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Abstract

Traffic network optimization aims to improve a given road network by maximizing
the utility for traffic participants. The present thesis investigates a solution-based
approach for tackling the traffic network optimization problem by modifying an established
metaheuristic—the genetic algorithm—in such a way that mutation does not appear
at random but with the help of a local optimization procedure. In comparison to
the standard genetic algorithm, the approach using local optimization in form of a
neighbourhood search should result in increased solutions. Primarily, we have to make
a statement regarding how well a network performs with respect to traffic participants.
One opportunity might be to approximate the utility based on the travel time of road
users. This evaluation forms the basis of the neighbourhood search. Finally, by means of
practical data we compare and assess the aforementioned enhanced approach with the
standard genetic algorithm in terms of quality and development.

Zusammenfassung

Die Optimierung von Verkehrsnetzen hat das Ziel, ein gegebenes Straßennetz dahingehend
zu verbessern, dass der Nutzen der Verkehrsteilnehmer in diesem Straßennetz maximiert
wird. Die vorliegende Arbeit beschäftigt sich mit einem Lösungsansatz für das Problem
der Verkehrsnetz-Optimierung, indem eine bewährte Metaheuristik – der Genetische
Algorithmus – so modifiziert wird, dass die Mutationsphase nicht zufällig geschieht,
sondern mittels lokaler Optimierung. Im Vergleich zu einem allgemeinen Genetischen
Algorithmus soll dieser Ansatz der lokalen Optimierung in Form einer Nachbarschaftssuche
zu besseren Lösungen führen. Dabei muss zunächst eine Aussage darüber getroffen
werden, inwiefern ein Netzwerk für Verkehrsteilnehmer als nützlich angesehen werden
kann. Eine Möglichkeit besteht darin, den Nutzen durch die Fahrzeit im Verkehrsnetz
zu approximieren. Diese Bewertung stellt dann die Basis der Nachbarschaftssuche dar.
Abschließend wird dieser erweiterte Ansatz mit dem allgemeinen Genetischen Algorithmus
hinsichtlich Qualität und Entwicklung der Lösungen anhand von Daten aus der Praxis
verglichen und bewertet.
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Chapter 1

Problem Description

Almost everyone knows the feeling: While driving to work in the morning—a time when
it is already hectic—you only get slowly ahead or even find traffic coming to a standstill.
In such an annoying situation, some of us may wonder why the streets are not extended
or why no additional streets are being built even though they are sorely needed. Though
it might be obvious to us where the new streets are most urgently needed, the decision
concerning where they should be built is by no means an easy task. The difficulty lies
in understanding traffic behaviour. Although every road user decides by him-/herself
which route to take to work in the morning, this must be estimated and included in
the final determination of traffic routing, which is the job of Munich’s Planning and
Building Department in the aforementioned city. However, before starting with the
construction of new roads, it is difficult for them to understand the effects of the planned
enhancements. For this reason, we discuss and develop approaches that are able to
forecast traffic behaviour after road construction to provide decision-making support.
Let us examine the concrete research question. Our objective is to ascertain which new
roads should be built and which streets should be expanded to ensure a smooth flow of
traffic in the future. Thus, we are interested in finding optimal construction plans with
respect to traffic flow in the considered area. In the following, we will refer to this issue
as ‘traffic network optimization’.

In this thesis, we present a technique to optimize traffic networks using genetic algorithms
combined with nonlinear programming. Since we deal with traffic flow on roads, we first
discuss how traffic behaves in networks. In order to measure how useful a network is, we
solve a nonlinear program whereby the objective reflects the travel time of the traffic
participants. This concept will provide a basis for exploring more advanced methods, such
as those that simulate traffic behaviour. In order to ensure better understanding of traffic
flows, these simulation tools additionally consider the day schedules of traffic participants
and, thus, their objective is to measure the network utility for traffic participants. The
approach developed in this thesis works with algorithms based on evolution; hence, we
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Chapter 1 Problem Description

will discuss genetic algorithms as a special type of evolutionary algorithms. A simulation
tool will serve as an evaluation function. In order to exploit the knowledge of traffic flows
from above, we aim to modify the genetic algorithm whereby we combine it with local
optimization to improve its performance.

The remainder of this thesis is structured as follows. In chapter 1, we introduce the task
of traffic network optimization and sketch the approach to solve it while also explaining
the general structure of the thesis. In chapter 2, we mainly focus on modelling the
problem of traffic network optimization in a mathematical way. First, we introduce the
basic notations and definitions that are necessary for the rest of the thesis. Subsequently,
in section 2.2, the aforementioned problem of traffic assignment is formulated as an
integer optimization program. Since problems dealing with traffic in networks are usually
modelled as network flow problems, we present the main concepts of such network flows
in section 2.3. The study of network flows is a well-developed field in operations research
since a multitude of problems relating to economics, logistics and informatics underlie a
network structure. In particular, flow problems with linear objective functions, such as
maximum flow and minimum cost flow problems, have been studied extensively, along
with the various algorithms used to solve them. An overview of this topic is provided by
Ahuja, Magnata and Orlin [AMO93], while standard reference works in combinatorial
optimization, such as Korte and Vygen [KV08] and Schrijver [Sch03], are also dedicated
to network flow problems. Special treatment is necessary for problems where we cannot
optimize from a central perspective, precisely where actors in the network decide by
themselves which route to take. On these grounds, we chiefly follow a more recent book
called Selfish Routing and the Price of Anarchy from Roughgarden and Tardos [Rou05]
while introducing the topic of network flows. Nevertheless, the issue was developed much
earlier from Pigou [Pig20] in 1920 and was later taken up in 1952 by Wardrop [WCEGB52],
who also gives his name to a mathematical concept called “Wardrop equilibrium”. In
section 2.3.3, we use the results from the previous sections and derive concrete formulations
for our purposes and subsequently approach a preliminary optimization method for the
traffic network optimization problem. Furthermore, section 2.3.4 briefly introduces a
tool called MATSim [Rie14], which simulates traffic flows in networks and thus uses the
schedules of traffic participants (also called agents) that reflect the day plans of road
users.

In chapter 3, we focus on solution methods for the traffic network optimization problem.
We concentrate on metaheuristics classifying optimization algorithms, which are mostly
applied to problems that are NP hard by the theory of computational complexity. A
handbook of metaheuristics that covers methods like local search, simulated annealing,
tabu search and evolutionary algorithms is provided by Glover [GK03]. In the field of
metaheuristics, we find the naturally inspired class of evolutionary algorithms, to which
genetic algorithms also belong. These methods use the evolution phenomena and transfer
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it to optimization problems. The concept of genetic algorithms was invented by Holland
and published in Adaptation in Natural and Artificial Systems [Hol75]. A recommendable
introduction into the topic of genetic algorithms is provided by Mitchell [Mit96] as well as
by Sivanandam and Deepa [SD07]. The course of genetic algorithms in chapter 3 is fairly
standard, whereby we cover the different phases of evolutionary algorithms, including
selection, mutation, crossover and replacement. We essentially emphasize methods used in
the explicit implementation of the program, while also referring to some other techniques
advocated in the literature.

Chapter 4 serves to present an implementation of the traffic network optimization problem
solved by using two different approaches. First, a standard genetic algorithm will be
applied to the problem, which we subsequently alter in the phase of mutation and take
the idea of traffic flows from section 2.3 into account. Therefore, we modify the standard
genetic algorithm in a way that solves a nonlinear network flow problem to evaluate the
current network and its neighbours, before mutating the network into the best one in
that neighbourhood. Through this enhanced genetic algorithm, we hope to improve the
solution, or rather, improve the iteration steps needed to achieve an eligible solution.
Therefore, the algorithm for the further developed method is simply distinguished in one
step—namely, the mutation step. The implemented programs are illustrated from two
perspectives: The user documentation in section 4.2 provides instructions for handling
the program, while we explain the structure from a developer’s perspective in section 4.3.

Even though we will exert ourselves to generalize the study of traffic network optimization
in chapters 1–4 independent from a specific network, for the comparison of the two
implemented algorithms we restrict ourselves to the road network of Perlach in chapter 5,
which operates based on real data provided by the Department of Public Order of Munich.
In section 5.1, we introduce the data for which we test our algorithms. Section 5.2
first presents the settings of the test runs, and especially parameters for the genetic
algorithm, such as the number of iterations and the probabilities of mutation and crossover.
Subsequently, we collect and appraise the results from the test runs. We primarily present
the solutions with a focus on the differences between the standard genetic algorithm
and the further developed algorithm, where we use nonlinear programming to evaluate
networks. Thereafter, we concentrate on the algorithm’s performance, including a
consideration of running times.

Finally, we conclude the underlying work in chapter 6. In order to evaluate the outcome
of the thesis, we first provide a short summary of the main results. Moreover, we will
offer ideas for future prospects on this topic and ascertain which parts are worth further
investigation.

Let us now proceed in more detail with the task of traffic network optimization. We
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Chapter 1 Problem Description

expect that the utility depends upon the network configuration. On this basis, we
consider different scenarios of road construction, with several available projects having
this purpose. A single project describes one or more streets that can be either newly built
or expanded. Consider that a project schedules a street to be expanded; subsequently,
this leads, for example, to building a new lane, whereby we deem that, following the
street expansion, the volume of traffic that can pass through will double. It may also
happen that in order to build a new road, some other roads have to be reconstructed in
such a way that they become narrower, and thus the number of possible vehicles on this
road decreases. In addition, every project has some project costs needed to construct the
streets under this project. Furthermore, a limited budget is given and must be adhered to.
Obviously, the solution might be a realization of a combination of projects, whereby the
sum of the respective projects’ costs shall not exceed the given budget. In the following
thesis, we discuss the task of traffic network optimization and evolve an approach to find
eligible solutions.
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Chapter 2

Mathematical Modelling

This chapter forms the cornerstone of the thesis. Here, we study the traffic network
optimization problem described in chapter 1 from a mathematical point of view. In
section 2.1 we introduce some basic notations and definitions needed for the remainder
of the thesis. The formulation of the optimization problem as an integer program will be
presented in section 2.2 and will constitute the fundament for solving the traffic network
optimization problem. Section 2.3 develops techniques for handling traffic flows, whereby
we proceed as follows: First, we analyse the “system optimum problem” in section 2.3.1
by acting as a route controller and determining flows that are optimal for the system as a
whole. Subsequently, in section 2.3.2, we consider flows that appear if traffic participants
make their own choices in such a way that they navigate on their own most favoured
route. In section 2.3.3, we apply the knowledge of the previous sections to derive a first
approach to the traffic network optimization problem. Finally, section 2.3.4 presents the
simulation tool MATSim that tries to simulate real-world behaviour by taking the day’s
schedules and more constraints into account.

2.1 Basic Definitions

For this section, we operate in the following way. First, we introduce the mathematical
definition and notation and, afterwards, we think about the objects to be represented
using this mathematical model. Since we deal with a road network, as in fig. 2.1, we have
to find a tool to save information about streets, crossroads and connections in this road
network.

Definition 2.1
A graph is a pair G = (V,E) and we call elements of the set V , vertices (often nodes),
and elements of the set E, edges (often links).

5



Chapter 2 Mathematical Modelling

(a) Road network (b) Graph

Figure 2.1: Road network and graph representing Perlach

In this thesis, we always assume a finite number of nodes and links. An edge is a pair
of vertices (vi, vj) ∈ E, i 6= j, which connects vi ∈ V with vj ∈ V . If two vertices vi and
vj are connected by an edge, we also say that vi and vj are adjacent. An edge e and a
vertex v are incident if e connects v with another vertex. For the sake of simplicity, we
only enumerate the vertices from 1, . . . , n and denote the edges by a pair of numbers
corresponding to the nodes, e. g. (i, j) ∈ E. So, we represent streets in a road network
by edges and, crossroads, where two or more streets intersect, by vertices. Whenever
we talk about graphs in this thesis, we mean directed graphs, i. e. (i, j) 6= (j, i). This
facilitates modelling one-way streets in a road network. A sequence of nodes and edges
v1, e2, . . . , en, vn with ei = (vi−1, vi) is called a walk; if we additionally claim that all
edges must differ, it is called a path. We call a v1 − vn path a path from v1 to vn without
specifying the sequence of edges and v1 is referred to as the start node and vn as the end
node.

Having introduced the basic definition of a graph, we would now like to extend that
definition by a few properties and call it a network graph.

Definition 2.2
A network graph is a tuple G̃ = (G, cap, t0) with a graph G, capacities cap : E → R≥0
and free-flow travel times t0 : E → R≥0.

As per the above definition, a network graph consists of a graph G in the sense of
Definition 2.1. In addition, we associate a positive number capij ∈ R≥0 with every edge
(i, j). The capacity capij of an edge (i, j) must be understood as follows: If the amount
of flow exceeds the capacity, smooth flow can no longer be guaranteed, i. e. capacity is
not a hard limit for the number of traffic participants on this road; it is rather that one
will get into a traffic jam if capacity is reached. The free-flow travel time t0ij ∈ R≥0 of
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an edge (i, j) is the time needed to travel from i to j with a so-called free-speed. The
free-speed denotes the possible velocity if no one else travels on the same road.

