
TECHNISCHE UNIVERSITÄT MÜNCHEN
FAKULTÄT FÜR INFORMATIK

Adaptable Static Analysis of Executables
for proving the Absence of Vulnerabilities

Dipl.-Inf. Univ. Bogdan Andrei Mihaila

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:

Univ.-Prof. Tobias Nipkow, Ph.D.

Prüfer der Dissertation:

1. TUM Junior Fellow Dr. Axel Simon

2. Univ.-Prof. Dr. Javier Esparza

3. Prof. David Pichardie, École normale supérieure de Rennes, Frankreich

Die Dissertation wurde am 13.11.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 08.01.2015 angenommen.



Copyright ©2015 Bogdan Mihaila
Licensed under Creative Commons Attribution-ShareAlike 4.0 International

(CC BY-SA 4.0)

https://creativecommons.org/licenses/by-sa/4.0


| Acknowledgements

I would like to thank my colleague Alexander Sepp for implementing the initial huge part
of the framework and thus making this work possible; Holger Siegel for his contributions
to the analysis framework and the implementation of the memory handling parts of the
framework; Julian Kranz for his work on the disassembler frontend and GDSL; all the
students that contributed code to the framework; my advisor Axel Simon as the initiator
and head of the project for his guidance and support throughout my PhD; Helmut Seidl for
the motivation and support he has given me after my graduation and my work colleagues
for the recreational foosball matches, the valuable and not so valuable conversations.

I would like to thank Thomas Dullien for initiating the idea of a dynamically started static
analysis, for interesting discussions and for providing us challenging analysis examples.

The biggest Thank You goes to my family and friends for the support throughout stressful
times and the fun during good times.

iii





| Abstract

In a world where vulnerabilities in software pose an inherent threat for the networked
society, analyzing third-party software, in the form of executable programs, becomes in-
creasingly important. While program verification at the source code level has received
much attention in the last decades, this thesis focuses on providing a sound and precise
analysis framework for binaries, thereby enabling the understanding, auditing, and verifi-
cation of executable programs.

The first challenge in analyzing machine code in binaries is to give a semantics to
the many instructions of a modern processor. This semantics should be faithful to the
computation of the concrete machine semantics in order to allow for a range of analy-
ses. Moreover, the semantics should be concise to enable scalable and easy-to-implement
analyses. To this end, we present the intermediate language RREIL and a corresponding
analysis framework that takes RREIL programs as input, thereby being mostly agnostic to
the actual architecture that the binary was compiled for.

Due to over-approximation, any analysis may warn about invalid memory accesses that
cannot occur in the actual program; a so-called false positive. Our framework is therefore
adaptable by featuring a plug-in architecture where code auditors can integrate special-
purpose domains specific to their analysis needs. Specifically, we propose a hierarchy of
three interfaces to abstract domains, namely for inferring memory layout, bit-level informa-
tion and numeric information. We equip this framework with well-known abstract domains
that reason about buffer overflows, pointer dereferences and possible integer wrap-arounds
in arithmetic operations. We demonstrate the extensibility of our framework by proposing
a set of novel abstract domains geared towards the precise analysis of binaries.
In particular, we introduce a set of abstract domains that improve the precision of widening,
a technique to ensure termination and scalability in numeric analyses. In the context of
machine code analysis, widening faces challenges that cannot be addressed by techniques
currently used in source code analysis.
Furthermore, we introduce a novel domain that improves the precision of off-the-shelf
convex numeric domains. This novel domain uses techniques from predicate abstraction,
thus allowing to express complex, non-convex program invariants.
A third novel domain we introduce allows for combining initialized and non-initialized
values in relational numeric analyses without undue loss of precision. This domain is

v



Abstract

essential when representing program states where a memory region (a stack frame or
heap cell) may or may not exist.

No matter how precise an analysis is, a code auditor may have to deal with a large
number of warnings when analyzing large programs. In order to improve the usability of
the analyzer, we detail how combining static and dynamic analysis allows an auditor to
focus the analyzer on potentially vulnerable code parts.

Finally,we illustrate the analysis of particularly difficult examples. Specifically,we present
the analysis of a subtle bug in Sendmail, where our analyzer is able to discover the fault
in the vulnerable program version and verifies the corrected variant.

vi



| Zusammenfassung

In einer Welt in der Sicherheitslücken in Software eine latente Bedrohung der vernetzten
Gesellschaft darstellt, wird die Analyse von fremder Software, in der Form von ausführ-
baren Programmen, immer wichtiger. Während die Verifikation von Quellcode in den
letzten Jahrzehnten viel Aufmerksamkeit auf sich gezogen hat, ist das Ziel dieser Arbeit
eine Infrastruktur für korrekte Analysen von Binärdateien bereitzustellen, um dadurch das
Verstehen und die Verifikation von ausführbaren Programmen zu ermöglichen.

Die erste Herausforderung in der Analyse von Maschinencode ist es, Binärdateien eine
Semantik zu geben, die die vielen Instruktionen moderner Prozessoren umfasst. Diese
Semantik sollte sinngetreu die Berechnung der Instruktionen wiedergeben, um verschiede-
ne Analysen zu ermöglichen. Weiterhin sollte die Semantik kompakt sein um skalierende
und einfach zu implementierende Analysen zu ermöglichen. Wir präsentieren dafür die
Zwischensprache RREIL und eine entsprechende Analyseinfrastruktur, die RREIL als Ein-
gabe nimmt, sodass die Analyse unabhänging von der Architektur, für die die Binärdatei
übersetzt wurde, arbeiten kann.

Aufgrund der Überapproximation kann eine Analyse über inkorrekte Speicherzugriffe
warnen, obwohl diese im Programm gar nicht auftreten können; sogenannte Fehlalarme.
Unsere Infrastruktur kann daher angepasst werden durch das Hinzufügen von speziel-
len Domänen, die auf das zu analysierende Programm zugeschnitten sind. Ganz konkret
präsentieren wir eine Hierarchie von drei Schnittstellen, jeweils für die Inferenz von Varia-
blenanordnungen im Speicher, für die Manipulation von Werten auf der Bit-Ebene und für
die Manipulation von numerischer Information. Wir statten diese Infrastruktur mit etablier-
ten abstrakten Domänen aus, die Speicherüberläufe, Zeiger und arithmetische Überläufe
analysieren.
Die Erweiterbarkeit zeigen wir, indem wir eine neue abstrakte Domäne präsentieren, die
präzises widening für Binärcode implementiert, was sicherstellt, dass numerische Analysen
terminieren und skalieren. Im Rahmen der Analyse von Maschinencode ist widening inso-
fern heikel, dass bestehende Techniken aus der Analyse von Quellcode nicht ausreichen.
Weiterhin schlagen wir eine neue Domäne vor, die die Präzision von etablierten numeri-
schen Domänen verbessert. Diese neue Domäne benutzt Techniken aus dem Gebiet der
Prädikatenabstraktion und kann komplexe, nicht-konvexe Zustandsräume auszudrücken.
Die dritte neue Domäne die wir präsentieren erlaubt die Kombination von initialisierten

vii



Zusammenfassung (German Abstract)

und uninitialisierten Werten in relationalen numerischen Analysen ohne übermäßigen Prä-
zisionsverlust. Diese Domäne ist essentiell um Programmzustände darzustellen, in denen
ein Speicherbereich (ein Stapel oder Speicher auf der Halde) nicht unbedingt existiert.

Unabhängig davon, wie präzise eine Analyse ist, ein Nutzer der Analyse muss mit sehr
vielen potentiellen Fehlern umgehen sobald Programme größer werden. Um die Benutz-
barkeit der Analyse zu verbessern, zeigen wir, wie die Kombination von statischer und
dynamischer Analyse dem Benutzer helfen kann, den Fokus der Analyse auf Bereiche mit
potentiellen Sicherheitslücken zu beschränken.

Zu guter Letzt veranschaulichen wir die Infrastruktur, indem wir die Analyse heraus-
fordernder Beispiele diskutieren. Hierzu nutzen wir einen bekannten Fehler in Sendmail.
Unsere Analyse identifiziert diesen Fehler in der Originalversion und verifiziert die korri-
gierte Version als korrekt.

viii



| Contents

Acknowledgements iii

Abstract v

Zusammenfassung (German Abstract) vii

Table of Contents ix

I Static Analysis of Binary Code 1

1 Introduction 3
1.1 Necessity of Machine Code Analysis . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Challenges in the Analysis of Executables . . . . . . . . . . . . . . . . . . . 4
1.3 Our Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organization and Contributions . . . . . . . . . . . . . . . . . . . . 5

2 Binary Analysis Framework 9
2.1 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Programs as States and Transitions . . . . . . . . . . . . . . . . . . 9
2.1.2 Abstraction Examples . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Definition of Program Semantics . . . . . . . . . . . . . . . . . . . 12

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Programs as Control Flow Graphs . . . . . . . . . . . . . . . . . . . 14
2.2.2 Fixpoint Analysis on the CFG . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Acceleration and Termination using Widening . . . . . . . . . . . . 17
2.2.4 Recovering from the Precision Loss of Widening . . . . . . . . . . . 18

2.3 Fixpoint Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Intermediate Language (RREIL) . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Designing an Intermediate Language for Relational Analysis . . . . 21
2.4.2 Translation of Comparisons . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Fields in Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Making Side-Effects Explicit . . . . . . . . . . . . . . . . . . . . . . 25

ix



Contents

2.4.5 Reducing the Size of RREIL Programs . . . . . . . . . . . . . . . . . 26
2.4.6 A Formal Definition of RREIL . . . . . . . . . . . . . . . . . . . . . 27
2.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Hierarchy of Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.1 Segment Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Memory Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.3 Finite Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.4 Zeno Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Combining Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.1 Cartesian Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.6.2 Reduced Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.6.3 Partially Reduced Products . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.4 Reduction in Cofibered Domains . . . . . . . . . . . . . . . . . . . 62
2.6.5 Domain Reduction using Channels . . . . . . . . . . . . . . . . . . 62
2.6.6 Reduced Cardinal Power . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Interprocedural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7.1 Call-String Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7.2 Function Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

II Precision Improvements through Novel Abstract Domains 71

3 Widening as an Abstract Domain 73
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Rapid Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.2 Abstract Domains for Widening . . . . . . . . . . . . . . . . . . . . 75

3.2 Inferring Widening Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Delaying Widening after Constant Assignments . . . . . . . . . . . . . . . 78

3.3.1 Tracking Constant Assignments . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Syntactic vs. Semantic Constants . . . . . . . . . . . . . . . . . . . 79
3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Widening with Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.1 Tracking Widening Thresholds . . . . . . . . . . . . . . . . . . . . 81
3.4.2 Ensuring Termination . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.3 Limitations of Narrowing . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.4 Using Thresholds to Restrict Widening after Constant Assignments 86
3.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Guided Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



Contents

4 The Predicate Abstract Domain 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Definition of the Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Transfer Functions and Reductions . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 Example for the Reduction after Executing Assumptions . . . . . . 98
4.3.3 Application to Non-Convex Spaces . . . . . . . . . . . . . . . . . . 99
4.3.4 Symbolic Reasoning for Unbounded Spaces . . . . . . . . . . . . . 99

4.4 Lattice Operations and Predicate Synthesis . . . . . . . . . . . . . . . . . . 100
4.4.1 Lattice Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.2 Application to Non-Convex Spaces . . . . . . . . . . . . . . . . . . 102
4.4.3 Recovering Precision using Relational Information . . . . . . . . . . 103
4.4.4 Application to Path-Sensitive Invariants . . . . . . . . . . . . . . . . 104
4.4.5 Application to Separation of Loop Iterations . . . . . . . . . . . . . 105

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 The Undefined Domain 111
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 The Undefined Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Definition of the Domain . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Practical Implementation of the Undefined Domain . . . . . . . . . . . . . 114

5.3.1 Definition of Partitions . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.2 Making Partitions Compatible . . . . . . . . . . . . . . . . . . . . . 114
5.3.3 Rescuing Relational Information . . . . . . . . . . . . . . . . . . . . 115
5.3.4 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Applications to Interprocedural Analysis . . . . . . . . . . . . . . . . . . . 117
5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

III Precision Improvements using Dynamic Analysis 121

6 Dynamically Started Static Analysis 123
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Over-Approximating Static Analysis . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Trace Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5 Combining Tracing and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 128
6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



Contents

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

IV Implementation – The Bindead Analyzer 133

7 Implementation Details 135
7.1 Front-ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1.1 Binary Format Parsers . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1.2 Disassembler Front-ends . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1.3 Assembler for RREIL . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2 Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.1 Fixpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.2 Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.3 Primitive Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.4 Hooks for Procedures and Syscalls . . . . . . . . . . . . . . . . . . 138
7.2.5 Interoperation with other Analyzers . . . . . . . . . . . . . . . . . 139
7.2.6 Parallelization of Analyses . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.7 Tracing Programs for Dynamically Started Analyses . . . . . . . . . 139

7.3 Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3.1 Domain Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.3 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Visualizing Analysis Results 143

V Applications and Conclusion 145

9 Case Study: Sendmail Crackaddr Vulnerability 147
9.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10 Conclusion 153
10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

List of Figures 155

List of Tables 157

List of Code 159

Bibliography 161

xii



Part | I
Static Analysis of Binary Code

1





1 | Introduction

The need for software analysis is becoming more relevant as software is nowadays part
of every technical product. Especially in security critical areas, such as aviation and the
automobile industry the analysis of software to prove the absence of errors is part of the
software development process. While many tools exist for source code analysis, the analysis
of executables has only recently become the focus of attention, mostly due to prominent
discoveries of vulnerabilities in widely deployed software.

1.1 Necessity of Machine Code Analysis

Despite the growing need to eliminate faults to prevent security breaches, security auditing
of commercial software often has to rely on the inspection of the machine code of the
software. Most vendors employ a closed-source policy, thereby forcing customers using
their libraries to either trust the code or to perform an audit on the machine code level.
However, the manual auditing of machine code is a daunting task, as it requires the reverse
engineering and understanding of millions of machine code instructions. Given the ever
growing size of software projects and the ubiquity of software in security critical devices,
reverse engineering and security auditing requires automatic program analysis tools to
support the security engineer.
A second major challenge for a security auditor is the analysis of malware, that is,

malicious code that is designed to hide its intent. Malware often tries to resist reverse
engineering by using code obfuscation techniques [CN09]. Most of these obfuscations are
targeted at the human auditor, e.g. control flow obfuscation techniques try to thwart code
understanding. An automated analysis tool may cope well with such rather simple obfusca-
tions, thereby aiding reverse engineers with the task of disassembling and understanding
of malicious code.
Besides helping with reverse engineering, a precise and sound analysis tool for executa-

bles has the benefit of extending source code analysis to machine level, where the actual
code is executed. The translation process in compilers might introduce errors that are only
visible at the machine code level [BR10]. Current approaches exist to improve compiler
correctness [BDL06; Ler06; BDP12], or aid the analysis of low-level code using results from
source level analyses [Nec97; Riv03]. However, the analysis of executables independently
of the compiler and source language semantics is still a necessity for auditing security
critical code.

3



1 Introduction

1.2 Challenges in the Analysis of Executables

Security auditing has traditionally been forced to consult the program executables rather
than its source code for finding vulnerabilities. The sheer size of today’s software also
leads to more defects. Since the corresponding binaries lack any structure that make a
large project manageable, tool support is mandatory to reverse engineer any real-world
software.
Current tools like IDA-Pro help with the reconstruction of the control-flow graph (CFG)
but often require manual guidance when confronted with optimized or obfuscated code,
malware, etc., due to the use of code patterns that can only capture a limited set of
compiler idioms. Recent approaches address this shortcoming by inferring possible values
of registers and memory locations which helps to resolve most indirect jumps [Fle+10;
KVZ09; Tha+10; BR10].
The task of resolving indirect jumps is complicated by architectures such as Intel x86

that do not enforce a fixed length for all instructions but use a variable length encoding to
obtain a denser instruction packing. On such architectures it is crucial to precisely infer the
target of a computed jump since computing an incorrect target would decode instructions
starting in the middle of other valid instructions or even in areas containing data [SDA02].
In contrast, the ability to jump into the middle of another instruction is a tool used in
exploits to execute instructions that were never emitted by the compiler [Sha07]. Thus, it
is a laudable goal for an analysis to be very precise when inferring targets for computed
jumps.
The reconstruction of the CFG is only a first step to finding vulnerabilities. One way

forward is the use of a precise and sound static analysis that is able to identify large parts
of the code as correct so as to focus the security engineer on potentially vulnerable code
fragments. In this work, we address this concern by presenting a static analysis that can
infer precise information on memory regions and their content, thereby helping to prove
memory accesses correct.

1.3 Our Goals

Our goal is to provide a framework for the analysis of binary code that produces comparable
results to analysis frameworks designed for source code analysis. A static analysis of
executables differs from the analysis of high-level languages in that the control flow graph
of the program (CFG) is not known a priori. The CFG, in turn, is necessary to propagate
states between basic blocks and to infer that a fixpoint is reached in each loop. The
reconstruction of the CFG requires a precise inference of possible jump targets for indirect
jumps and calls. In the case of switch-statements, the generated jump tables can often be
resolved by tracking a finite set of values, a so-called value-set analysis. Our aim, however,
is to implement more sophisticated analyses that are required to assert, for instance, the
correctness of ordinary pointer accesses such as those to stack-local arrays which are of
interest to a security auditor working on executables. In particular, our framework should
be able to prove the absence of specific program errors, but not be limited to:

4



1.4 Thesis Organization and Contributions

1. dereferences of uninitialized pointers

2. out of bounds array accesses

3. buffer overruns on the stack

4. division by zero

5. integer wraparounds

Our framework is not able to analyze self-modifying code but our analysis emits a warning
if the program is trying to modify the code segment. Moreover, our analysis is robust
enough to deal with some obfuscation [CN09] techniques. Especially, techniques that
obfuscate the control flow, thus trying to make program comprehension more difficult, do
not have an impact on our framework [SMS11] as we perform an abstract interpretation
of the program. Even techniques dealing with the increasingly popular obfuscation by
virtualization [CN09] may be integrated in our framework by, e.g. following the ideas
proposed in [Kin12].

1.4 Thesis Organization and Contributions

Some of the contributions of this thesis have been published at refereed conferences. In
particular, the published work is as follows: [SMS11] an overview of our analyzer; [MSS13]
an improvement on widening; [MS14] a novel abstract domain combining predicates and
numeric domain values and a novel abstract domain that deals with undefined values
[SMS13]. This thesis expands on the published topics and adds new insights or modifica-
tions to the aforementioned work. Furthermore, some chapters contain novel, unpublished
work which is pointed out below.

We will commence this thesis by introducing the theoretical framework (Abstract In-
terpretation) that our analyzer is based on. After this, we explain in detail our analysis
and its components before describing novel ideas to improve the precision of binary analy-
ses. Finally we discuss implementation details and show applications of the analyzer and
conclude with ideas for future work. The thesis is structured as follows:

Chapter 1 introduces the necessity of machine code analysis and the problems faced in
machine code analysis.

Chapter 2 describes in detail the structure of our analyzer [SMS11]. In particular it intro-
duces the intermediate representation used in the analyses; defines the static analysis
performed on this intermediate language; explains in detail the abstract domains
that we use and how they are combined; elaborates on the analysis of procedures as
performed in our framework.
The chapter is based on the work presented in [SMS11] which was co-authored with
Alexander Sepp and Axel Simon. The RREIL language and the initial structure of the

5



1 Introduction

analyzer is the work of the main author Alexander Sepp, where my contribution con-
sists in parts of the implementation and writing. However, the analyzer framework
has grown since the initial publication and new abstract domains have been added
to the framework. The domains dealing with memory, pointers and the heap are
the work of my colleague Holger Siegel whereas the segment domains and the affine
domain are Axel Simon’s contribution. The remaining domains, the zeno domains
are my contribution. Additionally, various students have contributed code to our
analyzer.

Chapter 3 discusses the problem of precision loss due to widening and our novel approach
to improve widening. The chapter is based on the work presented in [MSS13] that
extends the initial implementation of the thresholds widening domain by Alexander
Sepp. The extension added new widening heuristics and improved the initial ideas
behind widening with thresholds.
In addition to the widening domains presented in [MSS13] this chapter describes
the inference of semantic constants and a new version of the delay domain that uses
thresholds. Additionally, we simplified the thresholds domain and changed it to allow
repeated application of thresholds, which improves the precision of widening when
analyzing nested loops.

Chapter 4 introduces a novel abstract domain, the predicate domain [MS14], that allows
to express non-convex invariants and recovers the precision loss due to the convex
approximation in convex numeric domains.

Chapter 5 introduces a novel abstract domain [SMS13] that relates defined and undefined
values of variables with flags in numeric domains. The domain thus allows tomaintain
the precise value of a variable on joins with program paths where the variable is not
defined.
The chapter is based on the work presented in [SMS13] that is co-authored by Holger
Siegel and Axel Simon. My contribution involves the implementation of the abstract
domain with improvements on the practicality of the domain, whereas Holger Siegel
came up with the theoretical background and the formulation of the domain.

Chapter 6 discusses a new and unpublished idea to improve the results of a static analysis
by focusing it on parts of the program, a so-called “dynamically started static analysis”.
In addition to the scalability problems when using the static analysis on large
programs, the precision loss would accumulate too many false positives before
reaching the program point of interest. Employing this method we were able to
precisely analyze certain parts of a larger program.

Chapter 7 elaborates on implementation details of the analyzer. Note that this describes
the joint implementation work of our group consisting of Alexander Sepp, Holger
Siegel, Axel Simon and myself.

Chapter 8 describes the tools developed for interacting with the analyzer. We realized
early that for the successful development of a static analyzer it is paramount to be

6



1.4 Thesis Organization and Contributions

able to debug complex abstract domains and the fixpoint computation. To this end
we developed a GUI that visualizes the results and allows to easily sift through the
amount of data that an analysis outputs.

Chapter 9 demonstrates the application of our analyzer on interesting case studies. In
particular we show how the novel ideas to improve the precision of static analyses
work together to prove the correctness of a particularly challenging example.

Chapter 10 concludes and proposes ideas for future work.

7





2 | Binary Analysis Framework

2.1 Abstract Interpretation

Abstract Interpretation is a well established static analysis technique used to perform
automated program analysis and verification. An introduction to abstract interpretation is
given in [CC10] and [Cou01] where the latter elaborates on the current state of the art of
existing tools.
Abstract Interpretation is a formal method that soundly approximates the program seman-
tics. It is able to statically, i.e. without running the program, infer runtime properties of a
program. Soundness means that errors that are statically proved to be absent by the analy-
sis do not occur in any execution of the program. That is, no runtime error is missed by the
analysis or, equivalently no false negatives exist. On the other hand, abstract interpretation
is incomplete meaning that it may flag errors in correct programs. These so-called false
positives originate from the abstraction of the program semantics. The abstraction is key
to make an analysis of all possible program runs tractable (computable) but it results in
precision loss and may thus flag errors that never happen at runtime. Next, we will give
an intuition of how abstractions are used in reasoning about the program semantics.

2.1.1 Programs as States and Transitions

Program properties can be seen as a description of a set of program states for which the
property holds. Thus we may formulate the static analysis of programs and the inference
of program properties by using descriptions of sets and their manipulation.
A program can be characterized by the set S of states that occur at runtime and the
transitions F ⊆ S × S between these states si ∈ S. A program state contains, for example,
the value of each variable in the program and the transitions are the semantics of program
instructions. In order to compute an invariant for all possible runtime states S of the
program, which might be infinite, we need a finite representation of S, an abstraction.
Depending on the property that needs to be proved, a tractable abstraction S] of the
program states and its execution semantics F ] must be defined. We use a Galois connection
between the concrete semantics F and its abstract semantics F ] to relate properties of
the program in the abstract with those in the concrete. We use a stricter form of a Galois
connection called a Galois insertion that is defined as follows:

9



2 Binary Analysis Framework

Definition 2.1 (Galois Insertion) Given two partially ordered sets 〈S,⊆〉 and 〈S],v〉. Two
monotone functions α : S → S] and γ : S] → S form a Galois insertion iff:

∀x ∈ S : x ⊆ γ(α(x))

∀y ∈ S] : α(γ(y)) v y and y vα(γ(y))

Fig. 2.1 shows the Galois insertion, i.e. α ◦ γ = id, between the concrete domain and its

abstraction 〈S,⊆〉
α
�
γ
〈S],v〉. The abstraction function α lifts values from the concrete set

to values in the abstract set. Its counterpart γ maps back values from the abstract set to
the concrete domain. Using function composition we can compute F as γ ◦ F ] ◦ α. The
abstraction by its very nature is lossy in that it might not capture precisely all the properties
of the original program, thus in general: F (x) ⊆ γ ◦ F ] ◦ α(x). This means the result can
be less precise when computed in the abstract. Nevertheless, we are now able to compute
the result of complex mathematical functions, e.g. the program semantics, by defining and
composing abstractions of the program semantics.

x

S S]

Concrete Domain Abstract Domain

F F ]

α

γ

Figure 2.1: Galois insertion between the concrete and abstract domain.

If we choose F ] to only contain functions that are monotone with regard to a partial
ordervand an infimum exists in S], then the solutions of F ] can be computed by iteratively
applying F ] on the least element ⊥ ∈ S] until we find a fixpoint [CC77; CC79a]. Note that
intuitively a smaller element in S] gives a more precise description about a state thus we
are interested in finding the smallest fixpoint of F ].

2.1.2 Abstraction Examples

Let 〈S],v〉 be a lattice, thus satisfying above properties. If the lattice is of finite height
and the abstract functions are monotone we always reach a fixpoint in finitely many steps
due to the ascending chain condition [CC79b]. Take for example the lattice of constants
shown in Fig. 2.2, a common abstraction used in constant propagation analyses. The lattice

10



2.1 Abstract Interpretation

0 1 2 3 . . .−1−2−3. . .

⊥

>

Figure 2.2: Flat lattice of constants with a finite height.

elements in the figure are ordered from bottom (⊥), the lowest element, to top (>), the
greatest element and lines denote that an order relation holds between two elements.
As lattices are only partially ordered not every pair of elements is comparable, e.g. 0 is
neither lower nor greater than 1. We define an abstract domain that maps each variable in
the program to a lattice element. We start with the lowest value ⊥ and by executing the
abstract functions F ] of the program we reach in finitely many steps the least fixpoint lfp

mapping each program variable either to a single value n ∈ Z or to >. Here, > denotes
that a variable may contain any of the possible constants, thus being the most imprecise
description but still a sound abstraction. In particular at the entry point of a program the
values of the program variables are set to > to model unknown program input.

A more powerful lattice is the lattice of intervals as shown in Fig. 2.3. The abstract domain
of intervals maps each variable to a set of constants described by an interval. Compared
to the constants lattice the interval lattice is a more precise abstraction of the values of a
variable. However, the interval lattice has an infinite height, thus to ensure termination
of the fixpoint computation a special operator, called widening must be used. Widening
extrapolates from known states thus it can be seen as a generalization from bounded
proofs to unbounded proofs. A more detailed description of this operator and how a static
analysis using abstract interpretation infers the fixpoint for a program is given in Sect. 2.2.

The power of abstract interpretation is that it proves the absence of errors without
requiring user supplied invariants of the program to be analyzed. However, the seman-
tics of instructions must be specified as abstract transformers, a task that has to be done
once per analyzed language (e.g. using the C99 language specification) and abstraction.
Furthermore, existing abstractions, so-called abstract domains, may be used to express
numeric program properties and prove the correctness of programs with regard to these
properties and the specification. Nevertheless, the challenge in static analysis is to design
practical abstractions that are computable, efficient and expressive enough to infer inter-
esting properties for complex programs. In Sect. 2.5 we discuss the abstract domains that
our analyzer uses and what program invariants are inferred by each domain.

Before that however, we will give a formal definition of program semantics and safety
properties and how these are computable using abstractions.

11



2 Binary Analysis Framework

[0, 0] [1, 1] [2, 2] . . .[−1,−1][−2,−2]. . .

[−1, 0][−2,−1] [0, 1] [1, 2] .... . .

[−1, 1][−2, 0] [0, 2] .... . .

[−2, 1] [−1, 2] .... . .

[−2, 2] .... . .

... .... . .

[−∞,−2]

[−∞,−1]

[−∞, 0]
. .
.

. .
.

[2,+∞]

[1,+∞]

[0,+∞]

. . .

. . .

[−∞,+∞]

>

⊥

...

. . .. .
.

Figure 2.3: Lattice of intervals with an infinite height.

2.1.3 Definition of Program Semantics

The operational semantics of a program characterizes the reachable set of program states.
Let A denote the set of possible addresses of a machine and let P ⊆ A denote a set
of addresses at which instructions can be executed, the program code. Furthermore, let
S : A→ V denote the state of a program, including stack, heap, global variables and code
where V is some unit of memory, for instance, bytes. Given a pair of program counter and
state 〈p, s〉 ∈ P×S, executing the n-byte instruction i stored at s(p), s(p+1), . . . s(p+n−1)

leads to a new state of the program, defined by next(p, s) = 〈p′, s′〉. Let a trace be a
sequence π = 〈p1, s1〉 · 〈p2, s2〉 · · · ∈ Π where pi ∈ P, si ∈ S, next(pi, si) = 〈pi+1, si+1〉 and
Π ⊆ (P × S)∗ the set of all execution traces.
A program is not well-defined if it reaches a state 〈p, s〉 that does not represent a valid

execution state of the processor. An invalid processor state is for example an unknown
instruction s(p), s(p + 1), . . . due to a misaligned jump target. Even if the instruction is
valid, executing it may raise exceptions such as division-by-zero or a segmentation fault
that are symptoms of a faulty program. Let safe : P × S → {true, false} denote a predicate

12



2.1 Abstract Interpretation

that holds if calculating the next step from 〈p, s〉 is well-defined and raises no unwanted
exceptions. We call a program correct if safe(〈pi, si〉) = true for all i ≥ 0 and for all traces
· · · 〈pi, si〉 · · · ∈ Π of a program. Note that functional faults such as incorrect calculations
not defined in the specification of the program are therefore not considered as errors in
our model.

The verification of a program requires that safe is shown to hold on all states in all
executions of the program. Since there are an infinite number of traces with some of them
passing through an infinite number of states, the task of statically verifying a program
must be reduced to a computable problem which we do in two steps: The first step relies
on the observation that the semantics of safe relies on the instruction being executed and,
thus, is fixed for each program address p ∈ P . Furthermore, assuming that the code is
not self-modifying the program addresses are finite. Thus, we can reduce the problem of
evaluating an infinite number of safe-tests to evaluating one test for each program location
p ∈ P . To this end, we can define the static or collecting semantics CS ⊆ P × ℘(S) of all
traces Π as follows:

CS = {〈p, s̄〉 | p ∈ P ∧ s̄ = {s ∈ S | 〈p, s〉 ∈ π, π ∈ Π}}

The collecting semantics 〈p, s̄〉 ∈ CS associates each program point p with all states s̄
with which it is executed. Thus we reduced the problem of computing the set of traces
of a program (trace semantics) to the problem of computing all states for each program
point (collecting semantics). As the second step by lifting safe : P × S → {true, false} to
operate on sets of states Safe : P × ℘(S) → {true, false} we can now equivalently state
that a program is correct iff Safe(〈p, s̄〉) for all 〈p, s̄〉 ∈ CS. In order to compute CS we
analogously lift the transition relation next : P × S → P × S to operate on sets of states as
follows:

Next : P × ℘(S)→ ℘(P × ℘(S))

Next(p, s̄) = {〈p′,
⋃
i

{s′i}〉 | 〈p′, s′i〉 = next(p, s) ∧ s ∈ s̄}

Given a starting point 〈p1, {s1}〉 and the transition relation Next we can now build the
set CS by iteratively adding elements to it until a fixpoint is found. Let lfpm denote the
least fixpoint starting in m, then the collecting semantics can equivalently be defined as
follows:

CS = lfp{〈p1,{s1}〉}

(
λm .

{
〈p′,

⋃
i

s̄′i〉
∣∣∣∣∣ 〈p′, s̄′i〉 ∈ Next(p, s̄)
∧〈p, s̄〉 ∈ m

})

Although the collecting semantics only operates on a finite set of program points p ∈ P ,
it is still not computable since the states s̄ associated with each p might be infinite. A static
analysis therefore approximates a potentially infinite set of states with a single abstract
state s] ∈ S] and uses s]1 t s

]
2 to over-approximate the union of two states s]1, s

]
2. The

abstract semantics can now be defined analogously to the collecting semantics:

13



2 Binary Analysis Framework

A = lfpm1

(
λm .

{
〈p′,

⊔
i

s̄′i〉
∣∣∣∣∣ 〈p′, s̄′i〉 ∈ Next](p, s)
∧〈p, s〉 ∈ m

})

Here, m1 = 〈p1, s
]〉 ∈ P × S] must be chosen such that s1 ∈ γ(s]) where γ : S] → ℘(S)

states how an abstract state relates to a set of concrete states. The abstract transformer
Next] is allowed to over-approximate Next. This is expressed by requiring that for all p ∈ P
and abstract states s] ∈ S], it must hold that

⋃
i s
′
i ⊆ γ(

⊔
i s
′]
i ) where s′i and s

′]
i are defined

as 〈p′, s′i〉 ∈ Next(p, γ(s]i)) and 〈p′, s′]i 〉 ∈ Next](p, s]) for all p′ ∈ P . The set of successor
points and states in the abstract semantics for a given 〈p, s]〉 always over-approximates the
concrete semantics. A static analysis will choose an efficient function for Next], thereby
ensuring that A is computable in finite time.
Note that the collecting semantics and thus the abstract semantics can generally be

extended to code executed by virtual machines or self-modifying code by lifting single
program addresses to abstract addresses [Kin12]. Instructions are not anymore associated
with a subset of fixed program addresses but are part of the abstract state s]. By introducing
a virtual program counter pv and tracking a set of instructions ī = s](〈p, pv〉) for each
pair of program counter and virtual program counter we can over-approximate the exe-
cuted instructions. However, the abstract transformers need to be lifted to take the virtual
program counter into account. Additionally, due to possibly infinitely many valuations of
the virtual program counter pv to ensure termination a special widening is required [Kin12].

In the next sections we will detail how programs are represented and how the fixpoint
of the abstract program semantics is computed. After which, we introduce our novel
intermediate language RREIL that is used to describe the semantics of low level code and
which our analysis takes as input. Finally, we will conclude this chapter by illustrating the
various abstract domains that are used in our analysis.
Note that in the rest of this thesis, we use s instead of s] to denote the abstract state as our
analysis operates only on abstract states. Whenever the concrete state is required in the
notation it is explicitly mentioned.

2.2 Preliminaries

2.2.1 Programs as Control Flow Graphs

This section details the program analysis problem we address. Our analysis operates on
the control flow graph (CFG) of a program. The CFG is represented by a set of vertices
labeled v1, v2, . . . and a set of directed edges representing the transfer functions. The

transfer functions are either assignments vi
Assign−→ vj or assumptions/tests vi

Pred−→ vj where
Assign and Pred are given by the grammar in Fig. 2.5. Here, the variables are denoted
by xi and the constants are in bold ci. Additionally, programs may use assertions of the
form vi

Pred−→ vj , e.g. assert(x != 0); that correspond to edges vi
x=0−→ ve to a designated

error node ve. Figure 2.4 shows an example program and the corresponding CFG. Here,

14



2.2 Preliminaries

1 int x = f();
2 assert (x != 0);
3 while (x < 100) {
4 x = x + 1;
5 }
6 ...

x = f()

x == 0

x != 0 x < 100 x = x + 1

x >= 100
1 2

e

3 4 5

6

Figure 2.4: An example program and its control flow graph (CFG). Circled nodes are
widening points. The node labeled with “e” is a designated error node.

Pred ::= Test
Test ::= Lin ./ Lin
Assign ::= x = Expr
Expr ::= Lin | NonLin | Test

Lin ::= c0 + c1x1 + . . .+ cnxn
NonLin ::= Lin � Lin
./ ::= ≤|�|<|≮|=|6=
� ::= × | / | % |>>|<<| ˆ | & | |

Figure 2.5: The grammar decorating a control flow graph (CFG).

nodes vi are labeled with i and an empty edge v5 −→ v3 was added so that labels match
line numbers. Note that the above defines an intraprocedural CFG where call edges, e.g.
x = f(); just connect to the next vertex in the CFG. An extension to an interprocedural
CFG and different approaches to analyzing procedures is discussed in Sect. 2.7.

Note that throughout this document we use pseudo C code for our examples instead of
programs that adhere to the given grammar and insert “...” wherever the code is irrelevant
for the demonstration. In particular, an ellipsis as branch condition if(...) means that
both branches, i.e. the then and else branches, are taken non-deterministically. An ellipsis
used as condition in loops, e.g. while(...), expresses that the loop will be executed an
arbitrary number of times.
We use this pseudo C notation for presentational reasons as machine code would be more
verbose and the C language is familiar to most readers. Nonetheless, the analyses operate
on the machine code that is produced by compiling and disassembling the code shown
in the examples. As a consequence of using the C language for code examples we also
annotate the edges of the example CFGs using the same syntax instead of using our gram-
mar defined above (e.g. <=, != instead of ≤, 6=). This permits an easier matching of CFG
edges with the source code of the examples. When discussing the analysis results, however,
we use the corresponding notation used in our intermediate languages, that is closer to
mathematical notation.

15



2 Binary Analysis Framework

2.2.2 Fixpoint Analysis on the CFG

An analysis associates each vertex vi with an abstract state di ∈ D where D is the universe
of a lattice 〈D,vD,tD,uD,>D,⊥D〉 with a greatest >D and a lowest element ⊥D. The
least upper bound of two lattice elements, the join operator tD is defined as follows:

Definition 2.2 (Join) Given a domain D and a partial order vD, define tD : D ×D → D
such that it is a sound over-approximation:

∀x, y ∈ D : x vD (x tD y)

∀x, y ∈ D : y vD (x tD y)

The join performs an over-approximation (the union) of two states. The greatest lower
bound of two lattice elements, the meet uD is defined analogously as the dual to the join
tD operator. Meet describes the elements that are common in two states (the intersection).
Finally, the greatest element (top) >D is defined as the join over all elements >D =

⊔
D D

and the least element (bottom) ⊥D defined as the join over the empty set ⊥D =
⊔
D ∅. This

definition gives rise to the following identities:

∀x ∈ D : x tD ⊥D = x

∀x ∈ D : x tD >D = >D

Initially, at the start of an analysis, the states at each vertex vi are d0 = >D and di = ⊥D
for i 6= 0. That is, all nodes are unreachable except for the entry node d0 for which we
assume any possible state. The solution to the program analysis problem is characterized by
a set of constraints on the abstract states sj wD [[F ji ]]D(si), each constraint corresponding to

an edge vi
F j
i−→ vj . The semantics or abstract transformer of an assignment edge vi

x=e−→ vj
in D is given by F ji = [[vi : x = e]]D : D → D; likewise for test edges. Where control flow
paths merge, e.g. due to if-branches and loops, the join of all the incoming states is used
as constraint for the merge point. Let vi and vj be predecessors of vm, then the state sm
is computed using the constraint sm wD [[Fmi ]]D(si) tD [[Fmj ]]D(sj). This ensures a safe
over-approximation of all paths that coincide at a program point, capturing all possible
values at this point.
The solution of the analysis, that is, the solution of the constraint system, can be inferred

using, e.g. chaotic iteration [Bou93] which randomly picks indices i, j for which the
constraint is not satisfied and, for the edge from vi to vj updates sj . The update is
performed by joining the current value for sj with the new computed value contributed
from vi, i.e. sj := sj tD [[F ji ]]D(si) so as to ensure sj wD [[F ji ]]D(si), for non-monotone
transformers F ji . Consequently, the state at any program point sj can only grow as the
right-hand side of the equation is extensive [HH12]. The updates are performed until
all constraints on the states are satisfied, that is, all updates do not contribute any new
information. This fixpoint is the solution of the analysis.

16



2.2 Preliminaries

2.2.3 Acceleration and Termination using Widening

If the lattice height is finite (e.g. the constants lattice in Fig. 2.2) then repeatedly applying
the abstract transformers will eventually terminate and result in a fixpoint. In general,
however, most interesting lattices D have infinite ascending chains. Especially inferring
numeric information about program variables usually requires the use of abstract domains
such as convex polyhedra [CH78] or intervals [CC76; Har77] that have infinite increasing
chains, e.g. [0, 0] v [0, 1] v [0, 2] v [0, 3] . . . v [0,+∞] (see Fig.2.3). Consider an interval
analysis the examples in Fig. 2.6. Analyzing loop a) will terminate but very slow as it requires
1000000 iterations to reach a fixpoint whereas analyzing loop b) does not terminate.

a)

1 int i = 0;
2 while (i <= 1000000) {
3 ...
4 i++;
5 }

b)

1 int i = 0;
2 while (true) {
3 ...
4 i++;
5 }

Figure 2.6: Examples for loops with a) slow termination and b) non-termination if only
join t is used for state updates.

In these cases, termination of the fixpoint computation can be guaranteed if at least
one widening operator ∇ is inserted into each cycle of the graph, that is, replacing the
state update with sj := sj ∇D [[F ji ]]D(si). The widening operator must obey the following
definition [CC76; CC77; CC92b]:

Definition 2.3 (Widening) Given a domain D, define ∇D : D ×D → D such that:

∀x, y ∈ D : x vD (x∇D y)

∀x, y ∈ D : y vD (x∇D y)

and for all increasing chains x0 vD x1 vD . . . the increasing chain y0 = x0, . . . yi+1 =

yi∇D xi+1 is not strictly increasing.

Comparing this to Def. 2.2, the difference between join and widening is that widening
ensures termination by allowing only finite increasing chains in lattices of possibly infinite
height. The idea of a widening operator is to extrapolate the change in the abstract state
between consecutive iterations at a node in the graph. Consider the development of the
state at the loop head (line 3) of the program in Fig. 2.7. Note that here we use an informal
value analysis (using affine equalities and intervals) and will give concrete definitions for
the join and widening on e.g. the interval domain later in Sect. 2.5.4. The first iteration
shows the state s3 with x = y = 1 due to the assignments in lines 1 and 2. Continuing
this iteration the values are incremented inside the loop resulting in state s′3 with x = 2

and y = 3. Performing a join of this new state and the old state s′′3 = s3 t s′3, we can

17



2 Binary Analysis Framework

approximate the resulting state s′′3 by a line 2x− 1 = y with start and endpoint x ∈ [1, 2].
This shows a powerful feature of the join operator. The join of two states infers a new
invariant that holds in both states 2x−1 = y and is not syntactically stated in the program.
We could continue the analysis joining states until a fixpoint is found but to accelerate
the fixpoint computation and ensure termination widening is applied in the third iteration
s′′′′3 = s′′3∇s′′′3 . Now widening extrapolates the state by removing the upper bound on x
and y resulting in x ∈ [1,+∞] and y ∈ [1,+∞]. Any further iteration results in a state s∗3
that is smaller or equal to this extrapolated state s∗3 v s′′′′3 and, thus, a fixpoint is found.

1 int x = 1;
2 int y = 1;
3 while (x <= 5) {
4 x = x + 1;
5 y = y + 2;
6 }

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

x

y

1st Iteration

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

x

y

2nd Iteration: t join

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

x

y

3rd Iteration: ∇ widening

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

x ≤ 6

x

y

4th Iteration: ∆ narrowing

Figure 2.7: Development of the state at the while-loop head during the analysis.

2.2.4 Recovering from the Precision Loss of Widening

Evidently, the fixpoint inferred by widening vastly over-approximates the concrete states
in line 3 of the program. To recover the precision loss of the extrapolation of widening a
technique called narrowing is used. A narrowing operator ∆ obeys the following definition
[CC76; CC77; CC92b]:

18



2.3 Fixpoint Algorithm

Definition 2.4 (Narrowing) Given a domain D, define ∆D : D ×D → D such that:

∀x, y ∈ D : y wD x⇒ (y wD (x∆Dy) wD x)

and for all decreasing chains x0 wD x1 wD . . . the decreasing chain y0 = x0, . . . yi+1 =

yi∆Dxi+1 is not strictly decreasing.

After inferring a fixpoint with widening we can replace widening by narrowing sj :=

sj∆D[[F ji ]]D(si) and start a descending sequence from that fixpoint that eventually sta-
bilizes in a more precise fixpoint. In Fig. 2.7 narrowing is used in the fourth iteration.
As the state inside the loop is guarded by the test x <= 5 narrowing can improve the
previous state x ∈ [1,+∞] inferred by widening. This is achieved by propagating the
widened state x ∈ [1,+∞] in another iteration through the loop, i.e. applying the guard
[[x ≤ 5]]{x ∈ [1,+∞]} = x ∈ [1, 5] and incrementing the result in line 4 to x ∈ [2, 6]. Our
analysis inferred in the first iteration that 2x − 1 = y holds and that this relation holds
for all loop iterations, thus we can refine the values for y with narrowing, too. Further
iterations cannot improve this result, thus we reached a fixpoint.

Although the precise (least) fixpoint can be inferred in this simple example using
widening and narrowing this is not always the case. The precision loss introduced by the
extrapolation of widening often cannot be recovered by narrowing. Hence, for widening
techniques it is important to improve the extrapolation to curtail the precision loss. Widen-
ing, unlike join, is not monotone, commutative nor associative [Cor08]. Thus the precision
of widening depends on the set of widening points [Bou93], the evaluation order of the
constraints [AS13] and how it is implemented for a given domain. Note that these crucial
factors to the precision of widening are even more delicate in machine code analysis as
the CFG is not known up-front but constructed during the analysis and may depend on the
precision of the analysis.

One goal of this thesis is to introduce improvements to widening and to the over-
approximation of the join operator thereby maintaining the necessary precision for ma-
chine code analysis. A more detailed discussion about the limitations of narrowing and
improvements to widening is given in Chap. 3. Improvements to the precision of numeric
domains are discussed in Chap. 4 and Chap. 5.

2.3 Fixpoint Algorithm

To compute the fixpoint of the constraint system that corresponds to a program we use
the worklist algorithm, shown in Fig. 2.8. The algorithm starts with an entry point p0 to
the program and an initial state s0 and applies the abstract transformers (line 7) of the
instructions in the program. The evaluation of an instruction returns a new abstract state
sn ∈ D and the location of the next program point pn ∈ P to consider for evaluation, that
is, it computes [[Fnc ]]D(sc). Due to branches, the evaluation may return more than one such

19



2 Binary Analysis Framework

1 setState(p0, s0)
2 insert(p0, W )
3 while (|W | 6= 0) do
4 pc ← extract(W )
5 insn ← disassemble(pc)
6 sc ← getState(pc)
7 T ← evaluate(insn, sc)
8 foreach (〈pn, sn〉 in T ) do
9 addTransition(pc, pn, CFG)
10 so ← getState(pn)
11 if (sn 6vD so) then
12 sr ← so tD sn
13 setState(pn, sr)
14 insert(pn, W )
15 fi
16 done
17 done

Figure 2.8: The fixpoint algorithm.

successor point, hence, a set T containing tuples of states and program points is returned.
For each such tuple we retrieve in line 10 the abstract state of previous iterations (if there
exists one, otherwise it is ⊥D) and compare it to the current abstract state in line 11. If the
current evaluation resulted in a greater state we update the tracked state for pn by joining
it with the old state at this point. Furthermore, as the program point pn was updated we
need to propagate this update to any program points that are reachable from pn, that is,
we need to insert pn into the worklist (line 14). The algorithm thus iteratively considers
all program points reachable from p0 and updates the states for each such program point
by applying the abstract transformers. The iterative computation is performed until the
constraint system which is given by the program is satisfied and a fixpoint is found. In
particular, a fixpoint is reached whenever evaluating the abstract transformer for any pro-
gram point does not contribute any new information. In this case no new program points
are added to the worklistW and the algorithm terminates. As described in Sect. 2.2.3, to
enforce termination the join tD in line 12 must be replaced by widening ∇D for programs
containing loops. How we recognize loops and where we use widening instead of join will
be detailed later in Chap. 3. Note that building up a CFG in line 9 is a side-effect of the
reachability analysis.

After discussing the fixpoint algorithm and how abstract states are computed for each
program point we will describe how the disassemble() function translates machine code
to instructions with semantics. Moreover, we will show how an instruction is translated
step by step into an abstract transformer for an abstract domain, thus describing how
evaluate() transforms states and infers the next program points to be evaluated.

20



2.4 Intermediate Language (RREIL)

2.4 Intermediate Language (RREIL)

One challenge in analyzing machine code is the inference of precise numeric information
to determine possible pointer offsets. It turns out that many intermediate representations
in the literature express the semantics of native instructions at the bit-level [CS98; DP09]
which often requires expensive SAT solving techniques to infer numeric range information
[BK10; KK08a]. We propose to re-use static analysis techniques such as numeric abstract
domains (intervals [Har77], linear equations [Kar76] and inequalities [CH78]) that have
been successfully applied to high-level languages [Bla+03a].
Employing numeric domains for binary analysis is challenging as assembler instructions

operate on bit vectors whose numeric value depends on whether the vector is interpreted
as signed or unsigned integer. In particular, certain instructions such as add or shl have
the same bit-level semantics regardless of whether their arguments are signed or unsigned
and thus no information is available on the signedness of their arguments. In contrast, a
relational test a ≤ b translates into different assembler instruction sequences, depending
on the signedness of a, b. We present an analysis framework that maps native assembler
into a small intermediate language (IL) called RREIL that is carefully crafted to allow for
an easy recovery of numeric information, especially from relational tests and conversions
between differently sized integers. RREIL is then translated into an IL on bit-vectors which
is, in turn, translated into an IL on variables over Z. An abstract domain that implements
an analysis thus implements an interface in form of one of these ILs. For example, an
interval domain implements the IL over Z while a bit-level analysis based on SAT-solving
would implement the IL over bit vectors. We argue that this hierarchical approach allows
for both, efficiency and precision.

2.4.1 Designing an Intermediate Language for Relational Analysis

Mobile devices and other specialized architectures like PLCs (programmable logic con-
trollers) are increasingly used in security critical contexts. Automatic analysis of these
diverse systems requires tools to abstract from the instruction set of each individual archi-
tecture by using an intermediate language. Given this multitude of devices simulating the
semantic effect of each instruction of each platform becomes infeasible. In fact, even when
targeting a single platform such as Intel x86, the semantic effects of over 900 instructions
would have to be simulated. However, each x86 instruction usually assembles several dis-
tinct effects. Not unlike the decomposition into micro-ops within the processor, where each
instruction is translated into a small intermediate language with simple semantics. This
is the idea of the next sections, that motivate the design of a new intermediate language
called RREIL.

