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Abstract

The focus of this dissertation is on efficient parameter estimation and uncertainty quan-

tification in high dimensional seismic tomography within the Bayesian spatial modeling

framework. Seismic tomography is an imaging technique in geophysics used to infer the

three-dimensional seismic velocity structure of the earth’s interior by assimilating data

measured at the surface. The research within this dissertation consists of two pillars:

(1) We present a Bayesian hierarchical model to estimate the joint distribution of earth

structural and earthquake source correction parameters. We construct an ellipsoidal

spatial prior which allows to accommodate the layered nature of the earth’s mantle.

With our efficient Markov chain Monte Carlo algorithm (MCMC) we sample from

the posterior distribution for large-scale linear inverse problems and provide precise

uncertainty quantification in terms of parameter distributions and credible intervals

given the data.

(2) We develop and implement a spatial dependency model of the earth’s three-dimen-

sional velocity structure based on a Gaussian Matérn field approximation using the

theory of stochastic partial differential equations (Lindgren et al., 2011). We carry

out the uncertainty quantification of the high dimensional parameter space using

the integrated nested Laplace approximation (INLA) (Rue et al., 2009).

Both modeling approaches are applied to a full-fledged tomography problem. In particular

the inversion for the upper mantle structure under western North America is facilitated.

It involves more than 11,000 seismic velocity and source correction parameters using seis-

mological data from the continental-scale USArray experiment. Our results based on the

MCMC algorithm reveal major structures of the mantle beneath the western USA with

novel uncertainty assessments. We compare both approaches and demonstrate that the

INLA algorithm substantially improves previous work based on regular MCMC sampling.

The outcome based on the INLA approach confirms the previous results while simul-

taneously capturing the spatial dependencies caused by the earthquake sources and the



receiver stations. The statistical misfit is reduced by about 40% and the computing time

shows a speedup of about 1.5 to 2 times.



Zusammenfassung

Das Thema dieser Dissertation ist die effiziente Parameterschätzung und Unsicherheit-

squantifizierung in hochdimensionaler seismischer Tomographie mit Hilfe von Bayesia-

nischen räumlichen Modellierungsmethoden. Seismische Tomographie ist ein Verfahren

in der Geophysik, um die drei-dimensionale Geschwindigkeitsstruktur der seismischen

Wellenausbreitung im Erdinneren mit Hilfe der an der Oberfläche aufgenommenen Daten

zu bestimmen. Die Vorgehensweise und Hauptforschungssergebnisse dieser Dissertation

basieren im Wesentlichen auf den folgenden zwei Säulen:

(1) Die Verteilungen der seismischen Geschwindigkeitsstruktur und der Parameter der

Erdbebenquellen werden mit Hilfe eines Bayesianischen hierarchischen Modells ge-

schätzt. Wir konstruieren dazu eine ellipsoidische räumliche Priori-Verteilung, die

die geschichtete Erdmantelform beschreibt. Mit unserem effizienten Markov Chain

Monte Carlo Algorithmus (MCMC) können wir von der Posteriori-Verteilung für

das lineare Inverse Problem Stichproben ziehen. Dies erlaubt eine präzise Quan-

tifizierung der Unsicherheit der Parameterschätzung in dem man die Bayesianischen

Konfidenzintervalle angibt.

(2) Ein räumliches Abhängigkeitsmodell wird für die drei-dimensionale Struktur der

Wellengeschwindigkeiten mit Hilfe einer Approximation des Gaußschen Matérn-

Zufallsfeldes entwickelt. Diese Approximation basiert auf der Theorie der stochas-

tischen partiellen Differentialgleichungen (siehe auch Lindgren et al., 2011). Wir

führen die Unsicherheitsquantifizierung des hochdimensionalen Parameterraums mit

Hilfe der Methode der integrierten geschichteten Laplace Approximation (INLA)

(Rue et al., 2009) aus.

Wir wenden beide Modellierungsansätze auf das hochdimensionale Tomographieproblem

der Inversion der obereren Mantelstruktur unter dem Westen der USA an. Diese beinhaltet

mehr als 11.000 seismische Geschwindigkeits- und Quellenkorrekturparameter und circa



53,000 seismologische Daten aus dem kontinentalen USArray-Experiment. Unsere Ergeb-

nisse aus dem MCMC-Verfahren offenbaren wichtige Strukturen des Erdmantels unter

dem Westen der USA mit Unsicherheitseinschätzungen. Ein Vergleich der beiden Ansätze

zeigt, dass der INLA-Algorithmus die früheren Ergebnisse, die mit der MCMC-Methode

gewonnen wurden, erheblich verbessert. Das INLA-Verfahren liefert die gleichen Ergeb-

nisse wie die aus dem MCMC-Ansatz, gleichzeitig erfasst es räumliche Abhängigkeiten

jeweils zwischen den Erdbebenquellen und den Messstationen. Weiterhin verringert sich

der statistische Misfit um circa 40% und eine Rechenzeit wird um den Faktor 1,5 bis 2

verbessert.
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Chapter 1

Introduction

This dissertation is based on two papers dealing with parameter estimation and uncer-

tainty quantification in high-dimensional inverse problems of seismic tomography using

a Bayesian framework (Zhang et al., 2013a,b). In the first article we develop and imple-

ment a Bayesian hierarchical linear model using an efficient MCMC algorithm and apply

it to the inversion for the upper mantle structure under western North America. This

involves more than 11,000 seismic velocity and earthquake source parameters and 53,000

data observations. The second paper extends the Bayesian model of the first paper by

incorporating spatial dependency of the receiver and source data. It requires a spatial

modeling technique suitable on a three-dimensional space.

Research context: seismic tomography

Seismic tomography is a geophysical imaging method that allows to estimate the three-

dimensional structure of the earth’s deep interior, using observations of seismic waves

made at its surface. Seismic waves generated by moderate or large earthquakes travel

through the entire planet, from crust to core, and can be recorded by seismometers any-

where on earth. They are by far the most highly resolving wave type available for exploring

the interior at depths to which direct measurement methods will never penetrate (tens

to thousands of kilometers). Seismic tomography takes the shape of a large, linear(ized)

inverse problem, typically featuring thousands to millions of measurements and similar

numbers of parameters to solve for.

To first order, the earth’s interior is layered under the overwhelming influence of grav-

ity. Its resulting, spherically symmetric structure had been robustly estimated by the

1



CHAPTER 1. INTRODUCTION 2

1980’s (Dziewonski and Anderson, 1981; Kennett and Engdahl, 1991), and is character-

ized by O(102) parameters. Since then, seismologists have been mainly concerned with es-

timating lateral deviations from this spherically symmetric reference model (Nolet, 2008).

Though composed of solid rock, the earth’s mantle is in constant motion (the mantle ex-

tends from roughly 30 km to 2900 km depth and is underlain by the fluid iron core). Rock

masses are rising and sinking at velocities of a few centimeters per year, the manifestation

of advective heat transfer: the hot interior slowly loses its heat into space. This creates

slight lateral variations in material properties, on the order of a few percent, relative to

the statically layered reference model. The goal of seismic tomography is to map these

three-dimensional variations, which embody the dynamic nature of the planet’s interior.

Beneath well-instrumented regions – such as our chosen example, the United States –

seismic waves are capable of resolving mantle heterogeneity on scales of a few tens to a few

hundreds of kilometers. Parameterizing the three-dimensional earth, or even just a small

part of it, into blocks of that size results in the mentioned large number of unknowns, which

mandate a linearization of the inverse problem. Fortunately this is workable, thanks to

the rather weak lateral material deviations of only a few percent (larger differences cannot

arise in the very mobile mantle).

Seismic tomography is almost always treated as an optimization problem. Most often

a least squares approach is followed inverting large, sparse and underconstrained matrices

used the method of least squares and Tikhonov regularization (Nolet, 1987; Tian et al.,

2009; Sigloch, 2011) while adjoint techniques are used when an explicit matrix formulation

is computationally too expensive (Tromp et al., 2005; Sieminski et al., 2007; Fichtner et al.,

2009).

Quantifying uncertainties in underdetermined, large inverse problems is important,

since a single solution is not sufficient for making conclusive judgements. Our research

focuses on two types of Bayesian methods for this problem.

Study approaches:

1. Markov chain Monte Carlo method with a spatial conditional

autoregressive regressive prior

For exploring high-dimensional parameter space of the linear(ized) problem in seismic to-

mography we first apply the Markov chain Monte Carlo (MCMC) methods. MCMC meth-
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ods in seismic tomography have been given considerable attention by the geophysical (seis-

mological) community, these applications have been restricted to linear or nonlinear prob-

lems of much lower dimensionality assuming Gaussian errors (Mosegaard and Tarantola,

1995, 2002; Sambridge and Mosegaard, 2002). For example, Dȩbski (2010) compares the

damped least-squares method (LSQR), a genetic algorithm and the Metropolis-Hastings

(MH) algorithm in a low-dimensional linear tomography problem involving copper mining

data. He finds that the MCMC sampling technique provides more robust estimates of ve-

locity parameters compared to the other approaches. Bodin and Sambridge (2009) capture

the uncertainty of the velocity parameters in a linear model by selecting the representation

grid of the corresponding field, using a reversible jump MCMC (RJMCMC) approach. In

Bodin et al. (2012) again RJMCMC algorithms are developed to solve certain transdimen-

sional nonlinear tomography problems with Gaussian errors, assuming unknown variances.

Khan et al. (2011) and Mosca et al. (2012) study seismic and thermo-chemical structures

of the lower mantle and solve a corresponding low-dimensional nonlinear problem using

a standard MCMC algorithm.

We approach linearized tomographic problems (physical forward model inexpensive

to solve) in a Bayesian framework, for a fully dimensioned, continental-scale study that

features ≈53,000 data points and ≈11,000 parameters. To our knowledge, this is by far

the highest dimensional application of Monte Carlo sampling to a seismic tomographic

problem. Assuming Gaussian distributions for the error and the prior, our MCMC sam-

pling scheme allows for characterization of the posterior distribution of the parameters

by incorporating flexible spatial priors using Gaussian Markov random field (GMRF).

Spatial priors using GMRF arise in spatial statistics (Pettitt et al., 2002; Congdon, 2003;

Rue and Held, 2005), where they are mainly used to model spatial correlation. In our

geophysical context we apply a spatial prior to the parameters rather than to the error

structure, since the parameters represent velocity anomalies in three-dimensional space.

Thanks to the sparsity of the linearized physical forward matrix as well as the spatial

prior sampling from the posterior density, a high-dimensional multivariate Gaussian can

be achieved by a Cholesky decomposition technique from Wilkinson and Yeung (2002)

or Rue and Held (2005). Their technique is improved by using a different permutation

algorithm. To demonstrate the method, we estimate a three-dimensional model of mantle

structure, that is, variations in seismic wave velocities, beneath the Unites States down

to 800 km depth.

Our approach is also applicable to other kinds of travel time tomography, such as

cross-borehole tomography or mining-induced seismic tomography (Dȩbski, 2010). Other
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types of tomography, such as X-ray tomography in medical imaging, can also be recast

as a linear matrix problem of large size with a very sparse forward matrix. However, the

response is measured on pixel areas and, thus, the error structure is governed by a spatial

Markov random field, while the regression parameters are modeled non-spatially using

for example Laplace priors (Kolehmainen et al., 2007; Mohammad-Djafari, 2012). Some

other inverse problems such as image deconvolution and computed tomography (Bardsley,

2012), electromagnetic source problems deriving from electric and magnetic encephalog-

raphy, cardiography (Hämäläinen and Ilmoniemi, 1994; Uutela et al., 1999; Kaipio and

Somersalo, 2007) or convection-diffusion contamination transport problems (Flath et al.,

2011) can be also written as linear models. However, the physical forward matrix of those

problems is dense in contrast to the situation we consider. For solutions to these prob-

lems, matrix-inversion or low-rank approximation to the posterior covariance matrix, as

introduced in Flath et al. (2011), are applied to high-dimensional linear problems. In im-

age reconstruction problems Bardsley (2012) demonstrates Gibbs sampling on (1D and

2D-) images using an intrinsic GMRF prior with the preconditioned conjugate gradient

method in cases where efficient diagonalization or Cholesky decomposition of the poste-

rior covariance matrix is not available. In other tomography problems, such as electrical

capacitance tomography, electrical impedance tomography or optical absorbtion and scat-

tering tomography, the physical forward model cannot be linearized, so that the Bayesian

treatment of those problems is limited to low-dimensions (Kaipio and Somersalo, 2007;

Watzenig and Fox, 2009).

2. Integrated nested Laplace approximation using the stochastic

partial differential equation approach

In this approach we improve on three aspects of previous work using the MCMC method:

(1) spatial modeling of 3-D earth’s velocity structure, (2) spatial modeling of the data

errors and, (3) efficient Bayesian uncertainty analysis.

(1) In this methodology the parameterization of the earth’s interior is achieved through

a highly irregular tetrahedral mesh of thousands of vertices whose spaced by 60 km to

200 km of kilometers. The resulting, large number of velocity parameters represents an

approximation to the continuous seismic velocity field. For modeling the 3-D structure of

this velocity field, Zhang et al. (2013a) define a neighborhood within a fixed distance of

the velocity parameters, but the number of neighboring vertices within a fixed distance

is influenced by the geometry of the triangulation. In this approach we work in a more
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general setting, i.e., independent of the geometry of the mesh. We develop a model for the

velocity field on a continuous 3-D domain by means of the Gaussian field approximation,

based on the theory of stochastic partial differential equations (SPDE) introduced by

Lindgren et al. (2011). Gaussian fields (GF) are widely used in spatial statistics to model

spatially continuous random effects over a domain of interest. They represent processes

that exist independently of whether they are observed in a given location or not.

In the SPDE approach, the dense covariance matrix of a GF from the Matérn class

is approximated by the sparse structure of the Gaussian Markov random field (GMRF)

using a finite-dimensional basis function representation based on the finite element method

(FEM). The sparse precision matrix of the GMRF arising from the SPDE approximation

provides a huge computational advantage when dealing with Bayesian inference, since

efficient numerical methods, such as fast matrix factorization, can be applied (Rue and

Held, 2005). We show an application inverting by 8977 parameters that quantify 3-D

velocity structure of the earth’s upper mantle down to 800 km depth under the western

United States. Our 3-D approximation of a continuous GF with a GMRF opens a new

route to efficiently model dependency in many high-dimensional physical and geoscience

problems in the physics and geosciences, such as atmosphere/space tomography (Aso

et al., 2008), weather and climate forecasting (Möller et al., 2012), and medical imaging

(Harrison and Green, 2010).

