I

Technische Universitat Miinchen
Fakultat fiir Informatik

Lehrstuhl fiir Computer Graphik und Visualisierung

Interactive Virtual Cutting of

Elastically Deformable Bodies

Jun Wu

Vollstidndiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitét

Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. N. Navab
Priifer der Dissertation: 1. Univ.-Prof. Dr. R. Westermann
2. Univ.-Prof. Dr. M. Harders,
Leopold-Franzens-Universitit Innsbruck/Osterreich

Die Dissertation wurde am 27.10.2014 bei der Technischen Universitidt Miinchen
eingereicht und durch die Fakultét fiir Informatik am 19.12.2014 angenommen.

To my wife Miao

Abstract

This thesis is concerned with computational problems relevant to simulate elastically
deformable bodies with changing topology. In particular, I present interactive tech-
niques for the physically-based simulation of cuts in elastic bodies, for the collision
detection among these dynamically separating objects, and for the modeling of residual
stress in intact soft tissues to simulate the flap shrinkage after cutting. One motivation
of this research is to enhance the functionality and performance of surgery simulators,
which are becoming accepted in preoperative surgical planning and in surgical skills
training, and the potential of which is yet to be fully exploited.

First, I present a coherent summary of the state-of-the-art on virtual cutting, focus-
ing on the distinct geometrical and topological representations of the deformable body,
as well as the specific numerical discretizations of the governing equations of motion.

Second, I present a composite finite element (CFE) formulation for interactive vir-
tual cutting based on linear elasticity and the corotational formulation of strain. Con-
structed from a semi-regular hexahedral finite element discretization, the composite
formulation thoroughly reduces the number of simulation degrees of freedom (DOFs)
and thus enables to carefully balance simulation performance and accuracy. In addi-
tion, a geometric multigrid solver is employed to solve the governing equations, and a
dual contouring approach is utilized to reconstruct a high-resolution surface mesh for
visual rendering and collision detection.

Third, I present a collision detection algorithm which effectively exploits the spe-
cific characteristics of CFEs, i.e., exhibiting a reduced number of DOFs. The results
demonstrate that a reduced number of DOFs leads to a much faster collision detection.
Furthermore, I present a topology-aware interpolation scheme to accurately interpolate
the penetration depth on complicated boundaries. With this efficient collision detection
method, real-time force feedback is obtained for the intuitive manipulation and cutting
of elastic bodies through a haptic device.

Fourth, to evaluate the virtual cutting simulator in flap surgery planning, I present
an interactive method to introduce a physically meaningful residual stress distribution

ii

into a patient-specific model. The residual stress field is computed from a sparse set
of directional stress strokes on the surface and stress magnitudes at a few locations
specified by experienced surgeons. It is then used to simulate the shrinkage of the flap
after cutting. The simulation results show a good match with the shrinkage in a real
flap surgery.

Zusammenfassung

Diese Arbeit behandelt Berechnungsprobleme die beim Simulieren elastisch deformier-
barer Korper mit sich dndernden Topologien auftreten. Im Besonderen prisentiere ich
interaktive Techniken fiir die physikbasierte Simulation von Schnitten in elastischen
Korpern, fiir die Kollisionserkennung zwischen den dynamisch auseinanderdriftenden
Objekten, und fiir die Modellierung der Ruhespannungen im intakten Weichgewebe
fiir die Simulation des Zusammenziehens eines Gewebelappens nach dem Schneiden.
Ein Ziel meiner Forschung ist es, die Funktionalitit und Performance von Operations-
simulatoren zu verbessern, die zunehmend fr die praoperative Operationsplanung und
im Operations-Training eingesetzt werden, und deren Moglichkeiten erst noch voll aus-
zuschopfen sind.

Erstens prisentiere ich einen zusammenhingenden Uberblick iiber den Stand der
Technik im virtuellen Schneiden, mit dem Fokus auf den verschiedenen geometrischen
und topologischen Reprisentationen von deformierbaren Korpern, sowie den spezifis-
chen numerischen Diskretisierungen der zugrundeliegenden Bewegungsgleichungen.

Zweitens stelle ich eine Composite-Finite-Element (CFE) -Formulierung fiir das in-
teraktive Schneiden vor, die auf linearer Elastizitdt und der co-rotierten Formulierung
der Dehnung basiert. Ausgehend von einer semi-regulidren Hexaeder-Finite-Elemente-
Diskretisierung, reduziert die CFE-Formulierung gezielt die Anzahl der Simulations-
freiheitsgrade (degrees of freedom, DOFs) und ermoglicht es damit vorsichtig Simula-
tionsperformance und -genauigkeit auszubalancieren. Zusitzlich wird ein geometrischer
Mehrgitterloser verwendet um die zugrundeliegenden Gleichungen zu 16sen, und es
wird ein dualer Konturierungsansatz eingesetzt um ein hochaufgeldstes Oberflachennetz
fiir die visuelle Darstellung und die Kollisionserkennung zu rekonstruieren.

Drittens présentiere ich einen Kollisionserkennungsalgorithmus der effektiv die spez-
ifischen Eigenschaften von CFEs, d.h. das Aufweisen einer geringeren Anzahl an
DOFs, ausnutzt. Die Ergebnisse zeigen, dass eine geringere Anzahl an DOFs zu einer
viel schnelleren Kollisionserkennung fiihrt. Auflerdem présentiere ich ein Topologie-
beriicksichtigendes Interpolationsschema um die Eindringtiefe bei komplizierten Rindern

1ii

v

genau interpolieren zu konnen. Mit dieser effizienten Kollisionserkennungsmethode
erhilt man Echtzeit-Force-Feedback fiir das intuitive Manipulieren und Schneiden von
elastischen Korpern mit einem haptischen Geriit.

Viertens, um die virtuelle Schnitt-Simulation in der Planung von Lappenopera-
tionen zu evaluieren, prisentiere ich eine interaktive Methode um eine physikalisch
plausible Ruhespannungsverteilung fiir ein patientenspezifisches Modell zu generieren.
Das Ruhespannungsfeld wird aus einer kleinen Menge an der Oberfliche gezeichneter
Spannungsrichtungen und aus an wenigen Stellen von erfahrenen Chirurgen spezi-
fizierten Spannungsstirken berechnet. Es wird dann verwendet um das Schrumpfen
des Lappens nach dem Schneiden zu simulieren. Die Simulation zeigt eine gute Uber-
einstimmung mit dem Schrumpfen in einer realen Lappenoperation.

Acknowledgements

I gratefully acknowledge the support of all of the people who made this thesis possible.

First and foremost, I would like to thank my advisor Prof. Dr. Riidiger Westermann.
Having read several of his articles on GPU computing and cloth simulation, I wrote
him an email, asking about the possibility to do research in his group. Back then I was
a graduate student at Beihang University, Beijing, China, and I was applying for an
Erasmus scholarship to study in Europe. Fortunately, I was selected for the scholarship
and was accepted to study at TU Miinchen. I would like to thank Prof. Westermann
for providing me the research opportunity, for his time commitment and many fruitful
discussions on diverse research problems.

A special thanks goes to my colleague Dr. Christian Dick. His work on hexahe-
dral finite elements and geometric multigrid solver was the basis for the developments
presented in this thesis. Furthermore, I want to thank all of my current and former col-
leagues who have always been open for discussions: Dr. Stefan Auer, Dr. Kai Biirger,
Shunting Cao, Matthidus Chajdas, Mengyu Chu, Ismail Demir, Dr. Christian Dick, Flo-
rian Ferstl, Dr. Roland Fraedrich, Dr. Joachim Georgii, Dr. Tiffany Inglis, Dr. Johannes
Kehrer, Mihaela Mihai, Dr. Tobias Pfaffelmoser, Marc Rautenhaus, Florian Reichl, Dr.
Jens Schneider, Prof. Dr. Nils Thiirey, Dr. Marc Treib, and Dr. Mikael Vaaraniemi.

I would like to thank my collaborators in the research group Computer Aided Plastic
Surgery, headed by Prof. Dr. med. Laszlo Kovacs, for discussions and medical data:
Dr. med. Maximilian Eder, Jalil Jalali, and Stefan Raith.

I would like to thank my advisors in my former study, Prof. Dr. Yuru Zhang and
Prof. Dr. Dangxiao Wang at Beihang University, and Prof. Dr. Charlie C. L. Wang at
the Chinese University of Hong Kong, for stimulating my interest on research and for
supporting me to pursue a degree in Europe.

Many thanks go to my parents, my wife, and my friends. Studying in Munich is a
lot of fun for me, but certainly not for my parents, since it means that their young son
is ten thousand miles away and has limited time to accompany them. I want to thank
them for always supporting me during my long period of study. Since my parents don’t

\%

vi

understand English, I would like to switch to Chinese.
“EEE, HHEHR— B SRR SR s

I am grateful to my brother Feng Wu for taking care of my parents and my grandma. I
am enormously thankful to my wife Miao Feng for traveling such a long distance away
from her hometown and staying with me in a foreign country. I thank all of you for
your love.

Finally, I am very thankful to the Erasmus Mundus TANDEM program funded by
the European Commission for providing me the scholarship to start my research at TU
Miinchen.

Contents

Abstract

Zusammenfassung

Acknowledgements

1 Introduction

[.1 Objective e

1.2 Challenges. e

1.3 Contributions

1.4 Listof Publications

1.5 Structure of this Thesis

2 Fundamentals

2.1 Linear Elasticity Theory
2.1.1 Deformation, Strain, and Stress
2.1.2 Material Models
2.1.3 Linear Elasticity
2.1.4 Equations of Equilibrium 0.

2.2 The Finite Element Method
2.2.1 Weak Formulation of Elasticity Problem
2.2.2 Finite Element Discretization
2.2.3 Corotational Strain Formulation
2.24 Time Integration

2.3 Collision Detection
2.3.1 Bounding Volume Hierarchies
2.3.2 Spatial Subdivisiono Lo
233 DistanceFields,

vii

iii

viii CONTENTS

2.4 HapticRendering 21
24.1 Virtual Coupling 22

3 State-of-the-Art Report on Virtual Cutting 25
3.1 Introduction 25
3.2 Mesh-based Modelingof Cuts 29
3.2.1 Geometric Modeling of the Cutting Process 29

3.2.2 Tetrahedral Meshes 30

3.2.3 Hexahedral Meshes 35

3.2.4 Polyhedral Meshes 38

3.2.5 Discussion on Discretizations 0. 39

3.3 Finite Element Simulation for Virtual Cutting 39
3.3.1 The Extended Finite Element Method 40

3.3.2 The Composite Finite Element Method 42

3.3.3 The Polyhedral Finite Element Method 43

3.3.4 Discussion on Finite Element Methods 44

3.4 Meshfree Methods L 45
3.5 Numerical Solvers 48
3.5.1 DirectSolvers. 48

3.5.2 Iterative Solvers 49

3.6 Summary of Techniques for Cutting Simulation 50
3.7 Collision Handling and Haptic Rendering 53
3.7.1 Collision Detection 54

3.7.2 Haptic Rendering of Cutting 56

3.8 Application Study on Cutting Simulation. 58
3.9 Discussionand Conclusion 62
3.10 Appendix: Meshfree Methods for Deformable Body Simulation 64
4 Virtual Cutting Using Composite Finite Elements 67
4.1 Introduction 67
42 RelatedWork 69
4.3 Geometry and Topology Representation 70
4.3.1 Volume Representation 71

4.3.2 Surface Representation 71

4.4 Composite Finite Element Simulation 74
4.4.1 Construction of the Simulation Model 75

4.42 Computation of Element Matrices 77

CONTENTS

4.5
4.6
4.7

5.1
5.2
5.3
54

55
5.6
5.7

6.1
6.2
6.3

6.4
6.5
6.6

6.7

6.8

7.1
7.2

Collision Detection for Composite Finite Elements
Introduction
Related Work
Composite Finite Element Simulation of Cuts .

Collision Detection for CFE Simulation of Cuts

5.4.1 Broad Phase Collision Detection
5.4.2 Narrow Phase Collision Detection . . .
Distance Field Computation
Results.

Conclusion

Interactive Residual Stress Modeling

Introductiono
Related Work
Modeling Foundations
6.3.1 Mechanics of Residual Stress
6.3.2 Residual Stress in Soft Tissues
Modeling Procedure
Visualization
Implementation
6.6.1 Static Equilibrium Equations
6.6.2 Interpolation of Eigenvalues
6.6.3 Interpolation of Eigenvectors
6.6.4 Dynamic Simulation
Results and Discussion
6.7.1 Evaluation
6.7.2 Performance

Conclusion and Future Work

The Haptic Cutting System
Overview
Haptic Rendering

ix

79
80
81
86

87
87
90
91
93
94
95
99
100
105

107
107
110
111
111
112
114
116
118
118
119
121
121
121
123
125
126

X CONTENTS

7.3 Results. 130
8 Conclusion 133
8.1 Future Work 134

Bibliography 136

Chapter 1

Introduction

The research presented in this thesis is concerned with physically-based modeling and
simulation, especially in the context of surgery simulation.

Physically-based modeling and simulation deals with mathematical modeling and
numerical reproduction of physical phenomena, such as the dynamic behavior of clothes,
human tissues, and smokes. It is an active research area in computer graphics, with
contributions coming from robotics and computational mechanics as well. Robustness,
physical accuracy, and computational efficiency are three important concerns which
promote the development of advanced simulation techniques. Recent progress in nu-
merical methods has demonstrated very realistic dynamic simulation effects of a wide
variety of physical phenomena. These techniques have been widely employed in enter-
tainment applications such as digital visual effects and computer games, and in medical
applications such as surgery simulators.

Surgery simulators are useful in computer-aided preoperative surgical planning.
Building on patient-specific data acquired by medical imaging (e.g., CT or MRI), the
simulator predicts the surgery outcome by performing an accurate mechanical analysis
of human tissues. For example, in orthopedics to predict the stress distribution of the
bone after inserting an implant [DGBWO08], or in plastic surgery to predict the breast
shape after augmentation [GEB*14]. Together with advanced visualization techniques,
the surgeon can find an optimal solution by examining the results of using different
solution parameters.

Surgery simulators are also employed in virtual reality (VR) based surgical skills
training. Usually combined with a force feedback device, the simulator provides real-
istic and real-time visual and force feedback in response to trainees’ operations. For
example, in laparoscopic surgery to prepare the trainees for real surgery on the robotic
surgical system [Inc], or in dental surgery to train eye-hand coordination and den-

1

2 CHAPTER 1. INTRODUCTION

tal drilling skills [WWWZ10]. Historically, it has been expected, since two decades
ago [Sat93], that VR simulators will revolutionize the training of young surgeons in a
way similar to that flight simulators have been doing for pilot training. The demand of
advanced training platforms becomes stronger as the surgery becomes less invasive and
operations become more sophisticated. The transferability of skills acquired in virtual
environments to the operative setting has been demonstrated in a number of experimen-
tal studies [GRC"05,SWC*08]. Surgery simulators as a training platform are becoming
accepted adjuncts to traditional training models.

Driven by these applications, surgery simulators continue to evolve in both physical
accuracy and computational efficiency. On the one hand, while accuracy is the key fac-
tor in designing preoperative planning systems, accelerating the computational speed
would greatly enhance their usability by allowing interactive steering of simulation
parameters. On the other hand, employing detailed geometric models and applying
accurate physical models in virtual reality environments would significantly improve
the fidelity of training systems, and thus lead to a better skills transfer. To these ends,
robust, physically-based yet efficient simulation techniques are highly demanded, and
serve as the motivation of this thesis.

1.1 Objective

The primary goal of this thesis is the development of simulation techniques which sup-
port interactive cutting of soft tissues. Cutting is the controlled separation of a physical
object as a result of an acutely directed force, exerted through a sharp-edged tool. In
typical surgery scenarios, the surgeon uses a scalpel to perform cuts in order to access
interior tissues, or to remove tumors from organs. While deformable body simulation
has been widely investigated and open source frameworks are available, few can sup-
port robust cutting. To enhance the functionality and performance of surgery simula-
tors, the conducted research targets interactive virtual cutting of high-resolution elastic
bodies. To enhance the interactivity, it is also desired to allow the user to perform cuts
through a haptic device, so as to perceive real-time feedback forces.

The second goal is the exploration of the virtual cutting simulator for flap surgery
planning. Flap surgery involves cutting out a section of tissue (called a flap) from a
donor site in the body and relocating it to a recipient site. The specific surgery which
we are working on is to take a flap from the abdomen in order to reconstruct the shape of
the breast after mastectomy—a surgery that removes the breast tissue for the treatment
of breast cancer. The purpose of the simulation is to support the flap surgery planning

1.2. CHALLENGES 3

procedure by simulating the process of flap cutting, and in particular to predict the
shrinkage of the flap after it has been cut out.

1.2 Challenges

From a technical point of view, virtual cutting involves a) the simulation of the de-
formable body based on a computational model, b) the incorporation of material dis-
continuities caused by cutting into the computational model, and c) the detection and
handling of collisions among deformable bodies, and with the cutting tool.

The major challenge in virtual cutting is the robust and efficient incorporation of
cuts into an accurate computational model that is used for the simulation of the de-
formable body. The accurate representation of geometrical discontinuities requires the
modification of the underlying discretization which is difficult to realize in a robust way.
For example, incorporating cuts into a tetrahedral discretization usually ends up with
ill-shaped elements, which are known to be problematic in numerical simulation. Fur-
thermore, performing these operations at interactive rates is highly challenging, as for
the simulation of cutting most simulation components must be updated or re-computed
in each time step, with precomputation in general not being applicable. This includes
the update of the finite element model, where elements that are touched by the cut-
ting blade have to be split, the update of the corresponding finite element matrices,
the re-assembly of the element matrices into the linear system of equations, and the
re-initialization of the numerical solver.

Collision detection is an indispensable component in virtual environments. In the
context of virtual cutting, collision detection is notably time consuming, since new ge-
ometric primitives are created on-the-fly. These newly created geometric primitives
include split volumetric elements which are adapted to represent discontinuity in the
object, and newly created surface meshes corresponding to the cutting surfaces. Pre-
computation of acceleration data structures such as bounding volume hierarchies be-
comes less effective, since the tree structures need a considerable amount of updating
to accommodate new elements. Furthermore, as a consequence of cutting, an object
may be split into several separated objects. It is therefore necessary to consistently de-
tect both inter- and intra-collisions. Moreover, a quantitative measure of the penetration
is desired for robust collision response.

With respect to the application of virtual cutting in flap surgery planning, a specific
challenge is the prediction of the flap volume. In breast reconstruction, the question
is how much volume should be taken from the abdomen site such that the volume is

4 CHAPTER 1. INTRODUCTION

minimal but sufficient for reconstructing a natural looking breast shape [KZPB04]. The
selection of the volume in the intact abdomen is difficult to plan, since after cutting the
flap shrinks. In clinical practice, the surgeon usually cuts out the largest possible portion
from the abdomen. This prolongs the healing of the donor site. From a mechanical
point of view, the shrinkage is related to the residual stress in the human body. Residual
stress is the stress which is present in an object in the absence of external forces. After
cutting, the tissue shrinks and the wound opens due to the release of residual stress.
Therefore, to accurately predict the shrinkage of the flap, patient-specific models of the
residual stress need to be derived and included in the simulation.

1.3 Contributions

State-of-the-art report on virtual cutting. We present a coherent summary of the
state-of-the-art in virtual cutting of deformable bodies, focusing on the distinct geomet-
rical and topological representations of the deformable body, as well as the specific nu-
merical discretizations of the governing equations of motion. In particular, we discuss
virtual cutting based on tetrahedral, hexahedral, and polyhedral meshes, in combina-
tion with standard, polyhedral, composite, and extended finite element discretizations.
A separate section is devoted to meshfree methods. The report is complemented with
an application study to assess the performance of virtual cutting simulators.

A composite finite element framework for virtual cutting. To enable interac-
tive virtual cutting of high-resolution objects, we present a composite finite element
formulation which balances computational performance and accuracy. The deforma-
tion is based on linear elasticity and the corotational strain formulation. Geometrically,
the composite elements are constructed in a bottom-up manner from a semi-regular
hexahedral grid which adaptively refines along a cut, building upon previous work on
hexahedral finite element simulation [DGW11a]. Particular attention is given to the
analysis of the connectivity among the hexahedral elements, in order to (possibly) du-
plicate composite elements along complicated boundaries to better preserve the topol-
ogy on the composite level. Numerically, system matrices of the composite elements
are assembled from those of the underlying fine level hexahedral elements. The linear
system of equations resulting from the implicit time integration of the dynamic system
is solved by using a geometric multigrid solver. Furthermore, we employ the dual con-
touring approach on the fine resolution level to construct a high quality surface that is
accurately aligned with the cuts.

Efficient collision detection for composite finite elements. To simulate the con-

1.4. LIST OF PUBLICATIONS 5

tacts among deformable bodies in the virtual environment, we have developed an ef-
ficient collision detection method which is specifically tailored for composite finite
element simulation of cuts. This collision detection method consists of a broad phase
and a narrow phase. In the broad phase, we employ the spatial subdivision approach to
find potentially colliding vertex/composite element pairs. In the narrow phase, in order
to evaluate penetration depth and direction, we transform the position of the considered
vertex in the deformed configuration back to its position in the reference configuration.
To address the non-conforming properties of geometric composition and hexahedral
discretization, we propose a topology-aware interpolation approach for the sub-grid
accurate computation of penetration depth.

Interactive residual stress modeling. We present an interactive method to com-
pute a physically meaningful residual stress distribution for a patient-specific model.
In particular, given a sparse set of eigenvectors and eigenvalues of the stress tensor
field at a few locations specified by experienced surgeons, we compute a stress tensor
field by smoothly propagating these stress values to regions where stress values are
unspecified. The smooth propagation is formulated as a Laplace’s equation, subjected
to the mechanical equilibrium equations which define the concept of residual stress.
The computed residual stress field is immediately visualized by simulating the result-
ing deformation of a set of round shaped incisions on the surface. We demonstrate the
potential of our approach for flap surgery planning by comparing the simulated flap
with the shrinkage in a real flap surgery.

1.4 List of Publications

The research results presented in this thesis have been originally published in the fol-
lowing peer-reviewed conference papers and journal articles (listed in chronological
order):

1. Jun Wu, Christian Dick, and Riidiger Westermann, Interactive high-resolution
boundary surfaces for deformable bodies with changing topology, Proceedings
of Workshop on Virtual Reality Interaction and Physical Simulation, 2011, Euro-
graphics Association, pp. 29-38.

2. Jun Wu, Kai Biirger, Riidiger Westermann, and Christian Dick, Interactive resid-
ual stress modeling for soft tissue simulation, Proceedings of Eurographics Work-
shop on Visual Computing for Biology and Medicine, 2012, Eurographics Asso-
ciation, pp. 81-89.

6 CHAPTER 1. INTRODUCTION

3. Jun Wu, Christian Dick, and Riidiger Westermann, Efficient collision detection
for composite finite element simulation of cuts in deformable bodies, The Visual
Computer (Proc. Computer Graphics International 2013) 29 (2013), no. 6-8, 739-
749.

4. Jun Wu, Riidiger Westermann, and Christian Dick, Real-time haptic cutting of
high-resolution soft tissues, Studies in Health Technology and Informatics (Proc.
Medicine Meets Virtual Reality 21) 196 (2014), 469-475.

5. Jun Wu, Riidiger Westermann, and Christian Dick, Physically-based Simulation
of Cuts in Deformable Bodies: A Survey, Proceedings of Eurographics (State-of-
the-Art Reports), 2014, Eurographics Association, pp. 1-19.

6. Jun Wu, Riidiger Westermann, and Christian Dick, A Survey of Physically Based
Simulation of Cuts in Deformable Bodies, Computer Graphics Forum, accepted
(30.11.2014).

1.5 Structure of this Thesis

In the next chapter, we present the fundamentals of the linear elasticity theory, the fi-
nite element method, collision detection, and haptic rendering. In Chapter 3 we give an
overview of virtual cutting techniques proposed in the computer graphics community.
In Chapter 4 we introduce our composite finite element formulation to balance speed
and accuracy, and the surface reconstruction method to rebuild a high-resolution render
surface. In Chapter 5 we explain the collision detection method which is tailored for
the specific composite finite element formulation. In Chapter 6 we present the model-
ing of residual stress for flap shrinkage simulation. In Chapter 7 we demonstrate the
performance of the developed haptic cutting system. In Chapter 8 we summarize our
results, and conclude the thesis with an outlook on future research challenges.

Chapter 2

Fundamentals

This chapter presents the fundamentals of theories and techniques that are employed
in the subsequent chapters. In particular, we introduce the linear theory of elasticity in
Section 2.1, the finite element method in Section 2.2, collision detection in Section 2.3,
and haptic rendering in Section 2.4.

2.1 Linear Elasticity Theory

The theory of elasticity studies how elastic materials deform due to the action of exter-
nal forces. It has been applied in engineering for decades, and primarily in an offline,
non-interactive setting. Our interactive simulations build on the basics of elasticity de-
scribed in this section. For a comprehensive understanding of elasticity, we refer the
reader to [Sla02, Cia88].

In the theory of elasticity, a strain tensor field describes the material’s local changes
of shape, and a stress tensor field describes the internal forces acting in the material.
These two fields are related by material models, and satisfy equations of motion, lead-
ing to partial differential equations describing the deformation behavior of elastic ma-
terials.

2.1.1 Deformation, Strain, and Stress

Given an elastic object in the undeformed reference configuration Q c R?, the de-
formed object can be modeled by a displacement vector field u(x), u : Q — R3,
where x denotes the Euclidean coordinates of a material point in the object’s reference
configuration (see Figure 2.1). The deformation of a material point is described by
@(x) = x + u(x), yielding the deformed configuration {¢(x)|x € Q}.

7

8 CHAPTER 2. FUNDAMENTALS

Reference configuration Deformed configuration

Figure 2.1: Reference and deformed configuration of an elastic object. The deformation is de-
scribed for each material point x by its deformation ¢(x), or interchangeably by its displacement
vector u(x).

Strain 1s a measure of deformation, describing the local change of shape. For a
spring, the strain can be defined as the ratio of the elongation over the original length.
For a 3D object, the strain is represented by a symmetric second-order tensor, known
as the Green-St. Venant strain tensor,

E=—((V)'Vp - I1s) = % (Vu + (V)" + (Vu)' V), 2.1)

| =

where Vg is the deformation gradient, and 543 is the 3 X 3 identity matrix. The Green-
St. Venant strain tensor is non-linear due to its quadratic term (Vu) V. Its components
are

o1 i Ot | 2.2
! 2 (')xj " (9xl- - =1 (')x,- 8)(:]' ()

Stress is a measure of internal forces, defined as force per unit area. Given an
internal material point represented by an (imaginary) infinitesimal cube, stress can be
expressed by forces per unit area acting on faces of the cube, as shown in Figure 2.2.
Component o;; denotes the stress on the i-th face (the face with i-th axis as its normal)
along the j-th axis. The stress is represented by a tensor

011 012 013
O =031 0O 023]. (23)

031 O3 033

There are actually different formulations of stress depending on in the reference or
in the deformed configuration the forces/areas are defined: the Cauchy stress tensor

2.1. LINEAR ELASTICITY THEORY 9

€,
AO,,
021
0, /—>
O1;
O3 0]
O3 O13 >
OFF
,,,,,, //’// >
/’///’ e‘z

Figure 2.2: Stress components at an internal material point represented by an (imaginary)
infinitesimal cube.

o (both forces and areas are defined in the deformed configuration), the first Piola-
Kirchhoft stress tensor P (forces are defined in the deformed configuration while areas
are defined in the reference configuration), and the second Piola-Kirchhoff stress tensor
S (both forces and areas are defined in the reference configuration). These formulae
can be converted from one to another.

2.1.2 Material Models

The relationship between strain and stress is described by a material model. We con-
sider elastic materials, and in particular hyperelastic materials. Elastic materials are
materials for which the state of stress depends only on the current deformation. They
are an idealization of general materials, i.e., the materials for which the stress depends
on as well how the state of deformation is reached (e.g., the strain rate). For elastic
materials, the second Piola-Kirchhoff stress is a function of the strain, i.e., S = S(E).

Figure 2.3 illustrates stress-strain curves of different material models during load-
ing (i.e., applying a force) and unloading (i.e., removing the force). The elastic model,
linear (a) or nonlinear (b), has the same stress-strain relation during loading and unload-
ing. The viscoelastic model (c) has a closed deformation cycle. The area of the closed
cycle indicates the energy lost (e.g., heat) during the deformation cycle. The plastic
model (d) would have a permanent deformation even after the loading is completely
removed. In this thesis, we would assume a linear hyperelastic model, the formulations
of which are explained in the next subsection.

10 CHAPTER 2. FUNDAMENTALS

Stress Stress Stress Stress
/ /

loady Aloading = % /4 % /

N N N

N
rd
Strain Strain Strain Strain

(a) Linear elastic (b) Nonlinear clastic (¢) Viscoelastic (d) Plastic

Figure 2.3: Stress-strain curves of different material models during loading and unloading.

Hyperelastic materials are a subset of elastic materials for which the elastic strain
energy depends only on the current deformation, and does not depend on the deforma-
tion history. Strain energy stores (part of) the work done by external forces in deforming
the object. For hyperelastic materials, the strain energy density (strain energy per unit
volume) is a function of strain, i.e., W = W(E). The second Piola-Kirchhoff stress can
be derived as S(E) = %.

2.1.3 Linear Elasticity

The linear theory of elasticity is based on the assumption of small displacements and a
linear relationship between stress and strain. This leads to a linear system of equations
which can be solved efficiently. By using a corotational strain formulation which re-
moves the per-element rigid body rotation part from the deformation before the strain
is computed, the linear theory can also be used to accurately simulate deformations
exhibiting large rotations (see Section 2.2.3). Linear elasticity is therefore widely em-
ployed in interactive graphics applications.

By assuming that the displacements are small (i.e., ||Vu|| < 1), the quadratic term in
the Green-St. Venant strain tensor £ can be neglected, leading to a linear strain tensor,

known as the infinitesimal strain tensor
o=+ (Vu + (V)" (2.4)
5 . .

Under the small deformations assumption, it can be derived that the three stress
tensors (the Cauchy stress tensor, and the first and the second Piola-Kirchhoft stress
tensor) are equal. We denote the equivalent symmetric second-order stress tensor by o.

The linear relationship between stress and strain is described by

o=C:s, (2.5

2.1. LINEAR ELASTICITY THEORY 11

where C is the fourth-order elasticity tensor. For an isotropic material, the deformation
is independent of the material’s spatial orientation, reducing the stress-strain relation-
ship to the form

og=2ue+ Atr(e) L. (2.6)

The scalar material parameters A and u are referred to as Lamé constants. They are
related to Young’s modulus E and Poisson’s ratio v by

1= Evy B E
T d+nd-20" T 20+

2.7)

Rearranging the entries of the symmetric tensors as vectors, the linear material
model can be written as matrix-vector product, e.g., for isotropic materials as

o1 2u+ A A A €11
(o)) A 2/.1 + A4 A En
A A 2u+ A
033 _ M €33 - (2.8)
(on) u 2e12
013 A 2e13
023 1)\ 2&23
~—— ~——
T c £

2.14 Equations of Equilibrium

The static elasticity problem consists of determining a displacement vector field u :
Q — R3 such that at each material point the surplus of the internal body forces—
expressed by the divergence of the stress tensor field—balances the external body forces
[according to

—div o(e(m)) = f, in Q)\o0Q, (2.9)
and that the boundary conditions

u=u’ on Ip, (2.10)
o(e)) n=f, on I, (2.11)

on the boundary 0Q2 = I'p 4/ I'y are satisfied, where = is the unit outer normal on 9.
The boundary conditions consist of Dirichlet boundary conditions (Eq. 2.10), which
prescribe the displacement u° on I'p, and Neumann boundary conditions (Eq. 2.11),

12 CHAPTER 2. FUNDAMENTALS

which prescribe surface tractions f, on I'y.

For the simulation of dynamic motion, inertial forces are incorporated into the equi-
librium equation. The dynamic elasticity problem is formulated as an initial boundary
value problem: Find a time-dependent displacement vector u(f) : Q — R? such that

pii(t) — div o(e(u(1))) = f, in Q\oQ, (2.12)

where p is the object’s density, and i denotes the acceleration. The boundary condi-
tions are analogous to the static case. In addition, initial conditions prescribing the
displacement and the velocity of the deformable body at the initial time are required.

2.2 The Finite Element Method

The finite element method (FEM) is one of the most popular approaches to solve the
system of partial differential equations arising from the elasticity theory. A detailed
explanation of finite element procedures for mechanics can be found in textbooks
(e.g., [Bat96]), while a concise introduction of the FEM in medical simulation is given
in [BNOS].

2.2.1 Weak Formulation of Elasticity Problem

Multiplying the dynamic equilibrium equation (Eq. 2.12) with an arbitrary test func-
tion v, integrating over the simulation domain €, and applying the divergence theorem
(integration by parts) leads to the variational formulation of elasticity

fpv - iidx + fs(v) o(e(u))dx — fv ~frdx=0 V. (2.13)
Q Q Q

For the sake of simplicity, external surface forces are not considered in this continuous
formulation (i.e., at this stage we assume f; = 0), but can be easily incorporated into the
discretized formulation. The formulation for elastostatic simulations can be obtained
by omitting the first term corresponding to the inertial forces.

2.2.2 Finite Element Discretization

In the finite element method, the simulation domain € is decomposed into a finite set
of elements. Typically, triangles or quadrilaterals are employed for discretizing a 2D
domain, while tetrahedra or hexahedra are employed in the 3D case.

2.2. THE FINITE ELEMENT METHOD 13

Building on such a spatial discretization, the FEM approximates the continuous
displacement field by means of interpolation of the displacements at the vertices of
the finite element grid. Specifically, the element shape functions ¢{(x) interpolate the
displacement field within an element Q¢ from the element’s vertices according to

uloe(x) =) g = O (v, (2.14)
i=1
where n, is the number of simulation nodes of this element, ®°(x) the element shape
matrix
¢7(x) (%)
O°(x) = e N ¢2 (%) : (2.15)
¢ (x) i, (%)

and u® = (ug,..., uzv)T the linearization of the displacement vectors at the element’s

vertices.

We employ trilinear interpolation as shape functions for a hexahedral discretization
of 3D objects. Trilinear interpolation fulfills the requirements for finite element simula-
tion: a) Partition of unity: Z;‘;l(/)i(x) = 1; b) Linear field reproduction: Z?;]q&i(x)xi = X;
and c) Kronecker delta function property:

1.0 if j =1,
¢i(x;) = . (2.16)
0.0 otherwise.

Using the shape functions, and expressing the strain by &(u)|q-(x) = B¢(x)u’, where
B¢ is the element strain matrix which contains partial derivatives of the shape function,

0 (x) og},, (x)
0xy 0x;
091 (x) o¢;,,(x)
0xa 6 (x) 0xa 36t (x)
0¢{(x iy (X
) ox3 0x3
Be(x) = | 9¢{(x) I¢{(x) Oy, (x) 0y, (x) , (2]7)
dxo 0x; .. 0xp ox;
0¢7(x) 0 (x) a¢;,,(x) 0¢;,,(x)
dx3 0xy 0x3 oxy
a¢{(x) 9¢|(x) Oy, (x) 0y, (x)
0x3 0xy 0x3 0x

it can be derived that the weak formulation Eq. 2.13 leads to an ordinary differential

14 CHAPTER 2. FUNDAMENTALS

equation describing the dynamics of an element,

f p(@)Tddx it® + f (B)'CB¢dx u¢ = f (@) f,dx, (2.18)
e 14 Qe

—_——
ML’ KL’ fL’

(formally written for a single element). M°, K¢, and f¢ are called the element mass
matrix, the element stiffness matrix, and the element load vector, respectively.