2.4.2 Translation of Comparisons

One goal in the design of such intermediate languages has been to minimize the number
of instructions of the IL required [CS98; DP09]. A small IL promises a simple analysis,
however, small ILs often require clever bit-shifting and bit-masking operations to model a

21



2 Binary Analysis Framework

native instruction. Consider the following translation of the x86 instructions that implement
a comparison followed by a conditional jump (jump if less):

0 cmp eax , ebx
1 jl some_target

The translation into REIL (Reverse Engineering Intermediate Language) [DP09] which
was the starting point for our RREIL, is as follows (the numbers following an operator,
e.g. :32 show the bitsize of the operator):

0 and t0 : 3 2 , 2147483648 : 3 2 , eax : 3 2

1 and t1 : 3 2 , 2147483648 : 3 2 , ebx : 3 2

2 sub t2 : 6 4 , ebx : 3 2 , eax : 3 2

3 and t3 : 3 2 , 2147483648 : 3 2 , t2 : 6 4

4 bsh SF : 8 , -31 : 3 2 , t3 : 3 2

5 xor t4 : 3 2 , t1 : 3 2 , t0 : 3 2

6 xor t5 : 3 2 , t3 : 3 2 , t0 : 3 2

7 and t6 : 3 2 , t5 : 3 2 , t4 : 3 2

8 bsh OF : 8 , -31 : 3 2 , t6 : 3 2

9 and t7 : 6 4 , 4294967296 : 6 4 , t2 : 6 4

10 bsh CF : 8 , -32 : 3 2 , t7 : 6 4

11 and t8 : 3 2 , 4294967295 : 6 4 , t2 : 6 4

12 bisz ZF : 8 , t8 : 3 2

13 xor t9 : 8 , OF : 8 , SF : 8

14 jcc t9 : 8 , some_target : 3 2

This translation converts the compare instruction into a subtraction sub that stores its
intermediate result in the temporary register t2. Various bit operations then calculate
the sign flag SF = t2[31], overflow flag OF = (eax[31] ⊕ ebx[31]) ∧ t2[31], carry flag
CF = t2[32], and zero flag ZF = ¬(t2[0] ∧ . . . ∧ t2[31]). Here, bsh is a bit shift and bisz
corresponds to the not operator ! of C. The intention of jl is to test if eax < ebx where eax
and ebx hold signed integers. In the above translation the conditional jump jcc is testing
if SF ⊕OF = 1. This translation is at odds with the need of common static analyses that
infer numeric information on program variables. These analyses require explicit relational
tests to infer precise bounds on program values that are required to find, for instance,
buffer overflows. The bit-level semantics render the extraction of these relational tests
difficult: recovering the semantics eax < ebx of the tests requires the analysis to recover
the arithmetic semantics implemented by cmp by tracing the bit-level calculation of the
flags. The implicit assumption of using bit-level semantics in intermediate languages seems
to be that SAT solving is to be used to reason about the values of variables. However, using
SAT solving to perform a reachability analysis (in contrast to inferring single traces) faces
scalability problems as soon as non-trivial loops are analyzed. Even when combining SAT
solving with abstraction to numeric ranges [BK10], the resulting analyses only perform
well on embedded code where registers are 8 bit wide. Thus, our aim is to obtain a
scalable analysis by applying the arithmetic semantics implemented by cmp directly on
some numeric abstract domain. One way forward would be to pattern match the Intel or

22



2.4 Intermediate Language (RREIL)

REIL instruction sequences that implement cmp r1,r2; jl, cmp r1,r2; jg, etc. However,
this approach is architecture-specific as each instruction set is different. Furthermore, it
fails if an optimizing compiler inserts instructions between the test and the jump or if
malicious code is considered.
We therefore propose a new variant of REIL [DP09] called RREIL (Relational Reverse En-

gineering Intermediate Language) in which flag calculations are translated into arithmetic
instructions if possible. For instance, the introductory example x86 code:

0 cmp eax , ebx
1 jl some_target

translates into RREIL as follows:

0 sub t0 : 3 2 , eax : 3 2 , ebx : 3 2

1 cmpltu CF : 1 , eax : 3 2 , ebx : 3 2

2 cmpleu CForZF : 1 , eax : 3 2 , ebx : 3 2

3 cmplts SFxorOF : 1 , eax : 3 2 , ebx : 3 2

4 cmples SFxorOForZF : 1 , eax : 3 2 , ebx : 3 2

5 cmpeq ZF : 1 , eax : 3 2 , ebx : 3 2

6 cmplts SF : 1 , t0 : 3 2 , 0 : 3 2

7 xor OF : 1 , SFxorOF : 1 , SF : 1

8 brc SFxorOF : 1 , some_target : 3 2

The comparisons in lines 1 to 6 test for, <,≤ of unsigned values, <,≤ for signed values,
equality and whether the result is negative, respectively. The translation creates what we
call virtual flags, that is, flags that are not present in the processor but which express
relational information that can be conveyed to numeric domains. For instance, SFxorOF
is set iff eax < ebx when eax and ebx are interpreted as signed integers. The benefit of
this approach is that each arithmetic test is associated with one single flag and, once the
conditional branch is reached, the test matching the flag can be applied to the numeric
abstract domain. Observe that the overflow flag OF carries no meaningful arithmetic
information but is still calculated to also allow bit-level analyses such as SAT solving.

The unsatisfactory translation of relational tests into REIL is only one reason for our
new intermediate language RREIL. Two other differences are that in RREIL non-Boolean
arguments to an instruction, e.g. sub, cmpltu, etc., must have the same size (no implicit
conversions) and may be accessed at an offset, e.g. eax:24/8 accesses only the upper 24 bits
of eax. This implies that our analysis cannot directly analyze REIL code. Thus, RREIL is
not an extension of REIL; rather, it is a new IL whose features are carefully chosen to allow
for a precise numeric analysis of the resulting RREIL code, as detailed in the following
sections.

2.4.3 Fields in Registers

A thorough understanding of an executable requires the recovery of memory layout, that
is, the location and sizes of variables on the stack, heap and global memory. Indeed, many

23



2 Binary Analysis Framework

MSB LSB

ah al

7 6 5 4 3 2 1 0

rax

eax

ax

Figure 2.9: The possible fields of register rax.

analyses incorporate some sort of memory layout inference [BR04]. The idea is to represent
sequences of bytes with a single numeric variable in some abstract domain. We extend this
layout inference to registers, thereby enabling the access to registers with different sizes
and offsets which is common on the x86-32 and x86-64 platforms. One particular oddity of
the x86-64 architecture is the implicit zero-extension when writing the lower 32 bits of a
register. For instance, the instruction dec eax has the effect of setting the upper 32 bits of
rax to zero and the lower 32 bits to eax− 1. The translation into RREIL of this instruction
(without the calculation of flags) is as follows:

0 sub rax : 3 2 / 0 , rax : 3 2 / 0 , 1 : 3 2

1 mov rax : 3 2 / 3 2 , 0 : 3 2

Here, the notation rax:sz/o is an access to sz bits of rax starting at bit offset o. Thus in
the above example rax:32/0 corresponds to the register eax, as can be seen in Fig. 2.9. Note
that we usually omit the offset if o = 0, writing rax:32 for eax. In principle, our analysis can
infer fields at any bit offset and of any size. However, the translations of common register
instructions will lead to byte aligned fields as shown in Fig. 2.9. Inferring these fields by
tracking accesses has been described in the context of analyzing C programs [Min06a;
Sim08b]. For the sake of an example, suppose that the analysis has inferred the interval
[−2, 2] for eax. The analysis of the two instructions above will infer the interval [−3, 1]

for the lower half of rax while the interval [0, 0] is inferred for the upper half of rax. In
contrast, we could instead use a single numeric variable to model the content of rax:

0 sub t0 : 3 2 , rax : 3 2 , 1 : 3 2

1 zero -extend rax : 6 4 , t0 : 3 2

Here, the instruction zero-extend calculates the effect of zero-extending the 32-bit value
t0 to rax. However, the best interval approximation for rax in the above example would
be [0, 232 − 4], that is, nearly the full 32-bit unsigned range. Other, more precise, numeric
domains such as polyhedra [CH78] will incur a similar precision loss. Thus, modeling
registers as a set of fields leads to an improved precision when employing numeric abstract
domains.
A challenge arises in the analysis when converting between differently sized fields as it

becomes difficult to retain precise numeric information. For instance, consider a function

24



2.4 Intermediate Language (RREIL)

f returning unsigned int. The code:

1 unsigned int f() {
2 ...
3 }
4

5

6 unsigned long n = f();
7 n = n - 3;

translates into the following Intel x86-64 instructions (where the compiler has chosen to
store n in the register eax):

0 call f
1 mov eax , eax
2 sub rax , 3

Here, the second statement implicitly sets the upper part of rax to zero which gives rise
to the following RREIL code:

0 call f
1 mov rax : 3 2 / 3 2 , 0 : 3 2

2 mov rax : 3 2 , rax : 3 2

3 sub rax : 6 4 , 3 : 6 4

When evaluating the sub instruction, the analysis finds two 32-bit fields that constitute
the 64-bits that are to be read. Depending on the values of the two fields, a new 64-bit
field can be synthesized that holds a precise numeric value. For instance, given an upper
field whose value is tracked by u and a lower field tracked by l with both values lying in
[0, 232 − 1], a new 64-bit field c can be created with c = 232u + l. In the example, since
u = 0, this reduces to c = l. More propagation rules are developed in [Sim08b, Chap. 5].
Although SAT solving can infer range information, these approaches are less precise

than our field-based approach [Eld+11, Ex. 4] nor do they scale [KS10]. Scalability was
one aspect in the design of RREIL as detailed next.

2.4.4 Making Side-Effects Explicit

The translation to RREIL code makes every side-effect of native instructions visible similar
to other intermediate languages [DP09; Son+08]. An instruction has side-effects if it
modifies registers that are not explicitly mentioned as instruction arguments. Hence, one
machine instruction translates to several RREIL instructions that express the side-effects.
In order to map between RREIL and the native instructions, RREIL addresses are encoded
using the special notation x.y where x denotes the underlying native instruction’s address
and y the yth RREIL instruction used to translate the native instruction. Using these so
called sub-instruction offsets allows for defining loops that are required for the translation
of x86 instructions using the repz and repnz prefixes. To demonstrate implicit side-effects,
consider the translation of the instruction call 11 on x86 to RREIL:

25



2 Binary Analysis Framework

06.00: sub esp : 3 2 , esp : 3 2 , 4 : 3 2

06.01: store esp : 3 2 , 7 : 3 2

06.02: br 11 : 3 2

First, the stack pointer is decremented after which the address of the native instruction
immediately following the call is saved on top of the stack, then control is transferred to
the target function. Analogously, the translation of the x86 ret instruction results in this
RREIL code:

19.00: load t0 : 3 2 , esp : 3 2

19.01: add esp : 3 2 , esp : 3 2 , 4 : 3 2

19.02: br t0 : 3 2

The return address is loaded from the stack, which requires incrementing the stack pointer
and then a jump to the return address is performed. Note that semantically the instructions
for call and return in RREIL are simple jumps.

2.4.5 Reducing the Size of RREIL Programs

A major disadvantage in the analysis of binaries is the output size of the translation into the
IL. As illustrated in Sect. 2.4.2, a simple comparison translates into no fewer than 8 RREIL
instructions. Moreover, the translation of arithmetic instructions, e.g. add, sub, creates
similarly many assignments to flags, even though the flags are often not tested thereafter.
Many ILs that express the semantics at the bit-level create even more instructions; consider,
for instance, the corresponding REIL translation of the test in Sect. 2.4.2 yielding 15
instructions. Fortunately, a simple liveness analysis followed by a dead code removal can
often eliminate the majority of instructions as their calculated result is never used. For
instance, consider again the introductory example consisting of 8 RREIL instructions:

0 sub t0 : 3 2 , eax : 3 2 , ebx : 3 2

1 cmpltu CF : 1 , eax : 3 2 , ebx : 3 2

2 cmpleu CForZF : 1 , eax : 3 2 , ebx : 3 2

3 cmplts SFxorOF : 1 , eax : 3 2 , ebx : 3 2

4 cmples SFxorOForZF : 1 , eax : 3 2 , ebx : 3 2

5 cmpeq ZF : 1 , eax : 3 2 , ebx : 3 2

6 cmplts SF : 1 , t0 : 3 2 , 0 : 3 2

7 xor OF : 1 , SFxorOF : 1 , SF : 1

8 brc SFxorOF : 1 , some_target : 3 2

26



2.4 Intermediate Language (RREIL)

Applying dead variables removal only 2 RREIL instructions remain:

0 cmplts SFxorOF : 1 , eax : 3 2 , ebx : 3 2

1 brc SFxorOF : 1 , some_target : 3 2

Moreover, due to the use of fields in the RREIL language, liveness analysis can be
performed for each field (rather than for the whole register), thereby also removing most
of the RREIL instructions generated for the x86-64 instruction set that model the implicit
zero extension of 32-bit arithmetic instructions. Since liveness is a global analysis, full
dead code removal can only be done once the complete CFG of a function is known.
However, a partial removal is still possible by assuming that all variables are live after
an unresolved branch. Further optimizations could reduce the size even more, ultimately
enabling analyses on the binary that are already possible at the C level [Bla+03a].

2.4.6 A Formal Definition of RREIL

We conclude the discussion of translating assembler to RREIL by a formal definition of
the RREIL syntax. A precise definition is instructive not only for comparisons with other
languages, but also in illustrating how RREIL instructions are broken down into simpler
statements that relate to memory regions, fields of memory regions and their numeric
content. This simplification is shown in detail in Sect. 2.5.
We commence by presenting the RREIL instructions that concern the copying, the read
and write access of a memory cell, a conditional branch and an unconditional branch.
The latter carries a hint from the translator about the type of the jump, either a function call,
return instruction or a plain jump. Note that the hint is only syntactic, that is, hints carry
no semantic meaning. The translator provides them only if the architecture has special
instructions for procedure calls. Interprocedural analyses may benefit from discriminating
between these jumps as described in Sect. 2.7. For example, a first approximation of
procedure boundaries can be achieved by distinguishing between jumps and calls/returns.
As we will show in Sect. 2.5.1, discovering procedure bounds can be performed semantically
in an abstract domain.

27



2 Binary Analysis Framework

In all statements, information travels from right to left, following the Intel convention.

rreil ::= mov lval, rval

| load lval, lval

| store lval, rval

| brc condition, rval

| br rval, branchtype

| rreil-stmt

rreil-stmt ::= binop lval, rval, rval

| cmpop flag, rval, rval

| primop (lval)+, (rval)+

| sign-extend lval, rval
| zero-extend lval, rval

The right-hand sides of each instruction use the definition of a writable location lval
and an rval, i.e. a constant expression or interval where Z∞ = Z ∪ {−∞,∞}. We use the
term memory region/variable for id ∈ XM which encompasses the set of registers and
temporary variables that are generated during translations. Each memory region carries
the size of the access which must be the same across an instruction. One of two exceptions
to this rule are flags that are always one bit wide. The second are explicit conversion
instructions, shown in the definition of rreil-stmt. Memory regions may carry an optional
bit offset written /o.

lval ::= var

rval ::= var | c : sz | [l, u] : sz
c ∈ Z

l, u ∈ Z∞
var ::= id : sz(/o)? id ∈ XM

condition ::=flag | c c ∈ N
flag ::= id : 1 id ∈ XM
sz ::=n n ∈ N
o ::=n n ∈ N

branchtype ::= jump | call | return

These definitions are also used in the rules for arithmetic and comparison operations
whose mnemonics are defined as follows:

28



2.5 Hierarchy of Abstract Domains

binop ::= add | sub | mul
| div | divs | shl | shr | shrs
| mod | mods | and | or | xor

cmpop ::= cmpeq | cmpleu | cmples
| cmpltu | cmplts

primop ::=name

The binary instructions must be applied to arguments of equal size. Only the arguments
of the conversion instructions: sign-extend, zero-extend feature different sizes. Binary
operators express arithmetic operations for signed (carrying the s suffix) and unsigned
values. Some operations are agnostic to the signedness, e.g. add, sub, mul. The comparison
statements test for equality, for “less or equal” on unsigned and signed values and for “less
than” on unsigned and signed values, respectively. Both arguments have the same size.
Greater-than comparisons are translated by swapping their arguments.
Primitive operations are special functions definable in RREIL (see Sect. 7.2.3). They have
a name as identifier and a list of outgoing lval and incoming rval operands. By using
primitives one can forward the implementation of complex semantics to the abstract
domains. For example, processor specific cryptographic instructions, e.g. AES, are easier
approximated if implemented as a primitive in a numeric domain than translating them
to a long block of RREIL statements.
While there is no intention to include such cryptographic primitives in RREIL future work
should integrate concurrency primitives and the handling of floating point computations.

2.4.7 Conclusion

While the 24 RREIL instructions make for a concise language, the previous REIL language
was even simpler, featuring only 17 instructions. As illustrated in Sect. 2.5, the RREIL
language is translated several times during the analysis, each time turning into a simpler
language that is interpreted by abstract domains. Since most end-user implemented do-
mains will use one of these simpler languages, we believe that our design is in fact easier
on third-party developers than the original REIL instruction set.

2.5 Hierarchy of Abstract Domains

The fixpoint algorithm discussed in Sect. 2.3 is parameterizable by different abstract
domains D. However, in our analyzer D is not only one domain but a set of abstract
domains that each track some partial information about the program state. We combine
different domains in order to improve the precision of the analysis as will be discussed
later in Sect. 2.6.

29



2 Binary Analysis Framework

Cofibered Domains The key idea of our approach is to implement abstract domains as
cofibered domains [Ven96], an approach sometimes called “functor domains” [Bla+03a].
Here, each domain D has a child domain C that it controls. The combined domain is
written as D � C and a cofibered state as a tuple 〈d, c〉 ∈ D � C. Note that the combined
domain is itself a domain, thus can be again combined with another cofibered domain E ,
yielding E �D � C and the state 〈e, 〈d, c〉〉. Consequently, cofibered domains are nested in
a straightforward compositional way. Only the leaf domain, here C has no child and is not
cofibered.
With cofibered domains, a transfer function is applied on the parent D with the child C
being opaque. The parent domain is responsible for synthesizing transfer functions for its
child. The benefit is that a transfer function trD of domain D on a state s ∈ D � C may
execute any number of transfer functions trC1 , . . . , tr

C
n on its child C (even zero) before

returning the result as a new state s′ = [[tr]]Ds. This enables domains to perform reductions
on the child during each transfer function trD (see Sect. 2.6).
Although we represent a cofibered domain D as a tuple 〈d, c〉 of a “local” state d ∈ D and a
child state c ∈ C, the child is actually an opaque object in the implementation. Specifically,
let LA = 〈A,vA,tA,uA, trA1 , . . . , trAn 〉 be an abstract interpretation, that is a domain A
equipped with abstract transformers. Then a cofibered domain is a functor F : LA → LD
that, given abstract interpretations LA and LD, returns a new abstract interpretation that
combines both analyses. In particular a transfer function on the parent trD : D → D is
mapped to a set of transfer functions trC : C → C on the child [Ven96]. A resulting benefit
is that the functor endows a cofibered domain with the ability to modify the variable
support set of its child, as will be discussed next.

Support Set With few exceptions all domains have a so-called support set of memory
XM and/or numeric variables XV for which they track some information. In literature
[Bla+03a] the support set is sometimes called the environment Σ. As a result of the
cofibered design, the support set does not have to be the same for all domains. In particular,
this means that domains may track only a subset of all existing variables. Another benefit
of the cofibered design is that a domain D may modify the support set of its child C. For
instance, a domain D tracking pointers as symbolic variables will introduce these pointer
variables in the child C (a relational domain) and exploits the relational information that C
infers for these variables, e.g. that two variables are equal. This allows to separate concerns,
simplifies the design of abstract domains and encourages the reuse of existing domains.

Organization ofHierarchy Our set of abstract domains is organized as a stack of cofibered
domains, where each domain is specialized on tracking certain properties of the program.
Similar domains are grouped together and use a common interface to communicate.
Between the four groups or tiers we use well-defined intermediate languages with RREIL
being the language of the topmost domain. Towards the bottom of the domain hierarchy,
the grammar of the intermediate languages becomes simpler. This is achieved by letting
higher domains consume complex expressions and translate them into simpler ones, e.g.
remove pointer expressions. As a result of this modular structure and the cofibered design

30



2.5 Hierarchy of Abstract Domains

Executable

Executable format parser
Disassembler

Semantic translation

address

L(rreil)

Fixpoint engine
State+CFG storage

query L(rreil-stmt)

segment domains CPU code* + data stack heap TLS*

query L(memory)

memory domains

string*
array*

field
code* + data content

query L(finite)

finite domains

undef
flags

points-to
SAT

wrapping

query L(zeno)

zeno domains

delayed-widening
guided-widening

thresholds-widening
predicates

affine/redundant affine
gauge*

congruence

polyhedra
octagons
interval
interval-set

Figure 2.10: The analyzer structure and the hierarchy of the abstract domains. Domains
with an asterisk (*) are unfinished or future work and thus not in use.

31



2 Binary Analysis Framework

we are able to easily add domains to the hierarchy to specialize the analysis or remove
domains to trade precision for scalability.
For the organization of the domains stack we follow the model used in Astrée [Cou+06]
and add two additional tiers to suit the need for the analysis of executables. The original
two tiers are the memory domains and the numeric domains that we call zeno domains
as shown in Fig. 2.10. The additional two tiers are the segment domains and the finite
domains. The former models the memory segments of a machine executable program and
the latter are domains that deal with variables of fixed bit-sizes.

2.5.1 Segment Domains

Since RREIL allows a calculated address in memory accesses and indirect jumps, we create
memory regionsm ∈ XM and associate a consecutive range of addresses withm that form
a semantic entity such as variables on the stack, heap allocated memory, the code segment
or the constants and data segments. An RREIL operation on pointers is translated into an
operation on memory region(s) which is the task of the segment and memory domains.
Some of the domains are also responsible for summarizing memory regions (such as heap
regions or stack frames in case of recursive calls). However, the main task of the segment
domains is to resolve a pointer access, that is, to determine to which memory regions the
pointer points to and whether it is within the bounds of that memory region.

The interface to the segment domains is a subset of L(rreil) named L(rreil-stmt). It
contains all the instructions in RREIL without the control flow instructions as these are
handled by the fixpoint engine and CFG storage in Fig. 2.10. The fixpoint engine resolves
jump targets during the reachability analysis. In particular, given an unconditional branch
instruction “br rval, branchtype”, first all feasible targets for rval are queried from the
domains stack. Each branch target ti is associated with an abstract state, where rval = ti
holds. These states are propagated each to the respective inferred target. For the conditional
branch instruction “brc condition, rval” we first evaluate the condition and its negation (i.e.
flag = 1 and flag = 0) before propagating the respective states to the jump targets of rval
and the address following the branch. The latter is the fall-through case for flag = 0. The
remaining RREIL instructions in L(rreil) are directly applied as operations on the domains.

The topmost set of abstract domains manages the organization of memory regions. The
segment domain is a sum of abstract domains which together model the complete memory
of a program after it has been loaded for execution [Lev99]. As an example, Fig. 2.11 shows
the organization of the program memory under Linux on the Intel x86-32 platform. Our
abstract domains model each of the shown segments except for the kernel memory.
A segment contains a set of memory regions with similar semantics. Each segment is
disjunct from the other segments. Hence, a memory access on the set of segment domains
is performed only in one of the segments, the one able to resolve the access. Thus, segment
abstract domains themselves are not cofibered domains but the sum of all segments is a
cofibered abstract domain. We now present each segment domain in turn.

32



2.5 Hierarchy of Abstract Domains

text segment (code)

data segment

heap

kernel

stack

. . .

eax
ebx

ecx
edx

esi
edi

esp
ebp
eip

cs
ds

es
fs

gs
ss

eflags

main memory registers

low addresses

high addresses

Figure 2.11: The memory layout of a program on Linux x86-32.

CPU The CPU abstract domain tracks and resolves the registers of a processor XR ⊆ XM .
It translates from variable ids in the operands of an instruction to the subset XR of CPU
memory regions. Because the RREIL translation introduces temporary registers, the support
set of the CPU domain will contain more variables than there are physical registers in a
platform. Note that accesses to fields in a register must always happen at constant offsets.
After all, current architectures do not allow for computed offsets to bits in registers.

code* and data Currently this domain only models accesses to global data segments
but not to the code segments of a binary. The latter is future work and would allow us to
handle self-modifying code as mention earlier (see Sect. 2.1.3). The domain is initialized at
analysis start with the address range of data segments in the executable and is thereafter
able to resolve pointers into these segments. We model two types of accesses to the data
segment: accesses at absolute addresses for global variables and accesses at offsets to
symbolic addresses, i.e. address variables: a ∈ XV . The latter type is work in progress and
is intended for relocatable data and code.

stack This abstract domain models the stack and its subdivision into stack frames. In
particular we do not track the stack as one large region but rather track single stack frames
and pointers to the predecessor frame(s), that is, the frame of each caller (see Fig. 2.12).
The stack domain is able to perform this separation by observing modifications to the
stack pointer on assignments [Lak+11] and observing call and return instructions. The
latter allows us to infer procedure boundaries during the analysis, associate each stack
frame with a procedure and to reconstruct an over-approximation of the call graph. By

33



2 Binary Analysis Framework

using pointers to predecessor frames we can model the stack either as a linked list of stack
frames or as a graph with multiple predecessor frames. This flexibility allows us to use
different approaches to interprocedural analysis as described in Sect. 2.7.

. . .

return address

call parameters

local variables

saved ebp

local variables

saved ebp

caller

callee

esp

ebp

Figure 2.12: The stack layout of a program on Linux x86-32.

However, the main purpose of the stack domain is to check the bounds of read and write
accesses to the stack. We resolve accesses to the frames of callers by following pointers to
predecessor frames. These accesses do not issue a warning. However, non-constant accesses
that cross boundaries between stack frames issue a warning. This allows us to differentiate
between accesses to function parameters going to the previous stack frame (shown as
“call parameters” in Fig. 2.12) and buffer overflows that might overwrite the return address.
Future work should distinguish between static local variables and dynamically allocated
variables (e.g. through alloca() in C) and warn if the boundary between these two regions
is violated by a non-constant access. Moreover, by analyzing stack accesses and using debug
information for the bounds of local variables we could also warn whenever accesses to
a local array may overwrite other local variables. This feature is useful as exploiting an
out-of-bounds vulnerability does not necessarily require overwriting the return address on
the stack. If function pointers are stored on the stack, the overflow might corrupt these
pointers to deviate the control flow. In the current implementation we only warn if the
return address is overwritten.

heap The heap domain resolves pointers to memory regions that have been dynamically
allocated using malloc(). It tracks a set of regions and performs the summarization of
heap allocated structures using similar methods as in shape analysis [SS13]. In order to be
able to track dynamically allocated memory the domain handles the RREIL primitives for
malloc() and free() that need to be provided by the translation front-end (see Sect. 7.2.3).

34



2.5 Hierarchy of Abstract Domains

TLS* This abstract domain implements Thread-Local-Storage semantics [Lev99], i.e. the
addressing of different memory regions for a variable depending on which thread accesses
the variable. It does this by maintaining a designated address variable and resolving
memory accesses depending on the value of this variable. This is analogous to the way
Thread-Local-Storage is implemented in current operating systems. Our implementation is
unfinished, though, hence the domain is not in use. We also lack concurrency primitives
in the RREIL language to support threads.

After discussing which domains are responsible for resolving pointers into a collection of
regions we will discuss how accesses to each region are resolved. As each region itself may
be accessed at different offsets, we subdivide regions into fields, which are consecutive
sequences of bits.

2.5.2 Memory Domains

Let XV be the set of variables, that map to numeric values in the current state. The purpose
of the memory domains is to associate ranges of bits of m ∈ XM with an abstract variable
x ∈ XV . For instance, the register rax ∈ XM may have a variable xl ∈ XV associated
with the bits 0 − 31, thereby representing the value of eax and a variable xh ∈ XV that
represents bits 32− 63.
While registers can only be accessed at constant offsets, the interface L(memory) also
allows accesses at calculated offsets involving a variable x:

memory ::=mem-stmt | mem-test | mem-sup

| lval = rval

| lval = region sz→ offset

| region sz→ offset = rval

mem-stmt ::= rreil-stmt

mem-test ::=flag = 0 | flag 6= 0 | fin-test
mem-sup ::= intro region | drop region

region ::=m m ∈ XM
offset ::=x | sz x ∈ XV

sz ::=n n ∈ N

As the language is in large parts similar to the RREIL grammar, we reuse some of
the definitions from Sect. 2.4.6. The main operations here are the same as the rreil-stmt
operations in RREIL, that is, arithmetic and comparison operations. The next production
shows tests on flags which are used in implementing the semantics of conditional branches.
Additionally, we allow tests for generic numeric assumptions for which the grammar
productions given by fin-test are described later in Sect. 2.5.3. Next are the operations

35



2 Binary Analysis Framework

manipulating the support set of the domain that allow to introduce or remove regions
using intro and drop, respectively. The last three grammar productions of memory show
the operation to copy memory regions and operations accessing fields in memory regions.
Note that these are the translations of the mov, load and store instructions from rreil.
The translation is performed by the segment domains during which pointers are resolved
to memory regions with the help of the points-to domain (see Sect. 2.5.3). The resulting
instructions access fields in memory by specifying the region, an offset and the size of the
access. Creating and resolving fields for accesses is then the task of the field domain. We
thus describe this domain first before discussing more specialized domains in this tier.

field In the above definition of L(memory), the C-like pointer dereferencem sz→ o accesses
m ∈ XM at an offset o ∈ XV with a size of sz-bit. The memory domain resolves such
accesses to fields in m representing a string of bits starting in o with size sz. The domain
maps these fields to numeric variables x ∈ XV that are tracked in child domains. Hence,
the main purpose of the field domain is to translate accesses to consecutive bits in a region
to accesses to a numeric variable. Note that the offset o must be constant for the field
domain to be able to resolve it to a single variable. Reads to non-constant offsets, that is,
an interval [l, u], with l 6= u, are approximated as reading an unknown value >. On writes
to non-constant offsets, however, the field domain will remove all fields overlapping with
bits [l, u + sz − 1] with sz being the access size. Removing these fields also removes any
numeric variables from child domains associated with these fields.
The field domain is also responsible for making two states that are joined compatible, that
is, it introduces variables in both states so that their support sets match. For example, if
domain D1 does not track a variable x that exists in the other domain D2, it is introduced
in domain D1 as a new field with the same size and offset and the value of x mapped to >.

string* Although this domain is not yet implemented it is intended to abstract string
operations in programs as described in [SK02]. In particular the domain tracks the position
of the first NUL-terminator in a string using a symbolic value (a variable t ∈ XV ). Read and
write accesses at offset a to the string are then separated in operations that lie in front,
and after this NUL position. In combination with relational domains, such as octagons or
polyhedra, it allows to reason about out-of-bounds memory accesses involving strings.
Note that this domain may actually use the array domain described next to track summaries
for a string.

array* Whenever a write access has an offset o that denotes a non-constant value, that
is, an interval, the field domain will remove all fields overlapping with that offset. Other
domains such as the array domain are able to summarize accesses [Gop+04; CCL11] to
a range of offsets into a single array cell. Figure 2.10 shows the array domain as a parent
domain of the field domain which means that it can execute any operation on the field
domain while evaluating m sz→ o.

36



2.5 Hierarchy of Abstract Domains

In order to illustrate the interaction between array and field, consider the following loop
in Fig. 2.13.

1 struct {
2 short l, h;
3 } m[100];
4

5 for (short i = 0; i < 100; i++) {
6 m[i].l = 0;
7 m[i].h = i;
8 }

Figure 2.13: Iterating over an array of structs.

We represent the array m[100] as a memory regionm that summarizes all array elements
into one. The loop is first analyzed with i = 0 so that the field domain will create two
fields as a response to m sz→ 0 = 0 and m sz→ 16 = i. The second iteration of the fixpoint
computation will execute line 5 withm sz→ o = 0where o ∈ {0, 32}, that is, o = 32i, i ∈ [0, 1].
The array domain will observe the non-constant offset and intercept the assignment before
the field domain removes all information on the inferred fields. Instead, it copies all fields
at bits 0− 31 to a new summary memory region m′ using an assignment operation on the
field domain. The write operations on the ith element are then translated to an operation
on m′ at offset o − 32i which is constant, thereby re-using the capabilities of the field
domain, to handle overlapping fields. The access in line 6 is summarized analogously. The
ability to re-use existing domains is a major benefit in this hierarchical arrangement.

code* and data content Currently this domain is not a separate domain but its semantics
are part of the field domain. The domain tracks accesses to the content of the data
segments in a binary, that is, the domain forwards read accesses to data from the binary
(code segments or data segments). For read-only segments this functionality would suffice.
However,write accesses maymodify parts of the data thus the domain maintains a mapping
from fields to a boolean marking a field as clobbered. The value of a clobbered field thus
has to be retrieved from the data tracked in the field domain. This design allows us to have
a sparse representation of all the data in the binary in that no fields need to be created
upfront to hold the data in the executable.

2.5.3 Finite Domains

The memory domains associate an abstract variable x ∈ XV with each field inferred by the
field domain. The underlying numeric domains map x to possible numeric values. Each
abstract variable represents a finite number of bits and the operations emitted by the
memory region always access all bits in a variable. The grammar of the interface L(finite)
between memory domains and the finite domains therefore does away with offsets and,
in particular, accesses at offsets. To this end, it makes use of a production rreil-stmtXV

37



2 Binary Analysis Framework

that correspond to productions rreil-stmt (see Sect. 2.4.6) where the variables id ∈ XM are
substituted with numeric variables x ∈ XV in each rule. The grammar in L(finite) adds
relational tests consisting of two linear expressions.

finite ::= rreil-stmtXV | fin-test | fin-sup
| sign-extend var, var

| convert var, var

fin-sup ::= intro sz var | drop var
fin-test ::= lin : sz relop lin : sz

relop ::= < | ≤ | = | 6=

lin ::=
∑
i

aixi + c
xi ∈ XV

ai, c ∈ Z

var ::=x : sz x ∈ XV
sz ::=n n ∈ N

Note that each variable x ∈ XV in the finite domain has a fixed bit size sz. This
size is specified when creating a variable using intro. Analogous to the requirement in
RREIL that every operation must use the same size for all arguments, each operation in
L(finite) may only use variables of equal size. Exceptions are the result of comparisons, the
sign-extend operation and the new operation convert. The latter is used to strip off
most significant bits or to zero-extend a variable.
We will now continue by describing each domain in the finite tier before we detail how

the wrapping domain translates from variables of finite bit-sizes to variables in Z.

undef This abstract domain improves the precision of numeric analyses in case of a
changing set of active variables during the analysis. For example, in case of dynamic
memory allocation or recursive procedures a memory region m ∈ XM might not exist in
all execution traces of the program. Moreover, the numeric variables xi ∈ XV that are
associated with m are only present in some of the abstract states inferred by the analysis.
Joining these states with states where the variables are not existent leads to precision loss.
The undef domain uses flags fxi to denote if a variable is defined or not. Relational child
domains of undef may then infer relations between the flags fxi and the valuations of xi,
thereby improving the precision of the numeric analysis in case of undefined variables. A
more detailed description of the use cases and the implementation of the domain is given
in Chap. 5.

flags One challenge in the analysis of binaries is that conditionals in high-level programs
are translated into a test setting certain flags and a conditional jump that tests a flag. One
way to link test and jump is to perform forward substitution of the flag assignments into
the conditional jump [KVZ09; KSS13a]. This approach fails when the arguments of the

38



2.5 Hierarchy of Abstract Domains

test are modified before the conditional jump, a situation that may arise as a result of
compiler optimizations. One fix is to apply any such modification to the relational test that
is being propagated forward. Our analyzer pursues this approach in a less ad-hoc way by
tracking all observed tests in a symbolic abstract domain dubbed flags in Fig. 2.10. In order
to illustrate this process, consider the following RREIL statements, showing a comparison
followed by a modification to the compared register and a jump using the result of the
comparison:

0 cmpltu CF : 1 , eax : 3 2 , 100 : 3 2

1 add eax : 3 2 , eax : 3 2 , 1 : 3 2

2 brc CF : 1 , loop : 3 2

The purpose of the flags domain is to track assignments to flags symbolically, thus, it
stores CF ≡ eax < 100 after the first statement. The second statement increments a
variable that is mentioned in the symbolic expression, thereby rendering this expression
invalid. Rather than removing all information, any linear assignment and transformation
is simply applied to the symbolic information, leading to CF ≡ eax<101 in the example.
Once the conditional jump leads to test CF = 1 on the memory domain, the predicate
domain also executes the test eax<101 on its child domain, thereby making the effect of
the indirect test explicit. Analogously, to find out if the else-branch is feasible, that is, if the
negated flag test CF = 0 is true, our domain applies the negated comparison 101≤ eax
on the child.

points-to This domain is an implementation of a flow-sensitive points-to domain as
discussed in [Sim08a, Sect. 4.1]. The domain observes assignments of pointers to variables
and tracks a set of all possible pointers that a variables may contain. Pointers are modeled
using address variables a ∈ XA ⊆ XV that denote symbolic addresses. These variables are
initialized with a large numeric range, e.g. [0,+∞], thus effectively disallowing address
arithmetic involving symbolic addresses. The points-to domain resolves accesses involving
offsets to address variables by returning a set of tuples: {〈ri, oi〉} ∈ ℘(XV × N). This set
approximates a pointer dereference as offsets into memory regions.
Whenever the domain observes an assignment of the form x = a+ o with x ∈ XV and

a being an address, it stores the information that x = fa where f = 1 is a new Boolean
variable stored in the child. The pointer offset o is a numeric value that is stored in the
child, e.g. the interval domain as x = [o, o]. In general, the points-to domain tracks linear
combinations of addresses and flags fi ∈ XF of the form x =

∑
i fiai for each variable that

may contain pointers. Hence, let sx =
∑
i fi with 0 ≤ sx ≤ 1 express that x points either

to one single address ai or to none. The NULL pointer is modeled by fi = 0 for all flags fi
associated with a variable. Testing if an access is valid thus reduces to testing if sx = 1.
The benefit of the approach using flags can be seen when joining two states. Assuming

that in one state x = f1a1 and f1 = 1 and in the other state x = f2a2 with f2 = 1, the join
of the states is x = f1a1 + f2a2. With sx = f1 + f2 = 1 this exactly captures the semantic
that x points either to a1 or a2 but not both nor to none. When dereferencing x the points-to
domain is queried and the flags fi are returned. The child can now be partitioned so that

39



2 Binary Analysis Framework

in each state fi = 1 and fj = 0 for j 6= i. This expresses that only one address is a valid
pointer for x in the state.

SAT The SAT domain is designed to observe boolean variables (flags) and track formulas
between them (in CNF form). On joining two states, the domain computes a new boolean
formula that has the sum as the disjunction of the two formulas. Furthermore, the domain
manipulates tracked formulas according to the transfer function. The main use case is to
infer boolean formulas between the flags fi ∈ XF of the points-to domain, thus precisely
describing the inferred points-to sets. Instead of using numeric variables to track the sum
of the flags, one can precisely express the value of the flags using a boolean formula.
The domain uses MiniSat [EMS07; EMA10] as the back-end for satisfiability checking.

wrapping In order to infer strong relational invariants, such as inequality relations
between variables, we translate operations over Z2w to abstract domains over Z on which
many expressive numeric domains have been defined. However, an integer represented
by a string of w bits can be interpreted as a signed (in the range [−2w−1, 2w−1 − 1]) or
unsigned (in the range [0, 2w − 1]) value in Z. Since some operations such as add and
shl carry no signedness information, it is not possible to simply check for overflow after
each assignment. Thus, we interpret each value v ∈ Z of x ∈ XV in the numeric domain
as v mod 2w in the finite domain, assuming that x was introduced as having w bits. In
this interpretation, no checks for overflow are required for linear numeric transformations
[SK07]. Linear transformations, in turn, are exactly those assembler instructions that
carry no sign information. As an example, consider an unsigned 4-bit variable x ∈ XV
for which the numeric domain tracks an interval [13, 15] corresponding to the finite
interpretations 1101b, 1110b, 1111b. A left-shift by one bit is a multiplication by two and
leads to the interval [26, 30]. Interpreting these values mod 24 yields the bit patterns
1010b, 1011b, 1100b, 1101b, 1110b which is a sound approximation of the possible set of
bit-patterns. Note that the interval approximation introduced spurious values: 27 and 29,
which correspond to the second and fourth bit pattern.
The wrapping domain proceeds as follows: The arguments of tests (e.g. x < 10) and

other operations whose semantics depend on sign information (e.g. shr and shrs) are
checked if their values lie in the range of the corresponding signed or unsigned w-bit
integer. If not, they need to be adjusted which might involve further approximation [SK07].
These translations are performed by the wrapping domain by executing required operations
on the zeno child domains. To illustrate this, consider Fig. 2.14 which shows the value
range of one variable, namely x, in a one-dimensional plot assuming that x is of size 32

bits and unsigned. As the values of x do not lie inside the unsigned range [0, 232 − 1], the
wrapping domain will adjust the values of x by issuing the following operations on the
child domain state c ∈ C: [[x ≤ 232 − 1]]Cc tC [[0 ≤ x]]C [[x = x− 232]]Cc. These operations
shift values of x inside the unsigned 32 bits range “quadrant” (thus implementing the
modulo operation) and join them with the values that already lie inside this range. This
method is performed for all quadrants [k232, (k + 1)232 − 1] with k ∈ Z that overlap with
values of x. Moreover, this method can be generalized for a state space in n dimensions,

40



2.5 Hierarchy of Abstract Domains

i.e. for n variables [SK07].
Note that the diagram in Fig. 2.14 shows the precise value range of x after wrapping,
which is non-convex. Most numeric domains, however, use a convex approximation of the
state space, thus joining the two partial ranges will result in the numeric approximation
x ∈ [0, 232 − 1], incurring a loss of precision.

0 232 x

before wrapping

0 232 x

after wrapping

Figure 2.14: How wrapping adjusts value ranges.

We chose to implement wrapping as a separate cofibered domain in order to combine
it with other numeric domains. The straight forward and most common approach is
to incorporate wrapping as an operation in the numeric domain, e.g. affine equalities
[MS05], congruences [Byg10] or intervals [Min12]. This approach yields more efficient
implementations but also complicates the implementation and requires modifications to
each domain that is not oblivious to wrapping. Especially in the setting of our modular
domain hierarchy that allows to try out new numeric domains, e.g. by using off-the-shelf
libraries, it would require to enhance existing domains to implement wrapping. Thus a
benefit of our approach to implement wrapping as an abstract domain is that abstract
domains in zeno do not need to know about the bit-sizes of variables.
In summary, our approach might be less precise as it cannot fully exploit domain specific
knowledge for each abstract domain but is general and adds wrapping to already existing
domains. Moreover, the implementation of numeric domains is much easier when they
operate over Z.

2.5.4 Zeno Domains

The domains discussed next are called Zeno domains because the grammar they operate
on does not track sizes for variables and the domains operate on variables ranging over Z.
The interface to the domains features standard operations on variables and is given by the
language L(zeno), defined as follows:

41



2 Binary Analysis Framework

zeno ::= zeno-stmt | zeno-test | zeno-sup
zeno-stmt ::= lval = lin binop lin

| lval = lin / d d ∈ N
| lval = [l, u] l, u ∈ Z∞

zeno-test ::= lin relop 0

zeno-sup ::= intro lval | drop lval

binop ::= × | ÷ |% | >> | << |& | ˆ | |
relop ::= ≤ | = | 6=
lval ::= x x ∈ XV

lin ::=
∑
i

aixi + c
xi ∈ XV

ai, c ∈ Z

The language is comprised of statements, tests and of instructions to modify the set
of mapped variables, i.e. intro and drop. A statement sets a variable to the result of
a binary operation, a linear operation with divisor d or an interval. No bit-level binary
operators are allowed as they cannot reasonably be expressed using numeric domains
that model a convex state space. An interval approximation is used when translating bit
expressions to arithmetic in numeric domains, e.g. andx, y ≡ 0 if x = [0, 0] or y = [0, 0].
Common bit-level identities such as xorx, x ≡ 0, are identified in the wrapping domain
and simplified. Tests in zeno consist of a linear expression and a relational operator that
compares the expression to 0. These tests are translations of tests in L(finite); the wrapping
domain translates finite tests “l1 relop l2” by wrapping each of the linear expressions l1, l2
to the corresponding bit-size and then applying “l1 − l2 relop 0” on the child. As zeno
domains operate on integers, the operator < is expressed by ≤ and a subtraction of 1 from
the linear expression. Our linear expressions consist of variables and integer coefficients
plus a constant. As we deal with arithmetic in Z all integers are of arbitrary precision. The
wrapping domain translates linear expressions from L(finite) to L(zeno) by wrapping the
whole expression to the corresponding bit-size. If the interval approximation of the linear
expression lies in the corresponding range, wrapping is a no-op. Otherwise, the expression
l is assigned to a temporary variable t by applying “t = l/1” on the child. This temporary
variable is wrapped using the operations described in the previous paragraph 2.5.3. Due
to the assignment, a relational child domain approximates the operations on the wrapped
variable t rather than on the whole linear expression l.
The simplicity of the numeric interface,mainly consisting of assignments and tests, aligns

well with existing implementations of numeric domains in the literature. Furthermore, the
benefit of working on arbitrary size integers is that transfer functions can be implemented
resembling their mathematical definition.

We will describe next a set of symbolic domains, that operate on predicates over variables.

42



2.5 Hierarchy of Abstract Domains

These domains are not numeric domains in the classic sense of tracking values for variables,
however, the simplicity of L(zeno) lends itself to implement these domains at this level.
After that, we will discuss the convex numeric abstractions known from the literature that
are implemented in our analyzer as abstract domains.

widening strategies We implemented various widening strategies from the literature as
zeno abstract domains. This allowed us to try out new widening heuristics without complex
changes to the fixpoint engine. The strategies we implemented are delayed widening,
inference of widening points, widening with thresholds and guided widening. The benefit
of implementing widening as an abstract domain is that we are able to add or remove
widening heuristics to trade scalability for precision. The implementation demonstrates
that cofibered domains are powerful enough to implement even very complex widening
strategies.These domains and further strategies are described in detail in Chap. 3.

predicate This abstract domain started as an extension of the flags domain. The predicate
domain generalizes the association of tests with flag variables to implications between
predicates. Additionally, the domain adds an entailment mechanism between predicates,
thereby implementing a lightweight predicate abstraction and reduction mechanism. More-
over, by using only the existing numeric transformers on the child, the domain is usable as
a modular addition to existing numeric domains.
The predicate domain tracks implications over predicates, e.g. x < 5→ y < 10 to refine the
numeric state of its child by applying the consequence of an implication whenever it can in-
fer that the premise holds. Hence, the domain adds relational information to non-relational
child domains. Furthermore, the predicate domain also supplements numeric domains with
the ability to express non-convex invariants. This powerful feature requires observing the
precision loss that occurs in convex numeric domains, e.g. during joins. From the preci-
sion loss, the domain synthesizes predicates to counteract the approximation common in
numeric domains without costly replication of numeric states. The predicate domain thus
serves as a lightweight disjunctive domain. A more detailed description of the features and
usage of the domain is given in Chap. 4.

Numeric Domains
Tracking the values for the variables in a program is the task of numeric domains. A numeric
domain can be seen as a concise representation of a set of values. Simple, non-relational
domains map single variables to values. An example of such a simple domain is the interval
domain. More sophisticated domains relate the values of some or all variables, so that a test
on one variable will restrict the value of other variables. In our framework we implemented
a set of numeric abstract domains from the literature and used existing domain libraries
where possible. In the following we will describe in more details the numeric abstract
domains that our framework uses and where their strengths and weaknesses lie.

affine The affine domain tracks equality relations of the form
∑
i aixi = c between

variables as originally described in [Kar76]. Here, ai ∈ Z are coefficients, c ∈ Z the constant

43



2 Binary Analysis Framework

term and xi ∈ XV are numeric variables. In general, the domain has the complexity of
O(n3) as it stores equalities as a matrix over the variables XV . Our implementation is a
variation that tracks equalities in the normal form of an upper-triangular matrix using
some fixed total ordering on the variables. When calculating the join of two domains
with n rows, the normal form makes it possible to extract only the m equalities that differ,
which is possible in O(m) rather than O(|XV |) [Bla+03a]. Since binary programs exhibit
many equality relations (e.g. between registers and fields on the stack, see Fig. 2.16) our
implementation improves the performance of the analysis.
The affine domain can also be seen as a more advanced constant propagation domain

[WZ91]. The domain propagates constants and equalities between variables and addi-
tionally abstracts constants by inferring equality relations between variables during joins.
Consider the example in Fig. 2.15 a) which is motivated by the Sendmail code presented in
Sect. 9. After line 2 the affine domain tracks the constant values pos = 5 and len = 10. At
line 6 we know that pos = 1 and len = 9. At the join point in line 8, the values are combined
by computing the the affine hull of both states, here, the equality relation: pos+ 35 = 4len.
In the Sendmail code analysis described in Sect. 9, a similar equality relation is used to
prove that a buffer overflow cannot occur.
Besides tracking constants, the affine domain further unfolds its usefulness when com-
bined with other numeric domains, such as the interval domain described in Sect. 2.5.4. In
Fig. 2.15 b) we have an equality relation between the variables x and y after the assignment
in line 1 without knowing the values. Using the interval domain the test in line 3 results
in x ∈ [−∞, 9]. Moreover the affine domain tracks x = y so that we are able to infer
y ∈ [−∞, 9], which would not be possible with the interval domain alone.
Now lets consider the last example in Fig. 2.15 c) which combines the two previously
mentioned features of the affine domain. By performing the affine closure on the equalities
during the join, the affine domain infers the loop invariant j = k + 3i+ 2 that also holds
after the loop in line 7. At line 8 we infer new bounds for the variables i and k. With the
equality tracked in the affine domain we are able to infer that j ∈ [−∞, 37] also holds.
Combining the affine domain with the interval domain, however, is not always straight-
forward. Though the affine domain is useful to improve the values tracked in the interval
domain, it does not always lead to an improved precision. We now discuss the benefits and
disadvantages that are introduced by the affine domain.
We provide two slightly different implementations of the domain. The regular affine

domain implementation removes redundant information about variables from its child
domains, thus minimizing the information that needs to be stored in the child. For ex-
ample, if an equality x = y + z + 5 is stored in the affine domain then the variable x is
fully determined and thus does not have to be stored in the child domain, leading to a
smaller support set for the underlying domains. This factoring trick also simplifies many
linear operations. For instance, the assignment x = x+ 1 is evaluated by inlining existing
equalities into the right-hand side, yielding x = y + z + 6, and replacing the previous
definition of x. Since x is only known in the affine domain, no operation on the child do-
main is necessary. Besides having fewer operations on the child domain the simplifications
performed in the affine domain also improve the precision when the child domains are not

44



2.5 Hierarchy of Abstract Domains

a)

1 pos = 5;
2 len = 10;
3 ...
4 if (...) {
5 pos = 1;
6 len = len - 1;
7 }
8 ...

b)

1 x = y;
2 ...
3 if (x < 10) {
4 ...
5 }

c)

1 i = 2;
2 j = k + 5;
3 while (...) {
4 i = i + 1;
5 j = j + 3;
6 }
7 ...
8 if (i < 10 && k < 5)
9 ...

Figure 2.15: Example usages of affine equalities.

closed under certain arithmetic operations or lose precision on some arithmetic operations
[Min06b]. Consider for example the assignment y = 2z − z on the domain A � I, that
is, using the interval domain as child domain of the affine domain. The value of z in the
interval domain is z ∈ [0, 10]. Performing the assignment on the intervals would result in
y ∈ [0, 20]−I [0, 10] = [−10, 20] which introduces imprecision. Simplifying the assignment
in the affine domain results in y = z which is more precise when evaluated on the intervals.
In fact the value of y would be removed from the interval domain since an equality y = z

is stored in the affine domain.

redundant affine Unfortunately, not propagating redundant information to the child
domain might also incur a loss of precision. An observation that has motivated our second
implementation, the so-called redundant affine domain that performs all the linear opti-
mizations mentioned above but does not remove fully determined variables from the child.
A simple example will illustrate why not storing values for fully determined variables causes
a loss of precision. Consider again the affine domain as it was presented above with the
interval child domain storing x ∈ [1, 2] and y ∈ [0, 10]. Executing the assignment z = x+ y

on the child will result in the addition of z ∈ [1, 12] to the tracked intervals. Additionally, the
affine domain now tracks the above assignment as a new equality in the form x = −y + z

due to the internal variable order. In this example we use the lexical ordering of variables,
i.e. x comes before y and z. In a second step, because variable x is now fully determined
by the other variables on the right-hand side of the equation, it can be removed from the
child domain which will then only store y ∈ [0, 10] and z ∈ [1, 12]. Whenever the value for
x needs to be retrieved, the affine domain will inline the known equalities and evaluate the
linear expression in the interval domain thus resulting in x ∈ −[0, 10] +I [1, 12] = [−9, 12].
This value for x is less precise than the original value [1, 2] that was tracked for x before the
assignment. Although it seems that the variable ordering in the affine domain causes the
precision loss, it is not possible to find a perfect ordering that does not introduce a precision
loss for a given set of assignments. The problem is that the affine domain performs linear
operations on the child to normalize its internal state. The interval domain, however, uses

45



2 Binary Analysis Framework

interval arithmetic to implement these linear operations, which are inexact.

To solve this issue we introduce a modified implementation of the domain that never
removes variables from its child. In the above example this redundant affine domain
would still store x ∈ [1, 2] in the interval domain after evaluating the assignment. Ad-
ditionally, when querying the value for x the redundant affine domain does not inline
known equalities, i.e. x = −y + z to produce the result but will query the value from its
child, and return the precise value x ∈ [1, 2]. However, in order to keep the benefits of
arithmetic simplifications, the redundant affine domain uses equalities for improving the
interval domain. We implement this reduction by deriving and applying additional tests
based on inlining equalities into assignments and test operations. Consider applying the
test x < 2 to the state s = 〈{x = y − 1, y = z}, {x ∈ [0, 2], y ∈ [1, 3], z ∈ [1, 3]}〉. By
inlining the equalities tracked in the state of the affine domain, the test not only restricts
variable x to [0, 1] but also y to [1, 2] and z to [1, 2]. In detail, we inline the equality
x = y − 1 resulting in the test y < 3 and further inline the equality y = z resulting in
the test z < 3. Applying these tests on the interval domain yields the more precise result:
[[x < 2]]As = 〈{x = y − 1, y = z}, {x ∈ [0, 1], y ∈ [1, 2], z ∈ [1, 2]}〉. Note that this causes
more tests to be applied on the child as compared to the regular affine domain implemen-
tation. The obvious reduction is to apply all equalities that share variables with a test or
an assignment as new tests on the child domain. However, we want to have something
cheaper than applying |XV | tests. The idea to evaluate only the inlined assignment may
unfortunately introduce imprecision as illustrated next with an example.
Consider again the domain A � I using the redundant affine domain and the state
sxor = 〈{x = y + z}, {x ∈ [1, 1], y ∈ [0, 1], z ∈ [0, 1]}〉 which expresses that y and z

are either 0 or 1 but cannot have the same value–the exclusive-or of the variables. Now
consider the redundant affine domain seeing the assignment a = x− 1. Inlining the known
equalities and executing the resulting assignment a = y + z + 1 on the child would result
in the value a ∈ [−1, 1] whereas the non-inlined assignment results in the value a ∈ [0, 0].
Because inlining can lead to a blowup of the amount of variables in an assignment it may
be less precise than not inlining assignments.

