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Abstract—The paper deals with the problem of data trans-
mission and function computation of the sensed data in wireless
sensor networks, in which multiple sensor nodes transmit their
data to one sink node over a wireless multiple-access channel. We
focus on the problem of computing the geometric mean at the sink
node by merging the data transmission and function computation
into one step via an explicit utilization of channel collisions
caused by simultaneous transmissions of sensor nodes. The paper
provides the analysis of the estimation error and compares
the scheme with traditional time division multiple-access based
schemes to indicate potential for significant performance gains.

I. INTRODUCTION

In comparison to traditional wireless data networks which
provide an end-to-end information transfer, wireless sensor
networks are deployed to fulfill certain tasks in specific appli-
cations like environmental monitoring. Therefore, one is often
not interested in reconstructing the sensed data from every
individual (sensor) node, but rather in computing a function of
the sensed data [1], [2]. Here, the objective is to compute some
desired function of the sensed data, which can be for example
arithmetic mean, geometric mean, maximum/minimum value.
In order to compute a desired function, traditional schemes
like time division multiple-access (TDMA) are usually used
to avoid interference induced by concurrent transmissions
of sensor nodes over a wireless channel with the broadcast
property. In general, traditional approaches strictly separate
the data transmission from the function computation, which
is performed at some sensor nodes. Recently, however, it
was shown in [3] that if the desired function “matches” the
mathematical characteristic of the communication channel, the
performance can be improved by merging the data trans-
mission and function computation into one step, explicitly
exploiting the channel collisions. This approach is known as
Computation over Multiple-Access Channels (CoMAC) [3]
and is a paradigm shift as the properties of the wireless channel
are used to compute functions of sensor readings.

It is not surprising that the key element of the “natural”
mathematical characteristic of a wireless multiple-access chan-
nel is simply summation (cf. Definition 1). However, if we
allow certain pre-processing functions which operate on sensor
data and certain post-processing functions which operate on
the signal received by the sink node (cf. Definition 3 and 4),
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it is also possible to compute nonlinear desired functions via
the wireless multiple-access channel.

The original information theoretical concept by Nazer
and Gastpar in [3] assumes perfect symbol- and phase-
synchronization, which is illusive to ensure in a practical setup.
Therefore, we proposed a simple scheme with high practical
relevance [4], which only needs coarse block-synchronization.
The analytical work in [4] was focused on the linear function
“arithmetic mean”. In this paper we extend the work of [4]
to “geometric mean”, which forms together with “arithmetic
mean” important canonical representatives of the basic arith-
metic operations “summation” and “multiplication”. Thereby
it turns out that geometric mean calculations over wireless
multiple-access channels are much more difficult than arith-
metic mean calculations due to the transformation of the
“natural” mathematical characteristic (i.e., summation) of the
wireless multiple-access channel to “multiplication”.

The paper is organized as follows. In Section II we provide
basic definitions and the principal idea behind CoMAC. In
Section III we refine our previously proposed practical Co-
MAC approach, followed by a detailed error analysis of the
desired function “geometric mean” in Section IV. Section V is
devoted to numerical examples which indicate the accuracy of
the theoretical analysis and to a comparison between CoMAC
and an idealized TDMA scheme to visualize the remarkable
performance gains. Finally, Section VI concludes the paper1.

II. DEFINITIONS AND PROBLEM STATEMENT

Consider a wireless sensor network consisting of K ∈ N

spatially distributed sensor nodes and one designated receiver
node. Without loss of generality (w. l. o. g.) we assume that
the K nodes are identical, e.g., with respect to spectrum, data
rate, bandwidth, symbol-duration, sensor elements.

1Notation: Random variables are denoted with uppercase letters and random
vectors by bold uppercase letters, whereas corresponding realizations are
denoted by lowercase equivalents. N, Z+, R, R+, R++, C denotes the
sets of natural, nonnegative integer, real, nonnegative real, positive real,
and complex numbers. The conjugate, transpose, and Hermitian transpose
are denoted by (·)∗, (·)T and (·)H . NR(μ, σ

2), NC(μ, σ
2) describe the

real- and complex-valued normal distributions with mean μ and variance
σ2, LN (μ, σ2) denotes the log-normal distribution, and χ2

n the Chi-square
distribution with n degrees of freedom respectively. Re{·}, Im{·} are the real
and imaginary parts of a complex number, In is the n × n identity matrix,
1n the length n column vector of all ones, and 1A(x) the indicator function
being equal to 1 if x ∈ A and 0 if x /∈ A. erf(·), erfc(·) describe the error
function and error function complement.
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Let an appropriate probability space (Ω,A,P) be given,
with sample space Ω, σ-Algebra A and probability measure
P over A, over which all appearing random variables and
stochastic processes are defined. Moreover, as a minor tech-
nicality ensuring that all random variables are well defined,
we assume that occurring functions that are applied on ran-
dom variables are Borel functions. The sensor nodes have
the task to jointly observe a certain physical phenomenon
and we model these observations as time-discrete stochas-
tic processes2 Xk : Ω × Z+ → X , (t, ω) �→ Xk(t, ω),
k = 1, . . . ,K . We assume that the joint probability density
pX(x; t) := pX1,...,XK

(x1, . . . , xK ; t) of sensor readings
X(t) := (X1(t), . . . , XK(t))T ∈ XK exists. The compact
set X = [xmin, xmax] ⊂ R denotes the physical measurement
range, i.e., the range in which the measurement outcomes from
physical phenomenon observations are.