Assembling per-element equations with respect to the global index of the shared
nodes yields a linear system of equations for the entire object, i.e., Mii + Ku = f. Itis
common to apply a velocity-dependent Rayleigh damping term which leads to

Mii + Du + Ku = f, (2.19)

where D is calculated as D = aM + K. Non-negative scalars a and g are the mass
and the stiffness proportional damping coeflicient. Note that Neumann boundary con-
ditions (prescribing tractions) are naturally incorporated into the weak formulation and
do not need further treatment. In contrast, Dirichlet boundary conditions (prescribing
displacements for specific vertices) must be explicitly enforced by removing these ver-
tices as DOFs from the finite element formulation. To ensure a consistent treatment of
free and fixed vertices, these vertices can be later incorporated into the finally resulting
linear system of equations by adding the equation Iu; = u? for each fixed vertex i.

2.2.3 Corotational Strain Formulation

The infinitesimal strain tensor works under the assumption of small displacements. It
is not rotationally invariant, and interprets rotations as strains, leading to the introduc-
tion of artificial stresses. To realistically simulate deformations with large rotations—
as they are typically occurring in virtual cutting applications—without resorting to the
non-linear Green-St. Venant strain tensor, a rotationally invariant infinitesimal stain for-
mulation [RB86], known as corotational stain formulation, is widely applied in graphics
applications [MDM™*02] (see Figure 2.4). The idea is to rotate the deformed finite el-
ements back to align with their initial orientation in the reference configuration before
the strain is computed. This leads to the equation

[R] K¢ ([R°]"(x¢ + u®) — x°) = f*, (2.20)

2.2. THE FINITE ELEMENT METHOD 15

Figure 2.4: Effects of the corotational strain formulation. A horizontal bar is fixed on its left
end (left), and deforms due to gravity. The unrealistic large deformation using the infinitesimal
strain tensor (middle) is not found in the simulation using the corotational strain formulation

(right).

(for the static case), where [R¢] denotes a n, X n, block diagonal matrix, and each
diagonal entry is the element rotation matrix R, determined from the current element
deformation. The rotation matrix can be computed by minimizing the distance between
the rotated deformed and the undeformed configuration [GWO08]. Rearranging this for-
mulation for u¢ leads to [R]K‘[R°1™u¢ = f° + [R°1K*(x¢ — [R°]"x°), which can be
incorporated into Eq.2.19. It should be noted that the corotational strain formulation
does not change the structure of the system matrix, however, it is required to update the
entries at each simulation time step since the element rotations are determined from the
deformation of the previous time step.

2.2.4 Time Integration

There exist explicit and implicit time integration schemes to numerically integrate the
time-dependent system of ordinary differential equations arising from dynamic simula-
tions of elasticity i.e., Eq. 2.19.

Implicit time integration allows for using a reasonably large time step size df without
introducing numerical problems. Using a finite difference discretization of the time
derivatives, the implicit Euler time integration reads

ut+dz _ Zut + ut—dt ut+dt _ ut—dt

M i + Dz—dz + Kyt = (2.21)

This equation can be rewritten as

~t+dt

Ku™ = f, (2.22)

16 CHAPTER 2. FUNDAMENTALS

with
7% _ 1 1
K = K+ M+ 5D, 20
~t+dt _ f+dr Mz" gt Du/ —dr ())
f = f + T D%

This linear system of equations can be solved using numerical solvers to be presented
in Section 3.5.

Explicit (or forward) Euler time integration scheme approximates the elastic force
Ku based on the displacement of previous time step, and thus avoids solving a system
of equations. In explicit time integration, the equations of motion is decoupled and
each DOF can be evaluated independently. It is written as

-1 t_ gt—dt 1—dt
ultd — (% 2) (f”dt —Ku' + M2u u + Du) (2.24)

+
d?2 2dr ds? 2dt

However, the stability of explicit schemes is only guaranteed for sufficiently small time
steps, expressed by the Courant condition, which gives an upper limit for the time step

size according to

0
A+2u

dt < h (2.25)

Here & denotes the smallest distance of two vertices in the reference configuration, p
is the material density, and A, u are the Lamé constants. In general, the stiffer the sim-
ulated materials are, the smaller must be the time step size. This implies that a large
number of simulation steps are required to advance an interactive simulation. The prob-
lem aggravates in the situation of a fine discretization (i.e., a small /). Therefore, from
a stability point of view, explicit integration schemes are not well suited for interactive
applications which require large time steps (e.g., 10-100 ms).
In our simulations, we employ a second-order accurate Newmark integration scheme.

The implicit Newmark integration scheme approximates the time derivatives as

gitd = % (ut+dt _ ut) —u,

(2.26)

jirtdr = % (ut+dt _ ut) —il = ﬁ (ut+dz —u - L'l[dt) _

The dynamic equation can be written in the same form as implicit Euler integration
(Eq. 2.22), with

K = K+M+ 2D,
(2.27)

~t+dt

o= f’*dt+M(dﬂ+dt2+u)+D(2d—"t’+uf).

2.3. COLLISION DETECTION 17

2.3 Collision Detection

The detection of collisions among objects and self-collisions of deformable objects is
an essential component in dynamic simulations. In the context of virtual cutting, there
are four types of collisions:

1) the collisions between a cutting tool and intact soft tissues,

i1) the collisions between the sweep surface of the cutting front and the internal struc-
tures of soft tissues,

iii) the self-collisions of soft tissues, and

iv) the collisions of separated soft tissues.

In this section, we present the basics of some methods which we have employed or ex-
tended in the development of our virtual cutting simulator. For an overview of collision
detection for deformable objects, we refer to the survey [TKH*05].

With respect to the time dimension, collision detection (CD) is classified into dis-
crete methods and continuous methods. Time discrete CD checks the intersection of
objects at a given simulation time ¢;, and reports the amount of intersection if any. It is
usually employed in simulations which use a constant time step. Collisions are handled
during the next simulation time step, for example, by applying a penalty force the mag-
nitude of which is proportional to the amount of intersection. For collisions of type i,
iii, and iv listed above, we detect them using discrete methods, and apply penalty forces
to resolve collisions.

Time continuous collision detection (CCD) checks the collision of moving objects
during the advancement from their configuration at time ¢; to their configuration at time
t;+1, and reports the specific time ¢; +d¢, (0 < 6t < t;,1 —t;) at which the contact happens.
CCD has a much higher complexity than discrete CD, and is usually employed in offline
simulations which adaptively tune the time step in order to accurately resolve collisions.
A simplified version of CCD is employed to handle the collisions of type ii: we test
static internal structures against the sweep surface of the moving cutting front. The
detected intersections are used to disconnect the internal structures and thus to simulate
cutting.

Collision detection is usually carried out in two phases: a broad phase which uses
inexpensive calculations to cull out collisions than cannot occur, and thus safely re-
duces the number of elementary tests, and a narrow phase which accurately performs
elementary intersection tests. For collisions of type ii, we employ bounding volume
hierarchies as the broad phase, and basic line-triangle intersection tests as the narrow

18 CHAPTER 2. FUNDAMENTALS

Figure 2.5: The bounding volume hierarchy for a deformed hexahedral discretization (2D
illustration). Left: Axis aligned bounding boxes (colored square frames) for leaf nodes (gray).
Middle: The parent bounding box covering a group of leaf nodes. Right: The tree structure
encoding the hierarchy.

phase. For other collision types, we employ a spatial subdivision approach as the broad
phase, and rely on a distance field for evaluating the penetration in the narrow phase.

2.3.1 Bounding Volume Hierarchies

Bounding volume hierarchies (BVHs) are an efficient tree data structure for accelerating
collision detection in rigid body simulations. The idea of BVHs is to partition the
geometric primitives recursively until some leaf criterion is met. The leaf node contains
a single primitive (or a small set of primitives), while a non-leaf node represents a tight
volume which covers the spatial extend of its children. Collision detection is performed
by traversing the tree top-down. Two nodes are checked for overlapping only if their
parents do overlap.

For deformable body simulations the BVHs should be updated after deformation.
Usually, the tree’s structure (i.e., parent-child relation) is maintained the same, while
the geometric values of the bounding volumes are updated in a bottom-up manner.
On the one hand, the tightness of bounding volumes influences the culling efficiency.
On the other hand, for deformable bodies the bounding volumes should be efficiently
computed. To this end, we construct a hierarchy using axis aligned bounding boxes
(AABBs) for the hexahedral cells (see Figure 2.5 for a 2D illustration), and use it for
collision detection against the sweep surface of the cutting front.

2.3.2 Spatial Subdivision

Spatial subdivision approaches partition the 3D space into a number of regions, and
check the geometric primitives located in the same region for collision. For example,
the 3D space can be subdivided by a uniform Cartesian grid. An interesting approach
is to employ a hash function to map 3D grid cells to values in a hash table, rather than

2.3. COLLISION DETECTION 19

\ Hash table

Volumetric elements

Vi1
== E. E E.
e
=== Surface vertices
J Vit V) Vi
\

—
E.

Figure 2.6: Collision detection using spatial hashing. Volumetric elements (by their bounding
boxes) and surface vertices are classified by a uniform grid and mapped to values in a 1D hash
table. Elements which are mapped to the same hash value are potentially colliding.

to maintain a list of all grid cells. This is flexible and memory efficient since this allows
for handling potentially infinite regular grids with a sparse distribution of object parts.
It was designed for volumetric deformation with tetrahedral elements [THM*03]. We
employ this approach since it efficiently detects both collisions and self-collisions in a
unified process (see Figure 2.6). The basic algorithm has three passes.

1. All vertices are classified with respect to the 3D grid and mapped to hash val-
ues. The hash value for a vertex at the position (x,y,z) is computed as h : h =
hash(| 71, L%J, L71), where [is the length of the uniform classifying grid cell, and
L] represents the floor function.

2. All volumetric elements (hexahedra in our implementation) are classified with
respect to the same grid and mapped to hash values. For a hexahedron the hash
values are computed by the same hash function hash(i, j, k) as in the first pass for
entries in the set {(7, j k) | |22 < < [Fe] 2] < j < [Ba] |@0] < k<

Z’"% }, where the subscripts ,,;,, and ,,,, represent the bounding box values of the
hexahedron.

3. For a vertex-hexahedron pair both elements of which are mapped to the same hash
value and the vertex does not belong to the hexahedron, a narrow phase performs
an accurate penetration test, e.g., by examining the trilinear coordinates of the
vertex with respect to the deformed hexahedron.

Parameters of spatial hashing greatly influences the overall performance. We follow
the experimental study and analysis conducted in [THM*03] to choose these parame-

20 CHAPTER 2. FUNDAMENTALS

Reference configuration Deformed configuration

Figure 2.7: Left: The distance field inside a 2D liver shape is visualized by a color mapping.
Right: The distance value at a point in the deformed configuration can be approximated by its
material depth, i.e., the distance value in the reference configuration.

ters. Experiments showed that the hash function
h(i, j,k) = (i p; Xor j p, xor k p3) mod n

can be efficiently evaluated and have a small number of hash collisions. Additionally,
it was found that a good choice of the hash table size n is the number of 3D grid cells,
and that an optimal choice of the grid cell length [/ is the average edge length of all
volumetric elements.

2.3.3 Distance Fields

A distance field is a scalar field D : R> — R that specifies the minimum distance to the
closed surface of an object, where the distance may be signed to distinguish between
the inside and outside of the object. The boundary surface is thus implicitly represented
as the zero level set, i.e., S = {p : D(p) = 0}. Given the distance field of a solid object,
the evaluation of distances and normals for collision detection and response is very fast
and independent of the number of surface triangles.

Material depth is the distance value of points in the interior of an object in its ref-
erence configuration. It was proposed to avoid recomputation of distance fields for
deformable bodies [HFS*01]. The distance value of a point in the deformed object is
approximated by its material depth, i.e., the distance of this material point in its refer-
ence configuration (see Figure 2.7).

To generate the distance field of a closed surface mesh, the brute force method is
to compute the distance from the center of each cell in a uniform Cartesian grid to
the surface mesh. This is accurate but computationally expensive. An alternative and
practical solution is the so-called distance transforms [JBS06]. The idea is to estimate

2.4. HAPTIC RENDERING 21

the distance value of a cell from the known distance values of its neighbors. In an
initialization step, cells which intersect with the surface mesh are assigned with an
accurate distance value by directly computing the distance to the surface mesh. In a
propagation step, the known distance values at these boundary cells are propagated
towards the interior of the object via a cubic template which covers a few cells around
the cell to be evaluated.

2.4 Haptic Rendering

Haptic rendering is concerned with conveying information about virtual objects through
the sense of touch. The importance of haptic feedback in medical training simulations is
well recognized [CMJ11]. Haptic interaction with virtual environments is bidirectional
(with respect to the exchange of mechanical energy) via a haptic device. In this thesis,
we integrate a haptic device which senses the position and orientation of its stylus-like
end-effector which is held by a user, and outputs a 3D force which is computed based
on the interaction with simulated objects. This type of devices is called impedance-
type force feedback devices. Mechanical impedance refers to the quotient of force
and velocity. An ideal impedance-type device should provide an impedance of zero
(i.e., no force) when the user moves the stylus in the free space, and an infinitely large
impedance when the virtual tool touches a rigid virtual object.

Haptic rendering requires update rates of 1 kHz or higher, in order to achieve (per-
ceived) smooth force feedback [SCB04,0L06a]. It was reported that users can perceive
differences at update rates between 500 Hz and 1 kHz [BOYBJK90].

More fundamentally, the update rate is closely related to the stability of the haptic
system, i.e., a human-in-the-loop system consisting of three subsystems: the user, the
device, and the virtual environment. The virtual environment and the digital control of
the mechatronic device are time-discrete. The latency inherent in sampled-data systems
can lead to unstable behaviors (e.g., vibrations). According to the passivity-based anal-
ysis [CGSS93,CB94], the haptic system maintains stable if all components are passive,
i.e., the subsystem does not add energy to the global system. The sufficient condition
of passivity for a viscoelastic virtual wall (the simplest virtual environment) is given

in [CS97] as
2(b - B)

K b
where AT is the sampling period, b is the inherent damping of the device, and K and

AT < (2.28)

B are the stiffness and damping of the virtual wall, respectively. This condition implies

22 CHAPTER 2. FUNDAMENTALS

Xyirtual

Figure 2.8: Left: In direct haptic rendering, the position of the virtual tool is mapped directly
from the position of the stylus, i.e., Xyirual = Xsyus- Right: In simulation-based haptic ren-
dering, the position of the virtual tool is driven by a spring force which tries to align it with
the position of the stylus, together with the interaction force exerted by virtual objects. (The
displacement between X,jnq and X gy 1 enlarged for clarity.)

that a high update rate is very necessary to simulate interaction with stiff virtual objects.

2.4.1 Virtual Coupling

Haptic rendering methods can be classified into direct methods and simulation-based
methods [OL06a]. In direct haptic rendering, the position of the stylus is mapped di-
rectly to a virtual tool (see Figure 2.8 (left)). The interaction force computed based on
the contact between the virtual tool and the surrounding virtual environment is directly
sent to the haptic device. The direct rendering method is effective if the virtual tool
is represented by a single point. Otherwise, there might exist multiple contact regions
between the virtual tool and other virtual objects. Since each contact region contributes
to the overall interaction force, it is not convenient to modulate the overall stiffness.
Actually, there is a stiffness limit for impedance-type haptic devices. Rendering a vir-
tual wall with a stiffness value above this limit results in instability problems of the
hardware. For example, the nominal stiffness of the PHANToM Premium 1.5 device
used in our experiments is 3.5 N/mm.

In simulation-based haptic rendering, the position of the stylus drives the motion
of the virtual tool, together with the interaction force between the virtual tool and other
virtual objects (see Figure 2.8 (right)). The position of the stylus and the position of
the virtual tool are virtually coupled through a spring (and a damper) [MPT99]. The
coupling force, instead of the interaction force, is sent to the haptic device. This virtual
coupling scheme was originally proposed in [CSB95, AH98] to maintain passivity in

2.4. HAPTIC RENDERING 23

virtual manipulation of geometrically complicated and mechanically stiff objects.

With the coupling force f,. which tries to align the position of the virtual tool with
the position of the stylus, and the interaction force f, resulting from contacts with the
deformable object, the translational movement of the virtual tool (a virtual scalpel in
our simulations) is described by

M Xyiryal = fvc + fC’ (229)

where m is the mass of the virtual tool, and X,;. is the position of the virtual tool.
Note that both f. and f, are a function of the position of the virtual tool. This differ-
ential equation can be numerically integrated using implicit time integration [OL0O6b,
WWWZ10].

The movement of the virtual tool can also be formulated as a static equilibrium
problem [WMO3]: At each haptic rendering time step, find a position of the virtual
tool such that the coupling force balances the interaction force. This approach involves
less parameters (e.g., mass, integration time step) and thus is adopted. The first-order
approximation of the equilibrium equation [BJ08] is

ofw , .

ax virtual Ox virtual

.fvc + fc + (Axvirtual =0 (230)

This equation can be efficiently solved for the unknown displacement Ax,;,.; by Gaus-
sian elimination.

24

CHAPTER 2. FUNDAMENTALS

Chapter 3

State-of-the-Art Report on
Virtual Cutting

Virtual cutting of deformable bodies has been an important and active research topic in
physically-based modeling and simulation for more than a decade. A particular chal-
lenge in virtual cutting is the robust and efficient incorporation of cuts into an accurate
computational model that is used for the simulation of the deformable body.

This report presents a coherent summary of the state-of-the-art in virtual cutting
of deformable bodies, focusing on the distinct geometrical and topological representa-
tions of the deformable body, as well as the specific numerical discretizations of the
governing equations of motion. In particular, we discuss virtual cutting based on tetra-
hedral, hexahedral, and polyhedral meshes, in combination with standard, polyhedral,
composite, and extended finite element discretizations. A separate section is devoted
to meshfree methods. Furthermore, we discuss cutting-related research problems such
as collision detection and haptic rendering in the context of interactive cutting scenar-
10s. The report is complemented with an application study to assess the performance of

virtual cutting simulators.

3.1 Introduction

Physically-based, yet efficient and robust simulation of cutting of deformable bodies
(also referred to as virtual cutting) has been an important and active research topic in

This chapter is partially based on material that has been originally published in J. Wu, R. Westermann, and C.
Dick, Physically-based Simulation of Cuts in Deformable Bodies: A Survey, Proceedings of Eurographics (State-of-
the-Art Reports), 2014, pp. 1-19, and on material that has been accepted for publication in J. Wu, R. Westermann,
and C. Dick, A Survey of Physically Based Simulation of Cuts in Deformable Bodies, Computer Graphics Forum.

25

26 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

Incorporation of cuts Simulation of the Detection and handling
into the model deformable body parts of collisions

Figure 3.1: Illustration of the three major tasks involved in mesh-based virtual cutting simula-
tions.

the computer graphics community for more than a decade. It is at the core of virtual
surgery simulators, and it is also frequently used in computer animation. A survey
of early cutting techniques has been given 10 years ago by Bruyns et al. [BSM*02],
and since then a number of significant improvements with respect to physical accuracy,
robustness, and speed have been proposed. Our intention in the current state-of-the-art
report is to review the basic concepts and principles underlying these techniques.

Virtual cutting involves three major tasks (illustrated in Figure 3.1): First, the incor-
poration of cuts into the computational model of the deformable body, i.e., the update
of the geometrical and topological representation of the simulation domain as well as
the numerical discretization of the governing equations. Second, the simulation of the
deformable body based on this computational model. Third, the detection and handling
of collisions. Since the basic principles underlying techniques for collision detection
in virtual cutting in principle are not different to those used in deformable body simu-
lation, this report summarizes only the particular adaptations that have been proposed
in the context of interactive cutting simulation. For a broader overview of the state-
of-the-art in this field, including many technical and implementation-specific details,
let us refer to the survey by Teschner et al. [TKH*05]. The fracture process driven by
cutting tools, on the other hand, is still an open research question, requiring to consider
different material properties to predict tissue responses, friction and sliding contacts, as
well as accurate force transmission. For a good introduction to the specific problems
that have to be addressed to resolve collisions between insertion tools and deformable
bodies let us refer to the work by Chentanez et al. [CAR*09].

This report presents a coherent summary of the state-of-the-art in virtual cutting of
deformable bodies, focusing on the distinct geometrical and topological representations
and the numerical discretizations that have been proposed. The report discusses the
different approaches with respect to

3.1. INTRODUCTION 27

Cutting Fracturing

Modeling of
discontinuity

Tool-object Deformation model Fracture

interaction Numerical solver model

Collision detection

and handling
e

Figure 3.2: Simulation components in cutting and fracturing. In this report we focus on the
components that are common to both simulation tasks.

¢ (physical) accuracy, referring to the ability to represent arbitrarily-shaped cuts
both in the geometrical and topological representation as well as in the numerical
discretization, and to use physically-based simulation to predict the behavior of
the cut object;

e robustness, relating to the numerical stability of the involved algorithms in com-
plicated cutting scenarios, such as thin slicing or repeated cutting at the same
location; and

e computational efficiency, which is particularly important in real-time applications
such as surgery training and planning, where the update of the computational
model as well as the deformation computation must be performed within a very
limited time budget.

The techniques we discuss in this report are also employed in fracture simulations.
While cutting is the controlled separation of a physical object as a result of an acutely
directed force, exerted through sharp-edged tools, fracturing refers to the cracking or
breaking of (hard) objects, under the action of stress. Fracture simulations build on a
fracture model, which determines when and where a crack appears, as well as how the
crack propagates through the model. To actually realize the crack, the geometrical and
topological representation of the object as well as the numerical discretization of the
governing equations have to be updated accordingly, and the dynamics simulation of
the cut body has to be performed. The relation between virtual cutting and fracturing is
illustrated in Figure 3.2. In this report we focus on reviewing techniques for realizing
an actual cut, rather than how the position and shape of a cut is determined. For a
thorough introduction to fracture simulation let us refer to [OH99, OBHO02], and to a

28 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

recent survey on fracture modeling [MBP14] which discusses geometry- and image-
based approaches as well.

When comparing the individual approaches used for virtual cutting, one of the most
apparent classification criteria is the geometrical and topological representation of the
simulation domain. In general, this representation is a spatial discretization, as a spatial
discretization of the simulation domain—continuously updated according to the intro-
duced cuts—is required for the numerical discretization of the governing equations.

Most approaches are based on a volumetric mesh representation of the object. Early
works in the field (e.g., [OH99, BMG99, CDA00, NvdS00, MK00, OBHO02]) mainly
employ tetrahedral meshes, which offer a high degree of flexibility considering the
modeling of cuts by splitting elements or/and snapping element vertices onto the cut-
ting surfaces. Unfortunately, these procedures are prone to producing ill-shaped el-
ements, which are numerically unstable. Recent works address this issue by using
regular or semi-regular meshes consisting of hexahedral elements [JBB*10,DGW11a,
WDW11,SSSH11]. Some works also consider the use of polyhedral meshes [WBGO07,
MKB*08]. In addition to mesh-based approaches, meshfree approaches based on par-
ticles [MKN*04, PKA*05, SOG06,PGCS09] were proposed.

In order to obtain a physically accurate simulation of the deformable body, the large
majority of mesh-based approaches employ the finite element method for the numerical
discretization of the governing equations. The straightforward approach is to maintain a
1:1 correspondence between computational elements (finite elements) and geometrical
elements (cells) of the underlying mesh. The numerical simulation then is mathemati-
cally identical to the simulation of an object without cuts. In particular for interactive
applications, however, it is highly desirable to decouple the spatial discretization used
for the geometrical and topological modeling of cuts from the spatial discretization
employed in the numerical simulation, in order to thoroughly balance speed and ac-
curacy. Approaches that are based on this principle are the extended finite element
method [JK09, KMB*09] and the composite finite element method [JBB*10,WDW11].

Using implicit time integration schemes, the numerical discretization leads to a
large, sparse linear system of equations in each simulation time step. This system
can be solved by using standard black box solvers, such as a conjugate gradient solver.
A significantly higher computational efficiency can be achieved by means of problem-
specific geometric multigrid solvers [GWO06], when these solvers are particularly de-
signed for the efficient treatment of the material discontinuities arising in the context of
virtual cutting [DGW11a, WDW11].

A topic beyond the scope of this survey is the realistic texturing of the induced

3.2. MESH-BASED MODELING OF CUTS 29

cutting surfaces, such that the body’s internal structures are displayed. To this end, 3D
solid textures are employed, which can be obtained by texture synthesis [PCOS10] or
from slice-based real-world data.

The remainder of this report is organized as follows: The different mesh represen-
tations and the respective adaptation strategies used in virtual cutting are discussed in
Section 3.2. Finite element methods and meshfree approaches are discussed in Sec-
tion 3.3 and in Section 3.4 respectively. Numerical solvers are reviewed in Section 3.5.
A summary of the surveyed techniques and representative simulation scenarios are pre-
sented in Section 3.6, followed by a discussion of techniques for collision detection
and haptic rendering in interactive scenarios in Section 3.7. To demonstrate the per-
formance that can be achieved for virtual cutting on desktop PC hardware, we have
performed an application study. The results of this study are presented in Section 3.8.
The report is concluded in Section 3.9 with a discussion of future research challenges.

3.2 Mesh-based Modeling of Cuts

Virtual cutting of a deformable body is modeled by manipulating the geometrical and
topological representation of the simulation domain. In this section, after briefly dis-
cussing the modeling of the cutting process, we focus on mesh-based representations,
including tetrahedral, hexahedral, and polyhedral meshes, and we discuss the adapta-
tion of these meshes to cuts.

For rendering and collision handling, a surface representation of the object is re-
quired. This representation can be directly obtained from a tetrahedral or polyhedral
mesh by determining the element faces lying on the surface. For hexahedral meshes,
however, a separate surface representation is mandatory to compensate the jagged sim-
ulation domain boundary (staircases) resulting from the hexahedral discretization. To
this end, cube-based or dual contouring algorithms that reconstruct a smooth surface
from the hexahedral mesh were proposed. Sifakis et al. [SDF07] demonstrated how a
lower-resolution tetrahedral mesh representing the simulation domain can be combined
with a set of given high-resolution surface meshes (original object surfaces and cutting
surfaces) for rendering and collision handling.

3.2.1 Geometric Modeling of the Cutting Process

The cutting process is modeled in simulation practice by detecting intersections be-
tween the volumetric mesh that represents the deformable object, and a triangulated

30 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

surface mesh that represents a cutting surface. The cutting surface is generated from
the movement of the cutting tool (scalpel). Specifically, element edges, or links between
face-adjacent elements are tested against the cutting surface mesh [BMG99, NvdS00,
WDW13]. To generate sub-mesh cutting effects such as in polyhedral modeling, el-
ement faces are also tested against the cutting mesh [WBGO7]. Based on these in-
tersections, elements are split and detached accordingly, as described in the following
sections. Since cutting happens locally and advances gradually, a large region of the
deformable object can be pruned before elementary intersection tests are performed us-
ing bounding volume hierarchies, and a breadth-first traversal of the volumetric mesh
starting from previous intersection points is also useful.

The cutting surface normally is the surface swept by the scalpel’s cutting edge be-
tween two successive simulation frames. Together with 3D spatial interfaces such as a
haptic device, this approach enables a natural interaction with the virtual environment.
The scalpel may have a complex geometry for visual rendering, comprising a set of tri-
angles. For simplicity, however, the blade that actually cuts the object is usually repre-
sented by a single line segment. An open problem is how time-continuous intersection
testing between the deformable body and the cutting tool can be realized. In current
approaches, the deformable body and the scalpel are moved sequentially within each
simulation frame, rather than simultaneously. As a consequence, edges/links might be
missed by the cutting tool, especially if the object is moving rapidly.

For non-interactive applications, the cutting surface can also be predefined in the
reference configuration [MBF04, KMB*(09]. For example, the cutting surface can be
constructed from a contour defined on the surface of the deformable object, which is
similar to the guide contours defined during preoperative surgery planning [WBWD12].
Prescribing a cutting surface in the reference configuration allows for precisely apply-
ing a certain cutting shape, simplifies the intersection tests, and avoids the possible
problems with temporally discrete intersection testing. While the simulation of the
progressive cutting process is important for animation and interactive applications, in
some special cases such as surgery planning, the dynamic process might be of less im-
portance compared to the finally resulting shapes. In these cases the entire cut can be
introduced in a single step, which potentially simplifies remeshing operations.

3.2.2 Tetrahedral Meshes

After a brief review of some of the approaches for generating an initial tetrahedral
mesh, we introduce and discuss the following techniques for the incorporation of cuts
into tetrahedral meshes (see Figure 3.3 for a 2D illustration):

3.2. MESH-BASED MODELING OF CUTS 31

Element deletion Splitting along existing faces Element duplication

Cutting configuration

/
7 Y

Snapping of vertices Element refinement Snapping + refinement

Figure 3.3: [llustration of different methods for incorporating cuts into a tetrahedral mesh (a
triangle mesh in 2D). The red cutting path separates the object into two disconnected parts,
which are illustratively displaced to make the discontinuity visible. The surface of the object
(bold black line) is given by the set of surface faces of the tetrahedral elements, except for the
approach that is based on element duplication, where a separate surface mesh is maintained.

e Element deletion [CDAO0O],

Splitting along existing element faces [NvdS00, MGO04,LTO07],

Element duplication [MBF04, SDF07],

Snapping of vertices [NSO1,LJD07],

Element refinement [BMG99, BG00, MK00, BSO1, BGTG04, GCMSO00],
e Combined snapping of vertices and element refinement [SHGS06].

One challenge is the accurate representation of arbitrarily-shaped cuts, while avoid-
ing the creation of ill-shaped elements [She02], which lead to numerical instabilities
during mesh adaptation and deformation computation. The method of element deletion
and the method of splitting along existing element faces maintain the well-shaped el-
ements of the original discretization, but they result in jagged surfaces. By means of
snapping of vertices or element refinement, or a combination of both, cuts can be ac-
curately represented. However, since the elements are modified, for these methods it is
necessary to prevent ill-shaped elements. The method of element duplication provides

32 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

a good trade-off between accuracy and robustness by embedding an accurate surface
into the duplicated elements in their original shapes.

Tetrahedral Mesh Generation

An initial tetrahedral discretization of the simulation domain can be generated from
surface meshes [Si06], medical image data [ZBS05,LZW*14], or level sets [TMFBO5].
Quality tetrahedral mesh generation itself remains an active research topic. It is well
known that ill-shaped elements (e.g., needle elements, or almost planar sliver elements)

lead to numerical instabilities [She02].

Cut Modeling without Creating New Elements

Perhaps the easiest way to incorporate cuts into the deformable body is to separate
the material by removing elements that are touched by a cutting tool. While this sim-
ple method is widely adopted in real-time simulations (e.g., [CDAOO]), it puts severe
limitations on the mechanical accuracy and visual quality. First, the newly exposed
surface does not conform to the smooth swept surface of a cutting tool, but to the ini-
tial discretization of the deformable body, leading to a rather jagged surface. Second,
the removal of elements causes a loss of volume, and it leaves unrealistic holes in the
object. A remedy to the second problem is to split the object along existing element
faces [NvdS00]. This works fine if the cutting surfaces are known a priori to creat-
ing the initial discretization [LTO7], i.e., the tetrahedralization takes the pre-recorded
cutting surface into account. However, for arbitrary cuts, it still results in a jagged
surface. To make the newly created surface conforming to cuts, a simple method is
to snap the vertices onto the cutting surface before splitting the object along element
faces [NSO1]. This modification, however, may create ill-shaped elements, which need
further treatment afterwards.

Cut Modeling by Element Refinement

To accurately accommodate complex cuts with a reasonable number of initial elements,
it is thus necessary to locally refine tetrahedra. Bielser et al. presented a 1:17 subdivi-
sion method for tetrahedral decomposition, by generating a vertex on each edge, and a
vertex on each triangle face [BMG99]. The exact placement of these vertices depends
on the intersection between the cutting tool and the element. Initially, adjacent elements
share their vertices. Cutting is modeled by duplicating vertices appropriately. Fig-
ure 3.4 (left) illustrates the five topologically different configurations of a tetrahedron

3.2. MESH-BASED MODELING OF CUTS 33

S |
bk ki

1(6) 1(12) /\/ N4 IS -
ve) w0

MIb (12)

Figure 3.4: Left: A cut tetrahedron can have five topologically different configurations. The
Roman numeral represents the number of disconnected edges. The number in parentheses in-
dicates the number of topologically equivalent configurations by rotation and mirroring oper-
ations. Right: In the hybrid cutting approach, three additional topological configurations of a
cut tetrahedron are introduced. The small Roman numeral represents the number of existing
vertices which are snapped and duplicated.

after introduction of a cut. Among these five configurations, Il a and IV correspond to
complete cuts through the tetrahedron, while the other three correspond to partial cuts.
For each of these configurations, the information which vertices have to be duplicated
in order to generate the respective topological configuration after performing the 1:17
subdivision, is precomputed and stored in a look-up table.

To reduce the number of elements compared to a full 1:17 subdivision, Bielser
and Gross subdivided only those edges and faces which are part of the cutting sur-
face [BG0OO]. Mor and Kanade presented a method for progressive cutting that mini-
mizes the number of newly created elements [MKO0O], and Ganovelli et al. proposed a
multi-resolution approach to reduce the number of elements [GCMSO00]. Bielser et al.
further proposed a state machine to track the topological configuration of each tetrahe-
dron during progressive cutting [BGTGO04].

Considering the decomposition of tetrahedron, if the intersection between an edge
and the cutting surface is very close to one of the edge’s vertices, ill-shaped elements
will occur. Steinemann et al. proposed a combination of snapping of vertices and ele-
ment refinement to solve this problem [SHGS06]. The idea is illustrated in Figure 3.5
for the 2D case. If a vertex of an intersected edge lies close to the cutting surface (the
distance is smaller than a given threshold), the algorithm moves this vertex onto the cut-
ting surface, and separates the material by duplicating the vertex. If the cutting surface
intersects an edge close to its midpoint, the edge is split. The method is implemented
by extending the set of five topological configurations of a cut tetrahedron, shown in
Figure 3.4 (left), by three additional topological configurations, illustrated in Figure 3.4

34 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

Figure 3.5: A hybrid cutting approach based on both snapping of vertices and element refine-
ment. If the intersection between an edge and the cutting surface is close to one of the edge’s
vertices (determined by a threshold d), the vertex is moved onto the cutting surface, in order to
prevent the creation of ill-shaped elements. Otherwise the edge is split at the exact intersection
point.

(right). The additional configurations correspond to a complete cut that passes through
one, two, or three vertices.

To model a curved cut within a tetrahedral element, given by a sequence of cutting
surface triangles, the individual triangles in principle can be successively incorporated
into the tetrahedral mesh, leading to a sequence of repeated tetrahedral splits. Since
this approach leads to a very large number of tetrahedra along the cut, in practice only a
single split of the initial tetrahedron is performed. A curved cut thus is approximated by
a only a few tetrahedron faces. The resulting sub-tetrahedra in general are only split if
they are intersected by another cut. Also for progressive cutting, the initial tetrahedron
is split only once, i.e., when a partial cut is further progressing through a tetrahedron,
the current tetrahedral split is undone and replaced by a new split.

Cut Modeling by Element Duplication

Molino et al. proposed the virtual node algorithm to circumvent subsequent numeri-
cal problems resulting from ill-shaped elements [MBF04]. The basic idea is to create
one or more replicas of the elements that are cut, and to embed each distinct material
connectivity component of an element into a unique replica. The replicas comprise
both original vertices inside the material (referred to as real nodes) and newly created
vertices outside the material (referred to as virtual nodes). Embedding means that the
deformation computation is performed on the well-shaped replicas of the original ele-
ment, and then the displacements of the element’s fragments are determined by means
of interpolation.

