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Zusammenfassung

In dieser Arbeit fithren wir den Zirkuit-Durchmesser (circuit diameter) ein, eine Verallgemeine-
rung des kombinatorischen Durchmessers von Polyedern. Wir untersuchen, wie viele Zirkuit-
Schritte wir brauchen um je zwei Ecken eines Polyeders mit einem Zirkuit-Weg zu verbinden.
Diese Wege verlaufen entlang von Zirkuit-Richtungen, das heil3t, parallel zu potentiellen Kanten
des Polyeders. Indem wir fordern, dass die Zirkuit-Wege zusitzliche Kriterien erfiillen, ergeben
sich diverse Kategorien von Zirkuit-Durchmessern. Wir setzen all diese Klassen zueinander in
Relation, wodurch eine Hierarchie von Durchmessern entsteht. Diese Vielzahl miteinander ver-
wandter Konzepte ermdglicht es uns, neue Erkenntnisse iiber den kombinatorischen Durchmesser
zu gewinnen. Beispielsweise bilden schwichere Zirkuit-Durchmesser untere Schranken an den
kombinatorischen Durchmesser.

Wie man all diese Zirkuit-Durchmesser-Konzepte konkret ausnutzen kann, zeigen wir am Bei-
spiel von Transportpolytopen und dualen Netzwerkfluss-Polyedern. Wir beweisen obere und un-
tere Schranken an die verschiedenen Durchmesser, wobei wir besonderes Augenmerk auf die

Schranke legen, die in Verbindung mit der beriihmten Hirsch-Vermutung steht.






Abstract

The present thesis introduces the circuit diameter of polyhedra as a generalization to the com-
binatorial diameter. It tells us how many circuit steps we need to connect any two vertices of a
polyhedron with a circuit walk. Such a walk goes along circuit directions, that is, every step is par-
allel to a potential edge of the polyhedron. Several notions of circuit diameters arise from putting
further restrictions on these walks. We relate all these categories in a comprehensive hierarchy.
Therein, the generalized diameters reveal some interesting lower bounds for the combinatorial
diameter and thus their study might help for a better understanding of the latter one.

By investigating the hierarchy for transportation polytopes and dual network flow polyhedra,
we demonstrate on two concrete examples how one can exploit the availability of diameters of
different strength. In this we focus on proving upper and lower bounds on the several circuit

diameters, where the bound induced by the famous Hirsch conjecture is of special interest.
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Introduction

An optimization problem over a polyhedron can be solved via a simple augmentation scheme:
As long as the current solution is not optimal, improve it! The essential ingredient for such an
algorithm is a test set, a set of vectors that contains an augmenting direction for every non-optimal
solution. Such a set is also called an optimality certificate, as we have found the optimum if we

can no longer improve our current solution along any vector in the test set.

In this thesis we consider a particularly interesting test set, the circuits [14, 15, 28]. These
vectors are associated with the polyhedron that defines the feasible region of a linear program.
They allow a particularly nice, intuitive interpretation: We will see that for a polyhedron of the
form

P={xeR'":Ax=Db, Bx<d}

the circuits are given by all potential edge directions that appear as the right-hand sides b and
d vary. Consequently, all these polyhedra, that result from translating the defining hyperplanes,

admit the same set of circuits.

Using the circuits as a test set creates a path from an initial vertex v° to an optimal vertex
v* of the associated optimization problem, illustrated in Figure 1. Observe that every augmenting
direction is parallel to an edge and thus a circuit. We call a sequence of (not necessarily monotonic)

circuit steps that connects two vertices of a polyhedron a circuit walk.

VO

Figure 1: A circuit walk to the optimal vertex.

An immediate question is the following: Starting at any vertex of the polyhedron, how many
augmentation steps do we need to reach an optimal vertex? It is not hard to see that in the example

depicted in Figure 1 we could have used far less steps, see Figure 2.
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Figure 2: A shorter circuit walk to the optimal vertex.

In [10] it was recently shown that the number of augmentation steps is bounded by the number of
circuits if we always use a steepest-descent circuit direction and apply a step of maximum length.
This thesis is concerned with the question of how many circuit steps we need to an optimal vertex
of the polyhedron if we assume a ‘perfect’ selection rule. In this we even disregard monotonicity
of the paths with respect to a certain objective function. In an attempt to answer this question, we

introduce and study different types of circuit diameters of polyhedra.

Among these categories we will also recover the combinatorial diameter. This is a classical field
of research in the theory of linear programming as it is of interest in the context of a best-case
performance of the Simplex algorithm. The Simplex method is a well-known special case of aug-
mentation algorithms along circuits: Every augmenting step goes along an actual edge of the
polyhedron, from one vertex to a better one. We call such a sequence of steps an edge walk. The
combinatorial diameter is the maximum number of edges we need to connect any two vertices of
the polyhedron, and hence it is a lower bound on the number of steps the Simplex algorithm might
take. It is still open whether there is a polynomial upper bound on the combinatorial diameter
and thus whether there is hope for a pivot rule for the Simplex algorithm that takes only poly-
nomially many steps. The connection to the Simplex algorithm becomes even more direct when
investigating the monotone diameter. Here we consider monotone edge-walks, visiting vertices of
non-decreasing objective values with respect to a certain linear functional.

One of the most famous problems associated with the combinatorial diameter is the Hirsch
conjecture. In 1957, Warren M. Hirsch suggested an upper bound of f — d on the combinatorial
diameter any d-dimensional polyhedron with f facets [8]. Only ten years later, Klee and Walkup
showed that the conjecture does not hold for unbounded polyhedra of dimension > 4 [21]. This
led to the bounded version of the Hirsch conjecture, claiming an upper bound of f — d on the
combinatorial diameter of polytopes. It was a long-standing open question, until Santos recently
came up with the first counterexample in dimension 43 with 86 facets and diameter at least 44
[27]. Nevertheless, in the past decades validity of the Hirsch conjecture was proved for certain
classes of polyhedra, such as (0, 1)-polytopes [24], dual transportation polyhedra [1] and special
combinations of the dimension d and the number of facets f (see [20] for a survey). However,
despite great efforts the Hirsch conjecture remains open for most classes of polyhedra; even the

more general polynomial Hirsch conjecture, asking only for a polynomial diameter bound in d and



f. Yet, the latter one is not disproved either!
Being confronted with these long-standing open question in the context of the combinatorial
diameter, we have to look out for new approaches. Introducing the circuit diameter as a general-

ization to the combinatorial diameter might help for a better understanding of this difficult field.

The present thesis is concerned with the very foundations of the circuit diameter, based on our
definitions and results in [3] and [5]. Furthermore, it contains a demonstration of these concepts
by considering transportation polytopes [4] and dual network flow polyhedra [5, 6].

Let us now have a closer look at the general ideas behind the different types of circuit diame-
ters. To define these notions, we extend the very specific edge walks related to the combinatorial
diameter to different kinds of circuit walks between the vertices of the polyhedron (as already seen
in Figure 1 and Figure 2 in the context of circuit augmentation algorithms). While the former only
use the actual edges of the polyhedron and thus never leave its boundary, the latter ones go along
potential edge directions, the circuits. In particular, a circuit walk may enter the interior of the
polyhedron, which possibly yields fewer steps. Figure 3 illustrates four different types of circuit
walks in a two-dimensional polytope that arise from imposing or relaxing certain restrictions on
the circuit steps as stated below the respective images.

edge walk circuit walk weak circuit walk soft circuit walk
(maximum length) (arbitrary length) (possibly infeasible)

Figure 3: Four different types of circuit walks.

The first picture shows a traditional edge walk, but for the other examples we liberate ourselves
from the stringent conditions of edge walks by allowing to leave the boundary of the polyhedron.

In the second picture we see a circuit walk that uses maximum length steps, that is, we always
go along the circuit directions as far as possible, potentially also through the interior of the poly-
hedron. Our original definition of the circuit diameter in [5] is based on this kind of walks. The
third and fourth picture depict even more general circuit walks, which we introduced in [3]. On
weak circuit walks we skip maximality of the steps but we stay inside the polyhedron. In contrast,
we can even leave the polyhedron along circuit directions on a soft circuit walk. These four main
types of circuit walks are complemented by some more specific ones that arise from forbidding
repeated and backwards steps, or asking for sign-compatible walks [3].

Now, every such type of circuit walk induces a circuit distance: The circuit distance from one
vertex to another one is the minimum number of steps of a corresponding circuit walk, and the

circuit diameter of a polyhedron is the maximum circuit distance among its vertices. Note that
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each notion of circuit diameter can be seen as an indication for a best-case performance of circuit
augmentation algorithms with corresponding properties.

We are particularly interested in how all these different circuit diameters are related. We answer
this question in a comprehensive hierarchy of circuit distance concepts. The diameters associated
with the four types of circuit walks in Figure 3 form the ‘key chain’ of this hierarchy: Note that the
circuit walks become less restrictive from the left to the right and thus the corresponding distances
trivially bound each other. In particular, the combinatorial diameter is an upper bound on all these
circuit diameters, as an edge walk is just a special kind of circuit walk. On the other hand, the less
restrictive notions provide some interesting lower bounds on the combinatorial diameter. What
makes this so useful is the fact that the weaker categories are typically much easier to compute.
Also, we often find similarities in the approaches for tackling the combinatorial and the ‘original’
circuit diameter. For these reasons, the availability of circuit diameter concepts of varying strength
is an extremely valuable tool.

We demonstrate and exploit this by discussing the hierarchy for two families of polyhedra:
Transportation polytopes and dual network flow polyhedra. These well-known problems are fre-
quently used in combinatorial optimization to model a variety of problems.

Transportation problems [12, 13, 22, 29] describe the distribution of some product from M
supply locations to N demand locations under minimum costs. Even though they are among the
most fundamental problems in mathematical programming, it is still open whether the Hirsch
conjecture holds for transportation polytopes; currently the best upper bounds are linear.

In contrast, the Hirsch conjecture is known to be true for dual transportation polyhedra [1].
This motivates the investigation of the other notions of circuit diameters for such polyhedra. In
addition, we aim at generalizing the results to the case of dual network flow polyhedra, which are
associated to minimum-cost flows through a network.

When studying these two families of polyhedra we focus on proving upper and lower bounds
on the main categories of circuit diameters. For both types of polyhedra we easily obtain upper
bounds on the weak and on the soft circuit diameter, which are actually tight. On the other hand,
when investigating the two stronger diameter categories we often obtain only rough upper bounds
unless we restrict ourselves to special cases. Typically, the combinatorial diameter is even more
involved than the ‘original’ circuit diameter. However, our studies of the circuit diameter serve as
a basis for addressing the combinatorial diameter, we often use similar approaches when proving

upper or lower bounds on these notions of diameter.

Structure of the thesis and main results

In Chapter 1 we introduce circuits as the most fundamental notion of this thesis. We summarize
all definitions and results we need for the forthcoming discussions and illustrate them on some

elementary examples.

Chapter 2 is the core part of the thesis. Here we formally introduce the different categories of



circuit walks, circuit distances and circuit diameters, as already initiated in the introduction. We
then relate them to each other, resulting in our hierarchy. We also provide and discuss general up-
per bounds, in particular we show that the weaker categories of circuit diameter satisfy the bound
induced by the Hirsch conjecture. Finally, we study the circuit diameter concepts in dimension
two where we can refine our previous results. This is joint work with Steffen Borgwardt, Jests A.
De Loera and Raymond Hemmecke [3, 5].

In the last two independent chapters we investigate the ‘key chain’ of the hierarchy for two partic-
ular classes of polyhedra. In this we aim at upper and lower bounds on these diameters, where the

bound induced by the Hirsch conjecture is of particular interest.

In Chapter 3 we consider the transportation polytopes. We prove that the Hirsch conjecture holds
for 2XxN and 3XxN transportation polytopes. For the 2xN case can even prove the monotone Hirsch
conjecture with a slightly stronger bound. We obtain similar results for the circuit diameter, but
the discussion itself reveals some specifics of this diameter category. For the general M XN trans-
portation polytopes we show that the weak and the soft circuit diameter satisfy the Hirsch bound
and that this bound is indeed tight. This is joint work with Steffen Borgwardt, Jesis A. De Loera
and Jake Miller [4].

In Chapter 4 we then turn to dual network flow polyhedra. We prove linear bounds in the special
case of dual transportation polyhedra. In the general setup of dual network flow polyhedra, we
show that the weak and soft circuit diameter remain linear, while we prove quadratic upper bounds
for the stronger categories. This is joint work with Steffen Borgwardt and Raymond Hemmecke
[5, 6].

The thesis concludes with an outlook concerning future work and open questions on the circuit
diameter. In particular, we emphasize a potential extension of circuit diameters to an integral

setting of lattice points in a polyhedron.






Chapter 1

Circuits

We now start with a thorough introduction of the circuits, which are the most fundamental notion
of this thesis: All chapters hereafter are based on this set of vectors. The circuits are associated
with integral matrices A € Z"4*" and B € Z™5*" that define polyhedra of the form

P={xeR":Ax=b, Bx<d}.

They only depend on A and B, but are independent of the rational right-hand sides b € Q™4,
d € Q"5; we even allow b € Qi4, d € QL, where Qu = Q U {#o0}. In fact, we will see that the
circuits provide an optimality certificate (or test set) for a whole family of optimization problems

with the right-hand sides b and d and the (linear) objective function as parameters.

Circuits as optimality certificates were introduced by Jack E. Graver in his seminal paper [14].
Most of the definitions and results we provide in the following were already stated therein. How-
ever, for completeness we prove all fundamental results we need throughout the thesis in this

section. This also serves as an introduction to the topic and we can introduce our notation thereby.

We begin with a basic definition of circuits based on the support of vectors, followed by some
fundamental observations on this set. We then turn to three equivalent descriptions of the circuits
as we will make use of these characterizations in the forthcoming chapters. In this, the repre-
sentation property immediately implies that circuits are indeed optimality certificates for linear
programs. We close the section by providing some examples, including a remark on how a certain

representation of the polyhedron affects the associated set of circuits.

Before we start, we make two assumptions on the matrices A and B. In the later chapters
we want our polyhedra to have vertices. A vertex vof P = {x € R" : Ax = b, Bx < d}
is determined by n — rank(A) linearly independent inequalities that are tight. Thus we assume
rank (2) = n throughout the thesis, as otherwise the polyhedron cannot have vertices at all. We
further assume that rank (2) = rank(A) + rank(B), which can easily be obtained by removing those
rows (inequalities) from B that are linear combinations of the rows (equations) of A. This defines

the same polyhedron, but we will see that it does not change the associated set of circuits.



Chapter 1 Circuits

1.1 Definition and fundamental properties

The definition of a circuit is based on the support of a vector: It is given by the indices of the
non-zero components of v € R" as supp(v) = {i € {1,...,n}: v; # 0}. Note that for y € ker(A),
supp(By) = 0 implies y = 0 as we assumed rank (2) = n. We say that a vector v is (set-wise)
support-minimal in a set S € R" if v € S and there is no w € S with supp(w) € supp(v). We now

can define the circuits of matrices A and B.

Definition 1.1 (See Def. 3.8 in [14]). The circuits C (A, B) associated with matrices A and B are
those non-zero vectors g € ker(A) = {x € R" : Ax = 0} for which Bg is support-minimal in the set

{ By : y € ker(A)\{0} }, where g is normalized to (coprime) integer components.

There are a few remarks to make about this definition. First note that it is indeed independent
of b and d. That is why the set of circuits was called the universal test set in [14]. The term
‘circuit’ for such vectors was first used in [28]. The set is always symmetric (that is, if g € C(A, B)
then —g € C(A, B)) and finite. The latter follows immediately from the next lemma, as vectors
By € R"™? admit only finitely many supports.

Lemma 1.2 (See Prop. 3.9 in [14]). Let g € C(A, B) and v € ker(A) with supp(Bg) = supp(BvV).

Then v = ag for some a € R.

Proof. As g € ker(A)\{0}, there is some i € {1,...,mpg} such that (Bg); # 0 and hence (Bv); # 0.
Let w := g — [(Bg);/(BV);] - v. Then we have w € ker(A) and further supp(Bw) < supp(Bg) as
(Bw); = (Bg); — [(Bg)i/(Bv);] - (Bv); = 0. Hence we have w = 0 by support-minimality of g and
thus v = [(Bv);/(Bg);] - g. m]

We want to highlight two special settings in which circuits frequently appear. Often one simply
imposes upper or lower bounds on the variable x instead of having a whole system of inequalities
Bx < d. In other words, we have B = +I,, the identity matrix in R™", and thus supp(Bx) =
supp(x). Then our definition of circuits is closely related to the elementary vectors of ker(A) as
introduced in [26]. These are all support-minimal elements in ker(A)\{0}. Observe that there are
infinitely many such elements as the elementary vectors can be scaled arbitrarily: The elementary
vectors are lines through the origin, with the origin excluded. However, Lemma 1.2 tells us that
when restricting to those vectors whose components have greatest common divisor one, we recover
the circuits C(A, I,), which we simply denote C(A). In particular, every vector of minimal-support
in ker(A)\{0} has two representatives in C(A), some circuit and its negative (compare Lemma 1.2).
Further, note that our definition of circuits is consistent with the term ‘circuits’ used in matroid
theory: The support of a support-minimal vector in ker(A)\{0} describes an inclusion-minimal set
of linearly dependent columns of A.

Another special case is that of having only inequality-constraints, that is, A = O, a matrix with
all-zero entries. We then write C< (B) := C (O, B). This special case will be particularly useful for

investigating two-dimensional examples.



1.2 Circuits as optimality certificates

Finally, we want to point out the following: The set of circuits associated with the matrices A

and B does not change when we modify B by
1. swapping rows of B,

2. multiplying a row of B by a non-zero scalar,

3. adding linear combinations of rows of A and B to another row of B

4. adding a row to the matrix B that is a linear combination of other rows of A and B, or

5. removing a row from B that is a linear combination of other rows of A and B,
as long as all entries remain integral. Even though these operations might change the support of
some BX, support-minimality is preserved. This follows immediately from the linear dependencies

among the rows and from Ag = 0 for all circuits g. In particular this implies that the polyhedra
{xeR":Ax=b,Bx<d}, {xeR":Ax=b,Bx>d} and {xeR":Ax=Db,1 < Bx <u}

all admit the same sets of circuits since it holds that C(4, B) = C(A,-B) = C (A, (_l;)). Therefore,
we may without loss of generality add lower bounds on Bx or replace the upper bounds by lower

bounds.

1.2 Circuits as optimality certificates

We now aim at proving the test set property for circuits. Therefore, we have to consider sign-
compatible vectors: Two vectors v,w € R" are sign-compatible with respect to the matrix B
defining the polyhedron P = {x € R" : Ax = b, Bx < d}, if Bv and Bw belong to the same orthant
of R™2_ that is, their i-th components (Bv); and (Bw); satisfy (Bv);-(Bw); > Oforalli =1,...,mp.

Note that for B = I, this definition becomes much simpler. We first need the following

Lemma 1.3 (Cf. Lemma 3.11 in [14]). If v # 0 is not support-minimal in { By : y € ker(A)\{0} },
then there is an element w € ker(A)\{0} such that w and v are sign-compatible with respect to B

and supp(Bw) < supp (Bv).

Proof. As Bv is not support-minimal in { By :y € ker(A)\{0}}, there is y € ker(A)\{O} such
that supp(By) < supp(Bv). We can assume without loss of generality that there is some i €
{1,...,mp} such that (Bv);(By); > 0 (otherwise we replace y by —y). Let w := v — ay, where
a = min{ (Bv);/(By); : (Bv);(By); >0} > 0. Let (Bv); = 0. Then (Bw); = —a(By); = 0 as
supp(By) C supp(Bv) and hence supp(Bw) C supp(Bv). It remains to show sign-compatibility,
that is, 0 < (Bw);(Bv); = (BV)% — a(By);(Bv);. For (By);(Bv); < 0 non-negativity of this
term is obvious. Otherwise we have (by definition of @) that (BV)I.Z — a(By)i(Bv); > (BV)? -

[(Bv):/(By):] (By)(BV); = 0, -
With this we now are able to state a crucial property of circuits.

Proposition 1.4 (Representation property, see Theorem 3.12 in [14]). Every element v € ker (A)

can be written as a positive linear sign-compatible sum of elements in C(A, B), that is, we have a
representation v = Zf‘zl a;g', such that foralli=1,...k
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(i) g € C(A, B),
(ii) g and v are sign-compatible and supp(Bg') C supp (Bv) , and
(iii) ;e R, ={eeR:a>0}.

Proof. Let v € ker(A). If v = 0, there is nothing to show. Else, if Bv is support-minimal in the
set { By : y € ker(A)\{0} }, by Lemma 1.2 there is g € C(A, B) such that v = ag for some @ € R
and we can choose @ > 0 as the set of circuits is symmetric. So assume V is not support-minimal
in { By :y € ker(A)\{0}}. Then by Lemma 1.3 there is some w € ker(4)\{0} such that w and v
are sign-compatible with respect to B and supp(Bw) < supp (Bv). Let w = v — aw for a =
min { (Bv);/(Bw); : (Bw); # 0} > 0. Then supp(Bw’) C supp (Bv), as clearly supp(B(v — aw)) C
supp (Bv), and B(v — aw) has at least one extra zero-entry by definition of @. Further w’ and v are
sign-compatible as (Bv);(BW'); = (BV); — a(BV),(BW); > (BV)? — [(BV);/(BW)] (BV)i(BW); = 0.
Hence we found a representation v = aw + w’ for vectors aw and w’ sign-compatible with v and

supp(B(aw)), supp(Bw’) C supp(Bv). The claim follows inductively. O

Note that the circuits g' are also pairwise sign-compatible with respect to B. The following

corollary now gives us an alternative definition for circuits.

Corollary 1.5 (Circuit definition via representation property). The set of circuits C(A, B) is (up to
scaling) the unique inclusion-minimal set admitting the representation property posed in Proposi-
tion 1.4.

Proof. By Proposition 1.4, C (A, B) has this representation property. On the other hand, (ii) and
(ii1) from Proposition 1.4 together with Lemma 1.2 imply that such a set must contain a represen-
tative ag, a € R, of every circuit g € C(A, B). O

Now it is not hard to show that the circuits are indeed a test set for maximizing (or equivalently

minimizing) linear objectives, as already proven in [14].
Corollary 1.6 (See Cor. 3.13 in [14]). Let x° be a non-optimal solution of
max{c’x: Ax=b, Bx<d,xeR"} .

Then there is an augmenting direction ¢ € C(A, B) and some a € R, such that x’ + ag € P
={xeR":Ax=b, Bx <d} and cT(x* + ag) > c7(x").

0¢

Proof. Let x* € P be a better solution of the linear program, that is, ¢Tx* > ¢7x’. Then x* — x
ker(A) and by Proposition 1.4 it can be written as x* — x0 = Zle a;g', satisfying (i),(ii),(iii).
Observe that Bx” < d and B(x" + Zle @;g") = Bx* < d together with sign-compatibility of Bg'
and B(x* — xY) imply that Bx’ + aigi) <dfori=1,...,k. Thus we have x" + a/,-gi € P for all
i. We further know that 0 < ¢7(x* — x°) = cT(Zj.‘:1 a;g) = Zf:] a;cTg’ and hence there is some i
such that ¢7g’ > 0. Therefore, we found x’ + «;g’ satisfying the claim. O

10



1.3 Further characterizations of circuits

This proves the test set property of C(A, B) for linear objectives for any choice of b and d. It is
not hard to show that the circuits are in fact the unique inclusion-minimal set with this property (up
to scaling). Note that this result can easily be extended to the minimization of separable convex
functions f: R" — R, i.e. fis convex and can be written as f(x) = 3."_, fi(x;) for convex functions
f],...,fn: R — R.

Observe that the circuits can also be used to check whether the linear program is bounded: This
is the case if and only if there is no g € C(A, B) with Bg < 0 and ¢7g > 0 (if we maximize); see
for example Prop. 3.15 in [14].

Finally, we want to point out that one has to be careful when using circuits in an augmentation
procedure as an infinite zig-zagging can occur, see Section 4 in [15]. An example for a strategy

that ensures termination is the steepest-descent approach from [10].

1.3 Further characterizations of circuits

The definition of circuits via the representation property is directly connected to a third charac-
terization that is based on minimal generating sets of cones: Denote by B; the i-th row of B and
consider the hyperplanes {x € R" : B;x = 0}. These hyperplanes partition R" into 2" rational
polyhedral cones of the form C. = {x € R" : Bx ~ 0}, where ~€ { <,>}"2. All elements in such
a cone C. are pairwise sign-compatible. Let H. the unique minimal generating set of C. Nker(A)
over R, where the components of each generator are scaled to integers with greatest common

divisor one. Then we get the following characterization of the circuits.

