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Abstract

The increasing functionality of mobile devices and operating systems often entails an incre-

ment in complexity and complicatedness. This problem takes on greater significance with the

opening towards new application areas (e.g., health and fitness) and new user groups (e.g.,

technically unversed people and the elderly). Interaction channels or modalities play here

a central role: The increasingly pervasive use (in the context of Ubiquitous Computing) re-

quires a stronger adaptation of these channels to changing usage contexts in order to ensure

optimal interaction.

This work investigates multimodality as an approach to leverage the user experience with

mobile devices. The use of multimodality is motivated by the numerous advantages identified

in prior work, such as naturalness, efficiency, robustness, and popularity with users. The

design space of multimodal interaction, as well as comprehensive support of multimodality

from scratch in the development process has not been investigated so far in a holistic way for

mobile devices.

The central research question of this dissertation is how to make multimodality usable to

achieve better mobile interaction. This includes ease of operation and usability in existing

scenarios, as well as opening up entirely new use cases.

The dissertation focuses on two aspects. First, an improvement from a user-centric point

of view shall be achieved (measurable by, e.g., efficiency, error rate, and usability metrics).

Therefore, the use of selected modalities and interaction methods is outlined in exemplary use

cases, leading to a profound understanding of multimodality and its advantages in heteroge-

neous application areas. Second, from a developer-centric point of view, the implementation

of multimodal interaction methods shall be simplified, thereby stronger motivating the con-

sideration of multimodality in application development. To this end, a rule-based model and

a software framework is presented, which supports multimodal in- and output and makes

it usable for application programming. Moreover, approaches for end users to define mul-

timodal behavior, as well as awareness on active modalities, are presented and evaluated.

Beyond that, the dissertation exposes suitable evaluation methods for multimodal systems

and points out characteristics of multimodal systems to be respected. The work thereby high-

lights and discusses all fundamental steps of the software development process, from design,

prototyping, implementation to evaluation, with regard to mobile multimodal interaction.
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Kurzfassung

Mit der zunehmenden Funktionsvielfalt mobiler Endgeräte und Betriebssysteme geht oft auch

eine Erschwerung der Bedienung einher. Dieses Problem gewinnt an Bedeutung durch die

Tatsache, dass fortwährend neue Anwendungsszenarien (z.B. der Gesundheits- und Fitness-

bereich) und neue Zielgruppen (z.B. Senioren und technisch weniger versierte Nutzer) für

mobile Interaktion erschlossen werden. Eine zentrale Rolle kommt hierbei den verschiedenen

Interaktionskanälen bzw. -modalitäten zu. Die zunehmend allgegenwärtige Nutzung (Stich-

wort “Ubiquitous Computing”) erfordert eine stärkere Adaption dieser Kanäle an wechselnde

Nutzungsgegebenheiten und Kontexte, um optimale Interaktion zu gewährleisten.

In dieser Arbeit wird Multimodalität als Lösungsansatz untersucht, um das Benutzungserleb-

nis auf mobilen Geräten zu verbessern. Der Einsatz von Multimodalität ist motiviert durch

zahlreiche Vorteile, die in vorangegangenen Arbeiten identifiziert wurden, z.B. Natürlichkeit

der Interaktion, Effizienz, Robustheit und Beliebtheit bei den Anwendern. Der “Design Space”

für multimodale Interaktion sowie eine umfassende Unterstützung von Multimodalität bereits

im Entwicklungsprozess wurde jedoch bisher noch nicht ganzheitlich für mobile Geräte be-

trachtet.

Die zentrale Forschungsfrage dieser Dissertation ist, wie Multimodalität so nutzbar gemacht

werden kann, dass eine bessere mobile Interaktion ermöglicht wird. Ziel dabei ist es, sowohl

den Komfort und die Benutzerfreundlichkeit in existierenden Szenarien zu verbessern als

auch völlig neue Szenarien und Anwendungsfelder zu erschließen.

Dabei setzt die Arbeit zwei Schwerpunkte: Zum ersten soll eine Verbesserung aus Anwen-

dersicht erreicht werden (messbar z.B. durch Effizienz, Fehlerrate, und Usability-Metriken).

Dazu wird der Einsatz ausgewählter Modalitäten und Interaktionsmethoden in exemplari-

schen Anwendungsbereichen aufgezeigt, was zu einem tiefergehenden Verständnis von Mul-

timodalität und ihrer Vorteile in heterogenen Gebieten führt. Zum zweiten soll aus Ent-

wicklersicht die Implementierung multimodaler Interaktionsmethoden vereinfacht und damit

das In-Betracht-Ziehen von Multimodalität bei der Anwendungsentwicklung stärker motiviert

werden. Hierzu wird ein regelbasiertes Modell sowie ein Software-Framework vorgestellt,

welches multimodale Ein- und Ausgabe unterstützt und für die Programmierung eigener An-

wendungen nutzbar macht. Des Weiteren werden Wege zur Festlegung multimodalen Verhal-

tens durch den Endanwender sowie des Bewusstseins über aktivierte Modalitäten vorgestellt

und evaluiert. Die Dissertation legt darüber hinaus geeignete Methoden zur Evaluation mul-

timodaler Systeme dar, und weist auf dabei zu beachtende Besonderheiten hin. Die Arbeit

diskutiert und beleuchtet damit alle wesentlichen Schritte im Software-Entwicklungsprozess

von Design, Prototyping, Implementierung bis Evaluierung im Hinblick auf mobile multimo-

dale Interaktion.
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Preface

This dissertation is based on approximately four years of research during my time as research

assistant at the Institute for Media Technology at Technische Universität München (TUM).

My work was situated in the Distributed Multimodal Information Processing Group (German:

VMI, Verteilte Multimodale Informationsverarbeitung), and, since March 2013, in collabora-

tion with the Embedded Interactive Systems Laboratory (EISLab) at the University of Passau.

The individual research was conducted in the course of different research projects, and, for

some parts, in collaboration with other research groups at different institutes, namely:

• Culture Lab, University of Newcastle

• Sprachraum, Ludwig-Maximilians Universität München (LMU)

• Carl-von-Linde-Akademie, Technische Universität München (TUM)

• Teaching and Learning in Higher Education, University of Göttingen

• Institute for Geoinformatics, University of Münster

• Auto-Id Labs, ETH Zürich

Parts of the research that contributed to Chapter 5 were funded by the space agency of the

German Aerospace Center with funds from the Federal Ministry of Economics and Technology

on the basis of a resolution of the German Bundestag under the reference 50NA1107.

Excerpts of this work have already been published on international peer-reviewed confer-

ences and workshops, and in international journals. The chapters of this dissertation are

partly based on these publications. They are referenced at the beginning of the respective

chapters. Furthermore, implementations and studies presented in this work have to some

extent appeared in student theses I have supervised.

As a sign of appreciation for the support by everyone who helped to shape this work, in

particular the co-authors of the above-mentioned publications, I will use the scientific plural

in this dissertation.

The language used in this dissertation aims at gender neutrality. Whenever speaking of users

or study participants in a generic sense, the pronouns she and he will be used alternately in

an inclusive sense, in order to express that both females and males are meant.

References to the employed statistical tests are given at their first occurrence in the disser-

tation. The used symbols are listed for reference in the “Notation” section. Non-scientific

references (e.g., web pages) will not be included in the bibliography at the end of the disser-

tation, but referred to in footnotes.
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Chapter 1

Introduction

1.1 Motivation

Smart mobile devices have become pervasive and an indispensable part of our lives. The
abundance of available mobile applications (apps) has transformed mobile phones to all-
purpose devices useful for the broad public, and the introduction of multi-touch interaction
has revolutionized the interaction with these devices. The introduction of the iPhone1 in 2007
is considered widely as a key trigger for this development. Smartphone and tablet devices
have become more and more powerful and feature-rich ever since, and there is no end in
sight for this development. However, an increment of options goes along with an increase of
complexity. How can the growing set of functionality be used efficiently, with few errors, and
to the users’ satisfaction? Multi-touch and direct manipulation have already simplified and at
the same time enriched the user experience, compared to formerly used menu navigation or
stylus-operated desktop analogies, which were not adapted to mobile conditions. Yet, there
is room for further improvement. In the manifold and fundamentally different use cases for
mobile interaction (some of which emerged just recently), touchscreen input is not always the
best option. Furthermore, the heterogeneity of users (from young to old, possibly impaired,
etc.) must be addressed.

One approach to leverage mobile interaction (besides evident measures such as the applica-
tion of usability rules [308], platform guidelines2, etc.), is using multimodality (see Section
2.1.1 for the definition). This approach will be investigated in depth in this dissertation. Mul-
timodal user interfaces can include, e.g., touch, motion gestures, speech, sound, alternately
or in parallel [255]. Multimodal interaction has proved to have many advantages (see Section
2.2.1), but was hitherto mostly researched and used in desktop computing. However, par-
ticularly state-of-the-art smartphones and tablets are predestined for the use of rich multiple
interaction modalities. With the multitude of built-in sensors, a vast design space of explicit
and implicit sensor-driven interaction methods is opened up.

Recently, novel modalities are beginning to be employed in the mobile area. For example,
users can scroll content with their eyes3 or shake the device to undo actions4. Such task-

1http://www.apple.com/iphone/, last accessed July 31, 2014
2iOS Human Interface Guidelines. https://developer.apple.com/library/ios/documentation/

userexperience/conceptual/MobileHIG/MobileHIG.pdf, accessed May 6, 2014
3Samsung Smart Scroll. http://www.samsung.com/us/support/SupportOwnersFAQPopup.do?

faq_id=FAQ00053081&fm_seq=62452, accessed April 14, 2014
4Apple, Undo and Redo. https://developer.apple.com/library/ios/documentation/

userexperience/conceptual/mobilehig/UndoRedo.html, accessed April 14, 2014

3

http://www.apple.com/iphone/
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/MobileHIG.pdf
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/MobileHIG.pdf
http://www.samsung.com/us/support/SupportOwnersFAQPopup.do?faq_id=FAQ00053081&fm_seq=62452
http://www.samsung.com/us/support/SupportOwnersFAQPopup.do?faq_id=FAQ00053081&fm_seq=62452
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/UndoRedo.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/UndoRedo.html
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specific interaction modalities are however rarely used, as we show in a user survey conducted
in this thesis (see Section 6.2.1). Furthermore, a survey of the 100 first-ranked Android ap-
plications in Google’s Play Store revealed that the employment of sensory interaction remains
sparse [92].

To this end, the underlying motivation of this work is to promote the use of multimodality
in mobile interaction, in order to achieve a better overall user experience. We argue that
multimodality can both improve interaction for existing use cases, and facilitate entirely new
use cases and applications. The dissertation’s contributions are twofold: making multimodal
interaction more usable (from a user’s perspective) and more accessible (from a developer’s
perspective).

In this work, we extend the term of multimodal interaction beyond the notion of modalities
as interaction channels. In our considerations, we also include sensor-driven interaction,
covering both explicit and implicit interaction [300]. Making use of sensors can capture
information actively (e.g., by moving or tilting the device, as we will show in Chapters 3 and
5) or passively (e.g., through implicit context information, as we will show in Chapters 4 and
5), in order to interact with the device and with the environment (or objects therein).

1.2 Research Questions

We formulate the following high-level research questions (HRQ) that shall delineate the scope
of this dissertation:

HRQ1 How can mobile interaction benefit from multimodality and sensor-driven inter-
action?

HRQ2 What are potential problems and challenges of multimodality and sensor-driven
interaction?

HRQ3 How can applications for particular use cases be improved through multimodal
interfaces?

HRQ4 How can users be better supported in making use of multiple modalities on their
devices?

HRQ5 How can the implementation of multimodal and sensor-driven applications and
interaction methods be better supported?

HRQ6 Which guidelines and lessons learned can be extracted for the design, implemen-
tation, and evaluation of multimodal and sensor-driven applications?

With the help of the above research questions, we approach our overall goal of leveraging mo-
bile multimodal interaction in three dimensions: the perspective, abstraction and interaction
dimension (visualized in Figure 1.1).

The perspective dimension represents two opposite points of view: the user’s and the devel-
oper’s perspective. On the one hand, we are interested in HCI-related aspects of multimodal
user interfaces (UIs), such as efficiency, effectiveness, and satisfaction (user perspective).
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On the other hand, we aim at supporting the development process (design, implementation,
evaluation) of multimodal interfaces on a tool layer (developer perspective).

The abstraction dimension describes the scope in which we investigate multimodal interac-
tion. We are interested in evaluating individual interaction methods or modalities in specific
application domains to gain a deep understanding of their particular benefits and specialties
for individual use cases (specific level). We though look also at general (system-wide) modal-
ity usage, investigate real-world use, and propose user interfaces to define and get noticed
about multimodal behavior (general level).

Finally, the interaction dimension implies that we consider both multimodal input methods
and interaction paradigms, as well as output modalities by which the system communicates
with the user.

developer

user

specific

general

input output

interaction

perspective

abstraction

Figure 1.1: Dimensions in which this thesis tackles the problem of usable multimodal interaction

The high-level research questions will be investigated in the individual chapters of the the-
sis. At the beginning of each chapter, the main problem statement and subordinate research
question that will be studied in this chapter is introduced. At the end of each chapter, we
summarize the answers to the formulated problems and discuss the lessons learned.

1.3 Main Contributions

This dissertation makes the following novel contributions in the field of mobile multimodal
interaction:

• We gain a deeper understanding of multimodality and its benefits in different applica-
tion areas. At the same time, we reveal novel ways how multimodal interfaces can be
used in these domains, and confirm their utility based on evaluations and user studies.

• By having chosen representative application areas, we show the design space of multi-
modal and sensor-driven interfaces in different social settings (private, semi-public and
public environments).

• We conceived and implemented a rule-based model for the realization of multimodal
behavior, supporting input as well as output, in everyday and specialized use cases.
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• We created a multimodality programming framework which is based on the above
model, supporting developers to implement multimodal interaction methods and re-
alizing system-wide multimodal behavior.

• We propose and evaluate user interfaces for defining multimodal behavior and for cre-
ating awareness on the multimodal state of a mobile device.

• We provide recommendations and strategies for evaluating multimodal systems based
on our research experiences.

Relation to the Software Development Life Cycle

While there exist plenty of software development process and lifecycle models (for a gener-
alized view [141] or for individual classes of systems, e.g., perceptive user interfaces [163]),
they can be abstracted to the most important phases analysis, design, implementation, and
evaluation (see Figure 1.2).

Analysis Design Implementation Evaluation

Figure 1.2: Archetypical model of the software development process. For multimodal systems, all parts
are covered by this dissertation.

The tools presented and findings gained in this dissertation address all of these phases for
multimodal and sensor-driven interaction. We demonstrate the utilization of various methods
for the analysis (or planning/requirements elicitation) phase, like focus groups or large-scale
questionnaires. We extensively report on the design (or conception/prototyping) phase of
multimodal systems, often involving multiple stages. We thereby underline the iterative char-
acter of software and systems development. The implementation phase is not only addressed
by the description of various individual systems, but also by the formalization through the
above-mentioned multimodality programming framework. Finally, covering the evaluation
phase, our findings are substantiated by user studies (laboratory experiments and real-world
studies, short task assignments and long-term evaluations).

1.4 Thesis Outline

Figure 1.3 gives a graphical overview of the relationships between the chapters of this work.
The dissertation is structured as follows.

In Chapter 1 (the present chapter), we motivate the topic of the dissertation and introduce
the high-level research questions we will answer in the course of the thesis. We also briefly
list the main contributions this thesis makes.

Chapter 2 provides the necessary background for this work. This includes, in the first place,
the introduction and definition of basic terms that will be important in the remainder of
the thesis. Furthermore, this chapter serves for situating this dissertation in the body of
related work. We report on the state of the art in the areas that are related to this work: the
sensors and actuators available in mobile devices (which lay the ground for multimodal input
and output), the present tool support for modeling and implementing multimodal systems,
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Figure 1.3: Visual structure of the dissertation. This diagram shows on a high level what will be subject
of the individual chapters of this work, and how the parts are interconnected.

and the candidates for evaluation methods available and applicable for multimodal systems.
Furthermore, we report on current systems in the different application domains that will be
described in Chapters 3–5. That way, the reader will gain an overview on how problems in
the individual application areas are addressed as of now, before we introduce our proposed
approaches in the respective following chapters. The background chapter is organized such
that its subsections accumulate the related work for all following sections in the thesis.

In the following three chapters (3, 4, and 5), we delve in depth into three distinct application
domains (health & fitness, university & education, and indoor navigation). We chose them
as representative areas of research, each of them currently being in the focus of public or sci-
entific interest, so that they illustrate the design space of potential use cases for multimodal
interaction. For each domain, we present work that comprises novel multimodal and sensor-
driven user interfaces, addressing the particular requirements of this area. The presented
approaches are at the same time representative examples of multimodal interaction in three
different scopes (public, semi-public and private space). The approaches introduced in this
thesis involve various sensors, on top of which different interaction methods and paradigms
are implemented. We exemplify the applicability and benefits of multimodal interaction for
these domains, as we have evaluated all approaches in online, laboratory, or real-world stud-
ies. At the end of each of these chapters, we distill the lessons learned and recapitulate the
most important points with regard to the research questions formulated at the beginning of
the chapter.

After having studied multimodality in individual application domains, a generalization and
abstraction follows in the two consecutive chapters (6 and 7). They deal with two important
steps in the development process of multimodal systems: design and evaluation. Chapter 6
(design) first analyzes problems with current multimodal systems, both from a developer’s
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and an end user’s perspective, and offers solutions for each of them. On the developer side,
a programming framework is introduced, simplifying the integration of different input and
output modalities. We validate the utility of the framework and discuss how the implemen-
tations presented in Chapters 3, 4 and 5 could be eased and extended with it. On the end
user side, we propose and evaluate user interfaces for defining and modifying multimodal
behavior, and for creating awareness on modality switches.

Chapter 7 is dedicated to the evaluation process. We first discuss to what extent evaluation
of multimodal systems differs from conventional systems and portray selected evaluation
techniques that have proven useful in the course of our research, which are Wizard of Oz
(WOz), Logging and Self-Reporting. We report on our experiences with these techniques and
delve deeper into two particular important questions by dedicated user studies: the accuracy
of self-reporting in long-term studies, and the usage of app stores for large-scale deployment
of research applications.

In Chapter 8, we conclude the dissertation by assembling the contributions of the individual
chapters, referring to the initial high-level research questions. We also spot aspects that are
beyond the scope of our work and were not treated in this thesis, and outline directions for
future work.



Chapter 2

Background and Related Work

2.1 Foundations

As we investigate multimodal and sensor-driven user interfaces in this dissertation, we need
to introduce in the first place the necessary terms and the background.

2.1.1 Terms and Definitions

We begin with giving definitions for the most important terms we will use in the remainder
of this dissertation, including multimodality and multimodal user interfaces.

The term modality has different notions depending on the (psychological, medical, linguistic,
etc.) perspective. In a very common sense, it denotes “the type of communication channel
used to convey or acquire information” according to Nigay and Coutaz [246].

For our research in the context of human-computer interaction (HCI), two notions are espe-
cially important. They are related to input and output in the communication between humans
and technological devices. First, modality can refer to the sense through which a user per-
ceives the output of a system. These are the human senses vision, audition, touch, taste and
smell (and further proprioception, thermoception, nociception and equilibrioception). Sec-
ond, it can refer to the channel through which a system receives input from a user. Here
technological input methods or input devices are meant. As Jaimes et al. [143] note, some
of them correspond to human senses (e.g., a camera to the sense of sight, a microphone to
the sense of hearing, a touch sensor to the sense of touch), but for others no direct mapping
is possible (e.g., touchscreen, keyboard, hardware button, mouse, motion gestures). In this
work, we subsume both meanings in the term modality and use the following definition:

Definition 1 (Modality) Modality denotes a communication channel (in the sense of a human
sense or an interaction method) between the user and a technological device.

Similarly, there exist different definitions for multimodal systems. According to Bourget
[33], “multimodal interaction refers to interaction with the virtual and physical environment
through natural modes of communication such as speech, body gestures, handwriting, graph-
ics or gaze.” This definition inherently comprises the goal that multimodality shall make
interaction natural, and thus user-friendly. Lew et al. [186] are less constrictive, saying that
a multimodal HCI system is “one that responds to inputs in more than one modality or com-
munication channel”. They, however, disregard output modalities in their definition.

9
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Coutaz [62] (extended in [246]) classifies multimodal systems along the dimensions fusion
and time. In terms of fusion, multimodal systems can be independent (alternative modalities
can be chosen to accomplish a task) or combined (multiple modalities are needed to accom-
plish a task). In the temporal dimension, systems can be sequential (multiple modalities are
used one after another) or parallel (multiple modalities are used concurrently or synergisti-
cally). Refer to Section 2.1.3 for an (exemplary, yet not complete) overview of multimodal
user interfaces.

For our research, we formulate the following comprehensive definition of multimodal inter-
action, where the term modality is meant to be understood in both notions of Definition 1
(human sense and interaction method).

Definition 2 (Multimodal Interaction) Multimodal interaction denotes interaction with a sys-
tem involving more than one modality for input, output, or both. The modalities can be used
independently or combined, in parallel or sequentially.

Especially in mobile devices, input and output modalities are implemented through or di-
rected by sensors. This explicitly includes hardware sensors measuring a physical quantity
and “virtual” software sensors, which, e.g., determine location or certain contextual data.
(An overview of sensors integrated in state-of-the-art smartphones is given in Section 2.1.2.)
Let us therefore introduce the term of sensor-driven interaction.

Definition 3 (Sensor-Driven Interaction) Sensor-driven interaction denotes the communica-
tion with a system initiated or mediated by information acquired from sensors.

The relationship between multimodal interaction and sensor-driven interaction is as follows.
An input modality can be entirely covered by one sensor (e.g., by the camera for the visual
modality), but it is also possible that fused information of several sensors at a time forms one
new modality (in the sense of an interaction technique or paradigm [121]). For example, a
motion gesture could be detected by fused accelerometer and magnetometer readings.

Sensor-driven interaction is situated on a continuum between explicit and implicit interaction.
An example for explicit interaction is motion input, such as shaking the device. Implicit
interaction denotes the situation where an action is performed based on context information
that is not directly influenced by the user, such as location or ambient light level. An interface
that adapts to the user’s walking speed would be an example lying in between. In that case,
the user performs an action (walking) that has a consequence on the user interface, but does
not explicitly interact with the device. Such behavior is extensively described in the context
ambient intelligence or proactive computing (see, e.g., [291] for a review).

Output modalities can likewise be sensor-driven, e.g., in a way that contextual cues determine
information presentation. For example, the device could switch between visual and auditive
notifications depending on the ambient noise level. In this case, implicit information often
plays an important role, too.

To best describe the focus of our research, we want to coin a term for a user interface that 1)
is multimodal in the above described sense and 2) additionally includes the following aspects
that are not implied in existing definitions of multimodality:

• that multimodality is (partly or entirely) facilitated by device-internal sensors, i.e., that
data from these sensors are used to implement the modalities
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• that modalities are understood as (sensor-driven) interaction techniques

• that the user interaction can be (partly) implicit, or that the explicit user interface is
influenced by implicit information.

We call this new class of interface a MUSED (MUltimodal and SEnsor-Driven) user interface
and define it as follows:

Definition 4 (MUSED User Interface) A MUSED user interface allows the user to communi-
cate with a system by multimodal and/or sensor-driven interaction in the sense of Definition 2
and Definition 3.

The abbreviations MUSED user interface or MUSED interaction will be used in the remainder
of this thesis when one of the above listed aspects shall be emphasized, or when we clarify
that the described interface goes beyond the traditional notion of multimodal interaction.

2.1.2 Sensors and Actuators in Mobile Devices

In order to help define a design space for MUSED interaction, we give an overview of sensors
and actuators that are available in current smartphones5. In this overview, we include tech-
nologies and standards that are currently prevalent in commercial devices and/or supported
by mobile operating systems6,7,8. We also consider selected technologies still being in the
research phase, but do not list sensors or standards that are mostly used in other domains
(e.g., home automation).

Sensors

Sensors are, as outlined in the previous section, the basis for the implementation of mo-
bile device input modalities. Lara and Labrador [176] distinguish four attributes that can
be sensed in the context of activity recognition with wearable sensors: environmental at-
tributes, acceleration, location, and physiological signals. For smartphone sensing, we adapt
their classification slightly and distinguish the following five categories: contact sensors, mo-
tion sensors, environmental sensors, position sensors, and radio communication. Besides an
overview both on hardware sensors (that measure a physical quantity, such as acceleration),
we also address virtual sensors (that return contextual data provided by an aggregation of
hardware sensors or by other information sources).

Contact Sensors

Contact sensors measure a physical contact of the user’s hand, finger, or other body parts with
the device, which is the case for, e.g., touchscreen interaction or the fingerprint sensor.

5This information refers to the state of the art in 2014, when this dissertation was written.
6http://developer.android.com/guide/topics/sensors/sensors_overview.html,

accessed February 21, 2014
7http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202968(v=vs.

105).aspx, accessed May 8, 2014
8https://developer.apple.com/technologies/ios/features.html, accessed July 31, 2014

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202968(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202968(v=vs.105).aspx
https://developer.apple.com/technologies/ios/features.html
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• Touchscreen: Being a combined in- and output interface, the touchscreen is usually the
prevalent way for interacting with a smartphone. Today’s smartphones usually employ
capacitive touchscreens, while older devices used resistive touchscreens (working via
pressure).

• Fingerprint Sensor: Recently, some manufacturers have started to include a fingerprint
sensor that not only allows unlocking the phone without entering a passcode, but also
offers shortcut actions like confirming app store purchases (e.g., Apple iPhone 5s) or
launching predefined apps with different fingers (e.g., HTC One Max, Samsung Galaxy
S5). Depending on the sensor type, a fingerprint is read by touching (Apple) or swiping
the finger over the sensor (HTC, Samsung). If the sensor is made accessible to de-
velopers via according APIs (Application Programming Interfaces), one could imagine
manifold use cases beyond authentication.

• Physical Controls: Many devices have mechanical buttons or switches for turning the
device on and off, controlling the volume, muting and un-muting the device, or per-
forming shortcut actions (e.g., starting applications or returning to the home screen).
Through the provided haptic feedback, they can be operated without looking at the
screen.

Motion Sensors

Most of today’s mobile phones have motion or inertial sensors. While a basic use case for mo-
tion sensors is detecting the rotation between portrait and landscape mode and accordingly
adapting the screen orientation, these sensors support a wide range of interactions based on
device motion, including activity recognition [176]. The combination of accelerometer and
gyroscope often is referred to as inertial measurement unit (IMU).

• Accelerometer: This sensor measures the linear acceleration force that is applied on
the device in three dimensions. Therefore, devices usually have a 3-axis accelerometer.
The unit of these sensor readings is meters/second2. The acceleration forces can be used
to detect motion of the device, such as shaking, tilting, etc. This also includes the force
of gravity. APIs can provide a “software” gravity sensor (e.g., in Android) that explicitly
provides the force of gravity. The translational motion can be calculated by double
integration.

• Gyroscope: This sensor measures the Coriolis force due to the rate of rotation (angular
velocity) around the x, y and z axes. The unit of these sensor readings is rad/s. The
rotational speed can be calculated by integration. These forces can be used to detect
rotation of the device, such as spinning or turning.

Environmental Sensors

In this category we list sensors that provide information about the physical environment.

• RGB Camera: As a mobile device’s “eye to the world”, the camera is one of the most
important environmental sensors (and probably the most important sensor besides net-
working/radio communication). This can be said in light of the fact that the camera is
incrementally used for more purposes than just taking photos. As one example, in Chap-
ter 5, we use the camera as a basis for (visual) indoor localization. Two major camera
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principles are currently employed: Images are captured by a CCD (charge-coupled de-
vice) or CMOS sensor (active pixel sensor produced by a complementary metal-oxide
semiconductor) containing an array of pixels. Many smartphones meanwhile have a
front and a back facing camera, or even two back cameras to record stereo images or
to allow re-focusing recorded images. Another way to acquire three-dimensional in-
formation are plenoptic cameras such as demonstrated by Lytro [112] or by Pelican
Imaging [331]. Using an array of microlenses, directional information of the inciding
rays of light (light field) can be captured. Such devices are expected to be included in
smartphones in 20149, which will likely leverage computer vision and 3D reconstruction
applications.

• Infrared Camera: Infrared or thermal imaging cameras can sense infrared radiation
and became widely popular with the Microsoft Kinect10, enabling 3D perception (in
combination with an infrared projector) in a consumer price range. Google presented
the integration of an infrared-based depth sensor in a smartphone in Project Tango11,
allowing three-dimensional perception of the environment. This could enable a plethora
of novel applications and interaction possibilities, from gaming to indoor navigation. In
a prototype by metaio12, a thermal imaging camera visualizes the slight temperature
difference of a spot on a surface that has just been touched. The system combining
an infrared camera with AR (Augmented Reality) projection can thereby render any
surface to a touchscreen.

• Light sensor (Photometer): A photodiode measures the level of ambient light in lux.
It is often used to auto-adjust the brightness of the screen, but can also be the basis for
inferring other context information (e.g., activity).

• Proximity Sensor: This sensor detects when the device is close to another object. Often,
the proximity sensor is used to switch off the screen when the user brings the smart-
phone in proximity of the ear. While the light sensor in combination with a threshold
can be used as proximity sensor (illumination beyond a certain threshold will be inter-
preted as an object close to the sensor), it can also be realized using an infrared LED
(light-emitting diode) and a photodiode that measures the level of reflection of infrared
light [213]. Proximity can also be used for “pre-touch” interaction with the screen. Us-
ing a particularly sensitive capacitive touch screen, the device can distinguish whether
a finger is closely above the display or actually touching it, which is called “Floating
Touch” (Sony) or “AirView” (Samsung).

• Magnetometer: The magnetic field sensor measures magnetic fields in the unit tesla. By
using a rotation matrix, the orientation of the device can be calculated, which realizes
a compass.

• Microphone: The microphone records sound by transforming acoustic pressure in the
air to electric signals. It can not only serve to realize a dedicated input modality (speech
input), but can also sense the ambient sound level, which serves, e.g., for adapting

9http://www.engadget.com/2013/05/02/pelican-imaging-array-camera-coming-2014/,
accessed May 30, 2014

10http://www.microsoft.com/en-us/kinectforwindows/, accessed May 30, 2014
11http://www.google.com/atap/projecttango/, accessed February 21, 2014
12http://www.metaio.de/press/press-release/2014/thermal-touch/, accessed May 30, 2014

http://www.engadget.com/2013/05/02/pelican-imaging-array-camera-coming-2014/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.google.com/atap/projecttango/
http://www.metaio.de/press/press-release/2014/thermal-touch/
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output volume or modalities. Modern smartphones often have multiple microphones
for improved filtering of environmental noise.

• Barometer: This sensor measures the air pressure in bar, which can also be used as the
basis for calculating the elevation. A common use case is to measure altitude differences
to detect floor levels. One of the first devices to be equipped with a barometer was the
Samsung Galaxy Nexus.

• Thermometer: Some smartphones (e.g., the Samsung Galaxy S4) have a dedicated
sensor to measure the ambient temperature. Many other devices have a built-in tem-
perature sensor as well, but their purpose is to measure the temperature inside the
device to protect hardware from overheating. However, apps like Temp Now13 calibrate
the thermometer with at least two reference temperature values so that the app can
estimate the ambient temperature based on the internal thermometer readings.

• Hygrometer: This is a humidity sensor measuring the relative ambient humidity, built-
in, e.g., to the Samsung Galaxy S4.

• UV Sensor: This sensor measures the ultraviolet (UV) radiation of the sunlight and
is, e.g., included in the Samsung Galaxy Note 4 and the Samsung Gear S smartwatch.
Samsung’s S Health app provides precautions based on the measured UV level.

• Laser Scanner: Laser light is already used in commercial devices for measuring the dis-
tance to objects, which allows quicker autofocus when taking a photo14. In near future,
laser scanners will be miniaturized and integrated in smartphones, so that phones can
create a highly accurate 3D model of the environment using LIDAR (LIght Detection
And Ranging)15.

Radio Communication

Smartphones support a range of wireless communication standards which work using radio
communication. We list the most important ones here, as they allow receiving information
from the environment and can thus be considered as sensors (of radio waves) as well.

• GNSS: Global Navigation Satellite Systems (GNSS) receivers return the device’s lat-
itude and longitude with relation to a navigation satellite system, such as the US-
American Global Positioning System (GPS), the Russian GLONASS (engl. translation:
Global Satellite Navigation System), the Chinese BeiDou, or the European Galileo sys-
tem. Using radio communication with GNSS satellites and trilateration, the position
can be determined with few meters accuracy.

• Mobile Telephony: The most important standards for mobile communication are GSM
(Groupe Spécial Mobile, later the acronym was changed to Global System for Mobile
Communications), also referred to as 2G (second generation), UMTS (Universal Mobile
Telecommunications System, 3G), and LTE (Long-Term Evolution, 4G). The packed-
oriented data transmission standards in GSM are GPRS (General Packet Radio Service)
and, with increased data rate, EDGE (Enhanced Data Rates for GSM Evolution). The

13http://www.imore.com/tag/temp-now, accessed May 6, 2014
14http://www.lg.com/de/handy/lg-G3, accessed May 30, 2014
15https://www.kickstarter.com/projects/ikegps/spike-laser-accurate-measurement-

and-modelling-on, accessed May 30, 2014

http://www.imore.com/tag/temp-now
http://www.lg.com/de/handy/lg-G3
https://www.kickstarter.com/projects/ikegps/spike-laser-accurate-measurement-and-modelling-on
https://www.kickstarter.com/projects/ikegps/spike-laser-accurate-measurement-and-modelling-on
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data transmission speed in UMTS was enhanced by HSPA+ (High Speed Packet Ac-
cess) [295]. This development coincides with the permanent need for more bandwidth
through novel applications, such as, e.g., mobile video and audio streaming. However,
the amount of data in recent technologies is growing faster than the available band-
width (consider, e.g., state-of-the-art devices that have “Full HD” resolution displays
and the according desire to watch “Full HD” content on these devices on the go). This
is opposed to the fact that in 2014, 4G and even 3G coverage is by far not given ev-
erywhere (especially not in rural areas). Efficient bandwidth usage is therefore still
important to consider in mobile application development.

• WLAN: Using Wireless LAN (Local Area Network), an IEEE standard (802.11), a mo-
bile device can connect with wireless access points (infrastructure mode), as well as
establish ad-hoc connections with other devices.

• Bluetooth: It is likewise an IEEE standard (802.15.1) for wireless short-range data
exchange. Bluetooth profiles specify interfaces for different use cases, such as file trans-
mission, internet connection sharing, or hands-free phone calls. With the introduction
of the Bluetooth Low Energy (BLE) protocol stack16, the power consumption can be
significantly reduced.

• DECT: We list this standard for cordless home phones (Digital Enhanced Cordless
Telecommunication) only for reasons of completeness as there are a few hybrid (An-
droid) smartphones that support DECT as well. Besides telephony, DECT has been
used, e.g., for localization [164].

• RFID, NFC: The RFID (Radio Frequency IDentification) system was created to identify
objects and is suited for short-distance communication. Especially the NFC standard
(Near Field Communication), which is based on RFID, is an established standard which
is built into many smartphones and can be used, e.g., for mobile payment17.

• Infrared: Widely used in the 1990s and early 2000s to exchange data between mobile
phones or between handset and PC, infrared has become less important, being replaced
by the significantly faster WLAN and Bluetooth. As of 2014, some devices begin to
reintroduce infrared ports (e.g., the HTC One), supporting, e.g., remote control apps
for consumer electronics. Infrared is also used to detect hand gestures (e.g., in the
Samsung Galaxy S5) by the reflections of infrared rays from the user’s palm.

• ZigBee: Personal area networks (PAN, as opposed to LAN) aim at short-range connec-
tions of wireless sensors, smart objects or devices in the home automation domain. One
standard (IEEE 802.15.4) is ZigBee18, which is planned to be included in Samsung and
HTC smartphones.

• ANT: The ANT and ANT+ short-range standards have a higher data rate than ZigBee
and are power-efficient at the same time. They are especially used to communicate
with sensors from the health and fitness domain (e.g., heart rate or cadence sensors,

16marketed as Bluetooth Smart, http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx,
accessed February 24, 2014

17e.g., Mastercard Paypass, https://www.paypass.com/, accessed February 24, 2014, or FeliCa, a de-facto
standard in Japan, http://www.sony.net/Products/felica/, accessed February 24, 2014

18http://www.zigbee.org, accessed February 24, 2014

http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
https://www.paypass.com/
http://www.sony.net/Products/felica/
http://www.zigbee.org


16 Chapter 2 Background and Related Work

blood pressure monitors, etc.), but also for home monitoring and automation. Several
Android-based smartphones and tablets (e.g., Samsung Galaxy S4, Galaxy Note 10.1,
Sony Xperia series) are equipped with built-in ANT+ communication.

Virtual Sensors

Under the term virtual sensors or software sensors, we understand data sources that provide
context information or information on the environment including the user, although they
are no real physical sensors. Often, they are accessible via APIs just like real sensors. An
example is Android’s orientation sensor19, returning the x, y, and z orientation of the de-
vice in space. Although this sensor is accessible just as other hardware sensors by Android’s
SensorManager, its data is actually derived from the accelerometer and the magnetometer.

Similarly, the ability to determine the location can be regarded as a “location sensor”, al-
though various hardware sensors and technologies can be used for that purpose (e.g., the
GPS receiver for satellite-based localization, WLAN for access point triangulation and finger-
printing, or the camera for vision-based localization). A more extensive discussion about
determining the location is provided in Section 2.2.4.

Actuators

Actuators can be used as a basis for output modalities, i.e., to communicate information to
the user.

• Screen: As humans perceive about 80 percent of their environment by the sense of
sight20, the screen as visual output modality can be seen as the primary output device.

• Projector: Pico projectors likewise use the visual output channel, but extend the avail-
able display real estate as well as the social scope (a larger circle of users can partici-
pate) [114]. Smartphones with integrated pico projectors are commercially available,
e.g., the Samsung Galaxy Beam21.

• LED(s): A singular LED, as available on many smartphones, can communicate infor-
mation to the user, e.g., notify on incoming messages or missed calls without turning
on the screen or making a sound. Some devices have multi-color LEDs, so that blink-
ing patterns as well as color coding can be used to transport individual information. A
characteristic aspect is that only the user knows the “matching” for which type of infor-
mation a certain color or blinking pattern stands. Such a visualization is peripheral and
privacy-preserving, similar to ambient user interfaces like the Ambient Orb22.

• Vibration Motor: The usage of the haptic modality, enabled by the vibration motor,
allows unobtrusive notifications without producing a sound or turning on the screen.

19http://developer.android.com/guide/topics/sensors/sensors_position.html,
accessed May 6, 2014

20http://www.brainline.org/content/2008/11/vision-our-dominant-sense_pageall.
html, accessed February 25, 2014

21http://www.dlp.com/pico-projector/phone-projector/default.aspx,
accessed May 30, 2014

22http://postscapes.com/ambient-orb, presented in 1992 by Ambient Devices, Inc.,
http://www.ambientdevices.com, accessed February 25, 2014

http://developer.android.com/guide/topics/sensors/sensors_position.html
http://www.brainline.org/content/2008/11/vision-our-dominant-sense_pageall.html
http://www.brainline.org/content/2008/11/vision-our-dominant-sense_pageall.html
http://www.dlp.com/pico-projector/phone-projector/default.aspx
http://postscapes.com/ambient-orb
http://www.ambientdevices.com
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Some mobile operating systems (e.g., Apple iOS) have the built-in possibility to define
custom vibration patterns that can be assigned to different events.

• Loudspeaker: The loudspeaker uses the auditory modality to communicate via sound
with the user.

• Bone Conduction: This technique transmits audible content to the inner ear through
the bones of the skull. While Fukumoto [107] proposed to use the finger as transmission
route to the ear, commercial solutions usually require a special headset. Bone conduc-
tion is, e.g., employed in Google Glass23 and can also prove useful for hearing-impaired
persons.

2.1.3 Mobile Multimodality

Input and Output Modalities on Mobile Devices

Modalities Involving One Sensor or Actuator

After we have given an overview of sensors and actuators available in state-of-the-art devices,
let us look at some examples for input and output modalities in mobile user interfaces. Some
of them can be considered as “common sense”, some have been presented in a research
context. In the latter case, we provide a reference to the respective publication. The following
input modalities can be listed:

• Touch, performed on the device’s touchscreen, to manipulate user interface elements
(buttons, checkboxes, selections), or to type on a virtual keyboard

• Motion gestures, performed on the device’s touchscreen (single- or multi-touch)

• Device gestures, performed with the device in space, such as shaking, tilting, or moving
to a certain direction [165]. Device gestures are also referred to as extra-gestures, while
motion gestures are called intra-gestures [339].

• Hand gestures, performed in front of the screen and detected by the Infrared sensor
(e.g., in the Samsung Galaxy S5)

• Operation of hardware buttons and switches, e.g., to control the volume, take a photo,
or enter text. Common hardware controls are volume buttons, mute switches, hardware
keyboards, navigation keys, quick access keys, and trackballs.

• Pen input on the touchscreen, allowing handwriting, drawing, sometimes with Blue-
tooth connection for additional features like pressure sensitivity24

• Speech, for text input (dictation) or execution of commands by digital “personal assis-
tants” (Siri, Google Now, Microsoft Cortana, Samsung S Voice, and similar)

• Physiological input, such as heart rate (e.g., in the Samsung Galaxy S5 or in smart-
watches like the Samsung Galaxy Gear 2), brain interfaces [42], or skin input [118, 341]

23http://www.google.com/glass/start/, accessed May 30, 2014
24http://www.adonit.net/jot/touch/, accessed May 8, 2014

http://www.google.com/glass/start/
http://www.adonit.net/jot/touch/
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• Implicit and context-based input, such as location, time, weather, social setting, etc.

On output side, there exist the following modalities:

• Screen, as the primary modality using the visual channel

• Notification lights, variable in color and blinking pattern

• Sound, for audio cues (e.g., as feedback on performed action like a typing sound or a
confirmative sound when a message was sent), as well as for music and speech output
(e.g., consuming text using a text-to-speech engine)

• Haptic feedback [196], provided by the vibration motor

Modalities Involving Multiple Sensors or Actuators

Research has demonstrated in various ways how novel interaction modalities can be created
from the combination of multiple sensors or actuators. We here only describe a few of them
exemplarily. One of the first descriptions of multimodal task completion, although at that time
not yet for mobile interaction, is the “Put that there” approach by Bolt [29]. The user gives
a speech command and uses a gesture to select an object the command should be applied to.
Wasinger et al. [339] showed a shopping assistant system transferring this to mobile systems.
In a store, users can, e.g., point at an object and ask “How much does this cost?”.

Touch Projector [30] is an interaction technique using both motion and device gestures. By
pointing at an external display with a smartphone, the user can project touch interaction
performed on the mobile device onto the distant screen. That way, the user can modify
content on an (otherwise unreachable) wall projection, laptop, or public display, as if she had
directly interacted with the distant screen.

With Sensor Synaesthesia [129], touch and motion are combined within a device in two ways.
Touch-enhanced motion enables interaction techniques like “tilt to zoom”, where the user
touches the display and then tilts the device to zoom. On the other hand, motion-enhanced
touch can detect the tap intensity of touch input by incorporating the accelerometer.

Harrison and Hudson [117] presented Scratch Input, an acoustic-based input method that
detects gestures on various surfaces by the unique sound of scratching.

How to Choose Modalities?

Having shortly presented the design space for multimodal interaction, the next obvious, but
non-trivial question is now to choose the right modalities for a certain situation or use case.
Criteria for modality selection are related to their individual properties, as suggested by
Ratzka [270, 271], based on Bernsen [24]. These criteria, which we will detail in the fol-
lowing, are: required interaction channels, salience, local selectivity, control, learning require-
ments, and expressiveness [270]. A first clue is that the information to be transported often is
already associated with a certain channel (e.g., an illustration can only be perceived by the
visual channel, while text can be perceived visually or acoustically). Another factor is salience
[347]: For example, information on the auditive channel attracts attention more effectively
than the visual channel. This effect is related to the local selectivity property: In order to
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perceive a visual notification, attention needs to be more directed than for an aural notifica-
tion. In the visual domain itself, there are saliency effects [136] and the user’s attention is
directed, e.g., by Gestalt principles [46]. The desired amount of control affects the choice of
a modality as well. The user can control reading speed for written text, whereas for speech
output, the pace is determined by the system. Novel speed reading output methods such as
Spritz25 stream text and help to control eye saccades by highlighting the “optimal recognition
point” of words. Such techniques reduce the level of control also for the visual modality.
Furthermore, the learning requirements may vary for modalities. A modality may be easier to
use if it is based on familiar concepts or real-world metaphors. Take for example the “pinch
to zoom” gesture introduced with the iPhone: This gesture gives the user the impression to
physically stretch an object to enlarge it, which was perceived as highly intuitive. As a com-
parison, the manipulation of three-dimensional objects in desktop modeling software with
traditional input devices (keyboard, mouse) does not feel natural and requires training for
most people. Finally, expressiveness is mentioned as criterion of how well a modality (or a
combination thereof) communicates the information to be transported [24, 271].

Instead of looking at modality properties, Reeves et al. [274] proposed a set of goal-oriented
guidelines when choosing the modalities for a system.

• The interface should be flexible enough to support the broadest range of users and
contexts possible. This refers to the choice of alternative modalities. Users then can
select the most appropriate mode of interaction depending on the situation (e.g., speech
input when the hands are involved in another task, and touch input when ambient noise
is high).

• Multimodal systems should be adaptive with relation to context, users and application
needs. Such adaption could happen proactively or based on previously defined rules, as
we will present in our multimodal interaction framework presented in Section 6.3.

• The general capabilities of users, as well as individual needs and preferences (such as
disabilities), should be respected. This aspect relates especially to the combination of
multiple channels to process information, which affects the efficiency of perception.
Taking care of personal preferences may also lead to positive emotions when using the
system, which contributes to a better user experience, according to Norman’s findings
on emotion and design [249].

• The multimodality of a system should contribute to error prevention on different levels.
Concurrent modalities can increase the robustness, when, e.g., an overheard notifica-
tion is additionally displayed visually. Further, the choice of modalities can reduce er-
rors, as users may choose the most familiar, comfortable or reliable modality depending
on the individual context.

• Privacy and security issues should be considered as well when choosing modalities.
Security can be affected, e.g., by overhearing or shoulder-surfing. As an example, the
use of speech input in public spaces could expose privacy-sensitive information and thus
be undesired.

Lemmelä et al. [184] chose the approach to investigate the aural, visual, physical, cognitive
and social load in different situations. Based on field observations, they identified suitable

25http://www.spritzinc.com/the-science/, accessed March 14, 2014

http://www.spritzinc.com/the-science/
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(a) Input constraints
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(b) Output constraints

Figure 2.1: Constraints for input and output modalities (exemplary for speech and typing input, and
speech and visual text output) based on contextual and user-specific factors. The crossed
out sections mark conflicting usability goals. Own visualization based on [270].

contexts for selected output modalities. Ratzka [270] suggests that the choice of modalities
should be informed by the concrete tasks an application is used for, which can be understood
as a concretization of universal guidelines as above. Ratzka further argues that input and
output modalities underlie various constraints, which Figure 2.1 visualizes in an exemplary
manner [270]. The matrices show possible combinations of modalities in different situations,
where inappropriate combinations are crossed out. The designer can use the matrices, ac-
cording to Ratzka, to check “whether for each individual candidate modality the factors listed
in the columns outweigh the factors listed in the rows and contrast these results for each
interaction modality” [270]. This method, however, does not provide recommendations how
to combine modalities.

Besides the already discussed approaches of applying guidelines and principles [24, 184] and
analyzing the task [270], user interface patterns are a further way to find appropriate and
efficient combinations of modalities [270, 271]. Design patterns are an established technique
often used in software engineering, and have the advantage of being proved in practice as
they have successfully been applied in prior work [270].

In our work, we conducted a comprehensive survey on the usage of both input and output
modalities. We report on the results in Section 6.2.1. Since our findings outline the het-
erogeneity of users and of their modality preferences, we argue for a solution that leaves
flexibility to the users by their own definition of multimodal behavior. Our respective solution
is presented in Section 6.4.

User Acceptance

One additional factor that may not be neglected is the users’ attitude towards multimodal
interaction. Prior research has often shown that users tend to stick with familiar approaches
or modes of interaction, rather than adopting something new [221]. This effect can be par-
ticularly strong for entirely new modalities. Evaluating the usability of completely novel
approaches is more difficult than of incremental improvements [131]. Hence, the benefit of
novel interaction modalities must become clear to users in order to achieve wide acceptance.
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Ruiz et al. [289] conducted a study in which subjects should propose device gestures for
performing certain actions. Subjects preferred natural use and real-world metaphors, e.g.,
bringing the phone to their ear for the action “answer a call” or place the phone with the
screen facing down to “end a call”. The study suggested that especially the usage of motion
gestures in general found broad acceptance. Only 4% of subjects stated that they would never
use motion gestures.

A further factor for acceptance is social acceptability. Rico and Brewster [275] evaluated the
social acceptability of different motion gestures and found that input methods “mimicking
gestures encountered in everyday life” [275] are more likely to be accepted.

2.2 Exemplary Application Domains for Mobile Multimodal
Interaction

We will now address three individual application domains (health & fitness, university &
education, and indoor navigation) that are potential candidates for MUSED interaction, and
report on the state of the art in research and industry in these domains. This section is partly
based on related work overviews provided in our prior publications. Each of the subsequent
chapters (Chapter 3, 4, and 5) will then be dedicated to one of these areas, and we will
present multimodal approaches addressing individual problems in these domains.

Before that, we will briefly motivate the use of multimodal interaction from a general point
of view.

2.2.1 Why Using Multimodal Interaction?

There are a number of reasons why multimodal interaction can be beneficial. The reasons
we list here do not address individual application areas, but mark advantages from a general
point of view.

Naturalness

Humans communicate using all senses, so that their interaction with the world is inherently
multimodal [38, 266]. The choice of communication modalities is however partly uncon-
scious, so that an interface seems more natural when multiple modalities are supported [340].
Thus, multimodal interaction also adds to more intuitiveness [146].

Efficiency

Given that in multimodal interaction, different modalities can be used simultaneously [246],
a higher bandwidth of information transmission is available. This makes multimodal interac-
tion in principle more efficient than unimodal interaction, as more information can be com-
municated in the same amount of time. Particularly in mobile settings, individual unimodal
interaction modes can suffer from limitations (e.g., the “small screen” problem when relying
only on the visual channel). In this case, multimodality can have a synergetic effect and con-
tribute to more efficiency [255]. The efficiency boost, however, depends on the concrete use
case, as other evaluations [254] showed only small increases in task completion time.
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Robustness

A multimodal user interface is expected to be more robust to errors. The reason is that the risk
for perceiving a piece of information erroneously or missing information is minimized when
the same information is communicated redundantly over another modality. This is, e.g., the
case when notifications are sent both by a visual alert and a sound. Likewise, robustness can
be increased if the user can choose out of several input methods the least error-prone in a
particular situation. Oviatt [254] showed that users made about one third fewer errors with
a multimodal interface than with a unimodal interface. This stands in contrast to the fact that
in actual systems, information is to the most extent transferred using one modality, namely
the visual channel [248].

