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ABSTRACT

We view a wireless sensor network as a collection of sensor nodes
that observe sources of information, process the picked up data and
send it to a sink node, with the goal of computing a desired function
of the measurements. To this end, we consider a previously proposed
coding scheme that exploits the underlying fading multiple-access
channel (MAC) to efficiently estimate the function values. The main
problem addressed in this paper is how much channel state informa-
tion (CSI) is needed at the sensor nodes to obtain sufficiently good
estimates? First we show that there is no performance loss, indepen-
dent of fading distributions, if, instead of perfect CSI, each sensor
node has only access to the modulus of its channel coefficient. In
the case of multiple antenna elements at the sink node and specific
independent distributed fading environments, it is shown that CSI at
sensor nodes is not necessary and a very simple correction of fading
effects can be performed at the sink based on some statistical channel
knowledge. In many cases, fading improves the estimation accuracy
due to the multiple-access nature of the channel.

Index Terms— Computation over MAC, communicating func-
tions, in-network computation, wireless sensor networks

1. INTRODUCTION

In many sensor network applications, sensor nodes observe a physi-
cal phenomenon and transmit the sensed data over a wireless chan-
nel to a designated sink, which computes subsequently a function of
measurement values such as “arithmetic mean”, “maximum value”,
etc. In conventional sensor networks, this is typically achieved by
transmitting the complete sensed data from all sensor nodes to the
sink, using a widely-established access protocol like time division
multiple access (TDMA). Such approaches are however highly inef-
ficient with respect to energy consumption, complexity, latency, and
cost, and hence also the network lifetime. An alternative approach
is to combine the processes of data transmission and function com-
putation into one step by exploiting channel collisions induced by
the nature of the wireless multiple-access channel. This is known as
computation over multiple-access channels [1, 2].

Motivated by the information-theoretical work in [1] as well as
by the fact that the symbol-wise considerations in [1] seem not to
be applicable in practice, References [2] and [3] proposed a simple
analog scheme with high practical relevance to efficiently estimate
some functions of the sensor measurements. This scheme outper-
forms TDMA-like protocols in a wide range of operating points [3].

A crucial assumption in [2] and [3] was the perfect knowledge
of complex-valued CSI at sensor nodes prior to transmissions, called
“Full CSI”, so that every node was able to perfectly invert its own
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channel. In this paper, we analyze the impact of fading on the es-
timation of function values at the sink and address the question of
how much CSI at the sensor nodes or the sink is needed. We show
that, independent of fading distributions, the modulus of channel co-
efficients (“Modulus CSI”) is sufficient to perform the estimation
without performance loss in comparison to Full CSI. Furthermore,
it is shown that for specific independent distributed fading environ-
ments, CSI at sensor nodes is not necessary and fading effects can
be corrected by using second order statistical channel knowledge at
the sink. Our results imply that the amount of channel knowledge at
nodes can be significantly reduced without performance loss, which
is equivalent to reduced complexity and much higher energy effi-
ciency.

Notation: The transpose, Hermitian transpose, and conjugate are de-
noted by (·)T , (·)H , and (·)∗. The distributions of normally distributed
real, normally distributed proper complex random variables are described by
NR(·, ·), NC(·, ·) respectively and ⊕ denotes the direct sum of matrices.

2. DEFINITIONS AND PROBLEM STATEMENT

A wireless sensor network consisting of K ∈ N identical spatially
distributed single-antenna sensor nodes and one designated sink
node, equipped with nR ∈ N antenna elements, forms the basis of
the considerations in this paper.

Let an appropriate probability space (Ω,A, P) be given, with
sample space Ω, σ-AlgebraA and probability measure P, over which
all appearing random variables and stochastic processes are defined.

Each sensor node has the challenge to observe a certain phys-
ical phenomenon (temperature, pressure, . . . ), and we model these
observations as time-discrete stochastic processes Xk(t) ∈ X , k =
1, . . . ,K, t ∈ Z+, where X = [xmin, xmax] ⊂ R denotes the physi-
cal measurement range, i. e. the range in which measurement out-
comes from physical phenomena observations are. Finally, with-
out loss of generality, we assume that the sensor readings x(t) :=
(X1(t), . . . , XK(t))T ∈ XK are independent and identically dis-
tributed (i. i. d.), like in a scenario where the sensors observe identical
values, subject to i. i. d. observation noise.