In the initial version of the algorithm, each replica is required to have at least one
real node. This was extended by Sifakis et al. to allow for replicas with purely virtual

3.2. MESH-BASED MODELING OF CUTS 35

nodes, and thus to support an arbitrary number of fragments within a single tetrahe-
dron [SDFO07]. Given a set of triangle surface meshes (original object surfaces and
cutting surfaces), enclosed by a tetrahedral mesh that covers the simulation domain, the
algorithm first generates a set of non-intersecting polygons from the triangle soup con-
sisting of surface mesh triangles and tetrahedron faces. From these polygons, a poly-
hedral discretization is determined by examining the connectivity among the polygons.
Note that the polyhedra and the tetrahedra per construction do not intersect. Then, for
each tetrahedron, the material connectivity components are determined from the poly-
hedral discretization. For each connectivity component, a duplicate of the tetrahedron
is created. In this way, the algorithm enables to combine a lower-resolution tetrahe-
dral mesh for the representation of the simulation domain with high-resolution surface
meshes for rendering and collision handling. Note that by means of the duplication of
elements, the volumetric representation and the surface representation are topologically
consistent.

Wang et al. redeveloped the virtual node algorithm [WJST14]. Their version al-
lows for cuts passing through mesh vertices or lying on mesh edges and faces (with-
out the need of ambiguous perturbation of the cutting surfaces as in the original ver-
sion), enables multiple cuts per tetrahedron face (at a lower algorithmic complexity
than [SDFO07]), and includes a mesh intersection routine that is provably robust in the
context of floating point rounding errors.

3.2.3 Hexahedral Meshes

A regular or semi-regular hexahedral discretization, generated directly from medical
image data [ZBS05] or from polygonal surface meshes by voxelization techniques [EDOS,
DGBWO0S8], provides an effective means to represent cuts without having to worry about
ill-shaped elements [JBB*10,SSSH11]. We discuss the approach of using a linked vol-
ume representation, where the connectivity is modeled by links between face-adjacent
elements [FG99, DGW11a], and review surface reconstruction techniques to build a
smooth surface mesh from the hexahedral grid [WDW11].

Volume Representation

To model cuts in the deformable body, Frisken-Gibson proposed a linked volume repre-
sentation [FG99]. The basic idea of the linked volume representation is to decompose
the object into a set of hexahedral elements, using a uniform hexahedral grid. Face-
adjacent elements are connected via links, with six links emanating from each element.

36 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

S | I
|
!

-
!

A\
7

| |
: | |
T
T |
NI EE
e maERs
|

’:7 s | **/l/ D Hexahedral cells

l&if COCrT __ Connected links
\ i /}/ —————— Disconnected links

- o4 Surface meshes

Figure 3.6: 2D illustration of the modeling of cuts in a linked volume representation. The
object is discretized by means of an adaptive octree grid (shaded cells). The cells of this grid
are connected by links (green, solid). Cutting is modeled by disconnecting links (red, dashed).
A surface mesh (black line and dots) is reconstructed from the dual grid of links.

Cuts are modeled by marking links as disconnected when they are intersected by the
virtual cutting blade. Cuts are thus represented at the resolution of the hexahedral grid.

Since the resolution of a uniform grid is in practice limited by simulation time and
memory requirements, an adaptive octree grid for virtual cutting was proposed by Dick
etal. [DGW11a] (see Figure 3.6), which adaptively refines along cuts, down to a certain
finest level. Links are still considered on the uniform grid corresponding to this finest
level, but are physically stored only for the elements at the finest level. The adaptive
octree grid is constructed by starting from a coarse uniform grid. Whenever a link on the
finest level is intersected by the surface of the deformable object, the incident elements
(possibly only one element, when both endpoints of the link are lying within the same
element) are refined using a regular 1:8 split. At the finest level, links are marked
as disconnected when they are intersected by the object’s surface. Elements that are
lying outside of the object are removed from the representation. To avoid jumps in the
discretization, additional splits are performed to ensure that the level difference between
elements sharing a vertex, an edge, or a face is at most one (restricted octree). Cuts are
modeled analogously to the modeling of the object surface, i.e., elements are adaptively
refined along a cut down to the finest level, where links are marked as disconnected (see
Figure 3.7 for an example). Material properties such as Young’s modulus and density
are assigned on a per-element basis. To model inhomogeneous materials, the octree
mesh can be refined further.

3.2. MESH-BASED MODELING OF CUTS 37

Figure 3.7: The Stanford bunny model is discretized into a linked octree grid (left), which is
refined along the surface and the cuts (right).

Surface Representation

To render the surface of the deformable object—including the additional surface parts
that are generated by cutting—a surface mesh is reconstructed from the volume rep-
resentation. Wu et al. [WDW11] applied the dual contouring approach [JLSWO02] for
constructing this surface. Compared to the splitting cubes algorithm [PGCS09], which
was used in [DGW11a], dual contouring improves the quality of the generated mesh
and reduces the total number of triangles. Dual contouring operates on the (imagi-
nary) grid that is formed by the links between the elements at the finest level. For each
link that is cut by the blade, the distances between the intersection point and the link’s
endpoints as well as the normal of the blade at the intersection point are stored. This
information is used to position a surface vertex within each cell that is incident to at
least one disconnected link. Since for a cut two surfaces have to be created—one for
each material side—this vertex is duplicated, so that for each material component in
the cell one vertex exists. The material components in a cell are determined by means
of a look-up table, which is indexed by the pattern of connected and disconnected links
incident to a cell. After generating the vertices, the surface is spanned by creating two
surface patches (2 X 2 triangles) for each link that is cut. The vertices are finally bound
to the nearest element of the respective material part. This binding allows for carrying
over the deformation computed at the vertices of the hexahedral simulation mesh to the
surface vertices.

In the discussed approaches, the resulting surface is reconstructed from the underly-
ing hexahedral grid. This design thus avoids the explicit cutting of the surface mesh. It
has also been adopted for fracturing simulation [HIST13]. A different strategy is to ex-

38 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

A
= =))

Figure 3.8: Illustration of cuts in polyhedral elements. Left: A tetrahedron is cut into two
parts, resulting in a small tetrahedron and a triangular prism. Right: The triangular prism is
partially cut, resulting in two polyhedral elements that are partially connected. Contrary to a
tetrahedral discretization, no further subdivision is required.

plicitly cut the surface mesh, separated from the hexahedral simulation grid. This strat-
egy was followed by Seiler et al. for the simulation of punching operations [SSSH11],
which are commonly seen in endoscopic surgery.

3.2.4 Polyhedral Meshes

When cuts are modeled by element refinement, the resulting elements necessarily must
be tetrahedra or hexahedra, when a tetrahedral or hexahedral discretization is used. A
polyhedral discretization removes this constraint by allowing the creation of general
polyhedra. This potentially enables the modeling of cuts by creating a smaller number
of new elements [WBG07, MKB*08].

Without loss of generality, polyhedral modeling of cuts can be realized by starting
with a purely tetrahedral discretization of the object. To model a complete cut, upon
which an element is split into disconnected parts, two new convex elements are cre-
ated. These resulting elements are composed of vertices of the initial element and the
intersections between its edges and the cutting polygon. As illustrated in Figure 3.8
(left), a tetrahedron is split into a small tetrahedron and a triangular prism. Note that
no remeshing is needed to decompose the triangular prism into smaller tetrahedra. Fig-
ure 3.8 (right) shows the modeling of a partial cut. The intersections between the ele-
ment’s edges and the cutting polygon, and between the element’s faces and the cutting
polygon’s edges are employed as new vertices.

While polyhedral modeling of cuts potentially leads to simplified operations, similar
to tetrahedral meshes, there are practical issues with respect to ill-shaped elements. A
fundamental problem is that quality criteria of general polyhedral elements are unclear.
Wicke et al. found that in particular sliver polyhedra, which are almost planar, lead
to numerical problems during simulation, and applied vertex merging and snapping to

3.3. FINITE ELEMENT SIMULATION FOR VIRTUAL CUTTING 39

remove these slivers [WBGO07]. Furthermore, to avoid possible numerical problems, it
is required to enforce that the elements are convex. These issues and constraints make
quality and efficient polyhedralization non-trivial.

3.2.5 Discussion on Discretizations

Avoiding ill-shaped elements is still a major challenge when using a tetrahedral dis-
cretization, especially under the constraint of the limited time budget in real-time ap-
plications. While a polyhedral discretization offers more flexibility with respect to the
shape of individual elements, still special care is required to avoid ill-shaped polyhedra,
and also to ensure the convexity of the elements. The virtual node algorithm is superior
in this aspect, since it embeds possibly ill-shaped fragments into duplicates of orig-
inal elements, whose quality can be ensured during preprocessing. Another solution
to handle ill-shaped elements is to treat them separately with an alternative numerical
strategy, for example with a geometric deformation model. This was studied by Fierz
et al. [FSHH12].

Using a semi-regular hexahedral discretization is an effective means to ensure that
the elements are well-shaped during dynamic mesh refinement. However, a separate
surface representation is required to compensate the jagged nature of the hexahedral
grid.

3.3 Finite Element Simulation for Virtual Cutting

In mesh-based cutting approaches, the finite element method is typically used for the
numerical discretization of the governing equations of elasticity. The standard approach
is to directly employ the spatial discretization that is induced by the mesh, i.e., to create
one computational element (finite element) for each geometrical element (cell). The
deformable body simulation then is identical to the case without cuts. General simula-
tion of deformable bodies in computer graphics is for example surveyed in [NMK*06].
For an introduction of finite elements for elasticity let us refer to Chapter 2!.

In this section, we discuss three finite element methods that are specialized for sim-
ulating cuts in deformable bodies. In particular, we discuss the extended finite element
method, the composite finite element method, as well as the polyhedral finite element
method. For the first two methods, separate spatial discretizations are employed for the

! Unlike in Chapter 2, from this chapter on, for simplicity we do not explicitly distinguish vectors and matrices
from scalars by using boldface letters. Nevertheless, the reference is straightforward to interpret from the specific
context.

40 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

Figure 3.9: A discontinuous displacement field computed with the extended finite element
method. The green triangle domain is divided by a red cut line. The displacements u; and a;
correspond to the original and added DOFs respectively. Using the shifted Heaviside function
as enrichment functions, the displacement field is u(x) = ®°(x) (uy, up + as, u3)' on the left
side of the cut, and u(x) = ®%(x) (u; — ay, up, uz — a3)T on the right side.

representation of the simulation domain and for the numerical simulation. This allows
for the modeling of complicated-shaped cuts (and also a complicated-shaped original
surface of the object), while requiring only a rather small number of computational
elements. In this way, these methods enable to carefully balance speed and accuracy,
which is particularly important for interactive applications.

For each method, we present its idea and its main components (e.g., the design of
shape functions and the construction of element stiffness matrices). In an additional
section, we also briefly review the numerical methods for solving the system of equa-
tions resulting from finite element discretization and implicit time integration, since
the numerical solver is a crucial component considering the overall performance of a
cutting application.

3.3.1 The Extended Finite Element Method

The basic idea of the extended finite element method (XFEM) [BB99] is to model
material discontinuities introduced by cuts by adapting the basis functions of the fi-
nite dimensional solution spaces [BM97, SCBO1]. The XFEM was originally invented
to accurately simulate material interfaces and crack propagation [MDB99, SMMBO00].
The idea was recently utilized for cutting and fracturing deformable objects in graphics
applications [LT07,JK09, KMB*09].

In the standard FEM, the displacement within an element is interpolated from the
displacements at the element’s nodes by using continuous shape functions, which are
apparently not sufficient to model the discontinuities introduced by cuts. The idea of

3.3. FINITE ELEMENT SIMULATION FOR VIRTUAL CUTTING 41

the XFEM is to introduce discontinuous enrichment functions, together with additional
degrees of freedom (DOFs) assigned to the original nodes. The displacement field u(x)
is computed as

u(x) = ®°(x) u® + Y(x)d°(x) a°, (3.1
where ®¢(x) is the standard shape matrix, u° is the vector of original DOFs, W¢(x) is the
element’s shape enrichment matrix, which is composed of discontinuous enrichment
functions ¢ (x), and a‘ represents the newly assigned DOFs.

To make the shape functions fulfill the Kronecker delta property, a good choice for
the enrichment functions is the shifted Heaviside function, i.e.,

H(x) - H(x)

i (x) = > ; (3.2)

where x; is the position of the i-th node, and H(x) is the generalized Heaviside function
(also known as the sign function)

(3.3)

H) +1 if x is on the cut’s left side;
X) =
—1 if x is on the cut’s right side.

As illustrated in Figure 3.9 (for simplicity for a planar element), using the shifted Heav-
iside function ensures the discontinuity across the cut. Substituting the enrichment
functions Eq. 3.2 into Eq. 3.1, in this example the displacement field becomes u(x) =
@°(x) (u1, up + a», u3)" onthe left side of the cut, and u(x) = ®°(x) (u; — ay, ua, uz —az)"
on the right side. Employing the shifted Heaviside function as enrichment functions
makes it easy to treat boundary conditions: Since they vanish at the nodes, i.e., /¢ (x;) =

0, the displacement at the position of the i-th node is independent of the additional
DOFs a°. 1t should be noted that a different selection of the enrichment functions influ-
ences the physical meaning of the original and the added DOFs, but leads to the same
displacement field.

With the enriched shape functions defined, the enriched element stiffness matrix is
computed as

XK¢ = f (*B)TC(*B%)dx, (3.4)

where C represents the material law, and the enriched element strain matrix is composed
according to
B = (B, ..., B, WiBS. ..., Y5 B). (3.5)

n,"n,

42 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

The enriched element stiffness matrix has the form

Ke,uu Ke,ua
XK = , (3.6)
Ke,au Ke,aa

where the superscripts “ and ¢ correspond to the original and the added DOFs, respec-
tively. Details that facilitate implementation, as well as enriched element stiffness ma-
trices for the corotational and non-linear strain formulations were derived by Jefdbkova
et al. [JK09].

While only a single cut is considered above, multiple cuts, in principle, can be sup-
ported by further adding more enrichment functions and simulation DOFs. Kaufmann
et al. proposed enrichment textures for detailed cutting of shells [KMB*09]. They
proposed a harmonic enrichment approach, which uses only one unified kind of en-
richment functions to handle multiple, partial, progressive, and complete cuts. While
this approach is in general applicable to 3D solids, such a generalization has not been
reported yet.

3.3.2 The Composite Finite Element Method

The idea of the composite finite element method (CFEM) [HS97, SWO06] is to approx-
imate a high-resolution finite element discretization of a partial differential equation
by means of a smaller set of coarser elements. Preusser et al. used the composite
finite element method to resolve complicated simulation domains with only a few de-
grees of freedom, and also to improve the convergence of geometric multigrid meth-
ods by an effective representation of complicated object boundaries at ever coarser
scales [PRSO7, LPR*09]. In computer graphics, Nesme et al. employed the CFEM
as a special kind of homogenization for resolving complicated topologies and material
properties in deformable body simulation [NKJFO09].

Recently composite finite elements were leveraged in the context of virtual cutting
to reduce the number of simulation DOFs [JBB*10, WDW11]. The adoption of the
CFEM for cutting simulation is motivated by the following facts. First, using hexa-
hedral discretizations (see Section 3.2.3), an accurate representation of complex cuts
typically requires a high-resolution octree grid. Creating a hexahedral simulation ele-
ment for each octree cell would lead to a very large number of DOFs, exceeding the
number of DOFs that can be simulated in real-time. Second, due to its simplicity, the
regular or semi-regular hexahedral grid enables an efficient construction of composite
finite elements.

3.3. FINITE ELEMENT SIMULATION FOR VIRTUAL CUTTING 43

A composite finite element is obtained by combining a set of small standard finite
elements into a single larger element. In particular, the shape functions of the compos-
ite finite element are assembled from the shape functions of the individual elements.
The geometrical and topological composition, and the numerical composition of the
stiffness matrices are detailed in Section 4.4.

3.3.3 The Polyhedral Finite Element Method

To avoid the remeshing process in standard finite elements, Wicke et al. proposed
to directly work on more general convex polyhedral elements [WBGO7]. Martin et al.
extended this method to support arbitrary convex and concave polyhedral elements with
planar (not necessarily triangulated) faces [MKB*08]. Kaufmann et al. further applied
the discrete discontinuous Galerkin FEM to arbitrary polyhedra [KMBGO8]. These
approaches are collectively named here as polyhedral finite element method (PFEM).
Shape functions for polyhedra A key component in the PFEM are valid shape func-
tions defined on the polyhedral domain. They should fulfill the properties of positivity
and reproduction of linear polynomials, as required for the convergence of the finite
element method [WBGO7].

Wicke et al. employed the mean value interpolation function, which is defined as a
normalized weight function for each vertex x; of a convex polyhedron with k vertices

according to
wi(x)

)

Enumerating x;’s edge-adjacent vertices by x;, the weight w; is defined as a weighted

¢i(x) (3.7

sum of ratios of signed tetrahedra volumes by

(3.8)

cijr CijViije)
b

Viijwr Vij1iVijn

mm=2(
J

where V,,, . represents the volume of the tetrahedron spanned by x,, x5, x. and x, and
Cqp 1s computed as

(3.9)

Cu,b(x) =

l(xe — x) X (x — X)IIarCCOS ((xa - x)T(x — x))'

6 llxa = Il llxp — x|

Martin el al. used harmonic shape functions as a generalization of linear tetrahedral
shape functions to general polyhedral elements. A shape function is called harmonic if
its Laplacian vanishes within the element. With its value fully determined at the nodes

44 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

(constrained by the Kronecker delta property), the harmonic shape function is uniquely
determined. Since closed form expressions for harmonic shape functions do not exist
for general polyhedra, they numerically computed the solution of the Laplacian equa-
tion using the method of fundamental solutions.
Computation of element matrices In contrast to finite element methods based on tetra-
hedral and hexahedral elements, an analytical evaluation of the element stiffness ma-
trices for polyhedral elements is non-trivial. To efficiently integrate (B¢)"CB¢ over a
polyhedral domain, Wicke et al. approximated the integrals using a small set of sam-
ple points p heuristically placed throughout the element, in particular, one integration
sample p; per vertex of the element, and one sample p, per triangle of the element
faces. In their implementation, the per-vertex samples are placed between the element
centroid ¢ and the vertex x;, at p; = 0.8x; + 0.2¢, while the per-triangle samples are
located between the element centroid ¢ and the face centroid ¢, at py = 0.9¢, + 0.1c.
Their simulation results show that the exact location of the samples has little influence,
and that the difference compared to employing around 10,000 samples per element is
subtle.

Integrating over this set of sample points, the element stiffness matrix K¢ has the
form . P

K = Z SHB () CB (pi) + Zf] 5 (B () CB (p)). (3.10)

Here, yif and &/ represent the volume fractions associated with the per-vertex integration
sample p; and with the per-triangle sample py, respectively. Specifically, enumerating
x;’s edge-adjacent vertices by x;, the volume fraction ¢ is defined as

Zj V(xi, Xjs Xjt+1s c)
3Ve '

pe = (3.11)

For a triangle face with vertices x;,, x;,, and x;,, the volume fraction «% is defined as

V(le s Xjrs Xjs» c)
Ve '

(3.12)

€ _

3.3.4 Discussion on Finite Element Methods

Both the extended finite element method and the composite finite element method are
based on using distinct spatial discretizations for the representation of the simulation
domain and the numerical discretization. In particular, the spatial discretization that is
employed for the numerical discretization does not need to be aligned at the simulation

3.4. MESHFREE METHODS 45

domain boundary. Compared to the standard finite element methods, this enables to
reduce the number of computational elements/DOFs along the boundary, and thus to
balance speed and accuracy. Both approaches are based on using duplicated DOFs at
the same location in order to correctly model the topology of the simulation domain.
Whereas the extended finite element method directly duplicates the DOFs at the vertices
of the original element, the composite finite element method is based on duplicating
elements, which implicitly leads to a duplication of DOFs.

It 1s worth noting that the virtual node algorithm [MBF04, SDF07] described in
Section 3.2.2 is related to these approaches, in that it is also based on the duplication
of elements and thus DOFs in order to correctly represent the topology of the simu-
lation domain. However, since in the virtual node algorithm the duplicated elements
are assigned the (standard) element matrices of the original elements before cutting,
the distribution of the material to the distinct sides of a cut is not modeled accurately.
This is in contrast to the extended and the composite finite element method, where the
material boundaries (including those resulting from cutting) are accurately represented
by using specialized element matrices, i.e., the construction of these matrices takes the
exact material boundaries into account.

3.4 Meshfree Methods

In contrast to finite element methods, meshfree methods (also known as meshless meth-
ods) do not require a simulation grid. Instead, the material is represented by a set of
moving simulation nodes, which interact with each other according to the governing
equations of elasticity. From computational mechanics, reviews of meshfree methods
for cutting and fracturing can be found in [NRBDO08,RBZ10]. The advantage of mesh-
free methods is that they do not need an explicit encoding of the material topology and
can be used even in scenarios where the connectivity of the nodes is difficult to main-
tain without introducing errors [NTV92]. On the downside, meshfree methods need
to compute node-to-node adjacency in every simulation step, making it necessary to
maintain and update an additional search data structure.

In computer graphics, Desbrun and Cani are among the first to employ the concepts
underlying meshfree methods for deformable body simulation. They animated soft
substances that can split and merge by combining particle systems with inter-particle
forces [DG95]. Miiller et al. proposed point-based animation for a wide spectrum of
volumetric objects [MKN*04], the basics of which are summarized in Appendix 3.10.
Meshfree methods were also used in offline fracturing [PKA*05] and interactive cut-

46 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

e 'N\A e
° X
° op. e

(a) Visibility criterion (b) Transparency method

° X
oop.'

(c) Diffraction method (d) Graph-based
diffraction method

Figure 3.10: Discontinuity modeling in meshfree methods. The object (gray region) is sam-
pled at a set of simulation nodes (blue dots). (a) The visibility criterion assigns a zero value
to the shape function since Xx;x intersects the cut (the red curve). (b) The transparency method
enhances the Euclidean distance x;x with the distance from the discontinuity tip to the intersec-
tion, pa. (c) The diffraction method considers the distances from the tip to both nodes, px; and
px. (d) The diffraction distance is approximated by the shortest path in a visibility graph, x;x,,
XaXp, and Xpx.

ting [SOG06,PGCS09].

In meshfree methods, the object is sampled at a set of simulation nodes x;. The
deformation field is approximated by u(x) = }; ¢:(x)u;, where u; are the displacement
vectors at the simulation nodes and ¢; are shape functions. The shape functions pro-
posed in the computer graphics literature are usually constructed using the moving
least squares (MLS) approximation [LS81]. Alternative designs of shape functions for
meshfree methods can be found in engineering textbooks (e.g., [FMO03]). The shape
functions are weighted by a polynomial kernel w(x, x;, r;), which rapidly decays with
increasing distance between the simulation node x; and the point x where the function
is to be evaluated.

Modeling discontinuity Meshfree methods model the material discontinuities caused
by cutting (as well as initial surface concavities) by augmenting the shape functions. A
straightforward way is by introducing the visibility criterion [BLG94], i.e., if a point

3.4. MESHFREE METHODS 47

x is invisible from the simulation node x; due to the newly created surface, the shape
function ¢;(x) is assigned a value of zero. A drawback of this solution is that it intro-
duces an artificial discontinuity (see Figure 3.10 (a), the two sides of the ray starting
from the discontinuity tip p are classified as visible and invisible respectively), which
affects negatively numerical convergence and stability. To cope with this, Pietroni et al.
extended the visibility criterion by introducing the concept of visibility disk and aug-
mented the shape function by the ratio of the visible region within the disk [PGCS09].
While this approach alleviates the discontinuity caused by the binary-valued visibility
criterion, a rigorous definition of the visibility disk has not been proposed so far.

The discontinuity can also be modeled by defining different distance measures for
quantification of the distance between x and x;, which is then considered in the weights
of the shape functions. The transparency method [OFTB96] adds to the Euclidean
distance between x and x; a factor that depends on the distance from the discontinuity
tip to the intersection of the line segmentxx;, pa in Figure 3.10 (b). This distance
measure was used in offline simulations [PKA*05, GLB*06].

The diffraction method [OFTB96], which considers the diffraction of rays around
the discontinuity tip, weights the Euclidean distance between x and x; by their distances
to the discontinuity tip, px; and px in Figure 3.10 (c). Note that the diffraction and
transparency methods were designed for simple 2D domains where the discontinuity
tip is well defined. For efficient evaluation of diffraction distances in 3D, Steinemann
et al. proposed the use of a visibility graph for estimating the distance along fully
visible paths between two points [SOGO06]. The distance is chosen as the shortest path
in a precomputed visibility graph, see Figure 3.10 (d), x;x,, X,X;, and X, x. Upon cutting,
the intersected edges of the visibility graph are removed from the graph, and the shortest
paths in the graph are updated accordingly.

Boundary surface Meshfree methods do not naturally provide a representation of the
boundary. To create new surfaces after cutting, Steinemann et al. proposed to explicitly
triangulate the swept surface of a cutting tool [SOGO06]. The swept surface is trimmed
with respect to the original surface of the object. In the context of fracturing, Pauly
et al. explicitly modeled advancing crack fronts by continuously adding surface sam-
ples during crack propagation [PKA*05]. Instead of creating new surfaces explicitly,
Pietroni et al. maintained a uniform hexahedral grid that is embedded into the simu-
lation domain, and reconstructed from this grid a mesh corresponding to an implicit
surface in the volume [PGCS09].

While meshfree methods were intentionally proposed to efficiently handle large
deformations and topological changes, more recent works demonstrated performance

48 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

gains by augmenting meshfree methods with explicitly stored connectivity information.
For example, a graph connecting simulation nodes can be employed to evaluate mate-
rial distance [SOGO6] or encode visibility [JL12]. In these two approaches, cutting is
modeled by removing corresponding edges in the graph. Another example is the em-
bedding of a uniform hexahedral grid into a meshfree simulation in order to construct
the newly exposed cutting surfaces [PGCS09].

3.5 Numerical Solvers

To solve the sparse linear system of equations Ax = b resulting from finite element
discretization and implicit time integration, an efficient numerical solver is required.
Here it is worth noting that in the particular application of virtual cutting, the initial-
ization time of the solver plays a significant role. Since the system matrices have to be
re-assembled in every simulation step due to the use of the corotational strain formula-
tion and the handling of topological changes, the initialization of the solver has to be
performed in every simulation step, too.

3.5.1 Direct Solvers

Direct methods determine an exact solution of the linear system of equations by a finite
sequence of operations. Targeting static finite element simulations using linear elas-
ticity without corotational strain (i.e., the matrix A changes only if cuts are applied),
Zhong et al. [ZWPO05] proposed to solve the equation system by precomputing the in-
verse A~!. In their approach, a cut is modeled by deleting elements, and by adapting
the rows and columns of A corresponding to their incident vertices. The manipula-
tion of A is expressed in the form A + UVT, so that the inverse can be updated via the
Sherman-Morrison-Woodbury formulae [Hag89]

A+UVH ! =A""—Alug +viA-lu) tvia~l, (3.13)

If the number of affected elements and the number of non-zero entries in the right-hand
side vector b are limited by a given constant, the update of A~! and the evaluation of
x = A7'b have linear run-time in the number of vertices. Lee et al. [LPO10] made
use of condensation [BNC96, WHOS5] to further accelerate the inversion process. By
considering only the surface vertices of the volumetric object in the computation of the
inverse, significantly improved computation times can be achieved.

3.5. NUMERICAL SOLVERS 49

In a similar manner, Lindblad and Turkiyyah updated the inverse of the stiffness ma-
trix in the extended finite element method [LT07]. Using the XFEM, the dimension of

Au
A increases due to the newly assigned DOFs (see Eq. 3.6), and A changes to [:W A“j’
where the superscripts “ and ¢ correspond to the original and the added DOFs, respec-
tively. The inverse of the new matrix can be computed from the inverse of the original

matrix using
-1

Ald -1 + A—lAuaD—lAauA—l _A—lAuaD—l

[j [‘] an

au Aad = D—]AauA—l D—l

where D = A% — A%A~I A",

Turkiyyah et al. proposed to use progressive updates of the Cholesky factorization
to simulate cutting of a 2D mesh [TKANO09], and Courtecuisse et al. updated the in-
verse of the compliance matrix after cutting to model the contact [CJA*10]. Recently,

sparse direct solvers were applied to corotational elastodynamics with consistent topol-
ogy [HLSO12].

3.5.2 Iterative Solvers

Direct solvers using matrix inversion and factorization do not scale well in the number
of DOFs because of their extensive memory and computation requirements. Further-
more, such solvers cannot trade accuracy for speed, which is required in interactive
applications to guarantee prescribed response rates.

Iterative solvers generate a sequence of increasingly more accurate approximations
to the exact solution of a system of equations, and thus are an effective means to balance
speed and accuracy by choosing a fixed number of iterations or by specifying a stopping
criterion in terms of a threshold for the error reduction. When rating the efficiency of an
iterative solver, the major criterion is the achieved convergence rate, i.e., error reduction
per computing time.

Nienhuys and van der Stappen [NvdS00, NSO1] used a conjugate gradient (CG)
solver [She94], which requires a large number of iterations to obtain stable and visu-
ally realistic deformations [CJA*10, CAR*09]. On the other hand, since CG solvers
involve matrix-vector and vector-vector products they can be parallelized efficiently
using OpenMP [CAR*(09] and CUDA [CJA*10].

Dick et al. proposed a geometric multigrid solver for cutting simulation, based on
a hexahedral discretization of the simulation domain [DGW11a]. The main idea of
multigrid is to employ a hierarchy of successively coarser grids, such that successively

50 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

lower frequency error components can be effectively relaxed on successively coarser
grids. Multigrid is optimal in the sense that it exhibits asymptotic linear runtime in
the number of unknowns. A detailed comparison of different solvers in the context
of virtual cutting has revealed significantly improved convergence rates of multigrid
methods compared to a Cholesky solver and a CG solver with Jacobi pre-conditioner.
In particular it was demonstrated that the convergence rate of multigrid methods does
not depend on the smoothness of the object boundary, which was commonly referred
to as a main weakness of multigrid methods.

In multigrid methods, in addition to the relaxation scheme and the coarse grid hier-
archy, transfer operators are required to transfer quantities between the grids. Consider
a two-level geometric hierarchy where the fine and coarse level are denoted by super-
scripts h and 2h, respectively. The linear system on the fine grid has the form Ax" = b".
On the coarse grid, the system matrix is approximated by A*" = R*A"[}

20
the interpolation operator and R2" = (I%)T the restriction operator. In each iteration, the

h .
where L, is

solver performs the following steps (¥ denotes the current approximate solution):
1. Relax A"3" ~ b",
2. Compute residual " = b" — A"3",

3. Restrict residual to the coarse grid: r*" = R,

4. Solve residual equation on the coarse grid: A?'e*" = 2,

5. Interpolate error to the fine grid: &" = I e*",

6. Apply correction to the solution: ¥ = & + &",
7. Relax A% ~ b

Pre- and post-smoothing (steps 1 and 7) usually involves one or two relaxation itera-
tions. Applying the two-grid method recursively for step 4 leads to a multigrid V-cycle:
the relaxation is performed on ever coarser grids 2h, 4h, 84, On the coarsest grid, for
step 4 a conjugate gradient solver or a direct solver can be used. In order to adequately
represent cuts on the coarser levels, the grid hierarchy can be constructed in a way
similar to the hierarchical construction of composite finite elements (see Figure 4.4).

3.6 Summary of Techniques for Cutting Simulation

Since there exist so many different techniques for simulating cuts in deformable bod-
ies, in the following we try to provide a comprehensive overview of these techniques

3.6. SUMMARY OF TECHNIQUES FOR CUTTING SIMULATION 51

Meshfree O O O O

Polyhedron

Hexahedron

Tetrahedron VAR A N SADAN A AAMA e
99 01 03 05 07 09 11 13 year

Hexahedral discretization, mass-spring/FEM (O Meshfree
A /\ Tetrahedral discretization, mass-spring/FEM Polyhedral discretization, FEM

Figure 3.11: Plot of publications of techniques summarized in Table 3.1 in chronological order.

according to a few specific categories. The overview is presented in Table 3.1. In par-
ticular, we classify techniques according to the discretization and the modeling of cuts
(Geometry), the deformable model (Deformation), the time integration and numerical
solver (Solver), and the intended application scenario (Scenario). We further give some
remarks on specific properties of these techniques.

In Table 3.1 the different techniques are grouped into six categories. In the first cate-
gory are techniques building on tetrahedral discretizations. It can be observed that these
techniques are intended primarily for medical applications. The second and third cat-
egories comprise techniques building upon the virtual node algorithm and the XFEM,
respectively. In the fourth category are techniques using hexahedral discretizations.
Into the fifth and sixth category, respectively, fall papers using polyhedral discretiza-
tions and meshfree methods.

Note that considering the specified discretization, in the approaches using compos-
ite finite elements, duplication of elements is used on the composite element level, but
initially the topological discontinuity is represented by element deletion [JBB*10] or
link disconnection after element refinement [WDW11] on the finest level.

Figure 3.11 depicts the chronological appearance of the discussed techniques with
respect to the underlying discretization and physical model. From this it can be ob-
served that the majority of publications in the field address mesh-based approaches,
and that there seems to be a clear trend towards physically accurate simulations using
finite elements. Whereas approaches based on a tetrahedral discretization are constantly
used from the beginning, approaches using a hexahedral discretization have emerged
more recently.

We show representative simulation results for each group in Figures 3.12 and 3.13.

CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

52

Reference 7 Geometry Deformation ; Solver Scenario Remark

Bielser et al. [BMG99,BG00, BGTG04] | Tet., refinement Mass-spring | Explicit/Semi-implicit Interactive Basic tet. refinement

Cotin et al. [CDAO0O] Tet., deletion Tensor-mass | Explicit Interactive Hybrid elastic model

Mor & Kanade [MKO00] Tet., refinement FEM Explicit Interactive Progressive cutting

Nienhuys et al. [NvdS00,NSO01] Tet., boundary splitting/snapping | FEM Static (CG solver) Interactive FEM with a CG solver

Bruyns et al. [BSM*02] Tet., refinement Mass-spring | Explicit Interactive An early survey

Zhong et al. [ZWPO05] Tet., deletion FEM Static (direct solver) Interactive Static FEM with a direct solver
Wu & Heng [WHOS5] Tet., refinement FEM Static (CG + direct solver) | Interactive CG + direct solver

Steinemann et al. [SHGS06]
Chentanez et al. [CAR"09]

Tet., refinement + snapping
Tet., refinement

Mass-spring
FEM

Explicit
Implicit (CG solver)

Interactive (Fig. 3.13 a)
Interactive (Fig. 3.13 d)

Refinement + snapping
Needle insertion

Lee et al. [LPO10] Tet., deletion FEM Static (direct solver) Interactive Direct solver + condensation
Courtecuisse et al. [CJA*10,CAK*14] Tet., deletion/refinement FEM Implicit (CG solver) Interactive (Fig. 3.13 c.e) Surgery applications

Li et al. [LZW*14] Tet., refinement FEM Explicit Interactive Volumetric images

Molino et al. [MBF04] Tet., duplication FEM Mixed explicit/implicit Offline Basic virtual node algorithm
Sifakis et al. [SDF07] Tet., duplication FEM Offline (Fig. 3.12 a) Arbitrary cutting

Wang et al. [WJST14] Tet., duplication FEM Offline Redevelopment

Jefabkova & Kuhlen [JK09] Tet. XFEM Implicit (CG solver) Interactive Introduction of the XFEM
Turkiyyah et al. [TKANO9] Tri. 2D-XFEM | Static (direct solver) Interactive XFEM with a direct solver
Kaufmann et al. [KMB*09] Tri./Quad. 2D-XFEM | Semi-implicit Offline (Fig. 3.12 ¢) Enrichment textures
Frisken-Gibson [FG99] Hex., deletion ChainMail | Local relaxation Interactive Linked volume

Jefabkova et al. [JBB*10] Hex., deletion CFEM Interactive CFEM

Dick et al. [DGW11a] Hex., refinement FEM Implicit (multigrid) Offline/Interactive (Fig. 3.12 d) | Linked octree, multigrid solver
Seiler et al. [SSSH11] Hex., refinement FEM Implicit Interactive Octree, surface embedding
Wu et al. [WDW11, WBWD12, WDW13] | Hex., refinement CFEM Implicit (multigrid) Interactive (Fig. 3.13 b, f) Residual stress, collision
Wicke et al. [WBGO07] Poly., splitting PFEM Implicit Offline (Fig. 3.12 b) Basic polyhedral FEM
Martin et al. [MKB*08] Poly., splitting PFEM Semi-implicit Offline Harmonic basis functions
Pauly et al. [PKA"05] Particles, transparency Meshfree Explicit Offline Fracture animation
Steinemann et al. [SOGO06] Particles, graph-based diffraction | Meshfree Offline/Interactive (Fig. 3.12 e) | Splitting fronts propagation
Pietroni et al. [PGCS09] Particles, extended visibility Meshfree Interactive Splitting cubes algorithm
Jung & Lee [JL12] Particles, connectivity graph Meshfree Semi-implicit Interactive Dynamic BVHs

Table 3.1: An overview of cutting techniques outlined in this report.

