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A B S T R A C T

Since Gregor Mendel’s first tries to understand Genetics, the knowl-
edge about DNA and its functions has been greatly increased. Today
we know that not only its base composition contains valuable informa-
tion, but also the DNA’s structure, both epigenetically in the sense of
histone modifications, and epigenomically as in its three-dimensional
fold. This thesis aims to analyse the genomes of mammalian organ-
isms with respect to their linear and three-dimensional structure, their
relationship and evolution. By investigating a large amount of linear
properties such as repeats, also called features, in the context of the
genome, we confirm the domain-like structure of the human genome
and inter-dependencies between features and eu- or heterochromatin.

In the second part of this work, we successfully transform pub-
lished Hi-C data from H. sapiens and M. musculus into a bias-free
high-quality inter-chromosomal interaction network. We show that
these scale-free contact networks share similar characteristics in both
species, such as presumably very flexible, highly interactive regions
on chromosome Y, a higher contact density on short, gene-rich chro-
mosomes and a positive association between spatial proximity and
functional similarity. However, while intra-chromosomal contacts are
largely conserved between human and mouse, individual inter-chro-
mosomal contacts are not, and the feature composition of interacting
segments differs vastly between them.

Because understanding genome evolution is important in distin-
guishing functional from non-functional properties, we focus on lin-
ear genome rearrangements in the last part of this thesis. Respect-
ing the hierarchical structure of mammalian genomes, we develop a
new tool termed SyntenyMapper to identify micro-rearranged regions
within large conserved regions (“synteny regions”). We show that our
tool delivers more exact results than comparable software and that it
can be used to draw both general information on mammalian evolu-
tion and to analyse individual genome regions.

Altogether, these different aspects of genome structure and evolu-
tion show that it is important to understand all of them in detail and
especially their complex interplay. Our results show that the two- and
three-dimensional genome organisation of human and mouse is sim-
ilar only on the functional level, while individual contacts are dis-
rupted due to linear rearrangements. Though linear feature compo-
sition and genome fold are highly inter-dependent, this relationship
is largely species-specific. It thus appears that the inter-chromosomal
interactome is not strongly conserved between mammalian species.
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Z U S A M M E N FA S S U N G

Seit Gregor Mendels ersten Versuchen, Genetik zu verstehen, konnte die wis-
senschaftliche Gemeinde zahlreiches neues Wissen über DNS und ihre Funk-
tionen zusammentragen. Aktuell wissen wir, dass nicht nur die Basenpaar-
Sequenz wertvolle Informationen enthält, sondern auch die Struktur der
DNS, sowohl epigenetisch im Sinne von Histonmodifikation, als auch epi-
genomisch, also die räumliche Faltung. Diese Dissertation hat zum Ziel, die
Genome von Säugetieren in Bezug auf ihre lineare und drei-dimensionale
Struktur, sowie die Abhängigkeiten zwischen diesen Strukturen und ihre
Evolution zu untersuchen. Indem wir eine große Menge linearer Elemente
wie Repeats im Genom untersuchen, bestätigen wir die Domänen-Struktur
des menschlichen Genoms und die Abhängigkeiten zwischen diesen so-ge-
nannten Features und Eu- bzw. Heterochromatin.

Im zweiten Teil gelingt es uns, publizierte Hi-C Daten aus H. sapiens und
M. musculus in unverfälschte hoch-qualitative inter-chromosomale Interak-
tions-Netzwerke zu übersetzen. Wir zeigen, dass diese skalenfreien Kontakt-
Netzwerke in beiden Spezies ähnliche Eigenschaften haben, wie beispiels-
weise voraussichtlich sehr flexible hochinteraktive Regionen auf Chromo-
som Y. Weitere Ähnlichkeiten liegen in einer erhöhten Kontakthäufigkeit
auf kurzen, gen-reichen Chromosomen und eine schwache positive Korre-
lation zwischen räumlicher Nähe und funktioneller Ähnlichkeit. Allerdings
zeigen wir auch, dass inter-chromosomale Kontakte im Gegensatz zu intra-
chromosomalen nicht zwischen Mensch und Maus konserviert sind, ebenso
wie die Element-Zusammensetzung von interagierenden Segmenten sich
stark zwischen den beiden Spezies unterscheidet.

Weil es nötig ist, Genomevolution zu verstehen um Rückschlüsse auf
die funktionalen Eigenschaften zu ziehen, betrachten wir im letzten Teil
lineare Genom-Umordnungen. Unter Berücksichtigung der hierarchischen
Struktur von Säugetier-Genomen entwickeln wir ein neues Software-Tool
namens SyntenyMapper um kleine umgeordnete Regionen innerhalb großer
konservierter (Synteny-)Regionen zu identifizieren. Wir zeigen, dass unser
Tool exakter arbeitet als vergleichbare Software, und dass es sowohl zur
allgemeinen Analyse von Säugetier-Evolution verwendet werden kann, als
auch zur Untersuchung individueller Genomregionen.

Zusammengenommen zeigen diese verschiedenen Aspekte der Genom-
Struktur und -Evolution, dass es wichtig ist, sie vollständig und vor allem
ihr komplexes Zusammenspiel zu verstehen. Unsere Ergebnisse zeigen, dass
sich die zwei- und drei-dimensionale Genomorganisation von Mensch und
Maus nur auf funktioneller Ebene ähnelt, während einzelne inter-chromo-
somale Kontakte durch Chromosomen-Umordnungen zerstört wurden. Ob-
wohl die lineare Feature-Zusammensetzung und die Faltung des Genoms
stark voneinander abhängen, ist dieser Zusammenhang oft spezies-bedingt.
Daraus können wir schließen, dass das inter-chromosomale Interaktom von
Säugetieren nicht stark konserviert ist.
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Part I

I N T R O D U C T I O N

Recently, spatial chromatin organization has emerged as
another possible level of genome regulation. Hi-C, a high-
throughput conformation capture method applicable to
whole genomes, has helped uncover a vast net of con-
tacts within as well as between different chromosomes.
This introduction gives an overview of the biological back-
ground of spatial genome organization and the experi-
mental methods used for its detection.





1
I N T R O D U C T I O N

The central dogma of molecular biology, which states that DNA is
transcribed into RNA which in turn is translated into protein, has
somewhat suffered during the last century. We know now that pro-
cesses in the cell are more complex and regulated through different
machineries. Chromosomes fold

into non-random
structures inside the
nucleus.

Regulation of gene expression is vital to control cellular reactions
to extrinsic or intrinsic factors and even to define differential gene
profiles in different tissues. Besides the products of DNA sequences
themselves, specifically transcription factors or silencing proteins, it
is well known that epigenetic regulations through chemical modifica-
tions of nucleotides and histones influence gene regulation (e.g. [16]).
Recently, it has become clear that spatial organization of chromo-
somes reflects a higher order of epigenetic regulation.

Chromosomes are usually viewed as long, linear stretches of DNA
with different degrees of compression. However, it is now obvious
that chromatin fibres in the nucleus are organized to a great extent.
So far, it is not clear whether this spatial organization is a side effect of
genome regulation or its cause, but in either case the so-called chro-
mosome interactome might bring new answers to molecular biology.

Recent methodological advances have allowed researchers to in-
vestigate the higher-order genome structure globally and in greater
detail than previously possible. Among them are chromatin confor-
mation capture methods that can be applied to regions of interest
or whole genomes, and applications of these and other methods de-
scribed in the second part of this introduction (page 15) have led to
new knowledge in the field of epigenomics and genome structure.
The following sections will give an overview of the general mecha-
nisms behind large-scale spatial chromosome organization, followed
by description of small-scale interactions and the processes forming
them.

1 .1 large scale spatial organization of the genome

To fit into the rather small space of only approximately 6 µm in mam-
malian nuclei [1], chromosomes must bend and flex. For instance,
each human cell comprises DNA of a total length of circa two me-
ters [1] and has to be tightly folded to fit into the nucleus. However,
this does not happen in a random fashion like one might expect. In-
stead we can find some organization regarding the overall folding

3
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of single chromosomes as well as the arrangement of multiple DNA
fibres.

Theories and findings on chromatin folding models, higher-order
chromosome structures and organization into sub-compartments of
the nucleus are discussed in the following sections.

Single chromosomes might fold into a fractal globule structure

Evidence supports the treatment of chromatin fibres as polymers for
modelling [120]. Based on this observation, various models for single
chromosome folding have been proposed. One of these suggests that
smaller parts of chromosomes could fold into the so-called “equilib-
rium globe” (compare Figure 1 A), which is a compact globular ar-
rangement. However, during the formation of this structure, the chro-
mosome has to form many knots. This configuration appears to be
rather impractical, and other models propose organizational forms in
which knots are not as frequent. Among these is the “fractal globule”,
another globular folding which consists of smaller, also globular frac-
tions (compare Figure 1 A). The formation process is suggested to
start with the linear polymer which then folds into smaller globules
like ‘beads on a string’, before these monomers arrange to form a
large globular form [120, 179].A fractal globule is

formed by the
hierarchical process

of local regions
collapsing in on

themselves.

This structure has other advantages besides lack of knots: it is easier
to fold into, and certainly easier to unfold again. Since chromosomes
do not maintain their structures throughout the entire life cycle of
a cell but have to compress into condensed forms during mitosis or
decompress during gene activation, unfolding is greatly facilitated if
there are no knots in the structure.

Experimental data of intra-chromosomal contacts at a resolution of
1 mega base pair (Mb) support the fractal globule model [120], which
is thought to be caused by a set of interactions between genes and
regulatory elements in close proximity that initially lead to collapses
of chromosomal regions all over the chromatin fibre [179]. However,
there might be even more order in this process.In Chromatin

Conformation
Capture (3C)

experiments, a 1 Mb
resolution means
that (sparse) data
was summarized

over 1 Mb

Besides short-range interactions along the chromosomes that lead
to crumpling of the fibres, there have also been shown to exist weaker
long-range interactions that span tens of Mb [181, 188, 120]. Sanyal et
al suggest that these weaker interactions lead to an aggregation of ac-
tive chromatin domains and similar clustering of inactive genes [179].
These clustered regions could then associate with other active and in-
active regions along the chromosome, respectively, in a similar fash-
ion like micelles are created through the hydrophobic effect. However,
unlike the building of micelles, it is not yet clear what exactly guides
these long-range interactions and possible co-localizations of similar
chromosomal domains into the globular structures.
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Figure 1: Models for chromosome folding (Taken from Dekker et al. [120]). A: Il-
lustration of two models for chromosome folding. Evidence indicates that
chromosomes behave like polymers, leading to the suggestion of globular
conformations. The presented model of an equilibrium globe where the
chromatin fibre is highly entangled and contains many knots is believed
to be the less probable version. A fractal globule that is formed by smaller
globular monomers built from adjacent chromosomal regions facilitates re-
folding and unfolding and is considered to be more probable.
B: Large-scale organization of chromosomes in the nucleus. The model
suggests that folding into fractal globules happens along all chromosomes
and that globules containing active regions naturally aggregate. This leads
to larger compartments of active and inactive chromatin.
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Nuclear organization of multiple chromosomes reflects clusters of active and
inactive genetic loci

If we assume that chromosomes fold into globular structures, we can
go on to ask how these are organized in the nuclear space. The most
interesting question is whether they lie randomly in the nucleus like
a set of yarn balls in a basket or if there is a higher order in their
interplay.

In the previous section, we discussed the hypothesis of Sanyal et
al. that states smaller active and inactive chromosomal regions might
cluster in space. This eventually leads to a higher level structure of
active and inactive compartments. Figure 1 B illustrates how fractal
globules along each chromosome could co-associate with other such
globules of the same or different chromosomes to form regions in the
nucleus that are characterized by similar compactness of the chro-
matin. Experimental data from Lieberman-Aiden et al. confirmed the
two-compartment structure of the nucleus [120] (see section 1.3.2.4 for
a detailed description). The data show that chromosome regions in
the active compartment, termed A, preferentially interact with other
active regions, while regions from the inactive compartment, B, also
interact mainly with themselves. Dekker et al. also showed that this
compartmentalization is cell-type-specific [120].Chromatin is

divided into active
and inactive

subnuclear clusters

It further appears that chromosomes do not randomly associate
with other fibres, but rather have a specific location in the nucleus.
These so-called chromosome territories have already been described
as early as 1885 [167], though the term itself was not introduced until
1909 [19]. Many studies since then have confirmed the non-random
arrangement of chromosomes into stable structures at fixed relative
positions in the nucleus [35].

Based on experimental data analysing the interaction of chromatin
with the nuclear lamina, a two-wheel model emerges [95]. The main
feature of this model is the localization of closed chromatin compart-
ments close to the lamina (described in more detail in section 1.1.3)
or the nucleolus, while open and thus active chromosome regions
are embedded in between. These active regions are also thought to
contain transcription factories and be specialized for expression. The
localization seems to further depend on gene-richness of the chro-
mosomes, with gene-dense chromosomes like chromosome 19 being
located centrally and gene-poor chromosomes being located closer
to the lamina, independent of their size [36]. In cells with flattened
nuclei, chromosome size apparently does matter, where small chro-
mosomes can arrange themselves more easily around the nucleolus,
while large chromosomes fit more comfortably in the periphery of
the nuclear envelope [18].

This localization is not fixed; changes in the peripheral location of
chromatin regions in so-called Lamina Associated Domains (LADs)
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during spermatogenesis [57] and adipocyte differentiation [111] sug-
gest a dependency between chromosomal radial positioning and ex-
pression patterns [95]. Genes activated in the course of differentiation
tend to gain distance to the lamina, while previously active and later
repressed genes decrease their distance to the nuclear envelope [159].
This dependency can theoretically go either way, with the localiza-
tion of chromosome regions determining their activity but also vice
versa. With the current state of knowledge, neither of these hypothe-
ses can be discarded or claimed to be correct. It is however clear
that radial and relational positioning is not random and cell-type spe-
cific [155, 156], illustrating the importance of chromatin organization
for cell expression or vice versa.

1 .1 .1 The role of nuclear sub-compartments

Besides active and inactive compartments, the nucleus also comprises
other so called sub-compartments with specialized roles and proper-
ties. Among them are for example nuclear speckles, which are en-
riched with pre-mRNA splicing factors [172] and the nucleolus. It is
well known that the nucleolus recruits nucleolar organizing regions
(NORs) for ribosome biogenesis [148]. The question arises whether
chromatin organization creates these nuclear sub-compartments, or is
maybe even created through recruitments to these sub-compartments,
similar to NORs. One can observe the formation of transcription fac-
tories throughout the nucleus, small sites of excessive transcription
where genes are brought together in cis and in trans, i.e. from the
same and from different chromosomes [148]. It has been shown exper-
imentally that transcription factories are preserved under heat shock,
even when genes dissociate from them [134], indicating that they
really represent nuclear sub-compartments and are not just created
through clustering of actively transcribed genes. Different hypotheses
state that transcription factories might be specialized through specific
transcription factors, or that specialization is only determined by the
genes present in it [148].

There are other nuclear bodies that might also influence the chro-
mosomal conformation, such as PML bodies (PB) and Cajal bodies
(CB). PBs are stable structures with fixed positions that are involved
in cell cycle regulation, apoptosis, and DNA repair and have a sug-
gested role in the organization of p53 responsive genes [148]. CBs
supposedly play a role in RNA transcription and processing [148].
Other nuclear bodies are the OPT domain with unknown function
and SC35 domains, which are probably involved in storage of splic-
ing factors [148].
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1 .1 .2 Topologically associated domains (TADs)

Using whole-genome Hi-C data (experimental method described in
section 1.3.2.4), Dixon et al. unveiled the domain-like structure of
intra-chromosomal contacts in human and mouse embryonic stem
cells and human IMR90 fibroblasts. They observed crisply defined re-
gions in the genome that form many loops and interactions within
and only few to other regions, and termed these topological domains
or Topologically associated domains (TADs).The genome

consists of
megabase-sized local
interaction domains

At a size in the mega base pair scale, these relatively small domains
are connected by short unorganized linker regions, which are defined
as boundary regions and enriched strongly in the known insulator
element and transcription factor CTCF (for more on insulators see
section 1.2.3). Dixon et al. conclude that boundaries of topological
domains correlate with the role of classical insulator and barrier ele-
ments. These boundary regions are largely shared between cell types
and also conserved between human and mouse. Dixon et al. suggest
that domain organization may be stable, while interactions within can
be formed more dynamically between cell types.

It is yet unclear how these boundaries are formed. Binding of CTCF
alone is not sufficient, as only a small portion of CTCF binding sites
(15%) occurs in boundary regions, so other factors enriched in these
regions, such as housekeeping genes, tRNA genes and SINE elements,
might also play a role.

In general, these observations are in line with the previously de-
scribed model of the equilibrium globule. Each of the TADs can then
be considered as a small more densely packaged unit connected to
other such units or small globules by short links, similar to a “beads
on a string”-model. Higher-order chromatin structure is formed by
folding of these small globular units into more complex structures,
possibly an equilibrium globule.

1 .1 .3 Lamina associated domains (LADs) [69]

Large
heterochromatic

domains associate
with the nuclear

lamina

As shortly described in section 1.1, genome regions enriched with in-
active genes and heterochromatin often reside close to the nuclear
lamina. Using a method called DamID and described in detail in
section 1.3.3, Guelen et al. experimentally determined these regions
genome-wide in human lung fibroblasts [69]. They identified large
chromosomal domains with lengths in the megabase-range, similar to
TADs, and termed them lamina associated domains or LADs. These
domains strongly correlate with gene deserts and generally low gene
density, while repressive histone mark H3K7me3 is significantly en-
riched within LADs. Consequently, Guelen et al. confirm LADs to
represent a highly repressive chromatin region and thus also nuclear
sub-compartment.
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Similar to TADs, CTCF is also enriched in the border regions of
these LADs. Its insulator property could be a main factor driving
the sharp confine of the domains. Another such factor could be ac-
tive promoters, which are also enriched close to LAD boundaries and
could form barriers to prevent spreading of heterochromatin. Third,
density of CpG islands is increased near LAD borders and could
also influence LAD formation. However, even CpG islands and CTCF
binding sites together mark only 30% of all LAD borders, implying
that other, currently unknown elements, also play a role in the forma-
tion of these inactive domains.

1 .1 .4 Organization of the mitotic chromosome [140]

Most experimental determinations of the spatial chromatin organi-
zation are focused on the interphase chromosomes. Previously de-
scribed research has shown that these are highly compartmentalized
and vary across cell types. Naumova et al. expanded the research to
chromosomes during metaphase, and found these to fold very dif-
ferently [140]. Applying the 5C and Hi-C techniques described in
section 1.3 in detail to mitotic chromosomes in HeLa S3 cells, they
investigated their structures with respect to different models. During metaphase,

the compartment
structure of the
genome is resolved
and a uniform
structure of
consecutive loops is
formed.

For comparison, experiments were performed at different cell type
stages, and Naumova et al. found high correlation of interaction pat-
terns between early-G1, mid-G1 and S-phase. During these phases,
the cells exhibit the previously described compartmentalization into
active and inactive chromatin, also termed A and B compartment,
respectively, and enrichment of short-distance interactions over long-
distance ones. In Hi-C interaction matrices, these characteristic struc-
tures lead to a distinct plaid pattern that represents the two compart-
ments (for an example see Figure 7 on page 22).

Naumova et al. observed a drastic change of spatial chromatin or-
ganization in interphase, leading to a complete loss of this character-
istic pattern in the interaction matrices. While eigenvector decom-
position shows alternating blocks of compartment A and B along
the chromosomes in interphase, this compartmentalization vanishes
along with cell-type specificity in metaphase. In addition, the previ-
ously described TADs are lost during transition into metaphase.

Investigating several polymer models, Naumova et al. determined
that a cylindrical loop/scaffold model and scaffold-free model with
consecutive loops best fits the data observed in mitotic chromosomes,
where no contacts above distances of 10 Mb but frequent contacts be-
low are formed. This model represents a mix of the previously de-
scribed equilibrium and fractal globule.

As the genome switches between two different structures during
the cell cycle progression, the observed mitotic chromosome struc-
ture has to be formed from the more complex compartmentalized
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interphase chromosome structure. Naumova et al. suggest a two-step
process for this switch, where a linear compaction step featuring loop
extrusion from so-called SMC complexes is followed by linear order-
ing of these loop bases through natural axial compression. This sec-
ond step is caused by the “backbone” that is formed by the loop bases.
For an illustration see Figure 2.

Figure 2: Taken from Naumova et al. [140], this figure illustrates the two-step-
formation of the mitotic chromosome structure, which is characterized by
consecutive loops. In their model, certain (SMC) complexes first extrude
chromosome regions to form loops, serving as loop bases (red points).
These bases serve as “backbone”, which is naturally compressed in the
second step, leading to the coloured structure in the bottom right, where
red and blue are the two ends of the polymer.

1 .2 small scale spatial organization includes chro-
mosome loops

Most models for large-scale chromatin folding are based on the for-
mation of a network of short- and long-ranged interactions along
chromosomes. These interactions are not only of structural relevance,
but also serve a functional purpose. Insulators, enhancers and si-
lencers need to come together in space with their target in order to
fulfil their task of insulating, activating or repressing them to directly
influence expression. Often, these regulatory elements are in close
proximity to their target on the sequence level, but there are many
cases where they are located up to 100 kb away [40, 39].

An underlying feature of the mechanisms which lead to a regula-
tor effecting a target are close contacts established through loops of
chromatin. In the following sections different types of regulation sys-
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tems that rely on chromatin looping and the main molecular players
guiding them are described.

1 .2 .1 Enhancer-promoter interactions through chromatin looping

Enhancer-promoter interactions happen not only in close linear dis-
tances, but often the regulatory element is far apart from its target
on the sequence level. Several experimental studies with 3C tech-
niques (as explained in detail in section 1.3.2) support the looping
model, where both elements are brought together through chromo-
some loops and thus are shape the nuclear organization [42, 24] (com-
pare Figure 3 B). Chromatin loops

may be formed to
connect regulatory
elements to their
targets

One well-studied example for such an interaction is the contact or
close proximity between the so called Locus Control Region (LCR)
and active globin genes in mice [149, 206]. The chromosomal region
containing the inactive β-globin genes loops out during this process,
a conformation that is disrupted during differentiation, when newly
activated globin genes interact with the LCR. This specific loop thus
dynamically rearranges itself with the activation of new genes that
come into it, while inactive genes are moved out.

This shows that long-range interactions of enhancers and promot-
ers can be involved in the activation of gene expression.

Figure 3: Looping models for genes and regulatory elements (Taken from Hou et
al. [87]).
A: Linear representation of a gene (green), its promoter with Polymerase
II (PolII) complex and different regulatory elements, with enhancers repre-
sented in blue and insulators represented in pink. The red ring illustrates
a cohesin complex.
B: Model of looping of chromatin around this gene that leads to an inter-
action of promoter and terminator, enhancers E1 and E3 and the promoter
complex, and isolation of enhancer E2 through an insulator complex such
as a CTCF dimer.
C: Model of the formation of insulator bodies through bringing together of
multiple insulators and looping out isolated chromatin regions.
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1 .2 .2 Regulation of transcription by interactions between the promoter
and terminator

Promoter and terminator sites of a gene play an important functional
role in its expression, guiding RNA polymerase II (RNAP II) and de-
termining start and end of a gene. Multiple studies on yeast have
observed strong physical interactions between these two sites in sev-
eral genes of varying length [7, 52, 151, 189]. Similar interactions have
been detected for the mammalian breast cancer gene BRCA1 [201]
and other mammalian genes [147].

These interactions represent short gene loops that bring together
start and end site of a gene (compare Figure 3 A, B). Possible rea-
sons for this is efficient recycling of RNAPII and other transcription
factors; when the transcription complex is released at the terminator
site, it can immediately bind to the promoter due to close proximity.
However, no evidence can support this hypothesis at the moment.
There is a correlation between formation of these contacts and rapid
re-activation of transcription in yeast, indicating a role in transcrip-
tion memory [202]. If this is the case, these loops could serve as mem-
ory gene loops that lead to rapid re-activation of transcription after a
transient silencing period. In mammalian cells these loops have not
been shown to serve such a purpose, but instead some of them even
disappear upon high expression levels [201].

1 .2 .3 Insulator-mediated interactions

Insulators are genomic elements that interfere with the contact of reg-
ulatory sequences and their target genes. They can recruit chromatin
remodelling enzymes to interfere with the spreading of repressive
chromatin (barrier insulators) or block enhancers or silencers through
mediation of intra- or inter-chromosomal interactions [87].Insulators can

prevent
regulator-target

interaction
physically

The latter class have been associated with the CTCF protein which
can form loops of intervening DNA [88, 232]. CTCF has been shown
to co-localize with cohesin [157, 174, 198, 221], a protein that can form
a ring around one or two chromatin fibres, and possibly works coor-
dinated with this ring-like protein to steer long-range interactions. It
has been observed in human CD4 T-cells that CTCF separates the en-
hancer and promoter through allocating these to different loops and
thus preventing physical contact [72].

Insulators can also come together to form insulator bodies at spe-
cific locations in the nucleus [25] (see Figure 3 C). These elements
may play an important role in the establishment of the chromatin in-
teractome.
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1 .2 .4 Polycomb-mediated long-range repressive interactions

The Polycomb (Pc) complex plays a role in the repression of Hox
genes in Drosophila during development. Hox genes are located in
different clusters that are more than 10 Mb apart in linear distance.
These genes are present and co-regulated in subnuclear structures
called Pc bodies that are formed through co-localization of Polycomb
group (PcG) proteins and looping out of intermediate chromosome
regions [87, 11] (see Figure 4). However, these co-localizations of the
Hox genes only happen in tissues where they are repressed, indicat-
ing a recruitment to Pc bodies for regulatory purposes.

Further 4C (see section 1.3.2 for a description of this method) ex-
periments showed that there is an extensive interacting network for
PcG target genes in the nucleus that mostly contains genes from the
same chromosome arm, such as the Hox genes [87].

Figure 4: Model of the formation of Pc bodies (Taken from Hou et al. [87]).
A: Linear representation of the Drosophila bithorax complex BX-C, with
genes represented as green arrows, transcription complexes represented as
orange ovals and PREs (Pc response elements) illustrated as red spheres.
B: Formation of a Pc body through looping and specific interactions be-
tween PREs and promoters.
C: Multiple Hox loci can be co-repressed in such a Pc body through looping
over large distances.

1 .2 .5 Long-range interaction and the regulation of imprinted genes

Co-repressed Hox genes are not the only group of genes that are si-
multaneously regulated; similarly, co-regulated imprinted genes can
form an interaction network. Imprinted genes are expressed depen-
dent on the parent from which the chromosome was inherited; in
human, imprinted alleles are silenced so that only the non-imprinted
allele from the other parent is expressed [226]. Long-range chromo-
somal interactions in cis and trans, i.e. on the same and different
chromosomes, respectively, have been linked to regulation of gene ex-
pression that is dependent on the parent of origin, studied in detail
for the Igf2/H19 locus [112, 137]. For this locus, studies show that the
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imprinted expression depends on a specific chromosomal organiza-
tion that is unique for each allele. The cause for this are varying DNA
methylation profiles that lead to different binding patterns for CTCF,
a protein that has already been associated with mediation of chroma-
tin loops in section 1.2.3.

1 .2 .6 Inter-chromosomal interactions during X-chromosome inactivation
in mammals

X-inactivation in the mammalian female genome of embryonic cells
is vital during the development. The decision which of the two copies
is inactivated does not happen randomly. Instead, both chromosomes
are brought together through unknown mechanisms [227, 9] that ap-
pear to depend on CTCF or Oct4 [228, 47]. Both are also essential for
the inactivation itself: knockout of CTCF leads to a complete loss of
X-inactivation, while silencing of Oct4 leads to inactivation of both
copies.

This specific sister chromosome interaction does not involve loop-
ing, yet it is dependent on CTCF like some of the chromosome loop-
ing mechanisms above described. Another important player in X-
inactivation is the long non-coding RNA (lncRNA) Xist, which is de-
scribed in the following section.

1 .2 .7 lncRNA can mediate chromatin state and act across different chro-
mosomes

Recently, possible roles of lncRNA in shaping the chromatin interac-
tome have emerged [172]. According to new studies, long non-coding
RNA might be involved in nuclear organization at many different
levels, from forming nuclear bodies such as para- or nuclear speck-
les [127] and even mediating gene-gene or enhancer-promoter inter-
actions [124], within or even between chromosomes [71, 124].lncRNAs Xist and

Firre exploit and
modify spatial

chromatin
organization

Among the most well known lncRNA is Xist, which plays an im-
portant role in X-chromosome inactivation [30, 163, 53]. Its expres-
sion in males or autosomes, where the X chromosome is normally
not inactivated, is sufficient for the silencing and compaction of the
chromosome in a repressed nuclear sub-compartment [30, 163]. The
mechanism for this includes recruitment of the polycomb repressive
complex 2 (PRC2) and exploiting the three-dimensional chromosome
conformation to spread along the X chromosome, mediating gene si-
lencing and the modification of chromatin structure [53, 187].

Another lncRNA that uses and possibly modifies spatial proximity
is Firre, which is required for adipogenesis [71]. Though the gene is
located on the X chromosome, the Firre locus escapes X-inactivation
and localizes to genomic regions in cis, but also in trans on chromo-
somes 2, 9, 15 and 17. These trans-interactions bring together genes
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that have regulatory functions in adipogenesis. Firre thus server as a
mediator to create a functionally specialized spatial cluster.

This is achieved through a combination of different factors. Firre
contains a repeating RNA domain termed RRD that can be bound
by the matrix protein hnRNPU, which in turn is also required for
trans-localization of Firre. The authors thus suggest a model where
Firre is bound by hnRNPU which then connects the locus to other
chromosomes by binding of DNA sequence.

