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Abstract

Shock-induced turbulent multi-material mixing plays an important role in many natu-
ral phenomena as well as in technical applications. The theoretical growth rate of the
Richtmyer-Meshkov instability (RMI) suggests that it could play a significant role during
the early stages of supernova remnant (SNR) formation. Kane et al. (1999) state that
RMI contributes to the observed radio and X-ray structures in SNR as it leads to fast
growth of non-uniformities in the stellar material and fundamentally alters the subsequent
SNR formation proceü. RMI also drives the initial amplification of the Rayleigh-Taylor
instability (RTI), which dominates the evolution of SNR at later times.

RMI occurs at the material interface between two fluids of different densities, when the
interface is impulsively accelerated by a shock wave. The misalignment between the
pressure gradient across the shock wave and the density gradient across the material
interface results in baroclinic vorticity production. The deposited vorticity is the driving
mechanism, which amplifies the initial perturbations at the material interface.

In the present thesis a generalized Roe average for multi-component models is proposed,
which suppresses spurious pressure oscillations at material interfaces. It is shown that the
recently developed WENO-CU6 scheme (Hu et al., 2009) together with the generalized
Roe average introduces only very small numerical dissipation while preserving its shock-
capturing properties, and hence is well-suited for simulations of shock-induced material
mixing problems. Furthermore, two-dimensional simulations of the single-mode RMI
are conducted and compared to experimental results. It is observed that previous single-
component models fail to accurately predict the temporal flow evolution of the instability,
when compared to the experiment. Thus, the proposed multi-component model increases
prediction accuracy significantly over previous models.

In under-resolved simulations a substantial portion of the solution requires numerical
modeling and special care must be taken in complex material mixing problems which are
strongly anisotropic and inhomogeneous. The fact that most of the employed numeri-
cal models have been only validated for simple flows reduces confidence in the simulation
results and in their physical interpretation. Thus, one focus of the present thesis is to pro-
vide a consistent framework for the systematic analysis of numerical model uncertainties
as well as to provide a high-confidence numerical data set of shock-induced multi-material
mixing problems.

The numerical modeling uncertainty introduced by subgrid-scale regularizations is in-
vestigated by studying the numerical properties and the convergence behavior of two
fundamentally different numerical models, when applied to three-dimensional RMI. The
initial interface perturbation between heavy and light gas is imposed spectrally exact by a
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Abstract

deterministic function. This approach allows to identify the physical effect of the subgrid-
scale regularizations and to provide a high-confidence data set. Furthermore, spectral and
temporal scalings that have been controversially discussed in literature are confirmed by
demonstrating that they are recovered by both models.

On the other hand, initial-data uncertainties and their influence on the late-time evolution
are largely unknown. Therefore, the other focus of this thesis is to establish a framework
for the quantification of parameter uncertainties of experimental investigations through
two-dimensional fully-resolved simulations of the shock accelerated heavy-gas cylinder.
For this purpose a polynomial chaos expansion is coupled with a high-order compressible
multi-component simulation model in order to propagate the initial-data uncertainties
onto the output quantities of interest. Specifically, the effect of initial-data variations in
the shock Mach number, the contamination of the heavy-gas cylinder with acetone and the
initial deviation of the heavy-gas region from a perfect cylindrical shape on the mixing
process is investigated. The results allow a better understanding of the fundamental
connection between initial-data uncertainties and the experimentally measured output
data.

Finally, direct numerical simulation results of shock-initiated material mixing are pre-
sented. These results are the first fully-resolved numerical simulations of three-dimensional
RMI. The results conclusively show that a minimum critical Reynolds number has to be
exceeded in order to observe a Kolmogorov inertial subrange scaling and to observe tran-
sition to turbulence. The scales of motion become clearly separated as the shock Mach
number and thus the Reynolds number are increased. Furthermore, turbulence statistics
such as probability density functions of the velocity and its longitudinal and transverse
derivatives provide first evidence that non-homogeneous anisotropic turbulence evolving
from RMI is not fundamentally different from generic isotropic homogeneous decaying
turbulence.

The systematic framework for the quantification of parameter and numerical model un-
certainties of shock-initiated material mixing together with the high-confidence data set
from direct numerical simulations and from model comparison provides a unique tool for
interpreting existing and future results. The thesis shows that the analysis of the effect of
uncertainties in experimental and numerical investigations can guide to a complete and
uniform understanding of RMI.
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Kurzfassung

Stoß-induzierte turbulente Durchmischungsvorgänge spielen in vielen Naturphänomenen
und technischen Anwendungen eine wichtige Rolle. Die theoretische Anfachungsrate der
Richtmyer-Meshkov Instabilität (RMI) deutet darauf hin, dass sie speziell in der frühen
Entstehungsphase von Supernovaüberresten (SNR) wichtig ist. Kane et al. (1999) ver-
muten, dass das durch RMI angefachte Wachstum von Störungen mitverantwortlich für die
charakteristischen Strukturen im Radio- und Röntgenwellenbereich von SNR ist. Anfangs-
unregelmäßigkeiten in der Sternmaterie werden durch RMI schnell angefacht, wodurch der
Entstehungsprozess von SNR entscheidend beeinflusst wird.

RMI tritt an der Grenzfläche zwischen zwei unterschiedlich schweren Gasen auf, wenn
diese durch einen Verdichtungsstoß impulsiv beschleunigt wird. Dadurch wird barokli-
nische Wirbelstärke an der Materialgrenzfläche erzeugt, die zu einem Anwachsen der
anfänglichen Störungen auf der Grenzfläche führt.

In der vorliegenden Arbeit wird ein verallgemeinertes Roe-Mittel für ein Mehrkompo-
nentenmodell vorgestellt, welches unphysikalische Druckoszillationen an Materialgrenzflä-
chen unterdrückt. Des Weiteren wird gezeigt, dass das kürzlich entwickelte WENO-CU6
Diskretisierungsschema (Hu et al., 2009) zusammen mit dem verallgemeinerten Roe-Mittel
nur geringfügig zusätzliche numerische Dissipation erzeugt und die stoßabbildenden Eigen-
schaften des Schemas trotzdem erhalten bleiben. Aus diesem Grund ist das vorgeschla-
gene Roe-Mittel zusammen mit dem WENO-CU6 Schema ideal für die Simulation von
stoß-induzierte Durchmischungsproblemen geeignet. Zudem werden zweidimensionale Si-
mulationen der einfach gestörten RMI durchgeführt und mit experimentellen Ergebnissen
verglichen. Dabei zeigt sich, dass Einzelkomponentenmodelle nicht in der Lage sind die
korrekte zeitliche Entwicklung der Instabilität vorherzusagen. Daher stellt das vorgeschla-
gene Mehrkomponentenmodell eine signifikante Verbesserung der Vorhersagegenauigkeit
gegenüber früherer Modelle dar.

In unter-aufgelösten Simulationen wird ein beträchtlicher Anteil der Lösung numerisch
modelliert. Insbesondere bei komplexen Durchmischungsvorgängen, die stark anisotrop
und inhomogen sind, hat die Modellierung entscheidenden Einfluss auf die Lösung. Die
Tatsache, dass die meisten der verwendeten numerischen Modelle jedoch nur für ein-
fache Strömungen validiert wurden, reduziert das Vertrauen in die Simulationsergeb-
nisse. Ein Schwerpunkt der vorliegenden Arbeit ist somit den Vertrauensbereich der
numerischen Modelle auf komplexe Durchmischungsvorgänge zu erweitern. Dies wird
durch ein Framework zur systematischen Analyse von numerischen Modellunsicherheiten
erreicht. Darüber hinaus werden hochgenaue Benchmark-Daten präsentiert, die zur Ent-
wicklung von verbesserten numerischen Modellen verwendet werden können.
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Kurzfassung

Die durch die feinskalige Regularisierung verursachte numerische Modellunsicherheit wird
durch den Vergleich zweier grundlegend verschiedener numerischer Modelle untersucht. Zu
diesem Zweck werden beide Modelle zur Simulation der dreidimensionalen RMI verwendet
und einer quantitativen Analyse unterzogen. Die dafür benötigte Anfangsstörung an der
Grenzfläche zwischen schwerem und leichtem Gas wird durch eine deterministische Funk-
tion beschrieben. Die Funktion kann für beide Modelle spektral exakt verwendet werden
und erlaubt somit einen direkten quantitativen Vergleich. Dieser Ansatz ermöglicht die
Identifikation des physikalischen Einflusses der Regularisierung im feinskaligen Bereich.

Zum anderen sind die Parameterunsicherheiten in experimentellen Untersuchungen größ-
tenteils unbekannt. Daher ist ein anderer Fokus dieser Arbeit ein Framework zur Quan-
tifizierung von Parameterunsicherheiten durch voll-aufgelöste zweidimensionale Simulatio-
nen eines durch einen Verdichtungsstoß beschleunigten Gaszylinders zu etablieren. Dazu
wird die Polynomial-Chaos-Expansion mit einem kompressiblen Mehrkomponenten-Simu-
lationsmodell gekoppelt, um die Unsicherheiten in den Anfangsbedingungen auf die Ziel-
größen zu transportieren. Dabei werden insbesondere die Auswirkungen der Varianz in der
Stoßmachzahl, in der Verunreinigung des Gaszylinders mit Aceton und in der anfänglichen
Abweichung des Gaszylinders von einer idealen Zylinderform auf den Durchmischungsvor-
gang untersucht. Die vorgestellten Ergebnisse ermöglichen ein besseres Verständnis des
grundlegenden Zusammenhangs zwischen der Unsicherheit in den Anfangsbedingungen
und der Varianz in den gemessenen Zielgrößen.

Abschließend werden noch Ergebnisse direkter numerischer Simulationen von stoß-indu-
zierten dreidimensionalen Durchmischungsvorgängen vorgestellt. Diese Ergebnisse stellen
die ersten voll-aufgelösten numerischen Simulationen der dreidimensionalen RMI dar. Die
Ergebnisse zeigen, dass eine kritische Reynolds-Zahl überschritten werden muss um Tur-
bulenztransition zu beobachten. Die turbulenten Längenskalen der Strömung separie-
ren sich zunehmend, wenn die Stoßmachzahl und somit die Reynolds-Zahl erhöht wer-
den. Zudem werden Wahrscheinlichkeitsdichtefunktionen der Geschwindigkeit und deren
Ableitungen in Längs- und Querrichtung präsentiert. Diese belegen eindeutig, dass sich
stoß-induzierte Turbulenz ähnlich zu abklingender homogener isotroper Turbulenz ver-
hält.

Das vorgestellte Framework zur Quantifizierung von Parameter- und numerischer Modell-
unsicherheiten in stoß-induzierte Durchmischungsvorgängen, zusammen mit den hochge-
nauen Simulationsdaten aus direkten numerischen Simulationen, stellt ein einzigartiges
Werkzeug für die Interpretation bestehender und zukünftiger Ergebnisse dar. Nur die
detaillierte Analyse von Unsicherheiten und deren Auswirkung in experimentellen und
numerischen Untersuchungen kann zu einem einheitlichen und umfassenden Verständnis
von RMI führen.
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1. Introduction

This thesis summarizes my work of the past four years at the Institute of Aerodynamics
and Fluid Mechanics at the Technische Universität München. The first objective of the
thesis was to establish a numerical framework for the investigation of shock initiated
mixing processes and second, to study the physical mechanism of these mixing processes.
It turned out that uncertainties in experimental investigations, e.g., unclear initial and
boundary conditions as well as numerical model uncertainties and truncation errors play a
crucial role for the fundamental understanding of shock-initiated mixing processes. Thus,
the second objective became twofold: besides the physical mechanism of shock-initiated
mixing processes, also the uncertainties in numerical and experimental investigations were
analyzed.

The thesis is structured as follows: In this chapter a brief introduction to the Richtmyer-
Meshkov instability (RMI) and to computational fluid dynamics is provided as well as
a literature overview of the state-of-the-art in RMI research with special emphasis on
numerical model and parameter uncertainties. In chapter 2 the numerical model is sum-
marized including the governing equations, i.e., the Navier-Stokes equations and the multi-
component mixing rules. Details about the flux reconstruction scheme and the time inte-
gration scheme are also given. In chapter 3 the main contributions of the present thesis
are provided together with a short introduction for each publication. The last chapter
4 summarizes the key findings of this work. A full list of all publications is provided in
appendix A and the selected main publications are attached in appendix B.
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1. Introduction

1.1. The Richtmyer-Meshkov instability

When a heavy fluid is accelerated into a lighter fluid by gravitational forces, the instability
occurring at the material interface between the two fluids is known as Rayleigh-Taylor
instability (Rayleigh, 1883; Taylor, 1950). A theoretical prediction for the growth rate
of the initial interfacial perturbations was provided by Taylor (1950) in 1950. Richtmyer
(1960) extended the theoretical prediction of Taylor (1950) to the impulsive acceleration of
material interfaces. Richtmyer’s predictions were later experimentally verified by Meshkov
(1969) and the instability arising from the impulsive acceleration of a perturbed material
interface is thus referred to as the Richtmyer-Meshkov instability (RMI).

Richtmyer (1960) replaced the constant gravitational acceleration g in the original model
of Taylor (1950) by an impulsive acceleration ∆uδ(t). From this, the early linear growth
rate ∂a/∂t of a single-mode perturbation with wavenumber k follows as

∂a

∂t
= k∆uA+a+0 , (1.1)

where a+0 is the initial post-shock amplitude of the perturbed interface and A+ = (ρ1 −
ρ2)/(ρ1 + ρ2) is the post-shock Atwood number. Following Richtmyer’s impulsive model
other more advanced theoretical models have been proposed, like the perturbation model
(Zhang and Sohn, 1997). Zhang and Sohn (1997) model the early time dynamics of the
interface by the linear, compressible flow equations and the late times by the non-linear,
incompressible flow equations. Mikaelian (2003) again derived a growth rate model for
the late non-linear regime through the potential flow equations. A very concise overview
of the different existing theoretical models and their predictive accuracy compared to
numerical simulation results is given by Latini et al. (2007a).

The vorticity transport equation of a compressible flow is given as

Dω

Dt
= (ω · ∇)u− ω (∇ · u) +

1

ρ2
(∇ρ×∇p) + ν∇2ω . (1.2)

The fact that the vorticity is initially zero (ω = 0) in the flow field suggests that a non-
vanishing baroclinic vorticity production term (∇ρ×∇p)/ρ2 at the material interface is
the initial driving mechanism of RMI. Thus, the misalignment of the pressure gradient
∇p associated with the shock wave and the density gradient ∇ρ associated with the
density variation across the material interface results in (∇ρ×∇p)/ρ2 6= 0. The vorticity
deposition leads to a growth of the initial interface perturbations, and if the initial energy
input is sufficient the flow evolves eventually into a turbulent mixing zone through non-
linear interactions of the material interface perturbations. For a more complete review of
RMI the reader is referred to Brouillette (2002).

RMI occurs on a wide range of scales which cover the largest in astrophysics (Arnett
et al., 1989; Arnett, 2000; Almgren et al., 2006; Kane et al., 1999; Ingogamov, 1999),
the intermediate scales in supersonic combustion engines (Yang et al., 1993; Khokhlov
et al., 1999; Yang et al., 2014) and the very small scales in inertial confinement fusion
experiments (Lindl et al., 1992; Taccetti et al., 2005; Aglitskiy et al., 2010).
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1.1. The Richtmyer-Meshkov instability

In the work of Kane et al. (1999) the authors conclude that RMI contributes to the ob-
served radio and X-ray structures in supernova remnant (SNR) formation as detected in
the multi-wavelength composite image of Tycho’s supernova, see Fig. 1.1. The theoretical
models of RMI suggest that it plays an important role during the early stages of the
formation of SNR as the instability strongly amplifies non-uniformities in the stellar ma-
terial. At later times the SNR formation is dominated by the Rayleigh-Taylor instability,
which benefits from the initial amplifications from RMI. According to the findings of Kane
et al. (1999) the combined impact of RTI and RMI needs to be included in standard SNR
models.

Figure 1.1.: Multi-wavelength composite image of the remnant formation of
Tycho’s supernova taken by the Chandra X-Ray Observatory
[NASA/CXC/Rutgers/J. Warren & J. Hughes et al.].

A virtually identical fluid mechanical behavior is observed on the smallest scales in inertial
confinement fusion (ICF) experiments. In ICF, laser beams are used to heat up the outer
layer of a fuel containing target capsule. The experimental setting is designed such that
inward traveling shock waves are created which compress the fuel inside the capsule. The
dramatic increase of pressure and temperature of the fuel eventually results in a fusion
reaction. RMI, however, causes an undesired mixing between the shell material of the
capsule and the fuel within. This leads to a significant reduction in energy release and
prevents energy break-even. A very recent publication (Hurricane et al., 2014) reported
an energy gain exceeding unity in an ICF experiment. The experiment achieved an order-
of-magnitude increase of energy release over past experiments by manipulating the laser
pulse shape such that it reduces instabilities of Rayleigh-Taylor and Richtmyer-Meshkov
type during implosion.
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1. Introduction

1.2. Computational fluid dynamics

Computational fluid dynamics (CFD) is a branch of computer-aided predictive science.
Physical systems are abstracted with mathematical models, discretized and solved numer-
ically on a computer with the objective to predict the behavior of the physical system.

In CFD, research is concerned with the development of accurate and efficient computa-
tional algorithms on one hand and on gaining new physical insight into the physics of
fluid mechanics on the other hand. CFD has gained significant importance in industry
and will become even more important in the near future thanks to increased computa-
tional resources. For an introduction to fluid mechanics the reader may consider the book
of Smits (2000). A very comprehensive introduction to computational fluid dynamics is
given in each of the following references, e.g., Anderson et al. (1995); Ferziger and Perić
(2002); Versteeg and Malalasekera (2007).

The temporal and spatial evolution of fluid flows is described by a set of partial differential
equations, namely the Navier-Stokes equations. In order to solve these equations numer-
ically, the continuous equations are transformed into a set of discrete equations which
can be solved iteratively. The spatial and temporal derivatives imply an approximation
of the exact continuous derivatives. Thus, the truncation error of the discrete derivatives
determines the accuracy of the numerical method.

If the truncation error of the numerical method has a marginal effect on the flow dynamics
the simulations are referred to as direct numerical simulations (DNS). If the truncation
error, however, is not small but has a significant effect on the resolved flow scales the
simulations are referred to as under-resolved direct numerical simulations. Because under-
resolved simulations do not capture all flow scales, the non-resolved scales have to be
regularized. These subgrid-scale regularizations may have, as we will see later, a significant
effect on the flow evolution, especially in multiscale problems such as RMI. Simulations
in which the energy containing large scales are resolved, whereas the non-resolved small-
scales are not only regularized but modeled, are referred to as large eddy simulations
(LES). An introduction to LES can be found in the book of Sagaut (2002).

1.3. Uncertainties of the Richtmyer-Meshkov
instability

A key issue in computer-aided predictive science is the quantification of the confidence
level of numerical predictions, as the computer model only approximates the corresponding
true physical system.

When a physical system is translated into a mathematical formulation and subsequently
into a numerical algorithm different types of uncertainties arise. Firstly, the mathematical
formulation requires model parameters to describe the physical behavior of the original
system and these model parameters are subject to uncertainties. Also, simply the lack
of knowledge of the underlying physical mechanism (the mathematical formulation might
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1.3. Uncertainties of the Richtmyer-Meshkov instability

not reflect all properties of the original system) results in uncertainty. Finally, when the
mathematical formulation is translated into a numerical algorithm truncation and round-
off errors, numerical model assumptions, as well as implementation mistakes increase the
prediction uncertainty.

On the other hand, in experimental investigations the initial and boundary conditions
cannot be fully controlled and allow for statistical and systematic uncertainties. As uncer-
tainties in the initial conditions are non-linearly amplified with time, these uncertainties
can have a significant effect on the flow evolution. The measuring apparatus can also
increase the uncertainties in experimental results.

In RMI investigations numerical model uncertainties and parameter uncertainties domi-
nate. Numerical model uncertainties are, e.g., numerical modeling assumptions and trun-
cation errors, which are introduced by the discretization and the numerical solving proce-
dure of the continuous exact equations. Parameter uncertainties are uncertainties in the
input parameters, e.g. initial conditions and material properties, whose exact values are
not precisely known to the experimentalist.

The methodology of uncertainty quantification (UQ) identifies and characterizes the over-
all output uncertainty of a numerical prediction based on the variability of the input pa-
rameters of a given physical system. Thus, UQ is the generic term for determining how
likely a result is, given that not all aspects of the physical system are known and can
only be described in a statistical sense. UQ is closely related to sensitivity analysis which
connects the variability of an input quantity to an output quantity of interest, however,
without considering the specific input uncertainty of the physical system.

1.3.1. Numerical model uncertainties

In 1994 Brouillette and Sturtevant (1994) experimentally investigated RMI evolving from
a single-mode initial perturbation in a square shock tube and quantified the mixing zone
growth rate of the initially diffused sinusoidal interface separating the gases. The au-
thors showed that the growth rate is inversely proportional to the initial thickness of the
material interface. Due to limitations in the spatial and temporal resolution capabili-
ties of experimental diagnostic techniques, integral quantities like the mixing zone width
and qualitative information from Schlieren imaging were the only accessible information in
early experiments. Until today, it remains difficult to capture the evolution of a fully three-
dimensional turbulent mixing zone in experimental investigations. Therefore, insight into
the flow physics of RMI relies to a considerable extent on numerical investigations.

Because of the relatively high Reynolds numbers and the associated small Kolmogorov
length scales under-resolved simulations and LES have become the state-of-the-art ap-
proaches to investigations of shock-induced turbulent mixing problems. The subgrid-scale
regularization used in LES and in under-resolved simulations significantly affect the pre-
dicted material mixing transition and the late-time mixing evolution. The regularization
models not only the interaction of resolved and non-resolved scales but also captures
discontinuities such as shock waves and material interfaces. Due to the broad range of
spatial and temporal scales numerical simulations of RMI strongly rely on the resolution
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1. Introduction

capabilities of the underlying numerical scheme for the different types of subgrid scales,
i.e., turbulent small scales, shocks, interfaces. Thus, the overall numerical uncertainty is a
combination of the subgrid-scale regularization and the truncation error of the discretiza-
tion scheme. This is particularly important as all numerical models involve some kind of
subgrid-scale regularization and are affected by numerical truncation errors.

Grinstein et al. (2011) used an implicit LES (ILES) model to study three-dimensional
material mixing initiated by a shock wave. This ILES model is based on a second-order
Godunov-type numerical scheme and uses additionally a van Leer limiter as a gradient
term limiter. The primary goal of this investigation was to understand the performance of
ILES models in under-resolved material mixing and the effects of specific initial conditions
on the transitional and late-time mixing. Also, Thornber et al. (2010) used an implicit LES
approach (Drikakis, 2003; Thornber et al., 2008; Drikakis et al., 2009) based on a finite-
volume Godunov-type method. This numerical framework was used to study the influence
of different three-dimensional broad- and narrowband multi-mode initial conditions on the
growth rate of a turbulent multi-component mixing zone developing from RMI. In a later
study (Thornber et al., 2011) the same authors presented a numerical study of a re-shocked
turbulent mixing zone, and extended the theory of Mikaelian and Youngs to predict the
behavior of a multi-component mixing zone before and after re-shock, c.f. Mikaelian (1989)
and Thornber et al. (2010). Hill et al. (2006) performed a detailed numerical investigation
of RMI including re-shock. The authors used an improved version of the TCD-WENO
hybrid method of Hill and Pullin (2004). The method employs a switch to blend explicitly
between a tuned centered-difference (TCD) stencil in smooth flow regions and a weighted
essentially non-oscillatory (WENO) shock capturing stencil at discontinuities. The TCD-
WENO hybrid method is used together with the stretched-vortex model (Pullin, 2000;
Kosović et al., 2002) for explicitly modeling the subgrid interaction terms. This approach
was also used by Lombardini et al. (2011) to study the impact of the Atwood number for
a canonical three-dimensional numerical setup, and for LES of a single-shock (i.e. without
re-shock) RMI (Lombardini et al., 2012).

All these investigations have applied explicit or implicit subgrid-scale modeling approaches
for the investigation of shock-driven mixing processes evolving from RMI with special
emphasis on initial-condition parameters such as the shock Mach number, the initial in-
terface perturbation or the Atwood number and how these parameters affect the evolution
of the instability. However, the physical effect of the specific subgrid-scale regularization
remains unclear and guidance is needed in interpreting the obtained results. Turbulent
mixing initiated by RMI mainly occurs at the marginally resolved and non-resolved scales.
Particularly, it remains unclear which effect the marginally and non-resolved scales have
on the evolution of the instability, as numerical modeling uncertainties have not yet been
investigated systematically. So far, all investigations have assumed that the numerical
models validated for more simple flows also accurately work for RMI and based on em-
pirical resolution criteria that the employed resolution allow accurate prediction of the
instability. However, for the correct interpretation of numerical simulation results it is of
fundamental importance to clearly divide between physics as a result of the solution of
the Navier-Stokes equations and numerical errors with physical interpretation.
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1.3. Uncertainties of the Richtmyer-Meshkov instability

1.3.2. Parameter uncertainties

As outlined in the previous section under-resolved simulations are dominated by numerical
model uncertainties due to the employed subgrid-scale regularization and discretization
errors. On the experimental side uncertainties exist primarily due to unknown or not
precisely known initial and boundary conditions.

Haas and Sturtevant (1987) were the first, who investigated the interaction of shock waves
with a gas bubble filled with either He or R22. The authors presented qualitative shadow-
photographs of the bubble evolution. Later, Quirk and Karni (1996) conducted a detailed
numerical investigation of this shock-bubble interaction problem and complemented the
experimental findings in a qualitative sense by numerically reproducing the transition
from regular to irregular refraction, the shock wave focusing and the formation of a
jet towards the inside of the bubble. Only qualitative agreement was obtained, mainly
because the initial conditions could not be accurately prescribed and characterized in the
experiment.

More than a decade later Jones and Jacobs (1997) developed a technique to impose
arbitrary experimental initial conditions without using a plastic membrane to initially
separate the gases. This membrane-free technique allows well defined experimental initial
conditions with precisely prescribed interface perturbations. In the experimental inves-
tigations of the shock-cylinder interaction of Tomkins et al. (2008) and the single-mode
RMI of Collins and Jacobs (2002) high-fidelity contour maps were recorded by planar laser
induced fluorescence (PLIF) measurements and through accurately and reproducibly de-
fined initial conditions using the membrane-free technique of Jones and Jacobs (1997).
Tomkins et al. (2008) did not only present contour maps of the heavy gas concentration
but also quantified the scalar dissipation rate for the first time experimentally.

Due to technical improvements in imaging diagnostics, particle image velocimetry (PIV)
(Prestridge et al., 2000) and PLIF (Collins and Jacobs, 2002; Tomkins et al., 2008; Weber
et al., 2012) can provide velocity and density fields which yield a much more detailed view
on the turbulent mixing process. Also, the simultaneous PLIF and PIV measurement
(Balakumar et al., 2008; Balasubramanian et al., 2012) proved its usefulness to fully
characterize the mixing process of variable density flows (Orlicz et al., 2013). For a
comprehensive review on experimental diagnostic techniques as well as an outlook on
future directions in experiments of shock-driven turbulent mixing the reader is referred
to Prestridge et al. (2013).

The progress of ever increasing resolving capabilities of the imaging techniques and better
defined initial conditions allowed to study RMI down to the small scales and to under-
stand the physical mechanism to an unprecedented level of detail. Despite the technical
improvements RMI is lacking a uniform physical picture supported by both experimental
and numerical investigations and predictive agreement is still only achieved in a qualitative
sense.

Shankar et al. (2011) presented fully-resolved numerical results of the shock-cylinder in-
teraction employing the initial conditions of the experiment of Tomkins et al. (2008).
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1. Introduction

But they failed to accurately predict the characteristic temporal evolution of the exper-
iment, even though they accounted for an initial-data variability. Shankar et al. (2011)
hypothesized that the initial-data variability is the key element to be able to reproduce
the experiment quantitatively. In their investigation the authors varied the initial shape
of the gas cylinder as well as the initial contamination of the gas cylinder with acetone.

This investigation clearly demonstrates that experimental uncertainties play a key role in
understanding the discrepancies between numerical simulation results and experiments.
As it will remain difficult to precisely impose initial and boundary conditions in a labora-
tory experimental investigation and to accurately resolve the evolution of the instability
in space and time. Thus, in order to obtain a uniform picture experimental initial-data
uncertainties need to be studied and quantified.

1.4. Objectives

The first objective of the present work is to develop a numerical framework suitable for
shock-induced material mixing problems. Specifically, the recently proposed reconstruc-
tion scheme of Hu et al. (2010) and Hu and Adams (2011) needs to be coupled with a
low-dissipation and highly accurate multi-component model.

The second objective is to analyze the physical effect of numerical errors (truncation er-
rors and subgrid-scale regularization) on the marginally resolved to resolved scale range
as these uncertainties can have physically meaningful interpretations. Knowing the effect
of numerical modeling uncertainties will provide guidance in interpreting numerical inves-
tigations as this will allow to distinguish between real physics and numerical effects with
physical interpretation.

The third objective is to characterize the effect of initial-data uncertainties in experimental
investigations on the measured flow quantities and to provide an explanation for the
observed quantitative difference between experimental and numerical investigations.

The fourth objective, finally, is to provide results from direct numerical simulations to
study RMI initiated multi-material mixing down to the smallest scales and to provide a
high-confidence data set, which can be used as reference for, e.g., future numerical model
development and model validation.

A benchmark data set together with a consistent framework for parameter and numerical
model uncertainty quantification provides the missing toolbox to (i) understand the effect
of numerical model uncertainties on the evolution of RMI and to improve and adapt exist-
ing numerical models to shock initiated material mixing, to (ii) understand the influence
of initial-data uncertainties in experimental investigations, and finally (iii) to gain insight
into RMI initiated mixing down to the smallest scales, obtaining a uniform, consistent
and complete understanding of the underlying physical mechanism.
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2. Numerical model

In this chapter the governing equations and the multi-component mixing rules are sum-
marized together with further details on the numerical approach.