3.7. COLLISION HANDLING AND HAPTIC RENDERING 53

(a) (b) (c) (d) (e)

Figure 3.12: Offline progressive cutting scenarios simulated by (a) the virtual node algorithm
on a tetrahedral mesh (image courtesy of Sitakis et al. [SDF07] ©2007 ACM), (b) the poly-
hedral finite element method (image courtesy of Wicke et al. [WBGO07] ©2007 WILEY), (c)
the extended finite element method on quads (image courtesy of Kaufmann et al. [KMB*09]
©2009 ACM), (d) the hexahedral finite element method on an adaptive octree grid [DGW11a],
and (e) the meshfree method (image courtesy of Steinemann et al. [SOG06] ©2006 Eurograph-
ics). Copyrighted materials, image a, b, ¢, and e, are reprinted with permissions from ACM,
WILEY, ACM, and Eurographics, respectively.

Figure 3.12 shows scenarios simulated offline by (a) the virtual node algorithm, (b)
the polyhedral finite element method, (c) the extended finite element method, (d) the
hexahedral finite element method on an octree grid, and (e) the meshfree method. Fig-
ure 3.13 shows interactive simulation scenarios in various medical contexts, such as (a)
ablating a polyp in a hysteroscopy simulator, using element refinement together with
snapping of vertices (including a realistic texturing of the cutting surfaces [BZH*05]),
(b) virtual soft tissue cutting and shrinkage simulation, by modeling the residual stress
in biological tissues, (c) real-time simulation of a brain tumor resection, using an asyn-
chronous pre-conditioner, (d) needle insertion in a prostate brachytherapy simulator
with a parallelized CG solver, (e) real-time simulation of laparoscopic hepatectomy
dealing with complex contacts, and (f) haptic-enabled real-time virtual cutting of high-
resolution soft tissues, using composite finite elements and a multigrid solver.

3.7 Collision Handling and Haptic Rendering

Besides the simulation of deformable bodies, collision handling as well as the haptic
rendering of cutting are two important issues in a virtual cutting system. In the follow-
ing, we briefly cover these topics with the intention to expose challenges of cutting-
related research problems. Collision response is analogous to standard deformable
body simulation without cutting, i.e., collision forces can be obtained by penalty-based

54 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

(d) (e) 4]

Figure 3.13: Interactive simulation in medical contexts. (a) Ablating a polyp in a hysteroscopy
simulator (image courtesy of Steinemann et al. [SHGS06] ©2006 IEEE). (b) Virtual soft tis-
sue cutting and shrinkage simulation [WBWD12] (abdomen photographs courtesy of Dr. med.
Laszlo Kovacs). (c) Real-time simulation of a brain tumor resection (image courtesy of Courte-
cuisse et al. [CAK* 14] ©2014 Elsevier). (d) Needle insertion in a prostate brachytherapy sim-
ulator (image courtesy of Chentanez et al. [CAR* 09] ©2009 ACM). (e) Real-time simulation
of laparoscopic hepatectomy (image courtesy of Courtecuisse et al. [CJA* 10] ©2010 Elsevier).
(f) Haptic-enabled virtual cutting of high-resolution soft tissues [WWDI14]. Copyrighted ma-
terials, image a, c, d, and e, are reprinted with permissions from IEEE, Elsevier, ACM, and
Elsevier, respectively.

methods (i.e., by scaling the repulsion force according to penetration depth or pene-
tration volume), or by constraint-based methods (i.e., by enforcing non-penetration by
solving a linear complementarity problem [AFC*10]).

3.7.1 Collision Detection

Collision detection for general deformable bodies has been widely studied and an ex-
cellent survey is given by Teschner et al. [TKH*05]. These techniques are primarily
designed for objects with fixed topology, and most of these techniques need an in-
tensive pre-process to build acceleration data structures. Although, in principle, these
methods can also be applied in the context of virtual cutting, the re-initialization of

3.7. COLLISION HANDLING AND HAPTIC RENDERING 55

the acceleration structures when topological changes are applied strongly limits their
usability. In this section, we discuss the special requirements on collision detection
approaches in virtual cutting scenarios, and discuss methods specially designed to meet
these requirements.

In virtual cutting simulation, new volumetric elements are created on-the-fly, and
new surfaces are exposed. To handle these dynamically created geometric primitives, it
is necessary to rebuild or update acceleration data structures such as boundary volume
hierarchies. Moreover, as a result of cutting, an object may be incrementally split into
several separated objects. It is therefore necessary to consistently detect both inter- and
intra-collisions. Consequently, ideal solutions for collision detection for virtual cutting
are methods that do not rely on heavy precomputation, detect both self-collisions and
collisions between different bodies, and provide a quantitative measure of the penetra-
tion for robust collision response.

In several simulators using the SOFA framework [FDD*12] (e.g., [JBB*10,CAK* 14]),
collision detection is performed by using layered depth images (LDIs) [HZLMOI,
HTGO04, FBAF08]. LDIs do not require preprocessing of surface meshes, and can be
efficiently generated in each simulation step by parallel rasterization on the GPU. LDIs
sample a closed manifold object by casting a set of parallel rays and enumerating the
intersections between each ray and the object. Along each ray, the line segment from
an odd intersection (entering the object) to an even intersection (leaving the object) is
considered as part of the object. By comparing the LDIs of two objects, the intersection
volume and its gradient can be computed and employed in collision response. For de-
tecting self-collisions, the intersections are classified as entering and leaving based on
the angle between the forward ray and the surface normal at the intersection point. One
open question of LDIs is the representation of thin objects, such as surgical scalpels.
Since LDIs do not support non-closed manifold meshes, it would be necessary to use
rasterization at extremely high resolution in order to sufficiently represent thin features.

Wu et al. [WDW13] proposed an efficient collision detection algorithm particularly
tailored to composite finite element simulation of cuts. In the broad phase, potentially
colliding pairs of a deformed volumetric element and a displaced surface vertex are
identified by using a spatial hashing approach [THM*03]. All surface vertices in the
simulation environment, including vertices of a thin scalpel, are treated in a uniform
way. For each potentially colliding element/vertex pair, the surface vertex is back-
transformed to its position in the reference configuration using the interpolation weights
of the vertex with respect to the volumetric element. The penetration at this position is
evaluated from a distance field in the reference configuration (which is locally updated

56 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

during cutting), and forward-transformed to the deformed configuration for collision
response. It was shown that by checking the coarse composite elements, rather than the
underlying fine hexahedral elements, a significant performance gain can be obtained.
The results also demonstrate that smooth collision response can be achieved for de-
formable bodies using a hexahedral discretization, despite of the presence of staircase
boundaries.

Bounding volume hierarchies (BVHs) are an efficient data structure to accelerate
collision detection. However, the tightness of bounding volumes and the culling ef-
ficiency degrade significantly in case of large deformations and topological changes.
Especially in the context of fracture simulation, several methods have been proposed
to optimize the reconstruction/updating of BVHs. To efficiently insert/delete geomet-
ric primitives, Otaduy et al. presented a method to dynamically reconstruct BVHs, as
opposed to reconstructing them from scratch [OCSGO7]. The hierarchies are balanced
by simple local operations for progressive fractures. BVHs for large scale fracture
simulation was studied in [HSK*10]. Recently, Glondu et al. [GSM*12] demonstrated
real-time brittle fracture simulations based on a combination of locally updated distance
fields and sphere trees for adaptive collision detection, together with an approximation
of modal analysis for fracture simulation [GMD13].

Jung et al. proposed a method to reconstruct BVHs for meshfree simulation of
cuts, where an undirected graph is maintained to encode the connectivity of simula-
tion nodes [JL12]. The BVH reconstruction is triggered by the event that an object
is completely excised into two pieces. This event is detected by examining the node
connectivity: In a breadth-first traversal starting from an arbitrary node, if at least one
node of the object is not visited during the traversal, the excision event is reported.

3.7.2 Haptic Rendering of Cutting

Haptics provides an intuitive interface to interact with the simulated deformable bodies
and conveys rich information about the dynamics directly to the user. This is especially
useful in medical simulations [CMJ11]. While haptics has been mentioned in many
cutting simulators, few provide a sufficient description on the implementation and eval-
uation. Realistic haptic rendering of cutting is a challenging task due to the required
high update rates of haptic rendering and the complex physical interaction between the
cutting tool and soft tissues.

First, haptic rendering requires update rates of 1 kHz or higher, in order to achieve
(perceived) smooth force feedback [SCB04]. It was reported that users can perceive
differences at update rates between 500 Hz and 1kHz [BOYBJK90]. More funda-

3.7. COLLISION HANDLING AND HAPTIC RENDERING 57

mentally, the update rate is closely related to the stability of the haptic system, i.e.,
a human-in-the-loop system consisting of the user, the (digitally controlled) haptic de-
vice, and the (time-discrete) virtual environment. The latency inherent in time-discrete
systems can lead to unstable behaviors (e.g., vibrations). We refer to the haptics liter-
ature [CGSS93,CB94] for a detailed explanation. The sufficient condition of passivity
and thus stability of the haptic device for a viscoelastic virtual wall (the simplest virtual
environment) is given in [CS97] as

2(b-B)

AT < ,
K

(3.15)

where AT is the sampling period, b is the inherent damping of the device, and K and
B are the stiffness and damping of the virtual wall, respectively. This condition implies
that a high update rate is very necessary to simulate the interaction with stiff virtual
objects.

Equation 3.15 states the stability for haptic interaction where the cutting tool is sim-
ply represented by a single point. For a general cutting tool which may simultaneously
contact the deformable body at several locations, it is necessary to modulate the over-
all contact stiffness, considering the limited impedance offered by haptic devices. To
this end, rather than directly mapping the position of the virtual tool from the position
signal read from the haptic device, it is customary to separate these two positions, and
virtually couple them by a spring (and a damper). This virtual coupling approach re-
sults in the so-called simulation-based haptic rendering: The movement of the virtual
tool is driven by the coupling force, which tries to align the virtual tool with the haptic
stylus, and the interaction force (e.g., the cutting force) between the virtual tool and
deformable bodies. The coupling force, rather than the interaction force is sent to the
haptic device. In this way the stability of the device can be easily ensured by tuning the
coupler [MPT99]. It also enables that the haptic simulation and the deformation/cutting
simulation run at different update rates. We refer to a recent survey on haptic render-
ing [OGL13] for a detailed explanation of different rendering paradigms. The virtual
coupling scheme is successfully employed in bone drilling [WWWZ10] and in soft
tissue cutting [WWD14] to compute feedback forces which can be rendered stably.

Second, the physical cutting mechanism (i.e., the fracturing of soft tissues driven by
cutting tools) is largely unknown, especially considering the complex material proper-
ties and various cutting tools such as needles, blades, scissors, or punchers. Compared
to the physical world, where cuts are induced by the internal stresses resulting from the
force interaction between the deformable object and the scalpel, the cutting approaches

58 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

so far are purely geometry-based: The tissues are cut by geometric intersection tests,
as discussed in Section 3.2.1. It can be interpreted as modeling an infinitely sharp
scalpel, which can induce arbitrary stresses and thus immediately penetrates the object.
In contrast, in the physical world, the object would deform under the influence of the
increasing force exerted by the scalpel, before the scalpel eventually penetrates. Mod-
eling a more realistic interaction between the object and the scalpel is part of ongoing
research, for example in biomedical engineering [CDL0O7]. Using penalty-force-based
collision handling, an initial attempt to simulate this effect is to employ a virtually ex-
tended scalpel shape [JBB*10]. The enlarged scalpel penetrates into the deformable
object before the real scalpel penetrates, thus leading to a deformation before the ob-
ject is cut. The enlargement of virtual tools is similarly used in bone drilling simula-
tion [WWWZ10].

An approach to obtain an intuitive feedback force is to employ a velocity-proportional
force model [WWD14]. Intuitively, if the user moves the scalpel with a high speed
against the deformable object, (s)he feels a large resistant force. The force direction is
opposite to the direction of movement, and the force magnitude is proportional to both
the speed of movement and the contact volume between the scalpel and the deformable
object. Another possible solution is the data-driven approach [HKSHO09].

3.8 Application Study on Cutting Simulation

In the following application study we intend to shed light on the performance of physically-
based cutting simulation and, by this, to assess the model resolution that can be handled

in interactive scenarios requiring update rates of 20-30 Hz. We restrict ourselves to the
analysis of one specific simulation approach for which a highly optimized implemen-
tation is available. Even though this approach has limitations, we believe that it allows
for a very good estimation of the simulation efficiency that can be achieved when the
model of linear elasticity is used.

Figure 3.14 shows our experiment setup in which we simulate a cut in a linear elastic
liver model. All experiments were performed on a standard desktop PC equipped with
an Intel Xeon X5560 processor (a single core was used) and 8 GB main memory.

We analyze three variants of the hexahedral finite element approach proposed by
Dick et al [DGW11a]. It uses the corotational formulation of finite elements, which
simulates linear dependencies between the components of stress and strain, and consid-
ers the geometric non-linearity by respecting per-element rotations in the strain compu-
tation. While finite element discretizations enable high accuracy, hexahedral elements

3.8. APPLICATION STUDY ON CUTTING SIMULATION 59

Figure 3.14: Left: Experiment setup. To cut a liver model the user manipulates a haptic device
that is mapped to a scalpel. Right: High quality surface rendering. Bottom: A sequence of im-
ages from a live recording, available at http://wwwcg.in.tum.de/research/research/projects/real-
time-haptic-cutting.html.

are well suited for constructing a mesh hierarchy that can be used by a geometric multi-
grid solver to achieve optimal convergence rates. On the other hand, since hexahe-
dral simulation elements are not aligned with the object boundaries, approaches using
unstructured tetrahedral simulation grids might be favorable when smooth boundary-
aware discretizations of the simulation domain are required. For instance, to perform
accurate collision detection and response. In all of our experiments, a high-resolution
surface is generated from the cut object using the dual contouring algorithm on the hex-
ahedral grid, and this surface is used for rendering and collision detection [WDW13].

Our first variant uses finite elements on a uniform hexahedral grid and realizes cuts
by simply disconnecting elements along element faces. A high-resolution finite element
model consisting of 173,843 hexahedral elements (566,493 DOFs) on a 82 x 83 x 100
uniform grid is used as our reference solution (see Figure 3.15 (left)). We simulate
the cut by instantly bringing the cutting tool into its final position and performing all
required operations like finding and disconnecting edges in the simulation grid, FE
matrix assembly, and numerical multigrid solver execution. In particular, we perform
2 V-cycles each including 2 pre- and 2 post-smoothing Gauss-Seidel relaxation steps,
which reduces the error to below 1%. Note that while cutting on a uniform grid does

60 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

Figure 3.15: From left to right: Simulation of cuts using finite elements on a uniform hex-
ahedral grid, finite elements on an adaptive octree grid, and composite finite elements on an
adaptive octree grid.

not add new elements, the number of DOFs is increased, since some of the originally
shared element vertices become separated vertices due to the cut.

The second variant uses finite elements on an adaptive octree grid. This grid is con-
structed by starting with a uniform coarse hexahedral grid, which is adaptively refined
along the initial object boundary and the cut, until a user-selected level is reached. For
this variant we have set the resolution of the initial coarse grid and the refinement depth
such that in the refined regions the grid resolution of the first variant is reached. The
third variant uses the same adaptive grid as the second one, but instead of standard fi-
nite elements, it uses composite finite elements at the resolution of the initial coarse
grid [WDWI11]. Since the refined elements are used only to correct the coarse grid
simulation, considerably higher performance is achieved. The last variant is intended
to demonstrate the trade-offs between highest accuracy and speed in interactive scenar-
ios when employing the principle of homogenization for linear elasticity [KMODO09].
Since the adaptive variants restrict the element refinement to a user-selected depth, al-
ternative (offline) approaches like extended finite elements [JK09, KMB*09] can be
favorable in applications where cuts should be modeled at sub-grid accuracy.

Figure 3.15 (middle) shows the same cut as before, but now the second variant is
used to simulate the cut. We start with a 21 X 21 X 25 uniform grid. Initially, this grid
is refined adaptively along the object boundary via two levels of subdivision. When

the cut is simulated, the grid is further refined along the cut using the same refinement
depth, resulting in 41,676 hexahedral elements (135,600 DOFs).

In the last experiment (see Figure 3.15 (right)) we start with the same initial grid
as in the second experiment, and we apply exactly the same adaptive grid refinement

3.8. APPLICATION STUDY ON CUTTING SIMULATION 61

Uniform| Adaptive| Composite

(2 levels)

Coarse resolution 21x21x25| 21x21x25

Refined resolution |82x83x100 |82x83x100|82x83x 100

Cells (initial) 173 843 40 080 3439

DOFs (initial) 566 493 129 162 13 557

Cells (added due to cut) 0 1 596 39
DOFs (added due to cut) 2 037 6438 318
Octree subdivision (#;) 0 13.29 13.39
Surface meshing (z,) 1.26 1.26 1.24

FE matrices (3) 29.57 7.05 20.99

Multigrid hierarchy (z,) 40.34 10.09 2.06
Solver (#5)| 2 033.09 581.66 40.61
Simulation per cut (X7,)| 2104.26] 613.35] 78.29)]

Table 3.2: Timings (in milliseconds) for cutting simulations using finite elements on a uniform
hexahedral grid, finite elements on an adaptive octree grid, and composite finite elements on an
adaptive octree grid.

along the object boundary and the cut. However, the adaptively generated elements
are not considered as DOFs in the simulation, but they are used to assemble the coarse
grid matrices according to their contributions. Thus, the simulation is performed using
3,439 composite elements (13,557 DOFs).

Table 3.2 lists the times that are consumed by the different processes in each ex-
periment. It can be seen that even though a large number of DOFs can be simulated
in roughly 2 seconds using a uniform simulation grid, the grid resolution has to be
reduced about a factor of 4 in each dimension to make the uniform grid suitable for
interactive scenarios. Via the adaptive octree grid the cut can be simulated at almost no
visual difference to the high-resolution reference solution. Due to the restriction of el-
ement refinements along the initial object boundary and the cut, the overall simulation
time can be reduced by a factor of 3.5. Using composite finite elements, the number
of simulation elements to be considered by the numerical solver can be decreased fur-
ther, making this approach suitable for interactive scenarios. Despite the low number of
DOFs to be solved for, the simulation result is in very good agreement with the results
generated by the other variants. It is clear, however, that due to the reduced number of
DOFs, the simulated deformations cannot exactly match the high-resolution reference
in general.

Table 3.2 further indicates that surface meshing does not have any impact on the
overall performance. This is because it works only on the boundary elements. Since
the effective resolution of the boundary elements is the same in all three experiments,
surface meshing always consumes the same amount of time. It can be seen that in

62 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

addition to the time consumed by the multigrid solver, especially in the third, interactive
variant the adaptive grid refinement (#;) and the assembly of the finite element matrices
(#3) take up a considerable amount of the overall time. In this variant, the time required
to generate the multigrid hierarchy (#4) is rather low due to the low resolution of the
simulation grid. This variant requires a grid hierarchy from the finest level to the coarse
simulation level as well for assembling the FE matrices on the simulation grid. The
time for updating this part of the hierarchy is counted in #; for this variant.

3.9 Discussion and Conclusion

In this report we have reviewed the current state-of-the-art in computer-aided simula-
tion of cuts in deformable bodies. We have discussed distinct geometry and topology
representations, specifically-tailored finite element approaches, and meshfree methods,
with respect to accuracy, robustness, and computational efficiency.

The analysis of current techniques indicates a clear trend towards physically-based
simulations. From our experience this trend is driven by the application domains in
which virtual cutting is applied. Especially in virtual surgery simulators, which are
used for training and preoperative planning, doctors are more and more demanding for
reliable simulations that can accurately predict the behavior of soft tissue undergoing
cuts and deformations thereof. Thus, going beyond this STAR we see the urgent need
for a benchmark that is tailored to the problem of virtual cutting simulation and that
can be used to assess simulation techniques quantitatively.

Furthermore, especially in medical applications the accurate modeling of real-world
and patient-specific material is becoming of ever increasing importance. Going beyond
the model of linear elasticity and homogeneous material, soft tissues exhibiting non-
linear, anisotropic, viscoelastic and even viscoplastic behavior [HumO3] need to be
considered by interactive simulators in the future. However, even though it is known
in principle how to model such tissue types physically, we see the efficient numerical
simulation of these types as one of the most important research questions for the future.

One possibility to achieve interactive cutting simulation even for complex tissue
types is the use of dedicated parallelization strategies on multi-core and multi-GPU
architectures. On single GPUs, the parallelization of deformable body simulation has
already shown significant performance improvements [DGW11b,CJA*10]. The layout
of numerical solvers across multiple CPU or GPU nodes, however, is extremely chal-
lenging. In particular for the parallelization of an initially sequential solver, typically
frequent communication between the nodes is required, letting bandwidth and latency

3.9. DISCUSSION AND CONCLUSION 63

become quickly the bottleneck. It is therefore required to develop parallel solvers that
are particularly tailored to such computing architectures by reducing the communi-
cation between the nodes. A promising approach that needs further investigation are
domain decomposition methods, which divide the problem into subproblems that can
be solved independently.

Interactive simulation frame rates can also be achieved by model reduction tech-
niques, as having been demonstrated in a number of engineering [NACCO08] and also
graphics applications [BJO5]. The idea is to carefully approximate a large system of
equations with a much smaller system (i.e., to reduce the number of DOFs), without
significantly sacrificing accuracy. A major difficulty of applying these techniques in
the context of interactive cutting scenarios is the fact that determining the reduced sys-
tem is typically very compute-intensive, so that in practice at least the cutting zone is
non-reducible and must be tackled fully, without reduction. A possible direction thus
is to couple model reduction for reducible zones and full simulation for non-reducible
zones [KGRB13,NAG*12].

Another direction of research is the development of approaches for modeling the
physical interaction between a scalpel and soft tissues accurately [MHO1,CDL07,MROO08].
This can greatly contribute to the realistic haptic rendering of cutting forces. For sim-
plicity, most virtual cutting techniques assume that the material is separated as long
as it is swept by a cutting tool. In the physical world, however, we can observe
that there is a deformation of soft tissues before a cut happens. The simulation of
this kind of tool-object interaction may benefit from general contact resolution tech-
niques [HVS*09, AFC*10,SH12].

Finally, the discussion of techniques in this report has revealed that two major, and
somehow opposing, requirements reflect in the design of cutting techniques. On the one
hand, one seeks to use unstructured spatial object discretizations to accurately model a
cut. This has led to geometric techniques using tetrahedral or polyhedral meshes, which
are remeshed irregularly along the cut. On the downside, the remeshing step becomes
very elaborate for arbitrary cutting paths, and it increases the number of simulation
elements significantly.

On the other hand, to achieve high performance of the numerical solver used to
simulate the dynamic behavior of the cut body, structured simulation grids have turned
out to be favorable. Scalable solvers exhibiting linear complexity in the number of sup-
porting vertices have been achieved via geometric multigrid methods on semi-regular
hexahedral grids. While building geometric multigrid hierarchies on hexahedral grids
is simple, on unstructured grids the construction of such hierarchies is extremely com-

64 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

plicated and very time-consuming. In general, however, elements in hexahedral grids
are not aligned with the object boundaries, introducing modeling inaccuracies along
these boundaries.

In our opinion it is one of the most interesting questions whether adaptive spatial
discretizations can be found that give rise to efficient numerical solution techniques
at the same time allowing for an accurate alignment of simulation elements along the
object boundaries.

The research on interactive virtual cutting is not limited to the computer graph-
ics community. In computational mechanics, where research on cutting and fractur-
ing was initially more concerned with accurate material models (e.g., accurate bound-
ary conditions [MBB*11], accurate cutting force models [MMSEI1 1], goal-oriented er-
ror estimates [GENR*14]), there is a recent trend towards interactive surgery simula-
tions [NAG*12,JJMW13]. It will be interesting to investigate how such models can be
integrated into efficient simulators. We envisage that cross-fertilization with computa-
tional mechanics will further advance virtual cutting simulation towards its application
in pre-operative planning and surgery training.

3.10 Appendix: Meshfree Methods for Deformable Body Simula-

tion

In contrast to FEMs which operate on a finite element mesh with an explicit connectiv-
ity among the nodes (see Section 2.2), meshfree methods maintain node adjacency by
defining an influence region for each node, described by a weight kernel. The weight
kernel for the node i located at the position x; can be defined as, for example [MKN*04],

315 2 23\3 :
5(r; = [lxi — x| if || — xl| < r;
w(x, x;, 1) = 4 _ ’ (3.16)
0 otherwise,

where r; is the influence radius. The value of the weight kernel rapidly decays with
increasing distance between the simulation node x; and the point x where the function
is to be evaluated. The radius of influence r; should be sufficiently small to adequately
discretize displacement gradients. It is typically chosen in such a way that the influence
region includes a constant number of neighbors of the node x;.

Meshfree methods model objects as a set of interacting nodes which carry proper-
ties, e.g., mass, volume, and density. The mass m; carried by a node is initialized as
m; = s rl.3 p, where p is the material density, and s is a scaling constant for all nodes,

3.10. APPENDIX: MESHFREE METHODS FOR DEFORMABLE BODY SIMULATIONG65

chosen such that the estimated density p; = X;m;w(x;}, x;, r;) is close to p. The volume
covered by a node is calculated by v; = m;/p;.

In meshfree methods, the displacement field is approximated as u(x) = X;p;(x)u;
from the linearized displacement vectors u; at a set of (nearby) nodes {x;} and the shape
functions ¢;(x) [FMO03]. The meshfree shape functions can be approximated by using,
for example, the moving least squares (MLS) scheme [LS81]. The MLS is a method to
reconstruct continuous functions from a set of sample points based on their distribution,
i.e., the connectivity of samples are not required. Given the weight kernel w, the MLS
yields the following shape functions [PKA*05]

i(x) = w(x, x;, r)p" (OHX)] ™ pxy), (3.17)

where p denotes a complete polynomial basis p(x) = [1 x ... x"]T, and [H(x)]™! is the
inverse of the moment matrix defined as

H(x) = Z w(x, x;, 7)) p(X)p" (). (3.18)

1

Since the inversion of a matrix is involved in the shape functions, a direct evalua-
tion of their derivative is non-trivial. An alternative is to approximate the gradient Vu at
nodes using a MLS formulation with a linear basis [MKN*04]. Representing the neigh-
bors of the node x; as {x;}, the displacements of neighbor nodes can be approximated
by

ity = u; + Vuly,xij, (3.19)
where x;; = x; — x;, and Vul,, is the displacement gradient at the node x;. The sum of
the squared differences between the approximated values i; and the known values u; is

e= Z(ﬁj - uj)za)(xj, Xi, 1;). (3.20)
J

Minimizing this error function by assigning a zero value to its derivative with respect
to u;, it can be derived that

Vul, = A7 | D (w5 = uxije(x, xi)|, (3.21)
J

where the matrix A = X x; jxl.Tjw(x s Xiy i) 18 @ 3 X 3 matrix.

With the gradient of the displacement field computed, the strain tensor can be eval-

66 CHAPTER 3. STATE-OF-THE-ART REPORT ON VIRTUAL CUTTING

uated at the node x; according to the Green-St. Venant (Eq. 2.1) or the infinitesimal
(Eq. 2.4) strain formulation. The stress tensor for linear elastic materials can be com-
puted using Eq. 2.5.

Internal forces can be derived as the negative gradient of the strain energy density
with respect to the displacement field,

fW::—VA%e:a) (3.22)

By integrating this function over the volume v; covered by the node x;, it can be derived
that this yields the following form of internal forces [MKN*04],

j;_int — 2Vi (I + (Vulx,-)T) o; A—l [Z xijw(xj,xi’ ri)J . (323)

J
The dynamic simulation problem can then be formulated as

FM 4 £ — myii = 0, (3.24)

where f* denotes the external forces applied to the node x;.

To animate the boundary surface which is for example represented by a surface
mesh, the displacement u of a surface vertex can be computed based on the displace-
ments u; of its nearby simulation nodes as

M(X) = m Z (,()(X, Xi, ri) (I/t,' + Vulxl.(x — Xl')) . (325)

Chapter 4

A Composite Finite Element
Framework for Virtual Cutting

In this chapter we present a composite finite element framework for virtual cutting sim-
ulation. A design goal is to allow for interactive simulation update rates, and meanwhile
to support a high-resolution render surface. Key to our approach is a composite finite
element formulation, building on a hexahedral discretization of the simulation domain.
Starting at a coarse resolution simulation grid, along a cut we perform an adaptive oc-
tree refinement of this grid down to a desired resolution and iteratively pull the fine
level finite element equations to the coarse level. In this way, the fine level dynamics
can be approximated with a small number of degrees of freedom at the coarse level. By
embedding the hierarchical adaptive composite finite element scheme into a geometric
multigrid solver, and by exploiting the fact that during cutting only a small number
of cells are modified in each time step, high update rates can be achieved for high-
resolution surfaces at very good approximation quality. To construct a high quality
surface that is accurately aligned with a cut, we employ the dual contouring approach
on the fine resolution level, and we instantly bind the constructed triangle mesh to the
coarse grid via geometric constrains.

4.1 Introduction

In numerical simulations using composite finite elements the basis functions of the fi-
nite elements on a coarse grid are assembled via linear combinations of basis functions

This chapter is partially based on material that has been originally published in J. Wu, C. Dick, and R. Wester-
mann, Interactive high-resolution boundary surfaces for deformable bodies with changing topology, Proceedings of
Workshop on Virtual Reality Interaction and Physical Simulation, 2011, pp. 29-38.

67

68 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

Figure 4.1: Left: The coarse hexahedral simulation grid and the high-resolution surface that is
constructed from the embedded fine grid. Middle and Right: The deformation of the body after
complex sin wave and stamp-like cutting have been performed. Cutting, surface construction,
and deformation simulation are performed at 12 simulation frames per second.

on a finer grid. Composite finite elements allow approximating the dynamics of a set of
fine level elements by one single coarse element that reflects the portion of material that
is covered by the fine elements. Such elements have originally been invented to resolve
complicated material micro-structures with only few degrees of freedom (DOFs) and
to enable multigrid methods to effectively represent complicated object boundaries at
ever coarser scales [HS97,SW06,PRS07,LPR*09]. To respect physically disconnected
parts of the simulation domain on the coarse grids, the connectivity between the em-
bedded fine elements can be considered to generate one coarse-grid element for every
disconnected part [ABA0OO, MBF04].

In computer graphics, composite finite elements have been used as a special kind
of homogenization for resolving complicated topologies and material properties in de-
formable body simulation, i.e., by Nesme et al. [NKJF09], and just recently to model
material discontinuities that are caused by cuts and incisions, for instance, by Jerabkova
et al. [JBB*10] and Dick et al. [DGW11a]. While Dick et al. took advantage of com-
posite finite elements to improve the convergence of a multigrid solver in situations
where material discontinuities are covered by the coarse-grid cells, Jefdbkova and co-
workers employed the underlying principle to allow simulating complicated topologies
at a much coarser resolution than the finest structures.

In this chapter we propose combining the strengths of previous composite finite el-
ement methods for cutting deformable bodies. In particular, we present a combination
of the adaptive octree refinement with iterative composite element hierarchy to enable
simulating high-resolution cuts with a small number of DOFs. To enable sharp creases
when cutting into the material, and to generate a high-quality boundary surface along
a cut, we propose using the dual contouring approach [JLSWO02]. Figure 4.1 demon-
strates the quality and speed that can be achieved by using a low-resolution composite

4.2. RELATED WORK 69

finite element simulation grid (left) in combination with an embedded adaptive grid at
which a high-resolution surface is constructed.

The specific contributions of this chapter are:

¢ A combination of adaptive top-down refinement and iterative fine-to-coarse com-
posite finite elements to enable high-resolution cuts and efficient computation of
the coarse-grid equations.

e Acceleration techniques to further improve the computational efficiency of equa-
tion composition, i.e., usage of an iterative coarsening approach to exploit the
fact that many interpolations weights are zero and thus to reduce the number of
arithmetic operations, and employment of a look-up-table for the first coarsening
step.

e A new approach for constructing a high-resolution, high-quality surface that ac-
curately aligns with a cut and reduces the number of surface elements.

¢ An incremental update scheme for both the coarse-grid finite elements and the
fine-grid render surface to achieve high simulation rates.

The remainder of this chapter is organized as follows: First, we will acknowledge
work that is related to ours. Next, we will briefly describe the hierarchical octree refine-
ment of a hexahedral grid along a cut, and the reconstruction of a high-resolution ren-
der surface from the fine grid. In Section 4.4, the composite finite element approach in
combination with an efficient assembly of the coarse-grid equations from the fine-grid
equations is outlined. In Section 4.5, we introduce the multigrid solver for the linear
system of equations of composite finite element. Finally, detailed timing and memory
statistics are provided, and the chapter is concluded with some ideas for further work.

4.2 Related Work

This section reviews virtual cutting techniques on a hexahedral finite element dis-
cretization. For a comprehensive review of virtual cutting using other discretizations
let us refer to Chapter 3.

The semi-regular hexahedral finite element discretization has recently been em-
ployed to simulate topological changes in deformable bodies [JBB*10,DGW11a,SSSH11].
The hexahedral discretization has several advantages due to its simplicity and regular-
ity. First, each hexahedral element has the same and regular shape: The edges of an

70 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

element have the same length, and the angles formed by adjacent edges are 7. The nu-
merical problem associated with ill-shaped elements in the commonly used tetrahedral
discretization is successfully avoided. This allows us to focus on the computational ef-
ficiency without worries about numerical instability. Second, the geometric operations
on a hexahedral discretization is simple and efficient. For example, the subdivision op-
eration divides a hexahedral element into 2° finer elements by simply dividing at the
middle point of each edge. Along an opposite direction, 2° hexahedral elements can
be grouped into one coarser element. This property supports efficient composition of
elements to reduce the number of DOFs to be solved for [JBB*10], and to improve the
convergence of a multigrid finite element solver [DGW11a].

Based on a hierarchical hexahedral finite element discretization, Jerabkova et al.
modeled a cut via element removal on the finest resolution level. The boundary sur-
face along the cut is reconstructed via the Marching Cubes algorithm. This approach,
however, limits the resolution at which a cut can be performed and, in general, makes
it difficult to construct a surface that accurately aligns with a cut. Dick et al., on the
other hand, performed an adaptive octree subdivision along a cut, restricting the high-
resolution grid to those regions where it is required. To accurately align the surface
with a cut and to allow sharp creases when cutting into stiff material, the splitting cubes
algorithm [PGCS09] is employed. Seiler et al. proposed a method that allows decou-
pling the resolution of a material surface from the resolution of the simulation grid, but
since the method is restricted to non-progressive cuts using a volumetric blade, the con-
struction of a boundary surface is extremely simplified and stamping rather than cutting
is simulated.