Proposition 1.7. The circuits of A and B are given by

C(A,B) = U H..
}B

~ef{ <> "

Proof. Letg € C(A, B). Then g € C.. for some ~€ { <, >}"# and g can be written as g = Zle Bih
for B; € Ry, hi € H.. As all coefficients are positive we must have supp(Bh’) C supp(Bg) for all
i=1,...,k. Ash’ # 0, Lemma 1.2 implies that h = a;g fora; € R,i = 1,...,k. Thus g = h' for
all i as the generators are normalized and hence g € H...

Now let h € H. for some ~¢ {<,>}". Then h € ker(A). By Proposition 1.4 there is a
representation h = Y a;g’ with (i),(ii),(iii), in particular g' € C. by (ii). Thus h = g’ for
i =1,...,k as h belongs to the minimal normalized generating set of C. N ker(A), in particular
h € C(A, B). O

Our last description of the set of circuits is of a different nature: We show that the circuits
coincide with all potential edge directions of the polyhedron P = {x € R" : Ax = b, Bx < d}
that can appear when we fix the matrices A and B, but let the right-hand sides b and d vary. In
[28] this was proven for the special case B = I, and [14] states that all these edge directions are

contained in C(A, B). We now prove that these two sets are indeed the same. Note that an edge

11



Chapter 1 Circuits

of the polyhedron P = {x € R" : Ax = b, Bx < d} is determined by n — rank(A) — 1 linearly

independent inequalities that are tight.

Theorem 1.8. The set of circuits C (A, B) coincides with the edge directions of polyhedra
P={xeR":Ax=b, Bx<d)

that can appear for any choice of rational b and d.

Proof. Let e be an edge of P = {x € R" : Ax = b, Bx < d}. Let r := rank(A). Then e is
determined by n — r — 1 linearly independent inequalities of the system Bx < d that are tight
for all elements of e, that is, there is a submatrix B¢ € R of B with rank(B¢) = n —r — 1
and a corresponding subvector d° € R/ of d such that (?e)v = (;’e) for all v € e. Observe that
rank (;e) = n — 1. Let g be the direction of e (that is, g = w — v for two distinct vectors v,w €
e). Then g € ker (;) and this kernel is one-dimensional. Every element y € ker(A)\{0} with
supp(By) C supp(Bg) must satisfy B°y = 0. Thus y € ker ( ;‘e), and hence y = Ag for some A € R.
Therefore, Bg is support-minimal in { By : y € ker(A)\{0} }.

Now let g be a circuit. We set b := 0 and define d as the component-wise maximum of Bg and
0. We claim that P = {x € R" : Ax = b, Bx < d} has an edge of direction g. Clearly 0,g € P. It
remains to show that these two vectors are contained in a common one-dimensional face of P. Let
BY € R™" be the submatrix of B that satisfies B’g = 0, where / is chosen maximal (i.e. (Bg); # 0
for all rows i of B not contained in B%). Observe that the support of Bg corresponds to the rows of
B that are not in B®. Assume rank(B®) < n — r — 1. Then we can add rows of B to B® to obtain a
matrix B of rank n — r — 1. But then g ¢ ker (%) = {Ax : A € R} for some x # 0. Thus we have
supp(Bx) ¢ supp(Bg), a contradiction to g being a circuit. O

We will frequently use this quite intuitive definition when studying circuit diameters in the

forthcoming chapters.

1.4 Examples

We now give two examples to illustrate the prior definitions and characterizations of circuits, one

for each of the special cases A = O and B = I,.

-1 0
Example 1.9. Let B = [ N ) The circuits are given by

o212

To see this, we compute the vectors Bg for all circuits g:
0 0 1 -1
B+ =+ , B+ =+ )
1 -1 2 0

12



1.4 Examples

Obviously, both products i(_ol) and i(_ol) are support-minimal in { By : y € ker(A)\{0} = R2\{0}}
and there can be not other vectors of minimal support. Thus the corresponding factors ((1)) and
(é) constitute the set of circuits as they are integral vectors and their components have greatest

common divisor one.

Now consider the polyhedra
1 2 0
PZ{XER:BXSd}, where d = 0

and
) ) -1 0
P:{xeR:lsBxgu}, where 1 = ,u= .

We know that both polyhedra admit the same set of circuits. The polyhedra look as follows:

0.0 " (0,0)

Figure 1.1: Two polyhedra defined by the same matrix B.

P is an unbounded cone, while P* is a polytope. We see that the circuits {i(?) i(;)} are indeed
the directions of the edges of the polyhedra, as stated in Theorem 1.8.

-1 010
Example 1.10. Let A = , B=14. Then
2 -1 01
0 1 1
1 2 0
CA) =1+ ,* ,
0 1 1
1 0 -2

Clearly, all these elements lie in the kernel of A and it is not hard to check that there are no

non-zero elements in that kernel of strictly smaller support.

To illustrate the representation property, consider (—2,3,-2,7)7 € ker(A). We can express this

13



Chapter 1 Circuits

vector as a sign-compatible non-negative linear combination of circuits:

-2 0 -1
3 1 0
=3. +2.

-2 0 -1
7 1 2

Circuits for equivalent descriptions of polyhedra

We want to point out that the particular representation of a polyhedron affects the set of circuits in
the following sense: The polyhedra

P={xeR":Bx<d}

P/:{(:/)ERWH”B: (B Ly )(;):d, X'ZO}

are equivalent, but this is not necessarily true for the associated circuits C<(B) and C(A), where

and

A = ( B I,, ) as Example 1.11 shows. More precisely, we will see that C(A) can contain
additional elements, as the circuits associated with A allow for more elements of minimal support.

Example 1.11. Observe that the matrix B in Example 1.9 and the matrix A in Example 1.10 are
indeed related via A = ( B I ) But C<(B) contains four vectors while C(A) consists of six

elements. Hence the sets of circuits are not equivalent.
However, one can deduce the set C<(B) from the circuits of A = ( B I, )

Lemma 1.12. Let B € Z"8*" A = ( B I, ) and g € R". Then g € C<(B) if and only if there is
some (gg,) € C(A) such that g’ is support-minimal in the set { y (yy) € C(A) for some y € R" }

Proof. Let g € C<(B) Then Bg is support-minimal {By : y € R"} = {-By : y € R”}
( Bg) € ker(A). Let g’ := —Bg. Then (g) € ker(A) and g’ is support-minimal in { ( )
ker(A)\{0} for some y € R"}. But then also ( g) is support-minimal in ker(A)\{0} and hence ( )
C(A). Further, as g’ is support-minimal in {y’ : (yy) € ker(A)\{0} for some y € R"}, it is also
support-minimal in the subset {y” : (y) € C(A)}.

Now let( ) € C(A) such that g’ is support-minimal in the set { y (;y) € C(A) for some y € R" }
For g being a circuit it is enough to show that g’ = —Bg is support-minimal in {—By : y € R"\{0}}.
Assume that g’ is not support-minimal in this set. Then there is some y € R"\{0} such that
supp(y’) & supp(g’) for y’ := —By. By case-assumption, (y) ¢ C(A), but (y ) € ker(A)\{0} b
definition of y’. Hence there is ( ) € C(A) such that supp(x) C supp(y) and supp(x’) C supp(y’ ) -
supp(g’), that is, g’ is not support-minimal in { : (y,) € C(A) for some y € R" }, a contradiction.

O
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1.4 Examples

Example 1.11 cont’d. 7o deduce C<(B) from C(A), we have to look for support-minimality in the
‘slack’, i.e. within the vectors formed by the third and forth components of the elements in C(A).

(v () ccunsorsomey 2] = {i[ X ], . g)], i( ! ]}.

The first two elements are support-minimal in this set. Hence the vectors formed by the first and

These are

0 1
second components of the corresponding vectors in C(A), i( { and i( 5 ], constitute the set

C<(B) as already shown in Example 1.9.

Outlook

In the next Chapter 2 we will introduce a hierarchy of circuit distances. These distances are based
on circuit walks, which connect two vertices of a polyhedron by a number of steps along cir-
cuit directions. Proposition 1.4 tells us that there always is such a walk, even a sign-compatible
one. Further, we know that we can reach any vertex of the polyhedron from any point within the
polyhedron along circuits by Corollary 1.6. All these results will be important for the upcom-
ing investigations. The characterization of circuits as edge directions from Theorem 1.8 will be
stressed in Chapter 3 and 4, where we study the circuit distances of transportation polytopes and

dual network flow polyhedra, respectively.
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Chapter 2

A hierarchy of circuit distances

We now come to the key part of the present thesis: In this chapter we introduce the different
categories of circuit diameters. Most of these classes are less restrictive than the combinatorial
diameter: Instead of only going along the edges of the polyhedron we liberate ourselves from
these restrictions. We try to go from one vertex of the polyhedron to another one more efficiently
by possibly going through the interior of the polyhedron, along linear combinations of circuits.

We are even willing to leave the feasible region.

As already outlined in the introduction, the purpose of this approach is two-fold: On the one hand
we have the intimate connection of circuit distances to a best-case performance of augmentation
algorithms along circuit directions. In particular, this could serve as an indication on how to
use circuits in such algorithms. Recall that augmentation algorithms are a generalization of the

Simplex method.

On the other hand, we hope that the circuit diameters as a generalization to the classical combi-
natorial diameter might shed some light on this difficult field of research and help us for a better
understanding. In particular, the combinatorial diameter is bounded below by diameters that have
much weaker properties and therefore may be much easier to bound or to compute. We will exploit
this in Chapter 3 for transportation polytopes and in Chapter 4 for dual network flow polyhedra.

This chapter is based on joint work with Steffen Borgwardt, Jests A. De Loera and Raymond
Hemmecke, published in [3] and [5]. It is structured the following way: In Section 2.1 we begin
with a formal introduction of circuit walks, circuit distances, and circuit diameters, along with
an overview of their characteristics. In Section 2.2 we then present the core result, the hierarchy
of circuit distances, followed by the proofs of the relations claimed therein. In Section 2.3 we
have a look at general upper bounds for circuit diameters. In particular we will see that many
of the diameter categories satisfy the bound induced by the Hirsch conjecture. We conclude the
chapter by investigating the hierarchy in dimension two in Section 2.4. In this special case many
of the circuit diameter concepts coincide such that the hierarchy ‘collapses’ into only few distinct

categories.
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Chapter 2 A hierarchy of circuit distances

2.1 Definitions and preliminaries

In this section we first define a very general notion of distance based on circuits. We then introduce
additional properties for these walks, which leads to a variety of circuit distances. After explaining

these categories, we summarize some basic characteristics of circuit walks and circuit distances.

2.1.1 Circuit walks

Let P = {x € R" : Ax = b, Bx < d} be a polyhedron and let C(A, B) be the set of circuits
associated with the matrices A and B. For a pair of vertices v(", v\» of P, we call a sequence
v =y O y® = v® a circuit walk of length k if forall i = 0,...,k — 1 we have yi*! —y® =
a/,-gi for some circuit gi € C(A, B) and some «; > 0. Note that because we are allowing the «; to be
arbitrary real non-negative numbers, circuit walks can be infinite, but we restrict our attention to
those that are finite. We are particularly interested in circuit walks that satisfy certain combinations

of additional properties:

(e) If y? and y(*! are neighboring vertices of the polyhedron (vertices connected by an edge)
foralli =0,...,k— 1, we call the walk an edge walk. This is the term that corresponds to

the classical combinatorial diameter.

(m) If the extension multipliers @; are maximal, i.e. if y(i) + a/gi is infeasible for all @ > «;, we
say that the walk is of maximum extension length or simply maximal. Otherwise, we say

that the extension is of arbitrary length.
) If y(i) € Pforalli=0,...,k— 1, then we say the circuit walk is feasible.
(r) If no circuit is repeated, then we say the walk is non-repetitive.
(b) If no pair of circuits g’, —g’ is used, we say the walk is non-backwards.

(s) If all the circuits are pairwise sign-compatible and are all sign-compatible with the vector
v® — v(D we say the circuit walk is sign-compatible. Recall that two vectors X and y are
sign-compatible (with respect to the matrix B), if (Bx); - (By); > 0foralli=1,...,mgp.

2.1.2 Categories of circuit distances and circuit diameters

We now define the circuit distance from vV to v(? as the minimum length of a circuit walk from
viD to v, A circuit walk that realizes the circuit distance is called a shortest or optimal walk.
The circuit diameter of a polyhedron P is the maximum circuit distance between any two vertices
of P. Considering different types of circuit walks yields different categories of circuit distances
and diameters.

The main goal of this chapter is to relate these distances to each other. We now introduce a
notation for this discussion: CD refers to the circuit distance defined on circuit walks without any

further restrictions. We call it the soft circuit distance. When we consider circuit distances with
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2.1 Definitions and preliminaries

respect to circuit walks that satisfy some of the properties stated in Section 2.1.1, we denote this by
small subscript letters as used in the above list. For example, the classical combinatorial diameter
is defined on circuit walks that always go along an edge to the next vertex. These are maximal
steps that always remain feasible, so we write CD, f;, for the combinatorial distance. By dropping
the edge walk property, we obtain CD,,. This is the circuit distance we originally introduced in
[5]. We call the category CDy, defined on feasible circuit walks with steps of arbitrary length,
the weak circuit distance. These four types of circuit distances will form the ‘key chain’ in the
hierarchy of distances we introduce in Section 2.2.

Note that circuit distances on which we impose more restrictions trivially bound less restrictive
ones from above. We denote this with a weak-inequality sign. For example, the ‘key chain’ looks
as follows:

CDetm 2 CDpm 2 CDy 2 CD.

If we have ‘>’ and there is a polyhedron with a pair vertices such the respective circuits distances
actually differ, we use *>’. For example, we will see that CDy,, > CDy. Note that this notation is
transitive: Clearly CDy,, > CDy > COD implies CDy,, > CD and CDyp, > CDy > COD implies
CDpn > CD. We sometimes want to refer to several combinations at the same time. We then
use brackets to emphasize this, for example CD ) > CD () means that both statements hold,
CDpmp 2 CDyp and CDyp, > CDy.

Note that we may equally use this ‘CP-notation’ to refer to the circuit diameter of a polyhedron

as the maximum distance over all pairs of vertices.

Theoretically, there are many different categories of circuit distances that arise from combining
the properties above. However, we will not consider every such combination in our hierarchy
in Section 2.2 for two reasons: Some of these combinations are not well-defined and there are
combinations that actually refer to the same concepts.

For the latter, note that certain combinations of properties already imply other properties. For
example, every edge walk is feasible and maximal, that is, CD, = CD,y, the classes coincide.
Thus one can use both notations equally. However, in this chapter we stick to CD,y,, to keep
all the properties in sight. Similarly, maximal circuit walks are always feasible and thus CD,, =
CDfp. In Lemma 2.14 we will see that same holds for sign-compatible circuit walks, that is,
CD; = CDy,. Note that we even have CDep)(r) = CDefmp)r) a0d CDipyr) = CD finip)(r)-

Circuit distance categories can also coincide in the sense that the optimal circuit walks satisfy
additional properties. For example, every optimal circuit walk without any restrictions is non-
backwards and non-repetitive as we could combine opposite or repeated steps to one single circuit
step, yielding a shorter circuit walk. Thus we have CD = CD, = CD,. Again by Lemma 2.14
this is also true for sign-compatible walks, so we have CD¢s = CDyrgr = CD;s = CDypy.

Next we come to combinations of properties that are not well-defined. This happens if we

require sign-compatibility for edge walks or for feasible maximal walks.

Lemma 2.1. In dimension n = 2, there is a polytope with a pair of vertices such that there is no
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Chapter 2 A hierarchy of circuit distances

feasible maximal sign-compatible circuit walk from one vertex to the other one. In particular there

is no sign-compatible edge walk.

Proof. Consider the polytope

defined by
1 0 0 0
1 1 0 6
B = s l = , u=
1 -1 -1 4
1 -2 -3 0

All possible edge directions g of P (the circuits) are given by

RN

and the corresponding vectors Bg are

0 1 2
1 0 2 3
+ , + , + , +
-1 2 0 1
-2 3 -1 0

We want to perform a circuit walk from v\ = (2, =2)T to v®» = (1,2)T. We have B- (V(z) - V(l)) =
(-1,3,-5,-6)7. The only sign-compatible circuits are (0, 1)T (as B-(0,1)T = (0,1,-1,-2)T) and
(-1, D7 (as B-(-1,1)T = (-1,0,2,3)7). But choosing the directions (0, 1)T and (-1, 1)7, respec-
tively, as a first feasible maximal circuit step at v we arrive at (0,0)T and (2, 2%)T, respectively.
From neither of these points we can go to v using only the circuits (0, 1)T and (-1, 1)T, which

are the only ones that are sign-compatible with v(® — v(,

vy

Figure 2.1: All feasible maximal circuit steps at v({!) that are sign-compatible with v — v(D),
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2.1 Definitions and preliminaries

In contrast, we already know from our discussion in the previous chapter that any two vertices
of a polyhedron P = {x € R" : AXx = b, Bx < d} are connected by a feasible sign-compatible
circuit walk if we allow arbitrary length steps, and thus CDy, is well-defined (see Proposition
1.4). In Lemma 2.18 we will further prove that there are good upper bounds on the length of such

walks.

2.1.3 Fundamental observations

First of all, let us point out that there are classes of polyhedra for which all notions of circuit
diameters coincide: In simplices any two vertices are connected by an edge and thus all circuit
diameters are just one. Further, for any n-dimensional zonotope, all circuit diameters equal #; the
n-dimensional cube is a particularly simple special case. Recall that a zonotope is point-symmetric
with respect to its center of gravity. Vertices that correspond to each other with respect to this
point symmetry are connected by an edge walk of length exactly n. Using any set of circuits and
no restrictions on the walk we cannot do any better, as the circuits here correspond to the actual,
existing edge directions.

We continue with some elementary characteristics of circuit walks and circuit distances.

Reversible circuit walks

Given a circuit walk from a vertex v\!) to a vertex v®® we get a circuit walk from v® to v\ by
simply reversing the steps. This obviously preserves the properties feasible (f), non-repetitive (r),
non-backwards (b) and sign-compatible (s), and it turns an edge walk into another edge walk (e).
Thus, circuit walks of all categories except CD rp)(r) are reversible. In particular the correspond-
ing distances are symmetric, that is, a certain circuit distance from v(D to v coincides with the
respective circuit distance from v® to v(). But if we do not have an edge walk, maximality (m)
is not necessarily maintained and thus circuit walks of type CD s are not always reversible,

neither is the distance symmetric, as illustrated in the following example.

Example 2.2. Consider the polyhedron

P={xeR’:1<Bx<u}

given by
1 0 0 00
0 1 —00 2
B = , 1= , u=
1 1 0 4
1 -1 -1 6

P is a two-dimensional polytope with six vertices whose circuits are given by

o e L)

21



Chapter 2 A hierarchy of circuit distances

as these are obviously all possible edge directions (the polytope is depicted in Figure 2.2). Let us

have a look at circuit walks between vV and v®.

v

Figure 2.2: An optimal circuit walk from v(!) to v® and the reversed walk.

The walk from vV to v® is maximal, but the reversed walk is not. We can even show that there
is no feasible maximal circuit walk of length two from v® to vV and thus the circuit distances
CDyp do not coincide. To see this, we illustrate all maximal feasible circuit steps that could be

applied at v?.

v@

Figure 2.3: Feasible maximal circuit steps at v,

No matter which circuit direction we choose for a first maximal step starting at v\», we cannot

go to vV with only one more step.

Commutative circuit walks

Given a circuit walk from a vertex v(!) to a vertex v(® we can construct alternative circuit walks
from v(! to v by rearranging the circuit steps. We say that a circuit walk is commutative if it
does not matter in which order we apply the steps; all circuit walks obtained by rearranging fall

into the same category as the original one.
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2.1 Definitions and preliminaries

While circuit walks in general have to be regarded as ordered sequences of vectors, commutative

k .
walks can be interpreted simply as linear combinations of the form v\® —v(1) = ' o' for circuits
i=1

g'. In particular, the non-restricted walks of type CD are commutative and thus, in a way, the soft
circuit distance CD is just a linear algebra bound on the diameter given in terms of the support (or

number of elements) of a linear combination of circuits.

It is not hard to see that almost all other types of circuit walks are not commutative as in general

rearranging does not preserve feasibility. However, this is the case for sign-compatible circuit
k _ .

walks: It follows immediately from the representation v®» = v() + 3 a;g for circuits g’ that are
i=1

sign-compatible with v?) — v(1) and thus satisfy supp(Bg’) C supp(B(v'® — v(D)).

This significant observation shows that sign-compatibly is a natural and extremely useful prop-
erty for circuit walks. For example, in [18] sign-compatible walks play a crucial role in showing
that there is a selection strategy such that only polynomially many circuit augmentation steps are
needed to reach an optimal solution (recall that this is still unresolved for the Simplex method).
However, it is still open how to implement this greedy-type augmentation oracle in polynomial

time.

Perturbing the right-hand side

Recall that it suffices to consider generic polyhedra to bound the combinatorial diameter, as by a
perturbation any polyhedron can be turned into a generic one whose diameter is at least as big as
that of the original polyhedron. It is not clear whether the same is true for the other notions circuit

diameters.

In the following example we will see that a perturbation of the right-hand side vector might
affect the circuit diameter in a way that is hard to predict. In particular, it may change the circuit
diameter while keeping the combinatorial structure of the polyhedron. Note that such a perturba-

tion does not change the set of circuits.

Example 2.3. Consider the polyhedron

P={xeR*>:1<Bx<i}

given by
1 0 0 00
0 1 —00 5 2
B = 5 1= ) u= 5
1 1 0 4
I -1 -1 4

and the polyhedron P as defined in Example 2.2. As P and P are both defined by the matrix B, these

polyhedra possess the same sets of circuits. Further they have identical combinatorial structure:
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Chapter 2 A hierarchy of circuit distances

Figure 2.4: Two polyhedra with same combinatorial structure.

As already seen in Example 2.2, the circuit diameter CDry, of P equals three. In contrast, it can
easily be checked that in P any two vertices can be connected by a feasible maximal circuit walk

of length at most two.

2.2 The circuit distance hierarchy

We now turn to the main result of this chapter - our hierarchy of circuit distances. Observe that
the results on the circuit distances readily transfer to statements about the circuit diameters of

polyhedra. Thus, we can equally view it as a hierarchy of circuit diameters.
Theorem 2.4. The circuit distances satisfy a hierarchy as depicted in Figure 2.5.

This hierarchy states the relations between certain categories of circuit distances that arise from
combining the properties introduced in the previous section. We want to point out that these
categories are indeed a viable choice: We are able to prove that almost all circuit distances in the
hierarchy are distinct (as we have ‘>’) and our discussion in Section 2.1.2 showed that we included
all relevant classes. Note that for sake of having a clear layout the lower left and lower right parts
refer to the same categories CDyy,r and CDy,. Distance notions that share properties are grouped

in boxes.

The remaining section is concerned with the proof of Theorem 2.4. We have to show that the
distances indeed satisfy the claimed relations. For most of the ‘weak’ inequalities this follows im-
mediately as we are just imposing additional constraints. In order to prove the ‘strict’ inequalities,
we exhibit polytopes with pairs of vertices v(1), v® for which the lengths of optimal walks with
the respective properties indeed differ. The numbers at the ‘<’ -symbols refer to the lemmas that

show these strict inequalities.
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feasible )
maximal N
edge walk
i ' 25 26
' CDepmb L > CD.tm ' CD. fmr
: V2.9 | V2.9 V2.9
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| V210 V2.10 V2.10
i j 502
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O nomrepetiive
' non-backwards ,'

Figure 2.5: A hierarchy of circuit distances.

The top horizontal layer of the table contains the distances defined on edge walks. An edge
walk always is both feasible and maximal, so there are only combinations that contain all of these
properties at the same time. We distinguish between CD, s, and CD, fimp, CD,fmr. Recall that
CD. fms is not included in the hierarchy as it is not necessarily well-defined, see Lemma 2.1. Same
holds for CD ;5. As we just impose additional constraints we immediately get CD, iy > CDe
and CD; rpr = CDefm- The following two Lemmas show that allowing the opposite or the repeated
use of an edge direction can indeed yield a shorter edge walk and thus we have strict inequalities.