(2) Modeling of spatial errors is not common in seismic inverse problems. The errors

are typically assumed to be Gaussian and no spatial correlation of the data is allowed for

by the models. Generally, real seismic data observed at the surface are spatially dependent.

The major part of the dependency is eliminated by the physical model modeling the 3-D

velocity field. The rest may be caused by unknown spatial errors of the data observed

on earth’s surface, for example by imperfect knowledge of the characteristics of the wave

sources (earthquakes). In the approach in Chapter 4, we take into account and model

spatially correlated data errors of both source (or earthquake) and receiver (or station)

locations by means of the SPDE approach of Lindgren et al. (2011). The random field over

sources is defined on a curved space over the entire earth’s surface, and the receiver field

is defined on a curved space that covers the western United States. With prediction maps

we can identify locations at which the data may not be well explained by the physical

model and may show a systematic error at the sources or receivers. As in the Kriging

methodology, we produce maps of optimal predictions and associated prediction standard

errors from incomplete and noisy spatial data errors (Cressie, 1993). General Kriging

methods in large-scale data sets can be found in Furrer et al. (2007) and Banerjee et al.
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(2008).

(3) Along with the SPDE approach, the Bayesian inference in our application is car-

ried out by the integrated nested Laplace approximation (INLA) algorithm developed in

Rue et al. (2009). INLA is an algorithm tailored to the class of latent Gaussian models.

It exploits deterministic nested Laplace approximations and provides a faster and more

accurate alternative to stochastic simulations. It is computationally more efficient than

MCMC while yielding accurate approximations to the posterior distributions. Incorpo-

rating the powerful properties of the SPDE approach, INLA has become very popular in

Bayesian modeling of large-scale spatial data over the past years due to its computational

advantage. For example, Schrödle and Held (2011) applied INLA in a spatio-temporal

disease mapping problem. Simpson et al. (2011) proposed a new formulation of the log-

Gaussian Cox processes using SPDE/INLA and conducted inference for a data set on a

globe. Cameletti et al. (2012) considered a hierarchical spatio-temporal model for particu-

late matter concentration in northern Italy. Möller et al. (2012) applied the SPDE/INLA

methods to climate forecasting models, jointly using a copula to model the dependency

between the variables. Detailed description on the theory of the SPDE and INLA ap-

proaches, as well as many code examples can be found in Simpson et al. (2012); Lindgren

(2012); Illian et al. (2012), or at the webpage of the R-INLA package (www.r-inla.org). So

far, the SPDE approach within the INLA framework has been mainly applied to spatial

modeling of large data sets on R2 or S2 manifolds. Here we demonstrate a novel applica-

tion in a full 3-D space and deploy the INLA program for our Bayesian inference of about

13,000 seismic velocity parameters, assimilating over 53,000 observations globally. We

show that the INLA algorithm could achieve a speedup of about 1.5 to 2 times compared

to the MCMC algorithm.

Achievements

To summarize, this thesis has made several advances in statistical parameter estimation

and spatial modeling for high-dimensional seismic tomographic problems. Two Bayesian

modeling techniques have been developed. One is a sampling approach based on an effi-

cient MCMC algorithm. The other one is the INLA method based on direct approximation

to the posterior distributions. The main achievements of this dissertation are:

• We approach linearized tomographic problems in a Bayesian framework using an

efficient MCMC algorithm for sampling over 11,000 seismic velocity and source
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correction parameters. To our knowledge, this is by far the highest dimensional

application of Monte Carlo sampling to a seismic tomographic problem.

• We developed flexible spatial priors using a Gaussian Markov random field (GMRF)

for the seismic velocity anomalies in three-dimensional space.

• We calculate the precision matrix for the 3-D Gaussian Matérn field explicitly based

on the theory of the SPDEs introduced by Lindgren et al. (2011). Thereby, we

improve on earlier work on GMRF’s by modeling the continuous velocity field in

3-D using an appropriate Gaussian field approximation.

• In estimating the velocity parameters in the earth’s interior we allow for spatially

correlated data errors which depend on both source and receiver locations at its

surface.

• We adopt the INLA algorithm by Rue et al. (2009) to improve the computational

efficiency of the Bayesian inference. We show that the INLA algorithm achieves a

speedup of about 1.5 to 2 times compared to the MCMC algorithm of Zhang et al.

(2013a).

• Both approaches developed in this thesis are applied to estimate a three-dimensional

model of mantle structure, that is, variations in seismic wave velocities, beneath the

Unites States down to 800 km depth. This continental-scale study uses approxi-

mately 53,000 seismological data observations from the continental-scale USArray

experiment and reveals major structures of the mantle beneath the western USA

with uncertainty assessments on over 11,000 parameters.

Thesis organization

The remainder of this thesis is organized as follows: Chapter 2 describes the general setting

of the linear inverse problem of seismic tomography along with the geophysical forward

model and the seismic travel time data. Chapter 3 discusses the efficient Metropolis-

Gibbs sampling algorithm developed and implemented for estimating the high-dimensional

parameter vectors of seismic velocities and source corrections. These results were published

in the Annals of Applied Statistics. Chapter 4 describes the spatial modeling technique

using the SPDE approach. It applies the INLA technique to estimate parameters in 2-D

and 3-D spaces. Results of this chapter are submitted to the Royal Journal of Statistical
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Society: Series C (Applied Statistics). Both articles are co-authored with Prof. Dr. Claudia

Czado and Prof. Dr. Karin Sigloch.



Chapter 2

The linear inverse problem of seismic

tomography

In this chapter, based on Zhang et al. (2013a,b), we introduce the physics and the structure

of the seismological data. We also discuss the well-established modeling techniques in

seismic tomography. In Chapter 3 and 4 we present our statistical models tailored to this

type of tomography problem.

Every larger earthquake generates seismic waves of sufficient strength to be recorded

by seismic stations around the globe. Such seismograms are time series at discrete surface

locations, that is, spatially sparse point samples of a continuous wavefield that exists

everywhere inside the earth and at its surface. Figure 2.1 illustrates the spatial distribution

of sources (large earthquakes, blue) and receivers (seismic broadband stations, red) that

generated our data. The data consist of traveltime anomalies which indirectly reflect wave

velocity variations inside the mantle. Traveltime anomalies are derived from seismograms

by cross-correlating the observed waveform (in a suitable time window containing P-waves)

with its forward-predicted waveform computed in a (spherically symmetric) reference

model. Time lags indicate that the wave sampled seismically slow material than assumed

by the reference model, whereas traveltime advances indicate anomalously fast seismic

structure somewhere on the wave path. Seismic velocity variations as a function of location

in 3-D space are the parameters to solve for. The measure of misfit is the sum of the

squared traveltime anomalies.

Each datum yi measures the difference between an observed arrival time yobs
i of a

9
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seismic wave i (source-receiver combination) and its predicted arrival time ypred

i :

yi = yobs

i − y
pred

i .

ypred

i is evaluated using the spherically symmetric reference model IASP91 by Kennett

and Engdahl (1991). For the teleseismic P waves used in our application, this difference yi

would typically be on the order of one second, whereas yobs
i and ypred

i are on the order 600-

1000 seconds. yi can be explained by slightly decreasing the modeled velocity in certain

subvolumes of the mantle.

We adopt the parametrization and a subset of the data measured by Sigloch et al.

(2008). The earth is meshed as a sphere of irregular tetrahedra with 92,175 mesh nodes. At

each mesh mode, the parameters of interest are the relative velocity variation of the mantle

with respect to the reference velocity of spherically-symmetric model IASP91 (Kennett

and Engdahl, 1991). The parameter vector is denoted as β := (β(r), r ∈MEarth) ∈ R92,175,

where the set of mesh node MEarth fills the entire interior of the earth. The finite element

discretization on a tetrahedral mesh with basis function bj(r) at location r is given by

β(r) =

p∑
j=1

bj(r)βj, bj(ri) :=

{
1 : i = j

0 : i 6= j.
(2.1)

at the vertices ri’s and linearly interpolated for other locations using the tetrahedron

containing r (Sambridge and Gudmundsson, 1998). Since the magnitude of β(r) is only

on the order of few percent, the wave equation can be linearized around the spherical

symmetric reference earth model using finite-frequency theory (Dahlen et al., 2000):

yi =

∫∫∫
Earth

xi(r)β(r)d3r, (2.2)

where xi(r) ∈ R represents the Fréchet sensitivity kernel of the ith wavepath, that is, the

partial derivatives of the chosen misfit measure or data yi with respect to the parameters

β(r). Taking the discrete representation of the velocity field in (2.1) into account, (2.2)

takes the form

yi =

∫∫∫
Earth

xi(r)

p∑
j=1

bj(r)βjd
3r =

p∑
j=1

[

∫∫∫
Earth

xi(r)bj(r)d3r] βj =

p∑
j=1

xijβj

= x′iβ, (2.3)
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Geometrically speaking, row vector x′i maps out the mantle subvolume that would in-

fluence the travel time yi if some velocity anomaly β(r) were located within it. This

sensitivity region between an earthquake and a station essentially has ray-like character

(Figure 2.2), though in physically more sophisticated approximations, the ray widens into

a banana shape (Dahlen et al., 2000). Over the past decade, intense research effort has

gone into the computability of sensitivity kernels under more and more realistic approx-

imations (Dahlen et al., 2000; Tromp et al., 2005; Tian et al., 2007; Nolet, 2008). Since

this issue is only tangential to our focus, we chose to keep the sensitivity calculations as

simple as possible by modeling them as rays (the x′i are computed only once and stored).

We note that the dependence of xi on β can be neglected, as is common practice. This

is justified by two facts: (i) velocity anomalies β deviate from those of the (spherically

symmetric) reference model by only a few percent, since the very mobile mantle does not

support larger disequilibria, and (ii), even though the ray path in the true earth differs

(slightly) from that in the reference model, this variation affects the travel time observ-

able only to second order, according to Fermat’s principle (and analogous arguments for

true finite-frequency sensitivities, Dahlen et al. (2000); Nolet (2008); Mercerat and Nolet

(2013)). Whatever the exact modeling is, it is very sparse, since every ray or banana

visits only a small subvolume of the entire mantle – this sparsity is important for the

computational efficiency of the MCMC sampling or the INLA method.

Gathering all N observations, (2.3) can be rewritten as y = Xβ, where sparse matrix

X ∈ RN×p contains in its rows the N sensitivity kernels. The left panel of Figure 2.2

illustrates the sensitivity kernels between one station and several earthquakes (i.e., several

matrix rows). In practice, the problem never attains full rank, so that regularization

must be added to remove the remaining non-uniqueness. The linear system y = Xβ is

usually solved by some sparse matrix solver – a popular choice is the Sparse Equations

and Least Squares (LSQR) algorithm by Paige and Saunders (1982), which minimizes

‖Xβ − y‖2 + λ2‖y‖2, where λ is a regularization parameter. The effect is to remove non-

uniqueness from the system, essentially by adding a multiple of the identify matrix onto

the normal equations (Nolet, 1987; Tian et al., 2009; Sigloch, 2011).

In summary, we have formulated the seismic tomography problem as it is overwhelm-

ingly practiced by the geophysical community today. We use travel time differences yi

as the misfit criterion, that is, as input data to the inverse problem, and seek to esti-

mate the three-dimensional distribution of seismic velocity deviations β that have caused

these travel time anomalies. The sensitivity kernels x′i are modeled using ray theory, a

high-frequency approximation to the full wave equation. In the conventional optimization
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North America region
to estimate 
(~9000 grid nodes)

Earthquakes
~2000 location/
timing parameters

Wave paths

Figure 2.2: Physical setup and forward modeling of the seismic tomography problem.
Parametrization of the spherical earth. Grid nodes are shown as blue dots. The goal is
to estimate seismic velocity deviations β at ∼ 9000 grid nodes under North America,
inside the subvolume marked by the red ellipse. Red stars mark a few of the earthquake
sources shown in Figure 1. The densified point clouds, between the sources and a few
stations in North America, map out the sensitivity kernels of the selected wave paths.
Each sensitivity kernel fills one row of matrix X.
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approach, a regularization term is added, and the inverse problem is solved by minimizing

the L2 norm misfit.



Chapter 3

A Bayesian linear model for the

high-dimensional inverse problem of

seismic tomography

3.1 Introduction

In this chapter, based on Zhang et al. (2013a), we develop and implement a linear Bayesian

model to seismic tomography. This involves a high-dimensional inverse problem in geo-

physics. The objective is to estimate the three-dimensional structure of the earth’s interior

from data measured at its surface. Since this typically involves estimating thousands of

unknowns or more, it has always been treated as a linear(ized) optimization problem.

Here we present a Bayesian hierarchical model to estimate the joint distribution of earth

structural and earthquake source parameters. An ellipsoidal spatial prior allows to ac-

commodate the layered nature of the earth’s mantle. With our efficient algorithm we

sample the posterior distributions for large-scale linear inverse problems, and provide pre-

cise uncertainty quantification in terms of the posterior distributions of the parameters.

This allows to construct credible intervals given the data. We apply the method to a

full-fledged tomography problem, an inversion for upper-mantle structure under western

North America that involves more than 11,000 parameters. In studies on simulated and

real data, we show that our approach retrieves the major structures of the earth’s in-

terior similarly well as classical least-squares minimization, while additionally providing

uncertainty assessments.

15
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3.2 Setup of the statistical model

As shown in Chapter 2 the earth is parameterized as a sphere of irregular tetrahedra con-

taining 92,175 tetrahedral nodes which represent the velocity deviation parameters. Since

all 92,175 velocity deviation parameters of the entire earth are currently not manageable

for MCMC sampling, we regard as free parameters only 8977 of those parameters which

are located beneath the western U.S., that is between latitudes 20◦N to 60◦N , longitudes

90◦W to 130◦W , and 0-800km depth. Tetrahedra nodes are spaced by 60-150km. We

denote this subset of velocity parameters as βusa.

Besides velocity parameters, we also consider the uncertainty in the location and the

origin time of each earthquake source, which contribute to the travel time measurement.

Government and research institutions routinely publish location estimates for every larger

earthquake, but any event may easily be mistimed by a few seconds, and mislocated by

ten or more kilometers (corresponding to a travel duration of 1 s or more). This is a

problem, since the structural heterogeneities themselves only generate travel time delays

on the order of a few seconds. Hence the exact locations and timings of the earthquakes

– or rather: their deviations from the published catalogue values – need to be treated as

additional free parameters, to be estimated jointly with the structural parameters. These

so-called “source corrections” are captured by three-dimensional shift corrections of the

hypocenter (βhyp) and time corrections (βtime) per earthquake.

