , i = 1, . . . , 4. In case of
selfenergy- and triangle-diagrams with inner vertices our vertex-enumeration convention
is from top to bottom and left to right. Vertex factors of type cABXi

are not specified in
the corresponding string n, because the nature of the particles XA, XB andXi involved in
the diagram completely characterize that coupling. For triangles with XAXB = V V, V S
or SS, for example, the index n will range over strings rrr, qqr, ..., where the characters
r or q indicate the type of coupling of the external particles to the XAXB pair and to
the single s-channel exchanged particle species, see the triangle diagrams in Fig. 6.1.

To further specify the coupling factor combinations for given aã and n, we use the
labels i1 and i2 to indicate the particle species that are internally exchanged in diagrams
a and ã. Therewith, the coupling factor combinations bn i1i2 , c

(α)
n i1i2

and d
(α)
n i1i2

that should
enter in (6.17), together with the generic kinematic factor expressions given in App. A.2-
A.3 and the electronic supplement to [32], can be unambiguously determined.

A.1.2 (Axial-)vector and (pseudo-)scalar MSSM vertex factors

In order to completely fix our conventions, we summarize in the following the expressions
for the (axial-) vector and (pseudo-) scalar coupling factors, that arise in the three-point
interactions of charginos and neutralinos with SM and Higgs particles. The definitions of
the coupling factors assume that we take χ+

i to be the particle and χ−
i its anti-particle,

such that the Dirac fermion number flow, indicated by the arrow on the Dirac fermion
line for a chargino, will always refer to the direction of χ+

i flow. The latter convention
agrees with that of Rosiek [62].

The generic form for the vertex factor, that describes the 3-point interaction of an
incoming neutralino χ0

j , an outgoing chargino χ+
i and either an incoming charged Higgs

particle G+ orH+ or an incomingW+-boson is given in the left-most diagram in Fig. A.3.
Note that the gamma matrix γµ in the vertex factor has to be omitted in case of inter-
actions with the charged Higgs particles. The specific scalar and pseudo-scalar or vector
and axial-vector coupling factors, that have to be replaced for the generic rij and qij
couplings therein read

sH
+
m

ij (pH
+
m

ij ) = − 1

2

[
Z2m
H

(
Z̃4j∗
N Z̃1i∗

+ +
1√
2
Z̃2i∗

+ (Z̃2j∗
N + tan θW Z̃

1j∗
N )

)
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f I

ig2 (sIij + pIijγ5)
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Figure A.3: Generic form of the vertex factors in three-point interactions of neutralinos
and charginos with SM and Higgs particles, upon which our definition of the (axial-)
vector and (pseudo-) scalar coupling factors given in the text is based.

± Z1m
H

(
Z̃3j
N Z̃

1i
− −

1√
2
Z̃2i

− (Z̃2j
N + tan θW Z̃

1j
N )

) ]
,

vWij =
1

2

(
Z̃2j∗
N Z̃1i

− + Z̃2j
N Z̃

1i∗
+ +

1√
2
Z̃3j∗
N Z̃2i

− −
1√
2
Z̃4j
N Z̃

2i∗
+

)
,

aWij =
1

2

(
Z̃2j∗
N Z̃1i

− − Z̃2j
N Z̃

1i∗
+ +

1√
2
Z̃3j∗
N Z̃2i

− +
1√
2
Z̃4j
N Z̃

2i∗
+

)
, (A.4)

where H+
1 ≡ H+ and H+

2 ≡ G+, and the mixing matrices are defined as in Ref. [62].
The generic form of the three point interaction of either two neutralinos or two charginos
with an electrically neutral gauge boson or Higgs particle is depicted in the second dia-
gram in Fig. A.3. Again, the gamma-matrix γµ has to be omitted in the vertex factor if
the corresponding reaction refers to interactions with the neutral Higgs particles. In the
case of an incoming χ+

j and an outgoing χ+
i , the (axial-) vector and (pseudo-) scalar cou-

plings, that encode interactions with the neutral scalar and pseudo-scalar Higgs particles
(h0, H0, G0, A0), the Z-boson or the photon are given by the following expressions:

s
H0

m

ij (p
H0

m

ij ) = − 1

2
√
2

[
Z1m
R

(
Z̃2j∗

− Z̃1i∗
+ ± Z̃2i

− Z̃
1j
+

)
+ Z2m

R

(
Z̃1j∗

− Z̃2i∗
+ ± Z̃1i

− Z̃
2j
+

) ]
,

s
A0

m

ij (p
A0

m

ij ) = − i

2
√
2

[
Z1m
H

(
Z̃2j∗

− Z̃1i∗
+ ∓ Z̃2i

− Z̃
1j
+

)
+ Z2m

H

(
Z̃1j∗

− Z̃2i∗
+ ∓ Z̃1i

− Z̃
2j
+

) ]
,

vZij = − 1

4cW

(
Z̃1i

− Z̃
1j∗
− + Z̃1i∗

+ Z̃1j
+ + 2(c2W − s2W )δij

)
,

aZij =
1

4cW

(
Z̃1i∗

+ Z̃1j
+ − Z̃1i

− Z̃
1j∗
−

)
,

vγij = − sW δij ,
aγij = 0 , (A.5)

where H0
1 ≡ H0, H0

2 ≡ h0 and A0
1 ≡ A0, A0

2 ≡ G0. Finally, three-point interactions of an
incoming χ0

j and an outgoing χ0
i with a (pseudo-) scalar Higgs particle or the Z-boson

involve the following (axial-) vector or (pseudo-) scalar coupling factors

s
(0),H0

m

ij (p
(0),H0

m

ij ) =
1

4

[ (
Z2m
R Z̃4i∗

N − Z1m
R Z̃3i∗

N

)(
Z̃2j∗
N − tan θW Z̃1j∗

N

)
+ (i↔ j)

]
± c.c. ,

206



s
(0),A0

m

ij (p
(0),A0

m

ij ) =
i

4

[ (
Z2m
H Z̃4i∗

N − Z1m
H Z̃3i∗

N

)(
Z̃2j∗
N − tan θW Z̃1j∗

N

)
+ (i↔ j)

]
± c.c. ,

v
(0),Z
ij (a

(0),Z
ij ) =

1

4cW

(
Z̃3i
N Z̃

3j∗
N − Z̃4i

N Z̃
4j∗
N ∓ (i↔ j)

)
. (A.6)

The (axial-) vector and (pseudo-) scalar coupling factors in (A.5) and (A.6), which are
all related to interactions with neutral SM and Higgs particles, satisfy

v∗ij = vji , a∗ij = aji ,

s∗ij = sji , p∗ij = −pji . (A.7)

as a consequence of the hermiticity of the underlying SUSY Lagrangian.
The generic form of the vertex factor for three-point interactions of a neutralino or

chargino with a SM fermion and a sfermion is given in the right-most diagram in Fig. A.3.
In case of interactions of an incoming SM fermion f I with a sfermion S̃j and an outgoing
neutralino χ0

i , the specific (pseudo-) scalar couplings, that have to be replaced for the
generic sIij and pIij expressions in Fig. A.3 read

suŨIij (p
uŨ
Iij) =

1√
2
qu tan θW Z̃

1i∗
N Z

(I+3)j∗
U − mI

u

2
√
2 sin βMW

(
Z̃4i∗
N ZIj∗

U ± Z̃4i
NZ

(I+3)j∗
U

)

∓ 1√
2

(
TuZ̃

2i
N + (qu − Tu)Z̃1i

N tan θW

)
ZIj∗
U ,

sdD̃Iij (p
dD̃
Iij ) =

1√
2
qd tan θW Z̃

1i∗
N Z

(I+3)j
D − mI

d

2
√
2 cos βMW

(
Z̃3i∗
N ZIj

D ± Z̃3i
NZ

(I+3)j
D

)

∓ 1√
2

(
TdZ̃

2i
N + (qd − Td)Z̃1i

N tan θW

)
ZIj
D ,

sνν̃Iij(p
νν̃
Iij) = ∓ 1

2
√
2

(
Z̃2i
N − Z̃1i

N tan θW

)
ZIj∗
ν ,

slL̃Iij(p
lL̃
Iij) =

1√
2
ql tan θW Z̃

1i∗
N Z

(I+3)j
L − mI

l

2
√
2 cos βMW

(
Z̃3i∗
N ZIj

L ± Z̃3i
NZ

(I+3)j
L

)

∓ 1√
2

(
TlZ̃

2i
N + (ql − Tl)Z̃1i

N tan θW

)
ZIj
L . (A.8)

I = 1, 2, 3 denotes the generation index for the fermions, and j = 1, . . . , 6 labels the
sfermion states (j = 1, 2, 3 in case of sneutrinos ν̃j). Tf and qf are defined as

Tu = −Td = −Tl =
1

2
,

qu =
2

3
, qd = −1

3
, ql = −1 . (A.9)

The superscripts fS̃ on the couplings in (A.8) refer to the fermion (f)- and sfermion (S̃)-
type involved in the underlying interaction. In case of chargino-fermion-sfermion inter-
actions we find (a sum over repeated indices is implicit)

suD̃Iij (p
uD̃
Iij ) =

mI
u

2
√
2 sin βMW

KIJ∗Z̃2i∗
+ ZJj

D ± mJ
d

2
√
2 cos βMW

KIJ∗Z̃2i
−Z

(J+3)j
D

207



XAXBXi LABXi

VαVβVµ gαβ(kA − kB)µ + gµα(ki − kA)β + gβµ(kB − ki)α
VαVβ S MW gαβ

Vα S S (kB − ki)α
S S Vµ (kB − kA)µ
S S S MW

η η Vµ kµB
η η S MW

Table A.1: The generic form of the Lorentz structures LABXi
, that are part of the

Feynman rule ig2cABXi
LABXi

for the XAXBXi three-point vertex in Fig A.1. We assume
all four-momenta, kA, kB, ki, to be outgoing at the vertex. The case ofXAXBXi = VαS Vµ
is trivially related to the case VαVβ S.

∓ 1

2
KIJ∗Z̃1i

−Z
Jj
D ,

sdŨIij(p
dŨ
Iij) =

mI
d

2
√
2 cos βMW

KJIZ̃2i∗
− ZJj∗

U ± mJ
u

2
√
2 sin βMW

KJIZ̃2i
+Z

(J+3)j∗
U

∓ 1

2
KJIZ̃1i

+Z
Jj∗
U ,

sνL̃Iij(p
νL̃
Iij) = ± mI

l

2
√
2 cos βMW

Z̃2i
−Z

(I+3)j
L ∓ 1

2
Z̃1i

−Z
Ij
L ,

slν̃Iij(p
lν̃
Iij) =

mI
l

2
√
2 cos βMW

Z̃2i∗
− ZJj∗

ν ∓ 1

2
Z̃1i

+Z
Ij∗
ν . (A.10)

The coupling factors with fS̃ = uD̃, νL̃ refer to the interaction of an incoming up-type
quark (uI) or neutralino (νI) with a D̃j- or L̃j-sfermion and an outgoing χ+

i . In case of
fS̃ = dŨ, lν̃, the coupling factors in (A.10) are related to interactions of an incoming
down-type quark (dI) or lepton (lI) with an Ũj- or ν̃j-sfermion and an outgoing χ+C

i

(denoting the charge-conjugate field of χ+
i , see [62]).

For the specific cABXi
factors that emerge at the three-point vertex of the XAXB

particle pair with the single s-channel exchanged particle Xi in Fig. A.1, we refer to
the Feynman rules in [62]: a specific cABXi

is obtained as the factor that multiplies
the structure ig2LABXi

in the respective Feynman rule therein. The generic forms of the
Lorentz structures LABXi

are collected in Tab. A.1. Finally, (axial-) vector and (pseudo-)
scalar coupling factors r and q of two SM fermions with a gauge or Higgs boson (see
Fig. A.2) can be directly taken from the corresponding Feynman rules in [62].
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A.1.3 Example: construction of c
(α)
n,i1V

in χ−e1χ
+
e2 → W+G− → χ0

e4χ
0
e3

In order to illustrate how the above rules should be applied, let us consider an example.
Suppose we wish to know the coupling factors c

(α)
n, i1V

, α = 1, . . . 4, of diagrams with s-
channel exchange of a Z-boson for the χ−

e1
χ+
e2
→ W+G− → χ0

e4
χ0
e3

processes. Following
the recipe above, we draw all tree-level diagrams for the χ−

e1χ
+
e2 → W+G− as well as the

χ0
e4
χ0
e3
→W+G− process and assign the same fermion flow as given in the corresponding

generic diagrams, Fig. A.1. Referring to that fixed fermion flow, we determine the
following vertex factors in the diagrams t1 and s, associated with tree-level χ−

e1
χ+
e2
→

W+G− annihilations:

V
β(t1)
e1i1

= sGe1i1 + pGe1i1γ5 , V
α(t1)
e2i1

= γα
(
−vW∗

e2i1 + aW∗
e2i1γ5

)
,

V µ(s)
e1e2

= γµ
(
−vZe1e2 + aZe1e2γ5

)
, cWGZ = −s

2
W

c2W
. (A.11)

The coupling factors are those from (A.4) and (A.5). Note that there is no t-channel
exchange diagram t2 for the above process, as it is forbidden by charge conservation.
Further, note that the sign in front of the vector-coupling factor in V

α(t1)
e2i1

and V
µ(s)
e1e2

follows from rule 2b) above. In case of diagrams contributing to χ0
e4
χ0
e3
→ W+G− we

find

V
β(t1)
e4i1

= sGi1e4 + pGi1e4γ5 , V
α(t1)
e3i1

= γα
(
vW∗
i1e3

+ aW∗
i1e3

γ5
)
,

V
α(t2)
e4i1

= γα
(
−vW∗

i1e4
+ aW∗

i1e4
γ5
)
, V

β(t2)
e3i1

= sGi1e3 + pGi1e3γ5 ,

V µ(s)
e4e3 = γµ

(
v(0)Ze3e4 + a(0)Ze3e4 γ5

)
, cWGZ = −s

2
W

c2W
. (A.12)

To obtain the building blocks for the non-vanishing c
(α)
n, i1V

with α = 1, one has to combine
the coupling factor expressions in the first row of (A.11) (the factors related to diagram
t1 in χ

−
e1
χ+
e2
→W+G− annihilations) with the coupling factor expressions in the last row

of (A.12) (expressions originating from diagram s in χ0
e4
χ0
e3
→ W+G−), as α = 1 refers

to the t1s product of tree-level diagrams. Similarly, for α = 2 and 4, one has to build
the combinations of expressions referring to st1 and st2. Therefore, the building-blocks
for the non-vanishing c

(α)
n i1V

related to single s-channel V = Z exchange read:

α = 1 : {{sGe1i1 , p
G
e1i1
} , {−vW∗

e2i1
, aW∗

e2i1
} , {v(0)Z∗e3e4

, a(0)Z∗e3e4
} , {−s

2
W

c2W
}} , (A.13)

α = 2 : {{−vZe1e2, a
Z
e1e2
} , {vWi1e3, a

W
i1e3
} , {sG∗

i1e4
, pG∗

i1e4
} , {−s

2
W

c2W
}} , (A.14)

α = 4 : {{−vZe1e2, a
Z
e1e2
} , {sG∗

i1e3
, pG∗

i1e3
} , {−vWi1e4, a

W
i1e4
} , {−s

2
W

c2W
}} . (A.15)

In selecting one element from each of the above given subsets and multiplying the selected
elements for fixed α with each other, the c

(α)
n, i1V

expressions in χ−
e1χ

+
e2 →W+G− → χ0

e4χ
0
e3
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reactions are obtained. Proceeding in that way, we obtain eight different coupling factor
combinations for fixed α, that are labeled with index n. Following our convention for
this label, n ranges over n = rrr, rrq, rqr, qrr, rqq, qrq, qqr, qqq. The c

(2)
qqr, i1V

expression,
for example, reads

c
(2)
qqr, i1V

= −s
2
W

c2W
aZe1e2 a

W
i1e3 s

G∗
i1e4 . (A.16)

A.2 Kinematic factors at leading order

The kinematic factor expressions that refer to a specific χe1χe2 → XAXB → χe4χe3
scattering reaction depend on the external particles’ mass scales m, m and M = m+m.
We remind the reader of our convention (see Sec. 6.1.2)

m =
me1 +me4

2
, m =

me2 +me3

2
,

δm =
me4 −me1

2
, δm =

me3 −me2

2
. (A.17)

Further recall that we expand the scattering amplitudes in δm, δm and count these
quantities as O(v2). Hence, for the leading-order S-wave results presented below, the
mass differences δm = δm = 0, such that there are only two mass scales, m and m,
left, which characterize the external chargino or neutralino states. The masses of the
particles XA and XB will be denoted with mA and mB. Let us introduce the general
notation m̂a for the rescaling of any mass ma in units of the mass scale M ,

m̂a =
ma

M
. (A.18)

Define the dimensionless quantities

∆AB = m̂2
A − m̂2

B ,

β =
√
1− 2 (m̂2

A + m̂2
B) + ∆2

AB , (A.19)

where in case that XA = XB, β is the leading-order term in the expansion of the velocity
of the XAXB particle pair in the non-relativistic momenta and mass differences. The
expansion of single s-channel (gauge or Higgs boson Xi) exchange propagators in δm,
δm and the non-relativistic 3-momenta leads to the following denominator-structure at
leading order:

P s
i = 1− m̂2

i . (A.20)

Similarly, the leading-order expansion of t- and u-channel gaugino and sfermion prop-
agators in δm, δm and the non-relativistic 3-momenta gives rise to the denominator-
structures

Pi AB = m̂ m̂+ m̂2
i − m̂ m̂2

A − m̂ m̂2
B ,
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Pi BA = Pi AB |A↔B . (A.21)

Using the above definitions, the kinematic factors for the leading-order S-wave Wilson
coefficients related to the selfenergy-topology in Fig. 6.1 are conveniently written as

BXAXB

n, i1i2
(2s+1SJ) =

β

P s
i1
P s
i2

B̃XAXB

n, i1i2
(2s+1SJ) , (A.22)

where the labels i1 and i2 refer to the particle species that are exchanged in the left and
right s-channel propagator. As generically either gauge boson (V ) or Higgs (S) s-channel
exchange occurs in the processes under consideration, the combination i1i2 is given by
i1i2 = V V, V S, SV, SS. Kinematic factors arising from the triangle-topologies shown in
Fig. 6.1 have the following generic form

C
(α)XAXB

n, i1X
(2s+1SJ) =

β

Pi1AB P
s
X

C̃
(α)XAXB

n, i1X
(2s+1SJ) α = 1, 2 ,

C
(α)XAXB

n, i1X
(2s+1SJ) =

β

Pi1BA P
s
X

C̃
(α)XAXB

n, i1X
(2s+1SJ) α = 3, 4 . (A.23)

The index i1 in the above expressions is related to the t- or u-channel exchanged par-
ticle species, whereas the subscript-index X indicates the type of the single s-channel
exchanged particle-species, X = V, S. Finally, kinematic factors associated with the
box-topologies of Fig. 6.1 generically read

D
(1)XAXB

n, i1i2
(2s+1SJ) =

β

Pi1AB Pi2BA
D̃

(1)XAXB

n, i1i2
(2s+1SJ) ,

D
(2)XAXB

n, i1i2
(2s+1SJ) =

β

Pi1AB Pi2AB
D̃

(2)XAXB

n, i1i2
(2s+1SJ) ,

D
(3)XAXB

n, i1i2
(2s+1SJ) =

β

Pi1BA Pi2AB
D̃

(3)XAXB

n, i1i2
(2s+1SJ) ,

D
(4)XAXB

n, i1i2
(2s+1SJ) =

β

Pi1BA Pi2BA
D̃

(4)XAXB

n, i1i2
(2s+1SJ) . (A.24)

Indices i1 and i2 in (A.24) refer to the exchanged particle species in the left and right t-
and u-channels of the 1-loop box-amplitudes, respectively.

Throughout this appendix, the labels A and B are related to the particles XA and
XB. Recall that these are the actual final-state particles in a χiχj → XAXB (tree-
level) annihilation reaction. The overall prefactors in (A.22–A.24) arise from the phase-
space integration (β) and from the leading-order expansion of s- or t- and u-channel
propagators in the non-relativistic limit.

Finally recall from Appendix A.1.1, that each individual index n in (A.22–A.24) is
given by a character string, whose elements indicate the type (r or q) of the corresponding
generic coupling structures at the vertices of the respective underlying 1-loop amplitude
in Fig. 6.1. In the results that we quote next we only write explicitly the kinematic
factors for those n which are non-vanishing.

211



A.2.1 Kinematic factors for XAXB = V V

The kinematic factors B̃V V
n, i1i2

in case of 1S0 partial-wave reactions are given by

B̃V V
qq, V V (

1S0) = − β2

2
+ 3 ∆2

AB , (A.25)

B̃V V
qq, V S(

1S0) = B̃V V
qq, SV (

1S0) = 3 m̂W∆AB , (A.26)

B̃V V
qq, SS(

1S0) = 4 m̂2
W . (A.27)

In case of 3S1 partial-wave reactions we have

B̃V V
rr, V V (

3S1) = − 9

2
+

4

3
β2 − 1

2
∆2
AB . (A.28)

Only the kinematic factors B̃V V
n, i1i2 given explicitly in (A.25–A.28) with n = rr, qq are

non-vanishing. In case of XAXB = V V , the kinematic factors for the triangle- and box-
diagram topologies α = 3, 4 are related to the corresponding expressions for diagram-
topologies α = 1, 2 (see Fig. 6.1). The relations read

C̃
(3) V V
n, i1V

(2s+1SJ) = − C̃(1) V V
n, i1V

(2s+1SJ) |A↔B ,

C̃
(4) V V
n, i1V

(2s+1SJ) = − C̃(2) V V
n, i1V

(2s+1SJ) |A↔B ,

C̃
(3) V V
n, i1S

(2s+1SJ) = C̃
(1) V V
n, i1S

(2s+1SJ) |A↔B ,

C̃
(4) V V
n, i1S

(2s+1SJ) = C̃
(2) V V
n, i1S

(2s+1SJ) |A↔B ,

D̃
(3) V V
n, i1i2

(2s+1SJ) = D̃
(1) V V
n, i1i2

(2s+1SJ) |A↔B ,

D̃
(4) V V
n, i1i2

(2s+1SJ) = D̃
(2) V V
n, i1i2

(2s+1SJ) |A↔B . (A.29)

The minus sign in the relation for the triangle coefficients C̃
(α) V V
n, i1V

in (A.29) arises from
interchanging the two gauge bosons XA and XB at the internal three-gauge boson vertex.
The expressions C̃

(α) V V
n, i1V

for diagram-topologies α = 1, 2, that refer to leading-order 1S0

partial waves read

C̃
(1) V V
rqq, i1V

(1S0) =
β2

2
− 3

2
(m̂− m̂)∆AB −

3

2
∆2
AB + 3 m̂i1∆AB , (A.30)

C̃
(2) V V
qqr, i1V

(1S0) = C̃
(1) V V
rqq, i1V

(1S0) . (A.31)

In case of C
(α)V V
n, i1V

expressions related to 3S1 partial waves and diagram-topologies α = 1, 2
we find

C̃
(α) V V
rrr, i1V

(3S1) = − 5

6
β2 + (m̂− m̂)

∆AB

2
+

∆2
AB

2
+ 3 m̂i1 . (A.32)

We deduce the following expressions for C̃
(α) V V
n, i1S

coefficients and diagram topologies α =
1, 2:

C̃
(1) V V
rqq, i1S

(1S0) = C̃
(2) V V
qqr, i1S

(1S0) = −m̂W (m̂− m̂+∆AB) + 4 m̂W m̂i1 . (A.33)
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There are additional non-vanishing C
(α)V V
n, i1X

expressions for X = V, S in both the case of
1S0 and 3S1 partial-wave reactions, which are related to the expressions in (A.30–A.33)
in the following way:

C̃
(1) V V
qqr, i1X

(2s+1SJ) = C̃
(2) V V
rqq, i1X

(2s+1SJ) = C̃
(1) V V
rrr, i1X

(2s+1SJ)|mi1
→−mi1

,

C̃
(1) V V
qrq, i1X

(2s+1SJ) = C̃
(2) V V
qrq, i1X

(2s+1SJ) = C̃
(1) V V
rqq, i1X

(2s+1SJ)|mi1
→−mi1

. (A.34)

Turning to terms related to box-diagrams, the non-vanishing expressions D̃
(α)V V
n, i1i2

for
α = 1, 2 are given by

D̃
(α)V V
rrrr, i1i2

(1S0) =
β2

2
, (A.35)

D̃
(1) V V
rqqr, i1i2

(1S0) =
β2

2
+ (m̂− m̂)2 −∆2

AB + 4 m̂i1m̂i2

− m̂i1(m̂− m̂−∆AB)− m̂i2(m̂− m̂+∆AB) , (A.36)