Lemma 2.5 (CD.pfp > CDem). For n = 2, there is a polytope with a pair of vertices for which
the unique optimal edge walk is backwards. Hence the distances CDfyp and CDerp, differ in this

case.

Proof. In the polytope below, the unique non-backwards edge walk from v(! to v has length

four, while there is an edge walk of length three that uses edges in opposite directions.
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Chapter 2 A hierarchy of circuit distances

v v

v v

Figure 2.6: An optimal non-backwards edge walk and a backwards edge walk.

O

Lemma 2.6 (CD,fimr > CDefp). For n = 3, there is a polytope with a pair of vertices for which
the unique optimal edge walk is repetitive. Hence the distances CD,r and CDeyy, differ in this

case.

Proof. We construct a polytope with the claimed property by cutting off vertices of a three-

dimensional cube as illustrated in the following figures:

Figure 2.7: Constructing the polytope by cutting off vertices (marked with dots).

We obtain the polytope below, in which there is a repetitive edge walk from v(! to v® of length

four. It is easy to check that any other edge walk from v(" to v(? has length at least five.

v

vD

Figure 2.8: Unique optimal edge walk from v! to v
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2.2 The circuit distance hierarchy

We now relax the constraint (e) and allow circuit walks through the interior of the polyhedron.
For feasible maximal circuit walks we again distinguish between CDy,, and CDfpp, CD . In
Lemmas 2.7 and 2.8 we prove that these concepts do not coincide. We first exhibit a polytope in
which going backwards yields shorter circuit walks, that is, CD s, < CD fp.

Lemma 2.7 (CDyynp > CDjm). For n = 2, there is a polytope with a pair of vertices for which
every optimal feasible maximal circuit walk is backwards. Hence the distances CD ,, and CD

differ in this case.

Proof. We consider the polytope on 11 vertices depicted in Figure 2.9; the lower subfigure is a

zoomed-in view on the right part of the polygon. The edge directions are given by

[ ok (5 ol (ol Ui ol (o) o)

There is a feasible maximal circuit walk of length three from v(! to v that is backwards.

9,9) = v(1b viD =(19,9)

VP =@7.1)
(0,0) = v — v = (2715.0)

(1,-1) = v v® = (27,-1)

v =@27,1)

: 3) — 24 2
v = (274,
2725 1)y 27156> 16)

100° 10 W = 2722 0)
2726 _1y_ (© 100
27150>—10) =V

v =75, - %)

v® =27, 1)
Figure 2.9: A polytope with a feasible maximal backwards circuit walk of length three.
Every other feasible maximal circuit walk from v(! to v has length at least four. To see this,
we illustrate all possible combination of first (dashed) and second feasible maximal circuit steps

in Figure 2.10. From none of these second step points we can reach v in only one additional
step, except from the point v{!?) in the top left picture. But this yields the backwards circuit walk
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Chapter 2 A hierarchy of circuit distances

depicted in Figure 2.9. Observe that all second steps that end in the upper edge (v\'D, v(1) have
coordinates (x,9)T for an integral x, and thus we cannot reach v = (271%, 0)T by applying the
circuit (—1, 1) at these points. The final sketch is a zoomed-in view on the bottom right picture.
It illustrates all possible second steps after applying (~1, 1)T at v\!) for a convenient verification of

the fact that we cannot get to v*> with only one more step.

V3

v

15 _ 1y
(27756 =3)

Figure 2.10: Possible combinations of first and second feasible maximal circuit steps from v(!,

Likewise, one may obtain a shorter circuit walk by allowing oneself to use a circuit twice, and
thus C@f‘m < C-@fmr-

Lemma 2.8 (CDy,r > CDyp). For n = 2, there is a polytope with a pair of vertices for which
every optimal feasible maximal circuit walk is repetitive. Hence the distances CD fyy and CD

differ in this case.
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2.2 The circuit distance hierarchy

Proof. We consider the polytope on nine vertices depicted in Figure 2.11. Note that there are two
edges eg and e7 with direction (1,0)7, an edge e; with direction (1, —1)T, an edge eg with direction
(1, 1)7, and the edge eg with direction (0, 1)T. Further, in the right part there are four steeper edges:
ey with direction (1, —-4)T, e3 with direction (1, -5)7, e4 with direction (1,5)7, e5 with direction
1,4)T.

(0,10) = v v = (10, 10)

VO =(19,1)

e -
3 .
_ V_(‘) . v = (19%, %) :
. V(:s) : ) 9 )
= : v = (1945,0) -
: e ;

HIvO = (191 -1y

es N

M — -
vi7=(19,-1
0,—-10) = v v® = (10, -10)

Figure 2.11: The polytope for the proof of Lemma 2.8.

There is a feasible maximal circuit walk of length three from v\ to v that is repetitive.

(0, 10) = v v® = (10, 10)

(0,0) = v = (195,0)

Figure 2.12: A feasible maximal repetitive circuit walk of length three.

Every other circuit walk from v(! to v®® has length at least four. Therefore, we illustrate all
possible combination of first (dashed) and second steps in Figure 2.13. From none of these second
step points we can reach v© in only one additional step, except from the point (0, 0) in the first
picture. But this is the repetitive circuit walk from Figure 2.12. For those points for which it might
not be immediately obvious that we cannot reach v*> = (19%, 0) along any edge direction in only

one more step we added the coordinates for a convenient verification.
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Chapter 2 A hierarchy of circuit distances

(9,10)

(8,10) (9,10)

Figure 2.13: Possible combinations of first and second feasible maximal circuit steps from v(!,

O

We also can show that the first and the second layer are related not only by the obvious weak
inequalities, but by CD, Fm(b)(r) > CD Fm(b)(r)-

Lemma 2.9 (CD. fimw)r) > COfmw)r)- For n = 2, there is a polytope with a pair of vertices for
which every optimal feasible maximal circuit walk is not an edge walk, and there is such a walk
that is non-repetitive and non-backwards. Hence the distances CD,fp and CDyy, the distances
CD.fmp and CD pyp, and the distances CD, gy and CD fy,, differ in this case.

Proof. In the polytope below, an optimal edge walk from v\") to v(® along the edges has length
three, while there is a feasible maximal non-repetitive non-backwards circuit walk of length two.

v vy

v@ v@

Figure 2.14: An optimal edge walk and an optimal feasible maximal walk.
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2.2 The circuit distance hierarchy

In the third and lower layers of the hierarchy we drop the maximality condition. This may again

reduce the distance of vertices.

Lemma 2.10 (CDmpyr) > CDrpyr)- For n = 2, there is a polytope with a pair of vertices for
which every optimal feasible circuit walk is not maximal, and there is such a walk that is non-
repetitive and non-backwards. Hence the distances CDy,, and CDy, the distances CD yy, and
CODyyp, and the distances CD pr and CDy, differ in this case.

Proof. In the polytope below, an optimal feasible maximal walk from v® to v() has length at
least three: No matter which circuit direction we apply at v with maximum length, we cannot

get to v{!) in just one additional step.

v

e

A

Figure 2.15: Possible first feasible maximal circuit steps at v,

On the other hand, there is a feasible non-repetitive non-backwards circuit walk of length two.

v

v

Figure 2.16: A feasible circuit walk of length two.

O

Further, we can prove that requiring a non-repetitive walk may increase the distance of a feasible
walk, i.e. CDy, > CDy and CDyp,r > CDyp. Thereto, we need a polytope in dimension at least
four as the following lemma tells us. In Lemma 2.12 we then show that such a polytope indeed

exists.

Lemma 2.11. For n < 3, every optimal feasible circuit walk is non-repetitive. Hence the distances

CDy and CDy, coincide in this case.
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Chapter 2 A hierarchy of circuit distances

Proof. Repetitive circuit walks obviously must have length at least three. If every optimal circuit
walk between two vertices is repetitive, then any feasible non-repetitive circuit walk must have
length at least four. But in dimension < 3 there always is a sign-compatible and thus feasible

non-repetitive circuit walk of length at most three (for this, see also Lemmas 2.14 and 2.18). O

Lemma 2.12 (CDy,p) > CDywy). For n = 4, there is a polytope with a pair of vertices for which
every optimal feasible circuit walk is repetitive (but non-backwards). Hence the distances CDy
and CDy, and the distances CD ¢, and CDyyy, differ in this case.

Proof. Let the polytope
P:{xeR4: lsBxsu}

be defined by

1 000 0 3/2
0100 0 1
0010 0 1

B={0 00 1], 1= 0 |, u=| 1
1 1.0 O0 -0 2
1 010 —00 2
1 001 -0 2

The rows of the matrix B define the directions of 11 hyperplanes bounding the polytope.

The vertices are the intersections of four of these hyperplanes, in case this intersection is
a single point that is contained in P. A simple computation shows that we have 23 vertices
(10, 11*\{(1,0,0,0)7}) U ({g} X {0,%}3). In particular v(V := (0,0,0,0)T and v® := (1,1,1, )T
are vertices of P.

The circuits are the potential edge directions for varying 1 and wu, that is, they are given by the
intersection of three hyperplanes, in case this intersection is 1-dimensional. Again it is not hard
to compute that these directions are +e' (where €' is the i’th unit vector) and + ({1} x {0, —1}3) and

hence constitute the set of circuits.

Claim: Every feasible circuit walk from v(" = (0,0,0,0)7 to v®® = (1,1, 1, 1)T of length at most
three is repetitive.
Proof of claim: We investigate how we can go to v® = (1, 1, 1, 1)T in at most three feasible circuit
steps. Observe that at any point we cannot apply circuits that violate the lower bounds of 0 or the
upper bounds of 1, respectively % Hence as a first feasible circuit step, we can only apply e! or
without loss of generality e?.

Applying € yields a point (0, x2,0,0)T with x, < 1. In the second step we can either apply
without loss of generality e, giving (0, x2, x3,0)T with x», x3 < 1, or we apply e! or (1,-1,0,0)7

giving (x1,x2,0,0)T with x; < 3. x» < 1. From neither of these points we can go to v =

= E,
(1,1,1,1)7 with one more circuit step: We cannot increase the first and the last component at the
same time, nor increase the last two components by one simultaneously without decreasing the

: 1
first component to, respectively under 5.
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2.2 The circuit distance hierarchy

Applying e! as a first step yields a point (x1,0,0,0)T with x| < % In the next step we can either
increase only one component, without loss of generality only the second one (by applying e? or
(-1,1,0,0)7), giving (x1, x2,0,0)7 with x; < 3, x, < 1, but as before we cannot reach v'*) in one
more circuit step. Otherwise in the second step we increase at least two components (by applying
(-1,1,1,1)T or without loss of generality (-1, 1, 1,0)7), giving (x1, X2, X3, X4)T wWith x| +x, = x1 +
X3 = x1+x4 < %, X2, X3, x4 < 1 (respectively, (x1, xp, x3,0)T with x;+xp = x1+x3 < %, X2, x3 < 1).
In particular we know that x, = x3 < 1 or x; < 1. Hence to reach to v? = (1,1, 1, 1)T in one more
step, we have to increase the second and third component simultaneously to 1 (which decreases
the first component to < %), or we have to increase the first one without decreasing any other

component (that is, we apply e! again). This proves our claim.

On the other hand, applying the circuits e!, (~=1,1,1,1)T and e' with step length one each is
indeed a feasible non-backwards circuit walk of length three from v(! to v, O

In contrast, we only know CDyj, > CDy and CDspr = CDy,. In other words, we do not know
whether there is a polyhedron with a pair of vertices for wich every optimal feasible edge walk
is backwards. These are the only weak inequalities in the hierarchy and we conjecture that these
are strict as well. In Lemma 2.13 we explain why a polytope proving this conjecture has to be of

dimension five or higher.

Lemma 2.13. For n < 4, every optimal feasible circuit walk is non-backwards. Hence the dis-

tances CDy¢ and CDyy, coincide in this case.

Proof. We first show that if an optimal feasible circuit walk is backwards then it has length at least
four. Clearly it has length at least three. Assume there is a polytope with vertices v\ and v?) that

are connected by a feasible circuit walk of length three that is backwards:
VO ZyO 3D ZyO L gl y@ —yD 02 v Z 3O g gly = v®
But then there is a feasible circuit walk from v(" to v® of length two, which is
vW=yO 30 =y @ —ang, ¥V =3V +mg  ifer 2o,
respectively,
v =yO, 50 =yPrag?, 5P =5V 4@ -an(-g)  ifari<as.

Clearly these circuit walks satisfy §» = v and are indeed feasible by convexity of the polytope.
Therefore, a feasible backwards circuit walk of length three cannot be optimal.

Now in case every optimal circuit walk between two vertices is backwards, any feasible non-
backwards circuit walk must have length at least five. But in dimension n < 4 there always is a
sign-compatible and thus feasible non-backwards circuit walk of length at most four (see Lemmas
2.14 and 2.18). ]
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Chapter 2 A hierarchy of circuit distances

We conclude the feasible circuit walks with the sign-compatible ones, i.e. CDy,. Unlike the
many combinations where the >-relation is clear from imposing additional or less constraints, it is
not obvious for CDys > CDyp,.

Lemma 2.14. Any optimal sign-compatible circuit walk is feasible, non-backwards and non-

repetitive.

Proof. It follows immediately from the definition of sign-compatible walks that these are feasible.
In fact, the steps of a sign-compatible circuit walk can be applied in arbitrary order, yielding
feasible sign-compatible walks again. Hence, by reordering we can assume that all steps that use
a circuit +g’ are applied consecutively. But then these multiple steps could be combined into a

single circuit step and this yields a shorter circuit walk. O

For proving the strict inequality, again it is enough to state a polyhedron for which CDy, >
CDyp, holds for two of its vertices.

Lemma 2.15 (CDys > CDypr). For n = 3, there is a polytope with a pair of vertices for which
every optimal feasible circuit walk is not sign-compatible, and there is such a walk that is non-
repetitive and non-backwards. Hence the distance CDy; differs from CD ¢p,, CDyr, CDyp, and
CODy.

Proof. Consider the polytope

defined by
1 00 0 00
010 0 1
B=10 0 1|, I=] 0 |, u=| 1
1 10 —00 2
1 01 —00 2
All possible edge directions g of P are given by
1 0 0 1 1 1
| 0 |, , 21 O, = =1 |, £ O, £] -11,
0 0 1 0 -1 -1
and the corresponding vectors Bg are
1 0 0 1 1 1
0 1 0 -1 0 -1
= 0,0, £} 1|, O], = =11, £| -1
1 1 0 0 1 0
1 0 1 1 0 0
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2.2 The circuit distance hierarchy

We want to perform circuit walks from viD =(0,0,0)Ttov® = (1,1,1)T. We have B (v(z) - V(l)) =

! e? and e’ can be applied in sign-compatible walks.

(1,1,1,2,2)7. Hence only the unit vectors e
Thus an optimal feasible sign-compatible walk from v(! = (0,0,0)T to v® = (1, 1, 1)T has length

at least three, as clearly we cannot connect these vertices using only two of the unit vectors.

v

v

Figure 2.17: A feasible sign-compatible circuit walk of length three.

On the other hand, there is a feasible non-repetitive non-backwards circuit walk of length two
that is not sign-compatible.

v

Figure 2.18: A feasible circuit walk of length two that is not sign-compatible.

O

In the final part of the hierarchy, shown in the lowest horizontal layer of the table, we do not even
require feasibility. Here we only have to consider CD: We already saw that CD = CD, = CD,,
and all other properties imply feasibility. We finally demonstrate that going infeasible indeed can
be of advantage.

Lemma 2.16 (CD; > CD). For n = 3, there is a polytope with a pair of vertices for which
no optimal soft circuit walk is feasible, and there is such an (infeasible) optimal walk that is sign-
compatible. Hence the distance CD differs from the distances CDyrs = CDy, CDypr, CDfp, CDyry,
and CDy.

Proof. The polytope below is obtained from a cube by cutting off six of its vertices using three

pairs of hyperplanes, and keeping an opposite pair v(!), v?) of vertices as depicted. Assume
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Chapter 2 A hierarchy of circuit distances

the center of gravity of the cube is 0. Then the normals of these hyperplanes are equal to the

coordinates of the vertices cut off. The ‘depth’ of the cuts is arbitrarily small.

Any feasible circuit walk from v to v/? has length at least three: To see this we illustrate
the directions of all possible first steps at v(") (red) and all possible last steps to v (green) of a

feasible circuit walk. Note that these steps are not necessarily maximal.

o) o)

v

Figure 2.19: Possible first and last steps of a circuit walk from v(» to v®.

Clearly there is no point that can be reached in a single step from v'") and from which one can

reach v in a single step (at the same time). Hence any feasible circuit walk from v{" to v®® has
length at least three.
On the other hand, there is a circuit walk of length two from v{" to v when allowing to go

infeasible:

v@

v

Figure 2.20: A circuit walk of length two that is not feasible.
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2.3 Upper bounds on circuit diameters

2.3 Upper bounds on circuit diameters

In the previous section we studied how the several classes of circuit diameters bound each other.

We now ask for general upper bounds on the respective diameters. Our main result is the following.

Theorem 2.17. Let P = {x € R" : Ax = b, Bx < d} with A € Z"*" B € Z"8*" be a polyhedron
in R". Then the circuit diameters CDy, CDyp, CDyy, CDppr, CDyy, and CD are bounded above
by

min { rank(A) —n + mg , n —rank(A) } .

The theorem follows immediately from the next lemma and transitivity of the relations in the

hierarchy Figure 2.5.

Lemma 2.18. Let P = {x € R" : Ax = b, Bx < d} with A € Z""", B € Z"*" be a polyhedron
in R" and let v\V, v be two of its vertices. Then there is a feasible sign-compatible circuit walk

from vV 10 v of length at most min { rank(A) — n + mg , n — rank(A) }.

Proof. 1t suffices to consider the case rank(g) = rank(A) + rank(B). Otherwise the representation
of P has redundant rows in the matrix B and the bound derived below may only become lower.

Let ~ € {=, <, >}""® such that its i-th component ~; is defined as

IA

if (B(v<2> - v<1>)i <0
~i= if (B(v® - v<1>)i =0.
if (B(v<2> - v<1>)i >0

v

Then v®® —v) € {x € R" : Bx ~ 0} =: C.. This is a polyhedral rational cone in which all elements
are pairwise sign-compatible. Observe that Bv\) < d and at least n — rank(A) linear independent
inequalities of this kind are tight. Hence (B(v\®? —v'1)); = 0 for at least 2(n—rank(A))—mgp (linearly
independent) inequalities if mp < 2(n — rank(A)) (and possibly for none if mp > 2(n — rank(A))).
Hence C.. has dimension at most n—(2(n—rank(A))—mp) = 2rank(A)—n+mpg if mp < 2(n—rank(A))
(and dimension at most n if mpg > 2(n — rank(A))).

Let H.. be the unique minimal generating set of C. N ker(A) over R, where the components of
each vector in H. are scaled to integers with greatest common divisor one. Then all elements in H..
are circuits. Note that dim(C~. N ker(A)) = dim(C.) — rank(A) due to rank(g) = rank(A) + rank(B)
and hence dim(C. Nker(A)) < rank(A) —n+ mpg if mp < 2(n —rank(A)) (and dim(C-. Nker(A)) <
n —rank(A) if mp > 2(n — rank(A))). By Caratheodory’s Theorem, v® —v(D e C_ Nnker(A) can
thus be written as a combination of at most rank(A) — n + mp (respectively, n — rank(A)) of the

generators contained in H... O

For two common representations of polyhedra using only the matrix A or B, respectively, we

can refine the diameter bounds as follows.
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Chapter 2 A hierarchy of circuit distances

Corollary 2.19. Let P = {x € R" : Ax = b, x > 0} be a polyhedron in R". Then the circuit
diameters CDy, CDsp, CDpr, CDfppr, CDyy, and CD are bounded above by

min { rank(A) , n —rank(A) } .

Proof. Note that B = —I,, and thus mp = n. Then Theorem 2.17 immediately implies the claim.
O

Corollary 2.20. Let P = {x € R" : Bx < d} be a polyhedron in R", B € Z"8*", Then the circuit
diameters CDy, CDysp, CDpr, CDfppr, CDyy, and CD are bounded above by

min{mgp—-n, n}.

Proof. Note that there is no matrix A in the description of the polyhedron, so the claim follows
from Theorem 2.17 using rank(A) = 0. |

As has been pointed out several times, we are particularly interested in the bound posed by the
Hirsch conjecture. For circuit diameters defined on circuit walks using arbitrary length steps we

get the following result.

Corollary 2.21. For any d-dimensional polyhedron with f facets, the circuit diameters CDy,
CDyp, CDy¢r, CDypr, CDyy, and CD are bounded above by f — d.

Proof. Observe that f < mpg and d = dim(P) = n — rank(A). Thus the circuit diameters are
bounded above by mp — (n — rank(A)) < f — d by Theorem 2.17. O

Recall that this bound does not hold for the combinatorial diameter CD, s, [27] and its validity
is open for the circuit diameter CDy,,,. Moreover, for both diameters the existence of upper bounds

that are polynomial in f and d is unresolved.

2.4 The circuit distance hierarchy in dimension two

We conclude this chapter on the circuit hierarchy with a discussion of the different notions of
circuit distances in dimension n = 2, where we use the notation CD? etc. Here the hierarchy
collapses into fewer distinct categories, see Figure 2.21. We prove this in the following Theorem
2.22, together with all possible values of the respective circuit distances.

After this, we will investigate that the combinatorial diameter and the circuit diameter CZ)Zm

can differ significantly in Lemma 2.24.

Theorem 2.22. For n = 2 the circuit hierarchy collapses as depicted in Figure 2.21.

38



2.4 The circuit distance hierarchy in dimension two

Additionally, for a polygon on k vertices we have that

CD;,, =CD.,,, € {

2
CDlmprn € {1’ e
C’Dif = CZ)?”r = Cﬂib = Cﬂfpbr = CZ)ZS = CDZ €{l.2}

and there are polygons with pairs of vertices that attain the maximal distances in the ranges

claimed above.

feasible )
maximal h
edge walk
: 2 L 25 2
i CZ)efmb : > CZ)efm
i L T —
i i
; V2.9 i V2.9 29
i 127 2.8
2 2 2
; CD%,p > CDy, < CDy,,
= : : J
i 5 V2.10
| e W——— _
| -
| CD? !
| I
: : sign-compatible I
| . non-repetitive :
| T O —— ¥
: non-backwards y
L ]

Figure 2.21: The hierarchy of circuit distances in dimension two.

Proof. Note that Lemma 2.5, Lemma 2.7, Lemma 2.8, Lemma 2.9 and Lemma 2.10 prove dis-
tinctness of the respective circuit distances in dimension two. Hence the strict inequalities claimed
in the circuit hierarchy in Figure 2.21 hold (again the numbers near the inequality symbols refer

to these lemmas). For
CD; = CD3, = CD7}, = CD},. = CD; = CD € {1,2)

it is enough to recall Lemma 2.18: In dimension two any two vertices are connected by a feasible
sign-compatible circuit walk of length at most two. Further, if there is a circuit step that directly
connects two vertices, this circuit walk of length one trivially satisfies any property.

In dimension two there are no repetitive edge walks and hence Cl)g = CD? e The statement

on the possible values of circuit distance is obvious.
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Chapter 2 A hierarchy of circuit distances

2
efmb

the one given in Figure 2.6 in Lemma 2.5 by putting k — 4 vertices ‘to the left’ of v(!) and v(®. The

For a polygon on & vertices with a pair of vertices with CD = k — 3 is readily derived from
upper bound of k — 3 follows from the fact that an optimal circuit walk that is backwards uses at
least three steps.

We clearly have CZ)?m(b)(r) < [’%J In Lemma 2.23 we show that this value indeed can be
attained. O

To complete the proof of Theorem 2.22 we still have to show that there are polygons with
vertices that have feasible maximal circuit distance [%J For the sake of a clean presentation, we
provide the proof for k even. It can readily be extended to odd k by adding another vertex.

Lemma 2.23. Let k be even. Then there is a polygon on k vertices with circuit diameter CZ)fcm

equal to %

Proof. Let k even be given. We construct a polygon on k vertices v\, ..., v**"D with edges
e = (V(i),v(i+1)) fori = 0,...,k — 1 (where v%® := v©) guch that CZ)i.m (V(O),V(g)) = % In
particular, the corresponding optimal maximal circuit walk will be an edge walk.

Note that for n = 2 the actual edges of the polygon are in fact all potential edge directions. Thus,
for a simpler wording in the following, we will talk about ‘walking along edges’ or ‘in direction
of an edge’.