Using the LSQR method, Sigloch et al. (2008) jointly estimate all 92,175 parameters

together with these “source corrections”. Using those LSQR solutions we have two mod-

eling alternatives for the earth structural inversion with N travel delay time observations:

Model 1: yusa = Xusaβusa + ε, ε ∼ NN(0, 1
φ
IN), (3.1)

where Xusa ∈ RN×8977 denotes the ensemble of sensitivity kernels of the western USA.

NN(µ, Σy) denotes the N -dimensional multivariate normal distribution with mean µ and

covariance Σ, and the N -dimensional unity matrix is denoted by IN . In Model 1, we only

estimate the velocity parameters βusa using the travel delay time yusa ∈ RN (the path

DC) and keep the part of the travel delay time for the corrections parameters (path AB

in right panel of Figure 3.1) fixed at the LSQR solutions of βhyp and βtime estimated by

Sigloch et al. (2008). The extended model with joint estimation of source corrections is
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Figure 3.1: Schematic illustration of the components of an individual wave path.

given by

Model 2: ycr = Xusaβusa +Xhypβhyp +Xtimeβtime + ε, ε ∼ NN(0, 1
φ
IN), (3.2)

Here we apply the travel delay time ycr assuming that the part of the travel time running

through path AC is given. This given part of the travel times is again based on the LSQR

solution estimated by Sigloch et al. (2008).

The number of travel time data from source-receiver pairs is N = 53, 270, collected

from 760 stations and 529 events. The number of hypocenter correction parameters is

1587 (529 earthquakes × 3) and there are 529 time correction parameters. Sigloch (2008)

found that in the uppermost mantle, between 0 km to 100 km depth, the velocity can

deviate by more than ±5% from the spherically symmetric reference model. As depth

increases, the mantle becomes more homogeneous, and the velocity deviates less from the

reference model.



CHAPTER 3. BAYESIAN HIERARCHICAL MODEL USING MCMC 18

3.3 Estimation method

3.3.1 Modeling the spatial structure of the velocity parameters

In both models (3.1) and (3.2) we have the spatial parameter βusa, which we denote gener-

ically as β in this section. In the Bayesian approach we need a proper prior distribution

for this high-dimensional parameter vector β. To account for their spatially correlated

structure, we apply the conditional autoregressive model (CAR) and assume a Markov

random field structure for β. This assumption says that the conditional distribution of

the local characteristics βi, given all other parameters βj, j 6= i, only depends on the

neighbors, that is,

P (βi | β−i) = P (βi | βj, j ∼ i),

where β−i := (β1, ..., βi−1, βi+1, ..., βd)
′ and ’∼ i’ denotes the set of neighbors of site i. The

CAR model and its application have been investigated in many studies, such as Pettitt

et al. (2002) or Rue and Held (2005). Since the earth is heterogeneous and layered, lateral

correlation length scales are larger than over depths, and so we propose an ellipsoidal

neighborhood structure for the velocity parameters. Let (xj, yj, zj)
′ ∈ R3 be the positions

of the ith and the jth nodes in Cartesian coordinates. The jth node is a neighbor of node

i if the ellipsoid equation is satisfied, that is,(
xi − xj
Dx

)2

+

(
yi − yj
Dy

)2

+

(
zi − zj
Dz

)2

6 1.

To add a rotation of the ellipsoid to an arbitrary direction in the space we could simply

modify the vector (xi − xj, yi − yj, zi − zj)′ to R(xi − xj, yi − yj, zi − zj)′ with a rotation

matrix

R := RxRyRz,

for given rotation matrices Rx, Ry and Rz in the x, y and z directions, respectively.

The spherical neighborhood structure is a special case of the ellipsoidal structure with

Dx = Dy = Dz. Let D be the maximum distance of Dx, Dy and Dz.

For weighting the neighbors we adopt either the exponential we(·) or reciprocal weight

functions wr(·), that is,

we(dij) := exp{−3d2ij
D2 } and wr(dij) := D

dij
− 1, (3.3)
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D = 150 km and D = 300 km. Bottom: the trade-off relationship between numbers of
neighbors and the prior variance diag(Q−1(ψ)), ψ = 10, D = 150 km, w = reciprocal
weights.
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where dij is the Euclidean distance between node i and node j. The exponential weight

function is bounded while the reciprocal weight function is unbounded. Those weighting

functions have been studied by Pettitt et al. (2002) or Congdon (2003). The top panel of

Figure 3.2 illustrates the weight functions for D = 300 km.

Let ω(dij) be either we(·) or wr(·) in (3.3). To model the spatial structure of βusa

in (3.1) and (3.2), a CAR model is used. Following Pettitt et al. (2002) let βusa ∼
Npusa

(
0, 1

ηusa
Q−1(ψ)

)
with precision matrix

Qij(ψ) :=

{
1 + |ψ|

∑
i:j∼i ω(dij) : i = j

−ψω(dij) : i 6= j, i ∼ j for ψ ∈ R.
(3.4)

They showed that Q is symmetric and positive definite, and that conditional correlations

can be explicitly determined. For ψ → 0, the precision matrix Q converges to the identity

matrix, that is, ψ = 0 corresponds to independent elements of βusa. The precision matrix

in (3.4) for both elliptical and spherical cases indicates anisotropic covariance structure

and depends on the distance between nodes, the number of neighbors of each node, and

the weighting functions. The elliptical precision matrix additionally depends on the orien-

tation. The bottom panel of Figure 3.2 shows the trade-off between numbers of neighbors

and prior variance, which indicates that the more neighbors the ith node has, the smaller

is its prior variance (Q−1(ψ))ii. Posterior distribution of velocity parameters from regions

with less neighborhood information can be rough, since they are not highly regularized

due to the large prior covariances. This may produce sharp edges in the tomographic

image. However, this is a realistic modeling method since one is more sure about the

optimization solution if a velocity parameter has more neighbors. Moreover, this prior

specification is adapted to the construction of the tetrahedral mesh: regions with many

nodes have better ray coverage than regions with less nodes. In summary, the prior incor-

porates diverse spatial knowledge about the velocity parameters. Since a precision matrix

is defined, which is sparse and positive definite, it provides a computational advantage

in sampling from a high-dimensional Gaussian distribution as required in our algorithm

(shown in the following sections).
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3.3.2 A Gibbs-Metropolis sampler for parameter estimation in

high dimensions

To quantify uncertainty, we adopt a Bayesian approach. Posterior inference for the model

parameters is facilitated by a Metropolis within Gibbs sampler (Brooks et al., 2011).

Recall the linear model in (3.2),

Y = Xβ + ε, ε ∼ NN(0, 1
φ
IN),

where β := (βusa,βhyp,βtime)
′ and X := (Xusa, Xhyp, Xtime). We now specify the prior

distribution of β as

β ∼ Np (β0, Σβ) with β0 := (β0,usa,β0,hyp,β0,time)
′.

Here, p is given by p := pusa+phyp+ptime = 8977+1597+529 = 11103. The prior covariance

matrix Σβ is chosen as

Σβ :=


1

ηusa
Q−1(ψ) 0 0

0 1
ηhyp

Iphyp 0

0 0 1
ηtime

Iptime

 . (3.5)

Since we are interested in modeling positive spatial dependence, we impose that the spatial

dependence parameter ψ is the truncated normal distribution a priori, that is,

ψ ∼ N (µψ, σ
2
ψ)1(ψ > 0).

The priors for the precision scale parameters ηusa, ηhyp, ηtime and φ are specified in terms

of a Gamma distribution Γ(a, b) with density g(x; a, b) = ba

Γ(a)
xa−1 exp{−bx}, x > 0. The

corresponding first two moments are a
b

and a
b2

, respectively.

The MCMC procedure is derived as follows: The full conditionals of β are

β | y, ψ,η ∼ Np(Ω−1
β ξβ, Ω−1

β ), (3.6)

with Ωβ := Σ−1
β + φX ′X, ξβ := Σ−1

β β0 + φX ′y,

and η := (ηusa, ηhyp, ηtime). For ηusa, ηhyp, ηtime, and φ, the full conditionals are again Gamma

distributed. The estimation of ψ requires a Metropolis-Hastings (MH) step. The logarithm
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of the full conditional of ψ is proportional to

log π(ψ | y,β,η) ∝ 1

2
log |Q(ψ)| − ηusa

2
(βusa − β0,usa)

′Q(ψ)(βusa − β0,usa)−
(ψ − µψ)2

2σ2
ψ

.

For the MH step, we choose a truncated normal random walk proposal for ψ to obtain

a new sample, that is, N (ψold, σ̄2
ψ)1(ψ > 0). We use a Cholesky decomposition with

permutation to obtain a sample of β in (3.6) (Section 3.4). The method by Pettitt et al.

(2002), solving a sparse matrix equation, is not useful. Here, computing the determinant

of the Cholesky factor of Q(ψ) is much more efficient than calculating its eigenvalues, due

to the size and sparseness of Q(ψ).

3.3.3 Relationship to ridge regression

To show the relationship between our approach and ridge regression (also called Tikhonov

regularization), we consider only Model 1. For simplicity we neglect the notation “usa”

in (3.1). The analysis is also applicable to Model 2.

Let β̂
ridge

(λ) := (X ′X + λIp)
−1X ′y be the corresponding ordinary ridge regression

(ORR) estimate with shrinkage parameter λ (Hoerl and Kennard, 1970; Swindel, 1976;

Dȩbski, 2010). For given hyperparameters η, φ and ψ, the full conditional of β is

β | y, η, φ, ψ ∼ Np(Ω−1
β ξβ,Ω

−1
β ) with Ωβ := ηQ(ψ) + φX ′X and ξβ := ηQ(ψ)β0 + φX ′y.

The corresponding full conditional mean can therefore be expressed as

E[β|y, η, ψ, η] =
(
X ′X + η

φ
Q(ψ)

)−1 (
X ′y + η

φ
Q(ψ)β0

)
.

This is close to the modified ridge regression estimator

β̂
ridge

(λ,β0) := (X ′X + λIp)
−1(X ′y + λβ0),

(Swindel, 1976). We can see that if ψ → 0, then η
φ
Q(ψ) → η

φ
, which is the equivalent to

λ in the modified ridge regression. This shows that the prior precision matrix ηQ(ψ) is a

regularization matrix with parameter ψ controlling the prior covariance. As discussed in

Section 3.1, the prior covariance 1
η
Q−1(ψ) also varies with the specified weights in (3.3)

with maximum distance D and with number of neighboring nodes. For large ψ or large

weights function values, as well as large number of neighbors, the prior variances are

small, which well reflects the prior knowledge about the data coverage and parameter

uncertainty. Thus, the full conditional mean is close to the prior mean in this case.
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3.3.4 Computational issues

Since the size of the travel time data requires high-dimensional parameters to be esti-

mated, the traditional method of sampling the parameter vector β from Np(Ω−1
β ξβ, Ω−1

β )

directly, as defined in (3.6), is not efficient with respect to computing time. We instead

use a Cholesky decomposition of Ωβ. Since the sensitivity kernel X is sparse, and the

prior covariance matrix is sparse and positive definite, the matrix Ωβ remains sparse and

symmetric positive definite. Therefore, we can reduce the cost of the Cholesky decom-

positions. For this we apply an approximate minimum degree ordering algorithm (AMD

algorithm) to find a permutation P of Ωβ so that the number of nonzeros in its Cholesky

factor is reduced (Amestoy et al., 1996). In our case, the number of nonzeros of the full

conditional precision matrix Ωβ in (3.6) is about 5% of all elements. After this permu-

tation the nonzeros of the Cholesky factor are reduced by 50% compared to the original

number of non-zeros.

To sample a multivariate normal distributed vector after permutation, we follow Rue

and Held (2005). Given the permutation matrix P of Ωβ, we sample a vector v := Pβ

with

v = (L′p)
−1((L−1

p )Pξβ +Z)

where Lp is a lower triangular matrix resulting from the Cholesky decomposition of PΩβ,

and Z is a standard normal distributed vector, that is, Z ∼ Np(0, Ip). The original

parameter vector of interest β can be obtained after permuting vector v again. Rue and

Held (2005) suggested finding a permutation such that the matrix is banded. However, we

found that in our case the AMD algorithm is more efficient with regard to computing time.

Using MATLAB built-in functions, the Cholesky decomposition with an approximate

minimum degree ordering takes 8 seconds on a Linux-Cluster 8-way Opteron with 32

cores, while the Cholesky decomposition based on a banded matrix takes 15 seconds. The

traditional method without permutation requires 118.5 seconds.

3.4 Simulation study

3.4.1 Simulation setups

In this section we examine the performance of our approach for Model 1. We want to in-

vestigate whether the method works correctly under the correct model assumptions, and

how much influence the prior has on the posterior estimation. We consider five different
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prior neighborhood structures of βusa:

(0) Independent model of βusa, ψ = 0 fixed, that is, βusa ∼ Npusa(β0,
1

ηusa
Ipusa),

(1) Spherical neighborhood structure with reciprocal weight function,

(2) Ellipsoidal neighborhood structure with reciprocal weight function,

(3) Spherical neighborhood structure with exponential weight function,

(4) Ellipsoidal neighborhood structure with exponential weight function.

Note that the independent model of βusa corresponds to the Bayesian ridge estimator as

described in Section 3.3. For the weight functions in (3.3), we set Dx = Dy = 300 km and

Dz = 150 km for modeling ellipsoidal neighborhood structures, and D = 150 km for the

spherical neighborhood distance.

Setup I: Assume the solution by Sigloch et al. (2008), denoted as β̂
LSQR

usa , represents

true mantle structure beneath North America. We use the forward model Xusaβ̂
LSQR

usa to

compute noise-free, synthetic data. Then, we generate two types of noisy data, that is,

Y = Xusaβ̂
LSQR

usa + ε with

(A) Gaussian noise (ε ∼ NN(0, 1
φtr
IN), φtr = 0.4),

(B) t-noise (ε ∼ tN(0, IN , νtr), νtr = 3, corresponds to φtr = 0.333).

Although we add t-noise to our synthetic earth model β̂
LSQR

usa , our posterior calculation is

based on Gaussian errors. Additionally, we compare two priors for βusa ∼ Npusa(β0,
1

ηusa
Q−1(ψ))

to examine the sensitivity of the posterior estimates to the prior choices:

(a) β0 ∼ Npusa(β̂
LSQR

usa , 0.322Id),

(b) β0 = 0 (spherically symmetric reference model).

The priors for the hyperparameters are set as follows: ψ ∼ N (10, 0.22), φ ∼ Γ(1, 0.1)

resulting in expectation and standard deviation of 10, ηusa ∼ Γ(10, 2) resulting in expec-

tation of 5 and standard deviation of 1.6.