D̃
(2), V V
rqqr, i1i2

(1S0) = − β2

2
+
(
m̂− m̂+∆AB

)2
+ 4 m̂i1m̂i2

− (m̂i1 + m̂i2) (m̂− m̂+∆AB) , (A.37)

and

D̃
(1) V V
rrrr, i1i2

(3S1) = − 2

3
β2 − 1

2
(m̂− m̂)2 +

1

2
∆2
AB + 2 m̂i1m̂i2 , (A.38)

D̃
(2) V V
rrrr, i1i2

(3S1) =
2

3
β2 − 1

2

(
m̂− m̂+ ∆AB

)2
− 2 m̂i1m̂i2 , (A.39)

D̃
(1) V V
rqqr, i1i2

(3S1) = − 1

3
β2 − 1

2
(m̂− m̂)2 +

1

2
∆2
AB − 2 m̂i1m̂i2

+ m̂i1(m̂− m̂−∆AB) + m̂i2(m̂− m̂+∆AB) , (A.40)

D̃
(2) V V
rqqr, i1i2

(3S1) = − 1

3
β2 +

1

2

(
m−m+ ∆̂AB

)2
+ 2 m̂i1m̂i2

− m̂i1(m̂− m̂+∆AB)− m̂i2(m̂− m̂+∆AB) . (A.41)

The remaining non-vanishing kinematic factors D̃V V
n, i1i2

for both spin-0 and spin-1 χχ
states are related to the expressions given above by

D̃
(α) V V
qqqq, i1i2

(2s+1SJ) = D̃
(α) V V
rrrr, i1i2

(2s+1SJ) ,

D̃
(α)V V
rrqq, i1i2

(2s+1SJ) = D̃
(α) V V
qqrr, i1i2

(2s+1SJ) = D̃
(α) V V
rrrr, i1i2

(2s+1SJ)| m̂ i1
m̂ i2

→ −m̂ i1
m̂ i2

,

D̃
(α)V V
qrrq, i1i2

(2s+1SJ) = D̃
(α) V V
rqqr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α)V V
rqrq, i1i2

(2s+1SJ) = D̃
(α) V V
rqqr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α)V V
qrqr, i1i2

(2s+1SJ) = D̃
(α) V V
rqqr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

. (A.42)

The notation in the second line of (A.42) means that the product m̂i1m̂i2 is replaced,
but all other appearances of either m̂i1 or m̂i2 are untouched.
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A.2.2 Kinematic factors for XAXB = V S

We find the following expressions for B̃V S
n, i1i2

terms in 1S0 partial-wave reactions with
i1i2 = V V, V S, SV, SS:

B̃V S
qq, V V (

1S0) = − m̂2
W , (A.43)

B̃V S
qq, V S(

1S0) = B̃V S
qq, SV (

1S0) =
m̂W

2
(−3 + ∆AB) , (A.44)

B̃V S
qq, SS(

1S0) =
β2

4
− 9

4
+

3

2
∆AB −

∆2
AB

4
. (A.45)

In case of 3S1 partial-wave processes the corresponding B̃V S
n, i1i2

coefficients read

B̃V S
rr, V V (

3S1) = m̂2
W . (A.46)

Kinematic factors C̃
(α) V S
n, i1V

, that are related to the four generic triangle-topologies α with
gauge boson (V ) exchange in the single s-channel (see Fig. 6.1) are given by

C̃
(1) V S
rqq, i1V

(1S0) = C̃
(2)V S
qqr, i1V

(1S0) = −m̂W

2
(m̂− m̂+∆AB)− m̂W m̂i1 , (A.47)

C̃
(3) V S
rqq, i1V

(1S0) = C̃
(4)V S
qqr, i1V

(1S0) =
m̂W

2
(m̂− m̂−∆AB) + m̂W m̂i1 , (A.48)

as well as

C̃
(1) V S
rrr, i1V

(3S1) = C̃
(2) V S
rrr, i1V

(3S1) = − C̃
(1) V S
rqq, i1V

(1S0) , (A.49)

C̃
(3) V S
rrr, i1V

(3S1) = C̃
(4) V S
rrr, i1V

(3S1) = − C̃
(3) V S
rqq, i1V

(1S0)|m̂i1
→−m̂i1

. (A.50)

In case of C̃
(α) V S
n, i1S

expressions we find

C̃
(1) V S
rqq, i1S

(1S0) = − β2

4
− 3

4
(m̂− m̂) + (m̂− m̂− 3)

∆AB

4

+
∆2
AB

4
− m̂i1

2
(3−∆AB) , (A.51)

C̃
(2) V S
qqr, i1S

(1S0) = C̃
(1) V S
rqq, i1S

(1S0) , (A.52)

C̃
(3) V S
rqq, i1S

(1S0) = − β2

4
+

3

4
(m̂− m̂)− (m̂− m̂+ 3)

∆AB

4

+
∆2
AB

4
+
m̂i1

2
(3−∆AB) , (A.53)

C̃
(4) V S
qqr, i1S

(1S0) = C̃
(3) V S
rqq, i1S

(1S0) . (A.54)

There are additional non-vanishing kinematic factors for C̃
(α) V S
n, i1X

with X = V or S,
related to the corresponding expressions in (A.47–A.54) in the following way:

C̃
(1) V S
qqr, i1X

(2s+1SJ) = C̃
(2) V S
rqq, i1X

(2s+1SJ) = − C̃
(1) V S
rrr, i1X

(2s+1SJ)|m̂i1
→−m̂i1

,
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C̃
(3) V S
qqr, i1X

(2s+1SJ) = C̃
(4) V S
rqq, i1X

(2s+1SJ) = C̃
(3) V S
rrr, i1X

(2s+1SJ)|m̂i1
→−m̂i1

,

C̃
(1) V S
qrq, i1X

(2s+1SJ) = C̃
(2) V S
qrq, i1X

(2s+1SJ) = − C̃
(1) V S
rqq, i1X

(2s+1SJ)|m̂i1
→−m̂i1

,

C̃
(3) V S
qrq, i1X

(2s+1SJ) = C̃
(4) V S
qrq, i1X

(2s+1SJ) = C̃
(3) V S
rqq, i1X

(2s+1SJ)|m̂i1
→−m̂i1

. (A.55)

The non-vanishing kinematic factors for XAXB = V S and the four box-topologies α are
given by

D̃
(1)V S
rqqr, i1i2

(1S0) =
1

4
β2 +

1

4
(m̂− m̂)2 − 1

4
∆2
AB + m̂i1m̂i2

+
1

2
m̂i1(m̂− m̂−∆AB) +

1

2
m̂i2(m̂− m̂+∆AB) , (A.56)

D̃
(2)V S
rqqr, i1i2

(1S0) =
1

4
β2 − 1

4

(
m̂− m̂+∆AB

)2
− m̂i1m̂i2

− 1

2
(m̂i1 + m̂i2)(m̂− m̂+∆AB) , (A.57)

D̃
(3)V S
rqqr, i1i2

(1S0) = D̃
(1) V S
rqqr, i1i2

(1S0)|A↔B , (A.58)

D̃
(4)V S
rqqr, i1i2

(1S0) = D̃
(2) V S
rqqr, i1i2

(1S0)|A↔B . (A.59)

In case of 3S1 partial waves we have

D̃
(1) V S
rrrr, i1i2

(3S1) = − 1

12
β2 − 1

4
(m̂− m̂)2 +

1

4
∆2
AB + m̂i1m̂i2

− 1

2
m̂i1(m̂− m̂−∆AB) +

1

2
m̂i2(m̂− m̂+∆AB) , (A.60)

D̃
(2) V S
rrrr, i1i2

(3S1) = − 1

12
β2 +

1

4

(
m̂− m̂+∆AB

)2
+ m̂i1m̂i2

+
1

2
(m̂i1 + m̂i1)(m̂− m̂+∆AB) , (A.61)

D̃
(3) V S
rrrr, i1i2

(3S1) = D̃
(1) V S
rrrr, i1i2

(3S1)|m̂↔m̂ , (A.62)

D̃
(4) V S
rrrr, i1i2

(3S1) = D̃
(2) V S
rrrr, i1i2

(3S1)|m̂↔m̂ , (A.63)

D̃
(α) V S
rqqr, i1i2

(3S1) =
(−1)α

6
β2 . (A.64)

Relations for the remaining kinematic factors for both 1S0 and
3S1 partial-wave reactions

read in case of diagram-topologies α = 1, 2:

D̃
(α) V S
qqqq, i1i2

(2s+1SJ) = (−1)α D̃(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α) V S
rrqq, i1i2

(2s+1SJ) = (−1)α+1 D̃
(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α) V S
qqrr, i1i2

(2s+1SJ) = − D̃(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

,

D̃
(α) V S
qrrq, i1i2

(2s+1SJ) = (−1)α D̃(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α) V S
rqrq, i1i2

(2s+1SJ) = (−1)α+1 D̃
(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,
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D̃
(α) V S
qrqr, i1i2

(2s+1SJ) = − D̃(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

. (A.65)

The corresponding relations for diagram-topologies α = 3, 4 are given by

D̃
(α) V S
qqqq, i1i2

(2s+1SJ) = (−1)α D̃(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α) V S
rrqq, i1i2

(2s+1SJ) = (−1)α D̃(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α) V S
qqrr, i1i2

(2s+1SJ) = D̃
(α) V S
rrrr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

,

D̃
(α) V S
qrrq, i1i2

(2s+1SJ) = (−1)α D̃(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α) V S
rqrq, i1i2

(2s+1SJ) = (−1)α D̃(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α) V S
qrqr, i1i2

(2s+1SJ) = D̃
(α) V S
rqqr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

. (A.66)

A.2.3 Kinematic factors for XAXB = SS

The non-vanishing B̃SS
n, i1i2

terms with i1i2 = V V, V S, SV, V V read

B̃SS
qq, V V (

1S0) = ∆2
AB , (A.67)

B̃SS
qq, V S(

1S0) = B̃SS
qq, SV (

1S0) = − m̂W∆AB , (A.68)

B̃SS
qq, SS(

1S0) = m̂2
W , (A.69)

and in case of 3S1 reactions

B̃SS
rr, V V (

3S1) =
β2

3
. (A.70)

As in the case of XAXB = V V , the kinematic factors for XAXB = SS and diagram
topologies α = 3, 4 are related to the corresponding expressions that arise from diagram-
topologies α = 1, 2. This applies to both triangle- and box-topologies (see Fig. 6.1):

C̃
(3)SS
n, i1V

(2s+1SJ) = − C̃
(1)SS
n, i1V

(2s+1SJ) |A↔B ,

C̃
(4)SS
n, i1V

(2s+1SJ) = − C̃
(2)SS
n, i1V

(2s+1SJ) |A↔B ,

C̃
(3)SS
n, i1S

(2s+1SJ) = C̃
(1)SS
n, i1S

(2s+1SJ) |A↔B ,

C̃
(4)SS
n, i1S

(2s+1SJ) = C̃
(2)SS
n, i1S

(2s+1SJ) |A↔B ,

D̃
(3)SS
n, i1i2

(2s+1SJ) = D̃
(1)SS
n, i1i2

(2s+1SJ) |A↔B ,

D̃
(4)SS
n, i1i2

(2s+1SJ) = D̃
(2)SS
n, i1i2

(2s+1SJ) |A↔B . (A.71)

In case of expressions C̃
(α)SS
n, i1V

for diagram-topologies α = 1, 2 we find

C̃
(1)SS
rqq, i1V

(1S0) = C̃
(2)SS
qqr, i1V

(1S0) =
∆AB

2
(m̂− m̂+∆AB) + m̂i1∆AB , (A.72)

C̃
(1)SS
rrr, i1V

(3S1) = C̃
(2)SS
rrr, i1V

(3S1) = − β2

6
. (A.73)
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The C̃
(α)SS
n, i1S

expressions with α = 1, 2 are given by

C̃
(1)SS
rqq, i1S

(1S0) = C̃
(2)SS
qqr, i1S

(1S0) = −m̂W

2
(m̂− m̂+∆AB)− m̂W m̂i1 . (A.74)

All other non-vanishing expressions for C̃
(α)SS
n, i1X

with X = V, S and α = 1, 2 can be related
to the terms in (A.72–A.74) in the following way:

C̃
(1)SS
qqr, i1X

(2s+1SJ) = C̃
(2)SS
rqq, i1X

(2s+1SJ) = − C̃
(1)SS
rrr, i1X

(2s+1SJ)|m̂i1
→−m̂i1

,

C̃
(1)SS
qrq, i1X

(2s+1SJ) = C̃
(2)SS
qrq, i1X

(2s+1SJ) = − C̃
(1)SS
rqq, i1X

(2s+1SJ)|m̂i1
→−m̂i1

. (A.75)

The expressions D̃
(α)SS
n, i1i2

for diagram-topologies α = 1, 2 and 1S0 partial waves read

D̃
(1)SS
rqqr, i1i2

(1S0) =
1

4
(m̂− m̂)2 − ∆2

AB

4
+ m̂i1m̂i2

+
m̂i1

2
(m̂− m̂−∆AB) +

m̂i2

2
(m̂− m̂+∆AB) , (A.76)

D̃
(2)SS
rqqr, i1i2

(1S0) =
1

4

(
m̂− m̂+∆AB

)2
+ m̂i1m̂i2

+
1

2
(m̂i1 + m̂i2)(m̂− m̂+∆AB) . (A.77)

In case of a 3S1 partial-wave configuration we find

D̃
(α)SS
rrrr, i1i2

(3S1) = (−1)α β2

12
. (A.78)

The remaining non-vanishing kinematic factors related to both 1S0 and
3S1 partial-wave

reactions read

D̃
(α)SS
qqqq, i1i2

(2s+1SJ) = D̃
(α)SS
rrrr, i1i2

(2s+1SJ) ,

D̃
(α)SS
rrqq, i1i2

(2s+1SJ) = D̃
(α)SS
qqrr, i1i2

(2s+1SJ) = −D̃(α)SS
rrrr, i1i2

(2s+1SJ) ,

D̃
(α)SS
qrrq, i1i2

(2s+1SJ) = D̃
(α)SS
rqqr, i1i2

(2s+1SJ)| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α)SS
rqrq, i1i2

(2s+1SJ) = − D̃(α)SS
rqqr, i1i2

(2s+1SJ)| m̂ i2
→ −m̂ i2

,

D̃
(α)SS
qrqr, i1i2

(2s+1SJ) = − D̃(α)SS
rqqr, i1i2

(2s+1SJ)| m̂ i1
→ −m̂ i1

. (A.79)

A.2.4 Kinematic factors for XAXB = ff

The non-vanishing B̃ff
n, i1i2

terms with i1i2 = V V, V S, SV, SS are given by

B̃ff
qqqq, V V (

1S0) = 1− β2 + 4 m̂Am̂B −∆2
AB , (A.80)

B̃ff
qqqq, V S(

1S0) = B̃ff
qqqq, SV (

1S0) = 2
(
m̂A + m̂B − (m̂A − m̂B)∆AB

)
, (A.81)
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B̃ff
qqqq, SS(

1S0) = 1 + β2 + 4 m̂Am̂B −∆2
AB , (A.82)

and in case of 3S1 partial-wave reactions

B̃ff
rrrr, V V (

3S1) = 1 +
β2

3
+ 4 m̂Am̂B −∆2

AB . (A.83)

There are additional non-vanishing terms B̃ff
n, i1i2

related to the expressions in (A.80–
A.83). In case of i1i2 = V V, SS, the corresponding relations read

B̃ff
rqqr, i1i2

(2s+1SJ) = B̃ff
rrrr, i1i2

(2s+1SJ)|m̂Am̂B→−m̂Am̂B
, (A.84)

B̃ff
qrrq, i1i2

(2s+1SJ) = B̃ff
qqqq, i1i2

(2s+1SJ)|m̂Am̂B→−m̂Am̂B
, (A.85)

and our notation implies, that the product m̂Am̂B has to be replaced, but all other
occurrences of m̂A or m̂B are untouched. Similarly, in case of i1i2 = V S, SV , the
additional non-vanishing B̃ff

n, i1i2
terms are given by

B̃ff
rqqr, i1i2

(2s+1SJ) = − B̃ff
rrrr, i1i2

(2s+1SJ)|m̂A→−m̂A
, (A.86)

B̃ff
qrrq, i1i2

(2s+1SJ) = − B̃ff
qqqq, i1i2

(2s+1SJ)|m̂A→−m̂A
. (A.87)

The relations among kinematic factors for diagram topologies α = 3, 4 and diagram-
topologies α = 1, 2 in both the cases of box- and triangle-topologies are given by (X =
V, S)

C
(3) ff
n, i1X

(2s+1SJ) = C
(1) ff
n, i1X

(2s+1SJ) |A↔B , (A.88)

C
(4) ff
n, i1X

(2s+1SJ) = C
(2) ff
n, i1X

(2s+1SJ) |A↔B , (A.89)

D
(3) ff
n, i1i2

(2s+1SJ) = D
(1) ff
n, i1i2

(2s+1SJ) |A↔B , (A.90)

D
(4) ff
n, i1i2

(2s+1SJ) = D
(2) ff
n, i1i2

(2s+1SJ) |A↔B , (A.91)

compare to the generic diagrams in Fig. 6.1. The structures C̃
(α) ff
n, i1V

for topologies α = 1, 2
are given by

C̃
(α) ff
qqqq, i1V

(1S0) =
β2

4
− 1

4
(1− 2 m̂A)(1− 2 m̂B)

− (m̂A − m̂B)
∆AB

2
− ∆2

AB

4
, (A.92)

and in case of 3S1 partial-wave reactions the respective expressions read

C̃
(α) ff
rrrr, i1V

(3S1) = − β2

12
− 1

4
(1 + 2 m̂A)(1 + 2 m̂B)

+ (m̂A − m̂B)
∆AB

2
+

∆2
AB

4
. (A.93)

218



The relations of the additional non-vanishing C̃
(α) ff
n, i1V

expressions to the respective terms
in (A.92–A.93) read

C̃
(1) ff
qqrr, i1V

(2s+1SJ) = C̃
(2) ff
rrqq, i1V

(2s+1SJ) = − C̃
(1) ff
rrrr, i1V

(2s+1SJ)|mA,B→−mA,B
,

C̃
(α) ff
rqqr, i1V

(2s+1SJ) = C̃
(α) ff
rrrr, i1V

(2s+1SJ)|mA→−mA
,

C̃
(1) ff
qrqr, i1V

(2s+1SJ) = C̃
(2) ff
rqrq, i1V

(2s+1SJ) = − C̃
(1) ff
rrrr, i1V

(2s+1SJ)|mB→−mB
,

C̃
(1) ff
rqrq, i1V

(2s+1SJ) = C̃
(2) ff
qrqr, i1V

(2s+1SJ) = − C̃
(α) ff
qqqq, i1V

(2s+1SJ)|mB→−mB
,

C̃
(α) ff
qrrq, i1V

(2s+1SJ) = C̃
(α) ff
qqqq, i1V

(2s+1SJ)|mA→−mA
,

C̃
(1) ff
rrqq, i1V

(2s+1SJ) = C̃
(2) ff
qqrr, i1V

(2s+1SJ) = − C̃
(α) ff
qqqq, i1V

(2s+1SJ)|mA,B→−mA,B
. (A.94)

The terms C̃
(α) ff
n, i1S

for α = 1, 2 read

C̃
(α) ff
qqqq, i1S

(1S0) =
β2

4
+

1

4
(1− 2 m̂A)(1− 2 m̂B)

+ (m̂A − m̂B)
∆AB

2
− ∆2

AB

4
, (A.95)

and all remaining non-vanishing C
(α) ff
n, i1S

terms are obtained from (A.95) in the following
way:

C̃
(1) ff
rqrq, i1S

(2s+1SJ) = C̃
(2) ff
qrqr, i1S

(2s+1SJ) = C̃
(α) ff
qqqq, i1S

(2s+1SJ)|mB→−mB
,

C̃
(α) ff
qrrq, i1S

(2s+1SJ) = C̃
(α) ff
qqqq, i1S

(2s+1SJ)|mA→−mA
,

C̃
(1) ff
rrqq, i1S

(2s+1SJ) = C̃
(2) ff
qqrr, i1S

(2s+1SJ) = C̃
(α) ff
qqqq, i1S

(2s+1SJ)|mA,B→−mA,B
. (A.96)

In case of box-diagram topologies α = 1, 2, we find the following D̃
(α) ff
n, i1i2

structures for
the 1S0 partial waves:

D̃
(α) ff
rrrr, i1i2

(1S0) =
1

8
(1 + 2 m̂B −∆AB)(1 + 2 m̂A +∆AB) , (A.97)

D̃
(α) ff
rrqq, i1i2

(1S0) =
β2

8
− 1

2
m̂Am̂B . (A.98)

For 3S1 partial-wave configurations we have

D̃
(α) ff
rrrr i1i2

(3S1) = (−1)α D̃(α) ff
rrrr, i1i2

(1S0) , (A.99)

D̃
(α) ff
rrqq, i1i2

(3S1) = (−1)α+1

(
β2

24
+

1

2
m̂Am̂B

)
. (A.100)

Relations for the remaining non-vanishing kinematic factors related to both 1S0 and
3S1

partial-wave processes read in case of diagram topology α = 1

D̃
(1) ff
qqqq, i1i2

(2s+1SJ) = D̃
(1) ff
rrrr, i1i2

(2s+1SJ)| m̂A,B→ −m̂A,B
,
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D̃
(1) ff
qqrr, i1i2

(2s+1SJ) = D̃
(1) ff
rrqq, i1i2

(2s+1SJ) ,

D̃
(1) ff
rqqr, i1i2

(2s+1SJ) = D̃
(1) ff
qrrq, i1i2

(2s+1SJ) = D̃
(1) ff
rrqq, i1i2

(2s+1SJ)| m̂Am̂B→ −m̂Am̂B
,

D̃
(1) ff
rqrq, i1i2

(2s+1SJ) = D̃
(1) ff
rrrr, i1i2

(2s+1SJ)| m̂A→ −m̂A
,

D̃
(1) ff
qrqr, i1i2

(2s+1SJ) = D̃
(1) ff
rrrr, i1i2

(2s+1SJ)| m̂B→ −m̂B
. (A.101)

In case of diagram topology α = 2, the corresponding relations are given by

D̃
(2) ff
qqqq, i1i2

(2s+1SJ) = D̃
(2) ff
rrrr, i1i2

(2s+1SJ)| m̂A,B→ −m̂A,B
,

D̃
(2) ff
qqrr, i1i2

(2s+1SJ) = D̃
(2) ff
rrqq, i1i2

(2s+1SJ) ,

D̃
(2) ff
rqqr, i1i2

(2s+1SJ) = D̃
(2) ff
rrrr, i1i2

(2s+1SJ)| m̂A→ −m̂A
,

D̃
(2) ff
qrrq, i1i2

(2s+1SJ) = D̃
(2) ff
rrrr, i1i2

(2s+1SJ)| m̂B→ −m̂B
,

D̃
(2) ff
rqrq, i1i2

(2s+1SJ) = D̃
(2) ff
qrqr, i1i2

(2s+1SJ) = D̃
(2) ff
rrqq, i1i2

(2s+1SJ)| m̂Am̂B→ −m̂Am̂B
. (A.102)

A.2.5 Kinematic factors for XAXB = ηη

In case of XAXB = ηη one cannot directly construct the coupling factors bn i1i2 using
the recipe given in Sec. A.1.1, which is based on considering the χe1χe2 → XAXB and
χe4χe3 → XAXB tree-level annihilation amplitudes. In order to obtain the coupling
factor expressions bn i1i2, that correspond to the kinematic factors presented below, one
should proceed as follows: First extract the (axial-) vector and (pseudo-) scalar coupling
factors associated with the interaction of the χe1χe2 or χe4χe3 pair and the s-channel
exchanged particle species. This is done following the steps 1. and 2. in the recipe
given in Sec. A.1.1. Next, complex-conjugate the couplings related to the χe4χe3 particle
pair. In order to determine the couplings to the ghosts, consider the 1-loop amplitude
χe1χe2 → ηη → χe4χe3, similar to the selfenergy-amplitude in Fig. 6.1. Assign a ghost
flow to the lower line of the 1-loop amplitude (labeled with XA in Fig. 6.1), that flows
from left to right. Consequently there is a ghost flow from right to left on the upper
line, which is labeled with XB. Assume that the coupling factors at each of the two
ghost vertices are generically of the form ig2cABXi

LABXi
, where the Lorentz structures

LABXi
are defined in Tab. A.1. Determine the expressions that replace the generic cABXi

factors for the specific process under consideration. Now build all possible combinations
of two-coupling factor products from the set of the neutralino/chargino couplings to the
s-channel exchanged particles (including factors of −1 in front of vector couplings) in
the χe1χe2 → ηη → χe4χe3 reaction, and multiply them by the cABXi1

and cABXi2
factors.