1 .2 .8 CTCF mediates chromatin domains

CTCF and its essential role in many processes of higher chromatin
order has already been mentioned in previous sections. ChIA-PET
experiments aiming to analyse the CTCF-chromatin interaction map
on a genome-wide level in mice have been performed by Handoko
et al [78]. They observed five distinct chromatin domains that are
created through boundaries of linearly arranged active and repressive
chromatin regions in which CTCF serves as a boundary marker. It can
be concluded that CTCF is not only an insulator, but also an important
part of a more general mechanism that brings together regulatory
sequences.

1 .3 determining the chromosome interactome : meth-
ods

Knowledge about chromosomal organization only recently increased,
when new and high-throughput methods became available that led
to insight into this complex biological process. Based on chromo-
some conformation capture technologies, Hi-C was developed to gain
genome-wide data and better understand the interplay of regions be-
tween and along chromosomes. Additionally, DamID proved to be a
good method for analysing the nuclear lamina-associated chromoso-
mal regions. In the following sections, these and other methods for
the determination of chromatin organization are described.

1 .3 .1 Fluorescent In-Situ Hybridization (FISH)

Before the emergence of DNA sequencing methods, many researchers
relied on visual information to gather knowledge about the DNA. In
combination with microscopy, the use of stains allowed distinction of
different chromosomes or different regions of chromosomes. Fluores-
cent In-Situ Hybridization (FISH) was used as early as the early 1970s
to get a glimpse of spatial chromatin organization in mice [90] with
the help of a fluorescent stain. With different probes, different scales
of chromatin can be made visible, from single genes to entire chromo-
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some territories (CTs). Today, FISH is still used to get an impression
of nuclear organization that is easy to understand and interpret.

1 .3 .1 .1 3D FISH [128]

Three-dimensional FISH applies the same technique to three-dimen-
sionally preserved cells to get a spatial image of the nucleus. While
2D techniques can only ever illustrate a section of the nucleus, this
method allows researchers to generate a holistic image of chromo-
some organization. Capturing of a single cell in three dimensions
is achieved through serial optical sections. The gold standard is ob-
tained with confocal laser scanning microscopy (CLSM), with a res-
olution of 180-250nm laterally and 500-700nm axially [128, 214]. The
spatial chromatin organization needs to be fixated prior to FISH, and
pretreatments are necessary (see for example [194]). Multiple colors
can be applied to different chromosomes to make them distinguish-
able [182, 196].FISH can be used

for microscopy-based
visual analysis of
spatial chromatin

organization

Using this approach, Bolzer et al. [18] were able to simultaneously
visualize all 46 chromosome territories in human fibroblasts. Figure 5

illustrates a 3D-FISH on an MCF-7 breast cancer cell, taken from Wal-
ter et al [214]. With the help of serial confocal sections, researchers
can get an impression of the three-dimensional organization in the
nucleus by using 2D image generating microscopy. Chromosome ter-
ritories can be clearly visible in this technique, making it an important
tool for the first steps in understanding spatial chromatin organiza-
tion.

Figure 5: Illustration of microscopy imagery in 3D-FISH on the nucleus of a MCF-7
breast cancer cell, taken from Walter et al [214]. Chromosomes 5, 7, 8, 10,
16 and 18 are stained according to the color legend in the top left corner,
FITC, Cy3 and Cy5 are different fluorophores. Each image represents a
serial confocal section of the cell, creating a three-dimensional image of the
nucleus.
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1 .3 .2 Intra- and interchromosomal interactions: Chromosome conforma-
tion capture (3C)

While FISH-based methods rely heavily on visual interpretation, the
advance of deep sequencing methods has allowed the emergence of a
new type of methods. 3C techniques aim to find regions of chromatin
that are close in space. The idea behind the technique is simple: after
cross-linking such regions with formaldehyde, the DNA is digested
with a restriction enzyme like BgI II or Hind III and open ends are
joined, leading to a circular or linear strand of DNA that consists of
both chromosome regions of the interaction [150, 42, 37]. Subsequent
Polymerase Chain Reaction (PCR) or sequencing is used to identify
the sequences and map them to the genome (see Figure 6 A, page 20).
However, interactions discovered with this method do not necessar-
ily imply a functional contact between two chromosomal regions, but
can also be caused by close proximity in transcription bodies, similar
nuclear sub-compartments or simply due to chance. In the follow-
ing sections the chromosome conformation capture method and its
evolution are described in more detail.

1 .3 .2 .1 3C [42]

3C laid the groundwork for the development of many other chromo-
some conformation capture methods with different focuses. It was
first proposed by Job Dekker’s group in 2002 [42] and described as
“an approach to detect the frequency of interaction between any two
genomic loci” (Dekker et al. 2002 [42]). Compared to FISH, this se-
quencing-based method has some advantages: it is applicable to ge-
nomes of any size and generates a large and very detailed map of the
interactome. Even for single genomic loci, many proximal genome
regions can be identified. However, this can also be considered a dis-
advantage, because statistical data processing is necessary before the
results can be interpreted. While FISH directly highlights chromo-
some territories, it takes statistical analysis to detect them with 3C.
The method is also more prone to noise that has to be filtered out to
detect valid interactions. 3C combines

cross-linking with
PCR or sequencing
to determine the
detailed chromatin
interactome

The general principle of 3C methods has already been described
above. In detail, the procedure is described below as presented in
Dekker et al. 2002 [42].

a. Isolation of (intact) nuclei

b. Fixation of higher-order chromatin organization with formalde-
hyde

c. Digestion of cross-linked DNA with a restriction enzyme

d. Ligation of cross-linked DNA
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e. Reversal of cross-linking

f. Quantification with PCR and locus-specific primers

g. Frequency is detected by quantitative PCR reactions

Formaldehyde is able to cross-link proteins and DNA-bound pro-
teins to the corresponding DNA sequence. Since the eukaryotic ge-
nomes are packaged and bound to many proteins such as histones,
this in effect leads to cross-linking of proximal DNA regions through
their bound proteins [42]. After digestion with restriction enzymes,
this cross-linking leads to molecules containing two DNA fragments
from different loci, which are then favourably ligated in the next step,
because intra-molecular ligations are favoured over random ligation
events. A control is compared with the quantified PCR products to
determine the ratio of observed interactions to expected interactions
of two given loci. This ratio should be directly proportional to the
interaction frequency and is taken as an approximation of it.

Dekker et al. observed that the frequency of interactions decreases
with increasing linear distance. Analysing the yeast genome they also
showed that 3C was able to detect the previously known co-localiza-
tion of telomeres [33, 64] and of centromeres [93, 94] for chromosomes
III and IV. Additionally, 3C can also serve as a basis for chromosome
modelling. Dekker et al. showed that, according to their 3C experi-
ment, chromosome III of the yeast genome forms a distorted ring [42].

The main limitation of 3C lies in the semi-quantitative [42] or quan-
titative [197, 224] PCR. Primers need to be designed for each restric-
tion enzyme cutting site of interest. Considering that each locus of
interest exists only twice in a diploid cell and that so called ‘hairballs’
of chromatin, where many fragments aggregate, are common cross-
linking side-effects, PCR requires amplification of very rare ligation
events. Due to this, the PCR step is very difficult and has to be strictly
controlled [41]. Especially for large distances, ligation events are of-
ten too infrequent to be detected correctly by PCR. Sequencing or
microarray-based methods allow for a more unbiased approach and
were developed to improve the 3C methodology. Several modifica-
tions exist that focus either on the high-resolution analysis of a region
of interest or on genome-wide high-throughput, which are described
in the following sections.

1 .3 .2 .2 Circular chromosome conformation capture (4C)

To overcome the limitation imposed by PCR through the necessary
primers, 4C or circular 3C was developed. Originally, 4C (also termed
chromosome conformation capture-on-chip [38]) was used to deter-
mine all interaction partners of an interesting genome region by com-
bining 3C with microarrays [237, 188] (Figure 6 B). Here, the interest-
ing sequence is subjected to 3C to form ligated circles with interaction



1.3 determining the chromosome interactome : methods 19

partners, either naturally or through a second round of digestion by
a restriction enzyme and ligation [188]. Inverse PCR and microarrays
or Next Generation Sequencing (NGS) methods (termed 4C-seq) are
then used to analyse the interaction partners’ sequences. The main
advantage of this method compared to 3C is that only primers spe-
cific to the locus of interest or viewpoint are necessary. The circular
ligation product allows for amplification of all sequences that are in
contact with the viewpoint. 4C is used to find

all interactions
formed by a region
of interest or
viewpoint

The first application of the 4C method was to identify interaction
partners of the tissue-specific β-globin gene and Rad23a in embryonic
mouse cells [188]. Simonis et al. found Rad23a, a housekeeping gene,
to interact with other active regions on the same chromosomes in a
tissue-unspecific manner. They also found the interaction profile of
the β-globin gene to depend on its expression status, interacting with
other active loci in erythroid cells, where it is expressed, and with in-
active loci in fetal brains, where itself is inactive, too. This example
clearly shows the advantages of 3C-based methods over FISH and
microscopy, as they allow for easy combination of the data with ex-
pression data sets, and can give high resolution information on single
loci.

Another modification of this method is called “Adapter ligation”
and involves the merging of an adapter sequence to a sticky end at
the interaction partner’s sequence after a second round of restriction
enzyme digestion [122] (Figure 6 C). This sequence can then be used
to facilitate PCR by using a primer targeted at it.

1 .3 .2 .3 Chromosome conformation capture carbon copy (5C)

Following 3C and 4C, another technique termed 5C (chromosome
conformation capture carbon copy, Figure 6 D) was developed based
on ligation-mediated amplification [49]. Short primers that target an
adjacent region to 3C restriction sites are hybridized to the 3C tem-
plate to create fusion oligonucleotides that can be identified by se-
quencing. PCR amplification is again facilitated, since the adapter
sequences within the oligonucleotides can be used as PCR primers.
The detection of ligation products can again be done by microarrays
or NGS. 5C improves 3C by

facilitating the PCR
amplification

Compared to 4C, the resolution of 5C is lower, because it is limited
by the properties of restriction fragment ends. Not every end is suited
for the creation of a 5C oligonucleotide [38]. The main advantage
compared to 4C is the large-scale approach: 5C creates a matrix of
interactions rather than a set of interactions for a given viewpoint. So
far, 5C has not been used for a whole-genome analysis, for which Hi-C
is better applicable. Still, it can be considered a medium-throughput
alternative to 3C and is best used for detection of enhancer-promoter
interactions in specific loci or the set of interactions between entire
genome regions. Due to an easier protocol, 3C is still more commonly
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Figure 6: Different chromosome conformation capture techniques (Taken
from [150]).
A: Regular 3C [37, 42] starts with cross-linking of interacting chromosome
regions with formaldehyde, followed by a digestion step and subsequent
joining of restriction enzyme sites. The ligated stretch of DNA can be
amplified with PCR and sequenced.
B: Circular 3C or 4C [237, 188] focuses on an interesting region of DNA
and includes a second round of restriction and ligation to create circular
DNA fragments. No primer for the unknown interaction partner sequence
is necessary to amplify all circles and identify the interaction partner.
C: Adapter ligation [122] includes joining of an adapter sequence to the
sticky end of the interaction partner’s sequence, which can be used for
amplification without further knowledge of the target sequence.
D: 5C technique [49] anneals primers based on the restriction enzymes’
sites to the ligation site and uses them for amplification.
E: Hi-C [120] uses biotin to label the ligation sites and subsequent
isolation with streptavidin beads. Paired-ends sequencing allows sequence
identification on a genome-wide level.
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used for the first type of experiment, but considering its PCR bias 5C
is the better alternative.

As an example for interaction detection in two genome regions,
Wang et al. [215] compared the set of interactions between HOX clus-
ters and other genome regions in two cell types, the first of which
expressed only 5’ HOXA genes, while the second only expressed 3’
HOXA genes. Their interaction patterns were shown to be diamet-
rically opposed, each cluster forming long-range distances only be-
tween active regions [215].

1 .3 .2 .4 Hi-C

The previously described methods are mostly limited to analyse in-
teraction partners of specific regions of interest in the genome. To get
a genome-wide interaction map, Hi-C was developed by Lieberman-
Aiden et al [120]. This “all-vs.-all” method enriches the ligation junc-
tions through integrating biotin as a label (Figure 6 E) after restric-
tion enzyme digestion. After blunt-end ligation, complexes are sub-
sequently purified with streptavidin and sheared, and a pull-down
assay separates ligation junctions from other molecules. Massive par-
allel sequencing is enabled through ligation of the adapter sequences
to the library. Through mapping to the genome pairs of sequences
from two different loci can be identified, creating a genome-wide ma-
trix of interactions. Resolution of Hi-C is limited and originally lay at
1 Mb [120]. A 10-fold increase in resolution is coupled with a 100-fold
increase in sequencing depth due to the quadratic nature of the inter-
action data. With increase in sequencing depth in the future, the res-
olution of Hi-C methods promises to increase. In fact, in 2012 Dixon
et al. published Hi-C data on mouse and human with a resolution of
20 kilo base pairs (kb) [45]. In Hi-C, the 3C

technique is
combined with
NGS, enabling
all-vs-all whole
genome analysis

Lieberman-Aiden et al. confirmed the previously observed separa-
tion of active and inactive genome regions [188] for the whole hu-
man genome. They identified compartments A and B, corresponding
to subnuclear locations where genome regions within the active com-
partment A tend to form interactions mainly within the compartment,
and inactive regions in compartment B contact mainly regions within,
too. Hi-C data also proved a largely overlapping spatial chromatin or-
ganization between two cell types, though many loci resided in differ-
ent compartments in the two cell types (GM06990 and K562). Smaller
genomes like that of S. cerevisiae allowed for a higher sequencing res-
olution. For this species, Hi-C confirmed the clustering of telomeres
and centromeres [51] among other properties.

The raw Hi-C interaction matrices are usually subjected to some
sort of statistical post-processing to increase the signal. In a first step,
the matrices are normalized by division through a matrix of expected
interaction counts. These are generated based on the principle that the
likelihood of interaction decreases substantially with increasing linear
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distance. The normalized Hi-C matrix is then refined by calculating
Pearson correlation coefficients for each cell.

A cell ci,j in the normalized matrix corresponds to the interaction
frequency of two loci i and j. To refine this value, Lieberman-Aiden et
al proposed to calculate spatial proximity values by comparing their
entire interaction profiles, i.e. the vector of interaction frequencies to
all other loci in the chromosome. These are represented in the matrix
by the column i and the row j. A Pearson correlation coefficient is cal-
culated for these two vectors and entered in cell ci,j of a third, spatial
proximity, matrix. Contrary to its name, the spatial proximity value of
two segments i and j quantifies the similarity of their contact profiles
or the propensity to lie in the same compartment, respectively. This
matrix clearly shows the so-called plaid pattern caused by compart-
ments A and B in a refined manner, reducing the noise (Figure 7).

The preference of loci for one of the two compartments can also
be represented by the first eigenvector of the interaction matrix. The
reason for this lies in the fact that the strong compartmentalization of
loci causes most of the variance in the data. In addition, the member-
ship of a locus to a compartment is mutual exclusive and interaction
profiles of loci in the same compartment were observed to be very
similar.

Figure 7: Normalization procedure for Hi-C matrices proposed by Lieberman-Aiden
et al, taken from their publication [120]. After normalization of the Hi-C
matrix with expected interaction counts, Pearson correlation coefficients
are calculated for each row and column and entered in the cell where they
overlap. The sharp borders between red and blue squares are called ‘plaid
pattern’ and show, that each locus lies in one of two compartments with
many interactions within and little interactions between. Cells with high
values in matrix C (red) correspond to segments in the same compartment,
while low values (blue) correspond to loci in different compartments.

In summary, Hi-C is a high-throughput method that allows deter-
mination of spatial chromatin organization on a genome-wide level,
with resolutions depending on the genome size. However, Hi-C is
applied to many different cells of the same type, generating a sum-
mary of interactions that happen in at least one cell at the time point
of the experiment. There are other biases for this method, which are
described in detail in part iii. Still, combining chromosome conforma-
tion capture techniques with the speed of next generation sequencing
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allows us to gain a low-resolution genome-wide map of inter- and
intra-chromosomal interactions that can greatly increase our under-
standing of chromatin organization.

1 .3 .2 .5 ChIA-PET

Similar to Hi-C, ChIA-PET (short for Chromatin Interaction Analy-
sis with Paired-End Tag sequencing) also generates a genome-wide
library, but achieves this through combination of 3C with Chromatin
Immunoprecipitation (ChIP). As such, the focus differs slightly from
Hi-C, since ChIA-PET can be applied to all loci bound by a protein
of interest [59]. Fragment generation is performed through sonica-
tion, and followed by pull-down with an antibody to the protein of
interest.

The first application of ChIA-PET was done by Fullwood et al. in
2009 [59] to sites bound by the oestrogen receptor α (ERα). It re-
vealed several thousand intra-chromosomal loops between binding
sites, the most prominent of which were reproducible between repli-
cates. However, the technique is not able to detect if this loop for- ChIA-PET

combines 3C with
chromatin immuno-
precipitation of
DNA-bound
proteins

mation is dependent on ERα, as immunoprecipitation can only work
when the protein is bound. Another disadvantage is that only con-
tacts between loci bound by the same protein can be identified. ChIA-
PET is thus more adequate than Hi-C or other methods to identify the
interaction network around binding sites of a single protein, but has
disadvantages over these techniques in other aspects.

1 .3 .2 .6 Single-cell Hi-C [138]

One of the main draw-backs of the Hi-C technique is the averaging
of data over millions of nuclei. This is necessary to capture enough
information before the sequencing step that a signal can be detected.
However, the spatial organization of chromatin is highly flexible be-
cause of Brownian motion of chromosome regions without fixed nu-
clear positions. As a result, the Hi-C average will lead to detection
of many mutually exclusive interactions that happened at the time of
the experiment in different cells. Single-cell Hi-C aims to eliminate
this problem by applying a modified Hi-C technique to one cell at a
time. Single-cell Hi-C is

performed on
individual nuclei
and not averaged
over millions of cells

The protocol for single-cell Hi-C by Nagano et al. [138] shares many
similarities with regular or ‘ensemble’ Hi-C, but has some important
differences. For one, the cross-linking of DNA and proteins is per-
formed within the nuclei, while ensemble Hi-C performs nuclear ly-
sis first. Nuclei for further analysis are selected visually under the mi-
croscope, and the standard Hi-C protocol of cross-link reversal and a
biotin pull-down onto streptavidin-coated beads is performed.

Before sequencing, another digestion step using a different restric-
tion enzyme, AluI in the case of the original publication, is applied
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and the resulting fragments are ligated to customized and tagged Il-
lumina adapters. Since only two fragments per chromosome locus
are present in a single cell, PCR amplification is necessary, followed
by paired-end sequencing.

Single-cell Hi-C data lack most mutually exclusive interactions and
show what the genome looks like in a small set of cells at a single
point in time. However, depending on the agenda of the researcher,
averaging of data might still be more useful. If we assume that there
are housekeeping interactions that are functional and present in all
cells, the averaged Hi-C over multiple cells may allow us to distin-
guish these frequent interactions from random ones that are caused
by Brownian motion. For this reason, single-cell Hi-C is always per-
formed on a set of multiple nuclei.

Nagano et al. compared the results of 60 pooled single-cell ex-
periments in human with normalized [230] ensemble Hi-C data by
Lieberman-Aiden et al [120] from approximately 10 million nuclei.
They found a strong similarity between both sets, confirming the va-
lidity of single-cell Hi-C. Nagano et al. show that the topological do-
main structure of intra-molecular contacts is conserved between sin-
gle nuclei, and that inter-domain contacts are highly variable between
cells. These differences are not be noticeable in ensemble Hi-C, so that
the averaged maps imply a more complex and more inter-connected
chromatin network than there actually is. Nagano et al. conclude that
each chromosome interacts with a relatively constant number of chro-
mosomes through a limited but constant surface area which is highly
variable between cells [138].

1 .3 .2 .7 Tethered chromosome conformation capture (TCC) [97]
TCC increases

signal-to-noise ratio
compared to Hi-C by

immobilizing the
DNA fragments on

a solid surface

Tethered conformation capture (TCC) is another improved method
for the genome-wide detection of DNA interactions. It aims to re-
move one of the most problematic biases of Hi-C, the low signal-to-
noise ratio, by performing the experiments on a solid surface. In Hi-C,
random ligations between DNA fragments that are not crosslinked
are a main cause of noise. TCC solves this problem with a modi-
fied approach. The first steps are similar, as DNA is first cross-linked
and then digested by restriction enzymes. However, after this step
DNA-bound proteins are cysteine-biotinylated and the fragments are
immobilized on streptavidin-coated beads, and ligated subsequently.
As a consequence, only crosslinked regions are pulled down. Similar
to Hi-C, massively parallel sequencing is applied after purification to
the ligation junctions, and a matrix of interactions emerges. Figure 8

gives an overview of the procedure.
Kalhor et al. show that this method accurately reproduces the in-

teraction patterns observed in Hi-C experiments, while reducing the
noise to almost half [97]. TCC thus provides a high-quality alternative
to Hi-C with reduced need of normalization.
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Figure 8: Overview of the tethered conformation capture (TCC) technique, taken
from [97]. After cross-linking (1) and tethered (2) to streptavidin-coated
beads, blunt ends are created (3) and ligated (4). Cross-linking is then re-
versed and the DNA is purified (5). The DNA is sheared and only frag-
ments which included a biotinylated nucleotide are pulled down (6) before
sequencing (7).

1 .3 .3 Interactions with the nuclear lamina: DamID

DamID is short for DNA Adenine Methyltransferase IDentification and
is generally used to find binding sites of DNA and chromatin bind-
ing proteins. This protein is fused to a DNA methyltransferase (Dam)
and expressed in the cell. If it binds to the DNA or chromatin, Ade-
nine bases 50nm close in space to the binding site are methylated, an
alteration which does not naturally occur in eukaryotes [210]. DamID allows

detection of genome
regions that are
located in the
nuclear periphery

To find chromosomal regions close in space to the nuclear lamina,
also termed LADs, it is thus sufficient to create a fusion protein of
Lamin B1 and Dam and express it in the cell. The protein will bind
to or be in close proximity to DNA, since it is part of the nuclear en-
velope stabilizing protein mesh, and the methyltransferase can sub-
sequently methylate all Adenines in close regions. A special form of
PCR termed mePCR is then carried out to find these regions on se-
quence level (see Figure 9 for a schematic overview of the process).
However, it has to be kept in mind that this method does not prove
a direct interaction of chromatin with the lamina, but rather a close
proximity.

The aforementioned ChIP is another method to determine interac-
tion between proteins and DNA. However, with DamID no specific
antibodies have to be developed. Another advantage for interactions
with the lamina is that ChIP only shows the current association of the
DNA and the protein, while DamID allows the researcher to capture
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Figure 9: Schematic illustration of the steps of the DamID technique for determi-
nation of protein-DNA-contact (Taken from Southall et al [195]). A fusion
protein is created consisting of the DNA-binding protein and DNA methyl-
transferase (Dam) and expressed in the cell, where Dam methylates every
Adenine close to the binding site. Genomic DNA is then extracted, di-
gested and sequenced with a special form of PCR that is able to identify
methylated regions and microarrays.

everything that is or has been in contact with the lamina. Since chro-
matin fibres are more flexible and might move to and fro along the
nuclear envelope, DamID serves as better method for the analysis of
this kind of interaction.

1 .4 outlook

Through development and improvement of chromosome conforma-
tion capture techniques, more and more large sets of data on chroma-
tin interactomes in eukaryotic cells become available. In this work, we
aim to analyse these data with Bioinformatics tools to gather knowl-
edge about the three-dimensional structure of the genome. We will
focus on the evolutionary aspect to find out to which amount this
structure is conserved between species, using Homo sapiens and Mus
musculus as model organisms. Looking at the structure of the genome
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from different perspectives, this work tries to give a holistic view of
what constitutes the chromosome interactome, which factors influ-
ence it or are depending from it, how it evolved and to what extent it
is functional.

In the second part, the linear genome and its many sequence and
structural features and their interplay are the main focus. Three-di-
mensional inter-chromosomal contacts are the subject of part iii, in
which we create a high-confidence interaction network and compare
its properties in human and in mouse. The last part lays its focus on
linear sequence evolution and rearrangements between chromosomes
that led to the different linear structures we see in genomes today.

Altogether, these different perspectives show the inter-dependency
of two- and three-dimensional genome organization, and help us bet-
ter understand its role in the molecular processes of a cell.





Part II

S PAT I A L C H R O M AT I N O R G A N I Z AT I O N A N D
G E N O M I C F E AT U R E S

Using a large data set of linear and structural genomic
features, this part describes the complex interplay of ge-
nomic properties and the statistical analysis performed to
uncover it.





2
M AT E R I A L S A N D M E T H O D S

Eukaryotic genomes are long sequences of nucleotides, coding and
non-coding regions, genes, regulatory elements and repeats, often di-
vided into multiple chromosomes. While the three-dimensional struc-
ture of these sequences are the main topic of this work, we will first
focus on the many other properties genomic sequences have.

For a long time, genes were thought to be the only important ele-
ments within the DNA sequence. Today we know that regulatory ele-
ments like transcription factor binding sites, histone methylations, re-
peats or domains such as LADs or Replication Timing Domains (RTD)
are important as well, and that they all play together to form the ge-
nome. In this part we want to investigate the interplay of these so-
called features and their role for the three-dimensional structure of
eukaryotic genomes.

2 .1 statistical analysis of chromosomes’ properties

The basis for our statistical analyses is an in-house database of ge-
nomic features in four eukaryotic species. A genomic feature is a
sequence- or structure-based property that is distributed along the
genome, in the form of elements. An example are repeats, where an
element is a single repeat, but the feature track describes the start
and end positions of all such repeats in the genome. Other features,
such as epigenetic histone modifications, RTD or lamina-proximal re-
gions, also list a score per element that quantifies the (experimental)
signal. The database contains feature tracks from UCSC [102, 98] and
other sources and was first compiled by Daniel Nasseh (Diploma stu-
dent, Department of Genome-oriented Bioinformatics, TU München)
and subsequently extended by Hongen Xu (PhD student, Department
of Genome-oriented Bioinformatics) and myself. In Table 1 you can
find a list of most of the features available in this database and their
sources.

Sequence-based features like genes or repeats are cell-type inde-
pendent, but for most other features differentiated cells such as lym-
phoblasts are the source. In mouse, LADs are available for multi-
ple cell types (mouse embryonic fibroblasts (MEF), Embryonic stem
cell (ESC), Astrocytes, neural progenitor cells (NPC)), from which two
summary sets termed ‘strict’ and ‘greedy’ were created. While ‘greedy’
refers to the set of all LADs that appear in at least a single cell type,
i.e. constitutive LADs, ‘strict’ contains only those that appear in all
of them, i.e. constitutive plus facultative. In human, LADs are only
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Table 1: Description of genomic features available in the in-house database.

Feature Description Source Species

DNase I hyper-
sensitivity sites

mark accessible
chromatin, col-
lection of cell
types

ENCODE, Sabo
et al. (2004,
2006) [176, 177],
hg18

Human

GC-content per 1 Mb seg-
ment of the ge-
nome

UCSC [102] se-
quences

Human,
mouse

Hi-C compart-
ments

In form of
Eigenvector,
GM06990 lym-
phoblastoid
cells

Lieberman-Aiden
et al. (2009) [120]

Human

Histone acety-
lations

18 acetylations,
e.g. H3k9ac,
CD4+ T cells

Wang et al.
(2008) [217]

Human

Histone methy-
lations

20 methy-
lations, e.g.
H3k4me1,
CD4+ T cells

Barski et al.
(2007) [13]

Human

LADs Lamina associ-
ated domains

Peric-Hupkes et al.
(2010) [159]

Human,
mouse, fly

lncRNA lncRNA genes UCSC [102] Human,
mouse

miRNA miRNA genes MirBase version
16 [106, 105, 68, 67,
66]

Human,
mouse,
worm, fly

Nucleosome oc-
cupancy

Predicted ENCODE, UW
(University of
Washington),
Gupta et al.
(2008) [70], hg18

Human

Open chroma-
tin

GM12878 lym-
phoblastoid
cells

ENCODE, Duke/
UNC/ UT-Austin/
EBI [21, 8]

Human,
mouse

Repeats LINE, SINE,
LTR and 14

others

RepeatMasker [191] Human,
mouse,
worm, fly

RTD Replication
timing domain,
Lymphoblasts
(Human), ESC
(Mouse)

ReplicationDo-
main DB [219]

Human,
mouse

SNPs Single nu-
cleotide poly-
morphisms

dbSNP 130 [185] Human
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available for lung fibroblasts. The majority of features in the database
are taken from human and mouse. Table 2 lists the assemblies under-
lying the data collection. If necessary, data between assemblies was
lifted using LiftOver [82].

Table 2: Assemblies of species’ genomes for which data are available in database, if
not stated otherwise.

Species Assembly

H. sapiens Mar2006 (NCBI36/hg18)
M. musculus Jul2007 (NCBI37/mm9)

R [166] was used for simple correlation analyses, display of correla-
tion coefficients in the form of heatmaps and other plots. If not stated
otherwise, Pearson correlation is used as a method. For this part and
all parts that follow, Java (JDK 7) was used as a programming lan-
guage if not stated otherwise.

2 .2 visualization of chromosome feature tracks

Visualization of feature distribution along the genome is always help-
ful for interpretation. We aimed to create a plot that not only allows
the user to easily see domains, a.k.a. regions where the given feature
was enriched or depleted, but also to compare these domains between
different features.

Usually, a genomic feature is denoted by a list of genomic coordi-
nates and, possibly, a score. For each chromosome we can transform
these tracks of features into a coverage vector by dividing the chromo-
some into segments of 1 Mb and calculating the percentage basepair
overlap between the feature and every segment. If a score is given,
the average score of the segment is calculated considering the over-
lap, i.e. if only 30% of a segment are covered by a feature with a score
of 100, the average score will be 100 · 0.3 + 0 · 0.7 = 30.

z =
x− µ

σ
(1)

x Single raw value

µ Mean of all values

σ Standard deviation of all values

For each feature and each chromosome we calculated the z-score or
standard score (Equation 1) for the coverage vector and subsequently
smoothed it using a moving average with a 3 Mb window.