Adaptivity to Information

It depends on the type of information by which modality it is transported best [266]. User
interfaces that provide multiple modalities thus are likely to better communicate a broad
range of information types than unimodal interfaces.

Adaptivity to Cognitive Resources

Chittaro [50] notes that “physical parameters (illumination, noise, temperature and humidity,
vibration and motion, ...) of the mobile user’s environment are extremely variable, limiting
or excluding one or more modalities. For example, in a noisy street we can become unable to
perceive sounds from the mobile device; under a glaring sun, we can be unable to discriminate
colors on the screen or even to read the screen at all, on a moving vehicle we might not notice
vibrations generated by the device”. In mobile settings, interacting with the smartphone is not
a primary task, as users will have to focus their attention on the environment (traffic [77, 78],
social interaction [319], etc.). Their cognitive resources are thus limited [50]. Redundant
multimodal interfaces can address these limitations, as users can choose an optimal modality
according to the physical parameters and the available resources [184].

Diversity

Multimodal interfaces can improve interaction not only when subjects have cognitive, but
also physical limitations. This includes, e.g., motor impairments (e.g., reduced touching ac-
curacy or fine motor skills), or vision problems (e.g., reduced ability to read small text or to
distinguish colors – 8% of all males suffer from red-green blindness26). In this case, alterna-
tive interaction modalities (e.g., speech) can be used. Motor limitations can also be caused
by mobile settings, e.g., “accelerations and decelerations of a vehicle subject passengers to
involuntary movements, which interfere with motor operation of the device (e.g., time and
errors in selecting options, effectiveness of using writing recognition or gesture recognition
software, etc.)” [50].

Taking these aspects into account, multimodal user interfaces contribute to diversity-friendly
design, respecting requirements of heterogeneous user groups and heterogenous usage con-
texts.

26http://www.color-blindness.com/2010/03/16/red-green-color-blindness/,
accessed May 9, 2014

http://www.color-blindness.com/2010/03/16/red-green-color-blindness/
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Popularity

Although a multimodal user interface does not necessarily imply that users will interact mul-
timodally [255], multimodal systems are often very popular with users. For example, Oviatt
[254] found that 90% to 100% of users prefer multimodal interaction over unimodal inter-
action. Wolff et al. [347] similarly found a high preference for multimodal interaction. They
let subjects choose between unimodal and multimodal commands in the visual/spatial do-
main and found that only three out of 98 were performed unimodally. Even if systems do
not require the use of multiple (parallel) modalities, but offer modalities as alternatives, they
“empower the users”, giving them a feeling of control. This “internal locus of control” is, ac-
cording to Shneiderman [308], one of the crucial factors to satisfaction with a user interface.
However, Lemmelä et al. [184] underline that discoverability is an important criterion for
novel modalities: Users must be able to recognize which interaction methods are available,
and how they have to be used.

Social Acceptance

The social contexts or social norms influence which kind of interaction with a mobile device
is appropriate. Chittaro states: “[K]eeping sound on at a conference is not tolerated, while
looking at the device screen is accepted; keeping a lit display in the darkness of a movie the-
atre is not tolerated; making wide gestures while being near strangers might be embarrassing
in general and not advisable in specific places” [50]. A limited choice of modalities might
disqualify the use of devices or applications in certain social settings. Multimodal interaction
can solve this problem by offering interaction forms that are socially acceptable [275].

Novel Possibilities

Besides improving interaction of existing applications, multimodality also enables completely
novel interaction paradigms, applications, and functionality [89].

We conclude with a quote by Dumas et al., who summarize multimodal systems as follows:
“[They] represent a new class of user-machine interfaces [that] tend to emphasize the use
of richer and more natural ways of communication, such as speech or gestures, and more
generally all the five senses. Hence, the objective of multimodal interfaces is twofold: (1)
to support and accommodate users’ perceptual and communicative capabilities; and (2) to
integrate computational skills of computers in the real world, by offering more natural ways
of interaction to humans." [89]

In the following, we illustrate the state of the art in mobile interaction in selected example
domains (their choice has been motivated in Section 1.4). The subsequent chapters (3, 4 and
5) will then investigate the room for improvement with the help of multimodal and sensor-
driven interaction.

2.2.2 Health, Fitness, and Daily Activities

In the recent past, one could observe a growing interest in health and fitness support by
mobile devices. This effect has to do with two factors. First, there is a trend to monitoring
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health- and fitness-related data, as part of the “Quantified Self” movement27. This is reflected
by an increase of sensor-equipped mobile devices and accessories for that purpose, such as
run trackers, glucose meters, or heart rate monitors. The latter is even directly built into
smartphones like the Samsung Galaxy S5. Second, it is a consequence of the aging society
that more and more people suffer from multimorbidity [327], i.e., two or more diseases at a
time, and need temporary or permanent support in their activities of daily life. Mobile devices
can support caregivers or patients in many cases to, e.g., allow elderly people to continue
living autonomously in their homes. This research area is also referred to as ambient assisted
living (AAL) and computer-supported coordinative care (CSCC) [58].

Health and Ambient Assisted Living

We can distinguish between systems addressing caregivers and systems to support people
directly in their daily lives. For caregivers, Mynatt et al. [240] proposed the CareNet Display,
a digitally enhanced picture frame with an image of the loved one. Icons placed around the
frame show caregivers whether their loved ones have taken their medications, eaten their
meals, performed physical activities, etc.

Systems can also directly support (not only, but including elderly) people in the so-called
activities of daily living (ADL). In the food domain, calorie monitoring apps (e.g., by food
ingredient databases like FDDB28) help pursuing a healthy diet; and sensor-enhanced kitchen
knives and cutting boards [172] can even recognize types of vegetable being cut, and thereby
estimate which meals have been prepared. Home appliances can be automated or remote-
controlled. For example, in a smart home, smartphones can turn on and off the lights, helping
especially elderly people who have problems with walking or climbing stairs. Systems that
monitor the remaining time until the laundry in the washing machine or the meal in the
oven is finished [199] additionally shorten ways in the house, as residents do not have to
check multiple times by themselves if the laundry or the meal is done. A methodology and
toolchain to prototype mobile interaction within intelligent environments has been investi-
gated by Diewald et al. [84].

There exist also smartphone apps that address specific medical conditions. Fontecha et
al. showed a system to detect frailty [102] based on accelerometer readings. Armstrong
et al. provide use memory cues in smartphone applications for Alzheimer’s disease patients
[10] to stimulate autobiographical memory, an idea which is also pursued by life logging
with a wearable camera [130]. Du et al. present an Android-based healthcare management
system that calls support in emergency cases [87]. Bardram et al. created an app-based mon-
itoring system for patients with bipolar disorder [17]. Smartphone medication adherence
apps [71] address the problem of decreasing memory. They remind patients when to take in
their pills respecting their daily routines, or provide real-time feedback for medication intake
[180, 312].

While the research exemplified above usually focuses on functionality, Gao and Koronios
[109] point out that when developing for elderly people, special requirements for usability

27http://venturebeat.com/2012/01/18/the-view-from-ces-the-top-trends-in-
technology-for-2012/view-all/, accessed August 19, 2014

28http://fddb.info, accessed May 31, 2014

http://venturebeat.com/2012/01/18/the-view-from-ces-the-top-trends-in-technology-for-2012/view-all/
http://venturebeat.com/2012/01/18/the-view-from-ces-the-top-trends-in-technology-for-2012/view-all/
http://fddb.info
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are necessary [111]. Elderly people may have problems with sight (i.e., they cannot read
standard font sizes on mobile devices), hearing impairments, a reduced touch accuracy (e.g.,
due to tremor), or problems with memory. Although one of Shneiderman’s eight Golden Rules
says that working memory load should be minimized [308], this is not respected in many user
interfaces.

Current “senior phones” try to target elderly people by drastically reducing features (following
the “keep it simple” approach), arguing that seniors are overwhelmed by complexity or do
not need all of them anyway. While this might be true for parts of the current generation, the
future generation of seniors will be familiar with smartphones. They want to use the same
or similar applications as before, or have even the need for specialized, new applications that
address their special conditions, illnesses, etc. Consequently, the possibility to install new
applications, update the software, and adapt the user interface is important. Hence, while
maintaining or even extending functionality, the interaction with the devices and applications
must be leveraged to address their limited capabilities and the problems listed above. We
see here a great potential towards usable systems for the special needs of the target group
of seniors. Multimodality, with the advantages we have presented in Section 2.2.1, can help
improve the interaction in this direction. Lorenz and Oppermann suggest that interfaces
for elderly people should contain redundancy [194], which could be well realized through
multiple modalities.

Fitness and Sports

Fitness and sports applications are settled in the area of health-related applications as a sub-
domain, targeting users of all ages. The integration of health data in a central way to mobile
operating systems (Samsung S Health29, iOS HealthKit30) is an indicator for the increasing
importance of tracking training data and vital signs.

Sensor-Based Activity Recognition

One important prerequisite to support training is the detection and identification of different
types of physical activities. Activity recognition has been successfully employed in a variety
of use cases [16, 94, 185, 200], using body-worn and pervasive sensors. The challenge of
energy efficiency with mobile sensing has been tackled with approaches like Compressive
Sensing [68, 69]. In medicine, quantifying qualitative aspects of human motion, such as
motor performance, has been intensively researched, e.g., in the assessment of degenerative
conditions such as Parkinson’s disease [151, 236].

As a relatively novel application of pervasive computing, activity recognition has been applied
in the sports domain. Augmentation of physical training devices with sensors has been used
as basis for monitoring outdoor sports such as skiing [212] or tennis [3], as well as indoors,
such as recognition and tracking of free-weight exercises with accelerometers in a glove [47].
In the gym, sensor data from balance board training [167, 298] has been used to provide
feedback on the performance quality. Besides sensor-equipped training devices, body-worn

29http://content.samsung.com/de/contents/aboutn/sHealthIntro.do, accessed May 30, 2014
30https://developer.apple.com/healthkit/, accessed June 3, 2014

http://content.samsung.com/de/contents/aboutn/sHealthIntro.do
https://developer.apple.com/healthkit/
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sensors have been used for the assessment of athletes in different disciplines, such as snow-
boarding [115], swimming [70], and running [317].

One early approach to integrate activity recognition with mobile devices was UbiFit Garden
[57]. The application visualizes physical activity based on external sensors. For a certain
amount of physical activity, flourishing flowers appear on the phone’s display as motivational
component. BALANCE [75] estimates the calorie expenditure in everyday life, contributing
to long-term wellness management. Both smartphone solutions rely on sensors worn on the
body.

Recently, a multitude of commercial health devices and sensors, such as oximeters and heart
rate monitors, formerly reserved to professional use, are now available and can be connected
to smartphones. GPS watches, pedometers, and heart rate monitors allow recording and
tracking of physical activity. For home use, hardware platforms like Nintendo Wii or Microsoft
Kinect encourage users to physical activity, yet without focus on correct execution. Activity
loggers like activPal31, FitBit32 or smartwatches monitor health-related data and help create
an activity profile. Samsung’s Gear Fit33 includes a heart rate monitor and offers personalized
coaching instructions with the goal to increase motivation. Yet, those solutions build upon
closed systems (e.g., Samsung’s Galaxy Gear smartwatch only works with selected Samsung
smartphones, and the Apple Watch only works with the iPhone), or rely on external sensor
hardware.

Health and Fitness Apps

For an overview of the state of the art in commercial and free health and fitness support appli-
cations for end users, we conducted a heuristic evaluation [244] of 15 selected applications
which were top-ranked in the Google Play Store34 in the category Health and Fitness. Other
marketplaces (e.g., Apple App Store35, Nokia OVI Store36) contained the same or very similar
apps, so that we argue that our comparative review represents the design space. We used the
following heuristics, covering the most important aspects of health and fitness support:

• Utility and usability for regular training

• Instructional quality

• Usage of sensor data

• Motivational effect

In the following, we summarize the results of the evaluation. The detailed results can be
found in our previous publication [169].

We found that all applications covered only a varying subset of important aspects. Based
on the heuristic evaluation, we classified them into three categories: GPS trackers, workout
planners, and exercise books.

31http://www.paltech.plus.com/products.htm, accessed May 9, 2014
32http://www.fitbit.com/, accessed May 9, 2014
33http://www.samsung.com/de/consumer/mobile-device/mobilephones/wearables/SM-

R3500ZKADBT-features, accessed May 9, 2014
34at time of the evaluation called Android Market
35https://itunes.apple.com/us/genre/ios/id36, accessed May 31, 2014
36http://store.ovi.com, accessed May 31, 2014

http://www.paltech.plus.com/products.htm
http://www.fitbit.com/
http://www.samsung.com/de/consumer/mobile-device/mobilephones/wearables/SM-R3500ZKADBT-features
http://www.samsung.com/de/consumer/mobile-device/mobilephones/wearables/SM-R3500ZKADBT-features
https://itunes.apple.com/us/genre/ios/id36
http://store.ovi.com
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GPS trackers are applications that record location traces for outdoor activities like running
or cycling. If external sensors like heart rate monitors are connected to the phone, training
instructions can be adapted to the heart rate. Further information from built-in sensors, such
as accelerometer or magnetometer, are usually not used. With the advent of dedicated motion
coprocessors as Apple’s M737 in the iPhone 5s, this could likely change, as they allow to con-
tinuously log and process activity data (e.g., to count steps) with almost no additional battery
consumption. The second category, workout planners, accompanies goal-directed workout,
such as weight lifting or bodybuilding. Exercises are typically organized by body parts, so that
the user can find suitable exercises to train particular muscle groups. While some applications
support the user by counting repetitions, they provide no qualitative monitoring of the exer-
cise performance. The third category usually offers the least interactive set of functionality,
but the deepest background on the correct execution of exercises, why we call them exercise
books. These apps often focus on yoga or gym exercises.

Based on our review of related work and app store content, we can summarize the state of
the art in research and industry as follows:

• Both in research and industry, mobile systems have entered the sports and fitness do-
main. Commercial systems mostly confine to monitoring and tracking. Research is
interested in activity recognition and classification, which has been demonstrated for
different disciplines of sports. These approaches rely on external sensors, which makes
the real-world setup complicated, depends on external hardware, and makes training
not really “ubiquitous”.

• Commercial apps focus on individual aspects (which is reflected in the categorization in
GPS trackers, workout planners, and exercise books). Some logger apps support mul-
tiple activities, addressing the desire of comprehensively supporting fitness in different
situations and locations. A further indicator towards a comprehensive approach is the
trend to health apps like Samsung’s S Health29 or Apple’s HealthKit30 as part of iOS.

• Both research [57] and industry (e.g., uploading scores to social networks) use gam-
ification [79, 82, 83] and competitive elements to increase motivation. However, no
intrinsic long-term motivation, e.g., by individualized and personalized training feed-
back that actually can result in improvement, is created.

• All approaches do not focus on how the user interaction with a training application
should be adapted for training situations (e.g., to be distraction-free, reduce the need
for configuration, etc.).

2.2.3 University and Education

Universities as research institutions and think tanks often serve as testbeds for ideas and
prototypic systems. Innovative approaches targeting the education and teaching domain itself
are however slowly introduced. We give an overview on current developments in electronic,
mobile and multimodal learning.

37http://www.apple.com/iphone-5s/features/, accessed May 31, 2014
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E-Learning and Mobile Learning

The first association of using digital technologies in an educational context is e-learning (elec-
tronic learning), which is meanwhile an established complement to traditional offline learn-
ing in schools and universities. It is anticipated that e-learning produces better learning out-
comes, as it allows personalized learning. The personalization makes learners to true subjects
(not objects) and allows a greater diversity, participation and responsibility [142, 288].

In our work, we focus mainly on e-learning in higher education, i.e., in a university context.
In 2006, Kim et al. [155] noted many opportunities for new learning methods in higher
education facilitated through mobile technologies. They anticipated, e.g., a transition from
traditional university courses to mobile learning settings, and online course management.
Meanwhile, e-learning platforms like Moodle38 are established to accompany courses. They
provide online learning units, interactive content, and quizzes to verify what has been learnt.
Online learning units can be integrated in courses (blended or hybrid learning [204]), but also
serve for distance learning, e.g., for reworking content at home. A comprehensive overview of
distance learning tools is provided by Garrison [110]. Massive Open Online Courses (MOOCs)
[203] can even replace classic presence learning by providing all relevant material online
through platforms like Coursera39. Even examinations can be taken via this platform.

However, learning platforms are not initially designed for mobile use. MLE (Mobile Learning
Engine) was an attempt to use Moodle on mobile devices, either web-based or with a native
application [135]. So-called MILOs (Mobile Interactive Learning Objects) contained chunks
of information that were small enough to be consumed on mobile devices. They are also
better suited for mobile learning which is likely to take place in short periods (waiting times,
on the go, etc.). Users can realize mobile learning scenarios, e.g., location-based learning or
uploading own material with the phone. However, MLE is not being further developed since
2009, so that a widely used or standardized mobile learning platform currently still does not
exist. Holzinger et al. [134] suggested an extension to mobile learning objects called XLOs
(X-Media Learning Objects). XLOs make learning content accessible on a greater variety
of devices, e.g., MP3 players, PDAs or TVs, with the goal of “pervasive learning” (at every
location, every time, cross-device).

The transition from (computer-bound) e-learning to mobile learning (m-learning) [307, 320]
is still in its beginnings. As defined by Ally [4], mobile learning is “the delivery of electronic
learning materials on mobile computing devices to allow access from anywhere and at any
time”. For an overview of mobile learning technologies, e.g., refer to Naismith et al. [241].
Mobile learning has reached momentum with the rise of small and light smartphone and
tablet devices. Manguerra and Petocz [201] investigated how classroom settings could be
enhanced through these technologies to match the expectations of students who grew up in
the “digital age”. Mobile devices allow, e.g., to work with lecture slides and course material
(e.g., in PDF format) on the go, watch podcasts, and thereby facilitate time- and location-
independent learning. Furthermore, mobile devices are a catalyst for learning forms such as
e-books, polling, blogging or mind mapping [53]. They can be used to consume educational
resources or even complete online courses, e.g., through iTunes University40. Beyond that,

38http://www.moodle.org, accessed February 28, 2014
39https://www.coursera.org, accessed May 31, 2014
40http://www.apple.com/education/itunes-u/, accessed May 24, 2014
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digital market places enhance the functionality of smartphones and tablets, as they offer a
plenitude of apps for specific learning tasks and contexts. As of July 2014, more than 120,000
apps in the Education category could be found in Apple’s App Store41.

Mobile learning also allows novel and more pervasive ways of learning. The importance
of context awareness and contextual adaptation has been recognized by several researchers
[202, 310, 323, 337]. For example, Soualah-Alila et al. [310] investigated how the most
appropriate learning content can be presented to learners, based on a semantic level (charac-
terization of learning content and learner), and on a behavioral level (potential information
overload due to the learner’s context). Looi et al. [193] explored how mobile learning can
provide access to authentic contexts (learning in the wild) and couple physical actions with
cognitive activities. This kind of experience-based learning can be applied where practical
skills are required, e.g., in the medical area [134, 307], in apprenticeships [320], or in life-
long learning [262]. Thüs et al. [323] give an overview on further frameworks for mobile
learning in context. Ogata et al. presented a ubiquitous learning log [251] as digital record
of what has been learnt in the daily life with ubiquitous technologies. The rising interest in
mobile learning is reflected in emerging journals dedicated to this topic, e.g., the International
Journal for Mobile Learning and Organisation (IJMLO)42.

For instructors and docents, the rapid emergence of e-learning technologies is a challenge.
They need to fathom the range of possibilities and decide what is reasonable and adequate for
their teaching. The risk is that unreflected adoption of digital possibilities replaces didactically
well-grounded preparation of courses [86]. Ramsden [269] argues that teachers still need
profound didactic knowledge to develop learning concepts and to structure their courses,
be it offline, online or any combination of them. Especially in higher education, courses
or tutorials are not held by full-time lecturers, but by associates without explicit didactic
education, or by Ph.D. students [346]. One possibility could be to use mobile learning also
for teacher training, as presented in a project by Seppälä and Alamäki [304]. We will present
an own approach in this direction in Chapter 4.

Multimodal Learning

Moreno and Mayer define multimodal learning environments as “learning environments that
use [...] different modes to represent the content knowledge” [237], in their case verbal and
visual representations. It is argued that multimodal learning, as it involves different senses,
produces more substantial learning effects, be it because the memorization process is more
effective, or because learning is more playful and thus more fun [133, 182, 333].

In our context, we are especially interested in (novel) learning modalities enabled through
technology. In prior research, physical objects have been enhanced with digital technology
to so-called “smart” [172] or “tangible” objects. They allow situational and playful learning
by experimentation, combined with the advantages of e-learning. Schmidt et al. [298] devel-
oped with the SensorVirrig a cushion with integrated ball switches, a compass and a pressure
sensor, usable to control objects in learning games. The Display Cube by Kranz et al. [322] is
augmented with accelerometers and small screens, allowing to answer multiple-choice tests

41http://www.pocketgamer.biz/metrics/app-store/, accessed July 31, 2014
42http://www.inderscience.com/ijmlo, accessed May 12, 2014
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by physically rotating the cube. Both objects are examples for multimodal and playful inter-
action devices for kids. Besides “pervasive learning” at home or in other places, such smart
objects could also be used at schools or universities to enhance and complement traditional
lessons.

Learning and Teaching Environments

Opening up the design space, mobile application support in the educative context not only
covers e-learning applications, but also services and tools in learning and teaching environ-
ments. This includes tools for docents and docent training as well.

Many universities, as representations of educative environments, offer various digital services
to students, such as course management systems, campus maps, or internal news feeds. These
are more and more available in native apps for mobile devices, such as iLancaster43, MIT
Mobile44 and the CMU App45 (just to name a few examples). Voting systems [309] are used
in teaching to verify comprehension, foster discussions, or create a feeling of community.

Abowd [1] presented with Classroom 2000 at Georgia Institute of Technology one of the first
projects to holistically support learning with mobile devices. It includes both instrumented
rooms supporting lecture capture and mobile personal interfaces (tablet PCs), which is used
for live-annotating lecture slides. In a further step, rooms were instrumented with cameras,
microphones and electronic whiteboards as “living laboratory”. With electronic whiteboards,
many of the back then prototyped possibilities are now off-the-shelf available, but integration
with the student’s personal mobile devices has still not been achieved.

A true integration of mobile systems and infrastructure systems on campus in the sense of an
intelligent environment [279, 282] has rarely been pursued in the educative context. This re-
search direction is summarized under the vision of ubiquitous learning (u-learning), which is
described by van’t Hooft et al. [330] as learning in an environment where “students have ac-
cess to a variety of digital devices and services, including computers connected to the Internet
and mobile computing devices, whenever and wherever they need them”.

Beyond the classroom, pervasive displays, public terminals or door signs [132, 280, 299]
could be used as further interaction points. Berg et al. [23] suggest a stronger integration
of social networks and campus services. Wheeler and Waggener [344] outline the potential
of cloud computing for new services on campus. At the end of Chapter 4, we will portray a
teaching and university scenario featuring an interplay of different applications and interac-
tion modes, subsumed under the notion of MUSED interaction.

2.2.4 Indoor Navigation

In Chapter 5, we will look at indoor navigation as an example domain for multimodal in-
teraction. Indoor navigation is a special case of pedestrian navigation [49], posing particular

43http://ilancasterinfo.lancs.ac.uk, accessed February 27, 2014
44https://play.google.com/store/apps/details?id=edu.mit.mitmobile2,

accessed February 27, 2014
45http://www.cmu.edu/cmuapp, accessed February 27, 2014
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requirements to localization technologies. Therefore, we first give an overview on approaches
to estimate the position of a mobile device, using the built-in sensors (a list of available sen-
sors was provided in Section 2.1.2). We then present vision-based localization, the method
we chose as a basis for our indoor navigation approach, and outline its advantages and chal-
lenges. Subsequently, we give an overview on current user interfaces for pedestrian naviga-
tion systems.

A commonly used outdoor localization method for mobile devices is satellite localization using
GNSS. Alternatively, cellular or WLAN localization [191] can be used if GNSS is not available
(e.g., when no satellites are visible due to the “urban canyon problem”, or indoors). By
signal multilateration between the device and GSM cell towers, the position can be coarsely
estimated (in the range of a few dozen to several hundred meters). Liu et al. [191] discuss
wireless localization techniques and classify them in triangulation-based, proximity-based and
fingerprinting approaches. Fingerprinting is a technique that positions a device based on the
proximity to known WLAN networks [49]. Therefore, a reference database of access points is
necessary as, e.g., offered by Google46 or Skyhook47.

There are a number of approaches specially dedicated for indoor localization. They are mo-
tivated mainly by two facts. First, traditional outdoor methods like GPS work indoors only
to a limited extent as the signals are too weak and potentially shielded, e.g., by metallized
heat insulation windows (though there are approaches to improve GPS reception indoors
[73, 294]). Second, the requirements on localization accuracy are higher indoors [207] (in
the range of a few decimeters instead of meters outdoors), why most indoor approaches go
a different way. They are based on different technologies and sensors available in mobile
devices, such as Infrared [40], DECT [164], inertial sensors [5], Bluetooth (e.g., with the
upcoming iBeacon48 technology), or a combination of multiple sensors, e.g., WLAN for ap-
proximate localization and IMU for accurate relative positioning [127, 348]. Also the camera
has been used in different ways. The location can be determined by explicit markers [239]
or by image matching using feature extraction [105]. In addition to estimating absolute lo-
cations, it is also possible to compute relative locations using visual odometry [128], e.g., by
tracking features over time [158].

For a more extensive discussion of indoor positioning and path planning techniques, we refer
the reader to Fallah et al. [96].

Vision-Based Localization

The user interface we will present in Chapter 5 is adapted to vision-based localization, i.e.,
using the vision modality as primary source for location estimation. We here motivate why
we decided to build upon this localization technique.

Visual localization works very similar to the orientation of humans: Visual perception is used
to compare the environment to known information. Similar to humans, who need to have

46http://static.googleusercontent.com/media/www.google.com/de//googleblogs/pdfs/
google_submission_dpas_wifi_collection.pdf, accessed February 24, 2014

47http://www.skyhookwireless.com, accessed February 24, 2014
48http://support.apple.com/kb/HT6048?viewlocale=en_US&locale=en_US,

accessed May 31, 2014
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visited a place earlier in order to know it, a vision-based localization algorithm needs a refer-
ence database of images of the environment with associated location information with each
image. The localization procedure is as follows. The user records query images with the
camera of the smartphone, which are sent to a server. A similarity search with the reference
database is conducted, and the location and orientation of the most similar image is used as
an estimate for the user’s actual position. The comparison is performed based on character-
istic properties of the image, so-called features (e.g., SIFT [195], MSER [206], SURF [21],
FAST [286], BRIEF [41], or ORB [287]). If these feature are size- and rotation-invariant,
the matching algorithm also works when query and reference image have not been recorded
from exactly the same angle and distance. From the displacement between the two images,
the exact orientation and location can be accurately estimated [302]. In the remainder of
this paper, when the term visual localization is used, we explicitly mean the above described
method. This approach, which is also referred to as content-based image retrieval (CBIR),
stands in contrast to other localization methods which likewise use the camera, such as, e.g.,
marker-based approaches [239].

Besides the fact that visual localization is a good example for a sensor-driven and multimodal
system, there are further reasons why we chose this method.

Infrastructure-less Localization

Visual localization works without a special infrastructure. Other active localization meth-
ods (i.e., where the device localizes itself actively) need an augmented environment, such as
electronic tags (e.g., iBeacons48) or a dense coverage of WLAN access point infrastructure.
Especially in large-scale environments, such an augmentation is expensive and effortful to es-
tablish. Feature matching further has the advantage that exact localization can be performed
at any location, while infrastructure-based (e.g., marker-based) approaches only work at cer-
tain augmented areas. Apart from these “key locations”, the position needs to be estimated
with relative positioning techniques, such as dead reckoning.

No Special Hardware Requirements

A common camera-equipped smartphone is sufficient for visual localization. Thanks to fast
multi-core processors and high-quality cameras, state-of-the-art devices are powerful enough
to perform image recognition and analysis in real-time. By contrast, approaches based on
signal metrics, such as angle (AoA), time (ToA), or time difference of arrival (TDoA) require
special hardware, such as directional antennas or ultra-accurate timers [189].

High Accuracy

With a database of sufficiently densely recorded reference images, visual localization can
reach up to centimeter-level accuracy [302]. Based on the position of feature points, even
the pose (i.e., the viewing angle) can be detected. This can be achieved, to some extent,
with other approaches as well, e.g., by exploiting the Doppler effect [11] or MIMO (Multiple
Input Multiple Output) [351], but not as accurate as with image matching. However, the
image database must be built up in a one-time effort (by mapping the environment) and
updated regularly when buildings and objects therein significantly change. Approaches based
on signal strength measurements reach only a one-meter accuracy even in laboratory tests
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[187]. In the real world, where the typical density of access points is mostly lower, expected
localization accuracies are likely to be inferior to those in controlled experiments.

However, localization using vision entails some challenges. First, it requires reference data,
i.e., the environment must be known a priori in order to later localize the device within the
environment. Reference images must be gathered in the first place and the exact location
must be assigned to each image, e.g., by using a mapping trolley as presented in [138]. Since
the environment could be subject to change (e.g., when shop window displays, adverts or
posters are replaced), a way to update the reference material must be foreseen. This can
be done centralized or in a collaborative approach, where query material is tagged with a
location manually by users and eventually becomes part of the new reference dataset.

There exist several implementations of camera-based location recognition systems [125, 239,
302, 343]. Hile and Borriello correlated a floor plan or a previously captured reference image
to estimate the device’s pose and to calculate an information overlay [125]. However, the
system only works for static images. Mulloni et al. [239] relocalized a phone by recognizing
visual markers and displayed the new location on a map. Werner et al. [343] and Schroth
et al. [302] presented localization approaches through feature-based image matching, but
without specific focus on user interfaces.

User Interfaces

In this dissertation, we focus on user interfaces for indoor navigation, and the employed
modalities for interacting with the system. Route guidance can be provided using different
channels, which all have their individual advantages and drawbacks, as outlined by Kray
et al. [173]. In the following, we discuss several modalities and user interface elements
employed in existing pedestrian navigation systems.

Textual Instructions

Text instructions can be given in written form, spoken (e.g., using a text-to-speech engine), or
both. Depending on how familiar the user is with the environment, the amount of information
can be reduced or increased. To reduce the user’s cognitive load, it can be beneficial to
combine directional information with street names or landmarks (e.g., “turn right at the
elevator”). In most cases, text instructions will be verbalized, which has the advantage that
no visual attention is required. However, for spoken instructions to work, the system must
have a very accurate location estimate, compared to some forms of graphic visualizations
[173].

Two-dimensional Graphics

In the most abstract form, this graphic visualization consists only of an arrow indicating
the walking direction. This high degree of abstraction can be an advantage as it reduces
distraction. On the other hand, it can be disadvantageous, as additional cues for orientation
are missing. Such additional cues can, e.g., be given by outlining alternative paths, or by
labels next to the arrow [173]. Such simple visualizations are well suited for small displays
and could also be shown on the limited screen size of newly emerged accessory devices like
smartwatches or head-mounted displays (HMDs).
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Two-dimensional Maps

A visualization with more details than abstract 2D graphics is a geographic 2D map, annotated
with route information [173]. Maps integrate context in a very natural way, in contrast to the
previously presented instruction types. The user not only gets information on the route, but
also on what is close to the route. Such contextual cues foster exploration (finding objects
of interest nearby), and can be helpful for self-orientation. This is known from tourist maps
where landmarks [214, 285] are drawn as small pictures directly in the map. To further
save cognitive resources, maps can be aligned on the screen with the user’s looking direction,
so that no mental rotation of the map has to be performed [173]. On the other hand, it is
important to use a reasonable level of detail: While a low level of detail might not contain
sufficient information, too much information might confuse the user. Meilinger et al. [210]
found that users could self-localize faster with schematic maps than with true-to-scale maps.

Butz et al. [40] investigated how to adapt route instructions according to the quality of loca-
tion and orientation estimate. They basically recommend to increase the level of details the
worse the system can localize the user. Then, the user can use the additional information to
self-localize. Butz et al. argue that the visualization can simply consist of a directional arrow
if the accuracy is well, but as soon as the orientation of the user cannot be reliably estimated
any more, it must include landmarks (e.g., elevators or staircases), and indicate the north ori-
entation. Instructions should then be formulated in a way that they cannot be misconceived
(e.g., instead of “turn left”, they could say “turn until the staircase is to your right”). It is
also suggested that the user can specify the own position manually to dissolve ambiguities.
Another way to account for unreliable location estimates in a map view is by visualizing the
location not with a point, but a circle with varying radius [20].

Three-dimensional Elements and Landmarks

Using the third dimension can make the view more realistic. A pseudo-realistic 3D view
can simulate the real environment with model character. Significant objects with “landmark”
character can be integrated to ease orientation for the user. Kray et al. [173] suggest that
not all parts of the real environment have to be represented in the same level of detail and
distinguish four levels of detail: visible, distinguishable, classifiable, and identifiable. Objects
that are important for orientation are depicted more recognizable (e.g., rendered with more
triangles or using a realistic texture), while for less important objects a lower level of detail
is sufficient. The stronger a visualization resembles the real environment, the easier the user
can match the provided output to the real world. Using “visual search”, users can match their
position based on the rendering, which can accommodate inaccuracy. The “fun factor” should
likewise not be underestimated [249]. In a comparative study [173], a 3D visualization was
more popular with users than a map interface, although initial orientation was easier with a
2D map. The authors also found that users like to interact, instead of passively “consume”
navigation instructions.

Acknowledging that landmarks are helpful for orientation, some researchers focused on im-
ages (as detailed as possible) as primary means for navigation. Users can then determine
their location by comparing the image material with the real world. To extend the amount
of information, not only individual images, but panoramas can be shown. One of the most
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well-known systems of this kind is probably Google Street View49. Miyazaki et al. [218] gen-
erated panoramic views of the surrounding to give additional information, e.g., on buildings.
Mulloni et al. [238] investigated in which perspective panoramas are optimally shown. They
found that by top-down and bird’s eye views of a panorama, users were quicker to locate
objects in the environment than using a frontal view.

Haptic Feedback

The haptic channel can be beneficial in situations where visual or auditive feedback is not
appropriate. Bosman et al. [31] presented a wrist-worn system targeted at visually impaired
users. Wrist bands worn on the left and right arm vibrate to indicate the direction in which
the user has to go, and could also be imagined for noisy environments. HaptiMoto [264]
is a wearable motorcyclist navigation system based on haptic feedback. The authors use a
tactile vest with vibration motors in the shoulder area, since the motorcycle’s vibration makes
navigation signals unnoticeable in wrists, hips and waist region. According to the “shoulder
tapping analogy”, Prasad et al. [265] found that users interpret short tactile signals on the
shoulder as “tapping”, i.e., as a request to turn into this direction, while a longer-lasting
vibration (more than one second) “pushes” subjects to the direction of the other shoulder.

Augmented Reality

Augmented Reality (AR) superimposes virtual elements over a live camera view. This way,
users do not need to translate between the virtual representation and the real world [242].
AR has been used in manifold ways. For an overview, refer to, e.g., two surveys by Azuma
et al. [12, 13]. For pedestrian navigation, AR has been used in different ways to provide
navigation instructions. A straightforward way is projecting directional arrows on the floor
[190, 334], but also more playful ways have been investigated. Penguin NAVI50 uses AR-
projected penguins that walk in front of the users to guide them to Tokyo Aquarium. In a
comparative evaluation by Walther et al. [334], users attested the AR-based system a better
usability than a user interface relying on maps. Miyashita et al. [217] employed AR visualiza-
tions for a museum use case. The exhibits were implicitly used as visual markers to define the
path through the exhibition. When visitors spotted the exhibit following next on the intended
path, it was augmented with additional background information.

Multimodal Instruction Presentation

Ariwaka et al. [9] argue that multiple channels to provide information do not only reduce
errors, but also increase users’ confidence and trust in the system. Consequently, researchers
experimented with combining modalities or offering users a choice of alternative ways to get
guidance instructions. Hile et al. [126] combined textual route description with images of
distinctive objects, which serve as additional cues for self-orientation. A similar approach is
presented by Beeharee and Steed [22]. Liu et al. [190] used a set of different modalities (im-
ages, audio, and text) to match the requirements of cognitively impaired users. They found
that participants’ preferences for modalities widely varied, but that they generally appreciated
the combination of modalities.

49https://www.google.com/maps/views, accessed May 31, 2014
50http://gizmodo.com/every-gps-app-should-make-you-follow-an-adorable-pack-o-

1441939981, accessed June 12, 2014

https://www.google.com/maps/views
http://gizmodo.com/every-gps-app-should-make-you-follow-an-adorable-pack-o-1441939981
http://gizmodo.com/every-gps-app-should-make-you-follow-an-adorable-pack-o-1441939981
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2.3 Designing and Implementing Multimodal Systems

We now give an overview on approaches to model multimodal interaction, and on existing
software toolkits as well as frameworks that help create multimodal and context-aware appli-
cations. We see context awareness as a prerequisite for many multimodal systems, as we will
argue in this section.

2.3.1 Modeling Multimodal Interaction

Prior to the actual implementation of a multimodal system, there are tools and formalisms
to model the behavior of the system. The CARE properties, initially proposed by Coutaz
et al. [63], are the basis for many multimodal toolkits and design approaches that we will de-
scribe later. CARE is an acronym for Complementarity, Assignment, Redundancy, and Equiv-
alence, which describe the roles and relations of modalities involved in a system.

Furthermore, multimodal interaction can be modeled on an abstract level with modeling
languages. Several notations have been proposed to this extent, for example XISL (eXten-
sible Interaction Scenario Language) [150], UsiXML (User interface eXtended Markup Lan-
guage) [311], NiMMiT (Notation for MultiModal interaction Techniques) [329], MIML (Mul-
timodal Interaction Markup Language) [8], SMUIML (Synchronized Multimodal User Inter-
action Modeling Language) [88], and M4L (Mobile MultiModality Modeling Language) [92].
We will not discuss the particularities of each of these markup languages in detail; for a brief
comparison of the most important ones, we refer to Dumas et al. [88]. For our framework we
will present in Section 6.3, we do not rely on a formal modeling language, but focus on rapid
prototyping of multimodal behavior, similar to Dey et al. [76] in the domain of context-aware
computing.

2.3.2 Software Toolkits and Frameworks

To support the actual implementation of multimodal systems, several toolkits and frameworks
have been presented. Let us at this place point out the difference between the term “toolkit”
and “framework”: While a toolkit is a loose collection of tools (constructs, routines, algo-
rithms in software terms) that can be called by own code, a framework is a reusable “body”
of software that calls self-implemented code to produce custom applications. This is often
referred to as “Hollywood principle” (“don’t call us, we call you”) [97, 306].

Toolkits and Frameworks for Context Awareness

The choice of beneficial modalities often depends on the user’s context, such as time, loca-
tion, or the social setting. Manifold toolkits for creating context-aware applications have been
presented in research. As probably one of the pioneer works, we here mention Dey et al.’s
Context Toolkit [76], even though it was implemented in Java and not explicitly focused
on mobile device usage. Other approaches are Context Studio [160], Context Phone [268],
SeeMon [148] and MobiCon [181]. These toolkits abstract context sources, provides mod-
ules that developers can include in their own code, while focusing on different aspects. Kang
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et al. [148] emphasize the energy efficiency of their context monitoring by redundancy avoid-
ance. Lee et al. [181] put the focus on sensor-rich mobile environments and anticipate the
detection of contexts like activity recognition, sports, or weather by using external sensors.
Hence, their framework is not intended for autonomous use on mobile devices. Schuster
et al. present a context-oriented programming (COP) extension on code level [303]. With
special language constructs, context-dependent code variations are defined using layer def-
initions and partial methods. This approach requires a modified compiler and is thus less
flexible in its use compared to traditional framework-/toolkit-based approaches.

All these toolkits have in common that they focus on context awareness and do not explicitly
support the implementation of multimodal interaction. We, as one contribution of this work,
explicitly support the implementation of multimodal behavior with our framework presented
in Section 6.3. The usefulness of many context toolkits might have become limited with the
advent of today’s mobile operating system’s software development kits (SDKs) that already
provide numerous possibilities to retrieve (simple) context information. However, the SDKs’
functionality usually does not go beyond a simple sensor–context mapping and does not pro-
vide advanced context inference (e.g., based on machine learning). The effort to actually
implement interaction modalities based on this context information would still be significant,
as context toolkits do not offer special support for that.

Toolkits and Frameworks for Programming Multimodal Behavior

To this end, some frameworks and toolkits emerged that actually have the goal of creating
multimodal interfaces. We will present some of them and point out their limitations in order
to differentiate them from our own mobile multimodal interaction framework, which we will
describe in detail in Section 6.3.

Krahnstoever et al. [162] built a framework using speech and gestures for natural interaction
with large screens. Their approach has limited generalizability, as it is focused and adapted
to the large screen use case and the chosen modalities. Bourguet [32] presented a toolkit
for testing multimodal interface designs (in their work, it was used to prototype multimodal
drawing applications). The interaction scenarios can be modeled using finite state machines.
The system consists of a graphical user interface builder and the execution framework itself.
While the approach is interesting for experimenting with modality combinations, it is devel-
oped for the PC and not targeted at mobile platforms. Flippo et al.’s framework [101] has
likewise the goal of rapid prototyping of multimodal interaction. A special focus is the fusion
of different modalities, which is realized by a frame-based approach and a semantic parse
tree. Also Flippo et al.’s work was targeted at and evaluated with a desktop use case, using
a mouse and speech input combination. With SwingStates, Appert and Beaudouin-Lafon [7]
present a system to facilitate the development of novel input methods (e.g., multi-handed
or pressure-sensitive input) by a state machine. It is an enhancement to the Java Swing
toolkit and, therefore, likewise targeted at desktop applications. Cutugno et al. [66] present
an architecture to fuse different events so that they are interpreted as one single intention.
Multiple so-called input recognizers are bundled by an “interaction manager”; the behavior is
evaluated by a non-deterministic finite automaton. Dumas et al. [89] provide a comparative
review of further multimodal toolkits, and differentiate them by architectural characteristics,
reusability, and further aspects.



38 Chapter 2 Background and Related Work

While the previously presented systems address multimodal input, there are, on the other
hand, so-called tasking applications [273] which automate workflows based on different
events. For example, they utilize context to change output modalities (e.g., to mute ringtones
in a silent environment). Applications like Llama51, Locale52, or Tasker53 that have appeared
in application stores can be counted to this category. The emergence of such commercial
automation applications confirms an existing interest in engagement with multimodality.

Code in the Air by Ravindranath et al. [273] supports the development of tasking applica-
tions by a task execution framework that distributes and coordinates tasks. It features a
server-based task compiler which allows the implementation of “cloud tasks” (e.g., track the
location of a mobile device and store it on the server), and the integration of multiple de-
vices. However, mobile devices only have a task runtime which makes the system not fully
autonomous.

Elouali et al. [92] propose MIMIC (MobIle MultImodality Creator), a graphical system to
model multimodal interfaces integrated in the Eclipse54 environment. Based on modeled
application screens and input and output interaction events, MIMIC can generate Android
code. While Elouali et al.’s system shares some ideas with the M3I framework we present in
Section 6.3, it offers less flexibility to developers, as only a predefined library of interaction
events can be used for building own applications.

While this comprehensive overview does not claim to be complete, it shows the state of the art
of toolkits for context acquisition and for implementing multimodal interaction, using diverse
approaches, including state machines [7], state charts [329], automatons [66], petri nets
[256], or rule-based evaluation [273]. In summary, there is currently to our best knowledge
no system that fulfills all of the following criteria that are met by our solution. We provide a
holistic framework that

• improves modeling, prototyping and implementing of multimodal behavior

• is flexible and applicable in any development environment (no special compiler, soft-
ware, etc.)

• is targeted at state-of-the-art mobile operating systems

• runs autonomously, without server-based evaluation or control through the cloud

• supports both input and output

• focuses on multimodality, not only context

• integrates an approach that supports the human mental modal of multimodal behavior

However, few insights exist on actual modality usage, preferences with regard to modality
switches, enhanced possibilities for input and output, and awareness on modality settings.
We investigate research questions towards this direction in Chapter 6.

51https://play.google.com/store/apps/details?id=com.kebab.Llama,
accessed March 12, 2014

52https://play.google.com/store/apps/details?id=com.twofortyfouram.locale,
accessed March 12, 2014

53https://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm,
accessed March 12, 2014

54https://www.eclipse.org, accessed May 13, 2014

https://play.google.com/store/apps/details?id=com.kebab.Llama
https://play.google.com/store/apps/details?id=com.twofortyfouram.locale
https://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm
https://www.eclipse.org
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2.4 Evaluating Multimodal Systems

There exists a multitude of evaluation methods, which can of course also be applied to multi-
modal systems. In this section, we will give an initial overview of the most important evalua-
tion methods, where we will at some places already indicate why this method is advantageous
for the use with multimodal systems. In Chapter 7, we will then investigate the characteristics
of selected methods, and report based on our own experiences.

2.4.1 Evaluation in the Laboratory

Expert Review

An experienced researcher or domain expert (e.g., a clinician in case of a medical application
[169]) tests and reviews the system. The review can either be according to the professional
experience, or based on strictly defined criteria (so-called heuristics). The latter method is
called heuristic evaluation, as one form of expert evaluation [244]. One of the most frequently
used sets of heuristics are the ten usability heuristics defined by Nielsen [244].

Focus Group

A focus group [259] is a structured interview with a small number of participants. Its goal is
an initial exploration of goals and needs of potential users of a system. Through the group
setting, a large amount of interactivity is given, which can “stimulate participants to raise
issues that they might not have identified in one-to-one interviews” [177]. Often, focus group
discussions are video-recorded for the later evaluation. Focus groups provide qualitative data
unlike, e.g., laboratory experiments (see next paragraph).

Laboratory Experiment

In a laboratory experiment, test subjects typically perform one or multiple tasks involving a
prototype of (parts of) the system which is evaluated. Often, different manifestations of the
prototype are compared (e.g., visualizations, user interfaces, implementations) with regard
to different parameters (e.g., [30, 116, 290]). It can, for example, be measured whether
the manifestations have an effect on efficiency (task completion time), effectiveness (task
completion, error rate), task load, or satisfaction. Measurements can be repeated in different
conditions using the same subjects (within-subjects design), or different groups of subjects
participate in different conditions (between-subjects design) [36]. Subject of evaluation may
be conceptual art [113], mockups [226], or functional prototypes [30, 221]. For multimodal
interaction, often a certain level of maturity is required for a reasonable evaluation. If this
maturity is not yet given, the functionality can be simulated using the Wizard-of-Oz approach
(WOz) [152]. In this technique, a researcher is responsible for the output of a system, rather
than the system itself – in other words, he plays the “wizard” who makes the system work.
This allows testing interaction methods before implementing them. In Section 7.2, we discuss
the usage of WOz in the context of multimodal interaction.
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2.4.2 Evaluation in the Field

As MUSED systems often interact in a particular way with their environment or are context-
dependent, some aspects (e.g., which modalities users choose in which situation) can only be
evaluated in the field. We distinguish three common types of field studies by the goal they
pursue [36]: studies of current behavior, proof-of-concept studies, and experience studies
using a prototype.

Studies of Current Behavior

Studies of current behavior investigate the status quo: by observing habits, practices and
workflows, studies of current behavior try to gain a better understanding of users and how
they use technology in their lives. This proceeding is also referred to as ethnography [177]
and has an exploratory character, similar to focus groups in the lab. Since the findings shall
inform the further design of a prototype, such studies will typically be situated at an early
point in research. While in a focus group participants need to reflect on their behavior and
be aware of their habits, observation allows an unbiased view on actual phenomena and thus
leads to more diverse observations [321].

Proof-of-Concept Studies

Proof-of-concept studies bring prototypes to the real world, in order to investigate whether
they function as intended or actually have the desired effect (e.g., shortening the time to
accomplish a certain task). Such aspects can usually not be investigated in a laboratory ex-
periment. However, often only very specific research questions are investigated, so that the
proof-of-concept study is of short duration, where a researcher is present all the time. A
special case of an investigation of a phenomenon under real-life conditions is the case study
[349]. Here, it is tried to investigate a scenario in a holistic way by using quantitative and
qualitative methods. Findings can add to theory building and often inform follow-up experi-
ments [349]. Case studies have, e.g., been conducted for the evaluation of multimodal map
interaction [54], musical interfaces [153], or privacy concerns with location-aware systems
[18].

Prototype Experience Studies

The third type, experience studies, are often run in the long term, i.e., over several weeks
or months [59]. In contrast to proof-of-concept studies where it is investigated if a system
works, long-term studies have the goal to gain insights how a system is adopted and used
in people’s daily lives [263]. For long-term studies, it is not possible that researchers are
permanently present to make observations during a longer period of time. Therefore, data
collection methods are required to acquire that information. Selected methods we consider
particularly important are discussed in the following.
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Data Logging

With data logging, a device collects data or context information automatically and without
user intervention [106]. Examples are all sorts of quantitative measures like usage data of
applications, or fine-grained context information. Logging has, e.g., been employed to quan-
titatively investigate interaction with mobile devices [95], identify usage patterns [25], or for
life logging [149]. Often, information gained by logging would otherwise be impossible to
gather, be it regarding effort or time [243]. In addition, logging mostly happens unobtrusively
in the background so that subjects do not even notice it. This is important for data validity, as
subjects then cannot change their habits because of feeling observed [144], which is known
as Hawthorne effect [208]. The problem of altered behavior due to experimental conditions is
further discussed in Section 7.4.

Kärkkäinen et al. [149] point out that logging bears the risk of being perceived as privacy-
threatening by subjects. Researchers should therefore carefully consider which data is actually
necessary to be logged. With the logging tool SERENA which we present in Section 7.5, we
account for best-possible privacy, as the researcher can confine logging to only the data that is
relevant for the study. As a side effect, later evaluation is potentially simplified as the amount
of data to be processed (and thereby the “needle in a haystack” problem) is reduced.

What cannot be captured using data logging is qualitative feedback, such as users’ intentions
[106]. In order to interpret the logged data, additional techniques are often required. Two of
them, experience sampling and the diary method, are explained in the following.