In the following, we introduce the most important defini-
tions for the analysis in this paper.

Definition 1 (WS-MAC): Let Wk(τ) ∈ R, k = 1, . . . ,K ,
be a transmit symbol of node k at time τ ∈ Z+, which depends
bijectively on the kth measurement value Xk(t) at time
t ∈ Z+, and Pmax ∈ R++ be the peak power constraint on
each node. Let Hk(τ), k = 1, . . . ,K , be the complex-valued
flat-fading process3 between the kth sensor and the sink and
let N(τ) ∼ NC(0, σ

2
N ) be the white stationary time-discrete

receiver noise process with stochastically independent real and
imaginary parts, each with variance σ2

N/2. Assume that the
data, the fading and the noise are mutually independent. Then,
we refer to the map

(
W1(τ), . . . ,WK(τ)

) �−→ K∑
k=1

Hk(τ)Wk(τ)+N(τ) =: Y (τ),

(1)
Y (τ) ∈ C, as the Wireless Sensor Multiple-Access Channel
(WS-MAC).

Definition 2 (Desired Function): Fd is the set of desired
functions f : XK → R of measured sensor data given by

f
(
X(t)

)
= (f ◦X)(t) := f

(
X1(t), . . . , XK(t)

)
. (2)

Now, an important result of [3] was that if there is a
match between the mathematical characteristic of the WS-
MAC and the desired function, the channel collisions induced
by a simultaneous access of sensor nodes to the common air
interface can be profitably used to merge the tasks of data
transmission and function computation into one step. Equation
(1) offers the natural mathematical characteristic of the WS-
MAC, which is obviously summation.

Definition 3 (Pre-processing Functions): We define the
functions ϕk : X → R, k = 1, . . . ,K , which operate on the
sensed data Xk(t) ∈ X , i.e., ϕk(Xk(t)) = (ϕk ◦ Xk)(t), as
the Pre-Processing Functions.

2Throughout the paper we skip the explicit designation of elementary events
ω ∈ Ω in the formulation of stochastic processes and write for example Xk(t)
instead of Xk(t, ω).

3Note that the transmission system is modeled in the complex baseband
and w. l. o. g. path losses are incorporated in the fading gains Hk(τ) ∀ k, τ .

Definition 4 (Post-Processing Function): Let Y (t) ∈ C be
the output of the WS-MAC specified by Definition 1. Then
we define the injective function ψ : R → R, which operate
on Y (t), i.e., ψ(Y (t)) = (ψ ◦ Y )(t), as the Post-Processing
Function.

Remark 1: The pre- and post-processing functions, which
depend on the desired function, transform the WS-MAC such
that the mathematical characteristic of the resulting overall
channel matches the characteristic of the desired function.
For example in the case of “geometric mean” as the desired
function, the overall channel is a multiplicative multiple-access
channel. Therefore, the set of desired functions f , which can
be calculated by means of the WS-MAC (in a theoretical
sense), has the form

F =
{
f ∈ Fd

∣∣∣ f(X(t)
)
= ψ
(∑

k

ϕk

(
Xk(t)

))}
, (3)

for some given sets of pre- and post-processing functions.
Example 1 (Desired Functions): (i) Arithmetic mean:

f(X(t)) = 1
K

∑K
k=1 Xk(t) with pre-processing functions

ϕk(Xk(t)) = ϕ(Xk(t)) = Xk(t), k = 1, . . . ,K , and post-
processing function ψ(Y (t)) = 1

K
Y (t). (ii) Geometric mean:

f(X(t)) = (
∏K

k=1 Xk(t))
1
K , Xk(t) > 0 ∀ k, t, with pre-

processing functions ϕk(Xk(t)) = ϕ(Xk(t)) = loga(Xk(t))
∀ k, t, a an arbitrary base, and post-processing
function ψ(Y (t)) = a

1
K

Y (t). (iii) Weighted mean:

f(X(t)) = 1∑
K
k=1 wk

∑K
k=1 wkXk(t), wk ≥ 0 ∀ k, with pre-

processing functions ϕk(Xk(t)) = wkXk(t), k = 1, . . . ,K ,
and post-processing function ψ(Y (t)) = 1∑

K
k=1 wk

Y (t).
Now, the problem which arises is: How can we compute

elements of (3) in an energy-efficient and robust way, by
exploiting the broadcast property of the WS-MAC?