We now come to the construction of the polygon P. First of all we fix the edge directions and
hence the set of circuits associated with P. To this end we choose g slopes 0 > sg > 51 > 53 >
> Sk arbitrarily. In the upcoming construction we assign edge e slope —so; edge ex—1 slope
so,and fori=1,..., % — 1 we assign e; slope s; and e;_;_; slope —s;. This will produce a polygon

of shape as depicted in Figure 2.22.

v

v

v

Figure 2.22: Sketch of the polygon for k = 8.

Observe that the slopes of the edges from v to v iteratively become steeper, just as the
slopes of the edges from v~ to v(2). Further the polygon will be symmetric with respect to the
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2.4 The circuit distance hierarchy in dimension two

first coordinate axis (which we call xj-axis from now on).
It remains to arrange the vertices. We do this iteratively, fixing a pair of vertices ‘opposite’
v, v*=D in each step such that in P the following property (*) is satisfied:

Every maximal feasible circuit walk starting at v(?) of length at most % that
(*) contains a point v/ with larger x;-coordinate than v or vi*=? (or equivalently,

that hits an edge e; with i < j < k — 1 — j) must contain v or v,

This will immediately imply that the circuit distance CZ)}m from v to v() s £ Every circuit
walk of length at most % from v to v(2) does reach a v/ with larger x;-coordinate than every v(”
foralli=1,..., ’% — 1. (We will informally call this ‘going beyond v\’.) Hence by (¥), any such
circuit walk must contain a vertex from each of these % — 1 pairs of vertices. This takes at least

. .. k
% — 1 steps, and it takes one additional step to reach the target vertex v(2).

Construction of initial vertices: Fix v = (0,0). Let edges e, respectively e;_;, start at v
and end in a point v on ¢ and a point v&=D on ¢;_; such that v?V and v*~1 have identical
x1-coordinates.

(*) holds for the pair v\, v¢=D: At v(¥ we can only apply circuit steps with directions eq or
er—1 (any other direction is too steep). As we apply maximal steps, the second point of any circuit

walk is either v(D or v¢—D,

Construction of a new pair of vertices: Let the vertices vO vy O yk-D o k=D o
&£ — 1, be constructed and satisfy (*). We now construct the vertices vi*1, v&=i=1) together with

the incident edges e;, ex—1;.

1. Let edges with directions ¢; (respectively e,_;_;) start at v\ (respectively v~). Let w be
their intersection (which has x;-coordinate 0). This defines a polygon P;.

v

vO w®

v

Figure 2.23: The polygon P, for k = 8.
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2. In P; consider all feasible maximal circuit walks of length at most % that begin at v(¥) and
do not walk along the (actual) edge e; (respectively ex_1—;) to the vertex w®. Then none of
these walks contains w®: A step that hits w'”) is not allowed to go along the edges we just
inserted by definition and we cannot reach w® from e (respectively e;_1) in one circuit step
by construction. Hence it must start at an edge e; with without loss of generality 0 < j < i.
But then there would have been a feasible maximal circuit walk of length at most ’% in P;

that goes beyond v\ which contradicts the definition of v\/) in P e

3. Among all points contained in all of these circuit walks, there are points that have a largest
x1-value. These points lie on the edges e; (respectively e;_;_;) by construction. We now set
vi*D to be such a point on e; (respectively v*~1=9 on e;_;_;). This yields a pair of vertices
v+ yk=1-0 of jdentical x;-value and with v*D, y&=1=D 2 w® (with the same arguments
as before).

We have to show that v*D and v&==D satisfy (*) in P. Therefore, consider a maximal feasible
circuit walk in P starting at v(¥) and of length at most % that goes beyond v*!. This walk in P
translates to a walk in P; and clearly these walks in P and P; coincide until they go beyond v +D
(in both P and P;) by applying some circuit g/ at some point y*) in the respective circuit walks.
Let y/*D be the subsequent point in the circuit walk in P, respectively §/*! in P;. In particular
these y*! and y*1 have a larger x;-value than v(*D. By construction of v#*! we can only go
beyond v'*1 in at most % circuit steps in P; when going along the (actual) edge, without loss of
generality along ¢;. Hence without loss of generality g/ is the edge direction ¢; and y € e;. Thus
we have yV) = v(*D as we apply maximal steps, in particular the vertex v(*!) is contained in the

circuit walk in P.

Construction of the final vertex: Set v(») := w® for i = & — 1. This concludes the construction
of a polygon P with property (*). O

Recall that Theorem 2.22 tells us all possible values of the respective circuit diameters. These

2

results immediately imply that there are polyhedra that have constant circuit distances CD; b))

while the other notions grow linear.

We finally want to investigate, how the combinatorial diameter and the circuit diameter CZ)fcm
can differ. The following lemma tells us that this gap can be significant: The former diameter can

grow linear while the latter remains constant.

Lemma 2.24. Let P be a regular polygon on k vertices. Then for the combinatorial diameter we
have
EL ik odd

CD2, o =
efmb) % if k even

>
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while the circuit diameter is given by

1 ifkodd

CD% im = :
Sy 2 ifkeven

Proof. For Ci)z m(b)(r) the claim is obvious.

To determine the circuit distances CD sy let vV, ..., v be the vertices of the polygon
and (v, v@*D) its edges (where v&*D := v(D). Let k be odd. It suffices to show that from v(V

we can reach any other vertex in just a single circuit step. For this, it is enough to see v =

+1

v 4+ @ - (V@D = y0) for some @ and v*D = vy 4 o/ . (v5+) — y(F++D) for some o’. In

other words, the directions v\*? — v( and v(*D — v\ respectively the directions v\**D — (1) and

V(]) /‘\ V(3) — V(2.1+1)

P>

+1

v V(kT+i+l), are parallel.

g B+ _ y(6) NOREES)

Figure 2.24: A circuit step from v(!) to v and the edge of corresponding direction.

Now let k be even. First observe that there are always two collinear edges and hence not all
pairs of vertices can be connected by a single circuit step. Hence the diameter is at least two. As
before, we have v%) = v(D 4 o . (v(*D — v) for some a. In case we want to walk from v(!) to
v+ we first go to v) and then along edge (v*?, v?*D) a5 depicted in the walk from v(! to v®®

in Figure 2.4. Hence the regular k-polygon for k even has diameter two with respect to Cf)?m(b)(r).

v@ v3 = y@+D

v > v = y22)

v = y22+D)

v+ — v vO = y(3+2)

Figure 2.25: Optimal circuit walks from v(!) to v and v*> and edges of corresponding direction.
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Chapter 3

Circuit diameter bounds for transportation
polytopes

Classical or two-way transportation problems (also called Hitchcock problems [19]) model the
minimum-cost transportation of a good from M suppliers to N demand locations, where each of
these M + N points sends or receives, respectively, a specified amount of the product. They are
among the most fundamental problems in mathematical programming, operations research and
statistics, see for example [12, 13, 22, 29] and references therein.

As the standard transportation problem requires the optimization of a linear objective function,
the combinatorial diameter of transportation polytopes is of particular interest. For MXN trans-
portation polytopes, the Hirsch conjecture essentially claims an upper bound of M + N — 1. It
holds for M = 2 [12] and for a special class of 0, 1-transportation polytopes, the so-called partition
polytopes, which even satisfy a much lower bound [2]. However, it is still open whether the Hirsch
conjecture is true for general M XN transportation polytopes. For M > 3 the best upper bounds are
linear: A bound of 8(M + N — 2) is presented in [7] and improved to 4(M + N — 1) with a sketch
of the proof in [12].

In the following we prove lower and upper bounds for the four main categories of circuit distances
introduced in the previous chapter. Our lower bound result is common to all notions of circuit

diameters.

Theorem 3.1 (Lower bounds for transportation polytopes). For all M, N, there is an MXN trans-
portation polytope for which any circuit diameter is at least the minimum of M + N — 1 and
(M- 1)(N-1).

Note that we have (M — 1)(N - 1) < M+ N —1forall M < Nexcept M =2orM =N = 3.
In particular, this lower bound tells us that M XN transportation polytopes with N > M > 3 are ‘at
least Hirsch-sharp’, that is, there are polytopes whose combinatorial diameter attains the bound of
M + N — 1 claimed by the Hirsch conjecture.

On the contrary, proving the upper bound of M + N — 1 for all circuit diameters equally is much
more involved. We tackle this problem by investigating the combinatorial diameter and CDy,, for
small instances of transportation problems (M = 2, 3), while in the general M XN case we look at

the less restrictive notions of circuit diameters for which proving upper bounds turns out to be far
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Chapter 3 Circuit diameter bounds for transportation polytopes

more practicable. In fact, we get validity of the bound induced by the Hirsch conjecture, and we

already know that this bound is tight.

Theorem 3.2 (Upper bounds for transportation polytopes). For MXN transportation polytopes,
the weak and the soft circuit diameter CDy and CD are bounded above by M + N — 1.

We then restrict ourselves to 2XN and 3XN transportation polytopes. For the combinatorial

diameter (we use C9D, in this chapter) we obtain the following results.
Theorem 3.3 (Hirsch conjecture for M = 2, 3).

(i) The monotone Hirsch conjecture holds for 2xXN transportation polytopes. Further, the
(monotone) combinatorial diameter CD, is bounded above by M + N —2 = N.

(ii) The Hirsch conjecture holds for 3XN transportation polytopes. In particular, the combina-
torial diameter CD, is bounded above by M + N — 1 = N + 2.

Both bounds are tight. This follows from Theorem 3.1 for M = 3, and we present a 2XN
transportation polytopes with combinatorial diameter N in Example 3.9. Note that the upper bound
of N also tells us that 2XN transportation polytopes are not Hirsch sharp, as the Hirsch bound of
N + 1 cannot be attained. Therefore, Theorem 3.1 (i) improves the bound implied by the validity
of the Hirsch conjecture for M = 2 [12].

For the circuit diameter CD,, we get similar bounds.

Theorem 3.4 (Circuit diameter bounds for M = 2, 3).
(i) For 2XN transportation polytopes, the circuit diameter CD s, is bounded above by N — 1.
(ii) For 3XN transportation polytopes, the circuit diameter CDy,y, is bounded above by N + 2.

By Theorem 3.1 these bounds are tight as well. Note that for 2x/N transportation polytopes our
general upper bound on CDy,, is better than that for combinatorial diameter, while the bounds for
the 3xN case coincide. Actually, Theorem 3.4 (ii) was already implied by Theorem 3.3. However,
we consider the CDy,, case explicitly as we present a more specific proof here. It provides us
with a stronger statement about the actual circuit distances and this approach might be useful for
tackling M > 3 as well.

The chapter is joint work with Steffen Borgwardt, Jesis A. De Loera and Jake Miller [4]. It
is structured as follows: In Section 3.1 we recall the necessary background on transportation
polytopes and present our notation and tools for the discussion. In particular, we explain what
the respective circuit walks look like for transportation polytopes. We then turn to the upper
bounds on circuit diameters. We begin with the proof of Theorem 3.2 in Section 3.2, followed by
proving Theorem 3.3 in Section 3.3 and Theorem 3.4 in Section 3.4. This chapter ends with the

investigation of the lower bounds in Section 3.5, where we show that Theorem 3.1 holds.
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3.1 Preliminaries

An MXN transportation problem has M supply points and N demand points to be met. Each
supply point holds a quantity #; > 0 and each demand point needs a quantity v; > 0. Let y;; > 0

denote the flow from supply point i to demand point j. Then the set of feasible (flow) assignments

y € R™*N can be described as
N
2 Yij = Ui i=1,..,M,
=1
M .
_Zlyij = v j=1,..,N,
=
yij 2 0 i=1,.,M, j=1,..,N.

The set of solutions to these constraints constitutes a transportation polytope. Here the vectors u

and v are called the marginals or margins for the transportation polytope.

When discussing an M XN transportation problem, it is common practice to think of the supply
and demand points as nodes in the complete bipartite graph Ky y. We denote the nodes cor-
responding to the supply points {si,..., sy} and the nodes corresponding to the demand points
{d1,...,dy). For every feasible solution y € RM*VN we define the support graph B(y) as the sub-
graph of K x that contain precisely the edges {{si, o} 1y >0,iefl,... .M}, jefl,... ,N}} of
non-zero flow. We use this representation throughout the chapter to visualize our methods.

With the term assignment we either refer to the vector y € RM*V

itself or just to the edge set
of its support graph B(y), depending on the context. Note that B(y) is directly derived from y.
We typically denote assignments by the capital letters O (for ‘original’), C (for ‘current’), and F

(for ‘final’). If we want to refer to the actual flow assignment as a vector explicitly, we write for

o
)

Observe that for general transportation polytopes the support graph is not necessarily connected,

example y° = (y - yAO,IN). We use |O| to refer to the number of edges of the support graph.
but this is the case for non-degenerate transportation polytopes: An M XN transportation polytope
is non-degenerate if every vertex has exactly M + N — 1 non-negative entries. This is the case if
and only if there are no non-empty proper subsets I € {1,...,M}and J C {1,..., M} such that
Yiel i = X jes Vj» see [29]. Note that for each degenerate MXN transportation polytope there is a
non-degenerate M XN transportation polytope of the same or larger combinatorial diameter CD,
[29]. Therefore, it suffices to consider non-degenerate transportation polytopes to prove upper
bounds on CD,. We exploit this in Section 3.3.

In contrast, we cannot assume non-degeneracy when exhibiting other notions of circuit distance
as it is not clear whether for every degenerate M XN transportation polytope there is a perturbed
non-degenerate MXN transportation polytope bounding the respective circuit diameters of the
original one from above.

When studying circuit distances, the vertices of the polytope are of special interest. For trans-
portation polytopes they can be characterized in terms of the support graphs: A feasible point y

is a vertex if and only if its support graph contains no cycles, that is, B(y) is a spanning forest.
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Chapter 3 Circuit diameter bounds for transportation polytopes

Observe that a vertex y is uniquely determined by (the edge set of) its support graph B(y) and the
vertices y of non-degenerate transportation polytopes are given by spanning trees (see for example
[22]). For a vertex O (or y°) we distinguish two kinds of demand nodes:

1. Leaf demands are those demand points which are leaves in B(y?). When we say leaf edges
we refer to edges incident to leaf demands. (This differs from the standard notion of leaf
edges used in graph theory!)

2. Mixed demands are those demand points which have degree at least two in B(y?). We denote
the set of mixed demands by DY and the mixed edges are given by E9 := {{si, bj}:dj€ Dg}.

Note that for a vertex O of a non-degenerate 2XN transportation polytope we always have
IDY| = 1 and |E9| = 2, in the non-degenerate 3xN case either |[DY| = 1 and |[EY| = 3 or |DY| = 2
and |E9| = 4. The three configurations are illustrated in Figure 3.1 (mixed edges are bold). Here

the sets DY of mixed demands are {d4}, {d4} and {d4, dg}, respectively.

m

Dy W

| ) 03

) 51 D3 51 )

S1 03 Dy Dy
Dq ) D5 &) D5

9 D5 D¢ D6
Dg 53 D7 S3 D7

b7 bg bg

Dy Dy

Figure 3.1: Vertices of non-degenerate 2XN transportation polytopes always have exactly one
mixed demand point (left), while vertices of non-degenerate 3XN transportation poly-
topes can have either one or two (middle, right).

For every supply point s; we denote the vertices adjacent to s; in an assignment O (its neighbor-
hood) by

1

NY = {o; 30> 0f = {o; : {100 € Of .
We continue with characterizing the actual edges of the polytope in terms of the support graphs.

Proposition 3.5 (see [22]). Let O and C be two assignments of an MXN transportation polytope.
Then the corresponding vertices are connected by an edge if and only if O U C contains a unique

cycle.

This unique cycle describes an edge direction of the transportation polytope. It is easy to see
that every cycle of Kjs v can appear as an edge of some M XN transportation polytope if we choose
suitable margins. Thus, the set of circuits of an MXN transportation polytope consists of all even
simple cycles of the form (s;,0;,$;,,0),,..., %;,Dj,). Applying such a circuit at a (feasible) point
y corresponds to changing the flow on the edges of Ky, n: We increase flow on all edges {s;,,0;}
and decrease flow on all edges {9;,s;,,} by the same arbitrary amount, the step length. (For a
shorter wording, we will often say that we increase or decrease edges.)
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This in particular ensures that the ‘margin equations’ defining the transportation polytope re-
main satisfied. However, we do not necessarily remain feasible as applying a circuit possibly
decreases the flow on an edge {9;;, $;,,,} below its lower bound of zero. So if we want to remain
feasible, the step length at y can be at most the minimum over all yj,;,,,. This implies that the

circuit steps with respect to the four different concepts are as follows:
o CD: We can apply any circuit with any step length.

e CDy: We can apply any circuit (s;,,0;,, $;,,dj,, ..., %, D) for which y;;., > 0forall /. The

step length is at most the minimum over all yj;;,, .

e CDyp: We can apply any circuit (s;,,j,, %y, j,, . . ., %, 0j,) for which y;;, > 0 for all /.

The step length equals the minimum over all yj;;,, .

e CD,: By Proposition 3.5, an edge step (pivot) goes from an assignment O to an assignment
C that differs from O in exactly one edge. Being at a vertex O, such a step can be constructed
by inserting an arbitrary edge {s;,d;} ¢ O into O. This closes an even cycle, which describes
the circuit (edge direction) we apply. Again we alternately increase and decrease along this
cycle by the minimum over all y;, ;,.,, where we increase on the edge we inserted. Due to
non-degeneracy (which we can assume here) this deletes exactly one edge and hence leads

to an assignment C that is a neighboring vertex.

Observe that for CD, every circuit step inserts one edge and deletes one edge and hence the
corresponding support graphs always remain cycle free. In contrast to this, CDy,, can insert
multiple edges while deleting at least one edge, so that there can be cycles. In weak circuit walks
CDy we can insert multiple edges and we do not have to delete an edge at all. Finally, infeasible
points can appear in soft circuit walks CD. That is why we do not consider a support graph in this
case. Also recall that we can assume connectivity of the support graphs due to non-degeneracy
only for the edge walks.

For sake of notation, we distinguish two types of distances from an assignment O to a fixed
assignment F. We will use CD?, CDY, etc. to denote the respective circuit distances from O and
F, while the edge distance |O\F| is simply the number of edges that are in O, but not in F. Note
that O\ F consists of those edges that have to be deleted (or are to delete) when walking from O to
F.

Clearly we have CD?Y > |O\F|: By applying a single pivot at an assignment O, one obtains
an assignment C which has at most one additional edge (the new, inserted one) in common with
F. In contrast, we can have Ci)?m < |O\F| as we will see in Example 3.6. This example was
first mentioned in [7]. It illustrates a situation that is crucial for proving the Hirsch conjecture for
M = 2 and for understanding the combinatorial diameter of transportation polytopes: At some
point in our edge walk from the initial to the final assignment we have to delete an edge that

actually exists in the final assignment!
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Example 3.6. Consider the edge walk from an assignment O to an assignment F in Figure 3.2.
The nodes are labeled with the margin values, the edges with the current flow; the bold edges
highlight the circuit we apply and the dashed edges are those we insert

2 2.2
3 3 1 3
=2 2
3 3 2 3 !
22 2>2
assignment O pivot 1 pivot 2 pivot 3 assignment F

Figure 3.2: An edge walk from vertex O to vertex F of length three.

No matter which edge we insert in the first step, we have to delete an edge that is contained in
F. Thus we need at least two more steps as we still have to insert two edges from F. Therefore, the
edge walk above is a walk of minimum length and we have that CD, is strictly larger than |O\F|.

In contrast, we can go from O to F in only one circuit step of type CD sy, (and thus also CDy or
CD): As we allow to go through the interior of the polytope, we can insert and delete two edges

in just one step.

2.2
3 3
2
3 3 !
22
assignment O circuit step 1 assignment F

Figure 3.3: A feasible maximal circuit walk from vertex O to vertex F of length one.

We conclude this introductory section with a remark on the bound posed by the Hirsch con-
jecture. It is closely related to the diameter bound of M + N — 1 in Theorem 3.1 and 3.2: We
know that the dimension of an M XN transportation polytope equals (M — 1)(N — 1) [22], and for
non-degenerate transportation polytopes the number of facets is equal to M - N — k, where k is
the number of critical edges. This follows immediately from Theorem 2 in [22]. We call an edge
{si, 0} critical for a transportation polytope if the edge {s;, d;} exists in every support graph, that
is, y;; > 0 for all solutions y. With this we can state the Hirsch conjecture as

Conjecture 1 (Hirsch conjecture for transportation polytopes). The combinatorial diameter of an
MXN transportation polytope is at most M + N — 1 — k, where k is the number of critical edges of
the transportation polytope.

Thus, the Hirsch conjecture would imply the upper bound of M+N—1. Observe that M+N—1-k
is precisely the number of edges in which two assignments of the corresponding transportation
polytope can differ. In particular, for proving the Hirsch conjecture for M XN transportation poly-
topes it is enough to show that there is a sequence of pivots that inserts the edges in F one after
another and no inserted edge is deleted again.
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3.2 Upper bounds on circuit diameters of M xN transportation
polytopes

One of the first upper bounds on the combinatorial diameter of M XN transportation polytopes was
shown in [29], a quadratic upper bound of M-N. Meanwhile, this was improved to linear upper
bounds, the best one currently known is 8(M + N —2) [7]. By transitivity this translates to an upper
bound on CDy,, CDyr and CD.

However, for CD¢ and CD we can show the much stronger bound of M + N — 1. This is an

immediate consequence of Theorem 2.17 from the previous chapter.

Lemma 3.7. For an MXN transportation polytope, the weak circuit diameter CDy is bounded
above by M + N — 1.

Proof. A transportation polytope can be written as P = {y € RN : Ay = (3), y > 0}, where the
matrix A € ZM+VXMN) g the node-edge incidence matrix of Kj;y. Observe that A has row rank
M +N —1 since of the M+ N margin equalities one is redundant and can be derived from the others.
We further have mp = M-N inequalities y;; > 0. Thus, CDy < CDpy <M+ N —-1-M-N+ M-N
by Theorem 2.17. O

For the circuit diameter CDy,, and the combinatorial diameter CD, of transportation polytopes
this bound seems too ambitious, as already indicated by the long history of attempts in proving
the Hirsch conjecture. Instead we focus on investigating small instances, which might shed some
light on this question. In the following two sections we have a look at 2XxN and 3XN transportation
polytopes. In these cases we are indeed able to prove the Hirsch bound!

However, the Hirsch conjecture remains open for M XN transportation polytopes for M > 4. We
want to point out that some of the concepts we apply in the following can easily be adapted to the
MXN case, whereas several arguments are specific for M = 2,3. In particular, the lengthy case

distinctions are not likely to be a reasonable approach for larger M.

3.3 Upper bounds on the combinatorial diameter

In this section we cover Theorem 3.3. Before turning to the actual proofs, we introduce of a
marking system that is at the core of our approach. We use it for showing that in the 2xXN case we
get an upper bound of N on the monotone diameter (Theorem 3.3 (i)) and for proving validity of

the Hirsch conjecture for 3XN transportation polytopes (Theorem 3.3 (ii)).

3.3.1 Basic concepts for the proofs

For proving upper bounds on the combinatorial diameter we will construct a walk from an initial
assignment O to an assignment F by iteratively inserting edges from F into the current assignment,
just as we did in Figure 3.2. In this process we now distinguish marked and unmarked edges in the

support graph of the current assignment. In the beginning every edge is unmarked. Any pivot may
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only insert edges from F and we mark every edge we insert. We are also allowed to mark certain
edges (from F’) that already exist in the current assignment without applying a pivot. Therein, an

edge {s;,d;} can be marked only if
1. djis aleaf demand in F, or

2. 0; is a mixed demand in F and all leaf edges (in F') incident to ¢; already exist in O and are

marked.

We will consider the possible configurations of marked and unmarked edges in the mixed part of
O that can appear throughout the process. For each such configurations we specify an edge from
F to mark (after possibly inserting it). In this we never delete a marked edge. Following this
approach we will need at most |F| steps to get to the final assignment.

Like this we prove our upper bounds of N + 1 and N + 2, respectively, on the combinatorial
diameter of 2XN and 3xN transportation polytopes. By refining our arguments we then even
show the slightly stronger Hirsch conjecture for M = 2,3 and in the case of 2XN transportation
polytopes we improve the diameter bound by one to N in general.

Before starting with the proofs, let us outline some general conventions, situations and arguments
that frequently appear in our analysis.

