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Abstract
This thesis aims to extend ”facility location - allocation” problems in three directions.
Multiple products are considered, a second echelon of distribution centers is added,
and the non-linear inventory costs are included in objective function. Solving such
problems with linear optimization techniques proves to be too computationally expen-
sive. Therefore, a heuristic approach, based on genetic algorithms, will be developed.
In the heuristic approach a large number of non-linear flow problems are solved, for
which a simple and efficient algorithm will be formulated. Using this heuristic, large
real world problems can be solved in relatively short time.

Zusammenfassung
In dieser Thesis wird das bekannte ”Facility Location - Allocation” Problem in drei
Richtungen erweitert. Mehrere Produkte werden betrachtet, eine zweite Lagerstufe
wird hinzugefügt und nicht-lineare Bestandskosten werden zur Zielfunktion hinzugefügt.
Die Lösung eines solchen Problems mit Hilfe von Methoden der linearen Optimierung
benötigt zu viel Rechenzeit. Deswegen wird eine Heuristik in Form eines genetischen
Algorithmus entwickelt. Die Heuristik muss hierbei eine große Anzahl nicht-linearer
Flussprobleme lösen, für die ein einfacher und effizienter Algorithmus formuliert wird.
Mit dieser Heuristik konnten große reale Probleme in relativ kurzer Zeit gelöst werden.
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Chapter 1

Introduction

Deciding on the location of facilities to provide optimal service has been a problem for
a long time. [LMW88] write that in most American cities, fire stations were located
approximately 20 blocks apart, because it had been observed, that ”horses pulling a
fire wagon ... can run no farther than ten city blocks”.

In the current business environment customers demand ever shorter lead times and
a very high service level. In business-to-business relationships the higher requirements
are an outcome of the introduction of just-in-time production. In business-to-customer
interactions the very good service level of companies such as Amazon has created
an expectation among customers, that products should arrive the next day. To keep
customers and create growth, businesses must adapt to these requirements and find
ways to meet them. Thus, the main task of supply chain management is to enable a
company to reliably and quickly deliver the products to the customers who want them
at a low cost.

The term ”Supply Chain Management” was coined by Keith Oliver, a consultant from
Booz Hamiltion, in an 1982 interview with the Financial Times ([Krane]). According
to [TG96] the term Supply Chain Management describes ”the management of material
and information flows both in and between facilities such as vendors, manufacturing
and assembly plants and distribution centers”.

In the literature, e.g. [Ste89], a distinction is frequently made between three levels of
planning and operation, which are the strategic, the tactical and the operational level.

• On the strategic level long term decisions are taken with a time horizon of several
years. According to [SLKSL04] ”the strategic level deals with decisions that have
a long-lasting effect on the firm. These include decisions regarding the number,
location and capacities of warehouses and manufacturing plants, or the flow of
material through the logistics network”.

• The tactical level deals with questions about how to conduct business within the
strategic framework. ”It involves translating the strategic objectives and policies
into complementary goals and objectives for each function to provide balance
to the supply chain. The functional goals provide the drivers for achieving the
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Chapter 1 Introduction

balance and inventory, capacity and service are the levers by which balance is
achieved.” [Ste89]

• The operational level, according to [Ste89], ”is concerned with the efficient
operation of the supply chain” and mainly deals with short term decisions.

Strategic decisions in the realm of supply chain management often touch the design
of the supply chain. During the process of Supply Chain Design decision makers
”determine the location, size and optimal numbers of suppliers, plants and distributors
to be used in the network” according to [SR02]. They say that on the strategic level
Supply Chain Design deals with ”determining the nodes and arcs of the SCN1 and
their relationships”. Supply chain design ”is critical, strategic and inherently complex”
according to [MND14]

The goal of supply chain design processes is to find an optimal solution considering
the necessary trade-offs between

• Low cost

• High customer service

• High responsiveness to changes in the environment

• High robustness in case of interruptions

In unstable regions with dynamic growth businesses value a supply chain which can
quickly adjust to interruptions or fast-growing demands. However, since most supply
chain design projects focus on stable regions like Western Europe and North America,
the key differentiating factors are cost and customer service.
Due to the increasing service requirements and cost pressure, many companies face

the challenge of designing an adequate network to distribute their products from their
plants to their customers. Procuring all raw materials required for the production of a
product and going through all production steps takes time. Consequently, for most
products it is impossible to start production only after a customer order has been
received. This means, that production plans must rely on forecasts. The quantities
cannot be shipped directly to the customers, because they may not have ordered the
product yet.
Furthermore, it is unknown, if and when a customer will order a certain product,

because customer demand is stochastic and fluctuates over time. Thus, the produced
quantity must be accessible for a wide set of customers, who could ask for the product.
The inflexible production and the unpredictable demands make it necessary that

companies operate distribution centers at which they store their finished products. Most

1Supply Chain Network
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of the times a customer orders a product, he receives it from one of these distribution
centers.
Since the fix cost of a distribution center is rather high, companies avoid operating

too many. However, the fewer distribution centers a company operates, the larger the
distances to their customers becomes. The customers then have to wait for a long time
until they receive their products. Furthermore, small individual shipments are more
expensive than larger ones. Sending 30 individual parcels from Germany to customers
in the Madrid area is more expensive than sending one truck to a hub location in
Madrid and having the parcels delivered from there.
As described in the last paragraphs, several factors, such as the operating costs

and inventory reduction, push for fewer distribution centers and more centralization.
On the other hand, transportation costs and the service level are drivers for a less
centralized structure and more distribution centers. A middle ground must be found
when deciding where to locate distribution centers.

In figure 1.1 two different fictitious network configurations are depicted. In 1.1a a
very centralized scenario with one central distribution center and three regional ones
is presented. This stands in stark contrast with 1.1b where ten regional distribution
centers are distributed across Europe. Blue pyramids indicate factory locations, the
red pyramid indicates the location of the central distribution center (CDC) and the
green balls represent the regional distribution centers (RDC). Countries with higher
sales volume are shaded in a darker blue.
When deciding on the network structure several key questions must be answered.

• Should a central distribution center supply the regional distribution centers or
should the RDCs receive everything directly from the factories?

• How many regional distribution centers should be opened and where?

• Which products should be stored at the regional distribution centers and which
should be stored centrally?

• Which distribution center should supply a customer and can it supply him in an
acceptable time?

Being able to find good answers to these questions allows companies to provide good
service to their customers at a low cost and compete in demanding environments. The
goal of this thesis is to develop a method to find these answers.
The remainder of this thesis is structured in the following way. In chapter 2 an

overview of the development of facility location problems and of recent research results
will be provided. Chapter 3 will describe the theory behind inventory analysis. The
prerequisites and assumptions for the model will be detailed in chapter 4 and the
mathematical model will be formulated in chapter 5. Chapter 6 will outline the general
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(a) Central network with one central dis-
tribution center (CDC) and three re-
gional distribution centers (RDC)

(b) Regional network with no CDC and
ten RDCs

Figure 1.1: Blue pyramids represent factories, red pyramid indicates the central distribution
center and green balls stand for regional distribution center

solution method, comprised of an evolutionary part and an approach to solve the
resulting non-linear flow problems. The evolutionary aspect of the algorithm will be
described in chapter 7 and the solution of the flow problems will be discussed in chapter
8. In chapter 9 the computational results will be presented and discussed. Finally,
a conclusion of the work will be derived and future research questions formulated in
chapter 10.
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Chapter 2

Literature review

A vast amount of literature has been written about facility location problems. Recently
extensions of the traditional facility location - allocation problem have been formulated
tackling the integration of tactical aspects like production, sourcing and inventory and
operational aspects like routing alongside the strategic decision about the location of
warehouses and distribution centers. Surveys about the incorporation of such aspects
into the literature have been written by [BAF12], [KD05], [MNG09], [ŞS07] and [She07].

In the next section an overview of the basic facility location models will be provided
and some of the early solution approaches will be presented. In section 2.2 multi-echelon
facility location problems will be discussed and a classification for such problems will
be reviewed. Finally, in section 2.3 the relatively recent incorporation of inventory
costs into the facility location problem will be studied.

2.1 First approaches to facility location problems

The facility location problem (FLP) was introduced by [WP09] in the early 20th century.
They describe the problem of placing one warehouse in the 2-dimensional plane with
customers located across the plane. The objective was to find a warehouse location
x ∈ R2 so as to minimize the total distance from the warehouse to n customers located
at points xi ∈ R2 with i ∈ {1, 2, ..., n}. Weber assumed that the warehouse could be
located anywhere in the plane. The resulting problem can be formulated as

min
x

N∑
i=1

d(x, xi), s.t. x ∈ R2 (2.1)

This problem is commonly referred to as the Steiner-Weber problem. However, the
first time such a problem was formulated was as early as 1638, when René Descartes
posed it to Pierre de Fermat according to [Enc]. A geometric solution for the special
case of a triangle was found a few years later by Torricelli. For cases with more than
n ≥ 5 points there exists no exact algorithm [Baj88].
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The first iterative algorithm to solve the Steiner-Weber problem was published in
1937 by [End37] in an article called ”Sur le point pour lequel la somme des distances n
donnes est minimum” in the Japanese ”Tohoku Mathematical Journal”. However, as
[Vaz02]2 mentions in his autobiographical book ”Which door has the Cadillac” he was
only interested in proving a theorem.

Here was a theorem to prove: Does the process converge? Yes it does!
And that was what the Tohoku article was about.

He even admits that at the time ”the word algorithm was unknown to [him] and most
mathematicians”. Since the algorithm was published in French in a Japanese journal
and appeared to be of little relevance, it was quickly forgotten. In the late 50s and
early 60s it was independently rediscovered by [Mie58] and [KK62].

Limitations in Weber’s model led to extensions of the problem. In realistic scenarios
not all locations on the map are suitable for a warehouse. Reasons could be an extremely
high price of land, e.g. a location in the center of an expensive metropolitan area, or
a lack of transportation options, because the chosen location lies in a remote area.
Therefore it is advisable to use the detailed expert knowledge of supply chain designers
about existing transportation infrastructure. Almost all logistics service providers have
their main European hubs in the same regions. From these regions it is possible to send
products in a very short time to many locations. For example, Amazon has selected
Leipzig as a distribution center, because their logistics service provider, DHL, has a
large hub there. The same is true for their distribution centers located in Graben,
Bavaria, and Rheinberg, North Rhine-Westphalia ([Ama]).
Moreover, companies do not only operate one warehouse and supply all their cus-

tomers from there. Rather, they use multiple facilities to ensure the satisfaction of
lead time requirements and to manage the risk of disruptions. While Steiner-Weber
problems have been extended to allow the selection of multiple locations, the focus of
research on facility location problems has shifted towards discrete problems.
In discrete facility location problems two strongly related questions are answered

simultaneously.

a) Which warehouses, out of a subset of potential warehouses, should be opened?

b) From which warehouse should customers receive their products?

The objective of the discrete facility location problem is to minimize the sum of the
warehouse costs and the transportation costs. An example of such a set of locations
can be seen in figure 2.1. Five major German cities are represented as nodes in the
graph. In discrete facility location problems a subset of the nodes is selected and at
these locations warehouses are opened.

2Endre Weiszfeld later in life changed his name to Andrew Vaszonyi
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HH

BER

FFM

STU

MUC

Figure 2.1: Network containing 5 nodes which represent customer cities. Warehouse should
be located at one of the nodes

In their seminal works [Coo63] and Hakimi [Hak64], [Hak65] introduced the concept
of graphs to facility location problems. Hakimi studied the problem of selecting nodes
in a graph to act as switching centers in communication networks or as police stations
in a location model. They formulated the following problem.
Define a set of customers C with demand di, ∀i ∈ C, a set of warehouses W with

opening cost wj , j ∈W and a unit transportation cost cji between a warehouse location
j ∈W and a customer i ∈ C. Let the binary decision variable xj = 1 if location j is
opened and let yji the flow along the edge from j to i. Assume M sufficiently large, i.e.
M ≥

∑
i∈C

di.

min z =
∑
j∈W

(xjwj +
∑
i∈C

yjicji) (2.2a)

subject to ∑
j∈W

yji ≥di ∀i ∈ C (2.2b)

∑
i∈C

yji ≤Mxj ∀j ∈W (2.2c)

xj ∈{0, 1} ∀j ∈W (2.2d)
yji ≥0 ∀j ∈W, ∀i ∈ C (2.2e)

This problem is called the Uncapacitated Facility Location Problem (UFLP), because
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the warehouses do not have a maximum capacity. Replacing M with a maximum
capacity value Mj <

∑
i∈C di means that some warehouses do not have sufficient

capacity to satisfy all demands. The resulting problem was called the Capacitated
Facility Location Problem (CFLP) by [Sri95].

2.2 Multi-echelon models
The facility location problems described in the previous section consider only trans-
portation from the distribution centers to the customers. As there is only one level of
distribution centers, the network is called a single-echelon network. Such an approach
excludes transportation costs from the plants to the distribution centers. It also does
not model the frequent network setup in which a large central distribution center sup-
plies smaller regional distribution centers. A network with only two levels, distribution
centers and customers, is called a single-echelon network and one with more than two
is called a multi-echelon network. [ŞS07] state that ”hierarchical systems are complex
systems where an effective coordination of services provided at different levels requires
integration in the spatial organization of facilities”.

A precise nomenclature for multi-echelon networks is provided by [ŞS07]. They call
a network a k-echelon network if it contains k levels of facilities, for which opening
and closing decisions are made. According to this definition, the customers are on
level 0. The customer locations are exempt from the opening and closing decisions.
The lowest level of facilities inside the decision scope of the model are those on level 1.
Consequently, the locations on the highest level are on level k.

Multi-echelon systems appear frequently in other areas such as health care ([RS00]),
education and waste management ([BDS98]). To illustrate the applicability of multi-
echelon networks, the situation in a typical health care system is considered. A patient
initially goes to see his doctor, whose office is close to the patient’s home. Since many
medical devices are not available at the doctor’s office, the patient must go to the
hospital for procedures involving such devices. If the patient’s disease is very rare he
must go to one of just a few specialized clinics, because equipment and capable doctors
to treat it are only available there. In the example the doctors would be on level one,
the hospitals on level two and the specialized clinics on level three.

Multi-echelon facility location problems can be classified according to four character-
istics introduced by [ŞS07].