III. ROBUST ANALOG FUNCTION COMPUTATION OVER

WIRELESS SENSOR MULTIPLE-ACCESS CHANNELS

As mentioned in the introduction, the main drawback of the
symbol-wise approach in [3] was the assumption of perfect
symbol- and phase-synchronization, which is necessary to
guarantee a constructive superposition of electro-magnetic
waves in the sense of (1). However, as such an assumption is
illusive in practical large-scale sensor networks, we proposed
a simple analog scheme in [4], which desires only a coarse
block-synchronization. In the following, we sum up and refine
the idea of our previous work.

To compute a desired function using the WS-MAC, any
sensor node generates a random unit norm transmit sequence
Sk(t) = (Sk1(t), . . . , SkM (t))T ∈ CM of length M ∈ N with
elements

Skm(t) =
1√
M

eiΦkm(t), k = 1, . . . ,K;m = 1, . . . ,M, (4)

where i2 = −1 and Φkm(t) uniformly and independent
identically distributed (i.i.d.) in [0, 2π) ∀ k,m, t.

Remark 2: Due to implementation issues it is not necessary
that the phases Φkm(t) are continuous random variables for
any time instance as formulated in (4). Without performance
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Y (t)HY (t) = α

K∑
k=1

|Hk(t)|2ϕk

(
Rk(t)

)
+ α

K∑
k=1

K∑
�=1
� �=k

Hk(t)
∗H�(t)

√
ϕk

(
Rk(t)

)
ϕ�

(
R�(t)

)
Sk(t)

H
S�(t)

︸ ︷︷ ︸
=:Δ1(t)

(7)

+ 2
√
α

K∑
k=1

√
ϕk

(
Rk(t)

)
Re
{
Hk(t)

∗
Sk(t)

H
N(t)

}
︸ ︷︷ ︸

=:Δ2(t)

+N(t)HN (t)︸ ︷︷ ︸
=:Ñ(t)

loss it is sufficient that the Φkm(t) attain a finite number L =
2m, m ∈ N,m ≥ 2, of values

Φkm(t) ≡ 2πL−1Υkm(t) ∀ k,m, t ,

with Υkm(t) uniformly and i.i.d. distributed over {1, . . . , L}
∀ k,m, t, i.e., Υkm(t) = �L · Γkm(t)
, where Γk,m(t) uni-
formly and i.i.d. distributed over [0, 1] ∀ k,m, t, which sim-
plifies the sequence generation on nodes.

The energy of each transmit sequence, say sequence Sk(t),
is set to be equal to the pre-processed sensor reading
ϕk(Xk(t)), which reveals that we have to satisfy ϕk(Xk(t)) ≥
0 ∀ k, t, because transmit energies are nonnegative real num-
bers. Therefore, we map the physical measurement range X
bijectively onto the measurement range, defined as follows.

Definition 5 (Measurement Range): Let X be the physical
measurement range of the sensors and gϕ : X → R a
pre-processing dependent bijective function, such that for all
Xk(t) ∈ X , t ∈ Z+, Rk(t) := gϕ(Xk(t)) = (gϕ ◦Xk)(t) ∈
R (k = 1, . . . ,K). Then we refer to the interval R =
[rmin, rmax] ⊂ R as the Measurement Range of sensor nodes
if and only if ϕk(Rk(t)) ≥ 0 ∀Rk(t) ∈ R, k = 1, . . . ,K ,
t ∈ Z+.

Example 2 (Measurement Ranges): (i) Arithmetic mean:
gϕ(Xk(t)) = Rk(t) = Xk(t)+ |xmin − ε|, ε > 0 appropriately
chosen, if xmin ≤ 0 and gϕ(Xk(t)) = Xk(t) if xmin > 0. For
the measurement range follows R = [ε, xmax + |xmin − ε|]
for xmin ≤ 0 and R = X for xmin > 0. (ii) Geometric mean:
Let Xk(t) ∈ X = [xmin, xmax] with 0 < xmin < xmax ∀ k, t,
gϕ(Xk(t)) = Rk(t) = bXk(t), with b = 1

xmin−ε
, ε > 0

appropriately chosen, so that the measurement range is
R = [ xmin

xmin−ε
, xmax
xmin−ε

] if xmin ≤ 1 and R = X otherwise.
Remark 3: The parameter ε in Example 2 ensures the strict

positivity of transmit energies. From a theoretical point of view
this is not necessary, but in practice it allows to distinguish
between the special case f(x(t)), with x(t) = xmin1K , and a
malfunctioning computation network.