We implemented a simple method for the identification of domains
based on the z-score vector. Due to the nature of this score, domains
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can be identified as large regions on the chromosome where almost
all values have the same sign. These regions represent domains where
the feature is either strongly over- or under-represented with respect
to the remaining chromosome. We applied a approach based on a
temporary sliding window to identify the boundaries of these do-
mains for each chromosome:

1. Create temporary vector p, with |p| being the length of the z-
score vector

2. Slide window of w positions over z-score vector

3. Calculate average value of the sliding window and assign it to
the middle position pmiddle in p

4. Iterating over p, identify approximate domain boundaries as
sign(pi) 6= sign(pi−1)

5. Identify exact domain boundary in the original z-score vector
as the first two adjacent positions in the window with center pi
that have the same sign as pi

We tested different values for w and settled on w = 11. The smaller
the window size, the more confined and exact are the domains. Since
we were more interested in the overall banding into larger domains
than exact division of the feature into positive and negative values,
and thus want to allow some small deviations, we decided on a larger
window size. Predicted domains are visualized as coloured bands
in the feature track plots. Examples can be seen in section 3.0.4 on
page 39.

Since visualization of multiple features as genomic context facili-
tates interpretation of a new feature’s distribution, the plotting script
per default plots the new feature together with a set of database
features (Genes, GC content, LADs, Long Interspersed Nuclear Ele-
ment (LINE), Short Interspersed Nuclear Element (SINE), Long Tan-
dem Repeats (LTR), Hi-C compartments, RTD and DNase I hypersen-
sitivity sites). The user can choose to calculate and visualize domains
for each feature separately, or to transfer the domain banding from
the new feature to the plots of others to compare them more easily.

Additionally to the visualization of tracks we used the above de-
fined 1 Mb feature vectors to calculate the Pearson correlation be-
tween feature pairs per chromosome.

2 .3 lad border analysis

Guelen et al. [69] first mapped the interactions of chromatin with
the nuclear lamina in human. They also reported specific behaviour
of other chromatin features such as genes and histone modifications
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around the borders of LADs. Using our broad dataset of features, we
performed a similar analysis with additional features on human and
mouse, using Peric-Hupkes et al.’s [159] fibroblast dataset of LADs
for human and the greedy set of LADs for mouse, which contains all
constitutive and facultative LADs. The size of both sets is comparable
(see below).

Mouse Human

#LADs 1470 1344

Cell type ’greedy’ fibroblast

Similar to Guelen et al. [69], we defined a flanking region of -400bp
to +400bp around each LAD border and mirrored the left side onto
the right. For a set of features comprising RTD, LINE, SINE, LTR and
gene density, we calculated the average coverage (repeats) or aver-
age score (RTD) over all LADs for each of these 800 basepairs. Cases
where LADs are close to chromosome ends were also taken into ac-
count, with the uncovered stretch of the 400bp region being set to a
coverage of 0 for that specific LAD.

2 .4 synteny-based comparison of linear genomic fea-
tures in human and mouse

This dissertation aims to analyse the conservation of genome organi-
zation in two mammalian species, human and mouse. In a first ap-
proach, we compare linear genome features based on ENSEMBL [56,
211] synteny regions. These regions represent long genome sequences
in two species that have derived from a common ancestor. In our ap-
proach, we re-organize these regions in mouse to mirror the linear
organization of the human genome, further termed mosaic chromo-
somes. Using these comparable genomes we can then calculate Pear-
son correlation coefficients on different re-organized feature tracks.

a. Calculation of 1 Mb feature coverage vectors for both species
and all features

b. Creation of human mosaic chromosome from mouse data using
synteny regions (see below)

c. Correlation of features across species, regular approach (tracks
and Pearson coefficient)

Creation of human mosaic chromosome from mouse data

Information on synteny regions was downloaded from ENSEMBL
Compara version 63 [56, 211] and included in the database. Recre-
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ation of humanized mosaic chromosomes with mouse data was done
in a straightforward approach:

1. For each synteny region sr:

a) Find all Mb slices that overlap with srhuman and srmouse

b) Reverse Mb slices from mouse if srmouse lies on the lagging
strand

c) Stretch or shrink the number of mouse slices to be in ac-
cordance with the number of human slices |mbhuman|;
For this procedure, each feature vector of the slices in srmouse is
enlarged by repeating every element of the vector n times. We
decided on n = 20 after trying out smaller and larger values,
to combine computation speed with exactness. Afterwards, the
blown up vector is binned into |mbhuman| sections, and for each
section the average value is calculated.

d) Plot the newly arranged tracks and calculate Pearson cor-
relation coefficients

We performed the correlation analysis on each chromosome/mo-
saic chromosome pair from human and mouse and each feature, to
get an impression of the conservation of feature distributions. Addi-
tionally, the data were visualized using previously described tools.

2 .5 development of a pipeline for integration of new

features into the genomic context

Based on our database of genomic features in human and other spe-
cies, we developed a pipeline for the quick integration of a given new
feature to set it into the context of the genomic landscape defined by
our features. The goal is to interpret the genomic distribution of the
new feature and identify similarities or dissimilarities to the distribu-
tion of existing features. Since most of these are correlated to some
extent, we can draw conclusions from the locations of new elements.

Our pipeline achieves this goal by determining the correlation co-
efficient between the new feature’s distribution and those of a list
of database features, and by visualizing these for easy interpretation.
The new feature has to be provided in the common .BED format,
which comprises three columns defining the genomic position (chro-
mosome, start, end) and an optional score column. The data are then
prepared as described in section 2.2 and transformed into a z score
vector for each chromosome.

The same pre-processing has already been done for the other ge-
nomic features (LINE, LTR and SINE, LADs, Hi-C compartments (i.e.
Hi-C Eigenvector), gene density, DNase I hypersensitivity sites and
RTD), so a Pearson correlation coefficient can be calculated for each
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feature and chromosome. The pipeline generates a heatmap illustrat-
ing the similarity of the given feature’s distribution with all others per
chromosome which can easily be interpreted. As described before, the
database features can be grouped into euchromatic (SINE, Hi-C com-
partment A, high gene density, open chromatin and early replication
timing) and heterochromatic (LINE, LTR, LADs). If a new feature is
preferentially located in active, euchromatic regions, the heatmap will
be clustered into two parts, due to high correlation coefficients with
euchromatic features and low coefficients with others. It is thus easy
to directly classify a new feature as euchromatic or heterochromatic.

Pearson correlation coefficients are best suited for similarly fre-
quent features. If the new feature is very rare, comparison to a dense
database feature will result in a low coefficient. Our pipeline thus also
provides visualization of the features distribution along each chro-
mosome (see section 2.2), with a colour-coded domain pattern that is
calculated based on abundance and depletion. This domain pattern
is directly transferred onto plots of database feature distributions for
facilitated comparison.

We have applied this pipeline to a number of new features provided
by collaborators or experimental partners.

2 .5 .1 LncRNA and their binding sites

LncRNA are long non-coding (nc)RNA with a role in gene regula-
tion [27]. In collaboration with Svetlana Vinogradova from Moscow
State University, we analysed the location of lncRNA genes and bind-
ing sites across the human genome. To investigate the binding sites,
we used experimental ChiRP-seq data by Chu et al. [34] on two lncR-
NAs’ binding sites (HOTAIR and TERC) in the human genome. This
dataset contains 832 binding sites for HOTAIR and 2,198 sites for
TERC. We investigate the genomic distribution of both human lncR-
NAs’ sites, focusing on HOTAIR. ChiRP-seq

(Chromatin isolation
by RNA
purification)
identifies genome
regions bound by an
RNA in question

Additionally, our research partners analysed HOTAIR sequences in
multiple genomes of HOTAIR and generated a set of exact GA-rich
motifs. Constructing multiple sequence alignments for HOTAIR ho-
mologue sequences from human, dog, horse, mouse, rat and cow with
ClustalW [65, 205], they were able to identify four different length (23-
28 bp) conserved GA-rich motifs. Through scanning of the genome
she further identified a total of 1,974 exact matches of these motifs
in the human genome. We applied our pipeline to these predicted
binding sites as well.

2 .5 .2 miRNA

Data on miRNA genes in the genome were taken from mirBase [106,
105, 68, 67, 66], version 10.0 to fit the hg18 assembly of human. Due
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to short size of miRNA genes, we used their number per Mb segment
for correlation analyses.

2 .5 .3 NUMTS

During the course of evolution, the once independent mitochondrial
genome has been subsequently merged with the nuclear genome in
eukaryotic cells. Not only genes moved to the nucleus, but also short
fragments of mitochondrial DNA, termed NUMTS (Nuclear mito-
chondrial sequences) [208]. In a collaboration with the group from
Paul Horton [208], we investigated the distribution of these NUMTS
along the genome. Data were provided by Paul Horton in form of
fasta sequence files and a tabular file containing NUMTS coordinates
in the human genome as well as in the mitochondrial genome.

A total of 709 NUMTS spreading a total of 632,224 base pairs of the
human genome are given in the data. The highest number of NUMTS
is observed for chromosome 2 (78), while chromosome 18, which is
rather short, contains the lowest number of only 7 NUMTS.

Additionally to our pipeline steps, we calculated the average over-
lap with four features (RTD, Hi-C compartments, DNase I hypersen-
sitivity sites, LADs) and NUMTS, normalized by NUMTS length. We
performed this analysis on the set of NUMTS and a set of expanded
NUMTS which include a 400bp upstream and downstream flank. We
created a set of randomized NUMTS by generating a random start
position on the same chromosome for each NUMTS, and setting the
same length.
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R E S U LT S

It has long been known that domains of genomic features are corre-
lated [84]. At the largest scale, chromatin can be classified into open,
active or euchromatin and closed, repressed or heterochromatin. As
described in the introduction, current models of spatial chromatin or-
ganization believe that the nucleus is partitioned into three-dimensio-
nal regions where sequences of either of these classes are co-localized.
Understanding the complex relationship of chromatin features is thus
an important pre-requisite for the work described in this dissertation.

Before analysing the three-dimensional structure of human and
mouse in greater detail, we therefore investigated the interplay of
known and newly discovered features along the human genome. We
studied the correlations between features, visualized domains and
compared species. As described in the previous methods section, we
have developed a simple visualization tool on the basis of R [166] and
Java that allows easy interpretation of the distribution of genomic fea-
tures.

3 .0 .4 Chromosome feature tracks enable visual comparison of domains

Plots of chromosome tracks provide a good visualization of the dis-
tribution of different features along the genome, and it is well known
that the structure of chromosomes in R-, G- and C-bands influences
or even mirrors other chromosomal features [84, 85, 69]. Table 3 gives
a short overview over the relationship between bands and other fea-
tures, where R-bands are stretches of euchromatin, G-bands consist
mainly of heterochromatin like C-bands, which almost exclusively
contain satellite repeats.

As described in section 2.2, we applied a simple method for chro-
mosomes’ feature visualization. By smoothing the distribution with
a sliding window and detecting domains with a sliding window ap-
proach, the user can easily identify regions of abundance and deple-
tion of the feature (Figure 10). For comparison, Supplementary Fig-
ure S1 shows a straightforward visualization of z score feature tracks
(page 191). Chromosome track

plots allow visual
comparison of
feature domains

Smoothing of the distribution helped to reduce noise from the fea-
ture tracks and see the domains more clearly. This is especially true
for very varying distributions like gene density or LADs. Also, visual-
ization of domains (domains with mainly positive values, i.e. regions
of feature enrichment, highlighted in light pink, and depleted ones

39
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Figure 10: Visualization of z score feature tracks for human chromosome 3 with do-
main banding calculated for each track. Red bands mark regions where
the feature is enriched, blue bands mark depletion. Patterns for corre-
lated features such as SINE, Hi-C, gene number and GC-content are highly
alike.
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Table 3: Relationships between R-, G- and C-bands and different chromosomal fea-
tures [84, 85, 69]. RT: Replication timing during S-phase

R-bands G-bands C-Bands

Repeats SINE Human:
Mainly ALU
Mouse: Mainly
B1

LINE, LTR Specific repeats
Very different
between species

Genes gene-rich gene-poor almost no genes

GC-content high low species-
dependent,
typically AT-rich

RT early replicating mid to late very late

DNA com-
pactness

open closed closed

Hi-C A domain B domain not studied

LADs depleted enriched not studied

highlighted in blue) obviously makes interpretation of each track as
well as comparison of different ones easier.

For human chromosome 3 (Figure 10) it can be seen immediately
that some features’ domains, like LADs, tend to be shorter, while oth-
ers such as Hi-C domains are fewer and often much longer. Similar-
ities between the domain structures of all features are easy to spot:
SINE repeats, gene number, GC content and Hi-C domains on chro-
mosome 3 clearly show a domain organization which is highly alike.
The same can be said for other features like LINE and LTR. The do-
main visualization makes spotting these similarities much simpler
than the straightforward visualization.

These correlations can also be found in other human chromosomes
(data not shown) and confirm the previously known relationships
between features (Table 3).

3 .1 features at lad borders

Guelen et al. [69] not only conducted the first DamId experiment to
detect LADs, genomic regions close to the nuclear lamina, they also
showed that chromosome properties change significantly at the bor-
ders of these regions. According to their results in human, gene den-
sity significantly decreases at the beginning of a LAD and increases
after it’s end. Similarly, gene expression, Pol II binding and H3k4me2

is higher outside of LADs, while histone modification H3k27me3 is
increased within compared to the direct genomic environment. To-
gether, these properties mark LADs as repressive environment. Ad-
ditionally, the sharp peaks of CTCF binding sites, CpG islands and
promoters at the exact border of the LAD are very interesting.
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As expected, LADs in human and mouse are positively correlated
with LTR and LINE and negatively with gene density, SINE and early
replication timing domains (Table 4 and Supplementary Figures S2

and S3 for corresponding heatmaps). In mouse, the correlation is
stronger for all features except LTR, which rarely co-localize with
LADs in this species. Still, a clear pattern of preferential location in
LTR- and LINE-rich regions also emerges for human.

Table 4: Average genome-wide correlation of LAD distribution and other features. In
mouse, strict LADs refer to the set of constitutive LADs that are consistent
across cell types, while greedy LADs also include facultative elements. RTDs
correspond to regions of early replication timing.

Feature Human LADs Mouse strict LADs Mouse
greedy LADs

LINE 0.3990 0.6308 0.7588

LTR 0.3398 0.1169 0.1317

SINE -0.4208 -0.4949 -0.7692

Gene density -0.2844 -0.4050 -0.4734

RTD -0.4502 -0.4719 -0.7761

Applying a similar approach as Guelen et al. to human and mouse
data, we performed a comparison of feature coverage around the bor-
ders of LADs. Figures 11 and 12 illustrate (unsmoothed) coverage
curves around the border, with gray areas illustrating the flanking re-
gion inside the LAD and white areas for the outer flanks. Figure 11

shows the profiles of ENSEMBL protein coding genes and RTD values
around the borders of LADs. We confirm the observation of Guelen
et al. [69] that the gene density is higher outside of LADs (compare
Supplementary Figure S4, page 194) in human and confirm this ob-
servation for mouse.Gene density

decreases at LAD
borders in human

and mouse

We can also observe a similar profile for the average RTD value,
even though data from mouse are restricted to embryonic stem cells
for this feature. While there is no clear pattern of enrichment or de-
pletion within the LAD emerging, we can observe two peaks before
and after the LAD border, connected by a local minimum located di-
rectly at the border. These results imply that the border regions of
LADs, which are enriched in many insulating factors (see introduc-
tion), rarely coincide with domains of early replication. Instead, these
domains tend to lie very close to the border. We can observe a sec-
ond, more pronounced minimum at a position of +200 in human and
+250 in mouse. However, though the profiles share similarities, they
are not identical. For example, the average RTD in mouse LADs de-
creases more strongly than in human and is generally lower in mouse,
though this could be caused by cell type differences.

Surprisingly, other than that there are no obvious similarities be-
tween the two species (Figure 12). As LINE and LADs both are en-
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riched in heterochromatin, we expect an enrichment of LINE within
LADs and a decrease at the border. In fact, we can observe such a
relationship in mouse (Figure 12 (b)), but not in human. There, LINE
repeats are frequent before and after the borders of LADs and less
so within. In fact, the correlation coefficient for these two features in
human is indeed lower than in mouse (0.3990 compared to 0.7588 in
mouse, greedy LADs). In this case, while in mouse LINE and LADs
appear to coincide more often, there is no such sharp decrease at the
border in human.

Since SINE are mainly situated in euchromatic regions, we expect
a reversed profile for this repeat. In mouse (Figure 12 (d)), the fre-
quency of SINE increases before and after the LAD. However it ap-
pears that SINE frequency increases at the end of the inner flank,
while it decreases farther away from the LAD. In human (Figure 12

(c)), the profile is much more pronounced. We can see a similar in-
cidence of SINE repeats at around 370 nucleotides distance from the
LAD border in either direction, but a sharp drop at the border itself.
Guelen et al have shown that the border itself has a distinct genomic
feature profile and is enriched in promoters, CTCF binding sites and
CpG islands. Our results suggest that SINE, at least in human, rarely
overlap with these highly regulated regions. Repeats show

different border
profiles in both
species

LTR are another class of long repeats that are often found in inac-
tive genome regions. In human, these LTR behave similarly to SINE
and we can observe a depletion of these elements at the border. In
line with the preferential location in inactive regions, there is also a
slightly higher incidence of LTR within the LAD after the trough at
the border. As shown before, LTR are correlated with LADs in hu-
man (0.3398) in the same range as LINE, indicating a similar amount
of co-localization. Again, the border profile in mouse is not similar,
but instead rather opposite. We can observe a clear decrease in LTR
frequency within the LAD, which is in with the very low correlation
coefficients for these two features in mouse (0.1317 for greedy LADs).
These results imply that in mouse LTR rarely co-localize with LADs.

We can conclude from this that LAD borders, which have been es-
tablished to have distinct genomic and chromatin profiles in human,
have different such profiles in human and mouse in most cases. While
the profiles of gene density and RTD show similarities, repeats behave
differently in both species and, with the exception of SINE in human
and LTR in mouse, do not show a clear border-specific behaviour. It
instead appears as if these repeat classes are not influenced by the
domains at the nuclear lamina.
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(a) Human genes (b) Mouse genes

(c) Human RTD (d) Mouse RTD

Figure 11: Feature density at LAD borders in human and mouse. Right and left bor-
der are mirrored, 0 on x-axis is LAD border, gray area shows the 400bp
inner flank of the LAD, white area the outer flank of the LAD. Shown
is average feature density over all LADs. Displayed is gene density and
average RTD value, where high values represent early replication.
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(a) Human LINE (b) Mouse LINE

(c) Human SINE (d) Mouse SINE

(e) Human LTR (f) Mouse LTR

Figure 12: Feature density at LAD borders in human and mouse. Right and left bor-
der are mirrored, 0 on x-axis is LAD border, gray area shows the 400bp
inner flank of the LAD, white area the outer flank of the LAD. Shown is
average feature density over all LADs. Displayed is the average basepair
density of certain repeat classes.
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3 .2 conservation of linear genome features in mouse

and human

In the previous sections we have already described some similarities
between the human and mouse genomes with respect to genomic
features. In both species, generally as heterochromatic considered fea-
tures localize at the nuclear lamina, while features that are related to
gene expression and usually lie within gene-rich regions are located
far from this peripheral subnuclear region.Location of repeats,

LADs, RTD, genes
and GC content is

(weakly) conserved
between human and

mouse.

We have also shown that, despite these similarities, differences can
be found in both species. One example is the behaviour of SINE at
LAD borders, which rarely overlap in human, but show no such pat-
tern in mouse. In this section we aim to identify similarities within
the distribution of features by re-organizing the mouse genome into
a mosaic genome that mirrors human chromosomes. We limited this
analysis to features that are directly comparable between the species.
A heatmap illustrating the correlation is given in Figure 13.

Nowadays, synteny regards not only the order of genes but also
other properties such as sequence similarity, so a positive correlation
of gene-related features across species is not a direct consequence of
the approach. However, it appears that all features show a weak to
medium correlation across most chromosomes in human and mouse.
Most similar features are gene number and GC content, with mean
correlation coefficients of 0.30 and 0.37, respectively (Y chromosome
omitted due to the high percentage of repeats). This is to be ex-
pected, because genes are under strong selective pressure and micro-
rearrangements of genes rarely happen over multiple megabases (see
part iv).

More interesting than features related to gene distribution are those
that correspond to chromatin structure, as for example LADs or RTD.
Correlation of replication timing domains across human and mouse
is evident but low in megabase-scaled mapping, with a mean Pear-
son coefficient of 0.28. Location of LADs on the other hand are obvi-
ously less conserved between species, they even appear to be the least
conserved feature together with LTR (mean correlation coefficient for
LTR: 0.14, LADs: 0.15). As we have already shown that the mouse
genome exhibits only very low correlation between LTR and LADs,
contrary to human, it can be expected that either of these two features
or both are not well conserved between human and mouse.

Altogether it can be concluded that distributions of gene-related
features as well as LINE and SINE feature tracks correlate quite well
between human and rearranged mouse data, indicating some level of
evolutionary conservation. Features describing chromatin structure,
in this case LADs, correlate only weakly between both organisms and
thus lead to the conclusion that location of chromosome structural
elements is only loosely conserved at the megabase scale.
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Figure 13: Heatmap of inter-species Pearson correlation coefficients (PCC) for each
pair of features from human and mouse, respectively. The mouse genome
was rearranged based on synteny information to make it comparable to
the human genome. All features show a weak to medium positive cor-
relation over megabase segments, indicating a low level of conservation.
Chromosome Y is excluded because of its short length and high percent-
age of repeats. Chromosome 22 shows less concordance with other chro-
mosomes, probably due to its short length.

However, it has to be kept in mind that the humanized mouse chro-
mosomes do not actually represent chromosomes, but rather parts of
them that are rearranged for the purpose of comparison. Some dif-
ferences in the exact position of LADs can therefore be expected. In
the third part of this dissertation we thus analyse similarities of the
three-dimensional structure of human and mouse genomes, focusing
on functional aspects. Additionally, in the fourth part we explore a
different synteny-based mapping that focuses on genes and intergenic
regions instead of fixed lengths regions.
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3 .3 long ncrna and their correlation to other fea-
tures

Noncoding (nc) RNAs longer than 200 nucleotides are classified as
long ncRNA, a very abundant class of transcripts in the mammalian
genome [28]. Their conservation across species is considerably lower
than conservation of small regulatory ncRNAs, indicating a lack of
functional relevance [199]. However, similarly low conservation has
been shown for well characterized and functionally important long
ncRNA [141], leading to the suggestion that this class of ncRNA is
under different selection pressures [154].

Long ncRNAs (lncRNA) have been shown to be involved in multi-
ple cellular processes, among which is epigenetic regulation through
imprinting or X-chromosome inactivation (e.g. [225, 100]; see sec-
tion 1.2.7). Recently, a large number of lncRNA that are directly as-
sociated with chromatin modification complexes have been identi-
fied [103, 236]. The emerging close relationship of lncRNA and chro-
matin state and structure led us to analyse the correlation between
lncRNA and other chromatin features such as LADs or histone modi-
fications. Of special interest for this comparison are the lncRNA bind-
ing sites, a large number of which has recently been experimentally
discovered for three lncRNAs in human and drosophila with ChiRP-
seq [34]. Because of their regulatory and possibly chromosome struc-
ture mediating effect, we focus on these binding sites in the following
sections.

3 .3 .1 Long ncRNA tend to bind in euchromatic regions

We investigated the distributions of lncRNA binding sites, since these
may directly influence chromatin state. We analysed 3,030 binding
sites of TERC and HOTAIR as provided by Chu et al. to find trends
in their relationship with other chromosomal features. Correlation co-
efficients per chromosome can be found visualized as a heatmap in
Figure 14.TERC and

HOTAIR bind to
euchromatic regions

in the human
genome

As mentioned before, genomic features can be clustered into those
that occur mainly in euchromatic regions and those that lie within
heterochromatin. LncRNA binding sites show a medium to strong
positive correlation with euchromatic features such as genes, DNase I
sites and SINE repeats. For GC-content, Hi-C eigenvectors and RTD,
high values are also associated with active chromatin and high gene
density, so they can be considered to be markers for euchromatin as
well.

LINE and LADs on the other hand are mainly found in heterochro-
matin. Negative correlation of lncRNA binding sites with these two
features confirms a preferred binding of HOTAIR and TERC within
gene-rich regions of the genome. Tracks (see Figure 15) confirm this
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Figure 14: Correlation coefficient values (Pearson) of HOTAIR and TERC (lncRNA)
binding sites to other genomic features in human. Again, short chromo-
somes deviate from the rest.

observation, showing clear domains of enrichment in lncRNA bind-
ing sites around the same positions that Hi-C domains, equivalent to
Hi-C compartment A, occur (compare Figure 10).

LncRNAs thus appear to target open euchromatic regions with
high gene-density, but tend to ignore heterochromatic regions that
are close to the nuclear lamina. Chu et al. suggested that lncRNA
might act like sequence-specific dictators of chromatin states [34].
They showed co-occupancy of lncRNA HOTAIR and Polycomb do-
mains and hypothesize that the RNA may be involved in recruiting
the latter. Polycomb proteins usually invoke epigenetic silencing of
genes. Our observations show that HOTAIR and TERC preferentially
bind in gene-rich regions, in line with a potential role in gene regula-
tion.

Predicted HOTAIR binding sites are weakly correlated with histone modifi-
cations

In a RECESS collaboration with Svetlana Vinogradova (Moscow State
University) and based on the suggested ability of lncRNA HOTAIR
to directly bind to the DNA molecules through formation of a triple-
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Figure 15: Human lncRNA genes and binding sites on chromosome 3. Red bands
represent Hi-C compartment A, which contains predominantly active
chromatin, while blue bands represent the complementing compartment
B. Most binding sites of HOTAIR and TERC lie within compartment A.

helix structure [207, 135, 55], two datasets consisting of potential HO-
TAIR binding sites on the human genome were created by her. We
aim to complete this analysis through comparison of these predicted
binding sites to genomic features that determine or are influenced
through chromatin structure. Formation of a DNA-RNA triplex changes
the rigidity of the DNA and therefore might participate in chromatin
organization.Predicted HOTAIR

binding sites with
substitutions have

different features
than experimental

ones

The first dataset, in the following referred to as ‘exact motifs’, com-
prises only exact matches of 13bp long GA-rich motifs from HO-
TAIR’s sequence or complementary sequence in the human genome.
The second dataset allowed for 6 substitutions in the sequence.

As described before, our genome feature dataset contains a mul-
titude of chromatin organization related tracks for the human ge-
nome. For this comparison we added histone modifications H3k27ac,
H3k4me3 and H3k4me1 to the previously mentioned features. We
have already shown that experimental HOTAIR and TERC binding
sites are localized in gene-rich regions of the genome.

With only 1,974 exact matches, the set of predicted lncRNA binding
sites is considerably sparse compared to other features. We thus ex-
pect to see only weak correlations with dense euchromatic features
such as DNase I hypersensitivity sites (970,658). Figure 16 shows
that this is, in fact, true for exact HOTAIR motifs. They are on av-
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erage weakly positively correlated with euchromatic features and hi-
stone modifications, but are rarely located in heterochromatic regions.
There are chromosomes for which this trend cannot be observed (e.g.
chromosome 16), which is probably caused by the sparsity of the fea-
ture.

Figure 16: Heatmap of Pearson correlation coefficient between HOTAIR exact bind-
ing site motifs on the genome and other genomic tracks. Correlation is
weakly positive for most chromosomes for euchromatic features.

When we consider the larger set of 5,566 predicted binding sites
with substitutions, we do not find a clear correlation pattern (Supple-
mentary Figure S5). Only for a subset of chromosomes (e.g. chromo-
some 2) can we observe the distinctive positive and negative correla-
tions with euchromatin and heterochromatin, respectively. Consider-
ing the higher density of this dataset we would expect the correlation
to become clearer than before. Since this is not the case, we conclude
that the predicted motifs with substitutions are no longer functional
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HOTAIR motifs, and that instead higher sequence identity is neces-
sary to maintain the function.

3 .4 microrna and their correlation to other features

MicroRNAs (miRNAs) are a class of naturally occurring, small non-
coding RNA molecules about 21-25 nucleotides in length. They were
first described in 1993 by Lee et al. [114] and the term microRNA was
introduced in 2001 by Ruvkun et al. [175]. MicroRNAs are partially
complementary to one or more messenger RNA (mRNA) molecules
and play an important role in the complex network of gene regula-
tion. It is their main function to regulate gene expression in a vari-
ety of manners including translational repression, mRNA cleavage,
and deadenylation [5, 54]. Each miRNA is thought to regulate mul-
tiple genes, and since hundreds of miRNA genes are predicted to
be present in higher eukaryotes [121], the potential regulatory cir-
cuitry afforded by miRNA is enormous. Several research groups have
provided evidence that miRNAs may act as key regulators of pro-
cesses as diverse as early development [169], cell proliferation and
cell death [23], apoptosis and fat metabolism [229], and cell differen-
tiation [48, 31]. Recent studies of miRNA expression implicate miR-
NAs in brain development [107], chronic lymphocytic leukaemia [26],
colonic adenocarcinoma [131], Burkitt’s Lymphoma [130], and viral
infection [161], suggesting possible links between miRNAs and viral
disease, neuro-development and cancer.

The genes encoding miRNAs are much longer than the processed
mature miRNA molecule. Often miRNAS are located in introns of
their pre-mRNA host genes. They share their regulatory elements,
primary transcript and they have a similar expression profile. Mi-
croRNAs are transcribed by RNA polymerase II as large RNA precur-
sors called pri-miRNAs and come complete with a 5’ cap and poly-A
tail [115]. After further procession, the resulting pre-miRNAs are ap-
proximately 70 nucleotides in length and are folded into imperfect
stem-loop structures. Once in the cytoplasm, the pre-miRNAs un-
dergo an additional processing step by the RNAse III enzyme Dicer,
generating the miRNA, a double-stranded RNA approximately 22 nu-
cleotides in length. Dicer also initiates the formation of the RNA-
induced silencing complex (RISC) [76]. RISC is responsible for the
gene silencing observed due to miRNA expression and RNA interfer-
ence [77].