4.3 Geometry and Topology Representation

Our method for cutting deformable objects is particularly designed to allow for interac-
tive simulation update rates and, at the same time, to allow for a detailed modeling of
fine cuts, including the adaptation of a high-resolution render surface for a high-quality
rendering. To achieve this, we use a high-resolution model to represent the geometry
and topology of the deformable body, which is coupled with a lower-resolution finite el-
ement model for the simulation of this body. The geometry and topology representation
consists of a volume representation and a surface representation, and will be explained
in this section. The coupling of the two models will be explained in the Section 4.4.

4.3. GEOMETRY AND TOPOLOGY REPRESENTATION 71

4.3.1 Volume Representation

To model cuts in the deformable body, we use a linked volume representation as it
was initially proposed by Frisken-Gibson [FG99]. The basic idea of the linked volume
representation is to decompose the object into a set of hexahedral cells, using a uniform
hexahedral grid. Face-adjacent cells are connected via links, with six links emanating
from each cell. Cuts are modeled by marking links as disconnected when they are
intersected by the virtual cutting blade (see Figure 4.2). Cuts are thus represented at
the resolution of the hexahedral grid.

Since the resolution of a uniform grid is in practice limited by memory require-
ments, we use an adaptive octree grid as proposed by Dick et al. [DGW11a], which
adaptively refines along cuts, down to a certain finest level. Links are still considered
on the uniform grid corresponding to this finest level, but are physically stored only for
the cells at the finest level. The adaptive octree grid is constructed by starting from a
coarse uniform grid. Whenever a link on the finest level is intersected by the surface
of the deformable object, the incident cells (possibly only one octree cell, when both
endpoints of the link are lying within the same cell) are refined using a regular 1:8 split.
At the finest level, links are marked as disconnected when they are intersected by the
object’s surface. Cells that are lying outside of the object are removed from the repre-
sentation. To avoid jumps in the discretization, additional splits are performed to ensure
that the level difference between cells sharing a vertex, an edge, or a face is at most one
(restricted octree). Cuts are modeled analogously to the modeling of the object surface,
i.e., cells are adaptively refined along a cut down to the finest level, where links are
marked as disconnected (see Figure 4.4 for an example). Material properties such as
Young’s modulus and density are assigned on a per-cell basis. To model inhomoge-
neous materials, the octree can further be refined. For a more detailed description, we
would like to refer the reader to [DGW11a].

4.3.2 Surface Representation

To render the boundary surface of the deformable object—including the additional sur-
face parts that are generated by a cut—a surface mesh is reconstructed from the volume
representation. Since the object boundary is represented by the cells at the finest level,
the surface reconstruction is performed at this level. The meshing procedure has to con-
sider that sharp surface features are generated by a cut and should be reproduced (see
Figure 4.1 for an example). Furthermore, the procedure should be able to efficiently es-
tablish a correspondence between the surface vertices and the vertices of the simulation

72 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

Figure 4.2: 2D illustration of surface reconstruction and binding of the resulting surface ver-
tices. Left: Linked volume representation of an object, consisting a set of simulation nodes
(gray) which are connected via links (green). These links are disconnected (dashed, orange)
at the object’s original boundary (black) and the newly generated surface due to cutting (blue).
Right: Surface reconstruction from the grid that is formed by links. The binding of resulting
surface vertices (blue dot) to the simulation nodes is indicated by the brown arrows.

grid (see Section 4.4). Given this correspondence, the surface vertices can be bound to
the simulation vertices and move according to the object deformations, eliminating the
need to reconstruct the surface in every frame from the deformed volume configuration.

Surface Meshing

In our implementation the high-resolution surface is reconstructed via the dual contour-
ing approach [JLSWO02]. The dual grid we use is the adaptive grid that is formed by
the links between the cells at the finest level. For each link that is cut by the blade, the
distances between the intersection point to the link’s endpoints as well as the normal
of the blade at the intersection point are stored. Compared to the splitting cubes algo-
rithm [PGCS09], which was used in [DGW 11a], the dual contouring approach reduces
the number of triangles by a factor of four. The reason is that the vertices on the links
are not used in the triangulation of the boundary surface.

In dual contouring, for each cell that contains a ‘feature’ a representative vertex
is positioned at this feature. In our application a feature is indicated by at least one
disconnected link in the dual cell. The position of the representative vertex is where the
quadratic function

E=) (n-(x=p)) (4.1)

has a minimum. Here, x denotes the vertex position, and p; and n; are the positions

4.3. GEOMETRY AND TOPOLOGY REPRESENTATION 73

Figure 4.3: A comparison of mesh quality of the splitting cubes algorithm (left) and the dual
contouring approach (right).

and normals at the intersections of the boundary surface with the links. As described
before, the positions of these intersections on a link as well as the normals at these
points are stored whenever a link is cut by the blade. Thus, the quadratic function can
be evaluated in turn. As proposed in the original dual contouring algorithm, we then
connect representative vertices in adjacent cells to construct the surface mesh.

Another advantage of the dual contouring algorithm is the quality of the resulting
surface mesh. In the splitting cubes algorithm, the interior vertex is determined for the
first cut by averaging face vertices or minimizing a quadratic function, depending on
the angle formed by cutting planes. For successive cuts, the interior vertex is projected
to a new cut plane. Thus it is processing order dependent. Our implementation results
(see Figure 4.3) show that the dual contouring approach produces better surface meshes
than the splitting cubes algorithm. Note that to handle singularity situations where cut
planes are almost parallel, in our implementation of splitting cubes, the position of
the interior vertices is explicitly clipped to ensure it is inside the cell, whereas in dual
contouring, the singularity is handled by clipping singular values during solving the
minimization of the quadratic function [JLSWO02].

So far, the meshing procedure generates one surface part for every cell that is cut.
However, a cut divides the material into multiple disconnected parts, for each of which
a boundary surface has to be computed. To achieve this, we duplicate the represen-
tative vertices in the interior of each cell that is cut, as many times as there are dis-
connected material parts in this cell. As illustrated in Figure 4.2, each duplicated
vertex—associated to a particular disconnected part—is bound to the nearest vertex
of the respective part in the dual cell containing this vertex.

To accelerate the meshing procedure, the number of duplicated copies and the con-

74 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

nectivity of an interior vertex to a cell’s vertices are precomputed and stored in a look-
up-table. This table has 2! entries, each of which corresponds to one cutting pattern of
the cell. At runtime, for a given representative vertex, a number of disconnected mate-
rial parts, and a classification of the cell vertices to the parts the binding of the center
vertices can be determined efficiently.

Mesh Deformation

To let the reconstructed surface move according to the object deformations, we use the
binding that has been established between the surface vertices and the dual grid vertices.
Since every dual grid vertex corresponds to exactly one primal grid cell, i.e., the fine-
grid cells, every surface vertex is bind to exactly one primal cell. Thus, the deformation
of these cells—which is computed from the deformations of the simulation grid as
described later on—is carried over to the surface vertices via trilinear interpolation of
the primal cell vertices.

4.4 Composite Finite Element Simulation

A major design goal of the presented approach is to achieve interactive simulation up-
date rates. Starting from the adaptive octree grid described in the previous section, one
way to create a finite element model would be to create a hexahedral element with trilin-
ear shape functions for each octree cell, with three degrees of freedom (DOFs) located
at each non-hanging vertex. However, since we employ a high-resolution octree grid
to accurately represent complicated cuts and the boundary of the object, this approach
would lead to a very large number of DOFs, far exceeding the number of DOFs that
can be simulated at interactive update rates.

In this chapter, we use composite finite elements [HS97, SW06] to reduce the num-
ber of DOFs and thus to achieve interactive update rates. A composite finite element is
obtained by combining multiple ‘standard’ elements into a single element. In particu-
lar, the shape functions of the composite finite element are assembled from the shape
functions of the individual elements.

We use a hexahedral composite finite element model, which is assembled from
a ‘standard’ finite element model with one hexahedral element per octree cell. In
the following we will use the term ‘composite element’ and ‘hexahedral element’ to
refer to the elements of the respective model. Similar to the work by Preusser et
al. [PRS07,LPR*09], we use an inverse compositing scheme in that we start with tri-
linear shape functions on the composite finite elements, and define the trilinear shape

4.4. COMPOSITE FINITE ELEMENT SIMULATION 75

functions of the hexahedral elements via restriction of the composite element shape
functions to the domains of the individual hexahedral elements. Note that the DOFs of
the hexahedral elements remain located at the vertices of the composite elements. Since
it is explicitly allowed that a composite element is only partially filled with hexahedral
elements, objects with complicated boundaries can be effectively discretized using a
small number of elements.

In addition to the handling of complicated boundaries, another challenge is to handle
complicated topologies in a coarse simulation model. In the original works by Preusser
et al., the composite finite elements are assembled from the hexahedral elements by only
considering their spatial location, disregarding the connectivity between the elements.
For our application of interactive cutting, this would mean that material parts separated
by a cut would possibly be merged into the same composite element, preventing the
opening of the cut in the simulation.

We therefore employ a strategy to build a composite finite element model that pre-
cisely represents the topology of the object. Our strategy is based on analyzing the
connectivity between elements to possibly create more than one composite element at
the same location, each representing a separated material part. A similar approach has
been used by Nesme et al. [NKJF09] and Jerabkova et al. [JBB*10] to model separated
material parts in coarse finite element models, and by Aftosmis et al. [ABAOO] and
Dick et al. [DGW11a] to represent separated material parts in the multigrid hierarchy
of a geometric multigrid solver.

Our simulation is based on the linear theory of elasticity. To accurately simulate
deformations with large rotations, we use the corotational formulation of strain.

4.4.1 Construction of the Simulation Model

The composite finite element model is based on a grid which is significantly coarser
than the adaptive octree grid used to represent the volume of the deformable object.
We build this coarser grid from the adaptive octree grid by successively removing leaf
nodes from the associated octree. Note that the current set of leaf nodes corresponds to
the current set of grid cells of the adaptive grid. In our implementation, we remove all
nodes from octree levels O, . . ., £—1, where level number O denotes the finest level of the
octree. In this way we obtain a coarsened adaptive octree grid for the composite finite
element model, where the cells on the finest level coincide with blocks of (2¢)? cells on
the finest level of the initial grid. It is worth noting that instead of using this uniform
coarsening strategy, it would also be possible to use an adaptive strategy for removing
octree nodes, for example to use a higher simulation accuracy in certain regions of

76 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

g
if?)
i)

.
)]
G2

a
scadl
d i b

0 0
0O 1 2 3 4 5 6 7 8 9 0O 1 2 3 4 5 6 7 8 9
Level O Level 1
7o) I~
6 6
[. N L J
5 5
Q 4 O,
4 4
3 A 3
2 \ 2
\ ® 0
1 \\ 1
&/
0 0
0O 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
Level 2 Level 3

Figure 4.4: Hierarchical construction of the composite finite element model. Left: 2D illustra-
tion of the adaptive linked volume representation, consisting of a set of rendering nodes (gray)
which are connected via links (green). These links are disconnected (dashed, orange) at the
object’s original boundary (black) and along the newly generated surface due to cutting (blue).
Middle left to right: Iterative coarsening of the finite element model. The underlying graph
representation is indicated by red vertices and green edges. For each block of 23 cells on the
respectively finest level the connected components (orange) are determined, and the elements
of each connected component are replaced by a separate composite finite element.

interest.

The basic idea underlying the construction of the composite finite element model is
to analyze the connectivity of the material within each coarse-grid cell, and to create an
individual composite element for each connectivity component. In this way, separated
material parts are modeled by different elements, enabling the opening of a cut in the
simulation.

The topologies of the composite finite element model and the hexahedral finite ele-
ment model are each represented by an undirected graph, where the nodes corresponds
to the elements, and the edges specify the connectivity between elements. For the hex-
ahedral finite element model, the graph is directly obtained from the linked volume
representation (see Figure 4.4).

4.4. COMPOSITE FINITE ELEMENT SIMULATION 77

The construction of the composite finite element model is performed in a two-step
process. In the first step, we create the composite finite elements by considering the
subgraph of the hexahedral finite element model induced by each coarse-grid cell. We
determine the connectivity components of this subgraph by using a depth-first search,
and for each connectivity component, we create one composite element, which exactly
subsumes the hexahedral elements corresponding to the nodes of this connectivity com-
ponent. In the second step, the connectivity between the composite finite elements is
determined. Two composite elements are connected, if there exists two connected hex-
ahedral elements such that one hexahedral element is merged into the first, and the other
into the second composite element. Finally, a shared vertex representation is computed
for the composite finite element model. Two connected elements share a common face,
and in particular the vertices incident to this face.

Instead of creating the target resolution of the composite finite element model di-
rectly from the hexahedral finite element model, we use an iterative coarsening ap-
proach, in that we iteratively apply the described scheme by only removing the leaf
nodes of the finest octree level in each step (i.e., £ = 1) (see Figure 4.4).

4.4.2 Computation of Element Matrices

We assemble the stiffness and mass element matrices for the composite finite elements
from the stiffness and mass element matrices of the underlying hexahedral finite ele-
ments. The deformation behavior of the deformable body is described by the physical
principal of total potential energy minimization, applied to each single point in time.
For a standard hexahedral finite element discretization, the total potential energy E is

E(u) = %MTKM —(f — Mii)'u, (4.2)

where u is the linearization of the displacement vectors at non-hanging vertices of the
hexahedral finite element grid, f is the linearization of the external force vectors applied
at these vertices, and K and M denote the global stiffness and mass matrix, respectively.
Minimizing this energy via %E(u) = Ku — (f — Mii) = 0 leads to the well-known
spatially discretized equation of motion.

Using composite finite elements, the DOFs are located at the vertices of these com-
posite elements. The displacements at the vertices of the underlying hexahedral finite
elements are determined by trilinear interpolation from the vertices of the composite
finite elements. This is described by the equation u = Iii, where i denotes the lineariza-
tion of the displacements at the vertices of the composite finite element grid, and the

78 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

interpolation matrix / expresses the trilinear interpolation from these vertices.

For a composite finite element discretization, the total potential energy E thus is
1 .
E(Iit) = §~T1TK1L7 —(f - MIi)"Ia. 4.3)

This energy is minimized via

9 ~\ _ T ~ T T AN
ﬁE(Iu)—I;(Iu—(If —IAZ:IIu)—(). (4.4)
7

Thus, the global stiffness and mass matrix for the composite finite element discretiza-
tion are obtained via K = ITKI and M = I"MI, respectively, and the external forces
which are specified on the underlying hexahedral finite element discretization are prop-
agated to the composite finite element discretization via f = I f.

Applying these equations to a single composite finite element c, its element matrices
K¢ and M¢ can be assembled from the element matrices K¢ and M¢ of the underlying
hexahedral elements e that are merged into the considered composite element via

8

Z Zzwmi weeKs, mn=1,...,8 (4.5)

einc i=1 j=1

(M¢ is computed analogously). Here, the first sum iterates over the hexahedral elements
e that are merged into the composite element ¢. Note that the element matrices are
interpreted as 8 X 8 matrices with each entry being itself a 3 X 3 matrix. Thus, the
notation K7; denotes a 3 x 3 block of scalar entries.

The trilinear interpolation weights we ¢ from the vertices m = 1,..., 8 of the com-
posite element c to the vertices i = 1,...,8 of the hexahedral element e are defined
as | C €| | C €| | C €|

X6 — X6 Ve — VS 2 — 2
c—e __ _ m 1 _ m 1 _ m 1
Winsi = (1 4) (1 s¢) (1 s¢) ’ (46)

where (x;,,y;,,z,,) and (x{,)?, z) are the coordinates of the vertices, and s denotes the
edge length of the composite element.

Instead of creating the target resolution of the composite finite element model di-
rectly from the hexahedral finite element model, it is also possible to iteratively apply
the described scheme by only removing the leaf nodes of the finest octree level in

c—e
m—i

each step (i.e., £ = 1). In this case, many of the interpolation weights w¢”¢ are zero,

which effectively reduces the number of arithmetic operations needed for assembling

4.4. COMPOSITE FINITE ELEMENT SIMULATION 79

the composite finite element matrices, and leads to a speedup of about 1.5 compared to
the direct approach.

Considering the element matrices of the underlying hexahedral finite elements,
since all elements have the same shape, these elements can be generated from a sin-
gle element stiffness and mass matrix. Let K¢ and M* denote the element stiffness and
mass matrix for a generic element of side length 1, then the element stiffness and mass
matrix for an element of side length s is sK¢ and s® M¢, respectively. Furthermore, the
element stiffness and mass matrix scales linearly with the Young’s modulus and the
material density, respectively.

The fixation of the object is also specified on the underlying hexahedral finite el-
ement discretization. We propagate this fixation to the composite finite element dis-
cretization by fixing exactly those vertices on the composite element grid which are
related to a fixed vertex on the underlying hexahedral element grid via a non-zero in-
terpolation weight.

In case of simulating an object consisting of homogeneous material, it is possible
to accelerate the assembly of the composite element matrices by employing a look-up
table for coarsening of the finest level of the adaptive octree grid. Consider a coarse-
grid cell with a domain of 23 fine-grid cells, we precompute the composite element
matrices for all possible patterns of fine-grid cells being empty or filled with material.
Therefore, this look-up table has a size of 22" = 256 entries, and a size of 1.1 MB.
By using the look-up table, the assembly of the composite finite element matrices is
accelerated by a factor of about 2.

In our implementation, the composite finite element matrices are reused between
successive simulation time steps. Since a progressive cut in a single time step only
affects a very small portion of the model, in each time step only a small number of
composite element matrices have to be (re-)assembled, which greatly reduces the com-
putational costs per time step.

4.4.3 Corotational Strain Formulation

To accurately simulate deformations with large rotations using the linear theory of elas-
ticity, we employ the corotational formulation of strain [RB86, HS04]. Since in the
linear theory a linear strain tensor is employed, which interprets rotations as strains, the
solution significantly diverges from the correct solution with increasing rotations within
the deformation. The basic idea underlying the corotational formulation of strain is to
remove the rotations before the linear strain is computed, and later re-add these ro-
tations to the resulting stresses. The corotational formulation is based on the finite

80 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

Figure 4.5: Composite finite element deformations using the linear infinitesimal strain (left)
and the corotational strain formulation (right) under the same external forces applied to the
bunny ear. Note that the unrealistic large deformation using the infinitesimal strain tensor is not
found in the simulation using the corotational strain formulation.

element discretization by computing a single rotation for each finite element.

In our approach, we employ the corotational strain formulation on the composite
finite element discretization. To determine the rotation of a composite finite element c,
we first compute the average deformation gradient V_goc via

Ve =()] LVsodx)/(Z feldx), (4.7)

einc einc

where ¢(x) = x + u(x) denotes the deformation, and Q¢ denotes the domain of element
e. The rotation matrix is then obtained by polar decomposition of the average defor-
mation gradient [Hig86]. Note that our formulation of deformation gradient considers
that a composite finite element might be only partially filled with hexahedral elements.
Otherwise, an incorrect rotation of the composite finite element may lead to numer-
ical instability. The effect of the corotational strain formulation for composite finite
elements is shown in Figure 4.5.

4.5 Geometric Multigrid Solver

Applying the Newmark time integration scheme to the spatially discretized equation of
motion leads to a linear system of equations in every simulation time step. We solve
this system using the geometric multigrid approach proposed by Dick et al. [DGW11a].

A multigrid solver is optimal in the sense that it exhibits asymptotic linear run-
time in the number of unknowns. Considering the error between the current approxi-

4.6. RESULTS 81

mate solution and the exact solution in an iterative solution scheme, standard relaxation
schemes such as Jacobi or Gauss-Seidel relaxation effectively reduce high-frequency
error components, but they are inefficient in reducing low-frequency error components.
This typically causes the error reduction to stall after a few relaxation steps. The basic
idea of multigrid is to improve the convergence by solving the system on a hierarchy of
successively coarser grids, such that each frequency range of the error can effectively
be reduced on the appropriate scale.

For the considered application of cutting of deformable objects, the challenge is
to build a multigrid hierarchy that represents the arising complicated mesh topologies
on the coarser levels. In particular, ignoring the topology and simply merging cells
based on their spatial location would lead to a significant reduction of the convergence
rate compared to the case without cuts. The approach of Dick et al. [DGW11a] uses a
strategy for generating a multigrid hierarchy that reflects the cuts on the coarser levels
which is similar to the strategy proposed in this chapter for generating the composite
finite element grid from the underlying hexahedral element grid. For details we would
like to refer the reader to the original work.

In contrast to the original work, where the multigrid solver is applied to an adaptive
octree finite element discretization, in this chapter the solver is applied to a compos-
ite finite element discretization. We use 3 V-cycles per time step, with 1 pre- and 1
post-smoothing Gauss-Seidel steps, using an over-relaxation parameter of 1.7. On the
coarsest level, a Cholesky solver is employed. For the model sizes presented in this
chapter, we use 2 or 3 grid hierarchy.

4.6 Results

In the following we analyze the potential of our proposed cutting approach for inter-
active applications like virtual surgery simulations. The major focus in this analysis is
on the performance analysis of the composite finite-element approach and the quality
analysis of the generated surfaces. For a thorough analysis of the convergence behavior
of the multigrid finite-element approach, including a detailed comparison with alter-
native solvers, let us refer to [DGW11a]. We present a number of experiments, all of
which were run on a standard desktop PC with an Intel Xeon X5560 processor running
at 2.80 GHz (a single core is used), 8 GB of RAM, and an NVIDIA GeForce GTX 480
graphics card.

Table 4.1 shows a detailed performance statistics for interactive cutting of the Stan-
ford bunny model (see Figure 4.1), the Armadillo model (see Figures 4.6 and 4.7), and

CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

82

Comp. Hex. # DOFs of Contour grid ~ # Tris Memory Time [ms] Speedup

Model size size simulation resolution x 1k [MB] Cut Contour Compose | Solve Intpl. Total | over full
Armadillo 1 1/2 1,794 /2,052 22x20%26 3 245 | 1.29 0.08 0.48 5.65 0.14 7.64 3.2%
Armadillo 1 1/4 2,205 /2,439 43%x39x%51 12 13.48 | 3.56 0.33 2.55 6.63 1.07 14.14 6.1x
Armadillo 1 1/8 2,256 /2,514 85x77x101 49 67.02 | 14.11 1.30 14.94 6.86 641 43.62 10.3x
Armadillo 1 1/16 | 2,289/2,547 169x153%201 197 311.68 | 44.86 5.23 71.23 7.07 28.53 | 156.92 17.8%
Armadillo 1/2 1/16 | 8,895/10,563 169x153x201 252 385.80 | 43.01 5.48 69.10 29.37 29.41 | 176.37 16.0x
Bunny 1 1/16 735/ 1,161 101x78x100 69 112.61 | 18.41 2.88 43.42 337 1414 | 8222 17.2x
Bunny 1/2 1/16 | 3,051/4,485 101x78x100 69 112.61 | 17.34 2.79 40.27 11.18 14.17 | 85.75 16.1x
Bunny 1 1/8 735/ 1,149 51x39%50 17 2449 | 4385 1.08 14.04 376 3.14 26.87 10.1x
Filigree 1 1/8 9,399/9,606 250x38x251 256 341.68 | 13.04 0.19 35.03 22.07 3199 | 102.32 25.2%

Table 4.1: Performance statistics for different models and different resolutions of the fine-grid finite elements.

4.6. RESULTS 83

Figure 4.6: Composite finite-element embedding of the armadillo model. In all images the
resolution of the simulation grid is the same, but the hexahedral finite-element representation
from which the stiffness matrices are assembled and the surface is reconstructed is adaptively
refined along the cuts using 1, 2, 3, and 4 refinement levels, respectively, from top left to bottom
right.

the Filigree model (see Figure 4.8). The second group of columns indicates the size
of the composite element and the finest hexahedral element. The size is unified for
simplicity. The third group gives information of the models. The first column in this
group gives the number of the DOFs we are solving before and after a cut has been
performed. The increasing number of DOFs is caused by the duplication of simulation
elements that are cut. The next column shows the hexahedral grid resolution to which
the adaptive refinement corresponds and from which the surface mesh is extracted. The
last two columns give and the number of triangles that are reconstructed, and the mem-
ory requirements of our approach.

During cutting a new surface has to be reconstructed from the refined volume rep-

84 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

Figure 4.7: Left: The coarse hexahedral simulation grid and the high-resolution surface that
is constructed from the embedded fine grid. Middle: Simulation using composite elements
obtained from coarsening the hexahedral finite element model by three levels (10,563 DOFs).
Each simulation time step takes 176.37 ms. Right: Simulation of cuts in the Armadillo model
using hexahedral finite elements (569,748 DOFs). Each simulation time step takes 2829.87 ms.

resentation, and the resulting changes in the fine level elements, i.e., their stiffness
matrices, have to be propagated to the coarse simulation level to rebuild the stiffness
matrices at this level. Since cutting is always performed incrementally, meaning that in
every frame the blade is moved only a small distance through the material, the afore-
mentioned update operations have to be performed only locally around the cutting re-
gion. The timings required for incrementally performing the cut, reconstructing the
surface, and updating the composite finite elements are listed in the first part of group
Time. In our examples, the cuts were realized such that in average the number of newly
created fine level elements was about 3% of the total number of elements. From our ex-
periences this seems to quite realistically simulate the speed at which a cut is performed
in reality. It is clear, on the other hand, that a faster cut can significantly increase the
number of affected elements per frame, resulting in vastly increasing simulation times.
The second part of this group lists the times required for solving the system of equa-
tions on the coarse simulation level and interpolating the computed displacement at the
surface vertices. The last column in this group gives the total simulation time per time
step.

We compare in the last column the performance of our composite finite elements
approach with the full simulation on the finest level as presented in [DGW 11a]. In this
comparison, the incremental updating of surface and stiffness matrices is also applied
to the full simulation. The speedup of overall performance depends on the refinement
level. With three levels composition, the speedup of our method is about 10x for Ar-
madillo and Bunny models, and 25x for the Filigree model.

Our statistics indicate that the proposed cutting approach can be used very effec-

4.6. RESULTS 85

Figure 4.8: Cutting on a Filigree model with complex topology. Top: The coarse hexahedral
simulation grid. Bottom: The deformation of the body after cutting has been performed. Cut-
ting, surface construction, and deformation simulation are performed at 10 simulation frames
per second.

tively in interactive scenarios requiring high update rates and high-resolution boundary
surfaces, at reasonable approximation quality. Even the highest resolution Armadillo
model can be cut, simulated, and rendered at 5-6 fps on a single core of our target ar-
chitecture. Especially the possibility to reproduce sharp material features induced by a
cut at high quality distinguishes our approach from previous approaches.

To demonstrate the approximation quality of the composite finite-element approach,
we have performed one additional test using the Armadillo model. The result of this
test is shown in Figure 4.7. In the middle, the model is simulated using composite
elements obtained from coarsening the hexahedral finite element model by three lev-
els (10,563 DOFs), while on the right it is simulated using hexahedral finite elements
(569,748 DOFs). The simulation time step takes 2829.87 ms for the full simulation and
180.99 ms for simulating the composite elements.

It can be seen that the composite finite element approach yields a slightly different
deformation than the full resolution approach, because a much lower number of DOFs
is solved. On the other hand, even for the rather large disconnected parts that are
generated by the cut, which undergo large displacements due to their high masses, the
differences are not too severe. Especially in virtual surgery simulation, where typically
only small cuts and incisions are performed by a doctor, these difference become much
less significant.

86 CHAPTER 4. VIRTUAL CUTTING USING COMPOSITE FINITE ELEMENTS

4.7 Conclusion

We have presented several highly effective improvements to existing cutting approaches
using composite finite elements, with the goal to efficiently generate a high-resolution
boundary surface from a much coarser simulation grid. By using composite finite ele-
ments, in combination with an adaptive refinement of an embedded finite-element grid
along the cuts, a very high-resolution surface representation is achieved. Since we use
the dual contouring approach for reconstructing this surface, sharp features are repro-
duced, and compared to previous approaches a significantly smaller number of triangles
is generated. Even though the simulation accuracy depends on the number of DOFs we
solve on the coarse simulation grid, by assembling the stiffness matrices on this grid
from the matrices on the adaptively refined volume representation, topological changes
can be simulated at very good approximation quality.

Chapter 5

Efficient Collision Detection for
Composite Finite Element Simulation
of Cuts in Deformable Bodies

In the previous chapter, we have demonstrated the efficiency of composite finite el-
ements for virtual cutting of elastic bodies. In this chapter we present an efficient
collision detection method which is specifically tailored for composite elements. Our
method exploits the specific characteristics of CFEs, i.e., the fact that the number of
simulation degrees of freedom is significantly reduced. We show that this feature
not only leads to a faster deformation simulation, but also enables a faster collision
detection. To address the non-conforming properties of geometric composition and
hexahedral discretization, we propose a topology-aware interpolation approach for the
computation of penetration depth. We show that this approach leads to accurate col-
lision detection on complex boundaries. Our results demonstrate that by using our
method cutting on high-resolution deformable bodies including collision detection and
response can be performed at interactive rates.

5.1 Introduction

The physically-based simulation of cuts in deformable bodies can significantly improve
the realism in surgery simulators and computer games. To efficiently compute the de-

This chapter is based on material that has been originally published in J. Wu, C. Dick, and R. Westermann, Effi-
cient collision detection for composite finite element simulation of cuts in deformable bodies, The Visual Computer
(Proc. Computer Graphics International 2013) 29 (2013), no. 6-8, 739-749. The copyright for this material is owned
by Springer.

87

88 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

Figure 5.1: Cutting of the Stanford Bunny model. Left: High-resolution hexahedral elements
and coarse composite elements (yellow grid). Middle: The deformable bunny is cut into two
parts, resulting in the upper part sliding down. Right: After four stamp-like cuts, the resulting
cylinders slide out under tight constraints. Collision detection and finite element simulation
are performed at 41 tps. Interactive cutting of the deformable body takes additional 37 ms per
simulation frame for updating the surface mesh, the stiffness matrices, and the distance field.

formation, composite finite elements (CFEs) [HS97] based on a uniform or adaptive
hexahedral (octree) discretization of the simulation domain have recently been adopted
in the computer graphics community [NKJF09, DGW11a]. The idea is to approximate
the finite element discretization of the governing system of partial differential equa-
tions on a high-resolution grid by subsuming blocks of finite elements into coarser
elements, thereby reducing the number of simulation degrees of freedom (DOFs) and
thus trading performance for a moderate decrease of accuracy. Additionally exploit-
ing the fact that during cutting only a small number of elements are modified in each
simulation frame, [JBB*10] and [WDW11] have further demonstrated that interactive
update rates—12 fps including mesh cutting, surface reconstruction, and deformation
computation—can be achieved for simulating progressive cuts in elastic bodies with an
effective resolution of 100* hexahedral elements.

Besides the pure deformation simulation, efficient collision detection is another es-
sential component in interactive virtual environments. For deformable bodies with
changing topology, collision detection is particularly time consuming, since new ge-
ometric primitives are created on-the-fly. As a consequence of cutting, an object may
be split into several separated objects. It is therefore necessary to consistently detect
both inter- and intra-collisions. Moreover, a quantitative measure of the penetration is
desired for robust collision response.

Considering the promising results of CFEs, it is highly interesting to investigate
collision detection in this specific context. On the one hand, CFEs have the poten-
tial to simplify collision detection, due to their nature of reducing the number of finite
elements. On the other hand, they present several challenges with respect to the under-

5.1. INTRODUCTION 89

lying non-conforming geometric structures, i.e., the coarse composite elements (which
might be duplicated to represent separated material parts on each side of a cut) versus
the underlying hexahedral elements, and the hexahedral discretization versus a trian-
gulated surface mesh representation. The non-conformity is particularly severe in the
case of cuts: The gap of a cut has an initial width of zero. In contrast, a naive collision
detection approach purely based on hexahedral elements can only achieve an accuracy
in the order of the hexahedral grid spacing.

In this chapter we present an efficient collision detection method for interactive CFE
simulation of cuts applied to high-resolution deformable bodies. Our method exploits
the composition structure of CFEs to speed up the collision query, and addresses the
non-conformity of the underlying geometric structures by analyzing the topology of
the hexahedral element grid in order to improve collision accuracy. Our method detects
both intra-object and inter-object collisions, and also supports application scenarios
where one of the objects is not closed (e.g., a thin scalpel).

The specific contributions of this chapter are:

e A collision detection algorithm which exploits the specific characteristics of CFEs.
The complexity of our broad phase collision detection depends on the number of
simulation DOFs, instead of the number of geometrical primitives. This leads to
a speedup factor which scales exponentially with respect to the level of composi-
tion.

e A topology-aware interpolation scheme to determine the penetration depth on
the non-conforming hexahedral element grid. By flipping the sign of distance
values associated with hexahedral elements based on analyzing their topological
connectivity, the accuracy of penetration depth interpolation around the boundary
is improved.

The remainder of this chapter is organized as follows: In the next section, we sum-
marize work that is related to ours. In Section 5.3, we briefly review CFE simulation
of cuts in deformable bodies. In Section 5.4, we then present our collision detection
approach. In Section 5.5, we describe the distance field computation and updating. De-
tailed timing statistics and evaluations are provided in Section 5.6, and the chapter is
concluded in Section 5.7.

90 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

5.2 Related Work

Composite finite elements approximate a high-resolution finite element discretization
of a partial differential equation by means of a small set of coarser elements. Such el-
ements have originally been invented to resolve complicated simulation domains with
only a few degrees of freedom, and are also used in the context of geometric multi-
grid methods to effectively represent complicated object boundaries at ever coarser
scales [HS97,SW06, PRS07, LPR*09].

In computer graphics, the idea of CFEs has been used as a special kind of homog-
enization for resolving complicated topologies and material properties in deformable
body simulation [NKJF(09], and just recently to model material discontinuities that are
caused by cuts and incisions, for instance, to improve the convergence of a geometric
multigrid solver [DGW11a] and to reduce the number of simulation DOFs in order to
increase simulation performance [JBB*10, WDW11].

A high quality surface mesh reconstructed after cutting can serve as a good basis for
collision handling. Jefdbkov4 et al. [JBB*10] model a cut by removing elements on the
finest resolution level, and reconstruct the boundary surface by means of the March-
ing Cubes algorithm. The element removal approach, in general, makes it difficult to
construct a surface that accurately aligns with a cut. Seiler et al. [SSSH11] propose a
method that decouples the resolution of the material surface from the resolution of the
simulation grid, but the method is restricted to volumetric non-progressive cuts. Dick
et al. [DGW11a] model progressive cuts by disconnecting links between hexahedral
elements, and reconstruct the surface by a splitting cubes algorithm [PGCS09], tak-
ing into account the exact intersections of the cutting blade and the links. Based on
this work, Wu et al. [WDW11] use CFEs to reduce the number of simulation DOFs,
and propose a dual contouring approach [JLSWO02] to construct a high quality surface
which is accurately aligned with a cut.

Collision detection for general deformable bodies has been widely studied and an
excellent survey is given by Teschner et al. [TKH*05].

To simulate deformable bodies with dynamically created geometric primitives, we
are interested in collision detection methods that do not rely on heavy precomputation.
Spatial hashing [THM*03] requires no preprocessing of surface meshes, and detects
both self-collisions and collisions between different bodies. Layered depth images
(LDIs) [HZLMO1, HTG04, FBAFO08] hold these properties as well, but are limited to
closed manifold objects. Bounding volume hierarchies (BVHs) are optimized to han-
dle dynamic topologies [OCSGO07,HSK*10], and can be combined with locally updated

5.3. COMPOSITE FINITE ELEMENT SIMULATION OF CUTS 91

distance fields to simulate brittle fractures [GSM*12].

For simulating reduced deformations governed by only a few DOFs, James and
Pai [JP0O4] have demonstrated that precomputed BVHs can be updated at a cost pro-
portional to the number of simulation DOFs. Built on intensive precomputation of
collision-free certificates, reduced structures have also been exploited for self-collision
processing [SGO09,BJ10]. These algorithms are designed for reduced deformable bod-
ies with consistent topology. CFEs can be considered as a special kind of a locally
reduced model.