Consequently, a solution is to apply either the original or the inlined assignment de-
pending on which results in a better precision. We use a simple heuristic to decide which
assignment is more precise when executed on the child. The heuristic is derived from the
fact that each term in interval arithmetic can introduce a precision loss, so we choose the
assignment containing fewer variables.

Usage of Affine Equalities in Machine Code
Tracking affine equalities is a must for the analysis of binary code as register spillage, i.e.
moving register values to the stack and later back to registers, introduces many equality
relations. Optimizing compilers can help to reduce the amount of such equalities but
we need to be able to also analyze non-optimized code. Specifically it is important to

46



2.5 Hierarchy of Abstract Domains

propagate values of variables that have relations to other variables. Consider the simplified
code example in Fig. 2.16 a) that shows a pattern that occurs often in the context of register
spilling.

a)

1 r1 = stackvar;
2 if (r1 < 5) {
3 r1 = ...;
4 r2 = stackvar;
5 ... // computations using r2
6 }

b)

1 r1 = 0;
2 r2 = &array;
3 do {
4 ... = *r2;
5 r2 = r2 + 4;
6 r1 = r1 + 1;
7 } while (r1 <= 16);

Figure 2.16: Common compiler code patterns: a) register spilling to the stack and b) usage
of temporary registers for computations.

The pseudo-code illustrates reading a stack-allocated variable stackvar into the register
r1. After entering the if-branch we know that r1 < 5 but without affine equalities we
would not be able to refine the value tracked for stackvar. Thus when stackvar is loaded
to r2 and its value is subsequently used in line 5, we cannot infer the invariant r2 < 5 even
though r1 = r2 = stackvar holds.
Now consider the code in Fig. 2.16 b) that shows the necessity of affine equalities when
temporary registers are used. Here, r1 is the loop counter and r2 is used to index into an
array. As the array uses 4 bytes per entry the compiler will use a temporary register r2 and
increase the value of that register in each iteration (line 5) along with the loop counter
(line 6). However, the loop condition in line 7 tests the loop counter r1 and not the array
index variable r2. Thus, after inferring the value range for the loop counter r1 ∈ [0, 16]

it is necessary to propagate this range information to r2 otherwise we cannot show that
the array access is within bounds. Here, the affine relation 4r1 = r2−&array that holds
inside the loop body can be used to refine the value of r2 and prove that the array access
is bounded.

In summary, without an affine domain the precision of analyses on binary code is
insufficient. Our experiments immediately confirmed this. Combining the affine domain
with other numeric domains can still result in precision loss if the child domains are
incomplete under linear operations. To overcome these deficits we implemented the
redundant affine domain. Nevertheless, this implementation loses some of the speed benefits
of the original as it results in a multiple application of tests to keep the child domain
reduced. We also observed that not storing the child variables that are fully determined
increases the analysis speed and improves memory consumption especially when using
other relational domains or costly domains as child. In conclusion, which of the two affine
domain implementations to use remains a trade-off between precision and performance.

47



2 Binary Analysis Framework

gauge* The gauge domain as defined in [Ven12] approximates loop invariants for variables
by associating them with the values of loop counters. It tracks for each variable, x ∈ XV an
upper and lower bound as affine inequalities of the form ±x ≤ c+

∑
i aiλi where c, ai ∈ Z

and λi ∈ XC . The set XC ⊆ XV represents the set of the loop counters in the program.
Geometrically, the domain approximates the values of a variable using a wedge or cone
(see Fig. 2.23) that limit the range of values in terms of loop counters. Note that the domain
does not infer loop bounds for the counters but needs to be combined with other numeric
domains, like the interval domain, for that.
As an example, consider the code in Fig. 2.17 which iterates over a message buffer using
a pointer. The loop iterations depend on the type of messages in the buffer. The message
type is given by a tag that is read from the current datum in the buffer in line 3. Analyzing
the code with the gauge domain yields the state sg = {λ ≤ i ≤ λ, 16λ ≤ p ≤ 32λ} with
loop invariants for the variables i and p. Here, the variable i is itself the loop counter thus
equal to λ. To infer the loop bound i < n we need to combine the gauge domain with
a relational domain, e.g. octagons, as the loop bound is symbolic and thus the interval
domain cannot express this invariant.

1 p = &msg;
2 for (i = 0; i < n; i++) {
3 if (*p == ...) {
4 ...
5 p += 16;
6 } else {
7 ...
8 p += 32;
9 }
10 }

Figure 2.17: Iterating over the contents of a message buffer depending on the message.

As demonstrated the purpose of the gauge domain is to infer conditional loop increments.
Combined with another numeric domain such as the interval domain, the gauge domain is
a scalable replacement for more expensive relational domains used in loop analyses, e.g.
polyhedra. Its complexity is comparably low, namely: O(k|XV |) as all operations depend
on the number of nested loop counters k ≤ |XC |. The domain achieves this low complexity
by assuming that the λi variables can only contain positive values.
We did not finish the implementation of the domain yet. In particular one issue we had
is the automatic discovery of a good set of loop counters λi as this is not trivial at the
machine code level. On the source code level, loop counters can be extracted syntactically
from the loop constructs whereas we need to infer variables for which the values change
by a constant increment.

congruences This domain implements the inference and tracking of non-relational or
arithmetic congruences as suggested in [Gra89]. Congruence information is of the form

48



2.5 Hierarchy of Abstract Domains

x ≡ b (mod a) with a, b ∈ Z and x ∈ XV . It is sometimes also written as aZ + b because
it describes a set of numbers {an + b|n ∈ Z} that are multiples of a plus an offset b.
Congruences form a grid in the numbers space (see Fig. 2.23). Congruence information is
necessary for example to ascertain that an array access is aligned to the element boundary
[BR04]. One application is the precise tracking of indices into jump tables [Mih09]. The
original intention of the domain in [Gra89] was to help compilers perform automatic
vectorization of computations. As the value space described by congruences is unbounded
the domain is mostly used in a reduced product with other domains, such as the interval
domain. This particular combination is sometimes called “strided intervals” [RBL06].

Consider for example the code in Fig. 2.18 a) which accesses and array at certain
indices. Using congruences we can improve the inferred bounds for variable i inside the
loop to i ∈ [0, 96] instead of the less precise result i ∈ [0, 99] that would be inferred by
using an interval analysis alone. Additionally, congruences allow us to express that only
each 4th element of the array is accessed. The code in Fig. 2.18 b) shows how compilers
usually translate switch-tables to machine code. An index into the switch jump table i is
computed from an input value and then used to index into an array of jump addresses.
Here, congruence information helps to extract only valid jump addresses from the jump
table even when the value for i is not constant as it restricts the possible indices to multiples
of 32.

a)

1 int a[] = ...
2 int i = 0;
3 while (i < 100) {
4 ... = a[i];
5 i = i + 4;
6 }

b)

1 unsigned i = ...
2 if (i < 10) {
3 i = i * 32;
4 goto *(table + i);
5 }

Figure 2.18: Precision improvements using congruence information in interval analysis.

Apart from their usage in combination with intervals, congruences can sometimes prove
invariants that convex domains cannot. Consider a similar example as in [Cou01], where
the analysis inferred the congruences: x ≡ 2 (mod 3) and y ≡ 3 (mod 6) at a certain
program point, i.e. x ∈ {. . . ,−1, 2, 5, 8, 11, 14, . . . } and y ∈ {. . . ,−3, 3, 9, 15, 21, 27, . . . }.
Using this information we can prove that the division 1/(x − y) can never fail, that is,
the divisor being equal to 0 because there are no numbers to satisfy x = y given the
congruences for x and y. A convex approximation as the polyhedra domain would infer, is
not able to exclude the line of points given by x = y thus is less precise in this case.
Another common application of congruence information is the analysis of computations
that align a pointer. Pointers are expected to be aligned to a certain memory boundary. For
example GCC on x86-32 architecture aligns the stack pointer esp on a 16 bytes boundary by
either using a combination of shift instructions: mov eax, esp; shr eax, 2; sal eax, 2;

49



2 Binary Analysis Framework

or by using a bitmask: and esp, 0xfffffff0. Knowing the multiplicity of a variable–its
congruence–we can perform these operations without losing precision.

Our congruence domain is an implementation of the non-relational (or arithmetic) con-
gruence analysis introduced in [Gra89]. Inferring relational (or linear) congruence analysis
as described in [Gra91; Gra97] requires a more complicated implementation which also
negatively impacts scalability. The simple congruences have a complexity of O(n) (with
n the number of tracked variables) whereas the linear congruences are O(n4) with some
potential for optimizations [Bag+07]. Moreover, for linear relations between variables we
use the affine domain and combine it with congruences. Alas, linear congruences are more
powerful than the product of affine and congruences (see Sect. 2.6). Hence, an implemen-
tation thereof remains interesting future work. One possibility is to reuse already existing
implementations such as the linear congruences in the Parma Polyedra Library [Bag+07].
However, that would require modifications to the domain for it to be usable as a cofibered
domain.

Leaf Domains

At the bottom of our domain hierarchy we have a number of so-called leaf domains that
do not have a child domain. These domains are either non-relational and simple in that
they map variables to values or they are from external libraries that were not designed for
the cofibered construction.

Apron
We use the library of abstract domains from the Apron [JM09] project to augment our
existing numeric domains stack. The library provides implementations for a number
of numeric domains and a unified high-level API to the domains. We implemented an
adapter for this high-level domain interface allowing us to use any of their abstract domain
implementations in our analyzer. Notice however that Apron is able to use real or floating
point numbers in their domains, whereas we are limited to integers due to the compatibility
with our other numeric domains. We use the library as a black box through its API. Thus,
in our domain hierarchy it is a leaf domain that does not have a child domain. In any case,
the Apron domains are not designed for such a cofibered construction.
To improve the precision when combining Apron numeric domains with our domain

hierarchy,we implemented the synthesized channel for Apron which propagates information
about the domain changes upwards after a transfer function (see Sect. 2.6.5). However, as
the channel is implemented only in code wrapping the Apron domains the performance
is not optimal as it does not have access to the set of changed variables during transfer
functions or lattice operations. On the other hand, having the implementation in the
adapter enables us to handle all Apron domains with one implementation. There is no
need to reimplement a synthesized channel for each Apron numeric domain.
The numeric domains in Apron also implement a different semantic for division by zero

than our domains. Apron returns 0 for division by the constant 0 and when the divisor is
not a constant but contains the 0, e.g. [−5, 10], the result is >. For the sake of consistency

50



2.5 Hierarchy of Abstract Domains

we implemented a workaround in the adapter for the Apron domains to give it the same
semantics as our interval numeric domain.

The following two domains are part of Apron and have been evaluated in our framework.
Hence, we will describe their benefits and use cases.

polyhedra This domain tracks a set of inequalities of the form
∑
i aixi ≤ c with ai, c ∈ Z

and xi ∈ XV , which represent convex polyhedra, as first described in [CH78]. Currently,
polyhedra is the most general and expressive relational numeric domain. However, the
expressive power comes with a high runtime cost. The domain is exponential in the number
of variables. This makes it a bad fit for binary analysis where we have to deal with many
more variables than in a source code analysis.
Nevertheless, the power of polyhedra to reason about symbolic values is necessary when-

ever one abstracts over program inputs or performs modular analyses where parameters
are unknown. For example in Fig. 2.19 a) an analysis using the polyhedra domain infers,
among others, the loop invariants in line 4: 0 ≤ index < arrayLengthwhich are necessary
to prove that the loop does not access the array outside of its bounds. As we do not have a
numeric value for the variable arrayLength it is necessary to symbolically reason about its
relations to other program variables. The analysis of the loop in Fig. 2.19 b) infers the loop
invariants: 0 ≤ j ≤ i ≤ j + 3 ∧ j ≤ 4 for line 4. Although the initial values for all variables
are known in this case, the approximation in simpler numeric domains such as intervals is
too imprecise to infer this loop invariant.

a)

1 int l = 0;
2 int h = arrayLength - 1;
3 int index , value;
4 while (l <= h) {
5 index = (l + h) / 2;
6 value = array[index];
7 if (value == searched)
8 return index;
9 else if (value < searched)
10 l = index + 1;
11 else
12 h = index - 1;
13 }

b)

1 int i = 0;
2 while (i < 4) {
3 int j = 0;
4 while (j < 4) {
5 i = i + 1;
6 j = j + 1;
7 }
8 i = i - j + 1;
9 }

Figure 2.19: Example for invariants requiring polyhedra: a) is the binary search algorithm
(example from [FL09]) and b) is a loop example from [HH12]

There exist specialized implementations of polyhedra, e.g. TVPI [SKH03] or octagons
that improve the scalability by limiting the expressiveness. However, we use the general
polyhedra implementation from the Apron library within our analyzer. Although Apron

51



2 Binary Analysis Framework

is able to interface with the Parma Polyhedra Library [Bag+02] they provide an own
polyhedra domain, called NewPolka which we use. However, the team around the Parma
Polyhedra Library (PPL) show in [BHZ08] that the PPL is the most efficient in a benchmark
that compares the commonly available polyhedra libraries. It is easily possible to switch
the backend of Apron to use PPL instead of NewPolka in our implementation and we
performed some experiments using PPL. However, as we did not perform a thorough com-
parison between the two and our need for polyhedra was limited the fact that NewPolka
is shipped with Apron makes it the default choice.

Where the polyhedra domain becomes prohibitively expensive–which happens fast when
tracking many variables–we rely on another relational domain that comes with Apron,
which is described next.

octagons A much faster but also less expressive, a so-called weakly relational domain, is
the octagons domain [Min01; Min06c]. It is able to relate at most two variables, expressing
invariants of the form ±xi ± xj ≤ c with xi, xj ∈ XV , i 6= j and c ∈ Z. In 2 dimensions
the state space is a subspace of polyhedra with at most 8 vertices, giving the name to the
domain. However, octagons allow only unitary coefficients −1, 0, 1 for the variables. A
more expressive domain are octahedrons [CC04] which relates more than two variables
but is also more expensive.
Although the octagons domain provides symbolic reasoning like polyhedra with a much
better performance, it is still very expensive for programs containing more than one
hundred variables. The algorithmic complexity of the domain is O(n3) (with n the number
of tracked variables). One approach to improve scalability is to partition the variables in
so-called packs [Bla+03b]. We could implement this ideas by using a disjunctive domain
that tracks several separate child domains. However, finding a good packing requires
up-front knowledge about the program structure, such as which variables are used in the
same expression. In binary analysis, these program features are discovered only during
the analysis, thus making an up-front partitioning difficult. Similar reasons motivated in
[VB04] the development of a dynamic variables partitioning strategy, which should be
considered in future work.
Our current improvement is to use the affine domain on top of octagons to factor out
variables that are fully determined by affine equalities. In practice we were able to halve
the number of variables that need to be tracked by the octagons domain. Note that using
the redundant affine domain with octagons would not have this benefits. Additionally, the
octagons domain has infinite ascending chains and stores redundant information, leading
to non-termination if a strong closure is performed during widening. We were able to
reproduce this behavior using the redundant affine domain on top of the octagons domain
as the former performs a closure-like reduction. Thus, the redundant affine domain should
not be used in combination with octagons.
Octagons provide a good replacement for polyhedra. For example the invariants in Fig. 2.19
are expressable with octagons, too. However, due to the restriction of being only able to
track relations between two variables and the unitary coefficients, octagons are very limited.

52



2.5 Hierarchy of Abstract Domains

Consider the example in Fig. 2.20 a) which is from [LJG11]. The loop invariant i+ 2j = 20

in line 3 is not representable by octagons as the variable coefficient of j is not unitary. The
code in Fig. 2.20 b) has the loop invariant: i + j + k = 20 which is not representable by
octagons because it involves 3 variables. Note that the octagons domain is less expressive
than the affine domain as the latter can track equalities over arbitrary many variables and
is able to infer the loop invariants in both examples.

a)

1 int i = 0;
2 int j = 10;
3 while (i <= j) {
4 i = i + 2;
5 j = j - 1;
6 }

b)

1 int i = 0;
2 int j = 10;
3 int k = 10;
4 while (i <= j) {
5 i = i + 2;
6 j = j - 1;
7 k = k - 1;
8 }

Figure 2.20: Example for loop invariants that cannot be expressed by the octagons domain.

Apron also provides an experimental implementation of the zonotopes abstract domain
[GGP09] which is more precise than octagons at a slightly higher runtime. However, we
did not yet include it in our framework as the necessary Java wrappers in the Apron library
are not present due to its experimental character.
Besides the mentioned relational domains, Apron also provides an implementation of the
non-relational interval domain that is called Box. Comparing it to our own implementation
it was 2-3 times slower. We did not investigate why, but guess that the overhead of native
library calls weighs in, whereas our Java implementation can be optimized better by the
Java virtual machine.

intervals Our implementation of the classic interval domain [CC76] tracks non-relational
inequalities of the form ±x ≤ c. That is, it tracks an interval x ∈ [l, u] for every variable
in its support set x ∈ XV where l ∈ Z ∪ {−∞} and u ∈ Z ∪ {+∞}. An interval analysis
or range analysis [Har77] is the basic value analysis performed to infer a superset of the
possible values for each program variable. There are other basic value analyses, such as
constant propagation [WZ91] and its extension to sets of constants, so called value-sets.
The first loses all information as soon as there is more than one value per variable to track.
The second requires a widening to > (the set of all values) as soon as the set of values does
not stabilize. In practice, an even more draconian k-limit widening [BHV11] is used where
the set of values may contain no more than k elements. In contrast, interval analysis is a
very lightweight and scalable analysis as it only tracks two constants per variable and the
transfer functions are cheap. Compared to constant propagation or value-set analysis it
has the benefit of gracefully losing precision through its convex approximation instead of
losing all information joining values as the constants domain. Especially for our use case

53



2 Binary Analysis Framework

where we want to find out-of-bounds memory accesses, inferring the range of values for
a variable is sufficient. Next, we will describe briefly our implementation of the interval
domain.

α(c) = [l, u] ∧ l = min(c) ∧ u = max(c)
γ([l, u]) = {c ∈ Z | l ≤ c ≤ u}

>I = [−∞,+∞]
⊥I = [l, u] for some l > u
[l1, u1] vI [l2, u2] = l1 ≥ l2 ∧ u1 ≤ u2

[l1, u1] uI [l2, u2] = [max(l1, l2),min(u1, u2)]
[l1, u1] tI [l2, u2] = [min(l1, l2),max(u1, u2)]
[l1, u1] ∇I [l2, u2] = [if l2 < l1 then −∞ else l1, if u2 > u1 then +∞ else u1]
[l1, u1] ∆I [l2, u2] = let l = if l1 = −∞ then l2 else min(l1, l2)

and u = if u1 = +∞ then u2 else max(u1, u2) in [l, u]

[[x = e]]I i = i [x 7→ i(e)]
[[x ≤ e]]I i = let [lx, ux] = i(x) and [le, ue] = i(e) in i [x 7→ [lx,min(ux, ue)]]
[[x ≥ e]]I i = let [lx, ux] = i(x) and [le, ue] = i(e) in i [x 7→ [max(lx, le), ux]]
[[x 6= e]]I i = [[x ≤ e− 1]]Ii tI [[x ≥ e+ 1]]Ii
[[x == e]]I i = let r = i(x) uI i(e) in i [x 7→ r]

Figure 2.21: Lattice and transfer functions for the interval domain.

[l1, u1] +I [l2, u2] = [l1 + l2, u1 + u2]
[l1, u1]−I [l2, u2] = [l1 − u2, u1 − l2]
[l1, u1]×I [l2, u2] = [min(l1l2, l1u2, u1l2, u1u2),max(l1l2, l1u2, u1l2, u1u2)]
[l1, u1] /I [l2, u2] = [min(l1/l2, l1/u2, u1/l2, u1/u2),max(l1/l2, l1/u2, u1/l2, u1/u2)]
[l1, u1] &I [l2, u2] = [minAnd(l1, u1, l2, u2),maxAnd(l1, u1, l2, u2)]
[l1, u1] |I [l2, u2] = [minOr(l1, u1, l2, u2),maxOr(l1, u1, l2, u2)]
[l1, u1] ˆI [l2, u2] = [minXor(l1, u1, l2, u2),maxXor(l1, u1, l2, u2)]
[l1, u1] <<I [l2, u2] = let l = min(l1 << l2, l1 << u2, u1 << l2, u1 << u2)

and u = max(l1 << l2, l1 << u2, u1 << l2, u1 << u2) in [l, u]

[l1, u1] >>I [l2, u2] = [l1, u1] /I
î
2l2 , 2u2

ó
Figure 2.22: Interval arithmetics. Division is only defined for divisors: [l, u] 63 0. The

minXor() functions and similar are from [War03].

Figure 2.21 shows the lattice of intervals and the corresponding transfer functions. Com-
monly,⊥ is defined as the empty interval and> the complete range of numbers. The shown
operations naturally lift to environments e except that ∃x.i(x) = ⊥ ⇒ e = ⊥. The subset
test, meet, join, widening and narrowing are the standard definitions from [CC76; CC77].

54



2.5 Hierarchy of Abstract Domains

We use i[x 7→ . . . ] to denote an update of the value for variable x in the domain and i(x)

to retrieve the value and in abuse of notation we use i(e) for the value of expression e
evaluated in the domain. Hence, the assignment simply overwrites the current value of a
variable and tests restrict the current value. As an abstract domain over-approximates the
concrete values, the sound semantic for tests is to conservatively restrict a value, e.g. for
x ∈ [0, 10] and x ≤ [5, 8] the result is x ∈ [0, 8]. The interval-set domain to be discussed
next is able to handle such disequalities as well as our novel predicates domain mentioned
earlier.
Figure 2.22 shows the basic interval arithmetics used during the transfer functions to evalu-
ate expressions e. Bit-wise operations, i.e. and, or, xor, shift right, shift left (&, |, ˆ, >>,<<)
are implemented using interval arithmetic operations from [War03]. Note that the operands
of the shifts, that is the number of bits to shift, must not contain negative values and the
division is only defined for divisors not containing zero. To overcome the latter restric-
tion we use a more general division semantics, that maps divisions by zero to zero,
that is, if an interval contains the zero we perform the division ignoring the zero and
re-add it to the result. This is implemented by splitting up the divisor into two inter-
vals without the zero and joining the results of each division, e.g. [5, 10]/I [−2, 2] =

([5, 10]/ign0[−2,−1]) tI ([5, 10]/ign0[1, 2]) tI [0, 0] = [−10, 10]. This especially means that
dividing by zero is always zero: [l, u]/I [0, 0] = [0, 0]. We implemented this behavior as
some architectures like the ARM architecture allow to return 0 as the result of a division by
zero by setting a processor flag [ARM10]. As a consequence, the concrete zero-handling
semantics for the division has to be implemented in the translators for each platform by
adding code that checks for 0 and e.g. throws an exception. Note that PPL implements
a similar semantic for their interval domain implementation [BHZ08] whereas Apron re-
turns zero for the division by the constant zero value and > for division by range values
containing zero. The latter behavior originates from the use of rationals as coefficients in
Apron. When factoring out the zero from a value, e.g. [−a, a] it will take the closest possible
rational r to zero for the divisors: [−c,−r] and [r, c]. Division by such a small number leads
to very large values, both negative and positive, and results in an approximation by >.
The second characteristic of our interval division is that we provide three integer rounding
semantics. One rounds towards 0 which is the semantics of the div, idiv instructions
on the x86 platform and the udiv, sdiv instructions on ARM. The second mode rounds
towards −∞ (truncates the result) which is the semantics of the C language [ISO05, Ch.
6.5.5] for division and of right shifts and the sar instruction on x86. The third rounding
semantics we provide is to round towards a smaller interval, i.e. if r ∈ R is the result of a
division, the resulting interval is [dre, brc]. We use this semantics to implement tests and
reduction operations. For instance, the congruence domain may divide an interval by a
constant in which case a rounding semantic is needed that results in the largest integral
interval within the solution.

interval-sets The interval-set domain is an extension of the value-set domain that uses
intervals as values. It can also be seen as a powerset domain of intervals or the finite
disjunctive completion [CC79a] for intervals. Consequently they are called DisIntervals

55



2 Binary Analysis Framework

in [FL11] but simply Boxes in [GC10a]. An interesting feature of the domain is that it can
represent non-convex spaces, in particular, perform thus some disequality tests precisely.
However, as it is a non-relational abstract domain, symbolic disequalities can not be tracked,
e.g. x 6= y where neither x nor y is constant.
Generally, for each variable in its support set x ∈ XV the domain tracks a disjunction of
inequalities

∨
i(li ≤ x ∧ x ≤ ui), that represents a set of non-overlapping, ordered inter-

vals, written as x ∈ {[l1, u1], . . . , [ln, un]} for i ∈ {1, . . . , n}. The interpretation of these
intervals when understood as a union of their concretization is defined analogously to
the interval abstract domain. Lattice operations and transfer functions on an interval-set
are lifted from the interval transfer functions by point-wise application on each interval
with a normalization step to maintain the invariant of disjunct, ordered intervals, that
is ui < li+1. This normalization step and the fact that most binary operations require
building the cartesian product of the involved sets makes the interval-set much slower
compared to the plain interval domain. While most binary operations on intervals are
O(1) they become O(n2) for interval-sets with n being the number of intervals in a set.
It is possible to reduce this costs by keeping the intervals in an ordered tree structure.
In fact the implementation in [GC10a] uses an extension of binary decision diagrams
(BDDs) so-called linear decision diagrams (LDDs) to speed up the transfer functions. They
combine interval constraints using boolean formulas which also makes their domain more
expressive as it captures some relational information. This, however, requires a much more
complex implementation especially regarding the widening. Our implementation does not
use any of these techniques yet, thus requiring a linear traversation of the data structure
during the transfer functions. Nevertheless, the domain is a good compromise between
the precision of value-sets and the scalability of intervals. It gracefully loses precision by
going from tracking concrete values to tracking intervals during widening.
The implementation of widening involves some extra logic, though. In the interval
domain widening is defined as an extrapolation of unstable bounds to −∞ or +∞.
With interval-sets widening extrapolates bounds up to the next interval (or down to),
i.e. it “fills” the gap between neighboring intervals. For the first and last interval in
the set, which are the bounds of the convex hull, widening extrapolates to infinity
like the classic interval widening. We will illustrate the behavior of widening with
some examples. Unstable inner bounds lead to the contraction of neighbor intervals:
{[2, 3], [9, 10]}∇IS {[2, 4], [9, 10]} = {[2, 10]} whereas unstable outer bounds introduce
infinity values, e.g. {[2, 3], [9, 10]}∇IS {[2, 3], [9, 11]} = {[2, 3], [10,+∞]}. The widened
chain of interval-sets will eventually stabilize as the iterates converge towards one single
interval representing the convex hull of the iterates. Termination is ensured as the outer
bounds of the interval-set are widened just like normal intervals. However, given this
definition, widening might still lead to slow termination if the new values are not adjacent
to any of the interval in the set. For example given the interval-set {[0, 0], [100, 100]} it is
possible to add all the even numbers to this value with widening not removing any bounds:
{[0, 0], [2, 2], [4, 4]...[100, 100]}. To avoid this value enumeration problem we do not allow
the right arguments of widening – the new value – to contain more intervals than the left
argument. If this is the case we join as many intervals as necessary to uphold this invariant.

56



2.6 Combining Abstract Domains

Using this heuristic we do not require a fixed k-limiting for the size of an interval-set and
still ensure fast convergence during widening.

Rather than lifting the interval domain XV → I to interval sets XV → ℘(I), one could
perform a more expressive, relational lifting by considering ℘(XV → I). In Fig. 2.23
for example the interval-set domain tracks spurious values–the box on the lower right–
thus violating the error space. Here, the powerset of intervals would be able to rep-
resent the state space without these spurious values by tracking two separate states
s1 = {x ∈ {[2, 5], [7, 8]}, y ∈ {[5, 8]}} and s2 = {x ∈ {[2, 5]}, y ∈ {[2, 3], [5, 8]}}. However,
the powerset construction has the overhead of duplicating some tracked values in this case.
A solution without duplicating states is provided by our predicate domain (see Chap. 4),
which uses implications to separate states. In the above example tracking 5 < x→ 5 ≤ y
is enough to exclude the erroneous state.
Another issue shown in [BHZ04] is that widening has to be taken special care of in powerset
constructions as a pointwise lifting of widening may not terminate. Devising a widening
for a disjunctive completion requires knowledge about the underlying domain as shown
above with the interval-set domain. A similar route is taken in the implementation of the
Boxes domain in [GC10a] that additionally also adds relational information between the
variables. As a consequence, they are more precise than the powerset construction used in
PPL [BHZ08].
We plan to implement a wrapper for the Parma Polyhedra Library (PPL) in the future to

benchmark their powerset construction of intervals and compare it to our combinations
of the predicate and interval-set domain. Furthermore, it would be interesting to see how
their implementations of polyhedra and octagons compare to the ones provided by Apron.
PPL also implements simple congruences and linear congruences under the name grid
abstractions and provides reduced products thereof with polyhedra.

After showing the various features and shortcomings of the domains in our hierarchy we
will next discuss how domains are combined in order to improve the analysis precision.

2.6 Combining Abstract Domains

The diagrams in Fig. 2.23 illustrate how each numeric domain in our zeno domains tier
approximates a given state space of concrete values. We use 2-dimensional diagrams
(using two variables x and y) to illustrate relational and non-relational approximations.
The diagram at the top left depicts some concrete value-pairs that may occur at runtime
in a program and how these values are expressed using constraints. Furthermore, the red
area on the lower right represents program values for x and y that cause a program error.
Here, the concrete state space does not intersect with the erroneous area, thus the program
is safe. However, depending on the precision of the abstraction, some numeric domains
cannot exclude this area from the approximated state. If the numeric domain infers that
the intersection of the approximated value space and the erroneous space is not empty an
analysis will emit a warning that the program might be incorrect.

57



2 Binary Analysis Framework

0 5 10

5

10
Constraints:

x = 2 ∧ y = 6
∨x = 3 ∧ y = 5
∨x = 3 ∧ y = 7
∨x = 3 ∧ y = 8
∨ . . .

x

y

Concrete Points

0 5 10

5

10
Constraints:

y ≤ λ ∧ λ ≤ y
∧x ≤ 3λ ∧ λ ≤ 2x

x

y

Gauge

±x ≤ c+
∑

i aiλi

0 5 10

5

10
Constraints:

2 ≤ x ∧ x ≤ 8
∧ 2 ≤ y ∧ y ≤ 8

x

y

Intervals

±x ≤ c

0 5 10

5

10
Constraints:

2 ≤ x ∧ x ≤ 5
∨ 7 ≤ x ∧ x ≤ 8
∨ 2 ≤ y ∧ y ≤ 3
∨ 5 ≤ y ∧ y ≤ 8

x

y

Interval Sets∨
i(li ≤ x ∧ x ≤ ui)

0 5 10

5

10
Constraints:

2x− y ≤ −2
∧ − 2x− y ≤ −10
∧ 2x+ y ≤ −21
∧ 3x+ 4y ≤ 4
∧x+ 4y ≤ 35

x

y

Polyhedra∑
i aixi ≤ c

0 5 10

5

10
Constraints:

2 ≤ x ∧ x ≤ 8
∧ 2 ≤ y ∧ y ≤ 8
∧x− y ≤ −5
∧ − x+ y ≤ −4
∧x+ y ≤ 14
∧ − x− y ≤ −6

x

y

Octagons

±xi ± xj ≤ c

concrete value approximation bound error state bound

Figure 2.23: State space for two variables x and y and how various numeric abstract
domains approximate this state space. The red area shall not be violated.

58



2.6 Combining Abstract Domains

Out of all numeric domains displayed in Fig. 2.23 only the polyhedra abstraction is able
to express that the program is correct. The gauge domain uses a wedge to approximate
the space which is too coarse to prove that no intersection with the erroneous state exists.
Moreover, the depicted state assumes that some loop counter λ exists that can define the
shown wedge. Intervals in two dimensions form a box which in this case is too imprecise.
As discussed in the previous section, interval-sets are more precise but due to being non-
relational they only subdivide the box of intervals into smaller boxes that are not precise
enough for this example. The last domain, the octagons domain is relational but not as
precise as polyhedra in this case the octagon intersects with the erroneous space.
Not surprising, the polyhedra approximation is the most precise in this example. However,

the polyhedra domain is very costly. Thus, depending on the program property that needs
to be proved, it is often desirable to use cheaper abstractions and combine them to improve
the precision. For instance, if we intersect the state spaces of the gauge domain and the
interval sets domain, it is possible to exclude the erroneous state. We will next consider
another example of combining cheap domains to express relatively complex spaces.

2.6.1 Cartesian Products

In Fig. 2.23 we omitted the affine and congruence domain as both cannot express a useful
approximation to the presented concrete points. Both domains would be maximally im-
precise here, i.e. >. With respect to the affine domain, the domain can only track a linear
relation ax + by = c between x and y. However, the presented concrete points do not
fit any linear relation. Similarly, the points exhibit no interesting congruence except the
trivial congruence x, y ≡ 0 (mod 1). Therefore, we use in Fig. 2.24 a different example for
the concrete state space that results in an interesting approximation when using the affine
and congruence domains.
As can be seen in Fig. 2.24, none of the domains (intervals, affine, congruences) alone is

able to exclude the erroneous state in the approximation. However, using the cartesian
product of abstract domains [CCM11; CCF13], that is, intersecting approximations from
different domains we can improve the abstraction. Although the product of affine and
congruences is not precise enough for verifying the example, adding intervals is sufficient
to exclude the erroneous area from the abstraction. Note that the product of all three
domains approximates the given concrete state space well enough and that it only contains
one spurious value.

2.6.2 Reduced Products

The cartesian product is the most basic [CCF13] implementation of domain products where
a set of domains are used to analyze a program with no exchange of information between
them. The appeal of this approach is that the analysis can be run separately for each domain.
However, a better analysis result can be obtained if, at each analysis step, the existing
abstractions refine each other by exchanging information, a process called reduction. This
idea is called a “reduced product” [CC79a; CCM11].

59



2 Binary Analysis Framework

0 5 10

5

10
Constraints:

x = 2 ∧ y = 1
∨x = 8 ∧ y = 5

x

y

Concrete Points

0 5 10

5

10
Constraints:

2 ≤ x ∧ x ≤ 8
∧ 1 ≤ y ∧ y ≤ 5

x

y

Intervals

±x ≤ c

0 5 10

5

10
Constraints:

2x− 3y = 3

x

y

Affine∑
i aixi = c

0 5 10

5

10
Constraints:

x ≡ 2 (mod 3)
∧ y ≡ 1 (mod 2)

x

y

Congruences

x ≡ b (mod a)

0 5 10

5

10

x

y

Affine ⊗ Congruences

0 5 10

5

10

x

y

Affine ⊗ Intervals

0 5 10

5

10

x

y

Affine ⊗ Congruences
⊗ Intervals

concrete value approximation point/bound error state bound

Figure 2.24: Simpler state space than in Fig. 2.23 along with the approximation by numeric
domains and the product of these domains.

60



2.6 Combining Abstract Domains

In theory, the reduced product requires that all possible reductions are performed all the
time. In practice, however, this amounts to implementing a monolithic abstract domain that
is the composition of the individual domains. Not only is it a complex task to implement
such a domain, but extending the implementation whenever further domains are added
requires extending the logic of the whole domain.

2.6.3 Partially Reduced Products

Hence, in practice, abstract domains are implemented and optimized to track only a small
subset of program properties, e.g. congruence information or equality relations. These
domains are then later combined in a so-called “partially reduced product” where each
domain may interact with other domains to perform reductions after each transfer function.
The goal is to build a complex abstraction by composing simple domains and using some
reduction. Consider for example the congruence domain combinedwith the intervals domain.
The first tracks the information x ≡ 0 (mod 4) and the latter tracks x ∈ [0, 20]. Applying
the transfer function x < 15 on both domains results in x ∈ [0, 14] with the congruence
domain unchanged. Now reduction may refine intervals using the information tracked
in congruences, thus yielding the more precise state x ∈ [0, 12]. Note that this involves
communicating the reduction from the congruence domain and an interpretation by the
interval domain.
A partially reduced product is thus a cartesian product that does not perform a complete
reduction between the domains but only some reductions. This allows for a modular
implementation and avoids the complexity of applying reduction at every step. Nevertheless,
the reduction process in a partially reduced product can itself be very complex. It may
even involve a fixpoint computation, that is, refinements from domain D1 to domain D2

may cause refinements in the opposite direction and so forth. Worse, the reduction process
might not even terminate with domains of infinite height. One solution to these problems is
to simplify the reduction process by enforcing a domain hierarchy and allowing reduction
operations only in one direction or between certain domains only [Ber+10; FL11].
One general way of implementing the partially reduced product is the iterative pairwise

reduction [Gra92; CCM11] between domains and the use of well-defined interfaces for
reduction. These facilitate the modularity as domains can be added or removed without
modifications to the reduction process. Implementations thereof use so-called query chan-
nels to communicate information between domains. Each domain actively queries the
channel after transfer functions and implements the reduction of its own state, e.g. the
intervals domain queries congruence information and interprets it to refine itself. The so-
called “open product” from [CLV00] extends the idea of communication between domains
to happen at any time during transfer functions on a push principle instead of queries.
All of these techniques and further ideas have been implemented in the Astrée [Cou+07]

static analyzer. Our domain refinement mechanism implements the ideas mentioned in
this section. Some, such as modularity, iterative pairwise refinement, reduction in only one
direction, are a natural consequence of cofibered domains whereas other ideas had to be
retrofitted, e.g. the refinement between child and parent domains.

61



2 Binary Analysis Framework

2.6.4 Reduction in Cofibered Domains

Cofibered domains implement a more restricted refinement mechanism compared to the
partially reduced product. Here, transfer functions are used to perform the reduction
from parent domains to child domains. A parent synthesizes the transfer functions to
apply on the child depending on its own state, thus performing reduction. The benefit
is that no separate refinement operations or a domain communication channel needs to
be implemented. Each domain only needs to implement reduction semantics for its child,
which in our modular construction means implementing a well-defined interface. In this
setting reductions are between a pair of domains, are propagated iteratively and might
even involve a fixpoint computation. Note that these ideas follow the reduction framework
proposed by Granger [Gra92]. However, reductions are generally only one way.
As an example, consider the reduction between the redundant affine domain and its child
the interval domain as described in Sect. 2.5.4. Here, each test on the redundant affine
domain might lead to the application of further tests to the child domain. If the domain
tracks x = y and sees the test x < 5 it will also apply the test y < 5 on the child thereby
performing a reduction.
A second characteristic of cofibered domains is that transfer functions can be modified,

thereby performing reduction of the child. For instance, as shown in Sect. 2.5.4 the affine
domain can simplify linear assignments, e.g. y = 2x − x to y = x before applying them
on the interval child, thus improving the precision of the result. Executing the original
assignment in the interval domain is less precise if the value for x is an interval. As partially
reduced product implementations execute a transfer function on all domains in parallel
and only then perform the reduction, the cofibered approach can be cheaper.
Another example is the conguence domain, which scales linear assignments or tests by inlin-
ing the tracked congruences, thereby keeping the child reduced. Consider the congruence
domain tracking x ≡ 0 (mod 4) like in the example in the previous section. However, as
the child is reduced, the interval domain tracks x ∈ [0, 5] instead of x ∈ [0, 20] as before.
Now, applying the test x < 15 on the congruence domain will result in the scaled test x < 4

being applied to the interval domain, which itself results in x ∈ [0, 3]. Here, no further
reduction in intervals is necessary. The querying of the intervals of x on the congruence
domain will return the value 4[0, 3] = [0, 12]. By using the possibility to modify transfer
functions we remove the need for later reduction steps.
The translation of transfer functions also has the benefit of short-circuit evaluation, that is,
if a parent domain infers that a test is infeasible then it does not need to apply the test to
the child.

2.6.5 Domain Reduction using Channels

As argued in the previous section, due to the cofibered design the reduction from parent to
child domains is implemented by applying transfer functions on the child. Reduction in one
direction, namely from the top to the bottom of the domains stack can thus be implemented
naturally. However, it is desirable to perform reduction in the opposite direction, too, i.e.
from a child to its parent. To facilitate this backward reduction between domains we use

62



2.6 Combining Abstract Domains

two channels to communicate the necessary information.

Query Channel

This channel exists to query the values of variables or linear expressions. It is used by the
fixpoint engine to ask for all possible jump targets when evaluating a computed jump.
However, a domain may use this channel to request information from child domains and
use the information to reduce its own state. Nevertheless, the channel is currently not used
for reductions as requesting range information can usually be performed by testing range
constraints, e.g. x < 5 on the child domain and observing if the result is ⊥C . The latter is
more precise as the query performs a convex approximation to suit the relatively simple
data-type used in the channel. Note that it would be possible to extend the channel and
enrich the information that can be queried. However, using transfer functions, i.e. tests,
will always be more precise as domains implement semantics for tests, which are not easily
expressible in a query.

Synthesized Channel

This so-called synthChannel is used when applying transfer functions on the child. During
a transfer function, a child domain synthesizes information that describe new facts caused
by the current transfer function. A parent domain may use this information to perform
new refinements to its own state and/or apply new transfer functions to the child. It is
even possible to perform a fixpoint computation to do reduction as in [Gra92]. Hence, care
must be taken to ensure termination of the domain-local fixpoint computation [Ber+10].
In our setting, most domains do not reduce the child more than once, thus propagation
of refinements is only in one direction. However, domains that refine the child again, e.g.
the predicate domain, make sure that the fixpoint computation terminates in finitely many
steps. Currently, we propagate three types of information through the synthChannel:

• variables that became constant: x = c

• new equalities between variables: x = 2y

• new inferred predicates and implications: x < 5→ y < 10

We will now give some examples for reduction using this information.
The affine domain tracks equalities between variables and removes fully determined

variables from its child. That is, if it knows that x = y only y needs to be tracked in the child.
Hence, when applying a transfer function on the child domain the affine domain extracts
from the synthChannel the new equalities and then removes some variables from its child.
As the affine domain also tracks constants, that is, equalities of the form x = c it also
removes variables from its child that became constant. This reduction of the affine state
improves precision because the domain itself infers new equalities on joins. For example
consider two states s1, s2 ∈ A� I, that is, the affine domain having the interval domain
as child. Now let s1 = 〈{x = 3}, {y ∈ [5, 10]}〉 and s2 = 〈{x = 5}, {y ∈ [3, 10]}〉. Applying

63



2 Binary Analysis Framework

tests to each state yields two new states s′1 = [[y ≤ 5]]As1 and s′2 = [[y ≤ 3]]As2. The
affine domain simply forwards the test to the child as it does not implement semantics for
inequality tests. Assuming that the affine domain reduces its state using the synthChannel,
the resulting states after applying the transfer functions are: s′1 = 〈{x = 3, y = 5}, ∅〉 and
s′2 = 〈{x = 5, y = 3}, ∅〉. The join of s′1 tA s′2 then infers a new affine equality in the
resulting state: s′1 tA s′2 = 〈{x = y}, {y ∈ [3, 5]}〉. This equality would not be inferred
without the reduction, i.e. joining the unreduced states: s′′1 = 〈{x = 3}, {y ∈ [5, 5]}〉 and
s′′2 = 〈{x = 5}, {y ∈ [3, 3]}〉 results in s′′1 tA s′′2 = 〈∅, {x ∈ [3, 5], y ∈ [3, 5]}〉.
The congruence domain benefits from reduction in a similar way to the affine domain.

It infers new congruence information for constant variables during a join. For example
joining x = 3 and x = 6 infers the congruence x ≡ 0 (mod 3). Hence, the domain reduces
its state whenever variables have become constant in the child.
The predicate domain uses the synthChannel to extract predicates that describe the

precision loss during the join of convex child domains (see Chap. 4). Additionally if a
variable became constant due to a test, the predicate domain uses this new fact to deduce
the truth valuation of predicatesmentioning the variable. For example the domainmay track
the implication f = 0→ x ≤ 0 with the interval domain tracking {f ∈ [0, 1], x ∈ [−5, 5]}.
After applying the test f < 1 to the domain state the predicate domain can infer due to the
information propagated in the synthChannel that the premise of the implication is true.
As a consequence, it applies the predicate x ≤ 0 to its child thereby performing a further
reduction.
The undef domain similarly uses the fact that a flag variable becomes constant to infer if

the values guarded by the flag are defined or not (see Chap. 5). It then repartitions its state
but does not apply further transfer functions to the child. Still, the reduction of the undef
domain modified the concretization of the child domain. For instance, if x = > because
the variable might be undefined, then after applying the test on a flag we might know that
x ∈ [0, 10], that is, we know that x is defined.
As the synthChannel notifies only about the parts of the domain state that have changed

due to a transfer function, it allows a parent domain to only query a small subset of all
known variables. A corresponding reduction in a partially reduced product would have
to push the set of changed variables (since this set may differ from the set of variables
in the transfer function) and let other domains perform queries on any domain for these
variables. While the implementation in the cofibered setup is less flexible as it only allows
querying its child, it still allows for very powerful reductions.

2.6.6 Reduced Cardinal Power

A lesser known domain combination method that facilitates reduction is the “reduced
cardinal power” [CC79a; CCF13] or its generalization the “reduced relative power” [GR99].
The construction allows expressing relational information between two domains, that is,
values in one domain depend on values in another domain. In particular, it allows to track
disjunctive information over abstract values as the relation acts as an implication. The
construction takes a domain Db as base and another domain De as exponent, resulting in

64



2.7 Interprocedural Analysis

the power DDe
b . Abstract elements e ∈ De imply states b ∈ Db, thereby implementing a

case analysis: if e then b.
Take for instance our flags, predicate and undef domain, all of which track implications
between boolean expressions and constraints over variables. This allows the domains to
split the state space in the child depending on their own state. Hence, these domains
can be seen as an instance of the “reduced cardinal power”. Where flags and undef use a
boolean lattice: {⊥B, false, true,>B} as exponent, the predicate domain is more complex.
The latter domain uses the same lattice P, where P is a set of predicates, for the base and
the exponent, a so-called auto-dependent reduced cardinal power [GR99]. Our implemen-
tation of the reduced cardinal power does not track separate states b ∈ Db per exponent
e ∈ De but uses one child state that is refined based on the state e. The base domain Db is
thereby itself a partial reduced product of a domain tracking predicates and an arbitrary
numeric child domain that interprets predicates.

In conclusion, the flexibility of cofibered domains coupled with a reduction channel
allows us to partially implement both types of reductions from [CC79a].
Next, we will detail how an analysis of programs containing procedures is achieved.

2.7 Interprocedural Analysis

Our analysis infers transitions to new program points during the fixpoint computation as
detailed in Fig. 2.8 and stores these transitions using the CFG storage shown in Fig. 2.10. In
the resulting CFG data structure, calls may be treated semantically like a normal jump and
are thus tracked by adding a new CFG transition from a call-site to the callee (analogously
for returns). Following this approach, an interprocedural CFG is simply a graph with the
intraprocedural CFGs inlined. However, this approach does not allow to take into account
the context of a function call during the analysis, i.e. the distinct call-sites and the values
of the function parameters. It is desirable to not discard this information as it allows for
more precise context-sensitive analyses and allows to reuse analysis results for a function
body. Hence, we use the branch type hints described in Sect. 2.4.6 that are provided by
the instruction translator to facilitate the implementation of more specialized semantics
for call and return instructions.

2.7.1 Call-String Approach

A context-sensitive interprocedural analysis approach that we implemented is the call-
string approach as proposed in [SP81]. Here, the call-stack is modeled by the so-called
call-string, that records each call transition as a tuple 〈cs, ct〉 ∈ ℘(Cs × Ct) where Cs ⊆ P
is the set of addresses of call sites and Ct ⊆ P are the addresses of function entries, or call
targets. In contrast to [SP81] we also record the call targets as computed calls might call
more than one function. The call-string is then just a list κ ∈ (Cs × Ct)∗ of tuples 〈cs, ct〉
of call sites and call targets. We use ∗,+ as in regular expressions to denote repetitions
due to recursion. An analysis based on call-strings then maps a tuple 〈κ, a〉 with a ∈ P

65



2 Binary Analysis Framework

being an instruction address, to abstract states s ∈ D. This mapping (Cs × Ct)∗ × P 7→ D
improves the precision of an analysis as it avoids the propagation of abstract states along
interprocedurally infeasible paths.

1 void f(int param) {
2 g(param);
3 }
4

5 void g(int param) {
6 g(param - 1);
7 }
8

9 int main(void) {
10 f(1);
11 g(2);
12 }

Figure 2.25: Example for function calls.

For example consider the program in Fig. 2.25, the possible call-strings are all the prefixes
of the following two strings: κi1 = 〈0, 9〉·〈10, 1〉·〈2, 5〉·〈6, 5〉i which represents the call-stack
[main; f; g+] and κi2 = 〈0, 9〉 · 〈11, 5〉 · 〈6, 5〉i which represents the call-stack [main; g+].
Note that entering a function appends a tuple and returning from a function removes the
last tuple in the call-string, thus any prefix of κ1 and κ2 are valid call-strings. The size of
the call-string set, is infinite as κ1 and κ2 are expandable to κ′1, κ

′′
1, . . . , κ

n
1 by appending

to the string the recursive call to function g. In order to deal with recursion the call-string
length is limited by a constant k. Given a call-string longer than k we record only the suffix
of length k, thereby merging contexts (abstract states) whose kth parent differ.
The benefit of using a call-string is that we are able to distinguish different call paths and

summarize states with the same call-string, that is, we can define a collecting semantics
with the program points being p ∈ (Cs × Ct)∗ × P defined as a tuple of the call-string
and the instruction address. Program points having the same call history will be mapped
to the same abstract state. Moreover, propagation along infeasible paths is avoided, e.g.
given the call-string 〈0, 9〉 · 〈10, 1〉 · 〈2, 5〉 · 〈6, 5〉 it is not feasible to return from function
g to function f even though the interprocedural CFG contains a return edge from g to f.
Recursion is handled by the call-string approach using summarization, that is, a series of
k recursive function calls will result in a call-string suffix of k identical tuples so that the
analysis will summarize the function. In our example the last k tuples of the call-string
will contain k-times the tuple 〈6, 5〉. Any further recursive call to g() will be merged with
the states for this call-string.
The choice of the call-string length k thus defines a trade-off between precision and

scalability as it indicates the maximal length of call paths that are kept separate in the
analysis. However, in practice, finding a good choice for k is difficult as it depends on

66



2.7 Interprocedural Analysis

the program and its runtime call-graph. In our implementation k may thus be given as
a parameter to the analysis. A second problem is that we might want to not re-analyze
some functions, e.g. function g() in the example, even though it was called on a different
path but would want to use a summary instead. The call-string approach does not offer
enough flexibility in this case. Finally, the main drawback of using a call-string is that, after
exceeding k, a precision loss is incurred when we return as the state has to be propagated
to all possible return sites whose k − 1 suffix matches the current context.

2.7.2 Function Summaries

In order to overcome some of the drawbacks of the call-string approach and to summarize
earlier we implemented a function summarization mechanism as part of the stack domain.
As described in Sect.2.5.1 our stack domain does not track the stack as one large region
but tracks separate stack frames per function and uses pointers to connect the frames,
thereby expressing the caller-callee relationship. In the call-string approach the stack is
modeled as a linked-list of stack frames whereas our summarization approach models the
stack as a graph. Each stack frame may have multiple predecessor frames, given the set of
call-sites of the function. Our summarization implementation uses only one stack frame
per procedure, that is, a single summary for all calling contexts (analogous to a call-string
of length 0). In general, one could allow an arbitrary number of summaries per function.
In the example in Fig. 2.25 we track three summaries in total, one per function, that

is, we store one state per program point. The call-string approach with a conservatively
small value for k, e.g. k = 4 would result in 13 different summaries for the whole stack at
each program point in g(). Note that k = 4 is a small bound for call-strings as in practice
non-recursive function calls may be hundreds of calls deep. Generally, given a call depth
k and a program of n procedures, the upper bound for separately tracking non-recursive
contexts is kn. With the assumption of n � k, the upper bound is O(k2). Hence, the
call-string approach rapidly becomes too expensive.
In contrast, the summarization approach suffers from precision loss as we merge the

states of all call sites that call a particular function, that is, we perform a context-insensitive
analysis. In order to maintain precision we rely on relational domains to separate the
state space for different call paths, thus achieving some context sensitivity. To this end, the
stack domain builds and tracks an approximation of the call-graph and adds Boolean flags
fij ∈ XV to its child domain that states if a path ij in the call-graph is feasible. The child
domain may then infer relations between the flags and the input parameters of a function
call [Sim08a]. In the example in Fig. 2.25 the call to g() in the body of the function main()

results in setting the flag fmg = 1 whereas the flag ffg = 0 expresses that the other
call path reaching g() through f() is not feasible. By leveraging relational information in
the child domains, e.g. the affine or the predicate domain, we can refine the set of input
parameters that reaches g() on this path so that param ∈ [2, 2].
As the idea behind tracking a graph of stack frames is to reuse methods from shape
analysis for recursive data structures, we handle recursion by adding self-loop edges to the
graph and computing a summary for recursive calls. However, the implementation of the

67



2 Binary Analysis Framework

summarization approach does not yet handle tail recursion. A more detailed discussion
how the flags connect callers and callees and how we leverage the undef domain to merge
different stack layouts is presented in Chap. 5.
Note that we did not perform an experimental evaluation of both approaches as in

[Mar99]. It would be interesting to compare the approaches using different domains in
order to see how the precision vs. scalability trade-off turns out in practice. Especially, as
both approaches are on opposite sides of the precision and scalability continuum. Future
work should address the evaluation of both approaches and their combination, which may
introduce a greater flexibility in interprocedural analysis.