The convention for the naming of the resulting coupling factor expressions bn, i1i2 with
subscripts n = rr, qq is the same as in the cases XAXB = V V, V S, SS, see Sec. A.1.1.
The coupling factors bn, i1i2 derived in this way correspond to the kinematic factors given
below. Note that the mass parameter mA in the expressions below refers to the mass of
the ghost flowing in the lower line, and mB to the mass of the ghost in the upper line.
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The non-vanishing B̃ηη
n, i1i2

terms with i1i2 = V V, V S, SV, SS read

B̃ηη
qq, V V (

1S0) =
1

4
(1−∆2

AB) , (A.103)

B̃ηη
qq, V S(

1S0) = − m̂W

2
(1 + ∆AB) , (A.104)

B̃ηη
qq, SV (

1S0) =
m̂W

2
(1−∆AB) , (A.105)

B̃ηη
qq, SS(

1S0) = − m̂2
W . (A.106)

Similarly,

B̃ηη
rr, V V (

3S1) = − β2

12
. (A.107)

A.3 Kinematic factors at O(v2)
Throughout this section we rely on the same definitions and conventions for the masses
m,m, the mass differences δm, δm and the mass ratio m̂a as established in (A.17) and
(A.18) in Sec. A.2. Further, the same definitions for the parameters ∆AB and β, (A.19),
are used and parameters P s

i and Pi AB, Pi BA are defined through (A.20) and (A.21).
Regarding the presentation of results for the kinematic factors related to dimension-

8 operators in δLann, it is however convenient to use a notation where factors of the
leading-order propagator and (m̂ m̂), as well as the factor β arising from the phase-
space integration are pulled out. This implies that the relations (A.22) and (A.23),
introduced to clearly arrange the presentation of leading-order S-wave kinematic factor
results corresponding to selfenergy- and triangle-diagrams, differ from the corresponding
relations, that we now introduce for the kinematic factors related to the dimension-8
operators: For the kinematic factors related to dimension-8 four-fermion operators, that
derive from the selfenergy topology we define

BXAXB

n, i1i2
(2s+1LJ ) =

β

(m̂ m̂)2 P s
i1
P s
i2

B̃XAXB

n, i1i2
(2s+1LJ ) , (A.108)

where the labels i1 and i2 refer to the particle species that are exchanged in the left and
right s-channel propagator of the selfenergy diagram. As before, the combination i1i2 is
given by i1i2 = V V, V S, SV, SS. Note that compared to (A.22) there is an additional
factor (m̂ m̂)2 in the denominator of (A.108). Likewise, we rewrite the kinematic factors
of dimension-8 Wilson coefficients arising from the triangle-topologies as

C
(α)XAXB

n, i1X
(2s+1LJ) =

β

m̂ m̂ Pi1AB P
s
X

C̃
(α)XAXB

n, i1X
(2s+1LJ) α = 1, 2 ,

C
(α)XAXB

n, i1X
(2s+1LJ) =

β

m̂ m̂ Pi1BA P
s
X

C̃
(α)XAXB

n, i1X
(2s+1LJ) α = 3, 4 , (A.109)
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such that compared to (A.23) there appears an additional factor m̂ m̂ in the denominator.
As in (A.23), the index i1 is related to the t- or u-channel exchanged particle species,
and the subscript-index X indicates the type of exchanged particle (X = V, S) in the s-
channel. Finally, the kinematic factors associated with the box topologies are written in
the same form as the correspondent expressions related to leading dimension-6 operators
(A.24):

D
(1)XAXB

n, i1i2
(2s+1LJ ) =

β

Pi1AB Pi2BA
D̃

(1)XAXB

n, i1i2
(2s+1LJ) ,

D
(2)XAXB

n, i1i2
(2s+1LJ ) =

β

Pi1AB Pi2AB
D̃

(2)XAXB

n, i1i2
(2s+1LJ) ,

D
(3)XAXB

n, i1i2
(2s+1LJ ) =

β

Pi1BA Pi2AB
D̃

(3)XAXB

n, i1i2
(2s+1LJ) ,

D
(4)XAXB

n, i1i2
(2s+1LJ ) =

β

Pi1BA Pi2BA
D̃

(4)XAXB

n, i1i2
(2s+1LJ) . (A.110)

In (A.110) the indices i1 and i2 refer to the exchanged particle species in the left and
right t- and u-channels of the 1-loop box amplitudes, respectively.

The conventions for the label n are the same as in Sec. A.2 (see Sec. A.1.1 for the
corresponding definitions). Again we quote in the following only those kinematic factors
with a given label n, that are non-vanishing.

A.3.1 P -wave kinematic factors for XAXB = V V

The only non-vanishing kinematic factor B̃V V
n, i1i2

in case of 1P1 partial-wave reactions is
given by

B̃V V
qq, V V (

1P1) =
∆2
m

24

(
8 β2 − 3 ∆2

AB − 27
)
, (A.111)

while for the combined 3PJ waves the non-vanishing kinematic factors read

B̃V V
rr, V V (

3PJ ) = − ∆2
m

8

(
β2 − 6 ∆2

AB

)
, (A.112)

B̃V V
qq, V V (

3PJ ) =
1

12

(
8 β2 − 3 ∆2

AB − 27
)
, (A.113)

B̃V V
rr, V S(

3PJ ) = B̃V V
rr, SV (

3PJ ) = −3
4
m̂W ∆m ∆AB , (A.114)

B̃V V
rr, SS(

3PJ ) = m̂2
W . (A.115)

As regards kinematic factors related to triangle- and box-topologies in the case XAXB =
V V , the relations (A.29) among the α = 1(2) and α = 3(4) kinematic factors are ful-
filled for any 2s+1LJ configuration (in particular also for the kinematic factors associated
with the absorptive part of the next-to-next-to-leading order S-wave Wilson coefficients,
ĝ(2s+1Ss) and ĥi(

2s+1Ss)). By virtue of the relations (A.29), we therefore only need to
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give here the kinematic factors for diagram-topologies α = 1, 2 for both the cases of
triangle and box diagram kinematic factors. Starting with the expressions C̃

(α) V V
n, i1V

for
1P1 partial waves we have

C̃
(1) V V
rqq, i1V

(1P1) =
3 m̂i1

4 m̂ m̂
∆m +

β2 ∆m

12 Pi1AB
(∆m − 6 m̂i1 + 2 ∆AB)

+
∆m

24 m̂ m̂

(
6 ∆2

m ∆AB −∆m(5 β
2 − 3 ∆2

AB)− 3 ∆AB

)
, (A.116)

C̃
(2) V V
qqr, i1V

(1P1) = C̃
(1) V V
rqq, i1V

(1P1) , (A.117)

whereas for the combined 3PJ quantum numbers we find

C̃
(1) V V
rrr, i1V

(3PJ ) =
3 m̂i1

4 m̂ m̂
∆m ∆AB +

β2 ∆m

12 Pi1AB
(∆m + 2 ∆AB)

− ∆m

8 m̂ m̂

(
2 ∆2

m∆AB −∆m (β2 − 3 ∆2
AB) + ∆AB

)
, (A.118)

C̃
(2) V V
rrr, i1V

(3PJ ) = C̃
(1) V V
rrr, i1V

(3PJ ) , (A.119)

C̃
(1)V V
rqq, i1V

(3PJ ) =
3 m̂i1

2 m̂ m̂
∆m −

β2

2 Pi1AB

− 1

12 m̂ m̂

(
5 β2 − 9 + 9 ∆2

m − 3 ∆AB (∆m +∆AB)
)
, (A.120)

C̃
(2) V V
qqr, i1V

(3PJ ) = C̃
(1) V V
rqq, i1V

(3PJ ) . (A.121)

The coefficients C̃
(α) V V
n, i1S

(1P1), corresponding to triangles with a Higgs particle exchanged
in the s-channel, vanish for all n. The corresponding expressions related to 3PJ reactions
read for diagram topologies α = 1, 2

C̃
(α) V V
rrr, i1S

(3PJ ) = − m̂W m̂i1

m̂ m̂
− β2 m̂W

6 Pi1AB
+

m̂W

4 m̂ m̂
(∆m ∆AB + 1) . (A.122)

All the remaining non-vanishing kinematic factors C̃
(α) V V
n, i1X

associated with 1P1 and 3PJ
scattering reactions with both X = V, S are related to the above expressions by

C̃
(1) V V
qqr, i1X

(2s+1PJ) = C̃
(2) V V
rqq, i1X

(2s+1PJ) = C̃
(1) V V
rrr, i1X

(2s+1PJ)|mi1
→−mi1

,

C̃
(1) V V
qrq, i1X

(2s+1PJ) = C̃
(2) V V
qrq, i1X

(2s+1PJ) = C̃
(1) V V
rqq, i1X

(2s+1PJ)|mi1
→−mi1

, (A.123)

where these relations hold in particular in case of separate 3PJ , J = 0, 1, 2, partial-wave
configurations and hence trivially for the combined 3PJ waves. Finally, the terms related
to box diagrams give rise to the following non-vanishing coefficients

D̃
(1)V V
rrrr,i1i2

(1P1)

= − m̂i1m̂i2

4 (m̂ m̂)2
− m̂i1

4 (m̂ m̂)2
(∆m ∆AB − 1)
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− 1

48 (m̂ m̂)2

(
∆2
m (2 β2 − 3 ∆2

AB) + 3
)
− β4

12 Pi1AB Pi2BA

− β2

12 m̂ m̂ Pi1AB
(∆m ∆AB + 2 m̂i2 − 1) +

{
A↔ B, i1 ↔ i2

}
, (A.124)

D̃
(2)V V
rrrr,i1i2

(1P1)

=
m̂i1m̂i2

4 (m̂ m̂)2
− m̂i1

4 (m̂ m̂)2
(∆m ∆AB + 1)

− 1

48 (m̂ m̂)2

(
∆2
m (2 β2 − 3 ∆2

AB)− 6 ∆m∆AB − 3
)
+

β4

12 Pi1AB Pi2AB

− β2

12 m̂ m̂ Pi1AB
(∆m ∆AB − 2 m̂i2 + 1) +

{
i1 ↔ i2

}
, (A.125)

D̃
(1)V V
rqqr,i1i2

(1P1)

=
m̂i1m̂i2

4 (m̂ m̂)2
− 1

48 (m̂ m̂)2

(
12 ∆4

m −∆2
m (12− 4 β2 + 3 ∆2

AB) + 3
)

− β2

12 m̂ m̂ Pi1AB

(
2 ∆2

m +∆m (2 m̂i1 −∆AB)− 1
)

− β2

12 Pi1ABPi2BA

(
2 ∆2

m − 2 ∆m (m̂i1 + m̂i2) + β2 + 8 m̂i1m̂i2

+2 (m̂i1 − m̂i2) ∆AB − 2 ∆2
AB

)
+
{
A↔ B , i1 ↔ i2

}
, (A.126)

D̃
(2)V V
rqqr,i1i2

(1P1)

= − m̂i1m̂i2

4 (m̂ m̂)2
− β2

12 m̂ m̂ Pi1AB

(
2 ∆2

m −∆m (2 m̂i1 −∆AB)− 1
)

− 1

48 (m̂ m̂)2

(
12 ∆3

m (∆m +∆AB)−∆2
m (12 + 4 β2 − 3 ∆2

AB)

− 6 ∆m ∆AB + 3)

+
β2

12 Pi1AB Pi2AB

(
2 ∆2

m − 2 ∆m (m̂i1 + m̂i2 − 2 ∆AB)

−2 ∆AB (m̂i1 + m̂i2 −∆AB)− β2 + 8 m̂i1m̂i2

)

+
{
i1 ↔ i2

}
. (A.127)
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In case of combined 3PJ waves we have

D̃
(1)V V
rrrr,i1i2

(3PJ )

=
m̂i1m̂i2

2 (m̂ m̂)2

(
1−∆2

m

)
+

m̂i1

4 (m̂ m̂)2

(
2 ∆2

m −∆m ∆AB − 1
)

+
1

48 (m̂ m̂)2

(
18 ∆4

m + 3 ∆2
m (β2 − 2 ∆2

AB − 10)− 4 β2 + 6 ∆2
AB + 12

)

+
β2

12 m̂ m̂ Pi1AB

(
5 ∆2

m +∆m ∆AB + 2 (2 m̂i1 + m̂i2 − 2)
)

+
β2

12 Pi1AB Pi2BA

(
3 ∆2

m + 4 (β2 − 3 m̂i1m̂i2)− 3 ∆2
AB

)

+
{
A↔ B , i1 ↔ i2

}
, (A.128)

D̃
(2)V V
rrrr,i1i2

(3PJ )

=
m̂i1m̂i2

2 (m̂ m̂)2

(
1 + ∆2

m

)
− m̂i1

4 (m̂ m̂)2

(
2 ∆2

m + 3 ∆m ∆AB + 1
)

+
1

48 (m̂ m̂)2

(
18 ∆4

m + 12 ∆3
m ∆AB − 3 ∆2

m (β2 − 2 ∆2
AB + 6) + 12 ∆m ∆AB

− 4 β2 + 6 ∆2
AB + 12

)

+
β2

12 m̂ m̂ Pi1AB

(
3 ∆2

m −∆m ∆AB + 2 (2 m̂i1 + m̂i2 − 2)
)

− β2

36 Pi1AB Pi2AB

(
9 ∆2

m + 18 ∆m ∆AB − 12 (β2 − 3 m̂i1m̂i2) + 9 ∆2
AB

)

+
{
i1 ↔ i2

}
, (A.129)

D̃
(1)V V
rqqr,i1i2

(3PJ )

=
m̂i1m̂i2

2 (m̂ m̂)2
∆2
m +

2 m̂i1

m̂ m̂
∆m

+
1

48 (m̂ m̂)2

(
6 ∆4

m + 3 ∆2
m (β2 − 6)− 8 β2 + 6 ∆2

AB + 6
)

+
β2

12 m̂ m̂ Pi1AB

(
∆2
m +∆m (2 m̂i1 − 4 m̂i2 −∆AB)− 2

)

+
β2

12 Pi1AB Pi2BA

(
3 ∆2

m − 6 ∆m (m̂i1 + m̂i2) + 2 (β2 + 6 m̂i1m̂i2)

+ 6 (m̂i1 − m̂i2) ∆AB − 3 ∆2
AB

)
+
{
A↔ B , i1 ↔ i2

}
, (A.130)
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D̃
(2)V V
rqqr,i1i2

(3PJ )

= − m̂i1m̂i2

2 (m̂ m̂)2
∆2
m −

2 m̂i1

m̂ m̂
∆m

− 1

48 (m̂ m̂)2

(
6 ∆4

m − 3 ∆2
m (β2 + 2) + 12 ∆m ∆AB − 8 β2 + 6 ∆2

AB + 6
)

− β2

12 m̂ m̂ Pi1AB

(
3 ∆2

m −∆m (2 m̂i1 + 4 m̂i2 −∆AB)− 2
)

+
β2

12 Pi1AB Pi2AB

(
3 ∆2

m − 6 ∆m (m̂i1 + m̂i2 −∆AB)− 2 (β2 − 6 m̂i1m̂i2)

− 6 (m̂i1 + m̂i2) ∆AB + 3 ∆2
AB

)
+
{
i1 ↔ i2

}
. (A.131)

The remaining non-vanishing kinematic factors D̃
(α)V V
n, i1i2

for diagram topologies α = 1, 2
are related to the expressions given above by

D̃
(α)V V
qqqq,i1i2

(2s+1LJ ) = D̃
(α) V V
rrrr,i1i2

(2s+1LJ)|mi1,2
→−mi1,2

,

D̃
(α) V V
rrqq,i1i2

(2s+1LJ ) = D̃
(α) V V
rrrr,i1i2

(2s+1LJ)|mi2
→−mi2

,

D̃
(α) V V
qqrr,i1i2

(2s+1LJ ) = D̃
(α) V V
rrrr,i1i2

(2s+1LJ)|mi1
→−mi1

,

D̃
(α) V V
qrrq,i1i2

(2s+1LJ ) = D̃
(α) V V
rqqr,i1i2

(2s+1LJ)|mi1,2
→−mi1,2

,

D̃
(α) V V
rqrq,i1i2

(2s+1LJ ) = D̃
(α) V V
rqqr,i1i2

(2s+1LJ)|mi2
→−mi2

,

D̃
(α) V V
qrqr,i1i2

(2s+1LJ ) = D̃
(α) V V
rqqr,i1i2

(2s+1LJ)|mi1
→−mi1

, (A.132)

where these relations hold for the kinematic factors related to any 2s+1LJ partial-wave
reaction.

A.3.2 P -wave kinematic factors for XAXB = V S

The only non-vanishing kinematic factor expression associated with 1P1 partial-wave
reactions and related to selfenergy diagrams reads

B̃V S
qq, V V (

1P1) =
m̂2
W

4
∆2
m . (A.133)

In case of combined 3PJ waves we have

B̃V S
rr, V V (

3PJ ) = − m̂2
W

4
∆2
m , (A.134)

B̃V S
qq, V V (

3PJ ) =
m̂2
W

2
, (A.135)

B̃V S
rr, V S(

3PJ ) = B̃V S
rr, SV (

3PJ ) =
m̂W

8
∆m (3−∆AB) , (A.136)
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B̃V S
rr, SS(

3PJ ) =
1

16
(β2 − 9 + 6 ∆AB −∆2

AB) . (A.137)

The non-vanishing kinematic factors C̃
(α) V S
n, i1V

related to the four generic triangle topologies
with gauge boson exchange V in the single s-channel read

C̃
(1) V S
rqq, i1V

(1P1) =
m̂W m̂i1

4 m̂ m̂
∆2
m +

m̂W ∆m

8 m̂ m̂

(
∆2
m +∆m − 1 + ∆AB

)
+
β2 m̂W∆m

12 Pi1AB
, (A.138)

C̃
(2) V S
qqr, i1V

(1P1) = C̃
(1) V S
rqq, i1V

(1P1) , (A.139)

C̃
(3) V S
rqq, i1V

(1P1) =−
m̂W m̂i1

4 m̂ m̂
∆2
m −

m̂W ∆m

8 m̂ m̂

(
∆2
m −∆m − 1 + ∆AB

)

− β2 m̂W∆m

12 Pi1BA
, (A.140)

C̃
(4) V S
qqr, i1V

(1P1) = C̃
(3) V S
rqq, i1V

(1P1) . (A.141)

In case of combined 3PJ wave reactions the kinematic factors C̃
(α) V S
n, i1V

read

C̃
(1) V S
rrr, i1V

(3PJ ) = C̃
(2) V S
rrr, i1V

(3PJ ) = − C̃
(1) V S
rqq, i1V

(1P1) , (A.142)

C̃
(3) V S
rrr, i1V

(3PJ ) = C̃
(4) V S
rrr, i1V

(3PJ ) = − C̃
(3) V S
rqq, i1V

(1P1)|m̂i1
→−m̂i1

, (A.143)

C̃
(1) V S
rqq, i1V

(3PJ ) = C̃
(2) V S
qqr, i1V

(3PJ )

=
m̂W m̂i1

2 m̂ m̂
+

m̂W

4 m̂ m̂
(∆m ∆AB + 1)− β2 m̂W

6 Pi1AB
, (A.144)

C̃
(3) V S
rqq, i1V

(3PJ ) = C̃
(4) V S
qqr, i1V

(3PJ )

= − m̂W m̂i1

2 m̂ m̂
− m̂W

4 m̂ m̂
(∆m ∆AB − 1)− β2 m̂W

6 Pi1BA
. (A.145)

Turning to C̃
(α) V S
n, i1S

factors we find that all kinematic factors corresponding to the 1P1

configuration vanish. Kinematic factors C̃
(α) V S
n, i1S

in combined 3PJ partial-wave reactions
read

C̃
(1) V S
rrr, i1S

(3PJ ) =
1

16 m̂ m̂

(
β2 − 3 + (4−∆AB) ∆AB + (∆2

m +∆m)(3−∆AB)
)

+
m̂i1 ∆m

8 m̂ m̂
(3−∆AB) +

β2

24 Pi1AB
(∆m + 3 + 2 m̂i1) , (A.146)

C̃
(2) V S
rrr, i1S

(3PJ ) = C̃
(1) V S
rrr, i1S

(3PJ ) , (A.147)

C̃
(3) V S
rrr, i1S

(3PJ ) = − 1

16 m̂ m̂

(
β2 − 3 + (4−∆AB) ∆AB + (∆2

m −∆m)(3−∆AB)
)

+
m̂i1 ∆m

8 m̂ m̂
(3−∆AB) +

β2

24 Pi1BA
(∆m − 3− 2 m̂i1) , (A.148)

C̃
(4) V S
rrr, i1S

(3PJ ) = C̃
(3) V S
rrr, i1S

(3PJ ) . (A.149)
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The additional non-vanishing kinematic factor expressions C̃
(α)V S
n, i1X

with X = V, S are
related to the above given expressions via (A.55) (where the label 2s+1SJ in the latter
equations should be replaced by 2s+1LJ , indicating that the relations hold for both the
expressions related to dimension-6 and 8 terms in δLann).

Finally, kinematic factors D̃
(α)
n, i1i2

for 1P1 partial-wave reactions are given by

D̃
(α)V S
rrrr, i1i2

(1P1) =
β2

24 (m̂ m̂)2
,

D̃
(1)V S
rqqr, i1i2

(1P1)

= − ∆m

8 (m̂ m̂)2

(
(∆2

m − 1 + ∆AB) (m̂i1 + m̂i2)−∆m(m̂i1 − m̂i2)
)

− m̂i1m̂i2

4 (m̂ m̂)2
∆2
m −

1

48 (m̂ m̂)2

(
∆2
m (3∆2

m − 9 + 6∆AB)

−β2 + 3− 3 (2−∆AB)∆AB

)

− β2

24 m̂ m̂ Pi1AB
(∆m(∆m + 2 m̂i2 − 2)− 1− 2 m̂i1)

− β2

24 m̂ m̂ Pi2BA
(∆m(∆m + 2 m̂i1 + 2)− 1 + 2 m̂i2)

− β2

12 Pi1ABPi2BA

(
∆m(∆m + 2 m̂i1 + 2 m̂i2) + β2 + 4 m̂i1m̂i2

−(2 m̂i1 − 2 m̂i2 +∆AB) ∆AB) , (A.150)

D̃
(2)V S
rqqr, i1i2

(1P1)

=
m̂i1∆m

8 (m̂ m̂)2

(
∆2
m +∆m − 1 + ∆AB

)
+

m̂i1m̂i2

8 (m̂ m̂)2
∆2
m

+
1

96 (m̂ m̂)2

(
3 (∆2

m +∆m − 1) (∆2
m +∆m − 1 + 2 ∆AB)− β2 + 3 ∆2

AB

)

+
β2

24 m̂ m̂ Pi1AB
(∆m (∆m + 2 m̂i2)− 2 m̂i1 − 1)

− β2

24 Pi1ABPi2AB

(
(∆m + 2 (m̂i1 + m̂i2 +∆AB)) ∆m − β2 + 4 m̂i1m̂i2

+ (2 (m̂i1 + m̂i2) + ∆AB)∆AB

)
+
{
i1 ↔ i2

}
, (A.151)

D̃
(3)V S
rqqr, i1i2

(1P1) = D̃
(1) V S
rqqr, i1i2

(1P1)|m̂i1
↔ m̂i2

, (A.152)

D̃
(4)V S
rqqr, i1i2

(1P1) = D̃
(2) V S
rqqr, i1i2

(1P1)| m̂↔m̂, m̂i1,2
→−m̂i1,2

. (A.153)
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The kinematic factor expressions D̃
(α)
n, i1i2

related to 3PJ partial-wave reactions read

D̃
(1)V S
rrrr, i1i2

(3PJ )

=
∆m

8 (m̂ m̂)2

(
(m̂i1 − m̂i2) (∆

2
m +∆AB − 1)− (m̂i1 + m̂i2)∆m

)
− m̂i1m̂i2

4(m̂ m̂)2
∆2
m

+
1

48 (m̂ m̂)2

(
(3 ∆2

m + 4 β2 − 9 + 6 ∆AB)∆
2
m − 3 (β2 − (1−∆AB)

2 )
)

− β2

24 m̂ m̂ Pi1AB
((∆m + 2 (2 m̂i1 + m̂i2 +∆AB + 1))∆m + 2 m̂i1 + 1)

− β2

24 m̂ m̂ Pi2BA
((∆m − 2 (2 m̂i2 + m̂i1 +∆AB + 1))∆m + 2 m̂i2 + 1)

+
β2

12 Pi1AB Pi2BA

(
3∆m (∆m + 2 (m̂i1 − m̂i2))− 12 m̂i1m̂i2 + β2

−3 ∆AB (2 (m̂i1 + m̂i2) + ∆AB)) , (A.154)

D̃
(2)V S
rrrr, i1i2

(3PJ )

= − m̂i1∆m

8 (m̂ m̂)2
(∆m(∆m + 1) + ∆AB − 1)− m̂i1m̂i2

8 (m̂ m̂)2
∆2
m

− 1

96 (m̂ m̂)2

(
(3 ∆2

m + 6 ∆m − 4 β2 − 3 + 6 ∆AB)∆
2
m

+ 6 ∆m(∆AB − 1)− 3 (β2 − (1−∆AB)
2 )
)

− β2

24 m̂ m̂ Pi1AB
(∆m (3 ∆m + 2 (2 m̂i1 + m̂i2 +∆AB))− 2 m̂i1 − 1)

+
β2

24 Pi1AB Pi2AB

(
3 ∆m(∆m + 2 (m̂i1 + m̂i2 +∆AB)) + 12 m̂i1m̂i2 − β2

+ 3 ∆AB (2 (m̂i1 + m̂i2) + ∆AB)
)

+
{
i1 ↔ i2

}
, (A.155)

D̃
(3)V S
rrrr, i1i2

(3PJ ) = D̃
(1)V S
rrrr, i1i2

(3PJ )|m̂i1
↔ m̂i2

, (A.156)

D̃
(4)V S
rrrr, i1i2

(3PJ ) = D̃
(2)V S
rrrr, i1i2

(3PJ )| m̂↔m̂ , (A.157)

D̃
(1)V S
rqqr, i1i2

(3PJ )

= − 1

4 (m̂ m̂)2
((m̂i1 + m̂i2) ∆m∆AB − m̂i1 + m̂i2)−

m̂i1m̂i2

2 (m̂ m̂)2

+
1

24 (m̂ m̂)2

(
∆2
m(β

2 − 3 ∆2
AB) + 3

)
+

β2

12 m̂ m̂ Pi1AB
(∆m∆AB + 2 m̂i2 − 1)
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− β2

12 m̂ m̂ Pi2BA
(∆m ∆AB + 2 m̂i1 + 1) +

β4

6 Pi1AB Pi2BA
, (A.158)

D̃
(2)V S
rqqr, i1i2

(3PJ )

=
m̂i1

4 (m̂ m̂)2
(∆m∆AB + 1) +

m̂i1m̂i2

4 (m̂ m̂)2

− 1

48 (m̂ m̂)2

(
∆2
m (β2 − 3 ∆2

AB)− 6 ∆m∆AB − 3
)
+

β4

12 Pi1ABPi2AB

− β2

12 m̂ m̂ Pi1AB
(∆m∆AB + 2 m̂i2 + 1) +

{
i1 ↔ i2

}
, (A.159)

D̃
(3)V S
rqqr, i1i2

(3PJ ) = D̃
(1)V S
rqqr, i1i2

(3PJ )|m̂i1
↔ m̂i2

, (A.160)

D̃
(4)V S
rqqr, i1i2

(3PJ ) = D̃
(2)V S
rqqr, i1i2

(3PJ )| m̂↔m̂, m̂i1,2
→ −m̂i1,2

. (A.161)

Note that relation (A.156) implies that the denominator structures Pi1AB and Pi2BA in
the kinematic factor corresponding to diagram topology α = 1 have to be replaced by
Pi2AB and Pi1BA respectively, in order to arrive at the kinematic factor related to diagram
topology α = 3. Likewise, in (A.157) the replacement rule for the kinematic factor for
diagram-topology α = 2 implies the replacement of Pi1AB and Pi2AB by Pi1BA and Pi2BA,
respectively. Similar replacements are needed to obtain the α = 3, 4 kinematic factors
from the α = 1, 2 expressions with n = rqqr using (A.160) and (A.161). The relations
among kinematic factors in (A.156–A.157) and (A.160–A.161) also hold for the individual
kinematic factors related to 3PJ partial-wave reactions with J = 0, 1, 2.