To facilitate dynamically created geometric primitives and to detect both inter- and
intra-collisions, for CFEs we propose to utilize spatial hashing in the broad phase of
collision detection. The exact penetration information at complicated boundaries is
then evaluated with a novel topology-aware interpolation scheme.

To compute the penetration depth for collision response, a practical workflow for
interactive applications [HFS*01, FLO1, THM*03, MZS*11] is to first find potentially
overlapping pairs of a vertex and a volumetric element. The vertex is then transformed,
with respect to this volumetric element, from the deformed configuration to the refer-
ence configuration, where the penetration depth and direction of the vertex are evalu-
ated. Finally, the penetration information is transformed back to the deformed config-
uration and utilized to compute the collision force. High update rates can be achieved
by using a precomputed distance field in the reference configuration.

5.3 Composite Finite Element Simulation of Cuts

(We reiterate some important properties of CFEs for chapter completeness, with a fo-
cus on the implications of composite elements to collision detection. For a detailed
explanation of CFEs, we refer the reader to [WDW11] and Chapter 4.)

Our collision detection method is particularly designed for CFE simulation, which
has recently gained popularity to simulate cuts in medical applications [JBB*10,SSSH11,
WDW11]. In the following, we briefly summarize the main principles of CFE simula-
tion of cuts in deformable bodies.

For CFE simulation, three coupled geometric representations are employed to de-
scribe a deformable body (see Figure 5.2 for an illustration).

Hexahedral elements. The deformable body is discretized by means of trilinear hex-
ahedral elements that are aligned on a restricted octree grid. This grid is adaptively
refined along the surface (including cutting surfaces) of the object. To simplify the
discussion, a uniform Cartesian grid is assumed in the following. Physical properties

92 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

Figure 5.2: A deformable body is represented by linked hexahedral elements (yellow), from
which composite elements (gray) and a surface mesh (black) are constructed. Note that the
gaps between elements are purely illustrative, i.e., in the finite element model the elements
are directly attached to each other. The dark gray color indiciates that more than one (here:
two) composite elements exist at the same location, corresponding to the distinct material parts
separated by the cuts. Links are shown in green and orange colors if marked as connected and
disconnected, respectively.

(i.e., Young’s modulus and Poisson’s ratio) are assigned on a per-element basis. The
topology is represented by links between face-adjacent elements. Cuts are modeled by
marking links as disconnected. For each link that is cut the intersection point with the
cutting blade and the blade’s normal at that point are stored. This linked hexahedral
element representation is the basis for constructing the following two representations,
which are used for efficient deformation computation and high quality visual rendering,
respectively.

Composite elements. From the linked hexahedral elements, composite elements are
constructed by considering 2% x 2% x 2% blocks of hexahedral elements. In each block,
we analyze the connectivity among the elements, and create one composite finite el-
ement for each connectivity component. In this way we create one composite finite
element for the distinct material parts separated by cuts, and thus accurately represent
cuts in the composite finite element discretization. As a consequence, multiple com-
posite finite elements might exist at the same location. An example for duplicated
composite elements is shown Figure 5.2, indicated by a darker cell color. From an
implementation point of view, the composition process is performed in k iterations by
successively considering 2 X 2 X 2 blocks. While Figure 5.2 illustrates an example of
one-level composition (k = 1), the composite elements can be several levels coarser
than the hexahedral elements, thereby trading speed for a moderate decrease of simu-

5.4. COLLISION DETECTION FOR CFE SIMULATION OF CUTS 93

lation accuracy. Note that when the underlying hexahedral element grid is an adaptive
octree grid, the composite element grid is also an adaptive octree grid.

The deformation computation is performed on the composite elements. From a
mathematical point of view, this is achieved by starting with a finite element discretiza-
tion on the fine hexahedral elements, and substituting the DOFs of the hexahedral ele-
ments by means of trilinear interpolation from the DOFs of the composite elements.
Surface mesh. By means of a dual contouring approach, a smooth surface triangle
mesh is constructed on the dual grid consisting of the links between hexahedral ele-
ments by utilizing the intersection points and the normals of the cutting blade stored at
these links [WDW 11]. The surface is bound to the hexahedral element model by as-
signing each vertex to its topologically connected, closest hexahedral element. In this
way, the computed deformation of the finite element model can be transferred to the
surface mesh.

The three representations are geometrically non-conforming, i.e., a composite finite
element may be only partially filled with hexahedral elements, and the surface mesh
arbitrarily intersects the hexahedral element grid.

In each simulation time step, the computed per-vertex displacements of the com-
posite elements therefore are propagated to the hexahedral elements and then to the
surface mesh vertices, both by means of trilinear interpolation. It is worth noting that
a) parts of the triangle mesh associated with the same composite element cannot self-
collide, since the coordinates of the surface mesh vertices are trilinearly interpolated
from those of the same composite element, and that b) for a given vertex position,
inferring between the trilinear interpolation weights with respect to the composite el-
ement and the trilinear interpolation weights with respect to an underlying hexahedral
element is straightforward.

5.4 Collision Detection for CFE Simulation of Cuts

From an abstract point of view, we consider collision detection as querying whether a
given vertex penetrates into a solid object, and if yes, reporting the penetration depth
and direction to be used for computing the collision response. Since the querying vertex
can be from the same object or another one, this abstraction handles both inter- and
intra-collisions. Note that the vertex can also be from a non-closed object, e.g., a thin
blade in surgery simulations.

Our collision detection approach consists of a broad and a narrow phase. In the
broad phase (Section 5.4.1), potential overlaps between surface vertices and composite

94 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

elements are detected. This phase is performed in the deformed configuration. Testing
coarse composite elements instead of fine hexahedral elements leads to a significant
speedup.

In the narrow phase (Section 5.4.2), we determine the penetration depth for each po-
tentially colliding vertex by transforming the composite element/vertex pair determined
in the broad phase into the reference configuration. Due to the trilinear interpolation
between composite element DOFs and hexahedral element DOFs, we can directly de-
termine the position of the vertex with respect to the hexahedral element grid. The pen-
etration depth is interpolated from a signed distance field. Since distance field voxels
on both sides of a cutting surface are classified as inside, i.e., are assigned to a nega-
tive distance value, a simple interpolation of the penetration depth for a vertex position
close to a cutting surface is not accurate (e.g., the distance value of a vertex directly
on the cutting surface should be zero, but since all surrounding voxels carry a nega-
tive distance value, a non-zero value would be returned). We address this problem by
specifically flipping the sign of distance values based on considering the connectivity
between hexahedral elements.

5.4.1 Broad Phase Collision Detection

To identify for each vertex the potentially overlapping composite elements, we employ
the spatial hashing approach proposed by Teschner et al. [THM*03]. The basic idea is
to subdivide the 3D space using a uniform Cartesian grid. For each geometric primitive
(vertices and composite elements), we determine the set of grid cells that are intersected
by the primitive. If the sets of grid cells for two primitives are not disjunct, the pair of
primitives is classified as potentially colliding and is further examined in the narrow
phase. To efficiently represent the 3D grid in main memory, a hash table is employed.

Our broad phase collision detection consists of two passes. In the first pass, we tra-
verse all composite elements. For each composite element, we construct an axis aligned
bounding box in the deformed configuration. Since the surface mesh vertices are not
strictly placed in the interior of the composite element, e.g., the mesh constructed us-
ing the sharp feature preserving dual contouring approach [JLSWO02], we compute a
bounding box which covers the composite element’s eight vertices as well as all sur-
face mesh vertices associated with this composite element (i.e., the vertices of the part
of the surface mesh that belongs to the material part described by the composite ele-
ment). The composite element’s ID is stored in each grid cell that is intersected by the
bounding box.

In the second pass, we traverse all surface vertices. For each vertex, we determine

5.4. COLLISION DETECTION FOR CFE SIMULATION OF CUTS 95

the grid cell that contains the vertex. The grid cell’s list of composite elements ID
generated in the first pass directly yields the composite elements that are potentially
colliding with the considered vertex. Note that the composite element which the surface
mesh vertex is associated with can be excluded from the list, since self-collisions of
mesh parts associated with the same composite element cannot occur.

The parameters of spatial hashing significantly influence the performance of colli-
sion detection. We follow the optimized spatial hashing approach [THM*03] to assign
these parameters. The spacing of the uniform Cartesian grid is chosen equal to the size
of the composite elements in the reference configuration. To reduce hash collisions, we
employ the XOR hash function to obtain a hash value H(x, y, z) from a grid cell’s index
(x,y,2):

H(x,y,z) = (xp1 ®yp2®zp3) mod n, (5.1)

where @ is the XOR operator, and the prime numbers py, p,, p; are 73856093, 19349663,
83492791. The size n of the hash table is chosen to be eight times the number of com-
posite elements.

5.4.2 Narrow Phase Collision Detection

To further examine potentially colliding vertex/composite element pairs, we transform
the vertex back into the reference configuration. The penetration depth and direction
for this vertex are then computed using a topology-aware interpolation scheme based
on a signed distance field, and are later utilized for collision response.

The transformation of the vertex is based on its trilinear interpolation weights with
respect to the deformed composite element. These can be computed by solving the
interpolation equation system using Newton iteration [Tod]. From the trilinear interpo-
lation weights, we can immediately determine the location of the vertex in the reference
configuration. All further processing in the narrow phase is performed in the reference
configuration.

To determine the penetration depth and direction, we employ a signed distance field
of the surface of the deformable body in the reference configuration. Each sample of
the distance field consists of the signed scalar distance between the sample point and
the nearest surface point, as well as the vector pointing from the sample to the nearest
surface point (vector distance). The distance field is sampled at the grid cell centers
of a uniform Cartesian grid, which is aligned with the hexahedral element grid (finest
octree level). A negative (positive) distance value classifies the respective voxel as
inside (outside). The spatial extent of the distance field must be chosen such that there

96 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

is at least one layer of outside voxels. If in the following a more distant outside voxel
is queried, any positive distance value can be returned (e.g., 1.0).

To determine whether the considered vertex penetrates the object, and at the same
time obtain the penetration depth and direction for this vertex, a simple approach would
be to sample the distance field by means of trilinear interpolation of the adjacent (sur-
rounding) eight voxels, and to consider the vertex as penetrating, iff the obtained dis-
tance value is negative. However, this simple interpolation produces artifacts at cutting
surfaces, where separated material parts are directly adjacent in the reference configura-
tion. This situation is illustrated in Figure 5.3. Considering vertex v, or v, all adjacent
voxels have negative distance values, resulting in a negative interpolated distance value
and thus in the (incorrect) classification of the vertex as penetrating. Note that the error
can easily be larger than the size of a voxel/hexahedral element, as is the case for vertex
vp. The approach can be extended by determining the hexahedral element where the
considered vertex is lying in. If this hexahedral element topologically does not belong
to the composite element, the vertex is classified as non-penetrating. Otherwise, the
distance field is trilinearly interpolated and the classification is performed based on the
sign of the resulting distance value as before. This approach limits the error to half
the size of a voxel/hexahedral element, but due to the clamping of the ‘inside’ region
at boundaries of hexahedral elements, it leads to a jagged object surface as seen by
the collision handling algorithm (see Figure 5.5). Further results obtained by the de-
scribed algorithm—in the following referred to as ‘simple interpolation approach’—are
presented in the results section.

The problem with the simple interpolation approach is that the topology of the de-
formable object is not considered, i.e., the trilinear interpolation of the distance field
incorporates voxels that are ‘inside’ with respect to some material connectivity compo-
nent, but ‘outside’ with respect to the specific material connectivity component that is
associated with the considered composite element. Our approach addresses this prob-
lem by first classifying the eight interpolation voxels as inside or outside with respect
to the material connectivity component that is associated with the considered compos-
ite element, and then temporarily switches the sign of the distance value of ‘outside’
voxels, if this value is negative. This topology-aware interpolation approach virtually
completely eliminates errors due to the geometrical non-conformity of the hexahedral
grid and the triangle surface mesh, and leads to a smooth object surface as seen by the
collision handling algorithm.

The individual steps of our algorithm are as follows:

1. Starting from the eight surrounding interpolation voxels, determine the subset of

5.4. COLLISION DETECTION FOR CFE SIMULATION OF CUTS 97

Deformed configuration Reference configuration

Figure 5.3: Collision detection artifacts at cutting surfaces. In the deformed configuration
(left), the vertices v, and v, are outside the object. Transformed back into the reference con-
figuration (right), the vertices lie inside the object, although in a different material part with
respect to the original query.

those interpolation voxels for which the respective hexahedral element is existing
and topologically belongs to the composite element.

2. Augment this subset by those interpolation voxels which are topologically con-
nected to the interpolation voxels that are already contained in the subset.

3. The interpolation voxels in the subset are ‘inside’ voxels, the others are ‘outside’
voxels. Temporarily switch the sign of the distance value of ‘outside’ voxels to
positive. Remark: The sign of the distance value of ‘inside’ voxels is negative,
since each of these voxels corresponds to a hexahedral element (whose center
is located inside of the deformable body). Distance field voxels outside of the
simulation domain do not correspond to an hexahedral element, but already carry
a positive distance value. Thus, no sign flipping is necessary for such voxels.

4. Trilinearly interpolate the distance value using the voxels’ temporary distance
values.

An example for the application of the algorithm is given in Figure 5.4. The effect of
topology-aware interpolation is visualized in Figure 5.5. For a bunny model after cut-
ting and deformation (left), we show the zero isocontour of the distance field returned
by the simple interpolation approach (middle) and our topology-aware interpolation
approach (right). Note that the zero isocontour corresponds to the object surface as
seen by the collision handling algorithm. It is clearly visible that the topology-aware
interpolation approach leads to a much smoother and much more precise isocontour.

98 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

Figure 5.4: Classification of voxels in our topological-aware interpolation approach. Left: We
consider the lower composite element, more precisely, the left material part (note that there are
two composite elements at the same location, indicated by the dark gray color). Right: From
the four (in 2D) interpolation voxels of vertex v,, one corresponds to a hexahedral element (or-
ange) that topologically belongs to the considered composite element. Two further interpolation
voxels correspond to hexahedral elements (yellow) that are topologically connected to the or-
ange element. These three voxels are ‘inside’. The remaining voxel (corresponding hexahedral
element is shown in white color) is ‘outside’—for this voxel, the sign of the distance value has
to be switched to positive.

Figure 5.5: Comparison between the zero isocontours of the distance fields obtained by the
simple interpolation approach (middle) and our topology-aware interpolation approach (right).

To determine the penetration depth and direction in the deformed configuration, the
closest surface point indicated by the interpolated vector distance is transformed into
the deformed configuration. The penetration depth and direction then are given by the
vector between the queried vertex and its transformed closest surface point.

5.5. DISTANCE FIELD COMPUTATION 99

5.5 Distance Field Computation

After each cutting operation, the signed distance field is updated in a region growing
manner [JBS06, Cui97], starting from those hexahedral elements which are incident to
a link that has been cut. The update is performed as follows. When the link between
two hexahedral elements has been disconnected by a cut, we assign new vector dis-
tances to the respective voxels, and add these voxels into a fifo queue. After all newly
disconnected links are processed, we remove a voxel /; from the list, and check its six
face-adjacent voxels. The vector distance d(h;) of a neighbor voxel &; is updated to
d = m +d(h), if ||d’||> is smaller than ||d(h;)||,. If the vector distance of the neighbor
voxel has been updated and the neighbor voxel is not already contained in the list, it is
added to the list.

Note that to obtain an absolutely accurate distance field, a priority queue would have

to be used instead of a fifo queue. This, however, would increase the complexity of up-
dating. For a reasonable collision response, an approximately monotone distance field
is sufficient to provide fully reasonable results, as has for example been demonstrated
in [GSM*12].
Sub-voxel accurate boundary values. Sub-voxel accurate distance values for the
boundary voxels improve the accuracy of the distance field over a binary classifica-
tion [SJO1]. The exact distance value for a boundary voxels can be obtained by de-
termining the distance from the voxel’s center to the triangle surface mesh. In our
approach, the exact intersection point of a link and the cutting blade as well as the
blade’s normal is stored when a link is cut. To obtain a sub-voxel accurate distance
value for a boundary voxel, we consider the disconnected links that are incident to the
corresponding hexahedral element, and compute the minimum distance of the voxel
center to the planes spanned by link/blade intersection points and blade normals.

Accuracy of the deformed distance field. Figure 5.6 shows a comparison between an
exact distance field, directly computed in the deformed configuration, and an approx-
imate distance field, computed in the reference configuration and transformed into the
deformed configuration. The solid green lines represent the isocontours of the exact
distance field, whereas the dashed red lines are the isocontours of the approximate dis-
tance field. The approximate distance field decreases monotonically from the interior
towards the boundary, and it converges to the exact one as the surface of the object
is approached. Recomputing the distance field in the deformed configuration would
take minutes, even when accelerated by means of a hierarchical structure [LGLM99],
whereas locally updating the precomputed distance field in the reference configuration

100 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

Figure 5.6: Isocontours of the distance field computed directly in the deformed configuration
(solid green), and of the distance field computed in the reference configuration and transformed
into the deformed configuration (dashed red).

and transforming distance values into the deformed configuration can be performed in
a few milliseconds.

5.6 Results

In the following, we analyze the potential of our proposed collision detection approach
for interactive applications like virtual surgery simulations. Our experiments were run
on a standard desktop PC equipped with an Intel Xeon X5560 processor running at
2.80 GHz (a single core is used), 8 GB of RAM, and an NVIDIA GeForce GTX 480
graphics card.
Examples. In the first example, we focus on the collision detection between newly
created surfaces after cutting. Figure 5.1 (left) shows a deformable model consisting
of hexahedral elements at a resolution of 101 x 78 X 100, and composite elements
(yellow grid) that are three levels coarser than the hexahedral elements. In the middle,
the bunny, with its bottom fixed to the ground, is cut into two parts by a curved surface,
resulting in the upper part sliding down along the cutting surface. On the right, four
stamp-like cuts are applied to the bunny. The resulting cylindrical shapes slide out of
the bunny’s body, under the tight constraints of the holes. Contact forces are computed
using a penalty force model, and together with their derivatives are fed into the time-
implicit CFE elasticity simulation, which is based on an efficient geometric multigrid
solver [DGW11a].

Figure 5.7 demonstrates our collision detection applied to a cylinder shell model,
the top of which is fixed. After cutting, the parts fall down, and stack on the ground.

5.6. RESULTS 101

Figure 5.7: Cutting of a cylinder shell model. Left: High-resolution hexahedral elements
and coarse composite elements. Right: After cutting, the parts fall down and stack. Collision
detection and finite element simulation are performed at 136 fps, while the per cut updating is
finished in 17 ms.

Figure 5.8: Cutting of the Stanford Armadillo model. Left: High resolution hexahedral el-
ements and coarse composite elements. Right: After cutting, the parts fall down. Collision

detection and finite element simulation are performed at 30 tps, while the per cut updating is
finished in 32 ms.

102 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

Figure 5.8 shows haptic cutting on the Stanford Armadillo model. For a real-time
recording of the dynamic effects, we would like to refer the reader to the video accom-
panied with [WDW13].

Evaluation of accuracy. To evaluate the sub-voxel accurate collision detection, we
analyze the change of the kinematic energy of the simulation objects over time, which
is a measure for the smoothness of simulation. Jumps in the kinetic energy can easily
lead to visual artifacts and numerical instabilities. Figure 5.9 compares the change of
kinetic energy of a bunny model using the simple distance field interpolation approach
with our topology-aware interpolation approach. It can be observed that the change
of kinematic energy for the topology-aware interpolation is much smoother than for
the simple interpolation. Figure 5.10 shows the simulation of a cut in a zero-gravity
environment. Since the simple interpolation approach leads to an error in penetration
depth computation, the cut opens. In contrast, using our topology-aware interpolation
approach, the cut remains closed.

Performance. Table 5.1 shows detailed timing statistics for different models and dif-
ferent resolutions of the hexahedral element grid. The second group of columns gives
information about the employed models: the resolution of the hexahedral element grid,
the number of simulation DOFs (using a composition level of three), and the number
of surface triangles. The third group lists timings for mesh updating (adaptive octree
refinements along the cutting surface and creation of the surface mesh), updating of the
FEM stiffness matrices, updating of the distance field for collision detection, and finally
the total time required for update operations. Note that the time required for updating
is dependent on the spatial extent of a cut. In our tests, the cuts were realized such that
the number of newly created hexahedral elements (due to adaptive octree refinements)
in average was about 2% to 4% of the total number of elements.

The last group gives timings for collision detecting and FEM simulation. The num-
bers in parentheses indicate the performance gain resulting from using composite el-
ements, compared to performing collision detection and finite element simulation on
the underlying hexahedral elements. With no composition, the broad phase takes about
86% of the total time for collision detection. As the composition level / increases, the
narrow phase is becoming the bottleneck. To increase the overall performance, in the
narrow phase we test every 2/th vertex rather than all vertices. It is worth noting that
the resulting speedup factor in the narrow phase (8 when / = 3) is far below the overall
speedup factor achieved for collision detection (between 21.3 and 58.4).

Our statistics indicate that the composition not only leads to a significantly faster
deformation simulation, but also to a highly efficient collision detection. With three

5.6. RESULTS 103

0.068

0.04

0.02

-0.02+ 1

Simple interpolation
Topology-aware interpolation

-0.04

1

Change in kinetic energy (g . mm2/ms?)
o

0 200 400 600 800 1000
Time (ms)

Figure 5.9: Analysis of the change of kinetic energy over time. Top: After cutting the bunny,
the upper part slides down. Bottom: With our topology-aware interpolation, the change of
kinetic energy (green) is significantly smoother than when the simple interpolation is used (red).

-4

¥ 10
£ — Simple interpolation
NE 4 Topology-aware interpolation |1
=,]
s
i
s g
2
E
=) i
K=
i)
=
\ g -4
£~
[L L L L L
0 500 1000 1500 2000 2500 3000

Time (ms)

Figure 5.10: Cutting in a zero-gravity environment. Left top: Using the simple interpolation,
the cut opens since the collision detection is not accurate. Left bottom: With out topology-aware
interpolation, the width of the cut remains zero. Right: Change of kinetic energy over time.

CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

104

Hexahedral # Sim. # Tris Per Cut Updating [ms] Simulation [ms] (Speedup)
Model Elements DOFs X 1k | Mesh Stiffness Distance | Total Col. Det. FEM Total
Bunny | 101x78%100 3,669 69 8.9 25.6 24 | 369 | 4.6(43.5%) 19.6 (253.6x) | 24.2 (213.2%)
Bunny 51x39x50 933 17 3.1 5.8 0.4 9.3 | 1.5(26.8%) 3.7 (93.2%) 5.2 (67.4x)
Liver | 82x83x100 2,928 59 | 11.7 244 1.9 | 38.0 | 3.2(58.4%x) 23.3(103.7x) | 26.5(98.2%)
Liver 41x42x51 717 13 2.8 5.6 0.3 8.7 | 1.2(21.3%) 4.3 (67.2x) 5.5 (57.0x)
Cylinder 42x42x50 1,338 30 5.7 11.3 02| 172 | 2.1 (32.5x) 5.2(118.4%) 7.3 (93.3%)
Armadillo | 85x77x100 2,346 50 9.3 22.6 04 | 323 | 3.726.1x) 29.7(31.0x) | 33.4(30.5%)

Table 5.1: Performance statistics for different models and difterent resolutions of the hexahedral element grid. All models are simulated with

a composition level of three.

5.7. CONCLUSION 105

1000 - 1000 -+

100

10

Composition level Composition level
(Bunny: 101x78x100) (Liver: 82x83x101)

Figure 5.11: Speedup with respect to different composition levels.

levels composition, the speedup of the overall performance can reach about two or-
ders of magnitude. Figure 5.11 shows the speedups for different composition levels.
Exponential growth of the speedup factor can be observed.

5.7 Conclusion

We have presented an efficient collision detection method for CFE simulation of cuts
in deformable bodies. By exploiting the composition structure, we achieve a speedup
factor which scales exponentially with respect to the level of composition. By analyzing
the topology of underlying hexahedral elements, our approach accurately interpolates
the penetration depth for non-conforming geometries. These advances make CFEs an
ideal candidate for applications where interactive simulation update rates are required.

In the future, we plan to work on the physically-based modeling of the fracture me-
chanics between a scalpel and soft tissues, in order to provide a fully realistic haptic
feedback for surgical training applications. Another direction of research is constraint-
based contact handling for deformable bodies. Here, it would be interesting to investi-
gate the potential of CFEs to accelerate this computationally intensive approach.

106 CHAPTER 5. COLLISION DETECTION FOR COMPOSITE FINITE ELEMENTS

Chapter 6

Interactive Residual Stress Modeling
for Soft Tissue Simulation

Residual stress is the stress which remains in a deformable body in the absence of
external forces. Due to the release of residual stress after cutting, soft tissues will
shrink and the wound will open. Thus, to realistically simulate soft tissue deformations
due to cutting, a model for the residual stress in a patient body is needed. In this
chapter we present an interactive method to compute a physically meaningful patient-
specific residual stress distribution. With our method, by using their experience doctors
can sketch directional stress strokes and specify stress magnitudes at a few control
points on the body surface. The residual stress is then immediately computed from
these inputs and visualized by displaying the deformations of a set of control cuts on
the body. In a visually guided session, the user can further modify the initial strokes
and magnitudes until a satisfactory result is obtained. We demonstrate the potential
of the proposed method for virtual cut simulation by showing the variations of wound
openings depending on the residual stress distribution, and by comparing the simulation
of a flap surgery with the real flap surgery.

6.1 Introduction

The input models used in computer-aided surgery simulation are typically generated
from patient-specific scans such as CT or MRI. In these scans, the internal stress distri-
bution of the measured tissue is lost. However, even in the absence of external forces

This chapter is partially based on material that has been originally published in J. Wu, K. Biirger, R. Westermann,
and C. Dick, Interactive residual stress modeling for soft tissue simulation, Proceedings of Eurographics Workshop
on Visual Computing for Biology and Medicine, 2012, pp. 81-89.

107

108 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

soft tissue is not stress free, but it is tensioned by the so-called residual stress. The
residual stress is a non-negligible factor in soft tissue dynamics [HumO3], and its effect
is especially apparent when soft tissue is cut. After cutting, the tissue will shrink and
the wound will open due to the release of residual stress [CF86]. Moreover, the shrink-
age of a flap due to the relaxation of residual stress affects the quality of surgeries, e.g.,
a breast reconstruction surgery, in which the volume of the flap is of crucial impor-
tance [KZPBO04]. Therefore, to produce physically realistic cutting simulations for soft
tissue, patient-specific models of the residual stress need to be derived and included in
the simulation.

However, despite the importance of residual stress for soft tissue dynamics, it is not
well addressed in biomedical simulation. This is due to the fact that the residual stress
distribution is patient-specific, but no procedure yet exists to derive this distribution
directly from non-invasive tissue measurements. The residual stress is valued by a sec-
ond order tensor which can be decomposed into principal directions (eigenvectors) and
principal stresses (eigenvalues). The values of principal stresses vary strongly between
different individuals, e.g., tight or loose. Moreover, the principal directions are geom-
etry dependent and vary spatially. Even though models for these distributions in the
human body exist, these models cannot easily be parameterized to a particular body.

In this chapter, we present an interactive method to derive a physically meaningful
residual stress distribution for a given patient model, and we use this distribution for
estimating the opening of cuts in soft tissue (see Figure 6.1). The stress model is inter-
actively designed by a domain expert based on her expertise about the residual stress
distribution in human bodies of different shape and consistence. The design process
is subject to additional constraints, which enforces that the resulting model respects
certain physical laws. The modeling result is visualized immediately, and thus allows
interactive control over the residual stress distribution.

The specific contributions of this chapter are:

e A procedure to interactively model the residual stress distribution in patient spe-
cific models. Following the well-known concept of Langer’s lines [Lan78] in
anatomy, the user draws several strokes on the surface of soft tissues, thus spec-
ifying a coarse skeleton of the distribution of the residual stress direction-field.
In addition, the stress magnitudes are specified at a sparse set of control points,
enabling the expert to adapt the stress distribution to the patient’s tissue consis-
tency. Direction and magnitude parameters are propagated to the whole body via
constraint interpolation.

6.1. INTRODUCTION 109

Patient model Modeling

Surgery simulation Visualization

Figure 6.1: Overview of the residual stress modeling procedure. First, a patient specific volu-
metric CT scan is used as input model. Next, an experienced surgeon designs a residual stress
tensor field by drawing stress directions via strokes on the model surface, and by specifying the
stress magnitudes at several sparse locations. A global tensor field is constructed from this in-
formation via Laplacian interpolation, while the equilibrium equations serve as a penalty term.
The tensor field is immediately visualized by simulating the effects of making many small holes
on the surface. Based on the feedback, the surgeon can modify her design until a satisfied tensor
field is computed. Finally, this residual stress is used in a biomedical simulation of the opening
of wounds due to cuts.

110 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

e A novel stress tensor visualization method to assist the modeling process. The
visualization method is in spirit similar to how the anisotropic behavior of skin
stress is observed. By making many small round incisions on the soft tissues, and
simulating the deformation after these topological changes, it is easy to perceive
the principle direction of residual stress and to predicate the effect of surgical
operations.

e A demonstration of the potential of the proposed method in cutting simulations. In
a number of preliminary tests we show that the residual stress distributions gener-
ated by the semi-automatic modeling process yield very realistic wound openings
in virtual cutting simulations. The possibility to interactively adjust the distri-
butions taking into account the observed tissue consistency (e.g., tight or loose)
enables cutting simulations that mimic the real-world tissue behavior quite real-
istically.

The remainder of this chapter is organized as follows: In Section 6.2, we review
related work in biomedical engineering and visualization. In Section 6.3, we discuss the
properties of residual stress from both a mechanical and a biological perspective, and
we lay open the foundation on which our approach is based. In Section 6.4 and Section
6.5, we introduce the modeling procedure and the visualization approach, respectively.
Implementation details are given in Section 6.6. We conclude the chapter with some
results and ideas for further research in this field.

6.2 Related Work

The accurate measurement of residual stress is still an open problem, due to the fact
that the mechanical effect of the residual stress is highly coupled with the nonlinear,
heterogeneous, anisotropic behavior of biological tissues. Nevertheless, both in vivo
and ex vivo experiments have been performed to investigate the residual stress in soft
tissues such as the skin [JJKGO8, FTN11]. These experiments typically capture only
the residual stress of a small specimen. However, a consistent residual stress field
defined on the whole soft tissue is needed for the purpose of medical simulation. In this
chapter, we try to obtain a meaningful stress field by a constructive method based on
the parameters modeled by domain experts.

Tensor field modeling. Zhang et al. [ZHTO7] presented a topology based approach to
design tensor fields on surfaces. An extension of this approach to 3D tensor fields is
not trivial, since the topology of 3D tensor fields is much more complicated. Recently,

6.3. MODELING FOUNDATIONS 111

Huang et al. [HTWBI11] proposed a method to construct smooth 3D cross-frame fields
based on a spherical harmonics representation of frames. The three axes of a cross-
frame has no order, and thus the decomposition of a cross-frame field into three con-
sistent eigenvector fields is not straightforward. Arsigny et al. [ACPAO06] proposed
Log-Euclidean metrics for calculus on diffusion tensors. Our stress tensors differ from
the diffusion tensors in that the stress tensor is not positive-definite. Meanwhile, the
expensive evaluation of logarithms also makes this sophisticated approach not suitable
for interactive modeling. Takayama et al. [TIHNO7] proposed a sketch based interface
to model myocardial fiber orientation, and extended it to model tensor fields for solid
texturing [TOIIO8]. Also for solid texture synthesis, Zhang et al. [ZDL*11] proposed
to use quaternions to represent tensors. Our problem differs from this as the tensor field
of residual stress should satisfy some equilibrium equations.

Tensor field visualization. Various tensor field visualization approaches for different
applications have been proposed based on glyphs, line/surface tracing, line integral
convolution, direct volume rendering, topological features [HLL97], physical effects of
the tensor field on the underlying media [ZP02], or a combination of multiple of above
techniques [WLY04, DGBWO09]. Our visualization is close to the volume deformation
based approach [ZP02]. Moreover, we perform topological operations to make the
deformation more meaningful for surgery planning. It can be seen as a reproduction
of Langer’s experiments [Lan78] from which he observed the anisotropic behavior of
skins.

6.3 Modeling Foundations

In this section, we shortly review the theoretical foundations of our modeling method.
We first specify the equilibrium equations which the residual stress tensor field must
satisfy due to the underlying physical principles. We then address the characteristics of
residual stresses in the medical context of soft tissue simulation.

6.3.1 Mechanics of Residual Stress

We consider a deformable body with reference configuration Q c R*. The 3D second-
order residual stress tensor field o must satisfy the following equilibrium equations as

112 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

given by Hoger [Hog86]:

—dive = f0=0 in Q\0Q, 6.1)
onr=fio=0 on Iy, (6.2)
ol = o (6.3)

Here, nr is the unit outward normal on I' = 9Q. I'y C I denotes the free surface of the
deformable body. f, and f; denote the residual body forces and surface forces, which
are applied in the undeformed state. These forces are zero in our application.

Equations (6.1) and (6.2) correspond to the fact that the residual stress and the resid-
ual body and surface forces must be balanced in the undeformed state. In the absence
of external forces, these equations mean that the residual stress is self-balanced at each
material point, and that on the surface the residual stress perpendicular to the surface
must be zero. By integrating these equations over the body’s domain and surface, it
can then be derived that the mean residual stress within the body is zero [Hog86]. This
implies that a non-zero uniform residual stress tensor field cannot exist.

Equation (6.3) specifies that the stress tensor is symmetric. According to the spectral
decomposition theorem, a 3D second-order, symmetric tensor can be decomposed into
three mutually orthonormal eigenvectors n; and three eigenvalues A; according to

3
g = Zi:l /1,'1’1,' ® n;, (64)

where ® denotes the tensor product operator. A positive eigenvalue means that the
body is tensioned along its corresponding eigenvector direction, whereas a negative
eigenvalue means that the body is compressed along this direction. Note that the di-
rections of the eigenvectors are not unique—if v is an eigenvector, then —v also is an
eigenvector. Therefore, when we refer to the direction of an eigenvector v, we rather
refer to the (non-oriented) direction of the line Av, 1 € R.

6.3.2 Residual Stress in Soft Tissues

The decomposition of the stress tensor into eigenvectors and eigenvalues is mean-
ingful in anatomy and physiology. A well-known concept in plastic and reconstruc-
tive surgery are cleavage lines, which were first described in 1861 by anatomist Karl
Langer [Lan61], and thus are also named as Langer’s lines. Langer’s work was ini-
tially written in German language, and later translated into English by Gibson [Lan78].
One of the original illustrations by Langer is shown in Figure 6.2. It depicts directions

6.3. MODELING FOUNDATIONS 113

LTEN

W

W "y

Figure 6.2: Directions of highest tension within the human skin (illustration by anatomist
Langer [Lan61], 1861).

within the human skin along which the skin has the highest tension—mathematically,
this direction at each point is the direction of the eigenvector corresponding to the
largest eigenvalue. A surgical cut is usually carried out parallel to Langer’s lines, since
parallel incisions generally heal better and produce less scarring than those which cut

acCross.

Biologically, Langer’s lines correspond to the natural orientation of collagen fibers
within the dermis. In general, the residual stresses in soft tissues are highly related to
the growth of organs [GO06]. According to the model of kinematic growth [RHM94],
residual stresses are developed during the growth of soft tissue in the following way:
The original body is fictitiously decomposed into many small stress-free pieces, each of
which grows independently. Because the growths in each piece need not be compatible,
internal forces are needed to assemble the pieces into a consistent configuration. These
internal forces induce residual stresses. Since the growth of soft tissues is slow and
gradual, it can be assumed that the residual stresses vary smoothly throughout the tissue.