Setup II: In this case we examine the performance under known prior neighborhood

structures. We construct a synthetic true mantle model with two types of known prior

neighborhood structures βusa,tr ∼ Npusa(β̂
LSQR

usa , 1
ηusa,tr

Q−1(ψtr)) with ηusa,tr = 0.18 and ψtr =

10 using

(a) a spherical neighborhood structure for βusa,tr with reciprocal weights,

(b) an ellipsoidal neighborhood structure for βusa,tr with reciprocal weights.

Again, Gaussian noise is added to the forward model, that is, Y = Xusaβ̂
LSQR

usa + ε, ε ∼
NN(0, 1

φtr
IN), φtr = 0.4. Posterior estimation is carried out assuming the five different

prior structures.
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The number of MCMC iterations for scenarios in Setup I and Setup II is 3000, thinning

is 15, and burn-in after thinning is 100. For convergence diagnostics we compute the trace,

autocorrelation and estimated density plots as well as the effective sample size (ESS) using

coda package in R for those samples. According to Brooks et al. (2011), the ESS is defined

by

ESS :=
n

1 + 2
∑∞

k=1 ρk
,

with the original sample size n and autocorrelation ρk < 0.05 at lag k. The infinite sum

can be truncated at lag k when ρk becomes smaller than 0.05 (Kass et al., 1998; Liu,

2008).

3.4.2 Performance evaluation measures

To evaluate the results we use the standardized Euclidean norm for both data and model

misfits, ‖ · ‖Σy and ‖ · ‖Σβ , respectively. The function ‖x‖Σ of a vector x of mean µ and

covariance Σ is called the Mahalanobis distance, defined by

‖x‖Σ :=
√

(x− µ)′Σ−1(x− µ).

To include model complexity we calculate the deviance information criterion (DIC) (Spiegel-

halter et al., 2002). Let θ denote the parameter vector to be estimated. Furthermore, the

likelihood of the model is denoted by `(y|θ̄), where θ̄ is the estimated posterior mean of

θ, estimated by 1
R

∑R
r=1 θ

r with R number of independent MCMC samples. According to

Spiegelhalter et al. (2002) and Celeux et al. (2006), the deviance is defined as

D(θ) := −2 log(`(y|θ̄)) + 2 log h(y).

The term h(y) is a standardizing term which is a function of the data alone and does

not need to be known. Thus, for model comparison we take D(θ) = −2 log(`(y|θ̄)). The

effective number of parameters in the model, denoted by pD, is defined by

pD := Eθ[D(θ)]−D(θ̄).

The term Eθ[D(θ)] is the posterior mean deviance and is estimated by 1
R

∑R
r=1 D(θr).

This term can be regarded as a Bayesian measure of fit. In summary, the DIC is defined
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as

DIC := Eθ[D(θ)] + pD = D(θ̄) + 2pD.

The model with the smallest DIC is the preferred model under the trade-off of model fit

and model complexity.

3.4.3 Results and interpretations

Table 3.1 illustrates posterior estimation results for Setup I. It shows that the estimation

method with ellipsoidal prior structures (2) and (4) turn out to be the most adequate,

according to the DIC criterion. The standardized data misfit criteria ‖ · ‖Σy given the

estimated posterior mode β̂usa show similar results in all scenarios. However this measure

ignores the uncertainty of βusa. The criteria ‖y−Xβ̂L‖Σy and ‖y−Xβ̂U‖Σy show the data

misfit given the 90% credible interval with lower and upper quantile posterior estimates

β̂L and β̂U , respectively. These estimates give a range of the data misfit for all possible

posterior solutions of βusa and show that methods with independent prior generally yield

larger ranges of misfit values than the ones with spatial structures. This indicates that

the credible intervals of methods with spatial priors can fit the data better.

Further, methods with spatial priors in Setup I (b) show smaller model misfit under

‖ · ‖Σβ than ones with independent prior, while in Setup I (a) results with independent

priors are better. Generally, estimated posterior modes of ηusa vary considerably due to

the different prior assumptions. Models with ellipsoidal neighborhood structures have

a stronger prior (in the sense of a smaller prior variance) than models with spherical

neighborhood structure. Similarly, models with reciprocal weights have a stronger regu-

larization toward the prior mean than models with exponential weights. This means that

the posterior estimates of ηusa adapt to different prior settings. Moreover, we notice that

the estimate of the spatial dependence parameter ψ depends strongly on its prior, as the

prior mean is close to the posterior estimates of ψ in all scenarios. Table 3.2 illustrates

results from Setup II assuming known spatial structure including hyperparameters. The

DIC values indicate that our approach correctly detects the underlying prior structures

(in (a) it is prior structure (1), in (b) it is prior structure (2)). We can also observe that

our approach estimates the hyperparameters correctly. Estimated posterior modes of the

parameters from the identified model are close to their true values.

Generally, tomographic images illustrate velocity parameters as deviation of the solu-

tion from the spherically symmetric reference model (in %). Blue colors represent zones

that have faster seismic velocities than the reference earth model while red colors denote
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slower velocities. Physically, blue colors usually imply that those regions are colder than

the default expectation for the corresponding mantle depth, while red regions are hotter

than expected. In our simulation study, we assumed the true earth to be represented by

the solution of Sigloch et al. (2008), shown in the left column of Figure 3.3. The middle

and right columns of Figure 3.3 illustrate the estimated posterior modes β̂usa from Setup

I with ellipsoidal neighborhood structure and reciprocal weight for both Gaussian and

t-noises, respectively. They show that the parameter estimates from Gaussian noises are

close to the true solution while the solution from the t-noises tends to overestimate the

parameters. The magnitude of mantle anomalies is overestimated but major structures

are correctly recovered. The same effect can be seen in the last column of Figure 3.3 which

displays the estimated posterior modes of the tomographic solutions in Setup I (b). We

have overestimation since the noise is not adequate to the Gaussian model assumption.

Moreover, we also observe that tomographic solutions with the prior mean β0 6= 0 are

smoother than the ones with the prior mean β0 = 0 .

Figure 3.4 shows estimated credible intervals for the solutions of Figure 3.3. Credible

intervals for solutions with t-noises are larger than those for the Gaussian noises, as

indicated by the darker shades of blue/red colors, which denote higher/lower quantile

estimates. This implies that parameter uncertainty is greater if noise does not fit the

model assumption. The same effect can be seen for results with the prior mean β0 =

0. The bottom row of Figure 3.4 maps out how the regions differ from the reference

model with 90% posterior probability. For model-conform Gaussian distributed noises and

informative prior mean, more regions differ from the reference model with 90% posterior

probability, than if we added t-noise or used the less informative prior. In the case of an

informative prior and/or correctly modeled noise, we achieve more certainty about the

velocity deviations from the reference earth model.

3.5 Application to real seismic travel time data

In this section we apply our MCMC approach to actually measured travel time data.

The measurements are a subset of those generated by Sigloch et al. (2008). We use the

same wave paths, but only measurements made on the broadband waveforms, whereas

they further bandpassed the data for finite-frequency measurements, and also included

amplitude data (Sigloch and Nolet, 2006). Most stations are located in the western U.S.,

as part of the largest-ever seismological experiment (USArray), which is still in the process
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of rolling across the continent from west to east. Numerous tomographic studies have in-

corporated USArray data – the ones most similar to ours are Burdick et al. (2008), Sigloch

et al. (2008), Tian et al. (2009), and Schmandt and Humphreys (2010). All prior studies

obtained their solutions through least-squares minimization, which yields no uncertainty

estimates. Here we use 53,270 broadband travel time observations to estimate velocity

structure under western North America (over 11,000 parameters), plus source corrections

for 529 events (2116 parameters). We conduct our Bayesian inversion following two dif-

ferent scenarios:

Model 1: We only invert for earth structural parameters using data yusa as stated in

(3.1). For the velocity parameters we assume βusa ∼ Npusa(β̂
LSQR

usa , 1
ηusa

Q−1(ψ)) as in (3.1)

with ψ ∼ N (10, 0.52)1(ψ > 0), φ ∼ Γ(1, 0.1) and ηusa ∼ Γ(10, 2).

Model 2: We invert for both earth structural parameters and the source corrections using

data ycr as given in (3.2). The prior distributions are set to β ∼ Np(β̂
LSQR

,Σβ) as in (3.2)

and Σβ as defined in (3.5). For ψ, φ and ηusa, we adopt the same distribution as in Model

1. For the parameters of the source corrections we adopt ηhyp ∼ Γ(1, 5) and ηtime ∼ Γ(10, 2).

We use the same five prior structures (0)-(4) as in the simulation study and run the

MCMC algorithm for 10,000 iterations. The high-dimensional β vector can be sampled

efficiently in terms of ESS with low burn-in and thinning rates thanks to the efficient

Gibbs sampling scheme in (3.6). However, the hyperparameters, for example, ψβ, are more

difficult to sample. To achieve a good mixing we applied a burn-in of 200 and a thinning

rate of 25 (393 samples for each parameter) in our analysis. On average, the effective

sample size ESS values for βusa, βhyp and βtime are about 393, 393 and 327, respectively,

which indicate very low autocorrelations for most of the parameters. The ESS of both ηusa

and ψβ is about 103, while both ηhyp and φ have good mixing characteristics with ESS

values equal to the sample size, and ηtime has ESS value equal to 165. Figure 3.5 shows

as examples the parameters βusa,955 at node 955, ηusa and ψβ. The computing cost of our

algorithm is about O(n4). Sampling Model 1 with about 9000 parameters, our algorithm

needs 12 hours in 10,000 runs on a 32-core cluster, while under the same condition it

needs 38 hours for Model 2.

Table 3.3 shows the results from Model 1 (estimation of earth structure) and Model

2 (earth structure plus source corrections). For both models, results from the indepen-

dent prior structures, corresponding to the Bayesian ridge estimator, provide the best fit

according to the DIC criterion. We also run the Model 1 with prior mean β0 = 0 (the
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Figure 3.5: Convergence diagnostics: trace plot, autocorrelation and kernel density esti-
mation of the parameters βusa at node 955, ηusa and ψβ. For 10,000 MCMC iterations the
samples shown in plots are based on a burn-in of 200 and a thinning rate of 25.
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spherically symmetric reference model) and different covariance structures (0)-(2). The

DIC results for priors (0), (1) and (2) are 103,100, 103,700 and 103,370, respectively. Two

reasons may explain the selection of prior (0): (1) The data has generally more correlation

structure than the i.i.d Gaussian assumption, which can not be solely explained by the

spatial prior structure of the β-fields. However, in our simulation study where different

prior structures and the corrected data error are applied (Table 1), the DIC was able to

identify the correct models; (2) Since the data are noisy, fitting could be difficult without

a shrinkage prior. The prior in (0) can be compared to shrinkage in the ridge regression,

which is the limiting case of priors in (1) to (4). Priors in (1) to (4) do not shrink the

solutions of β-fields as much as prior (0). They better reflect the uncertainty since the

prior covariances in (1)-(4) are larger than variances in prior (0) in regions that have no

data (no neighboring nodes), and smaller in regions with lots of data (lots of neighboring

nodes).

Furthermore, the standardized data misfit criteria ‖ · ‖Σy do not show much differ-

ence between models with different prior specifications. According to the estimated 90%

credible interval, estimates using spherical prior structure show a smaller range of data

misfit in Model 1, whereas in Model 2, the independence prior shows a better result. Since

our method assumes i.i.d. Gaussian errors, the resulting residuals might not be optimally

fitted as expected. With regard to computational time, the independent prior model has a

definite advantage over other priors in both Model 1 and Model 2. The general advantage

of our Bayesian method is that the independent model yields an estimate given as the

ratio between the variance of the data and the variance of the priors corresponding to

ridge estimates with automatically chosen shrinkage described in Section 3.3, whereas in

Aster et al. (2005), Sigloch et al. (2008), Bodin et al. (2012) and all other prior work, the

shrinkage parameter (strength of regularization) had to be chosen by the user a priori.

Figure 3.6 shows the estimated posterior and prior densities of parameters in Model

2, at four different locations of varying depth. We see that parameters at locations with

good ray coverage, for example, node 5400 and node 3188, have smaller credible intervals

than parameters at locations with no ray coverage, for example, node 5564 and node

995 beneath the uninstrumented oceans. Geologically, the regions between node 5400 and

node 3188 are well known to represent the hot upper mantle, where seismic waves travel

slower than the reference velocity. This is consistent with our results in Figure 3.6: the fact

that β = 0 does not fall inside the 90% credible intervals indicates a velocity deviation

from the spherically symmetric reference model with high posterior probability. Figure 3.6

shows that the posterior is more diffuse than the prior. As mentioned in Section 3.1, the
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spatial prior for β depends on distance of neighboring nodes, number of neighbors and

orientation. The variance can be very small if the number of neighbors is very large,

as shown in Figure 3.2. Incorporating data, the information about β is updated and

thus may yield more diffuse posteriors than the priors, as we see here. The left half of

Figure 3.7 shows the estimated posterior modes of mantle structure obtained by Model

2, for independent and for ellipsoidal priors with reciprocal weights. The right half of

Figure 3.7 extracts only those regions that differ from the reference model according

to the 90% credible interval. The ellipsoidal prior results in higher certainty of velocity

deviations at a depth of 200 km, compared to the independence prior. At a depth of

400 km, the credible regions resemble each other more strongly. This confirms geological

arguments that deeper regions of the mantle are more homogeneous and do not differ as

much from the spherically symmetric reference model as shallower regions.

Many lines of geoscientific investigations provide independent confirmation of the sig-

nificantly anomalous regions of Figure 3.7. The red areas map out the hot upper man-

tle under the volcanic, extensional Basin and Range province and Yellowstone; the blue

anomalies map out the western edge of the old and cool North American craton.

The overall comparison of our solutions to earlier least-squares inversions, for example,

the model by Sigloch (2008) shown in the left column of Figure 3.3, confirms that Bayesian

inversion successfully retrieves the major features of mantle structure. The images are

similar, but the major advantage and novelty of our approach is that it also quantifies

uncertainties in the solution (which we have chosen to visualize as credible intervals here).

3.6 Discussion and outlook

Uncertainty quantification in underdetermined, large inverse problems is important, since

a single solution is not sufficient for making conclusive judgements. Two central difficulties

for MCMC methods have always been the dimensionality of the problem (number of

parameters to sample) or the evaluation of the complex physical forward model (nonlinear

problems) in each MCMC iteration (Tarantola, 2004; Bui-Thanh et al., 2011; Martin et al.,

2012).