With the considerations above, the sampled complex vector-
valued receive process at the output of the WS-MAC has the
explicit form

Y (t) =

K∑
k=1

Hk(t)
√

αϕk

(
Rk(t)

)
Sk(t) +N(t) , (5)

with N(t) = (N1(t), . . . , NM (t))T ∈ CM being vector-
valued additive Gaussian noise, i.e., N(t) ∼ NC(0,

1
M
σ2
NIM )

with Re{N(t)}, Im{N(t)} ∼ NR(0,
1

2M σ2
NIM ) mutually

independent4 for all t ∈ Z+, Hk(t) ∈ C the frequency-flat
block-fading process of sensor k, and α ∈ R++ a constant
being chosen to satisfy transmit power constraints on sensor
nodes, i.e., 0 ≤ αϕk(Rk(t))/M ≤ Pmax ∀Rk(t), k =
1, . . . ,K . If the pre-processing functions are monotonically
increasing and identical for ∀ k, then α = MPmax

ϕ(rmax)
, whereas

α = MPmax
maxk{maxr∈R{ϕk(r)}} if the pre-processing functions

are different on nodes and α = MPmax
maxk{ϕk(rmax)} if the pre-

processing functions are monotonically increasing but different
∀ k respectively, as for example in the case of desired function
“weighted mean” (cf. Example 1 (iii)).

Due to the fact that the described scheme requires an
adaptation of sensor readings to yield valid transmit energies
after the application of pre-processing functions, the subset of
desired functions (3) has now changed to

F̃ =
{
f
∣∣∣ f(X(t)

)
= g−1

ϕ

(
ψ
(∑

k

ϕk

(
gϕ
(
Xk(t)

))))
,

ϕk ≥ 0 ∀ gϕ
(
Xk(t)

)
, k = 1, . . . ,K

}
⊂ Fd ,

(6)

where ψ, ϕk are taken from some given sets of pre- and post-
processing functions and gϕ an appropriate function according
to Definition 5. We have to mention that the cardinality of F̃
reduces in practice due to restrictions as for example power
constraints.

To reconstruct/estimate the desired function from the re-
ceived vector (5), the sink node first has to compute the
received energy to obtain (7) at the top of the page, followed
by simple calculations to yield a function estimate with
certain properties (cf. Section IV-B). Besides the noise energy
summand Ñ(t) ∈ R+, two additional error terms Δ1 ∈ R

and Δ2 ∈ R appear, which encompass cross-correlations
between the transmit sequences itself and between transmit
sequences and noise. Furthermore the first term in (7) shows
the desired term and offers that the sensor nodes require
instantaneous knowledge about the complex-valued channel
gains Hk(t) prior to transmissions. In this paper we assume
that the sink node initiates a function value transmission
through pilot sequences, such that the sensor nodes are able to

4The scaling with 1√
M

in (4) induces a constant energy per function value
transmission (independent of M ), which is the reason why the covariance
matrix 1

M
σ2
N
IM of the complex noise vector N(t) scales also with 1

M
to

ensure a constant noise energy per function value transmission.
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estimate their own channel coefficients and invert the channels
perfectly. With this assumption, (7) at the top of the page can
be compactly written as

Y (t)HY (t) = α
K∑

k=1

ϕk

(
Rk(t)

)
+ Δ̃(t) , (8)

where
Δ̃(t) := αΔ1(t) + 2

√
αΔ2(t) + Ñ(t) (9)

constitutes the sum of error terms.
The main advantage of the analog scheme described above

in comparison to traditional schemes is the fact that no sen-
sitive symbol- and phase-synchronization is necessary. Only
a coarse block-synchronization is required to ensure that the
transmit sequences reach the sink node with a significant over-
lap. Therefore, no explicit protocol structure which induces a
noticeable amount of overhead is necessary, such that com-
putation networks following this design rule are energy- and
complexity-efficient and can be easily implemented in prac-
tice. Finally, the hardware-effort is reduced because energy
consuming digital components as analog-to-digital converters,
registers, etc. are no longer required.

IV. GEOMETRIC MEAN ANALYSIS

In this section we analyze the computation performance of
the scheme described in Section III with respect to the desired
function “geometric mean”. Geometric mean calculations in
wireless sensor networks are only appropriate for applications
where sensed values are greater than zero, i.e., Xk(t) > 0
∀ k, t or rather Xk(t) ∈ X = [xmin, xmax] with 0 < xmin <
xmax ∀ k, t (cf. Example 2 (ii)). For simplicity, we focus in the
following on an arbitrary but fixed time instance t ∈ Z+ and
drop a corresponding designation.

Definition 6 (Function Recovery Error): Let f(X), X ∈
XK , be the desired function and f̂(X) a corresponding
estimate at the sink node. Then we define

E :=
(
f̂(X)− f(X)

)/
f(X) , f(X) �= 0 ∀X ∈ XK

as the relative Function Recovery Error.
Similar to [4], we will measure the computation perfor-

mance at the sink node by means of the probability that the
absolute value of the relative function recovery error is greater
or equal to ε > 0, i.e., P(|E| ≥ ε).

A. Approximated Error Distribution

To analyze the geometric mean performance according to
Definition 6, we must first define an appropriate function value
estimator based on the received energy (8).