The remaining non-vanishing kinematic factors D̃
(α)
n, i1i2

for diagram topologies α = 1, 2
and α = 3, 4 derive from the above given expressions using the relations (A.65) and

(A.66), valid for D̃
(α)V S
n, i1i2

(2s+1LJ) expressions related to any 2s+1LJ partial-wave reaction.

A.3.3 P -wave kinematic factors for XAXB = SS

In case of XAXB = SS the only non-vanishing kinematic factor B̃SS
n, i1i2 in 1P1 partial-

wave scattering reactions reads

B̃SS
qq, V V (

1P1) =
β2

12
∆2
m , (A.162)

while the corresponding kinematic factors for combined 3PJ reactions read

B̃SS
rr, V V (

3PJ ) =
1

4
∆2
m ∆2

AB , (A.163)

B̃SS
qq, V V (

3PJ ) =
β2

6
, (A.164)

B̃SS
rr, V S(

3PJ ) = B̃SS
rr, SV (

3PJ ) =
m̂W

4
∆m ∆AB , (A.165)
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B̃SS
rr, SS(

3PJ ) =
m̂2
W

4
. (A.166)

The kinematic factors for diagram topologies α = 3(4) and α = 1(2) obey in both
the cases of triangle and box diagrams the relations (A.71), that generically apply for
the respective kinematic factors related to a given 2s+1LJ partial-wave configuration,
including kinematic factors related to coefficients ĝ(2s+1Ss) and ĥi(

2s+1Ss). Expressions
for certain triangle- or box-topology related kinematic factors, that we do not write
explicitly below, can therefore be obtained from the relations (A.71).

In case of 1P1 waves we find the following expressions for kinematic factors C̃
(α)SS
n, i1V

and diagram topologies α = 1, 2:

C̃
(1)SS
rqq, i1V

(1P1) = C̃
(2)SS
qqr, i1V

(1P1) =
β2

24 m̂ m̂
∆2
m −

β2 ∆m

12 Pi1AB
(∆m + 2m̂i1 +∆AB) . (A.167)

In case of combined 3PJ reactions the corresponding expressions read

C̃
(1)SS
rrr, i1V

(3PJ ) = C̃
(2)SS
rrr, i1V

(3PJ )

=− m̂i1

4 m̂ m̂
∆m∆AB −

∆m∆AB

8 m̂ m̂
(∆m∆AB + 1) +

β2 ∆m∆AB

12 Pi1AB
, (A.168)

C̃
(1)SS
rqq, i1V

(3PJ ) = C̃
(2)SS
qqr, i1V

(3PJ ) =
β2

12 m̂ m̂
. (A.169)

Turning to kinematic factors C̃
(α)SS
n, i1S

with α = 1, 2 we find

C̃
(1)SS
rrr, i1S

(3PJ ) = C̃
(2)SS
rrr, i1S

(3PJ )

= − m̂W

8 m̂ m̂
(∆m∆AB + 1)− m̂W

4 m̂ m̂
m̂i1 +

β2

12 Pi1AB
m̂W , (A.170)

and, as in the case of leading-order 1S0 and 3S1 kinematic factors, the remaining non-
vanishing expressions for C̃

(α)SS
n, i1X

with both X = V, S and α = 1, 2 that are associated
with 1P1 and 3PJ (as well as the separate 3PJ , J = 0, 1, 2) partial-wave configurations,
derive from the above given expressions using (A.75). Finally, the box-diagram related

kinematic factors D̃
(α)SS
n, i1i2

for diagram topologies α = 1, 2 are given by

D̃
(1)SS
rqqr, i1i2

(1P1) = − β2 ∆2
m

96 (m̂ m̂)2
+

β2 ∆m

24 m̂ m̂ Pi1AB
(∆m + 2 m̂i1 +∆AB)

− β2

24 Pi1ABPi2BA

(
∆2
m + 2 ∆m (m̂i1 + m̂i2)

+(2 m̂i1 +∆AB) (2 m̂i2 −∆AB))

+
{
A↔ B , i1 ↔ i2

}
, (A.171)
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D̃
(2)SS
rqqr, i1i2

(1P1) =
β2 ∆2

m

96 (m̂ m̂)2
− β2 ∆m

24 m̂ m̂ Pi1AB
(∆m + 2 m̂i1 +∆AB)

+
β2

24 Pi1ABPi2AB

(
∆2
m + 2 ∆m (m̂i1 + m̂i2 +∆AB)

+(2 m̂i1 +∆AB) (2 m̂i2 +∆AB))

+
{
i1 ↔ i2

}
. (A.172)

For the combined 3PJ reactions we have

D̃
(1)SS
rrrr, i1i2

(3PJ ) =
m̂i1m̂i2

8 (m̂ m̂)2
− m̂i1

8 (m̂ m̂)2
(∆m∆AB − 1)

+
β2

24 m̂ m̂ Pi1AB
(∆m∆AB − 2 m̂i2 − 1) +

β4

24 Pi1ABPi2BA

− 1

32 (m̂ m̂)2

(
∆2
m∆

2
AB − 1

)
+
{
A↔ B , i1 ↔ i2

}
, (A.173)

D̃
(2)SS
rrrr, i1i2

(3PJ ) =
m̂i1m̂i2

8 (m̂ m̂)2
+

m̂i1

8 (m̂ m̂)2
(∆m∆AB + 1)

− β2

24 m̂ m̂ Pi1AB
(∆m∆AB + 2 m̂i2 + 1) +

β4

24 Pi1ABPi2AB

+
1

32 (m̂ m̂)2
(∆m∆AB + 1)2 +

{
i1 ↔ i2

}
, (A.174)

D̃
(α)SS
rqqr, i1i2

(3PJ ) = (−1)α β2

24 (m̂ m̂)2
. (A.175)

The remaining non-vanishing kinematic factors can be related to the above given ex-
pressions by making use of the following relations among D̃

(α)SS
n, i1i2

kinematic factors with
different labels n:

D̃
(α)SS
qqqq, i1i2

(2s+1LJ ) = D̃
(α)SS
rrrr, i1i2

(2s+1LJ )| m̂ i1,2
→ −m̂ i1,2

,

D̃
(α)SS
rrqq, i1i2

(2s+1LJ ) = − D̃(α)SS
rrrr, i1i2

(2s+1LJ)| m̂ i2
→ −m̂ i2

,

D̃
(α)SS
qqrr, i1i2

(2s+1LJ ) = − D̃(α)SS
rrrr, i1i2

(2s+1LJ)| m̂ i1
→ −m̂ i1

,

D̃
(α)SS
qrrq, i1i2

(2s+1LJ ) = D̃
(α)SS
rqqr, i1i2

(2s+1LJ ) , | m̂ i1,2
→ −m̂ i1,2

,

D̃
(α)SS
rqrq, i1i2

(2s+1LJ ) = − D̃(α)SS
rqqr, i1i2

(2s+1LJ )| m̂ i2
→ −m̂ i2

,

D̃
(α)SS
qrqr, i1i2

(2s+1LJ ) = − D̃(α)SS
rqqr, i1i2

(2s+1LJ )| m̂ i1
→ −m̂ i1

. (A.176)

Note that these relations hold among the kinematic factors associated with any of the
Wilson coefficients f̂(2s+1LJ), ĝ(

2s+1Ss) and ĥi(
2s+1Ss).
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A.3.4 P -wave kinematic factors for XAXB = ff

The relevant kinematic factors B̃ff
n, i1i2

, related to the selfenergy diagram topology with
a fermion-fermion final state, read

B̃ff
qqqq, V V (

1P1) =
∆2
m

12

(
β2 + 3− 12 m̂Am̂B − 3 ∆2

AB

)
, (A.177)

for the 1P1 partial-wave configuration, and

B̃ff
rrrr, V V (

3PJ ) = − ∆2
m

4

(
β2 − 1 + 4 m̂Am̂B +∆2

AB

)
, (A.178)

B̃ff
rrrr, V S(

3PJ ) = B̃ff
rrrr, SV (

3PJ ) = −∆m

2
(m̂A − m̂B − (m̂A + m̂B) ∆AB) , (A.179)

B̃ff
rrrr, SS(

3PJ ) =
1

4

(
β2 + 1− 4 m̂Am̂B −∆2

AB

)
, (A.180)

B̃ff
qqqq, V V (

3PJ ) =
1

6

(
β2 + 3− 12 m̂Am̂B − 3 ∆2

AB

)
, (A.181)

for the 3PJ case. In the case that the s-channel exchanged particles are of the same
type (i1i2 = V V, SS), the additional non-vanishing kinematic factors are related to the
expressions (A.177)–(A.181) as

B̃ff
rqqr, i1i2

(2s+1PJ) = B̃ff
rrrr, i1i2

(2s+1PJ)|m̂Am̂B→−m̂Am̂B
, (A.182)

B̃ff
qrrq, i1i2

(2s+1PJ) = B̃ff
qqqq, i1i2

(2s+1PJ)|m̂Am̂B→−m̂Am̂B
, (A.183)

where the notation for the replacement rule applies to the term m̂Am̂B, but all other
occurrences of m̂A or m̂B shall be left untouched. Similarly, in case of s-channel particles
of different type (i1i2 = V S, SV ), the additional non-vanishing B̃ff

n, i1i2
terms are given

by

B̃ff
rqqr, i1i2

(2s+1PJ) = − B̃ff
rrrr, i1i2

(2s+1PJ)|m̂A→−m̂A
, (A.184)

B̃ff
qrrq, i1i2

(2s+1PJ) = − B̃ff
qqqq, i1i2

(2s+1PJ)|m̂A→−m̂A
. (A.185)

The relations (A.91) among kinematic factors for diagram topologies α = 3(4) and dia-
gram topologies α = 1(2) for both the cases of box and triangle diagrams are valid among
kinematic factors associated with any 2s+1LJ partial wave (in particular also for ĝ(2s+1Ss)
and ĥi(

2s+1Ss) associated kinematic factors). Therefore we give only non-vanishing kine-
matic factors related to triangle- and box-topologies α = 1, 2 in the following.

The structures C
(α) ff
n, i1V

(2s+1PJ) that we obtain for diagram topologies α = 1, 2 read

C
(α) ff
qqqq, i1X

(1P1) =
∆m

48 m̂ m̂

(
6 (m̂A + m̂B)∆AB − 6 (m̂A − m̂B)

−∆m(β
2 + 3− 12 m̂Am̂B − 3 ∆2

AB)
)
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+
β2∆m

12 Pi1AB
(m̂A − m̂B −∆AB) , (A.186)

and, for the combined 3PJ partial-wave reactions,

C
(α) ff
rrrr, i1X

(3PJ ) =
∆m

16 m̂ m̂

(
−2 (m̂A + m̂B)∆AB + 2 (m̂A − m̂B)

+ ∆m(β
2 − 1 + 4 m̂Am̂B +∆2

AB)
)

− β2∆m

12 Pi1AB
(m̂A − m̂B +∆AB) , (A.187)

C
(1) ff
rqrq, i1X

(3PJ ) =
1

24 m̂ m̂

(
6 (m̂A + m̂B − (m̂A − m̂B) ∆AB) ∆m

+ β2 + 3 + 12 m̂Am̂B − 3 ∆2
AB

)

− β2

6 Pi1AB
(1− m̂A + m̂B) , (A.188)

C
(2) ff
qrqr, i1X

(3PJ ) = C
(1) ff
rqrq, i1X

(3PJ ) . (A.189)

The following relations for the additional non-vanishing C
(α) ff
n, i1V

hold:

C̃
(1) ff
rqrq, i1V

(1P1) = C̃
(2) ff
qrqr, i1V

(1P1) = − C̃
(α) ff
qqqq, i1V

(1P1)|mB→−mB
,

C̃
(α) ff
qrrq, i1V

(1P1) = C̃
(α) ff
qqqq, i1V

(1P1)|mA→−mA
,

C̃
(1) ff
rrqq, i1V

(1P1) = C̃
(2) ff
qqrr, i1V

(1P1) = − C̃
(α) ff
qqqq, i1V

(1P1)|mA,B→−mA,B
,

C̃
(1) ff
qqrr, i1V

(3PJ ) = C̃
(2) ff
rrqq, i1V

(3PJ ) = − C̃
(1) ff
rrrr, i1V

(3PJ )|mA,B→−mA,B
,

C̃
(α) ff
qrrq, i1V

(3PJ ) = − C̃(1) ff
rqrq, i1V

(3PJ )|mA,B→−mA,B
. (A.190)

Turning to the expressions C
(α) ff
n, i1S

, we find that all kinematic factors in case of 1P1

reactions vanish, as it has to be due to total angular-momentum conservation. The
non-vanishing kinematic factors in combined 3PJ reactions read (α = 1, 2)

C̃
(α) ff
rrrr, i1S

(3PJ ) =
1

16 m̂ m̂

(
2 (−m̂A + m̂B + (m̂A + m̂B) ∆AB)∆m

+ β2 + 1− 4 m̂Am̂B −∆2
AB

)

− β2

12 Pi1AB
(1 + m̂A + m̂B) , (A.191)

C̃
(1) ff
qqrr, i1S

(3PJ ) = C̃
(2) ff
rrqq, i1S

(3PJ ) = C̃
(1) ff
rrrr, i1S

(3PJ )|mA,B→−mA,B
. (A.192)

In case of 1P1 partial-wave reactions the kinematic factors D̃
(α) ff
n, i1i2

for α = 1, 2 read

D̃
(1) ff
rrrr, i1i2

(1P1)
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=
1

384 (m̂ m̂)2

(
β2 (1 + ∆2

m)− (3− 12 m̂Am̂B − 3 ∆2
AB) (1−∆2

m)
)

+
β2

48 m̂ m̂ Pi1AB

(
1 + m̂A + m̂B +∆m (m̂A − m̂B +∆AB)

)

− β2

48 Pi1ABPi2BA
(1 + 2 m̂A +∆AB) (1 + 2 m̂B −∆AB)

+
{
A↔ B , i1 ↔ i2

}
, (A.193)

D̃
(2) ff
rrrr, i1i2

(1P1)

=
1

384 (m̂ m̂)2

(
β2 (∆2

m − 1) + (3− 12 m̂Am̂B − 3 ∆2
AB) (∆

2
m + 1)

− 12 ∆m (m̂A − m̂B − (m̂A + m̂B) ∆AB)
)

− β2

48 m̂ m̂ Pi1AB

(
1 + m̂A + m̂B −∆m (m̂A − m̂B +∆AB)

)

+
β2

48 Pi1ABPi2AB
(1 + 2 m̂A +∆AB) (1 + 2 m̂B −∆AB) +

{
i1 ↔ i2

}
, (A.194)

D̃
(1) ff
rrqq, i1i2

(1P1)

=
1

192 (m̂ m̂)2

(
β2 − 3 + 3 ∆2

AB + 12 ∆m (m̂A − m̂B − (m̂A + m̂B) ∆AB)

−∆2
m (β2 + 3 + 24 m̂Am̂B − 3 ∆2

AB)
)

+
β2

48 m̂ m̂ Pi1AB

(
1 + m̂A + m̂B −∆m (m̂A − m̂B +∆AB)

)

+
β2

48 m̂ m̂ Pi2BA

(
1− m̂A − m̂B −∆m (m̂A − m̂B −∆AB)

)

− β2

24 Pi1ABPi2BA

(
β2 − 4 m̂Am̂B

)
, (A.195)

D̃
(2) ff
rrqq, i1i2

(1P1)

= − 1

192 (m̂ m̂)2

(
β2 − 3 + 3 ∆2

AB +∆2
m (β2 + 3 + 24 m̂Am̂B − 3 ∆2

AB)
)

− β2

48 m̂ m̂ Pi1AB

(
1 + m̂A + m̂B +∆m (m̂A − m̂B +∆AB)

)

− β2

48 m̂ m̂ Pi2AB

(
1− m̂A − m̂B −∆m (m̂A − m̂B −∆AB)

)
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+
β2

24 Pi1ABPi2AB

(
β2 − 4 m̂Am̂B

)
. (A.196)

The corresponding expressions for combined 3PJ partial-wave reactions are

D̃
(1) ff
rrrr, i1i2

(3PJ ) = − 3 D̃
(1) ff
rrrr, i1i2

(1P1) +
β2

24 (m̂ m̂)2
(1 + ∆2

m) , (A.197)

D̃
(2) ff
rrrr, i1i2

(3PJ ) = 3 D̃
(2) ff
rrrr, i1i2

(1P1) +
β2

24 (m̂ m̂)2
(1−∆2

m) , (A.198)

D̃
(1) ff
rrqq, i1i2

(3PJ ) = D̃
(1) ff
rrqq, i1i2

(1P1)−
m̂Am̂B

2 (m̂ m̂)2
− β2

3 Pi1ABPi2BA
2 m̂Am̂B , (A.199)

D̃
(2) ff
rrqq, i1i2

(3PJ ) = − D̃(2) ff
rrqq, i1i2

(1P1)−
m̂Am̂B

2 (m̂ m̂)2
− β2

3 Pi1ABPi2AB
2 m̂Am̂B . (A.200)

The following relations can be used to obtain the remaining non-vanishing D̃
(α) ff
n, i1i2

expres-
sions in case of diagram topology α = 1. Note that they hold for any 2s+1LJ partial-wave
configuration.

D̃
(1) ff
qqqq, i1i2

(2s+1LJ ) = D̃
(1) ff
rrrr, i1i2

(2s+1LJ )|mA,B→−mA,B
,

D̃
(1) ff
qqrr, i1i2

(2s+1LJ ) = D̃
(1) ff
rrqq, i1i2

(2s+1LJ )|mA,B→−mA,B
,

D̃
(1) ff
rqqr, i1i2

(2s+1LJ ) = D̃
(1) ff
rrqq, i1i2

(2s+1LJ )|mA→−mA
,

D̃
(1) ff
qrrq, i1i2

(2s+1LJ ) = D̃
(1) ff
rrqq, i1i2

(2s+1LJ )|mB→−mB
,

D̃
(1) ff
rqrq, i1i2

(2s+1LJ ) = D̃
(1) ff
rrrr, i1i2

(2s+1LJ )|mA→−mA
,

D̃
(1) ff
qrqr, i1i2

(2s+1LJ ) = D̃
(1) ff
rrrr, i1i2

(2s+1LJ )|mB→−mB
. (A.201)

In case of diagram topology α = 2 analogous relations exist:

D̃
(2) ff
qqqq, i1i2

(2s+1LJ ) = D̃
(2) ff
rrrr, i1i2

(2s+1LJ )|mA,B→−mA,B
,

D̃
(2) ff
qqrr, i1i2

(2s+1LJ ) = D̃
(2) ff
rrqq, i1i2

(2s+1LJ )|mA,B→−mA,B
,

D̃
(2) ff
rqrq, i1i2

(2s+1LJ ) = D̃
(2) ff
rrqq, i1i2

(2s+1LJ )|mA→−mA
,

D̃
(2) ff
qrqr, i1i2

(2s+1LJ ) = D̃
(2) ff
rrqq, i1i2

(2s+1LJ )|mB→−mB
,

D̃
(2) ff
rqqr, i1i2

(2s+1LJ ) = D̃
(2) ff
rrrr, i1i2

(2s+1LJ )|mA→−mA
,

D̃
(2) ff
qrrq, i1i2

(2s+1LJ ) = D̃
(2) ff
rrrr, i1i2

(2s+1LJ )|mB→−mB
. (A.202)

A.3.5 P -wave kinematic factors for XAXB = ηη

In order to properly construct the coupling factors that go along the kinematic factors
B̃ηη
n, i1i2

presented below, we refer the reader to the rules set up in A.2.5.
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For 1P1 partial-wave processes, there is only one non-vanishing kinematic factor with
ghosts in the final state:

B̃ηη
qq,V V (

1P1) = − β2

48
∆2
m . (A.203)

The corresponding kinematic factors in combined 3PJ partial-wave processes read

B̃ηη
rr,V V (

3PJ ) =
∆2
m

16
(1−∆2

AB) , (A.204)

B̃ηη
qq,V V (

3PJ ) = − β2

24
, (A.205)

B̃ηη
rr,V S(

3PJ ) =
m̂W

8
∆m (1 + ∆AB) , (A.206)

B̃ηη
rr,SV (

3PJ ) = − m̂W

8
∆m (1−∆AB) , (A.207)

B̃ηη
rr,SS(

3PJ ) = − m̂2
W

4
. (A.208)
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Appendix B

Explicit expressions for the MSSM
potentials in Lpot

This appendix contains explicit expressions for all leading-order non-relativistic potential
interactions that can arise between MSSM neutralino and chargino two-particle states.
In Tab. B.1 we provide the coefficients of the Yukawa terms e−mXi

r/r generated by
the exchange of boson Xi (Xi = Z,W±, γ,H0

m, A
0
1, H

±) in tree-level χe1χe2 → χe4χe3
scattering processes of NRMSSM two-particle state χeaχeb .

1 The complete leading order
potential in χe1χe2 → χe4χe3 scattering is obtained as the sum of the coefficients in
Tab. B.1 multiplied by the corresponding e−mXi

r/r terms. As we have pointed out in
Sec. 7.1, the contribution from the pseudo-scalar Goldstone boson (G0 ≡ A0

2) does not
have to be considered, since it cancels against a gauge-dependent piece of the Z-exchange
potential, which has been consistently dropped in Tab. B.1. A similar cancellation occurs
between the potential from exchange of the charged pseudo-Goldstone bosons G± ≡ H±

2

and the gauge dependent part of the W±-exchange potential. Accordingly the potential
from G±-exchange does not have to be considered and the contributions from W±-
exchange in Tab. B.1 comprise only the corresponding gauge-independent terms. The
coefficients are written in terms of the (axial-) vector and (pseudo-) scalar coupling
factors defined in Appendix A.1.2.