2.8 Related Work

While many static analyses for executables exist, most of them do not raise above the ab-
straction level of our L(finite) interface which precludes the use of classic numeric domains
that assume that variables range over Z. The latter domains, however, are particularly
attractive as they have been shown to scale up to the analysis of large-scale C programs
comprising several 100kLOC [Bla+03a]. When analyzing C rather than binaries, the result
of each assignment can be checked for overflow since the types of the high-level language
indicate if signed or unsigned arithmetic is used. This distinction is lost for many assembler
instructions. For instance, add, sub and shl on Intel x86 carry no signedness information.
This difficulty seems to be reason enough for products such as CodeSurfer/x86 [Bal+05] to
consider numeric domains ranging over Z2w , that is, domains that perform operations over
a modulus ring, in order to calculate the input/output behavior of a basic block [Eld+11].
Interestingly, it is possible to synthesize transfer functions for a complete basic block that
very accurately model bit-level operations composed of xor and shl [KS10]. However,
this technique requires expensive SAT solving and does not scale to 64-bit architectures
[Eld+11]. Moreover, it is neither flexible since every new property has to be added to the
Boolean formula passed to the SAT solver nor are the results easy to interpret. Note that
SAT solving methods can still be integrated in our framework using the finite domain
interface. Indeed, by only tracking variables defined by bit-level operations and using
numeric domains to query and update other variables, much smaller Boolean formulas can
be obtained as described in Sect. 2.5.3.
One recent approach to deal with wrapping in interval arithmetic [Nav+12] is to treat

intervals as a superposition of signed and unsigned values until operations require the
concretization of the sign. This is similar to our approach of implementing wrapping
as a domain as we track intervals over Z and execute sign agnostic operations on this
representation. The representation chosen by Navas et. al [Nav+12] is more precise on
certain arithmetic operations but introduces problems such as non-monotonicity and a non
associative join. The resulting domain is not a lattice anymore. In order to maintain precise,
terminating and sound transfer functions requires special care, which, in turn complicates
the fixpoint. Furthermore, their approach is limited to intervals whereas we aim for a
modular implementation of wrapping using only transfer functions on child domains.
One drawback of our approach is that equality relations are lost when wrapping unbounded

68



2.8 Related Work

values as the wrapping domain assigns the saturated range to such variables during
wrapping. Future work should consider the ideas from [BLH12] to improve on this.
Another challenging aspect of analyzing low-level code, be it C or assembler, is the

reconstruction of the memory layout. Our approach of using field inference [Min06a]
for registers seems novel and is conceptually simpler than approaches [CD11] based on
program transformation.
Due to the conceptual simplicity, the call-string approach is widely used in interpro-

cedural static analyses [SIG07; Mar99; KK08b] as well as in the analysis of executables
[Bal07; Kin10; Lak+11; Boc09]. When dealing with recursion the call-string method is
far from optimal as it re-analyzes a recursive function k times before a summarization is
performed. To solve this issue Khedker et. al [KK08b] and later Lakhotia et. al [Lak+11] try
to recognize recursive procedure calls by using regular expressions on the call-string. If a
series of recursive calls is recognized the call-string is not augmented and a summarization
is performed. Furthermore, Khedker et. al [KK08b] solve another shortcoming of call-string
analysis, namely, the redundant re-analysis of a procedure due to a different call-string even
if the input state parameters are the same. In such cases it would be advisable to re-use an
already existing analysis result of the procedure. To this end they propose to use a tuple
〈S] ×K〉 consisting of the abstract state and the call-string as context for interprocedural
analyses. However, this extension is only guaranteed to terminate for lattices with finite
height.
Apinis et. al [ASV12] take the idea of using the state as a context further. They propose an
interprocedural framework where only partial state information is used as context, which
allows to fine-tune the analysis to e.g. treat global variables as context-insensitive whereas
procedure parameters are analyzed with full context-sensitivity. Moreover, they show how
the problem of non-termination with infinite lattices can be solved in their framework.
Future work should consider including some of their ideas in our framework. However, in
order to be able to use relational domains to compute partial state contexts, methods such
as variable packing [Bla+03b; VB04] might be necessary.

The problems of applying widening in the context of binary analysis has attracted little
attention so far. It has been observed that narrowing after widening may lead to a precision
loss in domains whose transfer functions depend on the values of variables [SK06]. The
reconstruction of the CFG can be thought of as such a domain: If the pointer offset into
a table of jump goals is temporarily unrestricted after widening, the set of possible jump
targets is meaningless and the analysis cannot continue.
In the next chapter we will detail how our novel approach to implement widening heuristics
as abstract domains and, in particular, the use of widening thresholds significantly improves
the precision of widening.

69





Part | II
Precision Improvements through

Novel Abstract Domains

71





3 | Widening as an Abstract Domain

3.1 Introduction

Adding numeric domains of infinite height to a static analysis requires that widening
and/or narrowing is applied within each loop of the program to ensure termination
[CC76; CC77; CC92a]. Commonly, this is implemented by modifying the fixpoint algorithm
to perform upward and downward iterations while a pre-analysis determines necessary
widening points. Firstly, downward iterations can be problematic since a widened state
can induce a precision loss that cannot be reverted with the narrowed numeric state
[HH12; SK06]. Secondly, determining a best set of widening points is not even possible
for irreducible control flow graphs (CFGs) [Bou93]. Worse, these algorithms cannot be
applied in the context of analyzing machine code, as the CFG is re-constructed on-the-fly
while computing the fixpoint [Bal+05]. Moreover, narrowing alone is often not enough to
obtain precise fixpoints which has been illustrated in many papers that present improved
widenings/narrowings [GR06a; GR07; HH12; LJG11; SK06].
All of these approaches require disruptive changes to the fixpoint engine, for instance,

tracking several abstract states [GR06a], temporarily disabling parts of the CFG [GR07],
performing a pre-analysis with different semantics [HPR97; LJG11], widening with respect
to “landmarks” [SK06] or referring to user-supplied thresholds [Bla+02; Kir+12; LL11].
This chapter shows that widening and its various refinements can be implemented

without modifying an existing fixpoint engine, thereby making numeric domains available
to analyses that are oblivious to the challenges of widening. Specifically, we implement
the inference of widening points and the various widening heuristics as abstract domains
that can be plugged into an analysis in a modular way. The key idea of our approach is
to implement abstract domains as cofibered domains [Ven96], an approach sometimes
called “functor domains” [Bla+03a]. This modular approach not only reduces the overall
complexity of an analysis, it also facilitates the comparison and combination of various
widening heuristics.

3.1.1 Rapid Convergence

Figure 3.1 presents a simple loop and the corresponding CFG. Consider inserting a widening
operator into the equation of the no-op edge from v6 to v3, yielding s3 := s3∇D (s3 tD
F 3

6 (s6)) = s3∇D (s3 tD s6). Although because of widening termination is now guaranteed,

73



3 Widening as an Abstract Domain

1 int x = 0;
2 int y = 0;
3 while (x <= 99){
4 x = x + 1;
5 y = y + 1;
6 }
7

step line intervals affine thresholds
x y

1 2 [0, 0] x = 0
2 3 [0, 0] [0, 0] x = 0, y = 0
3 4 [0, 0] [0, 0] x = 0, y = 0 x ≤ 99
4 5 [1, 1] [0, 0] x = 1, y = 0 x ≤ 100
5 6 [1, 1] [1, 1] x = 1, y = 1 x ≤ 100
6 3 t [0, 1] [0, 1] x = y x ≤ 100
6’ 3’ ∇ [0, 100] [0, 100] x = y x ≤ 100
7 4 [0, 99] [0, 99] x = y x ≤ 99, x ≤ 100
8 5 [1, 100] [0, 99] x = y + 1 x ≤ 100
9 6 [1, 100] [1, 100] x = y x ≤ 100
10 3 v [0, 100] [0, 100] x = y x ≤ 100
11 7 [100, 100] [100, 100] x ≤ 100

x = 0 y = 0 x <= 99 x = x + 1 y = y + 1

x > 99

1 2 3 4 5 6

7

Figure 3.1: Rapid convergence during widening.

the result of, say, an interval analysis [CC77] is imprecise: {x ∈ [0, 0], y ∈ [0, 0]}∇D {x ∈
[0, 1], y ∈ [0, 1]} = {x ∈ [0,∞], y ∈ [0,∞]}. This stable post-fixpoint can, in principle, be
made more precise by replacing the widening with a narrowing operator and re-running
the fixpoint computation just for the loop body. However, this requires meddling with the
fixpoint engine in order to identify the loop and its in- and outgoing edges and changing
the way states are handled: for example our updates sj := sj tD F ji (si) are extensive
[HH12] (sj vD sj tDF ji (si)) so that the states cannot shrink by evaluating the updates. We
therefore avoid narrowing altogether to avoid changing the way states are stored. Instead,
the next chapters present domains that implementmore precise widenings. Before detailing
these, we will show how the example of the simple loop is analyzed using our widening
abstract domains. We illustrate this using a cofibered threshold domain T and a cofibered
affine domain A and the interval domain to build the domain stack T �A� I.
The table in Fig. 3.1 presents the analysis of the loop over T �A� I where the state of

each domain is written in a separate column. The states of the interval and affine domain
for steps 1 to 6 are straightforward. The threshold domain tracks all conditions in guards
that are redundant. A test is said to be redundant if it does not modify the state if applied.
Here in step 3 x <= 99. These so-called predicates are transformed by assignments, here
yielding x ≤ 100 after x = x + 1;. In step 6, the state at line 3: x, y ∈ [1, 1] corresponding
to one loop iteration is joined with the previous state at line 3: x, y ∈ [0, 0], yielding the
intervals [0, 1] for both, x and y together with the affine relation x = y and the threshold
x ≤ 100 since it is still redundant in the joined state. The interim step 6’ shows how the
state obtained at step 2 is widened with respect to the state at step 6: the threshold domain
applies widening on its child, yielding x, y ∈ [0,∞] for the interval domain while the

74



3.1 Introduction

affine domain returns the join x = y. The affine domain always performs a join instead
of widening since its lattice is of finite height [Kar76]. The threshold domain then refines
this state by applying the test x ≤ 100. The affine domain passes this test to its child, the
interval domain, but also applies the tests σ(x ≤ 100) for any substitution σ = [x/y] that
can be derived from equalities over x. This refines the interval domain to x, y ∈ [0, 100]

as shown as step 6’. Steps 7 to 10 ascertain that this state is indeed a fixpoint of the loop,
yielding the post-condition shown as step 11.
The example illustrates two consequences of this cofibered arrangement of domains:

firstly, it is a modular way of combining several domains, thus keeping each domain simple;
secondly, information can be propagated between domains by applying several operations
on a child C for each operation on the parent D.
One might argue that the modular design itself creates the need for propagation which is

unnecessary when using a monolithic domain such as an off-the-shelf polyhedra package
[Bag+05]. However, combining several simple domains allows for a more flexible trade-off
between efficiency and precision by adjusting the interaction between domains [SMS11].
For instance, in this modular setup, the information in the affine domain is not intermingled
with information on variable bounds, thereby allowing the affine domain (which has finite
height) to compute a join while the interval domain performs widening.

3.1.2 Abstract Domains for Widening

The implementation of the various widening strategies builds on the ability to separate
various concerns into individual domains. These domains are as follows:

Widening Points Domain: Rather than enhancing a fixpoint engine to identify widening
points in loops,we propose a domain that turns a join operation into a widening when
it observes that the state is propagated along a back-edge of the CFG. This simple
technique for irreducible CFGs [Bou93] and CFGs that are constructed on-the-fly
[Bal+05] works surprisingly well in practice.

Delay Domain: A domain which postpones widening is presented that ensures precise
results for loops containing assignments of constants. These assignments often occur
due to loop initialization code or state machines inside a loop.

Threshold Domain: We implement widening with thresholds [Bla+03a; HPR97] but infer
the thresholds automatically. We present the basic domain that infers thresholds
from tests. Unlike previous work [LJG11] that extracts thresholds from a pre-analysis
using the domain of polyhedra [CH78], our domain is independent of any numeric
domain.

Phased Domain: We provide an automatic way to separate the state space of loops into
several phases, where phase boundaries are automatically inferred from tests within
the loop, similar to guided static analysis [GR07]. This domain can be seen as an
instance of a decision tree domain combinator [Cou+06].

75



3 Widening as an Abstract Domain

3.2 Inferring Widening Points

For programs made up of well-nested loops, widening is only required at each loop head
in the program [CC92b], which renders fixpoint computations relatively straightforward.
However, widening, unlike join, is not monotone, commutative nor associative [Cor08] thus
for better precision a minimal set of widening points is desirable. However, for programs
with irreducible CFGs, it is generally necessary to place more than one widening point
in each cycle [Bou93] and, hence, a widening heuristic must not lose precision when
widening is applied several times within a loop. This, in turn, implies that a conservative
heuristic, which suggests rather many widening points, suffices. We now present such a
heuristic that is also applicable to the analysis of machine code, implemented as abstract
domainWP. The domain observes back-edges, that is, information flowing from higher
to lower addresses. Once observed, the next join onWP � C translates to a widening on
the child C.

[[l : x = e]]WP〈〈lw, fw〉, c〉 = 〈〈l, fw ∨ (l < lw)〉, [[l : x = e]]Cc〉)
[[l : e ≤ 0]]WP〈〈lw, fw〉, c〉 = 〈〈l, fw ∨ (l < lw)〉, [[l : e ≤ 0]]Cc〉)
〈w1, c1〉 vWP 〈w2, c2〉 = c1 vC c2

〈〈lw1 , fw1 〉, c1〉 tWP 〈〈lw2 , fw2 〉, c2〉 =

{
〈〈l, false〉, c1∇lC c2〉 if fw1 ∨ fw2
〈〈l, false〉, c1 tC c2〉 otherwise

where l = max(lw1 , l
w
2 )

Figure 3.2: Lattice and transfer functions for the widening point domain.

For the sake of finding back-edges, we assume that statement labels l ∈ Lab represent
the code address of a statement or test. The widening points domain is given by the lattice
〈WP � C,vWP,tWP ,uWP〉 whereWP : Lab× {true, false} is a tuple of the last program
point and a flag indicating if a backward edge has been observed. If set, widening is
applied at the next junction node at which point the loop is usually completely traversed.
Figure 3.2 defines the domain operations, that is, the transfer functions for assignment and
the lattice functions for subset and join. Each function operates on tuples 〈w, c〉 ∈ WP � C
where w ≡ 〈lw, fw〉 ∈ WP. The transfer functions [[·]]WP onWP apply the corresponding
operation [[·]]C on the child c ∈ C while tracking the current label l and whether a backward
edge lw → l with l < lw has been observed. The subset test vWP translates to a subset
test on the child, indicating that theWP domain does not actually infer any information
about the state of the program and is therefore, per definition, stable. The only effect of
the domain is that the join tWP translates to a widening operation ∇lC on the child if one
of the flags fwi is true.
Consider the CFG in Fig. 3.3 showing a common translation pattern of loops to machine

code. The loop test condition is not at the loop entry but at the end of the loop. The domain
state for the widening points domainWP is shown on the edges of the CFG. The rationale
behind tracking a flag fw instead of applying widening immediately on back-edges is

76



3.2 Inferring Widening Points

〈1, false〉 〈3, true〉 〈4, true〉 〈5, false〉

〈6, false〉

〈5, false〉〈2, false〉

1 2 3 4 5 6

7

Figure 3.3: Common pattern for loops in machine code. The loop condition is at the end
of the loop where the loop is also entered.

that widening should happen between the state that enters the loop and the state on
the back-edge. Particularly, widening should be applied at the loop head. However, in the
example in Fig. 3.3 the node reached by the back-edge l6 to l3 does not have an incoming
edge. Widening at l3 in the first iteration is applied between ⊥ and the new state, thus
postponing the extrapolation of widening till the second iteration. Our approach marks l5
as widening node thus not delaying widening in such cases.

x = 0 x < 100 y = 0 y < 10

y >= 10

y = y + 1

x = x + 1

x >= 100

1 2 3 4 5 6

7

Figure 3.4: Nested loops with two widening points.

Note that this domain is more precise than the standard technique of marking nodes as
widening points [Bou93] since widening is applied only after a back-edge. For instance,
in Fig. 3.3, widening is only applied when updating node l5 with a state from l4 but no
widening is applied when propagating the state from l2 to l5, as this path is not a back-edge.
This feature to not apply widening on the edge that enters a loop [AS13] is especially
crucial for the analysis of nested loops. Consider Fig. 3.4 showing the CFG of two nested
loops. After the analysis infers the bounds for y using widening at l4 the inner loop is
exited and the outer loop is analyzed. After incrementing x and performing widening at l2
the inner loop is entered again at widening point l4. Now variable x has changed its value
with regard to the previous iteration at this point. Applying widening on this edge l3 to l4
would lose the bounds for x. Yet, performing a join when entering the loop and applying
widening only on the back-edge l5 to l4 maintains precision as x is not incremented in the
inner loop. In particular, the value of x in the state propagated on the back-edge has not
changed with regard to the value on the loop incoming edge and widening is a no-op for x.

77



3 Widening as an Abstract Domain

One drawback of the simple heuristic to infer widening points is that function calls
that jump to smaller addresses are recognized as back-edges. States propagated along
these call-edges are widened at the function entry point. As some languages require func-
tion definitions to appear before their use, code compiled from such languages contains
spurious widening points at function entries. If the call-string approach is used for the
interprocedural analysis (see Sect. 2.7) the address labels l ∈ Lab can be augmented to
additionally contain the call-string l ∈ 〈Lab ×K〉. By taking the call-string into account
procedure calls to lower addresses may not necessarily be flagged as back-edges.

The ability to add widening to an analysis without changing the fixpoint can also be
carried over to various other widening heuristics, as detailed next.

3.3 Delaying Widening after Constant Assignments

It is widely acknowledged that computing a few iterations of a loop without widening
can improve the precision of the computed fixpoint [Bla+02; Bag+05]. For instance, the
program in Fig. 3.5 may set the variable y to 1 depending on some external event where
read()may return the value of some sensor in a control software [Bla+03a; Cou+06]. We
show an analysis given the domain stack T � (CR� I) where CR is the domain tracking
congruence information. The table in Fig. 3.5 shows how widening the state at step 7’ with
respect to that at step 2 yields x ∈ [0, 0]∇lI [0, 4] = [0,∞] and y ∈ [0, 0]∇lI [0, 1] = [0,∞].
The former interval can be refined by the threshold x ≤ 103 to x ∈ [0, 100] since the
congruence x ≡ 4 is tracked, i.e. x is a multiple of four. The loop test x < 100 then yields
the precise value for x in step 8: x ∈ [0, 96]. However, the upper bound for y is lost. The
common approach to improve the precision is to delay widening [HPR97], that is, to
compute another iteration of the loop using the joined state at step 7. For instance, after
the second iteration, widening y ∈ [0, 1]∇lI [0, 1] = [0, 1] will not change the value of y
since it is stable.

3.3.1 Tracking Constant Assignments

Rather than fixing the number of times widening should be delayed, which is impossible to
get right in all cases, we track if widening would alter variables that were set to a constant.
To this end, we define a delaying domain given by the lattice 〈WD � C,vWD,tWD,uWD〉
where WD : ℘(Lab) is a set of program points with constant assignments. The transfer
functions in Fig. 3.6 simply collect those program points that assign a constant to a variable.
Performing widening onWD will check if this set has increased and, if so, perform a join
instead of a widening. For example, in step 7 of Fig. 3.7, the set of constant assignment
locations contains a new program point 5 when compared to the state at step 2. Thereby
the domainWD will delay widening and the fixpoint computation is performing another
iteration based on the state at step 7.

78



3.3 Delaying Widening after Constant Assignments

1 int x = 0;
2 int y = 0;
3 while (x < 100){
4 if (read ())
5 y = 1;
6 x = x + 4;
7 }
8 ...

step line intervals congruences thresholds
x y

1 2 [0, 0]
2 3 [0, 0] [0, 0]
3 4 [0, 0] [0, 0] x ≤ 99
4 5 [0, 0] [0, 0] x ≤ 99
5 6 t [0, 0] [0, 1] x ≤ 99
6 7 [4, 4] [0, 1] x ≤ 103
7 3 t [0, 4] [0, 1] x ≡ 4 x ≤ 103
7’ 3’ ∇ [0,100] [0,∞] x ≡ 4 x ≤ 103
8 4 [0, 96] [0,∞] x ≡ 4 x ≤ 99, x ≤ 103
9 5 [0, 96] [0,∞] x ≡ 4 x ≤ 99, x ≤ 103
10 6 t [0, 96] [0,∞] x ≡ 4 x ≤ 99, x ≤ 103
11 7 [4, 100] [0,∞] x ≡ 4 x ≤ 103
12 3 v [0, 100] [0,∞] x ≡ 4 x ≤ 103
13 8 [100, 100] [0,∞] x ≤ 103

Figure 3.5: Widening after one iteration loses the bound on y.

[[l : x = e]]WD〈d, c〉 = 〈d ∪ l̄, [[l : x = e]]Cc〉 where l̄ =

{
{l} if e ∈ Z
∅ otherwise

〈d1, c1〉 vWD 〈d2, c2〉 = c1 vC c2

〈d1, c1〉 tWD 〈d2, c2〉 = 〈d1 ∪ d2, c1 tC c2〉

〈d1, c1〉∇lWD 〈d2, c2〉 = 〈d1 ∪ d2, c〉 where c =

{
c1∇lC c2 if d2\d1 = ∅
c1 tC c2 otherwise

Figure 3.6: Lattice and transfer functions for the delaying domain.

Note that the delaying of widening is possible at any iteration, not only the first. For
example, consider the condition in line 4 being if (x == 40) in which case widening is
applied in the first loop iteration and ensures that in the next iteration line 5 is reached by
the analysis. Only now variable y is set, causing widening to be suppressed for the current
iteration by the delaying domain, which in turn preserves the exact bounds for y.

3.3.2 Syntactic vs. Semantic Constants

In the transfer functions in Fig. 3.6 an assignment is added to the set of constant assign-
ments if the right-hand-side expression e syntactically consists of only a constant. However,
a slightly modified version of the example in Fig. 3.5 as shown in Fig. 3.8 a) motivates an
extension to this simple approach. In this example the right-hand-side of the assignment
y = z + 1; in line 6 is not a constant expression syntactically but evaluates to a constant
expression. Similarly, the example in Fig. 3.8 b), as shown in [McM11], requires an eval-
uation of the assignment y = 1 - y; in line 4 before it can be recognized as a constant
assignment. We implemented this so-called “semantic constants” recognition by querying
the child domain for the value of an expression, that is, we check if [[e]]Cc ∈ Z. Using
this semantic method we were able to improve the precision for some of our benchmarks

79



3 Widening as an Abstract Domain

1 int x = 0;
2 int y = 0;
3 while (x < 100){
4 if (read ())
5 y = 1;
6 x = x + 4;
7 }
8 ...

step line intervals congr. thresholds · delayed
x y ·

1 2 [0, 0] · {1}
2 3 [0, 0] [0, 0] · {1, 2}
3 4 [0, 0] [0, 0] x ≤ 99 · {1, 2}
4 5 [0, 0] [0, 0] x ≤ 99 · {1, 2}
5 6 t [0, 0] [0, 1] x ≤ 99 · {1, 2, 5}
6 7 [4, 4] [0, 1] x ≤ 103 · {1, 2, 5}
7 3 t [0, 4] [0, 1] x ≡ 4 x ≤ 99, x ≤ 103 · {1, 2, 5}
8 4 [0, 4] [0, 1] x ≡ 4 x ≤ 99, x ≤ 103 · {1, 2, 5}
9 5 [0, 4] [0, 1] x ≡ 4 x ≤ 99, x ≤ 103 · {1, 2, 5}
10 6 t [0, 4] [0, 1] x ≡ 4 x ≤ 99, x ≤ 103 · {1, 2, 5}
11 7 [4, 8] [0, 1] x ≡ 4 x ≤ 103 · {1, 2, 5}
12 3 t [0, 8] [0, 1] x ≡ 4 x ≤ 103 · {1, 2, 5}
12’ 3’ ∇ [0,100] [0,1] x ≡ 4 x ≤ 103 · {1, 2, 5}
· · · · · · · · ·

17 3 v [0, 100] [0, 1] x ≡ 4 x ≤ 103 · {1, 2, 5}
18 8 [100, 100] [0, 1] x ≤ 103 · {1, 2, 5}

Figure 3.7: Delaying widening until y is stable maintains the precise bounds.

a)

1 int x = 0;
2 int y = 0;
3 int z = 0;
4 while (x < 100) {
5 if (...)
6 y = z + 1;
7 x = x + 4;
8 }

b)

1 int x = 0;
2 int y = 0;
3 while (x < 100) {
4 y = 1 - y;
5 x = x + 4;
6 }

Figure 3.8: Assignments in loops that require delayed widening to not lose precision.

as compared to the syntactic constants. In our experiments the delaying domain tracks
10 times more constant assignments than with the syntactic constants method. Most of
these additional constants originate from assignments in incrementation code such as
i = i + 1; that are considered constant during the first loop iteration. As a consequence
widening is sometimes unnecessarily delayed for the first loop iteration which slows down
the convergence but also improves precision.

3.3.3 Conclusion

Delaying widening on constant assignments is a good heuristic especially for code that
implements state machines, e.g. code used in parsers. Hence, the delaying domain is
necessary to prove correct the email address parsing code discussed in Sect. 9. Nevertheless,
it is a heuristic and in general it is not possible to automatically decide when widening
has to be delayed to maintain precision and a rapid fixpoint convergence. Most analyzers
therefore employ user defined rules to delay widening for the first n loop iterations. We

80



3.4 Widening with Thresholds

show that for some common cases widening delays can be automatically inferred and
widening can be suspended in any iteration of the fixpoint computation, not only the first
iterations.

3.4 Widening with Thresholds

[[l : x = e]]T 〈t, c〉 = 〈[p 7→ l̄t ∈ t | x /∈ vars(p)]∪
[σ−1(p) 7→ l̄t ∪ {l} | p 7→ l̄t ∈ t ∧ l /∈ l̄t ∧ σ = [x/e] ∧ σ−1(p) exists],
[[l : x = e]]Cc〉

[[l : e ≤ 0]]T 〈t, c〉 = 〈filter(t[e ≤ 0 7→ ∅]), [[l : e ≤ 0]]Cc〉
〈t1, c1〉 vT 〈t2, c2〉 = c1 vC c2

〈t1, c1〉 tT 〈t2, c2〉 = 〈filter(t, c), c〉 where t = join(t1, t2) and c = c1 tC c2

〈t1, c1〉∇lT 〈t2, c2〉 = 〈filter(t, c), c〉 where t = join(filter(t1, c2),filter(t2, c1)) and
c=[[l : p1]]C. . . [[l : pn]]C(c1∇lC c2) ∧ pi∈{e1≤0, . . . , en≤0}=dom(t)

Figure 3.9: Transfer and lattice functions for the threshold domain.

Widening is necessary to ensure termination when a fixpoint is computed over a domain
of infinite height. One problem of widening is that the obtained fixpoint is almost always a
post-fixpoint, that is, it is larger than the least fixpoint. This section shows how predicates
occurring in tests can be used as thresholds to restrict the widened state, thereby often
giving better results than narrowing can provide.

3.4.1 Tracking Widening Thresholds

Let Pred be a set of predicates that are used as conditions in tests. We require that the
negation ¬p of p ∈ Pred exists and that ¬p ∈ Pred where ¬(¬p) ≡ p. In practice, we
gather all tests convertible to linear inequalities and assume integer arithmetic, that is:
¬(a1x1 + . . .+ anxn ≤ c) ≡ a1x1 + . . .+ anxn ≥ c+ 1.
The threshold domain is given by the lattice 〈T � C,vT,tT ,uT 〉 where the universe
T : Pred 99K ℘(Lab) is a partial map from redundant tests p ∈ Pred to a set of program
points. This tracked set contains the program points where p has been transformed due to
assignments on a variable in p. We update t ∈ T to t′ = t[p 7→ l] ∈ T with t′(p) = l and
t′(p) = t(q) for q 6= p. We use [p 7→ . . .] to construct a new mapping and ∅ for the empty
map. We enforce the invariant that all tests p ∈ Pred are redundant in the child domain by
applying filter : T × C → T which is defined as:

filter(t, c) = [p 7→ t(p) | p ∈ dom(t) ∧ [[p]]Cc = c]

where [[p]]Cc ∈ C computes a state of the child domain in which the test p has been applied.
Note that we may use the cheaper test [[¬p]]Cc = ⊥C to check for redundancy of p instead
of [[p]]Cc = c, although this test is less precise on some child domains C.

81



3 Widening as an Abstract Domain

Figure 3.9 presents the transfer functions and lattice operations of the threshold domain.
An assignment x = e at program point l ∈ Lab is forwarded to the child. All thresholds
that are not affected by the write to x are kept as is while predicates p that mention x are
kept if an inverted substitution σ−1 exists where σ = [x/e].
However, transforming a threshold infinitely many times in a loop can lead to non-
termination as the transformed threshold remains redundant and is therefore repeatedly
applied. Thus, we allow only one transformation for each program point. To ensure this we
track a set of locations l̄where a threshold has been transformed. A repeated transformation
at a program point l is disallowed by checking if the threshold has already been transformed
at the current location l, that is, checking if l ∈ l̄. For instance, consider the assignment
x = x + 1; in line 4 in Fig. 3.1 where t = [x ≤ 99 7→ ∅] ∈ T and C = I the interval domain
with x ∈ [0, 1]. With σ = [x/x+ 1], we obtain σ−1 = [x/x− 1] and σ−1(x ≤ 99) = x ≤ 100.
Thus, the state after the assignment is 〈[x ≤ 100 7→ {4}], x ∈ [1, 2]〉. Note that the result-
ing threshold is again 98 units away from the current state space. Indeed, transforming
thresholds ensures that each threshold remains redundant. Transformation is necessary to
infer the precise fixpoint at the loop head: x ∈ [0, 100]. Only using the constants from the
loop conditions as thresholds, i.e. 99, does not give a stable state after widening.
If x /∈ vars(e) or if e is not linear, σ−1 does not exist and the threshold is removed. However,
it is possible to leverage the child domain to ask for σ−1 and thus keep a threshold. For
example, the affine domain or the polyhedra domain track relations between variables
that can be used to generate σ−1. Consider again, t = [x ≤ 99 7→ ∅] ∈ T but C = A � I
and the affine domain tracking {x = z}. For the assignment x = 10; there exists no
σ−1 in the threshold domain but we obtain σ−1 = [x/z] from the child domain and thus
t = [z ≤ 99 7→ ∅] ∈ T . This feature is of great use for the analysis of machine code. Here,
memory variables are loaded into registers before being tested in loop conditions. Because
of reuse of registers the tested register is often overwritten by another memory load before
the widening point. Hence, affine equalities are necessary to propagate thresholds from
loop conditions to widening points.
The next transfer function is for tests. Redundant tests are collected as new thresholds

whereas tests that happen to actually restrict the incoming state space c are removed by
filter. Note that we split disequalities e 6= 0 in two inequalities: e < 0 and 0 < e before
we consider them as thresholds. With respect to the lattice operation, the entailment test
〈t1, c1〉 vT 〈t2, c2〉 reduces to an entailment test on the child. The join 〈t1, c1〉 tT 〈t2, c2〉
uses a function join that merges the program points tracking transformations point-wise
as follows:

join(t1, t2) =

p 7→ l̄t1 ∪ l̄t2 | l̄ti =

ti(p) if p ∈ dom(ti)

∅ otherwise


p∈dom(t1) ∪ dom(t2)

Again, applying filter removes thresholds that are not redundant in c1 tC c2. Given the
collected thresholds, widening 〈t1, c1〉∇lT 〈t2, c2〉 is now able to refine the widened child
state c1∇lC c2 by applying all the tracked predicates e1 ≤ 0, . . . , en ≤ 0 that are redundant
in both domains.

82



3.4 Widening with Thresholds

We will now demonstrate an analysis using thresholds with the interval domain as child
yielding the domain stack T �I. The code in Fig. 3.10 shows two nested loops as commonly
used in matrix computations, e.g. performing a triangular scanning of a 2-dimensional
array that represents the matrix. We omitted the array accesses for brevity. The table
shows the analysis using the domain stack T � I. In the presentation of the thresholds
domain state T we do not show the tracked set of transformation points for each threshold.
However, in steps 9, 20 and 23 we remove thresholds that have already been transformed
once at this point. In step 15 the threshold j ≤ i is removed due to j being overwritten by
the assignment j = 0; in line 4.

1 int i = 0;
2 int j = 0;
3 while (i <= 99){
4 j = 0;
5 while (j <= i){
6 j = j + 1;
7 }
8 i = i + 1;
9 }
10 ...

step line intervals thresholds
i j

1 2 [0, 0]
2 3 [0, 0] [0, 0]
3 4 [0, 0] [0, 0] i ≤ 99
4 5 [0, 0] [0, 0] i ≤ 99
5 6 [0, 0] [0, 0] i ≤ 99, j ≤ i
6 7 [0, 0] [1, 1] i ≤ 99, j − 1 ≤ i
7 5 t [0, 0] [0, 1] i ≤ 99, j − 1 ≤ i
7’ 5’ ∇ [0, 0] [0,1] i ≤ 99, j − 1 ≤ i
8 6 [0, 0] [0, 0] i ≤ 99, j − 1 ≤ i, j ≤ i
9 7 [0, 0] [0, 1] i ≤ 99, j − 1 ≤ i
10 5 v [0, 0] [0, 1] i ≤ 99, j − 1 ≤ i
11 8 [0, 0] [1, 1] i ≤ 99, j − 1 ≤ i
12 9 [1, 1] [1, 1] i ≤ 100, j ≤ i
13 3 t [0, 1] [0, 1] i ≤ 100, j ≤ i
13’ 3’ ∇ [0, 100] [0,100] i ≤ 100, j ≤ i
14 4 [0, 99] [0, 100] i ≤ 99, i ≤ 100, j ≤ i
15 5 [0, 99] [0, 0] i ≤ 99, i ≤ 100
16 6 [0, 99] [0, 0] i ≤ 99, i ≤ 100, j ≤ i
17 7 [0, 99] [1, 1] i ≤ 99, i ≤ 100, j − 1 ≤ i
18 5 t [0, 99] [0, 1] i ≤ 99, i ≤ 100, j − 1 ≤ i
18’ 5’ ∇ [0, 99] [0,100] i ≤ 99, i ≤ 100, j − 1 ≤ i
19 6 [0, 99] [0, 99] i ≤ 99, i ≤ 100, j − 1 ≤ i, j ≤ i
20 7 [0, 99] [1, 100] i ≤ 99, i ≤ 100, j ≤ i
21 5 v [0, 99] [0, 100] i ≤ 99, i ≤ 100, j − 1 ≤ i
22 8 [0, 99] [100, 100] i ≤ 99, i ≤ 100, j − 1 ≤ i
23 9 [1, 100] [100, 100] i ≤ 100, j ≤ i
24 3 v [0, 100] [0, 100] i ≤ 100, j ≤ i
25 10 [100, 100] [100, 100] i ≤ 100, j ≤ i

Figure 3.10: Applying widening with thresholds on nested loops.

The example shows that thresholds will be applied several times at a widening point if
they are still redundant. The threshold j ≤ i transformed to j − 1 ≤ i is applied during
the first analysis iteration of the inner loop at step 7’ restricting j to [0, 1]. After another
iteration the loop is stable in step 10 and we analyze the outer loop where widening with
thresholds infers the bounds i ∈ [0, 100] in step 13’ due to the threshold i ≤ 100. Note that
we also track the threshold j ≤ i which restricts the value of j in the same widening step.
Next we enter the inner loop again with a greater value for i. In this second iteration

of the inner loop we apply widening in step 18’ and use the threshold j − 1 ≤ i a second
time to restrict the values for variable j. Finally, the inner loop becomes stable (step 21)

83



3 Widening as an Abstract Domain

and the outer loop stabilizes next (step 24). We were able to infer the precise fixpoint for
both loops.
Note that it is necessary to propagate thresholds in and out of loops to maintain the

precision for variable j. In step 13’ widening at the outer loop would remove the upper
bound of j if not for the threshold j ≤ i which is applied in conjunction with i ≤ 100.
Hence, we are able to infer that j ∈ [100, 100] outside of the loop in step 25.
However, allowing a repeated application of widening thresholds as long as they are

redundant is not without problems as will be discussed next.

3.4.2 Ensuring Termination

1 int x = 0;
2 int y = 1;
3 while (true) {
4 if (x < y)
5 x = x + 2;
6 else
7 y = y + 2;
8 }

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
y ≤ x+ 2

x < y + 2

x

y

state development with widening widening thresholds

Figure 3.11: Infinite application of widening thresholds.

Given the domain as defined in Fig. 3.9, an infinite application of thresholds and thus
non-termination can occur. Because thresholds are inequalities over arbitrary program
variables it is possible to have thresholds that remain redundant throughout the whole
analysis thus being applicable infinitely many times. The issue is demonstrated in Fig. 3.11.
The diagram shows the state and inferred thresholds during the analysis (with domain
stack T � I) of the program on the left. The variables x and y are incremented alternately
in each loop iteration resulting in a staircase function. Widening extrapolates the state
change in each iteration as shown by the dashed line. The problem is that the widening
state never “escapes” the thresholds, that is, render the thresholds non-redundant. For each
iteration it is possible to apply either the lower or the upper threshold. As only one variable
is modified in each loop iteration the extrapolated value can be bound using the value of
the other variable. Widening with thresholds over-approximates the staircase function but
will not eventually stabilize.
This observation requires to add a limit to the application of thresholds. If thresholds

cannot bind extrapolated values infinitely many times, widening will stabilize and termi-
nation is ensured. Instead of fixing the number of times that thresholds can be applied
up-front, we choose the limit depending on program properties. The main idea is to allow
the application of all thresholds at each widening point. If the state does not stabilize after

84



3.4 Widening with Thresholds

applying all the thresholds it probably won’t stabilize by applying them again. Hence, a
strategy is to allow threshold application during widening as many times as the number
of thresholds tracked by the domain. To account for state changes due to nested loops
that might require a re-application of a set of thresholds the limit we chose is this: number
of widening points × widening thresholds. This upper limit is inferred by the threshold
domain during the analysis. As both numbers are finite given a finite program, termination
is guaranteed.

3.4.3 Limitations of Narrowing

1 int n = 0;
2 while (true) {
3 if (! read_sec ())
4 continue;
5 if (n < 60) {
6 n = n + 1;
7 } else {
8 n = 0;
9 }
10 }

n = 0

n >= 60

n = 0

!read_sec()

n < 60

n = n + 1

1

23

4

5

Figure 3.12: A loop whose fixpoint cannot be obtained by narrowing.

Widening with thresholds can find least fixpoints where narrowing cannot [HH12].
Consider the program in Fig. 3.12 that tracks the seconds within a minute. The loop
repeatedly waits for a seconds signal that causes read_sec to return 1. The simplified CFG
of the program contains three loops. After propagating n = 0 to node 2, the loops through
node 3 and 4 are stable. The loop via node 5 yields n ∈ [0, 1] in node 2 which is widened
to n ∈ [0,∞]. The threshold n ≤ 59 is transformed by n = n + 1; to n ≤ 60 and is applied
after widening, yielding n ∈ [0, 60]. Narrowing, however, cannot deduce this fixpoint due
to the cycle via node 4 that introduces an extensive path [HH12] through the loop. During
the descending sequence of narrowing the values from nodes 3 and 5 are joined with the
value from node 4. The contributions from nodes 3, 5 improve the precision with respect
to widening, however, node 4 does not. Joining these states at node 2 does not lead to a
more precise state than the widened state, thus defeating the purpose of narrowing.
Similarly, when wrapping semantics are used for the values of variables (see Sect. 2.5.3)

narrowing cannot recover the precision loss introduced by wrapping [SMS11]. Consider the
simple program in Fig. 3.13 analyzed using classic widening and narrowing. We assume
the range of variable n to be in −231 . . . 231 − 1 as is usual for signed 32 bits integer values.
Widening n in step 4’ to [0,+∞] and testing its range at the loop condition will result in
the values n ∈ [−231, 100] containing spurious negative values due to wrapping. Applying
narrowing later in step 13 in the descending sequence cannot remove these introduced
negative values. Using the threshold domain widening will extrapolate the values of n to

85



3 Widening as an Abstract Domain

1 int n = 0;
2 while (n <= 100) {
3 n = n + 1;
4 }

step line intervals
n

1 2 [0, 0]
2 3 [0, 0]
3 4 [1, 1]
4 2 t [0, 1]
4’ 2’ ∇ [0,+∞]
5 3 � [−231, 100]
6 4 [−231 + 1, 101]
7 2 t [−231 + 1,+∞]
7’ 2’ ∇ [−∞,+∞]
8 3 � [−231, 100]
9 4 [−231 + 1, 101]
10 2 v [−∞,+∞]
11 3 � [−231, 100]
12 4 [−231 + 1, 101]
13 2 ∆ [−231 + 1,101]
14 3 [−231 + 1, 100]
15 4 [−231 + 2, 101]
16 2 v [−231 + 1, 101]

Figure 3.13: A loop for which narrowing cannot recover precision loss due to wrapping �.

[0, 101] as the threshold n ≤ 100 is transformed to n ≤ 101 inside the loop. Subsequently
applying the loop condition test n ≤ 100 at the loop header does not cause wrapping of
n. The threshold domain therefore allows to infer a more precise fixpoint than narrowing.
Additionally, widening with thresholds is faster and stabilizes in fewer iterations, here 7
steps, because wrapping and thus a second widening (step 7’) and narrowing is avoided.

Using narrowing to recover the precision loss of widening if often not possible. For
example narrowing has problems with disequalities as loop conditions, a common artifact
in machine code. Another problem is the spillage of the precision loss to other domains
[SK06]. When combining numeric domains with symbolic domains, e.g. a points-to do-
main, narrowing may recover the precision loss in the numeric domain but cannot remove
the spurious aliasing information that has been introduced due to widening.

Besides the precision improvements of thresholds widening over narrowing, we will
show next that thresholds are a versatile concept.

3.4.4 Using Thresholds to Restrict Widening after Constant Assignments

As an alternative approach to the delaying domain presented in Sect. 3.3 we implemented
a domain that synthesizes widening thresholds when seeing constant assignments. Hence,
widening is not delayed on the whole domain while improving the precision for variables
that are assigned constant values in loops. Consider again the example in Fig. 3.5 where
the assignment y = 1 inside a loop leads to widening of y and thus loss of precision. Using
a modified delay domainWD′ with the threshold domain as childWD′� T we can restrict
widening on y using synthesized thresholds. The domain WD′ observes the constant
assignment and applies the assignment as test y = 1 to the child domain. The threshold

86



3.4 Widening with Thresholds

domain as child then splits up the test and tracks two thresholds: y ≤ 1 and y ≥ 1 for
widening. When widening occurs at the loop header y, does not lose the upper bound
because of the threshold y ≤ 1.
Another positive effect of using thresholds to restrict widening is that we are more robust
to wrong choices of widening points. Consider the example below in Fig. 3.14 for which an
additional widening point is chosen for line 6. Applying widening on the else-branch as
in [1, 1]∇lT ([0, 0] t [1, 1]) = [−∞, 1] will lose the lower bound of the loop counter as we
only track the threshold x < 10. With synthesized thresholds for constant assignments we
would additionally track the threshold x ≥ 0 generated in line 1 and thus be more precise.

1 int i = 0;
2 while (i < 10) {
3 if (...) {
4 i++;
5 }
6 ...
7 }

Figure 3.14: Choosing line 6 as widening point may lose the lower bound of variable i.

Although this approach has benefits over the delaying domain it unnecessarily delays
widening in the first iteration. Due to loop counters often being initialized with a constant
the domain will introduce widening thresholds that restrict widening in the first iteration.
Only in subsequent iterations will widening extrapolate the value of the loop counter. This
shows the main drawback of the domain, namely the introduction of more iterations that
slow down convergence. Some of our experiments showed a 4 times slowdown compared
to the delaying domain. Additionally, as each constant assignment results in the application
of a test on the child domain the slowdown is even more evident when combined with
further domains that track tests. For example when combining this approach with the
phased domain discussed next, which uses tests to track separate child states, we noticed
an up to 10 times slower convergence. Furthermore, suppressing widening on the whole
domain state as done by the delaying domain improves precision in some cases as it
restricts widening for all modified variables not only the ones with constant assignments.

3.4.5 Conclusion

Widening with thresholds infers precise fixpoints that narrowing cannot infer and is faster
as it requires fewer iterations. Especially when analyzing machine code where wrapping
must be assumed everywhere, narrowing cannot recover the precision loss incurred by
widening and widening with thresholds is required to recover even simple loop invariants.
The propagation and transformation of thresholds is necessary to infer precise fixpoints but
may lead to non-termination as it allows to restrict widening indefinitely. Hence, care must
be taken to allow only finitely many applications of thresholds. A benefit of implementing

87



3 Widening as an Abstract Domain

a)

1 int x = 0;
2 int y = 0;
3 while (true) {
4 if (x <= 50) {
5 y++;
6 } else {
7 y--;
8 }
9 if (y < 0)
10 break;
11 x++;
12 }

b)

x = 0
y = 0

x <= 50 x > 50

y++ y--

x++

y < 0

1

3

5 7

9

c)

0 51 102

51

50 < x

y < 0

x

y

Figure 3.15: A loop containing phase transitions.

widening with thresholds as a separate abstract domain is that it allows to use relational
predicates as thresholds on top of domains that cannot express relational information, such
as intervals.

3.5 Guided Static Analysis

Numeric domains are usually convex approximations of the possible set of numeric values.
One drawback of convexity is that joining two states can incur a precision loss that cannot
later be recovered from. For example, the join of two intervals [0, 5] tI [15, 20] = [0, 20]

adds the spurious values 6, . . . , 14 and applying x ≤ 10 to this state is less precise than
applying it to the individual intervals. The idea of guided static analysis [GR07] is to avoid
this kind of precision loss by identifying different phases of a loop and to track a separate
state for each phase. The original proposal is formulated in terms of operations that restrict
the CFG to increasingly larger sub-graphs and to perform widening/narrowing on these
sub-graphs. In this section, we show that the same effect can be obtained by adding a
cofibered phase domain into the domain hierarchy, thereby avoiding any modification to
the fixpoint engine or to the handling of states.
Consider the loop in Fig. 3.15 a) that increments x, starting from zero. For the first fifty

iterations, y is incremented while in the next fifty iterations y is decremented. The loop
exits in the 102nd iteration when y becomes negative. The state space is depicted in Fig 3.15
c) where the two hyperplanes annotated with the predicates px ≡ x > 50 and py ≡ y < 0

mark the different phase transitions. In particular, observe that the three phases can be
characterized by the predicates that hold: for the first phase ¬px∧¬py holds, for the second
phase px ∧ ¬py and for the third phase px ∧ py. Thus, rather than characterizing the loop
phases by enabled sub-graphs of the CFG, we construct an abstract domain that tracks a
different child domain for each feasible valuation of the predicates. In a child c that is
tracked for the predicates p1, . . . pn, we assume that each predicate pi holds and, lest the

88



3.5 Guided Static Analysis

domain is imprecise, [[¬pi]]Cc = ⊥C for all i ∈ [1, n]. Thus, in the example, the predicates
¬px ∧ ¬py hold in the state of the first phase c1 and propagating c1 over the edge from
CFG node 3 to 7 in Fig. 3.15 b) yields an empty state, thereby simulating the fact that this
sub-path of the CFG is disabled. Analogous, a state c2 in which px ∧¬py holds has the path
3→ 5→ 9 disabled since it is guarded by px ≡ x > 50.
We implement the ideas of tracking several children depending on which predicates hold

in the cofibered phase domain that is given by the lattice 〈PH� C,vPH,tPH,uPH〉 where
PH : C × (Pred × PH)∗ × ℘(Pred) is a recursive type, representing a multi-way decision
tree. A node in this tree 〈c; p1 : t1; . . . pn : tn; p̄〉 ∈ PH contains a child domain c in which
predicates p1, . . . , pn ∈ Pred do not hold. The node has n sub-trees t1, . . . tn ∈ PH where
pi holds in ti. The set p̄ ⊆ Pred is a set of predicates that are unsatisfiable and represent
phases that have not (yet) been entered. Before we detail the transfer and lattice functions,
we consider the fixpoint computation in Fig. 3.16 using a domain stack T � PH�A� I,
that is, thresholds wrapping the phase domain, that wraps affine and intervals. We omitted
the states for some lines (4, 11) as the propagated states do not differ from the lines before.
Initially, the phase domain contains a single child domain c1 and no sub-trees as shown

in step 1 of Fig. 3.16. The idea of the phased domain is to gather all unsatisfiable tests as
possible phase predicates, adding them to the set p̄. Thus, step 2 adds the predicate x > 50

and step 4 adds y < 0. Note that, unlike the threshold predicates, the phase predicates
are not transformed. Once widening is applied in step 6’, the subtree t2 = c2; {y < 0} is
added. This new subtree is immediately disabled in step 7 and 8 due to the test x <= 50.
Analogously, only the subtree t2 is enabled in steps 9 and 10. Both states are joined in
step 11. Incrementing x to obtain step 12 poses the challenge that x in c1 straddles the
phase bound x > 50. Thus, the state ce = [[x++]]A�Ic1 is split into c′1 = [[x ≤ 50]]A�Ice and
c̃ = [[x > 50]]A�Ice = 〈x = 51, y = 51〉. The latter is joined with the updated state of the
subtree [[x++]]A�Ic2 = 〈x = 52, y = 50〉 yielding the downward slope x + y = 102 in the
second line of step 12. Widening is applied again, thereby applying the threshold y ≥ 0.
The same state is propagated in steps 14 and 15 whereas the else-branch sees a larger
state in step 16. Indeed, decrementing y in c2 surpasses the phase threshold y < 0, thereby
creating a third subtree t3 = c3; ∅ in step 17. Step 18 computes the joined state from which
the state at loop exit is split off (step 19). Step 20 increments x which again propagates
the point 〈x = 51, y = 51〉 from c1 to c2 as for step 12. A fixpoint is observed in step 21.
The domain operations are formally defined in Fig. 3.17. We allow for several subtrees

per program point to cater for sequences of if-statements. The assignment l : x = e first
computes the effect on the state in the current node c, yielding ce, and its subtrees ti,
yielding c̃ie. The state space that spills over the phase predicates p1, . . . pn is cut off and
merged into the respective parent or subtree. Any previously unsatisfiable phase predicates
are checked against the new node state c′′ and new subtrees pn+1 : 〈cn+1

new 〉; . . . pn+k : 〈cn+k
new 〉;

are added. Much simpler is the test l : x ≤ e which is applied recursively and is also added
as phase predicate to p̄ if it is unsatisfiable. The domain operations all rely on a function
compatible that recursively adds missing phases by adding a subtree pi : ⊥C ; . . . p̄ whenever
pi : ci; . . . ; p̄ only exists in the respective other domain. The lattice operations t1 vPH t2
and t1 tPH t2 then reduce to a point-wise lifting of the respective operations on the child

89



3 Widening as an Abstract Domain

step line intervals affine phased thresholds
x y c; p1 : t1, . . . pn : tn; p̄

1 3 [0, 0] [0, 0] x = 0, y = 0 c1; ∅
2 5 [0, 0] [0, 0] x = 0, y = 0 c1; {x > 50} x ≤ 50
3 6 [0, 0] [1, 1] x = 0, y = 1 c1; {x > 50} x ≤ 50
4 11 [0, 0] [1, 1] x = 0, y = 1 c1; {x > 50, y < 0} x ≤ 50
5 12 [1, 1] [1, 1] x = 1, y = 1 c1; {x > 50, y < 0} x ≤ 51, y ≥ 0
6 3 t [0, 1] [0, 1] x = y c1; {x > 50, y < 0} x ≤ 51, y ≥ 0
6’ 3’ ∇ [0, 50] [0, 50] x = y c1;x > 50 : t2; {y < 0}

3’ [51, 51] [51, 51] x = 51, y = 51 c2; {y < 0} x ≤ 51, y ≥ 0

7 5 [0, 50] [0, 50] x = y c1;x > 50 : t2; {y < 0}
5 ⊥A�I ; {y < 0} x ≤ 50, x ≤ 51, y ≥ 0

8 6 [0, 50] [1, 51] x = y − 1 c1;x > 50 : t2; {y < 0}
6 ⊥A�I ; {y < 0} x ≤ 50, x ≤ 51, y ≥ 1

9 7 ⊥A�I ;x > 50 : t2; {y < 0}
7 [51, 51] [51, 51] x = 51, y = 51 c2; {y < 0} x ≤ 50, x ≤ 51, y ≥ 0

10 8 ⊥A�I ;x > 50 : t2; {y < 0}
8 [51, 51] [50, 50] x = 51, y = 50 c2; {y < 0} x ≤ 50, x ≤ 51, y ≥ −1

11 9 t [0, 50] [1, 51] x = y − 1 c1;x > 50 : t2; {y < 0}
9 t [51, 51] [50, 50] x = 51, y = 50 c2; {y < 0} . . . , y ≥ −1, y ≥ 1

12 12 [1, 50] [1, 50] x = y c1;x > 50 : t2; {y < 0}
12 [51, 52] [50, 51] x+ y = 102 c2; {y < 0} x ≤ 51, . . .