As another level of gene expression regulation, correlation of mi-
RNA origin sites and other genomic features is of interest. One might
expect that the often intronic location of miRNAs leads to high cor-
relations with gene density. Besides that we are interested in whether
or not miRNA sites tend to lie in readily accessible regions of the
chromatin and thus show a negative correlation to LADs.
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3 .4 .1 There is no direct correlation of miRNAs and genomic features

Pearson correlation of miRNA number per chromosome slice (1 Mb)
and other genomic features is illustrated as a heatmap in Figure 17.
Due to the sparsity of the feature, most features show only very weak
correlations with miRNA number, that are also inconsistent over the
different chromosomes. However, though the correlation coefficients
overall are low, a trend for negative correlations with LINE and LADs
can be observed, with coefficients up to -0.27 and -0.33, respectively.

Figure 17: Correlation coefficient values (Pearson) of miRNA gene distribution to
other genomic features in human. Due to sparsity of miRNA genes, cor-
relation with other features is weak and a preference for euchromatic re-
gions is only fable.

However, the plot of the miRNA track can only confirm this ob-
servation to some extent (compare Figure 18). In direct comparison
to the human LADs, miRNA sites appear to be less abundant on
this chromosome and only a weak correlation of both tracks over the
whole length of the DNA strand can be seen. The negative correla-
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tion value of -0.19 for chromosome 3 mirrors this and is caused by the
few regions of miRNA abundance mostly but not always falling into
inter-LAD regions. Since miRNA genes often are located in introns of
genes, and genes have a positive correlation with inter-LAD regions,
this result is probably an artefact of the gene-miRNA-relationship.

Figure 18: Human miRNA origin sites and LADs on chromosome 3. Red bands sig-
nify LADs, blue bands inter-LADs.

It thus appears as if miRNA origin sites do not generally lie in
accessible genome regions. The observed slight negative correlation
with heterochromatic genome features can be explained by a number
of miRNA genes that lie within introns of genes.

3 .5 nuclear mitochondrial sequences lie in accessi-
ble genome regions

Despite being organelles in cells of eukaryotic organisms, mitochon-
dria are commonly believed to have evolved from bacterial ancestors,
explaining why they have their own small and circular genomes [178].
Only a small proportion of the proteins required for ATP produc-
tion in mitochondria are encoded by this genome, leading to the
hypothesis that many of originally mitochondrial genes were some-
how transferred to the nuclear genome during the cause of eukary-
otic evolution. Not only genes have migrated into the nucleus and
were inserted into chromosomal DNA, but also other mtDNA (mito-
chondrial DNA) fragments, termed NUMTS (Nuclear MiTochondrial
sequences) [50, 80].
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Horton et al. conducted a global analysis researching the circum-
stances of NUMTS insertion into the genome of several eukaryotic
organisms [208]. They conclusively showed that this process is not
random and that insertion sites tend to have several characteristic
properties: Proximity to retrotransposons, but no insertion into these,
proximity to regions with high local DNA curvature and regions with
high A+T rich oligomers, mainly TAT. NUMTS: Nuclear

MiTochondrial
sequences, non-gene
fragments of
mtDNA that
migrated into the
nuclear genome

Since the insertion mechanism appears to rely on non-homologous
end joining repair, Horton et al. hypothesize involvement of L1-EN,
an endonuclease. Another explanation for the proximity to retrotrans-
posons could be the limited accessibility of the genome in germ line
cells. If only a small proportion of the DNA is accessible to both
NUMTS insertion and generation of retrotransposons, these would
appear in close proximity very often. Previous research

has shown that
NUMTS lie close to
retrotransposons

One aspect which was not tackled by Horton et al. are correlations
of NUMTS insertion sites to epigenomic or chromosome structure
features. We aim to complement their research by conducting corre-
lation analysis to such characteristics, such as LAD coverage, Hi-C
compartments or RTD.

3 .5 .1 NUMTS distribution along the genome is too scarce for linear cor-
relation analysis

As for other features before, we calculated NUMTS coverage per 1 Mb
segment of each chromosome and performed correlation analysis to
other features. Results are given as a heatmap in Supplementary Fig-
ure S6.

Both the heatmap and the actual values clearly show that only a
very weak correlation exists between the genomic NUMTS distribu-
tion and any of the other structural or epigenomic features. Surpris-
ingly, even features shown by Horton et al. to be characteristic for
NUMTS insertion, such as GC content or LINE coverage, did not re-
sult in a high correlation. One could argue that this is caused by the
division of each chromosome into slices of 1 Mb size. Short elements
as NUMTS, which cover only 632 kb of the human genome in total in
the dataset of Horton et al., can easily be overlooked in such an anal-
ysis. Additionally, we are dealing with a total of only 709 NUMTS
regions, whereas 1,344 LADs are available for human. A slight nega-
tive correlation can thus be expected, since for about half of all LADs
no corresponding NUMTS can be present.

This clearly shows that our pipeline is only suited for sufficiently
dense features, since otherwise the symmetric method of correlation
fails. As a consequence, we performed an additional analysis on this
dataset that focuses on the average overlap of NUMTS and other fea-
tures, compared to randomly distributed elements of the same size.
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Figure 19: Average percentage of overlap with another genomic feature in NUMTS
with or without two 400bp flanks and randomized elements with or with-
out flanks. DNase I hypersensitivity sites are enriched in NUMTS.

Figure 19 illustrates the amount of overlap between NUMTS (with
or without 400bp upstream and downstream flanks) and a random-
ized set of NUMTS (with or without flanks) for comparison. The aver-
age overlap with LADs, Hi-C compartments and RTD is very similar
in both sets, implying no specific preferential insertion in either ac-
tive or inactive sites. However, the data clearly show a co-occurrence
of DNase I hypersensitivity sites and NUMTS. Horton et al. have
not investigated this relationship, though they report a lack of co-
occurrence for DNase I hypersensitivity sites and retrotransposons at
NUMTS insertion sites. Our results show that NUMTS preferentially
lie in highly accessible regions, while their flanks overlap with these
regions less often and more closely resemble random data.NUMTS coincide

with DNase I
hypersensitivity

sites

Horton et al. hypothesized that genome accessibility in the germ
line cells could limit both insertion of retrotransposons and NUMTS.
Our results confirm that genome accessibility is high in NUMTS.
However, since this accessibility decreases in NUMTS flanks, it can
be both a prerequisite or a consequence of the insertion. It thus ap-
pears as though their first hypothesis of L1-EN as an influencing fac-
tor might also play a role.
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C O N C L U S I O N

In this part we have investigated the role and distribution of different
linear genomic features, their interplay and, superficially, their con-
servation in the human and mouse genomes. To achieve this we have
collected data from various sources and created a database of intrin-
sic genomic features, comprising sequence-based properties such as
GC content or repeats, but also domain-like features like LADs or
RTD, and elements that describe chromatin structure, mainly histone
modifications, DNase I hypersensitivity sites and Hi-C compartment
vectors.

We have developed simple methods to analyse the correlation of
these features mathematically and visually, which serve well to clas-
sify new features with respect to this complex web of elements. Us-
ing these, we confirm the previously reported inter-dependency and
domain-structure of many genomic properties. In fact, features can be
grouped into those preferentially located in euchromatic areas (genes,
SINE, Hi-C compartment A, open chromatin, DNase I hypersensitive
sites and RTD) and those that prefer heterochromatic areas (LADs,
LINE and LTR).

Classifying new, mainly experimentally determined, features into
this list, we were able to show that the binding sites of lncRNAs HO-
TAIR and TERC show a clear preference for active or euchromatic
genome regions. miRNA genes, however, are not located in genome
regions with specific properties. We have also investigated remnants
of mitochondrial DNA (NUMTS)in the human genome that were de-
termined experimentally by Horton et al. [208], and found them to
coincide with DNase I hypersensitivity sites, implying a preferential
insertion in accessible genome regions. This conclusion is a good ex-
ample of how the interplay of features can help us better understand
biological processes.

As this thesis has a strong focus on the three-dimensional struc-
ture of the genome, we investigated domains at the nuclear periph-
ery, termed LADs, and their relationships with other features in more
detail. Guelen et al. [69] have already investigated density changes
of certain genomic features at LAD borders. It has been shown that
regions at the nuclear periphery are mainly inactive, while those in
the nuclear center are more active. One would thus expect density
of active features to increase at these borders, and Guelen et al. have
shown that the border itself has a distinct feature profile. We com-
plement this research and show that, in both human and mouse, the
gene density rises at the border of these regions, and RTD borders
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tend to coincide with them. However, repeats do not show a distinct
density change at LAD borders and also behave differently in both
species.



Part III

C O N S E RVAT I O N O F T H E
I N T E R - C H R O M O S O M A L S PAT I A L

C H R O M AT I N O R G A N I Z AT I O N

Inspired by biological networks for protein-protein inter-
actions and others, we can transform Hi-C data into an
easy to interpret network graph. This part describes the
analysis of new Hi-C data for mammalian species H. sapi-
ens and M. musculus and the interpretation and compari-
son of their respective inter-chromosomal interactomes in
the form of networks.
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G E N E R AT I O N O F P H Y S I C A L S E G M E N T A N D G E N E
I N T E R A C T I O N N E T W O R K S O N H I - C B A S I S

In recent years, the advance of methodology has brought on a large
amount of research on the chromatin interactome, with most analyses
relying heavily on forms of chromosome conformation capture (see
Section 1.3.2) such as the whole-genome experimental method Hi-
C. In this method genomic regions close in space are cross-linked,
followed by cutting the genome with restriction enzymes and ligating
cross-linked fragments before massively parallel sequencing. Using
Hi-C, the chromatin interaction maps of various cell types have been
reconstructed in the form of interaction probability matrices.

However, it is known that many experimental biases accumulate
in Hi-C experiments, among them the non-uniform distribution of
restriction enzyme cutting sites in the genome, differences in read
mappability and non-specific ligation. Additionally, the data contain
a high amount of noise due to random interactions between genomic
segments. Since Hi-C data are averaged over millions of cells, these
random interactions accumulate and further obscure real informa-
tion. As many more inter-chromosomal interactions are theoretically
possible than within chromosomes, this problem is especially present
in distinction of contacts between chromosomes from noise. Current
research focuses mainly on intra-chromosomal contacts, mainly due
to a better signal, but also because more data are available. Single-cell
Hi-C is an option to improve the signal-to-noise ratio, however, only
little data from such experiments are available so far.

Hi-C data are usually represented as interaction probability matri-
ces for pairs of chromosomes. A complementing representation was
proposed by Lieberman-Aiden et al. [120], who developed the Hi-C
method in their lab. According to their publication on the human
chromatin interactome, the data can be effectively reduced to the first
Eigenvector of a principal component analysis (PCA), which captures
the propensity of each genomic segment to lie within one of two nu-
clear subcompartments. The interactions within these subcompart-
ments are high, while there are sparse interactions between these two
compartments, leading to the common plaid pattern shown in Fig-
ure 7 on page 22. However, Eigenvector-representation is best suited
for intra-chromosomal data, where the signal-to-noise-ratio is higher
and less random interactions obscure the two-compartment-pattern.
In addition, though Eigenvectors greatly reduce the information from
the original data matrices, they are not easy to interpret without pre-
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vious knowledge, and information is lost if the compartment struc-
ture is not as precise in the data as in the original publication.

Kruse et al. [108] recently proposed a framework in which the inter-
chromosomal chromatin interactome is represented as a network of
physically interacting genes or genomic segments. Combined with
normalization to remove all Hi-C biases, as developed by Yaffe and
Tanay [230], they successfully investigated the interactome of S. cerevi-
siae and found a high degree of centromere clustering. Network-based
analysis has also greatly improved our understanding of protein-pro-
tein interactions and regulatory networks. Its main advantage is easy
interpretability and straightforward pattern recognition. For instance,
it has long been known that mammalian genes cluster together spa-
tially in transcription factories, which could be easily identified in a
network of physical gene interactions. Investigating overlaps with co-
regulation and co-expression networks of genes could help us under-
stand the role physical genome organization plays in the regulation
of gene expression.

Currently, much is known about the structure of intra-chromoso-
mal gene organization into TADs, but little research has been con-
ducted to investigate the potential functionality of inter-chromosomal
contacts. Additionally, Hi-C data are often explored in an isolated
manner in single species. We aim to transform the high quality data
from Dixon et al. [45] from H. sapiens and M. musculus embryonic
stem cells (hESC and mESC, respectively) into inter-chromosomal
gene and segment interaction networks for mammalian organisms,
analyse their topologies and possible functionality. We lay our focus
on the holistic comparison of two mammalian species’ inter-chromosomal
interactomes to investigate to which degree the three-dimensional
structure of the genome is conserved. As such, this work is the first
research conducted on the conservation of inter-chromosomal spatial
chromatin organization in mammals.
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Figure 20: Workflow of network generation approach for Hi-C data adapted from
Kruse et al. [108] Only inter-chromosomal Hi-C reads were used as input.

We have adapted the method by Kruse et al. [108] for the genera-
tion of segment interaction networks on basis of Hi-C data, for large
mammalian genomes. Figure 20 shows the general workflow of the
procedure, which includes a normalization method from Yaffe and
Tanay [230] (blue box) to calculate interaction probabilities for all seg-
ment pairs. This method, called hicpipe, estimates the experimental
biases to determine the background probability for interactions. Hi-C
data from Dixon et al. [45] are subjected to this normalization and fil-
tered using p- and q-values to create binary contact matrices for both
species. Based on these, the segment and gene contact networks are
reconstructed and subsequently analysed.
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6 .1 data source and preparation

Experimental Hi-C data from Dixon et al [45] for H.sapiens, assembly
hg18, and M.musculus, assembly mm9, are downloaded from GEO
(GSE35156). For comparability we used ESC data from both species.

6 .1 .1 Normalization

Due to a high number of known biases influencing the outcomes of
Hi-C experiments, normalization of chromosome interaction matri-
ces is essential. As proposed by both Kruse et al. [108] and Dixon et
al. [45], we chose the advanced normalization method implemented
by Yaffe and Tanay [230], which includes correction of read mappabil-
ity, elimination of non-specific ligation products and considers length
and GC content biases.Normalization of

Hi-C data is
necessary to remove

known biases

Yaffe and Tanay offer a software solution for this normalization pro-
cedure (hicpipe, version 0.93). It requires experimental Hi-C data in
a summarized format as well as genomic locations of restriction en-
zyme cutting sites as input to reconstruct where in the genome the
Hi-C fragments arise. Because Hi-C experiments differ in many pa-
rameters, the calculation of read mappability and restriction enzyme
fragments has to be performed by the user.

In our case, HindIII restriction enzymes were used for Dixon et al.’s
Hi-C experiments, and BWA [116] with default parameters to map the
resulting Illumina reads back to the genome.

Identification of HindIII fragments in the human and mouse genomes

To find all HindIII restriction enzyme cutting sites in the human and
mouse genomes, we used the R bioconductor packages BSgenome.H-

sapiens.UCSC.hg18 and BSgenome.Mmusculus.UCSC.mm9 [152]. These
packages are based on Biostrings [153] and represent the whole ge-
nome sequences. Biostrings offers quick text searches with or without
mismatches and thus serves perfectly to find short restriction enzyme
recognition sequences.

HindIII recognizes the six nucleotide long palindromic sequence
AAGCTT, cutting after the first A on both strands. Using the Biostrings
matchPattern() function with this sequence on each chromosome,
without allowing mismatches, we were able to very quickly find all
HindIII cutting sites in the human and mouse genomes.

Hicpipe demands fragment end information as input file, so sim-
ple restriction enzyme cut sites do not suffice. Fragment ends are
sequence regions that start or end at a restriction enzyme cut site, i.e.
the ends of all fragments the genome can be cut into by this particu-
lar enzyme. Considering the asymmetric cut after the first nucleotide
of the recognition sequence, we could calculate every fragment with
two corresponding fragment ends.
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We received a total of 1,673,258 fragment ends for human, confirm-
ing the number published by Yaffe and Tanay, and 1,646,704 fragment
ends for mouse.

Calculating the mappability score for the fragment ends

It is necessary to account for the different so-called mappability of
reads to the genome; reads that map at many different positions in
the genome should be discarded before continuing with the analysis.
The mappability score can thus be considered as a measure of se-
quence uniqueness. We are calculating the mappability score for each
fragment, using a 500 bp cutoff to limit the fragment length. For each
HindIII cutting site we are thus left with two fragments that expand
500 bp in either direction.

To calculate the mappability score, we created a high number of
artificial reads by breaking each chromosome into overlapping se-
quence regions of 50 bp length, starting every 10 bp, as suggested by
Yaffe and Tanay [230]. These artificial reads were then filtered for in-
formation content, discarding every all-N sequence, and transformed
into an artificial fastq file, and read quality was set to medium (I) for
all bases. For the reference genomes we downloaded the .2bit ver-
sions of the human and mouse genome, assemblies hg18 and mm9,
from UCSC [102] and converted them to fasta format. Using the
same mapper as Dixon et al., BWA-backtrack samse[117] for single-
end reads with default parameters, we first created an index on the
genome sequences and then aligned the artificial reads to the ge-
nomes. The resulting custom BWA file could then be converted into
the alignment format .sam and subsequently be converted into .bam

file format using Samtools sam2bam [118].

Table 5: Statistics on the mapping of artificial 50 bp reads back to the genome from
which they were created.

Human (hg18) Mouse (mm9)

Total #reads 184,541,039 174,629,674

#Duplicates 0 0

#Mapped 184,430,985 (99.94%) 170,863,902 (97.84%)

Table 5 shows some samtools flagstat [118] statistics on the map-
ping. The quality of the mapping is naturally high with almost all
reads mapped to the genome. Unmapped reads were probably lost
due to very low sequence complexity.

To calculate the mappability score, we needed to calculate the per-
centage of uniquely mapped reads for every 500 bp fragment as de-
termined above. As proposed by Yaffe and Tanay, we used a mapping
quality of at least 30 as an indicator for a uniquely mapped read. It-
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erating over all fragments, we used samtools view [118] to extract all
reads that overlap with the current fragment, and calculated the frac-
tion of reads with a mapping quality > 30. Table 6 and Figure 21 show
statistics and distribution of mappability scores for both species. The
mappability of reads is generally very high, with a high fraction of
fragments having a mappability of 1, indicating that they are covered
only by uniquely mapped artificial reads.

The score is used to filter fragments that cannot be mapped to a
single genome location due to lack of sequence uniqueness. Yaffe and
Tanay suggest to use a mappability threshold of 0.5, which we applied
to our data as well. Only a low number of reads (8.09% for H.sapiens,
12.91% for M.musculus) were discarded as invalid.

Table 6: Statistics on the mappability score distribution for human and mouse. Map-
pability score is calculated as the fraction of uniquely mapped reads per
(trimmed) fragment. Validity is defined as a mappability score above 0.5

Species Mean Median StDev #Valid

H.sapiens 0.89 1 0.24 1,537,959 (91.91%)
M.musculus 0.86 1 0.29 1,434,054 (87.09%)

Calculating GC content for each fragment end

Besides mappability score and length, GC content is also required
as input to hicpipe. To determine each fragment ends GC content,
we used an in-house sequence extractor tool written by Jonathan
Hoser (NGS group, Helmholtz Zentrum München) to parse the re-
spective genome sequences of each fragment from the fasta files. Sub-
sequently, we calculated GC content on the fly and added it to the
input. For a distribution of fragment ends’ GC content see Figure 21.

Normalization using hicpipe

Using default models for correction parameters, we ran hicpipe ver-
sion 0.93 on our data. Hicpipe runs 6 steps:

Step 0 Dataset initialization

Step 1 Map paired reads to paired fends (=fragment ends)

Step 2 Prepare bias models

Step 3 Learn model

Step 4 Bin by coordinates

Step 5 Compute observed and expected matrices
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(a) H. sapiens (b) M. musculus

(c) H. sapiens (d) M. musculus

Figure 21: Distribution of mappability scores and GC content of human and mouse
fragment ends, illustrating a high amount of fragment reads covered by
uniquely mapped reads (Mappability score 1). Reads with a score below
0.5 are discarded, but the distribution shows that only a minor amount is
affected. GC content is normally distributed in both species.
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The model generation includes the previously calculated mappabil-
ity score, identification of non-specific ligation products and correc-
tion of length and GC-content biases. A non-specific cleavage product
is defined as a paired read, i.e. the ligation product of two fragments
close in space, for which the sum of the two distances to the next
restriction enzyme cutting sites is larger than 500 bp. In such a case
the ligated fragments are very long and depend on chromatin com-
paction, so they are discarded.

To correct the aforementioned biases, correction matrices are ini-
tialized. Fragment ends are binned according to length into 20 bins
of equal size. The seed matrix is then defined as

Slen[i, j] =
(

1
Pprior

)
· Olen[i, j]

Tlen[i, j]
(2)

in which Pprior describes the prior probability to observe a pair,
Olen[i, j] is the number of observed pairs for which one fragment end
is in bin Blen

j , and Tlen[i, j] is the number of unique pairs with one
fragment end in Blen

i and the other in Blen
j .

The GC content seed matrix Sgc is computed accordingly, with bin-
ning according to GC-content of the 200 bp region from fragment
end toward the fragment. A third matrix is calculated for mappabil-
ity scores, with binning into steps of 0.1 starting at 0.5.

In step 3 the model is learned, calculating the probability P(Xa,b)

to observe two fragment ends a,b in a paired-end read:

P(Xa,b) = Pprior · Flen(alen, blen) · Fgc(agc, bgc) ·M(a) ·M(b) (3)

In this formula alen, blen, agc, bgc are the length and GC-content bins
of the two ends, Flen(alen, blen), Fgc(agc, bgc) are real valued functions
and the M function describes the mappability score. Both F matri-
ces (symmetric matrices with 20 · 20 parameters) are estimated using
maximum likelihood, based on the following likelihood function:

L(Flen, Fgc) = ∏
{a,b}∈I

P(Xa,b) · ∏
{a,b}/∈I

(1− P(Xa,b))

= ∏
c=(alen,agc,blen,bgc)

P(Xa,b)
nc · [1− P(Xa,b)]

mc (4)

in which I is the set of observed fragment end pairs, nc is the num-
ber of observed pairs that match the bin criteria of c, while mc is the
number of unobserved such pairs.

Unfortunately, hicpipe does not create output files containing the
probabilities used to determine the expected interaction matrix. No
detailed description on the generation of this matrix could be found,
but the assumption that expected = observed · probability proved to be
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incorrect. We thus were forced to recalculate the probabilities accord-
ing to equation 3 with output information given by hicpipe.

While we are using only the probabilities determined as described
above for network creation, we also require normalized contact matri-
ces for certain analyses. We extracted genome-wide expected matrix
counts from hicpipe results and combined the observed matrix O and
expected matrix E into the normalized matrix N using the following
formula [230]

N[i, j] =
O[i, j]

E[i, j] · N[i] · N[j]
(5)

with

N[i] =
O[i]
E[i]

, whereO[i] = ∑
j

O[i, j], E[i] = ∑
j

E[i, j] (6)

Due to large signal strength differences between the main diago-
nal of genome-wide contact matrices, where most contacts occur, and
the matrix peripheries of inter-chromosomal interactions, where rela-
tively few interactions are formed, we applied a logarithmic transfor-
mation to the normalized contact matrix. This transformation helps
improve the signal strength in inter-chromosomal regions.

6 .1 .2 Filtering

Fragment based filtering

Kruse et al. filtered the normalized Hi-C interaction matrix for S.cere-
visiae on fragment level. According to Duan et al., filtering should be
performed separately for intra- and inter-chromosomal interactions
because of the polymer-like properties of chromosomes. This leads
to a very strong inverse relationship between intra-chromosomal dis-
tance of two fragments and the frequency of their observed interac-
tion, making the calculation fairly complex. Due to this, Kruse et al.
focus on inter-chromosomal contact networks only, and since so far
no detailed comparison of inter-chromosomal contacts in mammals
has been conducted, we chose to do the same.

For the false-discovery rate filtering of interacting segments, the p-
value for each inter-chromosomal fragment pair in the original pub-
lication is given by assuming binomially distributed fragment pair
interactions:

P =
n

∑
i=k

(
n
i

)
mi

norm(1−mnorm)
n−i (7)
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with mnorm being the sum of the normalized interaction probabili-
ties for all four pairs of fragment ends of the two fragments (as cal-
culated in the previous step), k being the observed number of reads
for the fragments, and n being the total number of observed reads for
inter-chromosomal interacting fragments.

To illustrate the relationship of this p-Value, probability and bi-
nomial distribution, we plotted examples for n = 100, k = 10 and
varying probabilities to show the behaviour of the probability mass
and the resulting p-Value in Figure 22. Probability values range from
p = 2.5e− 3 to the counter probability p = 1− 2.5e− 3. k is shown
as a dotted black line. The p-Value for each of the given probabilities
is calculated as the probability mass that lies to the right of k, shown
in shaded areas. Only for low probabilities the majority of the proba-
bility mass lies to the left of k, leading to low p-Values. For all other
ps the p-Value would be 1 or close to 1. This means that, given a to-
tal observed read count of 100, a very low background probability is
required for a fragment pair with 10 observed reads to be significant.
Mathematically, the p-value signifies the probability of observing at
least k reads for a single event, given the background distribution.

To correct for multiple hypothesis errors, false discovery reduction
(FDR) is performed to calculate q-values from the p-values, using the
method by Benjamini and Hochberg [15] that is integrated into R as
p.adjust(p, method=’fdr’).

Adjustments for mammalian chromosomes

The fragment-based filtering described above is designed for and very
well suited for organisms with small genomes and a high sequencing
depth in the Hi-C experiments. We considered performing fragment-
based filtering for human and mouse data and compared the data
properties with the yeast Hi-C data used by Kruse et al. Yeast has a
small genome size of 12.2 Mb, and the average read count for a frag-
ment pair in the Hi-C data, which was generated by Duan et al. [51],
is 8.22 even for inter-chromosomal contacts. Human and mouse ge-
nomes are much larger with 3.3 billion bp and 2.8 billion bp, re-
spectively, and sequencing depth is not high enough to reach similar
average read counts. For both genomes, the average number of reads
observed for a pair of fragments (intra- and inter-chromosomal) is
2.46 and 2.66, respectively. Additionally, the mammalian genomes in-
troduce complexity into the analysis through the large number of dif-
ferent chromosomes.

In order to receive valuable and interpretable data, we decided to
perform filtering not on the level of fragment pairs, but on the level
of 500 kb segments. Binning data to overcome low sequencing depth
is common practice for the handling of Hi-C data from mammalian
genomes. For details on our binning procedure see the next section.
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Figure 22: Illustration of binomial distribution density functions for n = 100 and
varying probabilities. Dotted black line indicates location of k = 10. p-
value for filtering is calculated as the (shaded) probability mass to the
right of k.
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While we lose resolution in this process, it is necessary to work with
large-scale mammalian data.

In general, the filtering method is implemented in the same manner
as above, using a Binomial distribution of segment pairs to calculate
the p-value of each inter-chromosomal contact, based on interaction
probability, number of observed reads for the segment pair and total
number of observed interacting read pairs. However, to account for
the complex genome structure of mammals, we calculated the num-
ber of observed reads n independently for each pair of chromosomes,
resulting in the total number of observed interactions for the current
chromosome pair. We summed fragment pairs observed together that
fell into the respective 500 kb segments to receive the observed num-
ber of reads k for the segment pair. The interaction probability has
to be calculated on the level of fragments and fragment ends, because
correction factors cannot be sensibly determined for segments of fixed
length.

To calculate the background interaction probability of a pair S1, S2

of inter-chromosomal 500 kb segments, we collected all fragment ends
that lie within one of these two segments and their corresponding
fragments. It is important to distinguish between the set of fragment
ends and fragments, as not both ends of a given fragment necessarily
lie within the same segment. For each pair of fragments f ragi, f ragj
for which at least one end lies in segment S1 and segment S2, re-
spectively, the interaction probability is calculated as the sum of the
interaction probability of all fragment ends (see equation 8).

P( f ragi, f ragj) = ∑
f endi′∈ f ragi , f endj′∈ f ragj

P′( f endi′ , f endj′) (8)

The interaction probability for all possible combinations of frag-
ment ends of f ragi and f ragj, which are four at most, is calculated
only for pairs of fragment ends that both lie within the segments S1

and S2, respectively.

P′( f endi′ , f endj′) =

{
P( f endi′ , f endj′) if f endi′ ∈ S1 ∧ f endj′ ∈ S2

0 else
(9)

We calculated the interaction probability of each 500 kb slice pair
as the average interaction probability of all possible fragment interac-
tions within. p- and q-values are then calculated as described above.
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6 .1 .3 Accounting for different chromosome lengths

Our adaptation of Kruse’s approach considers only pairs of chromo-
somes at a time, and the total number of contacts from each pair of
chromosomes is the upper limit for the p-value calculation of contacts
on this pair. This might lead to an overestimation of high confidence
contacts for shorter chromosomes, which naturally have a lower to-
tal number of contacts. Hence we performed a second normalization
step after q-value calculation to control for this chromosome length
bias.

For each pair of chromosomes chra, chrb, the normalization factor
fchra,chrb was calculated as follows:

fchra,chrb =

(
max_length_product
lengthchra · lengthchrb

)
(10)

where lengthchra is chra’s length, and max_length_product is the
product of the longest and second longest chromosome lengths. Mul-
tiplying q-values with fchra,chrb leads to punishment of shorter chro-
mosomes.