Definition 7 (Heuristic Function Estimate): Let f be the
desired function “geometric mean”. Then, we define the
heuristic function estimate as

f̂(X) :=
g−1
ϕ

(
ψ
(
1
α
Y

H
Y
))

E
{
ψ
(
1
α
Ñ
)} = f

(
X
) ψ

(
1
α
Δ̃
)

E
{
ψ
(
1
α
Ñ
)} (10)

with E{ψ( 1
α
Ñ)} ≥ 1 and ϕ, ψ, gϕ as defined in Example 1 (ii)

and 2 (ii) respectively.

Remark 4: Note that in general, any individual desired
function needs its own adequate estimator. In particular, the
heuristic geometric mean estimator in Definition 7 is not
unbiased. The unbiased formulation

f̂(X) = f(X)ψ
(
1
α
Δ̃
)
E
{
ψ
(
1
α
Δ̃
)}−1

(11)

from [4] is however not applicable in practice, because the
denominator depends on the distribution of sensor readings,
which is usually unknown at the sink. As mentioned before,
in the case of “geometric mean” the WS-MAC is transformed
into a multiplicative multiple-access channel, why the estima-
tion deviation has also a multiplicative nature.

An implementation of the heuristic estimator (10) in practice
requires the knowledge of the expected value E{ψ( 1

α
Ñ)} at

the sink, which is explicitly given in part (i) of the following
lemma. Part (ii) will be used in Section IV-B.

Lemma 1: Let Ñ be defined as in (7), a > 1 an arbitrary
base commonly used by the sensor nodes, α > 0, and
σ2
N loge(a) < αKM . Then

(i) E
{
ψ
(
1
α
Ñ
)}

= E
{
a

1
αK

Ñ
}
=
(

αKM
αKM−σ2

N
loge(a)

)M
(ii) lim

M→∞
E
{
ψ
(
1
α
Ñ
)}

= e
σ2
N

loge(a)

αK .

Proof: The proof is deferred to Appendix A.
Remark 5: Note that the expected value in Lemma 1 (i)

does not exist for σ2
N loge(a) ≥ αKM , but the opposite is

fulfilled in almost any practical situation.
With the heuristic estimator from Definition 7, the relative

function recovery error in the context of geometric mean
calculations has the explicit form

E =
ψ
(
1
α
Δ̃
)

E
{
ψ
(
1
α
Ñ
)} − 1 =

a
1

αK
Δ̃

E{a 1
αK

Ñ}
− 1 =

1

γ
Ξ− 1 , (12)

with γ := E{ψ( 1
α
Ñ)} and Ξ := ψ( 1

α
Δ̃).

To evaluate P(|E| ≥ ε), ε > 0, we need obviously an
expression for the distribution function of |E| = |γ−1Ξ −
1|. To this end, we first calculate the distribution func-
tion of Ξ conditioned on an arbitrary realization x =
(g−1

ϕ (r1), . . . , g
−1
ϕ (rK))T of sensor readings. Unfortunately,

the exact determination of the distribution of Ξ|x is difficult.
However, we derive an approximated distribution in the fol-
lowing lemma.

Lemma 2: Let Ξ|x = ψ( 1
α
Δ̃|x) = a

1
αK

Δ̃|x as defined
in (12) with Δ̃ the error-sum in (9), both conditioned on
a realization of sensor readings. Then, for arbitrary but
fixed K < ∞, compact X , and M sufficiently large, Ξ|x
is approximately LN (μΞ, σ

2
Ξ|x) distributed with parameters

μΞ = σ2
N loge(a)/(αK) and σ2

Ξ|x = σ2
Δ̆|x(loge(a))

2/K2,

where σ2
Δ̆|x denotes the variance of Δ̆|x := 1

α
(Δ̃|x − σ2

N ),
which was explicitly calculated in [4].

Proof: The proof is deferred to Appendix B.
With Lemma 2 in hand we are able now to state the main
result of the current subsection.

Proposition 1: Let E be the relative function recovery error
as in Definition 6, μΞ, σ2

Ξ|x as defined in Lemma 2, and γ as
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defined in (12) (explicitly given in Lemma 1 (i)). Then, for M
large enough, the error probability P(|E| ≥ ε), ε > 0, of the
desired function “geometric mean” can be approximated by

P(|E| ≥ ε) =

∫
XK

P
(|E| ≥ ε |X = x

)
pX(x) dx

≈
∫
XK

P̃
(|E| ≥ ε |X = x

)
pX(x) dx (13)

with

P
(|E| ≥ ε |X = x

) ≈ P̃
(|E| ≥ ε |X = x

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

[
2 + erf

(
loge(γ−γε)−μΞ√

2σ2
Ξ|x

)
− erf

(
loge(γ+γε)−μΞ√

2σ2
Ξ|x

)]
,

0 < ε < 1
1
2 erfc

(
loge(γ+γε)−μΞ√

2σ2
Ξ|x

)
, 1 ≤ ε < ∞ .