13 3 t [0, 50] [0, 50] x = y c1;x > 50 : t2; {y < 0}
3 t [51, 52] [50, 51] x+ y = 102 c2; {y < 0} x ≤ 51, y ≥ −1, y ≥ 0

13’ 3’ v [0, 50] [0, 50] x = y c1;x > 50 : t2; {y < 0}
3’ ∇ [51, 102] [0, 51] x+ y = 102 c2; {y < 0} x ≤ 50, x ≤ 51, . . .

14 5 v [0, 50] [0, 50] x = y c1;x > 50 : t2; {y < 0}
5 ⊥A�I ; {y < 0} x ≤ 50, x ≤ 51, . . .

15 6 v [0, 50] [1, 51] x = y − 1 c1;x > 50 : t2; {y < 0}
6 ⊥A�I ; {y < 0} . . .

16 7 ⊥A�I ;x > 50 : t2; {y < 0}
7 [51, 102] [0, 51] x+ y = 102 c2; {y < 0} . . .

17 8 ⊥A�I ;x > 50 : t2; {y < 0}
8 [51, 101] [0, 50] x+ y = 101 c2; y < 0 : t3; ∅
8 [102, 102] [−1,−1] x=102, y=−1 c3; ∅ . . .

18 9 t [0, 50] [1, 51] x = y − 1 c1;x > 50 : t2; {y < 0}
9 t [51, 100] [0, 50] x+ y = 101 c2; y < 0 : t3; ∅
9 t [102, 102] [−1,−1] x=102, y=−1 c3; ∅ . . .

19 10 [102, 102] [−1,−1] x=102, y=−1 c3; ∅ . . .
20 12 [1, 50] [1, 50] x = y c1;x > 50 : t2; {y < 0}

12 [51, 102] [0, 51] x+ y = 102 c2; y < 0 : ⊥A�I ; ∅ . . .

21 3 v [1, 50] [1, 50] x = y c1;x > 50 : t2; {y < 0}
3 v [51, 102] [0, 51] x+ y = 102 c2; y < 0 : ⊥A�I ; ∅ . . .

Figure 3.16: Computing the fixpoint for the example in Fig. 3.15.

domain. Widening is defined similarly to join, however, the phase boundaries are enforced
after widening in order to ensure that the various states remain separated by the phase
predicates. If widening makes unsatisfiable phase predicates satisfiable, new subtrees are
added.

3.6 Experimental Results

We evaluated the presented domains in our analyzer for machine code [SMS11], using a
domain stack WP �WD � T � A � CR � I where CR tracks congruences, except for
examples marked with * that useWP �WD�T �PH�A�CR�I. The benchmarks in

90



3.6 Experimental Results

[[l : x = e]]T 〈c; p1 : t1; . . . pn : tn; p̄〉 =
let ce = [[l : x = e]]Cc and c′ = [[l : ¬pi]]C · · · [[l : ¬pn]]Cce and ci = [[l : pi]]

Cce
and 〈c̃ie; parti〉 = [[l : x = e]]T ti
and c̃ires = ci tC [[l : pi]]

C c̃i and c′′ = c′ tC [[l : ¬p1]]C c̃1
e tC · · · tC [[l : ¬pn]]C c̃ne

and p̄red = {p ∈ p̄ | [[l : ¬p]]Cc′′ = ⊥C} and 〈pn+1, . . . pn+k} = p̄ \ p̄red
and cres = [[l : ¬pn+1]]C · · · [[l : ¬pn+k]]

Cc′′and cn+j
new = [[l : pn+j ]]

Cc′′ for j = 1 . . . k
in 〈cres; p1 : 〈c̃1

res; part
1〉; . . . pn : 〈c̃nres; partn〉; pn+1 : 〈cn+1

new 〉; . . . pn+k : 〈cn+k
new 〉; p̄red〉

[[l : e ≤ 0]]T 〈c; p1 : t1; . . . pn : tn; p̄〉 =
let 〈c̃ie : parti〉 = [[l : e ≤ 0]]T ti and ce = [[l : e ≤ 0]]Cc
in if

∧n
i=1 c̃

i
e = ⊥T ∧ ce = ⊥C then ⊥T else

〈ce; p1 : 〈c̃1
e; part

1〉; . . . pn : 〈c̃ne ; partn〉; if [[l : e > 0]]Cc = ⊥C then p̄ ∪ {e ≤ 0} else p̄〉
〈c1; part1〉 vT 〈c2; part2〉 =

let 〈〈p1
1 : t11; . . . p1

n : t1n; p̄1〉, 〈p2
1 : t21; . . . p2

n : t2n; p̄2〉〉 = compatible(part1, part2)
in c1 vC c2 ∧

∧n
i=1 t

1
i vT t2i

〈c1; part1〉 tT 〈c2; part2〉 =
let 〈〈p1

1 : t11; . . . p1
n : t1n; p̄1〉, 〈p2

1 : t21; . . . p2
n : t2n; p̄2〉〉 = compatible(part1, part2)

in 〈c1 tC c2; p1
1 : t11 tT t21; . . . p1

n : t1n tT t2n; p̄1〉
〈c1; part1〉∇lT 〈c2; part2〉 =

let 〈〈p1
1 : t11; . . . p1

n : t1n; p̄1〉, 〈p2
1 : t21; . . . p2

n : t2n; p̄2〉〉 = compatible(part1, part2)
and ce = [[l : ¬p1

1]]C · · · [[l : ¬p1
n]]Cc1∇lT c2 and c̃ie; part

i〉 = 〈[[l : p1
i ]]
T (t1i ∇lT t2i );

and p̄red = {p ∈ p̄ | [[l : ¬p]]Cc′′ = ⊥C} and 〈pn+1, . . . pn+k} = p̄ \ p̄red
and cres = [[l : ¬pn+1]]C · · · [[l : ¬pn+k]]

Cceand cn+j
new = [[l : pn+j ]]

Cce for j = 1 . . . k
in 〈cres; p1

1 : 〈c̃1
e; part

1〉 . . . p1
n : 〈c̃ne ; partn〉; pn+1 : 〈cn+1

new 〉; . . . pn+k : 〈cn+k
new 〉; p̄red〉

Figure 3.17: Transfer and lattice functions for the phase domain.

Fig. 3.18 represent challenging loops that were mostly put forth in the literature [GR06a;
HH12; LJG11]. Our own “nested loops” increase two variables, with various bounds and
resets. Examples marked with “(mod)” are modifications of the same problem. These
include changing the loop exit conditions in nested loops or adding loop exit points (break,
continue), adding further variables or loop counter increments on separate paths through
the loop. We also modified examples, where applicable, to contain non-deterministic paths
andmultiple widening points inside the loops, both features that can be found in irreducible
graphs. The measurements are as follows: insns. gives the number of instructions in the
program; #wp is the number of widening back-edges; steps the number of instructions the
analyzer evaluated to reach the fixpoint; iter. is the maximum number of fixpoint iterations
at any program point; exact denotes if the best interval bounds were found; time shows
the analysis time in milliseconds. The time shown is the median of 2000 runs on a 3.2 GHz
Core i7 machine running Linux.
We compared our results with those of the Interproc and ConcurInterproc analyzers

[LJG11]. For both we used polyhedra with congruences which is the domain that is closest
to our domain stack. Interproc can count iteration steps but only uses narrowing to refine
the post-fixpoint. The table shows that the number of iterations in our analysis is usually

91



3 Widening as an Abstract Domain

our analysis interproc conc.
example time insns. #wp steps iter. exact iter. exact exact
simple loop Fig. 3.1 7 14 1 23 2 3 3+1 3 3

nested loops random 7 20 2 42 3 3 5+2 3 3

nested loops random (mod) 7 20 2 43 3 3 5+2 3

nested loops medium 4 18 2 39 3 3 4+2 3

nested loops hard 4 19 2 40 3 3 4+2 3

nested loops hard (mod 1) 5 19 2 48 4 3 4+2 3

nested loops hard (mod 2) 10 19 2 96 8 4+3 3

Halbwachs Fig. 1a [HH12] 2 9 1 15 2 3 3+2 3 3

Halbwachs Fig. 1b 5 17 2 51 4 3 4+2 3

Halbwachs Fig. 1b (mod) 4 17 2 49 4 3 5+2 3

Halbwachs Fig. 2a 2 10 1 23 3 3 3+2 3 3

Halbwachs Fig. 2b 3 12 1 28 3 3 4+1 3

Halbwachs Fig. 2b (mod) 4 14 1 46 4 3 3+2 3 3

Halbwachs Fig. 4 18 18 2 84 9 4+2 3

*Gopan Fig. 1a [GR06a] 15 14 1 36 4 3 5+2
*Gopan Fig. 1a (mod) 13 14 1 33 4 3 5+1
Chaouch Fig. 2 [LJG11] 2 12 1 19 2 3 3+2 3

Chaouch Fig. 3 7 23 1 83 6 3 4+2 3

Chaouch Fig. 3 (mod) 4 25 3 66 3 3 4+1
Chaouch Fig. 4 2 10 1 22 3 3 4+1 3

Chaouch Fig. 5 2 17 2 51 4 3 4+2 3

*Chaouch Fig. 6 13 14 1 36 4 3 5+2

Figure 3.18: Widening examples.

smaller than that of Interproc, evenwithout the narrowing iterations (which are indicated
by +n). In all benchmarks, we used no explicit delay. Since most examples are engineered
not to work with narrowing, the least fixpoint is rarely obtained. ConcurInterproc uses
a pre-analysis to infer thresholds but does not perform an iteration count. Assuming that
these thresholds are applied to the states after widening, ConcurInterproc must require
at least as many iterations as the number of upward iterations of Interproc. Our precision
and that of the threshold widening in ConcurInterprocmatch. Entries where our analysis
is less precise than ConcurInterproc require a polyhedral invariant that our domain stack
cannot express. For the examples requiring disjunctive invariants ConcurInterproc is
imprecise in that it infers, for example, x ∈ [51, 102] for line 10 in Fig. 3.15. Our benchmarks
used for Interproc are available on-line at http://tinyurl.com/cwdg5qr.

3.7 Related Work

Many authors address the task of improving widening, be it for specific domains such as
polyhedra [Bag+05; JM09], or by altering the way fixpoints are inferred. With respect to
the latter, Halbwachs pioneered the idea of using thresholds to refine widening and to delay
widening [HPR97]. In the so-called “widening up-to” or “limited widening” thresholds
over variables are created from a set of constants, an idea later successfully used in the
large: The most common way to extract thresholds is to use the constants occurring in
loop conditions [HPR97; Bal07]. Others [Bla+02; Kir+12; LL11], additionally consider user

92

http://tinyurl.com/cwdg5qr


3.7 Related Work

provided constants for common numeric boundaries, e.g. −1, 0, 1, arithmetic progressions,
e.g. powers of 2, or the range of a variable given by its type.
Chaouch et al. [LJG11] recently proposed a pre-analysis to infer thresholds automatically

by extracting individual inequalities from the resulting state after two iterations. While
their approach is similar to our thresholds domain they use the numeric domain to extract
the thresholds. If the numeric domain is expressive, e.g. the polyhedron abstract domain
[CH78], it has the benefit of inferring more complex thresholds than our threshold domain.
On the other hand, for non-relational domains such as intervals the extracted thresholds
are less precise, allowing only constants as thresholds. In the benchmarks in Fig. 3.18 we
thus compared our analyzer using intervals to their analyzer using polyhedra.
Rather than extracting thresholds, widening with landmarks [SK06] measures the dis-

tance of the current state space to the loop condition and extrapolates the state space
accordingly. Both approaches require special domain functions, e.g. for widening, and
are thus not easily portable between different numeric domains. Our threshold domain is
easier to use as it is agnostic to the underlying domain and infers the possible thresholds
by itself.
Bagnara et al. generalizes the idea of delaying widening from [Bla+02] by using a

finite number of tokens: a widening may use any non-terminating strategy if there are still
tokens to consume [Bag+05]. Rather than requiring the user to fix the number of delays
or provide a set of tokens, our delay domain in Sect. 3.3 uses program points denoting new
assignments instead of tokens, thereby ensuring termination without depending on user
input. This allows for interleaving sequences of widenings and delays depending on new
program behavior.
One challenge of using convex numeric domains is the problem of spillage of state into

branches of the program or behaviors of the transfer function that cannot be recovered from
by narrowing. In this context, Halbwachs et al. [HH12] propose to re-start the analysis at a
different pre-fixpoint from which widening and narrowing infer a new post-fixpoint. The
intersection of the previous and the new post-fixpoint is still sound (still a post-fixpoint) and
may be more precise. As they use classic widening for the ascending sequences combined
with narrowing for the descending sequences they still suffer from loss of precision in
case of wrapping. However, as their last example shows, due to the projection of the post-
fixpoint onto a pre-fixpoint they are able to infer complex invariants that don’t appear
as conditions in the program. This is mainly due to the ability to partially remove the
precision loss introduced by the join. Hence, combining their approach with our thresholds
based widening would gather the benefits of both techniques while also fixing certain
shortcomings. Implementing an abstract domain that emulates their approach, however,
remains for future work.
Amato et al. improve the widening precision by not applying widening on edges that enter

the loop [AS13]. Our widening points domain in Sect. 3.2 realizes the same by applying
widening on back-edges only. They extend this “localized widening” with a “localized
narrowing” that recovers precision loss in inner loops by restarting a new analysis that
ignores previously inferred values. This is similar to Halbwachs’ method and is able
to discover invariants not present as loop conditions. However, their method requires

93



3 Widening as an Abstract Domain

modifications to the fixpoint and knowledge about the CFG structure, such as strongly
connected components and a weak topological order [Bou93]. In the analysis of machine
code the CFG is not known up-front thus making such modifications difficult.
Rather than removing the spillage into branches, Gopan et al. propose to avoid spillage

into currently unreachable branches immediately after widening [GR06a]. They require
one state to determine which branches of the loops are enabled and a second state to
compute widening and narrowing on the enabled part of the loop. Instead of duplicating
the analysis cost by tracking a second abstract state, the authors later propose to directly
track which parts of the CFG are enabled [GR07]. They generalize their idea to track
different states for each phase, that is, for each set of enabled branches in a loop. This is
implemented by analyzing modified versions of the CFG.
While none of the three approaches require changes to the transfer functions of the domains
as was the case for the original widening with thresholds [HPR97], each approach requires
intrusive changes to the fixpoint engine and the handling of states. Our phase domain in
Sect. 3.5 has the same functionality as the Guided Static Analysis approach [GR07] but
requires no changes to the way states are handled. Interestingly, the transfer functions of
our phase domain are similar to those of the decision tree domain of Astrée [Cou+06].
However, the latter tracks Boolean flags as predicates and requires a user-supplied limit
to avoid an exponential explosion. Since our domain creates a tree that mirrors the finite
branching inside the loop body, its size is always limited by the program.

3.8 Conclusion

Implementing widening strategies as abstract domains is beneficial due to its modularity
and independence of the fixpoint engine. Due to the cofibered construction our approach
does not require modifications to the transfer functions of other domains. Complex widen-
ing strategies can thus be retrofitted to existing fixpoint analyses.
Our approach provides equal or better precision combined with fewer iterations required

to obtain stability. One important aspect is that we do not suffer from the shortcomings
of narrowing (see Sect. 3.4.3) as thresholds are applied immediately during the widening.
Another benefit is that our domains do not have to implement narrowing at all as thresholds
are tests that can be applied using domain transfer functions.

After showing various improvements to widening we will next consider improvements
to counter the precision loss in convex numeric domains. Contrary to widening, the join
does not suffer from precision loss due to extrapolation. However, numeric domains are
compact representations of a set of values. This compactness is achieved by tracking convex
approximations. Joining two states thereby requires a convex approximation of the union
and may introduce imprecision. The next chapter shows how the precision loss of the
approximation can be recovered from and how even non-convex spaces can be expressed
by a generic extension of convex numeric domains.

94



4 | The Predicate Abstract Domain

4.1 Introduction

Verification by means of a reachability analysis is based on abstract domains that over-
approximate the possible concrete states that a program can reach. The forte of abstract
domains is their ability to synthesize new invariants that are not present in the program.
However, their inherent approximation may mean that the invariant required to verify a
program cannot always be deduced. On the contrary, the strength of predicate abstraction
used in software model checking is that predicates precisely partition the state space of
a program. The challenge here is to synthesize new predicates that eventually suffice to
verify a program. This work combines the benefits of both approaches: we synthesize new
predicates by observing the precision loss in numeric domains and refine the precision
of the numeric domains using the predicates. Our technique is particularly useful for
expressing non-convex invariants that are commonly lost when using off-the-shelf numeric
abstract domains that are based on convex approximations.

a)
1 f = d!=0;
2 ...
3 if (f) {
4 assert(d != 0);
5 y = x / d;
6 }

b)

−2 −1 0 1 2
0

1

d

f

c)

−2 −1 0 1 2
0

1

d

f

Figure 4.1: Avoiding a division by zero. The state space and its approximation.

The necessity of non-convex invariants is illustrated by the C code in Fig. 4.1 a). Here,
line 1 computes a flag f that is true if the divisor d of the expression in line 5 is non-zero.
Assuming that the initial value of d lies in [−2, 2], the possible values when evaluating the
conditional are shown in Fig. 4.1 b). Abstracting this set of discrete points using, say, the
abstract domain of intervals yields the state in Fig. 4.1 c). This state space is too imprecise
to deduce that d is non-zero if f is one. As a consequence, testing that f is one in line 3
does not restrict the abstract state sufficiently to show that the assertion holds.
Interestingly, analyzing the same example using predicate abstraction does not suffer

from this imprecision as non-convex spaces can naturally be represented using disjuncts. In

95



4 The Predicate Abstract Domain

the example, a predicate pf ≡ d 6= 0, which is equivalent to the disjunction d ≤ −1∨d ≥ 1,
suffices to verify the assertion since testing f in line 3 results in pf being true.
A common approach to enriching numeric abstract domains to allow expressing non-

convex states is to use disjunctive completion [CC79a], that is, a set of states. In particular,
several works have proposed some variant of a binary decision-diagram (BDD) where
decision nodes are labeled with predicates and the leaves are abstract domains [GC10a;
MR05]. A similar effect is obtained by duplicating the control flow graph (CFG) for each
subset of satisfied predicates [GR07; San+06]. In both settings, the number of numeric
domains that are tracked may be exponential in the number of predicates. Our work
improves over this setup by combining classic predicate abstraction [Bal+01] with a single
numeric domain, thereby avoiding this exponential duplication of the numeric state. In
particular, we present a generic combinator domain that is parameterized over any numeric
abstract domain and allows any predicate expressible by the abstract domain. We thereby
also generalize over bespoke domains that explicitly track specific disjunctive information,
such as disequalities [PH07].

4.2 Definition of the Domain

We present our predicate domain P as a cofibered domain [Ven96] combined with a child
domain C, yielding a stack of domains P B C. A state 〈ῑ, c〉 contains the individual domain
states ῑ ∈ P and c ∈ C. The predicate domain is given by the lattice 〈P � C,vP,tP ,uP〉
where the universe P : ℘(Pred×Pred) is a finite set of implications p1 → p2 over predicates
pi ∈ Pred as defined in Fig. 2.5 in Sect. 2.2. Predicates relate linear expressions over the
program variables XV using a comparison operator ./. This set of operators is closed
under negation so that the universe of predicates is closed under negation. The choice of
implications between only two predicates allows for a simple yet effective propagation of
information, as detailed in the next section.

4.3 Transfer Functions and Reductions

This section details the transfer functions and presents the flow of information between
the predicate domain and the numeric child domains.

4.3.1 Transfer Functions

The transfer functions of the combined domain state 〈ῑ, c〉 ∈ P B C are given in Fig. 4.2.
In general, a transfer function [[l]]P〈ῑ, c〉 applies the corresponding transfer function on the
child domain c ∈ C, yielding 〈ῑ′, [[l]]Cc〉 where ῑ′ is the new state of the predicate domain.
We distinguish three forms of assignments. The first, [[x = a ./ b]]P , assigns the result
of a comparison to a variable x. Here, the predicate domain removes any predicate that
mentions x and adds new predicates based on the comparison. We assume that x is set to
one if test a ./ b holds and to zero otherwise. Thus, the predicates x = 0 and x = 1 are used

96



4.3 Transfer Functions and Reductions

[[x = a ./ b]]P〈ῑ, c〉 = 〈ῑ′, [[x = a ./ b]]Cc〉
where ῑ′ = {p→ q ∈ ῑ | x /∈ vars(p) ∪ vars(q)}
∪{x = 1→ a ./ b, x = 0→ a 6./ b, a ./ b→ x = 1, a 6./ b→ x = 0}

[[x = NonLin]]P〈ῑ, c〉 = 〈ῑ′, [[x = NonLin]]Cc〉
where ῑ′ = {p→ q ∈ ῑ | x /∈ vars(p) ∪ vars(q)}

[[x = Lin]]P〈ῑ, c〉 = 〈ῑ′, [[x = Lin]]Cc〉
where ῑ′ = {p→ q ∈ ῑ | x /∈ vars(p) ∪ vars(q)}
∪{transform(p→ q) | p→ q ∈ ῑ} and σ = [x/Lin]

and transform(p→ q) =

{
σ−1(p)→ σ−1(q) if σ−1(p) ∧ σ−1(q) exists
true→ true otherwise

[[a ./ b]]P〈ῑ, c〉 = 〈ῑ ∪ {true→ a ./ b},fixapply({a ./ b}, ∅, c)〉
where fixapply(p̄, ū, c′) = if p̄ ⊆ ū then c′ else
let t ∈ p̄ \ ū and n̄ = {t} ∪ consequencesC(t, c′)
and n̄′ = {q | p→ q ∈ ῑ ∧ n ∈ n̄ ∧ n ` p} ∪ {¬p | p→ q ∈ ῑ ∧ n ∈ n̄ ∧ n ` ¬q}
in fixapply(p̄ ∪ n̄′, ū ∪ {t}, [[t]]Cc′)

Figure 4.2: Assignments and branch transfer functions for the predicates domain. The
comparison operator ./ in a predicate is one of ≤,�, <,≮,=, 6=.

to encode the value of x in the implications. Specifically, the two outcomes x = 1↔ a ./ b

and x = 0↔ a 6./ b are stored using four implications.

The transfer function [[x = NonLin]]P for non-linear assignment removes all implications
in the predicate domain containing x. An assignment [[x = Lin]]P of a linear expression to
x tries to transform implications containing x if Lin contains x, e.g. x=x+1. For example,
consider the predicates state ῑ = {f = 0→ x ≤ 5, x � 10→ y = 10} and the assignment
x=x+1 mentioned above. Given the substitution σ = [x/x + 1] that describes the change
of the state space, we compute σ−1 = [x/x − 1] that describes how predicates can be
transformed so that they are valid in the new state. In the example, applying σ−1 to the
implications yields ῑ′ = {f = 0 → x ≤ 6, x � 11 → y = 10}. In all three assignments,
more predicates can be retained by testing if they are still valid after the assignment.

We now consider the transfer function for an assumption [[a ./ b]]P . The predicate domain
tracks the information of the assumption as a new symbolic fact using an implication
{true→ a ./ b}. Furthermore, the information from the test a ./ b is used by the domain
to gather further facts about the state. The process of applying these facts to the child
domain is called reduction [CC79a]. The reduction is performed as a fixpoint computation
and can be seen as an instance of Granger’s framework for reduction by local iteration
[Gra92]. Specifically, the function fixapply gathers a set of deduced predicates p̄ and a set
of predicates ū that have already been applied on the child. In each iteration a predicate
t ∈ p̄\ ū is applied to the child state c′, yielding [[t]]Cc′. Furthermore, a set of new predicates
that are implied by t are computed in two steps. First, t is combined with a set n̄ of semantic
consequences which is computed by consequencesC as detailed below. Second, a set of

97



4 The Predicate Abstract Domain

syntactically implied predicates n̄′ is computed from n̄ by inspecting the implications in
the predicate domain. We use modus ponens resolution to deduce q from an implication
p→ q ∈ ῑ where t ` p and deduce ¬p if t ` ¬q. Here, the syntactic entailment ` is defined
as follows:

Definition 4.1 (Syntactic Predicate Entailment `) A predicate q is entailed by another
predicate p, written as p ` q, if p ≡ q or if p describes a weaker condition that subsumes
the condition of q. We use the following syntactic entailment rules:
(x, y are variables and c is a constant; analogous definitions exist for the negations of the
comparison operators �,≮)

p ` x 6= c if p ∈ {x = c′ | c′ 6= c} ∪ {x ≤ c′ | c′ < c} ∪ {x < c′ | c′ ≤ c}
p ` x ≤ c if p ∈ {x = c′ | c′ ≤ c} ∪ {x ≤ c′ | c′ ≤ c} ∪ {x < c′ | c′ − 1 ≤ c}
p ` x < c if p ∈ {x = c′ | c′ < c} ∪ {x ≤ c′ | c′ < c} ∪ {x < c′ | c′ ≤ c}
p ` x = y if p ∈ {x = y}
p ` x 6= y if p ∈ {x 6= y} ∪ {x < y}
p ` x ≤ y if p ∈ {x ≤ y} ∪ {x = y}

The set of syntactically implied predicates n̄′ is added to p̄ and, hence, eventually applied
to the child state. Since at most two predicates for each implication in ῑ can be added to p̄,
this iterative reduction terminates.
Although not strictly necessary, the consequencesC function allows information to flow

from the child domain to the predicate domain. The function synthesizes new predicates
that become valid after applying the test t. It is different for each child domain. An
implementation for the interval domain I is as follows:

consequencesI(t, c) = let c′ = [[t]]Ic in {x = l | c(x) 6= c′(x) ∧ c′(x) = [l, l]}

Here, c(x) is the interval of the variable x in the state c. The insight in this definition is
that the only additional information inferable by the interval domain is that a variable x
may have become constant due to a test such as x ≤ c. Returning these equality predicates
may allow additional deductions in the predicate domain. Note that other child domains
may deduce different facts.

4.3.2 Example for the Reduction after Executing Assumptions

We illustrate the reduction when applying an assumption [[a ./ b]]P using an example.
Consider applying the test f < 1 to the state s = 〈ῑ, c〉 that consists of the predicates ῑ ∈ P
and the intervals c ∈ I as child domain. Let ῑ = {f = 0→ x ≤ 0} and c = {f ∈ [0, 1], x ∈
[−1, 1]}. The first step in the transfer function is to infer the consequences of the test:
n̄ = consequencesI(f < 1, c). As the child state becomes c′ = {f ∈ [0, 0], x ∈ [−1, 1]}, the
consequences are n̄ = {f = 0}. The synthesized predicate in n̄ syntactically entails the
left-hand side of the implication f = 0 → x ≤ 0 that is tracked in the predicate domain.
Thus, fixapply calls itself recursively with the new predicate x ≤ 0 which results in a call
to consequencesI(x ≤ 0, c′) = ∅. Now, the set of implied predicates n̄′ is empty and a

98



4.3 Transfer Functions and Reductions

fixpoint is reached since p̄ = ū = {f < 1, x ≤ 0}. Thus, the result of the transfer function
is [[f < 1]]Ps = 〈{true→ f < 1, f = 0→ x ≤ 0}, {f ∈ [0, 0], x ∈ [−1, 0]}〉.
This recursive reduction mechanism implements all required reductions between the
predicate and the child domain. The next section illustrates how this reduction mechanism
is used to preempt the loss of precision due to convexity.

4.3.3 Application to Non-Convex Spaces

Reconsider the example in Fig. 4.1 where a division by zero is prevented by a guard. The
problem here is that the state space for d is non-convex and cannot be expressed with
the intervals domain I. However, using the predicate domain P we are able to prove
the invariant at program point 4 even though the interval value for d at that point is
d ∈ [−2, 2]. We illustrate an analysis of the program for an initial state where the interval
domain tracks d with the value d ∈ [−2, 2]. By executing line 1, the four implications for
the assignment of a comparison are added to the predicate domain, yielding the state
ῑ = {f = 1 → d 6= 0, f = 0 → d = 0, d 6= 0 → f = 1, d = 0 → f = 0}. On entering
the then-branch, the test f = 1 in line 3 restricts the variable f in the interval domain
to f ∈ [1, 1]. The predicate domain uses the first implication to deduce d 6= 0, which is
also applied to the child domain. However, the child domain I is not able to express the
disjunction d ∈ [−2,−1]∨ [1, 2] thus the state after applying d 6= 0 remains d ∈ [−2, 2]. The
assertion in line 4 translates to an edge to the dedicated error node that is labeled with the
test d = 0. Hence, the assertion fails if d = 0 is satisfiable. The predicate domain observes
that the right-hand side d 6= 0 of the implication f = 1→ d 6= 0 is false and thus adds the
negated left-hand side f 6= 1 to n̄′. Once the predicate domain applies f 6= 1 to the child
state c = {f ∈ [1, 1], d ∈ [−2, 2]}, the result is ⊥, the unreachable state. Thus, the error
node is not reachable in the program and the assertion is verified even though the convex
numeric domain is not precise enough to express d 6= 0. The reduction mechanism is able
to exploit the information in the implications for verifying assertions without requiring
more complex (i.e. non-convex) numeric domains.

4.3.4 Symbolic Reasoning for Unbounded Spaces

If the numeric domain does not track any useful information about variable bounds the
predicate domain can still prove assertions using only the syntactic predicate entailment.
Consider the example from [LL11] shown in Fig. 4.3. The analysis commences in line 1
with a state where the interval domain tracks the most imprecise information for each
of the variables: c = {x ∈ [−∞,+∞], y ∈ [−∞,+∞], z ∈ [−∞,+∞]}. Consequently, the
tests in lines 3, 4, 7 and 8 do not restrict the interval bounds of the variables and we
cannot prove the assertions in lines 11 and 12. More complex numeric domains that are
capable of symbolic reasoning, e.g. polyhedra [CH78], are able to prove the assertions. Our
predicate domain P performs limited symbolic reasoning due to its syntactic entailment
mechanism. In the above example using the predicates domain we collect the tests from
the assumptions as facts and track the state ῑ1 = {true → x = y, true → y ≤ z} for
the then-branch and ῑ2 = {true → x ≤ y, true → y = z} for the else-branch. The join

99



4 The Predicate Abstract Domain

1 ...
2 if (...) {
3 assume (x == y);
4 assume (y <= z);
5 ...
6 } else {
7 assume (x <= y);
8 assume (y == z);
9 ...
10 }
11 assert (x <= y);
12 assert (y <= z);

Figure 4.3: Using syntactic entailment to prove inequalities.

ῑ1tP ῑ2 = {true→ x ≤ y, true→ y ≤ z} in line 11 keeps the predicates that are syntactically
entailed in both states (we will describe the join in more detail in the next section). To
prove the assertions correct the predicate domain uses the syntactic entailment in fixapply

to entail the negated assertion conditions: x � y and y � z. This in turn entails the negated
premise ¬true resulting in ⊥ and thus proving the assertion.

In general, observing predicates from assignments and assumptions is only a syntactic
technique that may fail for more complex disjunctive invariants. The next section therefore
illustrates how the reduction mechanism implemented by fixapply naturally combines with
a more sophisticated way of inferring new implications.

4.4 Lattice Operations and Predicate Synthesis

〈ῑ1, c1〉 vP 〈ῑ2, c2〉 = c1 vC c2 ∧ entailed(ῑ2, ῑ1, c1) = ῑ2
where entailed(ῑ′, ῑ, c) = {p′→q′∈ ῑ′ | (∃p→q∈ ῑ.p′` p ∧ q` q′) ∨ ([[p′]]Cc � q′)}

〈ῑ1, c1〉 tP 〈ῑ2, c2〉 = 〈join(ῑ1, ῑ2) ∪ synthC(c1, c2), c1 tC c2〉
where join(ῑ1, ῑ2) = entailed(ῑ1, ῑ2, c2) ∪ entailed(ῑ2, ῑ1, c1)

〈ῑ1, c1〉∇lP 〈ῑ2, c2〉 = 〈join(ῑ1, ῑ2) ∪ synthC(c1, c2), c1∇lC c2〉

Figure 4.4: Lattice operations for the predicate domain.

We present entailment test, join and widening operations of the predicate domain.
Moreover, we introduce a novel synth function that synthesizes new implications between
predicates that counteract the loss of precision in numeric domains.

100



4.4 Lattice Operations and Predicate Synthesis

4.4.1 Lattice Operations

We commence by detailing the entailment test 〈ῑ1, c1〉 vP 〈ῑ2, c2〉 in Fig. 4.4. It performs
the entailment test c1 vC c2 on the child domain and tests if all the implications in the
right argument ῑ2 are entailed by the left argument by calling the function entailed(ῑ′, ῑ, c).
The latter function returns an implication p′ → q′ ∈ ῑ′ if it is either syntactically entailed
in ῑ or semantically entailed in the state c. Semantic entailment � is defined as follows:

Definition 4.2 (Semantic Predicate Entailment �) A predicate q is entailed in a state c,
written c � q, if testing ¬q in c yields an empty state, i.e., [[¬q]]Cc = ⊥.

By this definition, the test [[p′]]Cc � q′ in the body of entailed reduces to checking whether
[[¬q′]]C([[p′]]Cc) = ⊥. Thus, if the predicate p′ on the left-hand side of the implication p′ → q′

is false in c then [[¬q′]]C⊥ = ⊥ follows and the implication is entailed in c (known in
logic as “ex falso quodlibet”). The two tests [[·]]C on the child domain c can be avoided
if the implication is syntactically entailed by an implication in ῑ. Here, the implication
p→ q ∈ ῑ entails p′ → q′ if the premise p′ is stronger and the conclusion q′ is weaker which
is expressed by p′ ` p∧ q ` q′. Note that neither the syntactic nor the semantic entailment
test subsumes the other as both approximate the test differently.
The join 〈ῑ1, c1〉 tP 〈ῑ2, c2〉 independently computes a join on the predicate domain and

on the child domain. In oder to join the implication sets ῑ1 and ῑ2, we define a function
join that keeps all implications that hold in the respective other state using the entailed

function described above. Note that the semantic entailment test in entailed is particularly
important for the join as one of the predicate domain states may be empty so that the
syntactic entailment would discard all implications. The semantic join is able to retain
newly inferred predicates in, for example, loop bodies as illustrated later.
In addition to the predicates returned by the join function, new implications are synthe-

sized from the child domain states using the synthC function. The idea is to synthesize
implications that characterize the approximation that occurred as part of the tC operation.
Which synthesized implications are generated depends on the numeric domain. If the
predicate language is sufficiently expressive, a domain could potentially characterize all
precision losses that occur during a join. The following synthI function for the interval
domain is an example that generates implications for all changing bounds. Moreover, by
relating changes of interval bounds between different variables, it generates relational
information that cannot be expressed within the interval domain itself. It is defined as
follows:

synthI(c1, c2) = let c = c1 tI c2

and m̄ = {x ∈ vars(c1) ∩ vars(c2) | c1(x) 6= c2(x)} and i ∈ {1, 2}
and ūi = {uxi | x ∈ m̄ ∧ ci(x) ∈ [lxi, uxi] ∧ c(x) ∈ [lx, ux] ∧ uxi < ux}
and l̄i = {lxi | x ∈ m̄ ∧ ci(x) ∈ [lxi, uxi] ∧ c(x) ∈ [lx, ux] ∧ lx < lxi}
in {ux1<x→ ly2≤y, uy1<y→ lx2≤x | x, y ∈ m̄ ∧ uxi, uyi ∈ ūi ∧ lxi, lyi ∈ l̄i}

Let vars(c) return all the variables x̄ ⊆ XV tracked in the state c and let c(x) denote
the interval of the variable x. The set of variables m̄ that are not equal in both states are

101



4 The Predicate Abstract Domain

those whose joined value is an approximation of the input intervals. For these variables
we compute a set of changing lower and upper bounds l̄i and ūi whose indices indicate
the variable and origin of the bound. For example, when joining c1(x) ∈ [0, 5] with c2(x) ∈
[10, 15], resulting in c(x) ∈ [0, 15], the upper bound ux1 = 5 of c1(x) and the lower bound
lx2 = 10 of c2(x) are lost whereas the other bounds are retained in c(x). These changing
bounds are used for generating implications. Specifically, each implication correlates a lost
upper bound uxi from ci with a lost lower bound ly(2−i) from c2−i where i = 1, 2. For the
example above x = y, thus the only generated implication is ux1 < x → lx2 ≤ x, that is,
5 < x → 10 ≤ x. The implication allows that a test such as 7 < x is refined to 10 ≤ x,
thereby recovering the precision loss in the join that is due to the convexity of the interval
domain. In general, the bounds of several variables can be related, thereby even generating
relational information.
One drawback of the definition above is that implications are added for each pair of

variables from m̄, thus, the returned set of implications is quadratic in |m̄|. This quadratic
growth can be avoided by not generating a redundant implication a→ c if both a→ b and
b → c are already present. Specifically, by sorting m̄ using some total ordering, we only
emit implications over variables that are adjacent in this ordering, as well as an implication
relating the largest variable with the smallest. As the predicate domain performs a transitive
closure on application of a test predicate (through fixapply), adding only implications
between adjacent variables is sufficient to recover all information expressed in a chain of
implications. Using this optimization, we are able to reduce the number of synthesized
implications to be linear in the number of changed variables |m̄|.
Before we consider further examples, we consider the widening operation, defined in

Fig. 4.4. The definition is analogous to the join operation but applies widening on the child
states c1, c2. One caveat of this definition is that termination is not guaranteed. Consider
an implication p′ → q′ at a loop head and assume that a conditional in the loop refines
the child state by using the [[a ./ b]]P transformer in Fig. 4.2 which, in turn, may use the
information in p′ → q′. Suppose that joining the two branches of the conditional creates
a new implication p → q by means of the synthC function that is syntactically weaker
than p′ → q′. If [[p′]]Cc1 6� q′ (the previous implication cannot be shown to hold in the
new state) then the loop is not stable. If furthermore [[p]]Cc2 � q (the new implication
holds in the previous state), the loop is analyzed with the new implication. Thus, one
implication may be replaced by another one, possibly indefinitely so. In order to ensure
termination, standard widening techniques can be used, such as eventually disallowing
new implications from loop bodies (see Sect. 3.4). This can be implemented by using the
definition 〈ῑ1, c1〉∇lP 〈ῑ2, c2〉 = 〈entailed(ῑ1, ῑ2, c2), c1∇lC c2〉 after k iterations. So far, we
were unable to find examples that exhibit this non-terminating behavior.

4.4.2 Application to Non-Convex Spaces

As stated in Sect. 4.3.3 the analysis of the introductory example relies on the predicate
d 6= 0 that is observed syntactically in the program. We use this observed predicate to later
prove that the convex interval approximation d ∈ [−2, 2] does not contain the value 0. A

102



4.4 Lattice Operations and Predicate Synthesis

1 if (x < 0) {
2 sgn = -1;
3 } else {
4 sgn = 1;
5 }
6 assert (sgn != 0);

Figure 4.5: Computing the sign of a variable.

similar example from [MR05] is shown in Fig. 4.5. Here, the condition of the assertion does
not appear syntactically in the code. Due to the join at the end of the if-branch we face
again a precision loss due to the convex approximation. Hence, using intervals alone the
assertion cannot be proved as sgn ∈ [−1, 1] in line 6. Although, syntactically we do not have
a predicate on variable sgn in the program, the synthI function synthesizes the implication
−1 < sgn → 1 ≤ sgn during the interval join in line 6. This is sufficient to prove the
assertion as now testing sgn = 0 in line 6 yields ⊥. The test reduces the tracked interval
to sgn ∈ [0, 0] after which it syntactically entails the premise of −1 < sgn → 1 ≤ sgn.
In fixapply , the consequence of the implication is applied to the reduced state yielding ⊥.
Hence, variable sgn is not equal to 0 at this program point.
In this example, synthesizing implications on a single variable allowed us to represent

non-convex states. We will show next that the synthI function is even more useful when
relating the precision loss of different variables.

4.4.3 Recovering Precision using Relational Information

One strength of our synthI function is that it creates relational information, that is, it
generates implications between different variables. This relational information enables
fixapply to deduce, from a test of one variable, more precise ranges for other variables. In
particular, a test t that separates two states, i.e. [[t]]Ic1 = c1 and [[t]]Ic2 = ⊥ is enriched
by the relational implications so that all losses due to convexity are recovered, that is,
[[t]]P(〈ῑ1, c1〉 tP 〈ῑ2, c2〉) = 〈ῑ′1, c1〉.

c1 c2 synthI(c1, c2) c1 tI c2

x ∈ [0,5] [10, 15] {5 < x→ 2 ≤ y, [0, 15]
y ∈ [−5,−1] [2, 3] −1 < y → 10 ≤ x} [−5, 3]

Figure 4.6: The join of two states in the intervals domain I and the synthesized implications
correlating the bounds lost due to the convex approximation.

We illustrate this ability using two states s1 = 〈∅, {x ∈ [0, 5], y ∈ [−5,−1]}〉 and
s2 = 〈∅, {x ∈ [10, 15], y ∈ [2, 3]}〉. The joined state s = s1 tP s2 is given by s =

〈{5 < x → 2 ≤ y,−1 < y → 10 ≤ x}, {x ∈ [0, 15], y ∈ [−5, 3]}〉. This operation is
illustrated in Fig. 4.6 where the bounds in bold are those that are lost and the arrows

103



4 The Predicate Abstract Domain

indicate which bounds are related by the generated implications. We now show how
applying the test 0 < y on s recovers the numeric state in s2 and, analogously, that
applying y ≤ 0 recovers the numeric state of s1. Specifically, when applying the test
0 < y on state s, the left-hand side of the implication −1 < y → 10 ≤ x is syntac-
tically entailed, so that 10 ≤ x is also applied to the child state, yielding the precise
value [10, 15] for x. The predicate 10 ≤ x syntactically entails the other implication
5 < x → 2 ≤ y. Thus, the predicate 2 ≤ y is applied to the child state, yielding the
precise value [2, 3] for y. After that no new predicates are entailed and the recursive
predicate application in the function fixapply stops with the state s′2 = 〈{5 < x→ 2 ≤ y,

−1 < y → 10 ≤ x}, {x ∈ [10, 15], y ∈ [2, 3]}〉. Observe that all losses due to the join have
been recovered so that the values tracked in s′2 are identical to that of s2. Analogously, we
get a state s′1 in which the interval for x is [0, 5] and for y is [−5,−1] after applying the
opposing condition y ≤ 0.
In summary, the predicate domain improves the precision of a child domain by tracking

precision losses that are reported by the child. In particular, the domain-specific synthC

function can generate implications between predicates that cannot be expressed in the
domain itself. This allows the predicate domain to maintain enough disjunctive information
to recover the state before the join whenever a test is able to separate the two states. Note
though that there exist cases when this is not completely possible, namely when the value of
x in one state overlaps the value in the other state. Consider c1(x) ∈ [0, 4] and c2(x) ∈ [2, 8].
A test x < 3 does not separate the two states. However, any test outside the overlapping
range [2, 4] is able to separate the two states which, in turn, leads to the refinement of
other bounds.

4.4.4 Application to Path-Sensitive Invariants

1 FILE *out;
2 out ->is_open = 1;
3 assert(out ->is_open == 1);
4 out ->is_open = 0;
5 ...
6 if (flag)
7 out ->is_open = 1;
8 ...
9 if (flag)
10 assert(out ->is_open == 1);

Figure 4.7: A locking scheme example: accessing a file only if it was already opened.

This section illustrates how our domain can verify an example taken from [FJM05]. The
challenge of analyzing the code in Fig. 4.7 is that the join of different paths loses precision
and the invariant that a file is only accessed if it was opened before cannot be proved. For
the sake of presentation, we use open to denote the value of out->is_open. Note that the

104



4.4 Lattice Operations and Predicate Synthesis

assertion in line 3 can be proved by using the interval domain alone, as open is [1, 1] due to
line 2. However, the assertion in line 10 cannot be proved by using intervals alone: observe
that open is set to [0, 0] in line 4 and that the join of this value with the value [1, 1] from
line 7 yields the convex approximation of [0, 1] in line 10 of the assertion. As a consequence,
the assertion cannot be proved since the edge to the error state with assumption open = 0

is satisfiable. Now consider analyzing the example using the predicate domain with the
interval domain as child. Then the join of the then-branch in line 7 and the state before
line 6 creates an implication 0 < flag → 1 ≤ open. When applying the branch condition
flag = 1 of line 9, the implied predicate 1 ≤ open is used to reduce the state, yielding
open ∈ [1, 1] in the interval domain. Thus, the assertion can be proved since the edge to the
error state with assumption open = 0 is unreachable. The example illustrates how numeric
domains may lose precision when joining paths [MR05] and, thus, may fail to express a
path-sensitive invariant which is crucial to prove assertions in the branch of a conditional.
Fischer et al. [FJM05] prove the assertion in line 10 by not joining the states after the

conditional in line 6, thus keeping the states where open = 0 and open = 1 separate.
They associate a predicate with a numeric state and join numeric states only if they are
associated with the same predicate. Thus, their abstract state before the conditional in line
9 is {〈flag = 0, open ∈ [0, 0]〉, 〈flag = 1, open ∈ [1, 1]〉} which reduces to {〈flag = 1, open ∈
[1, 1]〉} inside the conditional. Although their approach is able to prove the assertion, it is
more costly as it tracks several numeric states. Even if sharing can reduce the resource
overhead of tracking multiple states [GC10b], the cost of tracking several states is generally
higher [MR05]. Our approach retains the conciseness of a single convex numeric state
and merely adds the implications necessary to express certain disjunctive information. In
particular, we only infer disjunctive information for variables that actually differ in the join
of two numeric states rather than duplicating the information on all variables.

4.4.5 Application to Separation of Loop Iterations

1 p = &some_var;
2 n = 5;
3 while (n >= 0) {
4 assert(p != 0);
5 ... = *p;
6 ...
7 if (n == 0)
8 p = 0;
9 n--;
10 }

Figure 4.8: A challenging example: freeing a pointer in the last loop iteration.

A particularly challenging example from the literature [HHP13] requires that variable
values of certain loop iterations are distinguished. The example in Fig. 4.8 is prototypical

105



4 The Predicate Abstract Domain

for a loop that frees a memory region in its last iteration. The assertion in line 4 expresses
that the memory region pointed-to by p has not yet been deallocated. In order to prove
this assertion, an analysis needs to separate the value of the pointer p in the last loop
iteration from its value in all previous iterations. In particular, the example is difficult to
prove using convex numeric domains due to a precision loss that occurs when joining the
point 〈p, n〉 = 〈0,−1〉 at line 10 of the last loop iteration with the earlier states where p 6= 0

and n ≥ 0.

step line intervals implications
p n

1 2 [99, 99]
2 3 [99, 99] [5, 5]
3 4 [99, 99] [5, 5]
· · · · · · · · ·
6 7 [99, 99] [5, 5]
7 9 [99, 99] [5, 5]
8 10 [99, 99] [4, 4]
9 3 t [99, 99] [4, 5]
9’ 3’ ∇ [99, 99] [−1, 5]
10 4 [99, 99] [0,5]
· · · · · · · · ·

14 8 [99, 99] [0, 0]
15 9 t [0,99] [0, 5] {0 < n→ 99 ≤ p,0 < p→ 0 ≤ n}
16 10 [0, 99] [−1, 4] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
17 3 t [0, 99] [−1, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
18 4 [99,99] [0, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
· · · · · · · · ·

25 3 v [0, 99] [−1, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}

Figure 4.9: States during the analysis of the loop example in Fig. 4.8.

However, using the simple interval numeric domain and our predicate domain, the
example is proved using the fixpoint computation detailed in Fig. 4.9. In step 1 of the table,
p is initialized to a non-zero address of a variable, which we illustrate by using the value
99. After initializing the loop counter n in step 2, the loop is entered as the loop condition
n >= 0 is satisfied. In step 6, it is determined that the then-branch in line 8 is not reachable.
After decrementing n, the state is propagated to the loop head via the back-edge in step
9. At this point, widening is applied. Our thresholds widening (see Sect. 3.4) ensures
that the interval [−1, 5] is tried for n, rather than widening n immediately to [−∞, 5]. By
applying the loop condition n >= 0, a new state for the loop body is obtained in step
10. In step 14, it is observed that the then-branch in line 8 is reachable. In the next step
in line 9 the states of both branches are joined and the interval domain approximates
p with [0, 99]. In the same step, the implications 0 < n → 99 ≤ p, 0 < p → 0 ≤ n are
synthesized. In step 16 these predicates are transformed using σ−1 = [n/n + 1]. This
state is joined with the previous state at the loop head at step 17. Our widening heuristic
from Sect. 3.3 suppresses widening since a new branch with a constant assignment has
become live. Since the resulting numeric state has changed due to the new value of p, the
fixpoint computation continues. Note that during the join in step 17, both implications

106



4.5 Experimental Results

−1 < n → 99 ≤ p, 0 < p → −1 ≤ n are semantically entailed in the current state at
the loop head (as computed in step 9’) and therefore kept in the joined state. Evaluating
the loop condition in step 18 enforces that n ≥ 0, that is, 0 ≤ n. The latter predicate
syntactically entails the predicate −1 < n. Thus, the fixapply function deduces that 99 ≤ p
holds, yielding p ∈ [99, 99]. The assertion holds since intersecting the state at step 18 with
p = 0 yields ⊥. Thus, at line 4, p cannot be 0 and the assertion holds. Continuing the
analysis of the loop observes a fixpoint in step 25. Note that the assertion can also be shown
when using standard widening that sets n to [−∞, 0] in step 8’ or not delaying widening
in step 17 resulting in p ∈ [−∞, 99]. However, for the sake of presentation, we illustrated
the example with the more precise states.

4.5 Experimental Results

benchmark suite programs lines lines avg. time avg. time avg. (P) time avg. (PH)
literature 9 9–17 14 38 ms 99 ms 381 ms
test 8 66–274 115 393 ms 1658 ms -

Figure 4.10: Evaluation of our implementation. Due to technical reasons, the “test” bench-
mark suite could not be analyzed using the disjunctive domain (PH).

The Predicate abstract domain was inspired by our weaker flags domain (see Sect. 2.5.3)
that tracked bi-implications of the form f ↔ x ≤ c. This domain is useful in the analysis
of machine code where conditional branches are encoded using two separate instructions.
The first instruction is a comparison that stores the result of x ≤ c in a processor flag f .
The second instruction is a branch instruction that determined the jump target based on f .
By tracking an association between the comparison result f and the predicate x ≤ 0, the
edge of the jump with the assumption f = 1 can be made more precise by also assuming
x ≤ 0 and analogously for f = 0. However, the use of simple bi-implications only states
additional invariants rather than predicates that hold conditionally. Hence, disjunctive
information cannot be described by using only bi-implications.

We evaluated our combined predicate/numeric domain on several examples in the
literature, including the ones presented in this paper, shown as “literature” in Fig. 4.10. We
also evaluated larger examples shown as “test”. All examples from the literature required
the predicate domain to verify except for the example in Fig. 4.1 that our weaker predicate
domain [SMS11] already handles. The times are shown when running without and with
the predicate domain “(P)”. The last column shows the running time with a disjunctive
domain “(PH)” that tracks different numeric states depending on the index ranges of a
loop (see Sect. 3.5). Due to this, only one example in the “literature” benchmark suite could
possibly profit. A precision comparison of our disjunctive and the predicate domain can
therefore not be conclusive for the disjunctive domains in the literature [GC10b; MR05].