• Flow patterns
A supply chain model is said to be single-flow, if products can only be shipped
to locations on the next lower level. If shipments can be made to a location on
a level below that, then the model is a multi-flow model. As an example of a
multi-flow model imagine a central warehouse, which replenishes the regional
distribution centers and simultaneously acts as a regional one, shipping directly
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to customers in the vicinity of the warehouse. In a single-flow model all goods
must flow from the central warehouse to the regional one and can only be sent to
the customer from there.

• Service varieties
”In a nested hierarchy, a higher-level facility provides all the services provided by
a lower level facility and at least one additional service. In a non-nested hierarchy,
facilities at each level offer different services” ([ŞS07]). Thus, a system, in which
customers could source from any distribution center or directly from a factory, is
a nested system. According to this definition the health care example is a nested
network.

• Spatial characteristics
”In a coherent system all demand sites that are assigned to a particular lower-level
facility are assigned to one and the same higher-level facility” ([ŞS07]). Thus,
in a coherent system, if customers A and B place their orders at warehouse W ,
then W receives the quantities necessary to satisfy these orders from exactly one
factory F . In an incoherent system W receives the quantities it ships to A from
a factory F1 and the quantities it ships to B from factory F2.

• Objective
The first distinction, which can be made, is whether a model has a single objective
function or multiple ones. For the more frequent case of a single objective function
several approaches have been presented in the literature. The three most frequent
ones are the median, coverage and fixed charge objective functions. In a model
with a median objective function the aim is to minimize the total transportation
costs. An example of such a model is the Steiner-Weber model. In a coverage
model the goal is ”to minimize the total number of facilities needed for covering
all customers”. A fixed charge model aims at minimizing the total network cost,
including transportation and facility costs under the constraint of satisfying all
demands. In a survey of the literature on facility location problems published in
2009 [MNG09] examined, which type of objective function was most frequently
used. They found that 75% of the studied papers consider only cost, 16% consider
profit and 9% deal with multi-objective problems. These multi-objective problems
can include service considerations, which have risen in importance due to more
demanding customer requirements.

2.3 Models with inventory integration
The three key elements of a supply chain are locations, transportation and inventories
and according to [OCD08] they are ”highly related”. Consequently, a holistic approach
to Supply Chain Network Design should consider all three elements.

9
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However, inventory considerations had long been excluded from supply chain design
problems. A major reason is that inventory levels are non-linear in the quantity flowing
through a location. The higher the throughput of a product at a location, the lower
the ratio of inventory to throughput. A more detailed discussion of the theory behind
inventory levels will be provided in chapter 3.

Inventory considerations were, for the first time, included in the analysis of a facility
location problem by [EM00] in their paper ”The interaction of location and inventory
in designing distribution systems”. They considered continuous demand over a square
grid.

Further developments were driven by [SCD03], [MSQ07], [OCD08] and [STS05]. The
model studied in these papers was motivated by the problem of storage of donated
blood platelets. A central supplier provided the platelets for a large group of hospitals.
At each individual hospital the demand for blood platelets fluctuates significantly. This
mandates large safety stocks to guarantee a high service level. Due to the short shelf
life of five days, either a lot of blood platelets had to be thrown away on a frequent
basis, if they had not been needed, or the blood had to be procured via express delivery
at higher cost and with significant delays. The combination of expensive platelets
and a high rate of obsolescence resulted in elevated inventory costs. To guarantee a
good service level at low cost the idea was formulated to make some hospitals act as
local distribution centers. At these distribution center locations sufficient quantities of
platelets should be stored for the hospitals in their vicinity. Whenever a hospital needs
platelets, then the distribution center can supply them quickly.

Due to the risk pooling effects of centralized inventory and the shorter lead times, the
system wide safety stocks required to guarantee a high service level fell substantially.
In addition, the frequency of express shipments from the manufacturing location also
decreased, because a larger amount was available at a nearby location.
Various algorithms have been proposed to solve the described problem. [SCD03]

used a set-covering algorithm, whereas [OCD08] applied Lagrangean relaxation.
Finding optimal solutions for facility location problems with inventory is hard, due to

the introduction of non-linear terms. This has lead researchers to study heuristics for the
problem. Two heuristic approaches, Tabu search and particle swarm optimization were
used by [CG+12]. Their work considers fixed location costs as well as transportation,
inventory and order costs. They place a stochastic constraint on the capacity of the
warehouses. However, they consider only a single product.

Genetic algorithms have also been used to solve facility location models in forward
logistics ([ABX14] and [Tiw+10]) and reverse logistics ([MJKSK06]).
Both [ABX14] and [Tiw+10] have included multiple products and direct shipping,

allowing factories to send products directly to customers. Moreover, [Tiw+10] included
non-linear transportation costs to model economies of scale and described a multi-
echelon network. Their algorithm incorporates elements of Taguchi Method and
Artificial Immune Systems. While safety stocks do not play a role in reverse logistics,
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[MJKSK06] looks at the average inventory in the system which depends on the non-
linear time between collections.
In the next chapter, the theoretical background behind inventory management and

the calculation of adequate stock levels will be presented.
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Chapter 3

Inventory theory

For several years companies have tried to reduce their inventory levels in order to
free up capital and reduce the costs incurred for holding inventory. [CBL96] state
that a large element of those inventory carrying costs are capital costs. They can
be understood as interest or opportunity costs. Variable costs for storage space and
insurance also are an element of inventory carrying costs, as are ”risk costs” such as
product obsolescence and declines in value.
However, as [CBL96] observe, carrying physical distribution inventories has several

benefits. Inventory allows savings in production and transportation due to economies
of scale. Moreover, it allows companies to guarantee better service to their customers
and to balance seasonal demand peaks by producing goods ahead of time.

In the next section the motivation for including inventory considerations in the model
will be discussed. An overview of the different approaches to calculate stock levels will
be given in section 3.2. Finally, these results will be summarized and the formulation
used for the remainder of this paper will be presented in section 3.3.

3.1 Motivation of inventory consideration
As shown in section 2.3, inventory had first been integrated into facility location
problems in the early 2000s, by [SCD03] and others. Inventory introduces a new driver
towards fewer distribution centers, because inventory costs decrease, as more customers
are pooled together. Consider n independent3 random variables Xi with E(Xi) ≥ 0,
which represent demand at location i. Let random variable Y = X1 + ...+Xn be the
sum of all demands. The standard deviation σ and the expected demand µ of the

3Inventory reduction due to pooling can also be observed, if the random demands are weakly
correlated
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random variable Y are given by

σ =

√√√√ n∑
i=1

V ar(Xi)

µ =
n∑
i=1

E(Xi)

The coefficient of variation of the pooled demand σ
µ tends to decrease, as the number

of aggregated locations n increases.
The impact of this will be explained using the newsboy model. In this model a

vendor has to decide how many newspapers to order for the following day. Assume
a population of n = 10 people. For each person i the binary independent random
variable Xi = 1 if the person buys a newspaper on a day and Xi = 0 if not. We have
P (Xi = 1) = 2

3 . Let Yk be the sum of k random variables. The cost of not having sold
a newspaper co = p is equal to the purchasing price p. In contrast, the cost of not being
able to satisfy a demand cu = s− p is the difference between the sales price s and the
purchasing price p. It is the lost profit which the newsboy could have realized, had he
had another newspaper available. Let us now compare two distinct setups. In the first
setup two newsboys Tom and Jerry work independently. Tom sells to persons 1 to 5
and Jerry sells to persons 6 to 10. They both have the same cost structure with co = 1
and cu = 2.5. Since the random variables are independent and identically distributed
the total cost Z(S) given an order quantity S and random demand Yk with k = 5 is

Z(S) = co

S∑
n=1

(S − n)P (Yk = n) + cu

∞∑
n=S

(n− S)P (Yk = n)

In the following table one can see that costs of each newsboy are minimal, if he
purchases S = 4 newspapers. He would then incur a cost of 1.13. Consequently, the
combined cost of both newsboys is 2 · 1.13 = 2.26.

Order quantity S Overage cost co Underage cost cu Total cost
0 0 8.33 8.33
1 0 5.84 5.84
2 0.04 3.57 3.61
3 0.26 1.48 1.74
4 0.80 0.33 1.13
5 1.67 0 1.67

Compare this with the case in which Tom and Jerry pool their demands. Using the
same analysis as in the previous table, but with k = 10, the optimal combined order

14
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quantity remains at S = 8. But, due to the demand pooling, the total cost incurred
decreases by 22% from 2.26 to 1.76. The reason for this improvement lies in the fact
that sometimes, when all 5 of Tom’s customers want to buy a newspaper, only 3 or less
of Jerry’s customers will want to buy one. In this case Jerry would have one newspaper
left, which he could loan out to Tom, and it is more likely that all S = 8 newspapers
are sold on a given day and less likely that a demand has not been satisfied.

According to [Coy09], ”inventory carrying costs are on average 33% of total logistics
costs for organizations”. As a result, the drastic cost saving potential of pooled demands
ought to be included in a holistic strategic supply chain study.

3.2 Different approaches to inventory calculation
Multiple approaches to inventory management exist. Frequently, a distinction is drawn
between pull and push policies. [Bow13] notes that pull policies ”use customer demand
to pull product through the distribution channel”, while push policies use ”a planning
approach that proactively allocates or deploys inventory on the basis of forecasted
demand and product availability”.

Forecasting relies on statistical methods. Incorporating such methods into a facility
location problem is not suitable, because of the added complexity. Since facility location
problems use a priori demand estimations, a pull policy will be employed. Within pull
policies one distinguishes between continuous and periodic review policies. Continuous
review policies track the inventory level at any moment. [Bow13] contrast this with
periodic review policies, under which a statement about the inventory level can only be
made at the beginning and the end of a review period. For example at the end of the
week. A pull policy requires a rule, which dictates, when an item should be replenished
and how many units should be ordered. A new order is placed whenever the onhand
stock drops below a defined quantity, the reorder point. At this time a policy specific
quantity, the reorder quantity, is ordered.
[Tho06] states that the continuous review model is more complex than a periodic

review model, because reorder point and reorder quantity are optimized simultaneously.
In order to reduce complexity with regards to inventory, a periodic review policy will
be used in the remainder of this thesis.

In inventory theory two types of stock, cycle stock and safety stock, are distinguished
according to [Tho06].

3.2.1 Cycle stock
Cycle stock is the part of the inventory which covers the expected demand during the
review period. In the cycle stock calculation a fixed average demand per review period
is assumed. The typical inventory pattern underlying the cycle stocks can be seen in
figure 3.1.
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Figure 3.1: Order is triggered any time the inventory falls below the reorder point denoted
by the red line. The inventory arrives after the defined lead time.

For ease of notation and due to practical applicability the review period is assumed
to be one week. Cycle stock depends on the average weekly demand µ. Given a
reorder interval ri, a company orders a quantity Q = ri · µ every ri weeks. Assuming
deterministic demand and allowing partial units, the onhand inventory i(t) at a time
t ∈ [0, ri] is i(t) = Q− tµ. On average the cycle stock level during the reorder interval
is CS = µ·ri

2 .
The cycle stock depends linearly on the demand and on the actual reorder interval.

However, the reorder interval is not necessarily a constant. Frequently, a desired value
for the reorder interval cannot be met, because the supplier demands a Minimum
Order Quantity MOQ. It can happen, that the demand during the reorder interval
ri · µ is lower than the minimum order quantity. In this case the order interval must
be prolonged, because otherwise large amounts of inventory would accumulate in the
warehouse. Thus, the reorder interval must be at least ri ≥ MOQ

µ . Consequently, the
cycle stock held at a location is equal to

CS = µ

2 max{ri, MOQ

µ
}

= 1
2 max{ri · µ, MOQ} (3.1)

3.2.2 Safety stock
While cycle stock covers the anticipated regular demands, safety stock on the other
hand is kept to deal with unpredictable demand fluctuations. Since companies want to
guarantee their customers a high service level, they keep safety stock to guard against
above average demand and the resulting stock outs. The service level can be defined
as the percentage of demand satisfied. However, this definition is not a precise one and
allows for various interpretations. Two of the most common interpretations of service
level are
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• α - Service Level representing the probability of being able to fill all customer
demands in full during a review period.

α = P (demand during lead time ≤ onhand inventory at start of period)

• β - Service Level describing the expected percentage of demanded units, which
can be supplied without delay. When X is a random variable describing the
expected backorders at the end of an interval and µ the expected demand during
the interval.

β = 1− E[X]
µ

Very rarely the γ - service level is used. It takes into account the percentage of
demanded units which are supplied with a delay while simultaneously measuring the
length of the delay. It is not used frequently, because estimating the length of the delay
is not a trivial endeavor.

Since the calculation of the β - service level under a periodic review policy is difficult
according to [Tho06], the α - service level will be used. A target stock level is defined
which should only be touched when demand is higher than expected during the reorder
interval. It is assumed that demand is normally distributed with variance σ2 during
the review period r. The lead time 4 lt in multiples of the review period r is known and
deterministic. Thus, the variance during review period and lead time σ2

lt+1 = σ2 (lt+1).
Given a service level α

SS = F−1(α) σlt+1

= z σlt+1 (3.2)

= z
√
σ2
√
lt+ 1

3.3 Conclusion
Due to the arguments in section 3.1 inventory will be considered in the model presented
in chapter 5. Both, cycle stock and safety stock, will include a non-linear element.
The non-linearity in the cycle stock is introduced by the maximum function. In the
safety stock formula the non-linearity stems from the two square root term.s The
safety stock non-linearity is more severe since the maximum function is linear once
Q = µ · ri ≥MOQ.
To summarize the results of the previous section, the inventory levels used in the

model will be based on a pull policy with periodic review. Cycle stock levels are given

4Lead time describes the time between placing an order and receiving the product
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by the equation
CS = 1

2 max{ri · µ, MOQ} (3.3)

For safety stock calculations the α service level is used with z = F−1(α). The formula
for the safety stock is given by

SS = z
√
σ2
√
lt+ 1 (3.4)
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Chapter 4

Problem description

This thesis attempts to answer the question how the distribution of a company’s
products to its customers can be organized in such a way, as to minimize costs while
simultaneously satisfying the customers’ service requirements. In real-life networks this
question is complicated, because of varying lead time requirements, a complex network
structure and distinct products manufactured at many different factories.