(14)

Proof: The proof is deferred to Appendix C.
In Section V-A we choose a particular density pX(x) and

evaluate (13) numerically to indicate the accuracy of the
approximation for different network parameters.

B. Asymptotic Estimation Properties

On the basis of Proposition 1 we now conclude important
properties of the heuristically motivated estimator from Defi-
nition 7.

Proposition 2: Let K < ∞ arbitrary but fixed and X ⊂ R

be compact. Then, with respect to the sequence length M ,
the heuristic estimator f̂ from Definition 7 is consistent, i.e.,
limM→∞ P(|f̂(X)− f(X)| ≥ ε) = 0 ∀ ε > 0.

Proof: Due to the lack of space we skip the proof, but
note as a sketch that for the proof it is sufficient to show for
all ε > 0 the uniform convergence of (14) on XK to the zero
function as M tends to infinity.

Remark 6: Of course Proposition 2 implies that (10) is also
asymptotically unbiased, i.e., limM→∞ E{f̂(X) |X = x} =
f(x) ∀x ∈ XK , which can be directly verified using Lemma
1 (ii) and the well known shape of the expectation value of
a LN (μΞ, σ

2
Ξ,x) distributed random variable. Therewith the

heuristic estimator (10) and the impractical estimator (11) are
asymptotically equivalent.

V. NUMERICAL EXAMPLES

Without loss of generality, we consider in this section
an explicit environmental monitoring scenario in which the
sensors observe temperatures and a designated sink node
is interested in the “geometric mean” of sensor readings.
The aim of the numerical examples is to indicate that our
theoretical analysis and approximations are quite accurate,
that the heuristic estimator from Definition 7 performs very
well, and finally that the analog function computation approach
from Section III outperforms TDMA-like schemes in typical
wireless sensor network operating points.

0 0.2 0.4 0.6 0.8 1
0
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(|E

|≥
ε)

Monte Carlo
Analytical
Unbiased
M = K = 20

M = K = 50

M = K = 150

M = K = 250

Fig. 1. Monte Carlo simulations (10 · 103 realizations) vs. analytical results
with the heuristic estimator (10) and the impractical unbiased estimator (11),
for different M and K = M .

A. Accuracy of Theoretical Analysis

In this subsection we compare the results (13), (14) using
the heuristic estimator (10) with Monte Carlo evaluations of
P(|E| ≥ ε) and Monte Carlo evaluations using the unbiased
estimator (11) for different network sizes/sequence lengths.

Example 3 (Accuracy): Let K = 20, 50, 150, 250, the se-
quence length M = K , σ2

N = 1, a = 2, and the sensor
readings uniformly and i.i.d. in X = [0.5 ◦ C, 14 ◦ C]. The
resulting experimental data are depict in Fig. 1.

The plots indicate that our analytical results are quite
accurate, also for short sequence lengths. The insignificant
difference for M = 20 between our analytical results and
the Monte Carlo simulations results from the fact that Ξ|x in
(12) is only approximately log-normal distributed (cf. Lemma
2) and the relatively small number of summands in (9) tends to
a poorer approximation accuracy. But the difference vanishes
quickly with growing M .

The discrepancy for short sequence lengths between the
heuristic estimator and (11) can be neglected, because the
difference appears in a ε-range which is not of much interest.
Furthermore, the plots confirm that the heuristic estimator is
asymptotically unbiased with a quick convergence.

B. Comparisons With TDMA

Now we compare the CoMAC approach from Section III
with an idealized uncoded low complexity BPSK modulated
TDMA scheme, which performs a hard decision at the sink
node followed by a uniform quantization of sensor readings
with Q ∈ N bit over the sensing range defined as follows.

Definition 8 (Sensing Range): The Sensing Range of sen-
sor elements, i.e., the hardware dependent range in which the
sensor elements can quantify values, is defined by the compact
interval S = [smin, smax].

Obviously, X ⊆ S should be fulfilled for adequate environ-
mental monitoring.

Since the uniform quantization for TDMA is performed
over S, the sensing range will be partitioned into 2Q non-
overlapping regions such that each sensor separately has to
transmit a bit stream of length Q to the sink.
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To ensure fairness between CoMAC and TDMA, with
fixed degrees of freedom (bandwidth, symbol duration), both
schemes should induce the same costs per function value
transmission with respect to “transmit energy” and “transmit
time”. More precisely, this means that ECoMAC,k = ETDMA,k,
k = 1, . . . ,K , and TCoMAC = TTDMA has to be fulfilled, with
ECoMAC,k ∈ R+ the instantaneous CoMAC transmit energy
of node k, ETDMA,k ∈ R+ the corresponding instantaneous
TDMA transmit energy, TCoMAC ∈ R++ the transmission
time per function value for CoMAC and TTDMA ∈ R++ the
transmission time per function value for TDMA respectively.
Let T ∈ R++ be the common symbol duration, PCoMAC,k =
αϕ(Rk(t))