Experience Sampling

Stemming from psychology, the experience sampling method (ESM) is an approach where par-
ticipants actively collect in-situ data [44, 257]. These can be samples from daily life or certain
situations, e.g., photos, audio, or videos, but also qualitative feedback like annotations and
comments that describe the subject’s thoughts, or responses to questionnaire sets. If ques-
tionnaires are used, sets should contain a small number of items in order not to disrupt users
and to keep the additional effort low. The practical application of experience sampling has
been described, e.g., by Christensen et al. [51]. ESM requests can be pre-scheduled (either
randomly or time-based), or triggered by specific actions of the user [36, 56]. The latter way
allows to get qualitative insights, e.g., about the circumstances when a subject used an appli-
cation. Consolvo et al. [56] used surveys on mobile phones for context-triggered experience
sampling. The approach of Mobile Probes [139] offered the additional possibility to include
images to experience sampling records.

Diary

While the moments for collecting data are triggered in experience sampling, the diary method
allows users to choose this moment on their own [44, 177, 197, 257]. Diaries can be unstruc-
tured or structured [177, 257]. Due to the high degree of freedom participants have, diaries
bear the risk that users forget about reporting or that they do not remember events correctly.
Forgetfulness is mentioned as problem by Lester et al. [185]. Other distorting factors of
self-reports (not only applying to diaries) are recency effects [91] or intentional misreporting
[185]. However, a positive effect of self-determined diary entries is that researchers implicitly
learn about the importance of events to subjects. An overview of diary designs is given by
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Bolger et al. [27]. In the context of HCI, diary studies have, e.g., been used for investigat-
ing task switching and interruptions [67], collecting phone call data using voice mail diaries
[257], analyzing random encounters in the context of location-aware computing [55], or
investigating the usage of videos on mobile devices [139].

Mobile Data Collection and Research in the Large

In the field of Mobile HCI, where the subject of investigation is related to mobile interaction,
using the very same devices for self-reporting is a plausible idea. Hufford and Shields [137]
revealed in a meta analysis that electronic diaries result in a higher compliance with subjects
and in better results. Recently, several dedicated research applications with the primary goal
of data collections have emerged. As examples shall be mentioned here MyExperience [106],
Momento [45], droid Survey55, SurveyToGo56, and EpiCollect57. These survey tools allow
experience sampling or diary-based data collection. Some additionally log diverse kinds of
usage information in the background, such as MyExperience [106] or AWARE [98].

On the other hand, there is the recent trend of using mobile applications deployed in app
stores as vehicles to collect research data, under the buzzword of “research in the large” [28,
64, 123, 124, 171, 215, 292, 293]. Free apps offering a value or benefit to users (e.g., games
[123] or useful tools [293]) attract a large number of users who provide a representative
dataset for evaluation. In Section 7.5 we will discuss research in the large in further detail.

2.4.3 Surveys

In surveys, subjects are explicitly asked for their opinion, on the basis of (online or paper
and pencil) questionnaires. While short sets of questions within the experience sampling
or diary method can be interpreted as a survey, the term is usually used for longer sets of
questionnaires, which are often employed before (pre-survey) or after a study (post-survey)
[36]. They can be used in conjunction with both laboratory and field studies. A survey
usually consists of different question types, such as open-ended questions, single or multiple
choice questions, or Likert questions where subjects indicate their agreement to predefined
statements on a scale [36]. From the data collected with surveys, researchers can gather
qualitative insights (e.g., by analyzing the responses to open-ended questions) or quantitative
results (obtained by applying statistics to, e.g., Likert responses).

55https://www.droidsurvey.com/, accessed March 12, 2014
56http://www.dooblo.net/stgi/surveytogo.aspx, accessed March 12, 2014
57http://www.epicollect.net/, accessed March 12, 2014
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Chapter 3

Health, Fitness, and Activities of Daily Living

3.1 Problem Statement and Research Questions

A major goal in the field of mobile health (mHealth) is to help people to adopt and sustain a
healthy lifestyle [157] with technical support of mobile devices. This research area, including
self-monitoring, medication reminders, and fitness applications, has recently gained attention
(also under the term “Quantified Self”), not only because of an increasing health conscious-
ness, but also because of the aging society. In this chapter, we inquire into two applications
in the area of activities of daily living (ADL) and personal fitness.

Activities of Daily Living

One effect of the aging society are problems with daily tasks, including medication intake.
Due to the phenomenon of multimorbidity [327], elderly people often have a hard time to
keep an overview of the number of pills they need to ingest, and patient information leaflets
(PILs) are not always at hand, or too small to read. We argue that mHealth applications
are suited to address these problems, since the best agers of tomorrow become more and
more technology-affine, and thus able and even demanding to use smartphones and apps.
However, there is a requirement for adaptations and for a stronger focus on usability to
address the needs of elderly people who are, e.g., impaired in vision or have limited motor
skills. We intend to address this problem by novel multimodal interaction methods for object
identification, which will be detailed in Section 3.2.

Personal Fitness

Today’s sedentary and busy lifestyles can lead to chronic conditions like obesity, diabetes or
heart diseases [157], so that a stronger promotion of physical activity is important. Research
in behavioral science shows that people are stronger motivated by short-term incentives than
by long-term goals [103]. However, positive effects of physical activity often show only in the
long run (e.g., muscle growth, improved condition, weight loss). Therefore, one important
measure is to maintain long-term motivation.

We currently observe an emerging trend of self-monitoring using wearable activity trackers
(e.g., Samsung Galaxy Gear58, FitBit59, smartwatches or bracelets). Such devices utilize, e.g.,

58http://www.samsung.com/de/consumer/mobile-device/mobilephones/smartphones/SM-
V7000WDADBT, accessed April 16, 2014

59http://www.fitbit.com, accessed April 16, 2014
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gamification [79, 171, 314, 315] and competitive elements like sharing training data on social
networks [157] as motivating factors. However, a survey conducted by Euromonitor60 found
that only 25% of interviewees have already downloaded a fitness app, and less than 6% use
it daily. Another study [179] showed that more than half of all U.S. consumers who own an
activity tracker do not longer use it; a third of U.S. consumers even stopped using it after six
months. This means that long-term motivation is still not generated by the presently included
motivational factors.

Klasnja and Pratt [157] argue that users need to experience a feeling of progress towards de-
fined goals. We believe that a key factor to this is individualized feedback. Telling users what
they are doing wrong and how they can improve their performance will contribute to keeping
people engaged. We present an approach to achieve this through exercising assessment, by
means of a novel input modality for gym training exercises in Section 3.3.

This chapter gives answers to the following high-level research questions:

• How can MUSED interaction support users in daily health-related tasks?

• How can MUSED interaction enable novel interaction in the context of personal fitness?

This chapter is partially based on papers we have published between 2011 and 2013 [169,
221, 231, 233].

3.2 Everyday Object Identification

The use case for our first example, situated in the domain of ADL, is taken from the area of
physical mobile interaction, i.e., the interaction between mobile devices and physical objects
in the sense of Välkynnen et al. and Rukzio et al. [290, 325].

A prerequisite for physical mobile interaction is that objects can be uniquely identified by the
mobile device. To this end, there exist two possible approaches. First, objects can be made
active by themselves, e.g., by embedding sensors and communication facilities. This idea
is comprised in the terms “Smart Objects”, “Intelligent Objects”, or, in particular, “Cognitive
Objects” [170, 232] (relating to the fact that these objects have cognitive abilities to perceive
data from the environment). Second, mobile devices can account for the interaction process
entirely, with the objects remaining passive. This requires novel software on the side of the
mobile devices, but has the advantage that non-augmented, everyday object can be used. In
this chapter, we focus on the second approach.

3.2.1 Use Case: MobiMed – Mobile Medication Package Recognition

As a concrete use case, we present MobiMed, a mobile medication package identifier.
MobiMed can be imagined as a digital package insert replacement, providing detailed infor-
mation on a drug’s active ingredients, application areas, intake instructions, or side effects.
It can be applied, e.g., when the original package insert is lost, too small to read, or for

60http://blog.euromonitor.com/2013/08/analyst-pulse-the-growing-use-of-mobile-
health-and-fitness-apps.html, accessed June 3, 2014
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conveniently comparing different medications. In times of food supplements and vitamin
compounds, managing multiple drugs is an issue people are struggling with [120]. The aging
society aggravates this problem, as multimorbidity, and consequently the need to intake dif-
ferent pills, is often an issue for elderly people. While we observe an increase of health-related
apps and services, such as pill reminders or drug reference guides, elderly people often have
limited skills with technical systems. Novel object interaction techniques could be a bridge
for untrained users to use such services.

The following scenario illustrates how MobiMed could serve users in different contexts.

John, 55, architect, is an active golfer and likes cycling tours in his holidays. He
regularly takes food supplements (carotenes, vitamin E) and anticoagulants, since
he is a cardiac patient. He needs to take in up to four different medications a day
in different intervals, why he is sometimes not sure about the correct dosage.
Since he had trouble pulling the blister packages out of the box, he removed the
package inserts and cannot refer to the instructions. John uses MobiMed to point
at the medication package. The system identifies the drug by the appearance of
the box. He gets detailed information on the product and scrolls to the correct
dosage instruction.

The other day, John wants to get an influenza medication at the pharmacy. Since
he is allergic to acetaminophen, he scans the package with MobiMed and checks
whether the product contains the critical substance in order to know if he can
safely buy it.

3.2.2 Employed Physical Mobile Interaction Methods

We implemented four interaction methods or modalities, following paradigms of earlier re-
search [290, 325]: touching, scanning, pointing, and text search. Figure 3.1 shows users
while performing the different identification methods. While the first three are real physical
mobile interaction methods, the latter can be seen as a conventional interaction method that
will be used as baseline in the comparative study.

Touching

Touching is a proximity-based approach that allows to identify an object by bringing the
phone close or directly in contact to it. The objects therefore need to be augmented with
electronic tags, e.g., based on radio communication [338], such as RFID or NFC (see Section
2.1.2 for a description of these techniques). NFC-capable smartphones can read the tags from
a distance of few centimeters.

To support this method, we enhanced medication packages with NFC tags on which we stored
the same unique id as contained in the product bar code. Each drug package held a unique
7-digit (at the time of our experiment, meanwhile 8-digit) number (PZN, Pharmazentralnum-
mer61) which is encoded in the bar code and can hence be used to unambiguously recognize
a drug.

61http://www.pzn8.de, accessed June 1, 2014

http://www.pzn8.de
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We used MIFARE Ultralight tags operating at 13.56 MHz (NFC Forum Type 2) with 48 bytes
of memory, complying with the ISO 14443A standard. Touching a drug package with a NFC-
capable phone reads the PZN stored in the tag and shows the drug’s detailed information on
the phone.

Scanning

Scanning is a proximity-based approach where the user points at a visual tag with the camera,
such as a bar code or a QR (Quick Response) code, according to the definition of O’Neill et
al. [253]. This interaction method works in close proximity (as far as the device’s camera can
recognize the tag), but does not require direct proximity as the touching technique.

According to alternative definitions [290, 325], scanning can also denote searching for avail-
able wireless services in an environment, such as Bluetooth and WLAN. In our work, however,
we use the term in the sense of targeting a visual marker.

For our medication package scenario, we used the scanning interaction mechanism for recog-
nizing packages by their bar code.

After the code has been scanned and recognized, the name of the medication appears in a
popup and the user is asked whether it is the searched one. After confirmation, the detail
page is displayed. Recognition starts immediately with the camera preview screen, it is not
necessary to explicitly take a photo.

Pointing

Pointing denotes the process of recognizing an object by aiming at the object with the smart-
phone. It is probably the most natural technique, since humans are used to point with their
fingers at objects as well [290]. We implement the pointing technique using CBIR, which is
based on visual feature recognition. Each drug package has inherent visual features, such as
logos, imagery, colors, the shape of the package, and imprinted text. These characteristics can
serve for distinguishing packages. We use MSER (Maximally Stable Extremal Regions) [206]
as features and match them with a reference database of more than 100,000 images. The al-
gorithm returns a candidate list of potential matches, from which the user selects the desired
medication. In our tests, the correct hit used to be almost always among the ten first-ranked
results (i.e., the first result page), indicating a satisfying recognition accuracy.

Text Search

In this modality, a full text search is performed on all database fields, so that drugs can be
found by the PZN as well as by their name, ingredients, side effects, etc. A list of search
results is presented to the user, from which she can choose one to see the details.
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Figure 3.1: The four investigated interaction modalities with MobiMed: scanning (1), touching (2),
pointing (3) and text search (4). The images show participants of the laboratory study.
Faces were blurred for reasons of privacy.

What about Speech Recognition?

While speech input gained in popularity in the past years, we decided to omit speech as
modality in this comparison for several reasons. First, speech input is not a type of direct
interaction with the physical object, which we aim to investigate. Second, medication names
are often long, contain foreign words, are brand names, or sound similar (especially when
they are pronounced incorrectly). This does not only make them difficult to enunciate, but
also poses problems to speech recognition engines which are often trained only to standard
vocabulary. Third, there often exist variants of medications with different dosages, having
identical names, which entails a high risk of inappropriate results. For these reasons, we
considered speech input as not appropriate for identifying drugs.

Prototype Implementation

We created a prototype in Android 2.3, which implements the four physical mobile interaction
methods described above. The user can select the desired interaction method with tabs at the
upper border of the screen (see Figure 3.2). For the interaction method Touching, the default
NFC API was used. Scanning was realized using the ZXing62 Barcode reader library. For
Pointing, we used a server-side image recognition engine, similar to [301]. Query images are
transferred from the mobile device to the server, where a similarity search is performed and
a list of potential matches is returned. The drug information database is likewise located on
the server. Once a drug is recognized using one of the four techniques, the database entry is
retrieved from the server and displayed on the mobile device. We acknowledge the limitation
that the present approach currently requires a network connection. Figure 3.3 shows the
interplay between drug package, smartphone and server.

3.2.3 Online Study: User Preferences for Identification Techniques

The first step of the evaluation was to gain large-scale feedback on the different modalities.
To that end, an online study was conducted.

62ZXing. https://github.com/zxing/zxing, accessed May 19, 2014

https://github.com/zxing/zxing
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(a) Search screen (b) Scanning modality (c) Detail screen

Figure 3.2: User interface of the MobiMed application

Research Questions

We formulated the following research questions (RQ) with relevance to the different interac-
tion techniques:

RQ1(a) What advantages and disadvantages of interaction modalities, as presented in
MobiMed, do people see?

RQ2(a) Which method is preferred by users a priori?

RQ3(a) What potential do people see for the MobiMed use case?

Later in this chapter, we will also present a laboratory study, following an iterative research
approach. While the online study provides us large-scale qualitative feedback, the goal of
the laboratory study is particularly quantitative data. For the laboratory study, we formulate
similar research questions RQ1–3. To help relate them with each other, we use the suffix (a)
for the online study, and the suffix (b) for the laboratory study.
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Figure 3.3: Interplay of MobiMed app and MobiMed server in the course of identifying a medication
package
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Method

The survey was conducted as online questionnaire. First, the concept of MobiMed was intro-
duced. The four interaction modalities were explained detailed in text form and supported
by illustrative screenshots of the application (see Figure 3.2 for examples). Thereby we tried
to give participants the best possible impression of MobiMed. The questionnaire was care-
fully formulated to exclude a confirmation bias. For example, we explicitly asked for possible
advantages and disadvantages of the respective approaches.

Participants were recruited via the Amazon Mechanical Turk platform63. The validity of such
a crowdsourcing approach is discussed and confirmed in Section 7.5.1. The completion of a
questionnaire was compensated with $0.30. An additional reward of $0.50 could be earned
for length and quality, in order to motivate subjects to produce high-quality answers.

149 people took part in the study (74 females, 75 males). They were aged between 17 and
79 (M = 3164, SD = 11). 100 of them lived in the United States. 110 of the participants
owned a smartphone.

Results (and Discussion)

RQ1: Advantages/Disadvantages of Identification Techniques

We collected a variety of statements on the presented modalities from free text answer fields,
giving an impression what people did and did not like. Hence, results reflect main tendencies
and opinions, but cannot expose the spectrum of answers in its entirety.

Scanning Scanning was attributed to be “quick and convenient”, “precise”, “easy”, “specific”
and “cool”. Respondents particularly liked that “you can know exactly that it is the right prod-
uct”, since the bar code uniquely identifies it, even if brand names or packages look similar.
There was much familiarity with this technique due to market penetration of bar code scanner
apps. Some people reported to “scan products all the time” with their phones when shopping
for price comparisons. This a priori knowledge might have biased participants’ responses
towards scanning in this study.

As drawbacks, people mentioned the necessity for a bar code and the time to find it on the
product. A number of recognition problems were mentioned (due to a too small barcode, bad
lighting conditions, a damaged package, or a weak camera). Statements like “doesn’t always
work for me” and “sometimes hard to focus the bar code” indicate that users have experienced
these problems themselves.

Touching For NFC-based interaction, respondents highlighted that touching the object with
the phone is the only necessary user interaction, which makes the method “hassle-free”, “fool-
proof” and suitable for “old people and non-expert persons”. They affirmed this technique to
allow fast and precise identification, combined with good usability. Other adjectives used
were “modern”, “cool”, and “satisfying to [...] get so much information so quickly”.

63Mechanical Turk. https://www.mturk.com, accessed April 16, 2014
64In questionnaires, we ask for the participants’ age, not their date of birth. We indicate mean and standard

deviations without decimal places to convey the measured accuracy in the magnitude of “years”.

https://www.mturk.com
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Downsides mentioned were the “extensive” requirements: a NFC-capable phone, augmented
medication packages, and an increased energy consumption on the phone. People hypoth-
esized that NFC, being a novel technology, might be error-prone, which indicates that they
were less familiar with NFC and thus more skeptical, compared to bar codes. Other disadvan-
tages addressed costs (NFC augmentation of products would raise their prices and privacy
concerns due to the radio technology. As of 2014, mass market prices of RFID tags range
between $0.07 and $0.15 per piece, and are expected to drop below $0.05 in near future65.
Regarding privacy, people seemed to overestimate the proximity range of NFC (which is ac-
tually only few centimeters), since also “interferences with other packages around” were listed
as potential problem.

Pointing Respondents imagined the pointing method using feature recognition to be simple,
convenient and easy to use. In accordance with earlier findings [325], pointing at objects was
considered as very intuitive. One person said that it is “the most human form of scanning”.
Subjects appreciated that no search for tags or codes is necessary with visual recognition: “No
need to fumble about looking for the bar code on the product”. Instead, you “could scan from any
angle”. People came up with the idea that also images from websites could be identified; it
would not be necessary to hold the product in their hands. Several mentions pointed out that
damaged packages could be recognized as well. A person added that it would be “excellent
[...] for persons with sight or motor skill disabilities”.

On the negative side, subjects suspected a high processing demand and potentially slower
recognition, compared to the other methods. Further, it was noted that visual search, un-
like explicit tags, does not provide unambiguous results. Subjects supposed that medications
could be confused “by slight deviations from standard packaging, e.g., a pack with a sticker say-
ing 2 for 1”, or “if companies produce packaging designs that are really similar”. However, one
person said: “Although this may not get your specific product, it can identify similar products.
That’s incredibly helpful.” Hence, the inherent ambiguity was seen as a strength when search-
ing for similar products, such as different package sizes of the same brand, other dosage
forms (powder instead of pills), etc. In our implementation, we make this ambiguity explicit
by presenting a list of results, and give the responsibility for choosing the correct one to the
user.

Text Search Text search was attested the highest familiarity and respondents liked its in-
herent accurateness and its multi-functionality. For example, text search allows to search for
other keywords than the product name. One person accentuated that “general terms” could
be used for search, and a “broad range of results” would show up. Another said that you can
“find products of the same category, and [...] make a comparison among them” (even though
this was not the goal of the app). In particular, when not knowing what drug they are looking
for exactly, subjects considered text search as a good method. An important point mentioned
was that the method is independent of sensors and drug package (“you don’t need to be near
the product”), as long as the name is known. This was considered as advantage not only in
case of recognition failures, but also in light of the fact that in some countries (including the
United States), pills are often handed to patients without original packaging. Respondents
also came up with other usage scenarios, e.g.: “Say you’re allergic to acetaminophen you can
see what drugs contain it to know what to avoid”. While this goes beyond the original task

65http://www.rfidjournal.com/faq/show?85, accessed May 19, 2014

http://www.rfidjournal.com/faq/show?85
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of identifying drugs, they are nevertheless an interesting example of what MobiMed could
additionally be used for.

Mentioned drawbacks were the difficulty in relation to the other modalities (e.g., the neces-
sity for on-screen typing, longer search time and potential misspelling, which is likely for
complicated drug names and medical terms). Subjects saw the problem of not getting any
results due to typos and that “incorrect wording [...] could end up giving people information on
the wrong medicine”.

RQ2: Preferences for Modalities

Asked for their favorite modality, participants showed a clear preference for scanning (48.3%),
followed by the other modalities text search (25.3%), touching (13.6%), and pointing (12.2%).

The strong preference for scanning and text search can probably be explained by their high
level of familiarity. Most smartphone users are experienced with text search and bar code
scanning, while they are less familiar with NFC and visual feature recognition. One person
stated: “I have experience using other software using barcodes, and have liked their ease”. A re-
spondent who chose text search said: “This is a tried and true way of researching information”.
Thus, previous knowledge and positive experience may have attracted respondents to choose
a familiar method as their favorite in this online study.

It seemed more difficult for the participants to evaluate pointing (visual search) and touching
(NFC) without hands-on experience. In particular, recognizing objects just by pointing was
partly seen as “science fiction”. For NFC, the recognition range was overestimated, which
lead to the assumption that closely placed products would interfere with each other and
make targeting the desired one difficult. Some subjects even worried about being inundated
with information when passing by the shelves in a store without having a hand in the matter.

RQ3: Potential of MobiMed

The question “Would you use such a system as described above?” was answered with “yes”
by 81.8% of respondents. They liked the idea of finding drug information fast and easily,
and envisaged various target groups that could benefit from MobiMed, such as pharmacists,
doctors, or people who take multiple drugs. A person said it was “perfect for if you have
something at home that you want to find somewhere so you can pick more up or learn more
about it”.

In average, interviewees would spend $8.40 for MobiMed (with a standard deviation of
$17.12). The high variance is rooted in the difference between older and younger respon-
dents: Those under 25 would averagely pay $6.34, those older than 25 in average $14.01.
There are two possible reasons: First, older people might have a higher need for medical ap-
plications, so that they see a higher personal value. Second, they might have a higher average
income or simply a different attitude towards software pricing. By contrast, younger people
are used to get software in mobile app stores for small amounts of money.
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3.2.4 Laboratory Study: Efficiency and Usability

Following an iterative approach, we verified our findings of the online study with a smaller
number of participants in a hands-on study. Interacting with a prototype allows both quanti-
tative measurements and a more informed judgment on the individual interaction modalities.

Research Questions

We investigated the following research questions:

RQ1(b) Which object identification modality is superior in terms of efficiency?

RQ2(b) Which method is preferred by users in practical use of the MobiMed application?

RQ3(b) What usability and potential do people see for MobiMed after having used the
application (independent of modalities)?

Note that the research questions correlate with RQ1(a)–3(a) of the online study. However,
while the online survey revealed a priori findings (i.e., before subjects actually used the ap-
plication) of a large user group, in the lab study research questions were answered based
on experiments and questionnaires after subjects had used the application and interaction
modalities. Furthermore, RQ1(b) now addresses a quantitative comparison, while RQ1(a)
investigated qualitative differences.

RQ1 was evaluated in an experiment, RQ2 and RQ3 with a questionnaire after the experi-
ment.

Method

We conducted a repeated-measure, within-subjects experiment with four conditions. The
order of conditions was counterbalanced using a Latin square design [52].

Task

In each condition, subjects had to identify medication packages using a different modality
(touching, pointing, scanning, or text search). We placed 13 medication packages in a box, out
of which subjects had to identify 10 with each modality. Participants were asked to fetch one
package at a time out of the box (blind draws; the order was randomized) and to identify it
with MobiMed. After successful identification of 10 packages, they were put back in the box
and the condition was changed. In the text search condition, users were free to either type
drug name or identification number (PZN) which was printed below the bar code on each
package. The packages were augmented with NFC tags to work with the touching modality.

The experiment was conducted with a Samsung Nexus S phone. Prior to the experiment,
subjects were allowed to make themselves familiar with the phone and the MobiMed applica-
tion. The experiments were conducted at a table in a separated, brightly lit room at a medical
office. During the experiment, subjects were encouraged to express any thoughts that came
to their mind (“think aloud” method [328]). The experiment took about 30 minutes per
participant. A researcher was present during the entire time.
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Data Collection

For RQ1, we measured the task time (efficiency), which we define as the time interval be-
tween the beginning of the interaction and the appearance of the result screen on the smart-
phone. For each modality, subjects pressed a button to start the recognition, which started
a timer. The timer was stopped upon appearance of the drug’s description page. Thus, for
touching and scanning, task time was equivalent to the recognition time of the NFC tag or
the bar code. For pointing and text search, a result list was shown first, since these methods
can return ambiguous hits. In these cases, the task time consisted of the recognition time
plus the selection time of the correct list item. The timer was always stopped upon the first
appearance of the drug’s description screen, i.e., it was assumed that no corrections of the
user’s choice from the list were required.

For RQ2 (preference), we asked subjects how they liked each modality and whether they
would use it in the future. For RQ3 (usability), we used the System Usability Score (SUS)
[34] which consists of a set of 10 Likert items (1 = strongly disagree, 5 = strongly agree).

Participants

16 people (6 females, 10 males), aged between 22 and 69 years (M = 31, SD = 12) took
part in the evaluation. All of them had a mobile phone and used it regularly; 9 owned a
smartphone. No subject had physical disabilities that could have hindered the execution of
the demanded tasks (such as difficulties with holding the smartphone steadily). Participants
were recruited among acquaintances of some of the researchers; none were involved in the
project. Subjects did not receive monetary compensation for their participation.

Results (and Discussion)

RQ1: Efficiency

With one-way repeated-measure ANOVA [205], we found a significant effect of the modality
on task time (F(3, 45) = 91.21, p < 0.0001, partial η2 = 0.99). Subjects identified a drug
in averagely 1.8 s with the modality touching (SD = 3.7 s). This was significantly faster
than scanning (13.5 s, SD = 9.6 s), pointing (16.4 s, SD = 6.1 s) and text search (20.5 s,
SD = 22.9 s). The measurements are visualized in Figure 3.4a.

The largest standard deviations were observed for text search and scanning. The reason why
subjects struggled with scanning was presumably due to the problem that the focusing the
camera on small bar codes was difficult. The variance for text search reflects the diverging
typing capabilities of participants. With a maximum of 102.3 s, text search took more than
five times longer than the longest NFC identification (18.1 s). It could also be explained
by the length of some drug names, providing no upper bound for text input length. It is
worth to mention that these results were still obtained under “ideal” conditions, i.e. under
the assumption that subjects selected the correct item from the result list. In practice, the
need to correct accidental choices might entail even longer total times for the text search
modality. This might also be true for camera focus and image capture in non-optimal lighting
conditions.
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Figure 3.4: Left: Box plots indicating mean task times for object identification with MobiMed. Boxes
represent the interquartile range, whiskers represent extrema. Maxima for scanning
(61.7 s) and text search (102.3 s) were cut off for better readability. Right: Likert scale
averages on whether users liked a specific identification method and whether they would
use this method in the future (-3 = strongly disagree, 3 = strongly agree).

RQ2: User Preferences

Users’ preferences for modalities match task times, in that faster modalities were also rated
better (see Figure 3.4b).

On a 7-point Likert scale66 (-3 = strongly disagree, 3 = strongly agree), participants re-
sponded with 3.0 that they liked touching (SD = 0.0). Scanning was rated with 2.0
(SD = 1.2). Pointing received a rating of 1.4 (SD = 1.9) and text search was rated aver-
agely with 0.2 (SD = 2.0). When asked whether users would use the methods in future, the
order was the same, but at a lower level of agreement: Subjects agreed with 2.8 (SD = 0.4)
that they would like to use the touching method. The scores for scanning and pointing were
1.9 (SD = 1.0) and 0.6 (SD = 2.0), respectively. The wish to use text search was expressed
with -1.1 (SD = 1.8).

RQ3: Usability and Acceptance of MobiMed

MobiMed received a SUS score of 88.0 points out of 100 possible points. According to Bangor
et al. [15], SUS scores above 85.5 are considered as “excellent”. Hence, we can assume that
interaction with MobiMed does not entail major usability problems. Figure 3.5 illustrates the
SUS values for the individual items. Positive items were usually rated with a score of more
than 4, except the statement “I think that I would like to use this system frequently”, which was
rated with 3.3. Subjects averagely agreed with unfavorable items with a score of less than
1.4. Only one participant stated to “need support of a technical person” to use the system.

Acceptance and Comments In order to learn more on MobiMed’s utility in everyday life,
we asked people by which information sources they usually inform themselves about medica-
tions, their active ingredients, dosage, and side effects. 75% ask their doctor or pharmacist,
69% read the package insert. 56% stated to consult books or the internet, 13% use other

66As the response format approximates an interval-level measurement, we use mean values to report Likert
responses in this dissertation.
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Figure 3.5: Individual aspects of the System Usability Score (SUS) for MobiMed on a 5-point Likert
scale (1 = lowest, 5 =highest agreement with statements). Statements are abbreviated;
for exact wording, see [34].

sources. 75% of subjects use more than one single source to get information on drugs. After
the study, 14 out of 16 participants (88%) declared that they were interested to use MobiMed
as alternative source to inform themselves on drugs. Not only is this an indicator that sub-
jects appreciated the prototype but MobiMed was also the most popular individual source of
information of all other ones among the participants in this study.

Asked for desired additional features in MobiMed, subjects came up first and foremost with
shopping-related functions: price lookup, finding cheaper generic products, providing a list
of suppliers, and the possibility of direct order (except drugs that are only available by pre-
scription). They were also interested in active ingredient analysis: MobiMed could suggest
products that show fewer cross-correlated side effects for a specific combination of compo-
nents. One participant suggested a tool that helps diagnosing based on symptoms a user
enters. Several subjects were interested in a personalized medication management tool that
allows to manage drug intake, creates medication lists and reminds users of their pill intake.

3.2.5 Discussion and Lessons Learned

Having investigated advantages and disadvantages, efficiency and user acceptance of four
object identification modalities at the example of MobiMed, we summarize our findings and
observations in five main points. Results from both studies coincide in large parts, although
we found some divergences, which we also try to explain below.

Physical Mobile Interaction is Popular and Efficient In the lab study, subjects preferred
the modalities involving physical mobile interaction (touching, pointing, scanning) over con-
ventional text search, and would also prefer them in future use. Physical mobile interaction
modalities were faster for identifying drug packages than text search, and the standard devia-
tions were significantly lower. These findings motivate a consideration of alternative modali-
ties for mobile interaction, and especially physical interaction with real-world objects, making
the interaction with the physical world more effective and intuitive. While the capabilities of
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mobile devices were not sufficient few years ago to support, e.g., visual feature recognition
as employed in the pointing technique, they are now not a limiting factor any more.

Efficiency is an Important Criterion The preferences for the individual modalities correlate
with the measured task completion times (faster methods were ranked higher), which proves
that efficiency is an important criterion in the eyes of the users. Touching and scanning were
the fastest and most popular methods. Touching was significantly faster than scanning, and
also adopted more positively by subjects in the lab study.

Trying is Crucial In the online survey subjects answered differently: Almost half of them
stated that they liked scanning most, followed by text search. Here, subjects seemed to favor
modalities they already knew. While scanning and text search were familiar modalities, they
could imagine worse how touching using NFC or pointing using visual search would work.
An important “lesson learned” is here that when proposing a new interaction method, people
should have the possibility to try it.

Technological Change Enables Novel Interaction Modalities The processing power of
state-of-the-art mobile phones enables novel techniques like the feature-based recognition
modality (pointing). Such novel interaction methods can have a significant impact. As for
pointing, the fact that no marker augmentation is required opens up this method for a va-
riety of applications beyond the scenario we investigated in the presented experiment. In
the online survey, this potential was already recognized by subjects, mentioning that there
is no need to search for the bar code and that it is the most natural way of physical mobile
interaction.

In our study, pointing was still not as popular and not as fast as touching and scanning.
However, it almost reached the performance of scanning, and had no outliers like scanning due
to unreadable bar codes. Improved implementations and the continuous rise of processing
power and memory in mobile devices will further increase recognition speed and reliability
of visual search. Most importantly, what we learn here is that we should see the technological
progress as a chance to rethink which interaction methods are possible.

Modalities Must Be Chosen With Scenario Respondents identified various advantages and
disadvantages of the individual modalities. It became clear that the “best” interaction method
depends on the selected scenario. One example is the question whether a method should
return unambiguous results or a result list. For product comparisons, multiple results as
produced by visual search are desired, while reliable information for drug intake at home
requires a method that provides a unique result, e.g., scanning the bar code. Visual search
can be an interesting alternative when the bar code is not readable or invisible, e.g., when
drug packages are placed behind glass in the pharmacy, or information should be retrieved
from a picture, e.g., on a website. What we learn is that the matching between scenario
and used modality must be carefully made, and that it might be a good idea to offer differ-
ent ways to perform a task. It also turned out that performance is only one factor for user
preferences, which suggests future research on factors that influence the likability of physical
mobile interaction techniques for a specific scenario.

High Acceptance of the Medical Use Case Responses of both the online survey and the
lab study showed a high level of interest in medical apps, and in MobiMed in particular. This
might be related to an increased awareness for a healthy lifestyle (which includes interest in
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food supplements and ingredients), but also to a rising need for medication support in light of
the aging society. MobiMed was evaluated by subjects as helpful complement to other infor-
mation sources, such as the pharmacist’s advice. Users are less intimidated to consult a digital
app rather than to ask a doctor. Thus, especially for elderly people who have problems with
reading the (original) package insert, the adjustable font sizes of a mobile application could
provide a benefit. Thinking one step further, apps like MobiMed could provide individual
content (e.g., age-appropriate, easier to understand than the original package insert).

3.3 Automatic Physical Exercise Assessment

With our second example from the area of health and fitness, we look at smartphone-
supported personalized fitness training. Our choice of this application area is motivated by
the fact that regular physical exercising is crucial for a healthy lifestyle. Opposed to that, peo-
ple’s knowledge about safe and effective exercising is in many cases not sufficient. Moreover,
constant exercising requires a high level of motivation. As motivated in the beginning of this
chapter in Section 3.1, we see individualized feedback as a potential solution to this problem.

We propose the use of smartphones as digital personal trainers for physical exercising. Being
our daily companions, they are ideal for monitoring and supporting regular physical exer-
cising. What if they additionally could assess the exercise performance and give feedback
on how to improve? With their integrated sensing capabilities, they can supervise the ex-
ercising performance and track an exercising person’s improvement. Thereby, they become
the conceptual equivalent of a personal trainer. Compared to their human counterpart, digi-
tal personal trainers have the advantages of ubiquitous and permanent availability alongside
with negligible costs. Furthermore, privacy and dignity is better preserved by allowing for
exercising without permanent supervision of an unknown human fitness trainer and in a
nicer environment than a public gym. Arguably, automated skill assessment and individual-
ized feedback also increase and maintain motivation [231], which is crucial for effectiveness,
since training needs to be done regularly.

3.3.1 Use Case: GymSkill – A Multimodal, Personalized Fitness Coach

As use case, we developed GymSkill, a smartphone application for ubiquitous monitoring and
assessment of balance board exercises. The application we describe in the following can be
downloaded from Google Play67. The choice for balance board training was made for our
explanatory purpose, as this type of exercises is relatively easy to understand, and thereby
well-suited as conceptual example for automated motion analysis and skill assessment. The
idea of performance tracking can however be transferred to other, more complex sports and
sequences of movements (which will then possibly include a larger number of body-worn
sensors). In our case, no equipment besides a balance board as depicted in Figure 3.6a68 and
a smartphone is required, supporting our idea of ubiquitous training aid, be it at home, in the

67https://play.google.com/store/apps/details?id=de.tum.ei.vmi.fit,
accessed June 3, 2014

68see, e.g., http://www.thera-band.com/store/products.php?ProductID=17,
accessed June 3, 2014

https://play.google.com/store/apps/details?id=de.tum.ei.vmi.fit
http://www.thera-band.com/store/products.php?ProductID=17
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(a) A smartphone running the GymSkill
application attached to a balance board.

(b) A person performing a balance board exercise
supported by GymSkill

Figure 3.6: The smartphone’s accelerometer and magnetometer capture the training device’s motion
as a basis for GymSkill’s exercise skill assessment.

gym, inside or outside. Exercises that can be performed with balance boards address a wide
target group of all age classes [167]. Balance board exercise programs train, e.g., ankles,
the equilibrium sense, and contribute to the overall fitness. Of special interest in this chapter
is the (multimodal) interaction between the GymSkill application, the user, and the training
device.

GymSkill records and analyzes the performance of balance board exercises with relation to
different parameters. On that basis, the application is not only able to assess the exercise
quality, but also to provide details on how the exercising person can improve. This targeted,
individual feedback can point to problem areas or help identify exercises that need particular
improvement.

The GymSkill application is an example for multimodal interaction in several ways. During
the training, the smartphone with the GymSkill application running is attached to the balance
board. That way, the device can record all movements of the board, which are in turn per-
formed by the human user. The motion as input modality is mediated by the physical device
used. This is a form of implicit interaction (see Section 2.1.1). Motion here is interpreted as
input modality, feeding the application with training data while performing the exercise. To
further simplify the setup of GymSkill, we implemented the touching modality as presented
in a previous chapter of this dissertation (see Chapter 3.2) using NFC. Different training de-
vices with different levels of difficulty, e.g., rocker boards with one degree of freedom (DOF),
wobble boards with two DOF, or boards of different manufacturers, require a re-calibration
of the application, as the physical properties of these boards differ between each other. With
the touching modality, i.e., by simply placing the smartphone on a (NFC-augmented) balance
board, these calibration settings are made automatically. This is realized by IDs stored in the
NFC tags that are associated with manufacturer- and device-specific calibration data on the
phone. Moreover, the tag recognition launches the GymSkill application and loads previous
exercising programs where they have been interrupted, so that the effort for beginning a
training session is minimized. Our intention is to facilitate training in short slots of free time,
as people can immediately start exercising. Referring to the dimension of multimodality as
outlined in Section 2.1.1, GymSkill is an example for sequential multimodality (temporal
dimension).
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(a) Simple skill assessment (b) Exercise list (c) Enhanced assessment

Figure 3.7: User interface of the GymSkill application. (a) Skill assessment after exercising, based
on the evaluated sensor information. (b) In the exercise list, exercises that need further
training can easily be identified in the first version of the GymSkill prototype. (c) Global
score, detailed skill report on individual criteria and trends (small arrows) in the second
iteration of GymSkill.

3.3.2 Exercises and Ground Truth Data Acquisition

With the help of a sports medicine specialist, we developed a set of 20 consecutive balance
board exercises, comprising tilting and balancing movements in different poses (back and
forth, left and right, while sitting or standing, etc.). The exercises were designed such that
the level of difficulty was increasing when performing the entire set; but exercises are also
adequate for training individual parts of the body (e.g., for rehabilitation after surgery).

In order to gain training data for automatic exercise assessment, six persons (2 females, 4
males) aged from 25 to 33 years (M = 29, SD = 3) performed sessions of 20 balance board
exercises twice a day for a period of five days. In total, 1,200 exercise records were captured.
Therefore, a smartphone running the GymSkill application was attached to the balance board
and accelerometer and magnetometer data was recorded. In addition, the performances
were video-recorded. In cooperation with an expert clinician, we created a rating scheme
incorporating individual quality aspects such as regularity and movement angles, and used it
to assess the video-taped performances with the help of the expert. These assessments were
used as ground truth for the evaluation of our algorithm (see Section 3.3.5).

3.3.3 User Feedback

After the participants had trained five consecutive days with GymSkill, they answered a short
questionnaire. Since the prototype used for this study was not yet able to provide real-time
feedback, the questions did not cover the actual skill assessment, but rather the handling of
the application and its potential to motivate regular exercising.
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(a) Feedback on prototype after 5 days of training
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(b) Most attractive features

Figure 3.8: (a) After 5 days of training with a GymSkill prototype, users believe the app could motivate
and help to reach training goals faster. (b) Individual feedback and suggestions of exercises
were particularly attractive features. Answers given on a Likert Scale (1 = fully disagree,
5 = fully agree).

A summary of the results can be seen in Figure 3.8. Subjects stated that GymSkill could help
to reach a training goal faster with an average of 4.2 (SD = 1.3) on a 5-point Likert scale
(1 = fully disagree, 5 = fully agree). GymSkill’s potential to maintain long-term motivation
was confirmed with an average of 3.7 (SD = 1.0). Asked for the most attractive potential
features of a personal fitness trainer like GymSkill, individual exercise feedback was men-
tioned with 5.0 (SD = 0.0), followed by individual exercise suggestions (4.8, SD = 0.4).
Subjects stated that they would use the application regularly with averagely 3.6 (SD = 1.0).
The handling of the system (placing the phone on the board to record data) was evaluated as
easy (average agreement: 4.0, SD = 1.1); placing the phone on the board to record data was
apparently not perceived as problematic.

3.3.4 First Iteration: Principal Component Breakdown Analysis

The choice of the assessment method was made based on the requirements on the parameters
the system should be able to evaluate (quality measures). The list of quality measures was
created in cooperation with a sports medicine specialist and used for a manual assessment
(as mentioned above). Subsequently, in cooperation with the University of Newcastle [231],
an algorithm that builds on and extends principal component analysis (PCA), was developed,
which we call Principal Component Breakdown Analysis (PCBA). As we are in this thesis
interested in findings on the multimodal interaction with GymSkill, we will only describe the
algorithm in its basics. For a more detailed description see our previous GymSkill publications
[169, 231].

Quality Measures

The following quality measures cover the most important aspects of the performed motion.
The criteria are targeted at balance board exercises; however, some of the criteria can be
applied to other exercises that require recurrent movements with quality constraints related
to smoothness and efficiency. This entails that the PCBA algorithm is applicable and general-
izable for such exercises as well.
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(a) Iteration 1: The smartphone records sensor
data during exercising, which are processed by
a server after the training to generate skill
assessment.
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(b) Iteration 2: Data is processed on the phone for
real-time feedback as well as sophisticated
feedback addressing individual aspects after
the execution.

Figure 3.9: Iterations of the GymSkill application.

Smoothness and Continuity of Movement For continuous exercises, as they are typical for
gym-based training, it is important to maintain smooth motion. In order to remain relatively
independent of the particular exercise and to avoid the excessive use of prior knowledge, a
novel local assessment approach has been developed (see second iteration in Section 3.3.5).

Global Motion Quality Each exercise requires the user to perform particular motion se-
quences. The assessment on how well these motions were performed is crucial for the assess-
ment of the quality of the performed task.

Usage of Board’s Degrees of Freedom If a task requires the user to fully displace the board
along at least one degree of freedom, the fraction to which she uses this opportunity while
avoiding extreme postures (e.g., touching the ground) provides another valuable measure for
exercise performance.

Algorithm

The goal of the automated assessment is to estimate measures for the aforementioned aspects
and to combine them into a single performance metric.

As a basis for all calculations, our algorithm uses the orientation values recorded by the
smartphone (azimuth, pitch, roll). The basic idea of the performance analysis is to look
for unusual sections of the data, compared to the rest. We assume that sensor data for re-
occurring, smooth movement, as it is desired for the type of exercises we look at, should share
certain (unknown) statistical properties. Deviations in the data correspond to irregularities
(breakdowns), which occur, e.g., when the exercising person hesitates or gets stuck while
exercising. This brings us to the name Principal Component Breakdown Analysis.

This offline algorithm extracts portions of the data using a sliding window and projects them
to a lower-dimensional subspace. Its dimensionality is determined by the analysis of the
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eigenvalue spectrum. Using the lower-dimensional projection, the original frames are recon-
structed with a pre-defined variance threshold (typically 95%). The less regular the original
data is, the more eigenvectors the PCA models will require to preserve that amount of vari-
ance of the original data. The resulting reconstruction errors are then used as measure for
the quality of the underlying movement. By fixating the target dimensionality and implicitly
analyzing the modeled variance, an effective quality assessment is gained. Unlike standard
techniques for time-series analysis (e.g., [140, 252]) this approach processes sensor data of
arbitrary dimensionality. By that means, we avoid flattening the data to one-dimensional
sequences, which could lead to loss of potentially important information.

For unsupervised analysis, the “correct” frame length, i.e., the size of the neighborhood that
needs to be analyzed for discovering potential characteristic breakdowns, needs to be known.
Unfortunately, this information is typically not available for practical applications. To over-
come this dilemma, we employ a multi-scale approach by performing quality assessment on a
pyramidal adjacency representation of sensor values with increasing frame lengths, which is
comparable to the general idea of Wavelet analysis or the approach presented in [252]. This
approach focuses on self-similarity and breakdowns with relation to global characteristics and
yields pyramidal-shaped visualizations as depicted in Figure 3.10.

In addition to the local self-similarity analysis, we analyze how much the performed global
motion resembles the “optimal” motion (the “gold standard”). The motion axis that pro-
vides the dominant signal is estimated and an empirical distribution function is derived. This
empirical distribution is compared to an ideal distribution function (see red dotted line in
Figure 3.10). The parameters were motivated by insights provided by an expert clinician.
Alternatively, the performance of a skilled professional (or the average of multiple such per-
formances) can be used to empirically estimate the ideal behavior.

Implementation

GymSkill is designed as client-server system, consisting of the training app and the server-
based analysis component (see Figure 3.9a). The smartphone is attached to the training
device, so that all movements of the balance board can be recorded by the GymSkill applica-
tion.

The logged information is sent to a server, where an offline, retrospective exercise assessment
is performed in form of the above-described PCBA analysis. The calculated skill level sent
back to the mobile application and visualized as a three-step “thumbs up/thumbs down”
visual feedback. In addition, more sophisticated graph visualizations are generated on the
server (see Figure 3.10 for one example), which can be used for a later in-depth review. These
visualizations are generated with a MATLAB script and show the performance over time and
help the user identify specific problems. The server also generates textual feedback from the
analysis, supporting the intelligibility for users and providing effective recommendations for
further trainings (see Figure 3.10).

Moreover, basic feedback is already given during the performance. The therefore necessary
simple analysis methods are performed directly on the mobile device. The remaining number
of repetitions during an exercise is displayed, and the tilting angle of the board is graphically
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Figure 3.10: Detailed analysis of a performed exercise. The PCBA highlights differences in continuity
of the performed motion (local analysis), and discrepancies to the ideal motion (global
analysis). Quality breakdowns over time are highlighted with arrows. The quality as-
sessment does not only result in a global score, but also in detailed insights on how the
performance can be improved, which are extracted as textual feedback. Depiction based
on [231] (work in cooperation with University of Newcastle).

visualized. Excessive displacement (further than the optimal range) is signaled with red color
and with a warning sound.

Usability has played a major role for the development of the GymSkill application. The feed-
back during training is multimodal (sound and salient visual changes) to be peripherally per-
ceivable and to allow the user focus on the exercising task. The catalog of exercises contains
textual descriptions and images for a clear explanation of how an exercise must be performed.
The quality assessments of previous trials shown in the exercise list communicate at a glance
which exercises need further training (see left and middle image in 3.7).

Evaluation and Discussion

For a qualitative evaluation, we picked a random subset of exercise performances of dif-
ferently skilled persons (out of our ground truth data, see Section 3.3.2) and analyzed the
generated PCBA renderings opposed to their video recordings and (reference) expert assess-
ments. Figure 3.10 shows one example performance of a back-and-forth tilting exercise with
the duration of 22 seconds. The colored continuity diagram visualizes the overall smoothness
and exhibits three occurrences of breakdowns (yellowish/greenish pyramids highlighted with
arrows) in otherwise quite harmonic motion. The coloring of the last few seconds corresponds
to the participant stepping off the balance board. Further, the bottom left diagram compares
the observed motion to the (dotted red) ideal distribution function (normalized regarding
standard deviation) and unveils that the subject does not follow a harmonic motion. The
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bottom right diagram shows that not the whole degree of freedom available on the board was
used. Additionally, the mean of the recorded board positions is displaced from the calibrated
zero position, which indicates that the subject’s posture is not balanced (in this case, leaning
towards the front).

In our qualitative comparison, we found that the generated visualizations correctly communi-
cate the main aspects of the expert’s judgements on the particular exercises in the dimensions
continuity, general motion quality and angle usage. GymSkill proves suitable for assessing
the overall quality of exercises and unveils typical exercising errors like deficient smoothness
in movement or not using the available freedom of motion.

3.3.5 Second Iteration: Criteria-Based On-Device Assessment

With the second iteration of GymSkill, we redesigned the previously described system in terms
of comprehensibility, location- and time-independent training, and physical interaction with
the training device, incorporating the gathered feedback from the users.

First, the skill assessment is now conducted and presented to the user entirely on the mo-
bile phone. This accounts for the fact that motivation is increased when people can analyze
their trainings directly afterwards a performance and in situ. Previously, viewing the PCBA
renderings on a second screen had a higher potential for interrupting the training task. The
newly introduced on-device computation and presentation makes GymSkill not only indepen-
dent of an external server or internet connection, but also from a second screen to review the
assessment. This is a step towards ubiquitous exercising and training.

While the PCBA renderings of the previous version provided a good comprehensive overview
on a performance at a glance, we strived for a method to more intuitively address individual
qualities of performed exercises. Using a new approach for the assessment, sub-scores (see
Figure 3.7) make transparent more directly in which aspects the user can improve. That way,
we make the feedback more intelligible for average users, while the PCBA renderings required
prior knowledge.

In the following, we describe the quality measures and implementation of the on-device skill
assessment algorithm incorporated in the second iteration.

Quality Measures

The quality assessment consists of a weighted sum of sub-scores that are assigned for indi-
vidual quality measures. Perfect motion yields the maximal possible score; for suboptimal
behavior, scoring points are subtracted. The quality measures and weights (with slight dif-
ferences between tilting and balancing exercises) were specified with the help of an expert
clinician. In the following, we list the quality measures and briefly describe their implemen-
tation. For a more detailed explanation, see [169].

Touching the Ground/Balance The maximal possible score of 10 points is awarded if the
user stays within the desired deflection angles and succeeds to avoid extreme postures. This
means that the board is not tilted to the maximal possible angle of deflection (known from
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initial calibration). In that case, it is assumed that the edge of the board has touched the
ground, which is undesired. For each occurrence, one point is subtracted.

For balance exercises, a deviation from the neutral position by a threshold of more than ± 5◦

(user-adjustable) results in subtraction of one point.