In the sketches throughout this section, marked edges are drawn in bold while unmarked edges
are illustrated using thin lines. Edges that are possibly marked are depicted as a plain line with a
dashed bold line over it.

When talking about ‘mixed’ or ‘leaf’ edges without referring to a specific assignment, we al-
ways mean that the edges are mixed or leaves in the final assignment F. For example, ‘s; has all
its leaf edges’ means that all edges that are leaf edges in F and incident to s; in F also exist in O.

Recall that {s;,d;} is an ‘edge to increase’ if yioj < yl‘.j. and an ‘edge to decrease’ if yl.oj > y5
Clearly, if there is an edge to increase incident to a node s; or d; in O, there also must be an edge
to decrease incident to this node and vice versa. Further observe that edges to increase can only be
edges to insert or edges that are mixed in O, while edges to decrease are edges we have to delete
or edges that exist in O and are mixed in F'. These principles are frequently used in our proofs.

Another important observation is the following: If there exist marked edges {s;,;},{s;,,0;} €
O, then s;, and s;, already have all their leaf demands: {s;,,d;} and {s;,,d;} are marked and thus in
F. In particular these edges are mixed in F. But these mixed edges can be marked only if all leaf
edges incident to s;, and s;,, respectively, already exist in O. So in particular we have that O = F

if EQ (mixed edges in O) is completely marked.

We finally present a lemma that will be useful for finding an edge to (possibly insert and) mark
in many configurations that appear in our proofs. In this lemma we assume that the ‘partially
marked’ assignment was obtained by the rules described above. ‘An edge e € E9 is an even
number of edges away from s; in EQ> means that if we consider the path with edges in E9, starting

at node s; and ending with the edge e, this path has an even number of edges.
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Lemma 3.8. Let O # F be two assignments in a non-degenerate 2xXN or 3XN transportation
polytope, with O partially marked. Assume there is some s;, such that all marked edges in E9 are
an even number of edges away from s; in EQ. Then after (at most) one pivot, we may mark some

edge in O.

Proof. First note that the condition that all marked edges in the mixed part E© are an even number

of edges away from s; in EQ implies that a pivot that inserts an edge incident to s; cannot delete a
0

m

marked edge in E;; as they are all increased. Thus, when inserting some edge {s;,d;} incident to
s;, we only have to worry about deleting marked edges that are not mixed in O, that is, about the
unique edge incident to d; in O. We then proceed according to the following rules, applied in that

precise order:

1. If there is an unmarked leaf edge {s;, d;}, we insert it (if necessary) and mark it. Since this

is a leaf edge in F, the decreasing edge incident to d; is not in F* and thus not marked in O.
2. Else s; has all its leaf edges. If there is an edge {s;,d;} € E,I; N O, we mark it.

3. Else all edges incident to s; in E are unmarked (they are an odd number of edges away
from s;) and we have to delete these edges (otherwise we would have marked one of them in
1. or 2.). Since there is at least one such edge, there also is an edge incident to s; to increase.
This must be an edge we still have to insert and it is mixed in F (otherwise we would have

inserted it in 1.).

If there is only one mixed edge {s;, d;} to insert, this is the only mixed edge incident to s; in
F (a second mixed edge would already exist in O. But then either we would have marked
it in 2., or it would have already been marked and the lemma could not have been applied).
We insert and mark this mixed edge {s;, d;}. Let {3, d;} (for some i # k) be the edge incident
to d; in O. If this pivot deleted {s,d;}, then 5; would be incident to an edge to decrease
({5, 0;} is mixed in F, but a leaf after this pivot), but 5; would not be incident to an edge to

increase, a contradiction. Hence no marked edge will be deleted.

4. Else there are two mixed edges incident to s; to insert (let these edges be {s;, b1} and {s;, 22};
note this does not happen in the 2xN case). If d; or d; is not incident to a marked edge in

O, we insert the respective edge {s;, d;} and mark it.

Otherwise, both d; and b, are incident to marked edges, which necessarily are mixed in
F. Without loss of generality let s; = s3 and let {s;,d1}, {sp,D,} be the marked mixed
edges. Then we know that s; and s, (and also s3) already have all their leaf edges and these
are marked. We claim that in O we have without loss of generality one of the following

configurations:
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s s s
Dy . N D . Dy _1\
S q S S
)3 = Dy 2 Dy bq Dy z Dk
Dk /
93 $3 $3

9y and b, are leaf demands in O

51 51
Dy g
52 52
D ) 0
)’
53 53

Without loss of generality d; is mixed demand in O

To see that these are the only possible configurations, first observe that not both d; and d,
can be mixed in O. Clearly the mixed demands d, and d; in O must be leaves in F. Thus,
the leaf edges incident to d, and d; already exist in O and must be marked. As all marked
edges in E9 must be an even number of edges away from s3, the marked edges incident to
D, and d; can only be the ones depicted above. Note that the last configuration cannot even

occur since the marked edge {s;, d;} would be an odd number of edges away from s3.

In all other cases we can insert {s3, d;}: This is clear for the fourth configuration. For the
configurations in the first row we have to show that {s;, d;} cannot be deleted. But if it was

deleted, there would be an edge incident to s; to insert, but no edge to decrease.

This proves the claim. O

The proof of Lemma 3.8 essentially describes an algorithm to decide which pivot to use or
simply which edge to mark. We refer to using this algorithm as applying Lemma 3.8.

3.3.2 2xN transportation polytopes

Validity of the Hirsch conjecture for a 2XN transportation polytope, which was already proven in
[12], implies a general upper bound of N + 1 on the combinatorial diameter. We now refine this
bound by one to N, which is actually tight. Then we show that the monotone Hirsch conjecture
holds with an upper bound of N as well, as for any linear function we can find a corresponding
edge walk that is non-decreasing.

First recall that it suffices to consider non-degenerate polytopes for proving upper bounds on the
combinatorial diameter. Let O # F be two assignments of a non-degenerate 2XxN transportation
polytope. These are spanning trees of Ky, consisting of N + 1 edges. It is not hard to see that
every two assignments have at least two edges in common and thus O and F differ by at most

N — 1 edges (see also Lemma 3.17). The following Example 3.9 shows that there are assignments
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3.3 Upper bounds on the combinatorial diameter

that indeed satisfy |O\F| = N — 1. Even more, this example provides us with a family of 2xN
transportation polytopes with combinatorial diameter N. Thus the upper bound we prove in the
following is tight in the sense that for all N > 3 there is a 2XN transportation polytope with

combinatorial diameter equal to N.

Example 3.9. Consider an instance of a transportation problem with u; = up = 2N — 3, v; =
2N -4, andvj = 2 forall j = 2,...,N. This defines a non-degenerate transportation polytope.
Now take the following two assignments O and F.

2N -4 2N -4
2N -3 2N -3
2 2
2N -3 2N -3
2 2
2 2
: ) : )
assignment O assignment F'

Figure 3.4: Two assignments with combinatorial distance N.

In the first step, no matter which edge from F\O we insert, we delete an edge that is contained
in F. More precisely, the edge we delete is mixed in F and in O (the mixed edges have minimum
flow of one among all edges in O). Thus, inserting any edge into O creates a new assignment that
still differs from F in N — 1 edges. Hence we need at least N — 1 more pivots to reach the final

assignment, resulting in a total of at least N steps.

Note that in the above example we had DY = D! and the configuration is similar to the 2x3
transportation polytope in Example 3.6 from Section 3.1. This is the situation we have to take
special care of when proving the Hirsch conjecture in the 2XN case.

To show the upper bound of N, we use the following lemma about our marking system in the

2XN case.

Lemma 3.10. Let O # F be two assignments in a non-degenerate 2XN transportation polytope
and let O be partially marked. Suppose there is some edge e € O N EX such that

1. eisaleafedge in O, or
2. EY = EF and the other mixed edge in O is marked.
Then applying Lemma 3.8 cannot delete e.

Proof. Let e = {s,,d1}. If e is a leaf edge in O and Lemma 3.8 inserts an edge that is a leaf in
F, then e is not involved in the pivot and thus will not be deleted. Otherwise we either have that
{s2, D1} is a leaf edge in O and we insert the other mixed edge {s;, b}, or we have Eﬁ = EZ and
{51,d1} € ET is already marked. In the latter case we must be applying Lemma 3.8 to s, since s

is incident to a marked edge in the mixed part of O.
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Inserting the mixed edge {s;, b1} Inserting an edge when E2 = E,ﬁ

These are all cases that can appear when applying Lemma 3.8. In both configurations we know
that s; must have all its leaf edges (since we either insert a mixed edge incident to s; or this edge
is already marked). It remains to show that {s,,d;} will not be deleted. But if it was deleted, s;
would have an edge to decrease ({51, D} € O\F) but none to increase. O

We now can prove
Lemma 3.11. The combinatorial diameter of a 2XN transportation polytope is at most N.

Proof. Starting with a partially marked assignment O, we show that after (at most) one pivot we
may obtain a new assignment (which we will also call O) with one more edge from the final
assignment F' marked. The marked mixed edges in O look without loss of generality as one of the

following cases:

51 51 51

&) £ $2

In the first two cases we may apply Lemma 3.8 to s, to obtain a marking after (at most) one
pivot. In the third case, {s{, D1} and {sp, d;} are both marked in O and thus mixed edges in F. In
particular, we have ES = EF'. Further we know that 5; and s, both have all their leaf edges in F
since they are incident to mixed edges that are marked. Hence we have O = F.

This immediately implies that the diameter is at most N + 1, since there are |[F| = N + 1 edges to
mark in F and each marking takes at most one pivot. To prove the diameter bound of N, we only
have to show there always is some edge we can mark without applying a pivot. If there is a leaf
edge e € F such that e € O when we start our marking process, we can mark e immediately and
our proof is complete. Otherwise, no such edge exists. But then we have ES = EF': We know that
ONF|>22(|ONF| =0+ |F|-10UF|>2(N+1)—2N = 2since [O U F| < 2N ) and there
are no shared edges that are leaves in F. Hence the two shared edges are mixed in F and thus also
mixed in O.

So let E,Z = EZ = {e1, ex}. If neither e nor e; is ever deleted when we perform our pivots, then
we will be able to mark them both without performing a pivot and the diameter of the associated
polytope will be at most N — 1. If one of them is deleted at some point during our process, without
loss of generality say ej, then e; becomes a leaf edge. Then e, will never be deleted: Whenever
we apply Lemma 3.8, e, either remains a leaf edge or it becomes a mixed edge again by inserting

e1. But then e; will be marked. Hence e, will not be deleted by Lemma 3.10. Therefore, we will
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eventually be able to mark e, without a pivot and the diameter of the associated polytope is at most

N. This completes the proof. O

Observe that every critical edge can be marked without applying a pivot, as such edges exist in
every assignment. Thus the proof of Lemma 3.11 actually tells us that the diameter is bounded
above by min { N, N+1—k }, where k is the number of critical edges. Therefore, 2XN transportation

polytopes satisfies the Hirsch conjecture with an upper bound of N as stated in Theorem 3.3 (i).

The monotone Hirsch conjecture

We now turn to a stronger version of the Hirsch conjecture. For an M XN transportation polytope

P with k critical edges, we can state it as follows.

Conjecture 2 (The monotone Hirsch conjecture). Given any cost vector s = (Si1,...,Syn)T €
RMXN and any vertex y© of P, there always is an edge walk of length at most M + N — k from y© to
a vertex y¥' = arg max STy that visits vertices in a sequence of non-decreasing objective function
values. '

We refer to the diameter of a polytope with respect to such a non-decreasing sequence of objec-
tive function values as the monotone diameter. To prove our upper bounds on this diameter, we
only have to refine the previous proofs to make sure we construct a monotone edge walk.

But first note that for 2xN transportation polytopes the vector s = (syq,...,sox)T € R>N
already tells us what the maximizing vertex y’ looks like. Note that the assumption s;; — so; >
S13i+1) — $2¢i+1) for all i < N — 1 is no restriction, as it can be achieved by simply re-indexing the
demands ;.

Lemma 3.12. Lers € R¥" satisfy s1;— 82 = S1¢i+1)— S2ii+1) for all i < N—1 and let j be a maximal

j-1

index such that Y, v; < uy. Then the assignment y* defined by
i=1

. . j_l . .

) yi. =v; fori< j, yfj =up - Zlvi, and yi. =0fori> j,

=

o yi =0fori<j ygj:vj—yfj, and y% = v; fori> j,

is an optimizer for max sTy.

ygj are well-defined since there is no index j” with } v; = uy
i=1
due to non-degeneracy of the transportation polytope. D; is the unique mixed demand in the

F

Proof. The index j and the values Yij

assignment.
It suffices to prove that the reduced costs of all pivots possible at y/ are non-positive. Such a
pivot corresponds to adding an edge incident to a demand d; for i # j. Since all d; with i < j are

incident to s; and all d; with { > j are incident to s;, the reduced costs satisfy

($2; — S15)+(S1j— Szj) <0 dueto S1j— 82j < S1i — $2i fori< j
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and

(s1; — S2i)+(S2j_ Slj) <0 dueto S1j— S2j = S1i — $2i fori> j.
O

We now show that the edge walk to the final vertex can be chosen as a sequence of non-
decreasing objective function values. We split this proof into two parts, one for D9 = D (which
implies £Q = EF in the 2xN case) and one for DO # DI We begin with D = DE.

Lemma 3.13. Lets € R>V, yI' = arg max sTy. Suppose we have O # F but DY = DI Then any
ye

pivot inserting an edge from F\O is nondecreasing.

Proof. Let DY = DI = {» ;j} and let without loss of generality s be as in Lemma 3.12,1.e.s € R2N
satisfies s1; — $2; > S1(i+1) — S2(i+1) for all i < N — 1. Then inserting an edge from F\O means that
we insert an edge {s;, d;} with i < j or an edge {s;, d;} with i > j.

In the first case we have s1; — s2; > s1; — 52 and thus obtain reduced costs of

(s1;i = s21) + (52— 51)) 2 0.

In the second case we have s1; — s2; < s1; — 52, and thus reduced costs

(s2i — s11) + (51— 52)) 2 0.
O

Lemma 3.14. Lets € R>N, yf' = arg max sTy. Suppose we have O # F and DS + D! Then there
ye

is some s; for which we may apply Lemma 3.8 such that the corresponding pivot is non-decreasing.

Proof. Let again, without loss of generality, s € RV

i < N — 1. We have D}, = {d;}, while D9, = {d,} for some g # j.

m

satisfy s1; — $2; > s13+1) — $2(i+1) for all

First consider the case ¢ < j. Note that ¢ < j implies that {s;,d,} ¢ F and thus the mixed
incident to s, in O is unmarked. Hence we may apply Lemma 3.8 to s,. Thus, when we apply a

pivot, we insert an edge {$2,d,} € F\O for which p > j > q. Such a pivot has reduced costs
(SZp - Slp) + (slq - qu) >0,

and thus a corresponding pivot obtained by applying Lemma 3.8 will be non-decreasing. The case

q > j follows analogously with the roles of s; and s, switched. O
Finally, we obtain the desired statement.
Lemma 3.15. A 2XN transportation polytope has monotone diameter at most N.

Proof. For a givens € R>V let y/ = arg max sTy . Let F be the corresponding maximal assign-
ye

ment and O be the original assignment. By Lemma 3.11, it is possible to arrive at F after at most
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N pivot steps — using the approach outlined in its proof. It suffices to see that one always can find

a non-decreasing pivot.

If we have DY = D this follows from Lemma 3.13, as then all pivots inserting edges in F\O
are non-decreasing. Otherwise there is a non-decreasing next pivot that adheres to the process in

the proof of Lemma 3.11 by Lemma 3.14. This proves the claim. O

3.3.3 3xAN transportation polytopes

Next we show that the Hirsch conjecture is true for the 3XN transportation polytopes. It claims a
bound of N + 2 — k on the combinatorial diameter, where k is the number of critical edges. But

before turning to the details of the proof, let us give a top-level view.

Proof of Theorem 3.3 (ii). Let P be a non-degenerate 3x N—transportation polytope with k critical
edges. Let O be some initial vertex assignment and F be a final vertex assignment. We will present
an algorithm that constructs an edge walk from O to F' by choosing an edge from F to insert (if
needed) and mark at each step of the edge walk. We start with all edges unmarked. Throughout
the whole process, the conditions of our marking system (see Section 3.3.1) will always be satis-
fied, in particular no marked edge is ever deleted. Thus we need |F| markings to reach our final
assignment. This requires at most |F|—k =3+ N —k—1 = N + 2 — k insertions (pivots), since the
k critical edges exist in every assignment an thus can be marked at some point without applying a

pivot. Hence the Hirsch conjecture holds for 3N transportation polytopes. O

The cusp of this argument is the lengthy algorithm for choosing which edge to mark (after
possibly inserting it) presented below. Like in the proof of Lemma 3.11 we consider the possible
configurations of marked and unmarked mixed edges in O in a case-by-case analysis. Therein we
apply Lemma 3.8 whenever possible to easily prove the existence of a valid marking. However,
there are several cases where it cannot be used, and this complicates the algorithm considerably.

Further we must be wary of the following two configurations of marked mixed edges.

91 51

Y Dy
%) $2

bz b2
53 53
DY =2, Case 2c DY =2, Case 3a

Figure 3.5: Two difficult configurations.

We avoid the first situation (D,?, = 2, Case 2c) altogether, and we allow to enter the second of

case (DY = 2, Case 3a) only if b, satisfies some special requirements.
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Algorithm for the proof of Theorem 3.3 (ii)

For the sake of a simple wording, we always refer to the current assignment as 0. We start out
with a copy of our initial assignment with no edges marked and iteratively (insert and) mark edges
as explained in the following. We structure our investigation of the possible configurations of the
mixed edges in our current assignment by the number of mixed demands |D9|, which is equal to
one or two, and the number of marked edges in E9. Note that our labeling of the supply and

demand nodes is no restriction, as it always can be achieved by a simple renaming.

Case |DY| =1

51 S| 51
) D ) L} $2 D
53 53 53
0 marked edges 1 marked edge 2 marked edges

If our mixed edges look like any of these cases, there is some s; such that we can apply Lemma

3.8 and mark an edge after (at most) one pivot. Otherwise all mixed edges are marked:

51
2 bl

$3

Then, by assumption, all s; have all their leaf edges and EQ = EF. Hence O = F.

Case [DY| =2

0 or 1 marked edges

51 51 51
Dy g Dy
2 92 92
D ) )
$3 $3 $3
Case 0 Case la Case 1b

We may apply Lemma 3.8 to s3 in any of the three configurations above, and mark an edge after

(at most) one pivot.
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2 marked edges
Case 2a.
91 $1
D) Dy
$2 $2
[ )
53 53
Case 2a(i) Case 2a(ii)

We can apply Lemma 3.8 to s3 in case 2a(i) and to s; in case 2b(ii). Thus we mark one edge after

(at most) one pivot.

Case 2b.
S1
D
52
)
s3
We do the following.

1. If b, is a leaf demand in F', we know that {s3,d,} € F (s; and s, already have all their leaf
edges since they are incident to marked mixed edges), we mark it.

2. Else d; is a mixed demand in F. If {s,, D} € F, we mark it.

Otherwise {51, D2}, {33, D2} € F. We insert {51, D2}:

$1

i
$2

e bZ
93

This pivot deletes {s;, b} (otherwise there is an edge incident to s to delete, but no edge to

increase).
Case 2c.
9]
g
$2
)
$3

This case will never occur when we stick to the algorithm given here: The edge we mark always

either is the one inserted or it already exists. Thus, to enter case 2c, one of edges {sy, D1}, {52, D2}
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would have already been marked in the previous assignment and it would have been in the mixed
part of this previous assignment.
Applying Lemma 3.8 always marks an edge incident to some s; which is not currently not

incident to a marked edge in the mixed part of the assignment. Thus we do not enter this case

0

from case |D,;

| = 1 or from |Df/1| = 2 for 0 marked edges, 1 marked edge, or case 2a, where we
apply Lemma 3.8.

Further, note that once there are two marked edges incident to the same d;, they will forever be
marked and in the mixed part of the assignment. Hence we never end up in case 2¢ from case 2b

or any of the 3 marked edge cases.

3 marked edges
Case 3a.
51
Dy
$2
)
53

First note the following: When we enter this configuration, d, must be a mixed demand in F.
Now observe that at least one of the edges {s,, d;} or {s;, D} must have been a marked mixed edge
in the previous assignment (cf. case 2c). Hence we never enter case 3a when applying Lemma
3.8, as Lemma 3.8 always marks an edge incident to some s; with no edges marked in the mixed
part of the assignment. Therefore we will never end up in this case from [DS| = 1 or |[D$| = 2 for
0 marked edges, 1 marked edge, or case 2a.

Next, from case 2b,1. we enter case 3b. From case 2b,2. we in fact enter case 3a, but by
assumption of case 2b,2 b, is a mixed edge as claimed. From case 3b we either enter the case with
4 marked edges, or we will enter case 3a (from case 3b,2. if {s3, b3} is unmarked). But then we
have that the claimed demand is a mixed demand in F.

On top of this we will show at the end of the discussion of case 3a that we either remain in this

case with the same mixed edges and thus d still is a mixed demand, or we enter another case.

Using this knowledge, we do the following.

1. If there is an unmarked leaf edge {s3, D3}, we insert {s3, d3} (if necessary) and mark it. If

{s2, 03} € O, clearly no marked edges are deleted. Else we have {s;, d3} € O.

But then our pivot cannot delete {s,,d;}. Suppose it does, and let C be the assignment

obtained by deleting {s,, d;}. In C we would need to decrease {s, b1}, and thus there is some
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edge {s1,D;} incident to $; to increase. However since s already has all its leaf edges and
they are marked and leaves in O, this would imply that {s;,d;} is mixed in F. But d; and d,
are the only mixed demands in F and clearly d, # d;, a contradiction.

2. Else s3 has all its leaf edges and these are marked. Since d; is a mixed demand in F, we
have that {s3, D>} € F so we mark it.

Finally, as announced at the beginning of the case, we want to show the case we can enter by
these steps. If step 2. is applied we enter the case with 4 marked edges. If step 1. is applied we

arrive at one of the follow configurations:

S1 ) S1

D3 D3 % 3 82
) ) )

3 S S

In the first two figures we have a configuration of type case 3b. In the last figure we have a

configuration that is of type case 3a, but d; still is a mixed demand as claimed.

Case 3b.
S1
D
S
)
53
We do the following.

1. If d; is a mixed demand in F, we mark {s,, d,} or insert and mark {s;, d,}. The latter pivot
deletes {s;, by}, as otherwise there would be an edge incident to s, to delete, but no edge
to increase. Note we can do these markings since s; and s, necessarily have all their leaf

edges.

2. Else b, is a leaf demand in F. Note there are no edges incident to s3 to delete, as for such an
edge {s3, b3}, b3 must be a leaf demand in F, but s; and s, already have all their leaf edges.
As there is an edge incident to s3 to increase (the leaf edge {ss, dy}), but no more edges to

delete, there must be some leaf edge {s3, D3} € O to decrease which is mixed in F.

We insert the other mixed edge {s;, d3} or {s;, b3} and mark it.
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If {s3, 03} is marked in O, the assignments O and F differed in exactly one edge and we
just inserted the last edge from F. Thus we arrive at F after this pivot by Proposition 3.5.
Otherwise {s3, d3} is unmarked. Then if we insert {s;, d3}, clearly no marked edges are
deleted. If instead we insert {s;, D3}, we know that {s1,d;} is not deleted as otherwise s

would have two edges to decrease but none to increase.

4 marked edges
51
Dy
52
)
s3

All s; are incident to marked mixed edges and thus have all their leaf edges. Further we must have
EQ = Ef and hence O = F.

This concludes the proof of Theorem 3.3 (ii).

3.4 Upper bounds on the circuit diameter

This section is dedicated to proving Theorem 3.4 on the circuit diameter CDy,,. In fact, we prove
the even stronger statement that the circuit distance from an assignment O to an assignment F is
at most [O\F|. In terms of the support graphs this means that we can delete at least one edge from
O\F in every maximal circuit step.

Recall that we cannot exclude the degenerate case as it is not clear whether for every degenerate
transportation polytope there is a perturbed non-degenerate transportation polytope bounding the
circuit diameter of the original one above. For transportation polytopes this means that the sup-
port graphs are not necessarily connected, and thus the vertices are described by spanning forests

instead of spanning trees.