M
∈ R+ the instantaneous CoMAC transmit power

of sensor k and PTDMA,k ∈ R+ the instantaneous TDMA
equivalent. Then, the transmit times per function value are
TCoMAC = MT and TTDMA = QKT , whereas the transmit
energies can be now formulated as ECoMAC,k = MPCoMAC,kT
and ETDMA,k = QPTDMA,kT , respectively. Hence, to guaran-
tee fairness in the sense described above, for the CoMAC
sequence length it follows immediately that M = QK and
the required instantaneous TDMA transmit power can be cal-
culated as PTDMA,k =

PCoMAC,kM

Q
= αϕk(Rk(t))

Q
, k = 1, . . . ,K .

Besides the fairness aspects, an adequate scheme compar-
ison also requires the determination of a system operating
point, which can be done in terms of a signal-to-noise ratio
(SNR). Since the transmit energies are random variables in our
scheme, it is appropriate to consider averaged signal-to-noise
ratios. For simplicity, we assume the sensed values Xk(t) are
i.i.d. in X ∀ k, t, such that for the desired function “geometric
mean” the averaged received TDMA-SNR per node (averaged
over sensor readings) can be defined as

SNRgeo :=
P TDMA,1

σ2
N

2M

=
αE
{
loga(bX1(t))

}
Q · σ2

N

2M

, (15)

with α = MPmax
loga(bxmax)

and E{loga(bX1(t))} calculated as

1

loge(a)

(
xmax loge(bxmax)− xmin loge(bxmin)

xmax − xmin
− 1

)
. (16)

If we allow a certain SNRgeo in dB, i.e., SNR
dB
geo =

10 log10(SNRgeo), the corresponding system operating point
can be determined through an appropriate choice of Pmax for
fixed σ2

N , or alternatively by choosing

σ2
N = α2MQ−1

E
{
loga(bX1(t))

}
10−

SNRdB
geo

10 , (17)

Pmax fixed, for TDMA and CoMAC, respectively. In the
following we prefer the second approach by adjusting σ2

N

instead of Pmax w. l. o. g.
For the comparison examples below, let the physical mea-

surement range be X = [0.5 ◦C, 14 ◦C] and Xk(t) be i.i.d.
uniformly distributed in X ∀ k, t. For the measurement range it
follows immediately that R = [ xmin

xmin−ε
, xmax
xmin−ε

] = [ 1
1−2ε ,

28
1−2ε ]

(cf. Example 2 (ii)) and w. l. o. g. we set ε = 10−2. Further-
more, let the sensing range be S = [−55 ◦C, 130 ◦C], which
is typical for ultra-low power temperature sensors [5].
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Fig. 2. CoMAC vs. uncoded TDMA for K = 25 sensor nodes, quantization
with Q = 8 bit, sequence length M = QK , and different averaged SNRs.
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Fig. 3. CoMAC vs. uncoded TDMA for K = 250 sensor nodes, quantization
with Q = 8 bit, sequence length M = QK , and different averaged SNRs.

Example 4 (Small Network Size): Let K = 25, Q = 8 bit,
the sequence length M = QK , SNR

dB
geo = 0, 2, 4, 6 dB (low

power regime), Pmax = 100mW, and σ2
N chosen according to

(17). The corresponding simulation data is depicted in Fig. 2.
Example 5 (Medium Network Size): Let K = 250 and all

other simulation parameters as in Example 4. The correspond-
ing simulation data is shown in Fig. 3.

The comparisons indicate the potential of the practical
scheme described in Section III for nonlinear function compu-
tations. In particular, in the sensor network typical low power
regime, CoMAC entirely outperforms TDMA with respect
to the function recovery quality. This is also true for small
network sizes, as shown in Fig. 2.

Note that the performance gains are quite conservative, since
the simulated TDMA scheme was idealized in many ways.
For example, a practical TDMA would require an established
protocol stack with considerable amount of overhead such that
the overall TDMA transmission time extends significantly.

VI. CONCLUSION

In this contribution we refined the analog function computa-
tion approach recently proposed in [4] and demonstrated that
it is able to efficiently compute nonlinear desired functions
such the “geometric mean”. In order to achieve this, it was
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necessary to formulate a heuristic function estimator and ana-
lyze its asymptotic properties, because the previously proposed
unbiased one is not applicable in practice. Subsequently, the
function recovery performance was analytically examined and
also validated by numerical examples. Finally, we numerically
compared the approach with an idealized TDMA scheme for
different system parameters, indicating that CoMAC entirely
outperforms TDMA for typical averaged SNRs.