Repetition Count/Exercise Length The score in this category is the ratio of actual and re-
quired exercise repetitions. In order to count repetitions and assess other cycle-based quality
factors, we detect and count zero crossings in the orientation data. Under the assumption
that we only look at one movement direction (which is the case for our exercise set), in the
ideal case, two zero crossings of the board’s orientation make one repetition. In practice,
when the user is unable to keep steady on one side, more than two zero crossings can occur
in one repetition. This problem was addressed by filtering in the orientation and time domain
with experimentally determined values. We consider values in the interval of ±2◦ deviation
from zero as zero crossing. Multiple zero crossings in an interval smaller than three samples
(corresponding to 90 ms) were unified to one.

For balance exercises, the ratio of actual and required exercise length is used for this score.

Pace This aspect scores the length of repetitions, whereat a periodic time between 0.9 s
and 2 s is considered as optimal, and periodic times shorter than 0.5 s or longer than 4.5 s
are scored with 0 points. This sub-score is not used for balance exercises.

Smoothness The smoothness value is calculated from the variance of the length of repe-
titions and the variance of distortions within repetitions. Distortions are detected by Fourier
spectrum analysis. While smooth motion of the balance board resembles a sine function, a
high number of components in the frequency domain can indicate tremors and other irregu-
larities. For balance exercises, the smoothness is expressed by the variance of angles during
the performance.

Overall Correctness In this sub-score, multiple criteria are bundled, such as the average
pitch and roll angle (i.e., whether the user tends to lean forward or backward) and aver-
age amplitudes. The features incorporated here correspond to the human understanding of
correct exercise execution.

Implementation

The algorithms to determine the above quality measures were implemented in Android as
part of the GymSkill application. The updated structure of the application is depicted in
Figure 3.9b. In contrast to the PCBA renderings, the feedback is now displayed directly on
the smartphone after the completion of each individual exercise. Consequently, the exercise
assessment presentation was changed and optimized for small screens (see right screenshot
in Figure 3.7). Besides the overall score (in form of a percentage value), the visualization
graphically shows the sub-scores, enabling to track down problem areas that need particular
attention when repeating the exercise. By small trend arrows, users can identify at a glance
which quality aspect has contributed to an improvement of the global assessment.
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Evaluation

The accuracy of our skill level scores was evaluated against the expert assessment on the
recorded training set in an exercise-by-exercise comparison. As some of the expert’s criteria
cannot be assessed automatically from the sensor data (e.g., body posture), the expert score
was recalculated after excluding these criteria.

A Pearson product-moment correlation coefficient (Pearson’s r) was computed to assess the
relationship between automatic and expert assessments. We found a positive correlation both
for dynamic (r = 0.51) and for static exercises (r = 0.76). The average difference (bias)
between the score calculated by our algorithm and the expert assessment was 3.48 points for
dynamic and 0.08 points for static exercises (in relation to a total score of 100 points). This
indicates the robustness of our algorithm and the validity of the employed scoring scheme.

The comparisons of the scores are summarized in Table 3.1. For dynamic exercises, the
assessment error was smaller than 10 points in 77.86% and smaller than 20 points in 94.27%
of the cases. Static exercise assessments showed an error of less than 10 points in 89.58% of
the cases, and of less than 15 points in 98.96%. The accuracy differed among the individual
criteria: While repetitions were detected very precisely with less than ±2 points error in
more than 96% of all cases, only about 75% of ground touches could be detected. The largest
differences were observed in pace; only about 68% of the automatically assessed exercises
had an error smaller than 2 points.

It should be mentioned that the evaluation was conducted on magnetometer data, as these
provided superior results than accelerometer data (see Table 3.2 as comparison). Since the
assessment was conducted using previously recorded data, the magnetometer sensors were
uncalibrated. Instead, we used the (calibrated) accelerometer data to calculate the offset to
the magnetic field components a posteriori. We also note that the device the experiment was
conducted with (a Samsung Nexus One) did not have a gyroscope. We are optimistic that
measurements with up-to-date hardware could yield even more satisfying results.

3.3.6 Discussion

We reported on the iterative development process of GymSkill, a system for individualized
assessment and feedback on physical exercising through sensor data. GymSkill is a repre-
sentative example for future mobile interactive applications that incorporate activity recogni-
tion, processing and advanced reasoning and interact with physical devices such as exercising
equipment. We proved the acceptance of such mobile assistance systems and their potential to
motivate users to regular activity in a five day study. Our automated skill assessment proved
to be accurate in an evaluation against expert assessments.

In the future, the system could be extended in various ways. More exercise types with more
degrees of freedom (circular movements) or with one board for each foot (individual left and
right foot movements) can be integrated. Coupling with devices like heart rate monitors,
e.g., using ANT+, would further increase the sensed database and allow for further, more
detailed physical and physiological assessments. GymSkill could be integrated with health
platforms [14, 281] and interact as remote component of a home infrastructure in relation
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bias |∆| < 10 points |∆| < 20 points correlation (Pearson’s r)
dynamic 3.48 77.86% 94.27% 0.51
static 0.08 89.58% 98.96% 0.76

Table 3.1: Match of assessment based on our algorithm with expert “reference” score (measured with
magnetometer data)

bias |∆| < 10 points |∆| < 15 points correlation (Pearson’s r)
dynamic 7.01 65.89% 90.10% 0.59
static 0.99 90.63% 97.92% 0.78

Table 3.2: Match of assessment based on our algorithm with expert “reference” score (measured with
accelerometer data)

bias: average of |automatic score – expert score)|
|∆| < n points: percentage of automatic scores this far from expert scores
correlation: Pearson’s product-moment correlation coefficient (Pearson’s r) [261]

with other health and fitness applications. The smartphone has the advantage of immedi-
ate feedback and time- and location-independent training. With our second iteration, we
addressed the limitations in feedback presentation on the small phone display by textual,
aspect-based feedback.

3.4 Summary and Lessons Learned

In this chapter, we have presented and evaluated approaches for personal fitness and ADL, in-
volving MUSED interaction. We now summarize the advantages of novel interaction methods
involving different modalities that we have found in our research.

Usability Improvement

MUSED interaction in the area of physical object identification (Chapter 3.2) showed superior
usability compared to the “standard method” (text search). The MUSED modalities touching,
pointing and scanning were not only faster and easier (especially with relation to complicated
medication names), but also evaluated as more intuitive and more natural by participants.
The target group of senior citizens can use these modalities to retrieve medication informa-
tion even if they would not be able to operate the (small) on-screen keyboard. This is a good
example for how MUSED interaction modalities can be door openers for today’s and tomor-
row’s seniors, who have a general understanding of mobile technology, but limited motor
or visual abilities. In the health and fitness domain (Chapter 3.3), we have presented with
GymSkill a personal training application with multimodal abilities. On the input side, the
touch modality using NFC simplifies the interaction with the training device. On the output
side, audio feedback improves the communication with the user while exercising when glanc-
ing at the screen is difficult. After the exercise, the visual modality is used to convey detailed
information.
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Activity Recognition

In the GymSkill use case, the user implicitly interacts with the device by performing the ex-
ercises. Unlike other mHealth applications that often confine to manual exercise logging (see
the review in Section 2.2.2), activity recognition can reduce the amount of explicit interac-
tion with the device. While prior research often investigated activity detection with wearable
sensors [16, 94, 175, 185], we exploit the multitude of sensors that are already available in
smartphones (see Section 2.1.2). We have exemplarily verified this approach for the use case
of gym exercising, but activity recognition could also leverage other sports domains. As an
example, evaluating acceleration and gyroscope data could classify the performed activity for
endurance sport logging apps, making a manual setting of the performed activity in the app
obsolete. The activity-related calorie expenditure can thereupon likewise be estimated. This
results in a far more accurate determination of burnt calories after cardio training, as also
pauses or speed changes are taken into account.

Level of Information
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Raw
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Sensor Data 
Processing
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Figure 3.11: Consecutive levels of data acquisition and processing realized in the GymSkill application

Domain-Specific Benefit

Besides improving the usability of tasks that could theoretically be performed in other ways,
MUSED interaction can also enable possibilities that would not be feasible otherwise. The skill
assessment on top of the activity recognition (see Figure 3.11) leverages instruction quality
and, as a consequence, fosters long-term motivation. As users can track their improvement
with the individual sub-scores and the global score, they can see that regular training “pays
off”. We believe this kind of feedback is more likely to provide intrinsic motivation that
helps establishing continuous engagement, unlike gamification elements where prior studies
have shown that people tend to lose interest after short periods of time [179]. Further, since
individual aspects of the exercise performance can be assessed, instructions become tailored
to the user. Hence, they are of more value to the user, since apps could identify aspects of
exercises with potential for improvement or indicate body parts that need particular training.
Based on this analysis, the app could suggest suitable exercises addressing “sticking points”
and create a tailored training plan. Training assistance would become more efficient and help
to reach goals faster.

Intelligent exercise assessment and monitoring is also relevant for elderly people, e.g., in an
AAL context [93]. The smartphone application could be a reminder and a motivational factor
to support physical activity, which is important for health risk reduction.



Chapter 4

University and Education

4.1 Problem Statement and Research Questions

As second large research area in mobile HCI, we look at a use case from the university and
education domain. To be more specific, our main example in this chapter is MobiDics, a di-
dactics tool which incorporates e-learning approaches to address teaching personnel in higher
education. We first elicit the requirements and expectations of the target group for such a tool.
Afterwards, we propose a solution to address the identified problems and goals with MUSED
interaction. This research is motivated by prior work, which has already shown that the learn-
ing process with multimodal elements becomes more playful (increasing fun while learning)
and more sustained [133, 182, 333].

In the second part of the chapter (see Section 4.4), we situate MobiDics in the context of three
other systems developed in the context of our research. With the scenario we depict, we give
an example for public-private interaction to illustrate how MUSED interaction blends with
devices that are part of a university environment, as researched in the domain of intelligent
environments [84, 280, 282]. Overall, the presented examples address people in the role
of teachers (e.g., professors, lecturers, tutors, teaching assistants), as well as in the role of
learners (e.g., students).

The systems presented in Chapters 3, 4 and 5 were not only chosen to show the benefit of
MUSED interaction in a diverse set application areas. With our selection of examples, we
also aim to span the design space in terms of application scopes. Unlike the personal training
and ADL use cases in Chapter 3, the use case presented here is settled in a semi-public scope.
This term shall denote that the degree of seclusion is not as high as at home, but also not
as low as at an airport or a shopping mall (such environments will be subject of Chapter
5). Representing an intermediate state between private and public interaction, the following
constellations on the public-private continuum are addressed in this chapter:

• Individual users interact over their (mobile) private devices with each other (mobile
interaction; private interaction in public space – addressed in Section 4.3)

• Individual users interact over their private device with a public device (public-private
interaction – addressed in Section 4.4)

• Many users interact with one public device or system (public interaction) one at a time
or in parallel, e.g., with a public terminal, multimedia installation, etc. (addressed in
Section 4.4)

71
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The high-level research question answered in this chapter is:

• How can university employees and students benefit from MUSED interfaces in teaching
and learning environments?

This chapter is partly based on papers we have published between 2011 and 2014 [168, 211,
219, 220, 234, 235].

4.2 Survey of Demand

As a starting point, we conducted a survey of demand for both the target group of educators
and of learners. The goal of these requirements analyses was to assess which tools and
possibilities the target group misses and which technical solutions they expect.

Requirements for Students and University Associates

We conducted an online survey among students and employees (academic and non-academic
staff) at TUM (Technische Universität München) and LMU (Ludwig-Maximilians-Universität
München). Participants were recruited via mailing lists (mainly for the staff), a university-
internal discussion board, and by social networks. 93 subjects took part in the survey, whereof
60 were students. The survey investigated three parts:

• the current usage of university-related services,

• the usage of mobile Internet as enabler for mobile interaction, and

• the desired access to university services through mobile interaction.

In the survey, we presented a list of available online services at TUM. Not all of these services
are dedicated for mobile device access (e.g., in that they provide a mobile website version or
a native app). Out of the investigated services, the most frequently regularly used ones were
the canteen menu (66%), the course management service (49%) and the room finder service
(43%). When we aggregate regular and occasional use, room finder and course management
are the post popular services with 84% and 81%. The results show that particularly the
interactive tools are popular, while rather static websites such as the main web portal or the
library site are known, but rarely used (24% and 25%). We subsequently asked subjects which
services they would particularly like to access with mobile devices. Here, the highest interest
is attested to a mobile room finder and an indoor navigation service (61% would “like to try”,
and another 15% would “maybe try” both systems). Furthermore (in the following, we use
aggregated ratings of “like to try” and “maybe try”), survey participants would like to browse
the library (57%), communicate with other students via Instant Messaging (50%) and locate
them similar to Foursquare (29%), access the university website (46%) and be able to reserve
rooms for learning (44%).

These ratings strongly differ from actual usage: For example, only 9% state to access the
university website with their mobile device, and only 15% actually use the room finder service
with their smartphone (although the service would probably be especially needed on the go).
Only 6% actually send instant messages to fellow students, although half of all surveyed
people would be interested in doing so.
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How can this be explained? Given that the stationary usage of services is stronger than the
mobile usage [168], we believe that there is a demand for mobile adaptations of university
services. Current implementations are not well suited for small screens, touch-based interac-
tion with a mobile device, and spontaneous use (some require a login, which is cumbersome
with on-screen keyboards). Moreover, subjects show interest for novel applications that are
not yet offered by the university, such as indoor navigation, locating students, and paying with
the mobile phone at the university. We deduce a potential benefit for MUSED applications for
the following reasons:

• They simplify and improve the interaction with university services on a mobile device,
compared to “standard interfaces” that are not optimized for mobile usage.

• Sensors allow, e.g., context inference and thus better support services that are inherently
context-dependent and predestined for mobile use, such as a room finder application.
Sensor-driven interaction thus not only raises the mobile version of a service to the same
level as the stationary interaction, but enables an even superior experience.

• MUSED interaction enables completely new applications where no stationary equiva-
lent has existed before. This includes, e.g., on-campus mobile payment involving a
NFC-capable phone, location-based search and navigation to on-campus points of inter-
est (POI), enabled by an indoor localization system (see Chapter 5), or privacy-aware
authentication to university services in a public space. Such services need to go along
with appropriate user interfaces that keep their usage simple.

A comprehensive scenario complying to this vision is depicted in Section 4.4.

Requirements for University Educators

In a next step, in order to assess the requirements particularly for the MobiDics application
we introduced at the beginning of this chapter, we interviewed people involved in university
education (professors, lecturers, tutors, etc.) about their usage of didactic methods. We
asked how they acquire knowledge about teaching methods and what problems they face in
the practical application of teaching methods. The interview was conducted as online survey
where 103 people (53 females, 50 males) took part. The average age was 33 years (SD = 9).
The interviewees were mainly Ph.D. students (43%), professors (21%) and postdocs (15%),
but also instructors and trainers, and they came from diverse subject areas (e.g., engineering,
natural science, social science, or economics). 92% of subjects are smartphone owners and
use it regularly, so that no technical barriers would prevent the use of a mobile didactics
application.

From the free-text answers received in the survey, we distilled the following problems subjects
have in the context of didactic method usage.

• They miss profound knowledge about the variety of didactic methods.

• Currently, people extract their information from didactic books, the Internet, and ad-
vanced training courses. For unexperienced docents, these information sources are ex-
perienced as too general; they do not address the very specific individual teaching situ-
ations. For example, when methods are described in the context of human disciplines,
they are unsure whether they work for engineering subjects as well.
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• Particularly young docents (e.g., student tutors, Ph.D. students) have little experience
with teaching, and hence have had few opportunities to try or practice the use of di-
dactic methods. Thus, they lack self-assuring feedback on the success of a particular
method (by practicing it hands-on) for their individual teaching context.

• Since many docents are active researchers beside teaching, the remaining preparation
time for courses is often sparse. If the benefit is unknown, the elaboration of new teach-
ing concepts might be abandoned after a cost-benefit calculation, even before trying.

4.3 MobiDics – A Context-Sensitive Mobile Learning Tool

In the following, we describe the concept and implementation of MobiDics (short for Mobile
Didactics), a context-based learning tool to address the problems unveiled in the requirements
analysis. MobiDics has the following goals:

• Provide an overview of established didactic methods and their appropriate use in dif-
ferent teaching situations to activate students and to support them at every part of the
learning process

• Achieve a deeper understanding of didactic methods by supplemental (and multime-
dial) content that is not available in traditional learning media like books

• Reduce the time for course preparation by more effective research of appropriate didac-
tic methods in the planning phase

• Facilitate ad-hoc changes of the teaching concept in the classroom by adapting to the
current context (such as a different equipment due to a room change, or the mood of
the students during the lecture)

• Proactively suggest suitable teaching methods based on the individual teaching profile
and personal preferences

• Enable individualized advanced training in self-study, focused on and adapted to the
needs of the teaching person, independent of location and time

• Promote the exchange between docents on their experiences and on the success of
having used a didactic method in a certain context

• Innovate professional education and training and offer mobile learning facilities as en-
hancement to traditional course-based training programs

• Reach target groups that would be addressable not as good without mobile learning

Pursuing these goals, MobiDics is a “train the trainer” application, with the ultimate objective
to improve the quality of university teaching.
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4.3.1 Didactic Background

For the creation of the learning content for MobiDics, we collaborated with PROFiL69,
Sprachraum70 and the Centre for Learning and Teaching in Higher Education (Carl-von-
Linde-Akademie/ProLehre71) which are professional training institutions at TUM and LMU.

MobiDics holds a collection of well-established, field-tested didactic methods, which repre-
sent a classic link between didactic background concepts and formulated educational goals in
class. Well-considered use of specific didactic methods plays an important role in learning pro-
cesses [188, 269]. Such methods can, e.g., activate students and thereby contribute to more
profound and sustainable learning experiences [100]. At the university, where lessons and
individual units are often longer and comprise more content than at schools, didactic meth-
ods have particularly high relevance in supporting the learning processes and their outcome.
They can support individual learning phases (e.g., knowledge transfer, repetition, assurance
of understanding), and thus increase the effectiveness of university education.

In MobiDics, didactic methods are organized based on a two-dimensional matrix where one
dimension is goal-based, and the other is based on the social form.

Goal-Based Dimension

Learning goals at the university often have a cognitive character. In order to apply the ac-
quired knowledge, often additional social and affective goals are required [100]. The first
classification dimension thus supports multiple of these goals and is named after the German
acronym ARIVA (also known as AVIVA). It was developed at TU Zurich [154] and classifies
didactic methods according to the learning phase it which they can be applied. The ARIVA/A-
VIVA scheme comprises five phases:

• Alignment (German: “Ausrichtung”): Introduction and motivation of the learning con-
tent, raise of attention, match with the learner’s world and experiences

• Reactivation (German: “Reaktivierung” or “Vorwissen aktivieren”): Activation of pre-
vious knowledge to provide a link for embedding the new learning content

• Information (German: “Information”): Active or passive knowledge acquisition, con-
veying of the learning content

• Processing (German: “Verarbeitung”): Deeper, more extensive and reflective process-
ing of the content, e.g., by answering additional questions, integrating the learned con-
tent in larger contexts

• Analysis (German: “Auswertung”): Rehearsal of the learned content, answering of open
questions that might have occurred in the processing phase, meta-analysis of the learn-
ing methodology

A “meta” category Atmosphere (German: “Lernatmosphäre fördern”) complements the five
phases. This category has the goal of making course members become acquainted with each
other, creating team spirit and livening up the course. Each of the five ARIVA/AVIVA phases

69http://www.profil.uni-muenchen.de, Last accessed May 28, 2014
70http://www.sprachraum.uni-muenchen.de, Last accessed May 28, 2014
71http://www.mcts.tum.de/cvl-a/, Last visited May 28, 2014

http://www.profil.uni-muenchen.de
http://www.sprachraum.uni-muenchen.de
http://www.mcts.tum.de/cvl-a/
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is divided into sub-phases to allow an even finer adjustment of suitable methods to the de-
sired learning outcome. The classification along this dimension ensures that each method
incorporates and can be assigned to a clearly defined educational goal.

Social Form Dimension

The above phases are combined with different classroom formats, i.e., forms of cooperation
and interaction of lecturer and students (the so-called social form). Examples of social forms
are: work in pairs, small groups of three/four/five people, discussion in the plenum (entire
class), or classic lecture style (also known as “chalk-and-talk teaching” [61] with no interac-
tivity of the students). By respecting this dimension, teachers can, e.g., choose methods with
alternating lecture, plenum, and group work phases to support maintenance of attention over
longer periods of time.

Along these two structured dimensions, learning settings can be formalized and organized in
form of didactic methods. This allows teachers a high flexibility to create learning situations
appropriate for their needs. At the same time, they can be sure to create a sustained learning
experience, as all methods are didactically well founded. When this dissertation was writ-
ten, the MobiDics database contained approximately 100 didactic methods and is constantly
growing.

4.3.2 Implementation

Web 
Application/

Method 
Recommender

Didactic 
Method 

Database

Native Application 
(Phone/Tablet)

Browser
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Response

Local 
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HTTPS
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Figure 4.1: A schematic overview of the MobiDics infrastructure. MobiDics consists of a mobile An-
droid application and a web interface, which both synchronize with the web server and
database of didactic methods in the background.

System Structure

The MobiDics infrastructure consists of a server, a web interface and a mobile client appli-
cation, which are illustrated in Figure 4.1. The didactic content is stored in a SQL database
on the server and can be accessed via the native mobile application from a smartphone or
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tablet (implemented in Android), and via a web application, implemented with AJAX (Asyn-
chronous JavaScript and XML) and PHP. Both native and web application provide access to
the entire functionality of MobiDics, but differ in their user interface and interaction meth-
ods. While the browser-based interface focuses on classical mouse and keyboard interaction
(also referred to as WIMP [326]: Windows, Icons, Menus, Pointers), the app interface makes
use of interaction techniques like swiping, pinching, or shaking (a detailed description of the
app’s functionality follows in the next section). The web application, accessed from desktop
or laptop computer, provides more screen space and thus allows a more comfortable naviga-
tion in non-mobile settings (e.g., in the office or at home). It is also the convenient way to
enter longer portions of text, e.g., for commenting on methods or uploading own content.
The mobile app supports a wide variety and a large heterogeneity of devices (smartphones,
tablets of different sizes) and, thereby, also scenarios in which MobiDics can be used (e.g., in
public transportation, during waiting times, or in class). The user interface layout adapts to
different screen sizes and ratios for optimal use of the available space. A particular advantage
of the mobile app is that it can be used offline. Each time a user starts the client appli-
cation or logs into the web interface, she is authenticated with the server and changes are
synchronized. Synchronization works in two directions: Both new methods and comments
are downloaded to the client, and local changes are uploaded to the server and delivered to
other users. When the client application is used offline, the most recent local state is used. In-
formation is exchanged between server and mobile application in an XML (Extended Markup
Language)-based data format over a secure HTTPS (Hypertext Transfer Protocol Secure) con-
nection.

The screenshots in Figure 4.2 illustrate the user interface of app and web interface.

(a) Android application (b) Web application

Figure 4.2: The Android and web version of the MobiDics system, showing the main menu with the
collection of didactic methods.
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Functionality

The heart of MobiDics is the collection of didactic methods, comprising extensive descriptions
of their appropriate and correct execution, examples, visual support material, hints from di-
dactic experts, and potential problems (e.g., what to do when students are not participating
as intended). A gallery mode illustrates, e.g., constellations for group phases with sketches
and optional interactive material (animations, videos). The didactic methods can be sorted
by name, actuality, relevance (which is derived from the recency and the frequency of ac-
cess), and popularity, based on ratings from other users. Besides the organization along the
dimensions of social form and learning phase (see Section 4.3.1), each method is described
and classified by further criteria (ideal group size, required material or equipment to apply
the method, time the method consumes, applicability for different course types, etc.). Users
can create their own methods and choose if they share them with the community or mark
them as private. With SQL queries, even complex searches with multiple conditions can be
performed quickly and efficiently in a large amount of data. Docents can use these filters to
narrow down their method search to, e.g., “a method for the reactivation phase that does not
take more than 20 minutes, applicable for courses with more than 50 students”.

Context-Sensitive Integration in Teaching and Learning Environments

As representative of sensor-driven interaction, MobiDics builds on context information teach-
ing methods can be adapted to. Context in our particular case means the classroom (size,
amount of freely usable space, available equipment like flip chart, whiteboard, etc.), course
type, or time. The context plays an important role for the choice of didactic methods. For
example, a method might require space for group activity or a certain equipment, or it might
not be optimal for an evening lecture when students might be rather tired. With MobiDics,
the docent can dynamically revise didactic concepts even during a short break in a lecture
based on such context-specific conditions using the criteria-based classification. Furthermore,
context inference can proactively respect such conceptual factors. The time and course type
can be inferred from the personal schedule stored in the calendar or by an API to the univer-
sity’s room management platform (e.g., TUMOnline72 at TUM). Such databases also contain
information on room sizes and certain types of relevant equipment (e.g., whether chairs can
be moved around for group work or the room has fixed rows). By an optional interface to this
database, MobiDics can dynamically adapt its content to the available facilities for a planned
lecture and context-sensitively react on, e.g., room changes. Moreover, MobiDics can retrieve
a location estimate from the phone platform’s location provider, so that it can be coupled with
an indoor localization service (e.g., visual [225] or DECT [164] localization) or other location
providers implemented on the smartphone.

Collaborative Learning and Exchange of Experience

MobiDics emphasizes collaborative learning, which is not yet naturally included in e-learning
applications, although it has been proven effective in the real world [35]. In advanced train-
ing courses, participants often have very different backgrounds, previous knowledge, and
teaching interests. Due to this heterogeneity, the course program hardly matches perfectly
all participants’ needs expectations. By contrast, the large user base of an e-learning system

72https://campus.tum.de/tumonline, accessed April 16, 2014

https://campus.tum.de/tumonline
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has a greater potential to find peers with similar interests or level of knowledge. MobiDics
integrates possibilities for peer exchange in various ways:

• Users can upload own didactic methods and share their didactic knowledge with peers.
This is an example where user-generated content complements the existing database
and thus captures available knowledge of practical application of the theoretic content.

• Users can rate methods (with 1 to 5 stars), establishing a democratic, crowd-based
“quality control” of user-generated content. The application of methods in different
domains and subjects might yield different ratings, which makes them a benchmark for
applicability in a certain discipline. If, e.g., the highest amount of good ratings for a
method stems from engineers, this can tell with a certain reliability that this didactic
method is suitable for engineering courses.

• Users can comment methods, which opens up discussions and professional exchange.
Docents can share their experiences, ask questions or report solutions to problems or
questions asked by other MobiDics users. Comments can be highlighted (“liked”), mak-
ing useful contributions more visible for other users.

• MobiDics can by request recommend methods that might be useful to users based on
their profile (taught courses, discipline), on their own and on other users’ ratings of
methods. The recommender algorithm is based on a combination of content-based
[260] and collaborative filtering [183, 296]. The recommendations foster exploration
of new teaching methods and at the same time keep up the likelihood that the newly
tried concepts make didactically sense for the teaching situation.

Users of MobiDics have a profile that can (on a voluntary basis) contain information like
the age, profession, discipline and taught courses, which is used for method filtering (“meth-
ods applied in selected subjects or courses”), or help estimating the expertise of a commenter
through the user profile information (“experienced professor teaching for 20 years”).

Multilingualism

MobiDics seamlessly supports multiple languages (currently translated to German and En-
glish, and prepared for further translations), taking account for the fact that many universi-
ties (including TUM) offer courses in different languages in which, therefore, also the didactic
methods should be available. Users can rank available languages to their preferences so that
the app will display method descriptions in the language they master best. This is particularly
important since didactic concepts and wordings are often difficult to translate and known
under their original terms in the didactic community. MobiDics thereby fosters the communi-
cation and exchange of didactic concepts between docents of different mother tongues.

4.3.3 Evaluation

MobiDics was evaluated in several stages, pursuing different goals. We briefly summarize the
evaluations and their respective objectives in the following.
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Interest in Functionality

As a first step, we conducted an online evaluation, where an early version of the prototype
was shown in a video. The goal of this survey was to get large-scale feedback on the general
acceptance of a tool like MobiDics, and to learn which features are particularly important to
the target group. 93 participants took part in the survey; they were the same participants
of the requirements analysis described in Section 4.2. After having watched the video, 25%
stated that they would use MobiDics “very likely”, another 25% would use it “likely”. 35%
considered the usage rather unlikely, the rest would not use it (these statistics are based on
subjects who stated in the survey to own a smartphone).

Furthermore, we asked subjects whether they would use particular features. Figure 4.3 shows
the popularity of selected features of the prototype. Most popular were the method search
based on various criteria (92%), the examples for each method (80%) and the multimedial
explanations (69%). 63% were interested in the expert knowledge. These are particularly
features unique to MobiDics, compared to alternative didactics information sources. These
numbers are encouraging and we believe this shows the demand for tool support that goes
beyond the possibilities of a paper-based method catalog.
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Figure 4.3: Selected features of MobiDics, ranked by popularity with potential users

Benefits for Teaching

In a second and a third step, we conducted two follow-up studies with a more sophisticated
version of MobiDics. As both studies provide insights in the field of didactics, but do not
focus on the (multimodal) interaction perspective, we only summarize them briefly in this
work, and refer to the respective publications for more details [168, 250]. They are, how-
ever, important to mention, as they outline the success in achieving the (didactic) goals of
MobiDics.

The first follow-up study intended to open up the design space for method systematization
within MobiDics. In a qualitative survey, we determined factors that are, according to the
participants, important for good teaching, and we asked participants about concerns in their
own teaching. Based on the resulting discrepancy (subjects know about the benefit of didactic
methods, but do not or rarely apply them), we generated ideas towards a “concern-based”
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approach of method selection. Example questions are: “Which method can I choose when I
am nervous?” or “I want exchange between students, but am concerned that students do not
participate”. This study was conducted with 47 docents in higher education, recruited from
the academic training center at LMU, TUM, and other Bavarian universities. The results are
described in detail in a journal paper we published in 2013 [168].

The other study was a long-term study to investigate the usage and the benefit of MobiDics
in the real world and in everyday teaching. 22 subjects took part in this experiment. In
order to monitor how MobiDics was used over the study period of four weeks, we used the
self-developed SERENA logging framework [228], which we describe in detail in Section 7.3.
Between start and end of the study period, a significant increase in knowledge about didactic
methods and in self-confidence when applying them in class could be shown. This study was
conducted in the course of a diploma thesis the author has supervised, which the reader is
referred to for more details [250].

4.4 Integration in Learning and Teaching Environments

Let us now take a wider perspective and discuss the integration of the previously presented
MobiDics application in a learning and teaching environment. While MobiDics addressed
university educators’ requirements, we now also refer back to the requirements for students
that we determined in Section 4.2. We also come back to the distinction of interaction (public,
private, and public-private), as we have made it at the beginning of this chapter. The vision
we report on amalgamates these interaction types and also demonstrates the interplay of
different interaction modalities.

Besides MobiDics, we incorporate three other systems in the scenario we describe, which are
part of a technology-enhanced university environment.

• IRINA (Interactive Room INformation and Access system) is a touch-enabled digital
door sign that is able to run various applications. Users can, for example, retrieve room
occupancy information, reserve a room, or evaluate courses. IRINA is deployed in a
pilot program73 at selected lecture rooms at the Department of Electrical Engineering
and Information Technology at TUM, and under active development in our research
group and described by Roalter et al. [277, 278, 280].

• Ubiversity (Ubiquitous University) is a location-based social network that allows to
locate friends within the university campus using a smartphone app. Unlike, e.g.,
Foursquare, the scope of Ubiversity is per definition limited to a local area and user
group (university members), addressing data protection and privacy concerns. For fur-
ther details, see our publication on Ubiversity [220].

• VMI Mensa74 is a location-aware canteen menu application that displays the closest
cafeteria or canteen, and informs on current menus and special offers, under considera-
tion of individual requirements (accessibility options, ingredients, ...). The VMI Mensa

73https://irina.ei.tum.de, accessed June 6, 2014
74https://play.google.com/store/apps/details?id=de.tum.ei.lmt.vmi.mensa,

accessed June 24, 2014

https://irina.ei.tum.de
https://play.google.com/store/apps/details?id=de.tum.ei.lmt.vmi.mensa
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application has been used as a vehicle to investigate large-scale app store deployment
and update behavior of users [230] (see Section 7.5).

In order to illustrate the interplay of these systems, our scenario describes an exemplary
university day, based on two personae [60], John and Emma. John is a 1st year bachelor
electrical engineering student and unfamiliar with the university campus. He has already
found some friends visiting the same lectures, with whom he often goes to lunch and works
on exercise sheets. Emma is an assistant professor giving her first lecture in circuit theory
in this semester. She has gained some theoretical knowledge about didactics and course
planning, but she is curious how her concept will work out in practice.

Monday morning, Emma has prepared an interactive part for her lecture, consist-
ing of a group activity method where the groups shall summarize the results of
short work assignments on flip charts. When she arrives at the lecture hall 20 min-
utes before the start of the course, she notices that the room was needed on short
notice for an exam, and her lecture was moved to another room. She leaves a mes-
sage at the digital door sign [278] of the lecture hall that the course has moved.
In the replacement room, she finds that no flip charts are available, which would
however be required for her planned group activity. She will thus have to re-plan
a part of her lecture concept for today. She opens up MobiDics on her smart-
phone, and the application context-sensitively recognizes in which room Emma is
currently in. Based on the room information database, MobiDics knows about the
available equipment and suggests an alternative interactive method called “Buzz
Group”, where students exchange their results in groups of two, without the need
for flip charts.

Meanwhile, the first students arrive at the lecture hall and see Emma’s note on the
room change. Among them is John. As he is not yet familiar with the university
building, he does not know where the new room is located. He touches the digital
door sign to retrieve a route description to the new lecture hall. Next to the route
description, a button is available to generate and display a QR code. John can
scan the code with his smartphone. This brings the route description onto his
device, so that he can easily find the new lecture hall. Using his visual navigation
app [225], he finds easily his way to the new location.

After the course is over, students have the possibility to give feedback on the
digital door sign before they leave the lecture hall. John states that he liked the
course and especially the interactive group phase, before he goes to lunch. John is
a vegetarian, so he uses his location-based canteen app, VMI Mensa, to check for
suitable menus around the campus. The app locates the cafeteria nearest to his
current position on campus, and informs him that there a vegetarian pasta dish is
offered.

In the afternoon, John wants to find his friends to discuss the new Analysis exer-
cise assignment together. He uses the Ubiversity app to locate his learning group.
In the app, he sees that they have made a “check-in” at the computer lab to in-
dicate their presence [166], so he goes there to find them. As the lab is quite
noisy, the students leave the room to find a quiet place where they can discuss
their homework. John remembers that the lecture hall was free after the course
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had ended. They go back to the lecture hall and check on the digital door sign
that the room is free for the next two hours. Using the reservation button on the
door sign, John books the room for him and his friends as a learning room. To
confirm the booking process, John does not have to enter personal credentials on
the door sign. A QR code is generated at the end of the reservation process that
John scans with his smartphone. On his phone, he can securely authenticate with
his university user account. The door is unlocked automatically and John and his
friends can learn uninterruptedly.

At the same time, Emma holds an afternoon C++ programming tutorial. As she
notices that some of her students are sleepy and inattentive, she would like to re-
active the class using a method to generate ideas for the upcoming project week.
In a five-minute break, she uses MobiDics to spontaneously find a suitable activat-
ing method. By shaking her smartphone, MobiDics suggests her random methods,
but all matching her specified didactic goal. The app automatically considers the
requirements imposed by her course type, size, time (all deduced from her per-
sonal schedule), so that she can be sure the suggested methods are applicable in
her current teaching setting.

This scenario shows us that the modes of interaction with the involved applications and ser-
vices plays an important role for the practical applicability and integration in everyday uni-
versity life. For example, the Gesture modality (shake gesture) for MobiDics can provide fast
access to relevant content for docents when they are in a situation where time is spare. The
Scan modality in the context of public-private device interaction (when booking a room with
the IRINA door sign via a QR code) reduces privacy concerns when personal credentials are
required [280]. We also note that context, in different forms (e.g., time and especially loca-
tion), plays an important role. Since the location is determined by sensors (e.g., by WLAN
localization in case of Ubiversity, or by GPS/cell localization in case of VMI Mensa), we can
classify such systems as sensor-based user interaction. Here is a summary of the different
types of sensor-driven and multimodal interaction that made possible the interplay of ser-
vices in this scenario:

• Entering a message or giving feedback on the IRINA digital door sign using fingers on a
touchscreen (Touch modality, public interaction)

• Getting location-dependent method recommendations from MobiDics (sensor-based user
interaction, private interaction)

• Requesting directions to the new lecture hall from IRINA using the touchscreen, and
transferring the route description to the smartphone by scanning a visual code (Touch
and Scan modality, public-private interaction)

• Getting location-dependent lunch information with the VMI Mensa app (sensor-based
user interaction, private interaction)

• Finding colleagues with the Ubiversity app (sensor-based user interaction, private inter-
action)

• Booking a learning room with the mobile phone via IRINA (Touch and Scan modality,
public-private interaction)
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• Requesting course-specific didactic methods from MobiDics, using touch gestures to
navigate between methods and shaking the device to get random suggestions (Gesture
modality, sensor-based user interaction, private interaction)

The determination of a user’s position is here an especially important component, laying the
basis for many services and applications using location information. We will therefore inves-
tigate the problem of indoor localization and navigation in more detail in the next chapter.



Chapter 5

Indoor Navigation

5.1 Problem Statement and Research Questions

This chapter focuses on MUSED interaction in the research area of indoor navigation. After
pedestrian navigation outdoors has meanwhile become ubiquitous, localizing and guiding
the user inside buildings is considered as one of current top tech trends75. Uses cases for
indoor navigation applications can be, e.g., in airports, hospitals, hotels, shopping malls,
convention centers, or museums. Such systems can not only provide users with directions
to their departure gate, room, or store. Locating a device, associated with a user profile
(and accordingly the user’s goals and interests), is the basis for providing information about
the environment, e.g., for informing on points of interest, museum exhibits, nearby offers,
targeted advertising, and much more.

Reliable and usable indoor navigation is, however, not yet a scientifically solved problem. Out
of the various indoor localization methods, we have identified vision-based localization as one
particularly promising approach in Section 2.2.4. Using the visual modality to determine the
location, this method works very similar to the way humans orient themselves and is a good
example for multimodal and sensor-driven systems.

As the focus of this dissertation is not on the technical foundations for indoor localization,
but on user interfaces and interaction methods, we describe suitable MUSED interfaces and
interaction for visual localization. We will outline in this chapter that visual localization
entails challenges that are not met by standard navigation system interfaces (we have given
an overview in Section 2.2.4). We argue that multimodal elements in the user interface are
especially well-suited to address these challenges and to adapt to the special properties of the
visual localization technique.

The high-level research questions this chapter investigates are:

• How can the challenges of visual indoor localization be addressed by a MUSED user
interface?

• How can multimodal elements be used to improve the user experience?

We report on our iterative research in the area of indoor navigation, incorporating four stages
and several prototypes, and multiple user studies conducted online and in the real world.

75http://www.allaboutapps.at/2014/01/sieben-mobile-trends-2014-wearable-tech-
indoor-navigation-und-mobile-banking-erobern-smartphone-co/, accessed June 10, 2014
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This chapter is partly based on papers we have published between 2012 and 2014 [224–
227, 229].

5.2 A Multimodal Interface Concept for Visual Indoor Navigation

The visual localization technique exposes some differences to other localization methods. Let
us first identify what this means for user interfaces employed in conjunction with this tech-
nique. Subsequently, we introduce our novel UI concept, integrating augmented and virtual
reality elements, and describe how they address the particularities of visual localization.

5.2.1 Challenges for User Interfaces

The UI challenges are closely related to the challenges emerging from the visual localization
technique itself (see Section 2.2.4 for the explanation of the underlying principle). The suc-
cess of visual localization depends on the quality of the query images. Ideally, they are crisp
and portray a characteristic, unambiguous area of the environment, which we refer to as
“distinctiveness” property. In that case, the query image can be matched well with the correct
reference image, and the user’s location can be precisely estimated. A query image is usually
distinctive if it exhibits a high number of visual features. However, not all scenes the camera
is pointing at during one’s way through a building serve well for localization. We discuss two
cases: either better query images can be found, or not.

The first case describes the situation where the environment offers suitable scenes for query
images (e.g., characteristic signs, shop windows, posters, or exhibits), but the user does not
target these areas with the mobile device. A reason for this can be that a typical pose of
comfortably carrying a phone is about 45◦ downwards, which entails that the camera is rather
facing the floor, but not corridors and rooms and the objects therein. Moreover, too much
motion (due to walking, moving the device, or both) can add blur to the camera-visible
scene. As a consequence, not enough visual features can be extracted for reliable visual
localization. An ideal pose for visual localization would be upright as if taking a photo, as the
“interesting” objects are typically found in eye height. While permanently maintaining this
pose is inconvenient for the user, the UI could provide hints in which pose the device possibly
“sees” better query images, if necessary.

In the second case, the user is at a location which actually does not exhibit unique visual
features. This can, e.g., be the case in corridors with sparse texture resembling each other in
different parts of the building. Query images taken in such areas are then indeed not suffi-
ciently distinctive to detect the location. Temporarily, such route sections can be overcome
with odometry and dead reckoning, but only with continuously decreasing accuracy. The as-
sociated localization and orientation errors (or a combination thereof) affect the navigational
instructions in the user interface. In order to avoid misguidance, an improved method how
instructions are presented should be found. As soon as a more distinctive region is in line
of sight, it needs to be exploited to gain a new exact positioning. Active help of the user
(directing the phone at such feature-rich regions when it is necessary to increase accuracy) is
required. This active help could be demanded by the user interface.
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In summary, the system should first try to ensure the best possible query images (i.e., add to
more distinctiveness). If this is not possible, the system should cope as good as possible with
decreased accuracy and still provide sufficiently working guidance instructions. The outlined
problems show that without special adaptations from the side of the user interface, visual
localization would in practice be likely to fail. The interaction concept can thus be seen as
a central component and factor for the success of such systems. As we will show, MUSED
interfaces can play a key role here.

5.2.2 Instruction Presentation

In the following, we present two main visualizations for instruction presentation on a hand-
held device (augmented and virtual reality), as well as additional sensor-based interface com-
ponents, addressing the challenges outlined above.

Augmented Reality

Augmented Reality (AR) enhances the video seen by the smartphone’s camera by superim-
posing information. By this way of merging artificial elements with the real world, users can
see navigation instructions, such as directional arrows, directly on their way. Users hold the
phone as illustrated in Figure 5.1a and watch the overlaid video stream on the phone (video
AR, unlike see-through AR like in HMDs), in order to see the augmentation directly on their
way. Since this pose is desired for visual localization anyway (as previously discussed in Sec-
tion 5.2.1), AR at first appears to be an obvious interface for a visual localization system.
Further, AR visualizations have gained a certain level of familiarity through, e.g., commercial
AR browsers76. However, it might be inconvenient to maintain the upright pose for long-
term or frequent use (e.g., in unknown environments). This question will be investigated as
part of the real-world user studies described in Section 5.3.3. Consequently, we propose an
alternative visualization which does not rely on live video as it is the case for AR.

Panorama-Based Virtual Reality

This second visualization shows navigation instructions on top of a sequence of panorama
images (comparable to Google Street View [6]), which we call Virtual Reality (VR) [313]. The
panorama images used for the visualization are the previously taken reference images (they
are available from the server without extra effort, as they are the basis for image matching in
the course of visual localization). The individual images are merged to a panorama view on
the mobile device.

Navigation arrows are directly rendered into the panorama, so that their orientation is fixed in
relation to the virtual 360◦ view. We expect this to have several advantages (which we verify
in the user studies presented in Section 5.3). First, no alignment of navigation instructions
with live video (as in AR) is required. Thus, the device can be held in a more natural and
comfortable way, as illustrated in Figure 5.1b). Second, we expect that fixated navigation
arrows with relation to the panorama view are more reliable for navigation, as they even

76http://www.junaio.com, accessed June 12, 2014

http://www.junaio.com
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(a) Augmented reality (AR) shows guidance
as overlays on real-time video

(b) Virtual reality (VR) guides the user in a
pre-recorded panorama view

Figure 5.1: Proposed augmented reality and virtual reality visualizations, depending on how the user
carries the phone (upright or down) and on the location estimate’s accuracy in order to
improve the user experience and perceived quality of navigation instructions.

show the correct way in the panorama if the device’s orientation estimate is not perfectly
accurate. The panorama can manually be dragged around by the user for self-orientation, or
aligned automatically according to the determined orientation. Furthermore, the frequency
in which panoramas are updated can be adapted. In case no reliable localization estimate is
possible, the update frequency can be lowered. Hence, we expect VR to be more robust than
the more conventional AR view. The user interface is shown in Figure 5.17.

Multimodality

Visual indoor localization is inherently multimodal, as it uses the camera and orientation sen-
sors for determining the location and presenting navigation instructions accordingly. How-
ever, also the user interaction with the our navigation application is multimodal. Besides
the touching modality, we make use of the phone’s compass sensor to automatically orient
panoramas and navigation instructions. That is, guidance arrows will point in the correct
direction even when the user turns around with the device. The panorama interface addi-
tionally allows manual manipulation. Users can drag the panorama view around with their
finger. A “rubber band” effect can make the panorama snap back to the orientation provided
by the compass when the user releases the view.

Furthermore, the phone’s pose is used to choose the most appropriate visualization. When
the phone is held upright (detected by the orientation sensor), the AR view is chosen. When
the user holds the phone with the camera pointing downwards, the VR view is activated. The
user can also manually switch between both modes.

5.2.3 Communicating and Ensuring Localization Accuracy

As motivated in Section 5.2.1, one goal of our UI must be to guarantee usable guidance, even
if no good query images were captured by the user’s device. The system should help improve
localization accuracy, i.e., raise the lower bound for the quality of the location estimate. As
outlined previously, we assume that a visual localization system can determine its location
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better when the device is held in an upright pose. Therefore, we show an indicator in case of
low localization quality, prompting the user to actively point at regions containing more visual
features. In other words, the purpose of the indicator is to make the user move up the phone
along a vertical axis, bringing it from a pose as in Figure 5.1b to one as in Figure 5.1a. In case
the user carries the phone in his hand (not currently looking at it) or in the pocket, the device
vibrates to raise the user’s attention (e.g., for feature indicators or for a turn instruction). The
feedback modality (visual versus haptic) thus adapts to the user’s and the phone’s context.

Involving the user to help the system improve its position accuracy has already been used in
other contexts for self-localization. For example, Kray et al. [174] asked users whether they
can see certain landmarks from their point of view in order to perform semantic reasoning
about their position.

We propose four different visualizations to make the user perform that “lifting” movement,
which are depicted in Figure 5.2. All visualizations are based on the pose of the device, which
we use as estimation for the suitability of the scene for successful localization.

• Focus Change: In analogy to a camera focusing on the motive, we use artificial focus
change to guide the user towards a feature-rich area. Starting from a blurry scene, the
image gets sharper the closer the user approaches a feature-rich area (see Figure 5.2a).
This metaphor is inspired by an autofocus camera, motivating the user to find the “best”
shot.

• Textual Instruction: A simple text hint is displayed, indicating to move the smartphone
in a specific direction (see Figure 5.2b). A notification to raise up the phone appears
until the pose is such that sufficient features are visible.

• Color Scale: A color-coded scale ranging from red (bottom/top, symbolizing few fea-
tures) to green (center, symbolizing enough features) represents the number of distinc-
tive visual features in the image (see Figure 5.2c). The color indicates the quality of the
current scene for successful localization, so that the user should steer the indicator into
the green area.

• Bubble Level: The metaphor of a bubble level is used to indicate the correct orientation
of the phone. For an optimal position, the vial should be aligned in the center of the
level (see Figure 5.2d). This can be achieved when the device is in upright pose, where
a high number of features is most likely.

Figure 5.2: Proposed instructions to target the the phone at a feature-rich area: a) focus change, b)
textual instruction, c) color scale, d) bubble level.
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5.2.4 Highlighting Interesting Areas

Our concept also comprises a function to highlight areas/points of interest (AOI/POI) as part
of the AR visualization. This fulfills two purposes.

First, certain objects in the environment can be marked as points of interaction, in the sense
that they are entry points for context-based services. Thereby, the indoor navigation applica-
tion is extended by the functionality of an augmented reality browser, such as Junaio76. One
could imagine that users can see special offers by tapping a shop window, get background
information on museum exhibits, or office hours by touching a door sign. Area highlighting
can be realized technically with object recognition based on feature detectors, as we have
demonstrated in Section 3.2, without the need for markers, tags, or other augmentations in
the real world. Objects that are desired as points of interaction are often very distinctive,
which makes them easy to identify.

Second, points of interaction often have a characteristic appearance, why they are well-suited
as reference images for the localization algorithm. When a user focuses such a highlighted
object with the camera, she helps at the same time improving the location estimate. Thus,
interaction points have implicitly a similar effect as the four indicators presented previously.
The user is not explicitly asked to change the pose of the device, but motivated to do so of
one’s own accord.

We conceived two visualization styles for highlighting objects. Our goal is to minimize the
distraction of users when they do not want to interact with the interactive regions, but to still
create enough awareness that these regions are noticed. One particular reason for distraction
can be tracking problems, which cause the overlays to jitter [158, 332]. Our two proposed
visualizations are depicted in Figure 5.3, where a poster is highlighted as an example. On the
left, a frame visualization is used, while on the right a transparent overlay with soft borders
is used. We hypothesize that inherent inaccuracies (and resulting jitter) can be hidden better
when the visualization has no defined border.

Figure 5.3: Highlighting of interaction points for context-based services. Instead of framing objects
(left), we propose a soft border visualization (right) for less sensitivity to jitter and to
reduce distraction of the user.
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5.3 Comparative Evaluation of Augmented and Virtual Reality
Interfaces

We evaluated the above described UI concept in two iterative studies. We began with an
online study to gain initial feedback from a large number of users. The online study was based
on videos with simulated navigation instructions, and images and animations illustrating the
different interface versions and elements. Subsequently, we conducted a laboratory study,
involving a prototype where we implemented the interfaces using the WOz approach [152].
The implementation of this prototype was informed by the results of the online study.

5.3.1 Research Questions

We formulate the following research questions, which are likewise used for the online and
the laboratory study:

RQ1 Which concept (AR or VR) is preferable in terms of perceived accuracy?

We investigate whether and how the visualization influences the perceived accuracy, related
to position and orientation, and the perceived quality of navigation instructions (note that this
does not necessarily correlate with the actual technical localization accuracy). We hypothesize
that VR, where the navigation arrow has a fixed direction in relation to the panorama, can
improve the impression of accuracy. Especially when the system’s location or orientation
estimate is incorrect, we expect that the perceived reliability of the system is increased in VR,
compared to AR.

RQ2 Which concept (AR or VR) is preferred by users?

We investigate the subjects’ preferences for a particular visualization, which need to be taken
into account as well for a convenient user experience. We hypothesize that AR might be less
popular with users as a consequence of reduced perceived accuracy, and because of the fact
that it the required upright pose is muscle-straining.