2.1. Governing equations

In the present thesis the full set of compressible multi-component Navier-Stokes equations
are solved. This approach has been used in all separate sub-investigations (Tritschler et al.,
2013a, 2014a,b,c) except in Tritschler et al. (2013b), where a new generalized Roe average
in a non-conservative formulation is proposed.

The governing equations are given by the continuity equation, the momentum equation in
three space dimensions, the energy equation and one transport equation for each species.
Thus, the full set of equations reads as

∂U

∂t
+∇ · F (U) = ∇ · F ν(U) , (2.1)

with

U =




ρ
ρu
E
ρYi


 , F (U) =




ρu
ρuu+ pδ
(E + p)u
ρuYi


 , F ν(U) =




0
τ

τ · u− qc − qd
Ji


 . (2.2)
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2. Numerical model

In Eq. (2.2) u = [u, v, w] is the velocity vector, p is the pressure, E is the total energy,
ρ the mixture density and Yi is the mass fraction of species i = 1, 2, ...N with N as the
total number of species. The identity matrix is given by δ. The viscous stress tensor τ is
defined for a Newtonian fluid as

τ = 2µ [S − 1/3δ (∇ · u)] , (2.3)

with the mixture viscosity µ and the strain rate tensor S. According to Fourier’s law we
define the heat conduction as

qc = −κ∇T (2.4)

with κ being the mixture heat conductivity and the inter-species diffusional heat flux
(Cook, 2009) defined as

qd =
N∑

i=1

hiJi (2.5)

with

Ji ≈ −ρ
(
Di∇Yi − Yi

N∑

j=1

Dj∇Yj
)

. (2.6)

hi and Di indicate the individual species enthalpy and the individual species effective
binary diffusion coefficient. The equations are closed with the equation of state for an
ideal gas

p(ρe, Yi) = (γ − 1) ρe , (2.7)

where γ is the ratio of specific heat capacities of the mixture and e is the internal energy

ρe = E − ρ

2
u2 . (2.8)

The species specific viscosity µi is calculated by the Chapman-Enskog viscosity model

µi = 2.6693 · 10−6
√
MiT

Ωµ,iσ2
i

, (2.9)

where σi is the collision diameter and Ωµ,i is the collision integral (Neufeld et al., 1972)
given as

Ωµ,i = A(T ∗i )B + C exp {DT ∗i }+ E exp {FT ∗i } , (2.10)

with A = 1.16145, B = −0.14874, C = 0.52487, D = −0.7732, E = 2.16178 and
F = −2.43787, where T ∗i = T/(ε/k)i and with (ε/k)i being the Lennard-Jones energy
parameter.

The mass diffusion coefficient of a binary mixture is calculated from the empirical law
(Poling et al., 2001)

Dij =
0.0266

ΩD,ij

T 3/2

p
√
Mijσ2

ij

(2.11)

with the collision integral for diffusion

ΩD,ij = A(T ∗ij)
B + C exp {DT ∗ij}+ E exp {FT ∗ij}+G exp {HT ∗ij} , (2.12)
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2.1. Governing equations

where T ∗ij = T/Tεij and A = 1.06036, B = −0.1561, C = 0.193, D = −0.47635, E =
1.03587, F = −1.52996, G = 1.76474, H = −3.89411 and

Mij =
2

1
Mi

+ 1
Mj

, σij =
σi + σj

2
, Tεij =

√( ε
k

)
i

( ε
k

)
j

. (2.13)

The thermal conductivity κi is obtained from the species specific Prandtl number Pri as

κi = cp,i
µi
Pri

(2.14)

where cp,i is the specific heat capacity, which results from

cp,i =
γi

γi − 1
Ri , with Ri =

R
Mi

, (2.15)

All thermodynamic gas properties are taken from Poling et al. (2001). The ratio of specific
heat capacities of the mixture γ is calculated as

γ =
cp

cp −R
, with cp =

N∑

i

Yicp,i . (2.16)

The specific gas constant of the mixture R = R/M is calculated from the molar mass of
the mixture which is given by

M =

(
N∑

i

Yi
Mi

)−1
. (2.17)

For the gas mixture Dalton’s law p =
∑

i pi shall be valid with pi = ρRiT . The viscosity
µ and the heat conductivity coefficient κ of the mixture is calculated according to Wilke
(1950) with Herning and Zipperer’s approximation (Herning and Zipperer, 1936)

µ =

∑N
i=1 µiYi/M

1/2
i∑N

i=1 Yi/M
1/2
i

, κ =

∑N
i=1 κiYi/M

1/2
i∑N

i=1 Yi/M
1/2
i

, (2.18)

see also Poling et al. (2001). The effective binary diffusion coefficients of species i is
approximated as (Ramshaw, 1990)

Di = (1−Xi)

(
N∑

i 6=j

Xj

Dij

)−1
, (2.19)

whereXi is the mole fraction of species i. Eq. (2.19) ensures that the inter-species diffusion
fluxes balance to zero.
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2. Numerical model

2.2. Numerical scheme

The hyperbolic part of the Navier-Stokes equations can be considered as a Riemann
problem which consists of a partial differential equation describing a conservation law with
piecewise constant initial condition and a single discontinuity. There are two different
types of Riemann solvers, exact and approximate ones. Roe’s approximate Riemann
solver (Roe, 1981) and the HLL (Harten-Lax-van Leer) solver (Harten et al., 1987) are
the most common approximate Riemann solvers. In the original formulation of Roe’s
approximate Riemann solver the corresponding Roe-averaged matrix is derived only for
a single-component fluid. In the present thesis Roe’s approximate Riemann solver for a
multi-component system is used to compute the inter-cell flux.

A non-linear system of hyperbolic partial differential equations

∂U

∂t
+
∂F (U)

∂x
= 0 (2.20)

can be transformed into a set of quasi-linear hyperbolic equations by applying the chain
rule

∂U

∂t
+A(U)

∂U

∂x
= 0 , (2.21)

where A = A(U) = ∂F /∂U is the Jacobian matrix of the flux vector F (U). The
hyperbolic part of the Navier-Stokes equations Eq. (2.1) written as a quasi-linear system
is

∂

∂t




ρ
ρu
E
ρYi


+A

∂

∂x




ρ
ρu
E
ρYi


 = 0 , (2.22)

where A has N − 1 real eigenvalues λi(U) corresponding to N − 1 eigenvectors Ri(U).
For a multi-component system with N species the Jacobian A is (Larouturou and Fezoui,
1989; Fedkiw et al., 1997)

A =




0 1 0 0 0 0 ··· 0
−u2+ 1

2
(γ−1)q2+X (3−γ)u (1−γ)v (1−γ)w γ−1 X1 ··· XN−1

−uv v u 0 0 0 ··· 0
−uw w 0 u 0 0 ··· 0

u[ 1
2
(γ−1)q2−H]+uX H−(γ−1)u2 (1−γ)uv (1−γ)uw γu uX1 ··· uXN−1

−uY1 Y1 0 0 0 u ··· 0
...

...
...

...
... ...

−uYN−1 YN−1 0 0 0 0 ··· u




, (2.23)

where H is the enthalpy and q = ‖u‖2 and X and Xi are given by

X =
∂γ

∂ρ
ρe (2.24)

Xi =
∂γ

∂ρYi
ρe for i ∈ [1, N − 1] . (2.25)

The numerical solution of Eq. (2.22) requires a flux projection on local characteristics.
For this purpose the corresponding Roe-averaged matrix Ã needs to be calculated, along
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2.2. Numerical scheme

with its right and left eigenvectors (Roe, 1981). The Roe-averaged matrix Ã has to satisfy
the following properties: (i) the hyperbolicity of the original system must be conserved,
i.e., Ã must have N − 1 eigenvalues λ̃i associated to N − 1 independent eigenvectors R̃i,
(ii) Ã has to be consistent with the original matrix, i.e., Ã(U ,U) = A(U) and (iii) Ã
has to be conservative across discontinuities, i.e., F (UR)− F (UL) = Ã(UR −UL).

The numerical fluxes at the cell boundaries fi±1/2 are reconstructed from cell averages.
After the flux reconstruction the fluxes fi±1/2 are projected back onto the physical field.
At sonic points a local switch to a Lax-Friedrichs flux is used as entropy fix, see, e.g.,
Toro (1999). It is important to note, that only N − 1 species are projected onto the
characteristic space as species N follows from the conservation of mass and the N − 1
other species.

2.2.1. Flux reconstruction

The construction of high-order essentially non-oscillatory (ENO) shock-capturing schemes
for hyperbolic conservation laws goes back to the work of Harten et al. (1987). The idea
of choosing the most appropriate stencil from a set of candidate stencils yields high-order
accuracy whenever the function to be approximated is smooth and avoids the Gibbs phe-
nomenon at discontinuities. The ENO approach was later improved by Liu et al. (1994)
who introduced the concept of weighted ENO (WENO) shock-capturing schemes, which
uses a convex non-linear combination of a set of candidate stencils to reconstruct the
fluxes. This approach, while preserving the essentially non-oscillatory property, improves
the ENO methodology by an additional order of accuracy given the same stencil width.
A comprehensive review on ENO as well as on WENO schemes and their efficient imple-
mentation is given in the lecture notes of Shu (1997).

Latini et al. (2007a) performed a systematic investigation of the effect of the WENO
reconstruction order and the spatial resolution on the re-shocked two-dimensional RMI.
While Latini et al. (2007a) investigated the general suitability of the WENO reconstruc-
tion methodology for RM unstable flows, they did not study the applicability of WENO
schemes for viscous three-dimensional shock-driven turbulence. The classical WENO ap-
proach, albeit being formally high-order accurate, is very dissipative at discontinuities
and in turbulent regions of the flow as the theoretical maximum order is never achieved
in such regions.

In order to reduce the excessive dissipation of classical WENO schemes Hu et al. (2010)
developed an adaptive central-upwind 6th-order accurate WENO scheme (WENO-CU6).
This scheme significantly reduces the numerical dissipation, while preserving the shock-
capturing capabilities of classical WENO schemes and being only slightly computationally
more complex than the standard 5th-order WENO scheme. Additionally, Hu and Adams
(2011) proposed a physically motivated scale-separation formulation of the original version
which makes the WENO-CU6 scheme even less-dissipative and thus also applicable for
under-resolved simulations.
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2. Numerical model

The WENO-CU6 scheme reconstructs the flux at the cell boundary from a non-linear
convex combination of a set of 3rd-order candidate stencils

f̂i+1/2 =
3∑

k=0

ωkf̂k,i+1/2 , (2.26)

where ωk is the weight assigned to the 3rd-order stencil f̂k,i+1/2. The weights ωk are
constructed such that the method recovers a non-dissipative 6th-order central stencil in
smooth flow regions and preserves the non-oscillatory property at discontinuities

ωk =
αk∑3
k=0 αk

, αk = dk

(
C +

τ6
βk + ε

)q
, (2.27)

where ε is a small positive number ε = 10−40 and dk are the optimal weights, which give
the 6th-order central scheme, with dk = {1/20, 9/20, 9/20, 1/20}. C and q are constant
parameters, which are set to C = 1000 and q = 4, see Hu and Adams (2011). The
reference smoothness indicator τ6 is calculated from a linear combination of the other
smoothness measures βk with β3 = β6

τ6 = β6 −
1

6
(β0 + 4β1 + β2) (2.28)

with

βk =
2∑

j=1

∆x2j−1
∫ xi+1/2

x−1/2

(
dj

dxj
f̂k(x)

)2

dx , (2.29)

which gives

β0 =
1

4
(fi−2 − 4fi−1 + 3fi)

2 +
13

12
(fi−2 − 2fi−1 + fi)

2 , (2.30)

β1 =
1

4
(fi−1 − fi+1)

2 +
13

12
(fi−1 − 2fi + fi+1)

2 , (2.31)

β2 =
1

4
(3fi − 4fi+1 + fi+2)

2 +
13

12
(fi − 2fi+1 + fi+2)

2 . (2.32)

β6 is also calculated from Eq. (2.29), but with the 5th-degree polynomial approximation
for the fluxes, which gives a 6-point stencil as smoothness indicator

β6 =
1

10080

[
271779f 2

i−2 + 139633f 2
i+3 (2.33)

+fi−2(2380800fi−1 + 4086352fi − 3462252fi+1 + 1458762fi+2 − 245620fi+3)
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2.2. Numerical scheme

+fi−1(5653317fi−1 − 20427884fi + 17905032fi+1 − 7727988fi+2 + 1325006fi+3)

+fi(19510972fi − 35817664fi+1 + 15929912fi+2 − 2792660fi+3)

+fi+1(17195652fi+1 − 15880404fi+2 + 2863984fi+3)

+fi+2(3824847fi+2 − 1429976fi+3)] .

In a recent investigation Hu et al. (2014) introduced a dispersion-dissipation condition
for finite-difference schemes. The condition is motivated by a wave-advection analogy
which imposes a constraint on the dissipation and dispersion errors. The errors can
be optimized independently in such a way that the overall performance of the scheme
benefits from a balance between these errors by preventing backscatter of non-resolved
scales into the resolved scale range. The dispersion-dissipation condition requires a mod-
ification of the optimal weights dk of the WENO-CU6 scheme to guarantee a reason-
able balance between dispersion and dissipation. The modified optimal weights are then
dk = {0.09045, 0.4441, 0.39227, 0.07318}. This modification significantly improves the
implicit subgrid-scale modeling capabilities and the modified WENO-CU6 scheme can
compete with other state-of-the-art subgrid scale models, like ALDM (Hickel et al., 2006;
Hickel and Larsson, 2008) while preserving its shock-capturing properties.

For the scope of this work the WENO-CU6 scheme (Hu et al., 2009, 2010) is used for all
under-resolved simulations (Tritschler et al., 2013a,b, 2014a,b), whereas the dispersion-
dissipation optimized version Hu et al. (2014) is only used for the DNS (Tritschler et al.,
2014c).

2.2.2. Time integration

The method of lines approximation of the Navier-Stokes equations yields a system of
ordinary differential equations

dφ

dt
= φt = L(φ) , (2.34)

with φ0 = φ(t = 0) and where L is a finite difference operator. For the purpose of time
integration the 3rd-order total variation diminishing Runge-Kutta scheme of Gottlieb and
Shu (1998) is used in this thesis. The 3rd-order scheme consists of three substeps to
compute the new solution at the next time step φ(n+1)

φ(1) = φ(n) + ∆tL(φ(n)) (2.35)

φ(2) =
3

4
φ(n) +

1

4
φ(1) +

1

4
∆tL(φ(1)) (2.36)

φ(n+1) =
1

3
φ(n) +

2

3
φ(2) +

2

3
∆tL(φ(2)) . (2.37)
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3. Accomplishments

In this chapter the contribution of each publication is summarized, including a short
overview of the current state-of-the-art in research with special emphasis on the objectives
of this thesis.

3.1. Numerical model uncertainties of the
Richtmyer-Meshkov instability

Recent research has focused on the effect of different initial condition parameters on
the evolution of RMI. Lombardini et al. (2011) have studied the effect of the Atwood
number on the turbulent mixing. In a later work the effect of the shock Mach number
on the mixing process was examined by the same authors (Lombardini et al., 2012).
Other studies (Thornber et al., 2010; Grinstein et al., 2011; Schilling and Latini, 2010)
for instance have evaluated the contribution of the specific initial interface perturbations
on the mixing dynamics.

The general assumption of all these investigations is that the marginally and non-resolved
scales have a negligible effect on the resolved scales, and therefore on the evolution of the
instability. This assumption is based on standard arguments such as empirical resolution
criteria and on a validation of the SGS models for simple flows. A shock induced mixing
zone, however, has anisotropic and inhomogeneous decaying turbulence, such that it is
not clear if these SGS models, validated for more simple flows, are directly applicable to
RMI. Due to the numerical difficulties to capture discontinuities such as shock waves and
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interfaces, model comparison to a reference solution with resolved SGS terms does not
exist for RMI. Also, the effect of subgrid-scale regularizations and dispersive or dissipative
truncation errors on the resolved scales and turbulent mixing measures have not been
studied yet systematically.

In the numerical investigation of Thornber et al. (2011) the authors reported a Kolmogorov
scaling k−5/3 at early times that develops towards a k−3/2 range for lower wavenumbers
and a Kolmogorov scaling for high wavenumbers at late times. In contrast to this Hill
et al. (2006) and Lombardini et al. (2012) identified a persistent k−5/3 scaling and Cohen
et al. (2002) and Grinstein et al. (2011) again found neither a k−5/3 nor a k−3/2 spectrum
range. These discrepancies stress that a systematic investigation of numerical modeling
uncertainties is needed and additionally that a deterministic and reproducible reference
data set is desirable in order to improve the existing numerical models for the specific
demands of RMI.

The following analysis serves as guidance in interpreting simulation results which are
marginally or intentionally under-resolved. Given the state of research much can be
learned with respect to physical interpretation of numerical results by comparing numer-
ical models with entirely different subgrid-scale regularization strategies. The quantifica-
tion of the dependence of fluctuating and small scale quantities on the numerical method
and grid spacing is of great value for the validation of SGS models and for the development
of lower fidelity closure models.

In the numerical study of Latini et al. (2007a), for instance, the authors emphasize that
lower-order schemes and lower-resolution simulations have higher numerical dissipation
and therefore preserve large-scale structures and flow symmetry for a non-physically long
time. In contrast to this exhibit higher-order schemes and higher-resolution simulations
increased mixing due to symmetry breaking events triggered by the truncation error of
the underlying scheme. Latini et al. (2007a) compared their results to the experimental
investigation of Collins and Jacobs (2002) which served as reference to evaluate the per-
formance of the different WENO schemes, ranging form the 3rd-order accurate WENO-3
to the 9th-order accurate WENO-9.

Besides subgrid-scale regularization and truncation error also the numerical model that
accounts for multiple species in the flow may affect the flow evolution. Various multi-
component models have been proposed during the past years. However, most of them
lead to severe pressure oscillations (Karni, 1994, 1996; Abgrall, 1996; Abgrall and Smadar,
2001) at the material interface or introduce excessive dissipation, of which both are unde-
sired properties. Particularly, because of the pressure oscillations single-component mod-
els have been widely used (Latini et al., 2007a,b; Schilling et al., 2007). Single-component
models, however, give a mismatch in the post-shock quantities, which in consequence re-
sults in a wrong temporal prediction of the instability evolution.
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3.1. Numerical model uncertainties of the Richtmyer-Meshkov
instability

V. K. Tritschler, X. Y. Hu, S. Hickel and N. A. Adams (2013)
Numerical simulation of a Richtmyer-Meshkov instability with an adaptive
central-upwind 6th-order WENO scheme
Phys. Scr., T155, 014016

In this paper (Tritschler et al., 2013b) the adaptive central-upwind 6th-order weighted
essentially non-oscillatory (WENO) scheme of Hu et al. (2010) is used to study the single-
mode RMI. For this purpose a general Roe average for ideal gas mixtures is proposed that
suppresses spurious pressure oscillations at the material interface even when captured with
a high-order scheme. The proposed Roe average is an extension for generalized equation
of states while being simple and satisfying the U-property exactly in contrast to the works
of Liou et al. (1990) and Shyue (2001). Moreover, the Roe average does not introduce
artificial states as done by Glaister (1988) and predicts the averages directly from the
adjacent states. The linear approximation between the average state and the adjacent
states for a single phase interaction, as assumed by Hu et al. (2009), does not hold in the
present study and had to be adapted accordingly. The proposed generalized Roe aver-
age together with the WENO-CU6 reconstruction scheme is tested and validated by two
one-dimensional test cases, which show that spurious pressure oscillations at material in-
terfaces are successfully suppressed without introducing undesirable amounts of numerical
dissipation.

To study the single-mode RMI the WENO-CU6 and the standard WENO-5 method are
used as reconstruction schemes and the results are compared to the experimental inves-
tigation of Jacobs and Krivets (2005). The more dissipative WENO-5 method preserves
large-scale structures and symmetries for a non-physical long time while the WENO-CU6
better resolves small-scale structures, leading to earlier symmetry breaking and increased
mixing, see also Latini et al. (2007a). The study also reveals that the global charac-
teristics was neither matched by the WENO-CU6 nor by the WENO-5 method when a
single-component model is used. This is due to the fact that a single-component model
leads to a mismatching post-shock state and thus leads to a wrong prediction of the late-
time evolution. The proposed multi-component model significantly improves the overall
agreement between simulation and experiment.

The main contribution of this work is threefold: (i) a generalized Roe average is proposed
which suppresses spurious pressure oscillations at material interfaces, (ii) it is shown that
the recently developed WENO-CU6 scheme of Hu et al. (2010) together with the gen-
eralized Roe average introduces only very small numerical dissipation while preserving
its good shock-capturing properties and therefore is very well suited for the investiga-
tion of shock-initiated mixing problems and (iii) the two-dimensional simulations of the
single-mode RMI show that a considerable improvement of the results is obtained with
the modified multi-component model of the present investigation and that the specific nu-
merical model can have a significant effect on the late-time evolution of the instability.

My contribution to this work was the development of the concept of the study including
its main objectives. I tested and validated the implementations of the proposed model in
the in-house code INCA, performed the numerical simulations and wrote major parts of
the manuscript for the publication.
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3. Accomplishments

V. K. Tritschler, B. J. Olson, S. K. Lele, S. Hickel, X. Y. Hu and N. A.
Adams (2014)
On the Richtmyer-Meshkov instability evolving from a deterministic multi-
mode planar interface
J. Fluid Mech., 755, 429-462

In this paper (Tritschler et al., 2014b) the shock-induced turbulent mixing between a
light and heavy gas initiated by a Ma = 1.5 shock wave is investigated by two inde-
pendently developed numerical models. The initial interface perturbations between the
gases is imposed spectrally exact by a deterministic function which allows a direct quan-
titative comparison between the two models. From this setup well-resolved large eddy
simulation results are obtained for both numerical models with the objective of assessing
turbulence structures in multi-component material mixing and prediction uncertainties
due to differences in the subgrid-scale regularizations.

The focus of this study is the physical effect of numerical errors on the marginally re-
solved to non-resolved scale range. So far investigations in literature have assumed that
the marginally and non-resolved scales have a negligible effect on the resolved scales, and
therefore on the evolution of the instability. Uncertainties introduced by the numerical
method, i.e., the subgrid-scale regularization and truncation errors, have not been inves-
tigated systematically, despite the fact that they actually can have physically meaningful
interpretations. The present contribution clearly demonstrates that fine scales are cap-
tured differently between numerical methods. Spectral analysis shows that the subgrid-
scale regularizations significantly change the small-scales close to the cut-off wavelength,
which is dominantly dissipative for one model and dominantly dispersive for the other.

Whereas the small scales close to the cut-off wavelength are affected by the subgrid-
scale regularization, the large scales of motion are in excellent agreement between the
methods. The results conclusively show that before re-shock the main differences exist in
the representation of the material interface. Due to shear and strain the interface steepens
and eventually becomes under-resolved and the interface thickness becomes dependent on
the resolution limit of the numerical scheme. Thus, the main numerical challenge prior to
re-shock is to predict the large-scale non-linear entrainment and the associated interface
sharpening when the instabilities are still regular.

The main contributions of this paper are: (i) spectral and temporal scalings that have
been controversially discussed in literature are confirmed by demonstrating that they are
recovered by different numerical methods, (ii) a systematic framework for spectral and
scaling analysis for turbulence structures in the mixing zone is provided, (iii) the physical
effects of SGS regularization on the resolved and non-resolved scale ranges is analyzed, (iv)
a generic set of high-confidence initial data is presented with the purpose for establishing
a benchmark data set for model improvement.

My contribution to this work was the development of the concept of the study including
its main objectives for the collaboration with Stanford University. I tested and validated
the implementations in the in-house code INCA, performed the numerical simulations and
wrote major parts of the manuscript for the publication.
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3.2. Parameter uncertainties of the Richtmyer-Meshkov instability

3.2. Parameter uncertainties of the
Richtmyer-Meshkov instability

Jones and Jacobs (1997) established a new membrane-free technique which allows to
create very accurately prescribed initial conditions in experimental investigations. This
technique was employed by Tomkins et al. (2008) to study the shock-initiated material
mixing between a heavy-gas cylinder and the surrounding air. Tomkins et al. (2008) did
not only present very clear contour maps of the heavy-gas concentration to record the tem-
poral evolution of the instability, but also provided, for the first time, the instantaneous
scalar dissipation rate.

In the numerical investigation of Shankar et al. (2011) the authors presented, for the
first time, fully-resolved two-dimensional simulation results with four species N2, O2,
SF6 and C3H6O (acetone) of the experiment of Tomkins et al. (2008). The temporal
evolution of the instability, as predicted by the numerical simulation, however, differed
characteristically from the experimental result. The authors hypothesized that deviations
of the initial conditions from the nominal values may have a non-negligible effect on the
instability evolution.

In order to perform a comprehensive and quantitative comparison between experimental
measurements and numerical simulations the uncertainties on both sides need to be char-
acterized. In the previous section the focus was on the uncertainties introduced by the
numerical model. Here, the focus is on parameter uncertainties in the experiment such
as the inflow conditions, the gas-cylinder composition and the gas-cylinder shape. These
uncertainties, among others, lead to a characteristic difference in the prediction of the tem-
poral evolution of the instability between experiment and simulation. This observation
was the driving motivation for a rigorous quantification of initial-data uncertainties with
the objective of assessing the effect of these uncertainties onto the output quantities of in-
terest (QoI). A general framework is developed to quantify the initial-data uncertainties in
shock-accelerated mixing problems by coupling a high-order numerical simulation model
with a polynomial chaos expansion in order to propagate the initial-data uncertainties
onto the output QoI.
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3. Accomplishments

V. K. Tritschler, A. Avdonin, S. Hickel, X. Y. Hu and N. A. Adams (2014)
Quantification of initial-data uncertainty on a shock-accelerated gas cylinder
Phys. Fluids, 26, 026101

In this paper (Tritschler et al., 2014a) the observed discrepancies between grid-resolved
numerical simulations of the shock-cylinder interaction and experiments are, for the first
time, systematically addressed.

The initial-data uncertainties of a shock accelerated heavy-gas cylinder are investigated
by two-dimensional fully-resolved simulations. The initial data are chosen such that the
experimental investigation of Tomkins et al. (2008) is matched. The shock Mach number,
the contamination of the heavy-gas region with acetone and the initial deviations of the
heavy-gas region from a perfect cylindrical shape are identified as the main sources of
uncertainty and as those with the main effect on the temporal evolution of the instability.
To propagate the initial-data uncertainties of these three parameters onto the output
QoI a polynomial chaos expansion is used. The polynomial chaos expansion is a general
framework for the approximate representation of random response functions in terms of
finite-dimensional series expansions in standardized random variables.

Mixing quantities like the total mixing rate (TMR) and the molecular mixing fraction
(MMF) appear to be more sensitive with respect to uncertainties in the initial data com-
pared to geometrical quantities like the position of the heavy-gas region and its cross
section. The investigation suggests that TMR and MMF are highly sensitive to changes
in the Mach number and acetone concentration. Due to the high sensitivity level of TMR
it is the ideal objective function to find the exact initial conditions of the experiment.
The TMR data presented by Tomkins et al. (2008), however, were given in arbitrary
units which makes quantitative comparison to these data impossible. Thus, an alter-
native objective function is used in the present investigation which is the ratio of the
downstream and upstream roll-up spiral width of the instability.

Within the investigated uncertainty domain a set of initial data is determined by solving
an optimization problem with the downstream and upstream roll-up spiral width as the
objective function. The numerical results for this parameter set are in excellent agreement
with the experiment and suggest that the measured Mach number and the estimated
contamination of the heavy-gas region with acetone are strongly biased. Thus, for an
accurate numerical reproduction of the experiment it is crucial that the initial shock
Mach number and the exact initial composition of the heavy-gas region are known.

The main contributions of this paper are: (i) the effect of initial-data uncertainties of the
shock Mach number, the contamination of the heavy-gas cylinder with acetone and the ini-
tial deviation of the heavy-gas region from a perfect cylindrical shape on mixing processes
is investigated, (ii) the relative importance of these parameters on the mixing dynamics
is quantified, and (iii) the sources of the observed discrepancies between numerical sim-
ulations and experiments are identified and finally (iv) a general framework to quantify
the initial-data uncertainties of shock-material interface interactions is provided.

My contribution to this work was the development of the concept of the study including
its main objectives. I tested and validated the implementations in the in-house code INCA
and wrote major parts of the manuscript for the publication.
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3.3. Direct numerical simulations

3.3. Direct numerical simulations

The standard numerical approach to RMI are under-resolved direct numerical simulations
or large eddy simulations (Lombardini et al., 2012; Bai et al., 2012; Grinstein et al., 2011;
Thornber et al., 2011; Schilling and Latini, 2010). In many of these simulations it has
been assumed that, due to the high Reynolds numbers, viscous effects can be neglected
(Grinstein et al., 2011; Thornber et al., 2011; Schilling and Latini, 2010). However, recent
investigations have demonstrated, that viscous effects as well as the employed subgrid-
scale regularization (Tritschler et al., 2014b) play an important role for the evolution of
the instability. Thus, it is very desirable to have fully-resolved data from direct numerical
simulations (DNS) for model development, as reference benchmark data and to investigate
the physics of the complex interaction of shock waves with perturbed three-dimensional
interfaces.

Previous investigations have provided estimates for the Kolmogorov length scale in three-
dimensional RMI. Weber et al. (2012) found the Kolmogorov length scale in a shock
accelerated shear layer by fitting model spectra to their experimental kinetic energy spec-
tra. Their estimate is in the range of 125µm ≤ η ≤ 214µm for a shock Mach number
of Ma = 1.5. In a later study Weber et al. (2014) investigated the turbulent mixing
transition of RMI and found O(100)µm for Ma = 1.6 and Ma = 2.2. Also, in the
numerical investigations of Lombardini et al. (2012) and Tritschler et al. (2013a) it was
shown that the Kolmogorov length scale for moderate strong shock waves is in the range
70µm . η . 330µm, however, some time after the shock-interface interaction. Shortly
after the interaction the Kolmogorov length scale is expected to be considerably smaller,
i.e., η ∼ O(1)µm.