1Note that we use the common notation H0
1 = H0 and H0

2 = h0.
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α2 e−MZ r

r
α2 e−MW r

r
α2

r
α2 e

−mφ r

r
α2 e

−M
H+ r

r

χ0
e1χ

0
e2 → χ0

e4χ
0
e3

λZv
(0),Z
e4e1 v

(0),Z
e3e2

+λS a
(0),Z
e4e1 a

(0),Z
e3e2

0 0 −s(0),φe4e1 s
(0),φ
e3e2 0

χ+
e1
χ−
e2
→ χ+

e4
χ−
e3

−λZvZe4e1vZe3e2
+λS a

Z
e4e1

aZe3e2

0 −vγe4e1vγe2e3 −sφe4e1 sφe2e3 0

χ0
e1χ

0
e2 → χ+

e4χ
−
e3 0

−λW vWe4e1vW∗
e3e2

+λS a
W
e4e1a

W ∗

e3e2

0 0 −sH+

e4e1 s
H+∗
e3e2

χ0
e1
χ0
e2
→ χ−

e4
χ+
e3

0
−λW vW∗

e4e1v
W
e3e2

+λS a
W∗
e4e1

aWe3e2

0 0 −sH+∗
e4e1

sH
+

e3e2

χ0
e1χ

+
e2 → χ0

e4χ
+
e3

λZv
(0),Z
e4e1 v

Z
e3e2

+λS a
(0),Z
e4e1 a

Z
e3e2

0 0 −s(0),φe4e1 s
φ
e3e2 0

χ0
e1
χ−
e2
→ χ0

e4
χ−
e3

−λZv(0),Ze4e1 v
Z
e2e3

+λS a
(0),Z
e4e1 a

Z
e2e3

0 0 −s(0),φe4e1 s
φ
e2e3

0

χ0
e1
χ+
e2
→ χ+

e4
χ0
e3

0
λWvWe4e1v

W∗
e2e3

+λS a
W
e4e1a

W∗
e2e3

0 0 −sH+

e4e1
sH

+∗
e2e3

χ0
e1
χ−
e2
→ χ−

e4
χ0
e3

0
λWvW∗

e4e1v
W
e2e3

+λS a
W∗
e4e1

aWe2e3

0 0 −sH+∗
e4e1

sH
+

e2e3

χ+
e1
χ+
e2
→ χ+

e4
χ+
e3

λZvZe4e1v
Z
e3e2

+λS a
Z
e4e1a

Z
e3e2

0 vγe4e1v
γ
e3e2

−sφe4e1 sφe3e2 0

χ−
e1χ

−
e2 → χ−

e4χ
−
e3

λZvZe1e4v
Z
e2e3

+λS a
Z
e1e4

aZe2e3

0 vγe1e4v
γ
e3e2 −sφe1e4 sφe2e3 0

Table B.1: Potentials that describe the non-relativistic interactions among chargino and
neutralino pairs in the MSSM at leading order in the non-relativistic expansion. The
potential from neutral scalar exchange φ has to be summed over the “physical” neutral
Higgs bosons, φ = H0, h0, A0. The expressions obtained from the table correspond
to the potential entries in method-1. The potentials for the channels not shown are
obtained trivially by interchanging indices (like χ−χ+ → χ−χ+ or χ+χ0 → χ+χ0) or are
vanishing (like χ−χ+ → χ+χ−). We have introduced the variable λS ≡ (3− 4S) as well
as λZ/W = 1 + δme4e1δme3e2/M

2
Z/W .
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Appendix C

Equivalence between method-1 and
method-2

In this appendix we show by means of an example, that in the formula for the Sommerfeld
enhancement factors in (8.34), written in terms of annihilation matrices and wave func-
tions (resulting as solutions of matrix-valued Schrödinger equations with corresponding
potential matrices) we can use either potential and annihilation matrices referring to
the method-1 basis or the corresponding method-2 expressions; the outcome will be the
same.

Instead of considering (8.34) it is more convenient for the following analysis to re-
fer to the equivalent formula (8.35), where the T matrices encode the corresponding
information on the wave functions. For the definition of the T matrix see Chap. 2.

Let us first recall from Sec. 7.2 that the method-1 two-particle basis treats as different
the states χeaχeb and χebχea with non-identical species χea and χeb. In method-2 however,
the second, redundant state χebχea – describing the same physical particle pair as the
first state χeaχeb – is left out. We can therefore already expect that the redundancy of
certain states in the method-1 basis translates into the corresponding solutions of the
Schrödinger equation and eventually the Sommerfeld enhancement factors, while in the
method-2 calculation redundant solutions will be automatically absent.

We consider here the simple example of a system consisting of three method-1 basis
states. The first state shall be composed out of identical particles. The second and
third basis states involve two different individual particle species but are redundant
with respect to the physical particle content. The corresponding method-2 basis thus
contains only two states, the one with the two identical particles, and one of the two
other redundant method-1 states. We can think of this system as the neutral two-
particle sector of the pure-wino NRMSSM: the method-1 basis states then correspond to
the three states χ0

1χ
0
1, χ

+
1 χ

−
1 and χ−

1 χ
+
1 , while in method-2 we encounter the two neutral

basis states (χ0χ0)11 ≡ χ0
1χ

0
1 and (χ+χ−)11 ≡ χ+

1 χ
−
1 , see Sec. 7.2.2. Referring to this

situation we establish the generic notation χ1χ1, χ2χ3 and χ3χ2 for the three method-1
basis states, with the obvious correspondence between χ1 and χ0

1 as well as similarly
between χ2,3 and χ±

1 . The method-2 basis then contains the states (χχ)11 = χ1χ1 and
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(χχ)23 = χ2χ3.
1 For these basis states we discuss now in turn the determination of the

corresponding Sommerfeld factors (8.35) in χ1χ1 and χ2χ3 pair-annihilation reactions
relying on potential and annihilation matrices corresponding to method-1 and method-
2.

The multi-component Schrödinger equation written with respect to the method-1
two-particle state basis in our example becomes a 3×3 matrix differential equation. The
corresponding leading-order potential matrices for total spin s = 0, 1 generically read

V (1)
s (r) =




V s
11 V s

12 V s
12

V s
21 V s

22 V s
23

V s
21 V s

23 V s
22




, (C.1)

where the first, second or third row (or column) refers to the χ1χ1, χ2χ3 or χ3χ2 state, re-
spectively. For instance, the component V s

12 is given by the leading-order spin-s potential
in χ1χ1 → χ2χ3 scattering. It is worth to recall from Sec. 7.1 that a difference between
the spin-0 and spin-1 potentials can only arise in case of non-vanishing axial-vector cou-
plings. As in the pure-wino NRMSSM all axial-vector couplings vanish, we encountered
the same potential matrix for both cases s = 0, 1 in that scenario, see Sec. 7.2.2. Here
we will consider the generic case where V

(1)
s=0(r) and V

(1)
s=1(r) are not necessarily equal. In

(C.1) we have used that the potential matrix entries V s
12 and V

s
13 are the same. This is be-

cause the scattering reactions χ1χ1 → χ2χ3 and χ1χ1 → χ3χ2 give the same amplitudes:
while the exchange of χ2χ3 by χ3χ2 corresponds to crossing the lines of the χ2 and χ3 in
the corresponding diagram, the amplitudes remain the same due to the identical particle
nature of the incoming χ1χ1 state. The same reasoning obviously applies to V s

21 and V
s
31.

Further we have taken into account that V s
32 = V s

23 as well as V s
22 = V s

33, which follows
from the fact that the amplitudes related to the corresponding reactions differ only by
a relabelling of the respective internal vertices. Finally note that the hermiticity of the
underlying MSSM Lagrangian, from which the potential interactions in the NRMSSM
derive, implies the relation V s

ab = V s ∗
ba .

In order to determine the Sommerfeld factors we have to construct the matrices T in
(8.35) involving certain basis solutions of the corresponding radial Schrödinger equation
subject to a certain orbital angular momentum L and spin s. The radial Schrödinger
equation in (2.23) can be written as

[
D(L) 1+ V (1)

s (r)
]
~u (L,s)(r) = 0 , (C.2)

1The explicit composition of the two-particle basis states in terms of single particle constituents is
to a certain extent arbitrary for our purposes here. The essential point is not the single particle content
but the properties of the two-particle system. For instance, without reference to the neutral sector of
the pure-wino NRMSSM we could have chosen as well the notation χ1χ1, χ1χ2, χ2χ1 for the three
method-1 basis states. Accordingly, the method-2 basis states would then be denoted by χ1χ1 and
χ1χ2. However, with the above convention for the composition of the two-particle basis states out of
individual particles χ1,2,3, the contact to the neutral sector of the pure-wino NRMSSM discussed in
Sec. 6.3 and Sec. 7.2.2 becomes most apparent.
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where we have introduced the L-dependent differential operator

D(L) =
1

mLSP

[
− d2

dr2
+
L(L+ 1)

r2
−mLSPE

]
. (C.3)

The matrix T is related to the three linear independent regular solutions ~u (i)(L,S)(r), i =
1, 2, 3, to (C.2), see Chap. 2 and in particular (2.42). To determine the regular solutions,
the structure of the potential matrix (C.1) suggests to first transform to a block-diagonal

Schrödinger equation with potential matrix Ṽ
(1)
s (r) defined by

Ṽ (1)
s = R · V (1)

s · R† =




V s
11

√
2V s

11 0

√
2 V s

11 V22 + V33 0

0 0 V22 − V33




. (C.4)

The constant, L- and s-independent 3× 3 matrix R is given by

R =




1 0 0

0 1√
2

1√
2

0 1√
2
− 1√

2




, (C.5)

Note that R = R† = R−1. Let us denote the three linear independent regular solutions
of the corresponding block-diagonal Schrödinger equation by ~̃u (i)(L,s) = R · ~u (i)(L,s). In
order to simplify the notation, we drop in the following the indices L and s on the wave
functions. However, it has to be kept in mind that we generically obtain different regular
solutions ~u (i=1,2,3)(r) and ~̃u (i=1,2,3)(r) for different pairs (L, s). Further we promote to
the matrix notation established in Chap. 2, where the regular solution vectors ~̃u (i) or
~u (i) of the corresponding Schrödinger equation appear in the columns of 3× 3 matrices
ũ and u. Due to the block-diagonal form of the Schrödinger equation for ~̃u, the solution
matrices obtain the generic form

ũ =




ũ11 ũ12 0

ũ21 ũ22 0

0 0 ũ33




, u = R† · ũ =




ũ11 ũ12 0

1√
2
ũ21

1√
2
ũ22

1√
2
ũ33

1√
2
ũ21

1√
2
ũ22

−1√
2
ũ33




. (C.6)

We can now use relation (2.42) to determine the matrix T from the product of matrices
u(L+1) and M−1. Without having to know the explicit form of the entries we infer from
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(C.6), that the matrices u(L+1) and M−1 must have the generic structure

[u
(L+1)
L (0)] =




Ũ11 Ũ12 0

Ũ21√
2

Ũ22√
2

Ũ33√
2

Ũ21√
2

Ũ22√
2

−Ũ33√
2



, M =




M11 M12 0

M21√
2

M22√
2

M33√
2

M21√
2

M22√
2

−M33√
2




. (C.7)

Similarly this also applies to the generic structure of matrices ũ(L+1) and M̃ that follows
from ũ in (C.6). Note that we use capital letters to denote the (L+1)-th derivatives of the
respective components of matrices ũ and u. The final ingredient for the determination
of the Sommerfeld factors is the corresponding method-1 annihilation matrix, which
depends on the (L, s) quantum numbers and has the generic form

Γ(1)[2s+1LJ ] =




1+(−1)s+L

2
Γ11

1+(−1)s+L

2
Γ12

1+(−1)s+L

2
Γ12

1+(−1)s+L

2
Γ21 Γ22 (−1)s+L Γ22

1+(−1)s+L

2
Γ21 (−1)s+L Γ22 Γ22




, (C.8)

as can be verified using the symmetry properties (5.9, 5.14) of the underlying Wilson
coefficients. Further recall that Γab = Γ∗

ba. For later convenience it is worth to note that
the transformed annihilation matrices Γ̃(1) = R·Γ(1) ·R† have the following generic form,
distinguishing the cases where L+ s is even or odd,

Γ̃(1)
even[

2s+1LJ ] =




Γ11

√
2Γ12 0

√
2Γ21 2 Γ22 0

0 0 0



, Γ̃

(1)
odd[

2s+1LJ ] =




0 0 0

0 0 0

0 0 2 Γ22




. (C.9)

In (C.8, C.9) we suppress the labels L and s on the matrix entries Γab = Γab(
2s+1LJ). To

avoid confusion let us therefore note that although the expression Γ22 appears in both
matrices in (C.9) it does not denote the same term. In the first case the Γ22 refers to the
(2, 2) entry in a corresponding matrix Γ(1)(2s+1LJ ) where L + s is even. In the second
case the entry Γ22 is associated with a matrix Γ(1)(2s+1LJ) with odd L+ s.

It is now easy to obtain the Sommerfeld factors from (8.35). Up to a global prefactor

given by [(2L+1)!!/((L+1)! k
(L+1)
a )]2, the enhancement factors in annihilation reactions

of the basis states a = 1 (χ1χ1) and a = 2 (χ2χ3) subject to a 2s+1LJ partial-wave
reaction with L+ s = even are given by

S even
1 =

∣∣∣∣
M22 Ũ11 −M21 Ũ12

M12M21 −M11M22

∣∣∣∣
2

+ 2

∣∣∣∣
M22 Ũ21 −M21 Ũ22

M12M21 −M11M22

∣∣∣∣
2
Γ22

Γ11
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+ 2
√
2Re

[
(M22 Ũ21 −M21 Ũ22) (M22 Ũ11 −M21 Ũ12)

∗

|M12M21 −M11M22|2
Γ12

Γ11

]
,

S even
2 =

∣∣∣∣
M12 Ũ21 −M11 Ũ22

M12M21 −M11M22

∣∣∣∣
2

+
1

2

∣∣∣∣
M12 Ũ11 −M11 Ũ12

M12M21 −M11M22

∣∣∣∣
2
Γ11

Γ22

+
√
2Re

[
(M12 Ũ21 −M11 Ũ22) (M12 Ũ11 −M11 Ũ12)

∗

|M12M21 −M11M22|2
Γ12

Γ22

]
, (C.10)

whereas for annihilation reactions of 2s+1LJ states where L+ s is odd we obtain

S odd
1 = 0 ,

S odd
2 =

∣∣∣∣
Ũ33

M33

∣∣∣∣
2

. (C.11)

The enhancement factors for the third method-1 basis state χ3χ2 agree with the corre-
sponding expressions for the second state, χ2χ3; this should be the case since both states
are physically equivalent. We observe that the enhancement factors for even L+s do not
depend on the matrix entries Ũ33 and M33: only those wave function solutions that are
associated with the upper 2× 2 matrix in the block-diagonal Schrödinger equation with
potential (C.4) determine the enhancement factors in (C.10). To the contrary, the non-
vanishing enhancement factor for odd L+s in (C.11) depends only on the wave-function
associated with the 1 × 1 block in the block-diagonal Schrödinger equation. The factor
Sodd
1 vanishes as two-particle configurations with L+s= odd are totally symmetric while

a state of two identical particles such as χ1χ1 has to be totally antisymmetric.
Let us now turn to method-2 and construct the corresponding potential and annihi-

lation matrices. For the former we obtain, using the rules set out in Sec. 7.2.1 and thus
distinguishing even and odd L+ s,

V (2)
s, even(r) =




V s
11

√
2V s

12

√
2V s

21 V s
22 + V s

23


 , V

(2)
s, odd(r) =




0 0

0 V s
22 − V s

23


 . (C.12)

In case of the annihilation matrices we have

Γ(2)
even[

2s+1LJ ] =




1
2
Γ11

1√
2
Γ12

1√
2
Γ21 Γ22


 , Γ

(2)
odd[

2s+1LJ ] =




0 0

0 Γ22


 . (C.13)

For given orbital angular momentum L and spin s with L+ s even, the potential matrix
V

(2)
s agrees with the upper 2× 2 block in the corresponding Ṽ

(1)
s in (C.4). Similarly the

annihilation matrices Γ
(2)
even correspond, up to a global factor of 2, to the upper 2 × 2

block of Γ̃
(1)
even in (C.9). From (C.6) we therefore obtain immediately the generic form of
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the method-2 matrices [u
(L+1)
L (0)] and M for even L+ s:

[u
(L+1)
L (0)]even =




Ũ11 Ũ12

Ũ21 Ũ22


 , Meven =




M11 M12

M21 M22


 . (C.14)

The functions that appear for given L and s in the components of the matrices in (C.14)
are the same as the Ũab andMab functions with a, b = 1, 2 in the corresponding method-1
matrices in (C.7).

In order to obtain the method-2 matrices [u
(L+1)
L (0)] and M for the case of odd L+ s

we can use the correspondence of method-2 potential and annihilation matrix entries
to the associated method-1 expressions as well. Here we find that for given (L, s) the

non-vanishing entry in the potential matrix V
(2)
s, odd in (C.12) agrees with the lower 1× 1

block of the corresponding matrix Ṽ
(1)
s in (C.4). Likewise, the non-vanishing entry in

the annihilation matrix Γ
(2)
odd in (C.13) agrees up to a factor of 2 with the entry in the

lower 1 × 1 block of the associated block-diagonal Γ̃
(1)
odd in (C.9). For given (L, s) with

odd L+ s we thus obtain the generic form of the matrices [u
(L+1)
L (0)] and M

[u
(L+1)
L (0)]odd =




0 0

0 Ũ33


 , Modd =




0 0

0 M33


 , (C.15)

where the function Ũ33 is the (L+ 1)-th derivative of the function ũ33, which appears in
the lower 1 × 1 block of the corresponding block-diagonal method-1 matrix ũ in (C.6),
and M33 is derived from this function ũ33 as well.

It is now straightforward to determine for given (L, s) the Sommerfeld enhancement
factors related to pair-annihilation reactions of the first (a = 1, (χχ)11) and second
(a = 2, (χχ)23) method-2 basis state. The results agree with the respective expressions
for the Sommerfeld factors in (C.10) and (C.11), which were derived using method-1.
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1 Introduction

We provide a documentation of the numerical code that allows to calculate the annihi-
lation matrices in pair-annihilation reactions of non-relativistic neutralino and chargino
pairs including O(v2rel) effects in the non-relativistic expansion and at leading order in the
expansion in the couplings. The annihilation matrices are built from the absorptive parts
of Wilson coefficients of four-fermion operators. The latter encode the hard annihilation
reactions of non-relativistic neutralinos and charginos in the NRMSSM, an effective field
theory designed to determine the enhanced radiative corrections in neutralino/chargino
co-annihilation processes.

The construction of the NRMSSM is described in detail in [1–4] as well as in the
preceeding thesis. The first two publications [1, 2]1 cover the determination of the Wil-
son coefficients encoding the hard annihilation reactions, while the third focuses on the
technical aspects in the calculation of the Sommerfeld enhancements. In [4] a dedicated
discussion of several MSSM benchmark scenarios in view of the impact of Sommerfeld
enhancements in the χ0

1 relic abundance is given. For the underlying physics and tech-
nical aspects of the calculation we refer the reader to [1–3]. This documentation deals
exclusively with the numerical code that determines the annihilation matrices.

The outline of this documentation is as follows. Sec. 2 contains a general overview
on the structure of the code, which can be divided into two main parts with respective
extensive substructure. Part 1 of the code refers to elementary functions and building
blocks related to the construction of the partial wave separated Wilson coefficients.
Consequently, part 2 deals with the construction of annihilation matrices, thereby relying
on functions that are the subject-matter of part 1.

The first part of the code is described in detail in Sec. 3. Starting with the basic build-
ing blocks, Sec. 3.1 and Sec. 3.2 cover the hard-coded kinematic and coupling factors.
The generic functions that allow to determine a specific exclusive final state contribution
to the absorptive part of a Wilson coefficient from the kinematic and coupling factors
are then described in Sec. 3.3. In Sec. 3.4 a description of necessary hard-coded infor-
mation is given that allows to determine partial wave coefficient contributions related to
scattering reactions with exclusive physical final states.

The second part of the code is the subject-matter of Sec. 4 and deals with the func-
tions determining the annihilation matrices, which are related to non-relativistic neu-
tralino and chargino pair-annihilation reactions. Sec. 4.1 introduces the enumeration
convention for the neutralino and chargino pairs (χχ pairs) that we have chosen in both
the numerical ”annihilation matrix” and ”Sommerfeld enhancement” programs.2 The
enumeration convention for the χχ pairs fixes the position (row and column) where the
contributions from a specific χχ annihilation reaction appear in the annihilation matri-
ces. The question which version of the hard-coded kinematic factors should be chosen for

1All conventions and definitions in [1,2] and the thesis agree, such that regarding the contents of [1,2]
the reader may refer to Chaps. 5 and 6 of the thesis as well.

2This documentation deals exclusively with the piece of the code determining the short-distance
annihilation matrices, that is the ”annihilation matrix” program.
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a specific annihilation reaction as regards the expansion in mass differences is addressed
in Sec. 4.2. Subsequently, in Sec. 4.3, we introduce the functions that determine the
absorptive parts of the proper Wilson coefficients, referring to the inclusive annihilation
reactions. The issue of symmetry factors and relations among certain Wilson coefficient
functions defined in the code is the content of Sec. 4.4. The following Sec. 4.5 introduces
a convenient function that allows to sets to zero annihilation matrix entries that are very
small compared to the leading annihilation matrix entries. The functions that determine
the final annihilation matrix expressions are described in Sec. 4.6.

For the sake of clarity, those expressions are summarised in Sec. 5, whose definition or
nomenclature in the numerical program is slightly different with respect to the definition
or naming established in [1–4].

2 Generic structure of the code

The numeric code is designed to calculate all diagonal and off-diagonal hard annihilation
rates in co-annihilation reactions of non-relativistic and nearly mass-degenerate neu-
tralino and chargino pairs including O(v2rel) corrections in the non-relativistic expansion.
While in the current version of the code the final expressions for the annihilation ma-
trices refer to the respective inclusive annihilation rates, all contributing exclusive rates
are determined in intermediate steps.3 By appropriate and easily implementable modi-
fications in the current version of the code it is therefore possible to obtain annihilation
matrices referring to exclusive final states.

The code relies on the explicit calculation of the absorptive parts of the (partial-wave
separated) Wilson coefficients of four fermion operators in the NRMSSM at leading
order, O(α2

2), in the expansion in the couplings. We use α2 = g22/4π where g2 denotes
the SU(2)L gauge coupling. For the explicit form of the four-fermion operators we refer
the reader to [1, 2] or to the thesis. According to the latter references, the Wilson
coefficients corresponding to the four-fermion operators can be written in terms of a sum
over products of kinematic and coupling factors. Schematically, the absorptive part of
a Wilson coefficient f̂ can therefore be obtained from a suitable set of kinematic and
coupling factors as

f̂ =
∑

coupling factor× kinematic factor . (1)

The definition of the four-fermion operators and their Wilson coefficients as given in
[1, 2] and the thesis and as underlying the numerical code described herein is the same.
Therefore the expression for a Wilson coefficient can be unambiguously obtained either
following the prescriptions given in [1,2] or from the code described hereafter. However,
the definition of the kinematic and the coupling factors is not identical in [1, 2] and the
numerical code. For instance, in the convention of [1, 2] a sign can be associated with a

3Let us note that the calculated hard annihilation rates refer to the annihilation reactions at tree-
level, such that exclusive rates are infrared safe and can be given separately.
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specific kinematic factor appearing in the sum (1). In the conventions of the numerical
code, the sign can be absent in front of the kinematic factor but will then be attributed
to the corresponding coupling factor. As a consequence, the expression for the Wilson
coefficient stays always the same. Such difference between kinematic and coupling factor
expressions in [1, 2] and the numerical code originates from the fact that the reference
processes used in the determination of the kinematic and coupling factors for [1, 2] and
in the code are different. The reader should be aware of this difference, implying that
intermediate results obtained from expressions in [1,2] or from the numerical code cannot
be used interchangeably. The end result, which is the Wilson coefficient, is unambiguous,
also in case of exclusive final state reactions.