In section 4.1 the questions which the model shall answer are posed. Then, the
assumptions of the studied network and their implications on the optimization are
discussed in section 4.2. Finally, in section 4.3 the multi-echelon model is classified
according to the characteristics defined by [ŞS07]

4.1 Answers generated by the model

As seen in chapter 2, the facility location problem aims to select the optimal set of
locations at which to operate distribution centers and to find the optimal product
flows between them. This thesis extends the typical facility location problem in two
directions. On the one hand, two echelons of distribution centers are considered. This
means, that one distribution center can be chosen from a set of central distribution
centers. In addition, there is a larger set of regional distribution centers, from which a
subset is selected. On the other hand, a large set of distinct products is considered.
Considering multiple products adds complexity, since the paths of two products from
factory F to customer C can be different. While one product may be distributed from
factory F to customer C through the RDC, another product could be stored centrally
at the CDC and at the RDC.
Since production locations are highly inflexible, it will be assumed that produc-

tion locations are fixed. Moreover, average weekly demand and variance at each
customer are also known. The sets of potential CDC and RDC locations are also
given. All costs are linear with respect to their quantities. This includes inventory
costs, which are linear in the inventory held. The inventory non-linearities appear,
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because the onhand inventory is non-linear in the demand and variance at the locations.

The questions which this thesis attempts to answer are

1. Should there be only one level of distribution centers in the network, i.e. single-
echelon, or should there be an additional central distribution center, and thus a
two-echelon network?

2. If there is a central distribution center, where should it be located?

3. Which of the possible regional distribution center locations should be used?

4. How much of each product is sent from one location to another?

5. From where are customers supplied each product?

6. How high are product cycle stock and safety stock at each open location?

Questions 1 through 5 are strategic, as any decision taken in that regard is not easily
reversible. While decisions about inventory levels are frequently classified as tactical,
they still heavily influence the strategic decisions.

Now that the questions are posed, it is important to understand which assumptions
underlie the model.

4.2 Discussion of assumptions about the network
Networks are intrinsically complex and contain many customized elements, which
cannot be incorporated in a high level strategic model. Thus, in order to create a
solvable model, assumptions must be made about the locations, products, product
flows and cost elements.

Locations

Since the focus of the model shall be on the distribution of finished goods from factories
to customers, these two sets of locations must be represented in the model. The results
of the model only affect the intermediate distribution center levels directly. While there
are networks with more than two levels of distribution centers, they are relatively rare
and more complex. Therefore, only networks with two layers of distribution centers
can be tackled within the model. One of the critical decisions in supply chain design is,
whether a two-echelon network with a central distribution center and a few RDCs is
better than a single-echelon network with no CDC and many RDCs.
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Inventory at the factories is difficult to model, because detailed information about
production schedules and procurement processes is required to determine a lead time.
Therefore, the inventory at source locations is not considered. In summary, the following
assumptions with regard to the locations are formulated.

• There are 4 different sets of locations: Customers, regional distribution centers
(RDCs), central distribution centers (CDCs) and sources

• Factories and customers are fixed and cannot be changed

• Either one CDC is open or none

• Multiple RDCs can be open

• Inventory is only held at the RDC and CDC locations

Products

Most companies produce a wide variety of products, ranging from a handful of homo-
geneous ones in the case of, for example, Coca Cola, to more than a hundred thousand
distinct products with very heterogeneus properties produced by car companies. Many
companies produce each product at only one location.

For each product and each customer the demand fluctuates over time in a stochastic
manner. Demand, thus, can be understood as a random variable with an expected
weekly demand and a weekly variance. Using these two values, inventories can be
estimated according to the formulas discussed in chapter 3.

In summary, the following assumptions can be formulated with regard to the products.

• There are multiple products

• Each product is produced at exactly one source location

• Demand of each product at a customer location is stochastic with known weekly
demand and variance

Product flow

As established previously, all products are produced at a source location and consumed
at various customer location. Thus, any flow must start in a source location and end at
a customer location. No reverse flows, e.g. from an RDC to the CDC, or flows between
two locations on the same level, e.g. two RDCs, are allowed. While such flows can
occur in practical networks, they generally are not an expected part of of the regular
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setup. Most of the time such flows occur in order to cope with unexpected events, such
as high one-time demands. These events are beyond the scope of a strategic analysis
and are consequently not included.

Since the methodology lined out in this thesis is demand-riven, all customer demands
must be met. They can receive their goods from any location. Thus, if a customer
would be willing to wait for a very long time and would order a very large quantity,
he could receive the product directly from the factory. The more important case is,
that the CDC could effectively act as both, a central distribution center replenishing
the CDCs and simultaneously as a regional distribution center satisfying customer
demands.
Given that most customers order amounts of a similar order of magnitude, when

they order a product, they will receive a product from one location. While in reality
there may be exceptions, it is difficult to identify them and deal with them accurately
within the framework of a strategic model. Therefore, such cases are not included.

In summary the following assumptions hold about product flows.

• The path of every product flow must start at a source and end at a customer.

• All demands must be satisfied.

• The demand of a product at a location is satisfied by exactly one location.

• Product flow can only occur downstream, i.e. Source → CDC → RDC →
Customer. On this path the stops CDC and RDC can be omitted.

• As a corollary of the above statement, a customer’s demand can be satisfied by a
flow from any system location, i.e. source, CDC or RDC.

Cost calculation

The warehouse operating cost is a fixed charge which must be paid if a warehouse is
used. Variable handling costs at a distribution center are based on the number of lines,
which are handled at a distribution center. The handling costs are linear in the amount
of lines. Inventory costs are linear in the amount of inventory held. It is important to
note that the non-linearity of inventory costs is rooted in the fact that the amount of
inventory is non-linear in the demand and the variance. The non-linearities complicate
the problem in a substantial manner, but help to make it more precise.

The linearity of transportation costs is a more difficult assumption. In reality, costs
to ship a good from A to B are not linear in weight and distance, because economies of
scale influence the prices. But, for a route from A to B a good estimate for the average
shipment weight can be found. Based on this average it is possible to estimate a valid
per-kilogram price for this route, assuming that shipment quantity remains relatively
stable.
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In summary, the following assumptions hold about the calculation of costs.

• Transportation cost, warehouse operating cost, product handling cost and inven-
tory cost are all linear with respect to their cost driver

• Orders at a location must be larger than the minimum order quantity (MOQ)

• Inventory at a distribution center follows a non-linear function

• A periodic review inventory policy is used

4.3 Classification of the model
In the following the model is compared to other models, which have been presented in
the literature. This is done using the characteristics formulated by [ŞS07] to classify
multi-echelon facility location problems. According to these characteristics, which were
discussed in section 2.2, the problem can be classified as a coherent, nested, multi-flow
fixed-charge model.

• It is coherent, because any lower level facility will only be allowed to source a
specific product from one higher level location.

• Since locations on a level may ship to any location on a lower level, the model is
nested.

• Since direct shipments between two non-adjacent levels of the supply chain will be
allowed, it is a multi-flow problem. This means, that a factory can ship directly
to an RDC in its vicinity.

• A fixed charge model is one, in which the entire network costs are to be optimized.
This thesis attempts to include a large portion of the actual costs, including
penalties for not meeting a customer’s lead time requirements.
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Chapter 5

Mathematical modeling

In this chapter the mathematical model will be laid out. The goal of the model is to
describe a company’s distribution supply chain according to the assumptions laid out
in chapter 4. As a result of this chapter a mixed integer non-linear program will be
formulated describing a multi-echelon multi-product distribution supply chain including
inventory costs.

In the next section the input parameters will be defined. The cost elements included
in the objective function will be explained in section 5.2. Finally, the mixed integer
non-linear program will be formulated in section 5.3.

5.1 Definition of parameters and variables

In this section the input parameters will be defined. At first the sets used to describe
a distribution supply chain will be specified. In the following, the customer, system
location and relation parameters will be defined, before the product parameters will be
laid out.

5.1.1 Sets used to describe the network

The basic parts which make up a distribution network are locations, relations and
products. The different elements are referenced using the definitions below. There are
multiple sets of locations which appear in the network.

• N is the set of all locations

• D ⊂ N is the set of all customer demand locations

• S ⊂ N is the set of all source locations

• W ⊂ N is the set of all distribution center locations. In more detail the set WR

refers to all RDCs and WC refers to all CDCs.

• V = (W ∪ S) ⊂ N is the set of all system locations
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• For each node i ∈ N the set S−(i) is the set of all nodes j ∈ N with arc (j, i) ∈ E,
i.e. on a higher level

• For each node i ∈ N the set S+(i) is the set of all nodes j ∈ N with arc (i, j) ∈ E,
i.e. on a lower level

Based on the set of locations N we define the set of arcs and also the set of products

• E ⊂ N ×N is the set of all arcs (j, i) which are allowed to be used in the network

• P is the set of all products

• Pl is the set of all products produced at location l ∈ S

5.1.2 Customer input parameters
For each location i ∈ D and each product p ∈ P there are several input parameters.
These are information about demand quantity, variance and number of orders. The
demand quantities determine how much of each product flows through the network.
The variances influence the safety stock calculations and the number of orders impacts
the outbound handling costs at the distribution centers.

• µpi is the average weekly demand of product p ∈ P at customer location i ∈ D

• (σpi )2 the weekly variance of product p ∈ P at customer location i ∈ D

• τpi is the average weekly number of lines, i.e. how many times product p ∈ P is
ordered at customer location d ∈ D.

In addition, there is information about the customers’ required lead time. This
information can be either on a customer level or on a product - customer level. If a
customer lead time requirement is defined, then the weighted average of all products’
lead times is taken and compared to the requirement. If the lead time requirement is
formulated on the product - customer level, then the lead time of each individual item
is compared to its specific requirement.

• li is the time in which an order at location i ∈ N must on (weighted) average be
fulfilled.

• si is the lead time penalty costs for missing customer lead time requirement at
location i ∈ D by one week.

• lpi is the time in which an order of product p ∈ P at location i ∈ N must be
fulfilled.

• spi is the lead time penalty costs for missing customer lead time requirement of
product p ∈ P at location i ∈ D by one week.
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5.1.3 Input parameters for system locations

At the system locations there are two types of input parameters. On the one hand are
the costs, such as the annual operating cost, and on the other hand are parameters
describing non-monetary aspects of the location. These aspects include, for example,
minimum order quantities.

Cost elements at system locations

There are fixed costs at a system location which are incurred if the location is opened.
The variable costs at the location are incurred each time a product is received at a
location (inbound) or sent from a location (outbound).

• fwcj is the annual cost of opening and operating location j ∈ V

• vwcpj is the per unit cost of handling one line of product p ∈ P at location j ∈ V

Non-cost parameters at system locations

With regard to inventory there are additional parameters which must be provided
at the location level, such as the desired reorder interval of a product and the review
period.

• τpi is the average weekly number of lines, i.e. how many times product p ∈ P is
ordered at system location d ∈ V .

• RIpj is the desired reorder interval of product p ∈ P at location j ∈W .

• MOQpk is the minimum order quantity when ordering product p ∈ P from location
k ∈WC ∪ S.

• Qpj (µj) = max{RIj µj ,MOQk} is the actual order quantity of product p ∈ P at
location j ∈ W , when ordering from location k ∈ WC ∪ S. The order quantity
depends on the decision variable µj , which is the demand assigned to the location
j.

• rj is the review period at a location j ∈ W . It is the time between inventory
reviews. At these reviews an order is placed, if the on-hand inventory is below a
threshold. It impacts the amount of safety stock which must be kept.
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5.1.4 Input parameters for relations

Relations are a major cost driver and also heavily affect the lead time requirements.
The annual transportation cost from a system location to a customer can be calculated
a priori, because the quantity and frequency are known. This is not possible for
relations between two system locations, for which a per unit cost must be calculated.
The replenishment lead time between two locations can be computed for any pair of
locations and consists of the transportation time and the time required to prepare the
product for shipping.

• cpji denotes the transportation cost of supplying the entire demand of product
p ∈ P at a customer i ∈ D from a system location j ∈ V .

• cpkj denotes the transportation cost of sending one unit of product p ∈ P from
one system location k ∈ V to another system location j ∈ V .

• rltji is the replenishment lead time of sending a product from location j ∈ V to
another location i ∈ N .

5.1.5 Input parameters at product level

Each product has a distinct inventory holding cost. Frequently inventory holding cost
is given as a percentage of product cost and thus a product’s actual inventory holding
cost ihcp is the product of that percentage and the product cost. In addition, the
required service level αp of products can be different. Therefore, the variable z in
equation 3.4 must be replaced by a product specific variable zp = F−1(αp).

• ihcp is the annual inventory holding cost of an item p ∈ P

• zp is the inverse of the standard normal function for a product p ∈ P with service
level αp.

5.2 Objective Function

The objective function represents the total cost of the distribution network TNC. The
total network cost is the sum of transportation costs TC, inventory costs IC, warehouse
operating costs WC and penalty costs PC. The goal is to minimize the Total Network
Costs

TNC = TC + IC + TWC + PC (5.1)
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5.2.1 Transportation Cost

Transportation costs can be split into two parts. The customers must be supplied and
their demands, both in quantity and in frequency, are independent of the locations of
the distribution centers. Thus, it is possible to determine the hypothetical costs to
supply a customer from any location a priori. The quantities between own locations,
on the other hand, are not known, because they depend on the assignment of customer
demands. Therefore, these two types of transportation cost, the cost to ship to customer
locations TCCustomer and the cost to ship to own locations TCSystem, are determined
independently.

TC = TCCustomer + TCSystem (5.2)

Transportation Cost to customers

For the shipments to customers an estimate of the total annual cost of supplying them
with a product can be found, because the annual quantity µ̄pi and the number of lines
from a source j ∈ V to a customer i ∈ D are known. This allows the calculation of
annual transportation costs to supply all customers.

TCCustomer =
∑
p∈P

∑
i∈D,j∈V

ypjic
p
ji (5.3)

Transportation Cost in the system

For the transportation cost in the system it is assumed that shipments to the distribution
centers are of uniform ”size”. Based on this assumed size a rate per unit can be
calculated.

TCSystem =
∑
p∈P

∑
i,j∈V

ypjiµ
p
jc
p
ji (5.4)

5.2.2 Warehouse Costs

The total warehouse costs WC are the sum of the fixed and variable costs of open
warehouses.

WC = FWC + VWC (5.5)
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Fixed Warehouse Costs (FWC)
Fixed Warehouse Costs (FWC) are incurred once the decision to open a distribution
center is made. They include opening costs, e.g. construction and relocation, and fixed
operating costs such as administrative overhead. At each distribution center location
j ∈W a cost fwcj is incurred, if location j is opened.

FWC =
∑
j∈W

xjfwcj (5.6)

Variable Warehouse Costs (VWC)
Variable Warehouse Costs (VWC) are linear in the number of outbound lines τpi leaving
the distribution center. They represent handling costs of outbound shipping and
are dependent on the product p ∈ P . The cost of handling one line of product p is
vwcpj , ∀j ∈ V, p ∈ P .