With these ingredients we are ready to define the most important
building blocks of our considerations in a precise form.

Definition 1 (SIMO-WS-MAC). Let x(t) ∈ XK , be the sensed
data, nR ∈ N the number of receive antennas at the sink node, and
let sensor nodes be restricted to peak power constraint Pmax ∈ R++.
Let Hnk(t), n = 1, . . . , nR; k = 1, . . . ,K, be a complex-valued
flat-fading process between the kth sensor and the nth receive an-
tenna element and Nn(t) ∈ C the time-discrete receiver noise pro-
cess at antenna element n. Assume that the data, the fading and the
noise are mutually independent. Then, we refer to the vector-valued
map (X1(t), . . . , XK(t)) �−→ (Y1(t), . . . , YnR

(t)) ∈ C
nR ,

Yn(t) =
∑K

k=1
Hnk(t)Xk(t) +Nn(t), n = 1, . . . , nR , (1)
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as the SIMO-Wireless Sensor Multiple-Access Channel (SIMO-WS-
MAC). For nR = 1 we simply say WS-MAC.

The SIMO-WS-MAC is a collection of K SIMO-links, which
share the common radio interface per multiple-access. Eq. (1) offers
the mathematical characteristic of the WS-MAC, namely summation,
which can be explicitly used for desired function computation if there
is a match between the desired function and the underlying multiple-
access channel [1].

Definition 2 (Desired Function). FD is the set of desired functions
f : XK → R of measured sensor data.

Definition 3 (Pre-processing Functions). We define the functions
ϕk : X → R, k = 1, . . . ,K, which operate on the sensed data
Xk(t) ∈ X , as the Pre-Processing Functions.

Definition 4 (Post-Processing Function). Let Y (t) ∈ C be the out-
put of the WS-MAC. Then we define the injective function ψ : R→
R, which operate on Y (t), as the Post-Processing Function.

Remark 1. The pre- and post-processing functions, which obviously
depend on the desired function, transform the WS-MAC in such a
way that the resulting mathematical characteristic of the overall chan-
nel matches the characteristic of the desired function. For example
in the case of geometric mean as the desired function (cf. Example
1), the overall channel is a multiplicative MAC.

Example 1. (i) Arithmetic mean: f(x(t)) = 1
K

∑K
k=1 Xk(t)

with pre-processing functions ϕk(Xk(t)) = ϕ(Xk(t)) = Xk(t),
k = 1, . . . ,K, and post-processing function ψ(Y (t)) = 1

K
Y (t).

(ii) Geometric mean: f(x(t)) = (
∏K

k=1Xk(t))
1
K , ∀k, t Xk(t) >

0, with pre-processing functions ϕk(Xk(t)) = ϕ(Xk(t)) =
loga(Xk(t)), k = 1, . . . ,K, a an arbitrary base, and post-processing

function ψ(Y (t)) = a
1
K

Y (t).

Now the problem which arises is: How can we compute desired
functions by means of the SIMO-WS-MAC in an efficient way with
a minimum amount of required channel knowledge?

3. ROBUST COMPUTATION OF DESIRED FUNCTIONS
OVER A SIMO-WS-MAC

Since a precise symbol- and phase synchronization, as desired
in [1], is illusive in large-scale sensor networks, in [2] and [3]
we proposed an approach, in which for function value transmis-
sion at time t, any sensor node generates a complex transmit se-
quence of length M ∈ N with unit norm, i. e. for the kth sen-
sor sk(t) = (Sk1(t), . . . , Skm(t))T ∈ C

M , k = 1 . . . , K, and
‖sk‖22 = 1∀ k. The pre-processed sensor information ϕk(Xk(t)) is
then used as a transmit energy for the generated sequence sk(t) ∀k.
Since transmit powers are positive real numbers, we have to ensure
that ∀k, t ϕk(Xk(t)) ≥ 0. Therefore we change the domains of
ϕk by a bijective function g : X → R, i. e. Rk(t) := g(Xk(t)),
which depends on ϕ, such that R is the new domain that fulfills the
requirement for all k, t. For more details we refer to [3].