Once more, to make the above explicit, note the following: [1,2] and the thesis contain
explicit analytic results for the kinematic factors associated with leading order 1S0- and
3S1-wave Wilson coefficients as well as analytic results for the kinematic factors related to
1P1 and

3PJ partial-wave annihilations. The 3PJ -wave Wilson coefficients are a suitable
linear combination of the respective three corresponding P -wave coefficients associated
with spin S = 1, see [2] or eq. (6.29) in the thesis. The code uses an equivalent set of
kinematic factors calculated in the same way as the corresponding expressions in [1, 2]
and the thesis. However, the kinematic factors given in [1, 2] and Appendix A of the
thesis are not identical to the kinematic factors used in the code. In both cases we used
a certain reference process χe1χe2 → XAXB → χe4χe3 to determine the kinematic and
coupling factors that built the Wilson coefficients. For instance, in case of final states
XAXB built from two gauge bosons, the kinematic factors used in the code rely on the
reference process χ0

e1
χ0
e2

→ W+W− → χ0
e4
χ0
e3
. To the contrary, we used the reference

process χe1χe2 → V V → χe4χe3 , where χei denote generic Majorana fermions and V a
generic gauge boson in the calculation referring to [1, 2]. Similar small differences exist
for the other processes. Results on the kinematic and coupling factors can therefore not
be used interchangeably in the code and the publications. Each calculation is however
self-consistent and the final results on the Wilson coefficients encoding physical rates
are identical. A list of reference processes underlying the results for the kinematic and
coupling factors used in the numerical code is provided at the end of Sec. 3.1. Taking
these reference processes into account and following the generic steps for the kinematic
and coupling factor construction described in [1, 2] or Chap. 6 and Appendix A of the
thesis, the reader can reproduce the kinematic and coupling factors expressions that are
hard-coded in the numerical code.

Conceptually the code is divided into two parts where the first refers to the deter-
mination of the Wilson coefficients and the second is subsequently associated with the
construction of the annihilation matrices from the former results. Part 1 and part 2 rely
on different Mathematica “.m” files introduced in the following.

1. a. Within part 1, the following Mathematica “.m” file contains hard-coded results
for the kinematic factors used in the code:

kinfactors Code.m .
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This includes all results referring to box, triangle and selfenergy diagrams. We
discuss the structure of the kinematic factors in Sec. 3.1.

b. The corresponding hard-coded coupling factor results are collected in the three
files

couplingFactors boxes.m,

couplingFactors triangles.m,

couplingFactors selfenergies.m.

A closer description of the above files is given in Sec. 3.2.

c. The generic routines that build the different box-, triangle- and selfenergy-
diagram contributions to a Wilson coefficient from the kinematic and coupling
factors are contained in

partialwavecoefficients.m

and will be discussed in more detail in Sec. 3.3.

d. In order to build the specific χe1χe2 → XAXB → χe4χe3 contribution to a
certain Wilson coefficient that refers to the inclusive χe1χe2 →

∑

XAXB → χe4χe3

reaction, we have to further specify which particles are exchanged internally in the
s-, t- or u-channels of the respective selfenergy, triangle or box diagrams. This is
needed because the kinematic and coupling factor expressions are still generic in the
sense that they use place-holder masses and indices referring to a certain neutralino
or chargino state. The latter have to be set to the corresponding particle masses
and indices when a specific Wilson coefficient is determined. For each possible
exclusive reaction the information on the internally exchanged particles in the box,
triangle and selfenergy amplitudes is collected in the files

scatteringchannels boxes.m ,
scatteringchannels triangles.m ,
scatteringchannels self.m .

When building the Wilson coefficients with the help of the functions defined in
partialwavecoefficients.m, the information encoded in the latter files is used.
The nomenclature of the hard-coded lists in the above scatteringchannels xxx.m

files is given in Sec. 3.4. In addition, this section contains the description of the
functions written in

partialwavecoefficients channels.m ,

which contain the definition of the Wilson coefficient contributions referring to
exclusive physical tree-level annihilation reactions χe1χe2 → XAXB → χe4χe3 .
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2. Part 2 of the code, dealing with the construction of the annihilation matrices, is
based on the functions collected in the file

annihilationmatrices vx.m

where x is a place-holder for the version number. The current version is x=7.
Details on the functions and definitions related to this part are given in Sec. 4.

3 Part 1: Building the partial wave coefficients

3.1 Kinematic factors

As described in [1, 2] and in the preceeding thesis in Sec. 6.1.4, the Wilson coefficient
of a NRMSSM four-fermion operator is given by a sum over products of kinematic
and coupling factors. The numerical code comes with hard-coded expressions for the
kinematic and coupling factors that refer to all relevant box, triangle and selfenergy
amplitudes. As stated in Sec. 2 above, the conventions underlying the definitions of
kinematic and coupling factors are different in [1, 2] and the code, while the outcome
for the partial-wave coefficients agrees. We discuss the structure of the code’s kinematic
factor expressions in this section and subsequently describe in Sec. 3.2 the form of the
corresponding coupling factors.

Within the numerical code, the hard-coded kinematic factor expressions are collected
in the file kinfactors Code.m. Also the nomenclature in the code differs slightly from
the one in the publications. The code’s kinematic factors referring to a selfenergy topol-
ogy have the generic structure

kE[n,"chi chi -> (i1) -> XA XB -> (i2) -> chi chi",{2s+1}LJ,mci,alpha]. (2)

In case of triangle topologies the following nomenclature is used

kD[n, "chi -> (X) -> XA XB -> chi chi", {2s+1}LJ, mci, alpha] , (3)

and box topologies are referred to as

kC[n, "chi chi -> XA XB -> chi chi", {2s+1}LJ, mci, alpha] . (4)

In the above expressions the terms XA XB, {2s+1}LJ and mci denote place-holders that
can be set to the following values

• XA XB refers to the type of particles XA and XB in the final state of a χχ → XAXB

annihilation reaction. Both XA and XB can be given by a vector boson (V ),
scalar (S), fermion (f) or a ghost (η). Taking all possible two-particle final state
combinations into account the argument XA XB in the code can be given the values

XA XB =























V V (V V final state)
V S (V S final state)
S S (SS final state)
f fbar (ff final state)
gh gh (ηη̄ final state) .
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• {2s+1}LJ specifies the partial wave configuration and is given by one of the fol-
lowing strings

{2s+1}LJ =































"1S0","3S1", for leading order S-wave coefficients,
"1P1","3Px", for 1P1 and the combined 3PJ coefficients,
"3P0","3P1", "3P2", for the individual 3PJ=0,1,2 coefficients,
"1S0,p2","3S1,p2", for p2 proportional nnlo S-wave coeff.,
"1S0,dm","3S1,dm", for δm proportional S-wave coeff.,
"1S0,dmbar","3S1,dmbar", for δm proportional S-wave coeff..

Let us recall that the absorptive part of a 3PJ Wilson coefficient f̂ is obtained
from the spin-1 P -wave Wilson coefficients by the following linear combination

f̂
(

3PJ

)

=
1

3
f̂
(

3P0

)

+
1

3
f̂
(

3P1

)

+
5

3
f̂
(

3P2

)

. (5)

The corresponding kinematic factor expressions obviously obtain from the same
linear combination.

• mci specifies which expansion in mass differences is chosen. It can be set to the
two values mci = mc1, mc2. For a discussion on the two possible expansions in
mass differences we refer the reader to [1, 2] or Sec. 6.1.2 in the thesis.

The further arguments of the kinematic factors kE[...], kD[...] and kC[...] above
differ for differing topology. We discuss these arguments for each topology in turn in
Sec. 3.1.1 – 3.1.3

In order to determine the kinematic factor expressions used in the numerical code
we have calculated the box, triangle and selfenergy amplitudes in processes χ0

e1
χ0
e2

→
XAXB → χ0

e4
χ0
e3

with XAXB given by

W+W− serving as reference for V V final states,

W+G− for V S final states,

G+G− for SS final states,

uI ūJ for SS final states.

(6)

Here the superscripts I, J indicate the family index for the SM up-type quarks. The
steps to be followed in the calculation of the code’s kinematic factors can be found in [1]
or Sec. 6.1.2 – 6.1.4 of the thesis. In the latter also the reference processes used in the
calculation of the kinematic factors in [1, 2] and the thesis are given.

3.1.1 Selfenergy topologies

The generic form of a selfenergy diagram in χχ → XAXB → χχ scattering is given in
Fig. 1. In case of the kinematic factors kE[...] related to such selfenergy topology the
arguments n, i1, i2, and alpha can get the following inputs:
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XA

selfenergy (ss)

XBχe1

χe4

χe3

χe2

Figure 1: Generic selfenergy diagram in χχ → XAXB → χχ reactions, with XA and
XB representing any two-body final state of SM and Higgs particles. The shorthand ss
notation indicates that the selfenergy amplitude corresponds to two s-channel exchange
tree-level diagrams that are associated with χe1χe2 → XAXB and χe4χe3 → XAXB

annihilations, respectively. (Also see Fig. 9, 10 in paper I and Fig. A.1, A.2 in the
thesis).

• n refers to a character string that contains information on the type of couplings at
the vertices of the selfenergy diagram. It can be set to

n = "rr","pp" for XA XB = V V, V S, S S, gh gh.

The first (second) character in this two-character string refers to the type of coup-
ling at the vertex that involves the incoming χe1χe2 pair (the outgoing χe4χe3 pair)
in the selfenergy diagram referring to the χe1χe2 → XAXB → χe4χe3 reaction.
While r indicates a coupling of either vector or scalar type, the character p refers
to a coupling of axial-vector or pseudo-scalar type. The couplings of the inter-
mediate particles in the selfenergy amplitude are fixed once XA XB and i1,i2 are
specified and therefore do not need to be indicated in the string n. However in
case of selfenergy diagrams with XAXB = ff the type of coupling of the final state
fermions XAXB to the s-channel exchanged particles needs to be specified. In this
case

n = "rr rr","rr pp","pp rr","pp pp" for XA XB = f fbar.

Here, the character r or p at the first (second) position in the string indicates the
type of coupling of the incoming χe1χe2 (outgoing χe4χe3) pair to the respective s-
channel exchanged particle. Similarly, the character at the third (fourth) position
in the string n refers to the type of coupling between the final state fermions
XAXB and the particle exchanged in the left (right) single s-channel. As before
and throughout the character r is used to refer to a vector or scalar coupling and
p indicates a coupling of axial-vector or pseudo-scalar type.

• i1, i2 are given by either V or S. These inputs denote the particle species – vector
boson V or scalar S – that is exchanged in the left (i1) or right (i2) single s-channel
of the corresponding selfenergy amplitude.
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XA

triangle 1 (t1s)

XB

triangle 3 (t2s) triangle 4 (st2)triangle 2 (st1)

XAXBXB

XBXAXA
χe1

χe4

χe3

χe2

Figure 2: Generic triangle diagrams in χχ → XAXB → χχ reactions, with XA and
XB representing any two-body final state of SM and Higgs particles. The shorthand
aã notation, with a, ã = s, t1, t2, is used in order to indicate the tree-level diagrams a
and ã in the χe1χe2 → XAXB and χe4χe3 → XAXB processes, respectively, to which the
left-hand or right-hand part of the triangle diagrams are related (see Fig. 9, 10 in paper
I or Fig. A.1, A.2 in the thesis for further details).

• alpha is used to label selfenergy diagrams with different type of particle species
exchanged in the two single s-channels, that is

alpha =















1 for i1,i2 = V ,
2 for i1 = V, i2 = S ,
3 for i1 = S, i2 = V ,
4 for i1,i2 = S .

Having specified i1 and i2, the value of alpha is immediately obtained.

3.1.2 Triangle topologies

The generic form of the triangle diagrams relevant in χχ → XAXB → χχ scattering is
given in Fig. 2, where also our enumeration convention for these diagrams is established.
As regards the kinematic factor expressions kD[...] in the code that are related to
these triangle topologies, the arguments n, X and alpha can have the following values:

• n is a character string containing the information on the type of couplings at the
vertices of the respective triangle diagram. It can take the values

n = "rr r","pp r","rp p","pr p" if XA XB = V V, V S, S S ,

and in case of XA XB = f fbar

n = "rr r","pp r","rp p","pr p", "rr p","pp r","rp r","pr r".

If alpha = 1,2, the two characters at the first and second position in each string
indicate the type of couplings at the first and second vertex in the corresponding
triangle amplitude, where we have enumerated the vertices from top to bottom and
left to right. The last character then refers to the type of coupling at the vertex with
the outgoing χe4χe3 pair. For alpha = 3,4 the first (second) character in the string
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XA

box 1 (t1t2)

XB XB XA XA

XA XB

box 3 (t2t1) box 4 (t2t2)box 2 (t1t1)

XB

χe1

χe2

χe3

χe4

XA

box 1 (t1t2)

XB XB XA XA

XA XB

box 3 (t2t1) box 4 (t2t2)box 2 (t1t1)

XB

χe1

χe2

χe3

χe4

Figure 3: Generic box diagrams in χχ → XAXB → χχ reactions, with XA and XB

representing any two-body final state of SM and Higgs particles. The box-amplitudes
in the first line refer to XAXB = V V, V S, SS while the box-amplitudes in the second
line apply to XAXB = ff . The shorthand aã notation, with a, ã = t1, t2, indicates
the tree-level diagrams a and ã in the χe1χe2 → XAXB and χe4χe3 → XAXB processes,
respectively, to which the box diagrams are related. For further details on the tree-level
amplitudes we again refer the reader to Fig. 9, 10 in [1] and Fig. A.1, A.2 in the thesis.

n refers to the coupling with attached external χe4 (χe3). Consequently the last
character then indicates the type of coupling at the vertex with the incoming χe1χe2

pair. Note that the characters in the string n refer only to the couplings involving
the external fermionic χei states. This information together with the knowledge of
the s-channel exchanged particle is sufficient to fix the type of coupling between
the latter and the final state XAXB pair.

• X denotes the particle species (vector boson V or scalar particle S) exchanged in
the single s-channel of the respective triangle diagram,

X = V,S .

• alpha labels the specific triangle diagram and can take the values

alpha = 1,2,3,4 .

The enumeration convention for the triangle diagrams, which specifies the respec-
tive label alpha can be read off Fig. 2.

3.1.3 Box topologies

Finally let us come to box amplitudes. Fig. 3 collects all corresponding diagrams relevant
in χχ → XAXB → χχ reactions. The arguments n and alpha of the kinematic factors
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kC[...] related to these box amplitudes read as follows:

• n is a four-character string where the ith character refers to the coupling at the
ith vertex of the box amplitude. Here the vertices of the box amplitudes are
enumerated according to the respective attached external particles χei, i = 1, . . . , 4.
The string n can take the form

n = "rrrr","pppp","rrpp","pprr","rppr","prrp","rprp","prpr" .

• alpha labels the four box diagrams,

alpha = 1,2,3,4 ,

where our enumeration convention for the box diagrams can be read off Fig. 3.

3.2 Coupling factors

When the three files couplingFactors boxes.m, couplingFactors triangles.m and
couplingFactors selfenergies.m are loaded in a Mathematica session, coupling factor
expressions will be constructed that together with the corresponding kinematic factors
described in the previous section will finally allow to build the absorptive part f̂ of
Wilson coefficients related to a specific χe1χe2 → XAXB → χe4χe3 reaction. In this
section we discuss the nomenclature of the coupling factors used in the numerical code
and describe the functions that determine these expressions from specific hard-coded
lists. The latter contain the coupling factors that occur at each vertex of a specific box,
triangle or selfenergy amplitude.

3.2.1 Selfenergy diagrams

Coupling factors corresponding to selfenergy diagrams have the generic form

eC[n, "chi chi -> (i1) -> XA XB -> (i2) -> chi chi", alpha] . (7)

The arguments n and alpha of the expression eC[...] take the same values as the
corresponding arguments of the kinematic factors kE[...], which are given in Sec. 3.1
and Sec. 3.1.1. In contrast to the generic kinematic factors, however, the additional
argument "chi chi -> (i1) -> XA XB -> (i2) -> chi chi" of the coupling factors
specifies the exact particle species involved in the respective selfenergy diagram. This
implies that the sub-string chi refers to either species χ0, χ+ or χ− and therefore can
take the following values

chi = chi0, chi+, chi- .

Both i1 and i2 refer to the s-channel exchanged species and being an argument of the
process specific coupling factors generically can be given by the photon (γ), the elec-
troweak gauge bosons (Z,W±) and the MSSM Higgs particles (h0, H0, G0, A0, H±, G±),

i1,i2 = gamma, Z, W+, W-, h0, H0, G0, A0, H+, H-, G+, G- .
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type of final state possible values of the coupling factors’ argument XA XB

V V W+ W-, Z Z, gamma gamma, Z gamma,

W+ Z, W+ gamma, W- Z, W- gamma,

W+ W+

V S Z h0, Z H0, Z G0, Z A0, gamma h0, gamma H0, gamma G0, gamma A0,

W+ G-, W+ H-, W- G+, W- H+,

Z G+, Z H+, gamma G+, gamma H+, W+ h0, W+ H0, W+ G0, W+ A0,

Z G-, Z H-, gamma G-, gamma H-, W- h0, W- H0, W- G0, W- A0,

W+ G+, W+ H+, W- G-, W- H-

S S h0 h0, h0 H0, H0 H0, G0 h0, A0 h0, G0 H0, A0 H0, G0 G0, G0 A0, A0 A0,

G+ G-, G+ H-, H+ G-, H+ H-,

G+ h0, G+ H0, H+ h0, H+ H0, G+ G0, G+ A0, H+ G0, H+ A0,

G- h0, G- H0, H- h0, H- H0, G- G0, G- A0, H- G0, H- A0,

G+ G+, G+ H+, H+ H+, G- G-, G- H-, H- H-

f fbar u ubar, d dbar, nu nubar, l lbar,

u dbar, nu lbar, d ubar, l nubar

gh gh gh+ ghbar+, gh- ghbar-, ghZ ghbarZ

gh+ ghbarZ, ghZ ghbar-, gh+ ghbarF, ghF ghbar-

gh- ghbarZ, ghZ ghbar+, gh- ghbarF, ghF ghbar+

Table 1: Values for the argument XA XB in the coupling factors eC[...], dC[...] and
cC[...].

The proper value depends on the specific diagram under consideration. Finally, the sub-
string XA XB refers to the possible Standard Model (SM) and Higgs two-particle final
states. Tab. 1 contains a list of its possible values. Note that at this point we also have to
include two-particle states XA XB that involve unphysical states such as pseudo-Goldstone
bosons and ghosts. This is because our calculation refers to Feynman gauge; see [1] or
Sec. 6.1.3 of the thesis for a discussion on this choice of gauge. The final absorptive parts
of the Wilson coefficients, referring to physical annihilation reactions will obviously be
given by the appropriate sum over all corresponding physical and unphysical final states.

The coupling factors eC[...] are given by a product of four corresponding coup-
lings associated with the four vertices of a given selfenergy diagram. Once the file
couplingFactors selfenergies.m is loaded in a Mathematica session, these four-coup-
ling products are constructed automatically from predefined lists. For instance the coup-
ling factor eC[...] in χ0

e1
χ0
e2

→ W+W− → χ0
e4
χ0
e3

scattering that is related to the
selfenergy diagram with Z exchange in both single s-channels and which involves vector
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couplings of the external χ0
e1
χ0
e2

and χ0
e4
χ0
e3

pairs, is then given by

eC["rr", "chi0 chi0 -> (Z) -> W+ W- -> (Z) -> chi0 chi0", 1]

= cW2 v0Z[e1,e2] v0Z[e3,e4] = cW2 v0Z[e1,e2] v0Z[e4,e3]∗ . (8)

Here cW denotes the cosine of the electroweak mixing angle.4 The factors v0Z[e1,e2]
and v0Z[e3,e4] denote the vector couplings of the external neutralino pairs χ0

e1
χ0
e2

and
χ0
e4
χ0
e3

to the intermediate Z boson, respectively. They are kept as symbolic expressions
as long as their arguments ei with i = 1,...,4 are not set to integer values and if no
slha MSSM spectrum card is read in. Only for integer-valued arguments these couplings
are later expressed in terms of mixing matrix entries and angles. The definition of
v0Z[i,j] agrees with the definition of v

(0,Z)
ij given in Appendix A of [1] and Appendix

A.1 of the thesis. In the numeric code the definition of v0Z[i,j] in terms of mixing
matrices and angles is given at the end of the couplingFactors boxes.m file, where
also all other relevant coupling factors involving the external χei states are given. As in

case of v0Z[i,j] and v
(0,Z)
ij , their nomenclature derives directly from the nomenclature

of the couplings in [1], Appendix A or the thesis, Appendix A.1. Further definitions of
coupling factors that refer to interactions of the final state pair XAXB with the s-channel
exchanged states can be found at the end of the file couplingFactors selfenergies.m.

In order to work with the numerical code it is, in principle, sufficient to have at
hand the final coupling factor expressions as given in the example above. Let us
nevertheless say a few words on the internal determination of these expressions: The
couplingFactors selfenergies.m file contains predefined lists that contain, for each
possible selfenergy diagram, the occurring coupling factors. The list related to the above
example, for instance, reads

listSelfenergy["chi0 chi0 -> (Z) -> W+ W- -> (Z) -> chi0 chi0",1]

= {{v0Z[e1,e2], a0Z[e1,e2]},{v0Z[e3,e4], a0Z[e3,e4]},{cWWZ},{cWWZ}}; (9)

The factor cWWZ is a place-holder for the vertex factor related to the three-point interac-
tion of the two W -bosons and the Z. It is assigned to the proper vertex factor at the end
of couplingFactors selfenergies.m. In order to obtain the eC[...] expressions from
lists such as the one written above, an element from each sub-list has to be chosen and
multiplied with the chosen elements from the three other sub-lists. This is automatised
with the help of two simple functions,

GenerateSelfenergyCouplingFactors[...],

GenerateSelfenergyCouplingFactorsffbar[...], (10)

which can be found in the file couplingFactors selfenergies.m. The procedure is
similar to the coupling factor construction described in [1], Appendix A.2 and the thesis,

4At this stage in the code the experimental value is not yet assigned to cW; this will only happen if
an slha-formatted MSSM spectrum file is read in a Mathematica session. We come back to this point
of assigning numerical values to the parameters in later sections.
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Appendix A.1.1. However let us stress that the generic reference processes used to
determine kinematic and coupling factors that are used in the numerical code differ from
those presented in [1, 2] and in the thesis. For that reason there can be sign differences
between the kinematic and coupling factors derived in [1, 2] and the thesis and the
corresponding expressions used in the code.

3.2.2 Triangle diagrams

Coupling factors related to triangle amplitudes generically read

dC[n, "chi chi -> (X) -> XA XB -> chi chi", alpha] , (11)

where the arguments n and alpha can take the same values as the corresponding ar-
guments of the kinematic factors kD[...] described in Sec. 3.1 and Sec. 3.1.2. The
sub-strings in the additional argument "chi chi -> (X) -> XA XB -> chi chi" refer
to the actual particle species involved in the triangle diagram under consideration. As
noted in Sec. 3.2.1 the sub-string chi can take the values

chi = chi0, chi+, chi- .

The place-holder X in the argument "chi chi -> (X) -> XA XB -> chi chi" of the
coupling factors dC[...] refers to the specific s-channel exchanged particle and therefore
can take the values

X = gamma, Z, W+, W-, h0, H0, G0, A0, H+, H-, G+, G- .

The possible values for the place-holder XA XB referring to the final state particles in a
neutralino/chargino pair-annihilation reaction have been collected in Tab. 1.

Similar to the case of the coupling factors eC[...] related to selfenergy diagrams,
the coupling factors dC[...] are automatically constructed from predefined lists once
the file couplingFactors triangles.m is loaded in Mathematica. For example, the
coupling factor with n = "rr r" related to the triangle diagram with alpha = 1 and
single s-channel Z exchange in the reaction χ0

e1
χ0
e1

→ W+W− → χ0
e1
χ0
e1

is then given by

dC["rr r", "chi0 chi0 -> (Z) -> W+ W- -> chi0 chi0", 1]

= cW v0Z[e1,e2] v0Z[e4,e3]∗ vW[e2,i1]∗ . (12)

While the labels ei refer to the external χ0
ei

states, the label i1 is related to the χ+
i1

states that can be exchanged in the t-channel of the triangle diagram. The predefined
list from which the above expression is obtained reads

listTriangle["chi0 chi0 -> (Z) -> W+ W- -> chi0 chi0",1]

= {{vW[e1,i1], aW[e1,i1]},{CC[vW[e2,i1]], CC[aW[e2,i1]]},
{v0Z[e3,e4], a0Z[e3,e4]},{cWWZ}} , (13)

and the function that builds the corresponding factors dC[...] from this list is named

GenerateTriangleCouplingFactors[...]. (14)

It can be found as well in the corresponding file couplingFactors triangles.m.
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3.2.3 Box diagrams

The form of coupling factors associated with box diagrams is given by

cC[n, "chi chi -> XA XB -> chi chi", alpha] . (15)

Similar to the case of selfenergy and triangle diagrams described in the preceeding sec-
tions, the arguments n and alpha in the coupling factors cC[...] take the same values as
the corresponding kinematic factors kC[...] discussed in Sec. 3.1 and Sec. 3.1.3. Again,
the sub-strings chi in the additional argument "chi chi -> XA XB -> chi chi" of
cC[...] take the values

chi = chi0, chi+, chi- .