VWC =
∑

j∈V, i∈S+
j

∑
p∈P

ypjiτ
p
i vwc

p
j (5.7)

5.2.3 Inventory Cost

The inventory costs IC include all costs of holding a specific amount of inventory of a
product p ∈ P .

IC =
∑
p∈P

ihcp
∑
j∈W

(SSpj + CSpj ) (5.8)

The main cost driver is the stock level which is the sum of safety stock and cycle
stock across all locations in the network.

Cycle stock
In equation (3.3) the used cycle stock formulation was presented.

CS = 1
2 max{ri · µ,MOQ} (5.9)

For a location j ∈W the reorder interval ripj is given as an input parameter. The
demand µpj =

∑
i∈S+

j
ypjiµ

p
i is the sum of all demands assigned to location j. The

minimum order quantity MOQpj =
∑
k∈S+

j
ypkjMOQpk depends on the location k from

which the location j is supplied.
Inserting this in equation (3.3) for a specific location j ∈ W and a product p ∈ P

we get
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CSpj = 1
2 max{rij

∑
i∈S+

j

ypjiµ
p
i ,

∑
k∈S−

j

ypkjMOQpk} (5.10)

Safety Stock
In equation (3.4) the used safety stock formulation was presented.

SS = z
√
σ2
√
lt+ r (5.11)

At a location j ∈ W and for a product p ∈ P the variables zp and rj are input
parameters for the product or location. The variance (σpj )2 =

∑
i∈S+

j
ypji(σ

p
i )2 is the

sum of all the variances of products which source product p from location j. The
lead time ltpj depends on the location k ∈ V from which location j sources. Therefore
ltpj =

∑
k∈S+

j

ypkjrltkj .

Inserting this in equation 3.4 for a specific location j ∈W and a product p ∈ P we
get

SSpj = zp
√√√√∑
i∈S+

j

ypji(σ
p
i )

2
√√√√ ∑
k∈S−

j

ypkjrltkj + rj (5.12)

5.2.4 Lead time penalty cost

Since a distribution supply chain network has the two objectives of low cost on the one
hand and high customer service on the other it is important to penalize not meeting
customer lead time targets. To do this, a lead time penalty cost PC is assessed for the
average weekly delay multiplied with the number of units. Such costs can represent
both contractual penalty cost and less quantifiable costs representing loss of future
sales.
For each product p at each customer location i a lead time rltpji is given. This lead

time must then be compared to the lead time requirement. Lead time requirements
can be defined for each product at a customer location, but also across the entire set
of products the customer demands. Only one of the two approaches can be used.

PC =
{
PCProduct for product-customer lead time requirements
PCCustomer for aggregated customer lead time requirements

(5.13)
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Lead time requirements on product level
In the case of specific lead time requirements lpi for each product at a customer

location, the lead time violation is given by

fpi = max{
∑
j∈S−

i

ypjirlt
p
ji − l

p
i , 0} (5.14)

Whenever the lead time is higher than the requirement, there is a violation and a
penalty fpi s

p
i is assessed. When using product-customer lead time requirements the

total penalty cost is given by

PCProduct =
∑
i∈D

∑
p∈P

fpi s
p
i (5.15)

Lead time requirements on customer level
In the case of average lead time requirements lj at each locations, the lead time

violation is computed as the average over all products. Therefore one calculates the
lead time violation term

fi = max{ 1∑
p∈P µ

p
i

∑
p∈P

µi(
∑
j∈S−

i

ypjirlt
p
ji − li), 0} (5.16)

Thus, in the case of using customer lead time requirements the penalty cost at a
location i is fisi and the total penalty cost is given by

PCCustomer =
∑
i∈D

fi si (5.17)

5.3 Mathematical Model

In this section a mixed integer non-linear optimization formulation will be laid out. All
the input parameters described in section 5.1, are given. The goal of the optimization
is to select a subset of CDC and RDC nodes on the network, and to choose flows
through the induced network, so as to minimize the total network costs defined in
(5.1). No flows may go into or out of a node, which is not part of the selected subset of
distribution centers. The inbound flow of any product into any node, which represents
a customer, must be equal to the demand of this customer. Moreover, the sum of
inbound flows into any distribution center nodes must be equal to the outbound flows
from this distribution center.
The decision variables required for the formulation are defined in 5.3.1 and the

complete model is presented in 5.3.2
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5.3.1 Decision Variables

There are several types of decision variables included in the model. Binary variables are
used to describe whether an RDC or CDC location is opened. The decision, from where
a location sources its product is also described by binary decision variables. In addition,
the lead time violation, either on the product or on the customer level, are given by a
non-negative decision variable which depends on the customer’s requirements and the
actual lead time from the source.

The demand and variance at system locations are given as the sum of the demands
and variances of locations which source their products from them. It is important
to keep in mind that the number of inbound lines at system locations is an input
parameter (see 5.1.5).

• Binary variables xj ∈ {0, 1} ∀j ∈ V with

xj =
{

1 if location j is open
0 otherwise

• Binary variables ypji ∈ {0, 1} ∀i, j ∈ N and ∀p ∈ P with

ypji =
{

1 if location i sources product p from location j
0 otherwise

• fi ≥ 0 is the average time by which the lead time li at location i ∈ D is overshot

• fpi ≥ 0 is the average time by which the lead time lpi of product p ∈ P at location
i ∈ D is overshot

• µpj and (σpj )2 with j ∈ V and p ∈ P are the demand and variance at a non-
customer location and are the sum of the demands of those locations which source
from location j.
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5.3.2 Mixed integer non linear problem formulation

min TNC = TC +WC + IC + PC (5.18a)
subject to∑

j∈V
ypji = 1 ∀ i ∈ D, p ∈ P (5.18b)

∑
i∈D

ypji ≤ xj ∀ j ∈W, p ∈ P (5.18c)

µpj =
∑
i∈S+

j

ypjiµ
p
i ∀ j ∈ V p ∈ P (5.18d)

(σpj )
2 =

∑
i∈S+

j

ypji(σ
p
i )

2 ∀j ∈W, p ∈ P (5.18e)

∑
k∈S−

j

ypkjµ
p
j =

∑
i∈S+

j

ypjiµ
p
i ∀ j ∈W p ∈ P (5.18f)

xj ∈ {0, 1} ∀ j ∈W (5.18g)
ypji ∈ {0, 1} ∀ j ∈ V, i ∈ S−j , p ∈ P (5.18h)
fi ≥ 0 ∀ i ∈ D (5.18i)

Constraint (5.18b) ensures that all customer demands are satisfied. Constraint (5.18c)
states, that demand can only be assigned to a distribution center, if it was opened. The
demand µpj and variance (σpj )2 at a location j ∈ V are set in the constraints (5.18d)
and (5.18e). Constraint (5.18f) in conjunction with (5.18d) ensure that an outbound
flow is met with an equivalent inbound flow at a location. The next two constraints
(5.18g) and (5.18h) are simple binary constraints.

To allow for the inclusion of lead time penalty cost the variables fi representing
the lead time penalty factor are set to a non-negative number by constraint (5.18i).
With the help of two additional constraints lead time constraints can be defined. In
conjunction with constraint (5.18i) the constraints (5.19a) and (5.19b) provide an
equivalent formulation of equation (5.14) and equation (5.16) respectively.

fpi ≥
∑
j∈V

rltpjiy
p
ji − l

p
i ∀ i ∈ D, ∀ p ∈ P (5.19a)

fi ≥
1∑

p∈P µ
p
i

∑
p∈P

∑
j∈V

rltpjiy
p
ji

µpi
− li ∀ i ∈ D (5.19b)
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Chapter 6

Development of algorithm

The goal of this chapter is to give an overview of the proposed approach to solving
the mixed integer non-linear program described in section 5.3. Some of the issues
pertaining to the mixed integer program will be discussed in section 6.1, and the reason
why linear optimization techniques are not suitable will be addressed. In section 6.2
the motivation for using a heuristic instead of an exact algorithm will be outlined. A
two part heuristic approach will then be presented in section 6.3. In that section an
overview of the algorithm and a justification for breaking the solution process into two
parts will be provided. The approach combines genetic algorithms, described in chapter
7, and the solution of many small and relatively simple independent flow problems, for
which a solution procedure will be described in chapter 8.

6.1 Problems of the non-linear optimization formulation
Given, that the presented problem is a non-linear problem, the initial reaction might
be, to use a non-linear solver for the problem. However, given the number of binary
variables and the general problem size, such an approach would take too long.

The next idea was to use piecewise linear approximation, similar to the one proposed
by [Yao+10], who modeled a network with only one echelon of distribution centers.
They approximate the square root term over the sum of variances with a piecewise
linear function, and then used linear optimization.

Introduction of binary variables due to linear approximation of non-linear terms
Linear approximation of a non-linear function requires that the function f(x) is
evaluated at a set of defined points bi in a set B. For each interval [bi, bi+1] a linear
function f̂i(x) is defined, with f(bi) = f̂i(bi) and f(bi+1) = f̂i(bi+1). For any value
x ∈ [bi, bi+1] the value of f(x) is approximated with the value f̂i(x).

When |B| break points are used to approximate the square root term for one product,
then |B| · |W | additional binary variables are introduced into the problem, since the
non-linear function must be approximated for all warehouse locations in the set of
distribution centers W . In a model with multiple products, i.e. with |P | > 1, the
number of binary variables required to approximate the square roots would grow by a
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factor of |P |. This results in |B| · |W | · |P | binary variables. Adding such a significant
number of binary variables increases the problem complexity. In addition, [Yao+10]
only looked at a single-echelon problem and extending the problem to a multi-echelon
problem leads to further complications, because it is not possible to only look at the
flows across an edge ypji.

Effect of replacing edge variables with path variables
When looking at equation (5.18e), it can be seen, that for a CDC location k

(σpk)
2 =

∑
i∈S+

k

ypki(σ
p
i )

2 ∀ p ∈ P

=
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i )
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2 +
∑
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∩W

∑
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p
ji(σ

p
i )

2 ∀ p ∈ P

In the second term of the last equation a term of the form ypkjy
p
ji is present. Conse-

quently, the term is no longer linear and instead becomes quadratic. To mitigate this
issue and make the problem linear, new binary decision variables need to be introduced.
These new decision variables no longer model flows over an edge, but rather along a
path through several nodes. These variables would be of the form

ylkji =
{

1 if there is a flow from source l via CDC k and RDC j to customer i
0 otherwise

Given |WC | CDCs, |WR| RDCs and |D| customers, a reformulation replacing edge
variables with path variables would result in |WC | · |WR| · |D| binary variables per
product. The number of source location does not come into play, because it was
assumed that each product is only produced at one source location. This number is
only a rough estimate, because the flows which do not go through a CDC or RDC are
not yet included.

In comparison, to model the same network with edge variables, |WC | · |WR| variables
are required to describe the flows from the CDCs to the RDCs and (|WC |+ |WR|) · |D|
variables to model the flows from all the DCs to all the customers. Thus, the total
amount of variables required would be |WC | · |WR|+ (|WC |+ |WR|) · |D|.
Since |D| � |WC |, |WR|, the driving factor for the problem size lies in the terms

containing |D|. Therefore, it is important to look at the behavior of |WC | + |WR|
compared to |WC | · |WR|. Assuming a relatively small problem with |WC | = 5 and
|WR| = 10, the edge formulation would have approximately 5·10

5+10 = 10
3 times as many

binary variables.
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Combined effect of the changes to the formulation
The combined effect of the use of path variables and the piecewise approximation of
non-linear elements quickly enlarges the problem by a significant factor. A simplified
model has been implemented. In this simplified model flows from the source locations
were not possible. Moreover, the objective function only was the sum of the fixed
warehousing costs and the safety stock inventory costs, which were assumed to be equal
at all locations. In this case the optimal solution is to open only the location with the
lowest costs. The problem included 100 customers, 10 products, 10 RDCs, 5 CDCs and
10 source locations. It is analogous in size to the one which will be studied in more
detail in section 9.1. The number of breakpoints was arbitrarily set to be equal to 5.
The optimal objective value of the problem was 1971.

The algorithm was implemented using the Google OR-Tools Java wrapper ([Lau14])
for the mixed-integer programming solver CBC developed by the organization COIN-
OR ([LH03]). It was run on an Intel Core 2 Duo CPU P8600 computer with 2.40GHz
and 4GB RAM using a 64-bit Windows 7 operating system. No solution was found
in the allotted time of ≈ 2.75 hours5. The lower bound found after this time was
1030, which is still 47% below the actual value of 1971. Since actual problems include
transportation costs and thus multiple locations might be open in an optimal solution,
it does not seem likely that linear optimization techniques can be used to solve this
problem. This is one of the reasons motivating the use of a heuristic

6.2 Motivation for heuristic approach
Recently there have been several papers highlighting the effectiveness of heuristic
evolutionary algorithms for facility location problems, such as [SOU09], [Tiw+10] and
[CG+12].
[LG05] state that

the common factor in meta-heuristic algorithms is that they combine
rules and randomness to imitate natural phenomena. These phenomena
include the biological evolutionary process, animal behavior and the physical
annealing process.

The drawback of heuristics is that they are not guaranteed to find the optimal
solution. In fact they may not even find a good solution or converge at all. However,
to understand a real life distribution supply chain a ”sufficiently good” solution is
frequently all that is needed, because both, the simplifications made during the modeling
and the imprecise nature of the input data introduce significant unavoidable errors.

Real life supply chain networks are very complex. For this reason, assumptions must
be made to create a sufficiently small model which can be solved within reasonable

5Limit was set to 10,000 seconds
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time. But, because of the omitted details, an exact solution of the model is not an
exact solution to the real world network. Examples of such simplifications are modeling
the actual demands with an expected demand µ, and replacing multiple customers in
geographic proximity to each other with one larger customer.
Moreover, the quality of input data frequently comes with an error margin of
±10% or more. Estimations are required to obtain future demands, transportation
costs, potential growth rates and customer behavior in a changed network. Exact
determination of the input variables is often not possible, because historic data is not
guaranteed to be a good indicator of future events and predictions are, as the saying
goes, ”difficult, especially about the future”.

Due to these two factors, an exact solution for a real world network which correctly
predicts the future cost of a network, cannot be obtained from a model. However,
the results of a good model should strongly correlate with the real network and be a
good approximation of the costs. But when comparing the best and the second best
alternative according to the model, the difference in the model costs might be smaller
than the impact some of the omitted details may have. In such a case the decision
could be tipped one way or the other.