For simplicity we assume perfect block-synchronism in the fol-
lowing, so that the mth output symbol of the SIMO-WS-MAC at
antenna n can be written as

Ynm(t) =
K∑

k=1

H
(m)
nk (t)

√
αϕk(Rk(t))Skm(t) +Nnm(t), (2)

n = 1, . . . , nR; m = 1, . . . ,M . Note that the synchronism
assumption is not necessary, because the described approach is

relatively robust against imperfections in block-synchronization
[2]. The constant α > 0 ensures transmit power constraints, i. e.
0 ≤ αϕ(Rk(t))

M
≤ Pmax, while ∀n,m, t Nnm(t) ∼ NC(0,

1
M
σ2
N),

with independent real and imaginary parts each with variance
1

2M
σ2
N , describes the stationary receiver noise process on the nth

antenna and mth symbol. We arrange the channel outputs into the
matrix Y (t) = (Ynm(t)) ∈ C

nR×M , the channel coefficients into
a sequence of M matrices Hm(t) = (H

(m)
nk (t)) ∈ C

nR×K , the K

transmit sequences into a matrix S(t) := (s1(t), . . . , sK(t))T ∈
C

K×M , the additive noise terms into N (t) = (Nnm(t)) ∈ C
nR×M

and the K transmit energies into the diagonal matrix Φ(t) :=

diag(Φ1(t), . . . ,ΦK(t)) ∈ R
K×K
+ , with Φk(t) :=

√
αϕk(Rk(t)),

k = 1, . . . ,K, so that we can capture all receive signals (2) into one
vector equation

vec
(
Y (t)

)
=

(
M⊕

m=1

Hm(t)

)
vec

(
Φ(t)S(t)

)
+vec

(
N (t)

)
. (3)

If we define further ỹ(t) := vec(Y (t)) ∈ C
nRM , s̃(t) :=

vec(Φ(t)S(t)) ∈ C
MK , ñ := vec(N (t)) ∈ C

nRM , and

H̃(t) :=

M⊕
m=1

Hm(t) =

⎛
⎜⎝

H1(t) 0 0 0

0 H2(t) 0 0

...
...

. . .
...

0 0 0 HM (t)

⎞
⎟⎠ , (4)

which is an element of CMnR×MK , (3) reduces to

ỹ(t) = H̃(t)s̃(t) + ñ(t) . (5)

In the following we suppress an explicit designation of measurement
time instance t.

To recover the desired function value from (5), first one has to
calculate the received sum energy (sum over all antennas and sym-
bols), i. e.

ỹ
H
ỹ =

α

M

nR∑
n=1

M∑
m=1

K∑
k=1

|H(m)
nk |2ϕk(Rk) +

nR∑
n=1

Δ1,n(H̃ ,Φ,S)

+

nR∑
n=1

Δ2,n(H̃ ,Φ,S,N ) +

nR∑
n=1

Δ3,n(N ) ,

(6)

followed by simple calculations (appliance of ψ, g−1). The error
terms in (6) are

Δ1,n(H̃ ,Φ,S) :=

M∑
m=1

K∑
k=1

K∑
�=1
� �=k

(H
(m)
nk )∗H

(m)
n� ΦkΦ�S

∗
kmS�m

(7)

Δ2,n(H̃ ,Φ,S,N ) := 2

M∑
m=1

K∑
k=1

Φk Re
{
H

(m)
nk SkmN∗

nm

}
(8)

Δ3,n(N ) :=

M∑
m=1

|Nnm|2 , (9)

which we combine to the overall error summand

Δ̃(H̃ ,Φ,S,N ) :=
∑nR

n=1
(Δ1,n +Δ2,n +Δ3,n) . (10)

An adequate generation of sequences sk, k = 1, . . . , K, which
reduces the error terms Δ1,n, Δ2,n simultaneously, is a matter of
sequence design, which will be not considered in this paper. Another
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possibility is to choose the elements of sk(t) in a way that they act
like uncorrelated noise such that Δ1,n, Δ2,n disappear on average.
Therefore the nodes generate for any m = 1, . . . ,M the sequence
elements Skm(t) = M−1/2eiΘkm(t), with i2 = −1 and ∀ k,m, t
Θkm(t) i. i. d. uniformly distributed in [0, 2π).