APPENDIX A
PROOF OF LEMMA 1

Proof: (i) Since N ∼ NC(0,
σ2
N

M
IM ), clearly Ñ :=

N
H
N ∼ χ2

2M with probability density

p
Ñ
(ñ) =

MM

σ2M
N Γ(M)

ñM−1 e
− M

σ2
N

ñ
1[0,∞)(ñ) ,

where Γ(z), Re{z} > 0, denotes the Gamma function. If we
define N̆ := 1

α
Ñ , α > 0, the probability density changes to

pN̆ (n̆) = αp
Ñ
(α ñ) and E{ψ( 1

α
Ñ)} can be written as

E{ψ(N̆)} =

∫ ∞

0

ψ(N̆)pN̆ (n̆) dn̆ (18)

=
(αM)M

σ2M
N Γ(M)

∫ ∞

0

ñM−1 e
−
(

αMK−σ2
N

loge(a)

σ2
N

K

)
ñ
dñ

Note that

Γ(z) =

∫ ∞

0

xz−1 e−x dx = kz
∫ ∞

0

xz−1 e−kx dx (19)

for Re{z},Re{k} > 0 [6], so that with the presupposition
σ2
N loge(a) < αKM , a comparison of (18) with the right-

hand side of (19) yields the result.

(ii) Since
(

αKM
αKM−σ2

N
loge(a)

)M
=
(
1− σ2

N loge(a)
αKM

)−M

, the

result follows with the fact that limn→∞(1− x
n
)n = 1

ex , x ∈ R.

APPENDIX B
PROOF OF LEMMA 2

Proof: From [4] we conclude that for arbitrary but fixed
K < ∞, compact X , and M large enough, the error-sum
Δ̃|x (cf. (9)), conditioned on X = x, is approximately
NR(σ

2
N , α2σ2

Δ̆|x) distributed. Thus, for M large enough, Δ̃|x
has approximately the distribution function P̃Δ̃|x(δ̃|x) =

1
2 + 1

2 erf
( δ̃|x−σ2

N√
2ασΔ̆|x

)
, i.e., PΔ̃|x(δ̃|x) ≈ P̃Δ̃|x(δ̃|x). Since

Ξ|x = ψ( 1
α
Δ̃|x) = a

1
αK

Δ̃|x, K,α > 0, a > 1, and ψ a strictly
monotonic increasing function, PΞ|x(ξ|x) = P(Ξ ≤ ξ |x) =

P(Δ̃ ≤ αK loga(ξ) |x) = PΔ̃|x(αK loga(ξ) |x), from which

with M large enough PΞ|x(ξ|x) ≈ P̃Ξ|x(ξ|x) with

P̃Ξ|x(ξ|x) = 1

2

⎛
⎝1 + erf

⎛
⎝ loge(ξ|x)− σ2

N loge(a)
αK√

2
loge(a)σΔ̆|x

K

⎞
⎠
⎞
⎠ , (20)

ξ|x ∈ R++, follows. Note that (20) describes the distribution
function of a log-normal distributed random variable with

parameters σ2
N loge(a)

αK
=: μΞ and

(loge(a))
2σ2

Δ̆|x

K2 =: σ2
Ξ|x, such

that approximately Ξ|x ∼ LN (μΞ, σ
2
Ξ|x) holds.

APPENDIX C
PROOF OF PROPOSITION 1

Proof: Since we know that the distribution function
of a log-normal distributed random variable X , i.e., X ∼
LN (μ, σ2), has the form PX(x) = P(X ≤ x) = 1

2 +
1
2 erf(

loge(x)−μ√
2σ2

), in addition P(X > x) = 1 − PX(x) =
1
2 erfc(

loge(x)−μ√
2σ2

) holds. Thus, if we remind that Ξ|x ∼
LN (μΞ|x, σ2

Ξ|x) (cf. Lemma 2) and γ > 0, follows from
(12) P(E ≤ e |x) = P(Ξ ≤ γ + γe |x) = PΞ|x(γ + γe|x),
e ∈ R. Then, for ε > 0, P(|E| < ε |x) = P(−ε <
E < ε |x) = [PE|x(ε|x) − PE|x(−ε|x)]1(0,∞)(ε|x) =
PΞ|x(γ+γε|x)1(0,∞)(ε|x)−PΞ|x(γ−γε|x)1(0,1)(ε|x). Tak-
ing the approximation (20) into account we get 1 − P(|E| <
ε |x) = P(|E| ≥ ε |x) ≈ P̃(|E| ≥ ε |x) = 1 + P̃Ξ|x(γ −
γε|x)1(0,1)(ε|x)− P̃Ξ|x(γ + γε|x)1(0,∞)(ε|x), i.e.,

P̃(|E| ≥ ε |x) =

⎧⎪⎨
⎪⎩
1 + P̃Ξ|x(γ − γε|x)− P̃Ξ|x(γ + γε|x),

0 < ε < 1

1− P̃Ξ|x(γ + γε|x), 1 ≤ ε < ∞
.

So this with (20) and erfc(x) = 1− erf(x), x ∈ R, proves
the result.
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