Given these estimates fully-resolved numerical results of experimental-sized setups with
dimensions of O(10−1)m are beyond today’s computational resources. A scaling of the
shock tube, however, results in a proportional scaling of the integral scales and thus
reduces the total amount of scales that need to be resolved. DNS in scaled shock tubes
are feasible and allow to investigate the fundamentals of material mixing on the smallest
scales.
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3. Accomplishments

V. K. Tritschler, M. Zubel, S. Hickel and N. A. Adams (2014)
Evolution of length scales and statistics of Richtmyer-Meshkov instability from
direct numerical simulations
Phys. Rev. E, 90, 063001

In this paper (Tritschler et al., 2014c) direct numerical simulation results of the Richtmyer-
Meshkov instability evolving from a three-dimensional corrugated planar interface are
presented. A set of three simulations is performed at three different shock Mach numbers
Ma = 1.05, Ma = 1.2 and Ma = 1.5. For the purpose of obtaining fully-resolved results
the shock tube is scaled down to a width of 1cm. This reduces the effective Reynolds
number and allows to resolve all relevant flow scales. Grid-convergence is demonstrated
through a systematic convergence study of the Kolmogorov length scale and of the spectra
of enstrophy. For the two lower shock Mach numbers the enstrophy spectra are fully
resolved at the highest resolution ∆xyz ≈ 19.5µm and at all times. At the highest shock
Mach number the peak enstrophy is resolved on the finest grid for t & 100µm.

At the lowest shock Mach number the flow is below a critical Reynolds number and
mixing between the fluids is dominated by viscous diffusion. However, when the critical
Taylor-microscale Reynolds number Reλ & 35 − 80 is exceeded the flow transitions to
turbulence accompanied by the emergence of a narrow but distinct Kolmogorov inertial
subrange. For Reλ & 35 − 80 the Liepmann-Taylor scale exceeds the upper limit of the
dissipative range, consistent with the existence of a Kolmogorov inertial subrange. The
observed critical Taylor-microscale Reynolds number in the present investigation is smaller
than the estimated minimum Taylor-microscale Reynolds number of Reλ ≈ 100− 140 for
mixing transition as proposed by Dimotakis (2000). Also, at this Reynolds number a
clear separation of the scales of turbulent motion, i.e., Kolmogorov length scale, Taylor
microscale and integral length scale is observed.

The paper clearly demonstrates that the decay rates of turbulence kinetic energy and
viscous dissipation are in good agreement with values from isotropic turbulence. The
presented probability density functions of velocity and the longitudinal and transverse
derivatives collapse self-similarly, when scaled with their standard deviation. Also, the
statistical moments, kurtosis and skewness, are in very good agreement with values known
from isotropic turbulence. All this suggests that turbulence evolving from RMI at suffi-
ciently high Reynolds numbers behaves similarly to generic decaying isotropic turbulence,
while being non-homogeneous and anisotropic in the shock propagating direction.

The main contributions of this paper are: (i) for the first time direct numerical simulation
results of RMI are presented, (ii) these results show that a clear separation of scales
emerges as the Reynolds number exceeds a critical value and only then a Kolmogorov
inertial subrange is observed, while the fluids mix mainly due to viscous diffusion below
the critical Reynolds number and (iii) the DNS data provide first evidence that turbulence
evolving from a shock-accelerated planar interface is not fundamentally different from
decaying homogeneous isotropic turbulence.

My contribution to this work was the development of the concept of the study including
its main objectives. I tested and validated the implementations in the in-house code INCA
and wrote major parts of the manuscript for the publication.
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4. Conclusion

The Richtmyer-Meshkov instability (RMI) plays an important role in many natural as well
as in technical material mixing phenomena and applications. RMI arises on almost all
scales ranging from the smallest in inertial confinement fusion (Lindl et al., 1992; Taccetti
et al., 2005; Aglitskiy et al., 2010) to the largest in the formation of supernova remnants
(Arnett, 2000; Almgren et al., 2006; Kane et al., 1999).

A particular focus of the present thesis was the quantification of numerical model uncer-
tainties of RMI simulations. The subgrid-scale regularizations which are used for this pur-
pose have been only validated against simple generic test cases such as the Taylor-Green
vortex. Material mixing evolving from RMI, however, is a significantly more complex
anisotropic and inhomogeneous phenomenon, where mixing mainly occurs close to the
cut-off wavelength. Consequently, the employed numerical model can have an important
effect on the evolution of such flows.

The present thesis provided a complete framework for the quantification of numerical
model uncertainties in material mixing problems. The effect of the numerical model on
the flow evolution was assessed by a detailed analysis of the effect of subgrid-scale reg-
ularization, truncation error and multi-component model. This will provide guidance in
interpreting future numerical data as it allows to clearly separate between real physics
and numerical errors with physical interpretation. Also, a high-confidence data set was
provided by reproducing the instability evolution and the key physics with two indepen-
dently developed numerical models. Thereby, spectral and temporal scalings that have
been controversially discussed in the literature were confirmed. Furthermore, the pre-
sented analysis of turbulence structures in material mixing zones contributes to a better
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4. Conclusion

understanding of shock-initiated material mixing phenomena on the small scales.

Initial-data uncertainties and their effect on output quantities of interest were quantified
by coupling a polynomial chaos expansion with a high-order numerical simulation model.
The polynomial chaos expansion was used to propagate the initial-data uncertainties onto
the output quantities of interest. This framework was applied to the shock-cylinder inter-
action investigation of Tomkins et al. (2008). The investigation allows to better under-
stand the connection between initial-data variations and the observed output quantities
in experimental investigations. This analysis also helps to identify the role of parameter
uncertainties in experimental investigations and how these uncertainties contribute to the
observed discrepancy between numerical and experimental investigations.

Additionally, direct numerical simulation results of RMI initiated by a shock wave inter-
acting with a perturbed planar interface were presented. These results showed that at
the lowest investigated shock Mach number the heavy and light fluid mix mainly due to
viscous diffusion, whereas at the highest shock Mach number, when a critical Reynolds
number is exceeded, the mixing zone becomes fully turbulent with a Kolmogorov inertial
subrange. The results conclusively showed a clear separation of flow scales (Kolmogorov
length scale, Taylor microscale and integral length scale) at Reynolds numbers above the
critical value. Furthermore, turbulence statistics available for the first time such as prob-
ability density functions of the velocity and its longitudinal and transverse derivatives
indicate that turbulence evolving from RMI is not fundamentally different from decay-
ing isotropic turbulence, while being virtually only homogeneous and isotropic in two
dimensions.

The proposed systematic framework for parameter and numerical model uncertainty quan-
tification together with high-confidence data provides a unique toolbox for the interpre-
tation of existing and future results. Only now, a complete and unifying picture of shock-
initiated material mixing phenomena is within reach.
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Abstract
Two-dimensional simulations of the single-mode Richtmyer–Meshkov instability (RMI) are
conducted and compared to experimental results of Jacobs and Krivets (2005 Phys. Fluids
17 034105). The employed adaptive central-upwind sixth-order weighted essentially
non-oscillatory (WENO) scheme (Hu et al 2010 J. Comput. Phys. 229 8952–65) introduces
only very small numerical dissipation while preserving the good shock-capturing properties of
other standard WENO schemes. Hence, it is well suited for simulations with both small-scale
features and strong gradients. A generalized Roe average is proposed to make the
multicomponent model of Shyue (1998 J. Comput. Phys. 142 208–42) suitable for high-order
accurate reconstruction schemes. A first sequence of single-fluid simulations is conducted and
compared to the experiment. We find that the WENO-CU6 method better resolves small-scale
structures, leading to earlier symmetry breaking and increased mixing. The first simulation,
however, fails to correctly predict the global characteristic structures of the RMI. This is due
to a mismatch of the post-shock parameters in single-fluid simulations when the pre-shock
states are matched with the experiment. When the post-shock parameters are matched, much
better agreement with the experimental data is achieved. In a sequence of multifluid
simulations, the uncertainty in the density gradient associated with transition between the
fluids is assessed. Thereby the multifluid simulations show a considerable improvement over
the single-fluid simulations.

PACS numbers: 47.20.Lz, 47.20.Ma, 47.20.Cq, 47.51.+a

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Richtmyer–Meshkov instability (RMI)

The RMI occurs when the perturbed interface of two fluids
with different densities is accelerated impulsively, e.g. by a
shock wave [4, 5]. Therefore it is considered as the impulsive
limit of the Rayleigh–Taylor instability [6]. The misalignment
of the pressure gradient ∇ p (associated with the shock wave)
and the density gradient ∇ρ between the two fluids causes

baroclinic generation of vorticity on the interface. Baroclinic
vorticity deposition is the initial driving force for the
development of the primary instabilities. Following the shock
passage the disturbances initially present on the interface will
grow linearly in time. Nonlinear growth follows when the
amplitude of the perturbation becomes important compared
to its characteristic wavelength. The nonlinear growth of RMI
is characterized by the development of asymmetric ‘bubbles’
and ‘spikes’. Eventually, Kelvin–Helmholtz instability gives
rise to the development of small scales. If the initial
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energy input is sufficient, a turbulent mixing zone establishes
between the fluids where the large-scale structures are
progressively broken down into smaller scales. The broadband
spectrum of motions present in RMI is one of the
main reasons why numerical treatment is challenging.
A fundamental understanding of the amplification of initial
interface perturbations along with the associated mixing
process is of crucial importance for both man-made and
natural phenomena. According to Arnett [7], RMI is the
reason for the lack of stratification of the supernova 1987a
and needs to be taken into account in stellar evolution
models. An engineering application of RMI is the strong
enhancement of mixing processes, such as the mixing of
fuel with an oxidizer in supersonic propulsion engines [8].
A comprehensive description of RMI is given by Brouillette
[9] and Zabusky [10] in their reviews.

In recent decades, RMI has been widely studied
analytically, numerically and experimentally. In the numerical
investigation by Latini et al [11, 12], the authors emphasized
the importance of high-order reconstruction methods for the
simulation of RMI. They found that lower-order methods
preserve large-scale structures and symmetry to late times,
while higher-order methods could time efficiently resolve
small-scale structures, leading to symmetry breaking and
increased mixing. This finding that higher-order methods
are more time efficient in resolving the broad range of
wavelengths present in RMI was one of the motivations
to apply the sixth-order adaptive central-upwind weighted
essentially non-oscillatory scheme (WENO-CU6) of Hu
et al [2] to RMI in the present study. Latini et al used
the experimental study of Collins and Jacobs [13] as
the reference. Collins and Jacobs made use of a new
technique that allows the development of a defined gas–gas
interface without the use of a membrane. This membrane-free
technique was first employed by Jones and Jacobs [14]. In
the shock-tube experiment of Collins and Jacobs a moderate
shock wave interacts with a sinusoidally perturbed material
interface of air–acetone. When the shock wave impacts on
the interface, baroclinic vorticity production on the interface
gives rise to a single-mode RMI. After the first impact the
shock wave travels downstream before it is reflected at the
end wall of the tube and hits the interface a second time.
Later, Jacobs and Krivets [1] used the same experimental
setup to redo the experiment at higher Mach numbers. As
higher Mach numbers led to faster growth, they were able to
obtain valuable information on the late-time development of
the single-mode instability, leading to a turbulent mixing zone
between the fluids. This experiment is used as the reference in
our numerical study.

1.2. Numerical schemes for accelerated compressible
multicomponent flows

The broad range of scales present in RMI makes numerical
simulations difficult. The numerical discretization method
needs to capture steep gradients such as shocks and contact
surfaces and should be non-dissipative in smooth flow regions.
The RMI is also a multicomponent flow and therefore needs
a numerical treatment that is somewhat more complex than
for single-component flows. The fluid dynamic properties

of multicomponent flows are conventionally modeled by
solving additional transport equations for ‘information
quantities’ that account for the presence of different species
in the flow. Attempts to attribute conservative properties
to these ‘information quantities’ often suffered from
strong unphysical oscillations across the material interface.
The occurrence of these numerical inaccuracies led to
several publications [15–19] employing non-conservative
or quasi-conservative models. In the literature there are
also other proposals to maintain pressure equilibrium
across material interfaces in a conservative form [20, 21].
Except for Marquina and Pulet’s [20] conservative
flux-splitting algorithm (they use a conventional WENO-5
reconstruction) all published simulations used low-order
reconstruction schemes and effectively fail when combined
with a low-dissipation scheme such as WENO-CU6. Some of
the proposed models could not properly suppress oscillations
when a high-order scheme was applied and some introduced
excessive dissipation around the material interface. However,
we found the quasi-conservative volume fraction-based model
of Abgrall [16], which was later extended from polytropic
gases to stiffened gases by Shyue [3], most suitable for use in
combination with WENO-CU6. Allaire et al [19] generalized
the four-equation model of Shyue to a five-equation model
that allows the simulation with general equations of state,
including tabulated laws. The WENO-CU6 scheme [2] is an
attempt to overcome the dissipative nature of other upwind
biased WENO schemes; for a review see [22]. WENO-CU6 is
based on a new smoothness measure that adapts the numerical
stencil between a nonlinear convex combination of lower
third-order upwind stencils in regions with steep gradients
and a sixth-order central stencil in smooth flow regions. The
WENO-CU6 method exhibits enough dissipation close to
discontinuities to preserve stability, but allows the stencil
to transform to a sixth-order central stencil in smooth flow
regions. WENO-CU6 is therefore much less dissipative than
other WENO methods. This makes the WENO-CU6 method
better suited for direct numerical simulation of RMI with its
characteristic broad wavenumber spectrum.

1.3. Scope of the present study

The Euler equations are solved on a two-dimensional (2D)
grid. In the computational domain a shock wave first
travels through air and then impacts a sinusoidally perturbed
interface to SF6. A single-fluid and a multifluid simulation
are conducted and compared to the experiments of Jacobs
and Krivets [1]. The aim of this paper is (i) to assess
the performance of the WENO-CU6 method for accelerated
compressible flows, (ii) to show the importance of using a
multicomponent model for the RMI simulation instead of a
single-component model, and (iii) to modify the multifluid
model such that it ensures pressure equilibrium across the
material interface also for high-order methods.

Section 2 presents the governing equations of the
problem. Viscous terms are neglected. In section 3, the
WENO-CU6 method used for space discretization is outlined
together with modifications done to the generalized Roe
average of Hu et al [23]. These modifications were necessary
in order to make the multicomponent model suitable for
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the sixth-order method. The initial conditions are discussed
in section 5 along with a description of the computational
domain in section 5.1 and the non-dimensionalization in
section 5.2. The results of both single-component and
multicomponent simulations are presented and compared to
experiments in section 6, pointing out the importance of
a multicomponent model and the use of a low dissipative
discretization method for flows where molecular transport
plays a weak role. The key findings of this study are then
discussed and summarized in section 7.

2. Governing equations

The compressible Euler equations for an ideal binary gas
mixture can be written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂(ρu)

∂t
+ ∇ · (ρuu + pδ) = 0, (2.2)

∂ E

∂t
+ ∇ · [(E + p)u] = 0, (2.3)

∂zSF6

∂t
+ ∇ · (uzSF6) = zSF6∇ · u, (2.4)

where ρ is the mixture density, u is the velocity, p is the
pressure, E is the total energy, zSF6 is the volume fraction of
SF6 gas and δ is the unit tensor. The volume fraction of air is
easily obtained by zair = 1 − zSF6 . The equation of state (EOS)
for an ideal gas mixture is used

p(ρe, z) = (γ (z) − 1)ρe, (2.5)

where γ is the ratio of specific heats of the gas mixture
with [3]

1

γ − 1
=

∑
i

zi

γi − 1
. (2.6)

The internal energy of the system is denoted as e and is
defined as

e =
E

ρ
−

1

2
u2. (2.7)

3. Numerical scheme

In the 1D case, system (2.1)–(2.3) can be written in the
conservative form as

U t + F(U)x = 0 (3.1)

with U = (ρ, ρu, E)T and F(U) = (ρu, p +ρu2, u(E + p))T.
We solve (3.1) in characteristic form. The eigensystem of

fluxes in (3.1) is obtained from the Roe-averaged Jacobian,
which yields the left and right eigenvectors. The left
eigenvectors project the fluxes onto the characteristic field,
and the eigenvalues of the Jacobian are used to ensure
upwinding.

To obtain high-order accurate numerical fluxes at the
cell boundaries f̂ i±1/2, the WENO-CU6 method is employed
to reconstruct these values from cell averages. Finally, the

reconstructed numerical fluxes at the cell face are projected
back onto the physical field using the right eigenvectors.
An entropy fix is implemented by the Lax–Friedrichs flux
splitting. For more details of Riemann solvers, see [24]. The
left-hand side of (3.1) is evolved in time using a third-order
total variation diminishing Runge–Kutta scheme.

3.1. The adaptive central-upwind sixth-order WENO scheme

The motivation for Hu et al [2] to develop the WENO-CU6
discretization scheme was that standard WENO schemes
exhibit excessive dissipation and accordingly overwhelm
large amounts of the small-scale structure in a flow.
The principle of the WENO-CU6 method is to use a
non-dissipative sixth-order central method in smooth flow
regions and a nonlinear convex combination of third-order
approximation polynomials in regions with steep gradients.
This new weighting strategy preserves the good shock
capturing properties of other WENO methods, while it
can achieve very low numerical dissipation in smooth flow
regions.

The reconstructed numerical fluxes at the cell boundaries
are computed from

f̂ i+1/2 =

3∑
k=0

ωk f̂ k,i+1/2, (3.2)

where ωk is the weight assigned to stencil k with
the second-degree reconstruction polynomial approximation
f̂ k,i+1/2. In the WENO-CU6 framework the weights ωk are
given by

ωk =
αk∑3

k=0 αk

, αk = dk

(
C +

τ6

βk + ε

)
. (3.3)

The optimal weights dk are chosen such that the method
recovers the sixth-order central method. C is a constant with
C � 1. A new smoothness measure τ6 can be found from a
linear combination of the other smoothness measures βk with

τ6 = β6 −
1

6
(β0 + β2 + 4β1) (3.4)

and

βk =

2∑
j=0

1x2 j−1
∫ xi+1/2

x−1/2

(
d j

dx j
f̂ k(x)

)2

dx . (3.5)

β6 is also calculated from (3.5) but with the six-point
stencil for the sixth-order interpolation. The full method
is given in [2] and with modifications for scale separation
in [25].

3.2. The modified general Roe average for an ideal
gas mixture

The general Roe average used in the present study is an
extension of the Roe average for generalized EOS, but unlike
those of Liou et al [26] and Shyue [27], the method is
simple and satisfies the U-property exactly. Moreover, it
does not introduce artificial states like that of Glaister [28]
and predicts the averages directly from the adjacent states.
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Figure 1. Results of Sod’s two-material shock-tube problem for the WENO-CU6 scheme (�) on a 200-point grid compared to the
reference solution (—) obtained with the WENO-5 scheme on a high-resolution 6000-point grid.

Here we apply this method with the Riemann solver of
Roe. Additional challenges arise from the fact that the linear
approximation between the average state and the adjacent
state for a single-phase interaction, which has been assumed
by Hu et al [23], does not hold in the present study.

According to Glaister [28], the averages of ρ̃, ũ and H̃
can be obtained from

ρ̃ =
√

ρlρr, f̃ = µ( f ) =

√
ρl fl +

√
ρr fr

√
ρl + ρr

, f = u,H

(3.6)
and (

p̃

ρ

)
= µ

(
p

ρ

)
+

ρ̃

2

(
ur − ul

√
ρl +

√
ρr

)2

. (3.7)

The average pressure can be evaluated from (3.7) as p̃ =

ρ̃(
p̃
ρ
). For a general EOS p = p(ρ, e), the speed of sound c is

given by

c2
=

∂p

∂ρ

∣∣∣∣
e

+
p

ρ2

∂p

∂e

∣∣∣∣
ρ

= 9 + 0
p

ρ
, (3.8)

where 9 is the Grüneisen coefficient and 0 defines the
material properties. Following Roe [29] and Glaister’s [28]
approach, one obtains the condition for the pressure difference
between two adjacent states as

1p = 9̃1ρ + 0̃[1(ρe) − ẽ1ρ] (3.9)

with appropriately defined average states for the Grüneisen
coefficient 9̃ and the parameter defining the material
properties 0̃.

Unlike Hu et al [23], we cannot assume a linear
approximation between the average and the adjacent
states, which would reduce the equation for the pressure
difference (3.9) to

1p = 9̃1ρ + 0̃ρ̃1e, (3.10)

but we need to find the averages 9̃ and 0̃ based on (3.9).
One way to calculate 9̃ and 0̃ is to assume that one of

them obeys the same averaging as f̃ in (3.6) and calculate the
other one from (3.9). This would lead to

0̃1e =
1p − µ(9)1ρ

1(ρe) − ẽ1ρ
(3.11)

and

9̃1ρ =
1p − µ(0)[1(ρe) − ẽ1ρ]

1ρ
, (3.12)

respectively. The averaged internal energy for an ideal gas can
be found as

ẽ =
µ(9)

µ(0)
. (3.13)

However, (3.11) and (3.12) are undefined if 1(ρe) −

ẽ1ρ = 0 or 1ρ = 0. The singularities can be removed if
it is assumed that 0̃ = µ(0) when 1(ρe) − ẽ1ρ = 0 and
9̃ = µ(9) when 1ρ = 0. Thus the modified generalized
definitions of 0̃ and 9̃ can be expressed as

0̃ =
µ(9)(we + ε) + 9̃1ρwρ

we + wρ + ε
, 9̃ =

µ(0)(wρ + ε) + 0̃1ewe

we + wρ + ε
(3.14)
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Figure 2. Results of the 1D shock–bubble interaction test case of Quirk and Karni. The WENO-CU6 solution (�) is obtained on a
400-point grid and compared to the reference solution (—) produced with the standard WENO-5 method on a high-resolution grid with
6000 grid points.

with wρ = (
1ρ

ρ̃
)2 and we = (

1(ρe)−ẽ1ρ

ρ̃ẽ )2, where ε is a small
number. Then the speed of sound is given by

c2
= 9̃ +

p̃

ρ̃
0̃. (3.15)

4. Validation of the numerical scheme

As a first validation test case, Sod’s two-material shock-tube
problem is used to show the correct and consistent
implementation of the WENO-CU6 scheme and the
multicomponent model with its modified generalized Roe
average. The initial condition is

(ρ, u, p, γ ) ={
(1.0, 0.75, 1.0, 1.4) if 0.0 < x < 0.3,

(0.125, 0.0, 0.1, 1.2) if 0.3 < x < 1.0.
(4.1)

Results are shown for the final time t = 0.2.
The solution in figure 1 obtained with the WENO-CU6

scheme on a 200-point grid agrees very well with the reference
solution. The reference solution is produced with a standard
WENO-5 scheme on a high-resolution grid with 6000 points.
The results of the WENO-CU6 method slightly oscillate
because of the non-dissipative properties of the method.
A more dissipative scheme would damp such disturbances
at each time step and hence smooth out the solution. In
a non-dissipative scheme (as the WENO-CU6 scheme is
in smooth flow regions) the oscillations show a dispersive
character as they travel both up- and downstream.

The second test case is the 1D shock–bubble interaction
case of Quirk and Karni (cited by Abgrall [16]). It consists of a
shock wave that is traveling in air to the right. In the pre-shock
state a bubble of helium is located between 0.4 < x < 0.6. The
shock wave is initially at x = 0.25 and the initial conditions
are

(ρ, u, p, γ ) =
(1.3765, 0.3948, 1.57, 1.4) if 0.0 < x < 0.25,

(1.0, 0.0, 1.0, 1.4) if 0.25 < x < 0.4
or 0.6 < x < 1.0,

(0.138, 0.0, 1.0, 1.67) if 0.4 < x < 0.6.

(4.2)

The results of the WENO-CU6 method are given in
figure 2 and compared to the reference solution that was
obtained by using a conventional WENO-5 approach. The
solution of the WENO-CU6 method was sampled on a
400-point grid. The reference solution was sampled on a
high-resolution 6000-point grid. Although the WENO-CU6
results were obtained on a grid that is 15 coarser than the
grid of the reference solution, they are both in very good
agreement. A quantitative comparison of the present results
with those of Wang [21] showed a clear improvement. Also
a qualitative comparison with the results of Marquina and
Pulet [20] corroborated this conclusion.

5. Initial conditions for RMI

The experiments of Jacobs and Krivets [1] provide the initial
conditions for our 2D investigation of the RMI in an inviscid
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regime. The vertical shock tube used in the experiment has
a driver section that is filled with air at ambient pressure
and temperature. In the test section an interface of air–SF6 is
formed as the heavier SF6 flows upwards and collides with air
flowing from top to down. Both gases exit through horizontal
slots in the test section. A sinusoidal interface between the
two gases is formed by oscillating the entire shock tube in the
horizontal direction. This membrane-less technique was first
proposed by Jones and Jacobs [14].

The initial conditions of the experimental setup
considered in the present numerical study are as follows:
The shock wave has a strength of Ms = 1.3 in air. The
sinusoidal interface of air–SF6 has a pre-shock amplitude of
a−

0 = 2.9 mm and a wavelength of λ = 59 mm. The location
of the material interface is then calculated from η = xi +
a−

0 cos(2πy). The diffusion layer between the fluids is given
by [30]

f (δ) = fl(1 − δ) + frδ,

δ =
(1 + tanh(1R

ε
))

2
, (5.1)

ε = D
√

1xi1yi

and f = ρ, zSF6 . 1R is the distance from the material
interface. The densities of air and SF6 in ambient conditions
led to a pre-shock Atwood number of A−

= 0.605. The
interface is initialized at xI = 30 mm and the shock at xs =

10 mm. The time is initialized to zero (t = 0) when the shock
first impacts the SF6 gas.

5.1. Computational domain

The 2D computational domain is discretized by a Cartesian
grid. We use for all simulations a mesh size of 256 cells
per initial wavelength λ. The ‘numerical test section’ is
surrounded by layers of coarser grids in order to avoid shock
reflections at the inlet and outlet.

5.2. Non-dimensionalization

The reference scales to non-dimensionalize the governing
equations are defined here. The reference density is set
to the pre-shock density of air ρref = ρair = 1.351 kg m−3.
Accordingly, the reference pressure is chosen to be the pre-
shock pressure pref = 0.956 bar. The reference length scale is
the initial wavelength of the sinusoidal interface L ref = λ =

59 mm and the reference time scale is tref =

√
ρref

pref
L ref.

6. Numerical results

6.1. Single-fluid algorithm

In this subsection, the ratio of specific heats γ in (2.5) is
assumed to be constant with the same value of γ = 1.276
for both air and SF6 and hence is referred to as single-fluid
algorithm. Figure 3 shows the experimental results of Jacobs
and Krivets [1] along with our numerical results obtained with
the standard WENO-5 and the WENO-CU6 method at three
different times t = 3.06 ms, t = 4.16 ms and t = 6.06 ms.

(a) (b) (c)

Figure 3. Experimental results of Jacobs and Krivets [1]
(a) compared to the single-fluid results obtained with the standard
WENO-5 method (b) and the WENO-CU6 method (c) at three
different times t = 3.06 ms, t = 4.16 ms and t = 6.06 ms.

(a) (b) (c)

Figure 4. In (b) the post-shock conditions of the experiment are
matched, whereas in (c) the pre-shock conditions are matched and
compared to the experiment (a) at times t = 4.16 ms and
t = 6.06 ms.

The comparison shows that the lower-order WENO-5 method
preserves large-scale structures and symmetry to later times,
while WENO-CU6 better resolves small-scale structures,
leading to symmetry breaking and increased mixing. This
better behavior is in agreement with the findings of
Latini et al [11].

WENO-5 cannot reproduce the secondary instabilities
on the mushroom stem, whereas WENO-CU6 clearly shows
the same typical stem disturbances as the experiment at t =

6.06 ms. On the other hand, it also shows instabilities on top of
the mushroom which are not observed in the experiment. We
believe that the origin of these numerical instabilities could
be because of neglecting viscous effects, which makes the
WENO-CU6 scheme less dissipative than the real physical
mechanisms. On the other hand, other numerical schemes
apparently are too dissipative. Both discretization schemes
are unable to predict correctly the large-scale structure such

6
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(a) (b) (c) (d)

Figure 5. Investigation of the impact of the diffusion layer on the late-time Richtmyer–Meshkov development with increasing the diffusion
layer thickness from (b) D = 4 to (c) D = 8 to (d) D = 16 at times t = 4.16 ms and t = 6.06 ms.

as the mushroom head diameter and stem diameter of the
RMI experiment.

Richtmyer described the early linear growth rate of the
instability as a function of the post-shock parameters, a+

0
the post-shock amplitude, A+ the post-shock Atwood number,
the velocity jump 1U0 associated with the shock passage and
k the initial perturbation wavelength

ka(t) = ka+
0 + k2a+

0 A+1U0t. (6.1)

From (6.1) it immediately follows that in order to match
the correct initial growth rate and accordingly the later
development, one needs to reproduce the correct post-shock
parameters. As the single-fluid method assumes constant γ , it
is not possible to have matching pre- and post-shock states.
Thus, it is preferable to match the post-shock state in order to
improve the agreement in the large-scale structures between
experiments and numerics at late times.

Figure 4(b) shows the result when the post-shock
conditions of the experiment are matched. The pre-shock
conditions are matched in figure 4(c). Comparing figures 4(b)
and (c) to the experiment given in figure 4(a), a clear
improvement of the large-scale structure is observed in
figure 4(b). It shows a wider mushroom head and a thinner
stem, which captures better the global characteristics of the
RMI experiments.

6.2. Multifluid algorithm

In this subsection, γ is not assumed to be constant but
computed from (2.6) with γair = 1.276 and γSF6 = 1.093.
A transport equation is solved for the volume fraction (2.4)
to account for the variable ratio of specific heats. By means
of (2.4) and the modified general Roe average of section 3.2
we are able to simulate the material interface without the
appearance of spurious pressure oscillations.