RQ3 Which visualizations could be appropriate to acquire sufficient visual features?

We investigate which of the visualizations presented in Section 5.2 has the strongest affor-
dance character [247] for the user to raise the phone, in order to increase the likelihood of
targeting objects with sufficient features for reliably localizing the device.

RQ4 Which object highlighting method is the best with regard to attention and distrac-
tion?

Here, we compare the highlighting visualizations Frame and Soft Border that we have intro-
duced in Section 5.2.4.
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5.3.2 Online Study: Accuracy Perception and User Preferences

Method

The study was conducted using an online questionnaire. The user interfaces and their oper-
ation in different conditions were presented to subjects in video demonstrations and images.
The videos showed how it would look like if a user walked in a building using both the AR
and VR system (see Figure 5.4). The videos allowed the subjects to compare the system’s UI
to what they would actually see (their environment).

To evaluate the effect of AR and VR visualizations on perceived accuracy, we used eight videos
(four for each AR and VR) where artificial errors to the system’s location estimate had been
systematically added. The simulated route was always the same, but the navigation instruc-
tions shown in the video varied based on these errors. For example, the arrow pointed in the
wrong direction (in AR), or a wrong panorama image was shown (in VR). We investigated
four types of errors (conditions):

• No Error: All navigation instructions were correct; the pictures shown on the device
matched the device’s orientation and location.

• Location Error: An error was introduced as it would occur when the system’s estimated
location was incorrect. This type of error manifests in panorama images of an incorrect
location (for VR), or incorrect turn instructions (for AR, e.g., when the system thinks of
being next to an intersection where there is none). This error was induced twice in the
Location Error condition.

• Orientation Error: An error was introduced as it would occur when the system’s es-
timated orientation was wrong. This type of error manifests in incorrectly rotated
panorama images (for VR), or incorrectly rotated arrows (for AR). This error was in-
duced twice in the Orientation Error condition.

• Combined Error: Both location and orientation errors were introduced twice in this
condition.

To each participant, eight videos were presented (within-subjects design). The order of con-
ditions was counter-balanced using a Latin square design. Subjects were unaware of which
error condition they were currently evaluating when watching the videos.

To evaluate the indicator visualizations (Blur, Text, Color, Water Level), we likewise used
videos showing each visualization. The order was permuted using a Latin square design
between participants.

Participants

81 subjects (39 females, 42 males), aged between 18 and 59 years (M = 28, SD = 9), took
part in the study. They were recruited using the Mobileworks crowdsourcing platform77. Most
subjects were infrequent navigation system users (43% use them only several times a month
and 35% never). 18% use them often (several times a week) and 4 % very often (daily). Only

77https://www.mobileworks.com, accessed June 16, 2014

https://www.mobileworks.com
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Figure 5.4: A screenshot from one of the videos used in the study, showing a mockup of the indoor
navigation system. The upper part shows the simulated field of view, the smartphone
screen the simulated navigation system output.

26% had used pedestrian navigation before, and 12% stated to have experience with indoor
navigation. These indications suggest that users have no above-average knowledge on indoor
navigation and can thus be considered as representative user basis.

Results and Discussion

All answers were given on 7-point Likert scales ranging from -3 (strongly disagree) to
+3 (strongly agree). We used Friedman tests [104] and post-hoc Wilcoxon signed-rank
tests [345] (with Bonferroni correction [90]) to examine effects of experimental conditions
on perceived accuracy.

RQ1: Perceived Accuracy of AR and VR

Augmented Reality Figure 5.5 summarizes the evaluation of AR and VR with relation to
the perceived accuracy. In the No Error condition, subjects felt that the system knew well
their location (2.5, SD = 0.9) and orientation (2.4, SD = 1.0).

This perceived accuracy decreased in the error conditions. We found a significant effect both
for the estimate how well the system knows the location (χ2 = 77.10, df = 3, p < 0.001)
and the orientation (χ2 = 79.92, df = 3, p < 0.001). With an Orientation Error, subjects
answered on average only with 0.8 (SD = 2.0) that the system was certain about their loca-
tion, and with 0.2 (SD = 2.1) that it was sure about their orientation. For Location Errors,
ratings were 1.7 (SD = 1.5) for the perceived location accuracy and 1.2 (SD = 1.8) for the
perceived orientation accuracy. The perceived accuracy further decreased for the combined
error condition. Here, the rating was 0.6 (SD = 2.0) for location accuracy and 0.4 (SD = 2.1)
for orientation accuracy. Post-hoc tests showed significant effects between No Error and all
error conditions. Likewise, Combined Errors were perceived worse than only a Location Error.
However, there was no significant difference between the Combined Error and Orientation
Error condition.
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We also found a significant effect of conditions on the perception of correctness of the nav-
igation instructions (χ2 = 103.97, df = 3, p < 0.001). In the No Error condition, subjects
averagely rated the correctness with 2.3 (SD = 1.0). With orientation and location errors, this
rating decreased to -0.2 (SD = 2.0) and 0.4 (SD = 1.9), and with both error types together
to -0.5 (SD = 1.9). Pairwise post-hoc tests revealed the significant differences between the
No Error and all error conditions, but not between the Orientation Error, Orientation Error,
and Combined Error condition.

No Error Orientation Error Location Error Combined Error
Response SD Response SD Response SD Response SD

2.5 0.9 0.8 2.0 1.7 1.5 0.6 2.0
1.7 1.6 1.4 1.8 1.4 1.8 1.0 1.7
2.4 1.0 0.2 2.1 1.2 1.8 0.4 2.1
1.7 1.5 1.1 1.8 1.3 1.7 0.9 1.8
2.3 1.0 -0.2 2.0 0.4 1.9 -0.5 1.9
1.8 1.4 1.4 1.6 1.4 1.7 0.9 1.8

Augmented Reality
Virtual Reality

No Error Orientation Error Location Error Loc.+Ori. Error
Response Std.Dev.Response Std.Dev.Response Std.Dev.Response Std.Dev.

2.5 0.9 0.8 2.0 1.7 1.5 0.6 2.0
1.7 1.6 1.4 1.8 1.4 1.8 1.0 1.7
2.4 1.0 0.2 2.1 1.2 1.8 0.4 2.1
1.7 1.5 1.1 1.8 1.3 1.7 0.9 1.8
2.3 1.0 -0.2 2.0 0.4 1.9 -0.5 1.9
1.8 1.4 1.4 1.6 1.4 1.7 0.9 1.8

Augmented Reality 1: The system seemed to know well my location.
2: The system seemed to know well my orientation.

Virtual Reality 3: I perceived the navigation instructions as correct.

No Error Orientation Error Location Error Loc.+Ori. Error
Response Std.Dev.Response Std.Dev.Response Std.Dev.Response Std.Dev.

2.3 1.0 -0.2 2.0 0.4 1.9 -0.5 1.9
1.8 1.4 1.4 1.6 1.4 1.7 0.9 1.8

Augmented Reality

Virtual Reality

Perceived Accuracy of Virtual Reality and Augmented Reality Views

The system seemed to know well
 my location.
The system seemed to know well

Perceived Accuracy of Virtual Reality and Augmented Reality Views

 my orientation.
I perceived the navigation
 instructions as correct.

3:

Perceived Accuracy of Virtual Reality and Augmented Reality Views

1:

2:

Figure 5.5: Perceived accuracy of virtual and augmented reality visualizations (agreement to state-
ments on a 7-point Likert scale; -3 = strongly disagree, 3 = strongly agree). The diagram
shows mean values and standard deviations (SD).

.

The gained insights from these results are twofold: First, instructions were perceived worse
(i.e., less accurate) in the error conditions than with No Errors. Second, subjects had prob-
lems to distinguish the error types: In the Orientation Error condition, subjects perceived the
orientation worse than the location (which was correct). In the Location Error condition,
however, they had the same impression, although the location was actually more erroneous
than the orientation here. This finding can actually be explained by the nature of orienta-
tion and location errors. An orientation estimation error clearly causes the navigation arrow
overlay to point in a wrong direction. But also if the location is wrongly estimated, the arrow
may likely point in the wrong direction (e.g., because the system interprets that the user has
missed a turn). Thus, it is true that both types of errors may cause a similar effect of misori-
ented navigation arrows, so that the cause cannot be distinguished any more in an AR view.
Such a situation is illustrated in Figure 5.6.

Virtual Reality In the No Error condition, subjects evaluated the perceived location and
orientation estimate’s accuracy with 1.7 (SD = 1.6 and 1.5). There were again significant
effects on perceived accuracy (related to location: χ2 = 19.36, df = 3, p < 0.001; related
to orientation: χ2 = 20.79, df = 3, p < 0.001). With the introduced Orientation Error, the
rating slightly decreased to 1.4 (SD = 1.8) for the location estimate and to 1.1 (SD = 1.8) for
the orientation estimate. In the Location Error condition, the perceived accuracy decreased
to 1.4 (SD = 1.8) for the location estimate and 1.3 (SD = 1.7) for the orientation estimate.
When both errors were combined, the perceived accuracy was rated with 1.0 (SD = 1.7) for
location and with 0.9 (SD = 1.8) for orientation. Post-hoc tests revealed significant effects
between No Error and Combined Error conditions (p < 0.01 for location and p < 0.009 for
orientation), but not between the other conditions.

The perceived correctness of navigation instructions decreased from 1.8 (SD = 1.4) in the No
Error condition to 1.4 in the single-error conditions (SD = 1.6 for orientation error and 1.7
for location error), and to 0.9 (SD = 1.8) in the Combined Error condition. This is a signifi-
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Figure 5.6: Illustration of the effect of orientation and location errors. The user, symbolized by a dot,
is standing in a junction (the cone symbolizes the looking direction). In the left case, the
orientation is estimated by 90◦ wrong by the system; as a consequence, the navigation
arrow erroneously says “go back” instead of “turn right”. In the right case, the location is
misestimated so that the system assumes that the user has passed the junction. Thus, the
navigation arrow, again, erroneously says “go back”. The two types of underlying errors
cannot be distinguished by the user.

cant effect (χ2 = 21.40, df = 3, p < 0.001); however, a post-hoc test revealed a significant
difference only between the No Error and the Combined Error condition.

Comparing the results of VR and AR, we can highlight the following two important findings:

• In VR, no significant differences of perceived accuracy between No Error and single
error conditions could be observed. The AR system was rated significantly worse as
soon as errors were introduced. This suggests that the VR visualization is more robust
to errors than AR.

• Subjects rated the guidance in AR better than in VR in case of a perfectly working
system, i.e., in the No Error condition (p < 0.004). However, in case of location or ori-
entation errors, navigation instructions in VR were perceived significantly more correct
than in AR (p < 0.001).

RQ2: User Preferences for AR or VR

After having seen all videos, subjects could significantly better imagine using the AR system
(1.9, SD = 1.3) than the VR system (1.1, SD = 1.8), p < 0.05. The high standard deviations
indicate that the opinions were controversial, especially for VR. 58% liked AR most in the
direct vote; VR was chosen by 24%, and 18% were undecided.
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Figure 5.7: User preferences for the virtual and augmented reality system. Subjects preferred aug-
mented reality (AR) over virtual reality (VR) navigation instructions. Answers given on a
7-point Likert scale; -3 = strongly disagree, 3 =strongly agree.
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Figure 5.8: User ratings of the feature indicator visualizations. Text and Bubble Level visualizations
were evaluated significantly better than Color and Blur. Answers given on a 7-point Likert
scale; -3 = strongly disagree, 3 = strongly agree.

RQ3: Feature-Rich Area Indicators

Subjects evaluated the understandability and the affordance character of the four indicators
(Text, Water Level, Color and Blur) presented in Section 5.2.4. We found that the indica-
tors had a significant effect on understandability (χ2 = 38.99, df = 3, p < 0.001) and on
affordance (χ2 = 58.91, df = 3, p < 0.001). The results are visualized in Figure 5.8.

Subjects found Text and the Bubble Level level most understandable (no significant difference
between these two). Subjects responded that the meaning was clear on average with 1.7
(SD = 1.5) for Text, and that of Bubble Level with 1.5 (SD = 1.6). Color was evaluated with
1.1 (SD = 1.7). The understandability of Blur was below average and showed a high standard
deviation (-0.2, SD = 2.2). Post-hoc tests showed significant differences between Text and
Color, and between Blur and the other visualizations (p < 0.05).

Similarly, Text (2.0, SD = 1.4) and Bubble Level (1.5, SD = 1.5) were evaluated best regarding
their motivational effect to raise up the phone (affordance character). Color (1.1, SD = 1.7)
and Blur (-0.2, SD = 2.1) were, again, rated significantly worse in this discipline (p < 0.05).

RQ4: Object of Interest Indicators

We evaluated the two visualizations for highlighting objects of interest as presented in Section
5.2.4. The method shown left in Figure 5.3 will be called Frame in the following, while the
method depicted in the right will be called Soft Border. The results are visualized in Figure 5.9.

There was no significant difference between how Frame and Soft Border draw the subjects’
attention on the highlighted object (p > 0.1). Frame was evaluated significantly more conve-
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Figure 5.9: User ratings of different highlighting and tracking visualizations of interesting objects. At
similar level of attention, a soft border highlight (cf. Figure 5.3) was perceived as less
distracting than a border around the object, but subjects also found it less convenient.
Answers given on a 7-point Likert scale; -3 = strongly disagree, 3 = strongly agree.

nient (1.5, SD = 1.6) than Soft Border (0.8, SD = 1.9), p < 0.05. On the other hand, subjects
attributed a significantly lower distracting effect to Soft Border (-0.2, SD = 2.0) that to Frame
(0.7, SD = 1.9), p < 0.05.

We showed subjects an additional video where the background video was desaturated (black
and white), and only the highlight was in color. We hypothesized that this contrast could
further focus attention to the object and thus be beneficial. Results showed however no
significant differences in attention, convenience or a distracting effect between colored and
desaturated backgrounds.

Discussion, Lessons Learned, and Limitations

Accuracy Perception and User Preference for AR/VR

This first study has already shown that AR and VR show their strengths in different domains.
VR is less impacted by localization inaccuracies, why it was perceived as more reliable for
incorrect location and orientation estimates. When the VR panoramas are slightly translated
or rotated, people can still match them with the environment. What is important is that the
navigation arrow is still always correct in relation to the VR view, even if it is not in relation
to the real world.

While AR overlays get wrong much faster, even for slight inaccuracies, this interface is more
natural in case there are no location or orientation errors. This intuitiveness probably leads to
the fact that users favored AR so strongly in the direct vote. This preference is remarkable, as
one would have expected that subjects prefer the visualization which gives the more accurate
impression. We have two possible explanations for this result. First, AR probably appeared in
the mockup as the more elegant solution, compared to a “flip book” impression of VR. Given
the fact that real-world localization (unlike in the mockup) will never be completely exact,
this preference might change in a hands-on study. Second, we hypothesize that in situ, users
will take into account when determining their preference that they need to carry the phone in
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a more uncomfortable pose for AR to work. Such physical usage factors cannot be determined
in an online study, so that this effect will have to be investigated in a hands-on study as well.

Understandability of Indicators and Object Highlighting

Our analysis of feature indicators addressed the important point of creating awareness for
how well a scene serves for localization and how the user can assist the system to improve
accuracy. Sufficient salient features in the image are crucial for reliable vision-based localiza-
tion. The Text and Bubble Level metaphors were rated as most understandable and motivating
to raise up the phone to feature-rich areas, so that we will focus on these visualizations for a
hands-on study. In a next step, it will have to be verified in a real-world study whether such
visualizations are actually an incentive to focus on feature-rich areas in eye height.

For highlighting objects, the Soft Border method reduces distraction and thus might interfere
less with the navigation task. Likewise, the actual effect under real-world conditions will have
to be investigated in a hands-on study.

Panorama Update Frequency

For some visualizations, we evaluated minor variants that we presented to our subjects in
additional videos for evaluation. We provided different versions of the VR system where we
modified the frequency in which panoramas were updated. The system used for comparison
against the AR system (which we discussed previously) updated the panorama about every
second. In addition, we provided a version with faster update rate (every 0.5 seconds) and
with slower update rate (every 2.0 seconds). The one-second frequency was appreciated
slightly more (1.0, SD = 1.7) than faster (0.8, SD = 1.8) or slower panorama changes (0.6, SD
= 1.7). Only the difference between medium and slow transitions was significant (Student’s
t-test [318] with p < 0.05). Keeping this in mind, we will keep update rates rather slow for
the implemented version.

5.3.3 Experimental Study: Real-World Validation

With a follow-up experimental evaluation, we aim at answering the following questions that
remained open in the online study.

• Subjects rated the VR visualization to be more reliable, but still preferred AR in the
online study in a direct ranking. In the experimental study, we will investigate whether
hands-on tests yield different results regarding perceived reliability and user preference.
There are several differences to the online study: First, the interfaces are evaluated in
an interactive mode rather than by passive videos. Using the interface thereby becomes
a secondary task (while walking in a building). Second, subjects have to carry the phone
in their hands, so that they experience the comfort of the AR and VR poses. Third, the
UI is experienced on the small screen of a mobile device, instead of a full-size computer
monitor.

• While in the online study, AR and VR only could be evaluated separately, in the exper-
imental study, we can combine both modes in a prototype to see which mode subjects
actually use more frequently in a navigation task.
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• In the online study, we evaluated the understandability of additional UI elements (indi-
cators to raise the phone up), but not their actual effectiveness. Only an experimental
study can tell if these elements really lead to more detected features and thus to im-
proved localization. Similarly, the Frame and Soft Border highlighting visualizations
were only evaluated based on mockup videos, but not with real object recognition.

Implementation

Client Application

For the experimental study, we implemented a prototype application based on the Android 2.3
platform78. The app incorporates the AR and VR visualizations and additional UI elements
presented in Section 5.2; the realization in the prototype is shown in Figure 5.17 (left image).
A button on the top right allows to switch between VR and AR with a button on the top right
of the screen. The system can also switch modes automatically based on the gravity sensor
readings. In an upright pose as in Figure 5.1a, the system switches to AR; in a pose as
in Figure 5.1a, the VR visualization is selected. The threshold angles were set to empirically
determined values of a 35◦ inclination for switching to AR, and a 30◦ inclination for switching
back to VR.

The navigation interface was implemented with OpenGL ES 2.0. For VR, it displays 360◦

panorama images of key locations, surrounding the user’s point of view. The navigation arrow
is drawn on top of the panorama view at the correct location. For AR, the directional arrow is
anchored to virtual “key point” locations similar to VR, except that it is overlaid on live video
from the rear camera. For both AR and VR, the magnetic field sensor is used to auto-rotate
the visualization, accounting for the measured device orientation. In VR, panoramas can be
manually rotated by drag-and-hold; lifting up the finger re-enables auto-rotation.

As feature indicators to motivate users to raise the phone up, we chose a combination of
the Bubble Level metaphor and a Text hint, as these two were evaluated best in the online
study. The indicator can either pop up automatically when the number of visible features
falls below a definable threshold. For the automatic trigger, we detected the number of FAST
[286] features in the camera’s live image, using the OpenCV framework for Android79. The
anticipated position of the device (90◦ angle) is determined by the phone’s gravity sensor.

The object highlighting function was realized using an image processing pipeline as depicted
in Figure 5.10. We implemented the Frame and Soft Border visualization using two slightly
different methods. For Frame, a contour detection is applied after edges have been enhanced
by a Canny edge detector [43]. The most significant contour is selected and enhanced with
a bounding rectangle. For Soft Border, we apply a FAST feature detector [286] and count
features in local subareas of the image. The area with the most features is highlighted with a
semi-transparent rectangle.

78At implementation time (July 2013) still over 33% of devices ran Android 2.3 or lower, see
http://developer.android.com/about/dashboards/index.html, accessed September 23, 2013

79http://opencv.org/platforms/android.html, accessed August 13, 2014

http://developer.android.com/about/dashboards/index.html
http://opencv.org/platforms/android.html
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Figure 5.10: General proceeding for detecting and highlighting objects with two different visualiza-
tions: a soft border overlay, supposed to be less distracting (left), and a rectangular frame
(right).

Wizard-of-Oz Testing

The view components of the prototype are loosely coupled with the control logic, as defined
by the Model-View-Controller (MVC) [39] pattern. This would, e.g., allow to couple the UI
with a live underlying localization system, which basically would perform image matching
with a database on a server, and return the location of the most similar reference image.
However, for our study we implemented the navigation mechanism with a WOz approach
[152], motivated by the advantages of WOz testing as outlined in Section 7.2. This proceed-
ing especially allow us to modify the accuracy of position and orientation estimates, in order
to reproduce the different conditions of the online study in the experiment. Our evaluation
setup consists of two Android apps: the just presented client app (running on the test subjects’
phone), and a WOz app for the experimenter (see Figure 5.11a).

With this app, the experimenter sends location information to the subject’s device at the
desired position of the route. The client displays these data as location arrow overlay (in
AR) or panorama image with navigation arrow (in VR). The WOz app holds the data for
several predefined routes used in the experiment, which contains the panorama photos and
the associated arrow directions for each key point. The experimenter just has to hit a button
to send the next correct instruction to the subject, but can also deliberately trigger localization
and orientation errors.

Hypotheses

For the experimental evaluation, we refer back to the research questions RQ1–RQ4 formu-
lated in Section 5.3.1. Informed by the results from the online study, we now formulate the
following hypotheses H1–H4 based on these research questions. We extend RQ1 (addressing
the perceived accuracy of VR and AR) by the aspect of efficiency of the two visualizations
(which was not measurable in the online study). As we can now measure the navigation
time, we insert a hypothesis H1(b) as follows.
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H1(a) Subjects perceive VR to be more accurate in case of localization errors than the
AR interface.

H1(b) VR is more efficient than AR in terms of navigation time to the destination.

H2 Subjects prefer the VR interface over the AR interface.

H3 The Bubble Level & Text visualization leads to in average more visual features per
frame.

H4 The Soft Border highlighting method is less distracting than the Frame highlight-
ing method.

Method

We conducted three hands-on experiments to investigate the formulated hypotheses. In all
experiments, subjects used a Samsung Galaxy S II (4.3-inch screen, 8 megapixel camera).
The WOz app operated by the experimenter ran on a Samsung Nexus S (4-inch screen). Both
devices had a screen resolution of 480×800 pixels and were running Android 2.3.

Experiment 1: Comparison of VR and AR (H1 and H2)

Subjects performed a navigation task inside the main building of TUM on a path of 220 meters
length (see Figure 5.12). The route was chosen to show sufficient complexity. The accuracy
of the system’s location estimate was varied in four conditions by the experimenter (No Error,
Position Error, Orientation Error, Combined Error), both in AR and VR mode. Consequently,
each user traversed the path eight times. The path was the same in all conditions for better
comparability, but the order of conditions was counterbalanced with a 4×4 Latin square to
weigh out learning effects. Subjects were asked to rely only on the given instructions, so that
they could not be sure whether the path would not vary.

Navigation instructions were fed into the subject’s phone by the experimenter who walked
about one meter behind the subject, according to the WOz approach. Colored labels in the
app and on the skirting board (see Figure 5.11b) helped the experimenter to trigger the
correct image at the same locations for each participant during each experiment.

In error conditions, correct panoramas and arrows were replaced twice by short sequences
of misplaced (Position Error) and misoriented instructions (Orientation Error). The locations
where the errors were introduced were the same for all participants. Start and end time of
each run (from receiving the first panorama until reaching the destination) were measured by
the prototype. Users were asked to “think aloud” [328] while using the system and answered
a questionnaire after each run.

Experiment 2: Effect of Feature Indicator (H3)

In order to evaluate the feature indicator visualization (using the Bubble Level metaphor com-
bined with text), we constructed a setup as it would occur in a self-contained navigation
system. It is likely that, from time to time, a relocalization procedure would be required, in
which the user is explicitly asked by the system to direct the phone to a feature-rich area.
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Figure 5.11: The WOz app for controlling visualizations on the subject’s device and simulating local-
ization errors (left). Markers in the corridors (right) helped the experimenter to trigger
visualizations at identical locations for similar experimental conditions.

Subjects performed another navigation task, similar to the previous experiment. Three times
during the walk, the experimenter triggered the Bubble Level visualization to appear on the
subjects’ device. As soon as subjects raised the phone until the bubble was centered on the
scale, the indicator disappeared and a location update (i.e., the correct arrow/panorama) was
displayed.

In the experiment, the prototype switched automatically between the AR and VR visualization
based on the phone’s inclination, as described in the Section 5.2.2. Subjects could freely
decide how to carry the phone. Therefore, the experiment was also a test which visualization
(and inherently, which pose) was chosen more frequently by subjects.

We logged the inclination of the phone (whether it was carried down or upright), whether
the feature indicator was currently shown or not, as well as the number of detected FAST
features (all in one-second intervals). After the experiment, users answered a questionnaire.

Experiment 3: Object Highlighting Methods (H4)

In this experiment, subjects tried out the Frame and the Soft Border visualization (see Section
5.2.4). As example object of interest, we used a poster at which subjects pointed, in order to
evaluate the two highlighting methods. We had tested beforehand that the poster could be
robustly recognized with both algorithms (see Figure 5.10). Afterwards, subjects answered a
questionnaire.

Participants

12 people (11 males, 1 female) between 23 and 27 years (M = 24, SD = 1.3) participated
in the study. Most subjects were students, thus matching the potential target user group
for on-campus indoor navigation. None of the participants were involved in our research
project. No compensation was paid. The experimental design of all three experiments was
within-subjects.
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Figure 5.12: The indoor path used for the navigation task in the study (220 meters), alongside with
some sample images and route instructions as they were displayed on the subjects’ phone.

Results and Discussion

H1(a): Accuracy Perception

Subject rated the perceived accuracy in the conditions Without Error, Position Error, Ori-
entation Error and Combined Error. Subjects were presented the following statements: “The
system seemed to know well where I am” (relating to the position estimate), “The system seemed
to know well in which direction I am looking” (relating to the orientation estimate), “The nav-
igation instructions were always correct” (relating to the perceived correctness of individual
instructions), and “Overall, I found the guidance accurate” (relating to the general guidance
accuracy). Agreements to each statement were indicated on a symmetric 7-point Likert scale
where -3 corresponds to “strongly disagree” and +3 to “strongly agree”. Figure 5.13 summa-
rizes the responses in box plots. In the following, we use medians and Wilcoxon signed-rank
tests to report the results, using a significance level of α < 0.05.

Let us first see if subjects were able to identify the introduced position and orientation errors.
Both in VR and AR mode, subjects perceived a difference in the guidance accuracy between
the No Error and the error conditions. Both for position accuracy (AR: W = 15, p = 0.037;
VR: W = 28, p = 0.021) and orientation accuracy (AR: W = 19.5, p = 0.073; VR: W = 55,
p = 0.005), Wilcoxon signed-rank tests yielded significant differences compared to the No
Error condition (except for orientation accuracy in AR).

However, only in AR, we observed that these errors had a significant effect on perceived
correctness (p = 0.015 in case of position errors and p = 0.034 in case of orientation errors,
each in relation to the No Error condition). With VR, the differences in perceived correctness
were not significant. Consequently, the rating of perceived correctness of instructions was



104 Chapter 5 Indoor Navigation

í�

í�

í�

0

�

�

�

With
out e

rro
rs

Loca
tio

n erro
r

Orie
ntatio

n erro
r

Combined erro
r

My position

A
ug

m
en

te
d 

re
al

ity

í�

í�

í�

0

�

�

�

With
out e

rro
rs

Loca
tio

n erro
r

Orie
ntatio

n erro
r

Combined erro
r

My orientation

í�

í�

í�

0

�

�

�

With
out e

rro
rs

Loca
tio

n erro
r

Orie
ntatio

n erro
r

Combined erro
r

Instruction correctness

í�

í�

í�

0

�

�

�

With
out e

rro
rs

Loca
tio

n erro
r

Orie
ntatio

n erro
r

Combined erro
r

Guidance accuracy

í�

í�

í�

0

�

�

�

With
out e

rro
rs

Loca
tio

n erro
r

Orie
ntatio

n erro
r

Combined erro
r

My position

V
irt

ua
l r

ea
lit

y

í�

í�

í�

0

�

�

�

With
out e

rro
rs

Loca
tio

n erro
r

Orie
ntatio

n erro
r

Combined erro
r

My orientation

í�

í�

í�

0

�

�

�

With
out e

rro
rs

Loca
tio

n erro
r

Orie
ntatio

n erro
r

Combined erro
r

Instruction correctness

í�

í�

í�

0

�

�

�

With
out e

rro
rs

Loca
tio

n erro
r

Orie
ntatio

n erro
r

Combined erro
r

Guidance accuracy

Mode Condition Time 
m:ss

Avg./
Mode

AR
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3:04AR
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3:04AR
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3:04AR

Combined 3:07

3:04

VR

No Errors 2:36

2:39VR
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2:39VR
Orientation 2:44

2:39VR

Combined 2:36

2:39

Interquartile range (25%-75%)

Mean

Median
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My position: The system seemed to know 
well where I am.
My orientation: The system seemed to 
know well in which direction I am looking.
Instruction correctness: The navigation 
instructions were always correct.
Guidance accuracy: Overall, I found the 
guidance accurate.

Figure 5.13: Left: Perceived guidance accuracies in experimental conditions of AR and VR interfaces.
The box plots visualize the level of agreement to the statements on the bottom right. (on
7-point Likert scales ranging from -3 to +3). Top right: Task completion time using VR
and AR. In AR, subjects on average took 25 seconds longer, and differences between
conditions were higher.

significantly higher for VR than for AR: With Position Error, rating medians were 3 for VR
and 1 for AR (W = 6, p = 0.030). With Both Errors, medians were 2.5 for VR and 1.5 for
AR (W = 3.5, p = 0.023). Only with Orientation Error, no significant differences could be
observed (VR: MD = 2; AR: MD = 1; W = 4.5, p = 0.065). Those results indicate that VR is
generally considered to be more accurate than AR (which supports H1(a)).

H1(b): Efficiency

Subjects reached the destination in average 25 seconds faster with VR (averagely 2:39 min:s
for the 220 m path) than with AR (averagely 3:04 min:s). This is a significant difference
according to a paired sample t-test (p = 0.002) that confirms H1(b). The different error
conditions did not have a significant effect on navigation times in VR. However, with AR,
differences between conditions were partly significant: Subjects were here slower in the Ori-
entation and Combined Error condition than in the No Error or Position Error condition (see
top right table in Figure 5.13). This signifies that AR can, in case of (particularly orientation)
errors, be inferior to VR in terms of efficiency.

H2: Convenience and User Preference

Asked for the preferred system, 50% decided for VR, 33% for AR, and 17% were undecided
(supporting H2). This strong tendency is presumably not only grounded in the quality of
navigation instructions, which was perceived to be better in VR, but also in the convenience
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Figure 5.14: When the feature indicator is visible (light blue), users move the phone up (green) and
more visual features are detected per frame. This diagram exemplarily shows one sub-
ject’s data.

when using the system. The answers whether subjects find carrying the phone convenient
were significantly better in VR (MD = 2) than in AR (MD = 0), W = 0, p = 0.009. The
required upright position for carrying the phone in AR was physically constraining. One
participant said that it could work “well for 200 meters, but not more”. Most subjects also had
a feeling of embarrassment to pass by other people in that pose, because others might fear
being recorded. This problem was not given in VR, because the camera in that case points
towards the floor.

H3: Feature Indicator

While the indicator was visible, the number of detected features per frame rose from averagely
42 to averagely 101. In empirical trials, we found that reliable localization works well starting
from 100–150 features in the image using our chosen features and detectors. This threshold
of 150 detected features was reached in 20.7% of all frames with active indicator, and in
8.1% with inactive indicator. Thus, the indicator significantly increased the probability for
successful relocalization, which confirms H3. While those ratios may in overall appear low,
it has to be kept in mind that in practice, a certain amount of frames will always be subject
to motion blur, and 20% of frames with sufficient features still yields on average five frames
per second (at a video frame rate of 25 frames per second), which is sufficient for continuous
visual localization. Figure 5.14 illustrates, based on an exemplary excerpt of the experiment’s
data, how the number of features per frame was correlated with the phone inclination and
the state of the indicator.

The experiment also unveiled a clear preference for carrying poses. All subjects carried the
phone in a way that VR was activated, and only raised the phone to the AR position when
told so by the visualization. Soon after the indicator disappeared, they returned to the more
comfortable VR carrying position. Subjects responded that they found the pose-dependent
switch between AR and VR convenient (MD = 2.5). They also understood the meaning of the
indicator: They agreed with MD = 3 to the statement “What I should do when the indicator
appeared was clear to me”, and with MD = 3 to the statement “I have been motivated by the
indicator to raise the phone up”.
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Figure 5.15: User feedback on Frame and Soft Highlight object visualization. Answers were given on a
7-point Likert scale, ranging from -3 (strongly disagree) to +3 (strongly agree).

H4: Object Highlighting Methods

On a Likert scale from -3 to +3, subjects indicated that Frame drew significantly more atten-
tion to the poster (2.2, SD = 1.5) than Soft Highlight (0.9, SD = 1.6), p < 0.05. Given that
the visualization signals a possibility to interact with the object, they found Frame more con-
venient (2.1, SD = 1.0) than Soft Highlight (0.6, SD = 1.5), which was likewise a significant
effect (p < 0.05). One reason might be that the semi-transparency of Soft Highlight com-
plicated readability of text on the poster. Regarding distraction, we measured no significant
difference between Frame (0.5, SD = 1.7) and Soft Highlight (0.0, SD = 2.0). The results are
summarized in Figure 5.15.

5.3.4 Discussion and Lessons Learned

We now distill lessons learned from a comprehensive view of the findings of both the online
and the experimental study. We also include issues that have not been explicitly addressed in
our presentation of results, but which have become evident in the course of our studies, or
were mentioned by participants when “thinking aloud”.

VR as Main Visualization

The experiments confirmed the advantages of VR unveiled in the online study, and showed
additional ones. Taking these findings together, we recommend VR as main visualization for
indoor navigation systems, for the following main reasons:

• Effectiveness: The perceived correctness of instructions is higher.

• Efficiency: The destination is reached faster.

• Convenience: The visualization is more popular and perceived as more convenient.

Convenience needs further explanation here. First, VR did not require to carry the phone
upright as AR does, so it was perceived more comfortable. This issue of discomfort was not
only raised by subjects in the AR condition. It was also confirmed by the second experiment,
where subjects could choose freely how to carry their phone, and visualizations were set au-
tomatically according to the pose. Almost everyone “automatically” chose VR. Third, multiple
subjects reported that they felt uneasy in AR mode because other people might think that they
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would take photos or videos of them. These findings related to convenience have probably
been the decisive factor for the final user preference for VR. However, this does not mean
that AR is entirely useless, which we elaborate in the following.

Combination of VR and AR

AR has shown its strength in two cases. First, it can help acquiring good query images using
the feature indicator. The Bubble Level visualization contributed to a rise of visual features in
query images, thus increasing the probability of reliable relocalization – but this visualization
is only reasonable to use in combination with AR. Second, AR conveniently integrates object
highlighting. By enabling AR-based object interaction, users can possibly be intrinsically
motivated to target these objects with the camera, and again, this potentially leads to better
query images.

What we essentially learn is that a good user interface could benefit from a combination of
both AR and VR. The visualizations could be chosen automatically, based on the scheme
displayed in Figure 5.16.

• The choice of AR or VR is dependent on the device’s pose: When holding the phone in
a way that the camera points towards the floor, as depicted in Figure 5.1b, AR makes
little sense, no good query images can be captured and, moreover, AR guidance instruc-
tions cannot be optimally aligned with the environment. Instead, the user can then
compare the panoramic image on the phone with her field of view. By contrast, AR
only is useful when the phone is held upright (see Figure 5.1a) and she can see the
environment “through” the phone. In this mode, objects for interaction can be found
with the highlighting function. Thereby, the localization quality is implicitly improved,
as continuously new material for image matching is collected.

• The default visualization is VR, as the device will most likely held facing the floor. In
this mode, the certainty of the location estimate will expectably decrease with time,
as distinctive images are less likely to be found in this pose. However, as proven in
our two conducted studies, the VR interface can deal with inaccuracies in satisfactory
manner. For still being able to update the location estimate as the user moves, the de-
vice must use (less accurate) sensor-based dead reckoning or other relative positioning
techniques. One promising alternative is visual odometry, which we have investigated
in earlier research [128, 316].

• When the location estimate becomes insufficient even for the robust VR mode, the sys-
tem could switch to AR and ask for relocalization with the help of the Bubble Level
indicator. The AR mode is in this case unavoidable and enforced, no matter in which
pose the user holds the phone. As soon as the visual relocalization was successful, the
user can again choose pose-dependent between AR and VR.

Finally, we want to give one more argument for why we do not postulate using either AR or
VR alone: The considerable standard deviations (see the whiskers in Figure 5.13, in particular
for the AR ratings) reflect that users are heterogeneous and do not perceive the same. This is
an additional motivation for letting users choose between alternative visualizations.
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Figure 5.16: One suggestion for the interplay of augmented reality and virtual reality visualizations
dependent on how the user carries the phone and on the accuracy of the location estimate.

How to Improve the VR Visualization

The user studies revealed some problematic aspects with the VR visualization. The first two
of them can be summarized as “discrepancies between the real and the virtual world”.

First, exposure and lighting conditions were not the same between all panorama images
used for the guidance instructions. This did not impact route finding, but was nevertheless
noticed by subjects, and contributed to irritations – especially when panoramas updated in
one-second intervals. Automatic post-processing [324] could partly, but probably not always
satisfactorily improve the quality of recorded reference images. Particularly, it has to be con-
sidered that an indoor navigation system might include also crowd-based reference images
taken by users, which then presumably are of varying quality (with regard to technical as-
pects, such as camera quality, as well as to content, e.g., people occluding distinctive scene
elements).

Second, public environments are subject to change (consider, e.g., renewed advertisements
or posters, updated shop window decorations, etc.). As a consequence, reference images
become outdated and need to be updated as well. This could, e.g., be done by crowd-based
updates (query images taken by users are used as new reference images). The details of such
a collaborative update mechanism is not in the scope of this thesis, but there is another aspect
to outdated image material: Since humans use landmarks for orientation, it can be irritating
if a significant object shown in the panorama is not present any more or looks different in the
real world.

A third issue is the update frequency of panoramas. In our experiments, the panorama view
was updated by the “wizard” every few meters. This corresponds to the distance when typi-
cally a new location estimate would be available in a live localization system. We learned
that this frequency is not optimal. If the shown locations were incorrect (in the low-accuracy
condition), the panorama seemed to rapidly “jump” from one location to another. Subjects
reported that they were irritated when the screen content refreshed so frequently, especially
when not permanently looking at the display. Moreover, panoramas were slightly different in
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perspective and lighting (as discussed above), which entailed that subjects had to “re-check”
more often their position in reference to the panorama each time they looked back at the
display. Some stated to have looked at panoramas only when they approached turn locations,
i.e., decision points.

This brings us to the idea of varying the frequency in which panoramas are updated during a
path. Instead of showing always the closest available reference image to the current location
estimate, a characteristic subset of panoramas could be used for guidance along the route,
illustrating particularly the turns and difficult parts. This could reduce the cognitive effort
required for visually matching panoramas with the real world, at similar quality of guidance.
We will further investigate this idea and criteria for defining such a subset of images in the
following section.

Summing up, we have learned how users can benefit from a synthesis of AR and VR inter-
faces. On the one hand, we have found that especially VR complements well visual indoor
localization systems, providing a faster and more reliable navigation. On the other hand, we
also have identified issues of VR that can be improved. This motivated us to one more design
iteration where we focus on VR, and further optimize this visualization.

5.4 Navigating Using Decision Points

From the previous two studies, we learned that VR-based instructions were beneficial, but
also overwhelming with relation to their update frequency, and that irritations could occur
due to inconsistent and outdated reference images.

To overcome these shortcomings, further pursuing our iterative design approach, we suggest
a novel concept which we call decision-point-based navigation (DPBN), an extension of our
previous VR concept. The basic idea is here that the system does not show a new panorama
with each localization update (i.e., every few meters), but only if the user has to make a
decision at this location (turn left, right, use the stairs, etc.). This brings us the following
advantages:

• The interface must be updated less frequently, adding to a more calm, thus less irritat-
ing, visualization. If there are exposure changes between multiple subsequent panora-
mas, it is expected that a potential disturbing effect decreases, as there are longer inter-
vals between subsequently shown panoramas.

• The likelihood that the user sees an outdated panorama is reduced, as only a fraction
of available panorama photos lying on the path is actually presented to the user. Real-
world changes that render reference images outdated are likely to occur for landmarks
(i.e., salient objects). However, decision-point-based navigation differs from the known
concept of landmarks, as landmarks not necessarily occur only at decision points [272],
and sometimes not even lie on the route. We emphasize that decision points in our
system do not need to be prominent points (as landmarks are), but simply provide a
visual impression of the location where the decisive action has to be made.

• DPBN is more error-tolerant than the previously presented VR mode. Let d be the
distance between two subsequent decision points (empirically determined as typically
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Figure 5.17: Iterations of the prototype. Left: interface based on virtual reality (VR) using panorama
images of the current location. Right: Using panoramas only of decision points (DPBN)
and an additional map view for overall orientation.

ranging between a few meters and several dozens of meters in large buildings). The
shown panorama is then correct even when the localization uncertainty is below d/2.
In the conventional VR approach, the visualization would already be erroneous when
there exists an image closer to the actual location than the image that is shown (and
this would actually be noticed as an error by the user!).

• DPBN conforms to the mental model of human route memorization. Humans would
describe a route like “turn right in the hall when you face the library, then walk straight
ahead until the elevator, there turn left...”. The sequence of decision point panorama can
thus be considered as a visual route summary.

5.4.1 Research Questions

We investigated the following research questions (RQ) for the newly introduced DPBN ap-
proach.

RQ1 Does DPBN have an effect on efficiency?

Are users as fast as with continuous panoramas, or do they need more time to reach their
destination when the interface only shows them decision points?

RQ2 Is DPBN as convenient as continuous panoramas?

Besides the quantitative comparison, we investigate which mode users prefer and how well
they feel guided in either DPBN or the continuous mode.

RQ3 What usage patterns can be identified?

Furthermore, we are interested in observing usage patterns and strategies with panorama-
based navigation. We therefore let subjects use the system in offline mode to see what we
could learn for designing an ideal route description.
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5.4.2 Experimental Evaluation

Implementation

We extended the prototype used in the previous experiment to support three versions of the
VR mode: In DPBN-auto, panoramas of decision points are shown and updated automatically
as the user is walking. As soon as the user has passed a decision point, the next decision point
is shown. DPBN-manual contains the same list of decision points, but they are not updated
automatically. Instead, the user can flick through the sequence of images manually step by
step. This mode supports navigation even when localization temporarily fails, because the
user can match the images with the real environment, and swipe to the next instruction once
she passed a decision point. The third mode is Continuous, which is identical to the VR mode
described in the previous study. The modes were implemented as WOz system, similar to the
previous study.

AR mode was not included in this version, as we wanted to compare DPBN to the conven-
tional VR mode. Nevertheless, we added a “relocalization” function: In any of the three
modes, users have the possibility to retrieve the closest panorama to their actual location. For
maximal realism, the trigger for the relocalization is raising the phone to an upright pose (as
if taking a photo). This corresponds to the pose in which relocalization would be most likely
successful in a real system. The pose was detected by the phone’s IMU. To reduce unnec-
essary complexity, the feature acquisition procedure with the Bubble Level indicator was not
simulated; instead, the correct panorama was immediately loaded, and the system continued
to work in the respective condition (DPBN-auto, DPBN-manual, or Continuous).

Method

We conducted a within-subjects experiment with three versions of the prototype: continuous
panoramas (in the following referred to as Continuous), automatic decision points (DPBN-
auto) and manual decision points (DPBN-manual). In each condition, subjects had to navigate
on a different path inside the TUM university campus. The conditions were counterbalanced
using a Latin square design. The three paths had a lengths of 332, 220 and 316 meters
and contained 7, 11 and 7 decision points. The varying length and complexity of the paths
allowed us to investigate how users behave on long segments without decision points, as
well as in sequences with rapidly following instructions with many possibilities to choose a
wrong way. Subjects were instructed to rely on the instructions given by the application. In
DPBN-manual, they could swipe back and forth between panoramas as they wanted. They
were also free to use the relocalization feature. The experimenter walked closely behind the
subject and sent the panorama images to the subject’s device using the WOz application (see
Figure 5.11a).

In all conditions, we measured the time until the destination was reached. In DPBN-manual,
we logged all user interactions on the smartphone and recorded when a location update was
received. By this, we were afterwards able to compare the decision point the user currently
looked at with the “correct” next decision point. This helped to the identification of “strate-
gies” when dealing with panoramas in manual mode. At the end of the experiment, we
collected subjective data with a questionnaire.
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Participants

12 participants (3 females, 9 males) took part in this initial DPBN study (a follow-up study
with 18 subjects was conducted afterwards; see later in this section). The average age was 25
(SD = 3). Nine subjects were rather experienced with smartphone usage, but not with indoor
navigation (only one indicated to have used a respective system before). None of them were
familiar with the university building where the study took place.

Results

Efficiency (RQ1)

Subjects took on average 196 s (SD = 19.1) to the destination in Continuous, 208 s
(SD = 51.6) in DPBN-auto and 263 s (SD = 65.9) in DPBN-manual. Results are visual-
ized in Figure 5.18a. Measurements in all conditions were normally distributed (p > 0.05 in
a Kolmogorov-Smirnov test [159]). With a one-way repeated-measures ANOVA, we found a
significant effect of conditions on task time (F(2, 22) = 9.85, p < 0.001, partial η2 = 0.28).
Post-hoc t-tests with Bonferroni correction showed no significant difference between Contin-
uous and DPBN-auto (p > 0.05), but between the other conditions with p < 0.05. DPBN-auto
is hence essentially as efficient as the Continuous mode. By contrast, subjects needed signifi-
cantly more time in DPBN-manual.

User Preferences (RQ2)

In questionnaires after the experiments, subjects gave feedback to five statements S1 to
S5 (see the tables in Figure 5.18b). Results are indicated on Likert scales ranging from -2
(strongly disagree) to 2 (strongly agree).

S1 addresses the question how pleasant to use users found the different methods. A Fried-
man test showed a significant effect between methods (χ2 = 13.68, df = 2, p = 0.001).
Participants rated the Continuous mode significantly more pleasing to use than both DPBN
conditions (S1, 1.7 vs. 0.0, p < 0.005 in a post-hoc Wilcoxon signed-rank tests with Bonfer-
roni correction).

Likewise, there was a significant effect on the perceived guidance quality (χ2 = 11.49, df = 2,
p = 0.003). Subjects felt to be guided better to the destination (S2) in continuous mode (1.8)
than in DPBN (0.7 in automatic, 0.4 in manual mode). These effects were significant between
Continuous and DBPN-auto (p < 0.05), and highly significant between Continuous and DBPN-
manual (p < 0.001) in post-hoc Wilcoxon signed rank tests with Bonferroni correction.

While those results imply that subjects were less satisfied with DPBN, there is above-average
agreement (0.8, SD = 0.5) that decision points are sufficient for orientation (S3). This is
a hint that the DPBN principle essentially works (as confirmed by the results for RQ1), but
received less acceptance with subjects. In order to find out how acceptance could be further
increased, we will take the observed user behavior in manual mode (RQ3) into account.
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Statement Condition M SD

S1: I found the method pleasing 
to use.

Continuous 1.7 0.5S1: I found the method pleasing 
to use.

DPBN (auto) 0.0 1.0

S1: I found the method pleasing 
to use.

DPBN (manual) 0.0 1.0

S2: I felt guided well to the goal. Continuous 1.8 0.5S2: I felt guided well to the goal.

DPBN (auto) 0.7 1.0

S2: I felt guided well to the goal.

DPBN (manual) 0.4 0.8

Statement M SD

S3: Decision points are sufficient for orientation. 0.8 0.5

S4: The ability to relocalize myself is useful. 1.9 0.3

S5: Moving up the phone to relocalize is convenient. 1.5 0.5

(b) Qualitative feedback on the system. The
mean agreement (M) to statements S1 to
S5 is indicated on a 5-point Likert scale
(1 = strongly disagree, 5 = strongly
agree). SD indicates standard deviations.

Figure 5.18: Evaluation results of decision-point-based navigation (DPBN) versus the continuous VR
mode, as described in earlier sections.

User Strategies (RQ3)

We identified two major strategies of user behavior in the DBPN-manual condition. One group
of users always displayed the decision point lying ahead, walked until the shown location
was reached, and swiped then to the next decision point. These subjects almost never made
use of the relocalization feature. Another group did not wait until the next decision point
was reached. Instead, they continuously used the relocalization feature to see a panorama
matching as close as possible with the current position. In fact, they relocalized so frequently
that the effect was almost similar to the Continuous condition. However, no matter which
of these strategies users applied, they found the relocalization feature (S4) extremely useful
(1.9, SD = 0.3).

A possible explanation for frequent self-relocalization is that subjects were unconfident espe-
cially on long route segments. In that case they desired an intermediate “control” point to
confirm that they are on the right way. In DPBN-auto, on average 10.3 locations were shown
per path; in Continuous it were 52.3 decision points. In the DPBN-manual condition, subjects
on average swiped 15.3 times to a new decision point and used 9.3 times the relocalization
function.

Implications

These results have the following implications:

• Subjects reached the destination with DPBN-auto as fast as with continuous panoramas
(the time difference was not statistically significant). We can therefore draw the con-
clusion that it does not affect performance if we reduce the panorama update frequency
from Continuous mode to a lower frequency, and only show decision points.
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• Subjects prefer Continuous mode over DPBN-auto, possibly because the number of de-
cision points was too low in DPBN-auto. Yet, looking at the sum of swipes and relocal-
izations in DPBN-manual, the high number of panoramas of the continuous mode is not
necessary either. A compromise between the two could be the optimal solution.

• We need to investigate where the additional instructions in DPBN-auto shall be inserted,
and more generally, what are criteria for good decision points. One example could be to
insert intermediate panoramas on long route segments without decision points. When
there are many options to leave the straight path, confirmations to stay on the route
could add confidence.

• To make it easier to detect whether a decision point is reached, a distance estimation
until the currently displayed panorama could be shown. Already passed decision points
could be marked so that users can see at a glance which part of the route has already
been completed in the list of panoramas.

• When the user is walking fast, signifying she is sure about her way, DPBN could be
used. As she slows down, e.g., in case of uncertainty (detected through the phone’s
accelerometer), the system could switch automatically into the continuous mode to
give more hints for orientation.

Follow-up Study

We conducted a follow-up study to investigate the open issues outlined above. We strived to
increase users’ confidence when navigating with the application by two measures. First, we
added intermediate panoramas in long route segments in the DPBN-auto mode, so that there
were now in total 11, 14 and 10 panoramas on the three paths (instead of previously 7, 11
and 7). Second, we added a map view (see right screenshot in Figure 5.17), which is shown
in a corner of the screen and which can be enlarged to full-screen. The map view is intended
to provide better overall route awareness and to increase familiarity with the interface, as
maps are well-known from standard navigation applications.