We now introduce the concept of networks that will come up repeatedly and will be
necessary for the entire thesis.

Definition 2.3
A network is a tuple N = (G̃, C, q, s, d, t), where G̃ represents a network graph as in
Definition 2.2, C a set of commodities, q, s : C → V a source and a sink respectively,
d : V × C → R≥0 the demand and t : E × R≥0 → R≥0 a travel time function.

Let us clarify Definition 2.3 by considering its elements. Since we are studying traffic
participants navigating from one location to another, there are two special vertices in a
network called source (start node) and sink (end node). Such a source-sink pair (q, s) of
two vertices belongs to a commodity. A network with only one source and one sink we
call a single-commodity network. In contrast, within a multi-commodity network we have
a set of commodities C = {1, . . . ,K} and each commodity k ∈ C is associated with a
source qk and a sink sk. In order to travel from qk to sk there exist various routes and we
name such a route an qk − sk path. The demand dki ∈ R≥0 of a commodity k ∈ C defines
the amount of flow entering or leaving vertex i. Moreover, travelling on roads causes
costs—namely, travel time. For this, we define travel time functions tij : R≥0 → R≥0 for
all edges. The travel time of an edge is dependent on the flow on this edge. We will
closely examine the characteristics of travel time functions in the next section.

2.2 The Traffic Network Optimization Problem

In the first chapter, we introduced the issue of traffic network optimization as an
assignment of road planning and road construction. Our aim for this section is to find
expressions that describe this real-world problem mathematically. Given a network N as
described in Definition 2.3, we need to consider—for the incorporation of road building—a
network graph Ã = (A, cap, t0), which represents a set of potentially new streets A within
a graph A = (V,A) and gives information about the free-flow travel time t0 and the
capacity cap of the new edges.

As already discussed in chapter 1, different projects are available for the road construction.
We denote the set of n different projects with P = {p1, . . . , pn} and define a project
p ∈ P as a tuple (a, ā, r). The set a denotes a subset of A ∪ E—more precisely, a is a
set of streets that must be newly built or expanded within this project, whereby ā ⊂ E
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denotes the set of streets that has to be reduced in this project. Thus, we differentiate
between three different types of edges: An edge e is

an expansion edge if e ∈ a ∩ E or
a new edge if e ∈ a ∩A or
a reduction edge if e ∈ ā.

In concrete terms, we increase the capacity by a specific factor if e is an expansion edge
and scale down the capacity by a specific factor if e is a reduction edge. The positive real
number r defines the realization cost of project p ∈ P. Furthermore, a limited budget
b ∈ R≥0 is needed as input information.

We are now able to define an instance of the traffic network optimization problem
explicitly:

Definition 2.4
An instance of the traffic network optimization problem is a tuple I = (N , Ã,P, b) with
a network N , a network graph Ã, a set of projects P and a limited budget b.

As we now know an instance of the problem, we will devote our full attention to the
modelling of the problem itself. Essentially, we are searching for an extended network,
that

1. can be realized within a set of given projects,

2. does not exceed the given budget and,

3. reaches maximal utility of the traffic participants.

Thus, given an instance I = (N , Ã,P, b), we search for a network N ∗, which can be
realized with the initial network N and additional streets represented by a combination
of projects within the set of given projects P. Let P = {pi : i ∈ I} with P ⊂ P and
I ⊂ {1, . . . , n} be such a project combination. For the set of projects P , the overall costs
must stay within the budget. This can be expressed by the following inequality:∑

i∈I
ri ≤ b, (2.1)

Moreover, we are not interested in arbitrary solutions, but rather in the one that
additionally maximizes the utility for traffic participants. The phrase, “to maximize
utility”, is not that easy to transfer as we do not know exactly how to measure the
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utility. But surely, the utility depends on the network configuration and, thus, on the
specific project combination P . However, the relation between a project and its resulting
utility is certainly not linear; rather, it is complex, since the measurement of the utility
is a problem in itself. Thus, for the present, we simplify this dependency by letting uP
be the utility u attainable with project combination P without specifying a concrete
determination of the utility. Hence, the objective yields

maximize
P ⊂ P

uP , (2.2)

where P denotes the set of available projects and P a subset of P.

To formulate the traffic network optimization problem as an integer optimization program,
we introduce the decision variables x. Since the task is to decide which combination of
projects should be realized, an obvious approach might be to model x as a binary vector
where xi becomes 1 if project pi will be realized and 0 otherwise.

xi =
{

1 if project pi is realized
0 otherwise

Due to the limited budget, we are merely interested in solutions where the sum of the
project cost will not exceed the budget. Thus, we can now rewrite the restriction (2.1)
as the sum of all projects:

n∑
i=1

rixi ≤ b.

We remember the goal of increasing convenience for traffic participants as well as increasing
their utility (2.2). Nevertheless, we content ourselves with a general formulation of the
project-dependent utility without specifying a concrete function. This yields the objective:

max u(x)

We focus on concrete utility functions later in this work. In section 2.3.1 and section 2.3.2
we assume that the total travel time of all network participants mostly influences the
utility and, therefore, it can be approximated by the minimization of travel time; where,
in section 2.3.4, the utility is calculated by simulation tools that use multiple influencing
factors for the calculation of a network utility.

Using the above definitions we formulate the traffic network optimization problem (TNOP)
as an integer program:

(TNOP) max u(x)

s.t.
n∑
i=1

rixi ≤ b (2.3)

x ∈ {0, 1}n (2.4)
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The first constraint (2.3) guarantees that the realized projects abide by budget b and
condition (2.4) is the restriction to binary variables since we do not consider a fractional
realization of projects. Consequently, project i can either be realized completely (xi = 1)
or not at all (xi = 0). We quickly determine that in case of a linear objective function

u(x) =
n∑
i=1

uixi

the above program is exactly what we call a knapsack problem, where u1, . . . , un define
the knapsack values and the project costs r1, . . . , rn equal the weights of the knapsack.
The knapsack problem is NP-hard and as long as P 6= NP , there can be no exact
polynomial-time algorithm [KV08]. But the knapsack problem can be solved exactly
in pseudo-polynomial time using dynamic programming. There even exists a fully
polynomial time approximation scheme (FPTAS) that uses dynamic programming as
a subroutine. A FPTAS is an algorithm that solves a problem with a correctness of
factor 1− ε of the optimal solution and is polynomial in 1

ε and in the size of the problem
instance [KV08].

However, the network utility and the associated travel time depend on the amount of
traffic navigating through this network, and as a conclusion, we derive a more complex
objective function; hence, we are not blessed with such well-performing algorithms. To
experience the impact of road users’ interactions in the given network, we focus on
network flows in the following chapters.

2.3 Flow of Traffic

The study of traffic flows seeks to describe the interactions between vehicles, traffic
participants and the network’s infrastructure. In section 2.3.1, we consider optimal traffic
flows from a somewhat central viewpoint, but also learn that traffic participants act
in a selfish way. Hence, a different model for traffic flows is required and studied in
section 2.3.2. In order to measure the loss from selfish routing to the system optimal flow
model, we obtain a worst-possible ratio. Afterwards, we apply this acquired knowledge
to the traffic network optimization problem in section 2.3.3. Finally, we explore how
it is possible to simulate traffic flows, which we primarily explain with the help of the
simulation tool MATSim.

A flow f is a function f : E → R≥0 that represents the volume of traffic. Thus, a flow
on edge is a nonnegative real vector fij ∈ R≥0 representing the amount of flow on edge
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2.3 Flow of Traffic

(i, j). We say a flow is feasible, if it satisfies the flow conservation constraints. For this,
consider a setting of navigating |d| units from source q to sink s.

i

∑
j:(j,i)∈E

fji + di =
∑

j:(i,j)∈E
fij

Figure 2.2: Flow conservation constraints

In fig. 2.2, we differentiate between three cases. For all nodes except source and sink
(i 6= q, s), it holds: Flow in is flow out, i. e. di = 0. Meanwhile, the special nodes i = q
and i = s represent connections to the environment surrounding. Hence there is a net
gain of flow, i. e. di > 0 and respectively a net loss of flow, i. e. di < 0.

2.3.1 System Optimal Flow

So far, we have introduced a mathematical model to represent the traffic network
optimization problem. However, we have left unanswered the question of how to measure
a network’s benefit. One option for the objective function is to minimize the travel time
that road users spent while navigating in the network. It matches our experience that
travel time is dependent on the traffic flow on this road. The more vehicles are on the
street the more travel time we have to expect. Thus, the cost function of a road is defined
dependent on the flow on it. We call the flow-dependent cost function tij : R≥0 → R≥0
as the travel time function of edge (i, j) ∈ E. In the literature, this is also referred to as
the link performance function or latency function. Let us closely examine the properties
of such travel time functions. Usually, they are expected to be nonlinear, convex and
monotonously increasing. In order to express the travel time function explicitly, we use a
function developed by the Bureau of Public Roads, [PR64] which reads as:

tij(fij) = t0ij

1 + α

(
fij
capij

)β (2.5)
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Chapter 2 Mathematical Modelling

The real number t0ij denotes the free-flow travel time introduced in section 2.1. The
travel time tij(·) grows with an increasing amount of flow and the capacity influences
the travel time in such a way that in case of exceeded capacity, road users end up in a
traffic jam and their travel time becomes overwhelming. A graphical representation of
the travel time function is provided in fig. 2.3. The horizontal axis represents the amount
of flow and the vertical axis the associated costs (travel time).

fij

tij(fij)

t0ij

capij

Figure 2.3: Travel time function tij(·)

After developing the travel time function, we focus on the objective. Since we want to
minimize the total travel time C(f) in the given network, the target function can be
expressed as the sum of travel time (dependent on the amount of flow) times the flow
over all edges:

C(f) =
∑

(i,j)∈E
tij(fij)fij =

∑
(i,j)∈E

cij(fij). (2.6)

We denote (2.6) also as cost of a flow f in a network N and thereby are able to compare
different flows in the same network. Since we are interested in only feasible flows, we
add the flow conservation constraints (fig. 2.2) which guarantee that no flow leaves or
enters the nodes, except at the source and the sink. The assignment of flows to edges
that minimizes the total travel time of all road users is called system optimum (SO) and
we define the system optimum problem (SOP ) as follows:

(SOP) min C(f) =
∑

(i,j)∈E
tij(fij) · fij =

∑
(i,j)∈E

cij(fij) (2.7)

s.t.
∑

j:(i,j)∈E
fij −

∑
j:(j,i)∈E

fji = di ∀i ∈ V (2.8)

fij ≥ 0 ∀(i, j) ∈ E
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2.3 Flow of Traffic

Note that we formulated (SOP ) without specifying capacity constraints; capacity is
considered indirectly in the travel time function. The problem above has at least one
feasible solution as the objective C(·) is continuous and the space of all feasible flows is a
bounded and closed subspace of the Euclidean space [Rou05]. To distinguish flows from
those in the next chapter, we denote a system optimal flow as a solution of (SOP ) with
f∗.

We now devote ourselves to a closer inspection of (SOP ). We have already ascertained
that the travel time function is convex and, thus, C(f) is a convex nonlinear objective
function under linear constraints. For this kind of problem, we know that every local
optimum is a global optimum as well and we can formulate the following theorem [UU12].

Theorem 2.5
A flow f∗ is optimal for a convex program (SOP ) and for continuously differentiable
travel time functions if and only if∑

(i,j)∈E
c′ij(f∗ij)f∗ij ≤

∑
(i,j)∈E

c′ij(f∗ij)fij (2.9)

for every feasible flow f .

Sketch of Proof. Apply the KKT conditions from Karush [Kar39] and Kuhn and
Tucker [KT50] along with the sufficient optimality conditions to the system optimum
problem to get the above statement. A proof of the general necessary and sufficient
optimality conditions can be found in [UU12]. 2

In this statement, we used the derivative of cij , which is defined as c′ij := d
dxcij(x). By

applying the product rule for differentiation for the specific expression

tij(fij) · fij = cij(fij)

it follows that
c′ij(fij) = tij(fij) + t′ij(fij)fij .

Since we know that tij(fij) is the travel time, we can interpret t′ij(fij) as the cost entailed
for road users of edge (i, j) when a single traffic participant also decides to use that road.

The optimal solution f∗ of (SOP ) is optimal for the system as a whole, but might be
unfair to some of the traffic participants. Could some of the single road users increase
their own travel time by switching to a faster path? And will the selfish behaviour of
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Chapter 2 Mathematical Modelling

the road users disturb the socially optimal outcome? To answer these questions, we will
consider a seminal example developed by Pigou [Pig20] in 1920.

Pigou’s Example

A B

t1(f1) = 1

t2(f2) = f2

Figure 2.4: Network in Pigou’s Example

Consider two locations A and B connected by two roads as in fig. 2.4. We have to
navigate one traffic unit from A to B. The travel time function for the upper route is
constant at t1(f1) = 1 regardless of whether other traffic participants are using the same
road. For practical understanding, we think of a long and wide highway. For the lower
route, the time that drivers need is dependent on the overall traffic, say a narrow route
through the city. Here, the travel time is exactly the fraction of the drivers who chose
the lower road with respect to the overall traffic t2(f2) = f2, i. e. travel time is dependent
on the amount of flow on this route. We dedicate ourselves to finding an optimal flow
from A to B. We follow the above-mentioned instructions and solve the system optimum
problem for the stated travel time functions under the assumption of navigating one
traffic unit from A to B, i. e. we are left with the task of solving the following problem:

min C(f) = t1(f1)f1︸ ︷︷ ︸
c1(f1)

+ t2(f2)f2︸ ︷︷ ︸
c2(f2)

= f1 + f2
2

s.t. f1 + f2 = 1
f1, f2 ≥ 0

We can quickly find the optimal flow f∗1 = f∗2 = 1
2 and the associated objective value of 3

4 .