107



4 The Predicate Abstract Domain

4.6 Related Work

The idea of abstracting a system relative to a set of predicates was first applied by Graf
and Saïdi to state graphs created during model checking [GS97]. This approach has later
been generalized to software model checking by Ball et al. [Bal+01]. Here, an abstraction
tool c2bp translates a C program to a program over Boolean variables. The value of a
Boolean variable is true if the corresponding predicate holds in the input C program. The
universe of possible predicates is very large as the semantics of each assignment and test
is expressed by predicates. For scalability, c2bp abstracts the input C program only with
respect to a few predicates.
The idea of counter-example driven refinement is to increase this set of predicates by
deducing which additional predicates are needed to discharge a verification condition.
This deduction is performed on a path through the program on which the current Boolean
abstraction is insufficient to prove a verification condition. There are two ways in which
this refinement may fail: Firstly, the translation of C statements and tests into predicates
may be inaccurate or the logic of the predicates may be insufficient to represent the C
semantics precisely. Secondly, a set of predicates that suffices to discharge the verification
condition on the chosen path may be insufficient when considering the whole program.
An abstract interpretation over domains that lose precision due to convexity is naturally

improved by making the abstraction closed for disjunction, that is, disjunctions can be
expressed without approximation. This approach is commonly known as disjunctive com-
pletion [CC79a]. In practice, the disjunctions are qualified by a set of predicates and are
stored in a binary decision-diagram (BDD) where decision nodes are labeled with predi-
cates and the leaves are convex numeric abstract domains [GC10b; MR05]. The challenge
in implementing these domains is that the evaluation of transfer functions in one leaf may
lead to a result that has to be propagated to many other leaves. A particular challenge is
the widening operator and the reduction between predicates and states [GC10a; MSS13].
One drawback of using a BDD as state is that computing a fixpoint of a loop will perform
all operations on each leaf of the BDD, even those that are stable within, say, the current
loop. This can be avoided by lifting the fixpoint computation from tracking a map P → S

to P × C → S where P are program points, S are states and C is a context. By using
the predicates on a path in the decision diagram as context, the whole decision tree can
be encoded by using one context per path. The advantage of this encoding is that stable
leaves in the original decision tree are no longer propagated since they are each checked
for stability by the fixpoint engine [San+06]. Using predicates as context can be seen as
an elegant way of duplicating the CFG which is a technique sometimes used to improve
widening [GR07].
Beyer et al. combine abstract domains with predicates [BHT08]. Their framework asso-

ciates a precision level Π with each domain that can be adjusted based on observed values
in the program. A value-set analysis, for instance, may specify that only variables with less
than five values are trackedwhile a predicate domain will store the set of inferred predicates
in Π. They propose to change this precision level during the analysis, so that a precision
loss in one domain can be met with a precision increase in another. They instantiate their

108



4.7 Conclusion

framework by an analysis that switches from tracking value sets to tracking predicates
once the former becomes too expensive. Their states are tuples of the precision levels
and the domain states so that a different domain state is tracked for each precision level.
Their approach thereby resembles the disjunctive completion approaches discussed earlier.
Interestingly, they propose the use of a function abstract to synthesize predicates from an
abstract state. However, in their implementation it only returns predicates occurring in the
current program.
Laviron and Logozzo [LL11] use a similar approach to refine numeric domains. Their

refinement predicates are called “hints” and can either be supplied by the user or extracted
from the program, e.g. from assumptions. Using templates [SSM05] they are able to also
synthesize hints during the join of numeric domains. However, their templates do not
intend to recover the precision loss of convex numeric domains but are used to infer new
predicates thereby enriching the numeric state with tighter invariants. This is a similar
approach like in their earlier work on the pentagons domain [LF08] but extended to
sub-polyhedra. As their hints are not implications they cannot express non-convex spaces
and thus cannot prove correct the example in Fig. 4.5 but require a backwards analysis to
refine the over-approximation [LF08] using disjuncts.
Further afield are techniques to refine abstract interpretations based on counter examples

[LL05; GR06b]. The idea here is to re-run the abstract interpretation once a verification
condition cannot be discharged. An improved precision of the abstract interpreter is
obtained by improving the widening or the abstract state based on the path of the counter
example. Our work can be seen as dual to counterexample-driven refinement as we employ
predicates to avoid a precision loss rather than to refine a state that is too coarse. An
approach that uses counterexample-driven refinement and which is seemingly close to
ours is that of Fischer et al. [FJM05] who propose a domain containing a map from a
predicate to a numeric abstract domain. Like our setup, their construction is a reduced
cardinal power domain [CC79a] or, more generally, a cofibered domain [Ven96]. However,
since they track one numeric abstract domain for each predicate, there is no bound on the
number of states that they infer.
Interestingly, when state spaces are bounded, disjunctive invariants can be encoded

using integral polyhedra [Sim08a]. However, since even rational polyhedra are expensive,
storing disjunctive information explicitly seems to be preferable.

4.7 Conclusion

We presented a cofibered domain that tracks implications between predicates. This domain
takes a single numeric abstract domain as child and thereby avoids tracking several child
domains which is the most prominent way to encode disjunctive information. Compared
to trace partitioning [MR05] our approach dynamically synthesizes predicates to separate
states only where the states are different. No user supplied hints are necessary to find such
points of precision loss.
Besides the ability to express non-convex invariants the domain enriches numeric domains
with relational (dis-)inequalities. The deduction mechanism is kept simple for scalability

109



4 The Predicate Abstract Domain

thus we cannot infer new inequalities on joins as e.g. polyhedra [CH78]. However, one
possible extension to our domain is to track predicates in conjunctive normal form (CNF)
and use an SMT solver for the entailment test to improve fixapply .
We illustrated that our domain solves challenging verification examples form the litera-

ture while using a simple deduction and reduction mechanism in form of the two novel
functions synth and fixapply . Especially for path-sensitive invariants, necessary for e.g.
locking schemes [Sch+14] the domain significantly improves precision.

One shortcoming of our predicate domain is that it has difficulties separating two joined
states s1 and s2 if one state subsumes the other, e.g. s1 v s2. This situation is fairly common
when joining program paths with a variable v not being defined on all paths. In those cases
the defined value needs to be joined with an undefined v, that is, v = >. As > subsumes
any other values for v the join incurs a maximal precision loss. In the next chapter we show
how it is possible by using relational information to recover the value of a variable even
after a join with >.

110



5 | The Undefined Domain

5.1 Introduction

Static analyses that are based on relational numeric domains are often restricted to pro-
grams with limited dynamic memory allocation and without recursive functions [Bla+03a].
In particular, problems occur when the numeric domain has to track a changing number
of memory cells or when it has to deal with uninitialized variables. The following example
illustrates the problem.

1 if (rnd()) {
2 x = 1;
3 y = 2;
4 } else {
5 x = 0;
6 }
7 ...

Polyhedra/
Intervals

{x = 1, y = 2} t {x = 0, y = >}
= {x ∈ {0, 1}, y = >}

Polyhedra as
Undefined child
(U � PO)

{x = 1, fx = 1, y = 2, fy = 1}
t {x = 0, fx = 1, y = 2, fy = 0}

= {x ∈ {0, 1}, fx = 1, y = 2, fy = x}

Figure 5.1: Non-initialized variables.

In the C program in Fig. 5.1 a variable y may remain undefined. Here, one conditional
branch initializes variables x and y, whereas the other branch only initializes variable x,
leaving y undefined. When the resulting states are joined,y has to be introduced in the latter
state with an unrestricted value >, giving the joined state {x = 1, y = 2}∪ {x = 0, y = >}.
However, introducing variables with value > can lead to a loss of precision. In particular,
the implication x = 1⇒ y = 2 is lost in domains whose state is a convex set. For instance,
when using the relational polyhedra domain, the joined state {x ∈ {0, 1}, y = >} (shown
in the first row of the table) is only as precise as the join over the intervals, in that any
relation between x and y is lost.

As a solution to this problem of non-initialized variables, we propose a dedicated abstract
domain called the Undefined domain which is a cofibered domain. The child can be an
arbitrary numeric domain. We require that non-initialized and non-existent variables are
introduced as >. The Undefined domain then transparently inserts placeholder values

111



5 The Undefined Domain

using a so-called copy-and-paste operation. It additionally tracks a flag fx that indicates if
variable x is defined, thereby enabling the child domain to infer relations with this flag,
e.g. “y is defined iff x = 1”.
We illustrate the Undefined domain by performing an abstract interpretation of the

program in Fig. 5.1 using the Undefined domain with the polyhedra domain as its child
(U � PO). The resulting state of the then-branch is represented by the child state {x =

1, fx = 1, y = 2, fy = 1}. Here, flags fx and fy have value 1, indicating that x and y are
defined. The resulting state of the else-branch is modeled by the child state {x = 0, fx =

1, y = 2, fy = 0}. Flag fy has value 0, indicating that y appears to have the value > at the
interface of the Undefined domain. As before, the Undefined domain has used the value of
y from the then-branch as a placeholder value. As shown in the second row of the table,
the joined child state {x ∈ {0, 1}, fx = 1, y = 2, fy = x} now indicates that x = 1 implies
fy = 1 and thus y = 2, an invariant that is retained although the state is approximated by
the polyhedra domain.
Any existing numeric domains can be wrapped by the Undefined domain. The resulting

domain is a drop-in replacement for the original numeric domain. The Undefined domain
transparently manages flags for all variables that may be undefined, thereby ensuring that
all operations on the domain are sound even if some of the variables mentioned in the
operations have been replaced by placeholder values. We provide an implementation of
the Undefined domain that partitions the flags into groups of flags with equal valuations.
By collapsing each group into one single flag, it minimizes the required number of flag
variables.

5.2 The Undefined Domain

Numeric domains may provide operations that change the support set of a numeric state,
that is, the set of variables for which the domain holds numeric valuations. Joining and
comparing states with different support sets is often preceded by a process that makes
their support sets equal. As described in Sect. 2.5 we use cofibered domains [Ven96] to
implement modular domains that may have different support-sets. This construction allows
to systematically derive variants of the compare and join operations that adjust the support
sets themselves.
Let XV be the set of program variables and D an abstract domain. In this work, we

assume that each numeric state d ∈ D has a support set χ(d) ⊆ XV that represents the
set of variables for which state d holds valuations. Then each state d ∈ D represents a set
of vectors of dimension |χ(d)|. Since program variables may be introduced and removed
during a program run, the numeric domain must provide operations that add or remove
variables to and from the support set. Removing a variable x from a state d ∈ D with
x ∈ χ(d) is denoted by a function dropD,x : D → D. Adding an unrestricted variable x to
a state d ∈ D with x 6∈ χ(d) is denoted by a function addD,x : D → D. These functions
are lifted to sets of variables by repeated application of the add and drop operations, that
is, addD,X := ©x∈XaddD,x and dropD,X := ©x∈XdropD,x where © denotes function
composition. These are required as comparing and joining two states d1 ∈ D and d2 ∈ D

112



5.2 The Undefined Domain

with different support sets requires to add missing variables to d1 and d2 beforehand.

5.2.1 Definition of the Domain

The Undefined domain is a cofibered domain [Ven96] or functor domain [Cou+06]: Each
state holds a state of a child domain D, and domain operations are forwarded to domain
operations on this child domain. We denote the Undefined domain as a cofibered domain
(U �D,vU,tU ,uU ) that transforms a child domain (D,vD,tD,uD). An element of the
Undefined domain that has a child state d ∈ D is denoted by 〈u, d〉 ∈ U � D. The state
u denotes the mapping from each x to its flag fx. Here, for each variable x ∈ |χ(〈u, d〉)|
of the Undefined domain, its child domain holds a variable x and a flag fx. When fx = 1

in the child domain, the value of x is given by the value of x in the child domain. When
fx = 0, variable x is unrestricted and the value stored for x in the child domain is just a
placeholder. As a consequence, every numeric state of dimension n is modeled by a child
state of dimension 2n. We later detail how fewer dimensions suffice.

Adding and Removing Dimensions Removing a variable x from a state 〈u, d〉 ∈ U � D
consists of removing variable x and the corresponding flag fx from the child state, where
fx = u(x). Thus, we define dropU ,x(〈u, d〉) := 〈u, dropD,{x,fx}(d)〉. Adding a variable x to
a state 〈u, s〉 is done by simply adding an unrestricted variable x and the corresponding
flag fx with value one to the child state d.

Joining, Widening and Comparing States Two states 〈u1, d1〉 and 〈u1, d2〉 with equal
support sets χ(〈u1, d1〉) = χ(〈u2, d2〉) are compared, joined or widened by performing
these operations on the respective child state d1 and d2. For states 〈u1, d1〉 and 〈u2, d2〉
with different support sets χ(d1) 6= χ(d2), their support sets are made equal by performing
addD,x operations on d1 and d2 before they can be compared, joined or widened.

[[y := f(x1, . . . , xn)]]U 〈u, d〉 :=

〈u, [[y := f(x1, . . . , xn); fy :=
n∧
i=1

fxi ]]
Dd〉

[[f(x1, . . . , xn) ≤ 0]]U 〈u, d〉 :=

〈u, ([[f(x1, . . . , xn) ≤ 0;
n∧
i=1

fxi = 1]]Dd tD [[
n∨
i=1

fxi = 0]]Dd)〉

Figure 5.2: Transfer functions for unary operations.

Transfer Functions Figure 5.2 shows the transfer functions for tests and assignments as
applied on a state 〈u, s〉 ∈ U � D. An assignment y := f(x1, . . . , xn) is directly executed
on the child domain. Since the resulting value y is only valid if all variables x1, . . . , xn

113



5 The Undefined Domain

are defined (that is, if all fi = 1), the flag fy is set to the conjunction
∧n
i=1 fxi . A test

f(x1, . . . , xn) ≤ 0 is performed by first splitting the state into one state where all fi = 1

and one state where fi = 0 for some i. The test is then performed on the former state,
while the latter state remains unchanged. After that, both states are joined.

The given semantics of the Undefined domain is still impractical, as it stores one additional
flag variable for each variable in the child state, and its specification is incomplete, as it
does not fully specify how missing variables are added. The next section describes how
the number of flag variables can be reduced and suggests a copy-and-paste operation that
adds missing variables in a clever way: it copies relations between those variables that are
missing in the respective other domain.

5.3 Practical Implementation of the Undefined Domain

In this section we propose an implementation of the Undefined domain that is practical in
the following two senses: firstly, it associates a flag with a set of variables rather than with
each variable, thus yielding a more scalable domain; secondly, it uses a copy-and-paste
operation that transfers the valuations of whole sets of variables to another domain, thereby
allowing for retaining relational information between variables of a partition. After some
definitions, we consider each aspect in turn.

5.3.1 Definition of Partitions

Let XV denote the program variables and F ⊆ XV the variables used as flags. A state
of the Undefined domain U � A is given by 〈u, a〉 with child state a ∈ A and a partial
mapping u : XV 99K F . This mapping takes each variable in the state’s support set
to a flag that tracks whether this variable is defined. Thus, the support set of child
state a is χ(a) = dom(u) ∪ img(u) where dom(u) denotes the domain of u and img(u)

denotes the image of u. We allow several program variables to map to the same flag
variable, thereby inducing a partitioning of program variables. For each mapping u this
partitioning is given by Π(u) := {u−1(f) | f ∈ img(u)}), where u−1 : F → ℘(XV )

is the reverse relation of u. For better legibility, we sometimes denote u by its reverse
relation. Thus, for u = [x0 7→ f0, x1 7→ f1, x2 7→ f0, x3 7→ f1] we write [f0 7→ {x0, x2},
f1 7→ {x1, x3}]. We now detail how to manage flags when partitions change.

5.3.2 Making Partitions Compatible

Whenever two states 〈u1, a1〉 and 〈u2, a2〉 are compared or joined, their partitioning Π(u1)

andΠ(u2)must agree. To this end, the coarsest partitioningP := {p1∩p2 | p1 ∈ Π(u1), p2 ∈
Π(u2)} whose partitions can be merged to give either Π(u1) or Π(u2) is calculated. We
then associate each partition p ∈ P with a fresh flag fp, thereby obtaining a new state
u−1

12 =
⋃
p∈P [fp 7→ p]. Let u12 = common(u1, u2) abbreviate this operation. Since u12

associates different (and possibly more) flags with its partitions than u1 and u2, the flags

114



5.3 Practical Implementation of the Undefined Domain

x ∈ XV x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

u1(x) f1 f1 f1 f1 f2 f2 f2 f2 f3 f3

u2(x) f4 f4 f5 f5 f5 f5 f6 f6 f7 f7

u12(x) f8 f8 f9 f9 f10 f10 f11 f11 f12 f12

Figure 5.3: Making compatible of two partitions u12 = common(u1, u2).

stored in a1 and a2 have to be adjusted. Thus, let transu12ui (f) := {u12(x) | x ∈ u−1
i (f)}

denote the flags of those partitions in u12 whose union is associatedwith f in ui. We transfer
the value of f to the flags {f1, . . . , fn} ∈ transu12ui (f) using the assignment adjOneu12ui (f) :=

[[f1 := f ]] · · · [[fn := f ]]. The assignment for all partitions is then given by the composition
adjustu12ui :=©f∈img(ui)adjOneu12ui (f). Making two child states a1 and a2 compatible with
u12 requires that the flags img(u12) are introduced, the renaming adjustu12ui is applied, and
that the now stale flags img(ui) are removed. These operations are aggregated by the
function compatu12ui

= dropimg(ui) ◦ adjustu12ui ◦ add img(u12).
Consider the task of making two domains, 〈u1, a1〉 and 〈u2, a2〉 compatible where u1 and

u2 are given by the first two rows in Fig. 5.3. First, the new partition u12 = common(u1, u2)

is calculated as shown in the last line of Fig. 5.3. In order to adjust a1 to be compatible with
u12, we compute a′1 = compatu12u1

(a1) = drop{f1,f2,f3}(adjustu12u1 (add{f8,...f12}(a1))). The
function adjustu12u1 expands to adjOneu12u1 (f1) · · · adjOneu12u1 (f3) = [[f8 = f1, f9 = f1]] · [[f10 =

f2, f11 = f2]] · [[f12 = f3]]. Computing a′2 = compatu12u2
(a2) analogously suffices to perform

any operation that requires χ(a′1) = χ(a′2), such as 〈u1, a1〉 tU 〈u2, a2〉 = 〈u12, a
′
1 tA a′2〉.

This concludes the process of making domains compatible which allows us to associate
a flag with a partition rather than a single variable. While tracking fewer flags improves
performance, we now detail how precision can be improved.

5.3.3 Rescuing Relational Information

Tracking whether a set of variables is undefined is only useful if the content of undefined
variables is replaced by other values that lead to less precision loss. In order to distinguish
variables that are always undefined, we use a special flag fundef whose value is always zero
in the child domain. The variables u−1(fundef) associated with fundef are omitted from the
child domain. Due to this, computing the join of two states 〈u1, a1〉 tU 〈u2, a2〉 requires
that the variables X12 = u−1

1 (fundef) \ u−1
2 (fundef) that are undefined in a1 but not in a2 are

added to a1 before the child states ai can be joined (and vice-versa). To this end, define
a function copyAndPasteD,X : D × D → D with r = copyAndPasteD,X(a1, a2) such that
variables X are copied from a1 into a2, yielding r where X ⊆ χ(a1), χ(a2) ∩X = ∅ and
χ(r) = χ(a2) ∪X. We illustrate copyAndPaste with an example.
Suppose the following modified version of the introductory example in Fig. 5.1 is given

in Fig. 5.4 where rnd() returns a random number. Consider analyzing this program with
a state 〈u1, a1〉 where u1 = [fundef 7→ {x, y}] and a1 = {fundef = 0} is a convex polyhedron.
Note that χ(a1) = {fundef} since the variables x, y ∈ u−1

1 (fundef) are not stored in a1 as
explained above. The state at line 5 becomes 〈u2, a2〉 where u2 = [fxy 7→ {x, y}] and

115



5 The Undefined Domain

1 int x,y;
2 if (rnd(0, 1)) {
3 x = rnd(0, 10);
4 y = x;
5 }
6 ...

Figure 5.4: Assigning a random value in a loop.

a2 = {x = y, x ∈ [0, 10], fxy = 1}. The benefit of not storing x, y in a1 is that they can be
introduced using a′1 = copyAndPasteA,{x,y}(a2, a1) = {x = y, x ∈ [0, 10], fundef = 0} that
extracts all information over x, y in a2 and adds it to a1. In order to state that these variables
should be considered as undefined in a′1, we add a new flag fxy = 0 yielding 〈u′1, a′1〉 with
u′1 = [fxy 7→ {x, y}] and a′1 = {x = y, x ∈ [0, 10], fxy = 0}. Now the state after line 5 can
be computed as 〈u′1, a′1〉 tU 〈u2, a

′
2〉 = 〈u12, a

′
1 tA a′2〉 where u12 = u′1 and a

′
2 is a2 in which

fxy = 1 is added. The result a′1 tA a′2 = {x = y, x ∈ [0, 10], 0 ≤ fxy ≤ 1, fundef = 0} retains
the equality x = y, thereby improving the additional relational information.

5.3.4 Transfer Functions

Figure 5.5 illustrates the implementation of the� = t,v,∇ functionswhichuse copyAndPaste
on the child domainA. We define r = copyAndPasteD,X(a1, a2) as r = a1uDdrop(D,χ(a2)\X)(a2)

where uD is a greatest lower bound on two abstract states that adds missing dimensions
as needed. The idea is to remove all dimensions from a2 that should not be copied before
merging the remaining relations over X into a1 using the meet uD. For each binary op-
eration �, Eq. 5.1 shows how the states are made compatible as described above before
applying � on the child domains.

Figure 5.5 also defines other transfer functions of the Undefined domain. Adding an
unrestricted dimension x using add merely adds a mapping fundef 7→ x to the undefined
mapping (Eq. 5.2). Removing a variable x using drop needs to check if x is not stored in
a (Eq. 5.3), or if it was the last variable in its partition (Eq. 5.4). Assigning to a variable
y computes the set of flags Ψ that must be one to make the result defined (Eq. 5.5). If
fundef ∈ Ψ then y is always undefined and executing the assignment on the child is not
necessary. If a single flag f suffices to make y defined, y is added to the partition of f . In
the general case, a new flag fy is created (Eq. 5.6) that represents the validity of the new
partition {y} (Eq. 5.7). Applying a test (Eq. 5.8) partitions the child state a into one where
all variables occurring in the test are defined (ψ = |Φ|) and one where they are possibly
undefined (ψ < |Φ|). Only in the former case, the test is applied.

116



5.4 Applications to Interprocedural Analysis

〈u1, a1〉�U 〈u2, a2〉 = let for i = 1, 2 (5.1)

Xi = u−1
i (fundef)

u′i = ui[x 7→ fi]x∈Xi\X3−i
where fi fresh

u12 = common(u′1, u
′
2)

a′i = copyAndPasteA,X3−i\Xi
(a3−i, ai)

in 〈u12, (compatu12u1
(a′1)�A compatu12u2

(a′2))〉

addx(〈u, a〉) = 〈u[x 7→ fundef], a〉 (5.2)

dropx(〈u, a〉) = if u(x) = fundef then 〈(u \ x), a〉 else (5.3)

if |{y ∈ dom(u) | u(x) = u(y)}| > 1

then 〈(u \ x), dropA,x(a)〉
else 〈(u \ x), dropA,{x,u(x)}(a)〉 (5.4)

[[y := f(x1, . . . , xn)]]U 〈u, a〉 = let Φ := {u(x1), . . . u(xn)} in (5.5)

if fundef ∈ Φ then addU ,y(dropU ,y(〈u, a〉)) else
if Φ = {f} then 〈u[y 7→ f ], [[y := f(x1, . . . , xn);]]Aa〉

else let fy fresh and u′ = u[y 7→ fy] in (5.6)

〈u′, [[y := f(x1, . . . , xn); fy :=
∑
f∈Φ

f = |Φ|]]Aa〉 (5.7)

[[f(x1, . . . , xn) ≤ 0]]U 〈u, a〉 = let Φ := {u(x1), . . . u(xn)} and ψ =
∑
f∈Φ

f in (5.8)

〈u, [[f(x1, . . . , xn) ≤ 0;ψ = |Φ|]]Aa tA [[ψ < |Φ|]]Aa〉

Figure 5.5: Transfer functions for binary operations � = t,v,∇, and unary operations.

5.4 Applications to Interprocedural Analysis

We now illustrate the utility of the Undefined domain by using examples from the interpro-
cedural analysis of function calls. For the sake of limiting the memory consumption of an
analyzer, it is desirable to merge the states of certain call sites of a function f into one. To
this end, we use a stack functor domain S�C (with child domain C) that manages a set of
stack frames. Here, S tracks one dedicated active stack frame that represents the currently
executed function f. In order to track to which stack frame the analysis has to return to
when leaving the current function, the state s ∈ S is a directed graph with stack frames as
nodes, where the more recently called function points to its caller. Consider for example the
program in Fig. 5.6. Here, function f is called twice. First, it is called by function a, which
in turn is called from main. Figure 5.7 a) shows how the first call path via a forms a linked
list of stack frames, which we denote by sa. Figure 5.7 b) shows the graph of stack frames
for the second call to f via b, denoted by sb. In order to combine two graphs sa and sb, we

117



5 The Undefined Domain

1 main() {
2 a(0);
3 b(1);
4 }

5 a(int x) {
6 f(x);
7 }

8 b(int y) {
9 f(y);
10 }

11 f(int z) {
12 ...
13 }

Figure 5.6: Function calls example.

fam ffa

fbm ffb

fam ffa

fbm ffb

main a f

main b f

main

a

b
f

a)

b)

c)

Figure 5.7: Combining several call sites into one state.

follow [SS13] in qualifying the graph edges by numeric flags, that is, numeric variables that
can take on the values 0 or 1. Let 〈sa, ca〉 with ca = {x = z = 0, ffa = 1, fam = 1} ∈ PO
denote the abstract state (here ca ∈ PO are convex polyhedra [CH78]) on entry to f for
the path in Fig. 5.7 a). In ca, the flag ffa has value one, indicating that the node (stack
frame) of a is the predecessor of the node (stack frame) of f. Analogous for fam that
qualifies the edge between the stack frame of f and of main. Symmetrically, for the path
shown in Fig. 5.7 b) the state is cb = {y = z = 1, ffb = 1, fbm = 1}.

The two graphs sa and sb are merged into the combined graph of stack frames s in
Fig. 5.7 c). In order to capture that the b node is not a predecessor of f in sa, we add
the flag ffb = 0 to ca and analogously we add fbm = 0, yielding c′a = {x = z = 0, ffa =

1, ffb = 0, fam = 1, fbm = 0}. Symmetrically, we enrich cb to c′b = {y = z = 1, ffa =

0, ffb = 1, fam = 0, fbm = 1}. Overall, we obtain the state 〈s, c′a tC c′b〉 = 〈s, {x = >, y =

>, 0 ≤ z ≤ 1, z = fbm = ffb = 1− fam = 1− ffa}〉.

Note that all information within the stack frames, namely x and y is lost. The Undefined
domain can improve this situation: we re-analyze the example using the domain U�S�PO.
The net effect is that in the last step, instead of 〈s, c′atC c′b〉we compute 〈s, 〈u, c′a〉tU 〈u, c′b〉〉
where u ∈ U is the mapping stating that all variables are defined. By the definition
of tU the missing variable x is added to 〈u, c′b〉 giving 〈ub, c′b〉 with ub = [x 7→ fundef]

and, analogously, the left argument becomes 〈ua, c′a〉 with ua = [y 7→ fundef]. Computing
the join 〈ua, c′a〉 tU 〈ub, c′b〉 makes the two undefined states ua and ub compatible to
u = [x 7→ fx, y 7→ fy]. The numeric state c′a is modified by adding fx = 1, fy = 0 and

118



5.5 Experimental Results

copying y = 1 from c′b whereas s
′
b is modified by adding fx = 0, fy = 1 and copying x = 0

from c′a. The state that f is analyzed with is thus 〈s, 〈u, {x = 0, y = 1, 0 ≤ z ≤ 1, z = fx =

fbm = ffb = 1− fy = 1− fam = 1− ffa}〉〉.
The benefit of the Undefined domain is thus that, upon returning from f, the content of

the predecessor stack frames is still available since x = 0, y = 1 is retained in the join of the
two call sites. Our analysis infers more intricate invariants if pointers are passed, since the
flags of the Undefined domain form an equality relation with the points-to flags [SMS13].

5.5 Experimental Results

We evaluated the Undefined domain in our analyzer using a domain stack S � U �A�

CR� I where S maintains stack frames and memory allocated on the stack and U is the
Undefined domain. The remaining domains are numeric; they track affine equalities A,
congruences CR and intervals I. In order to estimate the performance of the Undefined
domain, we also evaluated the examples with domain stack S�A�CR�I that is, without
domain U .
The stack domain S recognizes function boundaries by observing the stack pointer

whenever the control flow changes through a jump, call or return instruction (see Sect. 2.5.1).
The examples were analyzed using executables compiled for the Intel x86 platform. On
this platform the return instruction is translated into a read access to the previous stack
frame in order to retrieve the return address and a jump to this address. The Undefined
domain is thereby key to infer a precise address since, for Fig. 5.7, stack frames a and b
are both read and joined before the jump is executed.

example U insns. time memory variables undef. flags warnings
call stack 1 (Fig. 5.6) 76 377 41.9 48 – 7
call stack 1 (Fig. 5.6) 3 114 450 42.0 50 2 0
call stack 2 178 416 42.6 72 – 7
call stack 2 3 254 641 42.0 74 2 0
call stack 3 76 422 41.9 48 – 7
call stack 3 3 153 718 42.4 66 4 0
call stack 4 88 920 42.5 52 – 8
call stack 4 3 128 702 42.2 54 2 0
call stack 5 90 709 42.0 54 – 8
call stack 5 3 173 1455 47.3 75 4 0

Figure 5.8: Evaluation of the Undef domain.

Figure 5.8 shows the experimental results. Column U indicates whether the Undefined
domain is used, followed by the number of machine instructions in the program that were
analyzed; columns time and memory show the runtime in milliseconds and the memory
consumption in megabytes, averaged over several runs on a 3.2 GHz Core i7 Linux machine.
The next column shows the total number of variables tracked, followed by the number of
flag variables used by the Undefined domain and the number of warnings emitted by the
analyzer.

119



5 The Undefined Domain

The first line shows the call stack example of Sect. 5.4, followed by variations with
more functions and call paths. Call stack examples 4 and 5 differ in that they use pointers
to stack variables to pass parameter values. Note that the call stack examples exhibited
shorter runtimes without the Undefined domain, because precision loss made it impossible
to resolve the return addresses, so that the examples could only partially be analyzed. This
is reflected in the number of analyzed instructions. For the same reason the number of
total variables in the call stack of example 3 and 5 without the domain are much lower
than with the Undefined domain. The examples show that the additional variables that are
necessary as flags for the Undefined domain are only few compared to the total number of
variables in the program.

5.6 Related Work

We addressed the challenge of tracking the content of memory that does not exist in
all traces. Many existing analyses use some ad-hoc methods to approximate what we
have put on a sound mathematical basis: the ability to store both, precise and undefined
values for variables in a single state. For instance, recency abstraction [BR06] implicitly
retains the defined value when the state is joined. When a purely logic description is
used [Rey02; SRW02], the distinction between defined and undefined content is simply
expressed using disjunction. In Astrée [Bla+03a], disjunction is expressed using the
decision tree domain that tracks two separate child domains depending on the value of a
flag. The effect is similar to standard path-sensitive analyses in that tracking two states
duplicates analysis time. More sophisticated analyses merge states on different paths if a
finite abstraction determines that they are similar [DLS02]. Future work will determine
whether this technique can be implemented as a combinator in our domain stack.
The Undefined domain partially allows the encoding of conditional invariants. While this

problem has been studied for logical domains [GMT08], we provide a solution that enables
existing numeric domains to infer certain conditional invariants, e.g. those guarded by
the existence of objects. For overly complex invariants, our approach exploits the ability of
numeric domains to gradually lose precision.

5.7 Conclusion

We addressed the task of storing a single state in cases where a piece of memory has
undefined content. We illustrated the power of this domain by defining a specific instance,
namely the Undefined domain, that improves precision in common program analysis tasks.
Its novel copy-and-paste operation even retains relational information.

120



Part | III
Precision Improvements using

Dynamic Analysis

121





6 | Dynamically Started
Static Analysis

The strength of sound static analysis tools applied to find buffer overflows in executable
programs is that many memory accesses can be shown to be within bounds which alleviates
the security engineer from examining them. However, the inherent approximation applied
during a static analysis implies that certain indirect jumps cannot be resolved precisely so
that byte sequences are incorrectly interpreted as part of the program, leading to further
imprecision and scalability problems. We present an approach that combines dynamic and
static analysis with which it is possible to run the program through one path of its start-up
code and to change over to a static analysis once the program reads input from a file or
the network. Our approach makes potentially vulnerable memory accesses easier to find
since the state space with which the remainder of the program is analyzed is generic only
at those memory addresses that contain user input.

6.1 Introduction

Security engineers face the challenge of finding vulnerabilities in software that is often only
available to them in the form of an executable. Many techniques have been developed to
aid in this endeavor, such as fuzzing [GLM12], differencing [SMA05], monitoring execution
[CV04], symbolic execution [Jaf+12] or reachability analysis as presented in this thesis.
The goal of these techniques is to support the engineer in finding an input to the program so
that a path is taken that leads to a vulnerable code construct (such as an array access that is
out-of-bounds for certain inputs). From an academic point-of-view, a reachability analysis
that is sound (i.e. it only over-approximates the reachable states of a program) is most
satisfactory: if a program construct is not vulnerable even under the over-approximated
state, then it is never vulnerable. Hence, a sound reachability analysis can prove the absence
of vulnerabilities, an ability that is beyond other unsound (not strictly over-approximating)
techniques such as fuzzing and test data generation. In practice,however, sound reachability
analysis faces the problem of imprecision: a program construct may be flagged as being
vulnerable due to the state space added by over-approximation. Such a warning is known
as a false positive. The problem of imprecision is exacerbated in the analysis of executables
due to indirect (calculated) jumps [Bal07; KVZ09]: if the target of an indirect jump is too
imprecise, a plethora of instructions are analyzed that can never be reached in the actual

123



6 Dynamically Started Static Analysis

program, thus leading to an avalanche of false positives and scalability problems. Thus,
general static analysis is currently not a good fit for finding vulnerabilities in executables.
Interestingly, in most circumstances, it is relatively easy to determine where malicious

data can be fed into a program by recording an average trace through an executable and
observing where it reads from a file or the network. The challenge now lies in finding the
right data to trigger a vulnerability in the code. One way forward is to search the trace for
patterns such as calls to string copying functions or calls to linked-in libraries that have
known vulnerabilities [Orm06] and to alter the input such that a vulnerability is triggered.
However, not only is it difficult to alter the input data appropriately [God07; SMA05], but
furthermore, vulnerabilities that lie in hand-coded functions that do not fit any pattern
cannot be found this way.
In this chapter, we propose to find new vulnerabilities by combining sound static analysis

and program tracing. The idea is to utilize a single trace and to generalize the program
input along this trace using static analysis. To this end, we let the user specify the point ps
in the program where potentially malicious input can be read. This point could be where
a PDF or HTML file is opened. We run the program and record a trace as soon as ps is
reached. Later we start our analysis with the state of the program as we observed it at
ps. The analysis then executes the code along the path prescribed by the trace. The net
effect is that the analysis now infers a state that is generic with respect to the input read
after ps. Thus any vulnerability found must either be triggered by the input or is due to
over-approximation. In order to prove the absence of vulnerabilities from inputs read after
ps, we allow the user to incrementally add all other paths that were not taken after ps. If
this succeeds without triggering a warning, the user can be sure that no other input exists
that could have triggered an exploit.
The power of our approach of combining dynamic and static analysis lies in sidestepping

the problems of scalability and imprecision inherent in whole-program static analysis. At
the same time we retain the benefit of working with a sound analysis, namely being able
to (partially) verify a program.

6.2 Over-Approximating Static Analysis

Recalling the definitions from Sect. 2.1.3 that a program is correct if Safe(〈p, γ(s])〉) holds for
all 〈p, s]〉 ∈ A where p ∈ P is the set of possible instructions. In general, the approximation
in an analyzer can be severe so that no information might be available on, say, a certain
pointer variable. If the next instruction is a jump to the address stored in that pointer, the
analysis not only has to warn that Safe does not hold (since the values of the pointer are
not all in P ) but it would have to continue at all valid instruction addresses P which is
too costly and yields no useful results. These problematic precision losses are particularly
common in startup code, unpackers in malware, loading of plug-ins and much other code
that is executed during initialization.
We propose to circumvent this loss of precision by dynamically starting our static analysis.

To this end, we let the user specifies ps ∈ P which denotes a point in the program where

124



6.3 Trace Abstraction

input from a file or network is read that can be controlled by an attacker. Such a point
can easily be found using e.g. Unix’ strace -i. We run the program and record a trace
π ∈ Π that passes through ps. At ps, we transfer the state 〈ps, s〉 ∈ π by saving it to disk.
We continue running the program but only store τ = ps ·p1 ·p2 · · · ∈ P ∗ which corresponds
to the execution π ∈ Π without the states si. Given this sequence of program locations, we
now define how to analyze this trace in an abstract way.

6.3 Trace Abstraction

The idea in trace abstraction is to infer an abstract state by following the execution path
τ ∈ P ∗ of the concrete trace. Let τ(i) represent the ith program point (that is, τ(0) = ps)
and let 〈ps, s〉 ∈ π denote the state that was stored to disk. By choosing s] ∈ S] and A
such that 〈ps, s]〉 ∈ A and s ∈ γ(s]), we now compute the trace abstraction Atr

k = mk of k
steps as follows:

m0 = {〈ps, s]〉} ∪ {〈p,⊥〉 | p ∈ P, p 6= ps}
mi+1 = {〈p, s]i+1 tmi(p)〉 | 〈p, s]i+1〉 ∈ Next](τ(i),mi(τ(i))) ∧ p = τ(i+ 1)}

Here, ⊥ denotes the unreachable state with s] t⊥ = s] for all s] ∈ S]. The idea of trace
abstraction is that each transition from τ(i) to τ(i + 1) in τ is evaluated by the abstract
semantics while all traces that do not lead to τ(i+ 1) are ignored. Note that in general, the
number of steps k must be provided by the user in order to limit the size of the recorded
trace and thereby the analysis time.

1 elem_t* init_array (size_t num_elems) {
2 size_t buf_size = num_elems * sizeof(elem_t );
3 elem_t* elems = malloc(buf_size );
4

5 for (int i = 0; i < num_elems; i++)
6 elems[i] = DEFAULT;
7 return elems;
8 }

Figure 6.1: An overflowing multiplication may lead to a buffer that is too small.

By using this strategy we can already discover certain vulnerabilities, as illustrated by
Fig. 6.1. The C program shows a common coding pattern that is vulnerable to buffer
overflows. More complex variations of this pattern are discovered on occasion in cur-
rent software [OS]. Suppose that num_elems is given as an input to the program. An
attacker can exploit that the multiplication of unsigned integers in line 2 may overflow in
order to allocate a smaller buffer (line 3) than intended by the programmer. For instance,
on a 32 bit platform the values for the variables could be num_elems = 0x80000001 and
sizeof(elem_t) = 4, for which the multiplication will overflow and result in buf_size = 4.

125



6 Dynamically Started Static Analysis

As a consequence, the iteration over the allocated buffer in line 5 will write past the buffer’s
end and corrupt the heap. Worse, if the attacker can control the data that is written to the
buffer, it might be possible to overwrite another object in the heap. If this object contains
a virtual dispatch table or other function pointers, the attacker could inject and execute
code by overwriting these pointers. A successful exploitation however is more complex
thus a heap buffer overflow does not immediately imply code execution.

In order to analyze the example we generate a trace to the init_array function where
e.g. num_elems = 10. This trace however does not trigger the overflow. We will show the
analysis of the trace using the domains stackWR�A� I, that is, the cofibered wrapping
domain with affine equalities and the interval domain as child. Note that the wrapping
domain has no state and is thus omitted. Starting from the trace when reaching line 4 we
track the state s = 〈{buf_size = 4num_elems}, {num_elems ∈ [10, 10]}〉. Iterating the
loop along the trace we infer that the loop counter values are i ∈ [0, 9] in line 5. Next the
write in line 6 involves testing if the access is inside the bounds of the elemsmemory region,
that is, we apply the test 4i < buf_size to the domain state. With the state tracked by the
analysis the test translates to 4i < 4num_elems and is tested on the interval domain as
4∗[0, 9] < 4∗[10, 10]. As this test always holds the analysis of this trace does not find the bug.

Now consider the overflow example mentioned above, where we choose num_elems =

0x80000001 = 231 + 1. The difference in the analysis is that in line 6 when applying the
test 4i < buf_size the wrapping domain first tests if buf_size is inside its defined range
[0, 232−1],which it is not, due to buf_size = 4num_elems = 233+4. Wrapping then assigns
the wrapped value to buf_size at the same time removing the affine relation to num_elems.
As a result testing 4i < buf_size in line 6 does not hold after 4 iterations as i ∈ [0, 231 + 1],
and buf_size ∈ [4, 4]. The write thus causes a warning for potential out-of-bounds accesses.

Nevertheless, here our analysis only proved that the given overflow example indeed
triggers the bug. However, if we do not have a concrete example that exercises the bug it
is still desirable that the analysis automatically finds the bug. In order to achieve this, we
must abstract the value of num_elems, that is, we set ps before the value of num_elems
is initialized by e.g. some call to the operating system. The analysis abstracts this call
by setting num_elems to >. When evaluating the multiplication, the wrapping domain
recognizes that the result may overflow for num_elems > 230 and thus infers that the
buffer allocated by malloc has a size in [0, 232−1]. Since the correctness of the array access,
namely 4i < buf_size, does not always hold due to the overflow, writing to the array in line
6 will be flagged as being out-of-bounds. The out-of-bounds warning is inferred already in
the first loop iteration, as i = 0 is not strictly smaller than buf_size = [0, 232 − 1]. Hence,
by abstracting the program input that sets num_elems we were able to automatically find
the bug without requiring a concrete overflow triggering example.

Suppose now that num_elems = 0 in the generated trace. In this case the loop is not
entered and the buffer access in line 6 is never executed. Even though we might choose to

126



6.4 Reachability Analysis

abstract num_elems = > the trace stops us from analyzing the loop body. Hence, by using
the trace abstraction only, the analysis would miss the vulnerability because it follows the
execution path of the trace which does not enter the loop. The next section explains how
to discover vulnerabilities even if the trace execution path does not contain them.

6.4 Reachability Analysis

The previous section proposed an analysis that generalized the input values that were read
since passing ps. Even then, it can be that no error is found along this trace. We now allow
the user to analyze other parts of the program by adding paths that were neglected so far.
These paths start at p ∈ p̄r where:

p̄r = {τ(i) | 〈p, s]〉 ∈ Next](τ(i),mi(τ(i)))∧
p 6= τ(i+ 1) ∧ s] 6= ⊥ ∧ i ∈ [0, k − 1]}

The idea is to let the user choose points p ∈ p̄r for which a reachability analysis can
be started. This reachability analysis will perform a fixpoint computation of all states
reachable from p, thereby inferring all behaviors that are possible when passing through
point p with the generalized input. Note that the test of each loop is in p̄r so that the user
can trigger a fixpoint computation of every loop. We illustrate the effect of choosing e.g.
p = l8 in the following example.

1 #define MAX_BUF_LEN = 100;
2

3 char* normalize (char* source) {
4 char length = strlen(source );
5 if (length >= MAX_BUF_LEN)
6 return;
7

8 char buffer[MAX_BUF_LEN ];
9 strcpy(buffer , source );
10 char* result = parse(buffer );
11 ...
12 }

Figure 6.2: A conversion may lead to an unexpected value range.

In Fig. 6.2, an implicit cast from size_t to char in line 4 is used before the test in line 5
checks if the length of source is bigger than 100. However, the char datatype is signed on
some platforms and any negative value will pass the test. For instance, if source contains
a string of length 128, strlen(source) returns an integer value of 128. Due to the cast to
a signed char length will contain −128 which would pass the subsequent test (line 5). We
assume here a signed char datatype of 8 bits size. Thus 128 = 27 sets the highest bit in
the char variable which, when interpreted in two’s complement arithmetic equals to −128.

127



6 Dynamically Started Static Analysis

Next, when copying the 128 bytes in source to the work buffer (line 9), strcpy will write
past the end of the allocated buffer and overwrite the stack.
When analyzing the example above, a generated trace is unlikely to trigger the vulner-

ability because strlen(source) might be, say, 80 in the trace. We set ps to the location
where source is read from some user input as before. Applying the trace abstraction
technique from Sect. 6.3, the analysis would not be able to infer that strcpy can write
past the end of buffer. The analysis would follow the execution path of the trace inside
strcpy and iterate as many times over the copy loop as the trace, thus missing the possible
out-of-bounds access. In order to explore paths that were not taken by the trace, the user
can choose all positions in p̄r before line 9 so that the analyzer performs a reachability
analysis of the loop(s) within strcpy. The loops are then analyzed using widening and
thus not bound to the number of iterations recorded in the trace. Thus, a fixpoint of the
copy loop in strcpy is calculated that over-approximates all lengths of source and which
infers that the size of source is not always smaller than the size of buffer.

6.5 Combining Tracing and Analysis

In order to capture a trace of the program execution we combined our existing static
analysis framework with Intel’s PIN binary instrumentation framework [Luk+05]. The
latter provides a lightweight software virtual machine for the x86 platform and allows
the insertion of instrumentation code into the executable program. Instrumentation code
can be inserted for specific instructions, classes of instructions or for interactions with the
operating system. Other instrumentation frameworks could have equally well been used,
such as DynInst [HMC94], DynamoRIO [BGA03], or Valgrind [NS07]. A slightly different
approach is to employ a complete hardware virtualization framework such as e.g. QEMU
[Bel05], but we decided against the complexity of interfacing our analysis with such a
framework. The downside is that we are restricted to user-space code as only hardware
virtualization can execute and observe kernel-mode code.
The first phase of our analysis is to start the instrumented program which records a

trace. Up to program point ps ∈ P we are only interested in calls to a fixed set of library
functions (e.g. malloc, free). Tracking those functions allows our analysis to be aware
of the location and size of the allocated memory regions. To this end, we intercept calls
to those functions and save (funname × cs × params × retval), where funname is the
name of the function and cs is the address of the call-site where the function was called
from; params are the values of the parameters according to the function’s C prototype
and retval is the result value that was returned by the function. Note that funname can
only be given as a name if the binary contains symbol information. Otherwise, an address
has to be used. In the latter case, techniques exist to recover function names from the
binary [JRM11], based, e.g., on the signatures of functions.

Once the execution reaching ps we transfer the concrete state from the instrumented
program to the analyzer, in particular:

128



6.6 Experimental Results

1. we capture every code and data segment that is resident in memory and store their
content, their size and their start address; note that this includes any segment that
was loaded at runtime through dynamic linking (e.g. using dlopen()) as well as the
stack and heap segments;

2. we capture the register file as well as administrative information about, e.g., access
rights to memory regions

From ps onwards, our static analysis tool performs a value analysis and queries the
trace at each point that could lead to a control flow change. At such points we record
(pc × pn × cond) where pc is the current instruction address and pn is the address of
the instruction that will be executed next. cond is the evaluation of the condition for
conditional jumps, i.e. cond ∈ {true, false} and denotes if a conditional jump was taken
or the fall-through path executed. We track pn to catch control flow changes that occur at
non-jump instructions e.g. arithmetic exceptions. Tracking the condition evaluation cond
is necessary for conditional moves because knowing the next address of the execution is
not sufficient to infer if the condition was true or false and thus to know whether the
move executed. The recorded values are used to guide our static analysis along the path
of the actual program execution. This is done by discarding the calculated state on paths
that were not taken, as defined by mk.
During the last phase, the static analyzer performs a reachability analysis where it

explores all possible paths starting at user-supplied points p ∈ p̄r. At this stage the trace is
no longer needed.

6.6 Experimental Results

Our implemented static analyzer can readily point out the bug in Fig. 6.1 by e.g. choosing
p = l5 to perform the reachability analysis from line 5. It is also able to verify the example
when adding the following lines in front of line 5:

if (num_elems >= MAX_INT/sizeof(elem_t ))
return NULL;

However, it currently lacks the precision to prove the (in-)correctness of the example in
Fig. 6.2 due to the lack of abstractions for string functions. Future work should address
these drawbacks.

trace analysis
example #lines time (ms) segments (Kb) trace (Kb) #insns time (ms) memory (Mb)
overflow 73 260 940 1 432 190 44
cast 48 254 940 2 377 50 15
libtiff 28483 1189 3700 132 36842 - -

Table 6.1: Analyzed Examples.

Table 6.1 shows the measurements of our experiments. The trace column shows: the
size of the program in C source lines of code; the time it took to execute the program and

129



6 Dynamically Started Static Analysis

record the trace; the size of the code segments that were captured for the trace; the size of
the recorded instruction trace and the number of executed instructions during the tracing.
Note that we only record instructions that lead to control flow changes. Hence the recorded
instructions trace is much smaller than the number of all executed instructions during the
trace. On the right the analysis column displays the time and memory consumption of our
static analysis.
The benchmark “overflow” represents the example in Fig. 6.1, “cast” corresponds to Fig. 6.2
and “libtiff” to a C program calling a library with a known vulnerability [Orm06]. Our
analyzer is as-of-yet not able to abstractly analyze the trace generated for “libtiff” due to
the large number of calls to the operating system that such an off-the-shelf library utilizes
and which have to be modeled as built-in primitives in an abstract analyzer. Future work
will address this shortcoming. Nevertheless, because of these shortcomings tests on larger
examples have not yet been performed.
Future work will also address the automatic choice of k, that is, the length of the recorded

trace. Currently, the user does not provide k itself, but an address p ∈ P at which tracing
should stop. We envisage that the recording of the trace is controlled by the analyzer, so
that tracing can be stopped when a certain amount of potential vulnerabilities (warnings)
have been identified. The user then has to pick interesting warnings in order to undertake
a deeper trace analysis.

6.7 Related Work

Dynamic analysis is well-established in tools to find bugs. Indeed, several approaches exist
at the source code level, e.g. for Java [SC07]. However, it is at the level of binaries where
dynamic analysis seems to be of particular interest due to the difficulty of resolving indirect
jumps [KK12].
Besides indirect jumps, a challenge in the analysis of binaries are unpackers and other

obfuscating methods. If the obfuscation was intentional it requires bespoke static analyses
that do not fall for the traps hidden in the code [Coo+09]. In general, running unpackers
before commencing a static analysis of the unpacked code seems to be more practical
[DP10]. However, both approaches have their place since a malware might exhibit several
behaviors in practice that can be found with static analysis but not dynamically. We chose
to involve the user in the analysis process by letting the user select locations p ∈ p̄r from
which to explore all paths statically. We thus combine the advantages of both, static and
dynamic analysis.
Dufur et al. [DRS07] and later Kinder [KK12] use dynamic analysis in order to restrict

the states that the static analysis infers. Their approach is a pragmatic one in which certain
goals of indirect jumps, memory locations of pointers, etc. are restricted by the values
observed by a set of traces. Their static analysis thereby produces useful results when no
information on a pointer is statically available but is unsound as certain behaviors are
omitted. Our approach differs in that it clarifies which inferred program behaviors are
restricted by the trace and which behaviors are based on sound static analysis, thereby
retaining the ability to partially verify the program.

130



6.7 Related Work

Another approach to interactively combining dynamic and static analysis for executable
software is to use symbolic execution with the ability to focus onto a concrete trace. In this
context, Chipounov et al. [CKC11] propose to record a tree of symbolic executions (one
for each path) and to let the user instantiate one of these executions to a concrete trace
with which calls to the operating system can be executed. In a sense, they allow their users
to switch back and forth between a concrete execution (and hence the ability to execute
calls to the operating system) and symbolic execution that treats input generally. Our
approach is, so far, only one-way, in that a concrete trace can be executed more generally.
However, since symbolic execution has to under-approximate the reachable set of states
whenever loops are encountered, their approach cannot provide a way to verify the absence
of vulnerabilities but rather serves to find new vulnerabilities.
Using symbolic execution statically has the drawback that it will sooner or later run into

scalability problems. This has been addressed by concolic execution [SMA05], a technique
that maintains only some input variables as symbolic and executes the program in its
concrete state by picking concrete values for the input variables. Thereafter, alternative
paths are sought by trying to vary inputs to the symbolically tracked variables. Given such
a solution for the symbolic variables, new values for the remaining variables are inferred by
running another concrete execution. This method has the merit of being fully automated
but has the drawback of not being able to enumerate all paths through the program and,
thus, to verify a program.
Jaffar et al. improve the scalability of symbolic execution by merging the state at the

loop head using widening [Jaf+12]. A later counterexample-driven refinement phase then
tries to recover a post-condition of the loop that is precise enough to verify the program.
While this method has similar problems with imprecision as a general static analysis, it
would be interesting to combine its refinement phase with our dynamic start approach.
Babić et al. [Bab+11] combine several traces to recover the control-flow graph (similar

to [KK12]) before applying a whole-program static analysis. The idea is to use the control
flow graph to perform a static pre-analysis that finds potential vulnerabilities and to then
use symbolic execution to find an actual trace to a bug. Our work differs in that we never
perform a static analysis of the whole program but only on those parts that are relevant to
an attack.
In terms of static analysis, Wagner was the first to address the challenge of finding

buffer overflows using numeric analysis [Wag00]. His approach is rather imprecise since
he translates programs to purely numeric programs, thereby losing the ability to argue
about the targets and offsets of pointers.
With respect to generalizing the inputs of a program, a common approach is to perform a

taint analysis that tracks which paths the input to a program can take [SM03; TA05]. Our
approach generalizes this idea in that it not only tracks where inputs to the program can
flow to but also what these inputs are. In particular, it improves over a mere taint analysis
in that its p̄r set gives the user a choice of paths to which input will flow but which is
neglected by the trace. Once a possible security vulnerability is found, a taint analysis can
be useful to infer which input source is responsible for making this vulnerability reachable.
One drawback of our current analysis is that the information on where a certain input was

131



6 Dynamically Started Static Analysis

read is lost. However, it would be easy to enhance our analysis to also track the possible
sources of an input, thereby combining standard reachability and taint analysis. Future
work will address this enhancement.