For example, assume that the best solution is slightly better than the current network,
but structurally completely different. The potential risks of completely overhauling
a network, training new employees and the resistance within the organization would
lead almost any manager to opt in favor of the current setup. Therefore, it would be
highly advantageous, if the model could find not just the optimal solution to the model,
but also a list of further ”very good” ones. These very good solutions could then be
evaluated ”manually” based on those characteristics, which had been omitted in the
model.

Since an exact solution is not required, heuristics become an attractive alternative.
Moreover, it is easy to include more elements into the cost calculation, as one is not
constrained to a linear formulation of the problem. Furthermore, in a evolutionary
algorithm many feasible solutions are generated. It is then possible to explore the
vicinity of promising solutions and find not just the best, but rather the desired list of
”very good” solutions.

6.3 Heuristic approach to multi-echelon facility location
problems

Before an approximative approach will be outlined in this section, let us look again at
the three questions which the model attempts to answer.

a) Which distribution centers should be opened?
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b) From which locations should customers be supplied?

c) How should flows between own locations be structured?

In the papers which do use heuristics to solve facility location problems, the model
either represented a single-echelon network, e.g. [SOU09] and [CG+12], or a rather
small network, e.g. [Tiw+10]. It is not necessary to simultaneously answer all three
questions at the same time in a single-echelon network, because RDCs must receive all
products via shipments from the source locations. Thus, the authors only had to look
at the first two questions a) and b).

6.3.1 Justification for not considering the entire problem at once
Let us, for a moment, assume that variance and demand at the RDC locations were
known. In this case only the third question c) remains to be considered, i.e. how to
structure flows between sources, central distribution centers and regional distribution
centers. In chapter 8 it will be shown that in the case of only one open central
distribution center6 and a small7 number of RDCs this problem can be solved quickly
by simple enumeration. However, the problem grows exponentially in the number of
open RDCs, and therefore the enumeration approach is not scalable. To deal with
cases in which a larger number of regional distribution centers is open, an efficient
heuristic will be presented.

Knowing that the flow problem can be solved easily does not directly imply, how to
answer all three questions simultaneously. But, as stated above, evolutionary algorithms
have proven to be good at solving the single-echelon problem, i.e. answering questions
a) and b). Once any set of open distribution centers is given as an answer to a) and
any assignment of the customers to the distribution centers as an answer to b), then it
is possible to quickly answer the problem of how products should flow from the source
locations to the distribution centers.
Since good approaches exist to solving questions a) and b) and question c) inde-

pendently and because the questions can be answered well in sequence, the proposed
algorithm will not attempt to answer all three questions simultaneously. Improvements
for the opening decisions and the customer assignment are found using a genetic
algorithm, taking into account the total network cost. The cost of a setup is calculated
as soon as customer assignment is known and the flow problem has been solved for this
setup. The details of the genetic algorithm, such as the encoding and the evolutionary
procedures, will be discussed in chapter 7 and the flow problem will be studied in
more detail in chapter 8. In the following section the focus lies on explaining how the
elements of the algorithm interact.

6If there are no central distribution centers, then the problem is trivial, because each regional
distribution center sources each product directly from the source location

7Small in this context means less than ten
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6.3.2 Algorithm

A formalized version of the algorithm is given below. In the following, an overview of
each step is given along with a reference to the section, in which it will be discussed in
more detail.

Create random network setups
while Termination criteria not met do

for all Network setups do
1. Assign customer demands to open locations based on assignment value
2. Optimize flow from sources to RDCs, either directly or through CDC
3. Calculate total cost of the setup

end for
Select low cost setups and perform crossover
Reintroduce elite setups into the pool of potential setups
for all Network setups do

Apply small random mutations
end for

end while

The genetic algorithm attempts to create increasingly better sets of open distribution
centers and better assignments of the customer demands. To do this, n initial setups
are generated at random, specifying which distribution centers should be open and
from which distribution center the customers are supplied. All subsequent network
setups are derived from these initial solutions during an iterative process.
In each iteration all the setups at first undergo a three step analysis process. In

an initial step the customer demands are assigned to the open distribution centers
based on the assignment decisions of the answer. This will be explained in section
7.2.1. Then the optimal product flows through the network are determined using the
process described in chapter 8. At this point, all decisions have been made and the
cost of the setup can be computed, taking into account all the cost elements included
in the objective function defined in 5.2.

Pairs of network setups are then randomly selected, with low cost setups being more
likely to be chosen. The opening decisions of distribution centers and the assignments
of the two pairs are then recombined to create two new network setups. In this process,
called crossover, a new group of m ≤ n setups are created. It will be discussed in more
detail in section 7.2.2. Additionally, a group of n−m previously found elite setups is
reintroduced into the process, as described in section 7.2.3.
Then, each of the new setups is subjected to a few random changes, so called

mutations to maintain a diverse set of setups and avoid early convergence. The rules
governing mutation will be laid out in section 7.2.4.
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All the steps relating to the genetic algorithm will be discussed in the next chapter
and the flow problem in chapter 8. Cost calculation is done according to the objective
function previously laid out in 5.2.
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Chapter 7

Discussion of evolutionary aspects of the
algorithm

Recently, several papers have been published, which used heuristics to obtain solutions
for facility location problems with non-linear inventory costs. Examples are the papers
by [CG+12], [DAO09], [LGR09], [MJKSK06], [SOU09] and [Tiw+10]. A frequently
used type of heuristics are genetic evolutionary algorithms. The central idea behind
genetic algorithms is based on Darwin’s theory of evolution. In Darwin’s theory a
population adapts to its environment over the course of several generations due to a
three step process.

1. Selection of the fittest
The individuals within the population which are better adapted to their envi-
ronment are more likely to survive and to propagate their genes to the next
generation. In this way better genetic information is more likely to be passed on
to future generations.

2. Crossover
When two individuals produce offspring, the genetic information of the offspring
is a combination of their parents’ genetic information. Each child receives certain
blocks of genetic information from one parent and other blocks from the other
parent. In this manner an individual with distinct genetic information is created.

3. Mutation
The genetic information of a child is not always just a recombination of its parents’
genetic code. With a low probability some genetic information of the child will
take a new value, irrespective of the value held by its parents. This change is
called a mutation. Mutations are random and no thought goes into the selection,
which parts change and to which value they change. The advantage of using
random mutations is that potential improvements are generated, which had not
been present in previous individuals.

Additional mechanisms such as ”dominance, inversion, intrachromosomal duplication,
deletion, translocation and segregation” were described by [Gol89]. The reintroduction
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of especially fit individuals of previous generations, called elitism, is a further mechanism
which will be used in this thesis.

In the following section 7.1, the ideas and cocnepts underlying genetic algorithms
will be presented. Then, these general concepts will be applied to the specific case of
facility location problems in 7.2.

7.1 Theoretical background

The main concepts of evolutionary processes have been mentioned above. These
concepts are included in genetic algorithms. A summary, what genetic algorithms are
was given by [Gol89].

Genetic algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. They combine survival of the fittest among
string structures with a structured yet randomized information exchange to
form a search algorithm with some of the innovative flair of human search.
in every generation, a new set of artificial creatures strings) is created using
bits and pieces of the fittest of the old; an occasional new part is tried for
good measure. While randomized, genetic algorithms are no simple random
walk. They efficiently exploit historical information to speculate on new
search points with expected improved performance.

The string structures, mentioned in this quote are the individuals in each generation.
The defining information of each individual is contained within this string as a genetic
code.

7.1.1 Encoding of possible solutions

The goal of optimization is to find a value x̂ ∈ X which minimizes or maximizes the
function f(x), X → R. Genetic algorithms work on encoding strings s, rather than on
actual values x ∈ X.

Therefore, potential solutions x are broken down into their components and bijectively
assigned to a unique string s ∈ S by the bijection g(x), X → S. The string s is the
encoding of the value x ∈ X and is defined over an alphabet A. Thus, for a string s of
length l holds s ∈ Al. A alphabet commonly used in genetic algorithms is the binary
{0, 1} alphabet, but a finite set of integers {1, 2, ..., a} or the interval [0, 1] are also
used frequently.

A string s of length l is comprised of l individual elements si ∈ A. This means, that
one can write s = [s1, s2, ..., sl]. Each spot si in the string s is called a gene or feature
and the value at that location in the string is the allele or feature value.
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Since genetic algorithms only use the encodings s ∈ S instead of the original variables
x ∈ X, a new function f̄(s), S → R must be defined. For this function the property
f̄(s) = f(g(x)) must hold. The value f̄(s) is called the fitness value of s and by
definition x = g−1(s).

Example 7.1
[Gol89] demonstrate this concept using the following problem as an example.

max f(x) = x2

s.t. x ∈ X = {0, 1, 2, 3, ..., 31}

A possible encoding of the set X over the alphabet A = {0, 1} is to represent each
number as a binary number. A string s = [s4, s3, s2, s1, s0] with si ∈ A is mapped
bijectively to a variable x according to

x =
4∑
i=0

si2i

For example, the string ŝ = [0, 1, 0, 0, 1] represents the number

x̂ = 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 8 + 1 = 9

In the following table four initial random encodings, the number they represent and
their fitness values are provided.

String s Variable x Fitness value f(x)
[0, 1, 1, 0, 1] 13 169
[1, 1, 0, 0, 0] 24 576
[0, 1, 0, 0, 0] 8 64
[1, 0, 0, 1, 1] 19 361

One can observe, that having s4 = 1 tends to lead to a higher fitness function value
than s4 = 0. This is not surprising, as s4 = 1 adds 24 = 16 to the value of x and f(x) is
monotonously increasing. Since individuals with s4 = 1 tend to be significantly better
than those with s4 = 0, these individuals are fitter and thus, more likely to propagate
their genetic information to the next generation. Therefore, the information s4 = 1 is
likely to be more common in the next generation than it is in the current one. The
goal of genetic algorithms is to identify key characteristics of ”good” solutions and
build strings which display many positive characteristics and few negative ones.

To describe these characteristics the concept of schema was introduced by [Hol93].
A schema is a string over the alphabet A ∪ {∗}. The ∗ character is a placeholder for
any other element of the alphabet A. Assuming, again, a binary alphabet and a string
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of length 4, then the schema [1, ∗, ∗, 0] would identify the set of all strings which have
a 1 in the first spot, a 0 in the fourth and either a 1 or a 0 at the second and third
spots. So, the four strings [1, 1, 0, 0], [1, 0, 0, 0], [1, 0, 1, 0] and [1, 1, 1, 0] all would be
described by the schema [1, ∗, ∗, 0].
Then [Hol93] goes on to state that highly fit schema with short defining length

appear more frequently in later generations. These highly fit schema of short defining
length are often called ”building blocks” and the statement that such schema become
more prominent in later generations is called the ”building block hypothesis”, according
to [Gol89]. The reason, why such schema appear more frequently lies in the fact, that
genetic algorithms do not draw individuals with equal probability to propagate to the
next generation. Rather, those with high fitness value are more likely to be selected for
crossover. And these high fitness individuals tend to have more good building blocks
at high leverage positions. Moreover, during crossover, they are unlikely to be broken
up, because they are short.

7.1.2 Recombination of encodings
The two elementary ways used in almost all genetic algorithms to generate new potential
solutions are crossover and mutation. An additional method used in this thesis, which
can improve results, is elitism.
Crossover simulates the recombination of the parents’ genetic information. Both

parents’ genetic information is encoded in a string of length l. During crossover a set
of breakpoints B = {b1, b2, ..., bk}, bi ∈ N is randomly generated with 0 < b1 < b2 <
... < bk < l. Between a breakpoint bi−1 and bi the genetic information of parent p1 is
used and between breakpoints bi and bi+1 the genetic information of parent p2 is used.
This is depicted in figure 7.1, where two parents produce two offspring individuals. In
the parts of the encoding, where child c1 has received the genetic information of parent
p1, child c2 has received the genetic information of parent p2. In those parts of the
encoding, where c1 has received the genetic information of p2, the information of p1
has gone to child c2.

Parents Children

b1 b2 b3

Figure 7.1: Genetic information of parents is recombined to create two children

Mutation, in contrast to crossover, is a purely random process. It does not maintain
individual schema, but rather tries to break them and create new ones. Mutation
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impacts the allele, i.e. an individual value encoded in the string. A gene changes its
feature value with a probability pmutation. In a simple binary alphabet, each gene with
value 1 would receive a value of 0 with probability pmutation or vice versa. In a more
complex alphabet an additional probability must be defined, which determines which
new value is assigned to the gene, if it is selected for mutation. Since mutations are
purely random, many mutations do not improve results. However, occasionally a highly
fit new schema is introduced to the gene pool. Moreover, mutation helps to maintain a
diverse set of individuals.

An example is provided in figure 7.2. A binary string s of length 7 is given. Randomly,
the fifth spot, shaded in blue, is chosen for mutation. The feature value at the fifth
location then changes from s5 = 1 to s5 = 0.

1 0 1 0 1 1 1

1 0 1 0 0 1 1

Figure 7.2: Mutation changes the value at a gene with probability p

Elitism is a way to steer the algorithm. The idea is to let a few high fitness
individuals found in previous generations reenter the gene pool. Elitism ensures that
the vicinity of good solutions is explored in more detail, because these individuals are
frequently subjected to mutation and thus slightly different individuals are evaluated.
If a current good setup is not yet a local optimum, then an even better setup lies in
its vicinity. Since the inserted elite individual had a good fitness value, the mutated
individual is also likely to be quite fit. Therefore, it has a high probability of propagating
its genetic information. Thus, the building blocks of the elite individual are likely to
be given to the next generation.

7.2 Proposed approach

In this section the encoding of the individuals and the crossover, mutation and elitism
methods of the proposed algorithm are discussed. The set of all individuals in a
generation k will be called Ik. The set Îk will denote the set of all individuals with
a fitness value f(i) < H. The fitness value of all individuals which do not satisfy a
constraint will be set to H = 1015.
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7.2.1 Encoding techniques

The genetic algorithm aims to tackle the two problems of which distribution centers
to open and to which locations the customers are assigned. Therefore, two separate
strings are used to encode the solutions to these problems. A binary string defines
which distribution centers are open. An additional integer string specifies, from where
customers are supplied.

Encoding of distribution centers
The binary string sdc represents the set W of distribution centers. If the j-th entry

sdcj = 1, then location j ∈W is open. If sdcj = 0, then location j is closed. Given the
assumptions outlined in chapter 4, only one of the CDC locations j ∈WCDC may be
open. Also, limits on the number of open RDCs could be placed. Any solution which
does not satisfy those constraints is automatically assigned an objective value H.