As the initial driving force of RMI is the vorticity
deposition on the material interface caused by the misaligned
pressure and density gradient, it is of crucial importance to
properly match the pressure gradient and the density gradient.
The pressure gradient is associated with the Mach number
of the incident shock wave and therefore is much better
quantifiable than the density gradient.

(a) (b) (c)

Figure 6. Comparison of the multifluid (b) and single-fluid
(c) algorithms to the experiments (a) at times t = 4.16 ms and
t = 6.06 ms.

In order to quantify the uncertainty of the density
distribution across the interface, three different diffusion layer
thicknesses are considered. Figure 5 shows a sequence of
simulations with increasing diffusion layer thicknesses D = 4,
D = 8 and D = 16, see (5.1). The vorticity deposited on
the interface decreases as the density gradient is reduced
from the left, figure 5(b), to the right, figure 5(d). Although
the mushroom stem in figure 5(d) shows a non-sinusoidal
perturbation the overall shape agrees best with the experiment.
D = 16 is therefore used for making a comparison to the
results obtained using WENO-CU6 and a constant ratio of
specific heats in figure 6.

Figure 6 reveals a clear improvement of the multifluid
algorithm over the single-fluid algorithm. The global
characteristics are captured much better in figure 6(b) than
in figure 6(c). When the late-time development of the RMI
is of interest the correct compressibility of the fluids involved
needs to be captured, which requires a multifluid simulation
with variable material properties.

7. Concluding remarks

The 2D simulations of the single-mode RMI using the recently
developed WENO-CU6 reconstruction method of Hu et al [2]

7



Phys. Scr. T155 (2013) 014016 V K Tritschler et al

were conducted and compared with the experiments of Jacobs
and Krivets [1]. The multicomponent model for stiffened
gases by Shyue [3] was used to account for multiple species.
However, the high-order method employed made it necessary
to modify the general Roe average of Hu et al [23] in order to
capture material interfaces without the occurrence of spurious
pressure oscillations. In two 1D test cases it was shown
that the WENO-CU6 method together with the modified
general Roe average was capable of capturing accurately
material interfaces without introducing undesirable amounts
of numerical dissipation.

In a first sequence of simulations the ratio of specific
heats γ was assumed to be constant for both fluids. The fluxes
were reconstructed with the WENO-CU6 and the standard
WENO-5 method and compared to the experiments. It was
concluded that the lower-order WENO-5 method preserves
large-scale structures and symmetry to later times, while the
WENO-CU6 better resolves small-scale structures, leading
to earlier symmetry breaking and increased mixing. This
better behavior is in agreement with the findings of Latini
et al [11]. However, the global characteristic structures of RMI
were matched neither by the WENO-CU6 method nor by the
WENO-5 method. This is due to the fact that the linear growth
rate of RMI essentially depends on the post-shock state of
the instability. A mismatch of the post-shock state essentially
leads to wrong prediction of the late-time development. Thus,
in terms of accuracy, it is much more preferable to match
the post-shock state than the pre-shock state in single-fluid
simulations.

The initial driving force of RMI is the vorticity deposition
on the material interface caused by the non-parallel pressure
and density gradient. However, unlike the pressure gradient,
the density gradient associated with the material interface is
not easy to quantify in experiments. Therefore, a sequence
of multifluid simulations with different diffusion layer
thicknesses were conducted to assess the uncertainty in
the density gradient. The multifluid simulations showed a
considerable improvement over the single-fluid simulations
where the pre-shock state is matched.
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We quantify initial-data uncertainties on a shock accelerated heavy-gas cylinder by
two-dimensional well-resolved direct numerical simulations. A high-resolution com-
pressible multicomponent flow simulation model is coupled with a polynomial chaos
expansion to propagate the initial-data uncertainties to the output quantities of in-
terest. The initial flow configuration follows previous experimental and numerical
works of the shock accelerated heavy-gas cylinder. We investigate three main initial-
data uncertainties, (i) shock Mach number, (ii) contamination of SF6 with acetone,
and (iii) initial deviations of the heavy-gas region from a perfect cylindrical shape.
The impact of initial-data uncertainties on the mixing process is examined. The re-
sults suggest that the mixing process is highly sensitive to input variations of shock
Mach number and acetone contamination. Additionally, our results indicate that the
measured shock Mach number in the experiment of Tomkins et al. [“An experimen-
tal investigation of mixing mechanisms in shock-accelerated flow,” J. Fluid. Mech.
611, 131 (2008)] and the estimated contamination of the SF6 region with acetone
[S. K. Shankar, S. Kawai, and S. K. Lele, “Two-dimensional viscous flow simula-
tion of a shock accelerated heavy gas cylinder,” Phys. Fluids 23, 024102 (2011)]
exhibit deviations from those that lead to best agreement between our simulations
and the experiment in terms of overall flow evolution. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4865756]

I. INTRODUCTION

The impulsive acceleration of a density inhomogeneity and the subsequent high-speed fluid
mixing was first studied by Richtmyer,1 both analytically and numerically. Later, Meshkov2 con-
firmed Richtmyer’s predictions experimentally. The Richtmyer-Meshkov instability (RMI) is driven
by baroclinic vorticity production at the fluid interface. The vorticity production results from a
misalignment of the pressure gradient ∇p associated with the shock wave and the density gradient
∇ρ of the material interface. At intermediate and late times the initial RMI is followed by Kelvin-
Helmholtz instabilities as a result of the velocity shear across the deformed material interface. If the
initial energy deposition due to the shock wave is sufficient, the flow evolves into a turbulent mixing
zone.

Accurate numerical prediction of high-speed multicomponent mixing problems is of great
importance for technical applications and natural phenomena.3–5 In the past decade, RMI in shock-
bubble interactions has been widely studied analytically, experimentally, and numerically. Haas and
Sturtevant6 pioneered the experimental approach and produced accurate experimental images of
the bubble evolution. Later, Jones and Jacobs7 established a membrane-free technique that allows
experimental investigation with much better defined initial conditions. In a recent experimental
investigation, Tomkins et al.8 investigated the interaction of a shock wave with a heavy-gas cylinder.
By using the membrane-free technique of Jones and Jacobs7 they were able to record very clear

a)volker.tritschler@aer.mw.tum.de
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high-quality images not only of the heavy-gas concentration of the cylinder but also of the mixing
rates.

Shankar et al.9 employed the experimental initial conditions of Tomkins et al.8 in their numerical
simulations. They reported, for the first time, simulation results with four species N2, O2, SF6, and
C3H6O (acetone) at finite Reynolds numbers. Despite the fact that the authors produced grid-
converged results with a high-order numerical method, they were not able to reproduce correctly
the global characteristics seen in the experiment, partially due to three-dimensional effects, but
also due to unknown uncertainties in the initial data of the experiment. This motivates a rigorous
quantification of typical initial-data uncertainty on a shock-accelerated heavy-gas cylinder and how
these uncertainties may affect the output quantities of interest (QoI).

Three main sources of uncertainty are investigated; (i) shock Mach number, (ii) contamination
of SF6 with acetone that serves as a tracer species in the experiment, and (iii) initial deviations of
the SF6 region from a perfect cylindrical shape, cf. Shankar et al.9 and Tomkins et al.8 The impact
of these main sources of initial-data uncertainty on the time evolution of the heavy-gas region is
quantified by performing a simulation-based uncertainty quantification.

Specifically, the focus of this paper is (i) to investigate the effect of the shock Mach number,
the contamination of the SF6 cylinder with acetone and the initial deviation of the heavy-gas region
from a perfect cylindrical shape on mixing processes in the flow field, (ii) to classify the relative
significance of the uncertainty parameters with respect to their impact on flow dynamics, (iii) to
quantify the cross-correlation between the uncertainty parameters and finally, (iv) to identify and
investigate the source of typical differences between numerical simulations and experiment reported
in the literature. Note that the main objective of this study is not to reproduce the experiment of
Tomkins et al.,8 but rather to clarify the general effect of initial-data uncertainties on the mixing
process and the unsteady flow dynamics of a shock-accelerated heavy-gas cylinder.

This paper is structured as follows: Sec. II summarizes the experimental setup of Tomkins et al.8

and defines the three initial-data uncertainty parameters under investigation. Sec. III outlines the
governing equations, the employed multicomponent model, the uncertainty quantification method,
and gives a detailed description of the numerical setup. In Sec. IV, we define the output QoI, and
finally, in Sec. V, we present and discuss the results of the uncertainty quantification. Here, we
also provide a best fit result to the experiment of Tomkins et al.8 We conclude with a summary in
Sec. VI.

II. SHOCK-CYLINDER INTERACTION

A. Experimental setup

The present numerical investigation follows the experiment of Tomkins et al.8 where a heavy-
gas cylinder embedded in air is impacted by a M = 1.2 shock wave. The heavy gas consists of SF6

and is seeded with acetone, which serves as a tracer for laser-induced fluorescence visualization. The
shock wave is generated in air by puncturing a membrane between a pressurized driver section and a
driven section. In the test section, the shock wave hits the heavy-gas cylinder, which was generated
using the membraneless approach of Jones and Jacobs.7 The maximum mass fraction of heavy gas
in the circular region was estimated in the experiment to Y max

H G = 0.83 with Y max
H G = Y max

Ac + Y max
SF6

.

B. Sources of input uncertainty

In this study, the heavy-gas region geometry, heavy-gas concentration and contamination, and
the strength of the shock wave are considered as the three main sources of initial-data uncertainty.

1. Mach number

The Mach number M of a shock wave determines the pressure jump across the shock and
thus affects baroclinic vorticity production at the fluid interface. The domain of the Mach number
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uncertainty is estimated as

M ∈ [1.18, 1.22], (1)

based on uncertainty domains found in similar configurations.10, 11

2. Presence of a tracer species

The contamination of the cylinder with the tracer acetone changes the density of the heavy-gas
cylinder and hence also affects baroclinic vorticity production. The maximum mass fraction of
acetone Y max

Ac is introduced as an additional uncertainty parameter. Experimental data on the amount
of acetone in the cylinder are not available and accordingly need to be estimated. We assume Y max

Ac
to be

Y max
Ac ∈ [0.05, 0.25], (2)

as a similar domain for the acetone concentration were considered in the numerical investigation of
Shankar et al.9 and the experimental work of Balasubramanian et al.12

3. Initial imperfections of the heavy-gas region

The initial deviation of the heavy-gas region from a cylindrical shape affects the baroclinic
vorticity production. The definition of this uncertainty parameter is motivated by Fig. 2 in Tomkins
et al.8 which shows that the cross-section of the heavy-gas cylinder in the experiment is not perfectly
circular. We approximate the heavy-gas region cross-section as an ellipse with eccentricity e as
uncertainty parameter

e ∈ [−0.5, 0.5]. (3)

When e > 0 the semi-major axis is aligned with the streamwise direction, e < 0 has the opposite
effect, and e = 0 corresponds to a perfect circular cylinder. The cross-sections of the heavy-gas
region with e = −0.5, e = 0.0, and e = 0.5 are shown in Fig. 2.

III. NUMERICAL MODEL

A. Governing equations

We solve numerically the two-dimensional multicomponent Navier-Stokes equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (4)

∂(ρu)

∂t
+ ∇ · (ρuu + pδ − τ ) = 0, (5)

∂ E

∂t
+ ∇ · [(E + p)u] − ∇ · (τ · u − qc − qd) = 0, (6)

∂ρYi

∂t
+ ∇ · (ρuYi ) − ∇ · (ρDi∇Yi ) = 0. (7)

In system (4)–(7), ρ is the mixture density, u is the velocity, p is the pressure, E is the total energy,
Yi is the mass fraction of species i = 1, 2, ...K, K is the number of species, and δ is the unit
tensor. The viscous stress tensor τ is defined for a Newtonian fluid with the mixture viscosity μ.
Di is the effective binary diffusion coefficient of species i. The heat conduction and the interspecies
diffusional heat flux13 are given by

qc = −κ∇ T,
(8)

qd =
K∑

i=1

hi Ji
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with

Ji ≈ −ρ

⎛⎝Di∇ Yi − Yi

K∑
j=1

D j∇ Y j

⎞⎠ . (9)

The mixture heat conductivity coefficient κ , the mixture viscosity μ, and the effective binary diffusion
coefficient Di are given in Appendixes A and B.

The equations are closed with the equation of state (EOS) for an ideal gas

p(ρe, Y1, Y2, ..., YK ) = (γ − 1) ρe, (10)

where γ is the ratio of specific heats and e is the internal energy of the system defined as

ρe = E − ρ

2
u2. (11)

B. Numerical scheme

The hyperbolic part of the Navier-Stokes equations in one spatial dimension can be written as
a quasi-linear system

Ut + AUx = 0, (12)

where A = A(U) = ∂ F
∂U is the Jacobian matrix with N real eigenvalues λi (U) corresponding to N

eigenvectors Ri (U).
For a multicomponent system with K species the Jacobian A is14, 15

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 · · · 0

−u2 + 1
2 (γ − 1)q2 + X (3 − γ )u (1 − γ )v (1 − γ )w γ − 1 X1 · · · X K−1

−uv v u 0 0 0 · · · 0

−uw w 0 u 0 0 · · · 0

u[ 1
2 (γ − 1)q2 − H ] + u X H − (γ − 1)u2 (1 − γ )uv (1 − γ )uw γ u u X1 · · · u X K−1

−uY1 Y1 0 0 0 u · · · 0
...

...
...

...
...

. . .
−uYK−1 YK−1 0 0 0 0 · · · u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(13)

where X and Xi are given by

X = ∂γ

∂ρ
ρe, (14)

Xi = ∂γ

∂ρYi
ρe for i ∈ [1, K − 1]. (15)

H is the enthalpy and q = ‖u‖2. The numerical solution of Eq. (12) thus requires a flux projection
on local characteristics. For this purpose the corresponding Roe-averaged matrix Ã needs to be
calculated, along with its right and left eigenvectors.16 The numerical fluxes at the cell boundaries
fi±1/2 are reconstructed from cell averaged values with the low-dissipation central-upwind 6th-order
weighted essentially non-oscillatory scheme (WENO-CU6) of Hu et al.17 After reconstruction of
the numerical fluxes at the cell boundaries the fluxes are projected back onto the physical field
using the right eigenvectors. A local switch to a Lax-Friedrichs flux is used as entropy fix, see, e.g.,
Toro.18 Equation (12) is evolved in time using a third-order total variation diminishing Runge-Kutta
scheme.19 It is important to note, that only K − 1 species are projected onto the characteristic space.
Species K follows from the conservation of mass and the K − 1 other species. The numerical scheme
has been tested extensively and validated for similar flows.20, 21
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C. Uncertainty quantification methodology

The goal of the uncertainty quantification method is to determine the uncertainty of the output
QoI (response functions) for a given uncertainty of input parameters. The uncertainty quantification
analysis is performed with a polynomial chaos expansion (PCE) provided by the Dakota software
package.22 PCE is a general framework for the approximate representation of random response
functions R in terms of finite-dimensional truncated series expansions in standardized (centered and
normalized) random variables ξ = [ξ1, ξ2, ...],

R ∼=
P∑

i=0

αi	i (ξ ). (16)

Here 	i (ξ ) are multivariate polynomials, which involve products of the one-dimensional orthogonal
basis polynomials. There is an optimal polynomial family for typical probability distributions of an
uncertain input parameter.22 Since the individual probability distributions of the input parameters
are unknown, for simplicity we assume a uniform distribution for all input parameters. In the case of
a uniform distribution suitable PCE polynomials are tensor-products of one-dimensional Legendre
polynomials for 	(ξ ). An explicit representation of a Legendre polynomial of degree n is given by

ψn(ξi ) = 2n
n∑

k=0

ξ k
i

(
n

k

)(
(n + k − 1)/2

n

)
. (17)

To transform a parameter xi into a standardized parameter ξ i, the following linear transformation is
applied

ξi = xi − μi

σi
, (18)

where μi is the mean value and σ i is the standard deviation of xi. For continuous, independent,
uniformly distributed parameters it is μi = (xi, max + xi, min)/2 and σi = (

xi,max − xi,min
)
/
√

12. A
tensor-product expansion is used to construct multivariate polynomials. The total number of terms
Nt in an expansion with polynomials of order pi involving n random variables is given by

Nt =
n∏

i=1

(pi + 1). (19)

Since the basis polynomials are orthogonal one can compute αj by projection from Eq. (16),

α j = 〈R, 	 j 〉
〈	2

j 〉
= 1

〈	2
j 〉

∫
�

R	 jρ(ξ )dξ , (20)

where ρ(ξ ) =
n∏

i=1
ρi (ξ ) is a joint probability density function. The probability density function of

a single random variable in the case of a uniform distribution is ρ
uni f orm
i = 1/2. � is a domain

spanned by ξ i. Since only discrete values of R and ξ i are available, integration of Eq. (20) has to
be performed numerically. In the case of tensor-product expansion and uniform distribution Dakota
performs integration with the Gauss-Legendre quadrature rule. This quadrature rule with j integration
points yields an exact result for polynomials of degree 2j − 1. The highest order of the integrand

in Eq. (20) is 2p = 2
n∑

i=1
pi (	 j is of order p and R is modeled to be of order p). Therefore, pi + 1

integration points in each dimension are needed to obtain good accuracy in αj. The denominator
of Eq. (20) is computed analytically. One can perform nested quadrature with Gauss-Patterson
quadrature rules. The advantage is that previous integration points can be reused for higher order
PCE. Nevertheless, nested integration requires pi + 2 integration points for the same accuracy as
in the non-nested case. For three dimensions the nested grid becomes too expensive. Therefore,
non-nested quadrature of 4th-order accuracy in each dimension with 125 integration points is
chosen in the present investigation. Mean and variance can be computed directly from Eq. (16) with
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known αj,

μ = 〈R〉 ∼=
P∑

k=0

αk〈	k(ξ )〉, (21)


 = 〈(R − μ)2〉 ∼=
P∑

k=0

P∑
l=0

〈αkαl	k(ξ )	l(ξ )〉 =
P∑

k=0

α2
k 〈	k(ξ )2〉, (22)

where 〈	k(ξ )〉 and 〈	k(ξ )2〉 are integrated analytically. Besides the computation of these moments
PCE is used to perform local sensitivity analysis, i.e., to compute derivatives of a response function
with respect to an expansion variable

∂ R

∂ξi

∣∣∣∣
<ξ>

=
P∑

j=0

α j
∂	 j (ξ )

∂ξi
, (23)

where differentiation of 	 j is performed analytically. Dakota computes local sensitivities for each
response function R evaluated at uncertain variable means 〈ξ 〉.

D. Numerical setup

The shock-cylinder interaction is studied as a two-dimensional problem with an assumed sym-
metry plane at the center axis of the cylinder. The simulation domain is shown in Fig. 1.

A convective boundary condition is imposed at the left boundary, at the bottom boundary a
symmetry condition is imposed and outflow conditions are used at the right and top boundaries.
For reduced computational cost, the fine-grid domain around the region of interest is embedded
into a coarser outer domain. The fine-grid domain is discretized by an homogeneous Cartesian
grid with 960 cells per cylinder diameter (D = 0.006 m) resulting in quadratic cells of size �xy =
6.25 μm. This discretization is verified to be sufficient for direct numerical simulations through a
grid convergence study in Sec. V. In the coarse-grid domain, hyperbolic grid stretching is applied
towards the boundaries. In order to further reduce the computational overhead, a moving reference
frame is introduced. The reference frame velocity is chosen such that the cylinder remains within
the fine-grid domain during the simulation time of 640 μs. We note that the proper speed of the
reference frame requires adjustment for each initial condition and hence varies from sample point
to sample point.

The pre-shock quantities are matched to the experiment of Tomkins et al.8 p1 = 81060Pa,
T1 = 298 K and the post-shock quantities are calculated using the Rankine-Hugoniot conditions.
The cylinder is initialized with the upstream face set at the origin, see Fig. 1, and the shock wave
is initialized such that it hits the moving cylinder 12 μs after the initialization. The heavy-gas

4

FIG. 1. Schematic of the computational domain for the shock-cylinder interaction simulation. The maximum semi-major
axis a equals 3.2 mm.
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FIG. 2. The density of the cylinder with different acetone concentrations (left). Cross section of the cylinder with different
eccentricities e (right). The upstream face of the cylinder is set at the origin for all e.

distribution of the cylinder is matched to the experiment as proposed by Shankar et al.,9

YH G(r ) =

⎧⎪⎨⎪⎩Y max
H G

(
1 − exp

(
−

∣∣∣( |r |
Rd

−1
)
π

∣∣∣1.54

1.0082

))
if|r | ≤ Rd

0 else,

(24)

where Rd is the radius of the cylinder, r =
√

(x − x0)2 + (y − y0)2 is the distance to a point (x,
y) from the cylinder origin (x0, y0), Y max

H G is kept constant and equals 0.83. Thus YAir(r) = 1 −
YHG(r), YAc(r ) = Y max

Ac YH G(r ), and YSF6 (r ) = (1 − Y max
Ac )YH G(r ). To take the cylinder deformation

into account, Rd in Eq. (24) has to be modified. It is constant and equal to D/2 in the case of a circular
cylinder, but if the cylinder has an elliptical cross section the radius becomes

Rd = b√
1 − e2 cos2 φ

, (25)

where a is the semi-major axis, b is the semi-minor axis, and φ is the polar angle. Stretching of the
cylinder in the x or y direction depends on the sign of the eccentricity e, which is defined as

e = ±
√

a2 − b2

a
. (26)

The deformed cylinder should have the same volume as the circular cylinder with D = 0.006 m,
thus b = D

2

(
1 − e2

)1/4
. If e > 0 the major axis coincides with the x-axis and

cos2 φ = (x − x0)2

(x − x0)2 + (y − y0)2
, (27)

where x0 and y0 are the coordinates of the cylinder origin. If e < 0 the major axis is parallel to the
y-axis and

cos2 φ = (y − y0)2

(x − x0)2 + (y − y0)2
. (28)

The cross sections of the cylinder for e = 0.5, e = 0.0, and e = −0.5 are shown in Fig. 2.

IV. DEFINITION OF OUTPUT QUANTITIES OF INTEREST

In the following, we define the output quantities of interest:

(i) Geometrical quantities such as the downstream point xd, the upstream point xu, the mixing
layer length in streamwise direction lx with lx = xd − xu, and the spanwise direction ly with
ly = 2ymax, the downstream and the upstream width of the spiral dd, du and the centroid xc of
the deformed cylinder are shown in Fig. 3. The quantities xd, xu, and ymax are calculated as
the extremal points that satisfy YSF6 ≥ 0.01 max{YSF6 (t)}. The ratio of the downstream and the
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FIG. 3. Geometrical quantities.

upstream roll-up spiral width dd/du can easily be compared to the value found in the experiment
of Tomkins et al.8 The experimental quantity is identified by visual inspection of the contour
plots of the heavy gas concentration. In the present numerical investigation the ratio dd/du is
computed by choosing a threshold for the SF6 concentration as YSF6 ≥ 0.1 max{YSF6 (t)}. Note
that this quantity is well-defined only as long as the heavy-gas region is geometrically similar
to Fig. 3. Therefore, this quantity is evaluated only in the time interval 220 μs ≤ t ≤ 560 μs.
The centroid of the heavy-gas region xc is

xc =
∫

xYSF6 dxdy∫
YSF6 dxdy

. (29)

(ii) The circulation � is defined as the absolute value of the integral of the vorticity

� =
∣∣∣∣∫ ωzdxdy

∣∣∣∣ =
∣∣∣∣∫ (

∂v

∂x
− ∂u

∂y

)
dxdy

∣∣∣∣ . (30)

Note that, due to symmetry, � is only computed for the upper half of the heavy-gas region.
(iii) The total mixing rate (TMR) is calculated from the gradient of the mass fraction of SF6. TMR

is defined as the area integral of the scalar mixing rate of SF6,

TMR =
∫

DSF6∇YSF6 · ∇YSF6 dxdy, (31)

where DSF6 is the effective diffusion coefficient of SF6, see Appendixes A and B.
(iv) The total molecular mixing fraction (MMF) is defined as

MMF =
∫ 〈X Air X H G〉 dx∫ 〈X Air 〉 〈X H G〉 dx

. (32)

〈 · 〉 indicates spatial averaging in the spanwise direction of the volume fractions Xi. When MMF
= 0, the four species are completely segregated and when MMF = 1, they are completely mixed.

To reduce the computational cost all integral quantities such as �, TMR, and MMF are only
computed in the mixing region that is defined by [xu, xd] × [0, ymax]. The time is initialized to
zero t0 = 0 μs when the shock first impacts the cylinder. Geometrical quantities that depend on the
moving reference frame, e.g., xu, xc, xd, are transformed back to a non-moving frame.

V. RESULTS

A. Grid convergence study

A grid convergence study is performed for M = 1.2, Y max
Ac = 0.15, and e = 0.0 on three

different grid resolutions with 480, 960, and 1920 cells per cylinder diameter, corresponding to a
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FIG. 4. Grid convergence study for M = 1.2, e = 0.0, YAc = 0.15 on three different grid resolutions with 480, 960, and 1920
cells per cylinder diameter.

cell size of 12.5 μm, 6.25 μm, and 3.125 μm in the region of interest. All integral quantities shown
in Fig. 4 indicate grid convergence. Results for the medium and the fine grid are indistinguishable.
TMR appears to be the most sensitive quantity in terms of grid convergence. On the coarse grid
TMR is overpredicted after t ≈ 400 μs as secondary instabilities are artificially triggered by the
reconstruction scheme, see Fig. 5. These secondary instabilities disappear for the two finer grids that
resolve the dissipative scales. The normalized position of the heavy-gas-region centroid xc/D as well
as the circulation � are unaffected by grid refinement. Fig. 5 shows contour plots of the SF6 mass
fraction, which confirm a grid convergence between the medium and the high-resolution grid. From
this observation we conclude that results obtained on the medium-resolution grid with 960 cells
per D (�xy = 6.25 μm) are converged and therefore, qualify as direct numerical simulation results.
Shankar et al.9 also observed a trend towards a grid converged solution on grids with 480 cells per
D and 960 cells per D with small differences only in the predicted values of TMR at times beyond
t = 600 μs when small-scale flow features are clearly developed. Thus, the medium-resolution grid
is used for the 125 simulations needed for the uncertainty quantification.

FIG. 5. Contour plots of SF6 mass fraction YSF6 for M = 1.2, Y max
Ac = 0.15, and e = 0.0 on three different grid resolutions

with 480, 960, and 1920 cells per cylinder diameter.
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FIG. 6. Time evolution of the output uncertainties in terms of mean value, standard deviation, and outliers.

B. Time evolution of the output uncertainty

1. Mean value, standard deviation, and outliers

The mean values of the output QoI and their corresponding standard deviations are shown in
Fig. 6. Additionally, the minimum and maximum outliers of each output quantity are recorded and
shown in Fig. 6. The outliers are simulations that maximize the deviation from the mean value
averaged over the entire simulation time and are found by

〈Zi 〉 = 1

n − s

n∑
j=s

Ri (t j ) − μi (t j )

μi (t j )
, (33)

where Ri is the output quantity, μi is its mean value, tj is the time at the time step j, n is the
overall number of time steps, and s is the offset (≈ 15 μs) from time t = 0 to avoid zero values
in the denominator of Eq. (33). The simulation with a maximum 〈Zi〉 is the highest outlier and the
simulation with a minimum 〈Zi〉 is the lowest outlier. Note that the outliers do not have to be either
larger or smaller than the mean value throughout the entire simulation time. The standard deviation
of the location of the centroid xc/D of the cylinder grows approximately linearly in time. It is about
1.5D at the final time t = 640 μs. The minimum and maximum outliers have the same deviation
from the mean value, suggesting a linear dependence between input and output uncertainty.

The mixing region lx contracts in streamwise direction until the shock reaches the downstream
point of the cylinder, whereas ly remains nearly constant, i.e., lx/ly decreases. After the shock has left
the mixing region both lx and ly grow, see Fig. 9. At late times lx grows faster than ly and lx/ly increases.
lx/ly reaches its global minimum of 0.71 at t ≈ 200 μs. At this time also the outliers collapse and
the standard deviation reduces to zero. Therefore, with respect to these QoI the numerical results are
independent of the initial conditions within the uncertainty bounds of the input parameters. In the
time interval between 200 and 500 μs the ratio lx/ly depends only weakly on the initial uncertainty
parameters. Note that the initial standard deviation is not zero since e affects the initial shape of the
cylinder before shock impact.

The ratio dd/du can be measured by visual inspection of the experimental contour plots, see
Figures 3 and 9. In the experiment, it is dd/du < 1 and reaches its global maximum dd/du ≈ 1 at
t = 560 μs. In the present numerical investigation it starts to be larger than unity for t > 390 μs,
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FIG. 7. The individual standard deviations σ (e), σ (M), and σ (Y max
Ac ), the multivariate standard deviation σ (e, Y max

Ac , M) and

the multivariate standard deviation for uncorrelated random variables
√∑

i σ (i)2.

independently of the initial conditions. Even the outlier shows a value of dd/du ≈ 1.8 at t ≈ 540 μs.
At earlier times t = 220 μs we estimate the experimental ratio as 0.67, see Fig. 9, whereas the mean
value in the present simulation is dd/du = 0.69. The standard deviation shows a local minimum at
t = 255 μs where σ is almost zero. Therefore, dd/du is independent of the input parameters at this
time.

The total circulation � grows linearly as long as the shock wave propagates within the heavy-
gas region. � decreases as the shock wave reaches the downstream face of the heavy-gas region
due to reflected rarefaction waves and then levels out to a mean value of 0.39 m2/s for the rest of
the simulation time. The same value was obtained for the total circulation in Shankar et al.23 The
standard deviation of � is almost zero as long as the shock is within the heavy-gas region but then
grows up to a constant value 0.024 m2/s.

TMR seems to be the quantity that is the most sensitive to changes in the initial conditions. The
uncertainty range of the TMR defined by the outliers spreads over more than 120% of the mean
value at the final time. The standard deviation increases considerably with time and reaches more
than 20% of the TMR mean value at the end of the simulation time. Accordingly, material mixing
is very sensitive to initial condition variations and a quantitative match with the experimental data
is very challenging.