6 .1 .4 Calculating spatial proximity values

Besides inter-chromosomal interaction networks, we also converted
Dixon et al.’s Hi-C matrices into spatial proximity values for further
analyses. These values were first introduced by Lieberman-Aiden et
al. [120] and represent the contact profile similarity of two DNA seg-
ments, in our case of 500 kb length. We modified their approach
only slightly to account for the low signal-to-noise ratio in inter-
chromosomal data.

First, the normalized interaction matrix N was calculated from the
expected matrix E determined with hicpipe, the observed matrix O
derived from Hi-C data. As described in section 6.1.1, a normaliza-
tion formula (equation 5) was used to convert these two matrices into
the normalized matrix, and subsequently a logarithmic transforma-
tion was applied. The spatial proximity value of two segments i and j
is then calculated genome-wide as the Pearson correlation coefficient
of rows i and j in matrix N, which are identical to columns i and j
due to symmetry. Each column contains the genome-wide normal-
ized contact profile of a given segment, so a high Pearson correlation
coefficient of two segments indicates that they tend to interact with
and avoid the same regions. The term “spatial proximity value” is
thus misleading, as it does not actually capture the distance in space.
However, as it has been used in literature before [104], we will use
it in this work for the sake of consistency. We only computed inter-
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chromosomal spatial proximity values and discarded those for intra-
chromosomal segment pairs.

6 .2 network creation and analysis

Using the confidence q-value calculated for each pair of 500 kb seg-
ments, we can apply different thresholds to create binary contact/no-
contact matrices. Such matrices can be easily transformed into seg-
ment interaction networks (SIN), where nodes are 500 kb segments
and edges are introduced between segments that are in contact ac-
cording to the matrix. In addition, we generated a physical gene in-
teraction network (GIN) for each species. The set of protein-coding
genes from ENSEMBL [56] were downloaded using Biomart [99], and
liftOver [82] was applied to map their coordinates to the used assem-
blies hg18 and mm9. Each gene was then mapped to the 500 kb seg-
ment where its majority lies, and the GIN was initialized with the set
of genes as nodes. For each interacting pair of segments Si and Sj,
we inserted edges between all pairs of genes mapped to Si and Sj,
respectively.

Randomization of segment and gene interaction networks

For validation of the results, we constructed randomized SINs and
GINs for comparison. Randomization was performed on the SIN in
two steps according to the suggestions of Kruse et al .[108]:

1. Initialization of random contact network

2. Permutation of edges in this network

3. Raise transitivity of the random network

The generation of a random contact network is performed accord-
ing to Witten and Noble [222]. Let |S| be the number of segments
in the genome of question. We first generated random positions of
these segments in the three-dimensional space by selecting |S| ran-
dom points in the three-dimensional space of a cube with side length
1. We assigned a segment to each point by drawing without replace-
ment, and calculated the Euclidean distance (Equation 11) for each
pair of points, if the assigned segment pair is inter-chromosomal.

dista,b =

√√√√ 3

∑
i=1

(ai − bi)2 (11)

We then calculated the percentage c of confident contacts among
all possible inter-chromosomal contacts observed in the human and
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mouse SINs, and determined the c% shortest distances and their cor-
responding segments in the unicube. These pairs of segments are con-
nected with an edge in the random contact network.

To ensure that the randomized network has similar basic properties
as the original network, for better comparability, Kruse et al. suggest
some additional steps which we also implemented. For one, in step 2

edges are permuted as a second randomization step. Pairs of edges
are only rewired if they fit certain criteria: Given four network nodes
u, v, s, t and two edges (u, v), (s, t) which were selected uniformly at
random from the network, these two edges will be deleted and sub-
stituted by (u, t), (s, v) if

a) u 6= t ∧ s 6= v

b) (u, t) and (s, v) do not already exist in the network

c) u and t as well as s and v are from different chromosomes

The procedure was repeated 10 · |E| times, with |E| being the num-
ber of edges in the network. To ensure consistent clustering behaviour
between randomized and original network, the transitivity might need
to be raised. Transitivity describes the number of observed triangles,
i.e. set of three nodes connected by three edges, compared to the num-
ber of possible triangles and is calculated as defined by Soffer and
Vasquez [192]:

T̃ =
∑i δ(i)
∑i ω(i)

where i is a node in the network, δ(i) describes the observed num-
ber of triangles in the neighbourhood of i, i.e. the number of neigh-
bour pairs of i which themselves share an edge, and ω(i) describes
the maximum possible number of triangles in the neighbourhood of
i.

After SIN randomization, we transformed both SINs into random
gene interaction networks by mapping the same number of randomly
drawn genes to each segment that it originally contained, and adding
edges between all pairs of genes from connected segments.

6 .2 .1 Basic network analysis

Using Cytoscape [184], we calculated network statistics. Connected
components were extracted using the Java Universal Network/Graph
Framework (JUNG) [145]. A connected component is a subgroup of
nodes and their edges where a path between each pair of nodes from
the subgroup exists, but no paths to any other node in the network.
We investigated the following network statistics:
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diameter The longest shortest path between any two nodes in the
network.

average degree Average number of neighbours per node.

clustering coefficient [12, 218] The clustering coefficient de-
scribes the degree to which the nodes in a network tend to cluster
together. It is calculated for each node as follows:

Cn =
2en

(kn(kn − 1))
(12)

n A node in the network

en The number of connected pairs between all neighbours of n

kn The number of n’s neighbours.

The network’s clustering coefficient is the average clustering coef-
ficient of all nodes, where nodes with less than two neighbours have
a Cn = 0.

characteristic path length The average length of the short-
est paths between all pairs of nodes.

connectivity centralization [46] The centralization serves
as an index of degree distribution. It is calculated as

Centralization =
N

N − 2

(
max(k)
N − 1

− mean(k)
n− 1

)
≈ max(k)

N
− mean(k)

n− 1
(13)

k Connectivity of the network, i.e. the set of degrees of all nodes

N Number of nodes

heterogeneity [46] The heterogeneity is a measure for how dif-
ferent nodes are with respect to their degree and calculated as

Heterogeneity =

√
variance(k)
mean(k)

(14)

isolated nodes Isolated nodes are those with a degree of 0.

spatial clusters We defined this term to describe sets of genes
that are co-localized in the three-dimensional space of the nucleus.
A spatial cluster is formed by all genes from two interacting 500 kb
segments.
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Analysis of network conservation

We investigated the conservation of GINs in human and mouse
based on synteny blocks or regions of conserved gene order. We hy-
pothesize that large genomic rearrangements disrupt the three-di-
mensional structure, making it not reasonable to explore conserva-
tion of individual gene contacts genome-wide. Instead, we focused
on blocks of conserved gene order between human and mouse as
detected by SyntenyMapper (see part iv). Using a confidence cutoff
of 0.05 to capture as many similarities as possible, we extracted the
subgraphs for each such synteny block in both human and mouse.
Our goal was to find out if genes that lie in conserved genomic re-
gions are in contact with equivalent genes in both species. Thus, we
mapped all genes that are in contact with genes from the synteny
block in human (creating set H) to their mouse orthologs (HM), using
the syntenic one-to-one ortholog mapping from SyntenyMapper (see
Figure 23 for an illustration). We then calculated the overlap between
these orthologs and the mouse genes with which genes from the syn-
teny block are in contact (set M). The number was normalized by the
smaller number of contact genes from the two species.

Figure 23: Illustration of how contacts where mapped between human and mouse to
determine the degree of conservation. For each region of conserved gene
order A, all genes that are in contact with genes from A in human are
extracted and make up the set H. The same is done in mouse, creating
the set M. To calculate the overlap between both sets, genes in human are
mapped to their mouse orthologs HM using SyntenyMapper.

For random background we simply shuffled the associations be-
tween synteny regions in human and mouse (drawing without re-
placement). This way, the association between genes and regions is
kept intact and no randomization bias is introduced.
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Feature enrichment in trans-interacting segments

Using our large database of linear genomic features (see part ii), we
calculated average feature overlaps for each autosomal 500 kb seg-
ment of the human and mouse genome for the properties listed in
Tables 7 and 8. Additional histone modifications were downloaded
from the ENCODE project [8] for a better match of cell types.

Table 7: Description of features used for enrichment analysis of trans-interacting
segments, H. sapiens. Histone modifications were downloaded from EN-
CODE [8] to match the cell type of stem cells. All histone modifications
are active marks.

Feature Cell type Source

H. sapiens

H3k4me3 peaks hESC ENCODE [8], Broad Institute
H3k4me1 peaks hESC ENCODE [8], Broad Institute
H3k27ac peaks GM12878 ENCODE [8], Broad Institute
H3k9ac peaks hESC ENCODE [8], Broad Institute
LADs Fibroblasts NKI, Peric-Hupkes et al. [159]
DNaseI sites Collection of

cell types
ENCODE, Sabo et al. (2004,
2006) [176, 177]

LINE repeats - RepeatMasker [191]
LTR repeats - RepeatMasker [191]
Nucleosome oc-
cupancy

- ENCODE, UW, Gupta et al.
(2008) [70]

Open chromatin GM12878 ENCODE, Duke/ UNC/ UT-
Austin/ EBI [21, 8]

RTD Lymphoblasts ReplicationDomain DB [219]
SINE repeats - RepeatMasker [191]
SNPs - dbSNP [185]

For each segment and feature, we identified overlapping elements
and calculated the overlap or, in the case of replication timing domain,
the average scores over the length of 500 kb. The feature overlaps
of trans-interacting segments were then compared to not interacting
segments to test for enrichment and depletion of genomic properties.

6 .2 .2 Overlap between trans-interacting segments and transcription fac-
tor binding sites

Given the assumption that co-localization of genes may correlate with
their transcription, we analysed if genes in a spatial cluster defined as
above showed preferential transcription factor binding sites for cer-
tain factors in human. In human, large amounts of high quality data
are available from the ENCODE project [8]. We did not perform this
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Table 8: Description of features used for enrichment analysis of trans-interacting seg-
ments, M. musculus.

Feature Cell type Source

M. musculus

H3k4me3 peaks ES-E14 ENCODE [8]/LICR, Ren et al.
H3k4me1 peaks ES-E14 ENCODE [8]/LICR, Ren et al.
H3k27ac peaks ES-E14 ENCODE [8]/LICR, Ren et al.
H3k9ac peaks ES-E14 ENCODE [8]/LICR, Ren et al.
LADs mESC NKI, Peric-Hupkes et al. [159]
DNaseI sites ES-E14 ENCODE/University of Washing-

ton [176, 177]
LINE repeats - RepeatMasker [191]
LTR repeats - RepeatMasker [191]
Open chromatin - ENCODE/Duke/
UNC/UT [21, 8]
RTD mESC ReplicationDomain DB [219]
SINE repeats - RepeatMasker [191]
SNPs - dbSNP [185]

analysis in mouse due to lack of comparable data. We downloaded a
hESC dataset comprising binding site peaks for 55 transcription fac-
tors from the ENCODE project (hg19, available at UCSC [102]). For
the full list including individual sources, see Supplementary Table S2.

For each spatial cluster, we calculated the percentage of genes that
overlap with at least one transcription factor binding site of a given
transcription factor. Additionally, the same feature enrichment analy-
sis as described in the previous section was performed to test whether
certain transcription factor binding sites are abundant in trans-inter-
acting segments.

6 .2 .3 Functional analysis of genes in spatial clusters

Genes from different chromosomes that come together in a spatial
cluster might do so just because of random effects like Brownian mo-
tion. However, it is possible that close proximity of genes is, at least
partially, functional. We aimed to determine functional similarities of
genes within spatial clusters, using the GO functional annotations.

Random interactions can obscure Hi-C based data to the point were
signals cannot be found easily. Thus, we performed an analysis sug-
gested by Khrameeva et al. [104], that uses a variance-reducing ap-
proach to uncover associations in the data that are obscured by noise.
According to the authors, binning of the data according to spatial
proximity was necessary to reduce the effect of noise. We evaluate



80 materials and methods

this procedure in section 6.2.5 and discuss our own modified binning
method. After noise reduction, we calculated Pearson correlation co-
efficients of spatial proximity values (see section 6.1.4) and GO term
similarity as determined by the Bioconductor [60] package GOSem-
Sim [231]. GO term similarity was calculated separately for each GO
hierarchy (“biological process”, “molecular function”, “cellular com-
ponent”) and results were combined as average similarity score for
each segment pair, ignoring hierarchies for which no GO term was
available.

6 .2 .4 Comparison with a co-expression network in human

As described before, large amounts of noise can occlude signals in
the data. Khrameeva et al. [104] have shown a correlation between
spatial proximity values and co-expression in human fibroblasts. Us-
ing a similar method to reduce the effect of noise (see section 6.2.5),
we assessed the association strength with the Pearson correlation co-
efficient and a randomization procedure.

To see if there are any correlations between co-expression and co-
localization of genes, we first had to establish co-expression of genes
in stem cells. Due to lack of comparably complete data on mouse
stem cells, we performed this analysis for human networks only.

We contacted the authors of ‘Genome wide profiling of human em-
bryonic stem cells’, Liu et al.[123], and they kindly sent us their data
on expression of over 20,000 genes in 43 hESC samples. Khrameeva
et al. use expression data from a database termed CoexpresDB [144],
which contains a large amount of data for somatic cells. We used their
definition of a co-expression measure on the data from Liu et al. for
better comparability to our data. For each pair of genes from two dif-
ferent but interacting segments, the co-expression measure [104] is
calculated as follows:

CM(i, j) =
n

∑
k=i

(
Wki

Ni
+

Wkj

Nj

)
· Rk (15)

where

i, j are two genes, with i lying in one segment and j lying in the
other

Wki, Wkj are the portion of the harbouring 500 kb segments that overlap
with these genes

Ni, Nj Number of genes in the corresponding segments

Rk Pearson correlation coefficient of the two genes’ expression pro-
files
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6 .2 .5 Modified noise reduction procedure

Khrameeva et al. [104] applied an equal-distance binning method to
the spatial proximity value data to reduce the influence of noise in
the Hi-C dataset. In this approach, data are binned into intervals with
equal absolute length (i.e. end− start) according to their spatial prox-
imity value. Correlation is then assessed over the median x (GO term
similarity or co-expression measure) and y (spatial proximity value)
values of these intervals.

However, consulting several papers and statistics specialists, we see
some problems with this approach. Binning data, especially large
datasets such as the ones present here, masks variance. In fact, there
is absolutely no correlation observable in the raw data (correlation
coefficients close to 0), so that binning can only be viewed as a trick
to overestimate results and amplify very weak trends in the data.
Khrameeva et al. have confirmed that the observed Pearson correla-
tion coefficients in their data often increased from values close to zero
to values above 0.9 after binning.

This effect is also termed correlation inflation and caused by a sta-
tistically not valid binning approach [101]. In short, if the hypothesis
is true and there is a correlation in the data, you would not need to
resort to binning. In an extreme example, binning of the data into two
sets would always result in a perfect Pearson correlation coefficient of
1.0 or −1.0. Of course, such a result does not contain any true infor-
mation. Being confronted with binned data should always make the
reader sceptical. In fact, it has been shown that through use of differ-
ent interval sizes and equi-distant binning, any correlation ranging
from negative to positive can be shown for artificial datasets, and bet-
ter for larger sets than for smaller ones [212]. A better option that does
not distort the data distribution as much is equal-size binning:

1. Ranking of N tuples (x,y) according to x

2. Introduction of 30 bins, each containing N/30 entries. Tuples
were distributed equally into the bins according to their rank

3. Calculate mean(x) and mean(y) as representations of each bin

While this approach is also problematic from a statistics viewpoint
since it strongly decreases the variance in the data, we know that Hi-
C data are in fact very noisy because of the averaging over millions of
cells and the existence of random contacts due to Brownian motion.
We decided to use the correlation assessment on basis of equal-sized
binned data, but complement it with a randomization to assess the
validity of our results.

• Randomize association of (x, y) 1000 times

• Perform binning, calculate Pearson correlation coefficient
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• Fit normal distribution with n = length(data), m = µ and sd =

σ

• Assess significance of observed value as 1−CDF(ρ), with CDF
being the cumulative distribution function and ρ being the ob-
served Pearson correlation coefficient

We are aware that the observed Pearson correlation coefficients on
basis of binned data are highly overestimated and do not measure
the true strength of the correlation. For this reason, we combine them
with the significance value determined through the above described
randomization approach. While the given correlation coefficients are
overestimated, the given p-value confirms if there is indeed a signifi-
cant association between x and y present in the data.

Additionally, instead of using medians we chose to use the aver-
age x and y values for each bin. Means are more sensitive to outliers,
but due to our higher resolution of 500 kb compared to 1 Mb, a large
amount of segments without genes leads to a high amount of zeros
in the data, strongly influencing the median. These zeros are caused
by gene-less segments which automatically have a GO term similarity
or Co-expression measure of zero with any other segment. We inves-
tigated subsets of the data with exclusion of zeros and found that
results were similar, leading to our decision to perform our analyses
on the complete inter-chromosomal set. We chose 30 as bin number
to make our results comparable to Khrameeva et al. [104].

6 .3 prediction of inter-chromosomal contacts

We investigate the potential predictive power of linear genomic fea-
tures for prediction of inter-chromosomal contacts in this section. Us-
ing properties known to influence the activity state of a genome re-
gion, we hope to successfully train a classifier to distinguish between
inter-chromosomal contacts and non-contacts.

6 .3 .1 Data Preparation

We calculated overlap percentage and, if the feature has a score or sig-
nal weight, the average score per base pair for all 500 kb segments in
human and the following features: DNaseI hypersensitivity (score),
LADs (score), LINE, LTR, Nucleosome occupancy, open chromatin,
RTDs (score), SINE, SNPs, peaks for histone modifications H3k4me1,
H3k4me2, H3k4me3, H3k9ac, H3k27me3, H3k36me3, and H3k27ac,
gene density and chromosome. We combined the features of two seg-
ments and assigned this pair the class ‘contact’ if the q-value of their
interaction was ≤ 1E− 3, in concordance with the network analysis.
All other pairs were assigned the class ‘no contact’.
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With this threshold we are dealing with a vastly imbalanced set,
where for each positive instance there are almost 7,000 negative in-
stances. This means that any classifier that labels all instances as ‘neg-
ative’ during training will test well, with accuracies at 99% and very
low Root Mean Square Error (RMSE). However, as the positive class
is the one of interest, this result is not desired. In order to be able
to successfully train a classifier to distinguish the properties of non-
contacting from those of contacting segments instead of just assessing
their quantity imbalance, we have to remove this bias.

There are multiple ways to deal with such imbalances [165, 92].
For one, not every classification method is equally sensitive to the
problem; Support Vector Machine (SVM) are largely unaffected [92].
The efficiency of the applied approach to deal with class imbalance is
also dependent on size of the dataset and degree to which the classes
are imbalanced. In general, there are five methods [92]:

1. Random Oversampling, where class instances from the minor-
ity class are copied until the sizes are equal

2. Focused Oversampling, where instances with values close to
the class boundaries are copied at random from the minority
class until the sizes are equal

3. Random Undersampling, where n instances from the majority
class are drawn randomly, with n being the size of the minority
class, to replace the original majority class set

4. Focused Undersampling, where n random instances close to
the class boundaries are drawn from the majority class, with n
being the size of the minority class

5. Cost-modifying, where the datasets are not modified, but the
misclassification cost for the minority class is increased to match
the proportion in the data

We have implemented both random undersampling and used a
cost-modifying meta classifier. In artificial tests, random undersam-
pling has been shown to be the least effective correction method [92].
However, this does not necessarily apply to our case, since for us the
minority class is the class of interest, with the majority class simply
representing ‘everything else’ and possibly containing a large amount
of irrelevant data. As stated by the authors, both cases can lead to a
higher efficiency of undersampling. To avoid accidentally introduc-
ing a bias in the strongly undersampled negative set, we repeated the
procedure 1, 000 times.

For the cost-modifying method we calculated the factor f = m1
m2

,
with m1 being the size of the majority class and m2 being the size of
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the minority class. We created the following cost matrix to use for
cost sensitive classification:

(
TP FN

FP TN

)
=

(
0 f

1.0 0

)
(16)

We performed classification on human and mouse data separately
as well as combined. For mouse, fewer features are available, so we
had to treat them as missing values for features absent for this species
in the combined set (nucleosome occupancy, DNase I hypersensitiv-
ity, H3k4me2 and H3k27me3). We also used distinct chromosome
identifiers for each species.

6 .3 .2 Classification

For classification itself we used WEKA [74], a platform which can
easily be integrated into a Java project and provides a large amount
of classification methods. We tried several different classifiers, among
them Naïve Bayes and Logistic Regression as baseline models, as well
as Neural Networks, Decision Trees and Random Forest. We do not
present results on all these models, as early tests showed best results
can be achieved with decision trees and Random Forest, so we focus
on Random Forest in the following sections.

6 .3 .2 .1 Random Forest [22]

Random forest is based on randomly created decision trees of a fixed
size and uses the following steps to create a model for classification:

1. A fixed number of trees is started (in our case 10, WEKA’s de-
fault value)

2. In each tree, at each node, choose a fixed number of random
features from the input feature space, that is considerably lower
than the input space (in our case 6 out of 37)

3. Perform a split according to these 6 random features

4. Each tree is built up recursively. If a tree is complete, no more
nodes are added and leaves are class predictions.

This is done for the training set (see Evaluation below for details
on the training and test set). Each entry from the test set is then run
through all of the trees, which give a class vote according to the leaf
where the query ended up. The class with the highest numbers of
votes is taken as predicted class. Random forest is considered to be
very robust and not sensible to overfitting [22].

For the cost-modifying procedure described above we used the
meta classifier CostSensitiveClassifier from Weka on Random Forest.
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6 .3 .2 .2 Feature selection

To distinguish features with high predictive power from others, we
used WEKA’s standard feature selection method CfsSubsetEval [75]
with BestFirst and default values. The method itself aims to select a
subset of the present attributes that are highly correlated with the
class and have low correlation between them, leading to a low redun-
dancy. BestFirst is used for the actual feature selection, in our case per-
forming a forward selection by greedy hillclimbing and backtracking. Hill climbing is a

heuristic algorithm
to identify (local)
maxima

We applied feature selection to the imbalanced sets and to 1000
randomly undersampled balanced sets, extracting the cut set of the
selected features.

6 .3 .2 .3 Evaluation

For classification with cost-modifying procedure, we evaluated the
trained classifiers with a 10-fold cross-validation. In order to ensure
that our balancing method did not affect the prediction success, we
decided to test the accuracy of classifiers trained on the undersam-
pled dataset with a previously determined holdout set containing
10% of the data. This holdout set is not manipulated and contains pos-
itive and negative instances in the same, imbalanced proportions as
the complete dataset. For the species comprehensive set we combined
holdout sets of both organisms. All instances used in the holdout set
were naturally removed from the training set before undersampling
procedures.

We used different measures to assess the prediction accuracy. Ac-
curacy itself was not used, as training on an imbalanced set can lead
to high accuracies even if all instances are labelled with the same
class. Instead, we focused on the measures described below, where
TP stands for the number of true positives, TN the number of true
negative predictions, and FP and FN for number of false positives
and negatives, respectively. Positives are defined with respect to the
target class, in our case the contact class.

precision describes the percentage of instances predicted to be
in a certain class that are correctly predicted, also termed positive
predictive value (equation 17). As such, there is a precision value
for each class, which can be combined using a weighted average that
accounts for the number of instances from both classes.

Precision =
TP

TP + FP
(17)
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recall describes the percentage of positive instances that were
predicted to be positive, and is also called sensitivity (see equation 18).
Like for precision, a weighted average can be calculated for both classes.

Recall =
TP

TP + FN
(18)

area under precision-recall curve (auprc) is a measure
well suited for the evaluation of imbalanced test sets, since it can de-
tect performance difficulties better than AUROC (see below) [20]. The
underlying curve is obtained by using different thresholds for the
classifier in use, and plotting precision and recall for each such run.
Ideally the area under this curve is close to 1, implying a high preci-
sion and recall for most thresholds.

area under receiver operating curve (roc) or AUROC
is calculated similarly to the AUPRC. The underlying curve is cal-
culated for different classifier thresholds, and the points are derived
from the recall or true positive rate and false positive rate (= FP

FP+TN ).



7
R E S U LT S A N D D I S C U S S I O N

7 .1 hi-c data from human and mouse escs

In this thesis we are working with traditional Hi-C data on human
and mouse ESCs from Dixon et al [45]. As discussed in the introduc-
tion (part i), this experimental method was the first high-throughput
approach developed for chromatin conformation capture, and suffers
from a low signal-to-noise ratio compared to more recent methods
such as Tethered Conformation Capture (TCC) or single cell Hi-C.
However, we aim to conduct a holistic comparison of three-dimensional
structure in H. sapiens and M. musculus to analyse the degree of con-
servation. For this reason and because only little data from TCC and
single cell Hi-C experiments is currently available, we decided to use
Hi-C data that was derived from both these organisms in comparable
cell types in the same experiment.

7 .2 normalization and filtering

When dealing with high-throughput data, preparation and pre-pro-
cessing is often equally as important as statistical analysis itself. Sig-
nal needs to be separated from noise, which is always present in huge
data sets created by imperfect experimental procedures. In the case
of Hi-C, some biases related to the experiment setup are known and
can be controlled. Among these are unspecific ligation products, frag-
ment length, GC content and read uniqueness biases. We used hicpipe
0.93, a method published by Yaffe and Tanay [230], to normalize the
raw Hi-C data.

Table 9 summarizes the number of read pairs available in the raw
Hi-C data for intra- (within) and inter- (between) chromosomal inter-
actions. Our analysis focuses on inter-chromosomal contacts, which
are rare compared to contacts within one chromosome. Previous re-
search has shown that the probability of an interaction decreases lin-
early with proximity [235], so it is not surprising that the majority
of Hi-C reads cover close-range interactions. In the embryonic stem
cell data from Dixon et al, 83% (Human) and 89% (Mouse) of paired
end reads are formed by fragments from the same chromosome, re-
spectively (Table 9). In the following sections, only inter-chromosomal
interactions are considered.

We calculated interaction probability for each pair of 500 kb seg-
ments as described in methods (section 6.1.1). Figure 24 shows that
this contact probability follows a normal distribution for both human

87
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Table 9: Number of reads covering intra- (within) and inter-chromosomal (between)
interactions.

Intra Inter

H. sapiens 100,263,614 (83.26%) 20,159,872 (16.74%)
M. musculus 483,760,138 (89.35%) 57,652,738 (10.65%)

and mouse embryonic stem cells. A high value for two loci can be
interpreted as a high background probability for these two loci to be
reported as spatially close by Hi-C due to their sequence properties,
independent of actual proximity. We are thus looking to find pairs of
loci with low interaction probability and high observed read counts.

(a) H. sapiens (b) M. musculus

Figure 24: Distribution of interaction probabilities calculated based on normalization
by hicpipe [230] follows a normal distribution for both human and mouse.

To identify these segments, a p-value based on the binomial dis-
tribution was calculated to estimate if the read counts observed for
a given segment pair can be explained by their background proba-
bility (see section 6.1.2). A low p-value therefore indicates a reliable
contact. Even though the same method was applied to both species’
data and cell types are comparable, the distributions differ drasti-
cally (Figure 25). While in M. musculus the majority of all segment
pairs has a p-value of 1.0, there is far more variance in the p-value
distribution of H. sapiens, with a high proportion of lower p-values.
This implies a higher level of noise in mouse than in human. In fact,
the raw Hi-C data comprise around 4.5 times more read pairs for
mouse than for human (541,412,877 vs. 120,423,487). If we hypothe-
size a similar or due to smaller genome size slightly smaller degree of
inter-chromosomal connectivity for mouse, this higher read coverage
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is caused by a higher amount of noise in the data, which explains the
skewed p-value distribution.

The large difference in read numbers also registers in the average
read coverage, which is twice as high in mouse than in human (Ta-
ble 10). Contact probability is in the same range, as seen before in Fig-
ure 24. This background probability is independent of the Hi-C data
itself, but merely influenced by distance between restriction enzyme
binding sites and other genomic features, so noise in the data does
not disturb the interaction probability distribution in mouse. P-value
and q-value, however, are calculated by combining the background
probability with the raw read counts, and the aforementioned large
amount of noise in mouse lead to extremely different p-value aver-
ages for human (0.41) and mouse (0.97). Read coverage in

Dixon et al.’s data is
twice as high in
mouse than in
human

Table 10: Statistics on parameters necessary for interaction confidence assessment,
inter-chromosomal contacts only. Read coverage and contact probability
are the basis for contact p-value calculation. q-value is calculated from p-
value distribution for false discovery rate estimation.
SD: standard deviation

Parameter H. sapiens M. musculus
Mean Median SD Mean Median SD

Read cover-
age

2.53 2 1.12 4.25 4 3.04

Contact
probability

2.6e-5 2.6e-5 2.6e-6 7.0e-5 7.0e-5 8.2e-6

p-value 0.4071 0.3781 0.2741 0.9682 0.9998 0.1124

q-value 0.7052 0.7562 0.2188 0.9989 1 0.0330

As a consequence, distribution of confidence (q-)values after mul-
tiple testing correction also differs between the species (Figure 26).
Again, the high amount of noise in mouse leads to a peak at 1.0.
In human, two peaks around 0.8 appear, also implying a high per-
centage of biased reads. During multiple testing correction, p-values
are raised to account for the effect that when testing more than one
hypothesis, one might be significant by chance. This leads to the ma-
jority of locus pairs in mouse having a q-value of 1, and an increased
mean of 0.71 compared to p-value distribution in human. However,
as it is known that Hi-C experiments produce very noisy data, it can
be expected that the filtering procedure leads to a significant loss of
false positive data.

We have adapted the p-value based filtering approach to account
for large and complex mammalian chromosomes, thereby calculat-
ing values separately per chromosome pair. This introduces a length
bias, as pairs of short chromosomes with a smaller sum of total ob-
served reads will have increased p-values compared to long chro-
mosomes with larger numbers of reads. To correct for this, we nor-



90 results and discussion

(a) H. sapiens (b) M. musculus

Figure 25: Distribution of interaction p-values calculated based on Hi-C bias inter-
action probabilities and observed read counts for each 500 Kb segment
pair. In mouse, large amount of noise leads to a distribution that is heav-
ily skewed towards 1.0, while human segment pairs mostly have lower
p-values.