Now consider the case where the drivers decide by themselves which path to take. With
the assumption that every driver has the aim of minimizing his own travel time, traffic
always uses the lower route. He does so because when choosing the lower road, the
driver needs at most the time that he needs for the upper one. As a result, all traffic
participants will reach B in not less than one hour.
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2.3 Flow of Traffic

Remembering the objective value (i. e. travel time) of C(f∗) = 3
4 from the solution above,

we discover that the selfish routing of the drivers leads to a worse travel time of C(f) = 1.

Taking that selfish behaviour of the traffic participants into account in the next chapter,
we approach a model where traffic status is deemed to be at an equilibrium.

2.3.2 User Equilibrium

As we have suspected in the previous section and even calculated in Pigou’s example,
the solution of the system optimum problem does not reflect real-world behaviour since
some of the traffic participants can improve their travel time by switching to another
road and thus destroy the optimal flow. We use this as an occasion and assume now a
selfish routing network, i. e. every traffic participant can choose his route in a selfish way.
In doing so, every single user has full information and knows the travel paths of all the
other users. Although the topic was discovered much earlier from Pigou [Pig20] in 1920
and Wardrop [WCEGB52] in 1952, the term “selfish routing” is due to Roughgarden and
Tardos [RT02] in 2000.

Wardrop’s first principle stated that a flow f is at equilibrium if “all journey times on all
the routes actually used are equal, and less than those which would be experienced by
a single vehicle on any unused route” [WCEGB52]. In other words, we say that a flow
is at equilibrium, if none of the traffic participants can improve their own travel time
by changing to a different road. We call that system state a user equilibrium (UE) and
Definition 2.6 states the mathematical formulation for the (UE):

Definition 2.6
A flow f is at user equilibrium (often Nash equilibrium) if and only if∑

(i,j)∈E
tij(fij)fij ≤

∑
(i,j)∈E

tij(fij)f̃ij (2.10)

for all feasible flows f̃ .

It should be mentioned that in the literature we often find the expression Wardrop
equilibrium, which is basically the same for a feasible flow f and continuous monotonous
functions tij : R≥0 → R≥0. Once we find a flow f at user equilibrium, all qk − sk paths
have the same travel time tk(f) and since the flow is feasible, the cost amounts to

C(f) =
K∑
k=1

tk(f)dk.
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There exist mathematical statements for the existence and the uniqueness of flows at
user equilibrium cf. [Rou05]. Thus, every instance admits a flow at user equilibrium and
all these flows have equal costs C(f).

With a closer look at the definition of a user equilibrium (2.10), one may recognize
the similarity to the optimality conditions (2.9) of the system optimum problem in
section 2.3.1. It turns out that flows at user equilibrium and system optimal flows are the
same but with different travel time functions. Therefore, we can formalize the relationship
between (SO) and (UE) as in the following statement provided by Beckmann, McGuire
and Winston [BMW56]:

Theorem 2.7
A flow f , feasible for N = (G̃, C, q, s, d, t), is system optimal if and only if f is at
user equilibrium for a network N ∗ = (G̃, C, q, s, d, t∗), where t are convex, continuously
differentiable and monotonously increasing travel time functions and t∗ the corresponding
marginal travel time functions with t∗ = d

dx(x · t(x)).

The proof of Theorem 2.7 can be found in [BMW56]. The above theorem delivers an
especially useful statement: In order to calculate a flow f in such a way that the status of
the traffic is at user equilibrium, we just need to solve (SOP ) using the modified travel
time function. Based on these new findings, we tackle Pigou’s example once again.

Pigou’s Example Revisited

If we are interested in finding a user equilibrium in Pigou’s example, we adapt the travel
time functions in the following way:

t(f) = d

dx
(x · t̃(x))(f)

Resolved by t̃ we get the modified travel time functions:

t̃(f) = 1
f

(∫ f

0
t(x)dx

)
The original network and the modified network with its new travel times are illustrated in
fig. 2.5. Thus, we are able to reach a user equilibrium in fig. 2.5a by solving the following
modified (SOP ):

min C(f) = t̃1(f1)f1 + t̃2(f2)f2 = f1 + 0.5f2
2

s.t. f1 + f2 = 1
f1, f2 ≥ 0
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2.3 Flow of Traffic

The optimal flow for the network in fig. 2.5b are f∗1 = 0 and f∗2 = 1 and it is equal to the
user equilibrium in fig. 2.5a, as per our assumptions in the first consideration of Pigou’s
example.

A B

t1(f1) = 1

t2(f2) = f2

(a) Original network with
travel time function t(·)

A B

t̃1(f1) = 1

t̃2(f2) = 1
2 f2

(b) Modified network with
travel time function t̃(·)

Figure 2.5: (SO) and (UE) in Pigou’s Example

Vice versa, a user equilibrium in a network with marginal travel time

t∗(f) =
(
d

dx
(x · t(x))

)
(f) =

{
1 for the upper route
2f2 for the lower route

delivers the system optimal flow for fig. 2.5a. A closer consideration of the aforementioned
example can be found in [Rou05].

We have so far achieved the calculation of a system optimal flow (SO) for an instance of
a network N in section 2.3.1 and of flows at user equilibrium (UE) in the current section.
Obviously, there is a gap between the value of the system optimum and the selfish user
equilibrium. We follow Roughgarden [Rou05] and quantify that gap by

ρ(N ) =
C(UE)
C(SO)

= C(f)
C(f∗) (2.11)

and name it the price of anarchy. The price of anarchy describes the worst ratio between
the cost at user equilibrium C(f) and the cost of a system optimal flow C(f∗).

Returning to Pigou’s example where the cost of system optimal flows were C(f∗) = 3
4

and the cost of flows at user equilibrium C(f) = 1, we get for the price of anarchy

ρ = C(f)
C(f∗) = 4

3 . (2.12)

As in [Rou05], one can show that for linear travel time functions, the price of anarchy is
always less than 4

3 . The more the degree increases, the worse the price of anarchy, e. g.
for travel time functions of degree 2 the price of anarchy yields to ρ ≈ 1.626. For a closer
examination of bounds of the price of anarchy, refer to [Rou05].
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2.3.3 Application in Traffic Network Optimization

This section concerns itself with the application of flows to the traffic network optimization
problem. Our aim is to evaluate the utility of networks by minimizing total travel time
and taking the objective as a comparative value. Let us first consider the idea from the
previous section. Since we experienced in section 2.3.2 that a system state at equilibrium
can be reached by solving (SOP ) using a modified cost function, we now want to develop
explicit travel time functions t(f). Let us recapitulate the main statement of the previous
section. Theorem 2.7 stated that the system optimal flow of a network N is at user
equilibrium for the network N ∗ for marginal travel time functions

t∗ = d

dx
(x · t(x)) (2.13)

and, accordingly, for a flow at user equilibrium, we can formulate the following:

A flow at user equilibrium in a network N = (G̃, C, q, s, d, t) is a system
optimal flow for Ñ = (G̃, C, q, s, d, t̃) with

t̃(f) = 1
f

(∫ f

0
t(x)dx

)
.

This statement forms the basis for our further examinations. Note that we are restricted
to continuously differentiable travel time functions if we wish to apply the above statement.
Let t(f) be an explicit travel time function, e. g. eq. (2.5) with the parameters α = 1
and β = 2:

t(f) = t0
(

1 + α

(
f

cap

)β)
= t0

(
1 + f2

cap2

)
As t(f) is continuously differentiable we can determine the modified travel time function
t̃(f) for the system optimum problem in the following way:

t̃(f) = 1
f

(∫ f

0
t(x)dx

)
= 1
f

(∫ f

0
t0
(

1 + x2

cap2

)
dx

)
= t0

(
1 + f2

3cap2

)
(2.14)

By plugging these modified travel time functions in the objective of (SOP ), we can
calculate a user equilibrium by minimizing total cost:

C(f) =
∑

(i,j)∈E
t̃ij(fij)fij =

∑
(i,j)∈E

t0ijfij

(
1 +

f3
ij

3cap2
ij

)

18



2.3 Flow of Traffic

So far, we have assumed only a single commodity. In order to formalize the opti-
mization problem, we extend the objective as well as the side conditions by taking
multi-commodities k ∈ C into account. Altogether, we get an optimization program with
a nonlinear objective function of third degree under linear constraints:

(NLP) min C(f) =
∑

(i,j)∈E

t̃ij(∑
k∈C

fkij)
∑
k∈C

fkij


∑

j:(i,j)∈E
fkij −

∑
j:(j,i)∈E

fkji = dki ∀i ∈ V ∀k ∈ C

fkij ≥ 0 ∀(i, j) ∈ E ∀k ∈ C

with explicit travel time functions (2.14). For (NLP ), we are left with k|E| variables,
k|V | flow conservation constraints and k|E| nonnegativity constraints.

By solving (NLP ) the objective value defines the total travel time in a network N .
In order to compare different networks, we just take C(f) as an evaluation value and
determine that the smaller the objective, the more useful the network.

We exploit this evaluation of networks and apply it to the traffic network optimization
problem. In order to provide solutions to (TNOP ), we choose an approach using
local optimization. The idea behind this is to optimize a given network within its
“neighbourhood”. We specify a neighbour of a network N as a network that differs in at
most k edges, compared to the initial network N . Figure 2.6 shows an example of k = 2.
Hence, we are left with three different border cases: First, we remove two edges from the
initial network, second, we add two edges and, third, we add one edge and additionally
remove one. See fig. 2.6 for a practical explanation.

Since there are quantities of neighbours for a given network and not all of them suit our
interest, we adapt the concept of a neighbourhood to the traffic network optimization
problem. For a given instance I of (TNOP ), we are restricted to a set of projects,
i. e. not every neighbour of N is part of a project. Thus, we just consider only those
neighbours that are within some given projects. Furthermore, we consider only those
networks that are feasible for the instance I. Both together lead to a significant decrease
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(a) Initial network N

...

(b) Neighbourhood of N

Figure 2.6: Example of a neighbourhood for k = 2

in the size of a neighbourhood. The optimization procedure then is as follows:

Algorithm 1: Local neighbourhood search

input : an instance I = (N , A,P, b)
output : best network N ∗ in the neighbourhood of N

1 Calculate all feasible, project-viable neighbours of N ;
2 foreach network in neighbourhood do
3 Solve the corresponding (NLP );
4 Save its objective C(f) as an evaluation value;
5 end
6 Return network with best evaluation (smallest objective);

This is a simple procedure of local optimization, in chapter 3 we become acquainted with
a more sophisticated method—the genetic algorithms.

2.3.4 Simulation of Traffic Flow

So far, we have gained a model that measures the network utility based on a road user’s
total travel time in this network. Various existing simulation tools are based upon this
solid groundwork. However, they further develop the evaluation of the networks by taking
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2.3 Flow of Traffic

more factors into consideration. One established tool that is available as open source is
MATSim (Multi-Agent Transport Simulation [Rie14])—a framework that provides a
tool for implementing large-scale transport simulations. Besides MATSim, there exist
plenty of simulation software such as SUMO (Simulation of Urban Mobility [Kra+12])
and TraNS (Traffic and Network Simulation Environment [Pi08]). For a brief overview
we refer to [Ngu+12].

MATSim belongs to the agent-based methods, where small intelligent units—called agents—
interact autonomously. Thus, the behaviour is not dictated by the system level but by
results from the behaviour of the single agents. Similarly to [Rie14] we will give a short
overview of the key components of MATSim to ensure understanding of the process
behind it and will also refer to the MATSim user guide [Rie14] for a more detailed
illustration of the concept. The five major stages of the simulation are initial demand,
execution, scoring, replanning and analysis. Based on fig. 2.7 that represent these stages
and their order, we will clarify the main MATSim operations.

Figure 2.7: Stages of a MATSim Simulation [Rie14]

The first stage forms the initial demand, which contains a list of agents with their day
plans and activities and thus describes the mobility behaviour to be simulated. Note
that an agent’s day plan describes only the intention of the agent and, under certain
circumstances, it may happen that the day plan cannot be realized in the simulation.

The execution stage is often called mobility simulation—short mobsim—and represents
the real motion of the agents in the network. During the execution, the agents influence
each other and thus traffic jams can occur. The execution process is iterative and thereby
the navigation of the agents changes over iterations.