114 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

6.4 Modeling Procedure

Based on the spectral decomposition of the stress tensor, we construct the stress tensor
field by modeling eigenvector and eigenvalue fields. Assuming that the residual stress
field in biological tissues is smooth, we propose the following approach: The user
specifies eigenvectors and eigenvalues at a few, sparsely distributed locations on the
surface of the object. These values are smoothly propagated over the entire domain
of the body by using Laplacian interpolation, with the equilibrium equations serving
as a regularization term. After the residual stress tensor field has been computed, the
effect of this field on the underlying media (augmented by a set of cuts) is immediately
visualized (see Section 6.5). Following a computational steering approach, the domain
expert can then further refine the eigenvector and eigenvalue fields, until the desired
result is obtained (see Figure 6.1 for an illustration of this process).

In the modeling process, we first specify the eigenvector fields, followed by the
eigenvalue fields. Since the three eigenvectors at each point are mutually orthogonal,
it is sufficient to specify two eigenvectors—the third eigenvector can be obtained by
computing their cross product. Moreover, the normal on the surface is an eigenvector
of the stress tensor (since on = Qon Iy, i.e., n is eigenvector for the eigenvalue 0).
Therefore, only one eigenvector field must be specified by the user, corresponding to
Langer’s lines.

To specify this field for a patient specific geometry model, the user draws a set of
strokes on the surface of the body. From these strokes, a smooth vector field in the entire
body is constructed and visualized. As the user incrementally draws more strokes, the
vector field is further refined. An example of user input strokes and the automatically
constructed eigenvector field is shown in Figure 6.3.

The eigenvalue fields are specified in a similar way. Since the eigenvalue corre-
sponding to the surface normal is always zero, up to two eigenvalues can be specified
at a point. Considering the user interface, after the user has selected a location on the
surface, we show the local tensor frame with colored arrows indicating the direction of
surface normal, the Langer’s line, and the third vector resulting from their cross prod-
uct. The length of the arrow corresponds to the magnitude of the eigenvalue as it is
specified by the user (see Figure 6.4).

6.4. MODELING PROCEDURE 115

-

A

Figure 6.3: Modeling the eigenvector field by sketching on the surface. The vector field
(yellow arrows) is created after the user draws the first stroke (red line), and updated every time
after the user draws a new stroke.

- T
- A 77
§eter’’ 0000,

Figure 6.4: Modeling the eigenvalue fields by adjusting frame-arrow lengths. The local tensor
frame (colored arrows) of a user-selected location shows the specified eigenvalue along each
direction.

116 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

6.5 Visualization

The residual stress tensor field could be visualized by showing streamlines that are
traced in the eigenvector fields and by coloring coding the eigenvalue fields (see Fig-
ure 6.5). However, from such a visualization it is rather difficult for the surgeon to
interpret the physical behavior of the material after cutting, which depends on not only
the residual stresses, but also the material properties, and the depth and the length of an
incision. Therefore, for our particular application, we propose a visualization method
which directly shows this behavior.

Our method is based on introducing a set of small, round incisions distributed over
the surface of the body. Then, the deformation of the body due to the residual stress
is computed (see Figure 6.6). Typically, due to the relaxation of residual stress af-
ter cutting, the body will shrink, and the wounds will open. If the residual stress is
anisotropic, both the outer and inner wound margins become elliptical in shape with
their axes mutually orthogonal (see Figure 6.7). The major axis of the outer ellipse
indicates the eigenvector direction for the major eigenvalue. On the surface, it corre-
sponds to Langer’s lines. The gap between the outer and inner boundary of the wound
indicates the magnitude of the stress.

This visualization approach is similar to how Langer observed the anisotropic phe-
nomenon of the residual stress [Lan78]. Langer marked circular outlines at short dis-
tances from each other on the skin of cadavers, and then incised around the circles.
From the resulting deformation he observed patterns and determined line directions by
the longer axis of the ellipses.

We provide two coloring approaches of the new cutting surface to indicate some
important information, i.e., the depth of cuts and the stress in the direction normal to
the cutting surface (Figure 6.6 (middle and right)). The depth field is computed in a way
similar to Takayama et al. [TOIIO8]. We define the skin layer of the abdomen wall as
having depth O (red color), and the inner layer as having depth 1 (yellow color). Radial
based function interpolation is then used to interpolate the depth values.

To better visualize the anisotropic behavior of the deformation, we color the cutting
surface by the norm of the normal component of the residual stress, ||on|,, where n
represents the normal of the newly created cutting surface, with a linear color map
from red for the highest tension to blue for the lowest. These colors are consistent with
the color of arrows for eigenvalue editing. As we can see from Figure 6.6 (right), the
red area means higher released tension, while blue area means lower tension. The axis
passing through red poles indicates the Langer’s line.

6.5. VISUALIZATION 117

Figure 6.5: Left: A streamline visualization of the interpolated 3D volumetric eigenvector
field. Right: Visualization of a eigenvalue field by color coding.

P

N i'\"‘,"-.

P00 0O OO0
PO0O OO0

Figure 6.6: Left: A visualization of the residual stress tensor field by simulating the effect of
many small round incisions. The long axis of the outer ellipse corresponds to the major principle
direction, while the width of the wound gives a direct visual impression how the tissue behaves
when being cut. Middle: The resulting cutting surfaces are colored by the depth. Right: The
cutting surfaces are colored by the magnitude of the residual stress component in the direction
of the cutting surface normal.

Figure 6.7: Left: An eigenvector field (red and blue curves) of the residual stress, the eigenval-
ues along the red curves are larger than those along the blue ones. Right: After a round incision
(the dashed circle), the wound gapes.

118 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

6.6 Implementation

In this section, we introduce the interpolation of residual stress tensors (i.e., eigenvec-
tor fields and eigenvalues fields), and the dynamic simulation of deformable bodies
with residual stresses. The eigenvector fields are interpolated by Laplacian smoothing,
while the eigenvalue fields are interpolated by combining the Laplacian equation and
the static equilibrium equation in a least square sense. It is arguable that an interpolation
approach which treats the whole tensor as a unity may produce more reasonable results.
However, since the tensor is preferably represented by eigenvectors and eigenvalues for
intuitive modeling inputs, and they are of different units and scales, the resulting for-
mulation of optimization problem in that case is ill conditioned and its convergence is
poor. Thus, we choose to generate the tensor field by interpolating eigenvectors first
and then eigenvalues.

Our interpolation and simulation are based on a hexahedral finite element discretiza-
tion using a uniform Cartesian grid, following the approach proposed in [DGW11a]
and [WDWI11]. The topology of the finite element model is represented by using a
linked volume, where face-adjacent elements are connected via links, and these links
are marked as disconnected when the respective elements are separated by a cut. A
visually smooth render surface that is topologically consistent with the hexahedral fi-
nite element model is constructed directly from this model by using a dual contouring
approach. For details, we refer the reader to the original works.

For the modeling of the residual stress tensor field, the user paints eigenvectors and
eigenvalues onto the smooth render surface. The respective values are propagated to
the closest hexahedral finite elements. The computation of the residual stress tensor
field is then performed on this grid.

6.6.1 Static Equilibrium Equations

For the discretization of the continuous equilibrium equations, we employ a hexahe-
dral finite element discretization using piecewise constant interpolation for the residual
stress tensor field (i.e., we store one stress tensor per element) and trilinear interpolation
for the test functions. This leads to a linear system of equations

To =0. (6.5)

Here, o is a linearization of the per-element stress tensors, each of which is represented
—-—e __ e e e e e e \T : : : :
as a 6-component vector o = (09,,0%,,0%;,07,,09;,0%;)" using Voigt notation. 7 is

6.6. IMPLEMENTATION 119

an n, X n, matrix which maps per-element stress tensors to per-vertex forces, where n,
and n, denote the number of finite elements and vertices, and each matrix entry is itself
a matrix consisting of 3 X 6 scalars. T is assembled from the per-element matrices

T¢ = f (B dx,
QE

by considering the sharing of vertices between adjacent finite elements. Here, B¢(x)
is the element strain matrix, and Q¢ is the domain of the finite element. Note that the
matrix 7 depends only on the geometry and topology of the deformable body; it does
not depend on the material properties such as Young’s modulus or Poisson’s ratio.

For eigenvalue interpolation, we employ a formulation of Equation (6.5) in terms of
eigenvalues. According to Equation (6.4), it is given by

do
T—A=0, 6.6
1 (6.6)
where A is a linearization of the per-element stress tensors’ eigenvalues, and % 18 as-

do*
da¢

do*
() = (I’lli ® I’ZZ)I']'.
ijk

sembled from the per-element third-order tensors 25 given by

dAe

6.6.2 Interpolation of Eigenvalues

In the following, we introduce our interpolation scheme for the case of eigenvalue in-
terpolation. The interpolation of the eigenvectors, which is algorithmically performed
prior the interpolation of the eigenvalues, is performed in a similar way and is described
in the following section.

For the formulation of our interpolation scheme, we consider a vector-valued func-
tion ¢(i) = A = (A, A5, 25", which specifies the three eigenvalues for each finite
elementi=1,...,n,.

Laplacian operator. We use Laplacian smoothing [SCOL*04] to propagate the pre-
scribed values over the entire domain of the body. The discrete Laplacian operator A
acting on ¢ is defined as

o)D) =) o,) [¢() - ¢,

JEN1(D)

where N;(i) is the set of elements that are face-adjacent to element i. Since we use a

120 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

uniform discretization, the weight w(i, j) is chosen as w(i, j) = m To get a smooth

tensor field, we seek for
(ap)(@) =0, i=1,...,n,.

In matrix form, this is written as
LA =0, (6.7)

where 1 = ((AHT, ..., (47T, and L is an n, X n, matrix defined by

_I3><3 lfl = j,
Lij = w(i, j)xs if j € Ni(i),
0 otherwise.

Boundary condition. The eigenvalues for some elements are prescribed by the user.
This is modeled by
¢(lk) = /lik,o, k = 1’ e N,

meaning that for element i, the eigenvalues A% are prescribed. n,, denotes the number
of these elements. The matrix form of these constraints is given by

ca= 2", (6.8)
where 2° = (A", ..., (%)), and C is an n, X n, matrix defined by

13 3 if £ = ik,
Cie=3 ‘
0 otherwise.

We solve the linear systems given by the Laplacian operator Equation (6.7), the
boundary constraint Equation (6.8), and the equilibrium constraint Equation (6.6) in a

least squares sense, i.e.,
arg min ||AA - b|}3, (6.9)
A

T T .
where A = (L C T%) ,and b = (O A0 ()) . The corresponds the linear system,
ATAA = ATb, is evaluated by a conjugate gradient solver.

6.7. RESULTS AND DISCUSSION 121

6.6.3 Interpolation of Eigenvectors

For the eigenvector interpolation, which is performed component-wise, the formulation
of the Laplacian operator and user-specified constraints is analogous, with the exception
that the equilibrium equation is not considered in the minimization problem.

Note that due to the component-wise interpolation of the eigenvectors, it is finally
required to orthonormalize the resulting fields in order to obtain a set of mutually per-
pendicular eigenvector fields. In the orthonormalization process, the eigenvector along
the normal direction is fixed, while the one along Langer’s line is clipped and normal-
ized.

6.6.4 Dynamic Simulation

The incorporation of the residual stresses into the simulation of the deformable body
leads to the spatially discretized Lagrangian equation of motion

To + Mii+ Dit+ Ku = f. (6.10)

Here M, D, and K are the mass, damping, and stiffness matrix, and u and f are the
linearized vertex displacements and per-vertex forces. Note that the matrices in this
equation have to be reassembled whenever the topology of the object has changed,
i.e., whenever the object has been cut. To enable the accurate simulation of large de-
formations using linear elasticity, we employ the corotational formulation of the lin-
ear strain tensor. The linear system of equations resulting from applying the implicit
Newmark time integration scheme is solved by using an efficient geometric multigrid
solver [DGW11a].

6.7 Results and Discussion

For our experiments, the Young’s modulus and Poisson’s ratio are chosen as 80kPa
and 0.4 respectively, which are comparable to those of an abdominal wall [SAF*06].
The tension along the Langer’s lines is typically prescribed as 20 kPa, while along the
cross direction it is 10 kPa [JJKGOS8]. Our experiments were run on a standard desktop
PC equipped with an Intel Core Q9450 processor running at 2.66 GHz (a single core is
used), 4 GB of RAM, and an NVIDIA GeForce GTX 280 graphics card.

Figure 6.8 shows two cuts, the left cut crosses Langer’s lines, while the right one
follows Langer’s lines. It can be seen that the wound caused by the cross cut is wider.

122 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

Figure 6.8: The left cut crosses the Langer’s lines, while the right cut follows Langer’s lines
(the lines are shown in Figure 6.2). The wound caused by the cross cut is wider.

Figure 6.9: Left: Three different specifications of eigenvectors and eigenvalues. Right: Flap
surgery simulations with residual stresses computed from different specifications. The cutting
surfaces are colored by the magnitude of the residual stress component in the direction of the
cutting surface normal. The first row corresponds to a modeling of the residual stress in the
spirit of Langer’s lines.

6.7. RESULTS AND DISCUSSION 123

Figure 6.10: Modeling and visualization on a cylinder model. The stresses in the upper part
are set isotropic, while that in the lower part are set anisotropic. The resulting shapes of round
incisions are circular and elliptical respectively.

Figure 6.9 the first row shows the simulation of a flap surgery using the residual
stress distribution computed from a reasonable modeling. Dynamic simulation is shown
in the video accompanied with [WBWD12]. The width of the wound is typically 5 ~
20 mm. So far, the doctors were not able to clearly differentiate the Langer’s lines for
different types of bodies. The doctors, however, found our simulated cuts to be in line
with what they were expecting for the particular body type presented in this chapter.

Flap surgery simulations with residual stresses computed from different eigenvector
and eigenvalue specifications are shown in Figure 6.9. This demonstrates the variations
of wound openings depending on the residual stress distribution.

Figure 6.10 shows our modeling and visualization techniques applied to a cylinder
model. In the upper part of the cylinder, we assign the same eigenvalue on the Langer’s
direction and the cross-Langer’s direction. In the lower part, the eigenvalue on the
cross-Langer’s direction is reduced by half. As a consequence, in the upper part the
shape of incisions is still circular, while those in the lower part become ellipses.

6.7.1 Evaluation

In collaboration with plastic surgeons, we carried out an initial evaluation of the resid-
ual stress modeling procedure specifically for flap surgery. The medical objective of
this flap surgery is to reconstruct a breast: The flap taken from the abdomen site would
be trimmed, reshaped, and relocated to form a natural-looking breast shape. This plas-
tic surgery is usually performed in the situation that a breast is removed due to the

124 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

e

£ :

2 ~

& =

I W

< <
w =195.6 mm w =196.0 mm
w/h =1.39 w/h =1.38

Figure 6.11: A comparison between the real surgery scenarios and the simulations. First
row: A patient abdomen with a preoperative surgical plan drawn on the skin (left) and the corre-
sponding 3D model of the abdomen superimposed with the planned flap contour (right). Second
row: The abdomen after excising the flap in the real surgery (left) and the simulated abdomen
(right). Third row: The shrunken flap shape in the real surgery (left) and in the simulation

(tight).

Width Height Width/height

Preoperative 2439 mm 164.6 mm 1.48

Intra-operative 195.6 mm 141.0 mm 1.39

Simulation 196.0 mm 142.2 mm 1.38
Relative error 0.20 % 0.85% 0.64 %

Table 6.1: Measurements of the flap.

6.7. RESULTS AND DISCUSSION 125

treatment of breast cancer. The flap volume is a crucial factor in this plastic surgery.
In particular, the shrinkage of the flap after excision makes the preoperative planning a
challenging task.

In this evaluation, the residual stress modeling procedure is applied to introduce a
stress tensor field into a patient abdomen model, and then the flap shrinkage is simulated
using the finite element method on a uniform hexahedral grid. A comparison between
the real surgery scenarios and the simulations is given in Figure 6.11. The second row
shows that the simulation of the abdomen is very similar to that in the real surgery.

The measurements of the flap in preoperative, intra-operative, and in simulation are
given in Table 6.1. The relative errors of the simulation results compared to the intra-
operative results are smaller 1%. This suggests that the simulation has a high potential
to provide useful information to assist surgeons in surgery planning.

6.7.2 Performance

Table 6.2 shows the performance of our system for different models and different res-
olutions. The second group of columns gives information about the models, i.e., the
resolution, the number of hexahedral finite elements, and the number of simulation ver-
tices. The third group shows the timing statistics for each modeling step. The first
column gives the time for the eigenvector interpolation, which includes the interpola-
tion of the user-specified Langer’s lines and the surface normals, orthonormalization
and the computation of the third eigenvector. The next column shows time for the inter-
polation of the user-specified eigenvalues. The last column gives the time for a single
step of the dynamic deformation simulation. The statistics demonstrate that for models
of a few thousands of cells, the model can be computed in one second. For models
consisting of forty thousand cells, the computations take a few seconds.

Time [ms]
Model Resolution # Cells # Vertices | Vector Value Sim.
Cylinder | 21x21x26 5,550 7,540 2614 2152 833
Cylinder | 42x42x51 44,000 51,714 5,517 8951 6374
Abdomen | 63x21x42 5,734 10,189 155.6 106.1 98.6
Abdomen | 126x41x84 45,313 62,481 3,046 3,607 707.8

Table 6.2: Performance statistics for different models and different resolutions. The last three
columns give times for the eigenvector interpolation, the eigenvalue interpolation, and the dy-
namic simulation, respectively.

126 CHAPTER 6. INTERACTIVE RESIDUAL STRESS MODELING

6.8 Conclusion and Future Work

We have presented methods to design and visualize a patient-specific residual stress
tensor field with respect to physical constraints. The design is based on the mechan-
ics of residual stress in soft biological tissues. We proposed a method for interactively
designing tensor fields via a sketch-based interface. A graphical depiction of the resid-
ual stress distribution is achieved by visualizing the simulated deformations of a set
of small round incisions. In a number of examples we demonstrated the potential of
our approach in patient-specific surgery simulation, where a consistent residual stress
tensor field is desired.

Our method is well suited for modeling the residual stress distribution on shell-like
structures, which are common in biological tissues. For complex-shaped structures, it
would be interesting to allow the user to draw stress directions inside the body, if the
user has prior knowledge of the interior residual stress. Meanwhile, as a modeling tool,
the accuracy of its results depends heavily on the correctness of user’s inputs. Thus it
would be beneficial to incorporate into the modeling framework accurate measurements
of some parameters as a complement to surgeon’s experience. Another issue is that the
user-sketched stroke has a specific direction, while the eigenvector of a tensor is actually
bidirectional. This specification may produce some artifacts in vector field generation.
Further investigation is needed to address this open problem.

In the future we will also investigate the parallelization of our approach on GPU
and multi-core architectures. Even though our method already achieves quite satisfying
update rates, it can still take several seconds to update a residual stress field with respect
to the user input. In order to achieve good scalability on a parallel system, we will
in particular address the integration of iterative solution methods into our approach.
Moreover, we will further evaluate the confidence of our results with respect to real-
world measurement on more patient models.

Chapter 7
The Haptic Cutting System

This chapter presents the integrated system of virtual cutting simulation, collision de-
tection, and haptic interaction. In Section 7.1, we give an overview of the components
and the data flow between them. In Section 7.2, we explain the employed haptic ren-
dering algorithm. Our system delivers a real-time performance of 15 simulation frames
per second for haptic soft tissue cutting of a deformable body at an effective resolution
of 170,000 finite elements.

7.1 Overview

To employ our method for virtual surgery training, we have integrated haptic feedback
into the simulation. The haptic cutting system is composed of three computational
components: CFE simulation, collision detection, and haptic simulation. These three
components form two simulation loops (see Figure 7.1). The deformation simulation
loop (blue) and the haptic simulation loop (orange) are updated at different frequencies.
The components in the deformation loop (i.e., CFE simulation and collision detection)
have been presented in Chapter 4 and Chapter 5. The haptic simulation is to be pre-
sented in Section 7.2.

The input to the CFE simulation is the closed boundary surface mesh of the de-
formable object, material properties (Young’s modulus and Poisson’s ratio), and some
simulation specific parameters (e.g., the time step and the composition level). The sur-
face mesh is first rasterized into a uniform Cartesian grid, from which a linked octree
is then adaptively computed. The composite elements are constructed from the linked

The result section of this chapter is based on material that has been originally published in J. Wu, R. West-
ermann, and C. Dick, Real-time haptic cutting of high-resolution soft tissues, Studies in Health Technology and
Informatics (Proc. Medicine Meets Virtual Reality 21) 196 (2014), 469—475.

127

128 CHAPTER 7. THE HAPTIC CUTTING SYSTEM

/ CFE Simulation \

r)

CFE Model

L 4

CFE Equations

' Multigrid Solver |
\ —/

L 4

Position of Feedback

the stylus force
Contact Deformed Haptic Simulation
forces surface and (Virtual Coupling)
volume pling
Position of
J the sca!pe!”
[Collision Detection Scalpel-Liver]
|
Topology updates Cutting force

Figure 7.1: The haptic cutting system maintains a deformation simulation loop (blue) and a
haptic simulation loop (orange) that are updated at different frequencies.

octree representation (Section 4.3). Typically, we employ a composition level of 2 or 3,
depending on the resolution of the object. The finite element matrices are computed for
each composite element by considering its underlying octree cells (Section 4.4). We
simulate the dynamics of linear elastic materials with the corotational strain formula-
tion. The linear system resulting from the implicit time integration is solved using a
geometric multigrid solver (Section 4.5). The computed deformation of the compos-
ite elements is propagated to the underlying octree cells, and then to the surface mesh
which is constructed from the linked octree representation (Section 4.3). The deformed
high-resolution surface mesh is used for visual rendering and serves as an input for the
collision detection.

The collision detection checks for collisions between surface vertices and deformed
octree cells. First, a spatial subdivision approach determines potentially colliding pairs
consisting of a surface vertex and a composite element (Section 5.4.1). Second, a nar-

7.2. HAPTIC RENDERING 129

row phase evaluates for each pair the penetration depth and direction from a signed
distance field. Special attention is paid to accurately interpolate the penetration depth
along complicated boundaries (Section 5.4.2). From the collision detection results,
contact forces are computed based on a penalty-based contact force model. The contact
forces are forwarded to the CFE simulation as updated boundary conditions.

The collision detection also checks the intersection between the sweep surface of a
scalpel and the links connecting the octree cells. The detected intersections are used to
modify the topology of the simulation grid. Note that since the haptic loop has a much
higher update rate compared to the deformation loop, in the collision detection with a
moving scalpel, we assume the object is static during two deformation cycles.

7.2 Haptic Rendering

To obtain an intuitive feedback force, we use a velocity-proportional force model. In-
tuitively, if the user moves the scalpel with a high speed against the deformable object,
(s)he feels a large resistant force. The force direction is opposite to the direction of
movement, and the force magnitude is proportional to both the speed of movement and
the contact volume between the scalpel and the deformable object. To compute the
force, the scalpel is discretized into a number of sample points. We first compute an
elementary cutting force for each sample. The overall cutting force is then obtained as
the sum of these elementary forces.

The velocity of the manipulated scalpel is estimated from the position signal pro-
vided by the haptic device. This data is known to be noisy, and may lead to vibration
of the device. To improve the stability of the velocity-proportional force model, we
apply the virtual coupling approach (see Section 2.4.1), an artificial spring coupling the
motion of the haptic device in the physical world and the motion of the scalpel in the
virtual environment.

The static virtual coupling approach computes the position of the virtual scalpel as
formulated in Eq. 2.30. At this position of the virtual scalpel, the virtual coupling force
balances the cutting force, corresponding to a static equilibrium status. Using a spring
force model with zero rest length, the virtual coupling force is calculated by

fvc = kye (xstylus - xvirtual) > (7.1)

where k. is the virtual coupling stiffness, which in practice is limited by the maximum
renderable stiffness of a haptic device. The position of the stylus x, is read from the

130 CHAPTER 7. THE HAPTIC CUTTING SYSTEM

Figure 7.2: Haptic cutting of a liver model. Left: Setup. Middle: High-resolution hexahedral
elements and coarse composite elements. Right: High quality surface mesh used for visualiza-
tion. The collision detection between the scalpel and the deformable liver model is performed
at 1 kHz haptic rates.

haptic device. The coordinate system of the device is transformed to be aligned with
the coordinate system in the virtual world.
The cutting force is calculated as

fe=-ncb. (7.2)

where 7. is the number of samples which penetrate into the object, b, is a scalar param-
eter, and AT = 1 ms is the haptic rendering time step.

Besides haptic rendering of the cutting force, we also support the haptic rendering
of contact simulation. The user switches between the contact mode and the cutting
mode by pressing/releasing a button on the stylus. The contact force is calculated using
a conventional penalty force model which is proportional to the penetration depth, and
points to the closest point on the object’s surface.

While the position of the virtual tool is computed based on the virtual coupling
scheme, we directly map the orientation of the stylus to the orientation of the virtual
tool, i.e., no virtual coupling is applied for the rotational motion. This is intuitive if
the device has no torque feedback. Let us refer to [BJOS] if virtual coupling for the
rotational motion is desired.

7.3 Results

We demonstrate the performance of haptic cutting on a volumetric liver model. The
adaptive octree finite element model of the liver consists of 40,080 hexahedral ele-
ments, corresponding to 173,843 elements on a 82 X 83 X 100 uniform grid. Applying
three levels of composition (8* : 1) leads to 647 composite elements with 2,928 DOFs

7.3. RESULTS 131

(see Figure 7.2). The surface mesh reconstructed from the hexahedral grid has 58,920
triangles. At that resolution, very fine details are visible on the cutting surface. In each
simulation time step, the composite finite element simulation takes 23.3 ms. The detec-
tion of both inter- and intra-collisions takes 3.2 ms. In total, the simulation runs at 38
simulation frames per second.

Cutting takes additional time for octree subdivision and re-creation of the coarse
grid hierarchy and the render surface (12 ms), reassembly of element matrices (25 ms),
as well as updating the signed distance field for collision detection (2 ms). In total,
during cutting, the simulation is running at 15 simulation frames per second.

Note that the haptic rendering loop is decoupled from the visual rendering loop:
the collision detection between the scalpel and the organ as well as the computation of
the feedback force are performed at 1 kHz, whereas soft tissue cutting is performed at
15 Hz. In our example, the blade is represented by a set of triangles with a total of 30
vertices. The collision detection between this small set of vertices and the organ takes
less than 1 ms.

For a demonstration of the quality of our haptic cutting approach, please see the ac-
companying video at http://wwwcg.in.tum.de/research/research/projects/real-time-haptic-
cutting.html. This live recording shows cutting of a liver model by manipulating a hap-
tic device, which is mapped to a virtual scalpel in the virtual environment. Figure 7.3
shows a sequence of images from this recording. Feedback forces are depicted in Fig-
ure 7.4.

132 CHAPTER 7. THE HAPTIC CUTTING SYSTEM

Figure 7.3: A sequence of images from a live recording of haptic cutting, available at
http://wwwcg.in.tum.de/research/research/projects/real-time-haptic-cutting.html.

]
o

M\ .

(53]

Number of contacts
=]

5
U 1 1 L L J
0 2000 4000 6000 8000 10000 12000 14000
Time (ms)
3
Fx
— f"
o A s
2 ez ! ~ |
2 p. I i { 1
Sl N I Y
£ g ! k! "B
o 0 M—W i >
& e eV
_1 1 1 1 1 1 1]
0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

Figure 7.4: Top: Number of contacts between the scalpel and the liver model. Bottom: Com-
puted feedback forces while making three cuts.

Chapter 8

Conclusion

In this thesis, we have presented novel computational models for simulating deformable
bodies with changing topology. To the best of our knowledge, the achieved quality and
performance of the virtual cutting simulator has not been reported in the literature.
Considering that our approach increases the finite element resolution for physically
accurate interactive virtual cutting simulation by an order of magnitude, our technique
has a high potential to significantly improve the realism of surgery simulators.

The key to this advancement is a composite finite element formulation, which ef-
fectively reduces the number of the simulation degrees of freedom, while maintaining
a good approximation of the mechanical properties in the full resolution discretization.
The composite formulation based on a hexahedral discretization involves only local
operations. This allows for real-time processing of progressive cuts in the simulation
domain. In addition, an efficient geometric multigrid solver is employed to solve the
system of equations resulting from the implicit numerical time integration of linear
elasticity with the corotational strain formulation.

In addition to the deformation simulation, we have presented a collision detection
method which is specifically tailored for the proposed composite elements. The results
have demonstrated that the composite formulation not only leads to a faster deforma-
tion simulation, but also enables a faster collision detection. We have further proposed
a method to improve the accuracy of penetration depth evaluation, alleviating the stair-
cases of the hexahedral discretization along the new surfaces introduced by cuts.

Furthermore, we have presented the first interactive method for modeling a physi-
cally meaningful residual stress distribution into a patient-specific model. It has been
demonstrated that the residual stress significantly influences the deformation of soft
tissues during cutting. The incorporation of the residual stress distribution into the con-
sidered flap surgery simulation leads to a realistic simulation of the shrinkage of the

133

134 CHAPTER 8. CONCLUSION

flap. A comparison between the simulated flap and the real flap on the same patient
shows a promising match.

8.1 Future Work

The research presented in this thesis opens up many possibilities. We highlight the
following research topics which we plan to conduct in the near future.

An open research problem is the physical interaction between a cutting tool and
deformable materials. In current virtual cutting practice, the topological changes are
introduced by purely geometric intersection tests. It can be interpreted as moving an
infinitely sharp tool which cuts the material as long as the tool sweeps, without any
force exchange between the tool and the material. In contrast, in the physical world,
the material would deform under the influence of the increasing force exerted by the
cutting tool, before the tool eventually penetrates. To accurately simulate this physical
interaction, we need to further research on the contact force model and the fracture
model. The contact force model computes the interaction force between the tool and
the material. The fracture model determines when and where the topological change
happens, based on the computed contact force, possibly together with the deformation
status and the deformation rate. Both the contact force model and the fracture model in
the context of soft tissue cutting simulation are largely unclear.

Contact force models for deformable bodies is a research area which we have not yet
fully studied. Under the constraint of interactive simulation rates, we currently resolve
the collisions by penalty forces. This efficient method produces penetration artifacts,
and involves several parameters which affect the simulation results. An alternative
is the constraint-based approach, which formulates the unilateral constraint of non-
penetration as a linear complementarity problem (LCP). The solution of this LCP are
contact forces which accurately resolve the collisions. It would be interesting to design
multigrid solvers to efficiently solve this LCP.

Fracture simulation on octree grids is another interesting direction. In the literature
there exist different fracture models, some of which have been studied in computer an-
imation based on a tetrahedral discretization. Typically, the topological change occurs
if an eigenvalue of the stress tensor of an element exceeds a given threshold. However,
this criterion alone would result in shattering artifacts, i.e., many elements in a small
region are disconnected. To revolve this problem, methods are proposed to suppress
shattering and to adaptively refine tetrahedral elements. It is unclear how to efficiently
implement these models in an adaptive hexahedral discretization.

8.1. FUTURE WORK 135

In addition, we will apply the efficient finite element analysis in engineering design
tasks. An emerging application is 3D printing, which enables flexible fabrication of
complicated shapes with a substantially reduced cost compared with traditional man-
ufacturing methods. However, the analysis of mechanical properties of these compli-
cated shapes presents a new challenge, since such detailed shapes would require an
extremely high-resolution discretization. From a computational point of view, the com-
posite finite element approach developed in this thesis would be a promising tool to

support the mechanical analysis for 3D printing.

136 CHAPTER 8. CONCLUSION

Bibliography

[ABAOO]

[ACPAO06]

[AFC*10]

[AH98]

[Bat96]

[BB99]

[BGOO]

[BGTGO4]

[BJOS]

[BJO8]

[BJ10]

M. Aftosmis, M. Berger, and G. Adomavicius. A parallel multigrid method for adap-
tively refined cartesian grids with embedded boundaries, ATAA 2000-0808. In 38th AIAA
Aerospace Sciences Meeting and Exhibit, 2000.

Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A log-
euclidean framework for statistics on diffeomorphisms. In Rasmus Larsen, Mads Nielsen,
and Jon Sporring, editors, Medical Image Computing and Computer-Assisted Interven-
tion MICCAI 2006, volume 4190 of Lecture Notes in Computer Science, pages 924-931.
Springer Berlin Heidelberg, 2006.

Jérémie Allard, Frangois Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez,
and Paul G. Kry. Volume contact constraints at arbitrary resolution. ACM Trans. Graph.,
29(4):82:1-82:10, July 2010.

R.J. Adams and B. Hannaford. A two-port framework for the design of unconditionally
stable haptic interfaces. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, volume 2, pages 1254—1259 vol.2, Oct 1998.

Klaus-Jiirgen Bathe. Finite Element Procedures. Prentice Hall, 1996.

T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remesh-
ing. International Journal for Numerical Methods in Engineering, 45(5):601-620, 1999.

Daniel Bielser and Markus Gross. Interactive simulation of surgical cuts. In Pacific
Graphics, pages 116-125, 2000.

D. Bielser, P. Glardon, M. Teschner, and M. Gross. A state machine for real-time cutting
of tetrahedral meshes. Graphical Models, 66(6):398 — 417, 2004.

Jernej Barbi¢ and Doug L. James. Real-time subspace integration for st. venant-kirchhoff
deformable models. In ACM SIGGRAPH, pages 982-990, 2005.

Jernej Barbi¢ and Doug L. James. Six-dof haptic rendering of contact between geomet-
rically complex reduced deformable models. IEEE Trans. Haptics, 1(1):39-52, January
2008.

J. Barbi¢ and D.L. James. Subspace self-collision culling. ACM Trans. Graph., 29(4):81,
2010.

137

138

[BLGY%4]

[BM97]

[BMGI9]

[BN98]

[BNC96]

[BOYBJK90]

[BSO1]

[BSM*02]

[BZH*05]

[CAK*14]

[CAR*09]

[CB94]

[CDAOO]

BIBLIOGRAPHY

T. Belytschko, Y. Y. Lu, and L. Gu. Element-free galerkin methods. International Journal
for Numerical Methods in Engineering, 37(2):229-256, 1994.

I. Babuska and J. M. Melenk. The partition of unity method. International Journal for
Numerical Methods in Engineering, 40(4):727-758, 1997.

Daniel Bielser, Volker A. Maiwald, and Markus H. Gross. Interactive cuts through 3-
dimensional soft tissue. Computer Graphics Forum, 18(3):31-38, 1999.

Morten Bro-Nielsen. Finite element modeling in surgery simulation. Proceedings of the
IEEE, 86(3):490-503, 1998.

Morten Bro-Nielsen and Stephane Cotin. Real-time volumetric deformable models for
surgery simulation using finite elements and condensation. Computer Graphics Forum,
15(3):57-66, 1996.

Frederick P. Brooks, Jr., Ming Ouh-Young, James J. Batter, and P. Jerome Kilpatrick.
Project gropehaptic displays for scientific visualization. In Proceedings of the 17th An-
nual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 90,
pages 177-185, New York, NY, USA, 1990. ACM.

Cynthia D. Bruyns and Steven Senger. Interactive cutting of 3D surface meshes. Com-
puters & Graphics, 25(4):635 — 642, 2001.

Cynthia D. Bruyns, Steven Senger, Anil Menon, Kevin Montgomery, Simon Wildermuth,
and Richard Boyle. A survey of interactive mesh-cutting techniques and a new method
for implementing generalized interactive mesh cutting using virtual tools. The Journal of
Visualization and Computer Animation, 13(1):21-42, 2002.

Daniel Bachofen, Janos Zatonyi, Matthias Harders, Gabor Székely, P Fruh, and Markus
Thaler. Enhancing the visual realism of hysteroscopy simulation. Studies in health tech-
nology and informatics, 119:31, 2005.