3.4.1 2xN transportation polytopes

We begin with the 2xN part of Theorem 3.4. First observe that we can describe a circuit step
by two disjoint edges from the current assignment on which we want to decrease flow, one edge
{s1,0;} incident to s; and one edge {s;,d;} incident to s, since this implies that we increase on
{s1,9;} and {3, D;} (dashed). In particular, the latter edges are inserted if they do not exist in the

current assignment.
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S1 |

$2 )3

Figure 3.6: A circuit induced by the edges to decrease (solid).

Lemma 3.16. Let O and F be two vertices of a 2XN transportation polytope. Then the circuit
distance CDyy, from O to F is at most |O\F|. Further, if |F| = N then the circuit distance CD
from O to F is at most |O\F| — 1.

Proof. If O # F, there must be an edge in O\F that we have to delete. We show that there is a
circuit step that deletes such an edge in O\ F and does not insert any edge not contained in F'.

Case 1: There are edges incident to both s; and s; to delete.

Let {s1,0;} and {5, d;} be those edges. We apply the pivot that reduces flow on these particular
edges. This deletes at least one of these edges and increases {s,d;} and {3, D}, both of which
must be in F' (as both d; and d; must be connected to some supply point in F).

Case 2: One supply point still has an edge to delete while the other does not.

Without loss of generality, assume there is an edge {s;, d;} incident to s, to delete, but there is no
edge incident to s; to delete. Then we have to increase and hence there is an edge {s1, d;} incident
to 1 to decrease but no edge to delete. Thus {s;,d;} is a mixed edge in F. Since ¢, is incident to
at most one mixed edge in F, this is the only edge incident to s; to decrease. We apply the pivot
that decreases {51, s;} and {s, d;}. Assume it would delete {s1,d;}. Then there would be no more
edges incident to $; to decrease, but an edge to increase ({1, d;} would have to be inserted again).
Thus {s,, d;} is the only edge that is deleted.

Note in both cases, we delete at least one edge from O\F, and never delete an edge from F.
Also, we only insert edges from F. Hence we will have |O\F| = 0 after at most |O\ F| circuit steps,
at which point O = F.

Finally, we look at the case |F| = N. First note that |F| = N implies that the final assignment is
not connected and hence there is no mixed demand in F. In order to show that the circuit distance
is at most |O\F| — 1, it is enough to find a circuit step that deletes two edges from O\F at once.
Therefore, consider the last step of a circuit walk constructed as described above. Recall that we

already showed that we never delete an edge that is contained in F'.

51 D

$2 )3

Then last circuit step; dashed edges are increasing, solid are decreasing
Suppose that one of the edges being decreased was not deleted, without loss of generality say

{s1,d2}. Then since this is the last circuit step we have {s, 0y}, {sp, 2} € F. This implies that F'

has a mixed demand d,, but this is a contradiction as there are no mixed demands in F. Hence this
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last circuit step indeed deletes two edges from O\F. Combining this with the above arguments we
get a circuit distance of |O\F| — 1 from O to F if |F| = N. O

Now CDy,, < N — 1 is a consequence of the following simple observation.

Lemma 3.17. Let O and F be two vertices of a (possibly degenerate) 2XN transportation polytope
P. Then either |O\F| < N —1or|O\F|= N and |F| = N

Proof. We have |O\F| + |F| = |0 U F| < 2N (this is the number of edges of K> ) and |[F| > N (a
spanning forest in K> 5 must have at least N edges). Thus we get |O\F| <2N—-|F| <2N-N = N.
Further, if |O\F| = N then we have |F| < 2N — |O\F| = 2N — N = N. As always |F| > N, this
implies that we have |F| = N if |O\F| = N. O

Theorem 3.1 already tells us that this bound is tight for all N. However, in the 2XN case one
can easily state an explicit example of a transportation polytope with CDy,, = N — 1 for arbitrary
N.

Example 3.18. Consider the (non-degenerate) transportation polytope given by margins u; =
up =2N—1,vi =2N,v; =2 for j=2,...,N. The two assignments below have circuit distance
CDym equal to N — 1: Every circuit step can insert at most one edge incident to | and we have to
add N — 1 such edges.

2N -1 2N 2N -1 2N
2N -1 2 2N -1 2
2 2
2 2
2 2
assignment O assignment F

Figure 3.7: Two assignments with circuit distance N — 1.

This gives as an example of transportation polytopes with circuit diameter CDy,, = N — 1. Note

that we also have combinatorial diameter N — 1 since {s1, 01} and {5, 01} are critical edges.

3.4.2 3xN transportation polytopes

We now turn to the 3xN part of Theorem 3.4. The discussion for M = 3 will be more involved than
the 2xN case (note that the circuits cannot be not characterized that easily anymore). However,
our general approach can still be applied: We will show that there always is a maximal circuit
step that deletes an edge from O\F while only inserting edges from F. Like this we prove an
upper bound of |O\F| £ M + N —1 = M + 2 on the circuit distance from an assignment O to
an assignment F. Note that this is a slightly stronger statement that the one for the combinatorial
distances as there are assignments with CDy,,, < |O\F| < CD,. However, by Theorem 3.2 the best
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possible general upper bound on the circuit diameter CDy,, is M + 2, which coincides with the
general upper bound on the combinatorial diameter of 3XN transportation polytopes.

Theorem 3.4 (ii) follows immediately from the following Lemma.

Lemma 3.19. Let O and F be two vertices of a 3XN transportation polytope. Then the circuit
distance CDyy, from O to F is at most |O\F|.

Proof. 1t is enough to prove that there is a circuit step that deletes an edge from O\F, while
increasing (and hence inserting) only edges that exist in . Applying such steps consecutively
leads to a circuit walk of length at most |O\F/.

With the following case-by-case discussion, we present a procedure for finding such a circuit

step.

Case 1: There are edges incident to s;, s, and s3 to delete.
Let without loss of generality {s;,d;} € O\F fori = 1,2,3. Then there must be edge {s,, d;} € F
to increase for all i. The union of these six edges ({s;, d;} € O\F and {s,, d;} € F) on (at most) six
vertices s, $, 53, D1, D, D3 must contain a cycle that describes a circuit that only decreases edges

in O\F and only increases edges in F. Thus we found a desired circuit step.

Case 2: Two supply nodes have edges to delete while the third has none.
Without loss of generality let the two nodes with edges to delete be 51 and s3 and let the third node
be s,. Then every edge incident to s, to delete must be a mixed edge in F and thus there are at

most two such edges. The circuit step we apply must not delete these edges!

1. If there are no edges incident to s, to decrease, we can find {s;, 1}, {s3, D3} € O\F to delete
such that there exist edges {s3, D1}, {51, D3} € F to increase. We can apply the circuit induced

by these four edges; it does not contain s,.

2. Assume there is exactly one edge incident to s, to decrease (we call this edge {s;, ds}).
Let without loss of generality {s;, D1}, {s3, 3} € O\F; in particular these edges have to be
decreased. For each i = 1,2,3 choose an edge {s;, d;} to be increased, but select s, = s
only if there are no other options. These six edges on at most six vertices induce a circuit

that increases only edges to increase and decreases edge that have to be decreased.

If this circuit does not contain s, we can apply it and are done. If this circuit contains s;,
we need to show that applying it does not delete {s;, d2}. Suppose it does and let C be the
new assignment. Then {s,, d;} needs to be increased (inserted) again in C. Hence (in C) s,
must be incident to some edge to decrease. Since {s,, D} was the only such edge in O, the
decreasing edge in C can only be the edge we increased in the previous circuit step, which
is {sp, d;} for some i = 1,3. But in C there can be no edge to increase incident to d;: In O,
{52, d;} was the only such edge (otherwise we would not have chosen {s;,, d;} = {s2, d;}), but
now it must be decreased. Thus the only edge incident to d; that possibly has to be increased
C is the one we decreased in the circuit step from O to C. But this is not an edge to increase
as {s;, d;} ¢ F. Therefore, {s;, by} cannot be deleted when applying this circuit.
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3. Otherwise there are two edges incident to s, to decrease (let these edges be {s;, D1} and
{0, Dp3}). If there is a circuit that does not involve s,, that is, there are {s;, D1}, {3, D3} € O\F
such that {s3, d1}, {s1, D3} € F, we apply this circuit.

Else we may assume without loss of generality that for all edges {s;,d;} to delete, we have
{s3,01} ¢ F. Recall that {sp, 51} and {s,, D>3} are mixed edges in F. Thus we have two
more mixed edges in F, without loss of generality {s;, D1}, {53, 023} € F. Now, having to
decrease {s,, D21} and {s,, Dr3} in O implies that we have to increase {s;, D>} and {s3, D23} (as
{51,023}, {53,021} ¢ F). Further, as we have to delete {s3, D3}, there must be {s;, d3} € F to
increase for i = 1 or i = 2. Thus, in O we are in one of the situations depicted below, where
dashed edges have to be increased, while solid edges have to be decreased; bold edges are
in F, while non-bold edges are in O\F. Recall that for all edges {s1,d;} to delete we must
have {s,, b1} € F by assumption.

51 51

——‘52\
>3

Two configurations of edges in O

Note that each of these configurations induces a circuit. We claim that we can apply these
circuits without deleting an edge from F. So assume that applying one of these circuits leads
to an assignment C with {s,, o3} ¢ C. Then {s;, dy3} has to be increased again in C and thus
{s3, D3} must be decreased (observe that {s1, D3} ¢ O as in this case we could have applied
a circuit not involving s;). But then there is no edge incident to s3 to increase in C: Such an
edge was to be increased in O as well, or it was decreased by the previous circuit step. The
latter was the case for {s3,d3} ¢ F which must not be increased at any time. We claim that
the edge {s3, d23} (the edge that now has to be decreased) was the only edge incident to s3 to
increase in O. Clearly, there can be no other mixed edge (in F) incident to s3 to increase (in
0). So assume that s3 has a leaf edge {s3,0;} to increase. Then fori = 1 or i = 2 we have
that {s;,d;} € O must be decreased, in particular deleted. But there is no edge incident to
s to delete, and we cannot have i = 1 as we assumed that for all {s, d;} to delete, we have
{s3,01} ¢ F. Thus, there is no edge incident to s3 to increase in C and therefore {s,, Do} was

not deleted. Hence we can apply one of the circuits depicted above.

Case 3: There is only one supply node with an edge to delete.
Without loss of generality there are edges incident to s; to delete, but not to s, and s3. Recall that

sy and s3 appear in our circuits only if they have edges to be decreased at all. If existing, such
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edges must not be deleted and hence must be mixed edges in F. Note that there has to be such an

edge for at least one of s, s3 since s; has an edge to delete.

1. There is at most one edge to decrease incident to either of s, and s3 (let {s,, Do}, {s3, D3} be
those edges, if existing). Let {s;,d1} € O\F be an edge to delete. First observe that there is
at most one edge incident to d; to increase (Otherwise we would have {s;, b1}, {s3,01} € F
are mixed edge to increase in O. Thus the both mixed edges to decrease, {s;, d,} and {s3, D3},
must exist in O. But then these four mixed edges would form a cycle in F.). Let without
loss of generality {s,d;} be this one edge to increase. Then the mixed edge {s,d;} to
decrease must exist and hence {51, D2} or {s3, D>} has to be increased. Thus, we have one of
the following two situations in O (edges illustrated as before).

51 51

| (:\) D ) /‘\\ )

$2 %2 AR

Two configurations of edges in O

For the second configuration, observe that {s,, D3} cannot be edge incident to ds to increase as
this would create a cycle in F. We claim that applying the circuit induced by the respective

constellation does not delete edges that are in F'. Therefore, let C be the new assignment.

If {s,, Dy} was deleted, it has to be increased in C. The edge incident to s, to decrease could
only be the previously increased edge {s, d1}. But in C there can be no edge incident to b,
to increase: {s1,d1} ¢ F, {s2, D1} has to be decreased, and {s3, D} was not an edge to increase
in O and thus is no such edge in C (it was not affected by the pivot).

Similarly, if {s3, d3} ¢ C (which can only happen if we apply the latter circuit), it has to be
increased in C, and the edge incident to s3 to decrease could only be the previously increased
edge {s3, 0p}. Thus, {s;, D} has to be increase (observe that {s;, d,} ¢ F'). But as before, there

can be no edge incident to s, to decrease.

2. There are two edges incident to either s, or s3 to decrease (without loss of generality let
{s2, D1} and {s,, b3} be those edges). Since these are mixed edges, we have without loss of
generality that {s,d;} and {s3, D3} are the remaining mixed edges in F'. As {s,, d3} has to be
decreased, {s3, d3} has to be increased. Thus there must be an edge incident to s3 to decrease
and this edge must be mixed in F' by assumption of case 3. But this implies that F has at

least five mixed edges, a contradiction.

Case 4: There are no edges to delete.
In particular O\F = 0 and thus O = F.

This proves the claim. O
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Chapter 3 Circuit diameter bounds for transportation polytopes

3.5 Lower bounds on circuit diameters of M xN transportation
polytopes

We now turn to lower bounds on the circuit diameters. We will construct instances of transporta-
tion polytopes with assignments that differ by min{(M — 1)(N — 1), M + N — 1} edges and show
that by a perturbation of the margins we can ensure that every circuit walk from one assignment to
the other one takes at least |O\ F| steps. Note that this is always true for the combinatorial walks,
as we delete exactly one edge in every step.

The following Lemma immediately implies Theorem 3.1. In the proof we outline a general
principle of constructing a set of margins with the property mentioned above. Recall that we have
M+N-1<M-1N-1)foralM <NbutM=2o0orM =N =3.

Lemma 3.20. For all M, N, there is an MXN transportation polytope with soft circuit diameter
CDatleastmin{(M - 1)(N-1), M+ N—-1}.

Proof. We begin by constructing an MXN transportation polytope P with margins u, v and two
vertices O, F such that there is a sign-compatible circuit walk from O to F that uses exactly k =
min{(M — 1)(N — 1), M + N — 1} linearly independent circuits. Recall that dim(P) = (M —1)(N—1)
and that the matrix defining an MXN transportation polytope has row rank M + N — 1.

Consider the set of circuits depicted in Figure 3.8, where the dashed edges are the ones being
increased. They are sign-compatible and linearly independent, as all of them use at least one edge
no other circuit uses. It is not difficult to check that for all M < N, there exist at least k such

circuits and that neither the edges to decrease form a cycle nor the edges to increase do.

Sle =D

%) SRS bj

for2<j<N, .

but j# 4if M %2 for3<i<M
Slﬁbl S1 e 'bl 51*\—/,‘D1
52"//\\—\,‘b2 52%‘52 92"/—(\7‘132
53.//—\.b3 53 ’A\\ ob3 53 -7 \\\ .b3

Dy >y

ifM,N>3 ifM>3,N>4 ifM>3,N>4

Figure 3.8: A set of sign-compatible, linearly independent circuits.
Given a set of k such circuits g’, define the margins u, v of P to component-wisely be the number

of circuits in this set the respective point lies on. Then the set of edges to decrease induce a vertex

O as they do not form a cycle, and the set of edges to increase induce a vertex F. Note that we can

70



3.5 Lower bounds on circuit diameters of MXN transportation polytopes

k .
write y©' — y? = 3 a,g for appropriate a; > 0.
i=1

Let us now introduce the perturbation of the margins without loss of generality ‘along g'’. This
defines a new polytope P’ as follows: We derive new margins w’, v’ from u, v by choosing an €
and then setting u; = u; + € and v;. = v; + € for all supply and demand points incident with the

circuit g'. For e sufficiently small, the same support graphs B(y?), B(y") still induce vertices y’?,

y'F of P’ and we have y'¥' — y'? = (a; + e)g' + i a;g'. Observe that such a perturbation can be
done with respect to any subset of the g'; here e;czh g’ gets its own small ;. We actually can do
this by a sequence of perturbations along one circuit each time, as they are sign-compatible.

We now use such perturbations to get a transportation polytope P’ with vertices y’® and y’¥ that
have soft circuit distance at least k. As the g’ are linearly independent, no strict subset suffices to
be able to walk from y? to y* in P. Now assume that there is another set of (up to) k — 1 circuits

g'l, ..., 2" such that y° — y* is in the linear subspace spanned by g’!,...,g*"!. There is a g’

rk—1

which is linearly independent from g’!, ..., g’*~!. Perturbing P along such a g’ yields an infinite

'F is not in the span of g’!, ..., g*"!. As there is only a finite

set of polytopes P’ for which y’? —y
number of sets of up to k— 1 circuits (recall these only depend on M and N, not the margins), there
is a perturbation (or rather a sequence of perturbations) along the g’ such that we obtain a polytope
P’ for which y’¥ — y’? is not in the linear subspace spanned by any set of (up to) k — 1 circuits.

This proves the claim. o

Let us demonstrate what a perturbation as described in Lemma 3.20 looks like.

Example 3.21. Recall Example 3.6 and the circuit walk taking just a single circuit step. We call

this circuit g.

2.2
3 3
2
3 3 1
2>2
assignment O circuit step 1 assignment F

Figure 3.9: A circuit walk from vertex O to vertex F using only one circuit step g.

The 2x3 transportation polytope in the example has dimension two. Our goal is to come up
with a perturbation of the margins such that any (not necessarily feasible) circuit walk from O to
F has to use two steps. In particular we want to rule out going from O to F by only applying g/

To do so, consider the two circuits g', g depicted in Figure 3.10. The dashed edges are the
ones that are increased (Note that they are not sign-compatible, but this not relevant for our
simple example, as we only want to demonstrate a perturbation along a single circuit.). They are
linearly independent, as they both share only the edges {s, D2} and {s,, d,2}. Applying both of them

with step length two transfers O to F via an infeasible circuit walk of length two.
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circuit g circuit g2

Figure 3.10: Two circuits g', g> in a 2x3 transportation polytope.

We now apply the construction described in the second part of the proof of Lemma 3.20 to make
it impossible to go from O to F using only g. Note that g is linearly independent both from g' and
from g2, so it does not matter which of the two circuits we pick for the construction. We use g' and
choose a sufficiently small € > 0. We then add e to all nodes incident to g'. This is depicted in
Figure 3.11.

2 2+ €
3/ 3+e»/

LT =) Lo T T==24¢€
3 Jree

*2 2

initial margins perturbed margins
Figure 3.11: A perturbation of margins along circuit g'.
Then the original support graphs B(y?) and B(y") again induce vertices O' and F' in the new

polytope. We show the corresponding y° and y*' in Figure 3.12. Clearly, now an application of
g cannot transfer O’ to F', as yloll # y203,.

2teedte 2+exdte
3+¢€ 3+¢
2+e€ =L
3+¢€ l+e 3+¢€ 1
72 2>2
assignment O’ assignment F’

Figure 3.12: The assignments corresponding to B(y?), B(y") in the perturbed polytope.

By this perturbation, we ruled out the possibility of having a ‘shortcut’ via circuit g. In a
larger example, one would now continue with a sequence of perturbations of smaller and smaller
perturbation values to rule out any further shorter circuit walks . Choosing each € sufficiently

small, one does not reintroduce any of the shorter circuit walk at a later point.

This lower bound result concludes our discussion of the circuit diameters of transportation poly-

topes.
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Chapter 4

Circuit diameter bounds for dual network
flow polyhedra

Dual transportation polyhedra, associated with the transportation problems we investigated in the
previous chapter, are one of the few classes of polyhedra for which the Hirsch conjecture is known
to be true. This was proven by Balinski in [1]. He even showed that these polyhedra are Hirsch-
sharp. In other words, there are instances of dual transportation polyhedra whose combinatorial
diameter (we use C9D, in this chapter) attains the Hirsch bound, which is quadratic in the number
of nodes of the associated bipartite graph. In contrast, we will prove linear upper bounds for
all less restrictive notions of circuit diameters in Theorem 4.1. Like this we obtain a family of
polyhedra for which circuits walks through the interior of the polyhedron are indeed much shorter

than edge walks.

Theorem 4.1 (Upper bounds for dual transportation polyhedra). For a dual transportation poly-
hedron defined on a bipartite graph on |V| nodes,

(i) the circuit diameter CDyy, is bounded above by |V| -2 and
(ii) the circuit diameters CDy,, CDy and CD are bounded above by |V| — 3.

One natural generalization of transportation problems are min-cost flow problems (also trans-
shipment problems), which allow for transportation between any pair of nodes, not only from
supply to demand points. They are defined on arbitrary directed graphs G = (V, E) instead of
undirected bipartite ones. For the polyhedra associated with the dual problems we prove the fol-

lowing upper and lower bounds for the main categories of circuit distances.

Theorem 4.2 (Upper bounds for dual network flow polyhedra). For a dual network flow polyhe-
dron Pg ¢

(i) the combinatorial diameter CD, is bounded above by both, |E|- (V| — 1) and _%IV|3,
(ii) the circuit diameter CDy,, is bounded above by %lVI -Vl -1), and

(iii) the circuit diameters CDys, CDrpyr) and CD are bounded above by both, |V| — 1 and
E| = V] + 1.
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Chapter 4 Circuit diameter bounds for dual network flow polyhedra

The quadratic bound (ii) strengthens a cubic one implied by a result in [10]. Note that, roughly
speaking, we add a factor of |V| on the bounds for CD, and CDy,, from the special case of dual
transportation polyhedra. When complementing our discussion and asking for lower bounds, we
will see that this generalized setup is indeed much more involved and thus we cannot expect same
bounds as in the bipartite case. Most notably, the upper bounds from Theorem 4.1 can be violated

for all notions of circuit diameters.

Theorem 4.3 (Lower bounds for dual network flow polyhedra). For a dual network flow polyhe-
dron Pg

(i) the combinatorial diameter CD, and circuit diameter CD sy, are bounded below by %lVl -4,

and

(ii) the circuit diameters CDyrs, CD )y and CD are bounded below by both, |V| — 1 and
|E]=[V]+1

in the sense that for all values of |V| and |E| there are dual network flow polyhedra that attain the

respective bounds.

Note that (ii) tells us that the upper bounds from Theorem 4.2 (iii) are tight. For the first
statement (i) we will exhibit a family of dual network flow polyhedra that violate this upper bound
on CDy, and thus also the upper bound for the bipartite case by an arbitrary additive constant.
This indicates why we get weaker upper bounds for the combinatorial diameter and for CD,, for

the more general polyhedra in Theorem 4.2.

This chapter is structured as follows: In Section 4.1 we formally introduce dual network flow
polyhedra and characterize their vertices, edges, and circuits, which reveal a lot of combinatorial
structure. We further prepare some tools for the proofs of our diameter bounds. Next we consider
the special case of dual transportation polyhedra in Section 4.2, where we prove Theorem 4.1.
We then finally turn to the general case of dual transportation polyhedra. In Section 4.3 we prove
the upper bounds stated in Theorem 4.2 before investigating the lower bounds from Theorem 4.3
in Section 4.4. The results on the combinatorial diameter and the circuit diameter CDy,, were
published in [5] and [6], together with Steffen Borgwardt and Raymond Hemmecke.

4.1 Preliminaries

We now introduce the dual network flow polyhedra associated with uncapacitated min-cost b-flow
problems as a generalization of transportation problems. Let G = (V, E) be a directed connected
graph on node set V = {0,...,|V| — 1}. A directed edge e € E with node i as its tail and node j as
its head is denoted e = (i, j), or simply e = ij.

LetAe{-1,0,1 }WME| be the node-arc incidence matrix of G, where a;, = —1 and aj. = 1if the
arc e = ijis contained in E. Let b € R\, An uncapacitated b-flow on G is given by any solution

x € Rfl to Ax = b, x > 0, that is, b; is the total (incoming minus outgoing ) flow through a node
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i € V. If b; > 0 the node i is called a supply, while nodes with b; < 0 are called demands. Note
that we allow for several supply and demand nodes and that supply nodes can also have incoming
flow and there can be outgoing flow at the demand nodes.

For a cost function ¢: E — R, indexed by the edges, the uncapacitated min-cost b-flow problem

on G (also transshipment problem) and its dual are given by
min{ch : Ax=b, x>0, x€ R'El}

and
max{uTb :ATu<c, ue R'Vl}.

The dual network flow polyhedron associated to some graph G and vector ¢ € RIF! is the feasible

region of the associated dual linear program. We write it as
PG = {ueRlVl C—Ug+up <cgp Y ab e E, uy 20},

where we put up = 0 as is standard to make Pg ¢ pointed.

Throughout this chapter we will exploit the special structure of dual network flow polyhedra Pg ¢
by describing their vertices, edges and circuits in terms of subgraphs of the defining graph G. This
allows us to visualize our concepts when proving bounds on the respective circuit diameters. In
all figures, the labels inside a node represent the respective values of u;, while labels next to the
nodes refer to the node’s identifier i.