For an example of the encoding of distribution centers, refer to figure 7.3. The first
three values represent CDC locations. Only the first value is equal to 1, while the
second and third entries are equal to 0. Therefore, CDC 1 is open, while the other two
CDCs are closed. The fourth through the ninth entries represent RDC locations. Since
the depicted string has s4 = s5 = s7 = s9 = 1, the RDCs 4, 5, 7 and 9 are open, while
the RDCs 6 and 8 are not open.

j 1 2 3 4 5 6 7 8 9
xj 1 0 0 1 1 0 1 0 1

CDCs RDCs

Figure 7.3: Example of distribution center string

Encoding of customer assignments
Furthermore, there is an integer string s, whose entries determine, to which distribu-

tion center a (product - customer) demand pair is assigned. Let dn refer to the n-th
(product - customer) demand pair. Then, an entry sn = j, j ∈ N in the n-th position
of the integer string s means, that the demand n is assigned to the j-th closest open
system location. An upper limit m for the feature value sn is defined, which specifies,
how many of the closest locations could be considered.

In figure 7.4 an example of such a sample string is provided. The unique number in
the first line refers to the (product - customer) pair. In the second line the assignment
value is given. Lines three and four detail which product is demanded by which
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customer. These lines are not relevant for the encoding. According to the logic outlined
above, the (product - customer) pair 1, representing the demand of product 1 at
customer location 1 is supplied from the open system location which is closest to
customer location 1.

Product - Customer d1 d2 d3 d4 d5 d6 d7 d8 d9

Assignment 1 2 1 1 1 1 1 1 2

Product 1 1 1 2 2 2 3 3 3

Customer 1 2 3 1 2 3 1 2 3

Figure 7.4: Example of (product - location) pair assignment string

In figure 7.5 the example given in figure 7.4 is laid out in a more graphical way. In
the network three RDCs are open. The three distinct setups, divided by vertical lines,
represent the situation for the three products. It can easily be seen, that customer
location 1 is closest to location rdc1 with rdc2 being the second closest and rdc3 being
the farthest away.

Let us now consider in detail the situation for product 1. The (product - customer)
pair d1 has an assignment value of 1 and is consequently assigned to the closest location,
which is RDC 1. In contrast, (product - customer) pair d2 has an assignment value of 2.
Therefore, the demand is not assigned to the RDC closest to customer 2, which would
be RDC 2. Rather, it is assigned to RDC 1, the second closest RDC. The (product -
customer) pair d3 again has assignment value 1. Thus, it is supplied from the closest
open location, which, in this case, is RDC 3.

d1 d2 d3

rdc1 rdc2 rdc3

d4 d5 d6

rdc1 rdc2 rdc3

d7 d8 d9

rdc1 rdc2 rdc3

Product 1 Product 2 Product 3

1 2 1 1 1 1 1 1 2

Figure 7.5: (Product - location) pairs are assigned to their n-th closest location. The parameter
n is denoted in the box below each node.

It is important to reiterate, that two pairs with the same assignment value j are
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not necessarily supplied from the same location. Rather, they are assigned to the j-th
closest location.

In some networks it is desirable, that certain products should always be supplied from
the CDC. This can be incorporated into the encoding by using a dedicated assignment
value, which always results in the (product - customer) pair being assigned to the
CDC. Such a case is illustrated in figure 7.6. Assume that the limit is set to m = 2
and the CDC should always be considered. The two closest locations to the customer
are RDC 1 and RDC 2. The feature, determining the assignment of this customer,
could take on any feature value si ∈ {1, 2, 3}. If si = 1, then the customer would be
supplied from RDC 1, since it is the closest. If si = 2, then it would be supplied from
the second closest location, which is RDC 2. However, if the assignment value si = 3,
then it would not be assigned to RDC 3, which is the third closest location. Rather, it
would be assigned to the CDC, even though it is the location farthest away from the
customer.

C

RDC1

RDC2

RDC3

CDC

if s
i
=

1if si = 2

if
s i

=
3

Figure 7.6: Assignment when considering the 2 closest locations and the CDC

7.2.2 Selection of fittest individuals and crossover

The selection process determines which individuals should advance their genetic in-
formation. The crossover process then determines, in which way they pass on that
information to the individuals of the next generation. Therefore selection of the fittest
and crossover are tightly linked.
The selection process is based on roulette wheel selection. Each individual is

assigned a probability corresponding to the individual’s objective value. Based on the
probabilities, each individual i is assigned an interval [ai, ai+1] with ai < ai+1 and
0 ≤ ai ≤ 1. If a random number r drawn from the interval [0, 1] lies within the interval
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[ai, ai+1], then individual i is selected for crossover. This is analogous to a roulette
wheel, where a number is the winning number, if the ball lands within the area, which
is assigned to the number. The selection process is concerned with assigning each
individual an interval of adequate size, based on the individuals fitness value.

In each generation k ∈ N the fitness value of each individual i ∈ Ik is computed. The
fitness values of all individuals i ∈ Îk with fitness values smaller than H, are added up.
This results in a generational fitness value T =

∑
i∈Îk

f(i). Two methods to compute
an individual’s probability to be selected for crossover have been implemented. The
first method assigns the probabilities only based on the individuals’ fitness values.
The second method assigns each individual a minimum probability and increases this
probability based on the individuals fitness value.
For ease of notation two variables are defined.

mk = min{f(i), i ∈ Îk}
Mk = max{f(i), i ∈ Îk}

The purely fitness based method selects an individual i ∈ Ik with probability

pfi =
{
γ(1− f(i)−mk

Mk−mk
) if i ∈ Îk

0 if i /∈ Îk
(7.1)

According to the density function pfi , the fitter individuals with lower cost have a
higher selection probability. The scaling parameter γ = (|̂Ik| − T

M−m)−1 ensures that
the probabilities sum up to 1. For all individuals i ∈ Ik \ Îk with an ”infinite” fitness
value f(i) ≥ H = 1015 the probability is set to pfi = 0.

The minimum probability method guarantees each individual a minimum selection
probability pmin = 1

|Ik| . The actual probability pmi is then given as the sum of pmin
and pfi , divided by 2. The scaling factor 1

2 ensures that the sum of all probabilities is
equal to 1.

pmi = 1
2
(
pmin + pfi

)
= 1

2

( 1
|Ik|

+ pfi

)
(7.2)

Using either the fitness based probabilities pfi or the minimum probabilities pmi , two
parent individuals ip1 , ip2 ∈ Ik are selected for crossover. The two parent individuals
produce two children ic1 , ip2 ∈ Ik+1. Two sets of random breakpoints are generated
for the distribution center string and the assignment string. Crossover of the parents’
genetic information at these breakpoints creates the children’s genetic strings.

7.2.3 Reinsertion of elite individuals
Elitism, as discussed previously, describes the idea of keeping or reintroducing highly
fit individuals into the genetic pool. In the implementation a set containing the top
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Chapter 7 Discussion of evolutionary aspects of the algorithm

ten8 individuals with distinct distribution center strings is maintained. Thus, no two
individuals in the top ten mandate exactly the same distribution centers to be open
and closed. The restriction on individuals with distinct distribution center strings
maintains diversity and avoids premature fixation of the algorithm on early solutions.
During an initial phase of 500 generations9 elitism is not applied. In this phase

the focus lies on natural exploration and finding a set of good configurations. After
the initial phase, a few randomly selected individuals from the top ten are reinserted
into the gene pool in each generation. This reinsertion happens prior to the mutation
procedure and consequently, the elite individuals are also subjected to mutation.

7.2.4 Mutation of individuals
The children, produced by the crossover procedure, and the reinserted elite individuals
all undergo mutation. During mutation the feature values of randomly chosen features
in the distribution center string and in the assignment string are changed.
Since the distribution center string is a binary one, it changes its value from 0 to 1

or vice versa. Different probabilities are employed depending on the type of location.
If an element represents a CDC, then the feature value is changed with probability pmcdc.
In contrast, if it represents an RDC, the feature value changes with probability pmrdc.

The mutation procedure is more complex for the assignment string, because for each
element of the string, it must be decided, if it is changed, and if yes, to which value.
This second step is necessary, because each element can take on more than just two
values. Therefore, a probability pmassign is defined, denoting how likely it is that an
element of the string is selected for mutation. As described in section 7.2.1, a maximum
number m is defined, specifying how many of the closest locations should be considered.
In addition, the CDC location could always be an option to source from. If it is, then
a mutated feature of the assignment string could also take on the feature value m+ 1.
Let

m̂ =
{
m+ 1 if the CDC should always be considered
m otherwise

To determine the new value of a feature, selected for mutation, a number is randomly
chosen from the set {1, ..., m̂}.

Example 7.2
Consider an example in which the three closest locations and the CDC should be
considered for the customer assignment. Then, m̂ = 3 + 1 = 4. By chance, the third
entry s3 of the string s was chosen for mutation. The original value of s3 = 1. A

8The number of individuals x to be used for elitism can be configured, but for the remainder top
ten will be used since it is clearer than writing top x.

9Value of 500 generations was selected after multiple tests and could be different for other problems.
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new value is assigned to s3. It is randomly picked from the set {1, 2, 3, 4}. So, for
example, the new value after mutation could be s3 = 2. This means that the (product -
customer) pair d3, represented by feature s3, is now supplied from the system location,
which is second closest to it.
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Chapter 8

Solution of non-linear flow problems

Once the customer demands have been assigned, the flow through the network must
be optimized. For each product and each RDC there are only two options, which are
depicted in figure 8.1. The CDC either is supplied directly from the source along the
solid edge or, if a CDC is opened, it can be supplied via this CDC. In the second case,
the product flows along the dashed edges from the source location to the CDC and
from there to the RDC. The costs are compared to decide, from where each RDC
should receive each product. These costs include transportation costs, handling costs
and inventory costs. The unit transportation and handling costs can be determined.
Inventory costs, on the other hand, are more problematic, because of their non-linear
nature. However, the inventory costs at an RDC can be computed prior to the
optimization in the two possible cases of being supplied from the CDC or from the
source. Consequently, only the inventory costs at the CDC remain problematic.

Source l

CDC k

RDC j

Figure 8.1: The RDC can be supplied directly from the source location or receive a product
from the CDC

In section 8.1 the flow problem will be formulated. In section 8.2 three approaches
to solving the problem will be presented. They will be compared in 8.3 and a mixed
approach will be selected.
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8.1 Problem description

In the previous chapter the assignment of demands to the distribution centers was
discussed. These products must be shipped to the distribution center in order to satisfy
the demands. These replenishment shipments can be made directly from the source
location of the product, or it can be made from the central distribution center. If the
replenishment is done from the central distribution center, then the CDC must have
previously received the product from the source location itself and inventory must be
kept at the CDC location. The cheaper of the two paths to supply a product to an
RDC should be used.

Each product is produced in exactly one source location l ∈ S. It was assumed
that there is at most one open CDC k ∈WC . In this chapter, it will be assumed that
exactly one CDC is open. If no CDC were open, then the problem would disappear,
as all the RDCs must be supplied from the source location in such a case. The set of
open RDC locations is called J ⊂WR. The cost clj to supply an RDC j from a source
l can be calculated using the inventory formulas discussed in chapter 3, and the linear
transportation costs. The same can be done for the cost ckj to supply the RDC from
the CDC k. The cost clk cannot be determined a priori, because the quantity flowing
through the CDC is not yet known. Based on the product flows the inventory cost
I(σ2

k) is calculated analogously to the safety stock cost defined in (3.4).

I(σ2
k) = (zp

√
σ2
k

√
rltlk + 1) · ihcp

The linear transportation, handling and cycle stock costs per unit of product p along
the edge from source l to CDC k can be calculated and are denoted by ĉlk. The setup
can be seen in figure 8.2.

Since the cost along the entire path from source location l through CDC k to RDC
j must be considered, the cost term clkj = ĉlk + ckj is defined. The actual cost of
supplying the RDC via CDC k is larger than clkj , because safety stock costs I(σ2

k) are
not yet included. For each RDC j the variable qj = clkj − clj is defined, representing
the savings of the linear cost in the case of supplying RDC j from the CDC. Since clkj
is a lower bound on the cost of supplying RDC j through the CDC, an RDC j will
never be supplied via the CDC, if qj ≥ 0. So, the only locations which could potentially
be supplied from the CDC k are those where qj < 0. Let Ĵ := {j | j ∈ J and qj < 0}
the set of all open RDCs which might be supplied from the CDC.

The problem now is reduced to decide which j ∈ Ĵ are supplied via CDC k. All terms
in the objective function, except I(σ2

k), are linear. Thus, a mixed integer non-linear
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Source l

CDC k

RDC1 RDC2 RDC3

cl1 cl3

cl2

clk

ck1

ck2

ck3

I(σ2
k)

Figure 8.2: Flow network for one product with the cost terms

program can be formulated in the following way.

min =
∑
j∈Ĵ

xjqj + I(σ2
k) (8.1a)

subject to
(σk)2 = (σck)2 +

∑
j

xj(σj)2 (8.1b)

xj ∈ {0, 1} ∀j ∈ Ĵ (8.1c)

The objective function gives the cost saving of supplying the RDCs with xj = 1 via
the CDC, compared to supplying all directly from the factories. The constraint (8.1b)
states that the variance at the CDC is the sum of the variances of the assigned RDCs
and the sum of the variances (σck)2 of the customers who are directly supplied from
the CDC. The binary decision variables xj indicate whether an RDC is supplied from
the CDC or directly from the source.

xj =
{

1 if RDC j is supplied from CDC k

0 if RDC j is supplied directly from the source location l

57



Chapter 8 Solution of non-linear flow problems

8.2 Description of the three approaches to the flow problem

To solve this problem, three approaches will be compared. The first and simplest solution
procedure will be a simple enumeration algorithm testing all possible components. The
enumeration approach has a runtime of O(2n) with n = |Ĵ | being the number of open
RDC locations with qj < 0. For small problems, though, such a brute force approach is
sufficiently quick, as will be seen in 8.3. Another approach to the problem is the use of
a DROP heuristic. The third method presented will be a linear programming approach
with a piecewise linear approximation of the concave square root term

√
(σk)2 in the

safety stock formulation I((σk)2).