The possible values of the sub-string XA XB are collected in Tab. 1.
When the file couplingFactors boxes.m is loaded all relevant cC[...] factors are

generated with the help of the function

GenerateBoxCouplingFactors[...] (16)

from predefined lists, such as for example

listBox["chi0 chi0 -> W+ W- -> chi0 chi0",1]

= {{vW[e1,i1], aW[e1,i1]}, {CC[vW[e2,i1]], CC[aW[e2,i1]]},
{CC[vW[e3,i2]], CC[aW[e3,i2]]}, {vW[e4,i2], aW[e4,i2]}} . (17)

The labels ei refer to the external states χ0
ei
, while labels ia with a = 1,2 are associated

with the internally exchanged chargino states χ+
ia
, which occur in the t-channels of the

corresponding box diagram. From the above list we obtain for example the following
coupling factor cC[...] referring to the reaction χ0

e1
χ0
e2

→ W+W− → χ0
e4
χ0
e3

that is
related to the box diagram labelled with alpha = 1 and that refers to n = "rrrr":

cC["rrrr", "chi0 chi0 -> W+ W- -> chi0 chi0", 1]

= vW[e1,i1] vW[e2,i1]∗ vW[e3,i2]∗ vW[e4,i2] . (18)

The neutralino-chargino W± vector coupling vW[i,j] is evaluated only for integer argu-
ments i,j and otherwise left as it stands above. Its definition in terms of mixing matrix
entries and angles is given at the end of couplingFactors boxes.m.

3.3 Partial wave coefficients: generic routine

In this section we describe functions provided in the file partialwavecoefficients.m,
which allow to determine the absorptive part of a specific partial wave coefficient in the
NRMSSM. Kinematic and coupling factor expressions have to be loaded in advance in
Mathematica and an slha-formatted MSSM spectrum card has to be read in, before the
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respective coefficients can be calculated.5 In Sec. 3.3.1 we first discuss the central function
PartialWaveCoefficient[...] that allows to determine the coefficients. Sec. 3.3.2
then contains a summary on further auxiliary functions needed in building the partial
wave coefficient expressions.

3.3.1 The function PartialWaveCoefficient[...]

The function PartialWaveCoefficient[...] allows to determine the contribution to
the absorptive part of a partial wave coefficient that is associated with a specific exclusive
χe1χe2 → XAXB → χe4χe3 reaction. Let us recall that the actual coefficient is determined
from the inclusive reaction. The inclusive result is obtained from a different function
discussed in Sec. 4.3.

PartialWaveCoefficient[...] has the following arguments

PartialWaveCoefficient[Process, {p1,p2}, {p3,p4}, {pA,pB}, Wave, mci]. (19)

• The first argument, Process, is given by a string that specifies the exclusive reac-
tion χe1χe2 → XAXB → χe4χe3 . It has to have the same form as the strings that
appear as arguments in the coupling factors cC[...] referring to box diagrams, see
Sec. 3.2.3. For example, if a partial wave coefficient associated with the reaction
χ0
1χ

0
1 → W+W− → χ0

1χ
0
1 shall be evaluated, the argument Process is given by the

string

"chi0 chi0 -> W+ W- -> chi0 chi0" .

The possible strings that are viable arguments are easily built from the generic
form

"chi chi -> XA XB -> chi chi"

by using Tab. 1 to identify the possible values of XA XB and choosing the value for
chi out of the set of values chi = chi0, chi+, chi- according to the exclusive
process χe1χe2 → XAXB → χe4χe3 under consideration.

• The arguments p1,p2,p3 and p4 refer to the particle species χe1 , χe2, χe3 and χe4

in the process. Each argument pa with a = 1,2,3,4, can take the values

pa =

{

Neu[i] if χea = χ0
i , i = 1, . . . , 4 ,

Cha[j] if χea = χ0
j , j = 1, 2 ,

and has to be adjusted according to the particle species χea in the reaction. In the
above example of χ0

1χ
0
1 → W+W− → χ0

1χ
0
1 scattering we would have to set all pa

with a=1,2,3,4 to Neu[1].

5In order to read such a MSSM spectrum card we use the same file, readLHA.m, as in the Sommerfeld-
enhancement part of the code. This file contains the function ReadMSSMInput[filename], where the
input filename must be an slha formatted MSSM spectrum card. In order to adjust the nomenclature
slightly to the annihilation matrix code, one has to load the file readSUSYparameters.m after calling
ReadMSSMInput[filename]. In this way only certain names for masses and couplings are adjusted. For
details on the nomenclature we refer the reader to the self-explanatory file readSUSYparameters.m.
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• The values of pA (pB) are given by the values of XA and XB, which can be read of
Tab. 1, where however all signs have to be dropped. In our exclusive scattering
reaction example χ0

1χ
0
1 → W+W− → χ0

1χ
0
1 , for instance, pa and pB have to be set

to pA = pB = W.

• The possible inputs for Wave specify the partial wave configuration and agree with
those specified under {2s+1}LJ in Sec. 3.1.

• The possible values for mci are mci = mc1,mc2 and indicate the underlying expan-
sion in mass differences, see the corresponding paragraph in Sec. 3.1.

To summarise, we obtain in our χ0
1χ

0
1 → W+W− → χ0

1χ
0
1 exclusive process example from

PartialWaveCoefficient["chi0 chi0 -> W+ W- -> chi0 chi0",

{Neu[1],Neu[1]},{Neu[1],Neu[1]},{W,W},mc2,"1S0,p2"]

the contribution to the next-to-next-to-leading order 1S0 Wilson coefficient associated
with χ0

1χ
0 → W+W− → χ0

1χ
0
1 scattering. This corresponds to the next-to-next-to-

leading order 1S0-wave contribution to the χ0
1χ

0
1 → W+W− annihilation cross section.

As a side remark let us recall that in case of identical particle annihilation χe1 = χe2 and
further χe1χe2 = χe4χe3 the choice of either mass expansion option mc1 or mc2 gives the
same result for the coefficient, see [1, 2] or Sec. 5 and 6 in the thesis.

The absorptive part of any Wilson coefficient of a NRMSSM four fermion operator
is obtained from the sum of contributions related to box, triangle and selfenergy dia-
grams. Accordingly, the function PartialWaveCoefficient[...] calls three individual
functions that have the same arguments as the former and that separately evaluate the
contributions from box, triangle and selfenergy diagrams. These functions are named

BoxCoefficient[Process, {p1,p2}, {p3,p4}, {pA, pB}, Wave, mci], (20)

TriangleCoefficient[Process, {p1,p2}, {p3,p4}, {pA, pB}, Wave, mci], (21)

SelfCoefficient[Process, {p1,p2}, {p3,p4}, {pA, pB}, Wave, mci]. (22)

The type of diagrams that appear in case of a final state fermion pair XAXB = ff differs
slightly from the case of final states built from gauge or Higgs bosons. In particular, as
can be inferred from Sec. 3.1 and Sec. 3.2, the number of kinematic and coupling factor
expression is larger for XAXB = ff . Therefore there is a separate function

PartialWaveCoefficientFermions[...], (23)

that covers the case of reactions where XAXB = ff and which, in addition to the
unchanged function BoxCoefficient[...], calls

TriangleCoefficientFermions[...] , (24)

SelfCoefficientFermions[...]. (25)
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The arguments of the above functions are as in PartialWaveCoefficient[...]. How-
ever, there is one subtlety regarding the nomenclature of fermion final state parameters
pA,pB:

uQuark[I] denotes the up-type quark of the Ith family, uI ,

dQuark[I] denotes the down-type quark of the Ith family, dI ,

neutrino[I] denotes the neutrino of the Ith family, νI ,

lepton[I] denotes the lepton of the Ith family, lI . (26)

For example, in case of the reaction χ0
1χ

+
1 → tb̄ → χ+

1 χ
0
1 the values of pa,pB inside the

above functions have to be set to pA = uQuark[3] and pB = dQuark[3].

3.3.2 Auxiliary functions in partialwavecoefficients.m

In order to determine the exclusive final state contribution of a certain partial wave
coefficient with the function PartialWaveCoefficient[...], the terms in the generic
kinematic factors and the coupling factor expressions have to be set to numerical values.
To this end a slha-formatted MSSM spectrum card has to be read in the Mathematica

session. Once the MSSM spectrum is read in, all values for the masses, angles and mixing
matrices are available and only have to be assigned according to the χe1χe2 → XAXB →
χe4χe3 reaction under consideration.

For each exclusive scattering reaction we can generically distinguish between the set
of external particles and the internally exchanged (virtual) states. The former set of
states contains the χei , i = 1, . . . , 4 species as well as the on-shell accessible final states
XA, XB. The function PartialWaveCoefficient[...] calls the subroutine

SetExternalVar[p1, p2, p3, p4, pA, pB, mci]. (27)

This function assigns numerical values to the process specific external mass parameters
M,m,m and δm, δm (denoted by M,m,mbar and dm, dmbar in the numerical code) as
well as mA, mB (given by mA,mB in the program). Let us recall from [1, 2] and from the
thesis that the mass parameters M,m,m depend on the choice of the mass expansion
option, mci, where

m =
1

2
(me1 +me3) , m =

1

2
(me2 +me4) for mci = mc1,

m =
1

2
(me1 +me4) , m =

1

2
(me2 +me3) for mci = mc2,

(28)

and similarly also for δm and δm. Further, SetExternalVar[..] also extracts the labels
ei of the external χei states that refer to a specific neutralino or chargino species. For
instance, if the argument p1 of the SetExternalVar function is Neu[1], the value of e1
is set to e1 = 1. Note that the argument e1 is the same as the one appearing in the
coupling factors.6

6As noted in Sec. 3.2 the coupling factors cC[...], dC[...] and eC[...] can be assigned numerical
values only if all the arguments ea with a=1,2,3,4 and ib with b=1,2 (indices ib refer to the internally
exchanged particle states) related to the individual couplings at each vertex are set to integer values.
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While the parameters related to the external states χei and XA, XB can be assigned
once and for all their corresponding numerical values, the case of the intermediate states
is more involved as typically a summation over several internally exchanged states in each
diagram has to be taken into account. For instance, in the four box diagrams labelled
with α = 1, . . . , 4 and related to χ0

1χ
0
1 → W+W− → χ0

1χ
0
1, in each of the two t-channels

both chargino species χ+
j , j = 1, 2 can be exchanged. Consequently, each of the box

topologies α in this case actually represents four different diagrams: the intermediately
exchanged chargino species can be given by χ+

1 χ
+
1 , χ

+
1 χ

+
2 , χ

+
2 χ

+
1 and χ+

2 χ
+
2 where the

first (second) element in each tuple refers to the chargino species exchanged in the left
(right) t-channel. In each case the masses of the t-channel exchanged species and their
corresponding label have to be set accordingly in order to determine the numerical value
of the kinematic and coupling factor expressions. This is taken care of by a Do[]-loop in
PartialWaveCoefficient[...], which calls elements from predefined lists containing
all possible tuples of internally exchanged particles related to each of the diagrams in
Fig. 1–3.

At this stage the only missing point before a numerical value for a specific partial
wave coefficient can be given is the introduction of predefined lists that, for each possible
process, contain the information on the internally exchanged particle species. We discuss
the structure of these lists in the next section.

3.4 Partial wave coefficients: physical reactions

3.4.1 Listing internally exchanged states

When the function PartialWaveCoefficient[...] is called for a specific exclusive
reaction, it accesses predefined lists collected in the files scatteringchannels box.m,
scatteringchannels triangles.m and scatteringchannels self.m, which summa-
rise the relevant information on the internally exchanged particles in each contributing
diagram. Each of the latter scatteringchannels xxx.m files generically contains two
types of lists. In the following we discuss their form for each of the three relevant
topologies in turn.

The file scatteringchannels box.m summarises the following two types of lists:

BoxSubProcess[Process],

tChannelBox[Process, alpha].
(29)

In both cases the argument Process specifies the exclusive reaction under consideration.
Accordingly, it takes the same values as in the function PartialWaveCoefficient[...],
see Sec. 3.3. The argument alpha refers to the label of the box diagram according to
our counting scheme, see Fig. 3 and Sec. 3.1 and 3.2. For each possible χe1χe2 →
XAXB → χe4χe3 process BoxSubProcess[Process] is given by a hard-coded list with
two elements. The purpose of the list is to provide the arguments for the coupling
and kinematic factors that have to be multiplied with each other, respectively, when
building the Wilson coefficients. Consequently, the form of the two elements of each
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list is dictated by the nomenclature that we have chosen for the kinematic and coupling
factor expressions: The first element is given by the process-specifying string that occurs
in the coupling factor expressions related to the reaction, while the second element is
the string arising as argument in the corresponding kinematic factor term. In case of all
processes χ0

e1
χ0
e2

→ W+W− → χ0
e4
χ0
e3
, irrespective which neutralino species with labels

ei are involved, we have, for instance,

BoxSubProcess["chi0 chi0 -> W+ W- -> chi0 chi0"]

= {"chi0 chi0 -> W+ W- -> chi0 chi0", "chi chi -> V V -> chi chi"}. (30)

The elements of the lists tChannelBox[...] are given by sublists with two elements,
where the first (second) element gives the particle species exchanged in the left (right)
t-channel of a contributing box amplitude with label alpha. In our χ0

e1
χ0
e2
→ W+W− →

χ0
e4
χ0
e3

example – for all the box diagrams with labels α = 1, 2, 3, 4 – the t-channel
exchanged species are given by the two chargino species χ+

1,2. Consequently the corre-
sponding tChannelBox[...] list reads, for all alpha=1,2,3,4,

tChannelBox["chi0 chi0 -> W+ W- -> chi0 chi0", alpha]

= {{Cha[1],Cha[1]},{Cha[1],Cha[2]},{Cha[2],Cha[1]},{Cha[2],Cha[2]}} . (31)

The lists provided in scatteringchannels triangles.m are named

TriangleSubProcess[Process],

tsChannelTriangles[SubProcess, alpha],
(32)

and have a similar form as the lists related to box diagrams described above. The
possible arguments Process of the expressions TriangleSubProcess[...] are identical
to the arguments of BoxSubProcess[...]. The lists that are obtained when calling a
specific TriangleSubProcess[Process] are built from several sub-lists, where each of
the latter contains as first element a sub-process specifying string occurring as element of
a corresponding coupling factor expression. The respective second argument is the string
corresponding to the related kinematic factor. Under a “sub-process specifying string”
we understand a string that explicitly contains the s-channel exchanged particle species.
For triangle diagrams in the example scattering process χ0

e1
χ0
e2

→ W+W− → χ0
e4
χ0
e3

we
have

TriangleSubProcesses["chi0 chi0 -> W+ W- -> chi0 chi0"]

= {{"chi0 chi0 -> (H0) -> W+ W- -> chi0 chi0",

"chi chi -> (S) -> V V -> chi chi"},
{"chi0 chi0 -> (h0) -> W+ W- -> chi0 chi0",

"chi chi -> (S) -> V V -> chi chi"},
{"chi0 chi0 -> (Z) -> W+ W- -> chi0 chi0",
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"chi chi -> (V) -> V V -> chi chi"}}. (33)

The argument SubProcess in a list tsChannelTriangle[SubProcess, alpha] can take
the values provided by the first elements of the sub-lists in TriangleSubProcess[...].
The corresponding tsChannelTriangle[...] lists contain sub-lists where the first (sec-
ond) element gives a particle exchanged in the t-channel (s-channel) of the corresponding
triangle diagram with label alpha. Again, for our explicit χ0

e1
χ0
e2

→ W+W− → χ0
e4
χ0
e3

example we have for all alpha=1,2,3,4,

tsChannelTriangle["chi0 chi0 -> (H0) -> W+ W- -> chi0 chi0", alpha]

= {{Cha[1], H0}, {Cha[2], H0}}. (34)

According to the sub-lists in the corresponding TriangleSubProcess[...] for our ex-
ample there are in addition two further tsChannelTriangle[...], where the s-channel
exchanged state is given by a h0 or a Z boson.

The structure of the lists contained in scatteringchannels self.m follows immediately
from the above discussed cases. Here the nomenclature for the lists is

SelfSubProcesses[Process],

ssChannelSelf[SubProcess].
(35)

The argument Process of the first type of lists takes the same values as in the corre-
sponding box and triangle diagram related cases: Process is a place-holder for a string
specifying the exclusive χe1χe2 → XAXB → χe4χe3 scattering reaction. The elements of
a certain SelfSubProcesses[Process] list are again sub-lists that contain as elements
the process specifying strings related to coupling and corresponding kinematic factors.
For instance we have

SelfSubProcesses["chi0 chi0 -> W+ W- -> chi0 chi0"]

= {{"chi0 chi0 -> (Z) -> W+ W- -> (Z) -> chi0 chi0",

"chi chi -> (V) -> V V -> (V) -> chi chi", 1},
{"chi0 chi0 -> (Z) -> W+ W- -> (H0) -> chi0 chi0",

"chi chi -> (V) -> V V -> (S) -> chi chi", 2},
{...}, ... }. (36)

The enumeration index that occurs as third element of the sub-lists is the label alpha
related to selfenergy topologies which we introduced in Sec. 3.1.1. The possible ar-
guments of ssChannelSelf[...] are now given by the respective first sub-elements
of SelfSubProcess[...], and the latter lists contain as elements pairs {i1,i2} of all
possible s-channel exchanged particles i1,i2. For instance

ssChannelSelf["chi0 chi0 -> (Z) -> W+ W- -> (Z) -> chi0 chi0"] = {Z, Z},
ssChannelSelf["chi0 chi0 -> (Z) -> W+ W- -> (H0) -> chi0 chi0"] = {Z, H0},
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... , (37)

where we do not write explicitly the remaining seven lists related to the selfenergy
topology in χ0

e1
χ0
e1

→ W+W− → χ0
e4
χ0
e3

scattering.

3.4.2 The function pwc[...] related to the physical exclusive process

We have noted before in Sec. 3.3 that the function PartialWaveCoefficient[...] de-
termines the contribution to the absorptive part of a Wilson coefficient that arises from
a specific exclusive XAXB final state.7 As our calculation refers to Feynman gauge, we
have to sum over a certain set of final states XAXB to arrive at corresponding con-
tributions from physical final states. In order to immediately have at hand a func-
tion that gives the exclusive physical final state contribution to the Wilson coefficients,
the function pwc[...] (abbreviating partialwavecoefficient) is introduced in the file
partialwavecoefficients channels.m. It has the form

pwc[Process, {e1,e2}, {e3,e4}, Wave, mci], (38)

where the arguments can take the following values:

• Process is a string indicating the exclusive physical reaction

"chi chi -> XA XB -> chi chi"

where all sub-strings chi and XA XB have to be adjusted according to the exclusive
reaction under consideration. Note in particular, that the generic species of the
external states (neutralino, chi0, or chargino, chi+, chi-) is fixed by this string.

• e1, e2, e3, e4 denote the labels ei of the external states χei in the physical
χe1χe2 → XAXB → χe4χe3 reaction.8 As the particle species type of each χei,
either being a neutralino or a chargino, is already determined by the argument
Process, only the labels ei need to be specified as additional inputs here.

7Let us recall in addition from Sec. 3.3 that in case of an exclusive final state built of a fermion pair
the corresponding function is named PartialWaveCoefficientFermions[...].

8A caveat has to be added here, related to the use of the functions pwc[...]: These functions
currently contain no internal query if a given final state XAXB is on-shell accessible in χe1χe2 → XAXB

and χe4χe3 → XAXB reactions. However an absorptive part is only present in χe1χe2 → XAXB →
χe4χe3 scattering, if XA and XB can simultaneously go on-shell. Consequently, the result for a pwc[...]
should be zero, if the state XAXB cannot be produced on-shell in the corresponding χe1χe2 → XAXB

and χe4χe3 → XAXB annihilations. But when calling pwc[...], the hard coded analytic results for the
underlying kinematic factors are called, which rely on a calculation under the assumption that XAXB

can be produced on-shell. Therefore, in the current version of the code, the user himself has to make
sure that XAXB is on-shell accessible when using pwc[..] and if XAXB is not on-shell accessible he
has to set the result for the exclusive contribution to the partial wave coefficient to zero by hand. Let
us note that in the case of the determination of the inclusive reactions, referring to the absorptive parts
of the Wilson coefficients, described in Sec. 4.3 it is taken care of that only those XAXB exclusive final
state contributions are considered that are on-shell accessible.
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• Wave takes the same values as in the function PartialWaveCoefficient[...], see
Sec. 3.3 and Sec. 3.1 for the possible values.

• mci can be either set to mc1 or mc2, specifying the mass expansion option, see
again Sec. 3.3 and Sec. 3.1.

Let us imagine we wish to determine the contribution to the leading order 3S1 partial
wave coefficient in χ0

1χ
0
2 → χ0

1χ
0
2 scattering that arises from a physical W+W− exclusive

final state, and we chose the mass expansion mc2. In this case we have to call

pwc["chi0 chi0 -> W+ W- -> chi0 chi0", {1, 2},{2, 1}, "3S1", mc2]. (39)

Note the order in which the indices ei of the external states χei are given: according
to ascending i, while we denote the scattering reaction itself by χe1χe2 → χe4χe3. That
is, the indices of the particles with labels e3 and e4 appear in the opposite order. This
nomenclature goes back to the conventions that we have chosen for the order of indices
on the four-fermion operators in [1, 2] and in the thesis. It implies, in particular, that a
certain partial wave contribution to the exclusive pair annihilation cross section of two
non-identical states χe1χe2 , which is related to the absorptive part in χe1χe2 → χe1χe2

scattering, is obtain from pwc[...] by setting the arguments {e1,e2},{e3,e4} to
{e1,e2},{e2,e1}. Therefore the output of our above example is proportional to the
leading order 3S1 wave contribution to the exclusive χ0

1χ
0
2 → W+W− annihilation cross

section.
The file scatteringchannels channels.m contains the definition of all functions

pwc[Process, ...] with differing arguments Process that are related to possible ex-
clusive physical χe1χe2 → XAXB → χe4χe3 reactions arising in neutralino and chargino
scattering reactions. In case of fermionic final states XAXB the colour factor of Nc = 3
is taken into account in the definition of the corresponding pwc[...].

4 Part 2: Building the annihilation matrices

In this section we describe the functions that finally allow to obtain the annihilation
matrices encoding hard χe1χe2 →

∑

XAXB → χe4χe3 pair-annihilation reactions. These
annihilation matrices are an input to the Sommerfeld enhancement part of the code.
Collecting and representing the hard χe1χe2 →

∑

XAXB → χe4χe3 rates in matrix
form requires the introduction of an enumeration convention for the χeaχeb two-particle
states. Sec. 4.1 summarises our enumeration convention for the two-particle states χeaχeb

in each of the charge sectors referring to neutral, single- or double-charged χeaχeb pairs.
In Sec. 4.2 we comment on the choice to be made for the mass expansion option, either
mc1 or mc2. While in the first part of the code, discussed in Sec. 3, we have described
functions that allow to obtain partial wave separated contributions to the NRMSSM
four-fermion operators arising from exclusive (physical) final states, we finally introduce
in Sec. 4.3 functions that determine the full absorptive part of the Wilson coefficients
related to inclusive reactions. Symmetry factors and symmetry relations between certain
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(χχ)I state method-1 label method-2 label (χχ)I state method-1 label method-2 label

χ+
1 χ

+
1 1 1 χ+

2 χ
+
1 3 -

χ+
1 χ

+
2 2 2 χ+

2 χ
+
2 4 3

Table 2: Enumeration scheme within method-1 and method-2 for double positive charged
(χχ)I states. The same conventions hold for double negative charged states.

partial wave coefficients are discussed in Sec. 4.4. Compared to the order of magnitude
of leading entries in the annihilation matrices, certain entries can be numerically very
small and can be set to zero for our purposes; a corresponding function that addresses
this issue is discussed in Sec. 4.5. The functions that determine the annihilation matrices
are finally given in Sec. 4.6

It is worth to note here that all functions described in the following are introduced and
defined in the file annihilationmatrices vx.m, where x denotes the version number,
which is currently x=7.