For u € Pg, we denote by G(u) the graph with nodes V and with edges ab € E for which
—ug +up < cqp is tight. Recall that for proving upper bounds on the combinatorial diameter CD, it
is enough to consider non-degenerate polyhedra, while for the other categories of circuit diameters
we have to cover the degenerate case as well. Thus, in the former case we can exploit the following
observation: If a dual network flow polyhedron is non-degenerate, the graphs G(u) do not contain
cycles. Therefore, note that a cycle corresponds to a set of linearly dependent inequalities that
are all tight at the same time, but in non-degenerate polyhedra there are no such over-determined
points.

The vertices of the polyhedron play a fundamental role in our diameter studies. A vertex of Pg ¢
is determined by a set of |V| — 1 linearly independent inequalities —u, + up < ¢4 that are tight
(recall that we already set g = 0). The edges associated with these |V| — 1 inequalities describe a
spanning tree of G. Thus, u € P is a vertex if and only if G(u) is a spanning subgraph of G and
any spanning tree T with E(T) C E(G(u)) uniquely determines the vertex.

Next we want to describe the edge directions (circuits) of the polyhedron. An edge e of the
polyhedron Pg  is characterized by |V| — 2 linearly independent inequalities that are tight. These
tight inequalities correspond to edges in the graphs G(u) of elements u € e. G(u) thus consists of
two connected components if u is not a vertex of Pg.. Let R and S be the respective node sets
and assume without loss of generality that 0 € R. When going along the edge e of the polyhedron,

75



Chapter 4 Circuit diameter bounds for dual network flow polyhedra

we keep all edges within R and §, respectively, as the corresponding inequalities remain tight.
But this means that we must change all components u; with i € S by the same amount €, while
all components u; with i € R remain unchanged (as we have uy = 0 and O € R). Thus, the edge
direction (or circuit) is describe by a partition V = R U S for which the respective node sets R and
S are non-empty and connected in the underlying undirected graph. We apply the circuit R U S,
0 € R, by increasing or decreasing, respectively, all elements in S by the same value. If at some
point another inequality —u, + up < ¢4, becomes tight, we applied a maximal circuit step and a
new edge ab was inserted in the corresponding graph. Observe that a € R, b € S if we increased
S and b € R, a € S if we decreased S. This also implies that we cannot increase S if there is an
edge from R to S in G(u), and we cannot decrease S if there is an edge from S to R (at least if we
want to stay feasible).

The arguments above further tell us that two vertices u") and u®® are connected by an edge of
the polyhedron if and only if the subgraph of G with edge set E (G(u(l))) NE (G(u(z))) consists of

exactly two connected components. These components describe the common edge.

€

G(u(l)) G(u(Z))

Figure 4.1: Two neighboring vertices of a dual network flow polyhedron.

We saw that every edge is characterized by a partition V = R U S with R and S connected.
Conversely, it is not hard to see that every such partition describes an edge of P for a suitable
choice of ¢: Let Eg and Eg edge sets of spanning trees of the respective connected components

and set ¢, = 0 for all ab € Eg U Eg and ¢, = 1 otherwise. This proves the following

Lemma 4.4 (Circuits of Pg ). The set of circuits Cg, associated to the matrix defining the poly-

hedron Pg ¢, consists of the vectors

4.1

_J 0, ifieR,
87V 1, iries,

for node sets R,S C V such that the underlying undirected subgraphs of the respective node sets
are connected and satisfy RUS =V, RNS =0, and 0 € R.

Recall that for proving upper bounds on the circuit diameter of a specific polyhedron Pg . we
may assume that none of the inequalities —u, + up < c,p is redundant (otherwise we could remove
such an edge ab from G, leaving the polyhedron the same but making the set of circuits smaller

and thus the circuit diameter potentially bigger).
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We continue with a tool we use for the proofs in Sections 4.2.2 and 4.3. The idea of contracting
edges simplifies the construction of the circuit walks that prove our upper bounds on the combina-
torial distance CD, and on the circuit distance CDy,, (see Theorem 4.2).

Assume that we are at a feasible point y of a polyhedron Pg . from which we want to construct
a circuit walk to some vertex u. Suppose that E(G(y)) and E(G(u)) already have an edge ab in
common. Then we would like to keep this edge on the remaining circuit walk. Therefore, the
difference between u, and u; has to remain constant, which means that in every circuit step given
by V=RUS, a and b are assigned either both to R or both to S. To simplify this proceeding, we
will interpret a and b as one node in the following way: We contract the edge ab and continue our
circuit walk in a smaller polyhedron defined on a graph with one node less and adjusted edge set.

Geometrically this corresponds to intersecting the dual network flow polyhedron with the hyper-

VI — gy +up = cab}. This defines a face of the polyhedron, which is a dual network

plane {u eR
flow polyhedron in its own right. We then continue the circuit walk in this face. More formally,
let ab be the common edge in G = (V, E). The new polyhedron Pg ~ is defined by a new graph

G’ = (V’,E’) and a new vector ¢’ as follows (for a simple notation we use ¢;; = oo if ij ¢ E):

V' =V\{b}
E' ={ij:ije Eandi,j # a,b)
U{aj:aje Eorbje E}U{ia:iac Eoribe E}

Cij for i,j#a, ije E

r . . .
Cij = mm{caj,cbj+cab} for i=a, aje E’

min {¢;, + cap, cip} for j=a, ia€ E’

For the definition of ¢/, observe the following: Assume that ab exists in G(u) (i.e. —u, + Up = Cap)
and there are edges aj, bj € E for some j. Suppose we decrease both u, and u;,. Then —u,+u; < c4;
will become tight before —u;, + u; < cp; if and only if ¢,; < ¢pj + cqp. Hence, when keeping ab,
the latter case will never occur and thus only the first inequality is relevant. On the other hand,
Cqj > Cpj+cqp implies that only —u,+u; < cp; can become tight, and thus we only need to consider
this inequality, but we have to adjust the value for ¢ (observe u;, = u, + c45). The other case is
analogous. So we know that every circuit walk in Pgr ~» admits a circuit walk in Pg . that keeps

the edge ab such that we can continue the walk in the smaller polyhedron.

We close this introductory sections with a fundamental observation on the graphs of the elements
of a dual network flow polyhedron: We show that the existence of a feasible point whose graph
contains a certain edge ab implies the non-existence of feasible points whose graphs contain an-

other directed path from a to b.

Lemma 4.5. Let P be a dual network flow polyhedron. Let vovy € E such that in G there is
another directed path P from vy to vy, i.e. there are nodes vy, vi,...,vx € V, k > 2, such that
Vivis1 € Eforalli=0,...,k— 1.
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Assume there is a feasible point w € Pg . with vovy € E(G(W)) and let u € Pg . with P C G(u).
Then also vovy € E(G(n)). Thus, there can be no such u if P is non-degenerate.

Proof. The feasible point w € Pg . satisfies

k-1

=~
—_

Crou = Wy + Wy = Z (=wy, + Wy) £ ) Coiy -
i=0 i=0
u € Pg . satisfies —u,, + u,,,, = cy,y,, fori=0,...,k—1and —u,, + u,, < cyy,. We get
k=1 k=1 k=1
Cowiny = ) (Sl F ) = =ty + ty, < Cupye < D Copyy-
i=0 i=0 i=0

Hence, all inequalities must be satisfied with equality and we get —u,, + u,, = ¢y, that is,
vovk € E(G(uw)). o

Observe that Lemma 4.5 can easily be generalized to a stronger statement: Assume there is a
feasible point whose graph contains a directed path from some node vy to some node v;. Then
every point of the dual network flow polyhedron whose graph contains another directed vg, vy -

path must contain the first path as well. This can only happen in the degenerate case.

4.2 The bipartite case: Circuit diameter bounds for dual
transportation polyhedra

Before investigating the circuit diameters of general dual network flow polyhedra, we deal with an
interesting special case in this section.

An MxN transportation problem (see Chapter 3) is defined on an undirected bipartite graph. It
can be seen as a b-flow problem defined on a directed graph with all edges pointing from the set
of supply nodes V| = {0,..., M — 1} to the set of demand nodes V, = {M,...,M + N —1}. The
nodes i € V| have positive total flow b; > 0 (supply), while for the nodes i € V, we have b; < 0
(demand). Then, similar to the definition of dual network flow polyhedra, a dual transportation
polyhedron associated to a bipartite graph G on MxN nodes is given by some vector ¢ € Rl via

PG,C={U€RM+NZ—ua-i-ubSCabVabGEWithaGV],bEVz, u0=0} .

Note that all results presented in Section 4.1 translate to this setting.

For dual MXN transportation polyhedra, Balinski proved an upper bound of (M — 1)(N — 1)
on the combinatorial diameter CP, in [1]. This bound is tight in the sense that for all M, N there
are dual transportation polyhedra with combinatorial diameter (M — 1)(N — 1) and thus CD, can
be linear in the number of edges and quadratic in the number of nodes of the underlying graph.
On the contrary, we will prove that all less restrictive circuit distances are linear in the number of

vertices, as stated in Theorem 4.1. To this end, we present a structural results on the vertices of
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4.2 The bipartite case: Circuit diameter bounds for dual transportation polyhedra

dual transportation polyhedra that is specific to the bipartite case in Section 4.2.1. In Section 4.2.2

we then prove our upper bounds, part (i) and part (ii) of Theorem 4.1.

4.2.1 Preliminary results

As in the general case, each vertex of a dual transportation polyhedron Pg . is described by a
spanning tree of G with edges corresponding to the inequalities —u, + u; < ¢, that are tight at the
vertex. We show that for every pair of vertices of a dual transportation polyhedron there are such
spanning trees that have at least two edges in common. Using this result we can refine our proofs

in Section 4.2.2. This will improve our upper bounds on the circuit distances.

Lemma 4.6. Let u'V and u'® be two vertices of P .. Then there are spanning trees Ty and Ty of
G with E(T;) € E(G(u")) such that |[E(Ty) N E(T»)| > 2.

Proof. Letu") and u® be distinct vertices. As we can translate Pg.c, we may assume without loss
of generality that u = 0. Clearly, this mere shift does not change any structure, in particular it
does not change G(u") and G(u®). For better readability, we split the vectors u”, i = 1,2, into
two vectors v and w®) for the components belonging to V; and V5, respectively. Let G; := G(u®).
Now assume that E(G) N E(Gy) =0

As G| is connected, there must be an edge (vo, wo) € G1. As (vo, wo) € G2, we have —v;

(1) + wél) 0 and hence w(2) < véz) .

@@ -

+W0

As G, is connected, there must be an edge (vi,wg) € G>. As (vi,wp) ¢ Gi, we must have

(1 @ 4 @ (2) (2)

0=— (1)+w0 < -, )andhencev <wy’.

Again, as G is connected there must be an edge (vi,wy) € Gi. As (vi,w1) € Gp, we have
(2) (2) (1) (1) _ (2) (2)

+w, +w, =0 and hence w” <y
Vo Q—Q wo edge € G1\G>
L edge € G»\G
TN —c Y
vy O ——OW

EY o S

Figure 4.2: An alternating path of edges that eventually close an even cycle.

Continuing like this we create a path with edges alternately from G| \ G, and G, \ G;. As there
are only finitely many nodes, eventually some v; (or w;) is selected a second time and we close a

cycle. But then we have

( ) @) @

i+ 1

>W > V. >VI(<2) V()

()
(or w;

> ... > w(,.z)), a contradiction. Hence we must have E(G;) N E(G»,) # 0.
Now assume that £(G) and E(G>) have only one edge in common. Let (vg, wgo) be this edge.

Then vgz) = Wgz) = 0. As G is connected, there must be an edge (vo,w;) € G, or an edge
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Chapter 4 Circuit diameter bounds for dual network flow polyhedra

(vi,wp) € Go. Without loss of generality, assume we have (vi,wg) € Go. As (vi,wo) € G1, we

have 0 = —v(ll) + w(()l) < —v(lz) + WE)Z) and hence v(lz) < wgz).

Vo Opsrerree(OWo edge € G1\G,
edge € G,\G
vi O———Owi e edge € G| NG,

i O————OWs

Figure 4.3: An alternating path of edges with one common edge that eventually closes an even
cycle.

Continuing like this we again create a path. The first edge is in G| N G,, while from the second
edge on the edges are alternately from G, \ G and G| \ G,. Again, as there are only finitely many
nodes eventually some v; (or w;) is selected a second time and we close a cycle. If this node is not

vo, we get the same contradiction as before. Otherwise we have

0= v(lz) = w(lz) > v(22) > w(22) > ... > v(lz) ,
again a contradiction. Hence we must have |E(G1) N E(G2)| > 1.

We now obtain the spanning trees T} and 7 with |E(T1) N E(T3)| > 2 by taking two edges from
E(G1) N E(G7) and extending this set to the edge sets of a spanning trees 7; of G by adding edges

from the respective G;. O

4.2.2 Linear upper bounds on circuit distances

We first present and prove the core part of Theorem 4.1 (i).

Lemma 4.7. For a dual transportation polyhedron defined on a bipartite graph on |V| = M + N
nodes, the circuit diameter CD ¢, is bounded from above by |V| - 1.

Proof. Let u) and u® be two vertices of Pg, given by spanning trees T and T, of G with
E(T}) € E(G™M)) and E(T») € E(Gu®)). We will show how to construct a feasible maximal
circuit walk uV = y©@_  y® = u® gsuch that G(y?) has at least i edges in common with T».
This immediately implies £ < |[V|—1 which proves the claim. It should be noted that the subgraphs
G(y"™) may not be connected, since our circuit walk possibly goes through the interior of Pg .
along (potential) edge directions.

Given a point y @ # u® of the circuit walk, let C = G(V(C), E(C)) be the connected component
of (V, E(G(y(i))) N E(T,)) containing the node 0. Possibly, C consists only of the node 0. As
y? £ u®, we must have C # T, and thus there is some node s € V which is not in C, but which

is connected to C via some edge rs in 7>. We now construct an edge direction g from Cg such
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4.2 The bipartite case: Circuit diameter bounds for dual transportation polyhedra

that y@*D := y® 4 og arises from a maximal step along g and such that (V, E(Gy™Y)) n E(T»))
contains C and the edge rs from T5. Starting from y(©) and repeating this process iteratively, we
see that G(y"”) has at least i edges in common with 75, which implies the result.

To construct g, we need to define R, S C V that describe the edge direction from Cg. Without
loss of generality we will assume that s € V,. The case s € V| works analogously by merely
switching the roles of V| and V, and hence by switching the roles of eg and —eg below.

(a) All nodes from C are assigned to R.
(b) All nodes from V> \ { s} which are connected to C by an edge in E, are assigned to R.

(c) Allnodes ¢t € V \ R that are connected to s by a path in G that does not contain a node in R,
are assigned to S.

(d) All remaining nodes are assigned to R.

As G is connected, this construction leads to sets R and S that are nonempty, satisfy RUS =V,
and define connected components of G that are connected by the edge rs € E. Hence, R and S
define an element g € C¢ via Equation (4.1). Observe that s € V, as s ¢ V(C) and 0 € R. We wish
to include the edge rs into our graph, that is, we wish to make the inequality —u, + u; < ¢, tight
at y#*1. Thus we have to increase increasing the component y(SD. Therefore, we add eg to y?. (If
s € Vi, we subtract eg from y.) We choose as € the smallest non-negative number such that an
inequality —u, +up < cqp With a € R and b € S becomes tight. Note that € = 0 is not excluded, but
we show that this will never happen. In fact, we show that the edge ab (on which —u, + up < cgp
becomes tight) is exactly the edge rs that we wish to include.

Assume now on the contrary that ab # rs. Note that by construction at steps (b) and (c) we
must have b = s, as all edges from R to S N V; have s as their end point and these are exactly the
edges on which an inequality may become tight when walking along direction g € C;. Hence we
must have a # r. Observe that y(*D := y® + eg and u'® agree in their components in V(C), that is,
u?) = yﬁ”” for all ¢ € V(C), because G(y"” + eg) and T coincide on the edges in C and 0 € V(C).
Since y*1 € Pg ¢ and since as € E(G(y™*")) and rs ¢ E(G(y'*D)), we have

3 = ey bt~ 45 < g

On the other hand, since u® e Pg and since as ¢ E(T>) and rs € E(T3), we have

_ ugZ) 2 @)

+uy’ < cqs but — u(rz) + Uy’ = Cyg.
From —u£,2)+ y(si“) = ¢y and —u(az)+u(sz) < ¢q4s We conclude ygi“) > u§2), whereas —u(,2)+y§i+l) < Cys
and —u(,z) + uﬁ.z) = c¢pg imply yg”l) < uf?). This contradiction shows a = r and the claim is
proved. O

Lemma 4.6 now implies the following strengthening of Lemma 4.7 and thus proves Theorem
4.1 (i).
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Chapter 4 Circuit diameter bounds for dual network flow polyhedra

Lemma 4.8. For a dual transportation polyhedron defined on a bipartite graph on |V| = M + N
nodes, the circuit diameter CDy,y, is bounded from above by |V| — 2.

Proof. The proof is analogous to the proof of Lemma 4.7. We merely have to observe that by
Lemma 4.6 we can choose spanning trees 7 and T that have one edge in common and that we
may assume without loss of generality that this edge has O as one of its endpoints. Thus we only

have to add at most |V| — 2 edges in at most |V| — 2 steps to reach u?®. O
The following example illustrates the circuit steps constructed in the above proof of Lemma 4.7.

Example 4.9. We consider the bipartite graph on node sets Vi = {0,1,2,3} and V, = {4,5,6,7}
with edge set a depicted below.

0 4

1 5

2 6

3 7
Vi Va

Figure 4.4: The graph that defines Pg .

Let ¢ € RIE pe defined as c, = 1 ife = (2,4) or e = (1,6) and set c, = 0 otherwise. Then y
and u? illustrated in Figure 4.5 are elements of the dual transportation polyhedron Pg., and u®
is a vertex as its graph is a spanning tree. Recall that the labels inside the vertices of the graphs

are the values of the corresponding components of the vectors y?,u® e RIVI.

)
&) & (0 A—(0)
D (0 0

G(y?) Gu®) =T,

Figure 4.5: Two elements of a dual transportation polyhedron.

We now describe a circuit step at y on a circuit walk to the vertex u'® as applied in the proof of
Lemma 4.7. The connected component C of (V, E(G(y(i))) N E(T3)) containing the node 0 consists
of the nodes 0, 1,4 and edges (0,4),(1,4). There is a node 5 ¢ V(C) that is directly connected to

C via the edge (1,5) from T,. We want to insert this edge, so we have r = 1, s = 5. We construct a
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4.2 The bipartite case: Circuit diameter bounds for dual transportation polyhedra

corresponding circuit given by RU S =V by assigning each node to one of the sets, following the

rules described in the proof of Lemma 4.7 (see also Figure 4.6):
(a) 0,1,4 are assigned to R (as nodes in C).
(b) 6 is assigned to R (as a node in Vy \ { s} which is connected to C by an edge in E).

(c) 2,5 are assigned to S (as nodes in V\R that are connected to s by a path in G not containing

nodes in R).
(d) 3,7 are assigned to R (as the remaining nodes).

Hence we get R = {0,1,3,4,6,7} and S = {2,5}. To insert the edge (1,5), we increase all
components in S by one. Like this we obtain y'*V as the successive point in the circuit walk. Note

that this step deletes all edges from S to R.

Gy™D)

Figure 4.6: A maximal feasible circuit step that inserts (1, 5).

In Lemma 4.8 we proved an upper bound of |V| — 2 on the circuit diameter CDy,,. In fact, we
also proved this bound for the more restrictive circuit diameter CD . To see this, note that the
sequence of circuit steps applied in the proof of Lemma 4.7 is non-repetitive and non-backwards:
Every circuit step induced by R U S inserts an edge e = ab, that is, the inequality —u, + up < cup
becomes tight and it remains tight for the remaining circuit walk. Thus, we neither apply the same
direction again (like this we would violate the inequality), nor do we apply the circuit in reverse
direction (this would delete the edge ab again).

In contrast, our circuit walk is not necessarily sign-compatible. Therefore, observe that being
sign-compatible would mean that the term —u, +u;, is either only increase or only decreased during
the entire circuit walk. In particular, if there is some edge e that is inserted and removed (or the
other way around), then this circuit walk is not sign-compatible. But the algorithm in the proof of

Lemma 4.7 can yield a circuit walk that deletes and then reinserts an edge:

Example 4.10 (A non-sign-compatible circuit step). Consider the bipartite graph on node sets
Vi1 =1{0,1,2} and V, = {3,4,5} with edge set E as depicted in Figure 4.7. The edges are labeled
with the values c,p, of the vector ¢ € Rl defining the dual transportation polyhedron Pg .
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0 3

1 4

2 5
Vi Va

Figure 4.7: The graph and the values of ¢ € RI®! defining Pg.

Obviously, the following two are vertices of Pg c.

G(u(l)) G(u(z))

Figure 4.8: Vertices of a dual transportation polyhedron.

At yO = u we have V(C) = {0, 3} for the connected component C of (V, E(G(y?")) N E(T>))
containing the node 0. According to the algorithm in the proof of Lemma 4.7 we can only choose
e =(0,4) to insert. Thus we have R = {0, 3,5} (by rules (a) and (b)) and S = {1,2,4} (by rule (c)).
We now increase all components in S until the first inequality becomes tight, which must be the
one corresponding to (0,4) as shown in the proof of Lemma 4.7. But this deletes (2,5), an edge
that is contained in the graph of the final vertex. We have to reinsert (2,5), and thus the circuit

walk cannot be sign-compatible.

©)
a\@

©) 0

Gy G(y")

Figure 4.9: A circuit step that deletes an edge that has to be reinserted.

However, we can easily prove an even better upper bound of |V| — 3 on CDy, as a corollary of
Theorem 2.17. Note that by transitivity this result readily translates to all less restrictive notions

of circuit distances, in particular to CD and CD.

Lemma 4.11. For a dual transportation polyhedron defined on a bipartite graph on |V| = M + N
nodes, the circuit diameter with respect to CDy, is bounded from above by |V| — 3.
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4.3 Upper bounds on circuit diameters

Proof. Letu", u® be two vertices of a dual transportation polyhedron Pg . defined on G = (V, E).
By Lemma 4.6, there are ab,a’h’ € E(G(u")) n E(G(u'?)) with ab # a’b’. Now consider

P o={ueRY :uy=0, —ug +up = cap, —tter + ttyy = Carys —lhy + tty < cys ¥rs € E\fab,a’b’} } .

Then u") and u® are vertices of P’. Observe that P’ C RVl is defined by three independent
equations and |E| — 2 inequalities. Thus, by Theorem 2.17 every two vertices are connected by a
sign-compatible circuit walk of length at most min{3 — |V| + |E| — 2,|V| — 3} < |V| — 3. The claim
follows by observing that the set of circuits associated with P’ is contained in the set of circuits

associated with Pg . and thus the circuit walk in P’ is a circuit walk in Pg as well. O

This completes the proof of Theorem 4.1 (ii).

4.3 Upper bounds on circuit diameters

We now turn to the more general framework of dual network flow polyhedra. As already outlined
in the begining of this chapter we cannot expect similar upper bounds as in the bipartite case, as for
every category of circuit diameter there are examples that violate these upper bounds. Especially
for the more restrictive notions it is unlikely to find such bounds, as we can exceed the former
bound by an arbitrary constant, see Lemma 4.18 in section 4.4. Roughly speaking, when turning
to general graphs we have to add a factor of |V| on the previous bounds for the combinatorial
diameter and for CDy,,, yielding quadratic bounds. In contrast, the upper bounds on CDy, and all
less restrictive diameters remain linear in the number of vertices. All these bounds are stated in
Theorem 4.2 and proved in this section.

We begin with the strongest category, the combinatorial diameter. Recall that for proving up-
per bounds on the combinatorial diameter of polyhedra it is enough to consider non-degenerate

polyhedra and thus we can assume that for every vertex u, G(u) = T is a spanning tree.

Lemma 4.12. For a dual network flow polyhedron Pg., the combinatorial diameter CD, is
bounded from above by min { (|V| - 1) - |E], % ).