The scoring is responsible for the evaluation of the agents’ execution. As a rule, the time
an agent spent in activities increases and the time spent travelling decreases its score.
The scoring process is incremental and, hence, the agent’s scoring increases with every
iteration. We consider in detail the utility function of MATSim, which is also called the
Charypar-Nagel scoring function [Rie14]. Imagine the typical course of an agent’s day:
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The agent is at home in the morning, then travels to work, at midday he is out for lunch
and in the evening he travels back home. The Charypar-Nagel function is drafted in such
a way that the agent increases his utility while being at home, at work or having lunch
and he gets a negative utility for travelling between those locations. The mathematical
formulation of the scoring function is the following:

V =
∑
i

(V perf
i + V late

i ) +
∑
j

V leg
j

V perf
i defines the benefit from performing activity i, which is normally positive. The

penalties V late
i for arriving late and V leg

j for travelling affect the scoring in a negative
way. Behind those functions are many more calculations. However, for our purposes, it
is sufficient to keep in mind which factors manipulate the scoring.

The replanning phase modifies the agents’ plans in a way that bad scores—for example,
if the agent got stuck in a jam—will be avoided in the next mobility simulation. This
optimization follows the principle of evolutionary algorithms. For the usage of MATSim,
we need not go into detail now, but the concept of such algorithms will be outlined
in chapter 3 since we use these principles for our program as well. The replanning
stage performs iteratively, too, and because it influences the agents’ plans, the following
execution and corresponding scoring of the agents will vary.

Once the maximum number of iterations is reached, some performance values are provided
in the analysis stage. Important data that we need for further processing are the average
trip duration and the development of the utility values (scoring values) of the agents over
iterations. The following scoring values are available [MAT11]:

• utility (executed): average score of the executed plan of each agent

• utility (worst): average score of the worst plan of each agent

• utility (average): average of the average score plan per agent

• utility (best): average score of the best plan of each agent

• average trip duration

Moreover, travel distances as well as information about the executed plans are available.

Once we use MATSim for an evaluation of networks, an important question of how
many iterations we should use, has to be answered. On these grounds, we look at the
development of the average score values of an agent over time as shown in fig. 2.8.
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Figure 2.8: Typical development of the average score [Rie14]

In the first few iterations, there is an enormous potential to increase the average score,
but the improvement is very slight in the later iterations. For our purposes, a fixed
iteration number of 60 seems to be a good choice, but it is important to really fix this
number of iterations; otherwise, the utility values are not comparable.
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Chapter 3

Genetic Algorithms

This chapter focuses on genetic algorithms, their processes and detailed steps. It starts
with the development of evolutionary algorithms in general and their inspiration from
nature. In section 3.2, we first present the general concept and sketch a pseudo code for
the standard genetic algorithm. Whereas, in section 3.2.1 to section 3.2.5, we conduct a
detailed examination of the basic steps: evaluation of the individuals, selection according
to fitness, crossover to generate new offspring, mutation of offspring and replacement
of the population. In section 3.3, we will not only summarize the advantages but also
become aware of the limitations of genetic algorithms.

3.1 Motivation of Evolutionary Algorithms

The term “evolution” refers to a gradual process of development and change in all
forms of organisms over generations. Usually, the traits of a population will be copied
from one generation to the next. Hereby, mutation in genes can appear randomly and
thus biological diversity arises. Evolutionary theory is the study and formulation of an
explanatory model of how evolution occurs. One of the most formative evolutionary
theorists was Charles Darwin. About 1836, he started to formulate his idea of evolution
and, in the subsequent years, systematically collected evidence about his concept of
“natural selection” [Kut08]. In 1859, he published his collections in the book On the Origin
of Species. The principle of “natural selection” is based on the respective probability of
the survival of an individual and, thus, its opportunity to pass on a hereditary disposition
to its offspring. Those individuals that are more adaptable to their environment and are
more resistant against diseases have higher reproductive success than do others. One
can also say that they have a higher fitness level. In passing a hereditary disposition to
offspring, mutation can occur. In evolution theory, mutation describes a transformation
in the genome [Kut08]. Evolutionary algorithms pick up these evolutionary phenomena
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of mutations and the “survival of the fittest” and, therefore, attempts to simulate the
behaviour of nature. In the field of optimization, evolutionary algorithms belong to the
class of metaheuristic optimization methods, which means that they are determining
enhanced solutions to the underlying problem within the framework of a search process
but, in contrast to heuristics, are not restricted to a specific problem.

3.2 General Concept of Genetic Algorithms

As a special type of evolutionary algorithms, the genetic algorithms belong to the
population-based methods. Genetic algorithms (GA) were invented by Holland [Hol75]
in 1975. The main idea behind them is to consider not just a single solution but rather
to search for an effective one from among a large number of possible solutions. This set
of candidate solutions is called a population and each solution is called an individual of
this population. In the following, we will denote the length of an individual by n and the
size of the population by m. A critical problem in applying genetic algorithms is to find
a suitable representation of the solutions in the problem domain as individuals. This
process is called encoding and can be performed using different types or objects such as
bits, arrays, lists, or numbers. The first practised encoding [Hol75] and even the most
common way is a binary string with 1s and 0s. Nevertheless, there exist other encodings,
such as tree encoding, octal encoding or value encoding; for a closer examination, we refer
to [Mit96] and [SD07]. In this chapter, we will not further the topic of encoding since
we are blessed with “natural” encoding as we are dealing with a binary optimization
problem; for further guidance see chapter 4.

The aim of the application of a genetic algorithm is to augment the population in
respect to the fittest individual iteratively by using evolutionary mechanics, such as
elitism, mutation, and crossover. The procedure is repeated until some criteria are
met. A maximum number of iterations as well as the percentage of equal individuals
in the population could form such criteria. We now want to formulate the concept of
genetic algorithms mathematically. Translating the process of the iterative generation of
populations into code, we derive a simple pseudo code for the standard genetic algorithm
(see Algorithm 2).

We start by generating a random population of m individuals and as long as the stop
criteria are not met, a new population will be generated. In doing so, we first evaluate all
individuals in the present population and then take the evaluation values as a decision-
making basis for determining which individuals should have the chance to reproduce.
Subsequently, the selected individuals go through mutation and crossover; afterwards,
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Algorithm 2: Pseudo Code for a standard GA

1 Randomly generate a population of m individuals;
2 while stop criterion is not fulfilled do
3 Evaluation: Score all individuals of population;
4 Create offspring by:
5 Selection: Determine survival probability acc. to individual’s fitness;
6 Crossover: Randomly choose parents and perform crossover;
7 Mutation: Mutate some of the offspring;
8 Replacement: Replace current population by new population;
9 end

10 Return best individual in present population;

the current population will be replaced by them. Once the abort criterion is fulfilled, the
algorithm returns the best individual that has occurred until that point. Naturally, there
are various implementations of the different steps. In the following, we investigate closely
several phases of Algorithm 2.

3.2.1 Evaluation and Fitness Function

Once we establish an initial population, we are interested in how well the individuals are
performing. On that account, the evaluation of all individuals in the current population
forms the first step of the algorithm. Obviously, all the individuals have different benefits
for the underlying problem. Hence, the optimization criteria state the evaluation function
of the individuals, and the evaluation value appraises the profit for the optimization
problem. In the literature, the terms “evaluation” and “fitness” are not consistent. We
often find that the evaluation function is equal to the fitness function itself; obviously,
they are related to each other. However, for our purposes we differentiate between them
as the fitness function measures the chance for an individual to reproduce, while the
evaluation delivers the benefit for the optimization problem. What the fitness function
will look like will be examined in the next section.

3.2.2 Selection

Selection is paramount since we decide which individuals in the current population will
form the basis for creating new individuals. As a deciding factor, we use the fitness
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function. Generally, individuals with higher scores are more likely to be selected than
those with poor fitness. In the literature, there are plenty of selection techniques, such as
tournament selection or rank selection [Mit96]. Within the scope of this work, we take a
closer look at the roulette wheel method, since this technique was developed very early in
1989 by Goldberg [Gol89] and is hence well tested. The roulette wheel selection belongs
to the fitness-proportional selection methods, which already suggest its advantage; the
selection takes into account not only the order of fitness values, as for instance, the
rank selection but also matters related to the proportions of the next fittest individual.
Another advantage that we intend to leverage is the following: Even the worst evaluated
individual has a chance to reproduce even if it is not particularly large; thus, we do not
exclude some individuals at a too early stage. Obviously, fitter individuals tend to have
greater chance to survive than do weaker ones. We define an individual’s fitness as the
fraction of its evaluation value compared to the other evaluation values:

fitness(i) = evaluation(i)∑
i evaluation(i)

As the name suggests, we can illustrate the method by considering the game of roulette.
See fig. 3.1 and assume that there are five individuals (represented by the five different
colours) with varying fitness values. The size of the slice that an individual owns is
proportional to its fitness value.

rotating wheel
31%5%

36%

11%

17%

pointer for selection

largest share of the
wheel for the fittest
individual

smallest share of the
wheel for the weakest
individual

Figure 3.1: Roulette wheel selection
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After allocating all individuals on the wheel, we select a random individual by rotating
the roulette wheel. Wherever the pointer stops, we choose the corresponding individual.
Obviously, we spin the wheel as many times as we need an individual—mostly, as per
the size of the population. The selected individuals constitute the pool of parents for the
next generation. In practice this method is implemented as follows:

1 Randomly generate a uniformly distributed number r ∈ [0, 1];
2 for i = 1, . . . ,m do
3 if

∑i
k=1 fitness(k) ≥ r then

4 Select individual i;
5 break;
6 end
7 end

3.2.3 Crossover

The crossover (often called recombination) is the process in which two individuals (parents)
produce new individuals (offspring) by bequeathing parts of themselves to their offspring.
This is implemented by first cutting the parents at specific positions; afterwards, they
are put back together, crossbred. This specific positions are named the crossover points.
Let n be the length of an individual. Then every integer between 1 and n − 1 defines
a possible crossover point. A crossover procedure with only one crossover point can be
implemented as follows:

1 Select two individuals as parents;
2 Set offspring1 := individual1 and offspring2 := individual2;
3 Randomly generate a crossover point z ∈ {1, . . . , n− 1};
4 for i = z + 1, . . . , n do
5 valueoffspring1(i) = valueindividual2(i);
6 valueoffspring2(i) = valueindividual1(i);
7 end

An example illustrating the principal of the above procedure is provided in fig. 3.2. The
instance of the two individuals form the parents and both of them have 8 bits. Possible
crossover points could be every number from 1 to 7, e. g. for the crossover point z = 3,
the two offspring are represented as shown in fig. 3.2.
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individual 1: 1 0 1 1 0 0 0 1

individual 2: 1 0 0 0 1 1 0 0

1 2 3 4 5 6 7 8

offspring 1: 1 0 1 0 1 1 0 0

offspring 2: 1 0 0 1 0 0 0 1

Figure 3.2: Parents and their offspring

If there is only a single crossover point as above, then we call it a one-point crossover.
Obviously, we can consider more crossover points and get a 2-, 3- or k-point crossover.
As the name already reveals, for a k-point crossover, we calculate k random crossover
points and the offspring adopt the values alternating at the k points from their parents.

Another technique would be the uniform crossover schema, where each bit of the offspring
is assigned either to individual 1 or individual 2, both with a probability of 0.5. In
practice, this procedure is implemented as follows:

1 for i = 1, . . . , n do
2 Randomly generate a uniformly distributed number r ∈ [0, 1];
3 if r < 0.5 then
4 valueoffspring1(i) = valueindividual1(i);
5 valueoffspring2(i) = valueindividual2(i);
6 end
7 else
8 valueoffspring1(i) = valueindividual2(i);
9 valueoffspring2(i) = valueindividual1(i);

10 end
11 end

Using this approach, we get two offspring with approximately half of the values from
each individual. The decision regarding which crossover scheme is suitable most often
depends on the specific problem.

An important parameter for the crossover in general is the crossover probability pc,
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which decides how often the crossover will be performed. In the case of no crossover,
the offspring of individuals are exact copies of their parents. Otherwise, we get new
individuals for the next generation. The hope of performing a crossover is that the
offspring will contain good parts of their ancestors, thus forming better individuals for the
new generation. Typical values for the crossover probability are pc = 0.6 to 0.9 [Gol89].

3.2.4 Mutation

In the phase of the GA named mutation, the structure of an offspring will be modified
purposefully at one or more positions. A typical mutation process like the flipping
mutation decides for each position of the individual whether it will be mutated and, if
so, changes the value of that position. For the binary encoding, this can be realized by
changing 1 into 0 and 0 into 1, respectively. We implement the flipping mutation as
below:

1 for i = 1, . . . , n do
2 Randomly generate a uniformly distributed number r ∈ [0, 1];
3 if r < pm then
4 Set valueindividual(i) = 1− valueindividual(i);
5 end
6 end

Figure 3.3 proposes an example where an individual mutates at position z = 6. The
resulting individual differs exactly in the value of position 6, i. e. value 0 flips to 1.

individual: 1 0 1 1 0 0 0 1

individual (mutated): 1 0 1 1 0 1 0 1

1 2 3 4 5 6 7 8

Figure 3.3: Individual before and after mutation

There are numerous mutation techniques. The reversing mutation, for example, generates
a random position and flips the values next to it [SD07]. Furthermore, there are techniques
that mutate individuals only if this assures an improvement in the evaluation value. Such
a mutation method is called hill-climbing mutation [SD07]. In chapter 4 we will get to
know a concrete mutation procedure that can be considered as part of these hill-climbing
methods.
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Similarly to the crossover, a basic parameter is the mutation probability pm. The mutation
probability decides whether each bit of an individual will be mutated or not. Obviously,
if there is no mutation, the offspring will enter the new population without any change.
If mutation is performed, parts of the offspring will be changed. This might allow jumps
in the solution space, preventing its getting stuck in a local optimum. Additionally, the
mutation process helps the population to prevent its diversity, so that it does not become
too homogeneous over time. In general, random mutation will not occur very often and
a guideline for mutation probabilities are pm = 0.001 to 0.01 per bit. However, it must
be said that the setting of the mutation probability as well as the crossover probability is
a world of its own and often dependent on the problem instance. Those who would like
to immerse themselves within this topic could refer to [Gol89].