Hadrien Courtecuisse, Jérémie Allard, Pierre Kerfriden, Stéphane P.A. Bordas, Stéphane
Cotin, and Christian Duriez. Real-time simulation of contact and cutting of heterogeneous
soft-tissues. Medical Image Analysis, 18(2):394 — 410, 2014.

Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K. Hauser, Ken
Goldberg, Jonathan R. Shewchuk, and James F. O’Brien. Interactive simulation of surgi-
cal needle insertion and steering. ACM Trans. Graph., 28(3):88:1-88:10, July 2009.

J. Edward Colgate and J. Michael Brown. Factors affecting the z-width of a haptic display.
In IEEE International Conference on Robotics and Automation, pages 3205-3210. IEEE,
1994.

S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model for real-time cutting, de-
formations, and force feedback for surgery training and simulation. The Visual Computer,
16(8):437-452, 2000.

BIBLIOGRAPHY 139

[CDLO7]

[CF86]

[CGSS93]

[Cia88]

[CJA*10]

[CMI11]

[CS97]

[CSBI95]

[Cui97]

[DGY5]

[DGBWO08]

[DGBW(09]

[DGW1l1a]

[DGW11b]

T. Chanthasopeephan, J.P. Desai, and A.C.W. Lau. Modeling soft-tissue deformation prior
to cutting for surgical simulation: Finite element analysis and study of cutting parameters.
IEEE Transactions on Biomedical Engineering, 54(3):349-359, 2007.

Cheng-Jen Chuong and Yuan-Cheng Fung. On residual stresses in arteries. J. Biomech.
Eng., 108(2):189-192, 1986.

J. Edward Colgate, Paul E. Grafing, Michael C. Stanley, and Gerd Schenkel. Implemen-
tation of stiff virtual walls in force-reflecting interfaces. In IEEE Virtual Reality Annual
International Symposium, pages 202-208. IEEE, 1993.

Philippe G Ciarlet. Mathematical elasticity, volume I: Three-dimensional elasticity. El-
sevier, 1988.

H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D.Y. Lee, and S. Cotin. GPU-based real-
time soft tissue deformation with cutting and haptic feedback. Progress in Biophysics and
Molecular Biology, 103(2-3):159 — 168, 2010.

T.R. Coles, D. Meglan, and N. John. The role of haptics in medical training simulators:
A survey of the state of the art. IEEE Transactions on Haptics, 4(1):51-66, Jan 2011.

J. Edward Colgate and Gerd G. Schenkel. Passivity of a class of sampled-data systems:
Application to haptic interfaces. Journal of robotic systems, 14(1):37-47, 1997.

J.E. Colgate, M.C. Stanley, and J.M. Brown. Issues in the haptic display of tool use. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3, pages
140-145, Aug 1995.

Olivier Cuisenaire. Region growing euclidean distance transforms. In The 9th Interna-

tional Conference on Image Analysis and Processing, pages 263-270, 1997.

Mathieu Desbrun and Marie-Paule Gascuel. Animating soft substances with implicit
surfaces. In Proceedings of SIGGRAPH, pages 287-290, 1995.

Christian Dick, Joachim Georgii, Rainer Burgkart, and Riidiger Westermann. Compu-
tational steering for patient-specific implant planning in orthopedics. In Proceedings of
Visual Computing for Biomedicine 08, pages 83-92, 2008.

Christian Dick, Joachim Georgii, Rainer Burgkart, and Riidiger Westermann. Stress ten-
sor field visualization for implant planning in orthopedics. IEEE Trans. Vis. & Comput.
Graph. (Proc. IEEE Visualization), 15(6):1399-1406, 2009.

Christian Dick, Joachim Georgii, and Riidiger Westermann. A hexahedral multigrid ap-
proach for simulating cuts in deformable objects. IEEE Trans. Vis. & Comput. Graph.,
17(11):1663-1675, 2011.

Christian Dick, Joachim Georgii, and Riidiger Westermann. A real-time multigrid finite
hexahedra method for elasticity simulation using CUDA. Simulation Modelling Practice
and Theory, 19(2):801-816, 2011.

140

[EDO8]

[FBAFO08]

[FDD*12]

[FG99]

[FLOI1]

[FMO3]

[FSHH12]

[FTN11]

[GCMS00]

[GEB*14]

[GENR*14]

[GLB*06]

BIBLIOGRAPHY

Elmar Eisemann and Xavier Décoret. Single-pass GPU solid voxelization for real-time

applications. In Proceedings of Graphics Interface, pages 73-80, 2008.

Francois Faure, Sébastien Barbier, Jérémie Allard, and Florent Falipou. Image-based col-
lision detection and response between arbitrary volume objects. In SCA ’08: Symposium
on Computer Animation, pages 155-162. EG, 2008.

Franois Faure, Christian Duriez, Herv Delingette, Jrmie Allard, Benjamin Gilles,
Stphanie Marchesseau, Hugo Talbot, Hadrien Courtecuisse, Guillaume Bousquet, Igor
Peterlik, and Stphane Cotin. SOFA: A multi-model framework for interactive physical
simulation. In Yohan Payan, editor, Soft Tissue Biomechanical Modeling for Computer
Assisted Surgery, volume 11 of Studies in Mechanobiology, Tissue Engineering and Bio-
materials, pages 283-321. Springer Berlin Heidelberg, 2012.

Sarah F. Frisken-Gibson. Using linked volumes to model object collisions, deformation,
cutting, carving, and joining. IEEE Trans. Vis. & Comput. Graph., 5(4):333-348, 1999.

Susan Fisher and Ming C. Lin. Deformed distance fields for simulation of non-penetrating
flexible bodies. In Eurographic workshop on Computer animation and simulation, pages
99-111, 2001.

Thomas-Peter Fries and Hermann G Matthies. Classification and overview of meshfree
methods. Technical University of Braunschweig, 2003.

B. Fierz, J. Spillmann, I.A. Hoyos, and M. Harders. Maintaining large time steps in
explicit finite element simulations using shape matching. Visualization and Computer
Graphics, IEEE Transactions on, 18(5):717-728, May 2012.

Cormac Flynn, Andrew Taberner, and Poul Nielsen. Mechanical characterisation of
in vivo human skin using a 3d force-sensitive micro-robot and finite element analysis.
Biomechanics and Modeling in Mechanobiology, 10:27-38, 2011.

Fabio Ganovelli, Paolo Cignoni, Claudio Montani, and Roberto Scopigno. A multiresolu-
tion model for soft objects supporting interactive cuts and lacerations. Computer Graphics
Forum, 19(3):271-281, 2000.

J. Georgii, M. Eder, K. Burger, S. Klotz, F. Ferstl, L. Kovacs, and R. Westermann. A com-
putational tool for preoperative breast augmentation planning in aesthetic plastic surgery.
IEEE Journal of Biomedical and Health Informatics, 18(3):907-919, May 2014.

O.A. Gonzalez-Estrada, E. Nadal, J.J. Rédenas, P. Kerfriden, S.P.A. Bordas, and F.J.
Fuenmayor. Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent
patch recovery. Computational Mechanics, 53(5):957-976, 2014.

Xiaohu Guo, Xin Li, Yunfan Bao, Xianfeng Gu, and Hong Qin. Meshless thin-shell sim-
ulation based on global conformal parameterization. /[EEE Transactions on Visualization
and Computer Graphics, 12:375-385, 2006.

BIBLIOGRAPHY 141

[GMD13]

[GOO06]

[GRC*05]

[GSM*12]

[GWO06]

[GWO08]

[Hag89]

[HFS*01]

[Hig86]

[HIST13]

[HKSHO09]

[HLL97]

[HLSO12]

[Hog86]

Loeiz Glondu, Maud Marchal, and Georges Dumont. Real-time simulation of brittle frac-
ture using modal analysis. IEEE Transactions on Visualization and Computer Graphics,
19(2):201-209, February 2013.

A. Guillou and R.W. Ogden. Growth in soft biological tissue and residual stress devel-
opment. In Gerhard A. Holzapfel and Ray W. Ogden, editors, Mechanics of Biological
Tissue, pages 47-62. 2006.

Anthony G Gallagher, E Matt Ritter, Howard Champion, Gerald Higgins, Marvin P Fried,
Gerald Moses, C Daniel Smith, and Richard M Satava. Virtual reality simulation for the
operating room: proficiency-based training as a paradigm shift in surgical skills training.
Annals of surgery, 241(2):364, 2005.

L. Glondu, S.C. Schvartzman, M. Marchal, G. Dumont, and M.A. Otaduy. Efficient
collision detection for brittle fracture. In SCA ’12: Symposium on Computer Animation,
pages 285-294, 2012.

Joachim Georgii and Riidiger Westermann. A multigrid framework for real-time simula-
tion of deformable bodies. Computer & Graphics, 30:408-415, 2006.

Joachim Georgii and Riidiger Westermann. Corotated finite elements made fast and sta-
ble. In Proceedings of the 5th Workshop On Virtual Reality Interaction and Physical
Simulation, pages 11-19, 2008.

William W. Hager. Updating the inverse of a matrix. STAM Review, 31(2):221-239, 1989.

G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs. An implicit finite element method
for elastic solids in contact. In Proc. the Computer Animation, pages 136 —254, 2001.

Nicholas J. Higham. Computing the polar decomposition—with applications. SIAM
Journal on Scientific and Statistical Computing, 7(4):1160-1174, 1986.

Jan Hegemann, Chenfanfu Jiang, Craig Schroeder, and Joseph M. Teran. A level set
method for ductile fracture. In SCA ’13: Symposium on Computer Animation, pages
193-201. ACM, 2013.

R. Hover, G. Kosa, G. Szekely, and M. Harders. Data-driven haptic rendering: From
viscous fluids to visco-elastic solids. Haptics, IEEE Transactions on, 2(1):15-27, Jan
20009.

Lambertus Hesselink, Yuval Levy, and Yingmei Lavin. The topology of symmetric,
second-order 3D tensor fields. IEEE Trans. Vis. & Comput. Graph., 3(1):1-11, 1997.

Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. Updated
sparse cholesky factors for corotational elastodynamics. ACM Transactions on Graphics,
31(5):123:1-13, October 2012.

Anne Hoger. On the determination of residual stress in an elastic body. Journal of Elas-
ticity, 16:303-324, 1986.

142

[HS97]

[HS04]

[HSK*10]

[HTGO4]

[HTWBI11]

[HumO3]

[HVS*09]

[HZLMO1]

[Inc]

[JBB*10]

[JBS06]

[JJKGO8]

[JIMW13]

[JKO09]

[JL12]

BIBLIOGRAPHY

W. Hackbusch and S.A. Sauter. Composite finite elements for the approximation of pdes
on domains with complicated micro-structures. Numerische Mathematik, 75:447-472,
1997.

Michael Hauth and Wolfgang Straer. Corotational simulation of deformable solids. In
Proceedings of WSCG, pages 137-145, 2004.

Jae-Pil Heo, Joon-Kyung Seong, DukSu Kim, Miguel A. Otaduy, Jeong-Mo Hong, Min
Tang, and Sung-Eui Yoon. Fastcd: fracturing-aware stable collision detection. In SCA
’10: Symposium on Computer Animation, pages 149-158, 2010.

B. Heidelberger, M. Teschner, and M. Gross. Detection of collisions and self-collisions
using image-space techniques. Journal of WSCG, 12(3):145-152, 2004.

Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. Boundary aligned smooth 3d
cross-frame field. ACM Trans. Graph., 30(6):143:1-143:8, 2011.

J.D. Humphrey. Review paper: Continuum biomechanics of soft biological tissues. Proc.
Royal Society of London. Series A, 459(2029):3-46, 2003.

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun.
Asynchronous contact mechanics. ACM Trans. Graph., 28(3):87:1-87:12, July 2009.

Kenneth E. Hoff, III, Andrew Zaferakis, Ming Lin, and Dinesh Manocha. Fast and simple
2d geometric proximity queries using graphics hardware. In I3D ’01: Symposium on
Interactive 3D graphics, pages 145-148. ACM, 2001.

Intuitive Surgical Inc. da Vinci skills simulator. http://www.intuitivesurgical.

com/products/skills_simulator/. [Online; accessed 17-June-2014].

Lenka Jefdbkovd, Guillaume Bousquet, Sbastien Barbier, Franois Faure, and Jrmie Al-
lard. Volumetric modeling and interactive cutting of deformable bodies. Progress in
Biophysics and Molecular Biology, 103(2-3):217 — 224, 2010.

M.W. Jones, J.A. Baerentzen, and M. Sramek. 3d distance fields: a survey of techniques
and applications. IEEE Trans. Vis. & Comput. Graph., 12(4):581 —599, july-aug. 2006.

Emmanuelle Jacquet, Gwendal Josse, Fouad Khatyr, and Camille Garcin. A new ex-
perimental method for measuring skin’s natural tension. Skin Research and Technology,
14(1):1-7, 2008.

Xia Jin, GrandRoman Joldes, Karol Miller, and Adam Wittek. 3D algorithm for simula-
tion of soft tissue cutting. In Adam Wittek, Karol Miller, and Poul M.F. Nielsen, editors,
Computational Biomechanics for Medicine, pages 49—-62. 2013.

Lenka Jefabkova and Torsten Kuhlen. Stable cutting of deformable objects in virtual
environments using xfem. IEEE Comput. Graph. Appl., 29(2):61-71, 2009.

Hoeryong Jung and Doo Yong Lee. Real-time cutting simulation of meshless deformable
object using dynamic bounding volume hierarchy. Computer Animation and Virtual
Worlds, 23(5):489-501, 2012.

http://www.intuitivesurgical.com/products/skills_simulator/
http://www.intuitivesurgical.com/products/skills_simulator/

BIBLIOGRAPHY 143

[JLSWO02]

[JPO4]

[KGRB13]

[KMB*09]

[KMBGO8]

[KMODO09]

[KZPB04]

[Lan61]

[Lan78]

[LGLM99]

[LIDO7]

[LPO10]

[LPR*09]

[LS81]

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of hermite data.
ACM Trans. Graph., 21(3):339-346, 2002.

D.L. James and D.K. Pai. Bd-tree: output-sensitive collision detection for reduced de-
formable models. In ACM Trans. Graph., volume 23, pages 393-398. ACM, 2004.

P. Kerfriden, O. Goury, T. Rabczuk, and S.P.A. Bordas. A partitioned model order re-
duction approach to rationalise computational expenses in nonlinear fracture mechanics.
Computer Methods in Applied Mechanics and Engineering, 256(0):169-188, 2013.

Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross.
Enrichment textures for detailed cutting of shells. ACM Trans. Graph., 28(3):1-10, 2009.

Peter Kaufmann, Sebastian Martin, Mario Botsch, and Markus Gross. Flexible simula-
tion of deformable models using discontinuous galerkin FEM. In Proceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 105-115, 2008.

Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. Numerical
coarsening of inhomogeneous elastic materials. ACM Trans. Graph., 28:51:1-51:8, July
2009.

Laszlo Kovacs, Alexander Zimmermann, Nikolaos A. Papadopulos, and Edgar Biemer.
Re: factors determining shape and symmetry in immediate breast reconstruction. Annals
of Plastic Surgery, 53(2):192—-194, 2004.

Karl Langer. Zur anatomie und physiologie der haut. iiber die spaltbarkeit der cutis.
Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Wiener Kaiser-
lichen Academie der Wissenschaften Abt, page 44, 1861.

Karl Langer. On the anatomy and physiology of the skin. British journal of plastic
surgery, 31:3-8, 93—-106, 1978. Translated by T. Gibson.

Eric Larsen, Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. Fast proximity queries
with swept sphere volumes. Technical report, Technical Report TR99-018, Department
of Computer Science, University of North Carolina, 1999.

Yi-Je Lim, Wei Jin, and Suvranu De. On some recent advances in multimodal surgery
simulation: A hybrid approach to surgical cutting and the use of video images for en-
hanced realism. Presence. Teleoper. Virtual Environ., 16(6):563-583, December 2007.

Bryan Lee, Dan C. Popescu, and Sbastien Ourselin. Topology modification for surgical
simulation using precomputed finite element models based on linear elasticity. Progress
in Biophysics and Molecular Biology, 103(2-3):236 — 251, 2010.

Florian Liehr, Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole Schwen. Com-
posite finite elements for 3d image based computing. Computing in Visualization and
Science, 12(4):171-188, 2009.

P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods.
Mathematics of Computation, 37(155):141-158, 1981.

144

[LTO7]

[LZW*14]

[MBB*11]

[MBF04]

[MBP14]

[MDBY99]

[MDM*02]

[MGO04]

[MHO1]

[MKO0]

[MKB*08]

[MKN*04]

[MMSE11]

BIBLIOGRAPHY

Alex Lindblad and George Turkiyyah. A physically-based framework for real-time haptic
cutting and interaction with 3D continuum models. In Proceedings of ACM symposium
on Solid and Physical Modeling, pages 421-429, 2007.

Shuai Li, Qinping Zhao, Shengfa Wang, Aimin Hao, and Hong Qin. Interactive deforma-
tion and cutting simulation directly using patient-specific volumetric images. Computer
Animation and Virtual Worlds, 25(2):155-169, 2014.

M. Moumnassi, S. Belouettar, E. Béchet, S. P.A. Bordas, D. Quoirin, and M. Potier-
Ferry. Finite element analysis on implicitly defined domains: An accurate representation

based on arbitrary parametric surfaces. Computer Methods in Applied Mechanics and
Engineering, 200(5-8):774 — 796, 201 1.

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for changing
mesh topology during simulation. ACM Trans. Graph., 23(3):385-392, 2004.

Lien Muguercia, Carles Bosch, and Gustavo Patow. Fracture modeling in computer
graphics. Computers & Graphics, 2014.

N. Moés, J. Dolbow, and T. Belytschko. A finite element method for crack growth without
remeshing. International Journal for Numerical Methods in Engineering, 46(1):131-150,
1999.

Matthias Miiller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cutler.
Stable real-time deformations. In Proceedings of ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, pages 49-54, 2002.

Matthias Miiller and Markus Gross. Interactive virtual materials. In Proceedings of
Graphics Interface, pages 239-246, 2004.

M. Mahvash and V. Hayward. Haptic rendering of cutting: A fracture mechanics ap-
proach. Haptics-e, 2(3):1-12, 2001.

Andrew B. Mor and Takeo Kanade. Modifying soft tissue models: Progressive cutting
with minimal new element creation. In MICCAI "00: Proceedings of the Third Inter-
national Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 598-607, 2000.

Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross.
Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum,
27(5):1521-1529, 2008.

M. Miiller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point based
animation of elastic, plastic and melting objects. In Proceedings of ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 141-151, 2004.

Jason Z. Moore, Kostyantyn Malukhin, Albert J. Shih, and Kornel F. Ehmann. Hol-
low needle tissue insertion force model. {CIRP} Annals - Manufacturing Technology,
60(1):157 - 160, 2011.

BIBLIOGRAPHY 145

[MPT99]

[MROO08]

MZS*11]

[NACCO8]

[NAG*12]

[NKJF09]

[NMK*06]

[NRBDO08]

[NSO1]

[NTVI2]

[NvdS00]

[OBHO2]

William A. McNeely, Kevin D. Puterbaugh, and James J. Troy. Six degree-of-freedom
haptic rendering using voxel sampling. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pages 401-408, New
York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

Sarthak Misra, K. T. Ramesh, and Allison M. Okamura. Modeling of tool-tissue inter-

actions for computer-based surgical simulation: A literature review. Presence: Teleoper.
Virtual Environ., 17(5):463-491, October 2008.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. Efficient elasticity for character skinning with contact and
collisions. ACM Trans. Graph., 30(4):37:1-37:12, July 2011.

Siamak Niroomandi, Iciar Alfaro, Elias Cueto, and Francisco Chinesta. Real-time de-
formable models of non-linear tissues by model reduction techniques. Computer Methods
and Programs in Biomedicine, 91(3):223-231, 2008.

S. Niroomandi, I. Alfaro, D. Gonzlez, E. Cueto, and F. Chinesta. Real-time simulation
of surgery by reduced-order modeling and X-FEM techniques. International Journal for
Numerical Methods in Biomedical Engineering, 28(5):574-588, 2012.

Matthieu Nesme, Paul G. Kry, Lenka Jefabkova, and Francois Faure. Preserving topology
and elasticity for embedded deformable models. ACM Trans. Graph., 28(3):52:1-52:9,
July 2009.

Andrew Nealen, Matthias Miiller, Richard Keiser, Eddy Boxerman, and Mark Carlson.
Physically based deformable models in computer graphics. Computer Graphics Forum,
25(4):809-836, 2006.

Vinh Phu Nguyen, Timon Rabczuk, Stphane Bordas, and Marc Duflot. Meshless meth-
ods: A review and computer implementation aspects. Mathematics and Computers in
Simulation, 79(3):763 — 813, 2008.

Han-Wen Nienhuys and A. Frank van der Stappen. A surgery simulation supporting cuts
and finite element deformation. In MICCAI ’01: Proceedings of the 4th International
Conference on Medical Image Computing and Computer-Assisted Intervention, pages
145-152, 2001.

B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method: Diffuse
approximation and diffuse elements. Computational Mechanics, 10(5):307-318, 1992.

Han-Wen Nienhuys and A. Frank van der Stappen. Combining finite element deformation
with cutting for surgery simulations. In Proceedings of Eurographics Short Presentations
"00, pages 43-52, 2000.

James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. Graphical modeling and
animation of ductile fracture. In Proceedings of SIGGRAPH, pages 291-294, 2002.

146

[OCSGO07]

[OFTB96]

[OGL13]

[OH99]

[OLO6a]

[OLO06b]

[PCOS10]

[PGCS09]

[PKA*05]

[PRSO7]

[RB86]

[RBZ10]

[RHM94]

[SAF*06]

[Sat93]

BIBLIOGRAPHY

M.A. Otaduy, O. Chassot, D. Steinemann, and M. Gross. Balanced hierarchies for colli-
sion detection between fracturing objects. In VR ’07: IEEE Virtual Reality Conference,
pages 83 —90, march 2007.

D. Organ, M. Fleming, T. Terry, and T. Belytschko. Continuous meshless approxima-
tions for nonconvex bodies by diffraction and transparency. Computational Mechanics,
18(3):225-235, 1996.

M.A. Otaduy, C. Garre, and M.C. Lin. Representations and algorithms for force-feedback
display. Proceedings of the IEEE, 101(9):2068-2080, Sept 2013.

James F. O’Brien and Jessica K. Hodgins. Graphical modeling and animation of brittle
fracture. In Proceedings of SIGGRAPH, pages 137-146, 1999.

Miguel A Otaduy and Ming C Lin. High fidelity haptic rendering. Synthesis Lectures on
Computer Graphics and Animation, 1(1):1-112, 2006.

Miguel A Otaduy and Ming C Lin. A modular haptic rendering algorithm for stable and
transparent 6-dof manipulation. IEEE Transactions on Robotics, 22(4):751-762, 2006.

N. Pietroni, P. Cignoni, M.A. Otaduy, and R. Scopigno. Solid-texture synthesis: A survey.
Computer Graphics and Applications, IEEE, 30(4):74-89, July 2010.

Nico Pietroni, Fabio Ganovelli, Paolo Cignoni, and Roberto Scopigno. Splitting cubes: a
fast and robust technique for virtual cutting. The Visual Computer, 25(3):227-239, 2009.

Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus Gross, and Leonidas J.
Guibas. Meshless animation of fracturing solids. ACM Trans. Graph., 24(3):957-964,
July 2005.

Tobias Preusser, Martin Rumpf, and Lars Ole Schwen. Finite element simulation of bone
microstructures. In Proceedings of the 14th Workshop on the Finite Element Method in
Biomedical Engineering, Biomechanics and Related Fields, pages 52—66. University of
Ulm, July 2007.

C.C. Rankin and F.A. Brogan. An element-independent co-rotational procedure for the
treatment of large rotations. ASME J. Pressure Vessel Tchn., 108:165-174, 1986.

T. Rabczuk, S. Bordas, and G. Zi. On three-dimensional modelling of crack growth using
partition of unity methods. Computers & Structures, 88(23-24):1391-1411, 2010.

Edward K. Rodriguez, Anne Hoger, and Andrew D. Mcculloch. Stress-dependent finite
growth in soft elastic tissues. J. Biomech., 27(4):455-467, 1994.

Chengli Song, Afshin Alijani, Tim Frank, George Hanna, and Alfred Cuschieri. Elasticity
of the living abdominal wall in laparoscopic surgery. Journal of Biomechanics, 39(3):587
- 591, 2006.

Richard M Satava. Virtual reality surgical simulator: The first steps. Surgical endoscopy,
7(3):203-205, 1993.

BIBLIOGRAPHY 147

[SCBOI]

[SCB04]

[SCOL*04]

[SDFO07]

[SGO09]

[SH12]

[She94]

[She02]

[SHGSO06]

[Si06]

[SJO1]

[S1a02]

[SMMBOO]

[SOGO06]

[SSSH11]

T. Strouboulis, K. Copps, and I. Babuska. The generalized finite element method. Com-
puter Methods in Applied Mechanics and Engineering, 190(32-33):4081-4193, 2001.

Kenneth Salisbury, Francois Conti, and Federico Barbagli. Haptic rendering: introductory
concepts. IEEE Computer Graphics and Applications, 24(2):24-32, 2004.

Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rossl, and Hans-
Peter Seidel. Laplacian surface editing. In Proceedings of the Eurographics/ACM SIG-
GRAPH Symposium on Geometry processing, pages 175-184, New York, NY, USA,
2004. ACM Press.

Eftychios Sifakis, Kevin G. Der, and Ronald Fedkiw. Arbitrary cutting of deformable
tetrahedralized objects. In ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation, SCA 07, pages 73-80, 2007.

Sara C. Schvartzman, Jorge Gascon, and Miguel A. Otaduy. Bounded normal trees for
reduced deformations of triangulated surfaces. In SCA ’09: Symposium on Computer
Animation, pages 75-82, 2009.

Jonas Spillmann and Matthias Harders. Robust interactive collision handling between
tools and thin volumetric objects. IEEE Transactions on Visualization and Computer
Graphics, 18(8):1241-1254, August 2012.

Jonathan R. Shewchuk. An introduction to the conjugate gradient method without the

agonizing pain. Technical report, Carnegie Mellon University, 1994.

Jonathan R. Shewchuk. What is a good linear finite element? interpolation, conditioning,
anisotropy, and quality measures (preprint). Technical report, University of California at
Berkeley, 2002.

D. Steinemann, M. Harders, Markus Gross, and G. Szekely. Hybrid cutting of deformable
solids. In Virtual Reality Conference, pages 35-42, 2006.

Hang Si. TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delau-
nay Triangulator, 2006. http://tetgen.org.

R. Satherley and M.W. Jones. Hybrid distance field computation. In Proc. Volume Graph-
ics, pages 195-209, 2001.

William S Slaughter. The linearized theory of elasticity. Springer, 2002.

N. Sukumar, N. Moés, B. Moran, and T. Belytschko. Extended finite element method
for three-dimensional crack modelling. International Journal for Numerical Methods in
Engineering, 48(11):1549-1570, 2000.

Denis Steinemann, Miguel A. Otaduy, and Markus Gross. Fast arbitrary splitting of de-
forming objects. In Proceedings of ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 63—72, 2006.

M. Seiler, D. Steinemann, J. Spillmann, and M. Harders. Robust interactive cutting based
on an adaptive octree simulation mesh. Vis. Comput., 27(6):519-529, 2011.

148

[SWO06]

[SWC*08]

[THM*03]

[TIHNO7]

[TKANO9]

[TKH*05]

[TMFBOS]

[Tod]

[TOII08]

[WBGO7]

[WBWD12]

[WDWI11]

[WDW13]

BIBLIOGRAPHY

SA Sauter and R. Warnke. Composite finite elements for elliptic boundary value problems
with discontinuous coefficients. Computing, 77(1):29-55, 2006.

Lana P Sturm, John A Windsor, Peter H Cosman, Patrick Cregan, Peter J Hewett, and
Guy J Maddern. A systematic review of skills transfer after surgical simulation training.
Annals of surgery, 248(2):166—179, 2008.

Matthias Teschner, Bruno Heidelberger, Matthias Miiller, Danat Pomerantes, and
Markus H. Gross. Optimized spatial hashing for collision detection of deformable ob-
jects. In the Vision, Modeling, and Visualization Conference, pages 47-54, 2003.

Kenshi Takayama, Takeo Igarashi, Ryo Haraguchi, and Kazuo Nakazawa. A sketch-
based interface for modeling myocardial fiber orientation. In Proc. the 8th international

symposium on Smart Graphics, pages 1-9, 2007.

George Turkiyyah, Wajih Bou Karam, Zeina Ajami, and Ahmad Nasri. Mesh cutting
during real-time physical simulation. In SIAM/ACM Joint Conference on Geometric and
Physical Modeling, pages 159-168, 2009.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann,
M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, and P. Volino. Collision de-
tection for deformable objects. Computer Graphics Forum, 24(1):61-81, 2005.

J. Teran, Neil Molino, R. Fedkiw, and R. Bridson. Adaptive physics based tetrahedral
mesh generation using level sets. Engineering with Computers, 21(1):2-18, 2005.

Don Todd. b4wind user’s guide - trilinear interpolation. www.grc.nasa.gov/WWw/
winddocs/utilities/b4wind_guide/trilinear.html. [Online; accessed 30-July-
2012].

Kenshi Takayama, Makoto Okabe, Takashi Ijiri, and Takeo Igarashi. Lapped solid tex-
tures: Filling a model with anisotropic textures. ACM Trans. Graph., 27(3):53:1-53:9,
2008.

Martin Wicke, Mario Botsch, and Markus Gross. A finite element method on convex
polyhedra. Computer Graphics Forum, 26(3):355-364, 2007.

Jun Wu, Kai Biirger, Riidiger Westermann, and Christian Dick. Interactive residual stress
modeling for soft tissue simulation. In Proceedings of Eurographics Workshop on Visual
Computing for Biology and Medicine, pages 8§1-89, 2012.

Jun Wu, Christian Dick, and Riidiger Westermann. Interactive high-resolution boundary
surfaces for deformable bodies with changing topology. In Proceedings of 8th Workshop
on Virtual Reality Interaction and Physical Simulation, pages 29-38, 2011.

Jun Wu, Christian Dick, and Riidiger Westermann. Efficient collision detection for com-
posite finite element simulation of cuts in deformable bodies. The Visual Computer,
29(6-8):739-749, 2013.

www.grc.nasa.gov/WWW/winddocs/utilities/b4wind_guide/trilinear.html
www.grc.nasa.gov/WWW/winddocs/utilities/b4wind_guide/trilinear.html

BIBLIOGRAPHY 149

[WHOS5]

[WIST14]

[WLY04]

[WMO3]

[WWD14]

[WWWZ10]

[ZBS05]

[ZDL*11]

[ZHTO07]

[ZP02]

[ZWPO05]

Wen Wu and Pheng Ann Heng. An improved scheme of an interactive finite element
model for 3d soft-tissue cutting and deformation. The Visual Computer, 21(8-10):707—
716, 2005.

Yuting Wang, Chenfanfu Jiang, Craig Schroeder, and Joseph Teran. An adaptive virtual
node algorithm with robust mesh cutting. In Eurographics)ACM SIGGRAPH Symposium
on Computer Animation, pages 77-85. The Eurographics Association, 2014.

Burkhard C. Wiinsche, Richard Lobb, and Alistair A. Young. The visualization of my-
ocardial strain for the improved analysis of cardiac mechanics. In Proc. Computer graph-
ics and interactive techniques in Australasia and South East Asia, pages 90-99, 2004.

Ming Wan and W.A McNeely. Quasi-static approach approximation for 6 degrees-of-
freedom haptic rendering. In Visualization, 2003. VIS 2003. IEEE, pages 257-262, Oct
2003.

Jun Wu, Riidiger Westermann, and Christian Dick. Real-time haptic cutting of high-
resolution soft tissues. Studies in Health Technology and Informatics (Proc. Medicine
Meets Virtual Reality 21), 196:469-475, 2014.

Jun Wu, Dangxiao Wang, Charlie C. L. Wang, and Yuru Zhang. Toward stable and re-
alistic haptic interaction for tooth preparation simulation. Journal of Computing and
Information Science in Engineering, 10(2):021007:1-9, 2010.

Yongjie Zhang, Chandrajit Bajaj, and Bong-Soo Sohn. 3d finite element meshing from
imaging data. Computer Methods in Applied Mechanics and Engineering, 194(48-
49):5083-5106, 2005.

Guo-Xin Zhang, Song-Pei Du, Yu-Kun Lai, Tianyun Ni, and Shi-Min Hu. Sketch guided
solid texturing. Graphical Models, 73(3):59 — 73, 2011.

Eugene Zhang, James Hays, and Greg Turk. Interactive tensor field design and visualiza-
tion on surfaces. IEEE Trans. Vis. & Comput. Graph., 13(1):94-107, 2007.

Xiaoqgiang Zheng and Alex Pang. Volume deformation for tensor visualization. In Proc.
IEEE Visualization, pages 379-386, 2002.

Hualiang Zhong, Mark P. Wachowiak, and Terry M. Peters. Adaptive finite element
technique for cutting in surgical simulation. In Jr. Robert L. Galloway and Kevin R.
Cleary, editors, Medical Imaging 2005: Visualization, Image-Guided Procedures, and
Display, volume 5744 of Proc. SPIE, pages 604-611. 2005.

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Objective
	Challenges
	Contributions
	List of Publications
	Structure of this Thesis

	Fundamentals
	Linear Elasticity Theory
	Deformation, Strain, and Stress
	Material Models
	Linear Elasticity
	Equations of Equilibrium

	The Finite Element Method
	Weak Formulation of Elasticity Problem
	Finite Element Discretization
	Corotational Strain Formulation
	Time Integration

	Collision Detection
	Bounding Volume Hierarchies
	Spatial Subdivision
	Distance Fields

	Haptic Rendering
	Virtual Coupling

	State-of-the-Art Report on Virtual Cutting
	Introduction
	Mesh-based Modeling of Cuts
	Geometric Modeling of the Cutting Process
	Tetrahedral Meshes
	Hexahedral Meshes
	Polyhedral Meshes
	Discussion on Discretizations

	Finite Element Simulation for Virtual Cutting
	The Extended Finite Element Method
	The Composite Finite Element Method
	The Polyhedral Finite Element Method
	Discussion on Finite Element Methods

	Meshfree Methods
	Numerical Solvers
	Direct Solvers
	Iterative Solvers

	Summary of Techniques for Cutting Simulation
	Collision Handling and Haptic Rendering
	Collision Detection
	Haptic Rendering of Cutting

	Application Study on Cutting Simulation
	Discussion and Conclusion
	Appendix: Meshfree Methods for Deformable Body Simulation

	Virtual Cutting Using Composite Finite Elements
	Introduction
	Related Work
	Geometry and Topology Representation
	Volume Representation
	Surface Representation

	Composite Finite Element Simulation
	Construction of the Simulation Model
	Computation of Element Matrices
	Corotational Strain Formulation

	Geometric Multigrid Solver
	Results
	Conclusion

	Collision Detection for Composite Finite Elements
	Introduction
	Related Work
	Composite Finite Element Simulation of Cuts
	Collision Detection for CFE Simulation of Cuts
	Broad Phase Collision Detection
	Narrow Phase Collision Detection

	Distance Field Computation
	Results
	Conclusion

	Interactive Residual Stress Modeling
	Introduction
	Related Work
	Modeling Foundations
	Mechanics of Residual Stress
	Residual Stress in Soft Tissues

	Modeling Procedure
	Visualization
	Implementation
	Static Equilibrium Equations
	Interpolation of Eigenvalues
	Interpolation of Eigenvectors
	Dynamic Simulation

	Results and Discussion
	Evaluation
	Performance

	Conclusion and Future Work

	The Haptic Cutting System
	Overview
	Haptic Rendering
	Results

	Conclusion
	Future Work

	Bibliography