Consider the model Y = f(β) + ε with the physical forward model f(·), high-

dimensional parameter β and error ε. In general, if the physical problem is linear (f(β) =

Xβ) and the full conditional of β is Gaussian, efficient sampling from the high-dimensional

Gaussian conditional distribution is essential for the exploration of model space. In this
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case the error ε need not necessarily be Gaussian, but may be t or skewed-t distributed

(Sahu et al., 2003; Frühwirth-Schnatter and Pyne, 2010), or a Gaussian error with a

spatial correlation such as considered in Banerjee et al. (2003). Given a sparse posterior

precision matrix (e.g. (3.6)) efficient sampling from a multivariate normal can be carried

out by Cholesky decomposition of a permuted precision matrix as discussed in Wilkinson

and Yeung (2002) or Rue and Held (2005), by using an approximate minimum-degree

ordering algorithm. A further improvement to the current sampling approach might be

to apply the Krylov subspace method from Simpson et al. (2008). This would require

substantial implementation efforts and is the subject of further research. If the forward

matrix or the prior precision matrix is not sparse, a dense posterior precision matrix for β

will result. In this case our sampling scheme is inefficient, but the model-space reduction

method developed by Flath et al. (2011) might be used instead. They exploit the low-rank

structure of the preconditioned Hessian matrix of the data misfit, involving eigenvalue cal-

culations. However, this approximation quantifies uncertainty of large-scale linear inverse

problems only for known hyperparameters, thus ignoring uncertainty in those parameters.

Eigenvalue calculation in each MCMC step can be time consuming and prohibitive for

hierarchical models with unknown hyperparameters when the posterior covariance matrix

in every MCMC step changes. Here additional research is needed.

If the full conditionals cannot be written as Gaussian (this case includes the cases of

a nonlinear f(·), a non-Gaussian prior of β or non-Gaussian, non-elliptical distributed

errors), using the standard MH algorithm to sample from the high-dimensional poste-

rior distribution is often computationally infeasible. Constructing proposal density that

provides a good approximation of the stationary distribution while keeping the high-

dimensional forward model f(·) inexpensive to evaluate has been the focus of the research

over the past years: Lieberman et al. (2010) have drawn samples from an approximate

posterior density on a reduced parameter space using a projection-based reduced-order

model. In the adaptive rejection sampling technique by Cui et al. (2011), the exact pos-

terior density is evaluated only if its approximation is accepted. The stochastic Newton

approach proposed by Martin et al. (2012) approximates the posterior density by lo-

cal Hessian information, thus resulting in an improvement of the Langevin MCMC by

Stramer and Tweedie (1999). Other random-walk-free, optimization-based MCMC tech-

niques for improving the proposal and reducing correlation between parameters have

been developed, such as Hamiltonian Monte Carlo (HMC) (Neal, 2010), Adaptive Monte

Carlo (AM) (Haario et al., 2001; Andrieu and Thoms, 2008) and several variations, for

example, delay rejection AM (DRAM) (Haario et al., 2006), differential evolution MC
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(DEMC) (Ter Braak, 2006), differential evolution adaptive Metropolis (DREAM) (Vrugt

et al., 2009), just to mention a few. However, MCMC sampling of high-dimensional prob-

lems still requires a massive amount of computing time and resources. For example, the

quasi three-dimensional nonlinear model of Herbei et al. (2008) contains about 9000 pa-

rameters on a 37x19 grid. We expect a long computing time since they use standard

MCMC sampling methods. The example by Cui et al. (2011) shows that their algorithm

achieves a significant improvement in both computing time and efficiency of parameter

space sampling for a large nonlinear system of PDEs that includes about 10,000 parame-

ters. However, their algorithm gives 11,200 iterations in about 40 days, while our problem

requires only 38 hours (on a 32-core cluster) for the same number of iterations for about

11,000 parameters.

While the future may be in effective uncertainty quantification of nonlinear physical

problems using model reduction and optimization techniques, the computing time and

resources at the moment are too demanding to explore the large model space. This thesis

demonstrates effective Bayesian analysis tailored to a realistically large seismic tomo-

graphic problem, featuring over 11,000 structural and source parameters. We deliver a

precise uncertainty quantification of tomographic models in terms of posterior distribu-

tion and credible intervals using the MCMC samples, which allows us to detect regions

that differ from the reference earth model with high posterior probability. Our approach

is the first to solve seismic tomographic problems in such high dimensions on a fine grid,

and thus provides ground work in this important research area.



Chapter 4

Bayesian spatial modeling for

high-dimensional seismic inverse

problems using the SPDE and INLA

approaches

4.1 Introduction

In this chapter, based on Zhang et al. (2013b), we study high-dimensional linearized in-

verse problems in seismic tomography by means of Bayesian spatial modeling. The same

as in Chapter 3, our goal is to estimate volumetric anomalies in seismic wave velocities,

i.e., the shapes and magnitudes of regions in the earth’s interior where seismic waves travel

faster or slower than predicted by a simple, layered earth reference model. The resulting,

3-D earth model represents the primary output of seismic tomography. In practice things

are complicated by the fact that traveltime (or other) measurements are also influenced by

near-source and near-receiver effects not accounted for by 3-D mantle anomalies. Earth-

quake characteristics are unknown a priori. We extract information about their timing and

locations from routinely assembled catalogues, but such catalogue estimates are usually

not accurate enough for our purposes. Earthquake mislocations cause traveltime anoma-

lies, which if unchecked would propagate into the solution for 3-D mantle structure. Hence

tomographers commonly introduce ”source corrections”, typically four free parameters per

earthquake (latitude, longitude, depth, and time), which are allowed to adjust optimally

during inversion. In this chapter we take a different approach and introduce a 2-D random

41
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field of traveltime anomalies, the ”source field”, to estimate traveltime anomalies due to

source mislocations. We introduce a second 2-D random field, the ”receiver field” to cor-

rect for traveltime anomalies near each receiver. Note that for simplicity we ignore the

depth of the sources and the altitude of the receivers and assume they are on the surface

of the earth here. These systematic anomalies are mostly caused by poorly known crustal

structure beneath the seismic station, although misfunctioning of the station (e.g., clock

errors) might also contribute. In contrast to conventional corrections, which are associated

with discrete source and receiver locations, our source and receiver fields are continuous

over (parts of) the earth’s surface.

To model the earth’s three-dimensional velocity structure as well as the source and re-

ceiver fields, we develop and implement a spatial dependency model based on a Gaussian

Matérn field approximation using the theory of stochastic partial differential equations

(SPDEs) from Lindgren et al. (2011). This allows for modeling spatial dependency of the

data errors caused by sources and receivers individually or jointly. Subsequently we carry

out the uncertainty quantification of the high-dimensional parameter space by using the

integrated nested Laplace approximation (INLA) (Rue et al., 2009). We provide an appli-

cation using seismological data from the continental-scale USArray experiment. Thereby,

we reveal major structures of the mantle beneath the western USA with uncertainty

assessments, and provide additionally correlation estimates between the parameters.

4.2 Setup of the statistical spatial model

An n-sphere of radius r centered at the origin, denoted by Sn, is embedded in the Euclidean

space Rn+1 and defined by Sn := {x ∈ Rn+1 : ‖x‖ = r}. Our target region of estimation

is the mantle beneath North America, a sub-mesh of the global 3-D domain (R3), which

contains 8977 free velocity parameters located between latitudes 20◦ − 60◦N , longitudes

90◦ − 130◦W , and 0 − 800 km depth. Tetrahedral nodes of the sub-mesh are spaced by

60− 150 km. From here on, we call this subset of velocity parameters “velocity field” and

denote it as βusa (as in Chapter 3). To model the spatial dependency of seismic traveltime

delay data errors, we consider the following fields. For the data from the sources (the

source field), we have a mesh covering the entire earth on a curved space in S2. For the

data from the receivers (the receiver field), the mesh is generated over the North America

region again in S2 space with vertices close to the locations of the sources and receivers

as shown in Figure 4.1.
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Figure 4.1: Triangular meshes on a S2 space with vertices located close to the locations
of sources (right) and receivers (left). Left: receivers were deployed mainly in western
North America, the dark region of dense nodes. Right: earthquakes (sources) occur over
the entire globe.

Let yi denote the ith traveltime delay datum for i = 1, ..., N as described in Chapter 2.

Further let r(i) be the receiver that recorded the ith observation yi, r = 1, ..., R. Similarly,

let s(i) be the source that caused the ith observation, s = 1, ..., S. Let ps and pr denote

the numbers of mesh vertices of the source and receiver fields on S2, respectively. Define

the mapping matrices between data and mesh vertices as

Bs := ZsAs ∈ RN×ps and Br := ZrAr ∈ RN×pr .

Here, the matrices As ∈ RS×ps and Ar ∈ RR×pr map from the vertex locations to the

positions of the sources and receivers, respectively. The matrices Zs ∈ RN×S and Zr ∈
RN×R are incident matrices defined as

Zs
is :=

{
1 : s = s(i)

0 : otherwise.
and Zr

ir :=

{
1 : r = r(i)

0 : otherwise.
(4.1)

Our data are ordered by the stations. To illustrate this consider Figure 4.2 as a toy

example, where the data y arise from (source, receiver): (1,1), (1,3), (2,1), (2,2), (3,2),

(4,1) and (4,3), respectively. The corresponding Zs and Zr for the 7 observations are
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Figure 4.2: One traveltime observation caused by a large earthquake can be recorded by
several stations and each station can record earthquakes occur at different locations.

therefore specified as

Zs =



1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1


, Zr =



1 0 0

0 0 1

1 0 0

0 1 0

0 1 0

1 0 0

0 0 1


.

Let γ ∈ Rps and ξ ∈ Rpr be the Gaussian processes on those mesh vertices including

the sources and receivers, where ps and pr are the number of vertices on the meshes for

the sources and receivers. Let pusa be number of parameters of the velocity field βusa. The
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full statistical model defined on mesh vertices of receivers and sources can be written as

Yi =

pusa∑
j=1

xtijβj +

ps∑
k=1

Bs,ikγk +

pr∑
l=1

Br,ilξl + εi

or in matrix form:

Full Model (VSR): Y usa = Xusaβusa +Bsγ +Brξ + ε. (4.2)

The term “VSR” stands for the combination of velocity, source and receiver fields. Note

that the term xij is the sensitivity kernel of the ith wavepath at node j as given in (2.3).

The matrix Xusa is the sensitivity kernel for the velocity field βusa as given in Chapter 2

and the same as the matrix Xusa in (3.1) in Chapter 3. Since the parameters are linear we

can gather all parameters and covariates together into

Y usa = Hm+ ε, (4.3)

with H := [Xusa, Bs, Br] ∈ RN×D and the random vector m := [β′usa, γ
′, ξ′]′ ∈ RD with

D = pusa + ps + pr.

Source field γ and receiver field ξ may either be used to estimate the traveltime

effects of mislocated earthquakes and uncertain near-receiver structure from scratch, or

to assess the quality of source and receiver corrections from earlier, deterministic solutions

(including their spatial correlations). We take the first approach in our synthetic study

of Section 4.4, which tests the proper functioning of our method, and the latter approach

in our study of real data (Section 4.5). There we evaluate and improve on the source

and receiver corrections obtained by Sigloch (2008), which allows for direct comparison

to the data study by Zhang et al. (2013a) (see Chapter 3), who also used the corrections

of Sigloch (2008).

Thus, we have constructed a statistical model that takes into account and estimates

the seismic velocity field inside the earth, jointly with traveltime corrections both at the

earthquake sources (source field γ) and at the seismic stations (receiver field ξ) on the

earth’s surface. In the following Section we present the estimation methods developed for

this statistical model. We adopt the stochastic partial differential equation formulation

from Lindgren et al. (2011) for the approximation of the Gaussian random field to specify

our structural parameters βusa as well as the Gaussian process parameters γ and ξ on

tetrahedral meshes in the R3 and S2 spaces, respectively.
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4.3 Estimation methods

4.3.1 An approximation to Gaussian fields with continuous Mar-

kovian structures on manifolds

Suppose U ⊆ Rd, a subset of Rd. For d = 2, u := (ux, uy) ∈ U is characterized by

fixed geographic coordinates, and if d = 3, we have u := (ux, uy, uz) ∈ U with depth

uz. Let {Z(u) : u ∈ U and U ⊆ Rd} a stochastic process or a spatial process for d > 1

(Banerjee et al., 2003). In practice, the observations will be a partial realization of that

spatial process measured at a finite set of locations {u1, ...,up}. The process is said to be

Gaussian if, for any p > 1 and any set of sites {u1, ...,up}, Z := (Z(u1), ..., Z(up))
′ has

a multivariate normal distribution (Banerjee et al., 2003). A spatial process Z is weakly

stationary if the process has a constant mean, and Cov(Z(0), Z(u)) = c(u) for all u ∈ U
(Cressie, 1993). If the covariance function c(·) only depends on the length ‖u‖ of the vector

u, then we say that the process is isotropic. In this chapter our spatial processes are set to

be weakly stationary and isotropic with mean zero. We refer to the Gaussian distributed

spatial process as Gaussian random field or Gaussian field (GF). There are a number of

parametric covariance functions in the literature. Here, we consider a particular class of

the GFs, called the Matérn random field (MF) (Note that we will later only consider a

special case of the MF). Traditionally, the Matérn random fields are zero mean Gaussian

stationary, isotropic random fields. The covariance function at location u ∈ Rd is given

by

Cov(Z(0), Z(u)) = σ2 21−ν

Γ(ν)
(κ‖u‖)νKν(κ‖u‖). (4.4)

(Cressie, 1993; Stein, 1999). The function Kν(·) is the modified Bessel function of the

second kind with the smoothing parameter ν > 0 and Γ(·) denotes the Gamma function.

ν controls the smoothness of the realized random field. For all u the marginal variance

σ2 := V ar[Z(u)] > 0 is defined as

σ2 :=
Γ(ν)

τ 2Γ(ν + d/2)(4π)
d
2κ2ν

. (4.5)

Here, τ is with a scaling parameter proportional to 1/σ2 if other parameters are fixed.

Furthermore, we have ν > 0 and d is the dimensionality of the random field which is
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either d = 2 for source/receiver fields or d = 3 for the velocity field. The parameter κ

controls the degree of spatial dependency of the random field. For more straightforward

interpretability, κ can be also specified through a function which depends on the range

parameter ρ, i.e.

κ :=

√
8ν

ρ
,

which is derived empirically by Lindgren et al. (2011). The parameter ρ means that for all

ν the spatial correlation is about 0.1 at a distance ρ (Lindgren et al., 2011). Given a fixed

ν, the larger the value of ρ is, the stronger the spatial correlation. Since the smoothing

parameter ν is difficult to estimate, and also due to the Gaussian field property which will

be introduced in the later section, we will fix ν at ν + d/2 = 2 in this chapter depending

on the dimensionality d of the random field. Given d we can obtain the value of ν, and it

results in a simplified formula for variance σ2: For d = 2, the smoothness is fixed at ν = 1

and the variance is

σ2 := 1/(4πκ2τ 2),

whereas for d = 3, we have ν = 1/2 and

σ2 = 1/(8πκτ 2).