With these enhancements, we formulate the following additional research questions.

RQ4 How does the enhanced DPBN compare to the previous version in terms of user
acceptance?

RQ5 What is the acceptance of the map view, compared to DPBN?

RQ6 What are criteria for good decision points?

Method

With the updated prototype, we conducted a within-subjects experiment with three versions
of the prototype: continuous panoramas (in the following referred to as Continuous), auto-
matic decision points (DPBN-auto) and manual mode (Manual). Continuous and DPBN-auto
were implemented in the same way as in the previous study. In manual mode, we made a
modification: While subjects in the previous study had a list of decision points available, they
now did not get any panorama at all, as long as they did not explicitly request one. If they
did so, the closest panorama to the current location was shown. This allows us to investigate
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at which locations subjects potentially want to receive instructions. In Manual, subjects were
instructed to request an instruction only when they otherwise would be unsure about their
way. All other parameters (paths, instructions and the WOz setup) were the same as in the
previous study. After the experiments, subjects answered a questionnaire.

Participants

18 participants (6 females, 12 males) took part in this study, the average age was 32 years
(SD = 13). None of them had participated in the previous experiment. 12 subjects own a
smartphone, but do not use navigation applications overly often (with an average of 0.2 on a
5-point Likert scale, where -2 = never and 2 = frequently; SD = 1.4). One subject stated to
have used indoor navigation previously.

Results of the Follow-up Study

RQ4: Effect of the Enhanced DBPN

Subjects indicated that DBPN-auto was pleasant to use (1.7, SD = 2.0); for Continuous the
agreement was 0.9 (SD = 1.0). This is a significant difference according to a Mann-Whitney
U-test [198] (W = 90.5, Z = -2.52, p < 0.05). This result is opposed to the previous study,
where Continuous was rated significantly better – obviously, the changes made to DPBN in
this iteration could in fact make DPBN not only superior in terms of efficiency, but also user
preferences.

In direct comparison with the previous study, the convenience of DBPN-auto (agreement to
the statement “The system is pleasant to use”) significantly increased from MD = 0 to MD = 2,
according to a Mann-Whitney U-test (W = 19, Z = -4.03, p < 0.05). The average convenience
of Continuous decreased from MD = 2 to MD = 1, which is likewise a significant effect
(W = 152, Z = 2.02, p < 0.05).

With the enhanced DPBN, subjects also feel significantly better guided to the goal (MD = 2)
than in the previous study (MD = 0.5) according to a Mann-Whitney U-test (W = 36,
Z = -3.47, p < 0.05). There was no significant difference for the Continuous mode relat-
ing to that aspect. The results support the assumption that we have reached our goal and the
enhancements made to DPBN made users feel more comfortable with it, so that they favor it
over continuous navigation.

RQ5: Usage of Map versus DPBN

11 of 18 subjects (61%) indicated to have relied mostly or slightly more on the panorama
view, compared to maps. Only 5 of 18 (28%) preferred the map view. Two subjects used
both interfaces equally (see Figure 5.19). In almost half of all runs (17 of 36), subjects stated
that they did not look at the map interface at all. While the map view was generally rated
as helpful (averagely 1.3 on a Likert scale ranging from -2 to 2, SD = 1.0), there was only
average agreement that the map view is sufficient (0.1, SD = 1.0). Given that maps are
the prevalent known visualization on mobile navigation systems, this is an interesting result.
We see it as an indicator that subjects were open-minded towards our proposed VR-based
decision point visualization and adopted it very well.
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Figure 5.19: Histogram of indicated panorama versus map usage. Subjects tend to rely more on the
virtual reality panorama views during navigation.

RQ6: Criteria for Good Decision Points

In order to assess how well our predefined decision points in DPBN match users’ expectations,
we compared the predefined locations for decision points in the DPBN-auto condition with the
locations where subjects requested decision points themselves in the Manual condition. We
use the term request location (RL) for the location of the decision point (DP) in our database
lying closest to the location where the user triggered the request. We interpret a request as a
match if the distance d(RL, DP) lies below a certain threshold t:√

(RL.x−DP.x)2 + (RL.y −DP.y)2 < t

For t = 5 meters, we observe that 74% lie below the threshold, while for t = 7 meters, the
match rate is already 88%. 90% of all requests are closer than eight meters from the original
decision points. These results indicate that the decision point locations in this second iteration
of DPBN were already very close to users’ expectations. This possibly explains the fact that
DPBN-auto mode was now preferred over Continuous mode (unlike in the first iteration of the
decision-point-based system).

Some meters before a turn possibility
Right before a turn possibility
When I change my orientation

Right after a turn
When I slow down

When I have not received instructions have for a while
When I accelerate

-2             -1               0              1              2

Figure 5.20: Importance of new instruction (decision points) at certain locations or situations. An-
swers given on a 5-point Likert scale from -2 = strongly disagree to 2 = strongly agree.

To further inform the choice of good decision points, we asked subjects at which locations or in
which situations they consider instructions especially important. Figure 5.20 lists the results
on a Likert scale, where -2 corresponds to strong disagreement and 2 to strong agreement
with a location or situation. According to the answers, most important are instructions some
meters before the possibility to choose an alternative path (1.5, SD = 0.6) and right before
such a point (1.3, SD = 0.8). Another situation where instructions were preferred was when
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users change their orientation (0.6, SD = 1.2). Turning around and looking backward could
be an indicator for disorientation, so that they need a cue to follow the right path. The
demand for instructions when slowing down (0.2, SD = 1.1) and right after a turn (0.4,
SD = 1.2) was slightly above average. While slowing down could, similar to turning around,
indicate uncertainty, an instruction after a turn would rather have a confirmative effect (“your
turn was correct, now follow this path”). A neutral result was yielded for the question whether
instructions should be shown time-based, i.e., when no instructions have been received for a
while. When accelerating, subjects clearly did not require instructions (-0.8, SD = 0.7). This
is reasonable, as they are more certain where to go in that case, and might not look at the
display when walking fast.

5.4.3 Discussion and Lessons Learned

In this section, we sum up the design approach we have pursued with the goal to develop a
user-friendly and efficient multimodal interface for indoor navigation. We have performed an
iterative development process that can be summarized into four stages, each consisting of a
design and evaluation phase (see a summary in Table 5.1).

Visualization Concept Subject of
Investigation

Type of
Evaluation

Number of
Participants

VR/AR-based, 4 feature indicators,
object highlighting

Design mockup Online 81

VR/AR-based, 1 feature indicator, ob-
ject highlighting

Prototype Experimental 12

DPBN as VR extension Prototype Experimental 12
DPBN refinement, map view Prototype Experimental 18

Table 5.1: Overview of the iterative research approach pursued in this chapter.

In an iterative design approach, we have refined the VR-based approach towards a decision-
point-based approach (DPBN). We have shown that DPBN is equal to conventional VR in
terms of navigation time, i.e., the reduced number of instructions does not negatively affect
efficiency. In addition, DPBN is more robust against inaccuracy since determining the next
decision point with relation to the current position requires a lower localization accuracy,
compared to displaying always the matching panorama according to the current position.

With a second iteration of DPBN, we improved the placement of decision points, addressing
the issue that subjects sometimes felt lost when there were too little decision points. We
found that it can be beneficial when instructions are shown already several meters before a
turn, instead of immediately before that turn. These improvements addressed problems in
the first DPBN version that was less popular with users compared to conventional VR. With
the improved version, subjects favored the DPBN version over the conventional VR interface,
so that DPBN can be seen not only equal to VR in terms of efficiency, but even superior in
terms of user satisfaction.
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Limitations of the Studies in this Chapter

We acknowledge that the experimental evaluations presented in the previous sections have
limitations. First, we used simulated localization data for all experiments. Controlling the
output of the localization system allowed us to isolate the effectivity and efficiency of the user
interface as variable of investigation. However, it has to be kept in mind that the UI responses
were generated by the WOz technique, and that a self-contained system might yield different
results. We also want to note that it was not the goal of the conducted research to evalu-
ate the accuracy of a visual localization system. While we argue that visual localization is a
promising approach for indoor navigation (see Section 2.2.4), an investigation whether vi-
sual localization is superior to other localization techniques was not a research question and
exceeds the scope of this dissertation.

5.5 Summary and Lessons Learned

We have reported on the design and implications of multiple user interface iterations for
optimizing the indoor navigation task. Here, at the end of this chapter, let us discuss what
the previously presented findings mean for the domain of indoor navigation with relation to
multimodality.

Our work includes multiple (independent and parallel) modalities on different levels. The
localization method, at a low level, relies on the visual modality, which is already relatively
new [302]. Further, the Device Gesture modality is used to automatically switch between
different visualizations (AR and VR) that are best suited for the respective poses. In Section
5.3.4, summarized in Figure 5.16, we have made a proposal for how both visualizations
could fluently be combined. This suggestion shows how indoor navigation applications could
benefit from multimodal interface approaches. The feature indicator contributes to a win-win
situation for both the user and the system. Not only is the user experience improved, as route
guidance is better in case of inaccuracy. Also the localization certainty is improved, as the
feature indicator UI element encourages the user to record better query images. An important
lesson learned is here that the MUSED interfaces must be compliant with the user’s mental
model [122, pp. 49ff.]. This win-win situation was only possible because users intuitively
raise the phone when they want to use the AR interface. This shows the importance of a
context-aware choice of modalities. In Chapter 6, we will present a solution for such context-
driven modality choices with a software framework.

User satisfaction results for the novel multimodal interfaces were highly encouraging. In the
final study, we saw that the VR-based DPBN interface was used more than the map interface,
which people are familiar with. The research presented in this chapter is just an example of
how multimodality can be successfully used in the area of indoor navigation. In the following,
we just outline some possible research directions for even further enhancing the interface as
it is now. In that sense, we want to motivate researchers to experiment with and try out new
interaction paradigms, without being afraid that people always just use what they know.

• We have seen in the answers of the final study that walking speed is an indicator for the
certainty of the user (as users were interested in receiving additional decision points).
When the route gets complicated or instructions are insufficient, users may likely slow
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down. Hence, walking speed estimation could be integrated as a cue for triggering
additional instructions and for modifying the UI in other dimensions, e.g., showing
textual instructions or additional landmarks.

• We have, in our research with MUSED interaction, focused on sensors (camera, ac-
celerometer, compass) and input modalities built on top of them. The proposed MUSED
interaction concepts are not limited to the exemplarily used sensors and modalities we
have presented here. Further research could focus stronger on output modalities as
well. For example, the haptic channel can be included to inform the user on new in-
structions when the user does not look at the mobile device or when it is, e.g., in the
pocket. Speech is an option for the output channel as well.

• Personal preferences can inform route guidance. This does not only entail that acces-
sibility requirements are considered (e.g., avoiding stairs and using the elevator in-
stead), but also that, e.g., badly illuminated corridors are avoided at evening hours,
even if the alternative way is longer.

• Route guidance can adapt to contextual factors, like crowdedness in a certain area of the
building. Imagine a museum scenario where the application’s tour suggestions contain
routes that are currently less frequented. By managing the stream of visitors like this,
visitors could have a better view of the exhibits and a better overall experience.

• Cooperative localization and exchange of the position using device-to-device communi-
cation could further leverage the accuracy of indoor localization. A device with a better
location estimate could share its information via Bluetooth Low Energy (BLE) with other
users nearby (cf. low-distance beaconing as introduced in iOS 848 or Android L). This
approach is, e.g., used in the automotive domain [283].

• By combining of indoor and outdoor navigation, seamless mobility chains could be cre-
ated. A calculated route could then integrate, e.g., walking segments (pedestrian navi-
gation), self-driven segments (car navigation), and train/bus segments (public transport
integration), where the handheld device switches between different UIs and modalities
for instruction presentation. As an example for a platform integrating diverse mobility
providers, see [80].
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Chapter 6

Designing and Implementing Mobile
Multimodal Systems

6.1 Problem Statement and Research Questions

After we have presented and investigated selected examples for multimodal systems in detail,
we are now approaching in a systematic way how MUSED applications can be created. The
implementation of novel interaction modalities and sensor-driven behavior can be a tremen-
dous effort, often involving recurring tasks. As a solution to speed up and simplify MUSED
application development, we present a software framework whose feature set is informed by
a (questionnaire- and focus-group-based) requirements analysis. In this chapter, we describe
this framework in detail and present sample applications developed with the framework to
highlight its potential. By several implemented use cases we demonstrate the available design
space, also with reference to research apps presented in prior chapters.

As a second focus of this chapter, we take up a user-centered approach to further inform the
design of multimodal systems. First of all, we investigate current modality usage habits, e.g.,
which modalities users consider useful in different situations. We then conceive and evaluate
user interfaces for defining and achieving awareness of multimodal behavior.

This chapter answers the following high-level research questions:

• How can the implementation of multimodal systems be simplified?

• How can users be supported in adapting the multimodal behavior of mobile systems to
their needs, and how can awareness on currently active modalities be achieved?

This chapter is partly based on two papers we have published in 2014 [222, 223].

6.2 Elicitation of Requirements

6.2.1 Current Use of Multimodality – Two First Surveys

For initial insights which modalities are currently predominantly used on mobile devices in
everyday life, and under which circumstances, we report on two surveys we conducted prior
to the development of the framework and the user interfaces presented later in this chapter.

123
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Usage of Modalities

We begin with large-scale results on situation- and task-specific modality usage. The data
stem from an online survey conducted with 61 participants (26 females, 35 males), aged
between 16 and 36 years (M = 21, SD = 4). The participants were asked to indicate which
modalities they use in particular situations or locations (e.g., at home, while walking, driving
or in public transport, in a public space like a restaurant, etc.). In addition, they were asked
to report on their modality usage with relation to specific tasks, e.g., entering text, making a
call, or taking a photo. Multiple answers were allowed.

Touch-
screen Speech Gestures Buttons

In public transport 98.4% 27.9% 1.6% 50.8%
At home 95.1% 36.1% 37.7% 49.2%
In a library/meeting 90.2% 21.3% 1.6% 39.3%
During exercising 47.5% 19.7% 27.9% 42.6%
In a restaurant 93.4% 19.7% 0.0% 42.6%
While driving 29.5% 11.5% 55.7% 27.9%
While walking 85.2% 24.6% 31.1% 45.9%
On a concert 95.1% 27.9% 3.3% 45.9%

Average 79.3% 23.6% 19.9% 43.0%

(a) Situation-specific usage

Touch-
screen Speech Gestures Buttons

Writing short text 96.7% 16.4% 1.6% 16.4%
Writing longer text 77.0% 23.0% 0.0% 32.8%
Taking a photo 75.4% 3.3% 16.4% 50.8%
Navigation app 83.6% 29.5% 6.6% 11.5%
Making a call 88.5% 11.5% 16.4% 24.6%
Starting an app 98.4% 14.8% 8.2% 8.2%
Quick settings 85.2% 11.5% 21.3% 24.6%

Average 86.4% 15.7% 10.1% 24.1%

(b) Task-specific usage

Figure 6.1: Input modality usage in different situations and for different applications and use cases.
The diagrams indicate percentages of agreement (white: low agreement, green: high
agreement).

Figure 6.1 summarizes the results for input modalities. We see that both for situation-specific
and for task-specific usage, the touchscreen is the prevalent input method. For almost all
situations and tasks, 75% to almost 100% of participants confirmed to prefer this modality,
followed by hardware buttons as second-most answer. However, there are exceptions: While
driving or exercising, the touchscreen is only used by 29.5% and 47.5%, respectively, and
gestures become more important. When looking at tasks, modalities other than touchscreen
input can be observed for taking a photo (50.8% use a hardware button), writing longer texts
(32.8%, probably corresponding to devices with hardware keyboards), quick settings (21.3%
activate settings by gestures), and navigation applications (29.5% use speech input to enter
their destination).

The results for output modalities are shown in Figure 6.2. They exhibit larger divergence
than for input: Although the screen is still the prevalent way to receive information, subjects
likewise use sound (via loudspeakers or headphones), haptic feedback, or visual notifications
using a LED. The usage of these channels differs again by situation. Loudspeakers are mostly
used at home (80.3%) and in the car (62.3%). In public transport or during exercising, sub-
jects prefer headphones (55.7% and 54.1%, respectively). Haptic feedback (i.e., vibration)
shows generally higher usage percentages than aural notifications. It is particularly used in
loud environments (e.g., in public transport with 70.5%, or on concerts with 67.2%), but also
in particularly silent settings. In the latter case, also the notification LED is used (50.8%),
as even vibration might be too disruptive in restaurants or libraries. Output modality usage
also differs between tasks. The loudspeaker is particularly used for navigation applications
(70.5%) and to notify on incoming calls (68.9%). However, for incoming calls, haptic feed-
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Screen Loudspeakers Headphones Haptic Feedback Notification LED
In public transport 80.3% 6.6% 55.7% 70.5% 42.6%
At home 82.0% 80.3% 34.4% 59.0% 52.5%
In a library/meeting 77.0% 0.0% 19.7% 45.9% 50.8%
During exercising 39.3% 34.4% 54.1% 41.0% 19.7%
In a restaurant 80.3% 3.3% 14.8% 54.1% 42.6%
Driving 37.7% 62.3% 21.3% 36.1% 31.1%
While walking 77.0% 27.9% 42.6% 60.7% 34.4%
On a concert 75.4% 8.2% 6.6% 67.2% 41.0%

Average 68.6% 27.9% 31.1% 54.3% 39.3%

(a) Situation-specific usage
Screen Loudspeakers Headphones Haptic Feedback Notification LED

Notification about SMS or eMails 70.5% 42.6% 16.4% 68.9% 49.2%
Notification about incoming call 75.4% 68.9% 23.0% 72.1% 26.2%
Notification about due task or calendar 77.0% 37.7% 16.4% 62.3% 31.1%
Notification about system events 77.0% 24.6% 8.2% 49.2% 27.9%
Reading or being read a short text 73.8% 26.2% 26.2% 11.5% 6.6%
Reading or being read news 73.8% 19.7% 21.3% 8.2% 1.6%
While using a navigation application 73.8% 70.5% 21.3% 8.2% 4.9%

Average 74.5% 41.5% 19.0% 40.0% 21.1%

(b) Task-specific usage

Figure 6.2: Output modality usage in different situations and for different applications and use cases.
The diagrams indicate percentages of agreement (white = low, yellow = medium, green
= high agreement).

back is even more popular (72.1%). Vibration is likewise frequently used for other kinds of
notifications, like emails (68.9%), to-dos (62.3%), or system events (49.2%).

In summary, the results show that multiple modalities play a role for users when interacting
with their mobile device. Modality usage is diverse, although the touchscreen is justifiably the
most important channel for both in- and output. The question which modality is preferred is
situation- and, especially for input, task-specific. This finding is a first motivation to facilitate
switching between modalities on mobile devices. As we observed in particular for output
modalities that their choice is remarkably influenced by different contexts and situations, this
makes them particularly interesting for a further investigation to understand when and how
automatic modality switches could be performed.

Change Behavior of Modalities

In a second survey, we investigated how, when, and how often subjects change modalities
(with a focus on output modalities). We also were interested in subjects’ attitudes towards
automated multimodal behavior. 24 participants (6 females, 18 males) answered this ques-
tionnaire. They were aged from 20 to 31 years (M = 24, SD = 3)80.

We first asked subjects which modalities they adjust most frequently, how often and in which
situations these changes occur, and by which means they are performed. The answers to these
questions are summarized in Figure 6.3.

80This survey was conducted as part of the user study described in Section 6.4.2.
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(b) Most frequent ways to change modalities
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(c) Frequency of modality changes per day
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(d) Situations where modality changes occur

Figure 6.3: Current behavior of users with relation to multimodality. The diagrams indicate percent-
ages of agreement. For questions (a), (b), and (d), multiple answers were allowed.

Among the often changed output modalities, the volume level was mentioned by far most
frequently with 92%. This is comprehensible, since the aural modality is most obtrusive for
others. Following were mentioned the activation/deactivation of vibration (67%), screen
brightness adjustment (58%) and activation of the notification LED (4%). The fact that many
participants in the study used iPhones (58%), which do not have dedicated notification LEDs
(although the camera flash can be used for this function), might be responsible for the humble
usage of this communication channel. See Figure 6.3a for a visualization of the results.

21% indicated to change modalities more than five times a day. 33% modify them more than
two times a day. The majority of subjects (42%) stated to modify modality settings only one to
two times a day, and 4% change them never (see Figure 6.3c). When changing modalities, the
most frequently used method indicated by participants were hardware buttons (79%), e.g.,
the volume up/down buttons or the mute switch. This must be seen in relation to volume
as the most frequently changed modality. 63% stated to use the settings/preferences menu;
only 29% use shortcuts like the iOS control center, Android quick settings, or widgets. 21%
change settings from within apps. One participant answered that he used NFC tags placed at
different locations at home to trigger modality changes (see Figure 6.3b).

As most common situations in which inappropriate (i.e., socially not accepted) modalities
were experienced, subjects mentioned work (33%), school/university (17%), and cinema or
exhibitions (13%). Less frequently, subjects experienced modalities as unsuitable outdoors
(8%), during transport (4%), and at home (4%). The latter case mostly happened when
users forgot to unmute their phone when returning home after work (see Figure 6.3d).

We also asked whether subjects were satisfied how output modalities are prevalently handled
on their mobile device. Did they rather miss information (i.e., notifications are too passive),
or did they feel notified in an inappropriate manner (i.e., notifications are too obtrusive)?
Overall, 58% of subjects were satisfied. Out of the remaining 42%, 25% found the modality
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too passive, 8% too obtrusive, and 8% inappropriate in both ways.

These results give first indications that a significant part of users is not fully satisfied with
prevalent modality adjustment methods as used/available today. We argue that a solution as
we present it in this thesis could improve this situation. Using rules for modality switches
could be one solution to assist users who now frequently change modalities, and especially
address the problem of forgetting to revoke a modality change. Although context classifi-
cation has made significant advances, current machine learning approaches do not allow to
autonomously manage context-aware behavior in the real world for a larger number of differ-
ent situations with the necessary amount of precision [216]. Moreover, feeling in control is an
important factor to user satisfaction [308]. Thus, manual rule definition seems a reasonable
approach. This is further confirmed by our studies we describe later in this chapter.

Such a rule-based approach, however, requires that the smartphone gathers context infor-
mation in the background and is able to autonomously change modalities. We therefore
investigated subjects’ attitude towards such a proactive behavior. We received mostly positive
feedback on these questions (see Figure 6.4). Only 13% would not want their device auto-
matically observing context factors. 67% would accept it without concerns, and 21% would
accept it, but with some concerns, e.g., regarding increased battery consumption and affec-
tion of their privacy. Here, it was important to users that the gathered information would
not leave the device. This is not the case for every context framework previously presented
in literature, e.g., Code in the Air [273]. 64% would also accept without concerns that the
device can automatically modify modality settings. 33% would accept it with some concerns,
and only 4% do not desire this behavior. As concerns were mentioned here that the automatic
switching between modalities might not work reliably enough, and that the user could lose
control over the device.
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Figure 6.4: Acceptance of a system observing one’s own behavior (left) and proactively changing out-
put modalities (right)

6.2.2 Developer’s Perspective: Expert Interviews

We interviewed three software developers81 involved in mobile application development, ask-
ing how satisfied they are with the current tool support for creating multimodal applications.
We also asked what they wished for to improve the support for their programming needs.
Summarized and aggregated, the following issues were mentioned: Developers reported that
implementing contextual behavior requires the use of different APIs (e.g., location API, sensor
API, etc.). This does not only entail frequent reuse of similar pieces of code, but also hetero-
geneous ways of accessing data. As an example, sensor or location updates are listener-based

81Nielsen and Landauer [245] found that with small number (3–5) of target user group members, already the
majority of problems of tested systems can be identified
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(“push” principle), while ambient light level must be checked manually (“pull” principle). If
context-sensitive behavior based on push- and pull-based readings shall be realized, inter-
faces and wrappers need to be created, which adds significant overhead. Developers would
appreciate a unified structure for all types of context information, as well as encapsulations of
frequently used functions hiding complexity. In terms of input, novel interaction methods cur-
rently have to be designed and implemented from scratch. Especially for rapid prototyping,
building blocks would speed up the creation of functional prototypes. In terms of output, it is
effortful to include multiple modalities in an application, as each additional output modality
must be implemented separately. If developers had a way to abstract from the information
to be communicated and the channel over which it is transported, they would more likely
implement multiple modalities, contributing to more usable, natural, intuitive, and efficient
applications.

6.2.3 User’s Perspective: Focus Group

The focus group was conducted with six participants (5 males, 1 female) between 24 and
30 years (M = 27, SD = 2). Four participants were research assistants; two were students.
Four of them owned an Android smartphone and two had an iPhone. All participants rated
their smartphone expertise as “high” (4) or “very high” (5) on a five-step Likert scale. At the
beginning, participants were introduced to the topic and an overview of input and output
modalities was given. Subsequently, the above research questions were investigated in a
guided discussion. The focus group took about one hour and was audio-recorded. In the
following, we summarize the most important results and design implications.

Results

Current Usage of Input and Output Modalities

While the touchscreen was the prevalent interaction method, the usage of further modalities
broadly varied between participants. One participant used vibration and notification lights as
primary output; another participant did not use vibration at all, but heavily relied on speech
input (although only in private space). A third participant neither used sound nor vibration,
but relied on screen notification, keeping the phone next to him on the desk. This indicates
that one should account for diverse preferences and defaults. Second, the focus group re-
vealed that modalities are rarely changed but that participants maintain “default settings”
that are only altered in certain situations. For example, one subject only enabled sound when
expecting an important call. Another subject had the phone in ringing mode as default, but
muted the phone in silent environments (e.g., in the library). This shows that defaults are
interpreted differently. It also turned out that when speaking of modalities, participants had
mostly output in mind. As input methods, other than the touchscreen, participants indicated
to use, e.g., hardware buttons to control the music application or to decline calls, and speech
input to set a timer or perform a search query. Input modalities are however strongly task-
specific. A framework should therefore support the implementation of novel modalities for
individual purposes.
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Identified Problems in Status Quo

The following problems and desires for improvements could be identified from the par-
ticipants’ feedback: Less conventional input methods either do not work reliably enough
(speech), are not equally usable in different social contexts, or are not implemented consis-
tently (e.g., tap gestures or gaze-based interaction, as found in some Samsung phones). In
that case, participants desire them to be available and work in the same way in all appli-
cations. One subject stated that he often forgot to revoke a modality change, which could
result in unwanted situations (e.g., the phone rings in a silent environment). This fear was
confirmed by almost all participants and given as a reason for rare changes of modalities.
They would welcome a system that automatically changes modalities, but retain control and
be able to override the system behavior. Users miss a solution similar to “profiles” (as avail-
able on earlier Nokia phones, e.g., the Nokia 6110), so that a rule-based modality switching
approach seemed attractive, especially using context information as a basis for decisions. Par-
ticipants supposed that most situations could possibly be covered by a small number of rules.
This would made complex automated approaches unnecessary. However, a prerequisite is
that rule application works reliably.

User Interfaces

In the discussion of potential user interfaces and methods to set up and control multimodal
behavior, several ideas emerged. They build upon the rule-based approach, as suggested in
the previous section.

• The user manually creates rules in a dedicated interface by defining modality settings,
which are activated by conditions (such as location, time, etc.). Participants supposed
that rules would in many cases be set once and later rarely changed.

• The user makes the desired settings in the phone and assigns this “profile snapshot” to
a certain condition. The challenge here is to define which settings should be included
to the rule, and which should not.

• The smartphone recognizes the interdependence between a certain situation (context)
and associated modalities, learning from the user’s actions, and proactively suggests
new rules to automate modality switches.

Users always need to have the possibility to override these rules, with changes remaining
active until the next rule is applied. Another idea was a time limitation for manual settings
(e.g., one hour or “until the meeting is finished”). Users should also be quickly able to glance
which setting is active. One possibility to achieve this would be a widget on the lock screen or
home screen that informs the user on current modalities and active rules, right after switching
on the phone. However, if the widget is not placed on the primary home screen, it would
consume additional time to switch home screens. A notification message could be the better
solution in this case. We further investigate these alternatives in a study in Section 6.4.2.

Based on focus group and expert interviews, we can summarize the following requirements:

1. A holistic system for mobile multimodal interaction should both cover multimodal in-
put (in terms of natural interaction) and output (in terms of context-based modality
switches).
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2. Defining multimodal behavior based on rules is closest to the human understanding of
automated switching and might thus be an adequate underlying model, in contrast to
machine learning.

3. The system must be flexible enough for the heterogeneous preferences in terms of fa-
vorite modalities in different situations and for different applications.

4. The underlying programming framework should ease the access to contextual infor-
mation in a unified way, and abstract from information representations (i.e., a unit of
in-formation can be easily communicated by different modalities).

6.3 Software Framework for Multimodal Interaction

In order to address the requirements formulated above, we implemented a framework to sup-
port the development of multimodal interaction. Our M3I (Mobile MultiModal Interaction)
framework is implemented in Java as Android library. Thereby, no special configuration or
tools are needed for using it; the library just needs to be referenced from an Android project to
access its features. We share M3I with the community at http://www.eislab.net/m3i.
Figure 6.5 shows, on a conceptual level, the structure of the framework and its basic compo-
nents, which will be detailed in the following.

6.3.1 Rule-Based Modality Switches

M3I defines the multimodal behavior of a system with the help of rules. We opted for the rule-
based approach out of the variety of possible paradigms discussed in Section 2.3.2, based
on the preceding focus group discussion (see Section 6.2.3). We acknowledge that static
rules may provide limited flexibility compared to, e.g., self-learning approaches. However,
in the focus group we found that subjects intuitively suggested (simple) rules to determine
autonomous behavior. We therefore argue that this approach might comply best with the
underlying mental model and the understanding humans have of autonomous systems. Fur-
ther, user-defined rules support the feeling of control and the understandability of modality
changes. Some possible alternatives to manual rule creation will be discussed in Section
6.4.1.

As shown in Figure 6.5, rules have a “if-then-else” structure. This simple approach is mo-
tivated by making them adequate for non-expert programming82. In each rule, logical ex-
pressions, which define a certain (context) situation, are evaluated to be either true or false.
In either case, a defined action can be triggered, or another rule can recursively be called.
This allows creating a nested decision tree of arbitrary complexity. The set of active rules is
evaluated in the framework’s Evaluator.

For each rule, evaluation intervals can be set, in order to account for time-critical sensor data
as well as for battery-conserving location updates. Once rules have been defined, the follow-

82cf., e.g., programming systems addressing beginners or children, such as Lego Mindstorms, http://
mindstorms.lego.com, accessed September 11, 2014

http://www.eislab.net/m3i
http://mindstorms.lego.com
http://mindstorms.lego.com


6.3 Software Framework for Multimodal Interaction 131

ing code excerpt activates the framework in any Android application. This demonstrates how
easy it is to extend existing applications by the functionality of M3I.

Evaluator e = new Evaluator(1000); // Create new evaluator instance
e.addRule(rule_1); // Add previously defined rules
...
e.addRule(rule_n);
e.start(); // Check in the background if rules apply

LogicalExpression
Trigger

Rule

Rule
true

false

`Vol = 0, Vibrate = TRUE‘

Evaluator

Rule 1

Rule n

Rule i
Explicit (multimodal) 

actions &
contextual state

State-dependent
multimodal 
response

...
...

Statement Statement

Statement

AND

OR

LogicalExpression

`Loc = Office‘

`Light < 5‘

Context
Factor Operator Parameter

= 10:00 AM

Statement

Time

Example: If I am in a meeting (at the office AND at 10 AM), OR if the phone lies with the screen facing down
(here tested by ‘ambient light level < 5‘ as the light sensor is on the front side), mute the phone and enable vibration.

`Time = 10 AM‘

State: all context factors 
& events at time t

Figure 6.5: General Structure of the M3I framework. The core is the evaluator, which evaluates rules
that define the system’s behavior in response to explicit user actions and/or to implicit
context factors and events. Rules can initiate triggers to configure modality changes for
in- and output and to adapt user interaction to the context. Recursive rules allow the
implementation of complex decision-making. Examples are shown in blue, smaller font.

6.3.2 Context Integration

So-called context factors are fine-grained pieces of context information that can impact out-
put modalities, or are part of an interaction (e.g., a gesture). Examples for context factors
are the device’s location, the charging state of the battery, or the time of day, but also com-
plex information such as the user’s current mode of transportation or activity. In M3I, a
ContextFactor is defined by specifying a ContextGroup it is part of, and the respective
context method that provides the ContextFactor’s value. Since Java does not support func-
tion pointers, constants are used to specify the ID of the context method that shall be called
at runtime. For example, a context factor of type Float indicating the device’s charging level
can be defined as follows:

FloatContextFactor battLevel = new FloatContextFactor(
new BatteryContext(this),
BatteryContext.FLOAT_GET_BATTERY_LEVEL);
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Methods for retrieving context information are organized in groups such as
OrientationContext or LightContext, which on their part contain information
on the device’s orientation or the ambient light level. Context groups can be seen as
collections that organize and provide access to the platform’s own methods and routines in a
way that eases building up statements and rules. The framework drastically economizes and
simplifies those method calls for the programmer, compared to using system APIs directly,
as it saves all overheads for initializing system services, for creating event listeners etc.,
and makes all functionality accessible by homogenous interfaces. One particular advantage
of M3I is the unified handling of synchronous and asynchronous information. Values
available anytime (e.g., the current weekday) can be retrieved with a simple method call,
but dynamic events are normally handled by listeners asynchronously when they occur (e.g.,
location changes, sensor events, or touch interactions by the user). The framework makes
transparent to the developer whether a ContextFactor is based on a synchronous or an
asynchronous call (pull vs. push). It internally creates listeners if required, handles their
updates automatically and stores the most recent values. Thus, whenever the contextual
state should be determined, a consistent state is available. Events can be set to expire after
a defined period of time, or to have unlimited validity. By combination of validity and event
timestamps, occurrences of sequential actions (e.g., for multi-step motion gestures) can be
evaluated.

6.3.3 Decision Logic

Triggers define what should happen for a defined contextual state. They realize modality
switches, i.e., they abstract how information shall be represented. For example, one and
the same notification can be provided as sound, textual message, or vibration. A number
of modalities are directly supported, e.g. visual (UI changes), haptic (vibration patterns), or
auditory (sound playback) responses. Triggers are not limited to predefined modalities or
actions: A MethodTrigger calls an arbitrary method to implement custom functionality.
With the NullTrigger, the omission of an action, e.g., in an else branch, can be modeled.
As an example, a trigger that enables vibration mode can be defined as follows:
VibrationTrigger vibrate = new AudioTrigger(this);
vibrate.setAction(AudioTrigger.RINGER_VIBRATE);

System-Wide State Announcement

StateTriggers are special triggers that announce states or contexts system-wide through
an Android content provider. That way, each application on the phone can decide how to
adapt to state changes, accounting for the fact that interaction modes are often task-specific.
For example, in a mobile context (e.g., when the user is walking), an application can offer a
UI with larger touch controls that are easier to hit.

Logical Expressions

The simplest form of a logical expression is a Statement, which consists of a
ContextFactor and an Operator. Operators allow numeric comparisons, but also
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within-range-tests, or regular expressions. The following code example shows a “greater-
than” operator, which checks whether the device is charged more than 50%. The statement
uses the context factor battLevel that has been defined in a previous example.

Statement isAboveHalfCharged = new Statement(
battLevel, FloatOperator.greaterThan(50f));

Using logical operators realized by UnaryExpression and BinaryExpression classes,
complex terms can be created. Although AND, OR, and NOT are sufficient to construct any
logical expression according to Boolean algebra laws, XOR, NAND, NOR and XNOR are sup-
ported for advanced users to implement a decision logic of arbitrary complexity. In the follow-
ing code example, we describe the state in which the device is either charged more than 50%
or plugged in (in the example, it is assumed that isAboveHalfCharged and isPluggedIn
are previously defined statements).

BinaryExpression exp = new BinaryExpression(
BinaryExpression.EXPRESSION_OR,
isAboveHalfCharged, isPluggedIn);

When triggers have been defined and the contextual states in which they should be applied
have been described by logical expressions, a rule can be created. For a code example, see
the first described application in Section 6.3.4.

Extensibility

M3I’s flexible input and output wiring mechanism goes beyond context-sensitive program-
ming, and opens up a huge design space for multimodal interaction methods, as, e.g., ges-
tures can be linked with arbitrary actions (see Section 6.3.4 for some examples). With a
CustomContext group, results of any method or callback can be fed into the framework’s
decision logic when a context factor is not built in directly. By clearly defined interfaces, the
framework is easy to extend both on the input and output side. The following simple steps
are, e.g., required to add a new context group:

• Create a new class implementing the interface IContextGroup, and implement all
context methods the group should provide, returning a value of arbitrary data type.

• Provide method IDs for each context method so that they can be called by the
execute() function of the group. In a similar manner, new triggers implement the
interface ITrigger, which contains a trigger() method that performs the desired
action.

M3I currently integrates more than 50 context factors regarding, e.g., location, ambient noise
and light level, device orientation, battery information, proximity information (through NFC,
Bluetooth, or Geofence entering/leaving in conjunction with the within operator), availabil-
ity of 3G and WLAN connections, or date and time. Unified access to several Android APIs,
basic activity recognition and classification routines abstracting from pure sensor readings are
already integrated, e.g., pose classification (in pocket or carried in hand), usage indicators,
mode of transportation, vision-based detection (face), etc. Besides that, explicit interactions,
such as physical button presses or touch interactions can be intercepted and combined with
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implicit contextual information. On output side, triggers allow controlling a range of modal-
ities and thereby abstracting how information should be represented, based on fine-grained
definitions. Examples include visual output (on-screen or via LEDs), sound, screen bright-
ness setting, or vibration. Further actions include behavioral triggers, e.g., changing device
settings (sync rules, connectivity, screen lock, etc.) or custom functions.

Thus, given that respective sensors are provided by the device (see Section 2.1.2), M3I sup-
ports “classic” modalities corresponding to human senses (e.g., vision, audition, touch, ther-
moception), as well as “combined” modalities in terms of novel interaction methods. Some
examples for this will be presented in the subsequent section.

6.3.4 Exemplary Validation of the Framework

To validate our claim that M3I fosters and simplifies the development of context-based multi-
modal applications and interaction methods, we present two different applications that give
an idea of the spectrum of potential use cases for our framework.

Physical Interaction

This basic application uses a “mute by flip over” device gesture for quickly enabling silent
mode, e.g., in a meeting. It is thereby an example for physical or tangible interaction [81, 85]:
Instead of manually turning down the volume, the user simply needs to flip over the phone
and place it on the table with the display facing down. A dozen years ago, such context-based
telephony applications were prototyped with external sensor modules [297]. Even today,
with common means, this demo would require considerable coding effort of several dozens
of lines of code (listen for sensor readings in the background, implement modality change
from scratch, etc.). With M3I, the implementation is quite simple: We realize the trigger to
mute the phone by checking the light level. The ambient light sensor lies on the front panel
of the phone, so that we assume that the phone is turned upside down if the sensor reading
falls beyond a certain threshold.

// define statement
LightContext lc = new LightContext();
FloatContextFactor light = new FloatContextFactor(
lc, LightContext.FLOAT_GET_LIGHT_LEVEL);

Statement isUpsideDown = newStatement(light, FloatOperator.smallerThan(5.0f));
// define triggers
AudioTrigger mute = new AudioTrigger(this);
mute.setAction(AudioTrigger.RINGER_VIBRATE);
AudioTrigger ring = new AudioTrigger(this);
ring.setAction(AudioTrigger.RINGER_NORMAL);
// finally, put rule together
Rule r = new Rule(isUpsideDown, mute, ring);

As this example is deliberately kept simple, we do not take all possible cases into account.
We cannot distinguish if the user has turned the device with the screen facing down, put it
into a sleeve, or if it is just dark in the room. However, the rule could easily be refined by
adding more context factors, e.g., the time of day and the pose. Nevertheless, the example
demonstrates how few lines of code are sufficient to realize a multimodal input method.
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Mimikry Input

As multimodal input is (as argued earlier), in contrast to output, task-specific, we imple-
mented three unique methods (Raise to Call, Press to Shoot, and Pinch@Home) to launch
different applications (Phone, Camera, Maps). As our goal was high intuitiveness, we chose
metaphors that support the human mental model of performing typical movements with these
apps. Each method includes different modalities, like motion gestures (performing a charac-
teristic motion with the device), screen gestures (performing a multi-touch gesture on the
screen), or explicit voice or button input. In the following, we describe the interaction meth-
ods in more detail:

• Raise to Call (Figure 6.6a): This interaction method launches the phone app. The user
raises the phone to his ear and speaks the name of the person to call. The mimicked
movement is the gesture when answering a call. The method involves the motion gesture
modality, which was recorded using M3I.

• Press to Shoot (Figure 6.6b): This interaction method launches the camera app. The
user brings the phone to her front in an upright position and presses the volume but-
ton, mimicking the typical movement when taking a photo. This method includes two
parallel input modalities: a motion gesture and a button press. Both modalities were
combined in a logical expression using the AND operator.

• Pinch@Home (Figure 6.6c): This interaction method launches the maps app. The
user uses thumb and index finger to perform a multi-touch pinch gesture on the home
screen or lock screen, as if zooming into a map. Here, the touch interaction modality is
involved.

Figure 6.6 illustrates the input methods and additionally shows the rules by which they have
been defined in the M3I framework.

(a) Raise to Call (b) Press to Shoot (c) Pinch@Home

Figure 6.6: Mimikry gestures for launching applications implemented with the M3I framework

For each rule, the different input events were associated with a StartApp trigger to launch
the respective application. All input methods were realized using the graphical user interface
(GUI) which we will introduce in Section 6.4. This GUI simplifies the definition of motion
gestures (Figure 6.7a) or multi-touch gestures (Figure 6.7c), and built-in abstractions (such
as predefined device poses as shown in Figure 6.7b) additionally accelerated the development
of the Raise to Call and Press to Shoot methods.
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(a) Recording a motion
gesture

(b) Defining the device
orientation

(c) Recording a multi-touch
gesture

Figure 6.7: Defining multimodal behavior through the rule creation user interface on top of M3I

Multimodal Game Controller

This example shows how to use a mobile phone as game controller for a car racing game
running on a second screen. The vehicle can be steered by tilting the phone, as visualized in
Figure 6.8a). The angle of the steering wheel is derived from the pose detection context factor,
which can directly retrieve the tilt angle of the device using the accelerometer or gyroscope.

In addition, soft buttons on the screen can control further functions, like accelerating and
braking. The game controller scenario combines the input modalities touch and device ges-
tures. It further demonstrates the framework’s capability to seamlessly integrate explicit (but-
ton presses) and implicit events (updates from the orientation sensor listener). The com-
munication to the game running on an Ubuntu desktop PC is realized using ROSjava83, a
publish/subscribe architecture based on the Robot Operating System (ROS) [267], a popular
architecture for distributed applications in research (see, e.g., [48, 85, 178]). Figure 6.8b
shows a screenshot of a corresponding client application on the PC that visualizes the inputs
made by the remote control application. As an example for a practical use case, the presented
setup can control an open-source driving simulator such as OpenDS84.

Tasking Application

While developers can use M3I for a variety of individual use cases, it is also desirable to make
the full potential of M3I available to end users. In Section 2.3.2, we have given examples for
tasking applications that automate the modality of, e.g., system notifications according to the
context. While such tasking applications (available, e.g., in Google’s Play Store, see Section

83http://code.google.com/p/rosjava/, accessed March 5, 2014
84Open Driving Simulator, http://www.opends.eu, last accessed April 3, 2014

http://code.google.com/p/rosjava/
http://www.opends.eu
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(a) Remote control setup: tilting and action
buttons steer a car in a PC application

(b) Controlled client on remote PC
exemplified by a steering wheel

Figure 6.8: Implementation of a multimodal game controller with M3I

2.3.2) have been programmed from scratch, one could easily implement similar and even
beyond-going functionality with M3I. We therefore created a GUI on top of the logical struc-
ture of the framework, allowing end users to create rules based on the previously presented
concepts (statements, logical expressions, triggers, etc.) in a straightforward manner. Figure
6.9 shows the basic concept for rule creation, where conditions (i.e., statements and logical
expressions) are set on the left side, and triggers on the right side. The image exemplarily
shows the creation of the Pinch@Home input method.

In concordance with a suggestion made by the focus group, the system goes back to the
previous setting when a rule does not apply any more. That way, individual default settings
are possible when no rule is active, which accounts for heterogeneous preferences of users.
For this proof-of-concept implementation, we did not include a check for conflicting rules.
However, there exist approaches for automatic verification of rule systems [335].

A further design question was the realization of nested decision logic in the GUI, i.e., an
intuitive way for entering logical expressions with multiple nested AND/OR operators. We
wanted to help users keep track of hierarchical levels while sparing them the effort of entering
opening and closing brackets for entering an expression like “(A and B) or C”. To this end,
the interface offers two sets of AND/OR buttons (see Figure 6.9). While the blue button set
adds a new statement in the inner level, the white button set adds a statement at the outer
level. For example, adding statements with the blue AND button and the white OR button,
the expression “(Two-Finger Pinch and B) or C” would be created.

Figure 6.7 shows some dialogs of this tasking application that assist the user in creating in-
put modalities including, e.g., motion gestures, screen gestures, or device poses. The main
user interface of the tasking application reflects the rule-based approach of defining multi-
modal behavior. In Section 6.4, we will deeper investigate different user interface options to
accomplish rule creation, and evaluate them in a user study.

Using M3I for Implementing Research Apps

To further illustrate the applicability of M3I in a research context, in the following we out-
line opportunities of utilization of M3I in the development of systems we have presented in
Chapters 3, 4, and 5.
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Figure 6.9: Graphical user interface (GUI) to assemble a rule. The left part contains the logical ex-
pressions representing the contextual state. In the right part, the trigger for the respective
action(s) is defined.

Medication Package Recognition (see Chapter 3.2)

The MobiMed application used different modalities (touching, pointing, scanning) to recog-
nize drug packages. The basic mechanism of coupling an input method with the according
output (i.e., the description page of the medication) could likewise have been realized by M3I.
However, M3I would have to be enhanced by the possibility to add parameters to triggers (the
medication ID), so that the correct information can be displayed.

As a possible extension of the MobiMed scenario, the application could launch automatically
when the phone is held in a special way (e.g., raised and targeted at a drug package). This
usability enhancement supports the target group of elderly people, who might have difficulties
locating the application in the launcher menu or touching small application icons. A challenge
is that such a motion gesture modality could theoretically overlap with other actions on the
phone. However, given that elderly people often use only a limited number of applications, it
would be possible to design the modality in a way that it does not interfere with the (known)
set of interaction methods used otherwise, and is not accidentally triggered. With M3I, the
motion gesture could be realized using the pose detection in combination with a location
context, so that the trigger is only activated at home, but, e.g., not when traveling.

Physical Exercise Assessment (see Chapter 3.3)

In our exercise assessment use case, we had incorporated an automated recognition of the
training device using NFC when the smartphone was placed on the rocker board. That func-
tionality could be taken over by M3I, using an application launch trigger upon recognition
of a valid NFC tag. The GymSkill application incorporated two types of feedback: simple
responses during training, and a detailed assessment after the performance. A simple pose
classification could possibly be realized with M3I (such as alarming the user on maximal
deflection angles of the rocker board). Visual and auditive notifications would simply be trig-
gered by pre-defined poses. However, the more complex exercise assessment algorithms go
beyond M3Is capabilities and must still be implemented separately.

University and Education (see Chapter 4)

In the concept of our didactics method toolbox MobiDics, context plays an important role.
The context-dependent selection of appropriate teaching methods could be simplified with
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M3I’s context abstraction, e.g., to classify different locations on top of the underlying location
provider. The recognized context classes could then be fed to the application and used to
inform the method selection algorithm (e.g., confining the search to methods appropriate for
the respective course type). Alternatively, this classification could be made based on time
instead of location. The actual course taught could be retrieved from the user’s timetable,
and MobiDics could be adapted respectively. Rules based on weekday and the time of day
are likewise directly supported by M3I. Furthermore, if no room-level localization was used
(requiring an accurate indoor location provider), a more coarse location distinction (e.g., “at
the university or at home”) could be used for different presentation modes. As an example, in
classroom mode, the user interface could be confined to method aspects that are important
for “live use” and hide additional details to remove distraction. Further, the device could be
automatically muted if the docent looks at multimedial method instructions in class which
contain sound. By contrast, in preparation mode at home or at the office, all methods and
instructions are available in full level of detail for deeper studying.

Indoor Navigation (see Chapter 5)

Various aspects of the indoor navigation prototype could be realized with M3I. First, the
pose-dependent switching between AR and VR mode, as described in Section 5.2.2, could
be managed by a rule in M3I. Further, the framework could define swipe gestures to switch
between VR and map view. Touchscreen gestures could also enable further settings like a
mode for context-aware services, in which users can interact with points of interest.

Besides that, context could be used to influence the output modalities. The required context
factors for this scenario are supported by M3I. First, walking speed could be used to adapt
size and level of detail of navigation instructions. When the user walks faster, instructions are
enlarged and contain less details. When the user slows down, the level of detail is increased,
as the user is potentially uncertain or is interested in exploring nearby POIs. The noise level
could serve as an indicator whether the application should use speech or visual output to
guide the user. Ambient noise could either be detected using the microphone, or pre-defined
geo-coded settings could be used.

6.4 User Interfaces to Define Multimodal Behavior

In this section, we present and evaluate different approaches and user interfaces for defining
multimodal behavior as supported by the M3I framework (see Section 6.3 for a description of
the framework). We first introduce different user interface concepts and subsequently report
on the laboratory and field study we conducted.

6.4.1 Concepts

We suggest three different variants to define multimodal behavior, whose concepts have partly
been informed by a preceding focus group discussion (see Section 6.2.3).
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(a) Balanced interface (BAL) (b) Situation-oriented
interface (SIT)

(c) Modality-oriented
interface (MOD)

Figure 6.10: Three user interfaces to manually define rule-based multimodal behavior

Manual Rule Creation

The first approach is the manual creation of rules, which reflects the functionality of the
decision logic provided by the underlying toolkit in the most direct way. In Section 6.3.4,
we have presented an initial implementation and UI of this concept. Here, we refine this
approach and discuss three different UI variants: a balanced, situation-oriented and modality-
oriented interface (see Figure 6.10).

Balanced In the balanced interface (see Figure 6.10a), the determining (context) factors
and triggers are configured in an equivalent manner. In the description of the end user toolkit
in Section 6.3.4, we have already briefly outlined how to create nested expressions with AND
and OR operators. For reasons of simplicity, we confined the user interface to a maximal
nesting depth of one. That means it is, e.g., possible to create an expression “if (A and B) or
(C and D)”, but not “((if A and B) or C) and D”. As we will show in the following user study,
subjects did overall not miss the possibility to create more complex rules, so that the present
possibilities cover the majority of cases needed in practice.