Another mixing measure is the MMF. It grows after the shock has left the cylinder, but then
starts to drop again at around t = 80 μs. This drop is caused by the growth of the mixing-layer width
that is used as averaging region for the MMF calculation. After t = 300 μs material mixing in the
mixing layer dominates over the growth of the mixing layer and thus MMF increases again. The
standard deviation of MMF slightly grows in time and reaches its global maximum of 0.017 at the
end of the simulation, see Fig. 7.

The input parameters for the outliers are given in Table I. Because of the numerical integration
of Eq. (20) for the uncertainty analysis, the numerical domain of the input parameters differ slightly
from the analytical domain

Mnum
min = 1.1819, Mnum

max = 1.2181 (34)
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TABLE I. The input parameters of the outliers.

Output parameter Maximum Minimum

e = −0.4531 e = 0.4531
xc/D Y max

Ac = 0.2406 Y max
Ac = 0.0594

M = 1.2181 M = 1.1819
e = 0.4531 e = −0.4531

lx/ly Y max
Ac = 0.2406 Y max

Ac = 0.0962
M = 1.2181 M = 1.1819
e = 0.4531 e = −0.4531

dd/du, �[m2/s], TMR [m2/s], MMF Y max
Ac = 0.0594 Y max

Ac = 0.2406
M = 1.2181 M = 1.1819

enum
min = −0.4531, enum

max = 0.4531 (35)(
Y max

Ac

)num

min = 0.0594,
(
Y max

Ac

)num

max = 0.2406. (36)

2. Standard deviation and single uncertain-parameter variation

It is useful to study the effect of the input uncertainties separately to assess which one has a
dominant effect on a particular output quantity. Fig. 7 gives the computed standard deviations for
σ (e), σ (M), and σ (Y max

Ac ). Furthermore, it shows the multivariate standard deviation σ (e, M, Y max
Ac )

and
√∑

i σ (i)2. The latter is the exact multivariate standard deviation for uncorrelated random
variables characterized by vanishing covariance. The weak correlation of the three uncertainty
parameters is reflected by the fact

√∑
i σ (i)2 ≈ σ (e, M, Y max

Ac ) during the entire simulation time
0 μs ≤ t ≤ 640 μs.

The standard deviation of xc/D is largely dominated by the variation of the Mach number, i.e.,
σ (e, M, Y max

Ac ) ≈ σ (M). Shankar et al.9 reported the potential influence of a contamination of the
heavy-gas region with acetone on the location of the centroid. However, compared to the Mach
number, YAc has only a marginal effect on the cylinder location.

The eccentricity e defines the initial cylinder shape and thus strongly affects the standard
deviation of lx/ly in the beginning. At later times the influence of e on the standard deviation
is weaker. Between 200 μs and 500 μs, lx/ly is mostly unaffected by the variation of the input
uncertain parameters. However, at later times the effect of eccentricity e and Mach number M again
dominate the time evolution of the lx/ly uncertainty.

The ratio dd/du is only affected at later times by a variation of the input parameters and the three
uncertainty parameters then seem to have a comparable influence.

The standard deviation of � is equally affected by M and Y max
Ac , whereas e has only minor

effects. Because M and Y max
Ac directly affect |∇p| and |∇ρ|, they dominate the baroclinic vorticity

production Dω/Dt ≈ (∇ρ × ∇p)/ρ2 and thus the time evolution of �. Changes in the misalignment
of ∇p and ∇ρ due to the eccentricity, however, only weakly affect the standard deviation of the
circulation.

The mixing measures TMR and MMF are mostly affected by variations in Y max
Ac . An uncertainty

in Y max
Ac directly changes ∇YSF6 , which is used for the computation of the TMR, see Eq. (31). On

the other hand, it also changes ∇ρ leading to a decreased baroclinic vorticity deposition as YAc

is increased, ∇ρ ∝ 1/Y max
Ac . For the same reason, Y max

Ac is responsible for a large portion of the
uncertainty in MMF. This is consistent with the findings of Shankar et al.9 who observed a decrease
of TMR as Y max

Ac increases.

3. Local sensitivities

Local sensitivities ∂ R/∂ξ j

∣∣
〈ξ 〉 for each response function R are evaluated at uncertainty variable

means 〈ξ 〉. The local sensitivities are shown in Fig. 8. Interpretation of ∂ R/∂ξ j

∣∣
〈ξ〉 should be
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FIG. 8. The local sensitivities of the output quantities evaluated at the uncertain variable means.

done with caution, because it is a local quantity and does not reflect the global system behavior,
unlike σ . Therefore, the local sensitivity yields only a tendency (increasing or decreasing) of the
response function (output uncertainty). Note that, in order to avoid different dimensions of the
derivatives, standardized random variables ξ e, ξAc, and ξM are used for the computation of the local
sensitivities.

An increase of M causes an increase of xc/D, whereas an increase of e and Y max
Ac does not

considerably affect the location of the centroid. It is remarkable that the derivative ∂
(
lx/ ly

)
/∂ξi |〈ξ 〉

changes sign throughout the simulation. At early times the uncertainty parameters ξ i cause the
output parameter to grow, whereas at later times the same ξ i can have the inverse effect on the output
parameters.

Between 220 μs and 400 μs the derivatives of the mean values ∂
(
lx/ ly

)
/∂ξi |〈ξ 〉 and

∂ (dd/du) /∂ξi |〈ξ〉 are close to zero, which means that small changes in the input parameters will not
result in a significant change of lx/ly and dd/du. Nevertheless, their standard deviation is not equal
to zero, which means that larger changes in the input parameters indeed affect lx/ly and dd/du. The
circulation is most sensitive to the Mach number and the acetone concentration because of ∇p ∝ M
and ∇ρ ∝ 1/Y max

Ac . Stretching the cylinder in the streamwise direction only slightly contributes to a
growing �.

The Mach number and the acetone concentration also dominate the material mixing as can
be seen from the local sensitivities of TMR and MMF. The mixing process is enhanced by larger
M, but damped as the acetone concentration increases. The effect of the Mach number on the
MMF, however, drastically changes with time and reverses its sign at late times. Changes of the
cylinder shape appear to be more important for the local sensitivities of TMR and MMF at very late
times.

C. Best fit to experiment

In addition to the previous uncertainty analysis a numerical best fit to the experiment of Tomkins
et al.8 is determined by solving an optimization problem with the ratio of the downstream and
upstream roll-up spiral width dd/du as objective function. This leads to an optimal parameter set
M ≈ 1.18, Y max

Ac ≈ 0.25, and e ≈ −0.5 that minimizes the difference between numerical and
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FIG. 9. Contour plots of SF6 mass fraction YSF6 with M = 1.18, Y max
Ac = 0.25, and e = −0.5 (second row) compared to the

experimental results (first row) by Tomkins et al.8 The numerical results for e = 0.0 (third row) and e = 0.5 (fourth row) are
also shown.

experimental results. The minimal value of dd/du that we found in our simulations, however, is larger
than the experimental value and thus the optimal parameters are found on the uncertainty-domain
boundaries.

The contour plots of YSF6 are shown in Fig. 9 for six consecutive time instants. The present
numerical results (second row) are in excellent agreement with the experimental data (first row).
This suggests that the true Mach number slightly deviates from the nominal value and that the
experimental contamination of the heavy gas cylinder with acetone was in fact larger than the
estimated 20% by Shankar et al.9 A negative eccentricity implies stretching of the cylinder in the
spanwise direction, however, given the experimental initial condition of Tomkins et al., a streamwise
stretching of the cylinder could be expected. Fig. 9 shows therefore also the contour plots for e = 0
and e = 0.5. Note the occurrence of small kinks on the outer part of the distorted heavy-gas region
as the eccentricity is increased. Even though similar kinks are seen in the experiment, the time
evolution of the instability seems to be less well captured than in the case of e = −0.5.

From Sec. V B, it can be concluded that the TMR is the most sensitive quantity with respect to
the variation of the uncertainty parameters. Unfortunately, the experimental data of Tomkins et al.8

are given in arbitrary units.24 Shankar et al.9 had to use a scaling factor24 in order to reproduce
the experimental TMR value quantitatively. Rather than using an arbitrary scaling factor we resolve
the scaling discrepancy by determining the optimum scaling factor ζ by least-squares minimization
from the best fit simulation. The optimum scaling factor is calculated to ζ = 0.7875 × 106 leading
to the scaled numerical TMR value

TMRscaled = ζ
2

Y max
H G

2

∫
DSF6∇YSF6 · ∇YSF6 dxdy. (37)

Note, due to symmetry, TMR is only computed for the upper half of the heavy-gas region and
therefore has to be multiplied by a factor of 2.

The temporal evolution of the experimental and the scaled numerical TMR is shown in Fig. 10.
Both are in good qualitative agreement, which is consistent with the findings of Shankar et al.9
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FIG. 10. Temporal evolution of scaled numerical and experimental TMR values.

VI. CONCLUSION

Initial-data uncertainties of a shock accelerated heavy-gas cylinder have been investigated by
a set of 125 two-dimensional well-resolved direct numerical simulations. The initial data of our
investigation were matched to previous experimental and numerical investigations. Three different
main sources of initial-data uncertainties were investigated, (i) shock Mach number M, (ii) contam-
ination of the SF6 region with acetone Y max

Ac , and (iii) initial deviations of the heavy-gas region from
a perfect cylindrical shape e. A polynomial chaos expansion was used to propagate the initial-data
uncertainties to the output QoI. The numerical simulations were performed with a high-resolution
compressible multicomponent flow simulation model involving four species.

The geometrical quantities, i.e., the heavy-gas region position and the cross section, appear to
be less affected by the variation of the initial data than the mixing quantities TMR and molecular
mixing fraction. For the evolution of the heavy-gas region, all three uncertainty parameters are
equally important. However, the effect of the eccentricity appears to be limited to the mixing layer
width ratio lx/ly and dd/du.

The calculation of the local sensitivities of the output QoI reveals that the effect of the input
quantities on certain output quantities may change over time. Our investigation suggests that the
mixing quantities, especially TMR, are highly sensitive to changes in the Mach number and acetone
concentration. The fact that the experimental acetone contamination of the cylinder is largely un-
known along with a given uncertainty in the Mach number renders quantitative comparisons of the
TMR with experimental data very challenging.

Within the uncertainty domain a set of M, Y max
Ac , and e was determined by solving an optimization

problem with the downstream and upstream roll-up spiral width dd/du as the objective function. The
numerical results for this parameter set are in excellent agreement with the experiment and suggest
that the measured Mach number and the estimated contamination of SF6 with acetone are strongly
biased. For an accurate numerical reproduction of the experiment it is crucial that the Mach number
and the acetone concentration in the heavy-gas region are known precisely. Finally, we note that the
present investigation is limited to two-dimensional simulations. Certainly relevant three-dimensional
effects are not within the scope of the current investigation, but will be addressed in subsequent work.

ACKNOWLEDGMENTS

We want to thank Sebastian Eberhardt, TUM for his enduring commitment for the development
of the multicomponent flow solver INCA. The authors gratefully acknowledge the Gauss Centre
for Supercomputing e.V. (www.gauss-centre.eu) for providing computing time on the GCS Su-
percomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de). V.K.T. gratefully
acknowledges the support of the TUM Graduate School.

APPENDIX A: MULTICOMPONENT MIXING RULES

The specific gas constant of species i is found by

Ri = Runiv

Mi
(A1)
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with the corresponding specific heat coefficients

cp,i = γi

γi − 1
Ri , cv,i = 1

γi − 1
Ri . (A2)

Here γ i is the ratio of specific heats of species i. The ratio of specific heats of the mixture γ is then

γ = cp

cp − R
(A3)

with

cp =
N∑
i

Yi cp,i . (A4)

Yi is the mass fraction of species i and R is the specific gas constant of the mixture with R = Runiv

M
.

The molar mass of the mixture is given by

M =
(

N∑
i

Yi

Mi

)−1

. (A5)

For the gas mixture Dalton’s law p = ∑
ipi shall be valid with pi = ρRiT. The viscosity μ and the

heat conductivity coefficient κ of the mixture is calculated from25

μ =
∑N

i=1 μi Yi/M1/2
i∑N

i=1 Yi/M1/2
i

, κ =
∑N

i=1 κi Yi/M1/2
i∑N

i=1 Yi/M1/2
i

. (A6)

The effective binary diffusion coefficients (diffusion of species i into all other species) are approxi-
mated as26

Di = (1 − Xi )

⎛⎝ N∑
i 
= j

X j

Di j

⎞⎠−1

, (A7)

where Xi is the mole fraction of species i. Equation (A7) ensures that the inter-species diffusion
fluxes balance to zero.

APPENDIX B: MOLECULAR MIXING RULES

The viscosity coefficient of a pure gas is given by27

μ = 2.6693 × 10−6

√
MT

�μσ 2
, (B1)

where σ is the collision diameter and �μ is the collision integral

�μ = A(T ∗)B + C exp {DT ∗} + E exp {FT ∗}, (B2)

where T ∗
i j = T/Tεi j and A = 1.16145, B = −0.14874, C = 0.52487, D = −0.7732, E = 2.16178,

and F = −2.43787. Tε = ε/k is the effective temperature characteristic of the force potential function
and k is the Boltzmann constant. The mass diffusion coefficient of a binary mixture can be calculated
from the empirical law25

Di j = 0.0266

�D

T 3/2

p
√

Mi jσ
2
i j

(B3)

with the collision integral for diffusion

�D = A(T ∗
i j )

B + C exp {DT ∗
i j } + E exp {FT ∗

i j } + G exp {H T ∗
i j }, (B4)
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TABLE II. Molecular properties of nitrogen, oxygen, SF6, and acetone.

Property Nitrogen Oxygen SF6 Acetone

(ε/k)i 82.0 102.6 212.0 458.0
σ i 3.738 3.48 5.199 4.599
Mi [g/mol] 28.0140 31.9990 146.0570 58.0805
γ i 1.4 1.4 1.1 1.1

where T ∗
i j = T/Tεi j and A = 1.06036, B = −0.1561, C = 0.19300, D = −0.47635, E = 1.03587, F

= −1.52996, G = 1.76474, H = −3.89411, and

Mi j = 2
1

Mi
+ 1

M j

σi j = σi + σ j

2
(B5)

Tεi j =
√(ε

k

)
i

(ε

k

)
j
.

The molecular properties of all species in the present study are given in Table II.
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We investigate the shock-induced turbulent mixing between a light and a heavy
gas, where a Richtmyer–Meshkov instability (RMI) is initiated by a shock wave
with Mach number Ma= 1.5. The prescribed initial conditions define a deterministic
multimode interface perturbation between the gases, which can be imposed exactly for
different simulation codes and resolutions to allow for quantitative comparison. Well-
resolved large-eddy simulations are performed using two different and independently
developed numerical methods with the objective of assessing turbulence structures,
prediction uncertainties and convergence behaviour. The two numerical methods
differ fundamentally with respect to the employed subgrid-scale regularisation,
each representing state-of-the-art approaches to RMI. Unlike previous studies, the
focus of the present investigation is to quantify the uncertainties introduced by the
numerical method, as there is strong evidence that subgrid-scale regularisation and
truncation errors may have a significant effect on the linear and nonlinear stages
of the RMI evolution. Fourier diagnostics reveal that the larger energy-containing
scales converge rapidly with increasing mesh resolution and thus are in excellent
agreement for the two numerical methods. Spectra of gradient-dependent quantities,
such as enstrophy and scalar dissipation rate, show stronger dependences on the
small-scale flow field structures as a consequence of truncation error effects, which
for one numerical method are dominantly dissipative and for the other dominantly
dispersive. Additionally, the study reveals details of various stages of RMI, as the
flow transitions from large-scale nonlinear entrainment to fully developed turbulent
mixing. The growth rates of the mixing zone widths as obtained by the two numerical
methods are ∼t7/12 before re-shock and ∼(t − t0)

2/7 long after re-shock. The decay
rate of turbulence kinetic energy is consistently ∼(t− t0)

−10/7 at late times, where the
molecular mixing fraction approaches an asymptotic limit Θ ≈ 0.85. The anisotropy
measure 〈a〉xyz approaches an asymptotic limit of ≈0.04, implying that no full recovery
of isotropy within the mixing zone is obtained, even after re-shock. Spectra of density,
turbulence kinetic energy, scalar dissipation rate and enstrophy are presented and show
excellent agreement for the resolved scales. The probability density function of the
heavy-gas mass fraction and vorticity reveal that the light–heavy gas composition
within the mixing zone is accurately predicted, whereas it is more difficult to capture
the long-term behaviour of the vorticity.

Key words: shock waves, turbulent mixing

† Email address for correspondence: volker.tritschler@aer.mw.tum.de
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1. Introduction
The Richtmyer–Meshkov instability (Richtmyer 1960; Meshkov 1969) is a

hydrodynamic instability that occurs at the interface separating two fluids of different
densities. It shows similarities with the Rayleigh–Taylor instability (Rayleigh 1883;
Taylor 1950), where initial perturbations at the interface grow and eventually evolve
into a turbulent flow field through the transfer of potential to kinetic energy. In the
limit of an impulsive acceleration of the interface, e.g. by a shock wave, the instability
is referred to as a Richtmyer–Meshkov instability (RMI). In RMI, baroclinic vorticity
production at the interface is caused by the misalignment of the pressure gradient
(∇p) associated with the shock wave and the density gradient (∇ρ) of the material
interface. The baroclinic vorticity production term (∇ρ×∇p)/ρ2 is the initial driving
force of RMI. See Zabusky (1999) and Brouillette (2002) for comprehensive reviews.

RMI occurs on enormous scales in astrophysics (Arnett et al. 1989; Arnett
2000; Almgren et al. 2006), on intermediate scales in combustion (Yang, Kubota
& Zukoski 1993; Khokhlov, Oran & Thomas 1999) and on very small scales in
inertial confinement fusion (Lindl, McCrory & Campbell 1992; Taccetti et al. 2005;
Aglitskiy et al. 2010). Owing to the fast time scales associated with RMI, laboratory
experimental measurements have difficulties in characterising quantitatively initial
perturbations of the material interface and capturing the evolution of the mixing
zone. General insight into the flow physics of RMI relies to a considerable extent
on numerical investigations, where large-eddy simulations (LES) have become an
accepted tool during the past decade.

Hill, Pantano & Pullin (2006) performed a rigorous numerical investigation of
RMI with re-shock. The authors used an improved version of the tuned centred
difference–weighted essentially non-oscillatory (TCD-WENO) hybrid method of Hill
& Pullin (2004). The method employs a switch to blend explicitly between a TCD
stencil in smooth flow regions and a WENO shock-capturing stencil at discontinuities.
The TCD-WENO hybrid method is used together with the stretched-vortex model
(Pullin 2000; Kosović, Pullin & Samtaney 2002) for explicitly modelling the
subgrid interaction terms. This approach was also used by Lombardini et al.
(2011) to study systematically the impact of the Atwood number for a canonical
three-dimensional numerical set-up, and for LES of single-shock (i.e. without
re-shock) RMI (Lombardini, Pullin & Meiron 2012).

Thornber et al. (2010) studied the influence of different three-dimensional broad-
and narrow-band multimode initial conditions on the growth rate of a turbulent
multicomponent mixing zone developing from RMI. In a later study (Thornber et al.
2011), the same authors presented a numerical study of a re-shocked turbulent mixing
zone, and extended the theory of Mikaelian and Youngs to predict the behaviour of a
multicomponent mixing zone before and after re-shock (cf. Mikaelian 1989; Thornber
et al. 2010). They used an implicit LES (Drikakis 2003; Thornber et al. 2008;
Drikakis et al. 2009) approach based on a finite-volume Godunov-type method to
solve the Euler equations with the same specific heat ratio for both fluids.

In a recent investigation, Weber, Cook & Bonazza (2013) derived a growth-rate
model for the single-shock RMI based on the net mass flux through the centre plane
of the mixing zone. Here, the compressible Navier–Stokes equations were solved
by a tenth-order compact difference scheme for spatial differentiation. Artificial
grid-dependent fluid properties, proposed by Cook (2007), were used for shock and
material-interface capturing as well as for subgrid-scale modelling.

Grid-resolution-independent statistical quantities of the single-shock RMI were
presented by Tritschler et al. (2013a). The kinetic energy spectra exhibit a Kolmogorov
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inertial range with k−5/3 scaling. The spatial flux discretisation was performed in
characteristic space by an adaptive central-upwind sixth-order-accurate WENO scheme
(Hu, Wang & Adams 2010) in the low-dissipation version of Hu & Adams (2011).

LES relies on scale separation, where the energy-containing large scales are resolved
and the effect of non-resolved scales is modelled either explicitly or implicitly.
However, turbulent mixing initiated by RMI for typical LES mainly occurs at the
marginally resolved or non-resolved scales. The interaction of non-resolved small
scales with the resolved scales as well as the effect of the interaction of non-resolved
scales with themselves is modelled by the employed subgrid-scale model. Moreover,
discontinuities such as shock waves and material interfaces need to be captured by
the numerical scheme. Owing to the broad range of scales, coarse-grained numerical
simulations of RMI strongly rely on the resolution capabilities for the different
types of subgrid scales (turbulent small scales, shocks, interfaces) of the underlying
numerical scheme.

So far, research has mainly focused on the identification and quantification of
parameters that affect the evolution of Richtmyer–Meshkov unstable flows. The
influence of the Atwood number (Lombardini et al. 2011), the Mach number
(Lombardini et al. 2012) as well as the specific initial interface perturbations
(Schilling & Latini 2010; Thornber et al. 2010; Grinstein, Gowardhan & Wachtor
2011) on the temporal evolution of the instability have been investigated. Results
from numerical simulations have been compared to experiments (Hill et al. 2006;
Schilling & Latini 2010; Tritschler et al. 2013b) and theoretical models have
been derived (Thornber et al. 2011; Weber et al. 2013). These investigations have
assumed, based on standard arguments such as empirical resolution criteria, that the
marginally and non-resolved scales have a negligible effect on the resolved scales, and
therefore on the evolution of the instability. Uncertainties introduced by the numerical
method, i.e. the subgrid-scale regularisation and truncation errors, have not yet been
investigated systematically. There is, however, strong evidence that numerical model
uncertainty can significantly affect the linear and nonlinear stages of evolution, and in
particular the mixing measures. In fact, it is unclear how subgrid-scale regularisation
and dispersive or dissipative truncation errors can affect the resolved scales and
turbulent mixing measures.

In the present investigation, two independently developed and essentially different
numerical methods are employed to study the prediction uncertainties of RMI
simulations. The first method has a dominantly dissipative truncation error at the
non-resolved scales, whereas the second one exhibits a more dispersive behaviour.
At the marginally resolved scales, the numerical truncation error is not small and
the particular character of the truncation error is essential for the implicit modelling
capabilities of the method, and thus also affects the resolved scale solution. For the
purpose of investigating this effect, integral and spectral mixing metrics as well as
probability density functions are analysed on four computational grids with resolutions
ranging from 1562 to 195 µm. The simulations employing two different numerical
methods on a very fine grid resolution of 195 µm provide a data set with high
confidence in the results.

We emphasise that the purpose of this study is (i) to present RMI results with
a clear identification of the resolved scale range by systematic grid refinement, and
(ii) to assess the physical effects of numerical subgrid-scale regularisations on the
marginally resolved and on the non-resolved scale range. We do not intend to propose
or improve a certain subgrid-scale model or regularisation scheme.

The paper is structured as follows. The governing equations along with the
employed numerical models are described in § 2. Details about the computational
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domain and the exact generic initial conditions are given in § 3. Results are presented
in § 4, and the key findings of the present study are discussed in § 5.

2. Numerical model
2.1. Governing equations

We solve the three-dimensional multicomponent Navier–Stokes equations:

∂ρ

∂t
+∇ · (ρu)= 0, (2.1a)

∂(ρu)
∂t
+∇ · (ρuu+ pδ − τ )= 0, (2.1b)

∂E
∂t
+∇ · [(E+ p)u] −∇ · (τ · u− qc − qd)= 0, (2.1c)

∂ρYi

∂t
+∇ · (ρuYi)+∇ · Ji = 0. (2.1d)

In (2.1a), u is the velocity vector, p is the pressure, E is the total energy, ρ is the
mixture density, Yi is the mass fraction and Ji is the diffusive mass flux of species
i= 1, 2, . . . ,K, with K the total number of species. The identity matrix is δ.

The viscous stress tensor τ for a Newtonian fluid is

τ = 2µ̄S + (β − 2
3 µ̄)δ(∇ · u), (2.2)

with the mixture viscosity µ̄ and the strain-rate tensor S. According to Fourier’s law,
we define the heat flux as

qc =−κ̄∇T (2.3)
and the inter-species diffusional heat flux (Cook 2009) as

qd =
K∑

i=1

hi Ji, (2.4)

with

Ji ≈−ρ
(

Di∇Yi − Yi

K∑

j=1

Dj∇Yj

)
. (2.5)

Here Di indicates the effective binary diffusion coefficient of species i, and hi is the
individual species enthalpy. The equations are closed with the equation of state for an
ideal gas,

p(ρe, Y1, Y2, . . . , YK)= (γ̄ − 1)ρe, (2.6)
where γ̄ is the ratio of specific heats of the mixture and e is the internal energy,

ρe= E− 1
2ρu2. (2.7)

The multicomponent as well as the molecular mixing rules for γ̄ , µ̄, Di and κ̄ are
given in appendices A and B.

2.2. Numerical methods
2.2.1. The Miranda simulation code

The Miranda simulation code has been used extensively for simulating turbulent
flows with high Reynolds numbers and multi-species mixing (Cook, Cabot & Miller
2004; Cabot & Cook 2006; Olson & Cook 2007; Olson et al. 2011; Weber et al.
2013). Miranda employs a tenth-order compact difference scheme (Lele 1992) for
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spatial differentiation and a five-stage fourth-order Runge–Kutta scheme (Kennedy,
Carpenter & Lewis 2000) for temporal integration of the compressible multicomponent
Navier–Stokes equations. Full details of the numerical method are given by Cook
(2007), which includes an eighth-order compact filter that is applied to the conserved
variables at each time step and smoothly removes the top 10 % of wavenumbers to
ensure numerical stability. For numerical regularisation of non-resolved steep flow
gradients, artificial fluid properties are used to damp locally structures that exist on
the length scales of the computational mesh. In this approach, artificial diffusion terms
are added to the physical ones that appear in equations (2.2), (2.3) and (2.5) as

µ = µf +µ∗, (2.8)
β = βf + β∗, (2.9)
κ = κf + κ∗, (2.10)

Di = Df ,i +D∗i . (2.11)

This LES method employing artificial fluid properties was originally proposed by
Cook (2007), but has been altered by replacing the S (magnitude of the strain rate
tensor), with ∇ · u in the equation for β∗. Mani, Larsson & Moin (2009) showed that
this modification substantially decreases the dissipation error of the method. Here we
give the explicit formulation of the artificial terms on a Cartesian grid,

µ∗ =Cµρ|∇rS|∆(r+2), (2.12)

β∗ =Cβρ|∇r (∇ · u) |∆(r+2), (2.13)

κ∗ =Cκ

ρcs

T
|∇re|∆(r+1), (2.14)

D∗i =CD|∇rYi|∆
(r+2)

1t
+CY(|Yi| + |1− Yi| − 1)

∆2

21t
, (2.15)

where S = (S : S)1/2 is the magnitude of the strain-rate tensor, ∆ = (1x1y1z)1/3
is the local grid spacing, cs is the sound speed and 1t is the time step size. The
polyharmonic operator, ∇r, denotes a series of Laplacians, e.g. r = 4 corresponds to
the biharmonic operator, ∇4 = ∇2∇2. The overbar ( f ) denotes a truncated-Gaussian
filter applied along each grid direction as in Cook (2007) to smooth out sharp
cusps introduced by the absolute value operator. In LES of RMI, β∗ acts as the
shock-capturing scheme. The µ∗ is primarily used as a numerical stabilisation
mechanism rather than as a subgrid-scale model. The artificial shear viscosity is
found not to be needed to maintain numerical stability in the current calculations
and its inclusion has a small impact on the solution. The dissipation of the vortical
motion primarily depends on the eighth-order compact filter.

2.2.2. The INCA simulation code
The INCA simulation code is a multi-physics simulation method for single- and

multicomponent turbulent flows. With respect to the objective in this paper, it has
been tested and validated for shock-induced turbulent multi-species mixing problems
at finite Reynolds numbers (Tritschler et al. 2013a,b, 2014).

For all the simulations presented in this paper, we use a discretisation scheme that
employs for the hyperbolic part in (2.1a) a flux projection on local characteristics. The
Roe-averaged matrix required for the projection is calculated for the full multi-species
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system (Roe 1981; Larouturou & Fezoui 1989; Fedkiw, Merriman & Osher 1997). The
numerical fluxes at the cell faces are reconstructed from cell averages by the adaptive
central-upwind sixth-order weighted essentially non-oscillatory (WENO-CU6) scheme
(Hu et al. 2010) in its scale separation formulation by Hu & Adams (2011).

The fundamental idea of the WENO-CU6 scheme is to use a non-dissipative sixth-
order central stencil in smooth flow regions and a nonlinear convex combination of
third-order stencils in regions with steep gradients. The reconstructed numerical flux
at the cell boundaries is computed from

f̂i+1/2 =
3∑

k=0

ωk f̂k,i+1/2, (2.16)

where ωk is the weight assigned to stencil k with the second-degree reconstruction
polynomial approximation for f̂k,i+1/2. In the WENO-CU6 framework the weights ωk
are given by

ωk = αk

3∑

k=0

αk

, αk = dk

(
C+ τ6

βk + ε
)q

, (2.17)

with ε being a small positive number ε = 10−40. The optimal weights dk are
defined such that the method recovers the sixth-order central scheme in smooth
flow regions. The constant parameters in (2.17) are set to C = 1000 and q = 4 (see
Hu & Adams 2011), τ6 is a reference smoothness indicator that is calculated from a
linear combination of the other smoothness measures βk with

τ6 = β6 − 1
6(β0 + β2 + 4β1) (2.18)

and

βk =
2∑

j=1

1x2j−1
∫ xi+1/2

x−1/2

(
d j

dx j
f̂k(x)

)2

dx, (2.19)

and β6 is also calculated from (2.19) but with the fifth-degree reconstruction
polynomial approximation of the flux, which gives the six-point stencil for the
sixth-order interpolation.