(a) H. sapiens (b) M. musculus

Figure 26: Distribution of interaction q-values after multiple testing correction of p-
values. Again, most mouse segment pairs have a q-value of 1.0 due to
noise, while in human there are two peaks around 0.8. Only few contacts
have a low q-value and are thus highly confident.
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malized q-values by dividing through the maximum combined chro-
mosome length, which is product of the longest and second longest
chromosomes’ length. Figure 27 shows the number of inter-chromo-
somal contacts per chromosome before and after normalization for an
exemplary q-value cutoff. In human, normalization results are as ex-
pected and comprise a stronger decrease in contact numbers for short
chromosomes than longer ones. Still, shorter chromosomes such as 21

build more interactions than the very long chromosomes, e.g. 1 or 2.
In mouse, the distribution is more uniform, with the exception of

outlier chromosomes 11 and Y, which form the majority of contacts.
Due to this special genome structure, normalization only slightly re-
duces contact numbers on each chromosome. Even the very short
chromosome Y loses only a small proportion of its contacts, imply-
ing that many of these are formed either with strong confidence or
to longer chromosomes, as the normalization raises the q-value rel-
ative to the length of both involved chromosomes. We will describe
the structural properties of these interactomes in detail in the next
sections.

7 .3 creation of segment interaction networks

SIN:
(inter-chromosomal)
Segment Interaction
Network

In order to convert a matrix of confidence values into a network, one
has to choose a q-value threshold and transform them into binary
values. It is essential that this threshold is not chosen arbitrary, as
a too strict cutoff leads to loss of information, while false positives
may be present with a too lax cutoff. A threshold of 0.05 is common
practice, so we applied cutoffs between 0.05 and 1e− 8 to investigate
network properties before deciding. In the resulting segment inter-
action networks (SIN) each 500 kb locus is a node and each interac-
tion is an edge. Table 11 summarizes the sizes of the resulting net-
works. With the less stringent cutoff of 0.05, the majority of all 500 kb
segments participate in at least one contact (human: 91.7%, mouse:
86.2%). However, for human this changes rapidly with decreasing q-
value threshold. Even at a considerably high threshold of 0.001, less
than half the segments form contacts to others. In mouse, we cannot
observe this strong correlation. While the number of connected nodes
naturally decreases with decreasing cutoff in this species as well, it
does so much more slowly. So the mouse SIN (MSIN) still contains
almost 80% connected nodes at the above mentioned cutoff of 0.001.

A similar effect appears to influence the degree of connectivity at
different q-value thresholds. While in human the number of edges de-
creases strongly with decreasing cutoff, from 31,401 at 0.05 to 238 at
1e− 8, the difference in connectivity between the least and most strin-
gent cutoffs in mouse is less pronounced (6,731 to 3,953). However,
though the percentage of connected nodes is similar in both species
at cutoff 0.05, the human SIN (HSIN) has 4.7 times more edges than
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(a) H. sapiens

(b) M. musculus

Figure 27: Number of inter-chromosomal contacts per chromosome before and after
chromosome length normalization for an exemplary q-value cutoff of 1e−
4.
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the MSIN at the same threshold. These two characteristics imply a
higher number of considerably low-confidence interactions in human
compared to mouse. Connected

component: A
subgraph where each
node is connected
only to all other
nodes in the
subgraph by a series
of edges

Table 11: Size of segment interaction networks at different q-value cutoffs in human
and mouse. 1

st component is the first and largest connected component. In
both species, clustering is strong and almost all segments are either part of
the first component or not connected at all.

Cutoff #Nodes #Nodes,
connected

#Edges 1
st component

#Nodes #Edges

H. sapiens

0.05 5,254

(91.66%)
31,401 5,250 31,399

(99.99%)

1E-2 4,128

(72.02%)
13,674 4,077 13,647

(99.81%)

1E-3 2,500

(43.62%)
4,520 2,349 4,435 (98.12%)

1E-4 1,342

(23.41%)
1,736 1,126 1,611 (92.80%)

1E-5 858

(14.97%)
989 692 889 (89.89%)

1E-6 483

(8.43%)
500 294 378 (78.22%)

1E-8

5,732

233

(4.07%)
238 90 142 (49.66%)

M. musculus

0.05 4,389

(86.18%)
6,731 4,383 6,729 (99.98%)

1E-2 4,363

(85.67%)
6,483 4,357 6,481 (99.97%)

1E-3 4,011

(78.76%)
5,589 4,003 5,586 (99.95%)

1E-4 3,820

(75.01%)
5,133 3,807 5,127 (99.88%)

1E-5 3,772

(74.06%)
4,978

1E-6 3,452

(67.78%)
4,483 3,428 4,470 (99.71%)

1E-8

5,093

3,133

(61.52%)
3,953 3,105 3,938 (99.65%)

The size of the first connected component listed in the last two
columns tells us if the network consists of multiple independent sets
of connected segments or if the network is strongly clustered and
the vast majority of connected loci are part of the same subgraph.
In mouse, the latter is the case for all cutoffs, and even at threshold
1e− 8 99.7% of nodes are part of one large connected component. In
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human, this is true only for cutoffs higher than 1e − 6. For 1e − 8,
the network starts to decompose into one large inter-connected sub-
graph which contains around 50% of connected nodes, and multiple
small ones with up to 13 nodes. In general, however, both species’ net-
works are highly inter-connected, without significant decomposition
into subgraphs.

Our work focuses not only on characteristics of each species’ inter-
actome, but also on similarities and differences between them. Both
human and mouse are mammals, and Dixon et al. [45] have shown
that the intra-chromosomal three-dimensional structure is conserved
between them. When deciding on a q-value cutoff to create the SINs
for in-depth analyses, we opted for maximized comparability and
chose cutoffs at which the connectivity is similar in both organisms.
To achieve this, we had to pick different q-value thresholds for human
and mouse, namely 1e− 3 and 1e− 6. At this cutoff, both species’ SINs
contain around 4,500 edges. This way we are able to identify common
structural properties of the networks, while the structural differences
that influence the network sizes at the different cutoffs are still pro-
nounced, as will be discussed in the following sections. Additionally,
we repeated most of the presented analyses on multiple cutoffs to
validate that the choice of threshold does not bias the results.

The following sections will describe the main structural features
of both the MSIN and HSIN, their differences and similarities. Our
goal is to perform a holistic analysis of the inter-chromosomal interac-
tome in mammals. Relationships between inter-chromosomal interac-
tions and well-known genomic features such as repeats or replication
timing domain will be discussed, as will correlation between spatial
proximity and functional similarity or co-expression of genes.

7 .4 the mouse inter-chromosomal contact network is

strongly shaped by highly connected segments

A single 500 kb
segment on

chromosome Y forms
the majority of

contacts in mouse

The mouse genome contains at confidence value cutoff 1e − 6 ap-
proximately the same amount of inter-chromosomal contacts as the
HSIN at cutoff 1e− 3. In general, there are more high confidence in-
teractions in mouse, leading to a highly connected network. The Cir-
cos [109] plot of contacts allows us to identify another highly influen-
tial characteristic of the MSIN (Figure 28): The majority of its connec-
tions are formed between either a certain locus on chromosome Y or
11 and other regions distributed all over the genome. Specifically, a
500 kb segment close to the telomere of chromosome 11 (3,000,000

to 3,500,000) forms a high number of inter-chromosomal contacts,
mainly to other telomere-proximal regions. Another such segment
on chromosome Y (2,500,000 to 3,000,000), which otherwise consists
mainly of repeat sequences to which mapping is not possible [2], is
in contact with almost the entire genome.
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Figure 28: Circos [109] plot of the mouse segment interaction network (MSIN) at a
q-value cutoff of 1e− 6. Two highly interactive segments on chromosome
11 and chromosome Y dominate the network.

These two highly interactive segments clearly dominate the entire
MSIN. Since the segment on chromosome Y is so interactive and in
contact with so many different segments, this feature of the MSIN
explains the higher proportion of connected nodes with decreasing
q-value cutoffs. Before investigating this property more deeply, the
possibility of experiment contamination has to be considered. In a
network with 5,093 nodes it is very notable if only two of them par-
ticipate in the majority of contacts (4,131 of 4,483 edges, 92.2%).

It is theoretically possible that the Hi-C data we work with here
contains experimental errors or contaminations. In the original pub-
lication, Dixon et al. worked only on intra-chromosomal interactions,
so the phenomenon was not covered. Known Hi-C biases are con-
sidered and removed during the normalization process and can thus
not influence the filtered data. We were able to identify an increase
of paired Hi-C reads mapped to the segment on chromosome 11,
3,000,000-3,500,000 (S1) and the segment on chromosome Y, 2,500,000-
3,000,000 (S2). While on average 106,305.3 reads were mapped to each
500 kb segment, the number of paired unfiltered reads mapped to S1
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is 5.45 times higher, and 4.54 times higher for S2. The observed effect
is thus already present in the raw data, and even enhanced through
normalization, when Hi-C biases are removed.

Both segments contain little to no genes (S1: 11, S2: 0) and overlap
with more repeats than the average segment (S1: 23,550 bp overlap
= 4.6 times higher, S2: 14,660 bp overlap = 2.8 times higher). If reads
were mapped to the genome in a non-unique fashion, a high percent-
age of repetitive sequences in a given segment could lead to overes-
timation of reads. However, in Dixon et al.’s experiment reads were
mapped to the genome uniquely.

Additionally, the high number of different genomic regions both
segments and especially S2 are in contact with (S1: 979, S2: 3,152)
further proves that this observation is in fact not a contamination.
During Hi-C, spatially close regions are crosslinked to each other and
fragments resulting from restriction enzyme digestion are then lig-
ated to their spatially close partner. The resulting reads are sequenced
as paired end reads. It is highly unlikely that ligation occurs between
one fragment and almost 1,000 or even more other fragments if these
are not in close proximity when formaldehyde is added to the solu-
tion.

It is, however, also improbable that these segments are able to form
all these contacts at a single time point. Due to the nature of the
Hi-C experiment and in contrast to single-cell Hi-C, read counts are
averaged over many different cells and thus provide a summary of all
the interactions happening in millions of cells at the time point of the
experiment. We hypothesize that the strong interactivity of segments
S1 and S2 is caused by a high flexibility of these regions. If these
segments do not have fixed nuclear territories, they are able to move
around the nucleus randomly, which leads to contact formation with
different regions of the mouse genome in each cell. In the case of
segment S2 on chromosome Y this is especially pronounced, as it
forms contacts with almost the entire genome.Hi-C data is

averaged over
millions of cells

Segment S1 on chromosome 11 appears to preferentially contact re-
gions close to the telomeres of the remaining chromosomes. Since the
mouse genome is telocentric, this strong inter-connectivity of regions
close to the centromeres is hinting at the existence of a spatial cen-
tromeric cluster in mouse embryonic stem cells (mESC). It is possible
that chromosome 11 is located at the center of such a cluster, serving
as a scaffold to connect the other centromeres.

Centromere co-localization is a well-known phenomenon that ap-
pears in multiple species and different cell types and causes strong
clustering behaviour in the published inter-chromosomal contact net-
work of yeast cells [108]. We will further investigate the possibility of
centromere clustering in mouse in section 7.6.

In the case of the Y chromosome segment, the flexibility appears
to be even more pronounced, as it forms over 3,000 contacts in the
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different cells used in the experiment. It is necessary to note that
the majority of the mouse Y chromosome contains repeats, specifi-
cally internally repetitive 515 kb long units which are repeated 150-
200 times [2]. As a consequence, only the first 3 Mb of this chromo-
some originate from the ancestor autosome pair from which X and
Y evolved [2]. Due to the high amount of repeats in the tail of the Y
chromosome, only these 3 Mb can be mapped. The highly interactive
and gene-less segment thus lies very close to this repeat-rich tail, and
we hypothesize that in fact the whole tail is highly interactive due to
lack of functionality. We will therefore generalize our assumptions on
the whole of chromosome Y, since presumably only few parts of it are
not highly interactive.

Since the Y chromosome is absent in females, it cannot have a sta-
bilizing role for the three-dimensional genome structure. It is more
likely that it is less incorporated into the nuclear interactome because
it is very gene poor and short. We hypothesize that it has a less fixed
position in the nucleus than other chromosomes, and is able to move
around more freely. In the course of this movement the Y chromo-
some could be able to build contacts to many different genomic loci,
resulting in the interactome we observe.

As mentioned before, there are no genes on chromosome Y, seg-
ment S2. Segment S1, however , contains 11 genes:

Rnf185 Ring finger protein 185 regulates autophagy, a catabolic process re-
quired for recycling of cytoplasmic organelles [203].

Pla2g3 Phospholipase A2, group III regulates maturation of mast cells [200].

Inpp5j Inositol polyphosphate 5-phosphatase regulates many different pro-
cesses [146].

Selm Selenoprotein M has a neuroprotective function due to reduction in
reactive oxygen species, and regulation of cytosolic calcium [168].

Smtn Smoothelin is a cytoskeleton-associated protein found in contractile
smooth muscle [170].

Drg1 Developmentally regulated GTP binding protein 1 plays a role in dif-
ferentiation, regulates cell growth under specific conditions and cell
cycle arrest [180].

Eif4enif1 Eukaryotic translation initiation factor 4E nuclear import factor 1, in-
volved in translation initiation [190].

Patz1 POZ (BTB) and AT hook containing zinc finger 1 is expressed at early
stages of development, knock out leads to severe defects in the CNS
and cardiac outflow tract, leading to pre-mature in utero death [209].

Pik3ip1 Phosphoinositide-3-kinase interacting protein 1 negatively regulates
PIK3 (regulates cell division, motility, survival) and suppresses devel-
opment of hepatocellular carcinoma [81].
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Limk2 LIM motif-containing protein kinase 2 is involved in cell movement
and possible role in inter-neuron migration through the subpallium
brain region [6].

Sfi1 SFi1 homolog, spindle assembly associated (yeast) [43].

Considering the hypothesis that co-localization of genes in so called
transcription factories serves the purpose of increasing transcription
efficiency through reuse of machinery, genes on a segment that co-
localizes with many other loci would be expected to be versatile or
housekeeping genes. However, there appears to be no pattern in the
functions of genes located on segment S1, and though many of them
perform some sort of regulation, the processes they are involved in
are very different and often very specific (e.g. Rnf185).

7 .4 .1 The randomized mouse SIN has a uniform contact distribution

We created a randomized mouse interaction network using randomly
in a unicube distributed points as basis (see section 6.2). This random-
ized MSIN (RMSIN) serves as a basis for the evaluation of significant
properties of the real network. We are able to show that the RMSIN
has a completely different structure than the observed SIN, starting
with a much more uniform distribution of contacts along the chromo-
somes (Supplementary Figure S10 on page 199). While in the MSIN
the typical connected segment has an average degree of 2.60 and there
is a high standard deviation of 56.17, the average connected segment
degree of the RMSIN is 2.13 with a low standard deviation of only
1.17.

The most distinct feature of the MSIN are the two highly dynamic
segments on chromosome 11 and Y, which together form more than
90% of high confidence contacts. The RMSIN does neither contain
such segments nor a scale-free like topology with hubs, but instead
has a maximum degree of 8, again underlining the uniformity of the
network. We can thus conclude that the existence of hubs S1 and S2
in the MSIN is a non-random property.

7 .4 .2 Network properties of the MSIN

The MSIN is a
scale-free network Biological networks often share some properties. For instance, regu-

latory networks or protein-protein-interaction networks have a scale-
free topology [3, 12], in which few nodes, i.e. genes or proteins, have
a high degree, and the majority of nodes have a very low degree. In
the case of a regulatory network, a so called hub with a high num-
ber of edges could represent an important transcription factor that is
involved in the activation of many other genes.

The MSIN’s degree distribution also has some scale-free proper-
ties, though these are slightly distorted. There are exactly two (mega)
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hubs, segments S1 and S2 which have been described in previous sec-
tions. Figure 29 shows the distribution plotted with Cytoscape [184],
including a fitted power law distribution. Even though the fit’s cor-
relation coefficient is high (0.914), it does not fit the data points well.
The main reason for this distortion are the two mega hubs, which
fall aside from the remaining points due to their exceptionally high
degree. However, the network can still be considered to be scale-free,
since exclusion of the two mega hubs would still lead to a power-law
degree distribution.

Figure 29: Degree distribution of the MSIN, plotted with Cytoscape [184] in log-log
scale. The gray line shows a fitted power law distribution (correlation
coefficient 0.914). Even though the fit is high, the two hubs S1 and S2
disrupt the otherwise relatively scale-free distribution.

Segments S1 and S2 not only influence the degree distribution but
also many other network properties of the MSIN. While the shortest
path distribution of the RMSIN is normally distributed (Supplemen-
tary Figure S9a), most nodes in the MSIN can be connected by a path
of length 2 through one of the two hubs (Supplementary Figure S9b).
This is also mirrored in the average shortest paths lengths of 13.2 and
2.1, respectively, given in Table 12.

The average degree over all nodes is the same in both networks due
to the same number of edges and nodes. However, all other properties
differ: The clustering coefficient of the randomized network is too
low for Cytoscape to display it to the necessary decimal place, but
slightly higher for the MSIN itself. A network’s clustering coefficient
describes the degree to which the nodes in a network tend to cluster
together and is calculated based on different node triangle topologies’
frequencies in the network. The reason for the still low clustering
coefficient of the MSIN is probably the low number of edges between
non-hub nodes. This leads to a low clustering of segments connected
to a hub.
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Also, the existence of highly connected hubs strongly decreases net-
work diameter compared to the RMSIN, while increasing network
centralization. The diameter of a network is the maximum shortest
path between two nodes and connected to centrality. The centrality
of each node (i.e. closeness or betweenness centrality) measures the
importance of this node for the structure of the network. The global
centralization describes how much more important the most impor-
tant node in the network is compared to all others and is high for
the MSIN, because segments S1 and S2 serve as a bridge connecting
many node pairs.

The heterogeneity of the MSIN, however, is much higher than that of
both the RMSIN and even the HSIN, again caused by the less uniform
degree distribution.

Table 12: Basic network properties of human segment interaction network (HSIN)
and its randomized version (RHSIN), and the (randomized) mouse seg-
ment interaction network ((R)MSIN).

HSIN RHSIN MSIN RMSIN

Clustering co-
efficient

0.006 0 0.166 0

Network
diameter

13 40 7 31

Network cen-
tralization

0.014 0.001 0.619 0.001

Characteristic
path length

4.690 16.066 2.137 13.177

Average
degree

1.577 1.574 1.761 1.761

Network het-
erogeneity

2.695 0.805 26.259 0.759

Isolated
nodes

3,232 1,201 1,641 882

7 .5 short human chromosomes form more trans-inter-
actions than long chromosomes

There is a negative
correlation between
chromosome length
and average degree

in human

The human inter-chromosomal segment interaction network contains
a similar number of contacts as the previously described MSIN, yet at
first glance its overall structure appears to be dramatically different
(Figure 30). The main structural feature of this network is the higher
abundance of interactions involving at least one short chromosome
compared to those between or to longer chromosomes. In fact, there is
a strong negative exponential correlation (Pearson correlation coeffi-
cient -0.70) with almost no deviation from the regression line between
the average degree per chromosome and its length (Figure 31).
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Figure 30: Circos [109] plot of the human segment interaction network (HSIN) at a
q-value cutoff of 1e− 3. Short chromosomes form more interactions than
longer chromosomes.

Duan et al. have also reported a higher prevalence of interactions
between shorter chromosomes in budding yeast, according to Hi-C
data [51]. They found that yeast chromosomes interact mostly along
their entire length. Thus the so-called Rabl-like orientation, where
centromeres are grouped at one pole while telomeres are sorted to-
wards a second pole in the nucleus [167], could cause the prefer-
ence for interactions between short chromosomes, which are crowded
within the set of chromosome arms extending from the centromere
cluster to the distal telomeres.

In general, chromosomes have been known to keep to their own ter-
ritories [35]. Even though there is interweaving and chromatin loops
which penetrate other territories, the surface of a short chromosome
territory is still larger in relation to its length than that of a long chro-
mosome. This and a central localization could lead to formation of a
high number of contacts between short chromosomes due to architec-
tural rather than functional reasons.

However, according to tethered conformation capture (TCC) data,
human chromosome territories can be assigned to two main spatial
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Figure 31: Correlation of average (length-normalized) degree and chromosome
length in human; dotted line is the regression line, Pearson correlation
coefficient is -0.70. Axes are shown in logarithmic scale.

zones based on distance-based clustering [97]. In concordance with
the nuclear architecture model, the first of these groups is located at
a central subnuclear region and consists of the chromosomes 1, 11,
14-17 and 19-22, which are relatively gene-rich. Our results confirm
high interaction frequency between chromosomes 14-17 and 19-22,
and also between these chromosomes and others, which is a logical
consequence of their central position. The remaining chromosomes
preferentially reside in the nuclear periphery as part of the second
group. Overall, our observations of more interactive short chromo-
somes are in line with this model. However, our data do not enable
us to distinguish between the groups for all chromosomes (e.g. chro-
mosome 11 has similar interaction patterns as chromosome 12, even
though they are in different groups).

Besides the preference for contact formation involving short, gene-
rich chromosomes, the HSIN also shows an increase in contacts near
centromeric regions (see Figure 30). While the mouse genome is te-
locentric, most human chromosomes have a more centrally located
centromere. In the Circos plot, these are visualized as small red bands
in the chromosome ideograms. Even though reads usually cannot be
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mapped to the centromeres due to low sequence complexity, we can
observe a higher contact frequency in the regions around them. We
will describe the potential causes for this effect in section 7.6.

7 .5 .1 The randomized human SIN does not share the HSIN’s properties

A similar effect as observed for the RMSIN can be observed for the
randomized HSIN: the distribution of contacts along the chromo-
somes is much more uniform than real Hi-C data based networks.
While the HSIN connected segment has an average degree of 3.62

with a higher standard deviation of 5.84, the RHSIN’s regions have
on average less contacts (1.99) with a lower standard deviation (1.10),
implying similar degrees for all segments. The effect is less dramatic
here than in mouse, due to the lack of high-contact regions with close
to or even more than 1,000 contacts.

The observed increase in contacts for short chromosomes is thus
not present in the randomized HSIN and can be considered a signifi-
cant property. The maximum degree of the RHSIN is 8, so similar to
the RMSIN no hubs exist in this network, either.

7 .5 .2 Network properties of the HSIN

Table 12 on page 100 lists the key network properties for both the
HSIN and RHSIN. Since both of these networks lack the mega hubs
that dominate the MSIN, their characteristics are very different from
the mouse network. For instance, the network diameter of the HSIN
is about twice as high, but still significantly lower than that of the
RHSIN. In general, the same observation as for the mouse networks
holds true here as well; through their scale-free topology the Hi-C
networks have shorter paths (characteristic path length HSIN 4.7 vs.
RHSIN 16.1) and higher heterogeneity (2.7 vs. 0.8). The HSIN has a

scale-free topologyIn fact, a power-law distribution can be fitted to the degree distri-
bution of the HSIN almost perfectly with a correlation coefficient of
0.983 (Figure 32). Because the HSIN is not distorted by mega hubs,
this common property of biological networks is clearly recognizable.

Shortest path lengths are distributed almost normally in the HSIN,
similar to the RHSIN, but centred around a low mean due to the
existence of well-connected nodes that do not exist in the random
network (Supplementary Figure S9 on page 198). In general, we can
conclude that the HSIN exhibits a clear and non-random scale-free
topology.
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Figure 32: Cytoscape [184] degree distribution of the HSIN shown in log-log scale,
power-law distribution fitted to it as a gray line (correlation coefficient:
0.983).

7 .6 human and mouse genomes show centromere co-lo-
calization and a flexible y chromosome

While they are similar in size and connectivity (Table 13), we have
shown that the defining characteristics of the human and mouse SIN
differ. In this section I want to investigate the underlying similar-
ities that might be hidden under the first impressions. I have al-
ready pointed out that both SINs have a scale-free topology (sec-
tions 7.5.2 and 7.4.2), which influences many of their general proper-
ties. Both networks share a relatively low diameter and characteristic
path length, and (compared to randomized networks) high hetero-
geneity and clustering coefficient.

One of the characteristic properties of scale-free topologies is the
possibility to reach any node from a given second node through a
short path through one of the existing hubs. This effect leads to the
observed low average path lengths, and could indicate that the fold
of the genomes are dense structures in which any two regions are rel-
atively spatially close. However, due to the nature of Hi-C data, the
networks contain more contacts than happen at a single time point,
so flexible regions lead to an abundance of contacts. The question
remains whether these especially dynamic regions that can form con-
tacts with many different genomic loci do so for functional reasons,
e.g. scaffold-like bringing together other loci, or for a lack thereof. In
the latter case, no fixed position in the genomic structure could lead to
these hubs moving around the nucleus more freely in a diffusion-like
manner. While the mega hubs in mouse probably fall in the latter cat-
egory, it is plausible that hubs with less extreme degrees are centrally
located segments in for example transcription factories.
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Table 13: Size of segment interaction networks and their corresponding largest con-
nected components for human (HSIN), mouse (MSIN) and their random-
ized versions. The largest component of the SINs contain the majority of
genes.

Property HSIN RHSIN MSIN RMSIN

#Nodes 5,732 5,732 5,093 5,093

#Connected
nodes

2,500

(43.61%)
4,531

(79.05%)
3,450

(67.74%)
4,211

(82.68%)
#Edges 4,520 4,517 4,483 4,485

Largest
component:
#Nodes

2,349 3,601 3,282 3,664

Largest
component:
#Edges

4,435

(98.12%)
3,894

(86.21%)
4,171

(99.67%)
4,147

(92.46%)

7 .6 .1 Both species contain flexible Y-chromosomes

One example that causes us to believe that the latter hypothesis is
true for at least some cases is the role of the Y chromosomes in both
species. In both organisms only a small portion of the Y chromosome
can be mapped, and in mouse a considerably large part of this portion
(17%) forms contacts to almost all other loci in the mouse genome.
In human, such a strong interactivity of a Y chromosome region is
not observable. However, the short Y chromosome still forms more
contacts than the average chromosome (481 vs. 376.67), despite its size
being less than half the average length (57.77 Mb vs. an average length
of 128.35 Mb) and even less of it can be mapped after sequencing due
to repeats (22 Mb).

As mentioned before, we hypothesize that the repeat-rich tails of
the Y chromosomes also form many non-specific interactions, which
cannot be captured by Hi-C due to the low sequence complexity (see
section 7.4.2). Consequently, we believe that the majority of Y chro-
mosomes are highly interactive. Since these short and gene-poor chro-
mosomes cannot form so many contacts simultaneously, we presume
them to be very flexible and able to form contacts with many different
loci in different cells. This behaviour might be caused by the overall
low gene density on chromosome Y and its lower impact on cellular
expression compared to other gene-rich chromosomes. We speculate
that chromosome Y may be less embedded in the inter-chromosomal
contact network and able to move around and form random contacts
more freely than other chromosomes in both species, though the ef-
fect is stronger in mouse.
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7 .6 .2 Short chromosomes form more contacts

The main characteristic of the HSIN is the abundance of contacts be-
tween or involving short chromosomes. We have shown that there
is a clear negative correlation between average degree and chromo-
some length in human. In mouse, this property appears to be missing,
since the mega hubs on chromosomes Y and 11 dominate the net-
work. However, when these two outlier chromosomes are excluded,
a similar characteristic begins to emerge. Figure 33 shows that the
remaining chromosomes have an even stronger exponential correla-
tion between degree and length (Pearson correlation coefficient -0.87),
though there is more deviation from the regression line. For this anal-
ysis only the extremely high-degree chromosomes Y and 11 were ex-
cluded, not the edges they form to the remaining chromosomes. We
can thus conclude that in mouse as well as in human there is a ten-
dency for short chromosomes to form more contacts.

Figure 33: When excluding outlier chromosomes 11 and Y that harbour the MSIN
hubs, chromosome length and average degree are negatively correlated in
mouse (Pearson correlation coefficient -0.87).

In human, we believe higher gene density of most of the short chro-
mosomes and consequential central location in the nucleus to be the
reason for this observation. In mouse, the ten most gene-rich chro-
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mosomes are 11, 7, 19, 17, 2, 9, 4, 5, 6 and 8. Only six of the ten chro-
mosomes with the highest degree (excluding 11 and Y) are in this
group. It thus appears as if the same conclusion does not hold for
mouse. However, this observation could also be a side effect of the
observed centromere clustering discussed below. If centromeres are
localized spatially close, short chromosomes could be embedded in
the extruding chromosomes, thus forming more contacts.

7 .6 .3 Centromeres tend to co-localize to some degree

In both species, we observed co-localization of centromere-proximal
regions to different extents. In mouse, a segment close to the telom-
ere of chromosome 11 forms contacts to telomere-close regions of
all other chromosomes, potentially serving as a scaffold to bring to-
gether centromeres in a spatial cluster. In human, no such segment
exists, but abundance of contacts around centromeres is still observ-
able. I have mentioned in previous sections that clustering of cen-
tromeres is a known phenomenon in many species. One example is
the yeast genome, in which a strong centromeric cluster exists [93, 94]
and causes the inter-chromosomal contact network to form a similarly
strong cluster [108]. Another example are drosophila polytene chro-
mosomes, which have replicated without cell division and are thus
very large, bundle together in the so called chromocenter [29, 142]. Centromere

co-localization has
been shown in
several species, it’s
function is yet
unknown

Before Hi-C or other chromosome conformation capture methods,
biologists relied on FISH and visual interpretation to analyse the ge-
nome’s conformation. With these methods, they were able to detect
centromere aggregation in mouse cells as early as 1971 [90]. Hsu et
al. found that centromeres aggregate in some but not all mouse cell
types. They note that, in mouse, centromere sequences are highly sim-
ilar, a fact which could explain their coalescence. They also hypoth-
esize that the proximity to the nucleolus could be involved in the
clustering, but are unable to prove any of their hypotheses.