Proof. Let u'” and u® be two vertices of a non-degenerate dual network flow polyhedron Pg.,
given by spanning trees 71 = G(u'") and 7, = G(u®). We construct an edge walk from u("
to u® as follows: Being at a vertex y of P with spanning tree T = G(y), we choose an edge
rs € To\T we wish to insert. We show how to construct an edge walk of length at most |E]| that
leads to a vertex y for which rs € E(G(¥)), that is, our specified edge is added to the corresponding
spanning tree. Then we contract this edge (see Section 4.1) to ensure that we do not delete it again.
Starting with y = u'!) and repeating this for all |V| — 1 edges in T, proves the claimed bound of
(vVi-1-|E|

Now, let y be the current vertex in our edge walk and let T = G(y) be the corresponding spanning
tree. We choose an arbitrary edge rs € T, we wish to insert. Given a spanning tree 7" and the node

s we distinguish forward and backward edges in E(T): We see s as the root of the tree 7. Then

85



Chapter 4 Circuit diameter bounds for dual network flow polyhedra

every edge in E(T) lies on a unique path starting at s (this path is independent of the directions of
the edges). We call the edges pointing away from s backward edges, the edges pointing towards s
forward edges.

In T there is a unique path (undirected) from r to s. Let e be the last backward edge on this path.
Note that by Lemma 4.5 such an edge must exist. Let R and S be the node sets of the connected
components of 7' — e such that r € R and s € §. Observe that in particular all nodes from which
we can reach s on a directed path in the spanning tree T are assigned to S (and these nodes form
an arborescence of forward edges with root s).

We wish to include the edge rs in our graph, that is, we wish to make the inequality —u,+us < ¢y
tight. Without loss of generality we assume 0 € R, therefore we add an € to all components y; of
ywithi € §. (If 0 ¢ R, we would subtract € from all components y; with i € R.) We choose
as € the smallest non-negative number such that any inequality —u, + up < c4p With @ € R and
b € S becomes tight. Due to non-degeneracy there is only one such inequality. This creates a new

feasible point y’, which is indeed a neighboring vertex of y by construction.

Figure 4.10: A circuit step that inserts ab and deletes vw when aiming at inserting rs.

So, in this edge step e = vw is deleted and f = ab is inserted. If we inserted f = rs, we
contract this edge and start over again, aiming to insert another edge r’s” from E(T,). Otherwise
we consider the path connecting r and s in the new spanning tree 7’. As before the last backward
edge ¢’ defines sets R” and S’ and we repeat the same procedure until eventually rs is inserted.
It remains to prove that this indeed happens after at most |E]| steps. It is enough to show that the
deleted edge e = vw is not inserted again: As there is a directed path from v to s in G(y), v and
all nodes on this path will always be assigned to S (in particular, no edge on this path is deleted).
As only edges from R to S are inserted, e = vw with v € § cannot be reinserted. This proves the
claimed upper bound (|V|—-1) - E.

To see the upper bound %, we only have to change the way we count the number of steps
that we need to insert the edge rs in a current underlying graph on i nodes (the number of nodes
decreases with every contraction): Note that the current graph has at most i - (i — 1) edges, and in
particular at most (é) edges e = vw with v € S and w € R. As we only insert edges from R to S,
this tells us an upper bound of (é) steps until rs inserted. After contracting this edge, we start this

process again on a graph with i — 1 nodes. Hence we obtain an edge walk of length at most
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2] - 2l o-0) - 32

i=2
_ L{VIAVI+ Devi+ 1) [VIdVI+ D) _ VP =1V < VP
2 6 2 6 -6

We continue with the circuit distance CDy,, for which we prove a quadratic bound as well,
but this time it is quadratic in the number of nodes. This strengthens the cubic bound implied by

Corollary 5 in [10]. Recall that we cannot simply assume a non-degenerate polyhedron here.

Lemma 4.13. For a dual network flow polyhedron Pg, the circuit diameter CDy,, is bounded
VI-qvi-D
R

from above by
Proof. Let u) and u® be two vertices of the polyhedron Pgc. Let T, be a spanning tree with
E(T») C E(G(u®)). We construct a feasible maximal circuit walk from u'® to u® as follows:

Being at a pointy € Pg of our circuit walk, we choose an edge rs € T>\E(G(y)) we wish to
insert. We construct a feasible maximal circuit walk to a point y € Pg with rs € E(G(¥)). This
walk has length at most i — 1, where 7 is the number of nodes in the current underlying graph.
As in the proof of Lemma 4.12, we then contract it to make sure that we do not delete it when
continuing our circuit walk. We start with y = u!) and repeat this procedure for all [V| — 1 edges
in E(T,). As the number of nodes decreases after every contraction this yields our quadratic upper
bound ofl‘./lz_l i=3(VI-(VI-1).

Now, le;_)lf be a feasible point in the circuit walk. Let rs € E(T)\E(G(y)) be an arbitrary edge
we wish to insert, that is, we have to make —u, + u; < c,, tight. To this end, we construct a circuit
direction that increases the component y,. This circuit is given by RU S = V for the node sets R
and S constructed by the following sequence of rules:

1. ris assigned to R.
2. sisassignedto S.
3. All nodes from V\{r} from which s can be reached on a directed path using edges in E(G(y))
are assigned to S. (These edges form an arborescence with root s.)
4. All nodes r € V\S that are connected to r in the underlying undirected graph are assigned
to R.
5. All remaining nodes are assigned to S'.
Observe that from s we cannot reach r on a directed path in £(G(y)) by Lemma 4.5, and thus the
sets R and S are well-defined and these sets clearly satisfy all the conditions to define a circuit.
Let g be the corresponding circuit direction defined via Equation (4.1). Without loss of generality
we assume that 0 € R. The case 0 € § works analogously by merely switching the roles of R and

S and subtracting eg to decrease y;,.
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We now apply the maximal circuit step given by g, that is, the next point in our circuit walk is
y’' =y + €g, where € is the smallest non-negative number such that an inequality —u, + up < cgp
witha € R and b € § becomes tight (observe that there could be multiple such inequality, as we do
not assume non-degeneracy of the polyhedron Pg ). In any case the gap in between —u, + u; and
its upper bound ¢, becomes smaller. If »s was indeed inserted, we contract the edge and continue

in a smaller polyhedron.

Figure 4.11: A circuit step that inserts ab and deletes two edges from S to R when aiming at
inserting rs.

Otherwise, the inserted edge extends the arborescence by at least the node a. We again apply
a circuit step by constructing sets R’ and S’ for y’ as before, which inserts rs or extends the
arborescence further. Continuing like this after at most i — 2 steps all nodes but r are contained in
the arborescence (if rs was not already inserted). Then the next step must add rs by Lemma 4.5.

Thus, inserting rs takes at most i — 1 maximal circuit steps. ]

Note that the circuit walks in the proof of Lemma 4.13 are non-backwards and non-repetitive,
that is, we do not choose any partition R U S twice: Within the process of inserting some rs, all
R U S are distinct since the arborescence is extended in every step and thus each set S contains
at least one node (the node a) no previous S contained. To see that in the overall circuit walk no
R U S is chosen twice, observe that when inserting rs we always have r € R and s € S, but when
aiming at inserting the next edge »’s’, r and s will always be assigned to the same set.

Finally, we turn to the weak and soft circuit diameters. We get a linear upper bound on CDy,

and thus on all less restrictive circuit distances.

Lemma 4.14. For a dual network flow polyhedron P, the circuit diameter CDy; is bounded
from above by min { |V| -1, |E|-|V|+1}.

Proof. We have Pg = {u eRVI': uy=0, ATu < c}, where AT € RIEXIVl ig the transpose of the
node-edge incidence matrix of G. Observe that there is only one equation defining the polyhedron

and thus the corresponding matrix has rank one. Hence by Theorem 2.17 we get CDy; < min{ 1 —
IVI+IEl, [VI-1}. O

This concludes the proof of Theorem 4.2.
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We finally want to point out that these diameter bounds also hold for dual network flow poly-
hedra defined on directed graphs that are not connected: To make the polyhedron pointed, we
set for each connected component the value of one variable to zero (just as we fixed uy = O for
graphs with just one connected component). Then the algorithmic approaches described in the
proofs of Lemma 4.12 and Lemma 4.13 and the arguments in the proof of Lemma 4.14 can be ap-
plied to each connected component individually, yielding even better bounds on the combinatorial

diameter and the circuit diameter CD .

4.4 Lower bounds on circuit diameters

We now complement our discussion and turn to lower bounds on the circuit diameters by con-
structing dual network flow polyhedra that have at least a certain diameter. We first prove that all
circuit distances are bounded below by |[V| — 1. Then we consider CDy,, more thoroughly and
show that it can in fact exceed |V| — 1 by an arbitrary constant. To this end we will introduce a
special glueing construction for graphs that allows us to simply add up the circuit distances of the
associated dual network flow polyhedra.

But we begin with Theorem 4.3 (ii), that is, we show the lower bound of |V|—1 on the soft circuit
distance CD. In fact, this result tells us that the bipartite upper bound of |V| — 2 does not hold for
any of the circuit distance categories in the more general setting of arbitrary graphs. Further, this

shows that our upper bound on the weak and soft circuit distances, Theorem 4.2 (iii), is tight.

Lemma 4.15. For any n, there are dual network flow polyhedra defined on graphs G = (V, E) on
|V| = n nodes that have (soft) circuit diameter at least |V| - 1 = |E| - |V| + 1.

Proof. We provide two examples of dual network flow polyhedra that satisfy the claim.

1) Paths. Let n be given. Consider the polyhedron Pgr¢r defined on the following graph G?,
edges labeled with the respective values of c”.

o ¢ 1 4 2 4 3 n-2 1 n-1
O/\B?O/\?O/\?OWO?O

Figure 4.12: The graph G? and the corresponding values of c¢?.

The following two spanning trees correspond to vertices of Pgr cr.

OnOnOMOSOBENOSOROMERS

Figure 4.13: Two vertices of Pgp cr.

Clearly, the circuits as connected subsets of nodes are of the form {0,...,i} U{i+1,...,n— 1}
for some i = 0,...n — 2. Any such element affects only the edges (i,i + 1) and (i + 1,i) (or,
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Chapter 4 Circuit diameter bounds for dual network flow polyhedra

equivalently, the respective inequalities —u; + u;+1 < cjj+1 and —uj 1 + u; < ciy1,). Thus, we need

at least n — 1 circuit steps to reverse the n — 1 edges in which the vertices depicted in Figure 4.13
differ.

2) Stars. Let n be given. Consider the polyhedron Pgs s defined on the following graph G*,

edges labeled with the respective values of ¢*.

Figure 4.14: The graph G* and the corresponding values of ¢°.

The following two spanning trees correspond to vertices of Pgs cs.

ol ol
aaa @@%@@

Figure 4.15: Two vertices of Pgs cs.

Clearly, the circuits as connected subsets of nodes are of the form {i} U (V\ {i}) for some i =
1,...n—1. Any such element affects only the edges (0, /) and (i, 0) (or, equivalently, the respective
inequalities —ug + u; < co; and —u; +ug < c;p). Thus, we need at least n — 1 circuit steps to reverse
the n — 1 edges in which the vertices depicted in Figure 4.15 differ. O

We now turn to the circuit distance CDy,, again. We begin with a small example for which
CDym 1s even larger than |V| — 1, the lower bound we just proved in Lemma 4.15. More precisely,
we get a circuit distance of |V| = 4. What seems just like a minor refinement in fact includes a
tremendous observation: For general dual transportation polyhedra, there may not be a maximal
circuit step that inserts an edge from the spanning tree representing the target vertex. Note that in
the undirected bipartite case we are always able to apply such a step and the proof of Lemma 4.7
relied on this idea.
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4.4 Lower bounds on circuit diameters

Example 4.16 (CDy,, = |V|). Consider the dual network flow polyhedron Pg . associated with
the graph on four nodes depicted in Figure 4.16; the edges are labeled with the respective values

of c.

Figure 4.16: A graph G on four nodes and the values of ¢ € RI¥l.

Observe that the polyhedron Pg . is non-degenerate (there can be no cycle of tight inequalities).

The following two spanning trees correspond to vertices u'V and u® of Pg.

@
OO OO
T, = GaD) T, = G(u®?)

Figure 4.17: Two vertices of Pgc.

These two vertices are connected via the following edge walk of length four. Hence their circuit

distance CDyy, is at most four.

AN AN K.

Figure 4.18: A maximal feasible circuit walk from u" to u®.

In Figure 4.16 we now illustrate all maximal feasible circuit steps we could apply at uV, leading
to points y, ..., y©. The respective circuits are stated below the graphs as subsets S C V we
increase or decrease, respectively (thus we have 0 ¢ S and 0 € R = V\S). Note that S = {1,2} is
not applicable. Observe that in each case the inserted (bold) edge is not contained in E(T»).
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y(l) y(2) y(3) y(4) y(5) y(6)
(00 @j@ Q0 ©O /(D
0 ©v OO 0O OO

S ={1} S =1{2} S ={3} S ={1,3} S =1{2,3} S =1{1,2,3}

Figure 4.19: All feasible maximal circuit steps at u.

This already shows that for arbitrary graphs we cannot insert an edge from the target tree in
every step. However, we still have to verify that the circuit distance from uV to u'? is indeed
|V| = 4. For this concrete example it can be done in a lengthy consideration of all options to apply
two maximal feasible circuit steps.

However, we can also use a far more elementary observation on circuit walks: It would be
sufficient to have that in the remaining circuit walk we never insert two edges (from E(T,)) in one
single step. Now, even if the latter property would not hold for a given ¢, we could always achieve
this with a slight perturbation:

A finite number of linear conditions on the right-hand sides ¢ can guarantee that a certain
maximal circuit step inserts at most (and thus exactly) one edge. Therefore, finitely many such
conditions can guarantee that in all circuit walks of a fixed finite length k no maximal circuit step
inserts two edges at the same time. These finitely many conditions only exclude right-hand sides
¢ that lie in the union of a finite number of hyperplanes. In particular, we can get a ¢ with the

desired property by a perturbation.

We now use this graph satisfying ‘CDy,, = V| to obtain family of graphs with associated poly-
hedra for which CDy,, exceeds the number of nodes |V| by an arbitrary constant. This reinforces
the observation we cannot expect similar bounds for CDy,, (in terms of |V]) as in the bipartite case.

To this end, we now come to the glueing construction for graphs: If we glue k graphs together
at a single, arbitrary node, we obtain a larger graph and the circuit diameter of the polyhedra asso-
ciated with the component graphs just sum up to the circuit diameter of the polyhedron associated
with the larger graph obtained by glueing.

More formally, let G; = (V;, E;), i = 1,...,k be k connected directed graphs. For every graph
choose an arbitrary node vf) € V;. By glueing the graphs together at the vf), joining them to one
node vy, we construct a new graph G = (V, E) , with node and edge set given by

k
ve=totuJ(va () -

i=1

E:

k
U({ab cabeE;,a, b+ vé} U {vob : vf)b € Ei} U {avo : avf) € E,})
i=1

We depict the graphs G; by highlighting the nodes vf), while all remaining nodes and edges are
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represented by a loop:

Figure 4.20: Four graphs in simplified description.

Glueing these 4 graphs together yields a graph G that can be illustrated as follows:

Figure 4.21: A graph obtained by glueing four graphs.

Now the following lemma tells us that the circuit diameter of the dual network flow polyhedra

associated with the respective graphs are directly related.

Lemma 4.17. Let Pg, i, i = 1,...,k be arbitrary dual network flow polyhedra with circuit diam-

eter equal to (at least) d;, with respect to any circuit distance CD... Let G be the graph obtained

by glueing these k graphs together, and define ¢ € RE! by clj = cfj, lj € E;, where we use vf) = V.
Then Pg ¢ has circuit diameter CD.. (at least) Zle d;.

Proof. Let a circuit direction of Pg . be given by a partition V = RU S. Assume without loss of
generality vo € R. Then S C V;\ {vf)} for some i € {1,...,k}, as the node set S must be connected
in the underlying graph and vy ¢ S.

Figure 4.22: A circuit direction on a graph obtained by glueing.

Therefore, every step of a circuit walk modifies only variables of one single component G;,
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Chapter 4 Circuit diameter bounds for dual network flow polyhedra

such that every edge walk circuit walk in Pg ¢ of length d’ directly translates into k circuit walks

in Pg, ¢1,...,Pg o of length d, ..., d; with Zle d; = d’ and vice versa. O

We now apply the glueing constructions to the graph on four nodes we introduced in Example
4.16. Denote by G* the graph obtained by glueing k copies of that graph. Then G* is a graph on
3k + 1 nodes and by Lemma 4.17 it has diameter CDy,, at least 4k. This provides us with a family
of graphs G* with associated dual network flow polyhedra that admit a circuit diameter of at least
4k = |V| + k — 1. Hence we exceed the number of nodes by k — 1, which can be chosen arbitrarily
big. In particular we arbitrarily violate the diameter bound for bipartite graphs.

This further yields a family of polyhedra whose circuit diameter approaches %lVI and we get the

following lower bound statement for the circuit diameter CD,, of dual network flow polyhedra.

Lemma 4.18. For any n > 4, there is a dual network flow polyhedron defined on a graph G =
(V, E) on |V| = n nodes that has circuit diameter CDy,, at least ‘3—‘|Vl —4.

Proof. For n = 3k + 1 with k € Z the claim follows by choosing G = G¥, as k = % and we have

circuit diameter CDy,, at least 4k. If n = 3k + 2 (n = 3k + 3) we simply add one leaf (two leaves)
to G¥. Then k = Y2 (k = Y12y and €Dy, is still at least 4k. O

This concludes the proof of Theorem 4.3 and our investigation of the circuit diameters of dual

network flow polyhedra.
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In this thesis, we were concerned with the concept of circuit diameters. We presented several
fundamental results, most notably our hierarchy of circuit diameters, and we demonstrated the
usefulness of our ideas by investigating two special classes of polyhedra.

However, as we first introduced this whole topic just recently in [3] and [5], there are still many
open questions and several possibilities for developing the ideas further and in new directions. In
this final chapter we highlight some of them.

First of all, the results presented in this thesis immediately give rise to the following ques-

tions:

?  Are the weak circuit distance categories CD () and CD () distinct in general?
(Recall that these are the only weak inequalities in the hierarchy and an example that

proves strict inequality has to be in dimension five or higher.)

?  For general MXN transportation polytopes, can we improve the linear upper bound of
8(M + N - 2) for the combinatorial diameter or for the circuit diameter, respectively?
Does the Hirsch conjecture (Hirsch bound) hold?

?  For dual network flow polyhedra, is there a linear upper bound on the circuit diameter, or
even on the combinatorial diameter? Does the Hirsch bound of |E| — |V| + 1 hold?
On the other hand, can we find stronger lower bounds?

Another straightforward continuation of this work is the investigation of the hierarchy for fur-
ther classes of polyhedra. Are there more classes for which the hierarchy collapses? Are there
polyhedra for which the respective circuit diameters differ widely?

Aside from that, there arise several interesting questions concerning the ‘original’ circuit di-
ameter CDy,,. First of all, it is still open whether there is a general polynomial upper bound. In
particular we would like to know whether the Hirsch bound is always satisfied, as already conjec-
tured in [5]:

Conjecture 3. For any d-dimensional polyhedron with f facets the circuit diameter CDyp, is
bounded above by f — d.

Recall that the Hirsch conjecture does not hold for the combinatorial diameter [21, 27]. How-
ever, it is open whether the counterexamples from [21] and [27] give rise to a counterexample for

Conjecture 3 as well. The following question may give some indication.
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? Given a polyhedron, can it always be turned into a polyhedron of same combinatorial
structure for which the circuit diameter equals its combinatorial diameter?
In other words, is there a perturbation such that every shortest feasible maximal circuit
walk actually goes along the edges of the polyhedron?

In Lemma 2.23 in Section 2.4 we saw that this is true in dimension two: For any k there is a
polygon on k vertices for which the circuit diameter and the combinatorial diameter coincide.
However, even the effects of perturbing only the right-hand sides are hard to predict as demon-
strated in Example 2.1.3 in Section 2.1.3. But understanding these effects could be extremely
useful: A positive answer to the following question would simplify proving upper bounds on
the circuit diameter since we could assume non-degeneracy just as we did for the combinatorial

diameter.

?  When perturbing the right-hand sides, is the maximal circuit diameter attained by a non-
degenerate polyhedron?

But there are also much more far-reaching questions. Up to now, we were only concerned
with the circuit distance itself but we did not consider algorithmic aspect such as the (efficient)
computation of optimal circuit walks, neither did we study how to apply the different concepts of
circuit walks in augmentation algorithms. In particular, there is still little understanding in how to
exploit the idea of going infeasible.

We conclude the thesis with a short initial discussion of a natural extension of the circuit diam-

eter to an integral analog — the Graver diameter.

The integral circuit diameter

In his seminal paper [14], Graver did not only treat the continious case, but also provided a uni-

versal integral test set, by now also known at the Graver basis.

Definition (See Def. 4.3 in [14]). The Graver basis G (A, B) associated with matrices A and B
consists of those non-zero vectors g € kerz(A) = {z € Z" : Az = 0}, for which Bg is C-minimal in
the set { By : 'y € kerz(A)\{0} }.

For v,w € R? we have w C v (the partial ordering on R?), if viw; > 0 and |w;| < |vi| for all
i=1,...,d

It is not hard to see that C(A, B) C G(A, B). Note that we can have C(A, B) # G(A, B). Graver
bases admit a representation property for the integral elements in the kernel of A similar to the
representation property for circuits (see Theorem 4.5 in [14]): Every element v € kerz (A) can
be written as a positive linear C-compatible sum of elements in G(A, B), i.e. v = Zi.‘zl a;g' and
we have gi € G(A,B), Bgi E Bv,and @; € Z, for alli = 1,...,k. It follows immediately
that the Graver basis is an optimality certificate for linear objectives (see Corollary 4.6 in [14]).
Further, is is not hard to see that every edge direction of the integer hull P; = conv(PNZ") =
conv({x € Z": Ax = b, Bx < d}) is contained in the Graver basis [14].
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The well-studied common setup for Graver bases is G(A) = G(A, I,,): We know that G(A) also
provides optimality certificates for the minimization of separable convex objective functions over
the lattice points of a polyhedron [23], that at most polynomially many (in the binary encoding
length of the input data) Graver-best augmentation steps are needed in order to reach an optimal
solution [18], and that N-fold separable-convex integer linear programs can be solved in polyno-
mial time [11, 16, 17]. For a more thorough introduction to the theory of Graver bases and for

more references on this topic, see for example [9, 25].

It is not hard to see that the definitions of circuit walks, circuit distances and circuit diameters
from Section 2.1 readily translate to the integral case. Note that an integral circuit walk or Graver
walk connects two vertices v\, v of the integer hull P; of the polyhedron and that all points of
a circuit walk v\V = y©@ y® = v must satisfy y) € Z". Then the Graver diameter is the

maximum length of a shortest Graver walk between any two vertices of P;, denoted GO etc.

We close this brief outlook with a demonstration of the challenges that come with integrality.
Therefore we compare CDy,, and GD,,. The following fundamental examples show that they

cannot be related via ‘<’ or ‘>’ in general!
Observation. We can have GD,, < CD , as the Graver basis might contain additional elements.

We consider a polygon on four vertices. Clearly we have CDy,, = 2 as the circuits coincide with
the directions of the edges ((1)) and (_12) In contrast, the Graver basis contains two more vectors (?)

and ( _11) Therefore, opposite vertices are connected by a Graver walk of length one.

Figure 23: A polytope of Graver diameter one.

Observation. We can have GDy,, > CDyy, as the combinatorial structure of a polytope might

differ from the combinatorial structure of its integer hull.

Let us have a look at the polygon on three vertices in Figure 24, whose integer hull actually
has four vertices. Then we have CDy,, = 1 as any two vertices of the polygon are connected by
an edge. However, opposite vertices of the integer hull cannot be connected by a Graver walk of
length one as neither (%) nor (_21) belong to the Graver basis.
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_ |

Figure 24: A polytope of Graver diameter two.

Observation. We can have GDy,, > CDy, even if P = Py, as the optimal circuit walk is not

necessarily integral, i.e. not a Graver walk.

We consider the two-dimensional polytope on six vertices illustrated in Figure 25. It is not
hard to check that any two vertices are connected by a circuit walk of length at most two, thus
CDym = 2. We now have a closer look at a circuit walk from viD to v,

Figure 25: A circuit walk of length two.

Note that this circuit walk is not integral! The Graver basis associated with this polyhedron
consists of the edge directions and one additional element, (_11) Thus, there are four possible first
Graver steps at v\", but none of these first steps allows to reach v(?) with only one more Graver
step. Hence we have Graver diameter three.
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Figure 26: Maximal Graver steps at v,
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