The latter case yields the exponential covariance function, which is given by

Cov(Z(0), Z(u)) = σ2 exp(−κ‖u‖).

Gaussian fields (GFs) are the most important model class in spatial statistics with

well studied, interpretable statistical properties. However, if the dimension of the random

vector Z := (Z(u1), ..., Z(up))
′ is high, its covariance function yields a very large, dense

covariance matrix, which is computationally not feasible for inference. On the other hand,

there is a special case of Gaussian fields called the Gaussian Markov random fields (GM-

RFs) (Rue and Held, 2005; Simpson et al., 2012). A GMRF is a GF which satisfies the

conditional independence assumptions, also called the Markovian property. The Marko-

vian property is related to the definition of a neighborhood structure. This assumption

says that the conditional distribution of a random variable, say Zi, given all other variables

Zj, j 6= i, only depends on the neighbors. That is,

P (Zi|Z−i) = P (Zi|Zδi) with Z−i := (Z1, ..., Zi−1, Zi+1, ..., Zp)
′
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and more general Z−S := Zi, i /∈ S. The notation Zδi denotes the set of random variables

in the neighborhood of Zi. Following the notations of Rue and Held (2005) and Cameletti

et al. (2012), the conditional independence condition can be written as

Zi⊥Z−i,δi , | Zδi , for i = 1, ..., p.

This condition is closely related the precision matrix Q, in particular,

Zi⊥Zj | Z−i,j ⇔ Qij = 0.

The nonzero elements of Q are given by the neighborhood structure of the random field.

Therefore, the precision matrix Q of a GMRF is sparse which allows for fast computations.

In classical spatial statistics, GMRF models are mainly used in modeling areal data. In

order to benefit from the fast computational property of the GMRFs while still modeling

the continuously indexed GFs, Lindgren et al. (2011) developed the link between GFs and

GMRFs through a type of stochastic partial differential equations (SPDE). We briefly

review their results.

Let (Z1, ..., Zp) := (Z(u1), ..., Z(up))
′ be multivariate Gaussian at random locations

{u1, ...,up}. Lindgren et al. (2011) proposed to use a mesh for parameterizing the GF

(the same mesh as adopted for the physical model). They suggested a finite dimensional

basis function expansion for a continuous specification of the GF Z given by,

Z(u) ≈
p∑
j=1

ϕj(u)Zj, with ϕj(ui) :=

{
1 : i = j

0 : i 6= j
. (4.6)

The ϕj(ui) are deterministic piecewise linear basis functions. Linear interpolation is ap-

plied to the basis function ϕj(u) at points u 6= ui. Lindgren et al. (2011) showed that a

subset of Matérn fields gives a piecewise linear representation of the GF Z(u). Define

α := ν + d/2.

In particular, when α in (4.4) is an integer, the Matérn field has the piecewise linear

representation as in (4.6). In this case, the piecewise linear representation of Z(u) in (4.6)

is the stationary solution to the stochastic partial differential equation (SPDE),

(κ2 −∆)
α
2 (τZ(u)) =W(u), α := ν + d/2 (4.7)
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where ∆ is the Laplacian defined as ∆ :=
∑d

i=1
∂2

∂u2i
. Here, W(u) denotes a Gaussian

white noise process. Whittle (1954, 1963) showed that Matérn fields Z(u) on Rd (with

the covariance in (4.4)) are the only stationary solutions to the SPDE in (4.7). Lindgren

et al. (2011) further showed that for α = 2 the random vector Z := (Z1, ..., Zp)
′ in (4.6)

is a Gaussian Markov random field (GMRF) with mean zero, and its precision matrix Q

is given by

Q := τ 2(κ4C̃ + 2κ2G+GC̃−1G), (4.8)

with elements of C̃ and G given by

C̃ii :=

∫
U

ϕi(u)du and Gij :=

∫
U

∇ϕi(u)t∇ϕj(u)du, respectively.

Here, C̃ is a diagonal matrix. We integrate over the observation domain U . For the velocity

field, U is the earth’s interior. For the source field, U is the earth’s surface, and for the

receiver field, U is the curved space over the western US region (Figure 4.1). In subsequent

sections we only consider the model with ν + d
2

=: α = 2 due to computational simplicity

and software limitations. As mentioned in the previous section, for source/receiver fields

(d = 2) we have ν = 1, and for the velocity field (d = 3), we have ν = 1/2 which yields

an exponential covariance function. For theoretical results for α > 2 and d = 2 we refer

to Lindgren et al. (2011).

The technique for calculating Q is based on the finite element method (FEM). For the

theory of the FEM we refer to Hughes (1987) and Gockenbach (2006). In the context of

our model the Zj in (4.6) correspond to the velocity field given by the βj in (2.1). For

modeling β we derive the explicit form of the precision matrix Q on the R3 manifold. The

calculation technique of the 3-D field is similar to the method used in the 2-D case as

described in Lindgren et al. (2011). The difference is that each element of a 3-D mesh is a

tetrahedron instead of a triangle in a 2-D mesh and the vertices of the tetrahedra are in

R3. In this case, the volume and surface of each tetrahedron are needed for the calculation

of the precision matrix. Explicit expressions of C̃ and G matrices for one building block

of Q using tetrahedral meshes are provided in the Appendix.
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4.3.2 Model specification using the Integrated Nested Laplace

Approximations (INLA)

Bayesian inference of the model (4.2) in our study is facilitated by the MCMC-free method

– the integrated nested Laplace approximations (INLA) developed by Rue et al. (2009).

The INLA method performs deterministic inference for latent Gaussian models, where

the latent field is Gaussian, parameterized by a few hyper-parameters, and the response

can be Gaussian or non-Gaussian observations. For Gaussian observations, the accuracy

of such deterministic inference is limited only by the error in the numerical integration,

whereas for non-Gaussian observations, the approximation can be accurately carried out

by a set of Laplace approximations (Simpson et al., 2012). The INLA method has been

successfully applied to a large number of spatial problems, for example, Schrödle and

Held (2011), Cameletti et al. (2012), Illian et al. (2012). For more details of the theory of

INLA and related models we refer to Rue and Martino (2007) and Rue et al. (2009). All

calculations in our study are performed in R with the INLA software packages (www.r-

inla.org).

Recall the linear model in (4.3),

Y = Hm+ ε with m := (β′usa,γ
′, ξ′)′ =: (m1, ...,mD)′.

For simplicity we neglect the notation “usa” for the data y in this section. Assuming

stationary Gaussian fields for the parameters m, we denote θ := (τβ, κβ, τγ, κγ, τξ, κξ, φ)

to be a set of hyper-parameters. Then, the posterior distribution is specified by

π(m,θ|y) ∝ π(θ)π(m|θ)π(y|m,θ).

Assuming the hierarchical model

Y |m,θ ∼ NN(Hm,
1

φ
IN),

m | θ ∼ ND(m0, Q(θ)−1), (4.9)

θ ∼ π(θ),
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The prior precision matrix Q(θ) is given by

Q(θ) :=

 Qβ(κβ, τβ) 0 0

0 Qγ(κγ, τγ) 0

0 0 Qξ(κξ, τξ)

 . (4.10)

Here, Qβ(κβ, τβ) is the precision matrix for βusa as defined in (4.8) with the corresponding

C̃ and G for dimensionality d = 3, whereas Qγ(κγ, τγ) and Qξ(κξ, τξ) are the precision

matrices for γ and ξ for d = 2, respectively. The prior mean is denoted asm0 := (β0,0,0)′,

where for β0 we apply the LSQR solution βLSQR
usa obtained by minimizing the objective

function ‖y −Xusaβusa‖2 + λ‖βusa‖2 using the LSQR algorithm (Sigloch, 2008). The full

conditional of m can be expressed as,

m | y,θ ∼ ND(Ω−1ζ, Ω−1), with Ω := Q(θ) + φH tH, ζ := Q(θ)m0 + φH ty. (4.11)

Traditionally, the marginal posterior distributions π(m|y) and π(θ|y) are obtained by

sampling, using MCMC methods. For example, (4.11) can be sampled using the efficient

Cholesky decomposition method if the posterior precision matrix Ω is sparse. The spar-

sity of Ω is guaranteed by the sparsity of the matrix H (Rue and Held, 2005; Zhang

et al., 2013a). This is important in the INLA context. Since the sparsity of H ensures the

Markovian property of the latent field m, fast approximation using the INLA scheme is

valid and possible for this model (Simpson et al., 2012).

Following the description in Rue et al. (2009) and Simpson et al. (2012), the main goal

in INLA is to compute the marginal posterior distribution π(mi|y) of the latent Gaussian

field m. In particular,

π(mi|y) =

∫
π(mi|θ,y)π(θ|y)dθ, i = 1, ..., D. (4.12)

Rue et al. (2009) presented three approximations, denoted as π̃(mi|θ,y), for approxi-

mating the true posterior distributions π(mi|θ,y), i.e., the Gaussian, the Laplace, and

a simplified Laplace approximation. Further, the posterior distribution of the hyper pri-

ors π(θ|y) is approximated again by the Laplace approximation given by (Tierney and

Kadane, 1986)

π̃(θ|y) ∝ π(θ)π(m|θ)π(y|m,θ)

π(m|θ,y)
≈ π(θ)π(m|θ)π(y|m,θ)

π̃G(m|θ,y)

∣∣∣
m=m∗(θ)

.
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Here π̃G(m|θ,y) is the Gaussian approximation to π(m|θ,y). Using the integration points

θk, π̃(θ|y) is calculated numerically. The approximation of the marginal posterior in

(4.12), denoted as π̃(mi|y), is calculated using numerical integration, i.e.

π̃(mi|y) =

∫
π̃(mi|θ,y)π̃(θ|y)dθ ≈

K∑
k=1

π̃(mi|θk,y)π̃(θk|y)∆k

∆k are integration weights and θk are the integration points.

To wrap up, we develop the Gaussian Matérn field approximation for a R3 manifold by

means of the SPDE approach using finite dimensional linear basis functions. Thus, spatial

dependency of the velocity field as well as the source and receiver fields are specified using

the SPDE representations. The INLA approach is then applied to the GMRF to facilitate

the Bayesian inference for the high-dimensional parameter estimations.

4.4 Simulation study

4.4.1 Simulation setup

In this section we investigate the performance of our approach estimating synthetic data.

We assume that the errors ε are independently identically normal distributed i.e. ε ∼
N (0, 1) with a variance 1/φ = 1.0 s. We choose a synthetic variance of 1.0 s since it is

similar to the variance we expect from the real data. We consider the full model in (4.2)

and three reduced models as follows:

(VSR) : y = Xusaβusa +Bsγ +Brξ + ε

(VS) : y = Xusaβusa +Bsγ + ε

(VR) : y = Xusaβusa +Brξ + ε

(V) : y = Xusaβusa + ε

The synthetic traveltime data y are generated using the full model (VSR: velocity, source

and receiver fields) and estimated using the (VSR), (VS: velocity and source fields) and

(VR: velocity and receiver fields) models, respectively, since we want to examine the

performance of these models. We simulate the synthetic random fields βusa, γ and ξ using

(4.9) for both high and low spatial correlations ρ. The true hyper parameters are specified

as follows.
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• Simulated velocity field βusa in R3:

For dimensionality d = 3 and variance of the random field σβ = 1, we have κβ := 2/ρ

and τβ := 1/
√

8πκβ. We want to investigate the performance of the models when

the correlation range ρβ is high, i.e. ρβ = 0.8. Recall that in the Matérn covariance

function ρβ means the distance between vertices at which the spatial correlation is

about 0.1. It follows that the true values for κβ and τβ are fixed at κβ = 2.5 and

τβ = 0.126, respectively.

• Simulated source and receiver fields γ and ξ in S2:

For d = 2 and σγ = 1 the hyper parameters of source field parameters are given as

κγ = 2
√

2/ργ and τγ = 1/
√

4πκ2
γ (the same equations are applied for the receiver

field parameters). We want to investigate the performance of the models when cor-

relation ranges of source and receiver fields are arbitrarily fixed at high and low

values, respectively.

– Source field γ with a high spatial correlation:

We fix the true value ργ = 0.8. It follows that the values for τγ and κγ are given

by τγ = 0.080 and κγ = 3.536, respectively.

– Receiver field ξ with a low spatial correlation:

Here, the true value is ρξ = 0.3. It follows that the true values of τξ and κξ are

τξ = 0.030 and κξ = 9.428, respectively.

Although the true values of the hyper parameters can be chosen arbitrarily, the range of

parameter ρ should not exceed the range of the entire domain (the maximum distance

between two arbitrary mesh vertices) as mentioned in Simpson et al. (2012). We note that

the sphere with filling interior used for the velocity field βusa is re-scaled from a radius

of 6420 km to a radius of 20 km to avoid numerical problems (6420 km is slightly larger

than earth radius to ensure a convex mesh). However, the estimated values of the hyper

parameters κ and τ are adapted to the radius of the sphere. The parameters could be

re-scaled to obtain a model for any radius.

4.4.2 Performance evaluation measures

To assess the performance of the models, we evaluate the simulated data using the Maha-

lanobis distance, defined by ‖x‖Σ :=
√

(x− µ)′Σ−1(x− µ) with the covariance matrix

Σ. The deviance information criterion (DIC) and the effective number of parameters (de-

noted as pD) are computed using the INLA program. The model with the smallest DIC
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Figure 4.3: Synthetic true velocity field βusa and its estimated posterior mean in the model
(V: single velocity) with prior β0 = 0. Unit on the color bar is %, indicating the velocity
deviation β from the spherically symmetric reference earth model. Blue colors represent
zones where seismic velocities are faster than in the reference earth model while red colors
denote relatively slower velocities.

value is preferred with regard to both model fit and model complexity (Spiegelhalter et al.,

2002). For pD, we obtain pD ≈ D − tr(Q(θ)Q?(θ)−1), where Q(θ) is the prior precision

matrix and Q?(θ) is the posterior covariance matrix and D := −2 log(`(y|θ̄)). The term

pD can be seen as a Bayesian measure of fit. As pointed out in Rue et al. (2009), the

smaller the value pD is compared to the size of the data, the better the model fits the

data.