As further simplification, we omit the unary NOT operator when combining statements to
logical expressions. Instead, the NOT operator can be selected together with context factors.
For example, if a Time context factor is added, the user can choose to add the statement
“within time interval i” or “not within time interval i” to the expression.

Situation-Oriented The situation-oriented interface (see Figure 6.10b) puts the focus on
situations or contexts, to which the user assigns different modalities. This makes rule creation
especially easy if multiple modalities shall be changed together in a certain situation (e.g.,
when arriving at a certain location). This interface is, however, less suited when identical
modality changes shall be applied in different situations. Especially if these situations are,
in turn, defined by complex logical expressions, it may occur that the limited nesting depth
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(as discussed above) does not allow to combine multiple situations with an OR operator. In
that case, it can happen that the user has to create separate rules, and that the desired trigger
must be defined multiple times (once for each rule).

Modality-Oriented The modality-oriented interface (see Figure 6.10c) is the counterpart
of the situation-oriented approach. It supports modality-oriented thinking, e.g., “in which
situations do I want to mute the phone?”. It contains a list of available output modalities,
for each of which according contexts can be defined. This makes it easy to group similar
situations (both mentally and in the interface) in which the multimodal behavior shall be the
same. As drawback of this solution, contexts must be defined multiple times if more than one
modality shall be changed at a time.

Summing up, the situation-oriented and modality-oriented interfaces provide a certain de-
gree of simplification compared to the balanced interface, as no logical expressions need to
be created from scratch on trigger side. However, they may be disadvantageous in certain
situations. The balanced interface provides the most flexibility, but is also more complex to
handle. We will evaluate efficiency and effectiveness of all three approaches as well as user
preferences in a user study in Section 6.4.2. In that section, we also present example rules
for which either the situation- or the modality-oriented approach is advantageous.

Snapshot

The Snapshot approach is designed to simplify the above process, especially in terms of fa-
miliarity, one of Shneiderman’s eight Golden Rules of interface design [308]. It is motivated
by the idea that a familiar UI should be reused as often as possible. Therefore, users do not
have to define the context settings and appropriate modalities within the possibly unfamiliar
UI of the rule creation application. Instead, they can make their settings as they know it,
using the possibilities provided by the operating system (e.g., hardware buttons, the settings
menu, widgets, or notification bar shortcuts). When the user wants to create a new rule,
a snapshot of the beforehand made settings is taken as a starting point (see Figure 6.11a).
For example, if the user is at the library and has previously muted the device, the rule “Mute
my device when at this location” will be suggested. A challenge of this approach is, however,
that potentially not all information included in the snapshot might actually be desired to be
added to the rule. Hence, the user will have to select a subset of the suggested “candidate”
context factors. In the prior example, the system might have suggested the rule “Mute my
device when at this location at 9:30 AM”, although the user desires that the rule applies also at
other times. Further, not all possible context factors can be determined automatically by the
Snapshot method, so that some extent of manual editing will always be required. However,
compared to creating a new rule from scratch, the necessary time for setting up rules can
possibly be reduced.

Suggestion

The Suggestion approach analyzes the user’s behavior and deduces rules from her actions.
This can be realized by classification using machine learning techniques [161]. The main
difference to the Snapshot approach is that here suggestions are made proactively. The user
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(a) The Snapshot approach offers current
settings and contextual states that could
potentially be part of a rule.

(b) The Suggestion approach proactively
proposes rules based on a user behavior
analysis.

Figure 6.11: Semi-automated approaches to accelerate and simplify the creation of modality adjust-
ment rules.

receives for example a notification like “You have several times muted your phone at the library.
Shall an according rule be created?”. Figure 6.11b illustrates examples for suggested rules. The
advantage of this approach is that ideally very little user action is required. However, it bears
the risk that suggestions are inaccurate and require a high amount of editing, making them
almost as effortful as creating rules from scratch. In addition, users can be enervated by the
proactive behavior if they do not wish to create a new rule at all at this time. In the focus
group discussion (see Section 6.2.3), we found that most users might get along with a small
number of rules. In light of this finding, suggestions must be made in a conservative way, so
that the negative effects do not overweigh.

6.4.2 Laboratory Study: Effectiveness, Efficiency and Usability

We conducted a laboratory study to quantitatively evaluate the above described concepts
with relation to effectiveness, efficiency and usability. Furthermore, our goal was to collect
qualitative user feedback.
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Research Questions

We investigated the following research questions:

RQ1 Which concept is most efficient?

RQ2 Which concept is most effective?

RQ3 Which concept is best in terms of usability?

These first three research questions address the manual rule creation approaches. We com-
pared the balanced, situation-oriented and modality-oriented approach (in the following ab-
breviated as BAL, SIT, and MOD). Efficiency corresponds to task completion time, while ef-
fectiveness comprises the success rate (how many of the in total created rules were correct),
and the error rate. For RQ3, we measured ease of use and clarity, and we used the SUS score
as a measure for overall usability.

RQ4 What is the user acceptance for semi-automated rule creation approaches?

For this research question, we demonstrated the Snapshot and Suggestion approach to users
and asked them whether they would like to use these systems in practice.

RQ5 What is user feedback on the system?

We used open-ended questions to get insights on subjects’ opinions on the rule-based ap-
proach, and asked them to name rules they would create for their personal everyday needs
(both for input and output). Furthermore, we asked for general acceptance and their attitude
towards the approach.

Method

Task

Each participant evaluated the MOD, SIT, and BAL approach (within-subjects design with
three conditions). In each condition, two different rules had to be created, resulting in six
rule creation tasks for each participant. The order of conditions was counterbalanced using a
Latin square design; the order of rules to be created was alternated.

For the tasks, the following two rules had to be created:

• Rule 1: When I am at the university, mute the phone and enable vibration.

• Rule 2: When I am biking or in a loud environment, set the notification to “ringing”.

For Rule 1, the location “university” was predefined, so that users did not have to locate the
university building on the map, which would have been a confounding factor. For Rule 2,
we added in the description that “loud environment” means a noise level of 100 dB or more.
Rule 1 is an example for two triggers (combined with an AND expression), while Rule 2 is an
example for two context factors (combined with an OR expression).

Table 6.1 illustrates the minimal number of steps required to create Rules 1 and 2. While the
modality-oriented interface has a slight advantage when different situations are assigned to
one modality (as in Rule 2), the situation-oriented interface is slightly advantageous when
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several modalities are assigned to one situation (as in Rule 1). That way, neither interface
should be significantly disadvantaged a priori.

Rule Rule 1: When I am at the univer-
sity, mute the phone and enable vi-
bration.

Rule 2: Set sound to ringing if I am
on the bike or it is very loud.

Structure Situation A↔ Modality X and Y Modality X↔ Situation A or B
Optimal Taps SIT: 6

MOD: 8
BAL: 10

SIT: 8
MOD: 7
BAL: 10

Table 6.1: Rules used for the rule creation task of the laboratory study. The row “Optimal Taps” shows
the minimum number of required taps to create the rule in either condition.

Measurements

For RQ1–3, data was collected through logging, analysis of a video recording of the partici-
pants performing the task, and questionnaires. We measured efficiency (task completion
time), effectiveness (errors and success rate), and satisfaction (ease of use, clarity, and SUS
[34]). The measurement of task completion time was triggered manually by the participant
through pressing a button. The measurement was stopped when the participant pressed
“Done” after the rule creation process. During rule creation, the task description remained
visible in the upper part of the screen. Therefore, we had extended the interfaces visualized in
Figure 6.10. Each deviation from the ideal path in the rule creation process was considered an
error. A task was counted as successful if the created rule after pressing “Done” was correct
(i.e., if no errors were made, or the errors were corrected). Errors and success rate were
determined by video analysis. After each task, participants rated how easy it was to create
the particular rule with the respective interface. Ratings were made on a 5-point Likert scale.
Further, subjects answered a SUS questionnaire after each condition. User feedback for RQ4
and RQ5 was likewise collected by questionnaires which subjects filled out on a laptop in the
laboratory.

Participants

24 participants (mostly students) took part in the study (6 females, 18 males). They were
aged from 20 to 31 years (M = 24, SD = 3). All of them were smartphone owners. 14 owned
an iPhone using iOS, 8 used Android-based phones, and 2 had Windows phones. Subjects’
self-estimated smartphone expertise ranged from average to expert. On a 5-point Likert scale
(1 = no idea of technology, 5 = expert), the average rating was 4, with each one third of
participants choosing 3, 4, and 5.

Results and Discussion

RQ1: Efficiency

With a two-way repeated-measures ANOVA, we found a significant effect of approaches
(F(2, 46) = 8.08, p < 0.001, partial η2 = 0.260) but not of rule type (F(1, 23) = 4.09,
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p = 0.06, partial η2 = 0.151) on task completion time. SIT was the fastest method with av-
eragely 17.9 s for Rule 1 and 26.5 s for Rule 2. With MOD, subjects needed in average 29.8 s
(Rule 1) and 29.3 s (Rule 2); with BAL, mean values were 28.7 s (Rule 1) and 34.8 s (Rule 2).
The results are visualized in Figure 6.12. Post-hoc t-tests with Bonferroni correction revealed
significant differences between SIT and the other conditions, but not between MOD and BAL.

Analyses of the video recordings showed that with SIT, users had to open less dialogs than in
the other conditions when selecting a modality. This presumably led to the advantage of this
approach in comparison to the other conditions.

Rule 1 Rule 2 Rule 1 Rule 2 Rule 1 Rule 2
0

20

40

60

80

Balanced (BAL) Modality-oriented (MOD) Situation-oriented (SIT)

Execution time 
(seconds)

Figure 6.12: Rule creation time in the different conditions SIT, MOD, and BAL. The bars inside boxes
indicate mean values. Outliers are marked as circles.

RQ2: Effectiveness

With all approaches, subjects were mostly able to create the demanded rules successfully.
Success rates lay between 85.4% and 91.7% (see Figure 6.13a). With a repeated-measures
ANOVA, we did not find a significant difference between the approaches (F(2, 46) = 0.46,
p = 0.64, partial η2 = 0.019). Subjects also made only few errors: The average number of er-
rors lay between 0.15 and 0.21 in rule creation processes (repeated-measures ANOVA showed
no significant difference between approaches, F(2, 46) = 0.31, p = 0.74, partial η2 = 0.013).
The results can be seen in Figure 6.13b. As most frequent error type, subjects chose the wrong
conjunction (AND instead of OR). Further errors were made with modality states (e.g., vibra-
tion was set to ON instead to OFF) and with context factors (e.g., another than the requested
ambient noise level value was set, or unnecessary conditions were included to the rule). We
classify the majority of the errors made as slips (especially the ON/OFF and OR/AND confu-
sion), rather than as errors resulting from a lack of understanding.

RQ3: Satisfaction

We found a significant effect of approaches on satisfaction measured by SUS (two-way
repeated-measures ANOVA; F(2, 46) = 4.57, p < 0.05, partial η2 = 0.166). The SIT ap-
proach received a SUS score of 86.7 (corresponding to excellent usability according to [15]).
This is significantly better than MOD (74.9), as shown in a post-hoc t-test with Bonferroni
correction (p < 0.05). The difference to BAL (78.4) was not significant.
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Figure 6.13: Success (a) and error rate (b) of rule creation in the conditions SIT, MOD, and BAL.

Furthermore, subjects rated ease of use and clarity on a 5-point Likert scale after each method.
In ease of use, SIT was again rated best with averagely 4.4, followed by MOD and BAL with
each 4.0. Likewise, SIT received a rating of 4.4 in clarity, while the other approaches were
rated with 4.1 (MOD) and 3.9 (BAL). With two-way repeated-measures ANOVA, we found
a significant effect on clarity (F(2, 46) = 3.52, p < 0.05, partial η2 = 0.133). There was
no significant effect on ease of use (F(2, 46) = 2.55, p = 0.09, partial η2 = 0.100) and of
rule types. With post-hoc Bonferroni-corrected t-tests, we found the significant difference of
clarity between the SIT and BAL approach.

RQ4: Semi-Automatic Rule-Creation Approaches

Subjects expressed their opinion on the alternative approaches Suggestion and Snapshot which
were presented in Section 6.4.1, and were asked whether they would like to use them.

79% of participants would accept the Suggestion concept. They liked the reduced workload
to create rules, compared to the manual approach. Further positive aspects were that the
suggested rules serve as inspiration, and that they help finding rules for recurring situations
users were not actively aware of. Those who did not favor the approach found the suggestions
unnecessary, preferred creating their own rules, were skeptical that the suggestion mechanism
would work well, or did not want the application record usage behavior in the background.

Only half of the participants would like to use the Snapshot concept, which is clearly less
than Suggestion. On the positive side, some subjects preferred removing unwanted context
factors and triggers from a rule instead of adding the wanted ones. One participant pointed
out that he liked the approach because “it does not require any machine learning but still
behaves intelligently” in determining the current situation. On the negative side, subjects
were overwhelmed by the amount of information and found it too complicated to use. They
were especially irritated by context factors which they would not use frequently (e.g., ambient
noise level). One solution for this could be to only include frequently used context factors or
user-definable “favorites” in the snapshot.

RQ5: Participants’ Usage Suggestions

We asked subjects if they could spontaneously name rules they would find useful in everyday
life. 83% were able to name one; over 50% provided more than one suggestion. In the
following, we briefly present and aggregate subjects’ suggestions. Most frequently (50%),
subjects proposed rules where passive modalities (e.g., mute or vibrate) are activated when
the user arrives at the workplace or the university. Then followed the opposite category of
rules (21%), i.e., enabling active modalities (e.g., ringtones) when returning home. This was
justified by the fact that many subjects forgot re-activating sound after they had muted their
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device. Another 21% of suggested rules comprised active modalities with outdoor activities
(e.g., walking or biking). Furthermore, individual subjects named rules including adaptations
to loud or bright environments. One participant suggested reducing screen brightness at a
low battery level. Another subjects propose that the device could be muted when turned
upside down (similar to the “flip to mute” example we presented in Section 6.3.4). We can
summarize that a majority of created rules corresponds to similar use cases, which is muting
and unmuting the device between workplace and home/university. However, the remaining
rules were very diverse and covered almost the entire range of context factors and modalities
integrated in our prototype.

In addition, we inquired which other context factors (independent of their technical real-
ization) subjects could imagine. We received interesting suggestions, like modality switches
based on calendar events, the recognition of nearby persons of one’s own social circle and
according modality change, and categorization of locations (i.e., muting the device not only
at a predefined place, but by category like “cinema” or “restaurant”).

In order to give subjects an idea for input modalities, we had them try the “Mimikry Input”
examples presented in Section 6.3.4 to launch selected apps. The apps were started using a
WOz approach to be able to also realize context factors that were not implemented at this
time (e.g., motion gestures). After the trial, we asked subjects for own ideas for novel input
modalities, and asked them to realize these with the presented rule creation interface.

Subjects here came up with screen gestures, motion gestures, and button input. Screen ges-
tures were mainly used to launch applications. For example, subjects proposed to draw letters
(such as N for notes or B for the browser) or symbols (such as a checkmark for the ToDo ap-
plication) on the screen as touch gesture. Gestures were also proposed for changing settings,
e.g., the volume by an up or down swipe. As an example for a motion gesture, one subject
had the idea to rapidly move the phone down (as if it would “fall” down) to launch the mes-
senger application. Finally, buttons were suggested as shortcuts to frequently used actions,
such as enabling vibration or the screen rotation lock.

In total, subjects very much appreciated the presented system. On a five-point scale, 63%
indicated to like the approach “very much”; the remainder of 38% stated to “like” it. 54%
rated the system as “very useful”, 42% as “useful”, and 4% gave a “neutral” rating.

To further investigate the creation and application of rules under real-world conditions, we
additionally conducted a field study, which we describe in the next section.

6.4.3 Field Study: Acceptance and Usage Patterns

In addition to the laboratory study described above, we were interested in usage patterns of
our application, as well as in user acceptance under real-world conditions. To this end, we
conducted a long-term study in the field.

Research Questions

The study has an explorative character. We investigated the following research questions:
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RQ1 How many and which rules do subjects create?

We are here interested in the context types and modalities subjects integrate into rules, and
in the complexity of rules that subjects create. In combination with the satisfaction ratings
(see RQ4), this gives us an indication if the complexity and supported nesting depth of our
system is sufficient for the use cases subjects want to cover.

RQ2 How important are different contexts and modalities to subjects?

Besides the information which contexts and modalities are actually used in rules, we also want
to know which ones are most significant to users. While RQ1 is based on log measurements,
this question is investigated through user feedback.

RQ3 How reliable does the system work?

Reliability is determined based on users’ ratings. It depends on whether the defined rules lead
to the expected behavior in the respective situations, or the system’s output did not comply
with users’ expectations.

RQ4 How satisfied are users with the system?

This question refers to overall satisfaction with the application, both in terms of usability and
of capability, i.e., if it allowed subjects to do everything they wanted.

Method

Subjects were instructed to install the tasking application as described in Section 6.3.4 and
use it to create rules, which they would use over the study period of two weeks. The app em-
ployed the Balanced layout variant, since we did not want to urge users into situation-oriented
or modality-oriented thinking. In an introductory email, we explained the application to the
subjects and showed them some example rules. Subjects were encouraged to actively try
the application, explore which rules could be created, and pay attention if these rules were
applied correctly in everyday use. However, there was no obligation or minimum usage re-
quirement. Once a day, users were asked to answer a short questionnaire about the preceding
24 hours. In these questionnaires, subjects had to state how reliable the app has worked in
that period, how satisfied they had been with the app’s functionality, and if they had en-
countered any problems. This regularly shown questionnaire was realized by the SERENA
self-reporting application (see Section 7.3 for an extensive description). Moreover, SERENA
was used to log data on the created rules, such as the number of rules created, and the there-
fore integrated contexts and modalities. At the end of the study, subjects filled out a final
online questionnaire.

Participants

Due to the explorative character of the field study, it was conducted with a smaller number
of participants than the previously described laboratory study. Five participants (4 males, 1
female) took part; they were aged between 23 and 31 years (M = 27, SD = 3). Three of them
were students, one was a software developer and one a physician. Subjects rated their level of
expertise with smartphone with averagely 4.6 (SD =0.9) on a scale from 1 (= beginner) to 5
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Figure 6.14: Composition of rules created by participants in the field study. The percentage values
indicate the amount of rules in which the respective context factor or modality was con-
tained.

(= expert). All participants used their personal Android smartphones on which they installed
the tasking application (3 had a LG Nexus 5, one owned a LG Nexus 4, and one a Sony XPeria
Z1).

Results

RQ1: Created Rules

In total, subjects created 73 rules during the two-week study period. This corresponds to an
average of 14.6 rules that each participant created, which indicates that subjects were eager
to experiment with the system. 35 rules were deleted; 33 were disabled or modified in the
course of the time. These numbers show that subjects made use of the possibility to manage
and edit their list of active rules after initial creation. In particular, the fact that they often
preferred to disable rules, without deleting them entirely, indicates that users prefer different
sets of active rules depending on the situation.

The average complexity of rules was low: A rule comprised averagely 1.17 context factors
and 1.13 modalities. Thus, most rules apparently were of a simple “if-then” structure, or
contained maximally one AND/OR conjunction. Figure 6.14 gives an overview on employed
context factors and on modalities that were adjusted by rules. The most frequently used
context factors were location and orientation, which were part of 32% and 25% of all created
rules. Orientation here refers to the device pose and was presumably used for “device gesture”
rules. Time was used in 19% of rules, followed by ambient noise (18%), ambient light (15%)
and battery level (7%). On output side, the most frequently influenced modality was sound.
It was adjusted by 51% of all created rules. Further, vibration was adjusted in 37% of rules,
followed by brightness (22%) and the notification LED (13%).

RQ2: Importance of Contexts and Modalities

Subjects rated on a 5-point Likert scale how important the availability of different context
factors and modalities was to them. We found a high correlation with the context factors
and modalities that were preferably used in rules (see RQ1). Device pose, time and location
were most significant to users: Three to four out of five subjects responded that these context
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factors are “important” or “very important”. No subject at all considered location as “not
important”. Less significant were battery, ambient light, and ambient noise: The latter was
not considered as important by any of the participants. Interestingly, this contradicts the fact
that 18% of all rules contained ambient noise as context factor. Probably, these rules were
created just for testing purposes, but not used in practice later.

The most important modalities to be adjusted were vibration (rated as “important”/“very
important” by four subjects) and sound (three “important”/“very important” ratings). Noti-
fication light and screen brightness seemed less interesting to subjects; only one considered
these “important”.

RQ3: Reliability

On a daily basis, subjects stated in a pop-up questionnaire whether they were satisfied with
the reliability of rules that day (i.e., each participant answered this question 14 times over the
course of the study). We received in 51% the answer “very reliable” and in 46% the answer
“mostly reliable”. Only 3% of all answers reported a “not reliable” application of rules. This
result is very satisfying, confirming that the system could correctly determine the defined
contexts and adapt modalities according to users’ expectations.

RQ4: Satisfaction

Similar to the reliability, subjects indicated their overall satisfaction once a day. In total,
we received in 41% of all responses the statement that subjects were “very satisfied”; in
54%, they were “mostly satisfied”. In only 4% of all answers, subjects reported to be “not
satisfied”. These high satisfaction ratings correspond with the feeling of reliability determined
in RQ3. At the end of the study, the overall satisfaction with regard to usability was rated by
a SUS questionnaire [34]. The system received a score of 75.0, which is a satisfactory result
(according to [15], values between 71.4 and 85.5 correspond to “good” usability). In free text
responses, some subjects stated that the battery performance was negatively affected while
using the system, which is one point for optimization in the future. Moreover, two subjects
would like to have more sophisticated options for the location context factor. Here, it should
be possible to define a custom radius for geofences, and to search for location names instead
of manually positioning a pinpoint.

6.4.4 Discussion and Lessons Learned

We now summarize the lessons learned and limitation of the conducted studies.

Laboratory Study

The “winner” of the laboratory study was the situation-oriented (SIT) rule creation interface.
Subjects were significantly faster using this approach and also preferred it regarding clarity
and usability, as measured by SUS (together with BAL). Regarding effectiveness, there was no
significant difference between the approaches.
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What is the reason for the advantage of the SIT approach? Presumably, subjects found
situation-oriented thinking most intuitive, compared to the other approaches. After ana-
lyzing the video recordings, we believe that the compactness of the layout, compared to the
other UIs, may be a further responsible factor. With SIT, users were able to view all modality
controls at a glance (see Figure 6.10b), and less scrolling was required. Furthermore, less
dialogs had to be opened and settings could be directly made from within the main screen.

Field Study

Our field study was conducted with a small number of participants and for a rather short
period of two weeks. The duration was set in concordance with the findings in Section 7.4.3,
where we learned that the study duration should be limited if additional tasks (such as regular
questionnaires) are demanded from users. In order to identify long-term effects, such as a
potential rise of rule complexity over time, an extended study duration would be necessary
as future work. Likewise, a higher number of participants could produce a more diverse set
of rules created, as well as statistically significant usage patterns.

However, this actual study served as proof-of-concept for our system in practice, and as a
first indicator for reliability and acceptance. We received to a great extent positive feedback,
proving the applicability in real-world conditions. Subjects were also satisfied with the range
of functions, indicating that there is no urgent demand to create more complex rules. This
confirms us in our decision to refrain from a higher nesting depth when creating logical
expressions, for the sake of a simpler UI (cf. the discussion of this aspect in Section 6.4.1).
Further, it justifies our decision to use a rule-based approach, rather than, e.g., machine
learning.

As the rule evaluator is constantly running as a background service, our system affects the
battery life of the smartphone, which was also noticed by some participants in this study.
Optimization with regard to energy consumption was not a focus in this stage of the imple-
mentation. However, we are aware that this aspect must be taken into consideration for a
productive use, as it may influence the users’ general acceptance of the system. In the under-
lying M3I framework, we already offer the possibility to define rule-specific intervals for how
often the rule is evaluated, so that rules that are not time-critical can be implemented in an
energy-conservative way. However, the ability to set this interval was not included in the GUI
for the field study for reasons of simplicity.

A final lesson learned from subjects’ feedback is that they desired to be notified when a rule
was applied. In the system used in the field study, subjects could only tell from the built-in
indicators (e.g., for the volume) that a modality setting had been changed. Explicit methods
to notify the user would be, e.g., alerts, widgets, or system notification messages. Conse-
quently, in the subsequent section, we present and evaluate different concepts for increasing
awareness on automated modality changes.
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6.5 User Interfaces to Achieve Modality Awareness

We first propose three alternative concepts for awareness on output modalities, which were
partly informed by the initial focus group discussion (see Section 6.2.3). Subsequently, we
report on the conducted laboratory study and the obtained results.

6.5.1 Concepts

We present the methods Widget, Alert, and Notification to inform the user on which (out-
put) modalities are currently active, and whether a rule-based modality change has occurred.
Each concept can be realized in two manifestations: opt-in and opt-out. With opt-in, the
user is informed on a potential modality change, but must actively confirm it. If no action
is performed, the old state is maintained. With opt-out, the modality change is applied au-
tomatically if no action is performed, but the user has the possibility to revert the change.
While opt-out is adequate for a high level of trust that the automated rule application process
works as desired, opt-in minimizes the risk that an undesired modality change occurs.

Notification A notification appears on the top of the screen, informing about the rule name
and the modality change (see Figure 6.15a). Unlike the Alert, the notification only has one
action button: In opt-in mode, there is an “OK” button to apply the rule; in opt-out mode,
there is a “Disable for now” button to revert the change.

Widget A home screen widget permanently visualizes the currently active output modali-
ties (see Figure 6.15b). It dynamically updates its content when a rule is applied and the
modalities change. We consider this visualization as unobtrusive, as it does not interrupt the
user’s workflow. However, this approach requires active checking of the widget’s state by the
user.

Alert An alert message pops up when a modality change occurs (see Figure 6.15c). The
message box shows the name of the applied rule, as well as the modality change to be per-
formed. In opt-in mode, the user has the options “OK” to activate the change and “Cancel”
to dismiss the dialog. In opt-out mode the rule is applied automatically, but the user can
“Disable” it, or acknowledge the change and dismiss the dialog.

These three concepts represent different compromises regarding level of control and obtru-
siveness. The Alert provides a very high amount of control of modality changes, but is most
obtrusive of all visualizations. As it is modal, a user reaction is required in any case. Widget is
the least obtrusive visualization, but it also provides the least amount of control: users must
actively return to the home screen and peek at the widget’s state to be informed on modality
changes. Notification is a compromise in both obtrusiveness and control. The visualization
proactively informs on modality changes, but there is no need to react immediately.

Independently of the used visualization concept, there is always also the operation-system-
specific symbol (on top of the screen, next to the time) from which the user can deduce the
currently active modality.
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(a) Notification (b) Widget (c) Alert

Figure 6.15: Visualization concepts for awareness on rule-based modality switching. The top images
show the opt-in variants, the bottom images the opt-out variants.

6.5.2 Laboratory Study

Research Questions

RQ1 Which concept is most efficient?

We compare the concepts with relation to the time until subjects noticed the modality change.

RQ2 Which concept is most effective?

Similar to the laboratory study on rule creation, we look at success rate and error rate. As
“success”, we consider the case that subjects did notice the modality change. “Errors” denote
the situation when subjects performed an action other than the requested disabling of the
modality change (e.g., click the wrong button in the Alert, or swipe the Notification away
instead rejecting it).

RQ3 What are user preferences with regard to the approaches?

For this research question, we asked subjects which of the presented method they prefer, and
why.

Method

Task

Each participant evaluated the awareness visualizations Notification, Widget, and Alert, each
as opt-in and opt-out variant (see Section 6.5.1 for the description). Consequently, there
were six conditions in a within-subjects design. The order of conditions was counterbalanced
using a Latin square. For each visualization, the task was to disable (i.e., reject) the modality
change as soon as noticed by the visualization.

All awareness visualizations are intended to be noticeable in a peripheral way, while the user
is focused on another task on their phone. Therefore, we engaged subjects in a primary task
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that required their attention. At a random time, the experimenter triggered the notification
(using a WOz application running on a laptop).

As primary task, subjects were asked to search for a specific photo using a photo viewer
widget. The widget allowed to browse through a list of photos by swiping, where one photo
was shown at a time. To ensure that the subject remained engaged in the primary task, the
task was designed as “unsolvable”, as we gave the instruction to find an image (showing a
giraffe) that was not contained in the collection.

Measurements

From the moment the visualization was triggered, the time until the subject clicked the no-
tification, widget, or alert was measured. This measurement was done automatically by the
prototype application and used to determine efficiency (RQ1). As reasonable interval in which
the subject should have noticed the modality change, we defined a timeframe of 15 seconds
after the notification was triggered. If the subject did not notice the change within this in-
terval, we stopped the trial and classified it as unsuccessful. Effectiveness (RQ2, success rate
and errors) were detected by analyzing a video recording of the task. User preferences (RQ3)
were determined by a questionnaire after the hands-on part of the study.

Participants

The study was conducted with 24 participants (6 females, 18 males), aged between 20 and
31 years (M = 24, SD = 3)85.

Results and Discussion

RQ1: Efficiency

With a two-way repeated-measures ANOVA, we found a significant effect of visualizations on
task completion time (F(2, 46) = 28.34, p < 0.001, partial η2 = 0.552). Alert was significantly
faster than the other conditions with averagely 2.1 s (p < 0.001 in a post-hoc Bonferroni-
corrected t-test). The average times with Widget were 7.6 s and with Notification 9.9 s. Figure
6.16 visualizes the results.

Notification

Widget

Alert

0                       5                      10                     15  (seconds)
Awareness time

Figure 6.16: Time until subjects became aware of modality changes in the different conditions No-
tification, Widget, and Alert. The bars inside boxes indicate mean values, the whiskers
minima and maxima.

85The participants were the same as in the laboratory study described in Section 6.4.2, as both studies were
conducted in common. Since both studies investigated different systems, and within-subjects-designs were used,
no influential or priming effects are expected.
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RQ2: Effectiveness

There was a significant effect of visualizations on success rate (two-way repeated-measures
ANOVA; F(2, 46) = 13.36, p < 0.0001, partial η2 = 0.367). Success rates were best for
Alert (100%) and Widget (88%), showing no significant difference in a post-hoc t-test with
Bonferroni correction. With Notification, the success rate was with 54% significantly worse
than in the other conditions (p < 0.05). The error rates ranged between 0.0 (Widget) and 0.1
(Notification), and did not significantly differ between conditions (F(2, 46) = 1.53, p = 0.23,
partial η2 = 0.062)

RQ3: User Preferences

Subjects indicated which visualization the like best, where they could choose between Noti-
fication, Widget, and Alert, each in opt-in and opt-out variant, and additionally the option of
no visualization at all. The results are summarized in Figure 6.17. The most popular visual-
ization was clearly Notification with 42% (thereof 38% as opt-out variant). 25% of subjects
voted for Widget (all of them as opt-out variant). Alert was only preferred by 21% (13% as
opt-out and 8% as opt-in). Another 13% would prefer no awareness visualization at all.
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Figure 6.17: User preferences for modality awareness visualizations

6.5.3 Discussion and Lessons Learned

The joint results of the quantitative measures and subjects’ preferences form an interesting
picture: Although Notifications were clearly the most popular visualization, they showed a
significant lower success rate and the slowest notification time (i.e., worst efficiency). By
contrast, the Alert visualization, which was best both in success rate and efficiency, scored
last in user preferences. A reason can be found in subjects’ oral explanations of their pref-
erence voting. The prevalent reason for voting for Notification was the appropriate level of
obtrusiveness. The Alert was perceived as too distractive in the middle of a task by many
participants. This shows that obtrusiveness was more significant to users than efficiency. A
second explanation could be that, although we found significant effects of visualizations on
efficiency and effectiveness, none of the visualizations was actually really bad. They showed
almost no error rates, even Notifications were still noticed in averagely less than 10 seconds,
which seemed to be sufficient for most subjects.
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The short awareness time of Widget might partly due to the primary task of subjects in this
study, which involved another home screen widget. This allowed subjects to glance at the
awareness widget at the same time. If subjects had been using a full-screen application, the
Widget condition would probably have yielded worse efficiency results.

The opt-out variants were generally preferred more (76%) than opt-in (10%). This indicates
a relatively high confidence in automatic modality switching. Subjects accept rather rejecting
individual modality switches, instead of having to acknowledge every single rule.

6.6 Summary

In this chapter, we have presented a rule-based multimodality framework and several user
interface concepts for programming multimodal behavior and for awareness on multimodality
changes. We conducted comparative evaluations in the laboratory and evaluated rule creation
in the field.

In summary, we gained the following findings and recommendations:

• Subjects show a generally high interest in proactive modality switches, allowing auto-
matic adaptation of modality settings to different contexts using a rule-based approach.

• Subjects are generally confident in automated, rule-based modality switching. The ma-
jority preferred an opt-out over an opt-in system.

• Most rules created by subjects are of a simple “if-then” structure and related to location
contexts. The prevalent output modalities influenced by rules are sound and vibration.

• The rule creation interface that achieved best results in terms of efficiency and usability
is the situation-oriented variant.

• The recommended awareness visualization, although slower in efficiency, is the one
using opt-out notifications, due to their low level of obtrusiveness.

• Nevertheless, user preferences are heterogeneous, which should be respected by the
possibility for custom settings (e.g., allowing a choice between alternative visualizations
and opt-out/opt-in version, possibly even on a per-rule basis).



Chapter 7

Evaluating Mobile Multimodal Systems

7.1 Problem Statement and Research Questions

Evaluation is a crucial part in the development process of systems and applications. After we
have discussed the design and implementation of multimodal and sensor-driven applications
in the previous chapter, this last big chapter of this dissertation is devoted to the evaluation
process.

In Section 2.4, we gave an overview on evaluation methods that are candidates to be used in
conjunction with MUSED systems. Each of these evaluation methods have, however, individ-
ual strengths and weaknesses. Their suitability also depends on the kind of MUSED system,
the stage of maturity in the development process, or the aspect to be evaluated.

The high-level research question treated in this chapter is:

• Based on the characteristics of MUSED systems described earlier, what are the implica-
tions for appropriate evaluation methods?

We now present selected evaluation methods in detail, informed by our experiences from
their application in our research. In Sections 7.2 and 7.3, we report on laboratory evaluation
(at the example of Wizard-of-Oz (WOz) testing) and real-world evaluation (at the example
of SERENA, a self-developed logging and experience sampling tool). Furthermore, we dis-
cuss two special cases, especially relevant for MUSED systems: long-term evaluation (Section
7.4), and evaluation in the large (Section 7.5). We have successfully employed all of these
methods with the prototypes presented in Chapters 3–5, and demonstrated their applicability
in a broad variety of application areas. This allows us to report on the advantages and lessons
learned in the individual research projects. At the end of the chapter, we give recommenda-
tions for evaluation methods throughout the development process of MUSED systems.

This chapter is partly based on two papers we have published in 2012 and 2013 [228, 230].

7.2 Laboratory Evaluation: A Case for Wizard-of-Oz Testing

In this section, we motivate Wizard of Oz (WOz) testing for laboratory evaluation of mul-
timodal user interfaces and interaction techniques. As outlined in Section 2.4, the WOz
technique denotes the simulation of (parts of) the actions and/or reactions of a system by a
human acting as “wizard” [152].

157
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We promote the use of WOz testing in the field of mobile multimodal interaction for several
reasons.

• Creating fully-functional novel multimodal and sensor-driven interfaces often involves
considerable implementation effort. The implementation is often more sophisticated or
contains more complex algorithms than it is the case with conventional user interfaces.
However, frequent research questions of interest are acceptance, usability, likability,
etc. These can be examined independently of the algorithms, techniques, platforms,
frameworks, and APIs used for the implementation. With WOz testing, these research
questions can be investigated without having to fully implement the various interfaces.

• The conceptual evaluation of interaction methods shall be conducted early in the de-
sign process to inform further development. Often, it is not sufficient to conduct such
evaluations based on descriptions, images or videos. Instead, interactive prototypes are
required for subjects being able to evaluate a novel interface comprising multimodal
components. This interactive component can be added by the WOz approach.

• One might want to conduct comparative user studies with different conditions, where
internal or environmental factors are varied. WOz testing can help simulating and
reproducing such conditions for reliably repeating experiments under exactly the same
conditions, without the need of implementing all variants.

• Immature or buggy implementations can decrease the perceived utility, usability and
likability, and thereby distort results. Given the fact that a user study never evaluates an
interaction technique as such, but always in the context of a particular implementation,
WOz testing helps isolate these factors as good as possible, thereby adding to more valid
results.

We pursued this approach in several studies described in this thesis, e.g., in the context of
indoor navigation (see Sections 5.3.3 and 5.4.2), modality awareness interfaces (see Section
6.5.2) and multimodal input methods (see Section 6.4.2). In the following, we summarize
the advantages we obtained through using WOz for these studies.

Example 1: A Prototyping Tool for Indoor Navigation User Interfaces

We simplified and accelerated the evaluation of user interfaces for visual indoor navigation
system by using WOz testing.

• We saved time to set up the underlying localization mechanism, which would involve
the creation of a reference image database and the integration and fine-tuning of com-
puter vision algorithms.

• We could evaluate different UI concepts even before the live routing algorithm was
implemented and available as fully functional service.

• The evaluation could be conducted at any location, in particular at other locations than
the final deployment area. Testing with an underlying live localization system would
have required the creation of an entirely new reference database, setup, etc., for each
new location.
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• We can simulate different levels of inaccuracy (of the location or orientation estimate,
or both together) in order to find out how the user can deal with this inaccuracy using a
particular visualization. This amount of control over localization accuracy would not be
possible with a live system, as localization accuracy is influenced by multiple external
factors, e.g., lighting conditions.

• We can investigate the (motivational or affordance) effect of individual user interface
elements, such as the indicators motivating users to point at feature-rich regions, and
rapidly iterate on their design based on our findings.

For more details, see Sections 5.3.3 and 5.4.2.

Example 2: A Tool for Prototyping Multimodal Input Methods

We demonstrated various multimodal interaction methods to subjects and used WOz to make
these interaction methods work.

• Interaction modalities that would be challenging to implement (e.g., including motion
gestures) could nevertheless be used to show the design space and to collect feedback.

• As the presentation of modalities played only a minor role in relation to the entire
laboratory study, they could be included without spending too much time for their im-
plementation.

• The case that subjects dislike an interaction modality because it does not properly work
could be excluded. Our goal was a conceptual demonstration, not an evaluation how
well a modality actually works.

For more details, see RQ5 in Section 6.4.2.

Example 3: Illustrating Modality Awareness Visualizations

We simulated modality changes to test the efficiency and effectiveness of different UIs to
maintain modality awareness.

• In a live system, modality switches would in the real world occur based on (context-
specific) rules. In order to trigger these switches, subjects would have to change their
physical location, or the context (e.g., ambient light, noise) would have to change.
Since this is impractical for a laboratory study, we triggered the modality changes inde-
pendently of the context. WOz works here as simulation environment.

• Context changes, as they would be necessary to trigger modality changes if we did not
use WOz, are a potentially distracting factor. As they cannot be fully controlled, they
could distort efficiency and effectiveness measurements. With WOz, we eliminated
external influences as good as possible.

For more details, see Section 6.5.2.
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7.3 Real-World Evaluation: SERENA – A Framework for Logging
and Self-Reporting

Laboratory studies can provide initial feedback on a system that informs further design, or
investigate an individual, tightly focused usability question, e.g., the comparison of two inter-
action types or interfaces. However, for many research questions in HCI, user studies in the
lab are not sufficient. This is especially true for MUSED systems, as for these systems:

• the user interface is often determined by contextual information [224, 225]

• the environment is often explicitly involved in the interaction process [168, 225]

• modality usage in certain social settings shall be investigated, e.g., in a meeting, in the
library, in a restaurant, at home [147, 275]

• modality usage in certain states or modes of transportation shall be investigated, e.g.,
while walking or driving [147]

Such questions can only be evaluated “in the wild”. Moreover, researchers are often interested
in usage patterns, adaptation processes and learning curves. This must be investigated in
long-term studies observing the users’ behavior over weeks, months, or even years.

We developed a toolbox supporting data collection in long-term studies that we called
SERENA (SElf-Reporting and ExperieNce sampling Assistant). SERENA is available for down-
load at http://www.eislab.net/serena. Even though there exist various data collec-
tion applications in research (see Section 2.4), none of these applications gave us a convincing
picture of the whole survey process.

7.3.1 Functionality

SERENA combines questionnaire-based self-reporting with automated data logging in a sin-
gular smartphone application. It is designed flexible enough for a variety of use cases and can
be customized to the experimental needs. We successfully employed SERENA for multiple
studies we have conducted within the research for this dissertation. SERENA has been used:

• to capture long-term usage patterns of the MobiDics didactics tool (application usage
logging), described in Section 4.3.3

• to understand everyday usage of rules for multimodal behavior of mobile phones (used
for diary-based self-reports), described in Section 6.4.3

• to investigate the reliability of self-reporting in comparison to logging (used for experi-
ence sampling, diary, and logging), described in Section 7.4

These examples illustrate the diverse possibilities to apply SERENA. In the following, we
detail the possibilities that SERENA provides.

http://www.eislab.net/serena
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Logging

SERENA can log when applications are started and, within applications, the on-top (Android)
Activity, i.e., screen page. Furthermore, location information (from the most accurate active
location provider) can be stored with each log entry. In a configuration file, the experimenter
can specify a list of applications or activities that should be under observation by SERENA.
That way, surveillance can be confined to applications that are relevant for the study, with
the goal to preserve the privacy of subjects as much as possible. With location logging, app
usage can be monitored along location traces and, based on location clustering, associated
to frequent place such as “home” or “work”. By this means, research questions like “do usage
patterns change between different social contexts” can be tackled.

Self-Reporting

SERENA supports self-reporting based on questionnaires, utilizing the following question
types:

• Single Choice: A singular answer can be selected from a list of possibilities using radio
buttons.

• Multiple Choice: Multiple answers can be selected from a list of possibilities using
checkboxes.

• Drop-Down: A singular answer can be selected from a list which appears in a drop-
down menu. While the single choice type is adequate only for a limited number of
answer possibilities, the drop-down menu can contain a large number of elements.

• Likert: Subjects can indicate their level of agreement to a statement on a scale with a
defined number of steps (e.g., five or seven).

• Free Text: A (single-line or multi-line) text field is provided, where the question can be
answered in free text.

• Range: A value of a defined range (integer or float) can be specified using a slider.

• Instruction Text: In addition, a text-only page can be used for instructions and mes-
sages (such as an introductory page or a “thank you” page at the end of the question-
naire).

Questionnaires can be configured to be interval-based, event-based, or voluntary. With
interval-based questionnaires, e.g., appearing once a day, diary-like studies can be realized.
Event-based questionnaires are triggered by the usage of certain apps. For example, SERENA
can be configured to show a survey after a participant has used the prototype application that
shall be evaluated in a long-term study. Voluntary questionnaires are opened manually by the
participant and can be filled out any time.

The experimenter can assign a group ID to each questionnaire and specify in which timespan
it is valid (e.g., a two-week interval). With these features, SERENA supports multiple con-
ditions in within-subjects and between-subjects study designs. A within-subjects study can
be realized by multiple questionnaires with different timespans. For example, participants
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receive questionnaire A in the first part and questionnaire B in the second part of the study.
For a between-subjects study, different group IDs can be assigned to questionnaires. Group 1
could then, in parallel, receive questionnaire A, and group 2 could receive questionnaire B.

Remote Operation

SERENA can be controlled and deployed remotely using a web application. Researchers can
configure all settings (e.g., which applications should be logged, query intervals for ques-
tionnaires), create the questionnaires in the web application, and subsequently generate a
customized Android application to be distributed to participants.

The participants install this application on their smartphone at the beginning of the experi-
ment. The collected data (usage logs and answers to questionnaires) are automatically up-
loaded to a server. Even if the application is already deployed, settings can be altered and
new questionnaires can be sent remotely to participants’ devices. Participants do not need to
come to the lab for application setup or for collecting the data from their devices at the end
of the experiment, which greatly simplifies setting up studies. We emphasize that we discuss
here only technical requirements; a personal meet-up with subjects might still be required for
signing a consent form.

7.3.2 Implementation

Backend

The backend fulfills two main tasks: the configuration of SERENA prior to the experiment, and
the analysis of the collected data. The configuration tool allows to design questionnaires (see
Figure 7.1a) which can be exported as XML file. This file also contains configuration data (i.e.,
query frequency for questionnaires, information which data should be logged, etc.). With this
file, the researcher can compile a customized version of the SERENA Android application that
can be distributed to participants. Alternatively, instances of SERENA already installed on the
participants’ devices can remotely be updated with new questionnaires.

The backend is implemented with the Python Pyramid framework86. The web pages for
creating questionnaires and analyzing the results are created using jQuery87 and Ember.js88.
Logs and survey data received from subjects’ phones are saved to a MySQL database. Using
the analysis webpage of the backend, the data can be reviewed and exported for in-depth
statistical analysis.

Mobile Application

The mobile SERENA app is implemented in Android (version 2.3). Its core is a background
service which monitors device usage and schedules questionnaires. Device usage is logged

86http://www.pylonsproject.org/projects/pyramid/about, accessed June 29, 2014
87http://jquery.com, accessed June 29, 2014
88http://emberjs.com, accessed June 29, 2014

http://www.pylonsproject.org/projects/pyramid/about
http://jquery.com
http://emberjs.com
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according to the specified filters by the researcher (see Section 7.3.1). Log data are regularly
uploaded to the server and additionally saved locally on the device. SERENA creates a unique
ID for each installation and attaches it to log data entries and answered questionnaires. This
allows researchers to match logged data and self-reports, while not revealing the identity of
individual participants.

For scheduled questionnaires (in interval- or event-based mode), a notification message ap-
pears in the notification bar. The user can decide to immediately answer the questionnaire or
to postpone it, in order to minimize disturbance in an ongoing task. Users can also manually
bring up questionnaires from within the SERENA application. The main screen shows the
currently available list of experience sampling questionnaires, where questionnaires that are
added or removed by the experimenter during the study appear or disappear automatically.

7.4 Data Collection in Long-Term Studies

As we are, for the long-term evaluation of MUSED systems, often interested in user attitudes,
adoption, and qualitative feedback, we look in detail at self-reporting in this section. The
commonly used techniques like experience sampling or the diary method bear challenges
in long-term use. Experience sampling can be highly interruptive and burdensome if the
sampling rate is high, and the study is conducted over a long time. With diaries, by contrast,
it may happen that subjects do not remember all events throughout the day if they, e.g., only
make one entry every evening, or that they might refrain from writing down certain events,
such as, e.g., intimidating information.

The reliability of self-reporting can be affected, e.g., by:

• the participants’ self-perception (one’s own behavior is perceived differently by oneself
than from outside)

• memory (subjects may not remember correctly and forget events or actions),

• sluggishness or enervation (especially when reporting interrupts the current task),

• privacy demands (reporting can be embarrassing or make subjects feel to appear in a
bad light; consider, e.g., media consumption, sports or food intake habits).

We conducted a structured exploration of how reliable self-reported information is under
different conditions, in comparison to logged data as ground truth.

7.4.1 Research Questions

We analyze the following research questions.

RQ1 How reliable are self-reports in terms of the reported content?

RQ2 How reliable are self-reports in terms of reporting frequency?

RQ3 How reliable are self-reports over the course of a study?
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(a) Backend

(b) Android application

Figure 7.1: Backend and mobile app of our self-reporting toolkit SERENA. (a) In the backend, ques-
tionnaires can be created, managed, and sent to the mobile app that subjects install on
their smartphone during a long-term study. (b) The screenshot from the mobile app shows
an example questionnaire that has been created with the backend.
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These research questions address three aspects of reliability. First, do users accurately per-
ceive and inform on their actions, or, e.g., misinterpret timespans (such as how long they used
a certain application)? Second, do they accurately report occurrences of an action, or forget
or deliberately conceal them (e.g., whether they used a certain application)? Third, besides
overall accuracy, we are also interested in time-dependent effects: How does self-reporting
behavior change in the course of the study? A reasonable hypothesis is that the commitment
decreases over time.

RQ4 Do self-reports affect actual behavior?

By this research question, we investigate whether a study that requires subjects to report on
their behavior reflects their behavior in the unobserved case, or if subjects alter their actual
behavior because of the tasks imposed by the study.

RQ5 How frequently should self-reports be requested to still obtain accurate and useful
results?

In order not to discourage participants, researchers might want to minimize the subjects’ bur-
den when participating in a study. This could be reached by reducing the frequency of self-
reports. However, the cost might be that results become less accurate (see reasons above).
Increasing the frequency might improve the results, but also exhaust users more. In order to
answer this research question, we need to take into account multiple factors: Besides quan-
titative measurements of reporting accuracy in different conditions, also qualitative feedback
and the perceived burden of users play a role.

7.4.2 Long-Term Study: Comparing Logging and Self-Reporting

Experimental Design and Task

In order to assess the reliability of self-reports, we needed a use case where ground truth data
can be easily obtained. We therefore chose smartphone usage, as app usage information can
be assessed well by logging (see, e.g., [19, 25, 74, 95, 145]). While SERENA is not limited
to monitoring specific apps, and thus usable as research vehicle for various HCI studies on
mobile devices, we constrained our analysis to two applications to limit the self-reporting
burden for participants. As representative applications that are likely to be installed and
regularly used by a majority of smartphone owners, we chose Facebook and Mail.

Subjects were instructed to answer a short questionnaire (self-report) each time they used
either Facebook or Mail. Let us again note that self-reports were used only as vehicle to
assess subjects’ reporting behavior and not for in-depth usage analysis; therefore, we kept
the questions simple. Subjects were asked to estimate how long they had just used Facebook
or Mail, and how often they had used Facebook or Mail without filling out a questionnaire.
The latter question gave subjects the opportunity to catch up on reporting, in case they had
forgotten to answer a questionnaire. When a subject filled out a questionnaire directly after
having used an app, we call this direct self-report. For example, a subject has opened Facebook
three times and answered three questionnaires on those usages. When the subject only filled
out a questionnaire after the third usage, indicating that she has used Facebook three times,
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the former two app usages are considered to be reported indirectly; we hence call them
indirect self-reports.

The way how subjects were reminded to answer a questionnaire was varied in three “intensity
levels”:

• In the Voluntary condition, users were never actively reminded to answer a question-
naire. The only given instruction was the initial task assignment prior to the study.

• In the Interval condition, a reminder notification appeared once a day (scheduled to
7:00 PM for Facebook, and to 9:30 AM for Mail). The reminder only showed up if
reporting has been missed at least once since the previous reminder.