6.8 Conclusion

We proposed a combination of static and dynamic analysis through which the user can
interactively explore the program behavior. It combines the advantages of static analyses
(program verification) with that of dynamic analyses (scalability), thus allowing the user
to focus on the relevant program parts.
Our infrastructure records only little data off the program trace, thereby allowing for good

scalability. Moreover, the user is in control of the analysis cost by interactively increasing
the coverage of the analyzed code. After all, our analysis is easy to use as the user only
has to provide points ps where the program reads inputs which can be found using e.g.
Unix’ strace -i. The choice of points p̄r from where to start a reachability analysis can
be performed iteratively by moving backwards from the end of the trace. As this can be
automated future work should look into finding good heuristics, e.g. loop heads, to let the
analyzer iteratively choose p̄r.
Another application of trace abstraction is to use the trace to debug the analyzer. As, not

surprisingly, comparing the static analysis results to the trace can help a lot to discover
bugs in the analyzer. During our experiments we were able to discover and fix a couple of
bugs in our numeric domains.

132



Part | IV
Implementation

– The Bindead Analyzer

133





7 | Implementation Details

The following chapter presents the implementation and features of the analyzer that have
not been mentioned in previous chapters.

7.1 Front-ends

We will begin with the input interface of the analyzer.

7.1.1 Binary Format Parsers

Our analyzer accepts either raw data in form of an array of bytes or executable files. For
the latter we are to parse ELF files [Too95] (commonly used in Linux and Unix systems)
and PE files [Mic99] (used in Windows). The executable parser extracts the metadata,
such as architecture, procedure names (symbols), exported and imported procedures and
the code and data sections. We use a common abstraction for executable formats, thus
adding support for the Mach-O format used on Apple computers would only require to
parse and map the various sections of the format to our abstraction.
The analyzer uses the metadata and data sections from the binary to initialize the

entry state of the analysis and choose the disassembler front-end and platform model.
The disassembler front-end is used to translate bytes from the code section to RREIL
instructions.

7.1.2 Disassembler Front-ends

We provide a set of disassemblers, mainly for the Intel x86-32 and x86-64 and for the AVR
embeddedplatform. These disassemblers are hand-coded in Java, implementing the parsing
and translation of instruction semantics to RREIL [SMS11]. During a Dagstuhl seminar
on Binary Analysis, the consensus was to unify the mostly hand written disassemblers
in binary analysis tools into a common framework to share implementation costs. This
project has since been carried out and culminated in a disassembler framework called GDSL
[SKS12]. We implemented the interface to the GDSL framework and are able to use it as
disassembler front-end. However, as GDSL requires native code libraries we still keep the
legacy Java front-end as a fall-back. The latest GDSL version [KSS13b] enriched the RREIL
grammar to include while-loops and if-then-else branches thus producing more compact
code. It also includes a series of optimizations, such as liveness and forward-expression

135



7 Implementation Details

substitution. Both improve the scalability of the static analysis as fewer instructions need
to be analyzed. These grammar extensions, however, have not yet been implemented in
the analyzer but are planned for future work.

7.1.3 Assembler for RREIL

In order to be able to unit test our analyzer without resorting to compiling C code that in
turn is disassembled we implemented an assembler for the RREIL grammar. This way it
is possible to specifically design small test cases without the necessity to configure the C
compiler to arrive at the desired translation of the high level languages in order to avoid
the issues with changing compilation patterns in different compiler versions, we first used
native assembler code that is compiled to an executable. However, we realized that for fast
prototyping of test cases and platform independent assembler code a direct parser for the
RREIL grammar is the best choice.
Another benefit is that we can modify code from disassembled executables to observe the
effect of alternative translations as the disassembler front-ends produce RREIL assembler
code.

7.2 Analyzer

The analyzer is implemented in Java as it seemed a good choice for a typesafe and
performant language at the inception of the project. Java is platform independent, well
supported, widely deployed and fast enough for our analyses. Early attempts in Scala were
given up as the language and tool support seemed unstable at that time. However, Scala
allows for more concise code and has better support for immutable data structure and the
functional programming style. As it runs on the same platform as Java, the JVM, future
features of the analyzer should re-evaluate Scala or other languages targeting the JVM.
The static analyzer together with the abstract domains is open source and available online
at [Mih14a].

7.2.1 Fixpoint

Figure 2.10 shows that the fixpoint engine is the driver of the analyzer. On the one hand
it drives the disassembling of instructions and the construction of the CFG. On the other
hand it evaluates the abstract semantics of each instruction to compute the fixpoint for
a given program. Note that due to performing a reachability analysis from a given start
point, we do not consider dead-code in our analysis, that is, paths that are unreachable
from the initial state.
We implemented the fixpoint computation as described in Fig. 2.8 using a map that tracks
and updates the state per program point. The resulting CFG is only used for debugging,
that is, to display and inspect the result, e.g. using the Visualization described in Sect. 8. A
more interesting aspect is the implementation of the worklistW for which we tried several
strategies in order to improve the efficiency of the fixpoint iteration before settling on the
heuristic described next.

136



7.2 Analyzer

Improving the Evaluation Order The algorithm in Fig. 2.8 iteratively computes the fix-
point of the abstract interpretation of a given program. It does this by using chaotic iteration
[Bou93], that is, it randomly picks a program point from the worklist W in line 4 and
evaluates the abstract transformer for the instruction at this program point. This is ineffi-
cient as it does not take the program flow into account and thus ignores the dependencies
between the constraints. It can be improved by using a stack instead of a worklist, which
results in a depth-first traversal of the program during the fixpoint computation. However,
this is still inefficient as can be seen when considering the program shown in Fig. 2.4.
If a loop exists in the program a depth-first strategy will iterate the loop once and then
continue with evaluating the program points after the loop. Only then will it re-iterate the
loop again as the state in the loop is not yet stable. This in turn triggers another round of
evaluations for the code following the loop. Hence, each loop in the program will result in
redundant iterations for the program points that depend on the loop state.
A better iteration strategy would try to infer a fixpoint for a program point before con-
sidering its successors, that is, each loop is iterated until it is stable before considering
other program points. In machine code analysis the structure of the CFG is not known
up-front but the CFG is inferred during the reachability analysis. Hence, we cannot use
topological sorting methods as described in [Bou93]. However, a good approximation for
locality and strongly connected components (SCCs), is to use the code layout, that is, to
use the addresses of instructions. We can define a total order on the instructions given their
addresses. Using this order to implement a priority worklist W we are able to improve
the efficiency of the fixpoint algorithm by requiring fewer evaluation steps before reaching
the fixpoint. This heuristic also works well with if-else-branches in the code, for which
depth-first iteration would consider only one path and continue with the analysis of the
code following the branch.
In the end, this heuristic to use addresses works quite well for compiler generated code
but may be insufficient for obfuscated code that reorders instructions and inserts spurious
control flow. However, on such code we degrade to depth-first search at worst.

7.2.2 Warnings

To inform about certain conditions or assumptions during an analysis we emit a set of
warnings. A warning is associated with the program location at which it was emitted. We
distinguish between three warning classes:

informational messages exist mainly to inform about precision loss during the analysis.
For example, when reading a range of bytes from memory that need to be approxi-
mated a message will be emitted. The user can later find out where the analysis lost
precision and thus easier decide if more severe warnings are false negatives.

warning messages are more severe than informational messages as they denote rare
program behavior, such as unaligned memory accesses or overflow/wraparound of
variables. These might, however, be intended program semantics, thus continuing the
analysis is sound as program execution is not aborted by such unexpected behavior.

137



7 Implementation Details

state restrictions affect the soundness of an analysis. When the analysis discovers an
error state such as a buffer overflow or dereference of a NULL pointer it raises a
warning and should terminate. However, sometimes it is still desirable to continue
the analysis by propagating only the non-erroneous state as the error condition might
be a false negative. Doing so is unsound, hence it is necessary to raise a warning and
state that the analysis results are only valid under the assumption that the warning
was spurious. This feature is very powerful as it allows to continue the analysis past
error conditions. The user then must decide if the warning is a false negative.

Note however that some warnings such as non-aligned accesses or wraparounds can also
be seen as an error state and thus be treated as “state restrictions”. Choosing the severity
of some warnings is thus left for the user.
The warnings mechanism is implemented using a channel for abstract domains to emit
messages on. These messages are tracked and accumulated for each program point. As an
invariant, the number of warnings for a program point must never become less during the
analysis. This is guaranteed by the fixpoint iteration as the state at each program point is
only growing and thus warnings can not be removed during later iterations.

7.2.3 Primitive Operations

In order to implement special operations that are not easily expressible as a series of transfer
functions, we provide a domain interface for so-called “primitives”. These operations are
of the form primop (lval)+, (rval)+, that is, a primitive is identified by its name and its
output lval and input parameters rval (see Sect. 2.4.6). Primitives are broadcasted to the
segment domains where each domain can implement its own semantics for a primitive. If
a primitive broadcast is not handled by any of the domains we emit a warning. Currently
primitives exist for malloc and free which are handled by the heap domain. Additional
primitives for e.g. cryptographic operations that are now present in modern CPUs are
generated by the disassembler front-end. However, no domain to handle such primitives
exists yet.

7.2.4 Hooks for Procedures and Syscalls

Sometimes it is desirable to analyze only a subset of the whole program and skip complex
code parts for which an approximation of the effect cab be succinctly written in RREIL. In
order to achieve this, the analyzer provides a mechanism to add hooks for any program
point with RREIL code that is executed instead of the code in the binary. Hooks are trig-
gered whenever control flow reaches a given program address. For example if the binary
provides symbols it is easy to replace the code of malloc and free with shorter and simpler
versions that simply evaluate the primitive. Especially for the heap summarization domain
it is necessary to recognize calls to malloc and translate them to code that manipulates
the internal heap representation of the domain using primitives.

138



7.3 Abstract Domains

Furthermore, since hooks are snippets of RREIL code it allows us to replace any code
parts that are not present in the binary, e.g. system calls, with stubs that over-approximate
the effect of the missing code. We therefore provide a mechanism that infers the set of
invoked system calls and uses the right stub code to simulate the effect of the system
call on the current state. Furthermore, hooks are useful when dealing with IO code or
initialization code that interacts with the environment and to translate known library
functions such as cryptographic operations to primitives for a specialized abstract domain.

7.2.5 Interoperation with other Analyzers

It is desirable to share results with other analyzers if an equivalencemapping of the analyzed
code is feasible [Riv03]. We currently express analysis results through assertions. These can
be inserted at each program point and express range, equality or congruence constraints.
To import results from other analyzers or user provided hints we use assumptions, that
refine the range or equality relations between variables. Currently, however both assertions
and assumptions are only present as RREIL statements. It remains for future work to add
these as statements in higher languages such as C and use procedure hooks to translate
these to RREIL statements during the disassembling process. Additionally, we want to
share results with other analyzers, thus, adopting a more expressive specification language
such as the one used in e.g. Frama-C [Kir+12] is a future goal.

7.2.6 Parallelization of Analyses

The analyzer was not designed with parallelization in mind. However, as most data struc-
tures are immutable (see Sect. 7.3.2) and an analysis does not make use of global and
shared state it is possible to run several analyses in parallel. However, it is desirable to
be able to parallelize smaller parts of the analysis algorithm to make use of all available
computation resources while performing a single analysis. Future work should look into
the possibility to perform parts of the fixpoint computation in parallel.

7.2.7 Tracing Programs for Dynamically Started Analyses

The tracing tool is separate from the analyzer and implemented in C++ using the PIN
tracing framework [Luk+05]. The tool is available open source at [Mih14b]. It can be
configured to track and store different program properties as described in Sect. 6.5. The
analyzer takes the trace dump produced by the tool as input to perform the trace abstraction
and dynamically started analysis described in Chap. 6.

7.3 Abstract Domains

Wewill next describe the implementation details of our abstract domains and the interfaces
between domains.

139



7 Implementation Details

7.3.1 Domain Interfaces

Our cofibered domains or functor domains are implemented in Java using abstract classes
and Java generics. The latter are used to specify the child domain. We track a pair of
local state and child domain per functor class. Transfer functions modify the local state
and are forwarded to the child domain after which a new domain instance is built. The
domain functor classes implement the lattice interfaces and interfaces for the intermediate
language of the current tier L(x) with x one of rreil, memory, finite, zeno. Note that our
domains are actually only join semi-lattices as we do not require a meet operation. With
this design we are able to implement most of the domain interface in the abstract classes
thus the concrete domain only needs to implement behavior specific to its semantics.
Our domains are implemented as immutable classes, where each transfer or lattice op-
eration returns a new instance of the domain. This is to avoid unintended sharing of
data and thus subtle and hard to find bugs. In order to not incur a high memory cost
due to the immutable domains, we use persistent data structures as described in the next
Section 7.3.2. We use a builder pattern during transfer functions when domains need to
perform modifications to their data structures and collect mutations to the child, so-called
child-ops, in a queue. The idea is to apply these operations in one batch and even optimize
the list of child-ops using peep-hole optimizations, e.g. a sequence of an intro and drop
operation can be removed.

7.3.2 Data Structures

During the early development we decided that it is a must to use immutable data structures
in our abstract domains. Earlier experiences showed that using mutable data structures
leads to defensive copying to avoid bugs from sharing, thus losing any performance ben-
efits of mutable data structures over immutable data structures. To improve the memory
footprint of the immutable data structures we use ordered balanced binary trees (AVL
trees) that allow sharing of identical subtrees. The implementation is described in [Ada93]
which is also used for the map implementation of the Haskell language. Using the AVL trees
we implemented immutable map and set data structures that inherit the internal subtree
sharing feature. Maps are a crucial data structure for abstract domains as a domain often
maps the support set of variables it tracks to values. Besides the common set operations
such as union and intersection, which are very fast due to the ordered trees, one of the
most used feature is the 3-way split between two maps. A 3-way split returns the key-value
pairs that are only present in the first argument or the second argument and additionally
returns the common keys that are mapped to different values. Our abstract domains use the
split to implement the join and subset operations, which often allows us to perform these
transfer functions with a sub-linear complexity as complete subtrees that are identical are
not traversed. Our design and motivation for the data structures is here similar to the ones
used in Astrée [Bla+02].

Analogously to the maps above, the memory domain that tracks fields in memory uses an
interval tree data structure, implemented as a balanced binary search tree. As the inferred

140



7.3 Abstract Domains

fields in memory may overlap, the data structure must provide fast operations for the
manipulation of fields and the search for overlappings.

7.3.3 Channels

Channels between domains are necessary for two reasons. Firstly, we want to extract
information from the domain state to e.g. determine the targets of an indirect jump.
Secondly, by communicating information between domains we can perform reduction.
Reduction is a refinement of the state tracked by one domain using information from
another domain. In a modular domain design each domain tracks some properties of the
program thus a “smart” combination of this properties is required (see Sect. 2.6). Reduction
from a domain to its child is performed using transfer functions thus no special channel is
needed. For the reduction from children to parents we implemented two channels.

Query Channel

The so-called queryChannel is used to query information from child domains. Any domain
can answer a query or pass it on to its child and refine the answer from the child with its
own information. The channel currently allows to ask for range information for a variable
through queryRange : XM , sz, o→ Val and queryRange : XV → Val. The former returns
values for memory regions XM or registers, given a size sz and offset o into these regions
and is used at the top level to resolve jump targets. The latter is used for finite and numeric
domains to retrieve valuations for domain internal variables. Note that the fields domain
translates a memory regions to a set of internal variables or fields, so that the first query
function only performs the resolution of variables and eventually calls the second query
function on the child domain. The returned valuation depends on the precision of the
numeric domains that are used and is either an interval with congruence information
Val : I × CR or a set of intervals with congruence Val : IS × CR. The result is abstracted
under a common interface in Val.
Note that querying the valuation of a variable returns an over-approximation of the values.
Thus to find out if a variable x may contain a certain value c it is more precise to apply the
test [[x 6= c]]s = ⊥ on the domain state s than using queryRange. Each domain implements
a semantic for tests thus using all the information tracked by the domain to evaluate a
test. This allows to answer test queries more precisely whereas a range valuation is the set
approximation of all values. However, a test is often a complex domain operation whereas
queryRange is a cheap operation.
Further information provided by the queryChannel is a set of equalities between vari-

ables. Specifically queryEqualities : XV → ℘(Eq) returns a set of all the known affine
equalities for a variable x ∈ XV . An equality is of the form Eq :

∑
i aixi = c with x = xi

for some i. Equalities are queried in e.g. the predicate and threshold domain which both
track predicates p ∈ P over variables. Whenever a variable x ∈ vars(p) is overwritten
by an assignment x = c these domains try to find a substitution σ = [x/eq] for x with
eq ∈ queryEqualities(x) in order to keep the predicate as p′ = σ(p).

141



7 Implementation Details

As an extension to this use case, future work should implement a separate query for
substitutions. The benefit is that any relational domain is able to provide a substitution for
a predicate, whereas currently we are limited to equalities only. For example, given the
predicate x > z and the polyhedra domain tracking x < y. Asking for a substitute for x in
the predicate the polyhedra domain would return y > z.

Synth Channel

The so-called synthChannel is a second channel going from child domains to parent
domains. While the queryChannel provides information about the state of child domains
the synthChannel is used to retrieve changes in the child due to transfer functions. Some
examples for this feature are given in Sect. 2.6.5. The channel is implemented using push
semantics, that is, a child domain pushes new facts to the channel at the end of a transfer
function. Parent domains then may use this information to reduce their own state or
initiate new transfer functions.

Due to the cofibered design the support sets between domains do not necessarily match
(see Sect. 2.5). Thus a domain must ensure to not leak variables that are local to the
domain when communicating with other domains through channels. In general a domain
that requires fresh variables introduces these variables also in its child domain. This allows
to use the numeric and relational information stored in child domains.

Debug Channel

As the name suggests the debug channel is used to expose specific internals of domains.
The interface is intended for development and thus not fixed. Analyses must not depend on
information in this channel. The channel is designed to encapsulate information providers,
such as abstract domains. Hence, it does not require each domain to implement specific
debug interfaces. Each domain, however, may require extending the debug channel with
further queries that are special to that particular domain.

142



8 | Visualizing Analysis Results

content/implementation/resources/p9-screenshot.png

Figure 8.1: GUI displaying the results of an analysis.

During the development of the framework and particularly the abstract domains it
became clear that it is cumbersome to debug a fixpoint computation on a large set of
interdependent values. Furthermore, bugs in the implementation of abstract domains are
difficult to spot as they may only affect the precision of the result. Finding the places where
the precision loss happened and tracking it back to errors in the implementation is a very
time consuming task, where most of the time is wasted on manually analyzing the trace
of the analysis output. Especially the latter can be improved upon by providing a more
compact representation of the analysis results and methods to filter and search through
the results. We thus decided to implement a GUI on top of the static analyzer framework
that would let us experiment with novel ideas on how to debug a static analysis.
Figure 8.1 shows the GUI for the analyzer displaying the analysis of the example from

Sect. 9. The GUI displays the CFG and call-graph inferred by an analysis along with the
warnings that were emitted. Warnings are marked in the CFG with a red background to
highlight the location of occurrence. The CFG display also allows to highlight and search
parts of the code. Moreover it is possible to perform a backwards slicing given a selected
register, thereby narrowing down the shown instructions to the one that contributed to
the computation of the value of the register. This simplifies the search for the cause of a
precision loss.
On the right the GUI displays the complete abstract domain state for a selected instruction.
As the amount of information tracked by an abstract state can become big, future work
should investigate how to conveniently display and filter the state for certain bits of
information.
The GUI for the analyzer is open source and available at [Mih14c].

143





Part | V
Applications and Conclusion

145





9 | Case Study: Sendmail
Crackaddr Vulnerability

We will now present the application of our analyzer to a particularly hard example. It
shows that our analyzer finds a known vulnerability in the Sendmail program and at the
same time is able to prove the fixed version as correct.

9.1 Problem Statement

The Sendmail program in versions 5.79 to 8.12.7 contained a vulnerability [Dow03; IBM03]
thatwas discovered in 2003. Shortly thereafter the vulnerability was shown to be exploitable
for remote code execution [LSD03]. What makes this vulnerability particularly interesting
is that it has been used as an example for a difficult to analyze software bug using
static analysis tools. As a consequence the vulnerability has been discussed in conference
talks [Dul11; VL12] and publications [VHR12]. The existing automatic static analysis tools
suffered from imprecision or could not infer the invariant, hence the consensus was that
the example requires manual user hints to be proven correct [Hee11].
What makes the analysis of the code so difficult is that the code implements a parsing

algorithm for email addresses which also tries to sanitize parsing mistakes. Parser code in
general is considered a recurrent source for program errors that might lead to exploitable
vulnerabilities [Bra+11]. It is difficult to analyze as parsers are implemented as state
machines, that is, an analysis must express a relation between the state machine and other
program variables. Moreover, the input is read using a loop that reads input and initiates
the transitions between states.
Figure 9.1 shows the code of a simplified version of the vulnerability that maintains the

challenging characteristics of the original example. The code implements a parsing routine
that parses email addresses and copies the result to a buffer localbuf allocated on the
stack with a fixed size of 200. It therefore reads a string of an arbitrary length (line 10)
character by character. It copies each character to localbuf and tracks the parsing state
using two flags: quotation and roundquote. To ensure that the buffer localbuf is not
written past its maximum length (the input string may be longer), the state machine inside
the loop increments (lines 17, 26) and decrements (lines 13, 22) a variable upperlimit

which takes care that there is enough space in localbuf to write characters to it. The
copy operation is performed in line 31 which is guarded by the test on upperlimit in the

147



9 Case Study: Sendmail Crackaddr Vulnerability

1 #define BUFFERSIZE 200
2 #define TRUE 1
3 #define FALSE 0
4 int copy_it (char *input , unsigned int length) {
5 char c, localbuf[BUFFERSIZE ];
6 unsigned int upperlimit = BUFFERSIZE - 10;
7 unsigned int quotation = roundquote = FALSE;
8 unsigned int inputIndex = outputIndex = 0;
9 while (inputIndex < length) {
10 c = input[inputIndex ++];
11 if ((c == '<') && (! quotation )) {
12 quotation = TRUE;
13 upperlimit --;
14 }
15 if ((c == '>') && (quotation )) {
16 quotation = FALSE;
17 upperlimit ++;
18 }
19 if ((c == '(') && (! quotation) && !roundquote) {
20 roundquote = TRUE;
21 // decrementation was missing in vulnerable version
22 upperlimit --;
23 }
24 if ((c == ')') && (! quotation) && roundquote) {
25 roundquote = FALSE;
26 upperlimit ++;
27 }
28 // if there is sufficient space in the buffer ,
29 // copy the character
30 if (outputIndex < upperlimit) {
31 localbuf[outputIndex] = c;
32 outputIndex ++;
33 }
34 }
35 if (roundquote) { // close a leftover open brace
36 localbuf[outputIndex] = ')';
37 outputIndex ++;
38 }
39 if (quotation) { // close a leftover open bracket
40 localbuf[outputIndex] = '>';
41 outputIndex ++;
42 }
43 }

Figure 9.1: Simplified address parsing algorithm in Sendmail.

148



9.1 Problem Statement

line before. Furthermore, after the loop is exited, lines 36 and 40 write a closing brace or
bracket that was left unmatched to localbuf.

The vulnerable version of the code was missing the decrementation in line 22, thereby
allowing a specially crafted input string to push the value of upperlimit beyond the size
of localbuf and writing to the stack past localbuf. This allowed exploiting [LSD03] a
system on which the vulnerable Sendmail versions were running by sending it an email
with a specially crafted email address.
In Fig. 9.2 we show the state machines that are implemented by the vulnerable and non-
vulnerable version of the code. The automaton in the vulnerable version shown in a) can be
traversed between the nodes !q!r and !qr multiple times, thereby incrementing upperlimit
arbitrarily often. The correct version shown in b) does not exhibit this behavior, therefore
a write past the end of the buffer localbuf cannot be achieved in this version.

a)

<

> < ( )

ulimit--

!q

ulimit++

q

ulimit++

!q!r

!qr

b)

<

> < ( )

ulimit--

!q

ulimit++

q

ulimit++

!q!r

ulimit--

!qr

Figure 9.2: Parser automatons for code in Fig 9.1. Version a) contains the vulnerability and
b) the corrected version

Analyzing the example is challenging on the one hand as verifiers based on the explo-
ration of concrete states may run into an explosion of the states that need to be tracked
[WKC13]. On the other hand, abstract interpretation based analyses lose precision due
the join and widening and cannot separate the states in the state machine. Hence, the
analysis flags both versions of the code, the vulnerable and the non-vulnerable as erroneous.
Such an analysis warns about a buffer overflow and the overwriting of the return address
but is not able to prove the correctness of the non-vulnerable version. Furthermore, code
analyzers based on decision procedures require the manual specification of the loop in-
variant after which they are able to prove the correctness of the code [VHR12] by induction.

We will illustrate next that our abstract interpretation based analysis is precise enough
to distinguish the correct from the vulnerable version.

149



9 Case Study: Sendmail Crackaddr Vulnerability

9.2 Analysis

The challenges of a static analysis to show the correctness of the program in Fig. 9.3
are as follows: it must be shown that the variable outputIndex is bounded and smaller
than the size of localbuf, that is given by BUFFERSIZE = 200; therefore it must be shown
that outputIndex < 200 holds in lines 31, 36 and 40. Since the length of the input string,
which is also the loop bound, is bounded by length which we have to assume to be in
length ∈ [−∞,+∞]. We cannot prove that the buffer input is accessed within bounds as
we do not know the relation between the buffer and the variable length. We can however,
analyze the accesses to localbuf. Here, the test at line 30, outputIndex < upperlimit is
used as widening threshold to bound the extrapolation of outputIndex on widening. This,
in turn, requires to show that the values of upperlimit are smaller than localbuf, namely
that upperlimit < 200 holds inside the loop.

step line intervals affine
o u q r

1 9 [0, 0] [190, 190] [0, 0] [0, 0] u = 190, q = 0, r = 0, o = 0
2 14 [0, 0] [189, 189] [1, 1] [0, 0] u = 189, q = 1, r = 0, o = 0
3 15 t [0, 0] [189, 190] [0, 1] [0, 0] u+ q = 190, r = 0, o = 0
4 16 [0, 0] [189,189] [1, 1] [0, 0] u+ q = 190, r = 0, o = 0
5 18 [0, 0] [190, 190] [0, 0] [0, 0] u = 190, q = 0, r = 0, o = 0
6 19 t [0, 0] [189, 190] [0, 1] [0, 0] u+ q = 190, r = 0, o = 0
7 20 [0, 0] [190,190] [0, 0] [0, 0] u+ q = 190, r = 0, o = 0
8 23 [0, 0] [189, 189] [0, 0] [1, 1] u+ q + 1 = 190, r = 1, o = 0
9 24 t [0, 0] [189, 190] [0, 1] [0, 1] u+ q + r = 190, o = 0
10 25 [0, 0] [189,189] [0, 0] [1, 1] u+ q + r = 190, o = 0
11 27 [0, 0] [190, 190] [0, 0] [0, 0] u+ q = 190, r = 0, o = 0
12 28 t [0, 0] [189, 190] [0, 1] [0, 1] u+ q + r = 190, o = 0
13 33 [1, 1] [189, 190] [0, 1] [0, 1] u+ q + r = 190, o = 1
14 34 t [0, 1] [189, 190] [0, 1] [0, 1] u+ q + r = 190
15 9 t [0, 1] [189, 190] [0, 1] [0, 1] u+ q + r = 190
16 12 [0, 1] [189,190] [0, 0] [0, 1] u+ q + r = 190
17 15 t [0, 1] [188,190] [0, 1] [0, 1] u+ q + r = 190
18 20 [0, 1] [190,190] [0, 0] [0, 0] u+ q + r = 190
19 24 t [0, 1] [188, 190] [0, 1] [0, 1] u+ q + r = 190
20 34 t [0, 2] [188, 190] [0, 1] [0, 1] u+ q + r = 190
21 9 t [0, 2] [188, 190] [0, 1] [0, 1] u+ q + r = 190
21’ 9’ ∇ [0, 190] [188, 190] [0, 1] [0, 1] u+ q + r = 190
22 31 [0,189] [188, 190] [0, 1] [0, 1] u+ q + r = 190
23 34 t [0,190] [188, 190] [0, 1] [0, 1] u+ q + r = 190
24 9 v [0, 190] [188, 190] [0, 1] [0, 1] u+ q + r = 190

Figure 9.3: Analysis of the Sendmail code shown in Fig 9.1.

The table in Fig. 9.3 shows the analysis of the code in Fig. 9.1 using the domains stack
WP�WD�T �A�I. The domainsWP,WD and T denote our widening domains from
Chapter 3 namely widening points inference, widening delay after constant assignments
and widening thresholds. The remaining domains A, I are the affine domain and the
interval domain respectively. The analysis is performed on the non-vulnerable version,

150



9.2 Analysis

proving that the fixed code does not exhibit a buffer overflow. For brevity, we skip most
of the analysis steps that are irrelevant for the illustration of the analysis. Furthermore,
we abbreviate the variables outputIndex and upperlimit to o and u. Analogously, the
flag variables quotation and roundquote are abbreviated as q and r. The values of the
remaining variables of the program are omitted due to lack of space. For the same reason,
we omit the states for the widening domains. Note that the parameters to the function are
tracked as length ∈ [−∞,+∞] and input ∈ [−∞,+∞], that is, the read access through the
pointer input (line 10) will result in the value > being read, in particular c ∈ [−∞,+∞].
This means that the branch conditions performing a comparison of characters in lines 11,
15, 19, 24 result in both the then and the else-branches being considered. However, the
branches also depend on the valuation of q and r at these program points.

After the variable initializations in step 1 the loop is analyzed and we consider each
branch of the state machine in turn. In step 3 we infer an affine relation between u and
the flag q which is used in the next step to refine the value tracked for u in the intervals.
In the following steps each branch increments or decrements the value tracked for u and
joins the result with the value of u propagated on the else-branch. The join infers affine
equalities between the flags and variable u which allows us to apply reduction between
affine and intervals and thereby track a precise value range for u.
In step 15 we have iterated the loop once and reanalyze the loop head. Widening is sup-
pressed due to ourWD domain, that tracks newly seen constant assignments from lines
12, 16, 20, 25, where the boolean flags are set. As no widening is performed we maintain
the precise values for the flags and u. Next, the loop is analyzed again with a slightly
modified state. Step 9 inferred the equality u + q + r = 190 which relates both boolean
flags and u. As the guard in the first if-branch only restricts one flag q, with the other
flag being r ∈ [0, 1] the best refinement of the value of u is u ∈ [189, 190]. Executing the
decrementation in line 13 and the join in step 17 leads to u ∈ [188, 190] which describes
a larger value range than in the previous iteration in step 3. The reduction in step 18
however restricts the value of both flags q and r, hence given the affine equality we are
able to reduce the values of u to u = 190 inside the if-branch.
After incrementing o a second time in step 20 we reach the loop head again and perform
widening in step 21’. Widening applies the threshold o < u from line 30 that has been
transformed in line 32 to o− 1 < u and thereby we maintain a precise upper bound on o,
namely o ∈ [0, 190]. The values of the flags q and r have not changed w.r.t the previous
loop iteration, hence widening is a no-op for these variables. Note that due to the equality
u+ q + r = 190 we are able to refine the lower bound of variable u after widening would
extrapolate this bound to −∞. The loop is analyzed a last time in which the values of the
variables do not change and we reached a stable state at the loop head. Note that due
to the guard in line 30 the value of o is not incremented further than the upper bound
inferred by widening, leading to a stable state at the loop head. Moreover this proves that
the write in line 32 is not out of the bounds of localbuf.
In the last steps (not shown in the table) the analysis propagates o ∈ [0, 190] outside of the
loop and is able to show that the writes in lines 36 and 40 are safe.

151



9 Case Study: Sendmail Crackaddr Vulnerability

In order to prove this example correct we employed a set of different domains, where
each served a different purpose. Widening with thresholds is required to infer a precise
upper bound for o inside and outside of the loop. Delaying widening until the values
of the flag variables are stable maintains the precision and allows us to infer an affine
equality u + q + r = 190 between the flags and u. The affine equality and the reduc-
tion with the interval domain is necessary to maintain precise values for u. The values
for u are then used to restrict the upper bound of o during widening. Finally, inferring
a precise value for o allows us to prove that the memory accesses are correct in this program.

The difference when analyzing the vulnerable version of the program is that due to
the missing decrementation in line 22 we do not infer an equality between u and the
flag variables. Hence, the values of u are not refined on entering the if-branches of the
state automaton. A steady incrementation and decrementation then leads to widening
extrapolating the values of u to u ∈ [−∞,+∞]. Although, we track and apply the widening
threshold o− 1 < u from line 30 it cannot restrict the upper bound of o during widening
due to the precision loss for u. The analysis of the vulnerable example thus emits warnings
for the writes to the buffer localbuf. It further emits a warning that the return address
might be overwritten as the writes to localbuf are unbounded and might overwrite an
arbitrary amount of memory cells on the stack.

152



10 | Conclusion

In this thesis we have presented a modular framework for the static analysis of executable
programs. The framework performs the disassembling, the reconstruction of the control
flow graph and analyzes the program to infer invariants for each program point. Fur-
thermore, the framework implements a sound analysis able to prove the correctness of
memory accesses. It improves upon previous work in that it provides different interfaces
for inferring structural, bit-level and numeric information, thereby allowing the design of
simple abstract domains at each level that are nevertheless able to communicate across
these interfaces. Moreover, new abstract domains can be added to improve the precision
of the analysis. This modularity was demonstrated by presenting several novel domains
that implement widening heuristics, a domain for predicate abstraction and a domain
that improves the analysis precision in case of uninitialized memory locations. Finally, we
presented an extension to the framework that allows for combining the static analyzer
with dynamic analyses.
We illustrated the practicality of our analysis by showing applications to challenging exam-
ples for which we discussed in detail the solutions inferred by our analyzer.

The implementation of the framework is available online at [Mih14a].

10.1 Contributions

In summary, the contributions to the field of static analysis of binaries are as follows:

• a platform independent intermediate language (RREIL) designed for simplicity and
conciseness and full value semantics; the language abstracts the semantics of different
platforms into a common representation

• an adaptable and sound static analysis framework for the analysis of machine code;
a stack of numeric and symbolic domains designed to improve the analysis precision
while maintaining scalability; configurable as each domain is defined in terms of a
simple interface that allows adding domains as plugins

• a novel approach to implement widening heuristics as abstract domains, that is,
without requiring modifications to the fixpoint engine; this approach allows testing

153



10 Conclusion

new widening heuristics and trading the precision of widening for scalability by
adding or removing abstract domains for widening

• a novel abstract domain that tracks implications between predicates describing the
precision losses in convex numeric domains; using modus ponens, the domain infers
predicates that are applied to reduce the numeric child state, thereby recovering
precision losses due to convex approximations

• an abstract domain that tracks initialized and uninitialized variables and improves
precision whenever a state joins the values of such variables

• the combination of dynamic trace analysis with static analysis

• a user interface for the analyzer that improves the user interpretation of analysis
results and thereby also improves the debugging and refining of analyses

10.2 Future Work

As mentioned in Chapter 2.5 the implementation of some domains in our hierarchy is not
finished. Hence, future work shall address the implementation of the memory domains that
summarize strings and arrays and should consider tracking the content of code segments
as part of an abstract domain, thereby allowing the analysis of self-modifying code using
similar techniques as in [Kin12].

As our domains stack is configurable, it is possible to integrate similar ideas as in [FL11]
to improve the scalability of our analyzer. Fähndrich et. al commence an analysis with
cheap abstract domains, thereby achieving a fast analysis. If a desired invariant cannot
be proven they restart the analysis with more expensive domains. A similar iterative ap-
proach can easily be integrated in our framework. Furthermore, when using expensive
relational domains, such as polyhedra future work will implement similar methods as in
[Bla+03b; VB04], that splits the support-set of relational domains to improve the scalability.

We plan to fully integrate the GDSL disassembler frontend [KSS13a] with our analyzer
and extend the RREIL language with concurrency primitives and the handling of endiannes.

Our approach to combining dynamic analysis with static analysis is still a proof of
concept, that requires further work. Further afield is a backwards analysis that may infer
a counterexample [GR06b] or a program input state which confirms the error given a
warning emitted by the static analysis.

154



| List of Figures

2.1 Galois insertion between the concrete and abstract domain. . . . . . . . . 10
2.2 Flat lattice of constants with a finite height. . . . . . . . . . . . . . . . . . 11
2.3 Lattice of intervals with an infinite height. . . . . . . . . . . . . . . . . . . 12
2.4 An example program and its control flow graph (CFG). . . . . . . . . . . . 15
2.5 The grammar decorating a control flow graph (CFG). . . . . . . . . . . . . 15
2.6 Examples for loops with slow termination and non-termination. . . . . . . 17
2.7 Development of the state at the while-loop head during the analysis. . . . 18
2.8 The fixpoint algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 The possible fields of register rax. . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 The analyzer structure and the hierarchy of the abstract domains. . . . . . 31
2.11 The memory layout of a program on Linux x86-32. . . . . . . . . . . . . . . 33
2.12 The stack layout of a program on Linux x86-32. . . . . . . . . . . . . . . . 34
2.13 Iterating over an array of structs. . . . . . . . . . . . . . . . . . . . . . . . 37
2.14 How wrapping adjusts value ranges. . . . . . . . . . . . . . . . . . . . . . 41
2.15 Example usages of affine equalities. . . . . . . . . . . . . . . . . . . . . . . 45
2.16 Common compiler code patterns: register spilling, temporary registers. . . 47
2.17 Iterating over the contents of a message buffer. . . . . . . . . . . . . . . . 48
2.18 Precision improvements using congruence information in interval analysis. 49
2.19 Example for invariants requiring polyhedra. . . . . . . . . . . . . . . . . . 51
2.20 Example for loop invariants that cannot be expressed by the octagons domain. 53
2.21 Lattice and transfer functions for the interval domain. . . . . . . . . . . . . 54
2.22 Interval arithmetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.23 State space abstraction for two variables x and y. . . . . . . . . . . . . . . 58
2.24 Simpler state space and its abstraction for two variables x and y. . . . . . . 60
2.25 Example for function calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Rapid convergence during widening. . . . . . . . . . . . . . . . . . . . . . 74
3.2 Lattice and transfer functions for the widening point domain. . . . . . . . 76
3.3 Common pattern for loops in machine code. . . . . . . . . . . . . . . . . . 77
3.4 Nested loops with two widening points. . . . . . . . . . . . . . . . . . . . 77
3.5 Widening after one iteration loses the bound on y. . . . . . . . . . . . . . . 79
3.6 Lattice and transfer functions for the delaying domain. . . . . . . . . . . . 79
3.7 Delaying widening until y is stable maintains the precise bounds. . . . . . 80

155



List of Figures

3.8 Assignments in loops that require delayed widening to not lose precision. . 80
3.9 Transfer and lattice functions for the threshold domain. . . . . . . . . . . . 81
3.10 Applying widening with thresholds on nested loops. . . . . . . . . . . . . . 83
3.11 Infinite application of widening thresholds. . . . . . . . . . . . . . . . . . . 84
3.12 A loop whose fixpoint cannot be obtained by narrowing. . . . . . . . . . . 85
3.13 A loop for which narrowing cannot recover precision loss due to wrapping �. 86
3.14 Choosing line 6 as widening point may lose the lower bound of variable i. 87
3.15 A loop containing phase transitions. . . . . . . . . . . . . . . . . . . . . . . 88
3.16 Computing the fixpoint for the example in Fig. 3.15. . . . . . . . . . . . . . 90
3.17 Transfer and lattice functions for the phase domain. . . . . . . . . . . . . . 91
3.18 Widening examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Avoiding a division by zero. The state space and its approximation. . . . . 95
4.2 Assignments and branch transfer functions for the predicates domain. . . . 97
4.3 Using syntactic entailment to prove inequalities. . . . . . . . . . . . . . . . 100
4.4 Lattice operations for the predicate domain. . . . . . . . . . . . . . . . . . 100
4.5 Computing the sign of a variable. . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 The join of two states and the synthesized implications. . . . . . . . . . . . 103
4.7 A locking scheme: accessing a file only if it was already opened. . . . . . . 104
4.8 A challenging example: freeing a pointer in the last loop iteration. . . . . . 105
4.9 States during the analysis of the loop example in Fig. 4.8. . . . . . . . . . . 106
4.10 Evaluation of our implementation. . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Non-initialized variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Transfer functions for unary operations. . . . . . . . . . . . . . . . . . . . 113
5.3 Making compatible of two partitions u12 = common(u1, u2). . . . . . . . . 115
5.4 Assigning a random value in a loop. . . . . . . . . . . . . . . . . . . . . . . 116
5.5 Transfer functions for binary operations � = t,v,∇, and unary operations. 117
5.6 Function calls example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.7 Combining several call sites into one state. . . . . . . . . . . . . . . . . . . 118
5.8 Evaluation of the Undef domain. . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 An overflowing multiplication may lead to a buffer that is too small. . . . . 125
6.2 A conversion may lead to an unexpected value range. . . . . . . . . . . . . 127

8.1 GUI displaying the results of an analysis. . . . . . . . . . . . . . . . . . . . 143

9.1 Simplified address parsing algorithm in Sendmail. . . . . . . . . . . . . . . 148
9.2 Parser automatons for code in Fig 9.1. . . . . . . . . . . . . . . . . . . . . . 149
9.3 Analysis of the Sendmail code shown in Fig 9.1. . . . . . . . . . . . . . . . 150

156



| List of Tables

3.1 Analysis of introductory example using widening. . . . . . . . . . . . . . . 74
3.2 Analysis of a constant assignment example using widening. . . . . . . . . . 79
3.3 Analysis of the constant assignment example using the delaying domain. . 80
3.4 Analysis of the nested loops example using widening. . . . . . . . . . . . . 83
3.5 Analysis of a simple loop with narrowing and wrapping. . . . . . . . . . . 86
3.6 Computing the fixpoint for the loop containing phase transitions. . . . . . 90
3.7 Benchmark results for the widening examples. . . . . . . . . . . . . . . . . 92

4.1 Computing the fixpoint for the loop freeing a pointer in the last iteration. . 106
4.2 Benchmark results for the predicates examples. . . . . . . . . . . . . . . . 107

5.1 Benchmark results for the Undef examples. . . . . . . . . . . . . . . . . . . 119

6.1 Analyzed Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.1 Analysis of the Sendmail code. . . . . . . . . . . . . . . . . . . . . . . . . . 150

157





| List of Code

An example program and its control flow graph (CFG). . . . . . . . . . . . . . . 15
Analyzing the loop without widening leads to slow termination. . . . . . . . . . 17
Analyzing the loop without wideing does not terminate. . . . . . . . . . . . . . 17
Example for Widening and Narrowing. . . . . . . . . . . . . . . . . . . . . . . . 18
The fixpoint algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Iterating over an array of structs. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Constant propagation and affine equalities. . . . . . . . . . . . . . . . . . . . . 45
Affine equalities combined with intervals. . . . . . . . . . . . . . . . . . . . . . 45
Inferring affine equalities in a loop. . . . . . . . . . . . . . . . . . . . . . . . . . 45
Common patterns due to register spilling to the stack. . . . . . . . . . . . . . . . 47
Common patterns due to the use of temporary registers. . . . . . . . . . . . . . 47
Iterating over the contents of a message buffer depending on the message type. 48
Array accesses in a loop using fixed indices. . . . . . . . . . . . . . . . . . . . . 49
Code used in jump tables for switches. . . . . . . . . . . . . . . . . . . . . . . . 49
Binary search algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Complex loop invariant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Loop invariant with non–unitary coefficients. . . . . . . . . . . . . . . . . . . . 53
Loop invariant with more than two variables. . . . . . . . . . . . . . . . . . . . 53
Example for function calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Introduction example for widening. . . . . . . . . . . . . . . . . . . . . . . . . . 74
A loop containing an assignment of a constant. . . . . . . . . . . . . . . . . . . 79
A loop containing an assignment of a variable with a constant value. . . . . . . 80
Loop assignment that requires widening to be delayed. . . . . . . . . . . . . . . 80
Nested loops example with widening. . . . . . . . . . . . . . . . . . . . . . . . . 83
Example for non–termination using widening thresholds. . . . . . . . . . . . . . 84
A loop whose fixpoint cannot be obtained by narrowing. . . . . . . . . . . . . . 85
A loop for which narrowing cannot recover precision loss due to wrapping. . . . 86
Performing widening at the join point of an if–else branch. . . . . . . . . . . . . 87
A loop containing phase transitions. . . . . . . . . . . . . . . . . . . . . . . . . . 88

Avoiding a division by zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Using syntactic entailment to prove inequalities. . . . . . . . . . . . . . . . . . . 100

159



List of Code

Computing the sign of a variable. . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Accessing a file only if it was already opened. . . . . . . . . . . . . . . . . . . . 104
Freeing a pointer in the last loop iteration. . . . . . . . . . . . . . . . . . . . . . 105

Non–initialized variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Assigning a random value in a loop. . . . . . . . . . . . . . . . . . . . . . . . . . 116
Function calls example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

An overflowing multiplication may lead to a buffer that is too small. . . . . . . . 125
A conversion may lead to an unexpected value range. . . . . . . . . . . . . . . . 127

Simplified address parsing algorithm in Sendmail. . . . . . . . . . . . . . . . . . 148

160



| Bibliography

[Ada93] S. Adams. “Implementing sets efficiently in a functional language.”
In: Journal of Functional Programming 3.04 (Nov. 1993), pp. 553–561.
issn: 0956-7968. doi: 10.1017/S0956796800000885 (cited on page 140)

[ARM10] ARM. ARMv7-M Architecture Reference Manual. Tech. rep. 2010
(cited on page 55)

[AS13] G. Amato and F. Scozzari. “Localizing widening and narrowing.”
In: Static Analysis Symposium. Ed. by F. Logozzo and M. Fähndrich.
Vol. 7935. LNCS. Springer, 2013, pp. 25–42.
doi: 10.1007/978-3-642-38856-9_4 (cited on pages 19, 77, 93)

[ASV12] K. Apinis, H. Seidl, and V. Vojdani. “Side-Effecting Constraint Systems: A
Swiss Army Knife for Program Analysis.”
In: Asian Symposium on Programming Languages and Systems.
Ed. by R. Jhala and A. Igarashi. Vol. 7705. LNCS.
Springer Berlin Heidelberg, Dec. 2012, pp. 157–172. isbn: 978-3-642-35181-5.
doi: 10.1007/978-3-642-35182-2_12 (cited on page 69)

[Bab+11] D. Babić, L. Martignoni, S. McCamant, and D. Song.
“Statically-Directed Dynamic Automated Test Generation.”
In: International Symposium on Software Testing and Analysis. ISSTA ’11.
ACM, 2011, pp. 12–22. isbn: 978-1-4503-0562-4.
doi: 10.1145/2001420.2001423 (cited on page 131)

[Bag+02] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill.
“Possibly Not Closed Convex Polyhedra and the Parma Polyhedra Library.”
In: Static Analysis Symposium. Ed. by M. V. Hermenegildo and G. Puebla.
Vol. 2477. LNCS. Springer, Sept. 2002, pp. 213–229 (cited on page 52)

[Bag+05] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella.
“Precise Widening Operators for Convex Polyhedra.”
In: Science of Computer Programming 58.1–2 (2005), pp. 28–56
(cited on pages 75, 78, 92, 93)

161

http://dx.doi.org/10.1017/S0956796800000885
http://dx.doi.org/10.1007/978-3-642-38856-9_4
http://dx.doi.org/10.1007/978-3-642-35182-2_12
http://dx.doi.org/10.1145/2001420.2001423


Bibliography

[Bag+07] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella.
“Grids: A Domain for Analyzing the Distribution of Numerical Values.”
In: Logic-Based Program Synthesis and Transformation. Ed. by G. Puebla.
Vol. 4407. LNCS. Springer Berlin Heidelberg, 2007, pp. 219–235.
isbn: 978-3-540-71409-5. doi: 10.1007/978-3-540-71410-1_16
(cited on page 50)

[Bal+01] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
“Automatic Predicate Abstraction of C Programs.”
In: Programming Languages, Design and Implementation. ACM, 2001,
pp. 203–213 (cited on pages 96, 108)

[Bal+05] G. Balakrishnan, G. Grurian, T. Reps, and T. Teitelbaum.
“CodeSurfer/x86 – A Platform for Analyzing x86 Executables.”
In: Compiler Construction. Vol. 3443. LNCS. Tool-Demonstration Paper.
Springer, Apr. 2005, pp. 250–254 (cited on pages 68, 73, 75)

[Bal07] G. Balakrishnan. “WYSINWYX: What You See Is Not What You eXecute.”
PhD thesis. Winsconsin, Madison, 2007 (cited on pages 69, 92, 123)

[BDL06] S. Blazy, Z. Dargaye, and X. Leroy.
“Formal Verification of a C Compiler Front-End.” In: Formal Methods.
Ed. by J. Misra, T. Nipkow, and E. Sekerinski. Vol. 4085. LNCS.
Springer Berlin Heidelberg, Aug. 2006, pp. 460–475.
isbn: 978-3-540-37215-8. doi: 10.1007/11813040_31 (cited on page 3)

[BDP12] G. Barthe, D. Demange, and D. Pichardie.
“A Formally Verified SSA-Based Middle-End.”
In: Programming Languages and Systems. Ed. by H. Seidl. Vol. 7211. LNCS.
Springer Berlin Heidelberg, Apr. 2012, pp. 47–66. isbn: 978-3-642-28868-5.
doi: 10.1007/978-3-642-28869-2_3 (cited on page 3)

[Bel05] F. Bellard. “QEMU, a fast and portable dynamic translator.”
In: USENIX Annual Technical Conference. ATEC ’05.
USENIX Association, 2005, pp. 41–46 (cited on page 128)

[Ber+10] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
and X. Rival. “Static Analysis and Verification of Aerospace Software by
Abstract Interpretation.” In: AIAA Infotech@Aerospace 2010.
American Institute of Aeronautics and Astronautics, Apr. 2010, pp. 1–38.
isbn: 978-1-60086-963-1. doi: 10.2514/6.2010-3385
(cited on pages 61, 63)

[BGA03] D. Bruening, T. Garnett, and S. Amarasinghe.
“An Infrastructure for Adaptive Dynamic Optimization.” In: Code generation
and optimization: feedback-directed and runtime optimization.
IEEE Computer Society, 2003, pp. 265–275 (cited on page 128)

162

http://dx.doi.org/10.1007/978-3-540-71410-1_16
http://dx.doi.org/10.1007/11813040_31
http://dx.doi.org/10.1007/978-3-642-28869-2_3
http://dx.doi.org/10.2514/6.2010-3385


Bibliography

[BHT08] D. Beyer, T. Henzinger, and G. Théoduloz.
“Program analysis with dynamic precision adjustment.”
In: Automated Software Engineering. 2008 (cited on page 108)

[BHV11] S. Bardin, P. Herrmann, and F. Védrine.
“Refinement-based CFG Reconstruction from Unstructured Programs.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by R. Jhala and D. Schmidt. Vol. 6538. LNCS.
Springer Berlin Heidelberg, 2011, pp. 54–69. isbn: 978-3-642-18274-7.
doi: 10.1007/978-3-642-18275-4_6 (cited on page 53)

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella.
“Widening Operators for Powerset Domains.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by B. Steffen and G. Levi. Vol. 2937. LNCS 4-5.
Springer Berlin Heidelberg, 2004, pp. 449–466. isbn: 978-3-540-20803-7.
doi: 10.1007/b94790 (cited on page 57)

[BHZ08] R. Bagnara, P. M. Hill, and E. Zaffanella. “The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems.”
In: Science of Computer Programming 72.1-2 (2008), pp. 3–21.
doi: 10.1016/j.scico.2007.08.001 (cited on pages 52, 55, 57)

[BK10] J. Brauer and A. King.
“Automatic Abstraction for Intervals using Boolean Formulae.”
In: Static Analysis Symposium. Ed. by R. Cousot and M. Martel. LNCS.
Springer, Sept. 2010 (cited on pages 21, 22)