4. FULL CSI VS. MODULUS AND NO CSI AT NODES

In this section we analyze the impact of fading effects on the com-
putation of functions over a SIMO-WS-MAC, using the scheme de-
scribed in Section 3. In this context, we make different assumptions
with regard to the channel knowledge at sensor nodes and the sink.
Moreover, we legitimate the consideration of multiple antennas at the
receiver, because as it is shown that in specific fading environments,
multiple antennas improve the function reconstruction quality and
besides reduce the required amount of channel knowledge.

4.1. Full CSI vs. Modulus CSI at sensor nodes

First, we consider the special case nR = 1 in this subsection. The
behavior of the WS-MAC (cf. Definition 1) reveals that any kind
of instantaneous channel knowledge at the receiver side cannot be
used to correct fading effects, since the sink node has only access
to a noisy linear combination (2), but no access to any individual
term in the sum. Therefore, in the previous work we suggested esti-
mating the “complex” channel coefficients at sensor nodes1 to invert
the channel prior to transmission, which we refer to as “Full CSI”.
If we use the scheme described in Section 3, this means that the
kth sensor, k = 1, . . . ,K, transmits ∀m √

αϕk(Rk)Skm/H
(m)
1k ,

|H(m)
1k | �= 0, which will serve as a benchmark in the following. Note

that we have to ensure through a subtle choice of α > 0, that ∀k,m, t
αϕk(Rk(t))

M|H
(m)
1k

|2
≤ Pmax, in order to satisfy transmit power constraints.

The approach of setting the transmit energy of the random se-
quences equal to the pre-processed sensor data has the advantage,
that the first summand in (6), i. e. α

M

∑
n,m,k |H(m)

nk |2ϕk(Rk),
which is the term of interest in the entire receive energy, is only
affected by the “squared modulus” of instantaneous channel coef-
ficients. Hence, the question which arises is: Is an estimation of
complex channel coefficients (this requires a sensitive phase esti-
mation) on sensor nodes necessary, or is it sufficient to estimate the
absolute values of channel coefficients only, which is called “Modu-
lus CSI”? This would be obviously an improvement with respect to
channel estimation effort and accuracy.

Essential for the case of perfect channel inversion through Full
CSI is the fact that the entire error term (10) has expectation value
σ2
N , because it can be easily shown that Δ1,1, Δ2,1 are zero mean,

and E{Δ3,1} = σ2
N [2]. This is necessary to formulate an unbiased

estimator f̂ for desired function f at the sink on the basis of (6), since
σ2
N is known to the sink and can be simply subtracted. But is such an

estimator also unbiased for Modulus CSI, i. e. the kth sensor trans-
mits

√
αϕk(Rk)Skm/|H(m)

1k | instead of
√

αϕk(Rk)Skm/H
(m)
1k ?

To answer this question, we have to analyze the error terms Δ1,1

(7) and Δ2,1 (8), which depend on channel coefficients. It is ob-
vious that E{Δ2,1} ≡ 0, since the zero mean noise terms N1m,
m = 1, . . . ,M , are independent of sensor readings and fading. For
E{Δ1,1}, this is not immediately clear, so we have to prove it.

Proposition 1. Let H(m)
1k , |H(m)

1k | > 0, be the random complex
channel coefficient between the kth sensor node and the sink at re-
ceive symbol m. Then, without any performance loss, channels can

1For example this can be done if the sink node initiates function value
transmissions through pilot sequences.

be inverted by the Modulus |H(m)
1k | prior to transmissions for all k

and m, independent of the fading distributions.

To prove the proposition, the following lemma is useful.

Lemma 1. Let A,B be real independent random variables. If one
of both is uniformly distributed in [0, 2π), then the reduced sum C =
(A+B)mod 2π is also uniformly distributed in [0, 2π), independent
of the distribution of the other random variable.

Proof. The proof, based on [4], is omitted for lack of space. �

Proof of Proposition 1. If we write the complex fading coefficient
between the kth sensor, k = 1, . . . ,K, and the sink node at symbol

m, m = 1, . . . ,M , in polar form, i. e. H(m)
1k = |H(m)

1k | eiΛ(m)
1k , with

Λ
(m)
1k the corresponding random phase, (7) under Modulus CSI can

be written as

Δ1,1 =
2

M

K∑
�=2

�−1∑
k=1

M∑
m=1

Φ�Φk cos
(
Λ

(m)
1� − Λ

(m)
1k︸ ︷︷ ︸

=:ΔΛ
(m)
�k

+Θ�m −Θkm︸ ︷︷ ︸
=:ΔΘ

(m)
�k

)
.