4.4.3 Simulation results and interpretation

Recall that the synthetic data are generated using the (VSR) model and estimated using

(VSR), (VS) and (VR) models. We show an exemplary 2-D section through the 3-D

velocity field βusa in Figure 4.3, comparing the true synthetic β-field from a depth of

300 km and its estimated posterior mean from the (VSR) model. The images show that
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our model can reconstruct the major structural features, especially the portion of the

seismic velocity field located beneath the densely instrumented western United States.

Figure 4.4 illustrates the true random fields for source and receivers (top row), as

well as their posterior mean estimates from the (VSR) model (bottom row). It shows

that the (VSR) model can recover the basic structure of the true source and receiver

fields. However, for areas with less data or less dense mesh points, structure cannot be

reconstructed as well (e.g. regions between the Antarctic, the Indian Ocean, and the

Pacific region). This is explained by the lack of sources in these regions.

The summary statistics resulting from the (VSR), (VS) and (VR) models in Table 4.1

show that the true hyper parameters can be recovered within the 95% credible intervals

from the estimates of the (VSR) and (VS) models. Estimates of (VR) can only correctly

identify the receiver field while the velocity estimate is polluted by the attempt to fit

traveltimes originating from the unmodeled source field. We also examine the performance

of the (VR) model if the synthetic receiver field is simulated with a high spatial correlation

parameter (not shown in Table 4.1), i.e., ρξ = 0.8, instead of the listed value of ρξ = 0.3.

In this case the true hyper parameters of the velocity field can be recovered within 95%

credible intervals, however the estimated mean cannot identify the true value.

The DIC and pD values measuring Bayesian complexity and data fit, as well as the

maximum likelihood value MaxLik in Table 4.2 provide the same conclusion: (VSR) and

(VS) perform about equally well according to their DIC, pD and MaxLik values, whereas

performance of (VR) is worse on all accounts: DIC and pD are higher than for (VSR)

and (VS), whereas MaxLik is lower. Although (VR) achieves lower misfit values with

respect to the measure ‖y −Hm̂‖Σy , the misfits within the estimated credible intervals

(‖y −Hm̂L‖Σy and ‖y −Hm̂U‖Σy) indicate that the uncertainty is smaller for both the

(VSR) and (VS) models.

4.5 Application to the seismic traveltime data

In this section we apply the INLA algorithm to infer the velocity field as well as the source

and receiver fields using real traveltime delay data measured by Sigloch (2008) or as de-

scribed in (3.1). Here, we use only measurements on the broadband waveforms whereas

the original data set contained additional bandpassed measurements for the same source-

receiver paths. Similar data sets for the western United States were studied by other

researchers, e.g., Burdick et al. (2008), Sigloch et al. (2008), Schmandt and Humphreys
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(2010), and Zhang et al. (2013a). Traditionally, the velocity field is estimated by mini-

mizing the L2-norm using the LSQR algorithm (Nolet, 1987; Sigloch et al., 2008; Tian

et al., 2009), whereas Zhang et al. (2013a) applied the MCMC algorithm to provide

estimates with uncertainty assessment (see Chapter 2 and 3). Here, we use broadband

traveltime observations from N = 53, 270 unique source-receiver paths to estimate over

D = pusa + ps + pr ≈ 13, 000 parameters consisting of pusa = 8977 tetrahedral nodes,

ps = 2200 source field parameters and pr = 1800 receiver field parameters. With Gaussian

error assumption we fit the data using the models (VSR), (VS), (VR) or (V) (see Section

4.4) within the INLA framework.

As prior information, we used the solution obtained by Sigloch (2008) using iterative

least-squares optimization (LSQR). This solution included a velocity field (our prior β0),

but also estimates for source corrections. We converted these corrections (for earthquake

location and time) into traveltime anomalies, and applied them to our data Y usa. Hence our

source field γ effectively evaluates the quality of their corrections, rather than correcting

for earthquake mislocations from scratch. We made this choice in the interest of direct

comparison with the results of Zhang et al. (2013a), who also accepted the corrections

obtained by Sigloch (2008).

Receiver corrections were not treated as free parameters by Sigloch (2008). Instead

they used prior models of the earth’s crustal structure, topography, and ellipticity to

compute receiver corrections. We apply these same traveltime corrections to our data Y usa,

so that effectively our receiver field ξ assesses prior information about surface structure

around the receiver, especially crustal structure, which is rather uncertain.

4.5.1 Posterior results and interpretation of the velocity, source

and receiver fields

Table 4.3 provides an overview of the performance measures of the models. Results from

(VSR) and (VS) models yield similar estimates, which are considerably better than the

results from the (VR) and (V) models with respect to model complexity (DIC) and

the maximum likelihood estimate (MaxLik). Due to the high number of parameters, the

computing time of (VSR) is significantly higher than for the models with only one or two

random fields. In summary, (VSR) or (VS) models would estimate the data better from

the perspective of DIC. With regards to computing time, the reduced models (VS) and

(V) are 3 times and 8 times less expensive than the (VSR) model, and may therefore be

preferable.
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In Figure 4.5 the posterior mean of the 3-D velocity field at a depth of 400 km below

the earth’s surface from the (VSR) and (V) models display strong similarities, but their

respective credible intervals differ in some regions. In particular, the credible intervals

from the MCMC approach in Zhang et al. (2013a) are smaller for the north-eastern re-

gion than the credible intervals from this study. Colored regions on the maps of significant

regions indicate that βusa = 0 does not fall inside the 95% credible intervals, and hence

that velocity deviation significantly differs from the spherically symmetric reference model

with high posterior probability. The maps of significant regions provide independent con-

firmation of geological interpretation of the regions: the red areas map out hotter upper

mantle regions under the volcanic provinces and plate boundary regions of western North

America (Juan de Fuca spreading ridge, Basin and Range province, Yellowstone), where

seismic waves travel slower than predicted by the globally averaged IASP91 earth model;

the blue anomalies map out the western edge of the old and cool North American craton

(Zhang et al., 2013a).

Figure 4.6 illustrates the significant regions of the estimated posterior mean of the

source and receiver fields from (VSR) including nonsignificant receiver positions. Signif-

icant regions map out the areas that differ from a zero mean field with 95% posterior

probability. The colored regions indicate that seismic traveltime delay patterns exist with

high probability at the surface and/or at the earthquake source which influence the trav-

eltime, which cannot be solely explained by the seismic velocity deviations, i.e. by the

β-field (which is already corrected for the deterministic source and receiver effects es-

timated by Sigloch (2008)). Since the estimated mean source field is very similar to its

significant regions, we only show the map of significant regions here. The obtained source

field looks rather ”white”, indicating no strong traveltime effects from mislocated sources.

This is a plausible outcome because it indicates that the deterministic source corrections

estimated by Sigloch (2008) were adequate. (In effect we chose to estimate required de-

viations from their corrections, rather than the corrections themselves. We return to this

point below.)

In the following we compare estimated posterior results from INLA with results of

the MCMC method by Zhang et al. (2013a) or in Chapter 3. The statistical model in

Chapter 3 is formulated as ycr = Xusaβusa + Xhypβhyp + Xtimeβtime + ε, where Xhyp and

Xtime are sensitivity kernels for the hypocenter and origin time corrections at earthquake

sources. The quantities βhyp and βtime are the source parameters to be estimated. The

model error ε is assumed to be i.i.d. Gaussian distributed with zero mean and a constant

variance. In Chapter 3 an ellipsoidal spatial prior on βusa is constructed, which follows
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(VSR) Significant region of estimated mean source field, in sec
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(VSR) Significant region of estimated mean receiver field, in sec

Longitude
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Figure 4.6: Inversion of real data: significant regions of the estimated posterior mean of
source (top panel) and receiver fields (bottom panels including the estimated mean field)
using the (VSR) model. Red color means faster observed arrival time than predicted
while blue color implies the opposite. Black dots indicate source and receiver locations.
While only few locations on the receiver fields are significantly different from a zero mean
field with 95% posterior probability, most parts of the estimated mean source field are
significant (not shown separately here).
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a conditional autoregressive model as defined Pettitt et al. (2002). This model is non-

isotropic and non-stationary. However, the same prior mean - the LSQR solution of β0 is

applied in both previous and this study. A Gibbs-sampling with a MH-step is adopted for

estimation. Their parameter dimension is about 11,000, which is less than the number of

model parameters of this study (≈ 13, 000).

βhyp (three free parameters per source) and βtime (one parameter per source) have

the physical meaning of source location and origin time, respectively, whereas Xhypβhyp

and Xtimeβtime are traveltime anomalies. Both Sigloch (2008) and Zhang et al. (2013a)

estimated βhyp and βtime. In principle, the INLA method is equally capable of handling

such spatially discrete corrections, but we did not attempt this due to the large number

of additional parameters and considerations of computing time. Instead, we chose the ap-

proach of estimating the continuous source field γ of traveltime anomalies, and in addition

we a priori corrected our traveltime observations Y usa using the deterministic source and

receiver corrections obtained by Sigloch (2008). These fields γ and ξ exist at all vertices of

the source and receiver field meshes, and their spatial correlations are modeled, whereas

βhyp and βtime assumes no spatial correlations and exist only at source and receiver loca-

tions. As a practical note on this rather technical subject, different tomographers choose

to treat source and receiver corrections differently. Our main purpose here was not (yet)

to quantitatively compare to existing practices, but to introduce an alternative concept

for how these corrections could be done, namely by continuous and spatially correlated

2-D random fields, and to deliver a proof of concept.

The comparison of the INLA results to earlier MCMC and LSQR inversions, e.g. the

models by Zhang et al. (2013a) and Sigloch (2008), confirms that Bayesian inference

using INLA successfully retrieves the first-order structures of earth’s upper mantle under

the densely instrumented and thus well illuminated western United States. Values at

the boundaries of the images from INLA are smoother than the results from MCMC.

Maps of significant regions resulting from (VSR), (V) and MCMC are similar. Further,

the statistical misfit ‖y − Hm̂‖Σy of model (V) in Table 4.3 shows an improvement of

about 40% over the corresponding misfit measure in Table 3.2 in Chapter 3. The MCMC

algorithm runs for over 32 CPU hours to estimate about 11,000 parameters (velocity

parameters + source correction parameters), and about 7.5 CPU hours to estimate about

8977 velocity parameters (using 10,000 MCMC runs). On the same infrastructure the

INLA program takes about 33 CPU hours to run the full model (VSR) with about 13,000

parameters (velocity parameters + source and receiver fields on S2-grids). Estimating

model (V), which contains only the 8977 velocity parameters, takes about 4 CPU hours



CHAPTER 4. BAYESIAN SPATIAL MODEL USING THE SPDE APPROACH 64

Figure 4.7: Empirical values (circles) obtained from the approximated Matérn correlation
of the 3-D velocity field for a synthetic value of κ = 14. This confirms that our 3-D Matérn
model approximates the theoretical function correctly.

with INLA. This shows that for this type of seismic tomography problems, the INLA

algorithm has a computational advantage over the MCMC method with a speedup of

about 1.5 - 2 times while delivering similar posterior mean images of the velocity fields.

4.5.2 Estimated Matérn correlation of the velocity, source and

receiver fields

Figure 4.7 illustrates the approximated Matérn correlation of one vertex in the 3-D velocity

field for a synthetic value of κ = 14 and the corresponding theoretical Matérn correlation.

This confirms that our 3-D Matérn model approximates the theoretical function correctly.

Figure 4.8 shows the Matérn correlation of one vertex in each of the estimated velocity,



CHAPTER 4. BAYESIAN SPATIAL MODEL USING THE SPDE APPROACH 65

0 100 200 300
0

0.2

0.4

0.6

0.8

1
Velocity field , node 5200,  = 126,  = 0.027

Distance in km

M
at

er
n 

co
rr

el
at

io
n,

 (
V

S
)

0 100 200 300
0

0.2

0.4

0.6

0.8

1
Velocity field , node 5200,  = 81,  = 0.06

Distance in km

M
at

er
n 

co
rr

el
at

io
n,

 (
V

R
)

0 200 400 600
0

0.2

0.4

0.6

0.8

1
Source field , node 2000,  = 87,  = 0.005

Distance in km

0 200 400 600
0

0.2

0.4

0.6

0.8

1
Receiver field , node 1600,  = 108,  = 0.007

Distance in km

Figure 4.8: Estimated Matérn correlations from (VS) and (VR) for the real data: node
#5200 of the velocity field βusa (located at 160 km depth) with posterior mean values
κ̂β = 126, τ̂β = 0.027 for (VS) and κ̂β = 81, τ̂β = 0.06 for (VR), respectively (left
panels); results from (VS): node #2000 of the source field γ with κ̂β = 87 and τ̂β =
0.005 (right top); and results from (VR): Node #1600 of the receiver field ξ with κ̂ξ =
108 and τ̂ξ = 0.007 (right bottom). Estimated correlations on each mesh node obtained
from the approximated Matérn correlation matrix using the SPDE approach (circles) are
close to their corresponding theoretical values (solid lines) which confirms the correct
approximation of our 3-D Matérn model.
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source and receiver fields from the (VS) and (VR) models. Matérn correlation of node

#5200 of the velocity field with posterior mean estimates reveals spatial correlation within

150 km, and the correlation falls to close to zero at a distance around 200 km (left panels).

The source and receiver fields (with estimates κ̂γ = 87 and τ̂γ = 0.005 for the source

field and κ̂ξ = 108 and τ̂ξ = 0.007 for the receiver field) exhibit similar spatial correla-

tions compared to the 3-D velocity field, which can be also confirmed by comparing the

relative magnitude of κ’s: the larger the value of κ is, the weaker the spatial correlation.

Weak spatial correlations present in the source and receiver fields imply that the source

correction that had been applied a priori, based on a 3-D model of the continental, crust

and source corrections explained the data well at most locations.

The mesh vertices, for which the empirical Matérn correlations are illustrated here,

are selected arbitrarily within an area away from the boundaries of the meshes. We note

that the empirical correlations can vary from the theoretical correlations if the vertices

are located at the mesh boundaries. Generally, variances at vertices close to boundaries

are much larger due to the Neumann boundary conditions (Lindgren et al., 2011; Simpson

et al., 2011). This phenomenon means that the approximation of the 3-D GF is a solution

to the SPDE, but not a stationary solution (constant variance everywhere inside the

domain). One possibility to overcome this non-stationarity is to construct a larger meshed

domain than the target domain to run the inference. The original radius of our tetrahedral

mesh for the globe is 6420 km, 50 km larger than the true radius of the earth (6371 km).

However, this may not be sufficient to generate a purely stationary field for our target

region. Theoretical solutions to avoid variance inhomogeneity is a topic of current research.