8.2.1 Brute force enumeration of solutions

In the mixed integer non-linear program formulated above there are n = |Ĵ | variables.
They can take on a value of either 0 or 1. This results in 2n combinations of the n
binary variables. If the cost of each combination has been calculated, then one can
select the one with the lowest cost. This combination is the optimal solution. For each
combination the function (8.1a) must be evaluated. Since there are 2n combinations,
the function must be evaluated 2n times, which results in a runtime of O(2n). For
small n, the number of evaluations remains low, but it grows exponentially and soon
the problem becomes intractable.
The approach has been implemented using recursive function calls to try all 2n

combinations.

function RecursiveFunction(array, currentLevel)
if currentLevel = maxLevel then

Evaluate(array)
else

array[currentLevel] ← 1
RecursiveFunction(array, currentLevel+1)
array[currentLevel] ← 0
RecursiveFunction(array, currentLevel+1)

end if
end function

function Evaluate(array)
if Cost(array) < MinCost then

MinCost ← Cost(array)
optimalArray ← array

end if
end function
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A binary tree is created. In a node on level j ∈ {1, 2, 3, ..., n} the function receives
an array in which the first j − 1 entries have already been filled in. This function then
calls itself twice for a node on level j, once with xj = 0 and once with xj = 1. This
is repeated until j = n and the bottom of the tree has been reached. At this point
the function in (8.1a) is evaluated. If the found objective value is better than the best
previously found one, the current solution replaces the previously found best one. Once
all combinations have been evaluated, the combination which minimizes the problem is
returned. The tree is modeled in figure 8.3.

[*,*,*]

[0,*,*] [1,*,*]

[0,0,*] [0,1,*] [1,0,*] [1,1,*]

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

Figure 8.3: Tree created by the recursive brute force enumeration algorithm

It will be important to compare the runtime of this approach to the runtime required
by the other algorithms and determine when it is advantageous to apply this brute
force approach.

8.2.2 DROP heuristic
The DROP heuristic is a greedy algorithm. An initial set is given and elements are
dropped from the set, if it directly improves the system. Since it is a greedy algorithm,
it is quick, but does not always find the optimum. The application of such a heuristic
to the flow problem will be explained in 8.1a.

In the initial step all RDC locations j ∈ Ĵ , for which qj < 0, have their corresponding
variable xj = 1. Given a combination of open and closed locations, for each open
location j the costs of the two following cases will be compared

a) j is supplied from CDC k
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b) j is supplied from supplier l

Whenever the cost in case b) is lower than in case a), then the location j is dropped
from the set of locations, which are sourced from the CDC, and xj = 0. This procedure
is repeated until no location can be found such that dropping it leads to lower system-
wide costs than continuing to source it from the CDC.

The process is best explained by looking at an example. A set of 3 RDCs is given
with identical demand µj = µ = 1 and variance σ2

j = σ2 = 1 at all three RDC locations
j ∈ {1, 2, 3}. The linear cost savings qj of supplying RDC j from CDC k, instead of
directly from factory j, are given in the following table.

RDC qj
1 −7
2 −5
3 −1

The function I(σ2
k) can take the following three values.

I(0) 0
I(1) 5
I(2) 7
I(3) 8.5

Consequently, the cost of sourcing all locations through the CDC is calculated as∑
j∈{1,2,3}

qkj + I(3) = −7− 5− 1 + 8.5 = −4.5

The local improvement of dropping one location from being sourced from the CDC
can be calculated as

Drop Location Cost saving Improvement
1 0 +4.5
2 −2 +2.5
3 −5 −0.5

Since dropping location 3 and sourcing it directly from the supplier reduces costs by
0.5 units, the location is better sourced from the supplier. The variable x3 = 0 and the
total cost saving is now −5 instead of −4.5. In the next iteration step the improvement
of dropping one of the remaining locations is

Drop Location Cost saving Improvement
1 0 +5
2 −2 +3
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Since both RDCs have a positive improvement value, they should continue to be
supplied via the CDC. Thus, in the structure found by the DROP heuristic the RDC
location j = 3 is supplied directly from the source location and the RDC locations
j = 1 and j = 2 are supplied via the CDC.
An important advantage of the DROP heuristic is its quickness. The worst-case

performance is O(n2), but frequently it needs even less time. It also can be implemented
easily. A large drawback is that it is a greedy heuristic and thus, does not always find
an optimal solution.

8.2.3 Combinatorial optimization with piecewise linear function
Since non-linear optimization tends to be more difficult than linear optimization, a
frequent technique to solve problems with a non-linear objective function and linear
constraints is the use of piecewise linear functions. A non-linear function f(x) can
be approximated with linear segments f̂i(x) on intervals [pi−1, pi]. The function
f̂(x) = f̂i(x) for x ∈ [pi−1, pi] is called a piecewise linear approximation of f(x). Linear
optimization techniques can be used to optimize a piecewise linear objective function,
if additional binary decision variables and constraints are formulated.

The selection of the n points for interpolation impacts the precision of the piecewise
linear approximation. In the flow problems a square root function I(σ2

k) must be
approximated between p0 = 0 and pn =

∑
j σ

2
j . While there are sophisticated methods

to select those points, choosing n equidistant points pi = ipn

n with i ∈ {1, 2, 3, ..., n}
approximates the area under the curve reasonably well.
Lemma 8.1
Let f(x) =

√
x on the interval [0, a] and let f̂(x) be a piecewise linear approximation

of f(x). Moreover, let pi = i · an , i ∈ {1, 2, 3, ..., n} and p0 = 0 define the n intervals
[pi−1, pi] used to linearly approximate f(x). Then, f(pi) = f̂(pi), ∀i ∈ {0, 1, 2, ..., n}.
The area AL under the piecewise linear function f̂(x) lies completely within the area A
under the function f(x). The percentage of the area A, which is not covered by AL is
given by the value δ with

δ = 1− A

AL
= 1− 3

4
1
n

3
2

n∑
i=1

(
√
i− 1 +

√
i) (8.2)

Proof. Determining the area A under the function f(x) =
√
x on the interval [0, a]

can be done using integration. It is equal to A = 2
3x

3
2 .

The area under a line gi(x) = mix+ti between two points (pi−1, f(pi−1)), (pi, f(pi)) ∈
gi is given by the formula pi−pi−1

2 (gi(pi−1)+gi(pi)) according to the trapezoid rule. From
the definition of the linear pieces gi it is known that gi(pi) = f(pi) and gi(pi−1) = f(pi).
Since the points pi are equidistant, the term pi − pi−1 = d ∀i. Therefore, the area
under the entire piecewise linear function
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AL =
n∑
i=1

pi − pi−1
2 (gi(pi)− gi−1(pi−1)

= d

2

n∑
i=1

(f(pi) + f(pi−1))

= d

2

n∑
i=1

(√pi +√pi−1)

= d

2

n∑
i=1

(
√
i
pn
n

+
√

(i− 1)pn
n

)

= pn
2n

n∑
i=1

√
pn
n

(
√
i+
√
i− 1)

= p
3
2
n

2n
3
2

n∑
i=1

(
√
i+
√
i− 1)

Using this result, we get

AL
A

= ( p
3
2
n

2n
3
2

n∑
i=1

(
√
i+
√
i− 1)) : (2

3p
3
2
n )

= 3
4

1
n

3
2

n∑
i=1

(
√
i+
√
i− 1)

From this result the equation follows directly. 2

In the case of n = 10 the resulting δ < 0.01 and thus the deviation is sufficiently small.
To reformulate problem 8.1a we introduce two additional sets of variables. Binary

variables yi and continuous variables yi with i ∈ {1, 2, 3, ..., n}. We associate each yi and
zi with the i-th segment of the piecewise linear function. In order to accurately describe
the function the constraints must ensure that if yi = 1 for any i, then yk = 1, ∀k < i.
Additionally, whenever zi > 0 then

∑m
k=1 zk = bm, ∀m < i. This rule ensures that the

first segments of the curve, which have a steeper slope than than the later ones, are
maxed out, before a cheaper rate is used. Let mi =

√
bi−
√
bi−1

bi−bi−1
be the slope of each

segment. The linear problem then can be formulated in the following way.

min
∑

j∈RDC
xjqj +

n∑
i=1

zimi
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subject to the constraints

(σk)2 =
∑
j

xj(σj)2

(bi − bi−1)yi+1 ≤ zi ≤ (bi − bi−1)yi ∀i = 1, 2, .., n− 1
0 ≤ zn ≤Myn

n∑
i=1

zi = (σk)2

yi, xj ∈ {0, 1} ∀i, j = 1, 2, ..., n
zi ≥ 0 ∀i = 1, 2, ..., n

The problem was implemented using the Google OR-Tools Java wrapper ([Lau14]) for
the open-source mixed integer programming solver CBC developed by the organization
COIN-OR ([LH03]). A variation has also been implemented using SOS2 constraints.
However, since the Java wrapper does not allow to pass on such constraint, they must
be implemented manually and did not produce a better result.

8.3 Comparison and conclusion

The approaches described in 8.2.1, 8.2.2 and 8.2.3 have different runtimes and differ
in their solution quality. In order to determine the efficiency of the algorithms the
runtimes and errors are compared for different numbers of open RDCs in 8.3.1. A
dual method combining the enumeration approach for small problems and the DROP
heuristic for larger ones will be found to work very good, as will be described in 8.3.2.

8.3.1 Comparison of approaches

In the following at first the runtimes are compared and then the deviation in the
case of using non-optimal methods such as the DROP heuristic or piecewise linear
approximation are contrasted.

For each problem size each algorithm solves a number of randomly generated problem
instances. The average runtimes in milliseconds (ms) for one problem instance can be
seen in the next table. The time is the average it took a large number of problems. The
number of problems depended on the approach, but was chosen in such a way that the
time required to solve all problems was at least several seconds. This circumvents the
problem of computers to measure very short time intervals. A graphical representation
of the runtimes is given in figure 8.4. The y-axis is on a log scale, to accurately depict
the rapid increase in solution time in the case of the DROP heuristic.
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Number RDCs Enumeration DROP Heuristic Piecewise Linear
2 2.3 · 10−4 1.2 · 10−4 13.7
4 9.1 · 10−4 2.5 · 10−4 17.8
8 1.3 · 10−2 5.6 · 10−4 21.0
16 3.8 9.5 · 10−4 26.2
32 2.5 · 105 2.2 · 10−3 37.4

Figure 8.4: Y-axis represents runtime in [ms] on a log-scale while x-axis represents the number
of RDCs. Steeply increasing green line represents brute force enumeration, low blue
line represents DROP heuristic and high red line the piecewise linear algorithm.

As expected the brute force enumeration algorithm doubles its runtime with each
additional RDC. For 32 RDCs the solution time is already in the range of 4 minutes.
On the logarithmic scale in figure 8.4 the straight line indicates exponential growth
of the runtime required in a brute fore enumeration. The runtime for the other two
approaches grows significantly slower, but on very different levels. The red graph shows
the average runtime for one run using a piecewise linear approach. A large part of
this solution time can be attributed to setting up the connection to the solver and the
initialization of the model. Even in the case of 32 RDC locations the DROP heuristic
(blue line) can solve up to 500 subproblems per millisecond.

In the next table we see the difference on the savings. The percentage value does
not represent the difference between actual costs, because only the cost benefits qj are
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considered in the calculation10. The brute force enumeration algorithm is used as the
benchmark since it always finds the optimal solution. Each algorithm solved the same
k = 10, 000 problems for the varying number of locations. For the two approximative
approaches an approximation value fapproxi was calculated and compared with the

exact value fexacti . The total deviation δ =
∑k

i=1 f
approx
i −fexact

i∑k

i=1 f
exact
i

is computed across all
iterations.

Number Locations DROP Heuristic Piecewise Linear
2 0.0% −0.1%
3 8.0% −0.3%
4 7.4% −0.2%
6 3.5% 0.0%
8 1.9% 0.0%
12 1.2% 0.0%
16 1.0% 0.0%

As expected, the piecewise linear estimation is very accurate with a deviation lower
than −0.4% and for medium number of locations lower than −0.05%. The reason
for the decrease in the difference lies in the fact that the linear pieces increase the√
x function better, the larger x gets. Thus, as more variances are pooled together

the solutions become more and more exact. The value fapproxi ≤ fexacti , because the
square root function is concave and thus any line segment connecting two points on
the function lies below the function. Therefore, all deviations are negative.
The deviation, when using the DROP heuristic, is less predictable. For a small set

of 2 locations the heuristic yields very good results. However, in the case of 3 RDC
locations, the deviation becomes relatively large. As the number of RDC locations
grows, this deviation decreases again. A main reason for the poor performance, when
the number of RDCs lies between three and six is the greedy nature of the heuristic.
The concave nature of the safety stock function leads to a very small saving, when
the first RDC should be dropped. The small safety stock saving often does not offset
the larger saving qj . However, if multiple locations had already been dropped, then
the algorithm would often continue to drop even more, because then the safety stock
savings are larger. As the number of locations gets larger than six, a different effect
kicks in. Since the variances start adding up, it becomes more and more attractive
to supply an RDC via a CDC, because the additional cost is almost negligible. Thus,
when very few locations ought to be dropped, the DROP heuristics tendency to utilize
the CDC becomes the right strategy.
The deviations are graphically depicted in figure 8.5.

10Savings must be considered in relation to total costs. Saving 1 Euro from total costs of 2 Euros is
a significantly larger change than saving 1 Euro given total cost of 1000 Euros.
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Figure 8.5: Drop heuristic has increased precision as number of locations grows. Piecewise
linear solutions are always very close to optimal.

8.3.2 Selection of best method
Assume a set of 10 products, 4 open RDCs and 100 individuals per generation of the
genetic algorithm. Then N = 10 · 100 = 103 flow problems must be solved, with each
one requiring Tit = 17.8ms to be solved. Thus, solving all the N flow problems of one
generation would take T = N · Tit = 103 · 17.8ms = 17.8s. This is too much time, since
the algorithm needs to go through several thousand generations and even for a mere
1, 000 generations, almost 5 hours would have to be spent only on the flow problems.

Runtime can also become a problem with the brute force enumeration algorithm,
as the number of open RDC locations increases to ten and beyond. However, for
small problems in the range of 2 to 8 the required time is still relatively short and
the approach can be used. Thus, for such a small number of RDCs it is reasonable to
use the exact enumeration approach, especially because the DROP heuristic performs
poorly in that range.
Once the problem becomes larger the DROP heuristic provides a better trade off

between a small error and a still very short runtime. Therefore, in the experiments
in the next chapter, problems with 8 or more RDCs will be solved using the DROP
heuristic and smaller ones with the enumeration approach. For comparison, the results
will also be compared to those of the purely DROP heuristic approach.
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Since the results obtained from a heuristic are very unlikely, and never with certainty,
optimal, the quality of the solutions must be checked. To do this, multiple questions
should be answered.