After reconstruction of the numerical fluxes at the cell boundaries, the fluxes are
projected back onto the physical field. A local switch to a Lax–Friedrichs flux is used
as entropy fix (see e.g. Toro 1999). A positivity-preserving flux limiter (Hu, Adams
& Shu 2013) is employed in regions with low pressure or density, maintaining the
overall accuracy of the sixth-order WENO scheme. It has been verified that the flux
limiter has negligible effect on the results, and avoids excessively small time step sizes.
Temporal integration is performed by a third-order total variation-diminishing Runge–
Kutta scheme (Gottlieb & Shu 1998).

3. Numerical set-up
3.1. Computational domain

We consider a shock tube with constant square cross-section. The fine-grid domain
extends in the y and z directions symmetrically from −Lyz/2 to Lyz/2 and in the x
direction from −Lx/4 to Lx. An inflow boundary condition is imposed far away from
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FIGURE 1. (Colour online) Schematic of the square shock tube and dimensions of the
computational domain for the simulations.

the fine-grid domain in order to avoid shock reflections. To reduce computational costs,
a hyperbolic mesh stretching is applied between the inflow boundary and −Lx/4; Lx

is set to 0.4 m, and Lyz = Lx/4. At the boundaries normal to the y and z directions,
periodic boundary conditions are imposed and an adiabatic wall boundary at the end
of the shock tube at x=Lx is used. A schematic of the computational domain is shown
in figure 1.

The fine-grid domain is discretised by four different homogeneous Cartesian grids
with 64, 128, 256 and 512 cells in the y and z directions and 320, 640, 1280 and 2560
cells in the x direction, resulting in cubic cells of size 1562 µm . ∆xyz . 195 µm.
The total number of cells in the fine-grid domain amounts to ≈ 1.3 × 106 for the
coarsest resolution and to ≈ 670× 106 for the finest resolution.

3.2. Initial conditions
We consider air as a mixture of nitrogen (N2) and oxygen (O2) with (in terms of
volume fraction) XN2 = 0.79 and XO2 = 0.21. The equivalent mass fractions on the
air side give YN2 = 0.767 and YO2 = 0.233, i.e. Yair = YN2 + YO2 . The heavy gas is
modelled as a mixture of SF6 and acetone (Ac) with mass fractions YSF6 = 0.8 and
YAc = 0.2, i.e. YHG = YSF6 + YAc. The material interface between light (air) and heavy
gas is accelerated by a shock wave with Mach number Ma= 1.5 that is initialised at
x=−Lx/8 propagating in the positive x direction. The pre-shock state is defined by
the stagnation condition p0=23 000 Pa and T0=298 K. The corresponding post-shock
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Quantity Post-shock Pre-shock Pre-shock
light-gas side heavy-gas side

ρ (kg m−3) 0.498 69 0.267 84 1.040 57
U (m s−1) 240.795 0 0
p (Pa) 56 541.7 23 000 23 000
T (K) 393.424 298 298
DN2 (m

2 s−1) 5.919× 10−5 8.981× 10−5 —
DO2 (m

2 s−1) 5.919× 10−5 8.981× 10−5 —
DSF6 (m

2 s−1) — — 1.846× 10−5

DAc (m2 s−1) — — 1.846× 10−5

µ̄ (Pa s) 2.234× 10−5 1.826× 10−5 1.328× 10−5

cp (J kg−1 K−1) 1008.35 1008.35 815.89

TABLE 1. Initial values of the post-shock state and the pre-shock states of the light- and
heavy-gas sides.

thermodynamic state is obtained from the Rankine–Hugoniot conditions,

ρ ′air = ρair
(γair + 1)Ma2

2+ (γair − 1)Ma2
, (3.1a)

u′air = Ma cair

(
1− ρair

ρ ′air

)
, (3.1b)

p′air = p0

(
1+ 2

γair

γair + 1
(Ma2 − 1)

)
, (3.1c)

with cair=√γairp0/ρair. The initial data of the post-shock state of the light gas as well
as the pre-shock state of the light and heavy gases are given in table 1.

Tritschler et al. (2013a) introduced a generic initial perturbation of the material
interface that resembles a stochastic random perturbation but being, however,
deterministic and thus exactly reproducible for different simulation runs. This
multimode perturbation is given by the function

η(y, z)= a1 sin(k0y) sin(k0z)+ a2

13∑

n=1

15∑

m=3

an,m sin(kny+ φn) sin(kmz+ χm) (3.2)

with the constant amplitudes a1=−0.0025 m and a2= 0.000 25 m and wavenumbers
k0=10π/Lyz, kn=2πn/Lyz and km=2πm/Lyz. The amplitudes an,m and the phase shifts
φn and χm are given by

an,m = sin(nm)/2, (3.3a)
φn = tan(n), (3.3b)
χm = tan(m). (3.3c)

To facilitate a grid sensitivity study, we impose an initial length scale by prescribing
a finite initial interface thickness in the mass fraction field as

ψ(x, y, z)= 1
2

(
1+ tanh

(
x− η(y, z)

Lρ

))
(3.4)
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FIGURE 2. (Colour online) Initial power spectra of density from Miranda (dark grey; blue
online) and INCA (light grey; red online). The different resolutions are represented as
dotted line (64), dashed line (128), solid line (256) and solid line with open squares for
Miranda and open diamonds for INCA (512).

with Lρ=0.01 m being the characteristic initial thickness. The individual species mass
fractions are set as

YSF6 = 0.8ψ, YAc = 0.2ψ, (3.5a,b)

YN2 = 0.767(1−ψ), YO2 = 0.233(1−ψ). (3.6a,b)

The material interface is initialised at x − η(y, z) = 0 m. Combined with the
multicomponent and molecular mixing rules given in appendices A and B, the
flow field is fully defined at t= 0.

Figure 2 shows the initial condition in terms of the power spectrum of density
for Miranda and INCA at all grid resolutions. The initial perturbation given in (3.2)
and shown in figure 2 has been designed with the objective to obtain a reproducible
and representative data set. Nevertheless, we cannot exclude the possibility that some
of the observations presented in this paper do not apply to very different initial
perturbations.

4. Results

To explore the effect of the finite truncation error arising from grid resolution
and numerical method, four meshes were used to compute the temporal evolution
of RMI with both Miranda and INCA. The simulation reaches t = 6.0 ms, which
is well beyond the occurrence of re-shock at t ≈ 2 ms. At this stage, the effects of
reflected shock waves and expansion waves on the shock location have become small,
as the shock wave is attenuated with each subsequent reflection. The space–time (x–t)
diagram shown in figure 3 depicts the propagation of the shock wave and interface
during the simulation.

The initial conditions described in the previous section are entirely deterministic and,
owing to their band-limited representations, are identically imposed at the different
grid resolutions and for the two numerical methods. Therefore, the obtained results
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FIGURE 3. (Colour online) Space–time (x–t) diagram depicting the propagation of the
shock wave and interface during the simulation. The effect of the shock wave on the
interface location is attenuated with each subsequent reflection.

exhibit uncertainties due only to the numerical method and to grid resolution, but
exclude initial-data uncertainties.

For illustration we show the three-dimensional contour plots of species mass fraction
of the heavy gas YHG obtained with Miranda and INCA, respectively, in figure 4.
Similarities at the large scales are clearly visible after re-shock, but also differences
exist at the fine scales, more clearly visible from the inset.

4.1. Integral quantities
Integral measures of the mixing zone are presented here for both numerical models
and all resolutions. Often, these time-dependent integral measures are the only metrics
available for comparison with experiment and are therefore of primary importance for
validation.

Figure 5 shows the transition process predicted by the reference grid with a
resolution of 512 cells in the transverse directions. The numerical challenge, prior
to re-shock, is to predict the large-scale nonlinear entrainment and the associated
interface steepening. The interface eventually becomes under-resolved when its
thickness reaches the resolution limit of the numerical scheme and further steepening
is prevented by numerical diffusion. The equilibrium between interface steepening
and numerical diffusion occurs later in time as the grid is refined. The accurate
prediction of the interface steepening phenomenon is one of the main challenges in
modelling pre-transitional RMI where large-scale flow structures are still regular. This
is because the numerical model largely determines the time when mixing transition
occurs. In nature, mixing transition is due to the presence of small-scale perturbations,
whereas in numerical simulation, the transition is triggered by backscatter from the
under-resolved scales as predicted by the particular numerical model. Hence, details
of mixing transition of the material interface evolve differently for the two codes.
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(a) (b)

FIGURE 4. (Colour online) Three-dimensional contour plots of species mass fraction of
the heavy gas from (a) Miranda and (b) INCA data. Data are from the finest grid at
t= 2.5 ms that show contours of the heavy-gas mass fraction YHG from 0.1 (at the bottom;
blue online) to 0.9 (at the top; red online). Note that, although some large-scale features
remain consistent between codes, small and intermediate scales are quite different at this
stage.

0.5 ms 2 ms 2.5 ms 6 ms

Re-shock

(a)

(b)

FIGURE 5. (Colour online) Colour-coded plots of species mass fraction of SF6 gas from
(a) Miranda and (b) INCA at various times where data are taken from the finest grid. The
contours range from 0.05 (white) to 0.75 (dark grey; blue online).
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FIGURE 6. (Colour online) Time evolution of the mixing zone width from Miranda
(dark grey; blue online) and INCA (light grey; red online). The different resolutions are
represented as dotted line (64), dashed line (128), solid line (256) and solid line with open
squares for Miranda and open diamonds for INCA (512).

Nevertheless, similarities before re-shock are striking and large-scale similarities
in the resolved wavenumber range even persist throughout the entire simulation
time. Following re-shock, the large interfacial scales break down into smaller scales
and develop a turbulent mixing zone as can be seen in figures 4 and 5. By visual
inspection of figure 5, one finds that the post-re-shock turbulent structures are very
similar, whereas the long-term evolution of the small scales appears to be different
between the codes. Differences in the observed flow field at t = 6 ms may indicate
slightly different effective Reynolds numbers for the two numerical methods and
therefore they also exhibit different decay rates of enstrophy (Dimotakis 2000;
Lombardini et al. 2012), as can be seen in figure 8 after re-shock.

The mixing width δx is a length scale that approximates the large-scale temporal
evolution of the turbulent mixing zone. It is defined as an integral measure by

δx(t)=
∫ ∞

−∞
4φ(1− φ)dx, with φ(x, t)= 〈YSF6 + YAc〉yz, (4.1)

where 〈·〉yz denotes the ensemble average in the cross-stream yz plane. For a quantity
ϕ it is defined by

〈ϕ〉yz(x, t)= 1
A

∫∫
ϕ(x, y, z, t) dy dz, with A =

∫∫
dy dz. (4.2)

The mixing width plotted in figure 6(a) shows that data from both numerical methods
converge to a single solution throughout the entire simulation time. Furthermore, it is
observed that even with very-high-order models a minimum resolution of ∼400 µm
appears to be necessary for an accurate prediction of the mixing zone width. As will
be shown later, coarser grids tend to overpredict not only the growth of the mixing
zone but also molecular mixing.

Figure 6(b) shows the mixing zone width time evolution on a log–log scale. The
(bubble) growth-rate model of Zhou (2001) predicts accurately the pre-re-shock
mixing zone growth rate that is consistently recovered by both numerical methods as
∼t7/12. However, this is, according to Zhou (2001), the growth rate that is associated
with turbulence of Batchelor type (Batchelor & Proudman 1956) with E(k) ∼ k4
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as k→ 0. The kinetic energy spectra in the present investigation are of Saffman type
(Saffman 1967a,b) with E(k)∼ k2 as k→ 0 (Tritschler et al. 2013a), for which Zhou
(2001) predicts a growth that scales with ∼t5/8. The present growth rates are also in
good agreement with the experimental and numerical results of Dimonte, Frerking &
Schneider (1995) with ∼tβ and β = 0.6± 0.1 and their model predictions ∼(t− ti)

1/2,
where ti accounts for the time the shock needs to traverse the interface. As the mixing
zone has not yet reached self-similar evolution, the initial growth rate depends on the
specific initial conditions.

Llor (2006) found that the self-similar growth rate of the energy-containing
eddies, i.e. the integral length scale, for incompressible RMI at vanishing Atwood
number, should scale as δx ∼ t1−n/2 with 2/7 6 1 − n/2 6 1/3, if the turbulence
kinetic energy (TKE) decays as ∼t−n. These growth rates slightly differ from the
growth-rate prediction for homogeneous isotropic turbulence, 1/3 6 1 − n/2 6 2/5,
by the same author. The predictions of Llor (2006), however, are at odds with
Kolmogorov’s classical decay law (Kolmogorov 1941) for TKE ∼t−10/7 and more
recent investigations of decaying isotropic turbulence by Ishida, Davidson & Kaneda
(2006) and Wilczek, Daitche & Friedrich (2011), which found Kolmogorov’s decay
law to hold if the Loitsyansky integral is constant and if the Taylor-scale Reynolds
number exceeds Reλ > 100. Based on Rayleigh–Taylor experiments driven by either
sustained or impulsive acceleration at various Atwood numbers, Dimonte & Schneider
(2000) found scaling laws for the bubble and spike growth rate. For the present
density ratio, the exponents become 1 − nB/2 ≈ 0.25 ± 0.05 for the former and
0.2561−nS/260.43 for the latter. The late-time mixing zone growth rate is therefore
expected to correlate with the spike growth rate. The late-time growth-rate prediction
of the present work is ∼(t − t0)

2/7, i.e. 1 − n/2 = 2/7, once the turbulent mixing
zone is fully established. Time t0 is a virtual time origin set to t0 = 2 ms. This is
consistent with the mixing zone width growth-rate predictions of Llor (2006) and the
late-time growth-rate predictions of Dimonte & Schneider (2000), but underestimates
the predictions of Zhou (2001), with a scaling of t1−n/2 with 0.35 6 1 − n/2 6 0.45
long after re-shock, once the nonlinear time scale has become the dominant time
scale. In the numerical investigation of Lombardini et al. (2012), the authors found
the mixing zone width to grow as 0.2 6 1− n/2 6 0.33. Before re-shock the infrared
part of the kinetic energy spectrum (see figure 14) exhibits a k2 range, for which a
post-re-shock growth rate of ∼t2/7 is predicted by the model of Youngs (2004), which
is in good agreement with the present data.

The definition of the molecular mixing fraction Θ (Youngs 1991, 1994) is given as

Θ(t)=

∫ ∞

−∞
〈XairXHG〉yz dx

∫ ∞

−∞
〈Xair〉yz 〈XHG〉yz dx

(4.3)

and quantifies the amount of mixed fluid within the mixing zone. It can be interpreted
as the ratio of molecular mixing to large-scale entrainment by convective motion.

As bubbles of light air and spikes of heavy gas begin to interfuse, the initially
mixed interface between the fluids steepens and the fluids become more segregated
on the molecular level (see figure 7a). The molecular mixing fraction reaches its
minimum at t ≈ 1.3 ms before Kelvin–Helmholtz instabilities lead to an increase
of molecular mixing. The onset of secondary instabilities is very sensitive to the
numerical method, as the numerical scheme determines how sharp the material
interface can be represented or whether numerical diffusion or dispersion effects lead
to an early mixing transition.
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FIGURE 7. (Colour online) Molecular mixing fraction Θ and scalar dissipation rate χ
from Miranda (dark grey; blue online) and INCA (light grey; red online). The different
resolutions are represented as dotted line (64), dashed line (128), solid line (256) and solid
line with open squares for Miranda and open diamonds for INCA (512).

After re-shock molecular mixing is strongly enhanced and reaches its maximum of
Θ ≈ 0.85 by the end of the simulation. This finding is consistent with Lombardini
et al. (2012), who also found an asymptotic late-time mixing behaviour with Θ≈ 0.85
independent of the shock Mach number but without re-shock. The asymptotic limit is
already accurately calculated on grid resolutions of ∼400 µm. As the second shock
wave compresses the mixing zone, the instability becomes less entrained yet equally
diffused (at least in the y and z directions) and therefore causes a steep rise in Θ .
A gradual increase of the mixing fraction after the steep rise occurs as the mixing
zone becomes more homogeneously distributed (Thornber et al. 2011) due to turbulent
motion.

The temporal evolution of the scalar dissipation rate is plotted in figure 7(b) and
is derived from the advection–diffusion equation for a scalar. The instantaneous scalar
dissipation rate of the three-dimensional RMI is estimated from the SF6 concentration
field as

χ(t)=
∫ ∞

−∞
DSF6∇YSF6 · ∇YSF6 dx dy dz, (4.4)

which quantifies the rate at which mixing occurs. For consistency of post-processing, a
second-order central difference scheme has been used for the calculation of the spatial
derivatives in (4.4) and (4.6) for all simulation data sets. Note that the order of the
finite difference scheme with which the gradients in (4.4) and (4.6) are approximated
affect their results.

The variation of the scalar dissipation rate with grid resolution before re-shock is
largely due to the under-resolved material interface and the onset of mixing transition.
Mixing is strongly enhanced after the second shock–interface interaction, but the
mixing zone is also confined to a much smaller region, which results in a decrease
of the integral χ . Also, χ only represents the resolved part of the dissipation rate
and therefore certainly underestimates the true value.

The TKE and the enstrophy (ε) are integrated over cross-flow planes in the mixing
zone that satisfy

4φ[1− φ]> 0.9. (4.5)
This region is referred to as the inner mixing zone (IMZ) in the following.
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FIGURE 8. (Colour online) Enstrophy ε and turbulence kinetic energy (TKE) from
Miranda (dark grey; blue online) and INCA (light grey; red online). The different
resolutions are represented as dotted line (64), dashed line (128), solid line (256) and
solid line with open squares for Miranda and open diamonds for INCA (512).

Baroclinic vorticity is deposited at the material interface during shock passage. The
amount of generated vorticity scales directly with the pressure gradient of the shock
wave and the density gradient of the material interface. The enstrophy is calculated by

ε(t)=
∫

IMZ
ρ(ωiωi) dx dy dz, (4.6)

where ωi is the vorticity.
As can be seen from figure 8, the enstrophy also exhibits a strong grid dependence.

Fully grid-converged results are only obtained for times up to t ≈ 0.7 ms. As
the interface steepens due to strain and shear, the effective interface thickness is
determined by numerical diffusion, which appears to occur at t ≈ 0.7 ms. This is
consistent with the evolution of Θ shown in figure 7(a). Following Youngs (2007)
and Hahn et al. (2011), integration of enstrophy with a theoretical scaling of k1/3

up to the cut-off wavenumber yields a proportionality between enstrophy and grid
resolution as ε ∝ ∆−4/3

xyz . From this follows an increase of enstrophy by a factor
of approximately 2.5 from one grid resolution to the next finer, which is in good
agreement with the present data.

The amount of TKE created by the impulsive acceleration of the interface is
calculated as

TKE(t)=
∫

IMZ
K dx dy dz, with K(x, y, z, t)= ρ

2
u′′i u′′i . (4.7)

The fluctuating part ϕ′′ of a quantity ϕ is calculated from

ϕ′′ = ϕ − ϕ̄, with ϕ̄ = 〈ρϕ〉yz/〈ρ〉yz, (4.8)

where ϕ̄ is the Favre average of ϕ.
Grid-converged TKE is obtained on grids with a minimum resolution of ∼400 µm

(see figure 8). This is consistent with the convergence rate of the mixing zone
width. The total TKE deposited in the IMZ by the first shock–interface interaction
can be seen in the inset of figure 8. The re-shock occurring at t ≈ 2 ms deposits
approximately 40 times more TKE than the initial shock wave. Hill et al. (2006)
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FIGURE 9. (Colour online) Log–log representation of TKE from Miranda (squares; blue
online) and INCA (diamonds; red online) taken from the finest grid (512).

found a similar relative increase by the re-shock at the same shock Mach number.
A significant decay in energy occurs immediately following re-shock. The material
interface interacts with the first expansion fan (see figure 3) and results in a further
increase in TKE between 3 and 3.5 ms. The amount of energy deposited by the first
expansion wave, however, is much weaker than that deposited by the reflected shock
wave. Hill et al. (2006) and Grinstein et al. (2011) found the amplification of TKE
by the first rarefaction to be much stronger than for our data. Such differences are
not surprising, because Grinstein et al. (2011) reported a strong dependence of energy
deposition on the respective initial interface perturbations. After the first expansion
wave has interacted with the interface, TKE decays slowly and the pressure gradients
associated with the subsequent rarefactions are too shallow to generate any further
noticeable increase in TKE.

Lombardini et al. (2012) found the decay rate of TKE to be larger than ∼t−6/5,
approaching ∼t−10/7. In our data, the late-time TKE decay is also approximately
∼(t − t0)

−10/7, with t0 = 2 ms being the virtual time origin (see figure 9). This
scaling would be characteristic for Batchelor-type turbulence (Batchelor & Proudman
1956) with a constant Loitsyansky integral (Kolmogorov 1941; Ishida et al. 2006) in
contrast to ∼t−6/5 typical for turbulence of Saffman type (Saffman 1967a,b).

In the limit of a self-similar quasi-isotropic state, the temporal evolution of the
integral length scale δx is related to the evolution of TKE in the mixing zone. From
TKE ∝ t−n, the growth rate of the integral scale follows as δx ∝ t1−n/2. Llor (2006)
derived a maximum decay rate of TKE ∼t−10/7 that corresponds to a growth-rate
scaling of the energy-containing eddies of δx∼ t2/7. These predictions are in excellent
agreement with the growth-rate predictions of the mixing zone width of the present
investigation (see figure 6) and the decay rate of TKE (see figure 9).

The scalings indicated for the growth rate of the mixing zone and the decay rate
of TKE in figures 6 and 9 were not fitted in a strict sense. They merely serve as
reference for comparison with incompressible isotropic decaying turbulence. The
narrow data range of only ≈2 ms after re-shock for which the flow exhibits a
self-similar regime precludes any precise estimates for decay and growth-rate laws.
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FIGURE 10. Anisotropy 〈a〉yz as a function of the dimensionless mixing zone coordinate
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4.2. Anisotropy and inhomogeneity of the mixing zone
In the following, the anisotropy in the mixing zone is investigated. We define the local
anisotropy as

a(x, y, z, t)= |u′′|
|u′′| + |v′′| + |w′′| −

1
3
, (4.9)

where a= 2/3 corresponds to having all TKE in the streamwise velocity component
u′′, whereas a = −1/3 corresponds to having no energy in the streamwise u′′
component. In figure 10(a,b) we show the yz plane averaged anisotropy 〈a〉yz as
a function of the dimensionless mixing zone coordinate ξ and time from Miranda
and INCA. The dimensionless mixing zone coordinate ξ is defined as

ξ = x− x∗(t)
δx(t)

, (4.10)

with x∗(t) being the x location where 4(1− φ(x, t))φ(x, t) is maximal.
The light-gas side of the mixing zone remains more anisotropic than the heavy-gas

side but with a homogeneous anisotropy distribution after re-shock on either side. The
volume-averaged anisotropy in the inner mixing zone 〈a〉xyz is shown in figure 10(c).
No full recovery of isotropy of the mixing zone is achieved, and the re-shock
does not significantly contribute in the sense of the volume-averaged quantity 〈a〉xyz,
but leads to a stratified anisotropy distribution around the centre of the mixing
zone. After t ≈ 4.5 ms an asymptotic limit of 〈a〉xyz ≈ 0.04 is reached, which
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temporally coincides with the onset of the self-similar decay of TKE (see figures 9
and 10). The positive value of 〈a〉xyz implies that the streamwise component u′′
remains, despite re-shock, the dominant velocity component throughout the simulation
time. Lombardini et al. (2012) also found a temporal asymptotic limit of the
isotropisation process in their simulations. Grinstein et al. (2011) observed that
the velocity fluctuations in the mixing zone are more isotropic when the initial
interface perturbations also include short wavelengths, in which case the authors
nearly recovered full isotropy. When Grinstein et al. (2011) used long-wavelength
perturbations, the mixing zone remained anisotropic except for a narrow range on the
heavy-gas side.

In order to quantify the homogeneity of mixing, we calculate the density-specific
volume correlation (Besnard et al. 1992)

〈b〉yz(ξ , t)=
〈
−
(

1
ρ

)′′
ρ ′′
〉

yz

=
〈

1
ρ

〉

yz

〈ρ〉yz − 1, (4.11)

which is non-negative. The value 〈b〉yz = 0 corresponds to homogeneously mixed
fluids with constant pressure and temperature. Large values indicate spatial inhomo-
geneities in the respective yz plane. The density-specific volume correlation has
gained some attention in recent years and was the subject of several experimental
investigations of the RMI – see Balakumar et al. (2012), Balasubramanian et al.
(2012), Balasubramanian, Orlicz & Prestridge (2013), Orlicz, Balasubramanian &
Prestridge (2013), Tomkins et al. (2013) and Weber et al. (2014).

Figure 11(a,b) shows the density-specific volume correlation normalised by the
maximal value at time t,

〈̃b〉yz = 〈b〉yz(ξ , t)/max(〈b〉yz)(t), (4.12)

as a function of the dimensionless mixing zone coordinate ξ and time from Miranda
and INCA. The largest values of 〈̃b〉yz are found around the centre of the mixing
zone slightly shifted towards the heavy-gas side. The value of 〈̃b〉yz peaks around the
region where mixing between light and heavy gas occurs and tends to zero outside
the mixing region, towards the respective pure-gas side. Weber et al. (2014) observed
in their experiment that the peak of the density-specific volume correlation is initially
shifted towards the light-gas side, but moves towards the centre of the mixing zone
with increasing time.

In contrast to the anisotropy, where the re-shock does not contribute to the
isotropisation and which levels out after t ≈ 4.5 ms, the mixing zone becomes
significantly more homogeneous after re-shock, as can be observed from the temporal
evolution of the volume average of the density-specific volume correlation in the inner
mixing zone 〈b〉xyz. Following re-shock the fluids become more and more mixed (see
figure 11c), with a value of 〈b〉xyz≈ 0.13 at the latest time. The measured values of the
density-specific volume correlation in the single shock–interface interaction experiment
of Weber et al. (2014) at Ma= 2.2 are in good agreement with our simulated values
at late times O(0.1), whereas at the lower Mach number Ma= 1.6 Weber et al. (2014)
observed a more inhomogeneous mixing zone O(0.2). These values are significantly
larger than those measured for instance in the shock-gas-curtain experiments of Orlicz
et al. (2013) and Tomkins et al. (2013).

4.3. Spectral quantities
From homogeneous isotropic turbulence, it is well known that vorticity exhibits
coherent worm-like structures with diameter of the order of the Kolmogorov length
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FIGURE 11. (Colour online) Normalised density-specific volume correlation 〈̃b〉yz as a
function of the dimensionless mixing zone coordinate ξ and time from (a) Miranda and
(b) INCA. (c) The volume-averaged density-specific volume correlation 〈b〉xyz of the inner
mixing zone from Miranda (squares) and INCA (diamonds). All data are taken from the
finest grid (512).

scale and of a length that scales with the integral scale of the flow. The work of
Jiménez et al. (1993) suggests that these structures are especially intense features of
the background vorticity and independent of any particular forcing that generates the
vorticity. In contrast to forced homogeneous isotropic turbulence, where self-similar
stationary statistics are achieved, shock-induced turbulent mixing is an inhomogeneous
anisotropic unsteady decay phenomenon. Nevertheless, homogeneous isotropic
turbulence is used as theoretical framework for most of the numerical analysis
of RMI. However, it is unclear at what time and at what locations the mixing zone
exhibits the appropriate features and if homogeneous isotropic turbulence is achieved
at all. A fully isotropic mixing zone is never obtained, as the anisotropy, even though
decreasing with time, reaches an asymptotic limit at t≈ 4.5 ms.

The temporal evolution of the initial perturbation is depicted in figure 12. Before
re-shock the dominant modes of the initial perturbation slowly break down. After re-
shock, however, the additional vorticity deposited during the second shock–interface
interaction rapidly destroys structures generated by the initial perturbation and initial
shock, leading to a self-similar decay after t≈ 4 ms.

Thornber et al. (2010, 2012) found, formally in the limit of infinite Reynolds
numbers, a persistent k−3/2 scaling of the TKE spectrum as well as a k−3/2 spectrum
with a k−5/3 spectrum at high wavenumbers that covers more and more of the
spectrum as time proceeds. Furthermore, the same authors (Thornber et al. 2011)
found (depending on the initial conditions) a k−5/3 or a k−2 scaling range after
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FIGURE 12. (Colour online) Power spectra of density from (a) Miranda and (b) INCA
as a function of wavenumber k(Lyz/2π) and time. The data are taken from the finest
grid (512).

re-shock. Long after re-shock, however, these scalings return to a k−3/2 scaling at
intermediate scales and to a k−5/3 scaling at high wavenumbers, close to the cut-off
wavenumber. The authors evaluated the radial spectra either in the centre of the
mixing zone or averaged over a fixed number of yz planes within the mixing zone. A
different scaling behaviour was observed by Hill et al. (2006) and Lombardini et al.
(2012), who found in their multicomponent LES at finite Reynolds numbers a k−5/3

scaling in the centre of the mixing zone, whereas Cohen et al. (2002) found a k−6/5

scaling range for the single-shock RMI averaged over four transverse slices within the
mixing zone. In a recent experimental investigation of a shock-accelerated shear layer,
Weber et al. (2012) showed a k−5/3 inertial range followed by an exponential decay in
the dissipation range of the scalar spectrum. This result was numerically reproduced
by Tritschler et al. (2013a). Here, the authors averaged over a predefined IMZ.