3.2.5 Replacement

As the GA repeatedly replaces an old population by a new generation, the replacement
scheme will be responsible for deciding which individuals will form the next population.
An obvious way would be to replace the current population by adopting only the generated
offspring. This leads to the drawback that no guarantee of monotonously increasing
population is given. Accordingly, there may be occasions where the succession population
has worse fitness than the previous population. This holds for both, the average fitness
of the population as well as the value of the fittest individual. To avoid discarding the
best individuals in the population, the principle of elitism can be implemented, whereby
a copy of the top-rated individuals will be guaranteed for the next generation. In the
instance of keeping the size of the population constant, one may first copy the elitist
individuals and afterwards fill up the rest of the population with the generated offspring.
Another advantage of elitism is the increased performance of genetic algorithms, since
always keeping the fittest individuals leads to fast homogenization of the population
and thereby to a fast convergence of the entire algorithm. Of course, this is not always
desirable; hence, a good selection of parameters like the number of elitist individuals may
be a worthwhile but not an easy task.

3.3 Advantages and Limitations

We utilize this section for a critical reflection on the topic of genetic algorithms. We
would like to demonstrate the advantages of GAs, outline drawbacks and present where
the method reaches its limits.
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Advantages

Far-reaching application: Genetic algorithms provide a solution method for a multitude of
optimization problems. The only requirement is that the problem must have the property
to describe its decision variables with a finite individual encoding. Since the technique
of genetic algorithms is not dependent on the problem surface, it can be used to solve
complex problems. Even if we deal with non-continuous or non-differential problems
where derivative methods fail, we can use GAs since they do not mind objectives that are
not smooth. Additionally, genetic algorithms also scale very well for multi-dimensional
problems or multi-objective optimization problems.

Multiple solutions: As the genetic algorithm iterates over populations it does not just
provide a single solution but a set of candidate solutions. This can often be used as a
basis for decision-making. In practice, there are numerous deciding factors and not all of
them incur in the problem modelling. Hence, genetic algorithms place several solutions
at the user’s disposal and can later help determine the most appropriate one.

Easy incorporation: Genetic algorithms do not require advanced mathematical knowledge
since the main steps are conceptually simple. Therefore, a quick introduction to the topic
of GAs is possible even for non-mathematicians.

Drawbacks

Costly evaluation: The identification of the right evaluation function is inherently not a
minor task. The calculation of the evaluation value is often very time-consuming, which
leads to a bad performance in terms of the running time of the algorithm.

Local optima vs. global optima: Since we denote a solution as “good” only in comparison
to the other solutions, we cannot provide evidence regarding the global optimum. Thus,
there is no assurance that genetic algorithms will always determine the global optimum.
Sometimes, they sadly get stuck in a local optimum even if we try to avoid this via the
crossover and mutation phase where we hope to widen the search space. As a consequence,
the GA will converge prematurely before it reaches a global optimum.

Parameter settings: The right choice of parameters is often the key to getting good
solutions, even though the configuration of the parameters is not straightforward. The
crossover probability pc and the mutation probability pm as well as the calibration among
them have a strong impact on the performance of the algorithm. In addition, setting
the size of the population and the abort criterion is also a sophisticated task, one that is
often combined with time-consuming meddling with the right parameters.
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In conclusion, it can be said that the suitability of GAs is dependent on several different
factors: The amount of knowledge of the optimization problem as well as the texture of
the objective function and the surface of the problem domain need to be involved in the
decision. Other optimization algorithms might be more efficient for specific problems
and some approaches that specifically address the special problem will perform better in
terms of convergence. Nonetheless, genetic algorithms are a powerful tool, especially for
solving problems where no exact polynomial time algorithm exists.
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Chapter 4

Implementation of a Standard and
Enhanced GA

Having studied the traffic network optimization problem (TNOP ) and introduced genetic
algorithms as a metaheuristic, we now focus on the implementation of the standard
genetic algorithm and an enhanced genetic algorithm, which uses a GA combined with
nonlinear programming. The implementation of the two programs just distinguishes in
one step. Therefore we explain the structure of the program by means of both algorithms,
the standard GA and the enhanced GA, yet specify the differences if necessary. The
chapter sections are organized as follows: With the help of a graphical sequence diagram,
we explain the program’s principle of operation in section 4.1. We can break down the
program into four steps and each step will be explained in detail. In section 4.2, the
handling of the program is provided; hence, no knowledge about the program’s design is
required. For those who want to gain a deeper insight of the program, section 4.3 will
provide the inner structure.

4.1 Program Structure

Let us remember the traffic network optimization problem (TNOP ) from section 2.2:

(TNOP) max u(x)

s.t.
n∑
i=1

rixi ≤ b

x ∈ {0, 1}n
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We are interested in finding a combination of projects pi, i = 1, . . . , n that ensures the
most utility u(x) for the traffic participants with regard to a limited budget b. Let
us solve the above problem with the help of genetic algorithms. By applying genetic
algorithms to our problem, we are obligated to find a suitable encoding (see chapter 3).
As (TNOP ) allows already binary values for the decision variable x, an obvious encoding
is to represent an individual as a binary string of length n. In practical terms, if an
individual contains a 1 at position i, this represents xi = 1; i. e. project pi will be
realized. Moreover, an evaluation function has to be defined for the GA. As an individual
represents a combination of projects and these represent a configuration of a network, we
use MATSim to evaluate this network. Thus, MATSim acts as an evaluation function for
us. We now have the necessary tool to solve the traffic network optimization problem for
an instance I = (N , Ã,P, b).

For a first impression of the program we look at the graphical sequence diagram in fig. 4.1.
It depicts the entire time flow of the program and shows the program steps in detail.

Step 1:
Generate population

with random individuals

Step 3: 
Evaluate all individuals

of the population

Step 2: 
Make population feasible 

for underlying problem

Step 4:
Replace population
by new generation

Generation i

while ()

Generation 0 Generation i

Generation i++

Figure 4.1: Graphical sequence diagram

Before getting into further detail, let us have a short overview of the topic. Typical
for the genetic algorithm, a random population is generated, which forms Generation
0. At this stage, neither information about the evaluation nor about the feasibility
of the individuals is available. This is followed by a step that is not typical for the
genetic algorithm—namely, the validation of the individuals. Since we deal with some
feasibility constraints, which warrant that the project cost will not exceed the budget, it
is important to check whether the possible solutions are feasible or not. Therefore, step 2
of the program modifies all individuals in such a way that they later fulfil the feasibility
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constraints. In order to evaluate all feasible individuals, the simulation tool MATSim
will come into play. MATSim scores all individuals according to different measures and
returns the corresponding scoring values (to review the several MATSim scoring, see
section 2.3.4). The average utility will form the evaluation value of the genetic algorithm.
One part of the evaluated population will be adopted unmodified into the next generation;
this is the application of the elitism method. The remaining individuals will perform
mutation and crossover. The offspring, together with the elite, will then form the new
generation. With the recent population, the process starts once again and runs for as
long as one of the abort criteria is fulfilled. We will now discuss steps 1–4 of the flow
chart in detail.

Step 1: Initial Generation

Step 1:
Generate population

with random individuals

The individuals of Generation 0 are generated randomly. A first version of the program
is implemented by chosen individuals randomly from a discrete uniform distribution.
Consequently, every position of an individual is 0 or 1 with the same probability of
0.5. As a result each individual will consist of nearly the same quantity of 1s and 0s.
This leads to the question of whether this is always meaningful for the various problems.
Practical tests have revealed that generating individuals uniformly leads to combinations
of more projects than can ever be feasible for the traffic network optimization problem.
This leads to the idea of restricting the maximum number of 1s while generating the
random individuals. The difficulty in doing so is to decide how many 1s we really want
to produce. Hence, we resolved it by calculating an individual with the help of a normal
distribution. It was found that the choice of a normally distributed number seems to be
appropriated.

Obviously, the setting of the mean and the standard deviation is dependent on the specific
problem instance I. For example, a setting with a mean µ = 15 and a standard deviation
σ = 3, as shown in fig. 4.2, calculates between 9 and 21 ones with a probability of 95%.
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Figure 4.2: Probability density function: N (15, 9)

Step 2: Feasibility

Step 2: 
Make population feasible 

for underlying problem

The feasibility of the individuals does not affect the further course of the genetic algorithm
but is essential in such a way that we are just interested in potentially accessible solutions
for the road expansions. Hence, before evaluating all individuals later on we want to
assure the feasibility of all of them. When do we call an individual “feasible”? A first
thought would be that an individual is feasible if its costs do not exceed the maximum
budget. We additionally discover that, for our purpose, it could be interesting to handle
individuals as feasible if they exceed the maximum budget “a little”. An individual that
is not feasible for the underlying problem can, however, be attractive for reproduction,
for example, in the crossover phase. Nevertheless, in the end, we have to ensure that
the maximum budget is observed. So, on the one hand, we appreciate individuals that
are almost feasible; on the other hand, however, we want to guarantee feasibility in the
end. An obvious solution and the one that is implemented here, is to introduce a weak
budget condition. This condition appears as follows: In the beginning, we define a margin
(percentage) within which we expect the limit to be violated and shrink that margin
over time. As shown in fig. 4.3a, a linear reduction of the margin has been chosen. The
margin decreases towards zero until the minimum number of algorithm iterations (in
example: 25) is reached and from then on the maximum budget will be respected. The
initial margin in that example is 20%, which means that the maximum budget can be
exceeded by 20%; of course, any other margin can also be defined.
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Figure 4.3: Functions of step 2: Feasibility

Another idea that emerged while testing the algorithm is the following: There are feasible
individuals that are far away from the given budget limit and they most likely do not suit
our interest for a solution. Hence, we force the individual to be close to the maximum
number in the way that we add projects as long as it still remains feasible. As we
represent the realizations of projects by an individual with binary values, this operation
involves changing some values from 0 into 1. Similar to the weak budget condition, the
number of attempts for performing this “adding” operation increases over time. More
precisely, the number of attempts to fill up an individual with 1s increases linearly with
the number of iterations. In fig. 4.3b we used #attempts = b0.5 · iterationc until the
maximum number of attempts is reached. Since the number of attempts must be an
integer, we round down the result. Thus, we get a step function that remains constant
for a given number of maximum attempts. Again, this number of maximum attempts is
instance-oriented and must be defined beforehand.

Step 3: Evaluation

SimulationGeneration i Generation i

<<MATSim>>

Step 3: 
Evaluate all individuals

of the population
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The simulation tool MATSim is responsible for the evaluation and, for this purpose, it
provides four different evaluation values. The one that will be used here is the average
score of the agents since it seems to be the best measure for our problem. Also possible
are the best value, the worst value, and the executed value. The rule here is, that
the larger the values, the better it is for the agents. Another attribute that MATSim
calculates is the average trip duration. This value does not influence the algorithm but
will be saved for comparison with the average trip duration of the original network. For
different adjustments in algorithms that MATSim uses and that consequently also affect
the output values, one should refer to the MATSim tutorial [MAT11] and the MATSim
user guide [Rie14]. The option to run the MATSim simulation for all individuals in the
population parallel to each other is given, but then we have to accept a 2–3 % aberration
from the original evaluation values. It is up to the user to decide how exact the solutions
should be in the end.

Step 4: Replacement

Crossover

Mutation 
(standard)

Selection

Generation i Generation i++

Elitism

Mutation
(enhanced)

Step 4:
Replace population
by new generation

<<Xpress>>

The replacement is the step where the creation of a new population is processed. It
consists of various sub-steps that we already defined purposefully in chapter 3.