Centromere clustering might be a part of the so called Rabl-orien-
tation [167]: in this orientation interphase chromosomes are arranged
in a polarized fashion, where centromeres and distal telomeres oc-
cupy opposite positions in the nucleus, leading to a certain amount
of clustering of each of these. However, it is known that the mouse
genome does not share this orientation, and there has only been spo-
radic evidence for the human genome to behave similarly [93]. Still,
centromeric clustering has been shown in several cell types of these
two species as well [14, 233].

Jin et al. [93] reported that budding yeast centromeres strongly clus-
ter in different cell types and tissues and investigated whether this is
due to a Rabl-orientation. They were able to show with FISH that
the centromere clusters lie at the nuclear periphery and a Rabl-like
orientation is suggested. They suggest that this clustering could be a
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consequence of anaphase chromosome polarization. In fission yeast it
has been shown that centromeres cluster adjacent to the spindle pole
body and are linked to the anaphase movement of cell division.

In yeast stationary cells, similar to drosophila, the clustering of cen-
tromeres is reduced. Since in yeast chromosomes do not assemble at
the cell equator, i.e. there is no metaphase plate, the centromere clus-
tering might serve to facilitate the attachment of the chromosomes to
the spindle [93].

However, if centromeric clustering close to the spindle pole body
(SPB) is merely a relict of cell division chromosome arrangement, Jin
et al. argue that this would be randomized by Brownian motion. In
a later publication [94] they were able to improve their description of
the yeast centromere cluster by adding that they are arranged around
the SPB like a rosette, and also show that the clustering can be recon-
stituted without an anaphase. The dependence of the cluster on the
kinetochore protein ndc10 implies active maintenance of the cluster-
ing.

Jin et al. suggest that the circular centromere arrangement may be
due to the presence of a core bundle of microtubules around which
the centromeres form a rosette. They are, however, unable to pinpoint
a function of the centromere clustering, which is implied by the active
maintenance.

So far, centromere clustering in human and mouse has only been
shown for a subset of cell types [14, 233, 90]. The active maintenance
and supposed functional role of this structure that has been observed
in yeast indicates that similar structures could be conserved in mam-
malian species, though they might be present only during certain cell
cycle phases or in certain cell types. Altogether, our results indicate
a certain degree of centromere co-localization in both species, though
no strong clustering can be observed.

7 .7 trans-interacting segments are enriched in active

marks in human

In the first part of this work we have shown that there is a complex
interplay of features along the human and mouse genomes. Some fea-
tures can be considered active marks that are enriched in euchromatic
genome regions, while others appear mainly in heterochromatic re-
gions. To further analyse this dependency, we investigated the overlap
between a set of genomic features ranging from histone modifications
to LADs (see Tables 7 and 8, page 78) and sets of autosomal 500 kb
segments that do interact with other chromosomes (trans-interacting
segments) and those that do not, respectively.

Previous research shows that inter-chromosomal contacts in human
are enriched in active marks [120, 138]. Our results confirm this rela-
tionship (Supplementary Table S1, page 205) for active histone marks
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H3k4me1, H3k4me3, H3k9ac, H3k27ac and H3k37me3 obtained from
comprehensive ENCODE datasets. While the incidence of these five
marks’ peaks varies strongly across the human genome (Table 14),
we can observe an enrichment in trans-interacting segments that lies
between 14.6% (H3k9ac) and 37.3% (H3k4me1) for all of them. Even
H3k27ac, for which the data were produced in a different cell type,
shows a similar trend.

Table 14: Genome-wide incidence of histone mark peaks in human and mouse, ac-
cording to ENCODE [8] data, given as percentage of the genome covered
by peaks.

Histone modification H. sapiens M. musculus

H3k4me1 15.5% 2.1%
H3k4me3 2.5% 6.6%
H3k9ac 4.8% 2.3%
H3k27ac 4.4% 2.2%
H3k36me3 17.7% 4.7%

In mouse, the picture is quite different. According to the ENCODE
data, the incidence of all five types of histone modifications in the ge-
nome is lower (Table 14). We are able to detect a similar distribution
of histone modification peaks in mouse trans-interacting segments
compared with others. Figure 34 summarizes the differences in per-
centage enrichment and depletion of genomic features in human and
mouse. In mouse,

trans-interacting
segments have no
distinct feature
profile

Interestingly, we can observe a different behaviour of human and
mouse for most features (Supplementary Table S1, page 205): whereas
all features except for the heterochromatic markers LINE and LTR are
enriched in human trans-interacting regions, only LADs are clearly
enriched in mouse. For all remaining features, the profiles are simi-
lar in trans-interacting and other segments. These results imply that
in human, inter-chromosomal contacts are mainly formed between
active and gene-rich regions. In mouse we cannot observe such a be-
haviour. The reasons for this are unclear. One possibility is that the
mouse ESCs used in the experiment were in a different differentiation
stage than the human ESCs. If for instance the mouse cells were in
a stagnant phase, we could in theory observe a reduction of contacts
between active regions due to this.

Another possible explanation is that the distribution of marks in
these species indeed differs slightly. As we have shown multiple struc-
tural differences in the genomes of human and mouse so far, this is
a valid possibility. This is also supported by the compartment model
from Lieberman-Aiden et al. [120], which states that contacts are pref-
erentially formed between regions that are either active or inactive.
In this model, no increase of contacts between active segments is
assumed, so we hypothesize that the observed enrichment of active
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Figure 34: Overlap of features with trans-interacting segments compared to non
trans-interacting segments in human and mouse.

marks in human trans-interacting segments mirrors a different fea-
ture composition, whereas the lack of this enrichment in mouse does
not necessarily indicate a different differentiation stage.

7 .8 go term similarity is associated with spatial prox-
imity in human and mouse

Co-localization of genes in the nucleus has the potential to be func-
tional, increasing transcription efficiency of co-expressed or function-
ally related genes in transcription factories. For budding yeast, a cor-
relation between inter-chromosomal contacts and functional similar-
ity has already been shown [86], and, similarly, Khrameeva et al. were
able to show a similar correlation for a human lymphoblastoid cell
line [104].

As mentioned before, it is possible that large amount of noise in
the data combined with a relatively low sequencing depth hides a re-
lationship between spatial contacts and GO term enrichment. Khra-
meeva et al. [104] have shown a positive correlation between GO term
similarity and spatial proximity for inter-chromosomal contacts of hu-
man fibroblasts. Since Hi-C data contain many random contacts, this
might lead to underestimation of association with GO term similar-
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ity in analysis as described above. We repeated their approach and
calculated GO term similarity for all inter-chromosomal pairs of seg-
ments, as well as spatial proximity values calculated as described in
section 6.1.4. Binning of the data

is necessary to
uncover associations

We are able to reproduce Khrameeva et al.’s results for both human
and mouse. When grouped into 30 spatial proximity intervals, mean
data from mouse and human are strongly correlated with average
GO term similarity (Pearson correlation coefficient 0.89 and 0.96, re-
spectively, Figure 35). However, as explained in detail in section 6.2.5,
this effect could be due to correlation inflation, as we were unable
to observe correlations on the unbinned dataset (-0.03 and 0.09, re-
spectively). Supplementary Figure S11 shows the distribution of Pear-
son correlation coefficients for 1000 randomized datasets in both hu-
man and mouse. In comparison to these, our observed coefficients are
significant as assessed with the cumulative distribution function (p-
value < 0.01), confirming that there is indeed a positive association
present in the data. However, the observed values of 0.96 and 0.89 are
obviously overestimations due to variance reduction and should be
seen only as a trend indicators of an association. From these results
we can conclude that there is a tendency for segments with similar
contact profiles to share a functional similarity, but we can make no
assumptions regarding the strength of this relationship.

Still, it implies the existence of functional spatial clusters where
genes with similar functions are co-localized, such as transcription
factories.

(a) Human (b) Mouse

Figure 35: In both human and mouse, average GO term similarity increases with
spatial proximity (Pearson correlation coefficients 0.96 and 0.89, respec-
tively). In mouse, this relationship is even exponential (Spearman correla-
tion coefficient 0.99). Data are binned into 30 equal-size spatial proximity
intervals (see Section 6.2.5).
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7 .9 spatial proximity in human is associated with co-
expression

Homouz and Kudlicki have also shown a correlation between co-
expression and contact frequency for budding yeast [86], which has
been confirmed by Khrameeva et al. [104] for human lymphoblasts.
Similar to functional enrichment, we analysed whether co-expression
is correlated to spatial proximity. We calculated co-expression mea-
sures based on stem cell expression profiles from Liu et al. [123] for
each pair of segments as proposed by Khrameeva et al. [104], and
used a noise-reducing binning method to test for association between
these measures and spatial proximity values.

Khrameeva et al. [104] showed that co-expression is correlated with
spatial proximity in human fibroblasts. According to the authors and
similar to GO term similarity, the correlation is not obvious and noise-
reduction is necessary to measure the association. Indeed, we were
able to detect a strong correlation between average spatial proximity
values and hESC co-expression measures after using the binning me-
thod described in section 6.2.5 (Pearson correlation coefficient 0.99,
Figure 36). Again, we ensured that this is not caused by correlation
inflation by comparison to randomized data (p-value < 0.01, Sup-
plementary Figure S12). This observation confirms the results from
Khrameeva et al. for stem cells and suggests that co-localization is
functional in many cases, though this association is occluded by ran-
dom contacts.

Hi-C data noise is probably the reason we were not able to find
such correlations in the raw data. While our results clearly show that
it is complicated to detect present trends in the data, these could also
be used to distinguish functional from random contacts. Using co-
expression data sets and GO term similarity, functional gene contacts
could be separated from others. However, it has to be kept in mind
that there are other functional contacts that do not involve genes on
both sides, such as regulator-gene interactions, which would be lost
in such an approach.

7 .10 hoxb and hoxc clusters co-localize in human

During GO term enrichment analysis we detected a contact between
the HOXC cluster on chromosome 12 and the HOXB cluster on chro-
mosome 17 in human. Homeobox (Hox) genes code for vital tran-
scription factors that are involved in embryo development. It is well
known that their expression depends on their order in the genome
in many species [113]. In human, four such clusters exist on different
chromosomes, but the described physical contact is the only existing
one according to our data. The structure of HOX clusters is well con-
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Figure 36: In human, average stem cell co-expression increases with average spatial
proximity (Pearson correlation coefficient 0.99). Data are binned into 30

equal size spatial proximity intervals. The observed association is non-
random (p-value < 0.01).

served between human and mouse [223], but we were unable to find
any similar contacts in mouse.

Considering the important role of HOX genes in embryonic de-
velopment, the identified contact between HOXB and HOXC in hu-
man could be functional. Most HOX clusters in the genome contain
copies of different subsets of Hox genes. However, no copy of HOXB
genes Hoxb1 and Hoxb2 is present in the HOXC cluster [113], while
copies of the HOXC genes Hoxc10, Hoxc11 and Hoxc12 are absent in
HOXB. The physical contact could thus extend the HOXC cluster in
the three-dimensional space, complimenting the linear HOX clusters
with missing genes. In Drosophila, Hox genes are co-regulated and
co-localized in so-called Pc bodies when they are repressed. This in-
dicates that we could expect even more contacts in differentiated cell
types. HOX clusters are

linear sequences of
genes involved in
embryo development

The fact that we are unable to find a similar contact in mouse may
again be caused by the promiscuous Y chromosome segment, which
forms so many contacts to gene-poor regions that such an HOX clus-
ter interaction might simply be lost during q-value filtering.
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7 .11 ctcf and rad1 bind the majority of genes in hsin

spatial clusters

We analysed TFBS in human using ENCODE [8] data on 50 transcrip-
tion factors (for a list, see Supplementary Table S2). We searched for
TFBS in genes of spatial clusters to identify preferences for certain
transcription factors (Figure 37). The heatmap shows the percentage
of genes in a spatial cluster (rows) that overlap with at least one bind-
ing site for a given transcription factor (columns). Transcription fac-
tors are clustered (see dendrogram in Figure 37).

Transcription factors can be grouped into those that are common in
many spatial gene clusters, which are USF1, YNF143, CTCF, RAD21,
RBBP5, SIN3A, TBP, POLR2A and TAF1, those that bind only few
genes in each spatial cluster, which is the largest subset, and a group
of transcription factors which bind nearly no genes in spatial clusters.
An overview of the average percentage of genes in spatial clusters
that has a binding site for a certain transcription factor is also given
in Supplementary Table S3 on page 208.CTCF and

RAD21/Cohesin are
both known to be

involved in spatial
chromatin

organization

In the small clusters of co-localized genes in human an average of
56% and 63% have binding sites for CTCF and RAD21, respectively.
Both these transcription factors are known to be involved in the or-
ganization of the genome structure. CCTC-binding factor (CTCF) is
a highly conserved protein that is required for long range interac-
tions [89]. Its so far been implicated in many different functions, rang-
ing from insulator activities over imprinting, promoter activation and
repression to facilitation of large distance contacts [174, 162, 193].

RAD21 is a subunit of the Cohesin complex and known to be essen-
tial for sister chromatid cohesion [132, 213, 73, 183, 193]. Cohesin has
a ring-link structure that can hold two strands of DNA close together,
therefore being a possible mediator of long-distance DNA contacts.
Chromatin conformation studies have already shown that Cohesin is
able to form such long-range interactions between its binding sites,
and can establish and maintain them even across different chromo-
somes (see for example [72, 139, 32]).

As most genes in spatial gene clusters have binding sites for the Co-
hesin subunit RAD21 and CTCF in human, these two proteins could
play important roles in establishing the contacts between these genes
and/or maintaining them. Both factors often work together; it has
been shown that Cohesin can stabilize CTCF binding [89, 193], and
conversely CTCF is believed to function as a recruiting factor for Co-
hesin [221, 89, 193]. The abundance of sites for both factors in co-
localized gene clusters is thus not surprising.
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Figure 37: Heatmap showing the percentage of genes in a spatial cluster that overlap
with binding sites of a certain transcription factor. CTCF and RAD1 bind
most spatially interacting genes.
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7 .12 inter-chromosomal contacts are not conserved

between human and mouse

Dixon et al. [45] have shown that the domain structure of intra-chro-
mosomal contacts in the form of TADs is conserved between human
and mouse. Using the same data, we show that orthologous regions of
conserved gene order between both species do not have significantly
more conserved contacts than random non-orthologous regions. Out
of 3,207 such regions (see part iv for details on the definition of these
regions), only 278 form at least one conserved spatial contact, and
only 1% of all genes are involved in these conserved interactions.

After random shuffling of association between orthologous regions,
we detected conservation of at least one contact for 234 synteny re-
gions. Because of the generally low overlaps in contacts between or-
thologous regions and the similar results for randomized data, we
conclude that the observed overlaps are not biologically significant
and that the inter-chromosomal interactomes are not conserved be-
tween human and mouse.Intra-chromosomal

contacts are
conserved between
mouse and human,
inter-chromosomal

ones are not

Considering the evolutionary history of both genomes, these results
are not surprising. A number of large-scale rearrangements, involving
regions of multiple megabases, have occurred in both genomes since
species separation (also see part iv). As a result, the mouse genome
appears to be a mosaic version of a human genome broken apart into
its synteny regions, and vice versa. More than 300 such synteny re-
gions exist. For example, the human chromosome 1 contains regions
whose orthologs lie in mouse on chromosomes 1, 3, 4, 5, 6, 8, 11 and
13 [211].

Considering this and the fact that chromosomes keep to their own
territories [35], it is not surprising that the evolutionary macro-re-
arrangements that formed the contemporary genomes disrupted the
inter-chromosomal interactome of the ancestor genome, while keep-
ing intra-chromosomal contacts over relatively small distances like
those in TADs largely constant. In fact, it has been shown that evo-
lutionary chromosome breaks fall preferentially in border regions of
TADs, presumably because disruption of the set of interactions within
one such domain would be deleterious [143].

While these results suggest a lack of conservation of inter-chromo-
somal contacts, we have already shown that, on the functional and
structural level, both human and mouse genomes have a lot of sim-
ilarities. Structurally, the abundance of contacts from short chromo-
somes and flexibility of Y chromosomal regions are present in both
species. Functionally, we have shown a similarly strong association
between spatial proximity and GO term similarity, indicating that
inter-chromosomal transcription factories form in both genomes. Af-
ter the spatial structure of the chromatin is disrupted due to a large-
scale rearrangement, Brownian motion might have led to new ran-



7.13 comparison to yeast interaction network 117

dom contacts between genes with similar functions which then were
fixed due to their functional advantage. Though there is no conserva-
tion of individual gene contacts, these results imply some degree of
conservation of spatial structure and its function.

7 .13 comparison to the published yeast hi-c interac-
tion network

We have adapted the network creation approach proposed by Kruse
et al. [108] for budding yeast and made some changes to account for
the low coverage of Hi-C data in large genomes. One main difference
is that we binned the reads into 500 kb segments and performed p-
value calculation separately for pairs of chromosomes, while Kruse
et al. worked with Hi-C fragments and calculated p-values for the
whole genome.

Though differences in the network structures can be expected due
to the significantly different sequencing depths, we compared our
SINs’ properties to those of Kruse et al.’s yeast segment interaction
network. It has also to be kept in mind that the yeast genome is of
course much smaller, allowing for a higher number of inter-chromo-
somal contacts to form relative to intra-chromosomal ones, and is also
haploid [238]. The yeast genome is known to cluster at the centromere
at a fixed subnuclear position, a fact which dominates the network in
terms of clustering behaviour and other parameters [93, 94]. The yeast

interactome is
strongly clustered
due to centromere
co-localization

Table 15 gives an overview over network sizes of the inter-chromo-
somal segment interaction networks for different q-value cutoffs in
yeast, human and mouse. Even though the genomes are very differ-
ent in size, the total number of nodes is comparable between yeast
and the mammalian networks. This is caused by a higher sequencing
coverage in the Hi-C experiment on the yeast genome, which leads
to an increase in resolution and allows use of shorter segments, ex-
plaining the similar numbers. Consequently, the number of edges in
the yeast segment interaction network at a considerably low q-value
cutoff of 1E− 3 is significantly higher than that of HSIN and MSIN
(between 20 and 16 times higher). We can observe a strong decline of
edges with decreasing cutoff in all three species.

The number of unconnected nodes is dependent on the number
of edges and consequently varies between the species, too. Since the
yeast network strongly clusters around the centromeres, almost all
genes that have at least one connection are part of a single connected
component (cutoff 1E− 3: 100% of genes, 1E− 10: 73.74%). We have
observed a similar effect in both human and mouse, where at a cutoff
of 1E − 3 99.81% of genes and 99.95% of connected genes are part
of this large connected component, respectively. We were also able
to show that there is centromeric clustering to some degree in both
species, similar to yeast.
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Table 15: Size of S. cerevisiae, H. sapiens and M. musculus segment interaction net-
works at different confidence value cutoffs.

Cutoff #Nodes #Singletons #Edges

S. cerevisiae SIN

1E− 3 4,454 284 90,658

1E− 4 4,454 571 44,720

1E− 6 4,454 1,749 16,691

1E− 8 4,454 2,830 8,583

1E− 10 4,454 3,460 5,218

HSIN

1E− 2 5,732 1,604 13,674

1E− 3 5,732 3,232 4,520

1E− 4 5,732 4,390 1,736

MSIN

1E− 2 5,093 730 6,483

1E− 3 5,093 1,082 5,589

1E− 4 5,093 1,273 5,133

We analysed the segments with the highest degrees in the yeast in-
teraction network. At a cutoff of 1E− 6 we found 18 segments with
degrees over 90, while the next highest degree is only 9 (see Supple-
mentary Table S4).

In human, there is no such extremely highly connected set of nodes
within the core; the highest degree of segments observable is 61 for
two segments (at cutoff 1E− 3), and the second highest is 53. Only one
of these three segments is located close to the centromeres of human
chromosomes (according to UCSC cytobands), but four of them lie
on chromosome 21 and two on chromosome Y. As mentioned earlier,
the short, gene-rich chromosomes play a major role in the cluster of
connected segments in human.

In mouse, the clustering behaviour of the network is more similar
to yeast. At a confidence threshold of 1E− 6, there is the previously
described highly connected segment from chromosome 11 with 979

contacts, and a segment from chromosome Y which forms 3,152 con-
tacts, exceeding the highest degrees from yeast by far. Due to the
telocentric nature of mouse chromosomes, these regions lie within or
close to the centromeres. Since all three SINs share a scale-free like
topology to different degrees, the yeast genome’s network structure
falls somewhere between mouse with its extreme hubs and human.

Altogether we can conclude that, like the yeast genome, the human
and mouse genomes tend to cluster. The inter-chromosomal contacts
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are most dense in certain regions of the genome: in yeast and mouse,
it appears to be centromeres that co-localize, while this effect is less
strong in human. There, short chromosomes with many contacts are
the most distinctive property. The main difference between the yeast
network and the human and mouse networks is the higher number
of inter-chromosomal interactions that Kruse et al. were able to iden-
tify in yeast. This effect is completely circumstantial and caused by
the smaller genome size, which leads to a strongly increased aver-
age read coverage and consequentially shorter segment size in yeast.
This influences the p-value calculation, because more true contacts
can be distinguished from the background. Additionally, the shorter
size also can lead to proportionally more inter-chromosomal contacts.
Chromosomes remain in their own territories [35], and the larger the
chromosome, the larger the region that is embedded within such a
territory.

Altogether, the yeast segment interaction networks has some gen-
eral properties that can also be found in the human and mouse seg-
ment interaction networks, and differences caused by different sizes
of the genomes.

7 .14 inter-chromosomal contact prediction success is

highly species-dependent

As described in part ii, the linear genome is constituted of many
domain-like features which depend on one another and form the
linear structure. This feature composition also greatly influences the
three-dimensional structure, since it participates in structuring the ge-
nome into active and inactive regions which are brought together in
the nuclear space through chromatin conformation. In this section we
aim to investigate whether this inter-dependency is strong enough to
predict inter-chromosomal contacts from easy to obtain linear fea-
tures.

Hi-C experiments are extensive and costly, so currently only few
genomes and cell lines have been analysed. If we are able to show
that inter-chromosomal interactions can, to some extent, be predicted
from sequence or other more readily available genomic properties,
this could pave the way for a computational Hi-C equivalent.

We have trained and tested a Random Forest classifier on feature
vectors for 500 kb segment pairs from human, mouse and a com-
bined set. Hi-C networks at the previously described strict thresholds
were used as a basis to distinguish contacts (positive class) from non-
contacts (negative class). We believe that use of a strict threshold can
help reduce the effect of noise and outliers.
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7 .14 .1 Classification accuracy of contacts is low with cost-sensitive clas-
sifier

A cost-sensitive
classifier

mis-classifies many
instances in the

contact class

Our first method to reduce the effect of class imbalance was to apply
a cost-sensitive classifier with adapted misclassification penalties for
the minority class. Results are summarized in Table 16. High accu-
racies can be expected even for simple classifiers due to the extreme
imbalance of the training and test set. We thus need to focus on class-
specific measures, such as area under precision recall curve (AUPRC),
precision and recall for the positive class (class 0). Indeed, precision
and recall, which are high for the majority class for all sets, reach only
medium values on the class of interest (precision: 0.35 to 0.47, recall:
0.28 to 0.62). Similarly, the classifier also achieves good values for the
non-contact class in other measures, while recall, AUPRC and AU-
ROC are much worse for the class of contacts.

Table 16: Evaluation results for a cost-sensitive Random Forest classifier that regards
class imbalance. Class 0 is the positive class, i.e. ‘contact’, class 1 is the
negative class, i.e. ‘no contact’. Precision and recall for the minority class
reach only medium values, and AUPRC for the contact class is extremely
low in human.

Measure H. sapiens M. musculus Combined

Accuracy 99.96% 99.96% 99.97%
AUROC 0.74 0.98 0.85

AUPRC, class 0 0.01 0.37 0.28

Precision, class 0 0.35 0.43 0.47

Precision, class 1 1.00 1.00 1.00

Recall, class 0 0.28 0.62 0.52

Recall, class 1 1.00 1.00 1.00

These medium to very low values for the minority class (0) imply
that either adjustment of the misclassification error is not a sufficient
method to deal with imbalance, or that there is not enough predictive
signal in the data to distinguish contacts from other segments. This
effect is strongest for human, where the AUPRC is close to 0 and
recall and precision reach only 0.28 and 0.35, respectively. For mouse,
the predictability of the positive class appears to be higher, with 62%
of positive instances being predicted as positive. Still, the precision
is low, indicating that many instances are classified false positively.
As expected, the results for the combined set lie between human and
mouse.

From this we can conclude, that at least with this method to deal
with imbalance each species appears to have specific relationships
between features and classes. In human, these relationships are less
pronounced than in mouse and combination of both species does not
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bring a significant improvement. Additionally, in neither species are
features predictive enough to achieve a good approximation of fil-
tered Hi-C data.

7 .14 .2 Classification on a balanced set fails to achieve good precision on
an imbalanced holdout set

We performed random undersampling of the negative class to create
a balanced training set, and evaluated classifier results on an imbal-
anced holdout set comprising 10% of the original data. Undersam-
pling was performed 1000 times with random subsets of the negative
class. Table 17 summarizes the evaluation results for human, mouse
and the combined set of both species. Similarly to the cost-sensitive
classifier, good results for the class of interest are only achieved for re-
call (0.93 to 0.97). Again, the worst prediction results are achieved in
human, where precision for the contact class is extremely low (0.002),
implying a very high number of false positives. Similarly, the AUPRC
is very low (0.01), whereas the classifier trained on mouse data reaches
a medium value of 0.40. The combined dataset performs significantly
worse than the predictor trained on mouse data, reaching a precision
of only 0.01 and AUPRC of 0.05 for the minority class.

Table 17: Evaluation results of inter-chromosomal contact prediction, with a Ran-
dom Forest classifier that was trained on a balanced undersampled training
set and tested on an imbalanced holdout set comprising 10% of the data.
Though recall reaches good values for the minority class in all sets, a large
number of instances are classified false positively.

Measure H. sapiens M. musculus Combined

AUROC 0.99 1.00 0.98

AUPRC, class 0 0.01 0.40 0.05

Precision, class 0 0.002 0.05 0.01

Precision, class 1 1.00 1.00 1.00

Recall, class 0 0.93 0.97 0.94

Recall, class 1 0.87 0.99 0.94

Prediction precision
in the contact class
is species-dependent

We conclude that the relationship between features and contact
classes is very species-dependent. Additionally, when combining data
from both human and mouse, precision and recall of both classes are
only slightly improved over the set of human features alone. This im-
plies that the classifiers are unable to properly distinguish positive
from negative class instances in the human dataset, and gain only
few information from the mouse set when both are combined.

Our goal was to identify if it is possible to use linear sequence and
structure features that are easier to obtain than Hi-C data for pre-
diction of inter-chromosomal contacts. Our results show that this is
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possible to some extent for mouse, whereas a high number of false
positives still remains, but the high species specificity of the evalu-
ation results makes this discovery inapplicable to other species. We
can conclude that there is no species-independent subset of features
tested here that influences inter-chromosomal contact formation so
strongly that it can be used to predict contacts in new species where
Hi-C experiments have not yet been conducted. Such a result would
be highly unreliable and produce a large amount of false positive
predictions, and while it may be close to the truth for some species,
there is no way to assess the true prediction accuracy without Hi-C
experiments.

7 .14 .3 Feature selection confirms lack of predictive power of linear fea-
tures

Table 18: Results of Best First feature selection on the complete imbalanced sets and
1000 randomly undersampled sets. Due to the nature of the data as seg-
ment pairs, each feature appears twice in the list of attributes, once for each
segment. Numbers in brackets refer to the segment to which the listed fea-
ture belongs.

Set Imbalanced set 1000 balanced sets

H. sapiens Gene density (1,2), DNase
I (1), SNPs (2), Chromo-
some (2)

Gene density (1,2), Chro-
mosome (2)

M. musculus H3K27ac (1), RTD (2),
Chromosome (2)

Chromosome (1,2), RTD
(2)

Combined LADs (1,2), LINE (2),
RTD (1,2), H3k27ac (1,2),
SNPs (2), Gene density
(2), Chromosome (1,2)

Gene density (1,2), LINE
(2), H3k27ac (2), Chromo-
some (2)

Feature selection results also confirm that there is no clear correla-
tion between any subset of features and the class. Due to the nature
of the data, each linear feature appears as two attributes in the input,
one for each segment of the pair. Since both segments stem from the
same organism and it was arbitrarily determined which was listed
first and which second, we would expect both attributes of a feature
to be selected if it turned out to be predictive. However, this is only
rarely the case (see Table 18). Selected features are diverse, ranging
from the general attributes ‘Chromosome’ to varying histone modifi-
cations, and almost always only one of the two attributes of a single
feature is selected. Additionally, the overlap between features selected
based on the imbalanced and balanced sets is lower than expected,
and there is almost no overlap between human and mouse. These re-
sults confirm our previous assumption that the relationship between
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features and contact propensity is not only highly species-specific, but
also not very strong for the current set of features.

It is possible that consideration of more or other sequence features
and/or inclusion of intra-chromosomal contacts leads to better pre-
diction results. However, our results imply that the highly predictive
features vary between species, and that even an improved classifier
cannot be transferred to another species and achieve the same re-
sults. The high flexibility of the inter-chromosomal contact network
and a generally lower conservation compared to intra-chromosomal
contacts, which also have distinct properties, makes it almost impos-
sible to develop a species-independent contact classification method.
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C O N C L U S I O N

Using a network-based approach and published ESC Hi-C data, we
have analysed the intrinsic characteristics of the inter-chromosomal
interactome in two mammalian species, H. sapiens and M. musculus.
We analysed relation to other genomic features, functional and struc-
tural aspects and performed a holistic comparison of the two species’
genome structures.