• In the Event condition, a questionnaire appeared right after each usage of the Facebook
or Mail application. The questionnaire was, however, only shown if the application was
quit with the home button and the user returned to the home screen. If the user had
switched to another application using the multitasking view, or another application was
started from within Facebook or Mail (e.g., when a mail attachment was tapped and
opened in another application), no questionnaire was shown in order not to interrupt
the task.

The study lasted six weeks. Participants were asked to install SERENA on their personal
smartphone and to use the phone as usual. In the course of the six-week study period, a
reminder email was sent every two weeks, thanking subjects for their participation so far and
indicating how long the study would still last. In a pre- and post-questionnaire, we collected
information on current smartphone usage (prior to the study), and to get feedback on the
self-reporting process (after the study).

Participants

30 subjects (8 females, 22 males) participated in the study. They were aged between 18 and
32 years (M = 25, SD = 3) and recruited among acquaintances of the researchers. None
were related to the research project. The only requirement to participants was that they
were (Android) smartphone users and regularly used email and the Facebook on their device.
Subjects received a small gift for compensation after the study. We deliberately decided for
a modest compensation in order not to influence results through the incentive. We used a
between-subjects design, with 10 participants in each of the conditions Voluntary, Event, and
Interval.

Most subjects stated to use Facebook and Mail one or several times a day. Facebook was used
several times by 21 subjects, once by six, and fewer by three participants. 25 subjects used
Mail several times a day, two used it once, and three fewer than once a day.

Measurements

In all three conditions, SERENA logged participants’ actual usage of Facebook and Mail. If
subjects switched back and forth between applications within a short period of time, we
aggregated subsequent usages of the same app and counted them as singular app usage,
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summing up individual usage times. We assumed a singular task if users returned to the
original app within 60 seconds. One example is when subjects were composing an email,
looked something up in another app, and switched back to finish the email. Often, those
other applications were launched from within the first application using an Intent, e.g., for
choosing an email attachment, or sharing an image in Facebook.

Results

We first present the results of our individual measurements, before we put the results in
relation to the formulated research questions and discuss implications.

Reliability: Number of App Usages

In total, 3,631 Mail usages and 3,181 Facebook usages were logged during the study. Figure
7.2 illustrates the ratios of self-reported app usages in relation to the logged usages.
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Figure 7.2: Ratio (in percentage) of self-reported and logged app usage in the conditions Voluntary,
Interval and Event. AutoOpen denotes the amount of filled out questionnaires that have
been opened automatically in the Event condition. Bars show the sum of direct self-reports
(representing the number of filled out questionnaires) and indirect self-reports (which
comprise app usages that have been caught up in a subsequent questionnaire).

The bottom, darker-colored parts of the columns represent direct reports (i.e., the actually
filled out questionnaires). The top, light-colored portions illustrate indirect reports (see ear-
lier explanation of the terms), so that the columns in total represent the amount of all re-
ported usages. Subjects reported 37.6% of Facebook usages in Voluntary, 63.8% in Interval
and 54.3% in Event. 54.6% of Mail usages were reported in Voluntary, 68.4% in Interval
and 53.9% in Event. The differences were not significant between conditions (p > 0.05 in
pairwise Student’s t-tests).

As described in the Experimental Design section, in the Event condition, a questionnaire was
only shown when subjects returned to the home screen after having used Facebook or Mail.
This was the case in 1,224 of 2,488 app usages (49%). If we consider only these automatically
shown questionnaires (we call them AutoOpen), the reporting ratios were 95.9% for Facebook
and 92.8% for Mail. The reporting ratio in AutoOpen was significantly higher than in the other
conditions (p < 0.005).
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We can note the following observations.

• Even though the “intensity level” of reminders increased from Voluntary over Interval to
Event, there was no effect on actually reported usages.

• If we only consider the reporting rate in AutoOpen, the Event condition actually lead to
more reports than the other conditions.

• Facebook usages were more often indirectly reported than Mail usages. Presumably,
Facebook is more often used at an unconscious level, and is so deeply and naturally
integrated in subjects’ phone interaction that they did not think of the questionnaire
right afterwards. An indicator for this hypothesis is that particularly in Interval, where
only one reminder a day was sent, so many Facebook reports were forgotten.

Reliability: App Usage Duration

In all conditions, Facebook has been used more than twice as long as Mail. Comparing the
self-reported usage durations, subjects overestimated their usage in all conditions by between
92% and 217%. Figure 7.3 visualizes logged (dark blue, dark green) and reported (light blue,
light green) Facebook and Mail usage durations. For logged and reported Facebook usages,
we found significant differences in Voluntary and Interval (p < 0.05) with a Student’s t-test.
The differences between logged and reported Mail usages were significant in all conditions
(p < 0.005).
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Figure 7.3: Self-reported and logged usage times of Facebook and Mail in the different conditions.
Participants overestimated the durations of their actual app usage sessions often by more
than 100%.

We hypothesized that subjects would overestimate their actual app usage when reporting on
their behavior, which was already suggested by previous findings [72, 119]. In fact, subjects
overestimated app usage durations mostly by more than 100%.

Reliability: Self-reporting over Time

Figure 7.4 illustrates the self-reporting behavior over the course of the study. The diagrams
illustrate the direct self-report ratios (blue, squared graph) and total (direct plus indirect)
self-report ratios (green, circular graph), aggregated for each week.
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W1 W2 W3 W4 W5 W6 W2-W1 W3-W2 W4-W3 W5-W4 W6-W5 W6-W4
Voluntary

Interval

Event

Facebook 38.59 25.21 22.78 23.25 30.58 21.43 -13.38 -2.43 0.47 7.33 -9.15 -1.82
Facebook, B 50.62 37.82 35.00 33.77 38.02 27.47 -12.8 -2.82 -1.23 4.25 -10.55 -6.3
Mail 49.78 39.52 42.58 53.95 57.76 42.21 -10.26 3.06 11.37 3.81 -15.55 -11.74
Mail, B 59.47 53.23 48.39 60.53 63.35 43.22 -6.24 -4.84 12.14 2.82 -20.13 -17.31
Facebook 47.01 38.41 41.27 37.60 36.73 34.44 -8.6 2.86 -3.67 -0.87 -2.29 -3.16
Facebook, B 63.25 64.90 61.11 70.4 65.99 58.28 1.65 -3.79 9.29 -4.41 -7.71 -12.12
Mail 61.44 62.10 56.28 68.52 64.52 67.19 0.66 -5.82 12.24 -4 2.67 -1.33
Mail, B 64.41 69.41 64.32 69.74 68.82 74.48 5 -5.09 5.42 -0.92 5.66 4.74
Facebook 46.41 34.85 42.14 50.36 41.67 36.82 -11.56 7.29 8.22 -8.69 -4.85 -13.54
Facebook, B 78.06 45.45 44.29 51.82 45.14 50.25 -32.61 -1.16 7.53 -6.68 5.11 -1.57
Mail 59.57 46.76 48.26 54.59 44.60 39.46 -12.81 1.5 6.33 -9.99 -5.14 -15.13
Mail, B 62.65 51.39 50.19 55.61 58.22 42.15 -11.26 -1.2 5.42 2.61 -16.07 -13.46
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Figure 7.4: Amounts of self-reported application usage for each week in the conditions Voluntary, In-
terval and Event. Direct self-reports represent the number of filled out questionnaires,
while direct and indirect self-reports also comprise app usages that have been caught up
in a subsequent questionnaire. Trend lines are shown in light gray.

We can summarize the following observations:

• We observe a decrease of the self-reporting ratio in all conditions (except for Mail in the
Interval condition) between Week 1 to Week 6 (however not equally fast), illustrated by
the trend lines in Figure 7.4.

• We find a down-up-down pattern as follows: After a decrease by averagely 9.4% in Week
2, ratios remain constant and slightly rise again in the middle of the study (+6.1% from
Week 3 to Week 4), but decrease by averagely 7.7% from Week 4 to Week 6.

• As already outlined in Figure 7.2, reporting rates start and remain lowest in the Vol-
untary condition. In Interval and Event, they start at a comparable level, but decrease
more in the Event condition than in Interval.

Actual Behavior: App Usage Over Time

After we have looked at the accuracy of self-reported app usage (ratio of reported to real
app usage), let us look at the absolute number of Facebook and Mail usages determined by
logging, which are visualized in Figure 7.5. We can see that real app usages significantly
decreased in all conditions, partly by more than 50% between Week 1 and Week 2. This
trend partly continues until Week 4. Towards the end of the study, app usage rises again in
all conditions. Still, in Week 6 there were in total 23% less logged Facebook and Mail usages
than in Week 1.
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Voluntary

Interval

Event

Overall Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
Facebook 1190 241 238 180 228 121 182
Mail 1018 227 124 155 152 161 199
Facebook 934 234 151 126 125 147 151
Mail 1184 236 219 199 152 186 192
Facebook 1057 237 198 140 137 144 201
Mail 1429 324 216 257 196 213 223
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Logged App Usage

Logged App Usage

Volun-
tary
Inter-
val
Event

OverallOverall W1 W2 W3 W4 W5 W6
Fb 1190 241 -1.3 % 238 -32.2 % 180 21.1 % 228 -88.4 % 121 33.5 % 182
Mail 1018 227 -83.1 % 124 20.0 % 155 -2.0 % 152 5.6 % 161 19.1 % 199
Fb 934 234 -55.0 % 151 -19.8 % 126 -0.8 % 125 15.0 % 147 2.6 % 151
Mail 1184 236 -7.8 % 219 -10.1 % 199 -30.9 % 152 18.3 % 186 3.1 % 192
Fb 1057 237 -19.7 % 198 -41.4 % 140 -2.2 % 137 4.9 % 144 28.4 % 201
Mail 1429 324 -50.0 % 216 16.0 % 257 -31.1 % 196 8.0 % 213 4.5 % 223

Figure 7.5: Logged application usage (number of Facebook, in the table abbreviated as Fb, and Mail
sessions) for each week in the conditions Voluntary, Interval and Event. Decreases between
weeks are marked red, increases are marked green.

We had asked subjects every week how reliable their self-reports were, according to their
self-estimation. In fact, subjects stated that their behavior was influenced by self-reporting.
The higher the “intensity level” was (i.e., from Voluntary over Interval to Event), the stronger
subjects agreed that they changed their behavior. Overall, in the first two weeks, 0% and 3%
agreed that they have not regularly filled out questionnaires. By week 3, the amount rose to
30%, by week 4 to 47%, and in week 5, more than half of participants (53%) admitted to not
regularly fill out questionnaires any more. In the last week, the estimation was slightly lower
again; 43% of subjects stated to have missed questionnaires.

Post-Study Feedback

In order to understand this effect, let us look at quantitative and qualitative user feedback we
collected after the study. Subjects expressed their agreement to the statement “Answering the
questionnaire was low effort” on a 5-point Likert scale (1 = strongly disagree, 5 = strongly
agree). Average responses were 4.1 in Voluntary (both for Facebook and Mail), 3.8 in Interval
(both for Facebook and Mail), and in Event 3.7 (Facebook) and 3.4 (Mail). Hence, self-
reporting was less burdening in Voluntary than in Interval and Event.

Furthermore, participants were asked for feedback, and whether or how the study had
changed their application usage. We present in the following some answers grouped by con-
ditions89.

Voluntary Subjects mostly liked the way of voluntary self-reporting. P3 found it “fast and
playful” and liked that it is “low effort and can be filled out any time”. P6 said that “it’s simple
and [...] actually uncomplicated. There’s not much interface necessary.” Some subjects would
have preferred some kind of automation. P5 said: “I’d have preferred to be asked automatically,
once or several times per day, to fill out a survey. Because I was in a hurry or I forgot it fairly
often, I didn’t fill out the questionnaire each time. A daily notification would have been sufficient
for me.” For five subjects, usage habits did not change. However, five reported to use apps
shorter or less frequently. P1 stated to “use apps more consciously, only when I really wanted
to use them and not just started them because there was nothing to do”. According to P10, the
effect was “no endless surfing any more and reduced usage”.

Interval Similar to Voluntary, most participants stated to like this way of reporting. One
subject (P15) even would have favored Event, stating that “questionnaires should pop up by

89The statements were translated from German to English.
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default after the app”. Some participants found the effect of self-reporting interesting. “[I was]
more aware when estimating my usage time” (P19). P13 said that it was “interesting to yourself
how often you open the apps” and found the effort “acceptable”. P17 admitted to have become
sloppy with the time, but did not perceive questionnaires annoying. However, six out of ten
participants in this group stated to have changed their behavior. For example, they checked
their emails less frequently (P13) and used the apps generally less so that they did not have
to answer questionnaires (P14, P20). P12 stated to “not have looked at every single mail, and
moved Facebook usage to the PC”.

Event Comments from participants in this condition were more critical than in the other
conditions. P23 said: “Too time-intensive and complicated. Periodically answering the same
questions over and over again is annoying. Sometimes, you even avoid using those apps.” An-
other user suggested to use less clicks in the questionnaire to make self-reporting more con-
venient. P26 did not like event-based reporting because it was “too annoying” and he would
“prefer background logging”. Nine out of ten subjects also indicated that they used Facebook
and Mail differently or at least thought about it. P21 said: “I partly looked up e-mails at my PC
when I was too lazy to fill out the questionnaire on the mobile”. Other participants reported to
have used the apps significantly less, especially towards the end of the study (P22, P24, P25).
P23 stated to “often have read only the notification but not started the app any more”. Unlike
most other participants in the Event condition, P28 was happy about the increased awareness
of app usage: “I now know how much time I’ve wasted with that! I should waste my time with
other things.”

Two weeks after the study had ended, we contacted the subjects again. We asked how long
they would be willing to participate in a similar study. 22 of the 30 initial subjects answered
this question, which is depicted as summary in Figure 7.6. The median length named by
subjects is four weeks. It becomes evident that the answers differ based on the conditions
in which subjects had participated in the study. The Event participants suggested intervals
between zero and three weeks, the Interval participants intervals between one and six weeks,
and only the subjects from the Voluntary condition could imagine longer study durations,
with a length up to twelve weeks.
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Figure 7.6: Histogram of the maximal acceptable duration of a study in which participants would
participate again in a study with the same conditions (answers of participants in respective
conditions are highlighted in different colors).
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7.4.3 Discussion and Lessons Learned

After we have presented the results, we try to answer the initially formulated research ques-
tions.

Reliability of Self-Reports (RQ1–R3)

RQ1–RQ3 addressed the reliability of self-reports. We could identify the following findings.

• In terms of reporting accuracy, subjects overestimated their application usage durations
in all conditions.

• In terms of the quantity of reports, only approximately 40% to 70% of actual app usages
were reported by subjects within six weeks. The intensity of reminders did not have a
significant effect on these ratios.

• Over time, self-reports decreased by averagely 23% within six weeks.

These results show that self-reports on application usage can generally not be considered
as accurate. These findings show that we need to be aware that self-reported data can be
unreliable. Researchers should not follow the pitfall of blindly trusting self-reported data.

Influence on Actual Behavior (RQ4)

Regarding RQ4, we found that self-reports actually can alter the behavior of subjects. While
ups and downs in app usage are normal (e.g., due to holidays), it is likely that subjects altered
their application usage because of the study. This behavior is known as Hawthorne effect
[284]. Both quantitative and qualitative results indicate that subjects reduced their actual
application usage in order to avoid questionnaires. This shows that a study setup needs to be
carefully planned in order to really measure the intended effect (i.e., the “unobserved” state).
With the answer to the next research question, we try to give recommendations to avoid this
problem by optimizing the duration of a study and the self-reporting frequency.

Ideal Self-Reporting Frequency and Study Duration (RQ5)

With RQ5, we aimed to investigate the ideal study duration and frequency of self-reports.
This question cannot be answered definitely. From a researcher’s perspective, a higher self-
reporting frequency would be desirable, as it generates more samples. Subjects answered
more than 90% of all questionnaires that automatically popped up in the Event condition.
However, in a long-term study lasting significantly longer than six weeks, this frequency of
automated questionnaires would most likely not be feasible, since it would annoy users too
much. Even in our setup in the Event condition, where only for 49% of app usages a question-
naire appeared, subjects found reporting too time-intensive and annoying. The differences
between conditions are smaller as anticipated, which is in line with subjects’ feedback that
self-reporting felt burdensome already in Interval and Voluntary. We also saw that a higher
“demanded intensity” does not correlate with a higher amount of reported instances; thus,
the intensity should reasonably be limited.

While some participants in Interval wished for automated surveys to prevent that they forget
to report (which is exactly what we provided in the Event condition), subjects in Event felt
overly burdened and wished for a larger interval between reports, or for logging. This shows
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us that reasons for inaccurate self-reporting are twofold: First, subjects may forget about
reporting, which was the case in the Voluntary condition. Second, subjects may deliberately
not answer questionnaires because they find it too much effort; this was the case in the Event
condition. Some recommendations could therefore be:

• Do not use an overly high self-reporting intensity or interval. In our study, report rates
initially were below 70%, with further decreases from the second week on. Thus, dense
self-reports from participants are hard to justify. If the burden is too high, participants
will get annoyed so that they refrain from reporting, or more severely, the alter their
actual behavior. Given that reporting rates in Interval were in average higher than in
the (more demanding) Event condition (although not significantly), less “pressure” can
probably lead to more satisfying results at the end of the day.

• Based on the development of self-reporting rates over time, we learn that it is challeng-
ing to maintain commitment over a duration of six weeks. The optimal study length
depends on the required reporting intensity. For example, Facebook usage reporting in
the Event condition already significantly dropped after Week 1 (so that one to two weeks
would be ideal). By contrast, a study with Interval-based reporting could last four to
five weeks. Based on questionnaire answers, the mean for a maximal study duration
would be four weeks (see Figure 7.6). However, the great differences between answers
of participants who had experienced different conditions support the assumption that
higher intensities, such as in the Event group, reduce the reasonable study length.

• Researchers should be aware that self-reports are not accurate, and consequently take
into account that a corrective factor might be necessary when analyzing and interpreting
the results. Given that the highest drop in self-reports occurred right at the beginning
of the study, researchers could consider to really start data collection after some days
of “test run”. This gives subjects time to habituate with the reporting procedure. In
order to find out how subjects can be kept engaged from the beginning, this question
will have to be further investigated in future experiments.

• While the reporting rate decreased in total over the course of six weeks, there was a
relative increase in the last third of the study. This increase might be due to reminder
emails we sent out to participants. The reminders may have strengthened the sense of
duty of those who had neglected reporting towards the end. Subsequent work could
systematically investigate the effect of reminders (regarding, e.g., number or frequency,
since too frequent reminders could have a contrary effect).

Finally, as we compared self-reporting to logging, we would like to point out directions to
decide for either of the two data collection methods.

• If quantitative data shall be collected, logging is often ideal to capture data in a reliable
and unobtrusive way. Self-reporting may be an option for situations where automated
data capturing is not possible.

• Diary reports might not reflect entirely reliable usage frequencies, but this does not
make them less reliable for the assessment of the experiences recorded. The qualita-
tive nature of self-reports has the unique advantage to gain insights that would not be
possible with automated data collection, such as motives and decisions of users for the
behavior that was logged.
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• We showed that self-reporting can even influence actual behavior, in our case the usage
frequency of the observed apps (and it is critical when the research method influences
the observation!). If possible, researchers should therefore consider a combination of
self-reports and logged data to achieve additional certainty, or to use a control group
in the experimental design. As of today, where self-reports are often collected with the
help of smartphones, automated collection and logging of information is in many cases
a small extra effort. The SERENA framework presented in this chapter can support re-
searchers to this end, as it provides logging and different ways of self-reporting (interval
and event-based).

• The data collection method should thus carefully be adapted to the scenario and to the
actual data to be gathered. If, e.g., just random experiences or impressions should be
collected, it can even be preferential when users do not report too often. In that case,
reporting occurrences become indicators for moments that are salient or meaningful
to subjects. However, when quantitative data or “instances” should be captured, self-
logging can provide unreliable and incomplete data.

7.5 Research in the Large

After we have in the preceding section discussed long-term evaluation and thus tackled the
time dimension of user studies, we now look at best practices for large-scale results in terms
of participants. We focus on the two approaches crowdsourcing and marketplace research,
which we identified as particularly useful in the context of MUSED systems.

The term “research in the large” has been coined by a workshop series started in 2010, which
was held in cooperation with the UbiComp and MobileHCI conferences [64, 65]. The goal
was, in the first place, to investigate strategies for collecting quantitative data from a large
user basis for statistical analysis [28] in the context of Ubiquitous Computing (UbiComp)
research. We extend on this notion by including also large-scale qualitative data, which can
for example be gained through crowdsourcing intelligence.

7.5.1 Crowdsourcing Human Intelligence

In the context of UbiComp, the approach of acquiring information or data from “the crowd”
has been used especially in the sense of crowdsensing, i.e., using data from a large number
of individual, sensor-equipped devices [108]. By contrast, crowdsourcing is a means to also
gain large-scale (especially qualitative) user feedback.

Amazon Mechanical Turk, or briefly mTurk63 has been launched in 2005 and is a so-called
micro-task market for coordinating HITs (Human Intelligence Tasks). Requesters can place
tasks that are accomplished by providers for a compensation. That way, a large user basis
can be recruited, e.g., for online surveys or questionnaires. Various researchers have attested
mTurk to be a viable alternative to traditional subject recruitment methods [37, 156, 258].
Particular advantages of mTurk are the demographic spread and the geographic distribution
of users, resulting in a higher diversity of participants than in many studies with the typical
“American college” population [37]. This can especially be advantageous if results shall be
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representative for wide parts of the population with cross-cultural background. On the other
hand, limitations to a subset of users are possible, e.g., in order to investigate effects in par-
ticular cultural circles or target groups. Data gained through portals like mTurk are as reliable
as obtained with traditional methods [37], but Kittur et al. [156] point out the importance
of the survey design. For example, they recommend to use verifiable questions and to de-
sign tasks in a way that producing malicious responses does not take significantly less time
than valid ones. There exist numerous alternative websites like ClickWorker90, Crowdtap91,
ShortTask92, or MobileWorks77, offering similar services.

In our research, we have used crowdsourcing especially in early stages of the design process.
In Chapter 3.2, we investigated people’s attitudes towards different object interaction tech-
niques in the context of MobiMed, a medication package identifier. With mTurk, we gained
valuable large-scale insights on what people perceive as advantages and disadvantages. The
method gave us more diverse feedback than we could possibly have gained through personal
interviews or surveys in the closer entourage of the researchers.

In Chapter 5, we used MobileWorks to evaluate a mockup of an indoor navigation system
comparing different instruction types. The crowd-sourced feedback helped us to confine our-
selves to the designs which were evaluated best in the online survey, and to improve the initial
concept in a subsequent prototypic implementation.

7.5.2 Marketplaces as Data Source for Large-Scale Usage

As next aspect in the context of research in the large, we discuss the usage and meaning of
digital marketplaces for research. We use the term “marketplace” for a central place where
apps are distributed and installed for a mobile platform, in order not to confuse terms with
platform-specific stores (e.g., the App Store on iOS, or Google Play on Android). Böhmer and
Krüger [26] suggest the term “research in the application store” when marketplaces are used,
as the general term “research in the large” could also include other distribution sources of
research apps (e.g., email).

We discuss three aspects of marketplaces in this section. First, we give some examples for
marketplace research from prior work. In particular, we illustrate marketplaces as a chance
to obtain large-scale data. Second, we discuss advantages and problems of marketplaces as
a means for deploying research apps. Third, in a case study, we investigate update behavior
with marketplaces, which may not only be security-critical, but also problematic in the context
of research app deployment.

Large-Scale Studies in Marketplaces

Research applications have been deployed via marketplaces in several research projects [25,
99, 123, 124, 209, 292, 293]. Böhmer et al. [25] analyzed application usage on mobile
devices. They investigated (for different categories of apps) application launches, sessions,
transitions, and time-dependent usage. As vehicle to monitor these data, they used an app

90http://www.clickworker.com, accessed March 11, 2014
91http://home.crowdtap.com, accessed March 11, 2014
92http://www.shorttask.com, accessed March 11, 2014

http://www.clickworker.com
http://home.crowdtap.com
http://www.shorttask.com
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recommender tool93 that suggested interesting apps for download based on usage patterns.
Ferreira et al. [99] analyzed smartphone charging habits with the help of an application called
SuperCharged that helped users to monitor their battery life.

Games turned out to serve particularly well as vehicles for research applications, as Henze
points out: “Players execute the strangest tasks.”94. McMillan et al. [209] report on app usage
in the wild determined based on a game deployed via the iOS App Store. Kranz et al. [171]
inquired into the adoption of the NFC interaction technique by analyzing the usage of a NFC-
based game. Henze et al. [123] investigated touch performance on mobile devices with dif-
ferent target sizes and screen locations. Data from over 90,000 subjects was gained through
an engaging game called Hit It!95, where randomly appearing circles had to be touched as
fast as possible. A similar study by Henze et al. was conducted on typing performance [124]
using a speedwriting game96.

Sahami et al. [293] investigated preferences for mobile notifications. They deployed an app
that mirrors incoming smartphone notifications on a computer (similar to Apple’s “Continuity”
feature97). Over 40,000 users downloaded the app98 in Google’s Play Store and thereby
generated data for the study. The same researchers also investigated smartphone postures for
different tasks with the help of a widget deployed in the Google Play Store [292].

Besides the explicit intention to distribute research apps, marketplaces have been used for var-
ious purposes in a research context: For example, download numbers can serve as an indirect
indicator for acceptance and proof of concept [336]. Zhai et al. [350] gained qualitative feed-
back on their application from user comments in the app store. Miluzzo et al. [215] looked
at implications and challenges of large-scale distribution of research apps. They pointed out
that insufficient software robustness and poor usability may lead to a loss of confidence on
the part of the users. However, they did not quantitatively examine this phenomenon (such
as the number of uninstalls due to dissatisfaction). For further experiences with deployment
of research apps in marketplaces, we refer the reader to Boll et al. [28], who summarize their
experiences based on different research projects. They particularly discuss supplemental as-
pects like validity and ethical considerations.

Advantages and Disadvantages of Research App Deployment in Marketplaces

Let us now summarize the most significant advantages and disadvantages of marketplaces
and the consequences for research app deployment.

93appazaar, not available for download any more
94http://de.slideshare.net/NielsHenze/how-to-do-mobilehci-research-in-the-large,

accessed July 2, 2014
95https://play.google.com/store/apps/details?id=net.nhenze.game.button2,

accessed March 10, 2014
96https://play.google.com/store/apps/details?id=net.nhenze.game.typeit,

accessed March 10, 2014
97https://www.apple.com/ios/whats-new/continuity/, accessed September 17, 2014
98https://play.google.com/store/apps/details?id=org.hcilab.projects.

notification, accessed March 10, 2014

http://de.slideshare.net/NielsHenze/how-to-do-mobilehci-research-in-the-large
https://play.google.com/store/apps/details?id=net.nhenze.game.button2
https://play.google.com/store/apps/details?id=net.nhenze.game.typeit
https://www.apple.com/ios/whats-new/continuity/
https://play.google.com/store/apps/details?id=org.hcilab.projects.notification
https://play.google.com/store/apps/details?id=org.hcilab.projects.notification


7.5 Research in the Large 177

Advantages

With marketplaces, a high user base can be reached. Potential participants of a study are
thereby likely to be more heterogeneous regarding their background, country of origin, etc.,
compared to “on-site” recruitment.

Marketplaces have furthermore the advantage that they are actively searched by smartphone
owners. If the research app provides a concrete benefit beyond the purpose of collecting
research data, offering the app in the marketplace can be a good strategy to acquire a large
number of participants for large-scale research. Users are attracted by the functionality and,
as a side effect, provide their usage data for research purposes. However, the app description
should explain that the application is part of a research project and the collected data should
be made transparent.

Another advantage is the ease of the installation process. Most users will be familiar with
the process of finding and downloading apps from the marketplace. For research apps, it
will thus be easier to make users install the app via the marketplace, instead of using a
custom deployment procedure. For non-marketplace deployment, the executable file would
either have to be sent via email (which might be problematic for larger applications), to
be downloaded from a website using the mobile device (which requires multiple steps of
interaction), or to be transferred using a wired connection from a computer. All these methods
would require more technical support than a marketplace installation, and would probably
even require participants to come to the research institution to get their device prepared for
the study.

Moreover, in the default configuration of Android, installation sources other than Google Play
are disabled. When research apps are directly installed without marketplace, subjects not only
have to change this setting (which requires additional installation steps), but also the security
warning that appears when allowing any app for installation might make subjects concerned
that participating in the study might do harm to their device (in fact, there is an increased
security risk in that case). On iOS, there are anyway limited options to deploy applications
other than using the App Store. Developers can use ad-hoc deployment, but the device ID
must be known and added to a provisioning profile. Again, this requires the additional step
that potential study participants must look up and send their device ID beforehand to the
researchers. Furthermore, this deployment method is restricted to 100 devices by Apple,
which might be too small for some large-scale setups. The second alternative is to use the
enterprise deployment option. However, this deployment method is a legal gray area, as it is
only intended to be used within a company.

Disadvantages

There are, on the other hand, several drawbacks of marketplace deployment.

First, marketplaces make applications public. This proceeding is referred to as “quasi-
experimental design” [305], i.e., the researchers are not able to assign or choose participants
as easy as with other recruitment methods. Depending on the study setup, it may not be
desired that everyone has access to a research app, e.g., because a special target group shall
be observed, or because the developers want to use a certain recruitment process (e.g., to be
in control of demographic parameters).
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Another reason why public access to research applications might be unwanted is the potential
disclosure of the researching institution, which contradicts the “blind review” policies of many
publishers. To overcome this drawback, apps could be marked as alpha or beta versions
(which is possible in Google Play), which restricts the download to registered testers. Another
possibility would be to require in-app activation, so that only test subjects who have received
an activation code can use the app. Similarly, a (deterrently high) price in the store could
be used to drive off “normal” users, while test subjects could receive a promo code they can
redeem to download the app. However, all these solutions require a separate channel for
distributing those codes, which again complicates the setup.

A further point to be considered is the (one-time or annual) developer fee that is a pre-
requisite for offering apps via a marketplace. This is probably not a decisive factor for research
institutions, but still should be listed for completeness.

Moreover, marketplaces have different levels of checks before an application is accepted. Ap-
ple uses a set of guidelines to review apps before they are accepted in the store99. Although
Google Play is free of constraints for uploading apps, they are filtered for unwanted behav-
ior [192] and, in case of malicious content, deleted. This policy is appropriate to keep up a
general level of security; however, it might filter out research applications that alter the op-
erating system behavior on a low level (which might in some cases be necessary for research
purposes).

Finally, it might be required for research applications that the experimenters can react in time
on problems and provide updates. While app stores provide an integrated update manage-
ment, there are still different issues to consider when it comes to update behavior, which we
discuss in detail in the subsequent section.

Update Behavior in Digital Marketplaces – A Case Study

A central element of digital marketplaces is the ability to receive updates of installed applica-
tions in one place. The various mobile platforms implement the update mechanism differently
(we here focus on Android and iOS as most prevalent platforms). In Apple’s iOS, up to version
6, users were informed about available update via a badge symbol on the App store icon, but
updates were not installed automatically. Beginning from iOS 7, users can choose to down-
load and install updates automatically (but not make this setting on a per-app basis). Android
provides automatic updates since version 2.2; newer Android versions allow to configure if all
apps are updated automatically, or individual apps shall be excluded. If automatic downloads
are disabled, users are notified on updates via a message in the notification bar. For research
applications, the timely installation of updates is important for several reasons:

• Updates can change or update functionality, e.g., change the study condition in a within-
subjects experiment. All participants should therefore install the update at the same
time.

• Updates can add missing features or fix bugs. Failure of installing the update could
distort recorded data, or even prevent that data is collected at all.

99https://developer.apple.com/appstore/guidelines.html, accessed March 10, 2014
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• Apps could contain security holes, which increase the vulnerability of the device. In
particular, research apps under active development might be less stable than established
commercial applications, and therefore require more frequent fixes.

We report on a case study where we observed users’ update behavior and gained insights
on the correlation between published updates and their actual installation, and discuss the
consequences. For this, we used the application VMI Mensa74, developed and maintained
in our research group. It shows meals and prices of Munich cafeterias and canteens and
has become very popular with students since its launch in July 2011, with more than 5,400
downloads in July 2014. It has received 200 ratings (averagely rated with 4.7 out of 5 stars)
and 67 user comments.

Method

We looked at five consecutive updates of VMI Mensa between December 2011 and April 2012.
For our analysis, we used the built-in statistics tools of the Android Developer Console100 in
Google Play. Using this tool, we were able to keep track of the number of installations over
time, and the distribution of currently installed app versions. The data is anonymous and
cannot be related with individual users.

The average time between updates was 26 days, which we do not consider as unreasonable
effort for users to regularly install them. All updates added new functionality to the app
and/or fixed small problems, but none were critical for security. The “Recent Changes” de-
scription in Google Play was adapted for each update to make transparent what the benefits
of the updates were. For each update, we observed how many users downloaded it on the
initial day of publishing and in the 6 consecutive days. We calculated the update installation
ratio by relating the download count to the total count of active device installations on the
respective days.

In addition to the anonymous update installation statistics, we considered available user com-
munication in form of feedback emails (provided in the Google Play description), comments,
and ratings in Google Play for our analysis. We will bring in these findings in the discussion
section.

Results

Figure 7.7 illustrates the number of update downloads over time. We can summarize that
most users who actually do install updates install them in the first few days. Those who do
not install them early are also not likely to do so in the subsequent days.

Averaging over all five updates, we found that 17.0% installed the update on the day it
was published (day 0). On the following days, the numbers continuously and exponentially
decreased: 14.6% installed the update on day 1, only 7.8% on day 2, and 5.1% on day
3. On day 6, only another 2.3% downloaded the update. In total, slightly more than half
of all users (53.2%) had installed the updates after one week. The standard deviations of
these percentage values between the five updates we considered lie between 0.4% and 2.7%,
indicating that the update behavior was very similar for all five updates.

100https://play.google.com/apps/publish, accessed March 10, 2014
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Figure 7.7: Download number of five subsequent updates (vertical axis) over time. The graph shows
maxima on the update publishing day (possibly also due to activated auto-updates) and
exponentially decreases thereafter. Figure based on Android Developer Console graph.

Figure 7.8: Installation number by version (vertical axis); the colored lines indicate the five latest
versions. The diagram reveals how long old versions are active on user’s devices. The 7-
day periods after an update has been published are highlighted. Figure based on Android
Developer Console graph.

Looking at the fractions of the latest five versions (illustrated by different colors in Figure 7.8),
we see the slow increase of new versions due to cumulative installs (visualized with a steep
graph that flattens out more and more), and the decrease of older versions. The seven-day
periods after an update has been published are slightly shaded for illustration.

It becomes evident how long outdated versions (up to four versions older than the latest one)
are still circulating. As an example, let us look at April 28, 2012, which is two weeks after the
latest update has been published: Only 56.4% of all users have installed the latest available
version at this time. The previous four versions were still in use by 8.5% (v.26), 6.0% (v.25),
5.5% (v.24) and 2.1% (v.23). Most severely, 21.5% had even older versions installed on their
devices at that time.

Discussion

With only half of all users installing updates within one week, and one fifth not even installing
one of the last five updates, developers must assume that a significant amount of users runs
outdated app versions. We hypothesize that the relatively high ratios of the first two days
might partly be due to an amount of users who enabled the automatic update option. There
might be several reasons why not all users use automatic updates:

• The function is disabled by default (this was the case at the time when the following
study was conducted).

• Users disable updates manually to save network or processing resources (especially
older devices tend to slow down with an update process running in the background).



7.6 Summary: A Suggested Evaluation Process for MUSED Systems 181

• Users are afraid of accidental mobile data usage.

• Users want to be “in control” about installations they make (updates sometimes do not
bring improvements, but sometimes unwanted functionality like advertising or aggres-
sive privacy changes, so that the prior app version is preferable).

The findings of this case study add an additional perspective to the pro and contra arguments
to distribute research apps in marketplaces. Relying on the built-in update functionality does
not guarantee timely updates, which can be important for research applications. One clear
recommendation is therefore that researchers should try to keep the reliance on updates
as small as possible. For example, a change of study conditions in a within-subjects study
should not be realized by an app update. Instead, such actions should be triggered through
a connection to a server, or already foreseen at development time and hard-coded in the
app itself. Another solution could be to provide an own update mechanism built into the
application, which either automatically downloads updates in the background, or notifies
users on an available update within the app, and forwards them to the marketplace where
they can download it.

It must also be considered that our case study only looked at one app, independently of the
total number of apps installed. A high number of installed apps could further decrease the
amount of up-to-date apps, since more time would be required to keep all apps up to date.
A further limitation of this case study is that the target group for VMI Mensa are students.
A different behavior could be shown by other target groups. However, we hypothesize that
students as potentially above-averagely technology affine users update more frequently than
average users. This would entail that general update rates might be even lower than observed
in this case study.

While this section focuses on the impact in research, let us make a final note on the “lazy
update problem” in other contexts. With VMI Mensa, we chose a frequently-used app as
vehicle for our case study. However, the motivation for keeping occasionally used applications
up to date might be even worse. This is problematic, e.g., for online banking, where security
problems are particularly critical. In order to better understand the relation between usage
frequency and update behavior, in-depth usage monitoring [25] is required. To improve the
overall security level on a device, special concepts like compartmentalization in different
security zones have been proposed [276].

7.6 Summary: A Suggested Evaluation Process for MUSED
Systems

Based on our experiences, we suggest the following proceeding as exemplary model for the
iterative evaluation of multimodal and sensor-driven (MUSED) systems. For a summary of
goals and important attributes of each involved research method, see Table 7.1. Prior to this
proposed evaluation process, we presume a thorough review of related work (thus, litera-
ture review is not mentioned as separate step). Depending on the available prior knowledge
(gained from own prior research, related work, etc.), individual steps of this process may be
omitted in practice. To inform this decision, we now discuss the most important characteris-
tics of each step.



182 Chapter 7 Evaluating Mobile Multimodal Systems

Method Focus of Interest Why Important?
Focus Group Initial insights on

user needs
• Fast
• Inspiring
• Directions for research questions

Large-Scale
Questionnaire

Broad feedback
on concept or
mockup

• Early feedback prior to implementation
• Heterogeneous participants

Laboratory
Evaluation:
Wizard of Oz

Quantitative and
qualitative hands-
on feedback

• User experience with prototype
• Controlled conditions for measurements
• Face-to-face interaction with participants

Real-World
Evaluation

Usage and adop-
tion in the field

• Relation to context and environment
• Degree of novelty
• Long-term usage

Table 7.1: Proposed iterative design model for MUSED systems based on our research experiences.

Step 1: Focus Group

The goal of this method is an initial discussion of ideas and concepts with a small number of
people (see Section 2.4.1). In the context of MUSED systems, focus groups can reveal users’
attitudes towards novel interaction methods and give insights on their wishes and needs. That
way, a focus group discussion can give directions for research questions to be investigated and
inspire concepts and designs. We started our investigations of multimodal rule creation and
awareness interfaces (see Chapter 6.4.1) with a focus group discussion, which helped inform
the later designs.

Step 2: Large-Scale Questionnaire

After initial concepts and research questions have been framed, large-scale questionnaires
(conducted as online survey) help obtain broad feedback. They can be used for different
purposes: forming an image of the status quo, estimating attitudes towards a new concept,
or getting concrete feedback on a presented interaction technique or system. A particular
advantage of the large scale is that participants can be very heterogeneous depending on the
recruitment method. Subjects of varying age, with different backgrounds, occupations, and
experience can bring up issues researchers probably did not think of before. Crowdsourcing,
e.g., using Amazon mTurk, is one valid method for obtaining large-scale questionnaire results.
Based on initial results, it is often possible to identify concepts that are worth deeper inves-
tigation out of several alternatives, and exclude those who were rejected by participants. In
our research, large-scale surveys successfully provided detailed information on multimodality
usage (Section 6.2.1) as well as feedback on physical interaction modalities (Section 3.2.3)
and indoor navigation visualization (Section 5.3.2).
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Step 3: Laboratory Evaluation: Wizard of Oz

The next step should, at some point, be a laboratory experiment with a prototype. Many quan-
titative measurements, including efficiency, effectiveness, and usability, can only be taken in
a hands-on study. These measurements can serve to compare various design alternatives de-
termined in Step 2, or to compare a novel technique with an established “baseline” technique.
However, laboratory evaluations can also provide valuable qualitative findings by observing
users or by employing the “think aloud” method [328]. As motivated in Section 7.2, we
found the WOz technique particularly suitable for multimodal systems, why we recommend
using this approach in a laboratory study. This dissertation has presented a variety of research
where lab studies in conjunction with WOz were employed. See therefore, e.g., Sections 3.2,
5.3.3, 5.4.2, 6.4.2, and 6.5.2.

Step 4: Real-World Evaluation

A real-world evaluation in the field can be the final puzzle piece in the evaluation of a MUSED
system. As multimodal interaction approaches often involve contextual factors, some research
questions can only be answered in situ. With logging and self-reporting, we have presented
two applicable methods for real-world data collection. While logging through research apps
can give detailed usage information (but not qualitative insights), self-reporting can provide
the missing qualitative perspective (e.g., users’ motivations, goals, and thoughts). However,
self-reports can be cumbersome in the long run, as discussed in Section 7.4.3. Studies over
a longer period of time can for example reveal if users adopt a technique, how quickly they
familiarize with it, or if they use it under certain conditions (e.g., when they are in a hurry). As
distribution channels, application marketplaces can be used to reach a heterogeneous group
of users and to conduct “research in the large”. Advantages and pitfalls of this approach have
been discussed in Section 7.5.2 in this chapter.
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Chapter 8

Conclusion and Outlook

8.1 Summary of the Contributions

At the end of the dissertation, we give a summary of our main contributions in the individual
chapters. We also refer back to the (high-level) research questions (HRQs) formulated in the
introduction in Section 1.2.

In Chapter 2, we situated our work in the body of related research. By outlining the state of
the art in different application domains, we already showed the potential for improvements
through multimodal and sensor-driven interaction, and thereby partly answered HRQ1. We
also coined the term of MUSED interaction for our focus of interest in this work, and recom-
mend to use this term whenever the sensor-driven aspect of multimodality shall be empha-
sized.

Chapters 3–5 gave a thorough view of multimodality in practice. Due to the heterogeneous re-
quirements in different application domains, separate chapters are dedicated to three of these
domains, each investigating the individual systems in depth. For each domain, we show how
mobile interaction can benefit from multimodality (HRQ1). In each of these three chapters,
we also addressed potential challenges, addressing HRQ2. In Chapter 3, we investigated how
MUSED interaction supports users in daily health-related tasks. Therefore, we presented nat-
ural modalities for physical object interaction (touching, pointing, and scanning), which were
evaluated to be faster than traditional, text-based mobile interaction. We further investigated
how MUSED interaction can enable novel interaction in the context of personal fitness. To this
end, we developed with GymSkill a skill assessment system for physical exercising. We argue
(supported by questionnaire results) that by individualized feedback on how to improve in
an exercise, long-term motivation is fostered. The specialty of this approach is that the (mul-
timodal) interaction with GymSkill is contained in the training procedure with the fitness
device. Chapter 4 is dedicated to education. We here investigated how university employees
and students can benefit from MUSED interfaces in teaching and learning environments. We
proposed MobiDics, a context-based didactics support tool for docents; and depicted a holistic
scenario for students and lecturers with several systems that are the result of our research:
MobiDics, Ubiversity, and an interactive door sign. The presented lineup of systems showed
a variety of different interaction modalities and classes (e.g., public-private interaction). The
question how the challenges of visual indoor localization can be addressed by a MUSED user
interface is treated in Chapter 5. We here proposed a VR-based visualization which was eval-
uated to be superior to AR-only in navigation time and perceived accuracy. We also made
suggestions for a combination of both approaches to use the strengths of each of them for an

187



188 Chapter 8 Conclusion and Outlook

improved overall navigation experience. We further introduced special UI elements (feature
indicator, and object highlighting visualizations), and showed how they improve both the user
experience and add to increased system accuracy. The heterogeneity of employed input and
output modalities (summarized in Figure 1.3) of the presented systems illustrate the breadth
of a design space for multimodality. By providing concrete solutions for each of the chosen
exemplary domains, we answered HRQ3.

In the second part of the dissertation, we took a more abstract point of view, and focused
on the development process of MUSED systems, informed by the lessons learned from the
in-depth studies in Chapters 3–5.

Chapter 6 investigated two major aspects. First, how can the implementation of multimodal
systems be simplified? Second, how can users be supported in adapting the multimodal be-
havior of mobile systems to their needs, and how can awareness on currently active modali-
ties be achieved? Relating to the first question, we proposed an extensive software framework
(M3I) to leverage the creation of multimodal applications for developers, and presented ex-
amples that demonstrate the feature space and capability of M3I for rapid prototyping of
multimodal interaction (answering HRQ5). Addressing the second question, we decided for
a rule-based system as solution for easy-to configure, system-wide, user-level multimodal-
ity support (informed by a focus group and literature analysis). Based on laboratory and
field studies, we made recommendations how the rule creation process should be designed
(e.g., situation- versus modality-oriented), and how awareness on modality changes can be
increased (here, notifications turned out as best compromise between obtrusiveness and con-
trol). With this contribution, we answered HRQ4. Chapter 6 treated problems and challenges
of MUSED interaction on a system level, and thereby also addressed HRQ2 in a more holistic
way than the application-specific chapters.

Finally, in Chapter 7, we investigated appropriate evaluation methods based on the charac-
teristics of MUSED systems. The major contribution of this chapter is an evaluation scheme
for multimodal systems, based on our research experiences. Thus, together with Chapter 6,
this chapter answers HRQ6. We promote WOz for laboratory studies and give recommen-
dations how to design long-term experiments in the field. We also compared the accuracy
of logging and self-reporting. Further, we discussed research in the large using application
marketplaces.

Our research illuminated multimodal systems in all of the three dimensions introduced in
Chapter 1.2 and visualized in Figure 1.1. The interaction dimension was examined in Chapter
6, where both novel multimodal input methods and output modalities were proposed, dis-
cussed, and evaluated. The abstraction dimension manifests in the difference between the
first and the second part of the dissertation. While Chapters 3–5 provide insights to spe-
cific research fields, Chapters 6 and 7 discuss the design, implementation and evaluation of
multimodal systems on a general level. The perspective dimension is represented in Chap-
ter 6, where we support both the developer’s view with our M3I framework, as well as the
end user’s view with an investigation of modality awareness visualizations and rule creation
approaches.
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8.2 Outlook and Future Research

Besides the profound contributions of this dissertation (see Section 8.1) which have been
published on renowned conferences and in distinguished journals, there are aspects we could
not look at in detail in the scope of this work. These open up several possible directions for
future research.

Follow-Up Research Projects

The individual projects we have presented from different application areas in Chapters 3–5
served as examples for the potential for MUSED interaction. There are, however, manifold
possibilities to refine and extend these approaches, and we have outlined some of them at the
end of the individual chapters. For several of these projects, research was still continued at
our research institution within cooperations (e.g., in case of MobiDics), research projects, or
spin-offs (e.g., in case of indoor navigation). The ideas, concepts, and scientific results of this
dissertation contribute to this future work.

Adoption of M3I

Besides our recommendations and lessons learned, we have introduced the M3I framework
for mobile and multimodal interaction. M3I already supports a range of context factors and
triggers, but its functionality is yet to be extended, also with regard to future mobile operating
system versions that provide new APIs and possibilities. We hope that the framework is
adopted and further extended by the community, which is simplified by its open and modular
architecture.

Novel Application Areas for Mobile Multimodality

There are several current trends of mobile interaction that are potential candidates for
MUSED interaction. This includes the “Quantified Self” movement (which we have partly
already addressed in Chapter 3), but also the emerging field of wearable computing, such as
wearable fitness devices, smartwatches, and smartglasses. In concordance with Mark Weiser,
who shaped the famous quote “The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until they are indistinguishable from
it” [342], such devices do not use traditional forms of interaction any more. They will neces-
sarily be accompanied by novel interaction modalities.

However, we argue that mobile devices – particularly smartphones and tablets – as we know
them now, will remain the center of mobile interaction in a mid-term perspective. Smart-
watches or HMDs are not intended to replace, but complement smartphones, taking over
individual functions they can handle better than the phone itself. As such, smartphones serve
as hub to which other “smart” devices are (wirelessly) connected. This is somewhat similar to
the “digital hub” principle of desktop computers for music players, digital cameras, and other
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peripheral devices before the emergence of cloud services101. Therefore, we believe that the
findings on MUSED systems presented in this thesis will remain relevant in the future, but
they will have to be extended, e.g., in the direction of between-device interaction.

Other Perspectives of MUSED Interaction

This dissertation intentionally focused on an HCI perspective of multimodal interaction. Fu-
ture work could investigate other perspectives, such as a computer science, machine learning,
or software engineering perspective. From the low-level point of view, e.g., context detection
and classification, as well as estimating the user’s intention could be investigated. In terms
of software engineering, the impact of multimodal interaction on organization and modeling
can be researched, e.g., regarding testing, maintenance, but also (agile) project management
and user-centered design, but this is beyond the focus of this work.

Social Implications

Another future research direction is the social dimension of novel interaction modalities, such
as the impact of social settings on modalities. For example, not all device gestures are equally
accepted in public spaces [2]. We already have dealt briefly with privacy in Chapter 6, where
we discussed usage data collection as requirement for proactive modality switching, and in
Chapter 5, where visual indoor navigation could be misinterpreted as video-recording other
people. Future work could investigate in depth how MUSED interaction is related to privacy.
With the advent of HMDs, this topic will become even more of interest for research as, e.g.,
wearers of Google Glass have been attacked in public102.

8.3 Concluding Remarks

We sincerely hope that the contribution made by this dissertation will help and inspire future
research in the domain of multimodal and sensor-driven interaction. We believe that MUSED
interaction, as described and investigated here, will increasingly gain importance and preva-
lence. The insights, lessons learned, recommendations, and practical tools provided by this
work shall contribute to a better user experience with MUSED systems from an HCI point of
view.

The research tools presented in this work are shared with the community and offered for
download. M3I is available at http://www.eislab.net/m3i. SERENA is available at
http://www.eislab.net/serena. GymSkill and VMI Mensa can be downloaded from
Google Play67,74.

101http://www.forbes.com/sites/briancaulfield/2011/06/03/a-decade-after-
steve-jobs-introduced-the-digital-hub-icloud-will-let-apple-kill-your-pc/,
accessed July 4, 2014

102http://mashable.com/2014/04/13/google-glass-wearer-attacked/,
accessed August 5, 2014
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http://www.forbes.com/sites/briancaulfield/2011/06/03/a-decade-after-steve-jobs-introduced-the-digital-hub-icloud-will-let-apple-kill-your-pc/
http://mashable.com/2014/04/13/google-glass-wearer-attacked/
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