1. Elitism: The implemented program uses the method of strong elitism, where the
best individuals will be adopted into the upcoming generation without undergoing
any change. This leads to the guarantee of monotonously increasing evaluation
values over generations. How many individuals will form the elite can be adjusted
in advance, but in order to guarantee a monotonously increasing evaluation of the
fittest individual, a maximum number of one elitist individual is enforced.
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2. Selection: The type of the selection method is switchable. The first method just
takes the best individuals in the population as a basis for the reproduction. This
method, which in the literature is often called elitist selection, might not be the best
choice since those individuals with poor evaluation die out but might nonetheless
be a good parent for reproduction. To manage this drawback, the roulette wheel
method is implemented. We introduced this selection method already in section 3.2.2
but will have to change it a bit, since MATSim also produces negative score values
if the number of iterations is adjusted too low in the configuration. Moreover, there
is no fixed range for the evaluation value. For that reason, whenever there appears
at least one negative evaluation value, we modify the method in the following way:
We calculate the range from the worst to the best evaluation value and assume
the MATSim range of evaluation values to be 10% greater then the calculated
interval. By extending the range, we get a roulette wheel bound. Shifting this lower
bound to zero now, we get strictly positive fitness values and can continue with the
usual roulette wheel procedure. For a better understanding, consider fig. 4.4 below.
Among all the blue evaluation values, a smallest value of -13.0 and a largest value

-10 0 10 20 30 40 50 60

-13.0 -6.5 4.6 11.4 25.5 38.9 53.0

-16.3
roulette wheel bound

-10 0 10 20 30 40 50 60

3.3 9.8 20.9 27.7 41.8 55.2 69.3

Figure 4.4: Adjustments for the roulette wheel selection

of 53.0 give us a range of size 66.0. Extending the range by 10% yields a roulette
wheel lower bound of −16.3. Note that the 10% extension is assigned half to the
lower side and half to the upper. This leads to the roulette wheel lower bound
being exactly 5% smaller than the worst evaluation value with respect to the whole
interval. On shifting the lower bound to zero, all subsequent evaluation values will
be positive. One may ask why we chose exactly 10%? To put it simply, this gave
us the best results while testing a couple of different values. It might occur that,
for another instance, the range has to be adjusted. Observe that if no negative
values appear, we apply the usual roulette wheel selection, as in section 3.2.2.

3. Crossover: A one-point crossover will be performed according to the initially
specified probability pc. In this case, the crossover point is a randomly calculated
position between 1 and n−1 with equal probability for each position. An interesting
thought would be an intelligent crossover that may appear as follows; try to measure
sub-networks and, if they seem to be good, keep them together in the crossover
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phase. In all likelihood, this is beyond the scope of this thesis, especially considering
the dimension of the present data, but could be worth investigating with some
effort later.

4. Mutation: We have already mentioned that the genetic algorithm is implemented
in two different ways. Until this point, the standard GA and the enhanced GA
have worked in exactly the same way. The phase of mutation is now the point
where these genetic algorithms differ. On the one hand, we apply a random flipping
mutation as described in section 3.2.4 but do not decide for each position of an
individual whether it will be mutated or not. Instead, we randomly select a position
which will then be flipped. We differ here a little to be able to compare the standard
GA with the enhanced one. Recapitulate the mutation procedure of the standard
GA below:

1 Select an individual corresponding to pm;
2 Randomly generate an integer z ∈ {1, . . . , n};
3 Set valueindividual(z) = 1− valueindividual(z);

As in the crossover phase, there is a previously set percentage rate pm that tells
us how often mutation should be applied. It should be noticed that the mutation
probability pm must be adapted, since in the flipping mutation the probability
refers to each bit whereby the probability in the aforementioned method refers to
each individual as a whole.

For the enhanced GA, we now discuss a different mutation approach that changes
values meaningfully rather than at random. We can classify this procedure among
the hill-climbing mutation methods. The objective is to change each individual in
a way that the mutated individual is the best one among all its neighbours. This
procedure is implemented with the help of the local optimization mentioned in
section 2.3.3:

1 Select an individual corresponding to pm;
2 Decode individual, i. e. individual ; N ;
3 Determine best network N ∗ within the neighbourhood of N ;
4 Encode network, i. e. N ∗ ; individualnew;
5 Set individual = individualnew;

Assume that we select an individual which shall be mutated now. We are mutating
this individual by applying Algorithm 1 of section 2.3.3. Thus, we calculate
its “neighbourhood”, which is defined as a network that differs by at most k
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edges compared to the initial network (represented by the current individual).
Subsequently, we compute an evaluation value of each network in this neighbourhood.
For the evaluation, we solve (NLP ) in the sense of section 2.3.3, where the idea is
to calculate a user equilibrium by solving a system optimum flow problem. The
objective value that reflects the travel time will thus deliver the evaluation value.
We then mutate an individual in the way that we replace it by the best evaluated
network in its neighbourhood (encoded again as individual).

4.2 User Documentation

We now dedicate ourselves to the handling of the program. It is not necessary to know
the exact structure of the program in order to use it. We just interact with the input
and output data, the program handles the rest by itself. Let us take a closer look at the
input.

We are confronted with different kinds of input data. Some of them concern the specific
problem and belong to the data defining an instance I = (N , Ã,P, b) of the traffic
network optimization problem. Other inputs are destined for the algorithm itself these
are parameters that help to fine-tune the algorithm and still others are just needed for
external programs.

Input: instance

The networkOriginal.xml file, which describes the currently existing network graph G̃, is
self-explanatory. In the same manner, the newStreets.xml file defines a network graph Ã
corresponding to the possible new streets. The structure and setting of these files are
fixed, because MATSim will operate on them. We find the set of projects P in project.txt,
where we list all the projects. Moreover, every project is assigned a project ID (fixed
integer) and the realization costs. By implication, the number of projects will schedule
the length of an individual later on. In budget.txt, a positive real number is saved and it
represents the overall budget b.

Input: parameters

All relevant parameters will be specified in the parameter.xml file. These include parame-
ters such as the size of the population, the mutation and the crossover probability, the
number of MATSim iterations, and the stop criteria. If we do switch between different

43



Chapter 4 Implementation of a Standard and Enhanced GA

problem instances, this input file will be the only one we really work on.

Input: external

As mentioned already, MATSim needs different types of input data. There are the
config.xml, the counts.xml, the facilities.xml and the plans.xml. For the exact design
instructions of those files, we refer to the MATSim tutorial [MAT11]. For solving
the nonlinear program in the enhanced approach, we need to deposit the files for the
optimization program, optimization.mos and optimization.bim, where the network flow
problem is implemented.

After declaration of the input data, we save the data in a folder called input. It is now
time to execute the program, either in our favourite development environment or through
a command in the console. After termination of the program, the output data is ready.
We find the output data in a folder called “run” and a sub-folder named by the date
and time we started the program. Within that folder, all the necessary output files are
archived. Different types of output can be found here.

Output: parameters and information

The parameter.xml is merely a copy of the parameter file from the input folder. It
conduces to be able to follow the constellation we used for the specific test run after
trying different input parameters.

In infos.txt the program collects information about start time, end time and running time
as well as algorithm details like the number of calculated generations and the number of
equal individuals within the last population. It sheds light on how well the test run was
and which factors might need cosmetic changes.

Output: solution and development

Probably the most interesting file is the solution.txt, in which the best calculated con-
struction plan is displayed. Useful facts such as the overall costs, the budget gap and
improvement to the original network can also be found here. The solution network N ∗
with stored nodes and edges can be found in solutionNetwork.xml.

To not just accept the presented solution but rather to understand the process of iteratively
generating solutions for the underlying problem, the evaluation.txt will help. It reports the
systematically increasing evaluation values—for example, experience regarding whether
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the output solution was generated just in the last iterations or maybe long before the
algorithm actually terminates.

Output: other

Additionally, some files for visualization of the solution network in Matlab can be found
in the folder dataMatlab. To be able to compare the results to the input network, we find
the evaluation values of the initial network in the folder original.

4.3 Developer Documentation

This section explains the design and composition of the program. The program has
been implemented in Java (version 1.7.0_65) whereby the IDE (Integrated Development
Environment) Eclipse (version 4.3.0) has been used. There are interfaces to the simulation
tool MATSim (version 0.5.0) and to the optimization solver FICO Xpress (version 7.7);
the nonlinear optimization program is implemented in Mosel (version 3.6.0) using the
environment Xpress-IVE (version 1.24.04) [Xpra] [Xprb].

Essentially, there are four blocks working absolutely independent of each other; in
Eclipse, these blocks are represented as packages. First of all, there is the domain block
that comprehends everything relating to networks, projects, and extensions. Here, one
finds all the information about the real problem flow in one place. The characteristics
of the original network, as well as the street extensions and possible new streets are
processed here. The second is the genalgo block. It is easy to assume that this part
handles the whole genetic algorithm, which ranges from generating random populations
to implementing mutation and crossover. Note that the genetic algorithm deals only with
sequences of zeros and ones, and knows nothing about networks or projects and their
costs. Last but not the least are the matsim block and the xpress block, which are crucial
for evaluating the network. In these packages the transferral of the required data to the
external programs takes place. Since all blocks work autonomously, the solver package
brings them all together, which means that it interacts with all packages and ensures
the coherence of the whole program. In table 4.1, the design and the aforementioned
structure of the program is visualized. The used colours follow Eclipse, where classes are
coloured green, interfaces violet and packages brown.

In each package, different classes represent the objects we deal with; in the following,
major key classes will be introduced.
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solver
TrafficOptimizer (main){
1. Initialize relevant data.
2. Start Genetic Algorithm.
3. Display solution.
}
ToptParameter
MatSimScorer implements Evaluator
NetworkFeasibilityChecker implements FeasibilityChecker
MutationRandom and MutationOptimizer implements Mutator
domain genalgo matsim xpress
Project Individual MatSimController XpressController
Construction Population ScoreValues MoselGraph
Network GenAlgoFunctions UtilityValues MoselEvaluation
NetworkExtension GenAlgo

Evaluator
FeasibilityChecker
Mutator

Table 4.1: Program design

Package: domain

As mentioned before, the domain package is responsible for managing the network itself.
An object of class Project is unique in its project ID, consists of the project’s realization
costs and contains a set of street IDs. On the other hand, the class Construction consists
of a set of projects and reflects a possible construction plan as a solution to the underlying
problem. Every network with its links and nodes will be represented by an object of
class Network. Moreover, the class NetworkExtension is able to transform a set of IDs
into a construction plan, which means that it maps a specific integer to the right project.
Additionally, it decides if a certain extension of the original network is feasible or not.

Package: genalgo

In genalgo, an object of class Individual contains, besides a 0-1-array, the evaluation
value and the fitness value of an individual. Clearly, the class Population consists of a
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list of individuals. GenAlgoFunctions involve static functions whose tasks are to modify
individuals and populations through mutation, replacement and crossover. In GenAlgo,
the proper process takes place. Verifying the feasibility of an individual, evaluating it with
MATSim and mutating individuals in different ways would represent an interaction with
the other blocks (domain, matsim and xpress); thus, they are implemented as interfaces.

Package: matsim

In the package matsim, we find the MATSim controller, where changes can be made in the
configurations and the actual MATSim run takes place. Moreover, a class ScoreValues is
introduced and is appropriate for the MATSim results. One object of the class ScoreValues
captures the four utility values and the average trip duration of one MATSim run.

Package: xpress

All classes corresponding to the optimization solver Xpress are part of the package called
xpress. As we deal with a multi-commodity flow problem, we define a special class named
MoselGraph representing a graph G in a network N . Settings pertaining to Xpress we
handle in the class XpressController. Once we run Xpress, we save the corresponding
evaluation values of that graph in MoselEvaluation.

Package: solver

In the solver package, the main method, which controls the entire traffic optimization
process, is implemented. As mentioned earlier, the solver package manages interaction
between the four areas. The important aspect is the following: None of the packages
knows what the solver package is or does but the solver package itself is well aware
of the others. This allows communication between all of them and passes on relevant
information without violating their autonomy. Whenever some communication between
those four packages is necessary, the solver package mediates between them. To realize
this, we implement the interfaces in the solver package. Furthermore, within the main
method, one can define the kind of mutation. The Class MutationRandom represents the
standard GA with random mutation, whereas the class MutationOptimizer represents
the mutation of the enhanced GA.

47





Chapter 5

Results

So far, we have described the traffic network optimization problem as well as introduced
the implementation of two algorithms: the standard genetic algorithm and a further
developed algorithm, which arose from the former one. In order to proceed with the
structure of the current chapter, let us quickly recapitulate the essential property of
the enhanced algorithm compared to the standard one. We developed an enhanced
GA that uses kind of a hill-climbing mutation. Hereby, the mutation procedure has
been implemented with the help of a nonlinear optimization program whose objective
represents the evaluation value of a given network. Based on this evaluation process,
the algorithm performs mutation by changing an individual into the best one in its
neighbourhood. Therefore, this chapter aims to compare the results of the enhanced
algorithm with those of the standard algorithm, i. e. with a random mutation procedure.
The sections in this chapter are organized as follows: In section 5.1, we introduce the
test data that is used to appraise both algorithms. Section 5.2 captures the parameter
setting of the test runs as well as their outcome. In order to assess the performance of
the algorithms, we focus on analysing the algorithms’ running times in section 5.3.

5.1 Test Data

We now introduce the practical data for the algorithms’ test runs. To apply the developed
algorithms, we need test data in terms of an instance I = (N , Ã,P, b) of (TNOP ). We
call the specific instance of our test data IPerlach, since all test data originate from
Munich’s Department of Public Order and pertain to the district “Perlach”. Most of
the data have been edited afterwards by a research group at the Technical University
of Munich (comprising Johanna Brandstetter, Lisa Gerstner, Saskia Schiele, and Maria
Theresia von Soden).
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For a review of the different objects of an instance I we give a brief subsumption in a
hierarchical order but for detailed definitions of the used terms we refer to chapter 2:

Problem instance I = (N , Ã,P, b)
Network N = (G̃, C, q, s, d, t)
Network graph G̃ = (G, cap, t0) with graph G = (V,E) (original)
Network graph Ã = (A, cap, t0) with graph A = (V,A) (extension)
Projects P
Budget b

The required data concern different types of information and, thus, can be divided into
three categories with regard to their content:

1. Data about the considered area (network environment) G̃

2. Data about traffic flows (network behaviour) C, q, s, d, t

3. Data about construction projects (network development) Ã,P, b

We will now explain in detail the three types of data provided within the scope of Perlach’s
traffic network optimization.