4.1 Enumeration convention for χχ states

The entries of the annihilation matrices encode the absorptive part of partial wave sep-
arated χe1χe2 → χe4χe3 scattering reactions. As they refer to two-particle scatterings
we can first divide all possible pairs built from the neutralino and chargino states into
sets of neutral, single positive (single negative) and double positive (double negative)
χχ states. In the following we will consider χeaχeb pairs rather than individual χea and
χeb states and therefore introduce a single label I to refer to the pair χeaχeb ≡ (χχ)I .
Let us note that we generically consider all possible χχ pairs as external states in the
annihilation matrices. This implies that not only those (χχ)I pairs built from NRMSSM
states are considered, but also those (χχ)K pairs that are too heavy to be part of the
NRMSSM. As described in [3] as well as in Sec. 8.6 of the thesis, the effect of heavy χχ
states – not being part of the NRMSSM set of χχ states – is taken into account in the
last loop prior to the hard annihilation reaction in the ladder-diagrams accounting for
the Sommerfeld enhancement effect. One input in the corresponding calculation are the
perturbative hard annihilation rates involving the heavy χχ states. Therefore also these
rates are determined in the annihilation matrix part of the code.

Within a given charge sector – neutral, single positive (single negative) or double
positive (double negative) – the IJ entry of an annihilation matrix ΓIJ encodes the ab-
sorptive part of the inclusive (χχ)J → (χχ)I scattering reaction. Note the order of states
in the reaction: the columns (rows) of Γ contain all processes with one fixed incoming
(outgoing) state. In each charge sector the Jth column (Ith row) of the annihilation
matrices Γ refers to the incoming (outgoing) two-particle state with enumeration label
J (I) according to the enumeration convention of the states summarised in Tabs. 2–4.
Note that this enumeration convention obviously has to agree with the one set up in
the ”Sommerfeld-enhancement part” of the code. Further recall from [3] or Sec. 8.3 of
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(χχ)I state method-1 label method-2 label (χχ)I state method-1 label method-2 label

χ0
1χ

+
1 1 1 χ0

1χ
+
2 5 5

χ0
2χ

+
1 2 2 χ0

2χ
+
2 6 6

χ0
3χ

+
1 3 3 χ0

3χ
+
2 7 7

χ0
4χ

+
1 4 4 χ0

4χ
+
2 8 8

Table 3: Enumeration scheme within method-1 and method-2 for single positive charged
(χ0χ+)I states. The same conventions hold for single negative charged states (χ−χ0)I .

(χχ)I state method-1 label method-2 label (χχ)I state method-1 label method-2 label

χ0
1χ

0
1 1 1 χ0

4χ
0
1 13 -

χ0
1χ

0
2 2 2 χ0

4χ
0
1 14 -

χ0
1χ

0
3 3 3 χ0

4χ
0
1 15 -

χ0
1χ

0
4 4 4 χ0

4χ
0
1 16 10

χ0
2χ

0
1 5 - χ+

1 χ
−
1 17 11

χ0
2χ

0
2 6 5 χ+

1 χ
−
2 18 12

χ0
2χ

0
3 7 6 χ+

2 χ
−
1 19 13

χ0
2χ

0
4 8 7 χ+

2 χ
−
2 20 14

χ0
3χ

0
1 9 - χ−

1 χ
+
1 21 -

χ0
3χ

0
2 10 - χ−

1 χ
+
2 22 -

χ0
3χ

0
3 11 8 χ−

2 χ
+
1 23 -

χ0
3χ

0
4 12 9 χ−

2 χ
+
2 24 -

Table 4: Enumeration scheme within method-1 and method-2 for neutral (χχ)I states.

the thesis that the Sommerfeld factors can be calculated within two different methods;
method 1 counts and treats as different the two particle states χe1χe2 and χe2χe1 for non
identical particles χe1 and χe2, while in method 2 the second, redundant state is omitted.
For the explicit definition of method 1 and method 2 we refer the reader to [3] or Sec. 7.2
and 8.3 of the thesis.

4.2 The choice of the mass expansion

Recall from [1, 2] or Sec. 6.1.2 of the thesis that our analytic results for the kinematic
factors refer to two different expansions in mass differences. As discussed in several of the
subsections of Sec. 3 we use the labels mc1 and mc2 in the numerical code to refer to and
to distinguish expressions referring to the one or the other expansion. As we have noted
before, option mc2 is suited to reproduce the partial wave separated contributions to
(exclusive as well as inclusive) (χχ)J pair-annihilation rates. Since the diagonal entries
of any annihilation matrix are proportional to these pair-annihilation rates, all diagonal
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entries of the annihilation matrices rely on a calculation using mc2 kinematic factors.
However, in case of off-diagonal annihilation matrix entries referring to reactions

(χχ)J → (χχ)I with J 6= I it is a priori not clear whether mc1 or mc2 expressions should
be chosen in the calculation. Generically the mass differences δm, δm should be small
for the mass expansion to be consistent, see the discussion in [1] or Sec. 6.1.2 of the
thesis. In order to decide which expansion mci should be chosen in the evaluation of
off-diagonal entries ΓJI in the code we introduce functions that address this question
based on the given MSSM neutralino and chargino mass spectrum. These functions, in
case of neutral χe1χe2 → χe4χe3 two-particle state scatterings, are named

Mcinnnn[e1,e2,e3,e4] for χ0
e1
χ0
e2
→ χ0

e4
χ0
e3

reactions,

Mcinncc[e1,e2,e3,e4] for χ0
e1
χ0
e2
→ χ−

e4
χ+
e3

reactions,

Mciccnn[e1,e2,e3,e4] for χ−
e1
χ+
e2
→ χ0

e4
χ0
e3

reactions,

Mcicccc[e1,e2,e3,e4] for χ−
e1
χ+
e2
→ χ−

e4
χ+
e3

reactions,

(40)

while in single charged reactions the corresponding functions are named

Mcinccn[e1,e2,e3,e4] for χ0
e1
χ+
e2
→ χ0

e4
χ+
e3

reactions,

Mcicnnc[e1,e2,e3,e4] for χ−
e1
χ0
e2
→ χ−

e4
χ0
e3

reactions.
(41)

In case of double charged reactions the function Mcicccc[e1,e2,e3,e4] introduced in
(40) can be used. The four arguments ei, i=1,2,3,4 of all these functions are the labels
of the external χei states, respectively. The reason why so many different functions are
introduced is related to these arguments: if we have only the information on the label
but have to deal with particle masses, we need an additional information on the involved
particle species (neutralino or chargino).

The output of all functions given in (40) and (41) is either mc1 or mc2. Which output
is returned should be related to the value of the mass differences δm, δm calculated for
both expansion options mc1 and mc2, respectively, given a specific underlying MSSM
spectrum; the mass expansion mci where the mass differences are smaller should be
chosen. This is because the smaller the mass differences the better the convergence of
the expansion of the perturbative χχ → XAXB → χχ rates in mass differences δm
and δm. The currently implemented criterion reads as follows: if particle χe1 is lighter
(heavier) than χe2 and at the same time particle χe4 is lighter (heavier) than χe3 , then
option mc2 is chosen and the output of the corresponding functions in (40) and (41) is
mc2. Otherwise the output of the above function is set to mc1.

The Mcixxxx[...] functions will appear inside some of the functions described in
the following that determine the full partial wave coefficients.

4.3 Inclusive reactions: the final partial wave coefficients

In order to build the full partial wave coefficients referring to inclusive reactions from
their respective exclusive XAXB final state contributions9 we have to decide – based

9Recall that the functions pwc[...] providing the contributions to the absorptive parts of the Wilson
coefficients from exclusive (tree-level) reactions χe1χe2 → XAXB → χe4χe3 are described in Sec. 3.4.2.
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on the given MSSM spectrum – which XAXB final states are on-shell accessible in a
χeaχeb → XAXB annihilation reaction. Obviously, the heavier the states χea and χeb the
more final states XAXB will be accessible on-shell. However, our currently implemented
criterion to tread a XAXB state as viable final state in a χeaχeb → XAXB annihilation
reaction related to χe1χe2 → XAXB → χe4χe3 scattering – and hence our criterion to take
into account an exclusive final state in the construction of the annihilation matrices – is
based on the lightest two-particle state χ0

1χ
0
1. The reason for this is related to the Som-

merfeld enhancements that shall eventually be calculated using the annihilation matrix
results provided by the code, and reads as follows: Off-diagonal potential scattering can
convert an incoming χ0

1χ
0
1 pair to another neutral χeaχeb state that eventually undergoes

pair annihilation. The latter annihilation reaction is encoded in the annihilation matri-
ces. Therefore we have to take care that in Sommerfeld enhanced reactions with initially
incoming χ0

1χ
0
1 states only those XAXB final states are considered in the inclusive partial

wave coefficients, encoded in the annihilation matrices, that are accessible for the χ0
1χ

0
1

pair. Our criterion is therefore such, that all XAXB final states that cannot be produced
on-shell in χ0

1χ
0
1 → XAXB processes are excluded as exclusive final states for any par-

tial wave coefficient. Even more, in our NRMSSM effective theory set-up, the on-shell
accessible final state particles XAXB should not be non-relativistic, otherwise we would
have to consider them among the set of non-relativistic states of the theory and even co-
annihilation rates of such additional non-relativistic states could be relevant. Therefore
we establish the following criterion to account for a XAXB final state in the numerical
code: If the sum of masses mA + mB is smaller than half the mass of the χ0

1χ
0
1 pair a

corresponding flag is set to 1 in the code, otherwise the flag is set to 0. The full partial
wave coefficients are obtained from the sum over all XAXB state contributions, where
each contribution is multiplied by the corresponding flag. Consequently only those final
state contributions are taken into account for the full partial wave coefficient that fulfill
the above stated criterion related to the χ0

1χ
0
1 mass. Note that the flags are introduced

in the file annihilationmatrices vx.m as well.
The following functions determine the absorptive parts of the full partial-wave coeffi-

cients related to χe1χe2 → χe4χe3 scattering, taking only those exclusive XAXB final state
contributions into account that are on-shell accessible in χ0

1χ
0
1 → XAXB annihilations:

pwcFullnnnnALT[{e1,e2,e4,e3}, Wave, mci] for χ0χ0 → χ0χ0 reactions,

pwcFullccccALT[{e1,e2,e4,e3}, Wave, mci] for χ−χ+ → χ−χ+ reactions,

pwcFullnnccALT[{e1,e2,e4,e3}, Wave, mci] for χ0χ0 → χ−χ+ reactions, (42)

are the functions relevant for neutral scattering reactions. The absorptive parts of the
Wilson coefficients in off-diagonal χ−χ+ → χ0χ0 scattering can be obtained from the
corresponding χ0χ0 → χ−χ+ expressions. Note the order of arguments e4 and e3 that
now appear in the same order as in χe1χe2 → χe4χe3. The values that all the arguments
of the pwcFullxxxxALT[...] functions can take should be obvious from the preceeding
sections. In case of single charged reactions we have the corresponding functions

pwcFullnccn[{e1,e2,e4,e3}, Wave, mci] for χ0χ+ → χ0χ+ reactions,
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pwcFullcnnc[{e1,e2,e4,e3}, Wave, mci] for χ−χ0 → χ−χ0 reactions. (43)

Finally, for double charged reactions the corresponding full partial wave coefficients are
obtained with functions

pwcFullcpcpALT[{e1,e2,e4,e3}, Wave, mci] for χ+χ+ → χ+χ+ reactions,

pwcFullcmcmALT[{e1,e2,e4,e3}, Wave, mci] for χ−χ− → χ−χ− reactions. (44)

Note that mci appears as an argument of all the above functions. There is a version
pwcFullxxxx[...] of these function – in case of neural and double-charged reactions
without the ending ALT10 – where the appropriate mci value to be used in the calculation
of a partial wave coefficient is internally determined inside the function with the help of
the Mcixxxx[...] functions described in Sec. 4.2.

4.4 Symmetry factors and symmetry relations

Certain entries of the annihilation matrices have to refer to reactions χ+χ− → χ0χ0

instead of χ−χ+ → χ0χ0 and to χ0χ0 → χ+χ− instead of χ0χ0 → χ−χ+. Similarly
there are entries related to χ−χ+ → χ+χ−, χ+χ− → χ−χ+ or χ+χ− → χ+χ− scattering
instead of χ−χ+ → χ−χ+. The respective Wilson coefficients that are not determined
by the functions given in Sec. 4.3 can be obtained from the latter by making use of
certain symmetry properties of the Wilson coefficients under exchange of labels. For the
corresponding relations see for instance eq. (8) in [1] or eq. (5.9) and eq. (5.14) in the
thesis.

In the code we introduce the parameter SymFac[Wave] that, depending on the argu-
ment Wave, is either given by 1 or −1 and that agrees with the parameter η in eq. (9)
of [1] and eq. (5.10) in the thesis. This allows to finally introduce the following functions

pwcFullnnmpALT[e1,e2,e3,e4, Wave, mci] for χ0
e1
χ0
e2
→ χ+

e4
χ−
e3

reactions,

pwcFullpmmpALT[e1,e2,e3,e4, Wave, mci] for χ+
e1
χ−
e2
→ χ+

e4
χ−
e3

reactions, (45)

derived from corresponding functions pwcFullxxxxALT[...] in Sec. 4.3. For details of
the relations to the Sec. 4.3 functions we refer the reader to the part of the code where
the definitions of the above functions are given as well as to the relevant paragraphs
in [1] or Chap. 5 of the thesis.

The annihilation matrices used in the ”Sommerfeld-enhancement part” of the code
shall already involve the spin-summed inclusive annihilation reactions. For that reason
we further introduce certain spin-weight parameters in the code, named SpinSum[Wave].
These will multiply the appropriate partial wave coefficients when building the annihila-
tion matrices from the latter. In our case SpinSum[Wave] takes always the value 1 apart
from the case of 3S1 partial wave reactions where it is given by 3.

10The ending ALT denotes “alternative” and was introduced in case of annihilation matrices related
to neutral and double charged reactions in course of the code development.
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4.5 Chopping numerically small annihilation matrix entries

Due to small numerical inaccuracies in the calculation of the partial wave coefficients
some of the annihilation matrix entries that should be exactly zero happen to be non-
vanishing. In addition there are further entries that are non-vanishing but strongly
suppressed with respect to the leading entries.11 Within the part of the code that
determines the Sommerfeld enhancement factors both these types of strongly suppressed
entries can potentially cause numerical problems. For that reason we introduce a function
that sets all those annihilation matrix entries to zero that are smaller by a certain factor
than the leading entry. The relevant function is named

chopRoutineALT[Matrix, Wave]. (46)

Its first argument Matrix will in our application be an annihilation matrix and the
second argument specifies the partial wave configuration of that annihilation matrix.
The output of chopRoutineALT[Matrix, Wave] is the input Matrix where however all
those entries that are by a certain amount smaller than the leading matrix-entry are set
to zero: In case of leading order S-wave related annihilation matrices those entries are
set to zero that are smaller than the leading entry by a factor of 10−12. For the case of
all P - and next-to-next-to-leading order S-wave matrices the factor is chosen to be 10−8.

4.6 Calculation of the annihilation matrices

Now we have all functions available that allow to determine the annihilation matrices.
Particularly relevant for the determination of the respective matrix entries are the func-
tions pwcFullxxxxALT[...], pwcFullnccn[...] and pwcFullcnnc[...] discussed in
Sec. 4.3 that give as output the absorptive parts of the full, partial wave separated Wilson
coefficients; apart from possible spin weight factors, the latter determine the respective
annihilation matrix entries. Our last step is therefore the construction of the matrices
Γ from their individual components ΓIJ related to (χχ)J → (χχ)I scattering. Let us
recall that our specific enumeration convention for the states (χχ)I in each charge sector
is given in Sec. 4.1, see in particular Tabs. 2–4 therein.

We provide the following functions that give as output the partial wave specific
annihilation matrices in each charge sector corresponding to the method-1 enumeration
convention:12

GammaNeutralALT[Wave] for neutral χχ → χχ reactions,

11The typical order of magnitude of such numerically strongly suppressed annihilation matrix entries
is 10−25GeV−2 in case of leading order S-wave matrices while the corresponding leading entries are
typically of O(10−10 − 10−12GeV−2). In case of P - and next-to-next-to-leading order S-wave annihi-
lation matrices, the corresponding numerically strongly suppressed entries are typically smaller than
O(10−25 GeV−4) while leading entries are typically of O(10−16 − 10−18GeV−4). The order of magni-
tude of annihilation matrix entries obviously depends on the underlying MSSM spectrum and the above
quoted numbers are rather given as a rough guideline for the orders of magnitude to expect.

12 The ”Sommerfeld-enhancement part” of the code requires method-1 annihilation matrices as an
input. In the latter part of the code, the corresponding method-2 matrices are then subsequently
constructed from the method-1 expressions.
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Gamma0pALT[Wave] for χ0χ+ → χ0χ+ reactions,

Gamma0pALT[Wave] for χ−χ0 → χ−χ0 reactions,

GammappALT[Wave] for χ+χ+ → χ+χ+ reactions,

GammammALT[Wave] for χ−χ− → χ−χ− reactions. (47)

The possible values of the single arguments Wave agree with the possible {2s+1}LJ values
specified in Sec. 3.1.

Let us say a few words on the internal construction of the annihilation matrix output
performed by the above functions. First recall that the annihilation matrices are hermi-
tian such that in their construction it is possible to calculate just one triangle – either
the upper or the lower – of the corresponding matrix and to subsequently obtain the
full matrix from this triangle matrix using the hermiticity requirement. Moreover the
annihilation matrices in the neutral sector and the two double charged sectors contain
redundant informations as not all states in the method-1 enumeration convention corre-
spond to physically different states (for instance, the states χ0

1χ
0
2 and χ0

2χ
0
1 are physically

equivalent). In case of annihilation matrices related to neutral and double charged re-
actions the steps that are performed inside the functions GammaNeutralALT[...] and
GammappALT[...], GammammALT[...] are the following

• As first intermediate step start to create the upper triangle of the matrix Γ̃T , where
Γ̃ is the matrix related to the proper annihilation matrix Γ that takes only those
method-1 states (χχ)I into account that also appear in the method-2 set of states.
Annihilation matrix entries appearing in Γ that we leave out in this way do not
need to be calculated explicitly as we can obtain their value easily from calculated
expressions in Γ̃ using symmetry relations; for the latter see the discussion and
the cited references in Sec. 4.4. It is convenient to consider the transpose of Γ̃
here as its entry Γ̃T

IJ encodes a (χχ)I → (χχ)J scattering processes and in the
calculation of the upper triangle we only need to consider reactions with I ≤ J ;
the restriction to the method-1 states that are also present in method-2 then implies
that we can a priori fix the mass expansion to be used in the calculation of the
pwcFullxxxxALT[...] annihilation matrix entries to either mc1 or mc2. All states
(χχ)I ≡ χIaχIb that appear in the method-2 enumeration convention are built such
that the mass of the first state χIa is smaller than the mass of the second state
χIb, mIa < mIb . Consequently, following our criterion set out in Sec. 4.2, the value
of mci can be fixed a priori and does not depend on any specific MSSM mass
spectrum. Therefore we do not need to call the functions Mcixxxx[...] here.

• In the next step use the hermiticity requirement to construct the full matrix Γ̃T .
At this point we take care of possible spin-weight factors to be incorporated in the
final annihilation matrix expressions, using the function SpinSum[Wave] described
in Sec. 4.4.

• Determine the full method-1 annihilation matrix ΓT expression from Γ̃T by mak-
ing use of symmetry relations between redundant entries that have to be added
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when constructing ΓT from Γ̃T . At this point no further call of the functions
pwcFullxxxxALT[...] is required as all numerical values – apart from possible
signs – have been already determined as entries of Γ̃. Symmetry factors are imple-
mented using SymFac[Wave], see Sec. 4.4 for the latter function.

• In the last step transpose the obtained ΓT expression to arrive at the final method-
1 annihilation matrix. The latter annihilation matrix is then given as output
of the GammaNeutralALT[...], GammappALT[...] and GammammALT[...] func-
tions. This output can be called with

AnnMatrix[Wave] in the neutral sector,

AnnMatrixcpcp[Wave] in the double positively charged sector,

AnnMatrixcmcm[Wave] in the double negatively charged sector. (48)

The latter expressions should be written to a .m file which can then be read in the
”Sommerfeld-enhancement part” of the code.

The procedure to determine the annihilation matrices in the single charged sectors,
used within the functions Gamma0pALT[...],Gammam0ALT[...], is very similar to the
one described above. Note however that in case of the single charged sectors the num-
ber of states within method-1 and method-2 agrees and we do not have to construct
a reduced matrix Γ̃ first but can directly determine Γ. There is another small differ-
ence in the construction of the single charged annihilation matrices with respect to the
above listed steps: here we cannot a priori decide which mass expansion mci has to be
chosen for a certain annihilation matrix entry: this has to be determined based on the
specific MSSM spectrum.13 Therefore we have to use the functions pwcFullxxxx[...]
without the ending ALT here, which internally determine the mass expansion to be used.
Consequently the steps are in this case:

• Build the upper triangle of the annihilation matrix ΓT , where the entries are de-
termined with the help of functions pwcFullxxxx[...].

• Using the hermiticity of the full annihilation matrix Γ subsequently determine
ΓT from the corresponding upper-triangle matrix. At this point incorporate spin-
weight factors for the annihilation rates using the function SpinSum[Wave].

• Transpose the result from the last step to obtain the numerical expression for
the respective annihilation matrix Γ, which is then the output of the functions
Gamma0pALT[...] and Gammam0ALT[Wave]. This output can be called with

AnnMatrixcpn[Wave] in the single positively charged sector,

AnnMatrixcmn[Wave] in the single negatively charged sector, (49)

13As an example consider the state χ0
2χ

+

1 : here it is not a priori clear if mχ0
2
< mχ

+

1

. If the spectrum

has a bino-like LSP and wino-like NLSP states, the latter relation holds. However, in case of a wino-like
LSP the NLSP state will be the χ+

1 , such that mχ
+

1

< mχ0
2
.
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and is conveniently written to a .m file for future use in the part of the program
that determines the Sommerfeld-enhanced annihilation rates.

5 Comparison to the publications’ nomenclature

For some of the expressions in the numerical code we have used a differing nomenclature
than the one established in the publications [1–4] and in the thesis. For clarity and in
order to avoid confusions we list in this section, especially in Tab. 5, all the quantities
that are affected by such renaming when going from the expressions used in the code to
the notation in the publications [1–4] and the thesis.

5.1 Kinematic and coupling factors

• Note that all expressions for the kinematic factors in the publications and

the thesis refer to mass expansion mc2.

• Further let us stress again that even for mci = mc2 a particular kinematic factor
expression provided with the code can differ with respect to a global sign

from the corresponding kinematic factor given in [1,2] and the Appendix A of the
thesis: as stated in Sec. 2 and Sec. 3.1 above this difference arises because we
use different reference processes for the determination of the respective kinematic
and coupling factors. For the reference processes used in the calculation of the
kinematic factors in the program see Sec. 3.1.

• The same kind of difference with respect to a global sign arises in the comparison
of the corresponding coupling factor expressions.

When comparing the nomenclature for the kinematic and coupling factor expression
collected in Tab. 5, the latter difference has to be kept in mind; that is, the corre-

spondence is not one-to-one but there can be – but not necessarily are in every
case – different global signs associated with individual kinematic and coupling factor
expressions.

In order to understand the origin of such global signs it might be useful to familiarise
with the steps in the calculation of kinematic and coupling factors set out in [1, 2] and
in the thesis. The significance but also the – to a certain extend existing – arbitrariness
in the choice of the reference processes underlying the calculation should become clear.
Comparing then, for instance, the coupling factors obtained for a specific diagram in
χe1χe2 → V V → χe4χe3 scattering, referring to generic Majorana fermions χei and
generic vector bosons V , with the coupling factors obtained for the same diagram but
referring to external neutralinos χ0

ei
and a W+W− final state, the origin of global signs

can be understood.
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5.2 Annihilation matrices

As described in Sec. 4.6 we determine annihilation matrices Γ(2s+1LJ) in the numerical
program, which refer to a method-1 set of states, see Tab. 2–4. Recall that according to
(48) and (49) the numerical matrices can be called with

Γ[Wave] = AnnMatrix[Wave], AnnMatrixcpn[Wave], .... (50)

The relation of these matrices to the matrices [f̂(2s+1LJ)]
(1) in [3] is given by transposi-

tion:

Γ[{2s+1}LJ]T = [f̂(2s+1LJ)]
(1) . (51)

Finally let us recall that within the numerical annihilation matrix program we determine
solely the method-1 annihilation matrices, corresponding to [f̂(2s+1LJ )]

(1). Expressions
that are related to [f̂(2s+1LJ )]

(2) are not determined within this part of the code, also see
footnote 12. In the transition from the method-1 to the method-2 annihilation matrices
certain prefactors (

√
2 or 2) have to be taken into account in front of certain annihilation

matrix entries, which is taken care of in the Sommerfeld enhancement part of the code.
For further details on calculations relying on either the method-1 or the method-2 bases
of χχ states we refer the reader to [3] or alternatively Sec. 7.2, 8.3 and Appendix C of
the thesis.
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Table 5: Nomenclature used in the numerical code and the publications. The correspon-
dence between the kinematic and coupling factors in the code and [1, 2] and the thesis
is not one-to-one, but there can be global sign differences. See the text for details.
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