• How close is the solution to the optimal solution?
The gap between the best found solution and the optimal solution should be as
small as possible.

• How stable is the solution?
Genetic algorithms always depend on an element of chance. However, a stable
algorithm should generate similar solutions in each run and converge towards
solutions with a similar objective value.

Two problem instances of different sizes will be compared in this chapter. One is
a small manually generated problem (M) with 100 customer clusters, 10 potential
RDC locations and 5 CDC locations. The 10 products are produced in 5 factories.
This yields a total of 1000 (product - customer) pairs and 20000 (prouct - customer
- sourcing location) triples. Multiple tests with regard to the parametrization will
be performed on the test instance (M). These tests look at the effect of increases in
inventory cost and how changes to the flow problem logic and crossover probability
calculation impact the algorithm.
Additionally, the algorithm will be tested on a large real-life problem set (R) con-

taining 387 customers, 20 RDCs, 6 CDCs and 239 different products coming from 18
factories.

9.1 Randomly generated problem instance (M)
Based on discussion with practitioners the assumptions for a simplified model were
laid out. The model (M) was to include varying demands across the map and a varied
product spectrum. It was randomly generated. The parameters will be outlined in the
following.
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Customers are located around the points (±4,±4) by adding random numbers with
distribution N(0, 1) to these four points. The RDCs were then distributed randomly
with each coordinate being given by X + sgn(X) and X ∼ N(0, 2). The CDC locations
were placed closer around the center with distribution N(0, 2). Factories were randomly
distributed across the entire plane with distribution N(0, 3).

Such a network is depicted in figure 9.1. In the figure white circles represent customers.
The RDCs are depicted as blue circles, the CDCs ad red diamonds and the source
locations as green triangles. The locations are referenced by the number next to them.

Figure 9.1: Example of a randomly generated network

The operating cost of a CDC location k is given by the function

fwck = f(xk) = 105

(xk1)2 + (xk2)2

and the operating cost of an RDC location j is given by the function

fwcj = f(xj) = 2(104)
(|xj1| − 4)2 + (|xj2| − 4)2

Thus, a central warehouse is cheaper the further it is away from the center of the map.
Analogously, a regional warehouse is cheaper, the further it is away from one of the
four concentrations of customer locations.
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In a next step, random demands were generated based on product and quadrant.
This attempts to model regionally differing product demands and strength of economic
activity. The weekly base demand µbi of a product i depends on a random variable
X ∼ N((i− 1) mod 5 + 1, 10). The number of order lines per year is assumed to be
given by a random variable Y ∼ Pois(5) and the coefficient of variation σ

µ = 3 for all
locations.
Products 1 to 5 have high demand at locations in quadrants one and two, while

products 6 to 10 have high demand at locations in quadrants three and four. High
demand in a region means, that the base demand rate is multiplied with a factor of 2.
Analogously, quadrants one and three have strong economies, which means, that the
demand in these regions is again multiplied with 2. Thus, product 1 would have an
expected weekly base demand of µ1

i = 4 at locations in quadrant one, while it would
only have an expected weekly base demand of µ4

i = 1 at locations in quadrant three.
In a next step, for each product i the characteristics cost, weight, source factory, lead

time and demand class were defined. We let products i and i+ 5 for i ∈ {1, 2, 3, 4, 5}
be identical with regards to their properties.

Product Cost Weight Source Lead time Demand Class
1 16 2 1 2 1
2 8 1 2 2 1
3 4 0.5 3 2 2
4 2 0.25 4 4 3
5 1 0.125 5 8 3
6 16 2 1 2 1
7 8 1 2 2 1
8 4 0.5 3 2 2
9 2 0.25 4 4 3
10 1 0.125 5 8 3

Distance dab between any two locations a and b is given by the euclidean distance
metric. Given a shipment weight w the freight costs are calculated based on the formula
fc = dab

√
w + 1. Cost of an outbound shipment is equal to 0.5 at all locations.

9.1.1 General behavior of algorithm
In the following the time required to find a solution, the precision and the stability of
the algorithm with respect to problem set (M) will be studied.
The heuristic quickly finds good solutions. In figure 9.2 the average objective value

in the case of inventory holding cost of 0.5 over ten runs of the algorithm is depicted11.

11Only the value of every 10th generation is depicted for display reasons
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It can be seen that in the first iterations large improvement steps are still being made,
but later on there are fewer and smaller improvements. In the first few iterations a
cluster of solutions forms around the value 108, 000. The subsequent improvements are
a result of the introduction of elitism and thus, focusing in more detail on the already
found ”good” solutions.

Figure 9.2: Graph of objective value of best individual in a generation.

Stability of solution
The algorithm for the same problem (M) was run ten time. The objective value

across all ten runs was almost identical. The best individual across all ten iterations had
a cost of 103, 715 Euros while the ”worst best” individual had a cost of 103, 736. This
is a difference of just 0.02%. In addition to the found objective values not deviating
much, it was also observed that the found solutions are very stable.

When looking at the ranking of the top ten one sees the same order of best to eighth
best in every run, with the exception of two individuals with similar objective values
swapping places in one run. This indicates that the algorithm is highly stable.

Required solution time
The algorithm was run on a Intel Core 2 Duo CPU P8600 computer with 2.40GHz

and 4GB RAM using a 64-bit Windows 7 operating system. The maximum number
of generations was fixed at 25, 000 and the algorithm was to terminate prior to this
maximum if no improved individual had been found for 5, 000 generations. It took
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approximately 376 seconds or 6.26 minutes. Thus, the ten runs take slightly more than
one hour. The average number of iterations was 22, 707 with 7 runs terminating due
to the non-improvement for 5, 000 generations. The computations necessary for one
generation took on average 16.54ms.

9.1.2 Effect of inventory holding cost
The effect of inventory holding cost impacts the structure of the solution. The algorithm
was again run ten times for 25, 000 iterations each on the instance (M) with an inventory
holding cost factor of 0.1, 0.5, 1 and 5. The results of the experiments are summarized
in the following table.

Inventory holding cost Share of inventory cost Average number of open RDCs
0.1 9.7% 5.12
0.5 28.3% 3.37
1 30.7% 2.15
5 63.0% 0.5

As expected, inventory costs increase as a share of total cost from 9.7% to 66.0% as
the inventory holding cost factor increases from 0.1 to 5. At the same time the average
number of open RDCs within the top ten individuals decreases from 5.12 to 0.5. Here
it is important to notice that all top 5 solutions only had the CDC and no RDC. Since
there are only 5 possible combinations with no RDC, the remaining 5 top ten locations
had to have at least one.
The fittest individual out of all twenty runs is depicted in figure 9.3. In figure 9.3a

the best solution found was to open one CDC in the center of the map and one RDC
in each of the four regions. As inventory holding costs increase, RDCs are being closed.
In 9.3b there is no longer an RDC in the upper right quadrant. Rather, the CDC
moves slightly higher and supplies that region directly. This trend continues in 9.3c.
As the inventory holding cost factor grows to unrealistic heights, only the CDC at
location 1 is used. In figure 9.3d it can be seen that no RDCs are opened.

9.1.3 Effect of changes in algorithm parameters
In the following, the impact of using only the DROP heuristic for solution of the flow
problem is studied. Also, the convergence of individuals in the case of a purely fitness
based crossover selection as opposed to one with a minimum probability, discussed in
7.2.2, will be compared.
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(a) Inventory holding cost factor of 0.1 (b) Inventory holding cost factor of
0.5

(c) Inventory holding cost factor of 1 (d) Inventory holding cost factor of 5

Figure 9.3: The number of open distribution centers decreases as inventory holding costs
increase from figures 9.3a through 9.3d.

Comparison of DROP heuristic versus the combination of DROP heuristic and
brute force enumeration

The impact of only using the DROP heuristic as opposed to using the exact brute
force enumeration schema was negligible in the problemset (M). In the case of an
inventory holding cost factor of 0.5 the objective value was identical in both cases,
being set to be on average 103, 721. Both algorithms produced the same seven best
individuals in the same order. Runtime also was not affected greatly. The time required
for one iteration dropped from 16.54ms per generation when using the enumeration
approach by only 1.4% to 16.30ms. However, the average number of iterations increased
by 5.4%. The increase in the number of iterations is likely due to chance. A statistically
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significant amount of runs would have to be conducted. Since the impact is low either
way, this problem was not studied in greater detail.

Comparison of purely fitness based crossover selection versus minimum fitness
approach
As described in 7.2.2, two crossover probabilities were defined. The purely fitness

based probability pfi is heavily skewed towards the better individuals and assigns high-
cost individuals a very low probability. In contrast, the minimum crossover probability
pmi = 1

2(pfi + 1
|Ik|) assigns each individual a probability of at least 1

2|Ik| with |Ik| being
the number of all individuals in a generation.

In figure 9.5 the difference between the average best value in each generation12 across
ten runs is depicted. It can be seen that the purely fitness based approach outperforms
the minimum probability approach. In the initial stages prior to the introduction of
elitism the difference is significant. Then the cost difference shrinks. However, it can
be seen that the average best value using a minimum probability lies between 0 and
500 Euros higher than in the case of purely fitness based values. This corresponds to a
0% to 0.5% higher average cost.

Figure 9.4: Average higher cost of best individual of minimum probability approach per
generation

A similar, but less drastic, effect can be observed in figure 9.5 when looking at the
overall best value found so far. The difference between the two values does converge

12Only value of every 20th generation is shown for display reasons.
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to zero, but it takes the minimum probability approach longer to converge. This also
results in fewer early terminations. With the fitness probability approach three of the
ten runs did not terminate prior to the full 25, 000 generations. This number goes up
to eight of ten in the case of minimum probabilities.

Figure 9.5: Average difference of best value found for minimum probability and fitness based
probability per generation

9.2 Real-life problem instance (R)
In this section a real-life problem instance will be studied. This model includes 16, 257
(product - customer) pairs which represent demand at 389 distinct customer locations
for 239 distinct products13. There are 20 RDC locations and 6 potential CDC locations.
There are 18 source locations at which the products are manufactured. Inventory
holding cost is set at 0.34 and the α-service level is set to 98% for A parts, 95% for
B-parts and 90% for C-parts.

With regards to the algorithm parameters, the maximum number of iterations is
kept at 25, 000 and the maximum number of iterations without improvement is set
at 5, 000. The number of individuals was decreased to 50 to speed up the algorithm.
Each location gene is mutated with a probability of 0.05 and each assignment gene

13Most customers do not have demand for all products. Therefore, the number of (product -
customer) pairs is a smaller number than the product of the number of products and the number of
customer locations.
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is mutated with a probability of 0.01. The crossover probability is purely based on
individual fitness pfi . The algorithm was again run ten times.

The total cost was equal to 19.442 million Euros in all ten runs. Again, the solutions
proved to be very stable, as the order of the top ten individuals was identical over all
ten runs. The optimal solution for the problem had one CDC and an additional RDC.
In the second best solution an additional RDC was opened.
It took on average 9, 360 generations to arrive at the solution. This corresponds

to approximately 172 minutes. Thus, the calculations in one generation required 1.1
seconds.
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In this thesis a mixed-integer non-linear program was formulated to extend the tra-
ditional facility location - allocation problem in multiple directions. Different flows
of multiple products were modeled, which increased the problem size. The problem
also became significantly more complex, because two levels of distribution centers were
considered. The extension which changed the problem the most was the introduction
of non-linear inventory costs. In combination with the extension to a multi-echelon
network, the problem became too complex to be solved with linear optimization
techniques.
To still obtain good solutions for this mixed-integer non-linear program a genetic

algorithm heuristic was proposed. The opening decision of the facilities and the
assignment of customers was determined for all the individuals of a generation using
the genetic information. Then the optimal product flow between non-customer locations
was calculated. This problem was simpler, because customer demands had already
been assigned to the distribution centers. After the cost of all individuals had been
calculated, three tools of genetic algorithms, crossover, mutation and elitism, were used
to generate the new, and hopefully better, individuals of the following generation.

Three algorithms to solve the product flow problem were compared. The algorithms
were a brute force enumeration approach, a DROP heuristic and a piecewise linear
approximation. A combination of computationally inefficient, but exact, brute force
enumeration for small problems and a greedy heuristic for larger problems was found
to be quite effective.

The algorithm was then tested on a small, randomly generated problem instance (M).
On this instance various tests were conducted to examine the influence of changes to
modeling and algorithmic parameters. It was found that the algorithm was very stable
and was able to obtain the solution within a very short time of just a few minutes.

Additionally, the algorithm was tested on a real-life problem (R) with a large number
of distinct products and more than 300 customer locations.

The model could be extended in multiple directions. In realistic scenarios transporta-
tion costs are not necessarily linear in the quantity. Rather, they display economies
of scale and are concave in the total quantity. Moreover, the freight mode, especially
whether a shipment is send as a pallet or as a small parcel, greatly impacts transporta-
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tion cost. Freight mode selection is very complex, but could make the model more
realistic.
The restriction on only one CDC, while frequently sensible, does not always hold.

Especially in global networks there may be two or three distinct central distribution
centers located in the Americas, the Asia-Pacific area or in Europe. A larger number
of CDCs would greatly complicate the flow problem. The DROP heuristic would have
to be modified. Such an extension would have an even bigger impact on the enumera-
tion approach, because an additional sourcing option would change the runtime from
O(2n) to O(3n). Thus, a new approach to the flow problems would have to be developed.
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To run the genetic algorithm an installation of Eclipse, available at www.eclipse.org must
be downloaded and installed. When starting eclipse the folder ”Genetic_Algorithm”,
which is included in the attached DVD, must be selected as the workspace. In eclipse
open the file ”Run” and set the string variable ”directory” to the path containing the
desired input folder. This can be one of the folders

• ”Genetic_Algorithm_MA”

• ”Genetic_Algorithm_Large”

In order to run the piecewise linear parts of the algorithm it is necessary to install
the Google OR-tools software [Lau14] available at http://code.google.com/p/or-tools/.
Follow the instructions provided under the link ”Getting started” to install the Java
wrapper and the CBC solver. To run the experiments detailed in the flow problems,
open the workspace ”System_Location _Assignment _Algorithms”. Right click on the
project and click on the menu ”Configure Build Path”. There, select ”Add External
JARs” and select the file ”jnilinearsolver.dll” located in the folder \lib in the Google
OR-tools folder. Then, the code can be run from Eclipse.
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