All spectra shown in this section are radial spectra with a radial wavenumber that
is defined as k = (k2

y + k2
z )

1/2. The radial spectra are averaged over all yz planes
within the IMZ in the x direction that satisfy the condition in (4.5).

The radial power spectra of density are plotted in figure 13, where 13(a,b) show
the spectra before and 13(c,d) after re-shock. The power spectra of density and mass
fraction concentration (not shown) show a close correlation, even though they are not
directly related, as the mass fractions are constrained to be between zero and one.

Before re-shock, the dominant initial modes slowly break down and redistribute
energy to smaller scales. Re-shock causes additional baroclinic vorticity production
with inverse sign that results in a destruction process of the pre-shock structures (see
also figure 12). This process in conjunction with a vorticity deposition that is one
order of magnitude larger than the pre-shock deposition leads to rapid formation of
complex disordered structures, which eliminates most of the memory of the initial
interface perturbation, as can be seen in figures 12–14. Schilling, Latini & Don (2007)
reported that during re-shock vorticity production is strongly enhanced along the
interface where density gradients and misalignment of pressure and density gradients
is largest. The vorticity deposited by the re-shock transforms bubbles into spikes
and vice versa, which subsequently results in more complex and highly disordered
structures.
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FIGURE 13. (Colour online) Power spectra of density from Miranda (dark grey; blue
online) and INCA (light grey; red online) before re-shock at (a) t = 0.5 ms and (b) t =
2 ms and after re-shock at (c) t= 2.5 ms and (d) t= 6 ms. The different resolutions are
represented as dotted line (64), dashed line (128), solid line (256) and solid line with open
squares for Miranda and open diamonds for INCA (512).

At late times the power spectra of density appear to be more shallow than k−3/2,
and rather approach k−6/5, as was found by Cohen et al. (2002). The smallest length
scale in scalar turbulence is the Batchelor scale. For isotropic turbulence and Schmidt
numbers of order unity, it has the same order of magnitude as the Kolmogorov
microscale λB ≈ η. Therefore, the TKE spectra are closely correlated with the scalar
power spectra. Figure 14 shows the spectra of TKE before and after re-shock.
The significant increase in TKE is mainly due to the interaction of the enhanced
small-scale structures with comparatively steep density gradients and the reflected
shock wave. The re-shock at t ≈ 2 ms leads to a self-similar lifting of the spectrum
(see figure 14). The destruction process of the vortical structures initiated by the
re-shock leads to the formation of small scales, which rapidly remove the memory
of the initial condition. The intense fluctuating velocity gradients past re-shock are
rapidly smoothed out by viscous stresses. This results in a fast decay of the TKE
following the first ≈0.5 ms after re-shock (see figures 8 and 14c,d).

The sharp drop-off of the spectral energy in figures 13 and 14 in the Miranda
data at high wavenumbers is due to the filtering operator of the numerical method.
Opposite behaviour, that is, an increase of spectral energy at the highest wavenumbers,
is observed for the less dissipative INCA code, where the spurious behaviour at the
non-resolved scales is mainly dispersive.
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FIGURE 14. (Colour online) Spectra of TKE from Miranda (dark grey; blue online) and
INCA (light grey; red online) before re-shock at (a) t= 0.5 ms and (b) t= 2 ms and after
re-shock at (c) t= 2.5 ms and (d) t= 6 ms. The different resolutions are represented as
dotted line (64), dashed line (128), solid line (256) and solid line with open squares for
Miranda and open diamonds for INCA (512).

The scaled TKE spectra kEkin(k) represent the effective energy contributed by each
mode. Artifacts of the initial conditions still exist immediately before re-shock at
t= 2.0 ms, as can be seen in figure 15(a), where most energy is contained at mode
k(Lyz/2π) = 7. At re-shock, baroclinic vorticity is deposited at the interface and the
energy-containing wavenumber range immediately widens as vortex stretching and
tangling introduce new scales and higher vorticity. This broader profile is plotted in
figure 15(b), which clearly shows that the relative difference between the imposed
initial length scale k(Lyz/2π) = 7 and the remaining length scales (both larger and
smaller) is vanishing. Indeed, as the mixing layer fully transitions to turbulence, the
flow reaches a self-similar state where the memory of initial perturbations is lost.

The spectra of the scalar dissipation rate χ in figure 16 quickly build up in the
cut-off wavenumber range after the initial shock impact (see figure 16b). After
re-shock and at late time (see figure 16c,d), the inertial subrange broadens to
wavenumbers where numerical dissipation damps out structures. The inertial range is
observed to scale with k1/2 after re-shock, which is consistent with the k−3/2 scaling
observed for Eρ and Ekin. For the resolved wavenumbers, there is good agreement
between both codes at the finest two resolutions. Differences observed in figure 16(b)
are also reflected in figures 7 and 11. A sharper material interface and the associated
segregation of the fluids lead to a higher scalar dissipation rate (χ ), whereas at late
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FIGURE 16. (Colour online) Spectra of scalar dissipation rate from Miranda (dark grey;
blue online) and INCA (light grey; red online) before re-shock at (a) t = 0.5 ms and
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FIGURE 17. (Colour online) Spectra of enstrophy from Miranda (dark grey; blue online)
and INCA (light grey; red online) before re-shock at (a) t= 0.5 ms and (b) t= 2 ms and
after re-shock at (c) t= 2.5 ms and (d) t= 6 ms. The different resolutions are represented
as dotted line (64), dashed line (128), solid line (256) and solid line with open squares
for Miranda and open diamonds for INCA (512).

times the difference in the scalar dissipation rate does not significantly influence the
mixing measures 〈b〉xyz and Θ .

Larger quantitative differences are observed in the power spectra of enstrophy
shown in figure 17. Immediately after either of the shock–interface interactions,
the quantitative agreement between the predicted enstrophy levels is excellent (see
figure 17a,c). The observed scalings of the inertial range following re-shock are
predicted consistently and agree with the inertial range scalings for the scalar
dissipation rate k1/2. However, the temporal decay of the small-scale enstrophy is
significantly different for either code, as can be seen immediately before re-shock
and long after re-shock in figures 17(b) and (d), respectively.

In isotropic homogeneous turbulence, the scaled spectra of the enstrophy (see
figure 18) has a single peak at the wavenumber where the dissipation range begins.
Therefore, under grid refinement this peak will shift to higher wavenumbers and
magnitudes as smaller scales are captured. The peak at k(Lyz/2π) = 7 is associated
with the initial perturbation and disappears after re-shock as the flow becomes
turbulent (see figure 18). Good agreement for lower wavenumbers is observed between
codes and resolutions. Larger differences are observed at high wavenumbers, where
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FIGURE 18. (Colour online) Scaled spectra of enstrophy from Miranda (dark grey; blue
online) and INCA (light grey; red online) after re-shock at (a) t=2.5 ms and (b) t=6 ms.
The different resolutions are represented as dotted line (64), dashed line (128), solid line
(256) and solid line with open squares for Miranda and open diamonds for INCA (512).

the dependence on numerical dissipation is greatest. At t = 2.5 ms the peak in the
scaled enstrophy spectra is at k(Lyz/2π)≈ 85 for both codes at the highest resolution.
Later, at t = 6.0 ms this peak has shifted to k(Lyz/2π) ≈ 40 in INCA, whereas
in Miranda there is no apparent shift, although both have substantially decayed in
magnitude.

As RMI is a pure decay process after re-shock, differences in the numerical
approach become most apparent at late times. The numerical models of this study
predict different turbulence decay rates, as is evident from differences in the enstrophy
spectrum (figures 17 and 18) and in TKE (figure 9). The differences in enstrophy
(ε) and scalar dissipation rate (χ ) have a qualitative effect that becomes apparent in
the fine-scale structures of figure 5 at t= 6 ms. Although INCA resolved less scales
with smaller enstrophy levels, it does resolve steeper mass fraction gradients, which
is reflected in the higher χ and higher levels of Eχ . Although it is unclear which
dissipation rate (scalar or kinetic) has most effect on the mixing process, both are
important (Dimotakis 2000).

4.4. Probability density functions
The bin size for computing the discrete probability density function (p.d.f.) is defined
as 1ϕ = [ϕmax − ϕmin]/Nb for a quantity ϕ(x, y, z, t). The number of bins for all
quantities and all grid resolutions is Nb = 64. Each discrete value of ϕ is distributed
into the bins, yielding a frequency Nk for each bin. The p.d.f. is then defined by

Pk(ϕ, t)= Nk

1ϕN
, (4.13)

such that
∑Nk

k=1Pk1ϕ = 1, with N as the total number of cells in the IMZ that fall
within the range ϕmin 6 ϕ 6 ϕmax. The limits ϕmax and ϕmin are held constant for all
resolutions and times.

The p.d.f. of the heavy-gas mass fraction is constrained to be 0.1 6 YHG 6 0.9.
Figure 19 shows the p.d.f. at times before re-shock (t = 0.5 ms, t = 2 ms) and
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FIGURE 19. (Colour online) Probability density function of YHG from Miranda (dark grey;
blue online) and INCA (light grey; red online) before re-shock at (a) t = 0.5 ms and
(b) t=2 ms and after re-shock at (c) t=2.5 ms and (d) t=6 ms. The different resolutions
are represented as dotted line (64), dashed line (128), solid line (256) and solid line with
open squares for Miranda and open diamonds for INCA (512).

following re-shock (t = 2.5 ms, t = 6 ms). From figure 19(a) it is evident that
at early times following the initial shock–interface interaction the IMZ consists
mostly of segregated fluid, as the large peaks at the p.d.f. bounds indicate. Before
re-shock, inter-species mixing is largely dominated by the inviscid linear and nonlinear
entrainment. Molecular diffusion processes have not yet had enough time to act (see
figure 19b). Following re-shock, a fundamental change in the p.d.f. of YHG (P(YHG))
is observed (see figure 19c,d). The additional vorticity deposited by the re-shock
leads to rapid formation of small and very intense vortical structures that lead to very
effective mixing and destruction of the initial interface perturbation. The p.d.f. takes
a unimodal form at t= 2.5 ms, as also reported by Hill et al. (2006). The peak value,
however, is not as well correlated with the average value of the mixture mass fraction
as was reported by Hill et al. (2006). With our data the peak value is slightly shifted
towards the heavy-gas side centred around YHG ≈ 0.6. The degree of convergence
between codes and resolutions is reassuring at t= 2.5 ms. Note that P(YHG) is a very
sensitive measure of the light–heavy gas mixing.

The rarefaction wave at t≈ 3.2 ms does not significantly contribute to the mixing,
as it is not as pronounced as found in comparable investigations (Hill et al. 2006;
Grinstein et al. 2011). Long after re-shock the mixing process continues, which is
reflected in narrower tails of P(YHG). The peak value of YHG predicted by Miranda now
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FIGURE 20. (Colour online) Probability density function of ω(λL/vs) from Miranda (dark
grey; blue online) and INCA (light grey; red online) before re-shock at (a) t= 0.5 ms and
(b) t=2 ms and after re-shock at (c) t=2.5 ms and (d) t=6 ms. The different resolutions
are represented as dotted line (64), dashed line (128), solid line (256) and solid line with
open squares for Miranda and open diamonds for INCA (512).

coincides with the average value of the mixture mass fraction. In the INCA results,
this value remains slightly shifted towards the heavy-gas side. However, the bimodal
character of P(YHG) reported by Hill et al. (2006), who used air–SF6 as light–heavy
gases, is not observed on the finest grid. Despite the strong mixing past re-shock the
turbulent mixing zone remains inhomogeneous until the end of the simulation time,
which makes the observed p.d.f. very sensitive to their location of evaluation within
the mixing layer.

The p.d.f. of the normalised vorticity is constrained between 0 6 ω̃ 6 0.8 with
ω̃ = ω(λL/vs), where vs is the initial shock velocity and λL is a characteristic length
scale of the perturbations taken as λL=Lyz/k̃max, where Lyz is the width of the domain
in the transverse direction and k̃max = kmax(Lyz/2π)= 16.

Figure 20 shows the p.d.f. of the normalised vorticity P(ω̃). Before re-shock,
mixing is driven by weak large-scale vortices (see figure 20a,b). Following re-shock,
however, structures with very intense vorticity develop with a dual-mode shape in
P(ω̃) at t= 2.5 ms on the finest grid. The early times after the second shock–interface
interaction are again consistently predicted by both codes (figure 20c). Nevertheless,
we observe larger differences for P(ω̃) at t= 6 ms. The peak and distribution of P(ω̃)
from Miranda are shifted towards larger values of ω̃ as compared to INCA. This
supports the previous observation that the vorticity decay is affected by the numerical
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approach. The difference in the vorticity intensity observed in figure 20, however,
does not lead to noticeable differences for the integral mixing measures shown in
figures 7(a) and 11 or for the integral length scale in figure 6.

5. Conclusion

We have investigated the shock-induced turbulent mixing between a light (N2, O2)
and heavy (SF6, acetone) gas in highly resolved numerical simulations. The mixing
was initiated by the interaction of a Ma = 1.5 shock wave with a deterministic
multimode interface. After the initial baroclinic vorticity deposition, the shock wave
is reflected at the opposite adiabatic wall boundary. The reflected shock wave impacts
the interface (re-shock) and deposits additional vorticity with enstrophy that is more
than two orders of magnitude larger than that of the initial vorticity deposition. The
transformation of spike structures into bubbles and vice versa in conjunction with
a large increase in vorticity results in the formation of disordered structures which
eliminate most of the memory of the initial interface perturbation.

A proposed standardised initial condition for simulating the RMI has been assessed
by two different numerical approaches, Miranda and INCA, over a range of grid
resolutions. The deterministic interface definition allows for spectrally identical initial
conditions for different numerical models and grid resolutions. A direct comparison
shows that larger energy-containing scales are in excellent agreement. Different
subgrid-scale regularisations affect marginally resolved flow scales, but allow for a
clear identification of a resolved scale range that is unaffected by the subgrid-scale
regularisation.

Mixing widths are nearly identical between the two approaches at the highest
resolution. At lower resolutions, the solutions differ, and we found a minimum
resolution of ∼400 µm to be necessary in order to produce reasonable late-time
results. The initial mixing zone growth rate scaled with δx ∼ t7/12, whereas long after
re-shock the predicted growth rate was ∼t2/7. The decay of TKE was also found
to be consistent and in good agreement between the approaches. The decay scaled
with TKE ∼ t−10/7 at late times, which corresponds to a growth-rate scaling of the
energy-containing eddies of ∼t2/7. The agreement in the large scales of the solution
between the two approaches is striking and has not been observed before.

Previous work on three-dimensional LES of RMI has examined numerical
dependence only indirectly. For example, Thornber et al. (2010) performed a code
comparison of single-shock RMI. However, the initialisation was different for the two
codes and the purpose was not to quantify the effect of different numerical methods.
Accordingly, the comparison of results at different resolutions for mean, spectral and
gradient-based quantities was limited. With the current work, we have presented for
the first time a comprehensive quantitative analysis of numerical effects on RMI.

Our results conclusively show that the large scales are in excellent agreement
for the two methods. Differences are observed in the representation of the material
interface. We conclude that the numerical challenge, prior to re-shock, is to predict
the large-scale nonlinear entrainment and the associated interface sharpening. Under
shear and strain, the interface steepens and eventually becomes under-resolved with
a thickness defined by the resolution limit of the numerical scheme. Therefore,
the saturation of the interface thickness by the numerical method occurs later as
the grid is refined. The molecular mixing fraction reached an asymptotic limit as
Θ ≈ 0.85 after re-shock, which was already correctly calculated on grid resolutions
of ∼400 µm. The yz plane averaged anisotropy 〈a〉yz revealed that the mixing zone
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exhibits a stratified anisotropy distribution with lower anisotropy on the heavy-gas
side and higher anisotropy on the light-gas side. Moreover, the volume-averaged
anisotropy 〈a〉xyz approached an asymptotic limit of 〈a〉xyz ≈ 0.04, implying that
the fluctuating velocity component u′′ remains the dominant component even after
re-shock and that no full recovery of isotropy of the mixing zone is obtained. The
density self-correlation has been investigated in order to better understand the mixing
inhomogeneity in the mixing zone. The volume-averaged density-specific volume
correlation 〈b〉xyz showed that the re-shock significantly increases mixing homogeneity
approaching a value of 〈b〉xyz ≈ 0.13 at the latest time.

The spectra demonstrate a broad range of resolved scales, which are in very
good agreement. Data also show that differences exist in the small-scale range. The
frequency dependence of the velocity and density fluctuations shows the existence
of an inertial subrange and that the two approaches agree at lower frequencies. The
observed spectral scalings were consistent among the methods with k−3/2.

Quantities that are gradient-dependent and therefore more sensitive to small scales,
such as the scalar dissipation rate and enstrophy, exhibit stronger dependence on
numerical method and grid resolution. The flow field shows visual differences for the
fine-scale structures at late times. The tenth-order compact scheme and the explicit
filtering and artificial fluid properties used in Miranda resolved more small scales
in TKE and enstrophy, whereas the sixth-order WENO-based scheme used in INCA
resolves more of the small-scale scalar flow features as observed in the spectra of
density and scalar dissipation rate. This result is somewhat intuitive given the numerics
of the two codes. High-order compact methods are capable of resolving higher
modes than explicit finite difference methods (Lele 1992). Given that the artificial
shear viscosity in Miranda has only a small effect on the solution compared to the
effect of the eighth-order filter, the primary difference, we conclude, of the resolving
power between methods is due to the difference in order of accuracy and modified
wavenumber profiles between the schemes. The compact finite difference method with
high-order filtering appears to capture a broader range of dynamic scales at late times.

The p.d.f. statistics of heavy-gas mass fraction YHG revealed that the IMZ remains
inhomogeneous until the end of the simulation and that the peak probability is centred
around YHG≈ 0.6 and thus is slightly shifted towards the heavy-gas side. Although the
overall quantitative agreement was very good, the p.d.f. of the vorticity showed larger
differences once intense small-scale vortical structures exist. The decay of vorticity
differs accordingly between the numerical methods.
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Appendix A. Multicomponent mixing rules
The specific heat capacity of species i is found by

cp,i = γi

γi − 1
Ri, with Ri = Runiv

Mi
, (A 1)
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where γi is the ratio of specific heats. The ratio of specific heats of the mixture
follows as

γ̄ = cp

cp − R̄
, with cp =

N∑

i

Yicp,i, (A 2)

where Yi is the mass fraction of species i and R̄ is the specific gas constant of the
mixture with R̄= Runiv/M̄. The molar mass of the mixture is given by

M̄ =
(

N∑

i

Yi

Mi

)−1

. (A 3)

For the gas mixture, Dalton’s law p = ∑i pi will be valid with pi = ρRiT . The
mixture viscosity µ̄ and the mixture thermal conductivity κ̄ are calculated from
(Reid, Pransuitz & Poling 1987)

µ̄=

N∑

i=1

µiYi/M
1/2
i

N∑

i=1

Yi/M
1/2
i

, κ̄ =

N∑

i=1

κiYi/M
1/2
i

N∑

i=1

Yi/M
1/2
i

. (A 4a,b)

The effective binary diffusion coefficients (diffusion of species i into all other species)
are approximated as (Ramshaw 1990)

Di = (1− Xi)

(
N∑

i6=j

Xj

Dij

)−1

, (A 5)

where Xi is the mole fraction of species i. Equation (A 5) ensures that the inter-species
diffusion fluxes balance to zero.

Appendix B. Molecular mixing rules
The viscosity of a pure gas is calculated from the Chapman–Enskog model

(Chapman & Cowling 1990)

µi = 2.6693× 10−6

√
MiT

Ωµ,iσ
2
i
, (B 1)

where σi is the collision diameter and Ωµ,i is the collision integral,

Ωµ,i = A(T∗i )
B +C exp(DT∗i )+ E exp(FT∗i ), (B 2)

with A = 1.161 45, B = −0.148 74, C = 0.524 87, D = −0.7732, E = 2.161 78 and
F = −2.437 87 and where T∗i = T/(ε/k)i. Here (ε/k)i is the Lennard-Jones energy
parameter, with ε the minimum of the Lennard-Jones potential and k the Boltzmann
constant.

The thermal conductivity of species i is defined by

κi = cp,i
µi

Pri
, (B 3)

with Pri the species-specific Prandtl number.
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Property Nitrogen Oxygen SF6 Acetone

(ε/k)i (K) 82.0 102.6 212.0 458.0
σi (Å) 3.738 3.48 5.199 4.599
Mi (g mol−1) 28.0140 31.9990 146.0570 58.0805
γi 1.4 1.4 1.1 1.1
Pri 0.72 0.72 0.8 0.8

TABLE 2. Molecular properties of nitrogen, oxygen, SF6 and acetone.

The mass diffusion coefficient of a binary mixture is calculated from the empirical
law (Reid et al. 1987)

Dij = 0.0266
ΩD,ij

T3/2

p
√

Mijσ
2
ij
, (B 4)

with the collision integral for diffusion

ΩD,ij = A(T∗ij)
B +C exp(DT∗ij)+ E exp(FT∗ij)+G exp(HT∗ij), (B 5)

where T∗ij = T/Tεij and A = 1.060 36, B = −0.1561, C = 0.193 00, D = −0.476 35,
E= 1.035 87, F=−1.529 96, G= 1.764 74, H =−3.894 11 and

Mij = 2
1

Mi
+ 1

Mj

, (B 6a)

σij = σi + σj

2
, (B 6b)

Tεij =
√(ε

k

)
i

(ε
k

)
j
. (B 6c)

The molecular properties of all species in the present study are given in table 2.
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Evolution of length scales and statistics of Richtmyer-Meshkov instability from
direct numerical simulations
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In this study we present direct numerical simulation results of the Richtmyer-Meshkov instability (RMI)
initiated by Ma = 1.05, Ma = 1.2, and Ma = 1.5 shock waves interacting with a perturbed planar interface
between air and SF6. At the lowest shock Mach number the fluids slowly mix due to viscous diffusion, whereas
at the highest shock Mach number the mixing zone becomes turbulent. When a minimum critical Taylor microscale
Reynolds number is exceeded, an inertial range spectrum emerges, providing further evidence of transition to
turbulence. The scales of turbulent motion, i.e., the Kolmogorov length scale, the Taylor microscale, and the
integral length, scale are presented. The separation of these scales is found to increase as the Reynolds number
is increased. Turbulence statistics, i.e., the probability density functions of the velocity and its longitudinal and
transverse derivatives, show a self-similar decay and thus that turbulence evolving from RMI is not fundamentally
different from isotropic turbulence, though nominally being only isotropic and homogeneous in the transverse
directions.

DOI: 10.1103/PhysRevE.90.063001 PACS number(s): 47.20.Ma, 47.27.ek, 47.40.Nm, 47.51.+a

I. INTRODUCTION

The Rayleigh-Taylor instability is an instability that occurs
at the material interface between two fluids of different
densities when one fluid is accelerated into the other one.
In 1950, Taylor [1] provided a theoretical prediction of the
growth rate of irregularities on the material interface between
two fluids of different densities under constant acceleration.
In his pioneering work Richtmyer [2] extended the theory
of Taylor [1] to the impulsive acceleration of material inter-
faces. In the impulsive model of Richtmyer [2] the constant
acceleration g of the material interface is replaced by an
impulsive acceleration !uδ(t). According to Richtmyer [2],
the amplitude a(t) of a single-mode perturbation with wave
number k grows as

a(t) = (1 + k!uA+t)a+
0 , (1)

where (·)+ refers to values after the shock-interface interaction.
a+

0 is the postshock amplitude of the perturbed interface, A+ =
(ρ1 − ρ2)/(ρ1 + ρ2) is the postshock Atwood number, and t
is the time. Later, Richtmyer’s theoretical predictions were
experimentally verified by Meshkov [3], and the instability is
thus known as the Richtmyer-Meshkov instability (RMI).

There are two hypotheses to explain the generation of
vorticity at the material interface during shock-interface
interaction [4]. The first one is based on baroclinic vorticity
production; the other proposes that distorted transmitted and
reflected waves create pressure variations across the material
interface, which lead to tangential velocity perturbations.
According to Brouillette [4] both hypotheses can be formally
reconciled by noting that the induced tangential velocity
components are responsible for the circulation. For more
details see also Wouchuk and Nishihara [5], Wouchuk [6],
and Zabusky [7]. The generated vorticity amplifies the
initial interface perturbations, and if the initial energy in-

*volker.tritschler@aer.mw.tum.de

put is sufficient, i.e., at sufficiently high Reynolds num-
bers, the flow evolves eventually into a turbulent mixing
zone.

Because of the high Reynolds numbers and the associated
small time and length scales, direct numerical simulations
(DNSs) seemed to be unfeasible, and therefore large eddy
simulations (LESs) have become the standard simulation ap-
proach to RMI [8–14]. Grinstein et al. [10] used a grid adaptive
Eulerian code with implicit LES (ILES) modeling to study
three-dimensional material mixing evolving from RMI. The
ILES model combines a second-order Godunov-type scheme
with the van Leer flux limiter. In the investigation of Schilling
and Latini [11], the authors performed ILES with a high-order
WENO scheme to study three-dimensional reshocked RMI to
late times. In LES and ILES the energy-containing large scales
are resolved and the dynamic interaction of unrepresented
small scales with grid-resolved large scales is modeled by
a subgrid-scale model. Due to the multiscale properties of
RMI underresolved numerical simulations are very sensitive
to the underlying numerical scheme, which does not only
model the unresolved scales but also captures discontinuities
such as shock waves and material interfaces; see Tritschler
et al. [15].

Some recent investigations showed that the Kolmogorov
length scale might be larger than assumed so far. In the exper-
imental investigation of Weber et al. [16] the authors provided
an estimate for the Kolmogorov length scale of a Ma = 1.5
shock accelerated shear layer. The estimate was obtained
from fitting model spectra to the experimental spectra, which
resulted in an estimate of 125 µm ! η ! 214 µm. Tritschler
et al. [17] found for the same shock Mach number a similar
range for the Kolmogorov length scale 75 µm ! η ! 224 µm.
Consistent with these estimates Lombardini et al. [9] found
η ≈ 620 µm for RMI driven by a Ma = 1.05 shock wave
and η ≈ 72 µm for Ma = 5 long after the shock-interface
interaction. Shortly after the shock-interface interaction the
Kolmogorov scale can, however, be considerably smaller,
being as small as η ∼ O(1) µm.

1539-3755/2014/90(6)/063001(11) 063001-1 ©2014 American Physical Society
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For the present investigation the shock tube size is scaled
down in order to resolve all relevant length scales for Taylor
microscale Reynolds numbers Reλ " 140. With this setup we
are able to provide for the first time fully resolved results of
the Richtmyer-Meshkov instability.

The paper is structured as follows: in Sec. II we outline
the governing equations, which are solved with the numerical
method given in Sec. III. The numerical setup is provided in
Sec. IV. The results including grid convergence, the scales
of turbulent motion, such as the integral length scale, Taylor
microscale, and the Kolmogorov scale, as well as the proba-
bility density functions of the velocity and its longitudinal and
transverse derivatives are presented in Sec. V. We conclude
with a summary of our key findings in Sec. VI.

II. GOVERNING EQUATIONS

We solve the multicomponent Navier-Stokes equations in
conservative form

∂U
∂t

+ ∇ · F(U) = ∇ · Fν(U), (2)

where U are the conserved variables:

U =
(
ρ ρu E ρYi

)
. (3)

The inviscid and viscous fluxes are given by

F(U) =

⎛

⎜⎝

ρu
ρuu + pδ
(E + p)u

ρuYi

⎞

⎟⎠, Fν(U) =

⎛

⎜⎝

0
τ

τ · u − qc − qd
−Ji

⎞

⎟⎠.

(4)
Here we denote u = [u1,u2,u3] = [u,v,w] as the velocity
vector, p as the pressure, E as the total energy, ρ as the
mixture density, and Yi as the mass fraction of species i with
i = 1,2, . . . ,N , where N is the total number of species. The
identity matrix is δ. The viscous stress tensor τ for a Newtonian
fluid is

τ = µ [2S − 2/3δ (∇ · u)], (5)

where µ is the mixture viscosity and S is the strain rate tensor.
Equation (5) uses Stoke’s hypothesis according to which the
bulk viscosity is zero. We note that there is controversy
in literature about the value of the bulk viscosity of large
molecules, and setting it to zero may suppress some aspects of
the real flow physics.

According to Fourier’s law we define the heat conduction
as

qc = −κ∇T , (6)

where κ is the mixture heat conductivity. The interspecies
diffusional heat flux [18] is defined as

qd =
N∑

i=1

hi Ji (7)

with

Ji ≈ −ρ

⎛

⎝Di∇Yi − Yi

N∑

j=1

Dj∇Yj

⎞

⎠ . (8)

Di indicates the effective binary diffusion coefficient of species
i, and hi is the individual species enthalpy. The equations are
closed with the equation of state for an ideal gas

p(ρe,Yi) = (γ − 1) ρe, (9)

where γ is the ratio of specific heat capacities of the mixture
and e is the internal energy

ρe = E − ρ

2
u2. (10)

The ratio of specific heat capacities of the mixture γ is
calculated as

γ = cp

cp − R
, with cp =

N∑

i

Yi

γi

γi − 1
R, (11)

where R is the specific gas constant of the mixture with R =
R/M and

M =
(

N∑

i

Yi

Mi

)−1

. (12)

The viscosity and the thermal conductivity of the mixture, µ
and κ , are calculated according to [19]

µ =
∑N

i=1 µiYi/M
1/2
i∑N

i=1 Yi/M
1/2
i

, κ =
∑N

i=1 κiYi/M
1/2
i∑N

i=1 Yi/M
1/2
i

. (13)

The species specific viscosity µi is calculated from the
Chapman-Enskog viscosity model

µi = 2.6693 × 10−6

√
MiT

*µ,iσ
2
i

, (14)

where σi is the collision diameter and *µ,i is the collision
integral [20] given as

*µ,i = A(T ∗
i )B + C exp {DT ∗

i } + E exp {FT ∗
i }, (15)

with A = 1.16145, B = −0.14874, C = 0.52487, D =
−0.7732, E = 2.16178, and F = −2.43787, where the tem-
perature is normalized by the Lennard-Jones energy parameter
T ∗

i = T/(ϵ/k)i .
The thermal conductivity is calculated from the species

specific Prandtl number Pri as

κi = γi

γi − 1
Ri

µi

Pri
, (16)

and the mass diffusivities Di are given by

Di = µi

ρSci

. (17)

III. COMPUTATIONAL METHOD

Classical WENO approaches, albeit being formally high-
order accurate, are too dissipative at discontinuities and in
turbulent regions of the flow because in these regions the
theoretical maximum order is never achieved. In order to
reduce the excessive dissipation of classical WENO schemes
Hu et al. [21] developed an adaptive central-upwind sixth-
order accurate WENO scheme (WENO-CU6). This scheme
significantly reduces the numerical dissipation, while preserv-
ing the shock-capturing properties of classical WENO schemes
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and being only slightly computationally more complex than
the standard fifth-order WENO scheme. Additionally, Hu and
Adams [22] improved the scale separation of the original
version, which makes the WENO-CU6 scheme also applicable
to underresolved simulations.