(11)
It is not surprising that the absolute values of channel coefficients
are eliminated, but the random phases of fading coefficients still in-
fluence the function value quality. Let Z(m)

�k := ΔΛ
(m)
�k + ΔΘ

(m)
�k ,

C
(m)
�k := cos(Z

(m)
�k ), and note that the Z

(m)
�k are random variables

reduced mod 2π.
A sufficient condition for E{Δ1,1} = 0 is ∀�, k,m E{C(m)

�k } =
0, which should be valid for arbitrary distributions of phase differ-
ences ΔΛ

(m)
�k .

Since ∀m, k, � �= k Θ�m,Θkm are uniformly i. i. d. in [0, 2π),
according to Lemma 1, the differences ΔΘ

(m)
�k are also uniformly

distributed in [0, 2π). Moreover, ∀m, k, � �= k ΔΘ
(m)
�k and ΔΛ

(m)
�k

in (11) are stochastically independent, a repeated application of
Lemma 1 shows that all Z(m)

�k are uniformly distributed in [0, 2π).

Therefore, ∀m, k, � �= k E{C(m)
�k } = 0, since the densities of

cosines with in [0, 2π) uniformly distributed random arguments are
symmetric around zero, which can be proven by common random
variable transformation. Finally, from the linearity of expectation
operator and the independence between the C

(m)
�k and the sensor

readings, it follows that E{Δ1,1} ≡ 0. �

4.2. No CSI at sensor nodes

In this section we show that, in the case of independent fading dis-
tributions (correlated fading will not be considered in this paper),
no channel knowledge on sensor nodes is necessary if the sink node
possesses some statistical knowledge about fading coefficients. More
precisely, if we consider only elements ofFD with the property ϕ1 =
· · · = ϕK = ϕ, so that besides the mapped i. i. d. sensor readings
Rk = g(Xk) also the pre-processed sensor data ϕ(Rk) are i. i. d, the
averaging behavior of the SIMO-WS-MAC itself helps to dramati-
cally reduce channel estimation effort2.

4.2.1. Block-Fading

Let us suppose that the fading coefficients are constant during the
transmission of any sequence of length M . Note that for the spe-
cial case of block-fading, the direct sum (4) reduces to the Kro-
necker product H̃ = IM ⊗ H , with H ∈ C

nR×K and IM the

2Proofs of the results in this section, which are based on variations of the
strong law of large numbers, are omitted for space constraints.
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M ×M identity matrix. Furthermore, let us suppose that the fad-
ing elements Hnk of H , which are now independent of m, are i. i. d.
random variables with E{H11} = · · · = E{Hnk} = μH ∈ C,
Re{μH}, Im{μH} < ∞, and finite variances Var{H11} = · · · =
Var{Hnk} = σ2

H > 0. Then, the mathematical characteristic of the
SIMO-WS-MAC can be explicitly used by the sink to correct fading
effects in the first term of (6), which reduces the channel estimation
effort significantly in comparison to Full and Modulus CSI.

Proposition 2. Suppose that both the first absolute moment of
|H11|2ϕ(R1) and the expected value E{ϕ(R1)} exist. Further sup-
pose that the sink knows E{|H11|2} = σ2

H + |μH |2 and divides (6)
by this expected value. Then, the performance loss due to the lack of
CSI at nodes is arbitrarily small provided that nR +K is sufficiently
large.

Corollary 1. For the special case σ2
H + |μH |2 = 1, nR +K suffi-

ciently large, no channel correction is necessary.

Remark 2. Proposition 2 and Corollary 1 state only results for
the behavior of the first term in (6), which is the term of interest,
and say nothing about the behavior of error terms Δ1,n, Δ2,n,
n = 1, . . . , nR. But if there are for example deterministic com-
ponents in the channel statistics, i. e. E{Re{H(m)

nk }} �= 0 and/or

E{Im{H(m)
nk }} �= 0, it can be shown by simple calculations that

∀n E{Δ1,n}, E{Δ2,n} ≡ 0 still holds, independent of fading
distributions, so that no systematic error occurs.

The results above indicate that for i. i. d. fading coefficients
which are constant over time for some given channel realization, CSI
at sensor nodes is not necessary and fading effects can be corrected
at the sink by some second order statistical knowledge. Further-
more, the number nR of receive antenna elements affect the rate of
convergence in the law of large numbers, because the averaging en-
compasses J = nRK summands. Thus, already nR = 2 generates
a noticeable performance gain (cf. Example 2).