Network Environment

As mentioned already, the area covered by all of the data is Munich’s district “Perlach”;
therefore, the network environment provides data about the road network of Perlach.
See fig. 5.1a for a street map of the considered district.

Primarily, street information is provided by OpenStreetMap (OSM) [Ope04], a platform
that offers geographic data and is freely accessible and editable. The abstraction of
Perlach’s streets into a graph G = (V,E) as well as some edge information such as the free-
flow travel times t0 and the capacities cap have been amended by the above-mentioned
research group. Figure 5.1b illustrates the resulting graph G.
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(a) Map of Perlach (b) Network representing Perlach

Figure 5.1: Munich’s district Perlach

Network Behaviour

But data about the environment is not the only thing that is required. We learnt that in
order to evaluate networks, we need information about traffic flows. Hence, to estimate
traffic flows in Perlach, data regarding road users’ travel behaviour must be collected.
The simulation tool MATSim even requires timely day schedules of road users. For
this purpose, the considered area is examined with consideration of the facilities where
high levels of traffic are expected. Such facilities are, for example, educational facilities
like schools, day-care centres and nurseries as well as super markets, pharmacies, large
companies and hospitals. In the areas around these facilities, we expect high volume of
traffic at certain times; subsequently, we take this information as a source to generate
knowledge about the day plans of agents, i. e. activities of Perlach’s residents. All
agents’ schedules were issued by the research group. Based on these schedules, MATSim
calculates agents’ utility values.

Since we use a different evaluation of networks in the mutation phase of the enhanced
algorithm, we need to abstract these day plans into general traffic flows. Hence, we do
not use the day schedules of agents that travel from an arbitrary point in the network
to another. Instead, we consider traffic flows only during two periods and, in addition,
allow them only between certain sectors. For the classification of the sectors, a simple
division into four parts is used (see also fig. 5.2). The source q and sink s of a commodity
are special vertices in the corresponding sector. An important aspect is to assure that
these vertices are incident with several edges, since complete traffic rates emanate from
them. This is often implemented by inserting a supersource or a supersink respectively.
These supersources/supersinks are connected to a couple of nodes in the corresponding
sector by a zero-cost edge. Specifically, this means an edge (q, i) from source q to some
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nodes i ∈ V with capacity capqi =∞ and free-flow travel time t0qi = 0. The same applies
for sinks. Both the supersource and the supersink of a commodity are naturally added
to the existing graph and are treated like all of the other nodes. After introducing such
supersources and supersinks to each of the four sectors, we can associate 12 commodities
between these sectors. Each source and each sink of a commodity consists of demands
d 6= 0, while for all other nodes d = 0 applies. Consider fig. 5.2 for the exemplary view of
a commodity from sector 1 to sector 2.

1 2

34

q s
demand ds = -100demand dq = 100

Figure 5.2: Abstraction of day plans into commodities

In addition, however, we consider the traffic rates of the commodities for different day
times. The two considered periods are from midnight to 1pm (morning) and from 1pm
to midnight (afternoon/evening). Due to these considerations are revealed |C| = 12
commodities from any sector (1, 2, 3, 4) to another, all considered at the morning in the
one case and at the evening in the other. Each source and each sink consists of demands
d 6= 0; we extract these demands from the day schedules of the agents and, afterwards,
merge them together.

Furthermore, as a travel time function, we use the one recommended by the Bureau of
Public Roads [PR64] with constants α = 1 and β = 2:

tij(fij) = t0ij

(
1 +

f2
ij

cap2
ij

)
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These constants were chosen due to mathematical convenience, since quadratic objects
are easier to handle than those for β > 2.

Network Development

Since the goal of traffic network optimization is to ensure smooth flow of traffic in the
future, we will modify the street configuration in Perlach. Naturally, this will not be
done in a haphazard manner; rather it will be handled by considering different street
expansions and street constructions. To describe possible new streets, the Department of
Public Order scheduled a list of these roads with corresponding street information; this
represents the network graph Ã = (A, cap, t0).

The set of expansion projects P carried out by the Department of Public Order is defined
by |P| = 110 projects. A single project comprises between one and 18 streets, that
can either be expanded, newly-constructed or reduced. Each project p ∈ P contains
project cost r ≥ 0—i. e. costs that are estimated by the department corresponding to the
realization of this project. The available budget b amounts to 18,401,146, i. e. there is
around 18.4 million Euro for the realization of construction projects in Perlach.

To get a feel for the dimension of the problem, note that for the given 110 projects, there
exist 2110 = 1.3 · 1033 project combinations. Obviously, not all of them are feasible—more
precisely, there never can be realized more than 20 projects in order to adhere to the
budget; but then we are still left with 1,048,576 possible project combinations.

5.2 Parameter Settings and Test Runs

After introducing the data taken for further consideration, this section surveys the
predefined settings for the different test runs as well as appraises the outcome of these
runs. We focus on test runs that are able to compare the two algorithms of this thesis:
First, a standard genetic algorithm (standard GA) that performs mutation randomly
and, second, a further developed algorithm (enhanced GA) that mutates individuals
meaningfully into better evaluated ones. In order to match these two algorithms, we
run them with the same setting of parameters. These parameter settings as well as the
amplitude of considered test runs are presented in section 5.2.1. In section 5.2.2, we
analyse the outcome of the run under several aspects. The first consideration focuses
on the final solution network itself and evaluates it without involving its development.
Subsequently, we take precisely this evolution into account and observe, for example,
if the final solution is achieved with the last iterations or long before the algorithm is
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actually terminated. In the end, a general view of the practical outcome is taken, since
our target was to help in decision-making and, thus, we will focus on the realized projects
themselves.

5.2.1 Parameter Setting

Since we consider two different algorithms, with the parameter setting we have to ensure
their comparability afterwards. All parameters have been ascertained in plenty of runs
beforehand and the adjusted values were rated “good” according to the given problem
instance IPerlach. We find the setting of all necessary parameters in table 5.1.

Genetic algorithm
population size 15
mutation probability 0.2
crossover probability 0.75
percentage of elite 0.2
maximum percentage of equal individuals 0.8
minimum number of iterations 50
maximum number of iterations 100

Others
MATSim iterations 60
MATSim evaluation value utility (average)
Xpress evaluation value average (am/pm)
edge difference of neighbour 2
percentage of margin 0.2

Table 5.1: Parameter setting

With the above parameter setting of the genetic algorithm, we run the program by a
consideration of m = 15 individuals. The length of an individual is specified automatically
by the number of available projects, i. e. n = |P|. With the above-mentioned percentage,
three out of 15 individuals will be handled as elite, whereby the remaining individuals
perform crossover with a probability pc = 0.75 and mutation with a probability of
pm = 0.2. The mutation probability refers to the whole individual and is tantamount to
a per-bit mutation probability of approximately 0.0018. The algorithm will terminate
if one of the abort criteria is fulfilled. This may be a homogeneous population where
more than 12 individuals are the same on the one hand, or if a maximum number of
100 iterations are reached on the other. The former stop criterion will not be met as
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long as the minimum number of 50 iterations is achieved. We ascertain 60 MATSim
iterations (for a motivation of this number see section 2.3.4). The average scoring of
an agent over the 60 MATSim iterations serves as an evaluation value for the further
course of the genetic algorithm. As mentioned in section 2.3.4, also available are the best,
the worst and the executed values. Since we calculate an evaluation value within the
phase of mutation according to two periods, we take the average travel time of traffic
flows in the morning and of those in the evening. Furthermore, we use k = 2 edges
difference for the definition of a network neighbourhood. Obviously, there is no need for
this information when running the standard genetic algorithm. Finally, the percentage
of margin indicates the extent to which one is allowed to exceed the budget until the
minimum number of iterations is reached. Parameters outside those in table 5.1 occur as
mentioned in chapter 4.

5.2.2 Test Runs and Results

All test runs were undertaken on the compute server of TU Munich (Dell PowerEdge
R815-System), equipped with 2.2 Gigahertz 4x AMD Opteron 6174 processors, 48 cores
and a main memory of 128 GB RAM. The simulation is taken on by MATSim and, as an
optimization solver for the enhanced algorithm, we use FICO Xpress. We started both
algorithms with the parameter setting in table 5.1, whereby we run each algorithm ten
times. Since randomness plays a major role especially in generating an initial population,
we generally take the average of the algorithm’s outcome into consideration.

To evaluate the performance of both algorithms, we specify three types of outcomes:

• Quality of resulting solutions

• Development of resulting solutions

• Characteristics of resulting solutions

The quality of the final solution of all test runs will be primarily measured by means of
MATSim’s average utility value, since it represents the evaluation of the network. The
consideration of the solution development serves as an indicator of slow/fast convergence
to culmination. For this purpose, we use the average utility value over all runs as a
measurement. Furthermore, we additionally consider the evolution of population’s trip
duration since the enhanced algorithm take travel times not utility values as a basis for
the evaluation. Finally, a breakdown of the chosen projects provides practical, decision-
making support. Here, we try to recognize some patterns in the observed results. Are
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there some valuable projects that are within most of the solutions or does any solution
provide completely different project combinations?

Quality of Resulting Solutions

Before starting to evaluate the final solution, we examine the performance of the original
network N of instance IPerlach since this forms the basis of appraising the algorithm’s
solution. For the key data of N , see fig. 5.3.

MATSim data of the original network

utility (executed) 102.829
utility (worst) 44.722
utility (average) 89.373
utility (best) 116.081
average trip duration 493.700

Figure 5.3: Original network N

Obviously we run the optimization algorithms to reach a better utility; especially for the
average utility values, we expect eligible improvements, i. e. higher values. However, the
average trip duration should decrease as well. We mainly focus on these two values. The
final values of the ten test runs are summarized in table 5.2.

standard genetic algorithm enhanced genetic algorithm
average utility trip duration (sec) average utility trip duration (sec)

run 1 113.320 271.96 111.945 291.51
run 2 114.022 264.83 110.033 328.63
run 3 115.047 298.62 110.297 281.12
run 4 111.473 315.70 112.856 292.28
run 5 113.179 283.60 112.624 293.57
run 6 113.405 289.99 110.248 291.15
run 7 113.115 307.29 115.160 300.05
run 8 110.673 343.11 113.338 315.92
run 9 115.002 288.69 111.663 297.36
run 10 115.203 298.92 113.783 316.40

Table 5.2: Final results of each of the ten test runs
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In the following, the outcome of the standard genetic algorithm is coloured blue by
default and the enhanced one is coloured red.

The final solution is the best individual of the generated populations and represents a
combination of projects; this, in turn, is a specific network. Therefore, we closely examine
the average utility value, since we use this one as an evaluation value in both algorithms.
Since a graphical interpretation of the values in table 5.2 leads to get a better appreciation
of the outcome, we illustrate the outcome in the form of a diagram. Figure 5.4 shows the
average utility value of the final network for each of the ten runs. The blue bars belong
to the standard genetic algorithm, the red ones to the enhanced genetic algorithm, and
the green line represents the value of the original network (compare to fig. 5.3).
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Figure 5.4: Best utility value of runs 1–10

We can clearly identify that both algorithms deliver utility values that are considerably
better than the utility value of the original network. Another observation is that the
two algorithms received similarly high values. The highest utility value of the standard
algorithm amounts to 115.203 and the highest value of the enhanced one amounts to
115.160. The same applies for the lowest utility value (standard: 110.673, enhanced:
110.033). Nevertheless, on average, the standard algorithm (blue mean) reaches a slightly
higher utility than the enhanced algorithm (red mean). As a result, if we look at only the
final solution, we find that the enhanced algorithm brings no benefits over the standard
one with random mutation. Note that initial generation is completely random; thus,
the consideration of just the final utility values does not provide information about the
performance of the algorithms.

We can say that both algorithms perform well with respect to the final solution but
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presently there is still no indication that the further developed algorithm performs better.

Development of Resulting Solutions

So far, we have concentrated only on the obtained solution in the form of the best network.
However, this is not the only thing to take into account while evaluating the algorithm.
It is also highly relevant to consider the behaviour of the algorithm. In practical terms,
this means taking into account the development of the considered values. Figure 5.5 thus
shows the evolution of the best individual within a generation over iterations. In this
consideration, the average utility value over all runs is used as a yardstick. The blue
curve represents the utility values of the standard genetic algorithm whereas the red
curve depicts the enhanced genetic algorithm.
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Figure 5.5: Development of the utility value (type: average)

It is seen that both algorithms significantly improve their initial utility values; however,
there are considerable differences in the curve progression. They start with almost the
same initial utility value, although Generation 0 is created at random. The development
of both curves does not differ very much in the first 50 iterations. Then, the following
takes place: While the utility values of the blue curve (i. e. the curve of the standard
algorithm) is growing consistently until iteration 100, the red curve (i. e. the curve of
the enhanced algorithm) increases only slowly until the maximum number is reached.
In total, the standard genetic algorithm could improve the utility values by more than
19% in comparison to the enhanced algorithm. What is the reason for this? Since
the enhanced algorithm performs a local optimization in the mutation step instead of
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randomly mutating an individual, the stagnant curve, beyond half of the iterations, can
be an indicator of being trapped into a local optimum. Consequently, a local search
within the neighbourhood of a network achieves no higher utility, whereas the random
mutation could have led to a jump in the search space, enabling the algorithm to further
improve its utility values.