In a recent investigation Hu et al. [23] introduced a
dispersion-dissipation condition for finite-difference schemes.
The dispersion-dissipation condition imposes a constraint on
dissipation and dispersion errors in order to prevent backscatter
of nonresolved spurious scales into the resolved-scale range.
The modified version B according to Hu et al. [23] of the
WENO-CU6 scheme is used in the present investigation.

Flux projection onto local characteristics is applied, which
requires the Roe-averaged matrix to be calculated for the full
multispecies system in Eq. (2) [24,25]. After reconstruction
of the numerical fluxes at the cell boundaries the fluxes
are projected back onto the physical field. A local switch
to a Lax-Friedrichs flux is used as entropy fix; see, e.g.,
Toro [26]. Temporal integration is performed by a third-order
total variation diminishing Runge-Kutta scheme [27].

The present numerical model has been tested and validated
for shock induced turbulent multispecies mixing problems at
finite Reynolds numbers [17,28,29]. Moreover, it has been
demonstrated that it is a state-of-the-art approach to turbulent
mixing processes evolving from RMI [15].

IV. NUMERICAL SETUP

The material interface separating air and SF6 is accelerated
by shock waves propagating with Ma = 1.05, Ma = 1.2,
and Ma = 1.5. The corresponding postshock thermodynamic
states are calculated from the Rankine-Hugoniot jump con-
ditions with the preshock state defined by the stagnation
condition p0 = 23 000 Pa and T0 = 298 K. The Schmidt
number of both gases is Sc = 1 and all other thermodynamic
gas properties, which are taken from Poling et al. [19], are
also constant; see Table I. The shock wave is initialized at
x = −Lx/4 and propagates in the positive x direction. The
transverse width Lyz of the shock tube is set to Lyz = 0.01 m,
and periodic boundary conditions are used in the y and z
direction. The fine-grid domain of the shock tube extends
symmetrically in the positive and negative x direction about
x = 0 m from −Lx/2 to Lx/2 with Lx = 2Lyz. A moving
reference frame is applied such that the mixing zone remains
within the fine-grid domain. The inflow and outflow boundary
conditions are imposed very far from the fine-grid domain
in order to avoid shock reflections. Outside of the fine-grid
domain the computational grid is coarsened to reduce the
computational costs. The fine-grid domain is discretized

TABLE I. Constant thermodynamic properties of air and SF6.

Property Air SF6

Mi [g mol−1] 28.964 146.057
(ϵ/k)i [K] 78.6 222.1
σi [Å] 3.711 5.128
γi 1.4 1.1
Pri 0.72 0.9

FIG. 1. (Color online) Schematic of the square shock tube show-
ing the dimensions of the computational domain.

by three different grid resolutions 1282 × 256, 2562 × 512,
and 5122 × 1024 resulting in cubic cells of size 78 µm #
!xyz # 19.5 µm. The three grid resolutions are used for the
convergence study, but only the results obtained on the finest
grid are presented later. A schematic of the computational
domain is given in Fig. 1.

In the present investigation the initial interface perturbation
is given by

ξ (y,z) = a1 sin (k0y) sin (k0z)

+ a2

13∑

n=1

15∑

m=3

an,m sin (kny + φn) sin (kmz + χm)

(18)

with the constant amplitudes a1 = −2.5 × 10−4 m and
a2 = 2.5 × 10−5 m and wave numbers k0 = 10π/Lyz, kn =
2πn/Lyz, and km = 2πm/Lyz. The amplitudes an,m and the
phase shifts φn and χm are given by an,m = sin(nm)/2, φn =
tan(n), and χm = tan(m).

For the purpose of verifying grid convergence an initial
length scale is imposed by a finite initial interface thickness

ψ(x,y,z) = 1
2

{
1 + tanh

[
x − ξ (y,z)

Lρ

]}
(19)

with Lρ = 0.001 m being the characteristic initial thickness.
The individual species mass fractions are imposed by YSF6 =
ψ and Yair = 1 − ψ . The time when the shock impacts the
perturbed interface is t = 0 s.

V. RESULTS

A. Grid convergence

In order to verify the convergence, the average Kolmogorov
length scale η̃ within the inner mixing zone (imz) according
to Tritschler et al. [15] as well as the compensated spectra of
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FIG. 2. Average Kolmogorov length scale of the inner mixing
zone for Ma = 1.05 (crosses), Ma = 1.2 (triangles), and Ma = 1.5
(circles) computed on three different grid resolutions 128 (dashed-
dotted), 256 (dashed), and 512 (solid lines with symbols).

enstrophy EE are presented in Fig. 2 and Fig. 3 for the three
grid resolutions.

We define the average Kolmogorov length scale as

η̃ =
〈(

⟨ν⟩3
yz

⟨ε⟩yz

)1/4〉

x

, (20)

where ε and ν are the viscous dissipation and the kinematic
viscosity and ⟨·⟩ denotes spatial averaging. The mean rate of
viscous dissipation of kinetic energy is calculated from the
single-point correlation of the fluctuating velocity gradients

ε = ν

[
∂u′′

i

∂xj

∂u′′
i

∂xj

+ ∂u′′
i

∂xj

∂u′′
j

∂xi

− 2
3

(
∂u′′

i

∂xi

)2
]

. (21)

For low-order statistics a resolution criterion of kmaxη $ 1 is
adequate for DNSs. For higher-order statistics, however, it was
found (e.g., Ref. [30]) that a value of kmaxη $ 1.5 is needed.

Following this criterion, the finest grid resolution !xyz ≈
19.5 µm sufficiently resolves turbulence with a minimal
Kolmogorov length scale of ηmin ≈ 9.3 µm. The average
Kolmogorov length scale given in Fig. 2 verifies that for
Ma = 1.05 and Ma = 1.2 the DNS resolution requirement is
satisfied throughout the simulation on the finest grid resolution.
For Ma = 1.5 it is satisfied after a short initial transient
t # 130 µs.

The Kolmogorov length scale reaches a minimum right after
the shock passage, which is η̃ ≈ 26 µm for Ma = 1.05 and
decreases as the shock Mach number is increased to η̃ ≈ 5 µm
for Ma = 1.5. After the shock passage the Kolmogorov length
scale monotonically increases to η̃ ≈ 211 µm and η̃ ≈ 92 µm
for Ma = 1.05 and Ma = 1.5, respectively, at the final time.

The compensated enstrophy spectra at t = 50 µs, t =
200 µs, t = 500 µs, t = 1000 µs, and t = 3500 µs for Ma =
1.05, Ma = 1.2, and Ma = 1.5 are shown in Fig. 3. At
Ma = 1.05 the peak enstrophy is fully resolved at all times
and for all grid resolutions, whereas at Ma = 1.5 the peak
enstrophy is not fully resolved at the earliest time t = 50 µs.
This is consistent with the average Kolmogorov length scale
at these times. For the intermediate shock Mach number
Ma = 1.2 the peak enstrophy is resolved on the two finest
grids.

Note that enstrophy is a sensitive quantity and that other
quantities converge already on coarser grids. From this, we
conclude that our simulation results on the finest grid qualify
as DNSs.

B. Scales of turbulent motion

The Taylor-microscale Reynolds number is defined as

Reλ = u′′λT

ν
, (22)

where u′′ is the RMS velocity fluctuation obtained from
Reynolds averaging, λT is the Taylor microscale, and ν is the
kinematic viscosity. According to Dimotakis [31] the Taylor
microscale Reynolds number must exceed Reλ $ 100–140 or
Re $ 104, if calculated as an outer-scale Reynolds number, in
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FIG. 3. Compensated enstrophy spectra for Ma = 1.05 (a), Ma = 1.2 (b), Ma = 1.5 (c) at t = 50 µs, t = 200 µs, t = 500 µs, t = 1000 µs,
and t = 3500 µs on three different grid resolutions 128 (dashed-dotted), 256 (dashed), and 512 (solid lines with symbols) with k̃ = k
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FIG. 4. Normalized turbulence kinetic energy spectra for Ma =
1.05 (crosses), Ma = 1.2 (triangles), and Ma = 1.5 (circles) at
t = 50 µs, t = 200 µs, t = 500 µs, t = 1000 µs, and t = 3500 µs.
The gray scale changes from black to light gray as time increases.
The dashed vertical line at kη = 1/8 marks the beginning of the
dissipation range.

order to observe fully developed turbulence. When the critical
Reynolds number is exceeded a range of scales evolves that
is independent from the large scales of motion and free from
viscous effects. Only then does the inertial-range similarity
concept of Kolmogorov [32] apply. The Taylor microscale
Reynolds numbers depicted in Fig. 5 (a) show that for the two
higher Mach numbers the Reynolds numbers are Reλ ≈ 143
and Reλ ≈ 47 after shock passage.

An inner viscous scale λν [31], i.e., the upper limit of the
dissipation range, can be estimated from the wave number kν

where the spectrum begins to deviate from the inertial range
spectrum, which is kνη ≈ 1/8 according to Dimotakis [31]
who found this value by inspecting the data compilation
of Saddoughi and Veeravalli [33]. The turbulence kinetic
energy spectra normalized as proposed by Saddoughi and
Veeravalli [33] are given in Fig. 4. The dashed line represents
the inner viscous wave number according to kνη ≈ 1/8, which
verifies that at this wave number all spectra begin to deviate

from the inertial range scaling. Figure 4 also verifies that all
spectra collapse within the dissipation range in agreement with
Kolmogorov’s theory.

From kνη ≈ 1/8 the inner viscous scale directly follows as

λν = 2π

kν

≈ 50η. (23)

The upper bound of the uncoupled range, the Liepmann-
Taylor scale λL, is the smallest scale that can be directly
generated from the outer scale δ. Based on experimental data
Dimotakis [31] determined that the Liepmann-Taylor scale is
proportional to the Taylor-microscale

λL ≈ cLλT , (24)

with cL as a flow-dependent parameter with a value of around
cL ≈ 5; cf. Dimotakis [31], Zhou et al. [34], and Robey
et al. [35].

The Taylor microscale λT is obtained from the curvature
of the transverse spatial covariance of the velocity fluctuations
Rt,i(r,t) at r = 0:

λT ,i(t) =
[
−1

2
∂2Rt,i(0,t)

∂r2

]−1/2

, (25)

with

Rt,i(r,t) =
⟨u′′

i (x⃗,t)u′′
i (x⃗ + re⃗j ̸=i ,t)⟩
⟨u′′

i u
′′
i ⟩

, with i = 2,3.

(26)
The transverse covariance is evaluated in the homogeneous
directions at each plane in the inner mixing zone with −3 !
r ! 3, giving λT ,y and λT ,z. The directional Taylor microscales
are averaged in the streamwise x direction, from which the
effective mean Taylor microscale is calculated.

Dimotakis [31] argued that an uncoupled range of scales
exists when λL/λν $ 1. The uncoupled range is illustrated in
Fig. 5(b) evolving between Liepmann-Taylor scale λL and the
upper limit of the dissipation range λν . In the present study only
the highest Mach number case exceeds Reλ > 100 and should
therefore exhibit a range of uncoupled scales. At Ma = 1.5
a range of uncoupled scales with λL > λν evolves for t "
400 µs. At this time the Taylor microscale Reynolds number
is Reλ ≈ 26, which is smaller than the expected value of Reλ >
100 − 140 according to Dimotakis [31]; see Fig. 5(a). Because
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FIG. 5. Taylor microscale Reynolds number and uncoupled range of scales, given by the inner viscous scale λν (dashed) and the Liepmann-
Taylor scale λL (solid) for Ma = 1.05 (crosses), Ma = 1.2 (triangles), and Ma = 1.5 (circles).
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FIG. 6. Compensated spectra of turbulence kinetic energy for Ma = 1.05 (a), Ma = 1.2 (b), Ma = 1.5 (c) at t = 50 µs, t = 200 µs,
t = 500 µs, t = 1000 µs, and t = 3500 µs with k̃ = kη. The dashed vertical line at kη = 1/8 marks the beginning of the dissipation range.

of the uncertainties associated with the estimates for λL and
λν and the shallow intersection of their curves a more realistic
value for the critical Reynolds number in the present setup is
Reλ # 35–80.

Scales within the uncoupled range should exhibit a spectral
scaling close to a k−5/3 scaling. In Fig. 6 we show the
compensated spectra of turbulence kinetic energy for all Mach
numbers at 50 µs, 200 µs, 500 µs, 1000 µs, and 3500 µs over
the Kolmogorov normalized wave number. The dashed line
marks the beginning of the dissipation range at kη = 1/8.
As observed in Fig. 5 the lowest Mach number case does
not exhibit an uncoupled range of scales beyond t $ 60 µs.
Accordingly, all scales are either affected by viscous effects
or driven by the large-scale motion, such that no scales can
become unstable and subsequently turbulent. As can be seen
in Fig. 6(a) almost the full spectrum is within the dissipation
range, which implies that the growth of the mixing zone
is dominated by the large scales of motion and molecular
diffusion.

For the medium Mach number, shown in Fig. 6(b), the
energy-containing scales are also relatively close to the
dissipation range with only a very narrow range of uncoupled
scales immediately after the shock-interface interaction; see
also Fig. 5(b). The existence of a k−5/3 range is not evident,
since the dominant wave numbers overlay an eventual inertial
range at t = 50 µs. At later times the spectrum becomes more
shallow than Kolmogorov’s scaling.

As the Mach number is increased to Ma = 1.5 an uncoupled
range of scales develops during the first t ≈ 400 µs, which
manifests in a narrow inertial range following approximately
k−5/3 at t = 50 µs as can be seen in the compensated energy
spectra in Fig. 6(c). At later times, however, an inertial range
following k−5/3 is not evident anymore. Only a very narrow
band of uncoupled scales exists for t $ 200 µs, and thus,
scales are likely to be either damped by viscous effects or
affected by the large scales of motion beyond this time.

Scales within the uncoupled range can become unstable
through nonlinear growth and mode coupling, which quickly
removes the imprint of the initial perturbation. As seen in

Fig. 6(a), if the energy-containing mode initially is in the
dissipation range, the modes do not become unstable and
are slowly dissipated. At the highest Mach number, Fig. 6(c),
the modes become unstable, and the energy-containing mode
quickly breaks down into smaller scales leaving no evidence
of the initial perturbation.

Figure 7 shows the mixing zone width δx and the integral
length scale 3. The integral length scale is calculated from the
longitudinal spatial velocity covariance [36]

3i =
∫ ∞

0
Rl,i(r,t) dr, (27)

with

Rl,i(r,t) = ⟨u′′
i (x⃗,t)u′′

i (x⃗ + re⃗i ,t)⟩
⟨u′′

i u
′′
i ⟩

, with i = 2,3. (28)

To compute the spatial velocity covariance in the whole domain
Rl,i(r,t) the Wiener-Khinchin theorem is applied. The theorem
states that the autocorrelation function is the inverse Fourier
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FIG. 7. The mixing zone width δx and the integral length scale 3
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zone width δx (squares), the integral length scale 3 (diamonds), the Taylor microscale λT (plus), and the Kolmogorov length scale η (triangles).

transform of its power spectrum
Rl,i(r,t) = F−1[û′′∗

i û′′
i ]. (29)

Integration of Rl,i(r,t) leads to longitudinal integral scales in
the y and z direction, 3y and 3z. The directional integral
length scales 3i are averaged in the streamwise x direction
from which the effective integral length scale 3 is calculated.

The mixing zone width is defined as

δx(t) =
∫ ∞

−∞
4⟨YSF6⟩yz(1 − ⟨YSF6⟩yz)dx, (30)

where ⟨·⟩yz denotes ensemble averaging in the cross-stream yz
plane.

The mixing zone width grows approximately proportional
to ∼t1/7, whereas the integral length scale in the homogeneous
directions grows as ∼t2/7. Various growth rate exponents 4
have been proposed in the past ranging from 4 = 2/7 [37] to
4 = 2/3 [38]. Our results are in the lower range of previously
published data.

A summary of all length scales is given in Fig. 8. It shows
the mixing zone width, the integral length scale, the Taylor

microscale, and the Kolmogorov length scale for the three
investigated shock Mach numbers Ma = 1.05, Ma = 1.2, and
Ma = 1.5. Figure 8 verifies the increasing separation of scales
with increasing shock Mach number. Weber et al. [39] also
presented the mixing zone width, the Taylor microscale, and
the Kolmogorov length scale obtained from experimental
measurements at Ma = 1.6 and Ma = 2.2. In the investigation
of Weber et al. [39] the separation of scales appears not to
depend on the shock Mach number. The Kolmogorov length
scale at Ma = 1.5 in our investigation has the same order of
magnitude as in the experiment of Weber et al. [39].

C. Decaying turbulence

There are two distinct canonical cases of decaying isotropic
turbulence which result from the solution of the Kármán-
Howarth equation: turbulence of Saffman type with a Birkhoff-
Saffman spectrum [40,41] E(k → 0) ∼ Lk2 and turbulence of
Batchelor type E(k → 0) ∼ Ik4, where L =

∫
⟨u × u′⟩d r and

I =
∫

r2⟨u × u′⟩d r are known as Saffman and Loitsyansky
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FIG. 9. Average turbulence kinetic energy TKE and viscous dissipation rate ε in the inner mixing zone as functions of time for Ma = 1.05
(crosses), Ma = 1.2 (triangles), and Ma = 1.5 (circles).

063001-7



V. K. TRITSCHLER, M. ZUBEL, S. HICKEL, AND N. A. ADAMS PHYSICAL REVIEW E 90, 063001 (2014)

−3 −2 −1 0 1 2 3

10
−2

10
−1

10
0

v/σ

P
(v

)σ

FIG. 10. Normalized probability density functions of the velocity
for Ma = 1.5. The gray scale changes from light gray to black as time
increases. The Gaussian distribution is given by the dashed line. The
PDFs are normalized by their standard deviation σ .

integrals, respectively. These two canonical cases have been
derived under the assumption that the triple velocity correlation
tensor as well as the pressure-velocity correlation decay fast
enough for remote points.

The Saffman integral L is an invariant provided that the
triple velocity correlation tensor and the pressure-velocity
correlation decay as O(r−2) implying that the global linear
momentum is conserved. Saffman [41] showed that in this
case the Saffman integral is proportional to L ∼ u2l3. Then
the decay of turbulence kinetic energy follows as u2 ∼ t−6/5,
whereas the integral scale grows proportional to l ∼ t2/5.

If the long-range statistics become uncorrelated according
to O(r−4), i.e., if turbulence is dominated by angular momen-
tum with negligible linear momentum the Loitsyansky integral
I is conserved [42]. Given that I = const and that the large
scales evolve in a self-similar way, the Loitsyansky integral
is proportional to I ∼ u2l5 [32] implying that the turbulence
kinetic energy of isotropic homogeneous turbulence decays as
u2 ∼ t−10/7, whereas the integral scale grows as l ∼ t2/7.

Ishida et al. [43] reported the kinetic energy of isotropic
turbulence to decay as ∼t−n with n ≈ 1.4, if the Loitsyansky
integral is constant and if the Taylor microscale Reynolds
number exceeds Reλ > 100. Long-range interactions between
remote eddies resulted in a deviation from I = const and thus
in n ̸= 10/7.

In Fig. 9 the average turbulence kinetic energy in the
inner mixing zone is shown for shock Mach numbers Ma =
1.05, Ma = 1.2, and Ma = 1.5. After an initial transient all
cases exhibit a decay exponent close to n = 12/7 ≈ 1.71,
which is steeper than predicted by the third hypothesis of
Kolmogorov [32], i.e., n = 10/7. Ishida et al. [43], however,
found that n → 1.5 for Reλ = 62.5 and for lower Reynolds
numbers (Reλ = 31.3) n → 1.63, while n → 10/7 for Reλ =
125 from which the authors concluded that the Reynolds
number must exceed Reλ ≈ 100 in order to observe n = 10/7.
In the present simulations the Taylor microscale Reynolds
numbers are Reλ ∼ O(10) for the two higher shock Mach
number and Reλ " O(10) for Ma = 1.05 at late times as
depicted in Fig. 5. For the highest shock Mach number Ma =
1.5 the Taylor microscale Reynolds number is Reλ ≈ 140
after shock passage and decays to Reλ ≈ 20 at the latest
time. Burattini et al. [44] found a dependency between the
initial Reynolds number Reλ(t = 0) and the observed decay
exponent n of turbulence kinetic energy, that is, n → 1 as
Reλ(t = 0) → ∞. This dependence approximately follows
n = 1.05 + 60/Reλ(t = 0) in good agreement with other data
from the literature. For an initial Taylor microscale Reynolds
number of Reλ(t = 0) ≈ 140 the power-law exponent be-
comes n ≈ 1.48 and thus is smaller than the observed value
in the present investigation. Samtaney et al. [45] investigated
decaying compressible turbulence and found for a range of
different initial conditions the decay exponent of turbulence
kinetic energy to be in the range 1.37 ! n ! 1.71, which is in
good agreement with the present results.

It is interesting to note that all three cases follow the
same decay law and do not show a dependence on the
initial Reynolds number as observed previously [43,44]. Also,
the lowest Mach number case follows ∼t−12/7 even though
the flow does not become turbulent. Lombardini et al. [9]
investigated shock-initiated decaying turbulence at various
shock Mach numbers ranging from Ma = 1.05 to Ma = 5.
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FIG. 11. Normalized probability density function of the longitudinal (a) and transverse velocity gradients (b) for Ma = 1.5. The gray scale
changes from light gray to black as time increases. The Gaussian distribution is given by the dashed line. The PDFs are normalized by their
standard deviation σ .
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FIG. 12. Skewness (a) and kurtosis (b) of the velocity (solid line), the longitudinal velocity gradient (dashed line), and the transverse
velocity gradient (dashed-dotted) for Ma = 1.5.

The turbulence kinetic energy decay was found to be larger
than ∼t−6/5 and closer to ∼t−10/7, independent of the shock
Mach number. Tritschler et al. [15] also found the decay of
turbulence kinetic energy to be proportional to ∼t−10/7.

Figure 9(b) shows the average viscous dissipation rate in
the inner mixing zone as a function of time. The viscous
dissipation rate decays as ∼t−19/7, consistent with the decay
of turbulence kinetic energy.

D. Probability density functions

According to the theory of Kolmogorov, the probability
density function (PDF) of the velocity field of homogeneous
isotropic turbulence exhibits a Gaussian normal distribution.
However, Batchelor [46] showed that velocity gradients,
especially for scales that are close to the dissipation limit,
do not satisfy the assumption of uncorrelated long-range
interactions.

Jiménez et al. [47] investigated the vorticity statistics of
forced isotropic turbulence at Taylor microscale Reynolds
numbers ranging from Reλ = 35 to Reλ = 170. This work
indicates that the PDF of the single-point vorticity and the PDF
of strain of isotropic turbulence is non-Gaussian and shows
growing tails with increasing Reynolds numbers. Furthermore,
the tails of the PDF do not show an asymptotic behavior
for the limiting case Re → ∞. Despite the deviations from
Gaussianity and the lack of an asymptotic behavior, the spectra
showed a k−5/3 decay law and a dissipation range as predicted
by Kolmogorov. Jiménez et al. [47] explained this observation
with long coherent vortices (“worms”). The authors state
that these worms are part of the background vorticity and
responsible for a large amount of turbulent dissipation. The
worms themselves, however, are only responsible for a small
fraction of kinetic energy which is proportional to the volume
fraction that they occupy.

Wilczek et al. [48] found that decaying and forced
turbulence do not differ fundamentally, since the velocity
component PDFs show self-similarity when normalized by
the respective standard deviation. Furthermore, the vorticity
distribution exhibits an intermittent behavior as reported by

Jiménez et al. [47]. The velocity distribution deviates from
a Gaussian distribution with sub-Gaussian tails, implying a
kurtosis of γ2 < 3.

We show the statistics of the velocity and the transverse
and longitudinal velocity gradients of the Ma = 1.5 case in
Fig. 10 and Fig. 11. At lower Mach numbers the PDF show
qualitatively a similar behavior as the PDFs for a shock Mach
number of Ma = 1.5.

The PDFs are normalized by their respective standard
deviation σ . At later times the PDFs collapse, indicating a
self-similar decay as proposed previously [48]; see Fig. 10. The
PDFs of velocity are approximately Gaussian, with a kurtosis
slightly below that of the Gaussian distribution, i.e., γ2 ≈ 2.8.
This is in very good agreement with previous results [47]
for sustained isotropic turbulence, which found γ2 = 2.8 for
Reλ = 35.1. The skewness is expected to be zero in isotropic
turbulence. In the present case, it fluctuates around zero before
finally deviating to γ1 > 0 and approaching γ1 ≈ 0.05 at later
times; see Fig. 12(a) and Fig. 12(b).
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FIG. 13. Temporal evolution of different Reynolds number ap-
proximations for a shock Mach number of Ma = 1.5 [36] and as
given in Table II.
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TABLE II. Reynolds number approximations for a shock Mach
number of Ma = 1.5 [36].

Reδ
δx δ̇x

ν

(
3
η

)4/3 TKE1/23
ν

(√
103
λT

)2 1
100

(
λT

η

)4 3
20 Re2

λ

Reδ(t = 200 µs) 701 171 176 165 183 188
Symbol Solid Circle Triangle Diamond Square Dashed

The PDFs of the velocity gradients are clearly non-Gaussian
with long tails. The values of the statistical moments γ1, γ2 are
in very good agreement with that observed previously [47]. For
the longitudinal velocity gradient ∂v/∂y, shown in Fig. 11(a),
we find the skewness and kurtosis [see Fig. 12(a) and
Fig. 12(b)] to be only slightly smaller than that given by
Ref. [47] at Reλ = 35.1 (γ1 = −0.49, γ2 = 4.2) and Ref. [45]
(−0.5 ! γ1 ! −0.4) and in very good overall agreement. Note
that the Taylor microscale Reynolds number is Reλ ≈ 15–25 at
later times, which is smaller than the lowest Reynolds number
investigated in Ref. [47] of Reλ = 35.1.

The transverse velocity gradient ∂v/∂z shows good agree-
ment with that of Ref. [47], but begins to deviate at later
times becoming more skewed. The kurtosis γ2 of the transverse
velocity gradient agrees well with the value in Ref. [47], which
found γ2 = 5.7 for Reλ = 35.1.

Inspecting the compensated spectra of turbulence kinetic
energy, shown in Fig. 6, it is evident that for times t > 1000 µs,
the spectrum is very shallow with a large portion within the
dissipation range. The present data suggest that RMI exhibits
features of isotropic turbulence, provided that the energy
injected by the shock wave is strong enough to create a range of
uncoupled scales, which is the case in the present investigation
for Reλ # 35–80.

E. Outer-scale Reynolds number

For Richtmyer-Meshkov unstable flows the outer-scale
Reynolds number is estimated from the mixing zone width
δx and its growth rate δ̇x according to

Reδ = δx δ̇x

ν
. (31)

The temporal evolution of Reδ as given in Eq. (31) together
with length scale approximations for isotropic turbulence as
given in Ref. [36] are shown in Fig. 13 and listed in Table II. As
also reported in Ref. [39] the approximation given in Eq. (31)
overestimates the true Reynolds number in RMI, see Table II.
Reδ = 3/20Re2

λ can be considered as reference since it is
derived from the exact definition of the Taylor microscale

Reynolds number. According to the outer-scale Reynolds
number approximations given in Table II the Reynolds number
is in the range 165 " Reδ " 188 at t = 200 µs.

VI. CONCLUSION

Because direct numerical simulations (DNSs) of
experimental-scale setups are beyond todays computational
resources, DNSs on a reduced computational domain were
performed. For this reduced computational domain we have
presented fully resolved DNS results for the Richtmyer-
Meshkov instability evolving from a deterministic multimode
planar interface. The interface was accelerated by three
different shock waves of strength Ma = 1.05, Ma = 1.2, and
Ma = 1.5.

While at the lowest Mach number the dominant modes
slowly mix with the ambient fluid by viscous diffusion, a
turbulent mixing zone is obtained at the highest shock Mach
number. An uncoupled range of scales evolves associated with
the emergence of a narrow Kolmogorov inertial subrange for
t " 200 µs at Ma = 1.5. The Taylor microscale Reynolds
number decreases after the shock passage from Reλ ≈ 143 to
Reλ ≈ 13 at the final time. Increasing the shock Mach number
leads to larger Taylor microscale Reynolds numbers, and the
scales of turbulent motion become more and more separated.

The growth of integral scale and mixing zone width as
well as the decay rates of turbulence kinetic energy and
enstrophy are independent of the shock Mach number and in
good agreement with values known from decaying isotropic
turbulence.

Probability density functions of the velocity and its longi-
tudinal and transverse derivatives are also in agreement with
those for decaying isotropic turbulence.

We conclude that turbulence evolving from the Richtmyer-
Meshkov instability is not fundamentally different from
decaying isotropic turbulence despite being only isotropic and
homogeneous in two spatial directions. This is particularly
true when the Reynolds number exceeds a critical value and
the flow becomes turbulent. The critical Taylor microscale
Reynolds number was found to be Reλ # 35–80 for the
investigated relatively low shock Mach numbers.
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