Remark 3. By the way, Proposition 2 gives hints for an adequate
estimation of σ2

H + |μH |2, which is required by the sink, i. e. dur-
ing network initializations, all nodes transmit ϕ(Rk) = 1 for large
enough M so that the sink immediately receives a satisfactory esti-
mation of the second moment.

4.2.2. I. i. d. Fading

In Section 4.2.1 the fading coefficients were constant for a frame of
M symbols so that the first term in (6) reduces to a double sum over
antennas n and sensors k. Now we consider the other extreme, where
the fading is not only i. i. d. over sensors and antennas, but also i. i. d.
over time, as in a fast fading situation. In comparison to the block-
fading scenario, the first triple sum in (6) has then J = nRKM
i. i. d. summands. Hence, Proposition 2 can be used again, but the
rate of convergence is increased by a factor M , so that in the context
of function computation, a fast fading situation is beneficial.

Example 2 (Numerical Example). Consider the widely-used spe-
cial case of uncorrelated Rician fading: ∀n, k and ∀m H

(m)
nk ∼

NC(
√
.125(1 + i), .75), where σ2

H + |μH |2 = 1 is fulfilled. The
network example consists of K = 25 nodes with sequence length
M = 15. The sensor readings are i. i. d. uniformly distributed in
X = [2, 14], the desired function is “arithmetic mean”, σ2

N = 1, and
the performance measure is P(|E| ≥ ε), ε > 0, i. e. the probability
that the relative estimation error |E| := |(f̂ −f)/f | ≥ ε. A compar-
ison of the block-fading and the i. i. d. case for nR = 2, 4 by Monte
Carlo simulations are depicted in Fig. 1.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

ε

P
(|E
|≥

ε)

Full CSI nR = 1

Modulus CSI nR = 1

No CSI nR = 2 (Block)
No CSI nR = 2 (i. i. d.)
No CSI nR = 4 (Block)
No CSI nR = 4 (i. i. d.)

Fig. 1. Full CSI (nR = 1) vs. Modulus CSI (nR = 1) vs. No CSI
(nR = 2, 4) for Rician Block- and Rician i. i. d.-fading.

Fig. 1 confirms that Full CSI provides no performance gain in
comparison with Modulus CSI. Besides, No CSI outperforms, al-
ready for nR = 2 and small K,M , the Full CSI case (nR = 1). This
indicates that independent fading provides also for the error terms
Δ1,n, Δ2,n a faster convergence to their zero averages.

Remark 4. The plots of Fig. 1 suggest that for the specific Example
2, Corollary 1 could probably strengthened to P(|E| ≥ ε) → 0 for
nR → ∞, since for nR > 1 there are obviously even gains for No
CSI in comparison with Full CSI. However, it is currently not clear
if such a statement holds for arbitrary desired functions.

4.2.3. Independent but not Identically Distributed Fading

To extend the results from Sections 4.2.1 and 4.2.2, we now con-
sider more general fading distributions, which are still independent
but no longer necessarily identically distributed. Hence, it is pos-
sible that the elements H

(m)
nk of (4) have different distributions

with existent first moments E{H(m)
nk } = μ

(m)
nk ∈ C, ∀n, k,m

Re{μ(m)
nk }, Im{μ(m)

nk } < ∞, and ∀n, k,m 0 < Var{H(m)
nk } =

(σ
(m)
nk )2 <∞. So we can generalize the result of Proposition 2.

Proposition 3. Let ∀n, k,m W
(m)
nk := |H(m)

nk |2ϕ(Rk) and let their
second moments exist and be finite. If nR,K,M sufficiently large

and the fading distributions fulfill
∑

n,k,m

Var{W
(m)
nk

}

(nkm)2
< ∞ for

n, k,m → ∞, the performance loss due to the lack of CSI at nodes
is arbitrary small, provided that fading effects are corrected at the
sink by dividing (6) with

∑
n,k,m((σ

(m)
nk )2 + |μ(m)

nk |2).
Remark 5. It is important to emphasize that the results in Section 4.2
cover a wide range of independent fading distributions, why they are
of much interest for application in practical sensor networks.
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