[Bla+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival.
“Design and Implementation of a Special-Purpose Static Program Analyzer
for Safety-Critical Real-Time Embedded Software.”
In: The Essence of Computation: Complexity, Analysis, Transformation. Essays
Dedicated to Neil D. Jones.
Ed. by T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough. Vol. 2566.
LNCS. Springer, 2002, pp. 85–108 (cited on pages 73, 78, 92, 93, 140)

[Bla+03a] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival.
“A Static Analyzer for Large Safety-Critical Software.”
In: Programming Language Design and Implementation. ACM, June 2003
(cited on pages 21, 27, 30, 44, 68, 73, 75, 78, 111, 120)

[Bla+03b] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival.
“A static analyzer for large safety-critical software.”
In: Programming Language Design and Implementation 38.5 (2003). Ed. by

163

http://dx.doi.org/10.1007/978-3-642-18275-4_6
http://dx.doi.org/10.1007/b94790
http://dx.doi.org/10.1016/j.scico.2007.08.001


Bibliography

R. Cytron, pp. 196–207. issn: 03621340. doi: 10.1145/780822.781153
(cited on pages 52, 69, 154)

[BLH12] S. Bygde, B. Lisper, and N. Holsti.
“Fully Bounded Polyhedral Analysis of Integers with Wrapping.”
In: Electronic Notes in Theoretical Computer Science 288 (2012), pp. 3–13.
issn: 15710661. doi: 10.1016/j.entcs.2012.10.003 (cited on page 69)

[Boc09] D. R. Boccardo. “Context-sensitive analysis of x86 obfuscated executables.”
PhD Thesis. Universidade Estadual Paulista, 2009 (cited on page 69)

[Bou93] F. Bourdoncle. “Efficient Chaotic Iteration Strategies with Widenings.”
In: Formal Methods in Programming and Their Applications.
Ed. by D. Bjørner, M. Broy, and I. V. Pottosin. Vol. 735. LNCS.
Springer, June 1993, pp. 128–141 (cited on pages 16, 19, 73, 75–77, 94, 137)

[BR04] G. Balakrishnan and T. Reps.
“Analyzing Memory Accesses in x86 Executables.” In: Compiler Construction.
Ed. by E. Duesterwald. Vol. 2985. LNCS. Springer Berlin Heidelberg, 2004,
pp. 5–23. isbn: 978-3-540-21297-3. doi: 10.1007/978-3-540-24723-4_2
(cited on pages 24, 49)

[BR06] G. Balakrishnan and T. Reps.
“Recency-Abstraction for Heap-Allocated Storage.”
In: Static Analysis Symposium. Ed. by K. Yi. Vol. 4134. LNCS. Springer, 2006,
pp. 221–239 (cited on page 120)

[BR10] G. Balakrishnan and T. Reps.
“WYSINWYX: What you see is not what you eXecute.” In: Transactions on
Programming Languages and Systems 32.6 (Aug. 2010), pp. 1–84.
issn: 01640925. doi: 10.1145/1749608.1749612 (cited on pages 3, 4)

[Bra+11] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shubina.
“Exploit Programming: From Buffer Overflows to "Weird Machines" and
Theory of Computation.” In: USENIX ;login: 36.6 (Dec. 2011), pp. 13–21
(cited on page 147)

[Byg10] S. Bygde. “Static WCET Analysis based on Abstract Interpretation and
Counting of Elements.” Licentiate Thesis. Mälardalen University, 2010.
isbn: 9789186135553 (cited on page 41)

[CC04] R. Clarisó and J. Cortadella. “The Octahedron Abstract Domain.”
In: Static Analysis Symposium. Ed. by R. Giacobazzi. Vol. 3148. LNCS.
Springer Berlin Heidelberg, Aug. 2004, pp. 115–139. isbn: 0167-6423.
doi: 10.1016/j.scico.2006.03.009 (cited on page 52)

164

http://dx.doi.org/10.1145/780822.781153
http://dx.doi.org/10.1016/j.entcs.2012.10.003
http://dx.doi.org/10.1007/978-3-540-24723-4_2
http://dx.doi.org/10.1145/1749608.1749612
http://dx.doi.org/10.1016/j.scico.2006.03.009


Bibliography

[CC10] P. Cousot and R. Cousot. “A gentle introduction to formal verification of
computer systems by abstract interpretation.”
In: Logics and Languages for Reliability and Security.
Ed. by J. Esparza, O. Grumberg, and M. Broy. IOS Press, 2010, pp. 1–29
(cited on page 9)

[CC76] P. Cousot and R. Cousot.
“Static Determination of Dynamic Properties of Programs.”
In: International Symposium on Programming. Ed. by B. Robinet. Apr. 1976,
pp. 106–130 (cited on pages 17, 18, 53, 54, 73)

[CC77] P. Cousot and R. Cousot.
“Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints.”
In: Principles of Programming Languages. ACM, Jan. 1977, pp. 238–252
(cited on pages 10, 17, 18, 54, 73, 74)

[CC79a] P. Cousot and R. Cousot.
“Systematic Design of Program Analysis Frameworks.”
In: Principles of Programming Languages. ACM, Jan. 1979, pp. 269–282
(cited on pages 10, 55, 59, 64, 65, 96, 97, 108, 109)

[CC79b] P. Cousot and R. Cousot.
“Constructive Versions of Tarski’s Fixed Point Theorems.”
In: Pacific Journal of Mathematics 81.1 (1979), pp. 43–57 (cited on page 10)

[CC92a] P. Cousot and R. Cousot.
“Abstract Interpretation and Application to Logic Programs.”
In: Journal of Logic Programming 13.2–3 (1992), pp. 103–179
(cited on page 73)

[CC92b] P. Cousot and R. Cousot. “Comparing the Galois Connection and
Widening/Narrowing Approaches to Abstract Interpretation.”
In: Programming Language Implementation and Logic Programming.
Ed. by M. Bruynooghe and M. Wirsing. Vol. 631. LNCS.
Springer Berlin Heidelberg, Aug. 1992, pp. 269–295. isbn: 978-3-540-55844-6.
doi: 10.1007/3-540-55844-6_101 (cited on pages 17, 18, 76)

[CCF13] A. Cortesi, G. Costantini, and P. Ferrara.
“A Survey on Product Operators in Abstract Interpretation.” In: Electronic
Proceedings in Theoretical Computer Science 129 (Sept. 2013), pp. 325–336.
issn: 2075-2180. doi: 10.4204/EPTCS.129.19. arXiv: arXiv:1309.5146
(cited on pages 59, 64)

[CCL11] P. Cousot, R. Cousot, and F. Logozzo. “A parametric segmentation
functor for fully automatic and scalable array content analysis.”
In: Principles of Progamming Languages. Ed. by T. Ball and M. Sagiv. Vol. 46.
1. ACM, Jan. 2011, pp. 105–118. isbn: 978-1-4503-0490-0.
doi: 10.1145/1925844.1926399 (cited on page 36)

165

http://dx.doi.org/10.1007/3-540-55844-6_101
http://dx.doi.org/10.4204/EPTCS.129.19
http://arxiv.org/abs/arXiv:1309.5146
http://dx.doi.org/10.1145/1925844.1926399


Bibliography

[CCM11] P. Cousot, R. Cousot, and L. Mauborgne. “The Reduced Product of
Abstract Domains and the Combination of Decision Procedures.”
In: Foundations of Software Science and Computational Structures.
Ed. by H. Martin. Vol. 6604. LNCS. Springer Berlin Heidelberg, Mar. 2011,
pp. 456–472. isbn: 978-3-642-19804-5.
doi: 10.1007/978-3-642-19805-2_31 (cited on pages 59, 61)

[CD11] K. Coogan and S. Debray. “Equational Reasoning on x86 Assembly Code.”
In: Source Code Analysis and Manipulation. IEEE, Sept. 2011
(cited on page 69)

[CH78] P. Cousot and N. Halbwachs.
“Automatic Discovery of Linear Constraints among Variables of a Program.”
In: Principles of Programming Languages. ACM, Jan. 1978, pp. 84–97
(cited on pages 17, 21, 24, 51, 75, 93, 99, 110, 118)

[CKC11] V. Chipounov, V. Kuznetsov, and G. Candea.
“S2E: a platform for in-vivo multi-path analysis of software systems.”
In: Architectural Support for Programming Languages and Operating Systems.
Ed. by R. Gupta and T. C. Mowry. ACM, Mar. 2011, pp. 265–278
(cited on page 131)

[CLV00] A. Cortesi, B. Le Charlier, and P. Van Hentenryck.
“Combinations of abstract domains for logic programming: open product and
generic pattern construction.” In: Science of Computer Programming 38.1-3
(Aug. 2000). Ed. by E. Astesiano and J. Bergstra, pp. 27–71.
issn: 01676423. doi: 10.1016/S0167-6423(99)00045-3
(cited on page 61)

[CN09] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection.
Ed. by G. McGraw. 1st. Addison-Wesley Professional, Aug. 2009, p. 792.
isbn: 0321549252, 9780321549259 (cited on pages 3, 5)

[Coo+09] K. Coogan, S. Debray, T. Kaochar, and G. Townsend.
“Automatic Static Unpacking of Malware Binaries.”
In: Working Conference on Reverse Engineering. IEEE, 2009, pp. 167–176
(cited on page 130)

[Cor08] A. Cortesi. “Widening Operators for Abstract Interpretation.”
In: Software Engineering and Formal Methods.
Ed. by A. Cerone and S. Grune. IEEE Computer Society, Nov. 2008,
pp. 31–40. isbn: 978-0-7695-3437-4. doi: 10.1109/SEFM.2008.20
(cited on pages 19, 76)

[Cou+06] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux,
and X. Rival. “Combination of Abstractions in the ASTRÉE Static Analyzer.”
In: Asian Computing Science Conference. Ed. by M. Okada and I. Satoh.

166

http://dx.doi.org/10.1007/978-3-642-19805-2_31
http://dx.doi.org/10.1016/S0167-6423(99)00045-3
http://dx.doi.org/10.1109/SEFM.2008.20


Bibliography

Vol. 4435. LNCS. Springer, Dec. 2006, pp. 272–300
(cited on pages 32, 75, 78, 94, 113)

[Cou+07] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. “Combination of Abstractions in the ASTRÉE Static Analyzer.”
In: Asian Computing Science Conference. Ed. by M. Okada and I. Satoh.
Vol. 4435. LNCS. Springer Berlin Heidelberg, 2007, pp. 1–29.
isbn: 978-3-540-77504-1. doi: 10.1007/978-3-540-77505-8
(cited on page 61)

[Cou01] P. Cousot.
“Abstract Interpretation Based Formal Methods and Future Challenges.”
In: Informatics - 10 Years Back, 10 Years Ahead. Ed. by R. Wilhelm.
LNCS. Vol. 2000. LNCS 562. Springer Berlin Heidelberg, Mar. 2001,
pp. 138–156. isbn: 978-3-540-41635-7. doi: 10.1007/3-540-44577-3_10
(cited on pages 9, 49)

[CS98] C. Cifuentes and S. Sendall.
“Specifying the Semantics of Machine Instructions.”
In: International Workshop on Program Comprehension. 1998, pp. 126–133
(cited on page 21)

[CV04] L. Catuogno and I. Visconti.
“An Architecture for Kernel-Level Verification of Executables at Run Time.”
In: The Computer Journal 47.5 (2004), pp. 511–526 (cited on page 123)

[DLS02] M. Das, S. Lerner, and M. Seigle.
“ESP: Path-Sensitive Program Verification in Polynomial Time.”
In: ACM SIGPLAN Notices 37.5 (May 2002), p. 57 (cited on page 120)

[Dow03] M. Dowd. Remote Sendmail Header Processing Vulnerability. Mar. 2003.
url: http://www.iss.net/threats/advise142.html
(cited on page 147)

[DP09] T. Dullien and S. Porst. REIL: A platform-independent intermediate
representation of disassembled code for static code analysis.
CanSecWest Vancouver, Canada. 2009 (cited on pages 21–23, 25)

[DP10] S. Debray and J. Patel.
“Reverse Engineering Self-Modifying Code: Unpacker Extraction.”
In: Working Conference on Reverse Engineering. IEEE, Oct. 2010, pp. 131–140
(cited on page 130)

[DRS07] B. Dufour, B. G. Ryder, and G. Sevitsky. “Blended analysis for
performance understanding of framework-based applications.”
In: Proceedings of the 2007 international symposium on Software testing and
analysis. ISSTA ’07. ACM, 2007, pp. 118–128 (cited on page 130)

167

http://dx.doi.org/10.1007/978-3-540-77505-8
http://dx.doi.org/10.1007/3-540-44577-3_10
http://www.iss.net/threats/advise142.html


Bibliography

[Dul11] T. Dullien. “Exploitation and State Machines - Programming the "weird
machine" revisited.” In: Infiltrate Security Conference. Apr. 2011
(cited on page 147)

[Eld+11] M. Elder, J. Lim, T. Sharma, T. Andersen, and T. Reps.
“Abstract Domains of Affine Relations.” In: Static Analysis Symposium.
Ed. by E. Yahav. Vol. 6887. LNCS. Springer Berlin Heidelberg, Sept. 2011,
pp. 198–215. isbn: 9783642237010. doi: 10.1007/978-3-642-23702-7_17
(cited on pages 25, 68)

[EMA10] N. Een, A. Mishchenko, and N. Amla. “A Single-Instance Incremental SAT
Formulation of Proof- and Counterexample-Based Abstraction.”
In: Formal Methods in Computer-Aided Design. ACM, Aug. 2010, pp. 181–188.
arXiv: 1008.2021 (cited on page 40)

[EMS07] N. Een, A. Mishchenko, and N. Sörensson.
“Applying Logic Synthesis for Speeding Up SAT.”
In: Theory and Applications of Satisfiability Testing.
Ed. by J. Marques-Silva and K. A. Sakallah. Vol. 4501. LNCS.
Springer Berlin Heidelberg, May 2007, pp. 272–286. isbn: 978-3-540-72787-3.
doi: 10.1007/978-3-540-72788-0_26 (cited on page 40)

[FJM05] J. Fischer, R. Jhala, and R. Majumdar. “Joining Dataflow with Predicates.”
In: European Software Engineering Conference.
Ed. by M. Wermelinger and H. Gall. Vol. 30. ACM, Sept. 2005,
pp. 227–236 (cited on pages 104, 105, 109)

[FL09] M. Fähndrich and F. Logozzo. “Pentagons: A Weakly Relational Abstract
Domain for the Efficient Validation of Array Accesses.”
In: Science of Computer Programming (2009) (cited on page 51)

[FL11] M. Fähndrich and F. Logozzo.
“Clousot: Static Contract Checking with Abstract Interpretation.”
In: Formal Verification of Object-Oriented Software.
Ed. by B. Beckert and C. Marché. Vol. 6528. LNCS.
Springer Berlin Heidelberg, 2011, pp. 10–30.
doi: 10.1007/978-3-642-18070-5_2 (cited on pages 56, 61, 154)

[Fle+10] A. Flexeder, B. Mihaila, M. Petter, and H. Seidl.
“Interprocedural control flow reconstruction.”
In: Asian Symposium on Program Languages and Systems. Ed. by K. Ueda.
Vol. 6461. LNCS. Springer, Nov. 2010, pp. 188–203.
doi: 10.1007/978-3-642-17164-2_14 (cited on page 4)

[GC10a] A. Gurfinkel and S. Chaki. “Boxes: A Symbolic Abstract Domain of Boxes.”
In: Static Analysis Symposium. Ed. by R. Cousot and M. Martel. Vol. 6337.
LNCS. Springer, 2010, pp. 287–303 (cited on pages 56, 57, 96, 108)

168

http://dx.doi.org/10.1007/978-3-642-23702-7_17
http://arxiv.org/abs/1008.2021
http://dx.doi.org/10.1007/978-3-540-72788-0_26
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://dx.doi.org/10.1007/978-3-642-17164-2_14


Bibliography

[GC10b] A. Gurfinkel and S. Chaki. “Combining Predicate and Numeric Abstraction
for Software Model Checking.”
In: Software Tools for Technology Transfer 12.6 (2010), pp. 409–427
(cited on pages 105, 107, 108)

[GGP09] K. Ghorbal, E. Goubault, and S. Putot.
“The Zonotope Abstract Domain Taylor1+.” In: Computer Aided Verification.
Ed. by A. Bouajjani and O. Maler. Vol. 5643. LNCS.
Springer Berlin Heidelberg, 2009, pp. 627–633. isbn: 3642026575.
doi: 10.1007/978-3-642-02658-4_47 (cited on page 53)

[GLM12] P. Godefroid, M. Y. Levin, and D. Molnar.
“SAGE: Whitebox Fuzzing for Security Testing.” In: 10.1 (Jan. 2012)
(cited on page 123)

[GMT08] S. Gulwani, B. McCloskey, and A. Tiwari.
“Lifting abstract interpreters to quantified logical domains.”
In: Principles of Progamming Languages. ACM, Jan. 2008, pp. 235–246
(cited on page 120)

[God07] P. Godefroid. “Compositional dynamic test generation.”
In: Principles of Programming Languages. ACM, 2007, pp. 47–54.
isbn: 1-59593-575-4.
doi: http://doi.acm.org/10.1145/1190216.1190226
(cited on page 124)

[Gop+04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv.
“Numeric Domains with Summarized Dimensions.”
In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by K. Jensen and A. Podelski. Vol. 2988. LNCS.
Springer Berlin Heidelberg, 2004, pp. 512–529. isbn: 978-3-540-21299-7.
doi: 10.1007/978-3-540-24730-2_38 (cited on page 36)

[GR06a] D. Gopan and T. Reps. “Lookahead Widening.”
In: Computer-Aided Verification. Ed. by T. Ball and R. B. Jones. Vol. 4144.
LNCS. Springer, Aug. 2006 (cited on pages 73, 91, 92, 94)

[GR06b] B. S. Gulavani and S. K. Rajamani.
“Counterexample Driven Refinement for Abstract Interpretation.”
In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by H. Hermanns and J. Palsberg. Vol. 3920. LNCS. Springer, Mar. 2006,
pp. 474–488 (cited on pages 109, 154)

[GR07] D. Gopan and T. W. Reps. “Guided Static Analysis.”
In: Static Analysis Symposium. Ed. by H. R. Nielson and G. Filé. Vol. 4634.
LNCS. Springer, Aug. 2007, pp. 349–365
(cited on pages 73, 75, 88, 94, 96, 108)

169

http://dx.doi.org/10.1007/978-3-642-02658-4_47
http://dx.doi.org/http://doi.acm.org/10.1145/1190216.1190226
http://dx.doi.org/10.1007/978-3-540-24730-2_38


Bibliography

[GR99] R. Giacobazzi and F. Ranzato.
“The reduced relative power operation on abstract domains.” In: Theoretical
Computer Science 216.1-2 (Mar. 1999). Ed. by M. Nivat, pp. 159–211.
issn: 03043975. doi: 10.1016/S0304-3975(98)00194-7
(cited on pages 64, 65)

[Gra89] P. Granger. “Static Analysis of Arithmetic Congruences.” In: International
Journal of Computer Mathematics 30 (3 & 4 1989), pp. 165–199
(cited on pages 48–50)

[Gra91] P. Granger. “Static Analysis of Linear Congruence Equalities among
Variables of a Program.” In: Theory and Practice of Software Development.
Ed. by S. Abramsky and T. S. E. Maibaum. Vol. 493. LNCS.
Springer, Apr. 1991, pp. 169–192 (cited on page 50)

[Gra92] P. Granger. “Improving the Results of Static Analyses of Programs by Local
Decreasing Iterations.”
In: Foundations of Software Technology and Theoretical Computer Science.
Ed. by R. Shyamasundar. Vol. 652. LNCS. Springer, 1992, pp. 68–79.
isbn: 978-3-540-56287-0. doi: 10.1007/3-540-56287-7_95
(cited on pages 61–63, 97)

[Gra97] P. Granger. “Static Analyses of Congruence Properties on Rational
Numbers (Extended Abstract).” In: Static Analysis Symposium.
Ed. by P. Van Hentenryck. Springer, Sept. 1997, pp. 278–292
(cited on page 50)

[GS97] S. Graf and H. Saidi. “Construction of abstract state graphs with PVS.”
In: Computer Aided Verification. Ed. by O. Grumberg. Vol. 1254. LNCS.
Springer, 1997, pp. 72–83. doi: 10.1007/3-540-63166-6_10
(cited on page 108)

[Har77] W. H. Harrison. “Compiler Analysis of the Value Ranges for Variables.”
In: Transactions on Software Engineering 3.3 (May 1977), pp. 243–250
(cited on pages 17, 21, 53)

[Hee11] S. Heelan. “Vulnerability Detection Systems: Think Cyborg, Not Robot.”
In: IEEE Security and Privacy 9.June (2011), pp. 74–77. issn: 15407993.
doi: 10.1109/MSP.2011.70 (cited on page 147)

[HH12] N. Halbwachs and J. Henry. “When the Decreasing Sequence Fails.”
In: Static Analysis Symposium. Ed. by A. Miné and D. Schmidt. Vol. 7460.
LNCS. Springer, Sept. 2012, pp. 198–213.
doi: 10.1007/978-3-642-33125-1_15
(cited on pages 16, 51, 73, 74, 85, 91–93)

[HHP13] M. Heizmann, J. Hoenicke, and A. Podelski.
“Software Model Checking for People Who Love Automata.”
In: Computer Aided Verification. Ed. by N. Sharygina and H. Veith.
Vol. 8044. LNCS. Springer, July 2013, pp. 36–52 (cited on page 105)

170

http://dx.doi.org/10.1016/S0304-3975(98)00194-7
http://dx.doi.org/10.1007/3-540-56287-7_95
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1109/MSP.2011.70
http://dx.doi.org/10.1007/978-3-642-33125-1_15


Bibliography

[HMC94] J. Hollingsworth, B. Miller, and J. Cargille.
“Dynamic program instrumentation for scalable performance tools.”
In: Scalable High-Performance Computing Conference, 1994. IEEE. 1994,
pp. 841–850 (cited on page 128)

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff.
“Verification of Real-Time Systems using Linear Relation Analysis.”
In: Formal Methods in System Design 11.2 (Aug. 1997), pp. 157–185
(cited on pages 73, 75, 78, 92, 94)

[IBM03] IBM Internet Security Systems X-Force.
Sendmail mail header processing buffer overflow. Mar. 2003.
url: http://xforce.iss.net/xforce/xfdb/10748 (cited on page 147)

[ISO05] ISO C Working Group. ANSI C 98/99. Tech. rep. 2005 (cited on page 55)

[Jaf+12] J. Jaffar, V. Murali, J. Navas, and S. Andrew.
“TRACER: A Symbolic Execution Tool for Verification.”
In: Computer Aided Verification. Ed. by P. Madhusudan and S. A. Seshia.
Vol. 7358. LNCS. Springer, 2012, pp. 758–766 (cited on pages 123, 131)

[JM09] B. Jeannet and A. Miné.
“Apron: A Library of Numerical Abstract Domains for Static Analysis.”
In: Computer Aided Verification. Ed. by A. Bouajjani and O. Maler.
Vol. 5643. LNCS. Springer, June 2009, pp. 661–667 (cited on pages 50, 92)

[JRM11] E. R. Jacobson, N. E. Rosenblum, and B. P. Miller.
“Labeling library functions in stripped binaries.”
In: Program analysis for software tools. ACM, 2011, pp. 1–8
(cited on page 128)

[Kar76] M. Karr. “On affine relationships among variables of a program.”
In: Acta Informatica 6.2 (1976), pp. 133–151 (cited on pages 21, 43, 75)

[Kin10] J. Kinder. “Static Analysis of x86 Executables.”
PhD Thesis. Technische Universität Darmstadt, 2010 (cited on page 69)

[Kin12] J. Kinder. “Towards Static Analysis of Virtualization-Obfuscated Binaries.”
In: Working Conference on Reverse Engineering.
Ed. by R. Oliveto, D. Poshyvanyk, J. Cordy, and T. Dean.
IEEE Computer Society, Oct. 2012, pp. 61–70. doi: 10.1109/WCRE.2012.16
(cited on pages 5, 14, 154)

[Kir+12] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
“Frama-C A Software Analysis Perspective.”
In: Software Engineering and Formal Methods.
Ed. by G. Eleftherakis, M. Hinchey, and M. Holcombe. Vol. 7504. LNCS.
Springer Berlin Heidelberg, 2012, pp. 233–247. isbn: 978-3-642-33825-0.
doi: 10.1007/978-3-642-33826-7_16 (cited on pages 73, 92, 139)

171

http://xforce.iss.net/xforce/xfdb/10748
http://dx.doi.org/10.1109/WCRE.2012.16
http://dx.doi.org/10.1007/978-3-642-33826-7_16


Bibliography

[KK08a] N. Kettle and A. King. “Bit-Precise Reasoning with Affine Functions.”
In: Satisfiability Modulo Theories. ACM, 2008, pp. 46–52.
isbn: 978-1-60558-440-9 (cited on page 21)

[KK08b] U. Khedker and B. Karkare.
“Efficiency, Precision, Simplicity, and Generality in Interprocedural Data Flow
Analysis: Resurrecting the Classical Call Strings Method.”
In: Conference on Compiler Construction. Ed. by L. Hendren. Vol. 4959.
LNCS. Springer Berlin Heidelberg, Mar. 2008, pp. 213–228.
isbn: 3-540-78790-9, 978-3-540-78790-7.
doi: 10.1007/978-3-540-78791-4_15 (cited on page 69)

[KK12] J. Kinder and D. Kravchenko. “Alternating Control Flow Reconstruction.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by V. Kuncak and A. Rybalchenko. Vol. 7148. LNCS.
Springer Berlin Heidelberg, 2012, pp. 267–282. isbn: 978-3-642-27939-3.
doi: 10.1007/978-3-642-27940-9 (cited on pages 130, 131)

[KS10] A. King and H. Søndergaard. “Automatic Abstraction for Congruences.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by G. Barthe and M. Hermenegildo. LNCS 5944. Springer, Jan. 2010,
pp. 197–213 (cited on pages 25, 68)

[KSS13a] J. Kranz, A. Sepp, and A. Simon.
“GDSL: A Universal Toolkit for Giving Semantics to Machine Language.”
In: Asian Symposium on Programming Languages and Systems.
Ed. by C. Shan. Springer, Dec. 2013 (cited on pages 38, 154)

[KSS13b] J. Kranz, A. Sepp, and A. Simon.
“GDSL: A Universal Toolkit for Giving Semantics to Machine Language.”
In: Asian Symposium on Program Languages and Systems. Ed. by C.-c. Shan.
Vol. 8301. LNCS. Springer, 2013, pp. 209–216. isbn: 978-3-319-03541-3.
doi: 10.1007/978-3-319-03542-0 (cited on page 135)

[KVZ09] J. Kinder, H. Veith, and F. Zuleger. “An Abstract Interpretation-Based
Framework for Control Flow Reconstruction from Binaries.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by M. M.-O. N. D. Jones. Vol. 5403. LNCS. Springer, Jan. 2009,
pp. 214–228 (cited on pages 4, 38, 123)

[Lak+11] A. Lakhotia, D. R. Boccardo, A. Singh, and A. Manacero.
“Context-sensitive analysis without calling-context.”
In: Higher-Order and Symbolic Computation 23.3 (Nov. 2011). Ed. by
O. Danvy and C. L. Talcott, pp. 275–313. issn: 1388-3690.
doi: 10.1007/s10990-011-9080-1 (cited on pages 33, 69)

172

http://dx.doi.org/10.1007/978-3-540-78791-4_15
http://dx.doi.org/10.1007/978-3-642-27940-9
http://dx.doi.org/10.1007/978-3-319-03542-0
http://dx.doi.org/10.1007/s10990-011-9080-1


Bibliography

[Ler06] X. Leroy. “Formal Certification of a Compiler Back-end.”
In: Principles of Programming Languages.
Ed. by G. Morrisett and S. P. Jones. Vol. 41. ACM Press, Jan. 2006,
pp. 42–54. isbn: 1595930272. doi: 10.1145/1111037.1111042
(cited on page 3)

[Lev99] J. R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers Inc., 1999.
isbn: 1558604960 (cited on pages 32, 35)

[LF08] F. Logozzo and M. Fähndrich. “Pentagons: a weakly relational abstract
domain for the efficient validation of array accesses.”
In: ACM Symposium on Applied Computing.
Ed. by R. L. Wainwright and H. M. Haddad. ACM Press, 2008, p. 184.
isbn: 9781595937537. doi: 10.1145/1363686.1363736
(cited on page 109)

[LJG11] L. Lakhdar-Chaouch, B. Jeannet, and A. Girault.
“Widening with Thresholds for Programs with Complex Control Graphs.”
In: Automated Technology for Verification and Analysis.
Ed. by T. Bultan and P. Hsiung. Vol. 6996. LNCS. Springer, Oct. 2011,
pp. 492–502. doi: 10.1007/978-3-642-24372-1_38
(cited on pages 53, 73, 75, 91–93)

[LL05] R. Leino and F. Logozzo. “Loop Invariants on Demand.”
In: Asian Symposium on Programming Languages and Systems. Ed. by K. Yi.
Vol. 3780. LNCS. Springer, 2005, pp. 119–134 (cited on page 109)

[LL11] V. Laviron and F. Logozzo. “SubPolyhedra: a family of numerical abstract
domains for the (more) scalable inference of linear inequalities.”
In: International Journal on Software Tools for Technology Transfer 13.6 (May
2011), pp. 585–601. issn: 1433-2779. doi: 10.1007/s10009-011-0199-5
(cited on pages 73, 92, 99, 109)

[LSD03] LSD - Last Stage of Delirium.
Technical analysis of the remote sendmail vulnerability. Mar. 2003.
url: http://www.ouah.org/LSDsendmail.html
(cited on pages 147, 149)

[Luk+05] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. “Pin: building customized program analysis
tools with dynamic instrumentation.”
In: Programming language design and implementation. PLDI.
ACM, June 2005, pp. 190–200 (cited on pages 128, 139)

[Mar99] F. Martin. “Experimental Comparison of Call String and Functional
Approaches to Interprocedural Analysis.” In: Compiler Construction.
Ed. by S. Jähnichen. Vol. 1575. LNCS.
Springer Berlin Heidelberg, Mar. 1999, pp. 63–75. isbn: 978-3-540-65717-0.
doi: 10.1007/978-3-540-49051-7_5 (cited on pages 68, 69)

173

http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1145/1363686.1363736
http://dx.doi.org/10.1007/978-3-642-24372-1_38
http://dx.doi.org/10.1007/s10009-011-0199-5
http://www.ouah.org/LSDsendmail.html
http://dx.doi.org/10.1007/978-3-540-49051-7_5


Bibliography

[McM11] K. L. McMillan. “Widening and Interpolation.”
In: Static Analysis Symposium. Ed. by E. Yahav. Vol. 6887. LNCS.
Springer Berlin Heidelberg, Sept. 2011, p. 1. isbn: 978-3-642-23701-0.
doi: 10.1007/978-3-642-23702-7_1 (cited on page 79)

[Mic99] Microsoft Corporation.
Microsoft Portable Executable and Common Object File Format Specification.
Feb. 1999.
url: http://download.microsoft.com/download/e/b/a/eba1050f-
a31d-436b-9281-92cdfeae4b45/pecoff.doc (cited on page 135)

[Mih09] B. Mihaila. “Control Flow Reconstruction from PowerPC Binaries.”
Diploma Thesis. Technical University of Munich, Nov. 2009
(cited on page 49)

[Mih14a] B. Mihaila. BinDead - a static analysis tool for binaries. Oct. 2014.
url: https://bitbucket.org/mihaila/bindead
(cited on pages 136, 153)

[Mih14b] B. Mihaila. BintTrace - a tool to record and dump traces of an executable
program and its data. Oct. 2014.
url: https://bitbucket.org/mihaila/bintrace (cited on page 139)

[Mih14c] B. Mihaila. p9 - the GUI for the BinDead binary analyzer. Oct. 2014.
url: https://bitbucket.org/mihaila/p9 (cited on page 143)

[Min01] A. Miné. “The Octagon Abstract Domain.”
In: Conference on Reverse Engineering. IEEE, Oct. 2001, pp. 310–319
(cited on page 52)

[Min06a] A. Miné. “Field-Sensitive Value Analysis of Embedded C Programs with
Union Types and Pointer Arithmetics.”
In: Languages, Compilers, and Tools for Embedded Systems. ACM, June 2006,
pp. 54–63 (cited on pages 24, 69)

[Min06b] A. Miné.
“Symbolic Methods to Enhance the Precision of Numerical Abstract Domains.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by E. A. Emerson and K. S. Namjoshi. Vol. 3855. LNCS.
Springer Berlin Heidelberg, 2006, pp. 348–363.
doi: 10.1007/11609773_23 (cited on page 45)

[Min06c] A. Miné. “The Octagon Abstract Domain.” In: Higher-Order and Symbolic
Computation 19 (2006). Ed. by O. Danvy, pp. 31–100 (cited on page 52)

[Min12] A. Miné. “Abstract domains for bit-level machine integer and floating-point
operations.” In: International Workshop on Invariant Generation.
Ed. by J. F. And, P. Höfner, A. McIver, and A. Smaill. Vol. 17. 2012,
pp. 55–70 (cited on page 41)

174

http://dx.doi.org/10.1007/978-3-642-23702-7_1
http://download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/pecoff.doc
http://download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/pecoff.doc
https://bitbucket.org/mihaila/bindead
https://bitbucket.org/mihaila/bintrace
https://bitbucket.org/mihaila/p9
http://dx.doi.org/10.1007/11609773_23


Bibliography

[MR05] L. Mauborgne and X. Rival.
“Trace Partitioning in Abstract Interpretation Based Static Analyzers.”
In: European Conference on Programming Languages and Systems.
Ed. by M. Sagiv. Vol. 3444. LNCS. Springer Berlin Heidelberg, Apr. 2005,
pp. 5–20. isbn: 978-3-540-25435-5. doi: 10.1007/978-3-540-31987-0_2
(cited on pages 96, 103, 105, 107–109)

[MS05] M. Müller-Olm and H. Seidl. “Analysis of modular arithmetic.”
In: Programming Languages and Systems. Ed. by M. Sagiv. Vol. 344. LNCS 5.
Springer Berlin Heidelberg, Apr. 2005, pp. 46–60.
doi: 10.1145/1275497.1275504 (cited on page 41)

[MS14] B. Mihaila and A. Simon.
“Synthesizing Predicates from Abstract Domain Losses.”
In: NASA Formal Methods. Ed. by J. Badger and K. Y. Rosier. Vol. 8430.
LNCS. Springer, Apr. 2014, pp. 328–342.
doi: 10.1007/978-3-319-06200-6_28 (cited on pages 5, 6)

[MSS13] B. Mihaila, A. Sepp, and A. Simon. “Widening as Abstract Domain.”
In: NASA Formal Methods. Ed. by G. Brat, N. Rungta, and A. Venet.
Vol. 7871. LNCS. Springer, May 2013, pp. 170–186.
doi: 10.1007/978-3-642-38088-4_12 (cited on pages 5, 6, 108)

[Nav+12] J. Navas, P. Schachte, H. Søndergaard, and P. Stuckey.
“Signedness-Agnostic Program Analysis: Precise Integer Bounds for
Low-Level Code.”
In: Asian Symposium on Programming Languages and Systems.
Springer Berlin Heidelberg, 2012, pp. 115–130 (cited on page 68)

[Nec97] G. C. Necula. “Proof-carrying code.”
In: Principles of Programming Languages.
Ed. by N. D. Jones, F. Henglein, and P. Lee. Vol. 243. 65.
ACM Press, Jan. 1997, pp. 106–119. isbn: 0897918533.
doi: 10.1145/263699.263712 (cited on page 3)

[NS07] N. Nethercote and J. Seward.
“Valgrind: a framework for heavyweight dynamic binary instrumentation.”
In: Programming language design and implementation. PLDI. ACM, 2007,
pp. 89–100 (cited on page 128)

[Orm06] T. Ormandy.
Heap-based buffer overflow in the JPEG decoder in the TIFF library. Aug. 2006.
url:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3460
(cited on pages 124, 130)

[OS] J. L. Obes and J. Schuh. Integer underflow bug in Google Chrome.
url: http://blog.chromium.org/2012/05/tale-of-two-pwnies-
part-1.html (cited on page 125)

175

http://dx.doi.org/10.1007/978-3-540-31987-0_2
http://dx.doi.org/10.1145/1275497.1275504
http://dx.doi.org/10.1007/978-3-319-06200-6_28
http://dx.doi.org/10.1007/978-3-642-38088-4_12
http://dx.doi.org/10.1145/263699.263712
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3460
http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html


Bibliography

[PH07] M. Péron and N. Halbwachs. “An Abstract Domain Extending
Difference-Bound Matrices with Disequality Constraints.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by B. Cook and A. Podelski. Vol. 4349. LNCS. Springer, Jan. 2007,
pp. 268–282 (cited on page 96)

[RBL06] T. Reps, G. Balakrishnan, and J. Lim.
“Intermediate-representation recovery from low-level code.”
In: Partial evaluation and semantics-based program manipulation.
Ed. by J. Hatcliff and F. Tip. ACM Press, 2006, pp. 100–111.
isbn: 1595931961. doi: 10.1145/1111542.1111560 (cited on page 49)

[Rey02] J. C. Reynolds.
“Separation logic: A logic for shared mutable data structures.”
In: Logic in Computer Science. IEEE, 2002, pp. 55–74 (cited on page 120)

[Riv03] X. Rival. “Abstract Interpretation-Based Certification of Assembly Code.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay. Vol. 2575.
LNCS. Springer Berlin Heidelberg, Dec. 2003, pp. 41–55.
isbn: 978-3-540-00348-9. doi: 10.1007/3-540-36384-X_7
(cited on pages 3, 139)

[San+06] S. Sankaranarayanan, F. Ivančić, I. Shlyakhter, and A. Gupta.
“Static Analysis in Disjunctive Numerical Domains.”
In: Static Analysis Symposium. Ed. by K. Yi. Vol. 4134. LNCS.
Springer, Aug. 2006, pp. 3–17 (cited on pages 96, 108)

[SC07] Y. Smaragdakis and C. Csallner.
“Combining Static and Dynamic Reasoning for Bug Detection.”
In: Test and Proofs. Ed. by Y. Gurevich and B. Meyer. Vol. 4454. LNCS.
Springer, Feb. 2007, pp. 1–16 (cited on page 130)

[Sch+14] M. Schwarz, H. Seidl, V. Vojdani, and K. Apinis. “Precise Analysis of
Value-Dependent Synchronization in Priority Scheduled Programs.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by K. L. McMillan and X. Rival. Vol. 8318. LNCS.
Springer Berlin Heidelberg, 2014, pp. 21–38. isbn: 978-3-642-54012-7.
doi: 10.1007/978-3-642-54013-4_2 (cited on page 110)

[SDA02] B. Schwarz, S. Debray, and G. Andrews.
“Disassembly of Executable Code Revisited.”
In: Working Conference on Reverse Engineering. IEEE Computer Society, 2002,
pp. 45–54 (cited on page 4)

[Sha07] H. Shacham. “The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86).”
In: Computer and Communications Security.

176

http://dx.doi.org/10.1145/1111542.1111560
http://dx.doi.org/10.1007/3-540-36384-X_7
http://dx.doi.org/10.1007/978-3-642-54013-4_2


Bibliography

Ed. by S. De Capitani di Vimercati and P. Syverson. ACM Press, Oct. 2007,
pp. 552–61 (cited on page 4)

[SIG07] S. Sankaranarayanan, F. Ivančić, and A. Gupta.
“Program Analysis Using Symbolic Ranges.” In: Static Analysis Symposium.
Ed. by H. R. Nielson and G. Filé. Vol. 4634. LNCS.
Springer Berlin Heidelberg, Aug. 2007, pp. 366–383.
isbn: 978-3-540-74060-5. doi: 10.1007/978-3-540-74061-2
(cited on page 69)

[Sim08a] A. Simon. “Splitting the Control Flow with Boolean Flags.”
In: Static Analysis Symposium. Ed. by M. Alpuente and G. Vidal. Vol. 5079.
LNCS. Springer, July 2008, pp. 315–331 (cited on pages 39, 67, 109)

[Sim08b] A. Simon. Value-Range Analysis of C Programs. Springer, Aug. 2008.
isbn: 978-1-84800-016-2. doi: 10.1007/978-1-84800-017-9
(cited on pages 24, 25)

[SK02] A. Simon and A. King. “Analyzing String Buffers in C.”
In: Algebraic Methodology and Software Technology.
Ed. by H. Kirchner and C. Ringeissen. Vol. 2422. LNCS.
Springer, Sept. 2002, pp. 365–379 (cited on page 36)

[SK06] A. Simon and A. King. “Widening Polyhedra with Landmarks.”
In: Asian Symposium on Programming Languages and Systems.
Ed. by N. Kobayashi. Vol. 4279. LNCS. Springer, Nov. 2006, pp. 166–182
(cited on pages 69, 73, 86, 93)

[SK07] A. Simon and A. King. “Taming the Wrapping of Integer Arithmetic.”
In: Static Analysis Symposium. Ed. by G. File and H. R. Nielson. Vol. 4634.
LNCS. Springer, Aug. 2007, pp. 121–136 (cited on pages 40, 41)

[SKH03] A. Simon, A. King, and J. M. Howe.
“Two Variables per Linear Inequality as an Abstract Domain.”
In: Logic-Based Program Synthesis and Transformation. Ed. by M. Leuschel.
Vol. 2664. LNCS. Springer, Sept. 2003, pp. 71–89 (cited on page 51)

[SKS12] A. Sepp, J. Kranz, and A. Simon. “GDSL: A Generic Decoder Specification
Language for Interpreting Machine Language.”
In: Tools for Automatic Program Analysis. Vol. 289. ENTCS.
Springer, Sept. 2012, pp. 53–64. doi: 10.1016/j.entcs.2012.11.006
(cited on page 135)

[SM03] A. Sabelfeld and A. Myers. “Language-based information-flow security.”
In: Selected Areas in Communications 21.1 (2003), pp. 5–19
(cited on page 131)

177

http://dx.doi.org/10.1007/978-3-540-74061-2
http://dx.doi.org/10.1007/978-1-84800-017-9
http://dx.doi.org/10.1016/j.entcs.2012.11.006


Bibliography

[SMA05] K. Sen, D. Marinov, and G. Agha.
“CUTE: A Concolic Unit Testing Engine for C.” In: European software
engineering conference held jointly with Foundations of software engineering.
ACM, 2005, pp. 263–272 (cited on pages 123, 124, 131)

[SMS11] A. Sepp, B. Mihaila, and A. Simon.
“Precise Static Analysis of Binaries by Extracting Relational Information.”
In: Working Conference on Reverse Engineering.
Ed. by M.Pinzger and D. Poshyvanyk. IEEE, Oct. 2011.
doi: 10.1109/WCRE.2011.50 (cited on pages 5, 75, 85, 90, 107, 135)

[SMS13] H. Siegel, B. Mihaila, and A. Simon. “The Undefined Domain: Precise
Relational Information for Entities that Do Not Exist.”
In: Asian Symposium on Programming Languages and Systems.
Ed. by C. Shan. LNCS. Springer, Dec. 2013.
doi: 10.1007/978-3-319-03542-0_6 (cited on pages 5, 6, 119)

[Son+08] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena.
“BitBlaze: A New Approach to Computer Security via Binary Analysis.”
In: International Conference on Information Systems Security.
Ed. by R. Sekar and A. K. Pujari. Springer Berlin Heidelberg, Dec. 2008,
pp. 1–25. doi: 10.1007/978-3-540-89862-7_1 (cited on page 25)

[SP81] M. Sharir and A. Pnueli.
“Two approaches to interprocedural data flow analysis.” In:
Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.
Chap. 7, pp. 189–234 (cited on page 65)

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm.
“Parametric Shape Analysis via 3-Valued Logic.” In: Transactions on
Programming Languages and Systems 24.3 (2002), pp. 217–298
(cited on page 120)

[SS13] H. Siegel and A. Simon. “FESA: Fold- and Expand-based Shape Analysis.”
In: Compiler Construction. Vol. 7791. LNCS. Springer, Mar. 2013, pp. 82–101
(cited on pages 34, 118)

[SSM05] S. Sankaranarayanan, H. B. Sipma, and Z. Manna.
“Scalable Analysis of Linear Systems using Mathematical Programming.”
In: Verification, Model Checking, and Abstract Interpretation.
Ed. by R. Cousot. Vol. 3385. LNCS. Springer Berlin Heidelberg, Jan. 2005,
pp. 25–41. isbn: 978-3-540-24297-0. doi: 10.1007/978-3-540-30579-8_2
(cited on page 109)

[TA05] T. Terauchi and A. Aiken. “Secure Information Flow as a Safety Problem.”
In: Static Analysis Symposium. Ed. by C. Hankin and I. Siveroni. Vol. 3672.
LNCS. Springer, Sept. 2005, pp. 352–367 (cited on page 131)

178

http://dx.doi.org/10.1109/WCRE.2011.50
http://dx.doi.org/10.1007/978-3-319-03542-0_6
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1007/978-3-540-30579-8_2


Bibliography

[Tha+10] A. V. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder,
T. Andersen, and T. W. Reps.
“Directed Proof Generation for Machine Code.”
In: Computer Aided Verification. Springer, 2010, pp. 288–305.
doi: 10.1007/978-3-642-14295-6_27 (cited on page 4)

[Too95] Tool Interface Standards Commitee (TIS).
Executable and Linkable Format (ELF) v1.2. Tech. rep. 1995
(cited on page 135)

[VB04] A. Venet and G. Brat. “Precise and efficient static array bound checking for
large embedded C programs.”
In: Programming Language Design and Implementation. Vol. 39. 6. June 2004,
p. 231. isbn: 1-58113-807-5. doi: 10.1145/996893.996869
(cited on pages 52, 69, 154)

[Ven12] A. Venet.
“The Gauge Domain: Scalable Analysis of Linear Inequality Invariants.”
In: Computer Aided Verification. Vol. 7358.
Lecture Notes in Computer Science. 2012, pp. 139–154.
isbn: 978-3-642-31423-0 (cited on page 48)

[Ven96] A. Venet. “Abstract Cofibered Domains: Application to the Alias Analysis of
Untyped Programs.” In: Static Analysis Symposium. LNCS. Springer, 1996,
pp. 366–382 (cited on pages 30, 73, 96, 109, 112, 113)

[VHR12] J. Vanegue, S. Heelan, and R. Rolles. “SMT Solvers for Software Security.”
In: Workshop on Offensive Technologies. 2012 (cited on pages 147, 149)

[VL12] J. Vanegue and S. K. Lahiri.
“Modern static security checking of C / C++ programs.”
In: RECON: Reverse Engineering Conference. June 2012 (cited on page 147)

[Wag00] D. Wagner. “Static analysis and computer security: New techniques for
software assurance.”
PhD thesis. University of California at Berkeley, Dec. 2000
(cited on page 131)

[War03] H. S. J. Warren. Hacker’s Delight. 1st. Addison-Wesley, 2003.
isbn: 0-201-91465-4 (cited on pages 54, 55)

[WKC13] J. Wagner, V. Kuznetsov, and G. Candea.
“-OVERIFY: Optimizing Programs for Fast Verification.”
In: Workshop on Hot Topics in Operating Systems. May.
USENIX Association, 2013 (cited on page 149)

[WZ91] M. N. Wegman and F. K. Zadeck.
“Constant Propagation with Conditional Branches.” In: ACM Transactions on
Programming Languages and Systems 13.2 (Apr. 1991), pp. 181–210.
doi: 10.1145/103135.103136 (cited on pages 44, 53)

179

http://dx.doi.org/10.1007/978-3-642-14295-6_27
http://dx.doi.org/10.1145/996893.996869
http://dx.doi.org/10.1145/103135.103136

	Acknowledgements
	Abstract
	Zusammenfassung (German Abstract)
	Table of Contents
	I Static Analysis of Binary Code
	1 Introduction
	1.1 Necessity of Machine Code Analysis
	1.2 Challenges in the Analysis of Executables
	1.3 Our Goals
	1.4 Thesis Organization and Contributions

	2 Binary Analysis Framework
	2.1 Abstract Interpretation
	2.1.1 Programs as States and Transitions
	2.1.2 Abstraction Examples
	2.1.3 Definition of Program Semantics

	2.2 Preliminaries
	2.2.1 Programs as Control Flow Graphs
	2.2.2 Fixpoint Analysis on the CFG
	2.2.3 Acceleration and Termination using Widening
	2.2.4 Recovering from the Precision Loss of Widening

	2.3 Fixpoint Algorithm
	2.4 Intermediate Language (RREIL)
	2.4.1 Designing an Intermediate Language for Relational Analysis
	2.4.2 Translation of Comparisons
	2.4.3 Fields in Registers
	2.4.4 Making Side-Effects Explicit
	2.4.5 Reducing the Size of RREIL Programs
	2.4.6 A Formal Definition of RREIL
	2.4.7 Conclusion

	2.5 Hierarchy of Abstract Domains
	2.5.1 Segment Domains
	2.5.2 Memory Domains
	2.5.3 Finite Domains
	2.5.4 Zeno Domains

	2.6 Combining Abstract Domains
	2.6.1 Cartesian Products
	2.6.2 Reduced Products
	2.6.3 Partially Reduced Products
	2.6.4 Reduction in Cofibered Domains
	2.6.5 Domain Reduction using Channels
	2.6.6 Reduced Cardinal Power

	2.7 Interprocedural Analysis
	2.7.1 Call-String Approach
	2.7.2 Function Summaries

	2.8 Related Work


	II Precision Improvements through Novel Abstract Domains
	3 Widening as an Abstract Domain
	3.1 Introduction
	3.1.1 Rapid Convergence
	3.1.2 Abstract Domains for Widening

	3.2 Inferring Widening Points
	3.3 Delaying Widening after Constant Assignments
	3.3.1 Tracking Constant Assignments
	3.3.2 Syntactic vs. Semantic Constants
	3.3.3 Conclusion

	3.4 Widening with Thresholds
	3.4.1 Tracking Widening Thresholds
	3.4.2 Ensuring Termination
	3.4.3 Limitations of Narrowing
	3.4.4 Using Thresholds to Restrict Widening after Constant Assignments
	3.4.5 Conclusion

	3.5 Guided Static Analysis
	3.6 Experimental Results
	3.7 Related Work
	3.8 Conclusion

	4 The Predicate Abstract Domain
	4.1 Introduction
	4.2 Definition of the Domain
	4.3 Transfer Functions and Reductions
	4.3.1 Transfer Functions
	4.3.2 Example for the Reduction after Executing Assumptions
	4.3.3 Application to Non-Convex Spaces
	4.3.4 Symbolic Reasoning for Unbounded Spaces

	4.4 Lattice Operations and Predicate Synthesis
	4.4.1 Lattice Operations
	4.4.2 Application to Non-Convex Spaces
	4.4.3 Recovering Precision using Relational Information
	4.4.4 Application to Path-Sensitive Invariants
	4.4.5 Application to Separation of Loop Iterations

	4.5 Experimental Results
	4.6 Related Work
	4.7 Conclusion

	5 The Undefined Domain
	5.1 Introduction
	5.2 The Undefined Domain
	5.2.1 Definition of the Domain

	5.3 Practical Implementation of the Undefined Domain
	5.3.1 Definition of Partitions
	5.3.2 Making Partitions Compatible
	5.3.3 Rescuing Relational Information
	5.3.4 Transfer Functions

	5.4 Applications to Interprocedural Analysis
	5.5 Experimental Results
	5.6 Related Work
	5.7 Conclusion


	III Precision Improvements using Dynamic Analysis
	6 Dynamically Started Static Analysis
	6.1 Introduction
	6.2 Over-Approximating Static Analysis
	6.3 Trace Abstraction
	6.4 Reachability Analysis
	6.5 Combining Tracing and Analysis
	6.6 Experimental Results
	6.7 Related Work
	6.8 Conclusion


	IV Implementation – The Bindead Analyzer
	7 Implementation Details
	7.1 Front-ends
	7.1.1 Binary Format Parsers
	7.1.2 Disassembler Front-ends
	7.1.3 Assembler for RREIL

	7.2 Analyzer
	7.2.1 Fixpoint
	7.2.2 Warnings
	7.2.3 Primitive Operations
	7.2.4 Hooks for Procedures and Syscalls
	7.2.5 Interoperation with other Analyzers
	7.2.6 Parallelization of Analyses
	7.2.7 Tracing Programs for Dynamically Started Analyses

	7.3 Abstract Domains
	7.3.1 Domain Interfaces
	7.3.2 Data Structures
	7.3.3 Channels


	8 Visualizing Analysis Results

	V Applications and Conclusion
	9 Case Study: Sendmail Crackaddr Vulnerability
	9.1 Problem Statement
	9.2 Analysis

	10 Conclusion
	10.1 Contributions
	10.2 Future Work


	List of Figures
	List of Tables
	List of Code
	Bibliography