4.6 Discussion and outlook

This chapter studies high-dimensional linear inverse problems by means of Bayesian spa-

tial modeling techniques. We construct a new, computationally efficient approximation

to the velocity field on a R3-manifold using the stochastic partial differential equations

(SPDE) approach by Lindgren et al. (2011). As an exemplary application, we estimate the

3-D seismic wave velocity field in the upper mantle beneath the western United States,

while also allowing for spatial correlation structure of the data errors, which are expressed

through the source and receiver fields over the earth’s surface. In our tomographic prob-

lem, Bayesian uncertainty quantification of the random fields is carried out jointly by

the integrated nested Laplace approximation (INLA) from (Rue et al., 2009) with the
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R-INLA software. Our application to upper mantle structure involves about 13,000 pa-

rameters and over 53,000 observations. Simulation studies and real data analysis showed

that, depending on the dimensionality of the parameters, our approach using INLA per-

forms approximately 1.5-2 times faster than the MCMC method in Zhang et al. (2013a)

(Chapter 3), while delivering comparable posterior tomographic images with better sta-

tistical fits. Spatial pattern detected on the source and receiver fields imply that there

exist additional systematic errors at certain sources or receivers locations that cannot be

solely explained by the physical model and source corrections.

Our current model using INLA is limited to the assumption that the posterior dis-

tribution of the parameters has one posterior mode, in order to achieve accurate ap-

proximation of the MCMC estimates. If the posterior distribution is close to Gaussian,

the INLA approximation is exact (Rue et al., 2009). It is not applicable to estimating

parameter uncertainties in complex physical models, e.g. PDE systems, where multiple

modes exist in the posterior distributions. For a literature study on Bayesian methods for

large-scale PDE systems we refer to the discussion section in Chapter 3. An extension of

INLA methodology for mixture-distributions with multiple modes remains a current re-

search topic. INLA works for the class of Gaussian latent models with nonlinear likelihood

and/or non-Gaussian responses. For non-Gaussian data errors, such as t-distributed error,

the INLA method is computationally still too time consuming for our application. Martin

et al. (2012) extends the INLA theory beyond the scope of latent Gaussian models, where

the latent field can have a near-Gaussian distribution, another ongoing topic of research.

The SPDE approach of Lindgren et al. (2011) can be extended in several directions:

Spatial modeling techniques using the SPDE approach can be flexibly extended to non-

stationary, non-isotropic Gaussian fields, and space-time models on manifolds, by defining

a few additional space-dependent control parameters for the hyper-parameters of the ran-

dom fields (Simpson et al., 2012) (e.g., using a spline function to approximate the hyper-

parameters). Bolin (2012) extends the SPDE approach to non-Gaussian fields. Other

research focuses on the extension of the Matérn class approximation to other classes of

the continuous Gaussian fields when α in the SPDE equation (4.7) is not an integer. These

developments might be applied to our 3-D random field application in the future. For a

comprehensive discussion on the SPDE approach we refer to Lindgren (2012); Simpson

et al. (2012).

In conclusion, our application is the first example for modeling continuous Gaussian

fields in a 3-D space. It allows for spatial correlations of the data errors capturing spatial

dependency of data errors caused by earthquake sources and receivers simultaneously.
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Our application demonstrates an example of very high-dimensional parameter estimation

carried out within the INLA framework.
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Appendix A

Calculation of the precision matrix

elements on 3-D manifold

The calculation of the C̃ and G matrices are accomplished by using the theory of the

finite element method (FEM). Advanced implementation techniques can be seen in Al-

berty et al. (2002). Here, we show the explicit expression of the C̃ and G matrices for one

tetrahedron as shown in Figure A.1. Although the explicit expressions of C and B matri-

ces as part of the precision matrix Q are not applied in our study, we show them in this

appendix. Since they are important part of the SPDE approach developed by Lindgren

et al. (2011), these explicit expressions can be used for further research.

First, we denote the four vertices in a tetrahedron as

a1 := (x1, y1, z1)′, a2 := (x2, y2, z2)′, a3 := (x3, y3, z3)′ and a4 := (x4, y4, z4)′.

We also define the directional vectors vij as vij := ai − aj for i, j = 1, ..., 4 as illustrated

in Figure A.1. Every tetrahedral element in the original mesh will be calculated based on

a reference tetrahedron with the (ξ, γ, η)-coordinates. Furthermore, the cross product of

two vectors u := (ux, uy, uz)
′ and v := (vx, vy, vz)

′ is defined by

u× v := e1(uyvz − uzvy) + e2(uzvx − uxvz) + e3(uxvy − uyvx),

where e1 := (1, 0, 0)′, e2 := (0, 1, 0)′ and e3 := (0, 0, 1)′ are standard basis vectors. The

cross product of two vectors is always perpendicular to both vectors with the orientation

determined by the right-hand rule (Arfken, 1985; Bronshtein et al., 2007).
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A.1 Definitions of the basis functions and their gra-

dient.

Let ϕi(x, y, z) : R3 → R be the piecewise linear basis function in the original coordinates

as defined in (4.6). Further, we denote the piecewise linear basis functions in the reference

coordinate as ϕ̃i(ξ, η, γ) : R3 → R, i = 1, ..., 4. They are defined as

ϕ̃1(ξ, η, γ) := 1− ξ − η − γ, ϕ̃2(ξ, η, γ) := ξ, ϕ̃3(ξ, η, γ) := η, ϕ̃4(ξ, η, γ) := γ.

(A.1)

For expressing the four vertices of the tetrahedron in the (x, y, z)-coordinates by the

standard (ξ, η, γ)-coordinates, we consider the mapping F : R3 → R3. In particular for

p := (x, y, z)′ define p = F (p̃) with p̃ := (ξ, η, γ)′, then F is given by,

F :

xy
z

 =

x2 − x1 x3 − y1 x4 − z1

y2 − y1 y3 − y1 y4 − z1

z2 − z1 z3 − y1 z4 − z1


ξη
γ

+

x1

y1

z1

 =: J p̃+

x1

y1

z1


where J is the Jacobian matrix. The inverse of F is p̃ = F−1(p). Then the generic basis

function in the original coordinates can be also written as ϕi(p) = ϕ̃i(F
−1(p)) = ϕ̃i(p̃).

The gradient of the basis functions ϕi can be obtained using the chain rules, that is,

∇ϕi(p) =

(
∂F

∂p̃

)−1

∇ϕ̃i(F−1(p)) := J−1∇ϕ̃i(p̃). (A.2)

It can also rewritten as

J =

[
v21 v31 v41

]′
with directional vectors v21 := a2−a1, v31 := a3−a1 and v41 := a4−a1 in R3, as shown

in Figure A.1. Furthermore, the inverse of the Jacobian matrix can be expressed using

the cross products of vectors, i.e.

J−1 =
1

6|K|
[b2 b3 b4] ,
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due to the identity det(J) = 6|K|, where |K| denote the volume of the tetrahedron K

(Bronshtein et al., 2007). Here, bi ∈ R3 is the cross product of the two vectors that span

the triangle opposite to the vertex i in a tetrahedron, i = 1, ..., 4, (Bronshtein et al., 2007).

Further, we denote by K and K̃ the tetrahedra in the original and reference coordinates,

respectively. By putting J−1 into (A.2) we then have

∇ϕi(p) =
1

6|K|
[b2 b3 b4]∇ϕ̃i(p).

A.2 Calculation of the C̃ii element.

Recall that ϕi := ϕi(x, y, z) : R3 → R and ϕ̃i := ϕ̃i(ξ, η, γ) : R3 → R are the basis function

in the original coordinates (x, y, z) and in the reference coordinates (ξ, η, γ), respectively,

as defined in (A.1). The corresponding gradients of ϕi and ϕ̃i are ∇ϕi : R3 → R3 and

∇ϕi : R3 → R3, respectively. For the precision matrix Qij with one tetrahedron as shown

in Figure A.1 we need the matrix C̃:

C̃ii :=

∫∫∫
K

ϕidzdydx.

In particular, we have

C̃ii =

∫∫∫
K

ϕi dzdydx =

∫∫∫
K̃

ϕ̃i det(J) dγdηdξ =

1∫
0

[

1−ξ∫
0

[

1−ξ−η∫
0

ϕ̃i det(J) dγ]dη]dξ

For i = 1, this simplifies to C̃ii = det(J)
1∫
0

[
1−ξ∫
0

[
1−ξ−η∫

0

(1 − ξ − η − γ)dγ]dη]dξ = |K|
4

. After

similar algebraical calculation for i = 2, 3, 4 it follows that

C̃ =
|K|
4


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
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A.3 Calculation of the Gij element.

Given the gradients of ϕ̃, i.e. ∇ϕ̃1 = ∇(1− ξ − η − γ)′ = (−1,−1,−1)′, ∇ϕ̃2 = (1, 0, 0)′,

∇ϕ̃3 = (0, 1, 0)′ and ∇ϕ̃4 = (0, 0, 1)′, the gradient of ϕi is ∇ϕi = J−1∇ϕ̃i, i = 1, ..., 4,

which simplifies to:

i = 1 : ∇ϕ1 = J−1∇ϕ̃1 = − 1

det(J)
(b2 + b3 + b4) = − 1

det(J)
(v43 × v23) =

1

det(J)
b1

with b1 := −(v43 × v23) = v43 × v32,

i = 2 : ∇ϕ2 = J−1∇ϕ̃2 =
1

det(J)
b2, b2 := v31 × v41,

i = 3 : ∇ϕ3 = J−1∇ϕ̃3 =
1

det(J)
b3, b3 := v41 × v21,

i = 4 : ∇ϕ4 = J−1∇ϕ̃4 =
1

det(J)
b4, b4 := v21 × v31.

Then, the G matrix is given by,

Gij :=

∫∫∫
K

∇ϕ′i∇ϕj dzdydx

=

∫∫∫
K̃

(J−1∇ϕ̃i)′ (J−1∇ϕ̃j) det(J) dγdηdξ =
1

det(J)
b′ibj

∫∫∫
K̃

dγdηdξ.

Since the term
∫∫∫
K̃

dξdηdγ = 1
6

represents the volume of the standard reference tetrahe-

dron, we have Gij = 1
36|K|b

′
ibj or

G =
1

36|K|


‖b1‖2 b′1b2 b′1b3 b′1b4

b′2b1 ‖b2‖2 b′2b3 b′2b4

b′3b1 b′3b2 ‖b3‖2 b′3b4

b′4b1 b′4b2 b′4b3 ‖b4‖2

 .
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A.4 Calculation of the Cii element.

The calculation of the matrix Cij := 〈ϕi, ϕj〉Ω can be done as follows:

Cij := 〈ϕi, ϕj〉Ω

=

∫∫∫
K

ϕiϕj dzdydx =

∫∫∫
K̃

ϕ̃iϕ̃j det(J) dγdηdξ =

1∫
0

1−ξ∫
0

1−ξ−η∫
0

ϕ̃iϕ̃j det(J) dγdηdξ.

This implies that

C =
|K|
20


2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2


holds.

A.5 Calculation of the Bij element.

Let r(t) be a differentiable vector at point t ∈ R3. Further, let v(t) := r′(t) be derivative

of r(t) and T (t) := v(t)/‖v(t)‖ be the unit tangent vector. Then, the unit normal vector

is given by ~n := ~n(t) := T ′(t)/‖T ′(t)‖.
Here, 〈·〉∂Ω denotes the inner product of scalar- or vector-valued functions on the boundary

∂Ω of the domain Ω. Then, the element of the matrix Bij, defined by

Bij := 〈ϕi, ∂nϕj〉∂Ω := 〈ϕi, (∇ϕj)′−→n 〉∂Ω,

can be determined as

Bij := 〈ϕi, (∇ϕj)′−→n 〉∂Ω =

∫∫
∂(Ki∩Kj)∩∂Ω

ϕi (∇ϕj)′−→n (sT )dST (s)

=
∑

Tk∈ (∂(Ki∩Kj)∩∂Ω)

(∇ϕj)′−→n (sT )

∫∫
∂(Ki∩Kj)∩∂Ω

ϕidST (s)
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=
∑
Tk

(J−1∇ϕ̃j)′−→n (sT )

∫∫
∂(Ki∩Kj)∩∂Ω

ϕidST (s),

where Ki denotes the tetrahedra that includes the vertex i and Tk is the triangle opposite

to the vertex k for k = 1, ..., 4. Since we have∫∫
∂(Ki∩Kj)∩∂Ω

ϕidST (s) =
1

3
|Tk| =

‖bk‖
6

,

then Bij can be written as

Bij =
∑
Tk

− 1

det(J)
b′jbk

(
1

3

‖bk‖
2

)
= − 1

36|K|
∑
Tk

b′jbk‖bk‖,

where |Tk| denotes area of the triangle Tk. The vector bk denote the cross product of two

vectors that span the triangle Tk ∈ ∂(Ki ∩Kj) ∩ ∂Ω.

In the example with one tetrahedra as illustrated in Figure A.1, the triangle T4 ∈ (∂(Ki∩
Kj) ∩ ∂Ω) is the plane opposite to the vertex a4, then the contributions to the matrix B

from one triangle T4 (for k = 4), denoted as B(T4), is calculated as:

B(T4)ij = − 1

36‖K‖
b′jb4‖b4‖, for i = 1, ..., 3 and j = 1, ..., 4.

The elements B(T4)4j = 0 for all j = 1, ..., 4, since the vertex 4 is opposite to T4 and

therefore ϕ4 = 0 on the triangle T4. In matrix form, we have

B(T4) = − ‖b4‖
36|K|


b′1b4 b′2b4 b′3b4 b′4b4

b′1b4 b′2b4 b′3b4 b′4b4

b′1b4 b′2b4 b′3b4 b′4b4

0 0 0 0

 .
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Similarly to the calculation of B(T4) we obtain the summands of B for Tk, k = 1, ..., 4,

therefore the matrix B can be written as:

B = − 1

36|K|
·‖b1‖


0′

b′1

b′1

b′1

1{T1∈∂Ω} + ‖b2‖


b′2

0′

b′2

b′2

1{T2∈∂Ω} + ‖b3‖


b′3

b′3

0′

b′3

1{T3∈∂Ω} + ‖b4‖


b′4

b′4

b′4

0′

1{T4∈∂Ω}

 ·
[b1 b2 b3 b4] .

The matrix can be also expressed as

B = − 1

36|K|


0′ b′2 b′3 b′4

b′1 0′ b′3 b′4

b′1 b′2 0′ b′4

b′1 b′2 b′3 0′



‖b1‖1{T1∈∂Ω}

‖b2‖1{T2∈∂Ω}

‖b3‖1{T3∈∂Ω}

‖b4‖1{T4∈∂Ω}

 [b1 b2 b3 b4] .
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