An alternative hypothesis to explain the poor performance of the enhanced algorithm in
the later iterations is that “optimized” individuals will not be evaluated better in the
simulation. Note that the local optimization is performed with the help of a different
evaluation method that does not use simulation. Therefore, it is possible that the two
evaluation methods are too diverse. Since the evaluation in the neighbourhood search is
based on computing total travel times in a network, we should consider the development
of the trip duration to get concrete evidence. Figure 5.6 is structured identically to the
earlier figure where the blue curve belongs to the standard genetic algorithm and the
red curve to the enhanced one. We now consider the evolution of the trip duration. For
this, we take the mean of all individuals of the current generation and again observe the
average over all runs.
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Figure 5.6: Development of the average trip duration

Again, both algorithms decrease their trip durations, even if these values are not included
in the evaluation function. For the present, this observation leads one to assume a
dependence of the trip duration and the agents’ utility. Furthermore, it clearly states
our aforementioned hypothesis. While the standard algorithm only decreases the trip
duration by only 117.227, the enhanced algorithm excels with far higher improvement
of 161.446, which corresponds to a better result of more than 37% . In concrete terms,
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the enhanced algorithm heightens the travel time of single individuals of a population,
i. e. in average the population yields better values with respect to the trip duration (cf.
fig. 5.6). However, this improvement of the trip duration does not influence the utility
value to such a degree, that there was great implications for the utility.

Overall, one can say that the enhanced algorithm does not lead to better utility values.
However, this might rather be due to the deviation of the evaluation methods than to
the failure of the algorithm. Quite the opposite, fig. 5.6 demonstrates a strong influence
on the trip duration. Thus, in future, more time should be invested in levelling out the
discrepancies of the two evaluation methods.

Characteristics of Resulting Solutions

Another aspect that we have already mentioned above is to examine closely the solutions’
properties. Since we are not just interested in finding the “one” best solution, but rather
a pool of eligible solutions to provide decision-making support. One such guidance for
a decision might be to consider the most valuable projects that are suggested by the
algorithms. Do they vary completely or are some projects strongly recommended? To
answer this question, we count the number of projects selected from the different test
runs. It turns out that especially one project seems to be very valuable. Besides some
other projects, Project 84 was selected seven times out of ten in the standard algorithm
and eight times in the enhanced algorithm. This suggests that by a realization of Project
84, the network utility increases significantly. Meanwhile, Projects 67 and 104 were
chosen 11 times and nine times respectively for both algorithms together. See fig. 5.7 for
a practical implementation of the recommended Projects 84, 67 and 104.

Another interesting point is that 45 of the 110 projects were not present in any of the
solutions of the 20 test runs. This might be an indicator for a poor cost-performance
ratio of those projects, rather, they are simply not needed. Since the final realization of
projects may not exceed the given budget of 18 million Euro, we would like to examine
the extent to which this budget has been exploited. It has been ascertained that, from
the overall 20 test runs, the budget has been exhausted by at least 96.82% and at most
99.98%. However, no correlation between a good utility value and a small remaining
budget was found.

Finally, after a close examination of the results from different perspectives, one can
mention that the algorithm developed in this thesis performs very well with respect
to the traffic network optimization problem. Even though there was no improvement
of the final utility values on using the enhanced genetic algorithm, we ascertain that
especially the increase of the trip duration in contrast to the standard genetic algorithm
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Figure 5.7: Projects recommended by both algorithms

offered convincing evidence about the potential of the algorithm. However, in order
to arrive at more precise statements and deeper insights into the performance of the
enhanced genetic algorithm, additional test runs might be necessary, mainly because
randomness plays a big role in genetic algorithms. For example, the initial population is
generated randomly and chance plays a crucial part in the roulette wheel selection. Also
crossover and mutation are performed only up to a certain percentage. Subsequently,
after undertaking further runs, one can eliminate weak points of the enhanced algorithm;
some preliminary ideas for this will be given in chapter 6.

5.3 Running Times

This section examines the two algorithms with respect to their running times. The
most time-consuming procedure in both algorithms is the evaluation of networks. In
comparison, all other calculations are negligible in terms of their running times. Let us
measure how costly is one such arbitrary network evaluation of the order of Perlach’s
graph (i. e. |V | = 287, |E| = 533). Since we have different alternatives for evaluating
a network, we need to differentiate between the two evaluation methods - MATSim
simulation and Xpress optimization.
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Computing times

MATSim ≈ 180 sec per evaluation

Xpress ≈ 30 sec per evaluation

Table 5.3: Computing times of evaluating one network

Note that the values are based on 60 MATSim iterations and the Xpress calculations
involve traffic flows during two time periods (morning/afternoon). As table 5.3 shows, a
network evaluation using the simulation method needs six times longer than an evaluation
that comprises solving a nonlinear program with Xpress. To specify total running time, we
first consider the MATSim calculations, since both algorithms make use of the simulation
in their evaluation phase. In order to supply statements about absolute running times,
let us review the benchmark data in table 5.4.

size of population m = 15

size of individual n = 110

mutation probability pm = 0.2

maximum number of iterations maxiteration = 100

Table 5.4: Benchmark data for the computation of running times

Since we expect that a MATSim network computation needs 180 seconds on average,
with the above assumptions of a population size of 15 and a maximum of 100 iterations,
it yields a running time (rt)

rtMATSim = maxiteration ·m · 180sec = 270.000sec = 75h

i. e. the program needs more than three days just for the network evaluation. In most
cases, this is not acceptable, a possible remedy here is to perform simulation of each
individual in the current population simultaneously. With the given resources of 48 cores
we are able to speed up running time significantly with the help of parallelization:

rtMATSim = maxiteration · 320sec = 32.000sec ≈ 8.8h
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Obviously, this is an enormous increase of running time. Let us now consider the
computing time needed for the optimization of the nonlinear program in the enhanced
genetic algorithm. We use the evaluation in the phase of mutation but only with a
percentage of pm = 0.2. Actually, the number of neighbours is not limited in the algorithm;
however, in all of the test runs, there never occurred more than 49 neighbours. Therefore,
we assume a maximum number of maxneighbours = 50 possible network neighbours. A
network evaluation using Xpress needs approximately 30 seconds pursuant to table 5.3;
thus, mutation in the enhanced algorithm has the following running time:

rtXpress = maxiteration · pm ·m ·maxneighbours · 30sec = 450.000sec ≈ 125h

This means in a worst case scenario, the calculation of all mutations requires more than
five days. Naturally, we can increase running time as in the above to parallelize all
computations of neighbours. Indeed, this might prove indispensable for future studies,
but in the scope of this work, we must put up with the poor performance of the enhanced
algorithm.

The actual running time strongly dependent on the utilization of the server. For the
standard GA the running time has been varying from a minimum of 8 hours 5 minutes
to a maximum of 10 hours 28 minutes, while for the enhance GA we have observed a
running time from 41 hours 30 minutes up to 69 hours 7 minutes.
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Conclusion

We would like to utilize this chapter to retrospect on the task of traffic network optimiza-
tion, the developed approach and its performance in contrast to the standard genetic
algorithm. Moreover, we review the thesis in terms of future prospects by focusing on
the weaker points of the approach. Subsequently, we discuss possible practical solutions
in order to remedy this weakness in future studies.

The optimization of traffic networks aims to improve a given road network in terms of
maximizing the road user’s utility in this network. We abstracted this task by modelling
an integer optimization program to represent it. The objective was to maximize the
achieved utility of the traffic participants. Thereby, we were faced with the challenge
of measuring this utility. Hence, we devoted ourselves to discussing different methods
of measurements and, in a first approach, represented the utility by the road users’
travel time. For this purpose, a nonlinear program has been solved in order to use
the objective (total travel time) as an evaluation for a given network. The second
approach for evaluating networks involved the use of professional simulation tools. These
simulations not only take the travel time into account but also additional factors and
timely day schedules; therefore, they can be used for a more authentic assessment. After
providing methods to evaluate networks, we focused on the actual assignment—namely,
advancing a given network. Since the integer program (TNOP ), which represents the
traffic network optimization problem, is already NP-hard for a linear objective function,
and we still have a nonlinear cost function, a common way to solve such kind of problems
is to use heuristics or metaheuristics respectively. Effective and widely used methods
include, for example, genetic algorithms. These generate a set of solution candidates
and iteratively increase this set according to the candidates’ fitness. Since a solution (in
this context called individual) represents a specific network configuration, we use the
aforementioned techniques for appraising the evaluation of such an individual. A general
genetic algorithm consists of different phases; the selection phase, where the decision of
which individuals get a chance to reproduce is made; the crossover phase, where selected
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individuals generate offspring by passing on parts of themselves; and the mutation phase,
where parts of the individual are modified randomly. In order to provide a solution for
the traffic network optimization problem, a standard GA and an enhanced GA have
been implemented. In the latter case, the mutation will be performed in a goal-oriented
manner by changing an individual into the best one in its neighbourhood. Therefore, a
local optimization method is used: The neighbourhood of a network is characterized by
all networks that have at most k edges difference to the given one. With the help of the
above-mentioned nonlinear program, all networks are evaluated and the given network
mutates into the best-rated one. The enhanced method is subsequently compared to
the standard genetic algorithm by applying them in several test runs. The test network
is Munich’s district “Perlach”. By comparing the quality of the solution as well as its
evolution over iterations, it turned out that the enhanced GA performs well with respect
to the trip duration. However, no significant improvement pertaining to the objective
(i. e. utility) has been achieved. At this point, we would like to highlight the weakness of
this algorithm and offer ideas for eliminating these vulnerabilities.

The performance of the enhanced algorithm is not convincing in all respects. These
unsatisfactory aspects of the enhanced algorithm could be due to various factors. One
can categorize these factors according to the algorithm’s speed on the one hand and the
algorithm’s design on the other. However, the latter is often reasonable only if some
speed-ups are implemented beforehand.

Speed-ups

A common problem—not just for this algorithm—are the very long computing times.
In the case of the considered algorithms in this thesis, the evaluation is the most time-
expensive computation regardless of whether we use the simulation or the slightly faster
nonlinear optimization. The simulation procedures have already been made quicker by
the parallelization of all networks in the population, cf. section 5.3. The same could be
applied for the evaluation of all networks within the neighbourhood; this hastening is
highly recommended for ensuring continued operations.

Another idea for the increase of the running time might be to limit the number of
neighbours. Thereby, it is necessary to choose a strategy that selects neighbours wisely;
otherwise, potentially suitable networks can be lost.
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Design Changes

Once we have the ability to speed up the evaluations, a more improved version of
a neighbourhood search can be implemented. This can be done by iterating over the
neighbourhood several times, i. e. once the best network is found, one starts the procedure
once again by generating the neighbourhood of this new network and then finding the
best individual in this neighbourhood and so on. This leads to an expansion of the
search space before the final mutation is performed; thus, it might increase the upcoming
utility value of the simulation. Additionally, this could help to rectify the local optimum
problem.

Another crucial reason why the outcome of the enhanced algorithm is particularly
unsatisfactory might be the usage of different evaluation methods. For the general
evaluation in the genetic algorithm, we take the simulation values as a basis, whereas the
evaluation in the neighbourhood search of the mutation phase avails itself by solving a
nonlinear program whose objective represents the total travel time in the given network.
As an assumption for the functioning, these values need to be proportional to each other
or at least to correlate with each other. An investigation of this point showed a correlation
between the two evaluation methods of r ≈ 0.35, which can be seen as a “moderate”
correlation. A key issue for future studies lies in increasingly sharing common values.
One thought for managing this is a more meaningful abstraction of the agents’ day plans
into traffic flows. A simple classification into four equally sized sectors and two time
periods (cf. section 5.1) leads to major differences in both evaluations. Thus, a different
sector allocation where the texture of the considered area is involved might result in
a better correlation. In order to manage the above drawback of poor correlation, the
simulation could be responsible for all evaluations. However, this requires a way to fasten
the evaluation procedure since the simulation is the most time-consuming part in the
algorithm.

In conclusion, it can be said that the developed algorithms in this thesis perform well
with respect to the traffic network optimization problem and it is worthwhile to further
study more advanced approaches to remedy the discussed weaknesses.
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Appendix

The following listed folders and files denote the data on the enclosed CD-R:

• Folder binaries:
All jar-files needed for running the standard genetic algorithm (“TNOP_standard.jar”)
and the enhanced algorithm (“TNOP_enhanced.jar”).

• Folder eclipse:
Source code for the algorithms introduced in this thesis.

• Folder input:
All necessary input files.

• Folder results:
Summarized results of the test runs.

• File thesis.pdf :
PDF file of master’s thesis.
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