We have applied Yaffe and Tanay’s [230] normalization approach,
followed by the p-value based contact filtering suggested by Kruse
et al. [108] with modifications to account for large eukaryotic chro-
mosomes. For both human and mouse we created inter-chromosomal
segment and gene interaction networks (SINs and GINs, respectively)
of similar sizes, comprising around 4,500 edges. Biological networks
often have a scale-free topology, a characteristic we can also observe
for SINs but not in their randomized versions. Hub segments with
many contacts in a physical contact network can be assumed to ei-
ther have a very central position in the nucleus that allows them to
contact many other segments at once, or be an artefact of the Hi-C
method.

At the current state of research, most Hi-C data are captured over
millions of cells and then averaged. While there are advances on
single-cell Hi-C [138], the data used in this dissertation stem from
a conventional Hi-C experiment. A highly connected segment or hub
can in this case also be caused by a genome region that is not em-
bedded into the DNA structure in a fixed way, but instead can move
around flexibly and contact many different genome regions in dif-
ferent cells. Due to the extremely high amount of contacts of hubs
in mouse and general position of these hubs close to centromeric or
repeat-rich regions, we conclude that this option is more probable.

When comparing the SINs of human and mouse, we can iden-
tify some similarities besides the overall scale-free topology, which
is more pronounced in mouse. Both species have contacts on the Y
chromosomes which are very interactive and thus, presumably, very
flexible. We assume that lower gene-density and thus a lower num-
ber of functional contacts allows this chromosome, and especially the
regions close to the repeat-rich tail, to move around more freely than
others in the nucleus.

Additionally, we show that short chromosomes tend to form more
contacts than long ones. This feature is especially pronounced in hu-
man, where chromosome length is negatively correlated with (length-
normalized) number of contacts. This implies a more central position

125



126 conclusion

of short chromosomes in the nucleus. However, it is possible that this
observation is an artefact of gene-richness. Many of the short chromo-
somes in human are considerably gene-rich, and it has been shown
previously that the nucleus organizes chromosomes in two phases,
where gene-rich chromosomes are located in the inner and central
phase [97].

In other species such as S. cerevisiae, centromere co-localization is
common [93, 94]. In human and mouse, we can also see a higher
abundance for contacts close to the centromeres. In mouse, a highly
connected segment on chromosome 11 appears to have a central role
in a spatial cluster of centromere close regions, while in human this
trend is only weak. Due to the sequencing and mapping steps, cen-
tromeres themselves cannot be covered in Hi-C experiments, so it is
possible that stronger associations exist.

Besides structural features of the SINs we also investigated the fea-
ture composition of trans-interacting segments. As has been reported
previously [120, 138], we show that autosomal trans-interacting seg-
ments in human are enriched in active histone marks, as are other
features such as open chromatin or SINE. In mouse, however, the dis-
tribution of these features is very similar between trans-interacting
and other segments, with the exception of LADs, which are enriched
in both human and mouse contacting segments. We are unsure what
causes these differences, but we believe that it could be caused by dif-
ferent differentiation stages in the ESCs of human and mouse used
in the Hi-C experimens. If we hypothesize that inter-chromosomal
contacts are preferentially formed between active regions,such a dif-
ference would explain the observations. However, it is also possible
that the observed differences mirror only actual differences in the
human and mouse genome. For example, the frequency of histone
marks is very different in both genomes to begin with. Additionally,
we know that according to the compartment model by Lieberman-
Aiden et al. [120] contacts are formed preferentially between regions
of the same activity state, but not limited to active regions. It is thus
possible that the observed differences are only caused by different
feature compositions of both species’ genomes.

We have further conducted an analysis of transcription factor bind-
ing sites in inter-chromosomal contacts and can confirm the impor-
tant role of CTCF and RAD21 in either establishing or maintaining
these interactions[89, 174, 193, 72, 139, 32].

While investigating the relationship of spatial proximity and func-
tional features, such as co-expression and GO term similarity in inter-
chromosomal segment pairs, we discovered that large amounts of
noise introduced by random interactions obscures any signal in the
raw data directly derived from Hi-C experiments. In previous re-
search, this problem has been circumvented by a complexity reducing
binning approach. However, while we show that division of the data
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into bins unveils a very strong positive correlation between average
functional features and spatial proximity in both human and mouse,
we have concluded that this binning method is not statistically valid
on its own. It’s main function is to reduce variance in the data, un-
covering possible underlying trends, but this property can also lead
to statistically insignificant results.

However, comparing our results to randomized data we show that
the positive correlations between average GO term similarity and spa-
tial proximity in human and mouse, and co-expression (for which no
comparable data are available for mouse) and spatial proximity in
human, are statistically highly significant. We conclude from this that
there is, in fact, a tendency for segments with similar contact profiles
to have functional similarities, but have to keep in mind that there
is a very large amount of random contacts captured with Hi-C data
which obscure this relationship.

We suggest that, in future, noise reduction has to be performed
carefully on the Hi-C data to ensure its statistical validity. Addition-
ally, it might be possible to use functional similarity of segments con-
taining genes as an indicator for non-random contacts in filtering.

Since Hi-C and familiar methods are currently expensive and ex-
tensive, we evaluated to what extent inter-chromosomal contact for-
mation can be predicted from sequence features. We trained a Ran-
dom Forest classifier on a set of linear features, comprising repeats,
histone modifications and others, to distinguish segments that form
inter-chromosomal contacts from those that do not. Extreme class im-
balance in favour of the non-contact class made classification more
complicated and required measures such as balancing the input set
or using cost-sensitive classifiers. We found that the strength of the
relationship between these features and the classes is highly species
dependent. While in mouse the Random forest classifier trained on
a balanced set was able to distinguish positive from negative class
instances fairly well, a similar classifier trained on human data mis-
classified too many negative instances, rendering the method useless.
We conclude that, with current state of knowledge, it is not possible
to develop a species-independent classification method that uses lin-
ear features as input to predict inter-chromosomal contacts without
the use of Hi-C.

While we have shown many similarities in human and mouse SINs,
we were unable to find conservation of individual inter-chromosomal
contacts between genes. It has been shown previously that the intra-
chromosomal contact landscape is largely conserved [45], however,
due to large-scale chromosome rearrangements (see part iv) and the
tendency of chromosomes to keep in their own territory [35], it is al-
most impossible for the contacts of a certain region to be conserved in
both species. However, we believe that functional and structural sim-
ilarities such as those we have described before, clearly show some
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degree of conservation for the properties of the inter-chromosomal
interactome. Though, in contrast to the intra-chromosomal interac-
tome, this conservation is less pronounced at the level of individual
genes, the overall properties of the network are still similar in human
and mouse. However, since many non-specific and presumably non-
conserved contacts are also formed, the networks also exhibit some
striking differences, as described above.

In future work, it would be interesting to investigate the topolog-
ical differences and similarities between different cell types. Integra-
tion of intra-chromosomal contacts into these networks might also
help understand their properties better. Ultimately, a network-based
interpretation of the complete human and mouse chromatin inter-
actome at different stages of differentiation would provide a more
complete picture of the chromatin organization. Additionally, inte-
gration of other mammalian or eukaryotic genomes when new Hi-C
data become available could shed more light on the functional and
random aspects of these networks. While we have employed a bias-
reducing normalization method, Hi-C still struggles with problems
such as noise, biases and sequencing depth. The advent of methods
with lower signal-to-noise ratio, such as TCC and single cell Hi-C, can
also greatly enhance the resolution of these analyses and our under-
standing of the three-dimensional genome structure.



Part IV

E V O L U T I O N A RY G E N O M I C S :
S Y N T E N Y M A P P E R

Discovery of new genomic features, elements or regula-
tory relations always comes with the hard task of inter-
pretation. Distinguishing properties with functional value
from others is often not easy, but aided by comparison
with similar species. Evolutionary genomics is the science
of retracing the development of multiple species’ genomes
and their respective elements. This part presents a novel
method, SyntenyMapper, for the identification of small ge-
nome rearrangements between species pairs.
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C O M PA R I N G G E N O M E S O N B A S I S O F S Y N T E N Y

Comparative genomics is a vast field, yet the most basic step is to
find conserved elements (genes, pseudogenes, repeats, regulatory se-
quences) and regions in the genome. Establishing such equivalent
genome regions is a pre-requisite to tracing the evolutionary pro-
cesses that shaped contemporary genome sequences from a com-
mon ancestor. It is also central for the comparison of position-specific
functional, structural and evolutionary features measured by mod-
ern high-throughput techniques, such as transcription factor binding
sites, chromatin accessibility or SNPs. Since evolutionary conserva-
tion preserves functionality, researchers can draw conclusions on the
biological importance of a feature from its state of conservation. Existing methods

focus on either
large-scale or
small-scale
conserved regions

Identifying equivalent genome regions usually means detecting so-
called synteny regions, which represent the longest sequence regions
in two genome that share a common evolutionary origin. Usually,
these synteny regions contain many conserved segments that are of-
ten disrupted by short regions of lower or no similarity [160]. Due to
an unknown number of rearrangement events that occurred after the
species diverged from the last common ancestor (species separation),
the order of these equivalent synteny regions is different in both ge-
nomes. Rearrangements are usually (somewhat arbitrarily) divided
into two classes based on their size: i) macro-rearrangements, which
represent multi-megabase sized intra- and inter-chromosomal reloca-
tions of large synteny blocks, and ii) micro-rearrangements [160], or
relocations of smaller segments (below 1 Mb) within a synteny region.

This hierarchical structure of evolutionary processes, where large
synteny regions are on the one end of the scale and small gene re-
arrangements on the other, is rarely considered in comparative ge-
nomics methods. In addition, each of these tasks themselves are com-
plex. Identification of long genome regions with a common ancestor
can only be achieved when gaps are allowed and micro-rearrange-
ments are ignored. Detection of small-scale orthologous regions on
the other hand is made complicated by gene duplications and multi-
domain proteins, which lead to local similarity hits. The following
overview describes the general types of methods applied to the iden-
tification of equivalent genome regions (see Figure 38), though this
list is not exhaustive.

sequence-based methods The most common approaches for
the identification of synteny regions as described above are based on
whole-genome sequence alignments. A popular example are synteny
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Figure 38: General overview of different approaches for identifying orthologous re-
gions in two genomes. Sequence-based methods (e.g. ENSEMBL Com-
para) start with short local alignments that are extended to the longest
possible alignments over gaps. Breakpoint-based methods use ortholo-
gous elements (called ’anchors’) to find the minimum number of rear-
rangements that transforms one genome into the other. Positional orthol-
ogy tries to distinguish orthologs from paralogs by analysing gene neigh-
bourhoods.
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regions from ENSEMBL Compara [56, 211], which extend a short local
alignment seed until the similarity score falls below a pre-defined
threshold. As a consequence, the process creates a set of medium-
length alignments with a low number of gaps and mismatches. In a
second elongation step, pairs of such alignments are chained if they
are sufficiently close. This way, the procedure ensures that the longest
possible regions with common ancestors are found.

Another similar approach based on unique 16-mers instead of raw
sequence was published by Liao et al. [119]. Whole-genome align-
ments are very runtime expensive, so use of k-mers leads to a much
faster search for synteny regions. Like ENSEMBL Compara, Liao et
al.’s method aims to find the longest conserved regions, making it ap-
propriate for analysing large-scale genome rearrangements, but not
for comparisons at the level of genes. A breakpoint

emerges in a
sequence of
conserved genes if
two genes are
neighbours in only
one of the two
species

breakpoint-based methods These methods [160] use break-
points in the contemporary genomes to reconstruct their evolutionary
history as a series of translocations, inversions and duplications. To
achieve this, genomes are represented as sequences of homologous el-
ements or anchors, such as genes. An example of a breakpoint-based
method is the genome rearrangements Web server GRIMM [204].
Based on Hannenhalli and Pevzner’s algorithm [79], it is built upon
an initial alignment of orthologous elements and is able to distin-
guish macro- from micro-rearrangements. However, its focus is the
reconstruction of rearrangement series that shaped the genomes, so
it focuses on finding macro-rearrangements and the most important
micro-rearrangements within them. Small rearrangements are dis-
carded. As a consequence, it is a well-suited method for the identifica-
tion of macro-rearrangements, but fails to completely reconstruct evo-
lutionary history on the level of genes. Additionally, GRIMM is not
able to deal with gene duplications, also called ‘word problems’ [160].

positional orthology Positional orthology can be considered
an umbrella term for all ortholog prediction methods that consider
on gene neighbourhood for their prediction. These methods, such
as localSynteny [96] or MSOAR [58, 186] aim to produce a one-to-
one mapping of equivalent genes, while most other methods create
many-to-many ortholog groups due to gene duplications. Positional
orthology takes the direct neighbours of orthologs into account and,
drawing conclusions on the evolutionary time point at which a cer-
tain ortholog was created, can map it to its equivalent in the other
genome. The resulting pairs have a higher probability to fulfil similar
functions in their species than paralogs which could have acquired a
new function. The main disadvantage of these methods is that they
consider only the neighbourhood composed of the adjacent genes on
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both sides of a gene in question. Consideration of larger neighbour-
hoods could enhance the prediction.

The above described general types of methods all concentrate on
only one aspect of the evolutionary links between two species, even
though they are highly inter-dependent. We believe that no single ap-
proach is able to adequately compare quantitative or qualitative prop-
erties along eukaryotic genomes. For example, comparative genomics
studies that revolve around genes usually only compare orthologs,
even though their immediate environment, composed of regulatory
elements in intergenic regions or adjacent genes, can provide addi-
tional valuable information. As a consequence, comparison of iso-
lated pairs of orthologs is not sufficient. An example are the Home-
obox (Hox) genes, which are expressed in the order in which they
lie on the chromosome [158, 220]. Another example are transcription
factor binding sites in the intergenic regions or domain-like features
such as the previously described LADs, which determine the subnu-
clear position of the region. Such features are known to correlate with
hetero- and euchromatin (see part ii, [69]) and thus can also influence
gene expression. Together this stresses the importance of the linear
environment in comparative genomics.

It appears as if synteny regions, which were originally defined as
regions of conserved gene order in two species, would serve as a
perfect basis for the comparison of genes and their neighbourhoods.
However, the term has evolved, and since there are only few regions
of continuous similarity between mammalian genomes, it now allows
for many gaps and mismatches to capture the longest possible re-
gions that derived from a single ancestor sequence. Often, the more
general term synteny blocks is often used [160] to describe conserved
regions that are interrupted by local micro-rearrangements. Naturally,
these regions formed by macro-rearrangements are not suitable for a
comparison of genes and their environments. Instead, detection of
maximal length blocks of conserved gene order, also termed collinear
blocks, is necessary.

We have created a new method, SyntenyMapper, which has already
appeared in a publication listed on page vii, that aims to combine
both the approaches focused on positional orthology and those that
concentrate on detection of macro-rearrangements. Respecting the hi-
erarchical structure of the genome, our method uses pre-calculated
synteny regions and orthologous genes to find rearranged regions of
conserved gene order within the synteny blocks. Not only does it rec-
oncile macro- and micro-rearrangements this way, it also allows for
consideration of genomic properties of orthologous gene neighbour-
hoods, making it well-suited for a gene-based genome comparison.

SyntenyMapper can be best compared with a class of orthology-
based tools developed for the detection of collinear blocks, though
these usually work on a genome-wide scale. The most common meth-
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ods in this class are Cyntenator [173], MCScanX [216] and i-AD-
HoRe [164], which use alignment techniques based on orthologous
genes to identify regions of conserved gene orders. When applied
to synteny regions instead of genomes, these methods can theoret-
ically identify all collinear blocks, making them comparable to our
method. However, the genome-wide application of these methods of-
ten leads to disregarding of very small rearrangements. In contrast,
SyntenyMapper aims to detect all micro-rearrangements within pre-
defined synteny blocks, independent of the number of elements they
contain and including those of single genes. Cyntenator, i-ADHoRe
and MCScanX are less precise, allowing for gaps and mismatches of
gene pairs, while our method defines blocks of perfectly conserved
order that are ideal for comparison of closely related genomes (see
section 11.4). Additionally, the complexity of the task is greatly re-
duced through the use of predefined synteny regions, leading to a
very short runtime for a whole-genome comparison. SyntenyMapper:

finds all micro-
rearrangements in
synteny regions &
creates a one-to-one
ortholog mapping

In addition to the previously described advantages, SyntenyMap-
per implements a preprocessing step in order to create a set of syn-
tenic one-to-one orthologs. Therefore, it can be compared to posi-
tional orthology methods to some extent. In contrast to these, Syn-
tenyMapper relies on known orthology relationships and then filters
many-to-many groups within them using additional information on
gene order. The conservation of gene order in a larger segment is
thus the main factor for the one-to-one orthology mapping, which is
superior to methods only considering direct neighbourhoods.

We have made SyntenyMapper available as stand-alone command
line tool on our website1. More importantly, we wanted to make it
accessible to biologists with little experience in computer science, and
have included it into the Galaxy [62, 63, 17] platform as a software
repository2 (repository name ‘synteny_mapper’). For a more detailed
description of the Galaxy framework see section 10.4.1.

We have applied SyntenyMapper to 25 eukaryotic species pairs for
a general analysis of factors driving sequence rearrangements, and
the pre-computed results as well as input data from the ENSEMBL
Compara database can also be accessed and downloaded from our
website.

The following sections describe the SyntenyMapper method in de-
tail, followed by biological applications that show its value for com-
parative genomics.

1 http://webclu.bio.wzw.tum.de/syntenymapper
2 https://toolshed.g2.bx.psu.edu

http://webclu.bio.wzw.tum.de/syntenymapper
https://toolshed.g2.bx.psu.edu
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M AT E R I A L A N D M E T H O D S

10 .1 syntenymapper

SyntenyMapper is a tool for the refinement of large conserved ge-
nome blocks through identification of micro-rearrangements. As in-
put it takes a set of synteny regions, such as ENSEMBL, and ortholo-
gous gene pairs.

(ensembl) synteny regions are defined as long genome re-
gions in two species that have evolved from the same sequence in
the last common ancestor. They mirror so-called macro-rearrange-
ments, i.e. movements of large genomic blocks to another genomic
location that happened in one organism after species separation. For
closely related species, the genome structure of one can be recon-
structed from the other by re-organization of these synteny regions
(e.g. section 2.4).

The challenge in the detection of these regions lies within the cor-
rect determination of the borders. Synteny regions could be disrupted
in one genome by short or long sequence stretches that have no equiv-
alent in the other species. Multiple methods have been proposed so
far (for a detailed description see section 9), and all of them provide
suitable input for SyntenyMapper.

orthologous genes are pairs of genes in different species that
have evolved from one common ancestor. Tools for identification of
orthology rely on sequence identity in the simplest cases, but more
complex and correct approaches are also available.

Orthology relations are not necessarily pairwise. If there was one or
more gene duplication in one organism after species separation, mul-
tiple so-called paralogs of this gene exist, and many or all of them
might be detected as orthologs of the corresponding single gene in
the second organism. This relationship is termed a one-to-many or-
thology group. Similarly, gene duplication before species separation
or independent duplication of genes in both species can lead to a
many-to-many orthology group, where there exist pairwise orthology
relations between all pairs of genes.

10 .1 .1 Transforming orthology groups into one-to-one orthology pairs

These complex relationships make it hard to identify gene movements
in a genome. It is not clear which genes correspond to each other

137
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in the two species, and due to independent duplication events after
species separation there are many cases of genes that have an ortholog
partner which is not their evolutionary equivalent. For example, if a
gene a1 in genome A is the ortholog to gene b1 in genome B, but
gets duplicated into gene a′1, there will be an orthology relationship
between a′1 and b1, but they will not be equivalents because a′1 was
created only after species separation.

SyntenyMapper thus takes an approach that transforms complex
orthology groups into one-to-one pairs of equivalent genes. While it
solves this problem during runtime for a maximum efficiency, it can
be considered a pre-processing step and is the same for all synteny
regions:

a. All genes that lie within the synteny region are grouped into
one-to-one, one-to-many and many-to-many ortholog groups

b. Each one-to-many group is reduced to a single one-to-one or-
tholog pair with the highest sequence identity

c. Asymmetric many-to-many groups (those containing n genes in
the genome A and m genes in the genome B, with n 6= m) are
converted to symmetric many-to-many groups.
If n = m + δ, exactly δ genes will be removed from the genome
A based on an ascending ranking according to the average per-
cent sequence identity of each gene to all other genes in the
group.

d. Many-to-many groups, all of which are now symmetric, are split
into individual one-to-one orthologous pairs. For any many-to-
many group consisting of n genes {a1, a2, ..., an} in genome A
and m genes {b1, b2, ..., bm} in genome B, n = m, this is achieved
by considering only orthology relationships between the genes
with the same sequential number (i.e. a1 with b1, a2 with b2, etc.).
Sequential numbers are given depending on the direction of the
synteny region.

Genes without orthologs and the shorter of two overlapping genes
are excluded from further analysis. For resolving one-to-many re-
lationships, SyntenyMapper assumes that the corresponding genes
share the highest sequence similarity. This is not necessarily true, as
after gene duplication the copy might assume the role of the original,
which is then under less selective pressure and can accumulate more
sequence changes. In such a case it is not possible to detect the origi-
nal gene, and SyntenyMapper’s assumption thus is only an arbitrary
solution.

To convert symmetric many-to-many groups into one-to-one pairs,
we assume that the order of corresponding genes is the same in both
species. This disregards micro-rearrangements of paralogs, but is a
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good approximation for the subsequent analysis, as it is not possible
to clearly identify corresponding genes.

An illustration of the effects of this pre-processing is shown in Fig-
ure 40a, where two synteny regions with their harboured genes and
their respective pairwise orthology relationships are shown, obtained
from an external source like ENSEMBL. Genes without orthologs (e.g.
gene a2) are excluded from consideration. A one-to-many group is
formed by gene a10 from genome A and its two orthologs in genome
B. The genes a4, a8 and a9 form an asymmetric many-to-many group
together with genes b3 and b5. All remaining genes are already part
of a one-to-one relationship.

After conducting the pre-processing steps described above, the ex-
ample synteny regions look as depicted in Figure 40b. Gene a2 has
been excluded and gene a10 now only has the single ortholog with the
highest sequence identity (gene b9). The asymmetric many-to-many
group has first been converted to a symmetric one by removal of gene
a9, and was then split into ortholog pairs according to gene order, re-
sulting in one-to-one orthologous gene pairs b3 − a4 and b5 − a8.

After pre-processing, SyntenyMapper uses the resulting set of one-
to-one orthologs to identify two types of evolutionary events: translo-
cation and inversion of gene order. Translocations are caused by ge-
nome regions that break off from their original position and reinsert
at another location in one species, causing an apparent disruption of
gene order compared to the second organism. During an inversion,
this region reverses its direction before reinsertion.

Every time a gene or a set of genes moves around the genome, it
leads to cases of unconserved gene neighbourhoods, also called break-
points. In the following section we define genome A to be the refer-
ence genome:

A breakpoint (ai/bj, ai+1/bl) is defined by two orthologous gene
pairs ai, bj and ai+1, bl if j± 1 6= l, where genes ai, ai+1 are from the
reference genome A and genes bj, bl are from genome B. This can
be interpreted as two neighbouring genes from the reference genome
whose orthologs are not neighbours.

When a rearranging genomic region reinserts into genome B at a
new position, two breakpoints emerge in A, one at each end, as illus-
trated in Figure 41a. Consequently, the genes between two subsequent
breakpoints in A and their orthologs in B either form a so-called rear-
rangement block, i.e. a set of genes that lie either within a translocated
or inversed segment, or belong to a non-rearranged part of the origi-
nal synteny region that is enclosed between two blocks. To distinguish
between these two cases, SyntenyMapper compares the length of sub-
sequent blocks. To achieve this it iterates over breakpoints and looks
up the preceding and following breakpoints. If no such points exist,
start or end positions of the synteny region are taken as reference
points. The identified three breakpoints define two gene segments
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(a) Illustration of a synteny region between two species,
with numbered boxes representing genes and con-
necting lines representing orthology relationships.
Gene a11 and gene b11 have no orthologs in their
synteny regions, but are orthologous to each other.
Genes a2 and b4 have no orthologs.

(b) During pre-processing, one-to-many (genes a10
and b9, b10) and asymmetric many-to-many (genes
a4, a8, a9 and b3, b5), groups are first converted into
symmetric groups by excluding genes with the lowest
sequence identity to the rest of the group (gene a9),
and subsequently paired as one-to-one orthologs
based on gene order. Breakpoints (zig-zag lines) are
identified as described in the methods section.

(c) Using breakpoints, SyntenyMapper defines rear-
ranged segments, shown in black, as new synteny
regions 1.1 to 1.3 within the long original region.

Figure 39: Illustration of SyntenyMapper pre-processing and result for an example
synteny region.



10.1 syntenymapper 141

that are adjacent in genome A but not in genome B. The shorter of
both is defined as a new rearrangement block and synteny region,
which lies within the longer original region.

(a) Illustration of two breakpoints emerging at both ends of a
translocated segment a3, a4, a5 in genome A and b50, b51, b52
in genome B (hatched box). By definition a breakpoint is con-
stituted by two orthologous gene pairs ai/bj and ai+1/bl if
j ± l 6= 1, as shown in the boxes underneath the schema.
The second breakpoint is described by a′i/b′j and a′i+1/b′l .
White and black boxes mark the four genes forming the first
(a2/b2, a3/b50) and the second (a5/b52, a6/b3) breakpoint, re-
spectively. A is used as reference genome to define the block
formed by a micro-rearrangement as the genes that lie be-
tween the adjacent breakpoints in A, in this case a2, a3 and
a5, a6. The genes between these two breakpoints and their or-
thologs in B form a block.

(b) Effect of reversing the reference genome used in the ex-
ample shown above. The reference genome used here for
the definition of breakpoints is A′ (=B in a)). The de-
tected breakpoints are (a49/b44, a50/b3) (white boxes) and
(a52/b5, a53/b45) (black boxes). Based on the adjacent break-
points in the new reference genome A′, the same translocated
segment (hatched box) is detected as above.

Figure 40: Illustration of index-based breakpoint detection with different reference
genomes.

The choice of a reference genome is arbitrary, as each translocated
segment in B with respect to A is also a translocated segment in A
with respect to B (see Figure 41b).

SyntenyMapper not only identifies rearrangements within a single
synteny region (termed ‘internal rearrangements’), but also between
two regions (‘external rearrangements’). To achieve this, all genes
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without orthologs (‘orphan genes’) in their own synteny regions are
collected during the first step of identifying internal rearrangements.
In Figure 40b, gene a11 in the synteny region 1 of genome A and
gene b11 in region 2, genome B, do not have orthologs in their own
synteny regions, but are orthologous to each other. After all synteny
regions are handled, the set of orphan genes are searched for pairs
of orthologs, giving priorities to those with maximum sequence sim-
ilarity in the case of multiple orthologs for one gene. SyntenyMapper
then tries to elongate the external rearrangement block by checking
if neighbouring orphan genes exist in both species and if they are or-
thologous as well. Through this the method is able to identify longer
translocations between synteny regions.

Figure 40c shows the refinement of synteny regions achieved by
SyntenyMapper. As a result of pre-processing, each gene has a single
syntenic orthologous partner, and inversed and translocated blocks
are identified and redefined as new synteny regions. Genes or groups
of genes that were excluded from their synteny region during one of
the prior steps, e.g. due to missing orthologs or external rearrange-
ments, are excluded and do not appear in the output. The method
generates two output files:

a. Coordinates of all synteny regions, both original and newly de-
fined (internal/external)

b. Syntenic orthologs for each synteny region and their coordi-
nates

The pseudocode in algorithm 1 on page 143 describes the main
method of SyntenyMapper.

10 .1 .2 Mapping of intergenic regions

SyntenyMapper is also able to map intergenic regions that can be
considered equivalent between two genomes. This application is not
available in the published software tool, which focuses on identifica-
tion of conserved gene order blocks. Mainly developed for our own
purpose, this complete mapping of genes and intergenic regions is
supposed to be the basis of feature comparison between the genomes
of mouse and human already mentioned in section 3.2.

As SyntenyMapper identifies blocks of conserved gene regions, the
main idea behind this mapping is that the intergenic region between
two genes in such a block can be considered equivalent in both ge-
nomes. This does not imply that there is sequence conservation in
this region. Instead, intergenic regions might harbour specific regu-
latory elements or have a specific GC content to allow for more or
less flexibility of the DNA at this position. These features often influ-
ence nearby genes and, if functionally relevant, need to be conserved
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input : ENSEMBL Synteny regions SR, one-to-one orthologs
output : Maximum length blocks of conserved gene order
function j(i): returns index of gene i’s ortholog in genome B
for all syntenic regions sr ∈ SR do

I: List of genes in sr, genome A, ordered by location, after
pre-processing
for all genes i ∈ I do
if j(i− 1)± 1 6= j(i) then

// (a(i−1)/bj(i−1), ai/bj(i)) is breakpoint

// Find following breakpoint (ai′/bj(i′), ai′+1/bj(i′+1)):

find i′ where j(i′)± 1 6= j(i′ + 1);
// Find preceding breakpoint

(ai′′/bj(i′′), ai′′−1/bj(i′′−1)):

i′′ := previous breakpoint;
// Three breakpoints enclose two blocks

if ||(i′ − 1)− i|| > ||(i− 1)− i′′|| then return
new block: (i′′ → (i− 1)) ;
; // first block is shorter

else return new block: (i→ (i′ − 1)) ;
; // second block is shorter

end
;

end
Algorithm 1 : Pseudocode of SyntenyMapper’s main method. Spe-
cial cases like inversions or overlaps are not described for the sake
of simplicity.
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if the genomic structure of the gene location is also conserved. Syn-
tenyMapper thus maps intergenic regions between conserved genes
as well, providing a basis for the TrackMapper tool described in sec-
tion 10.3.

This mapping is straightforward in general, however, sometimes
the presence of genes without orthologs or duplicates excluded in a
previous step make it more difficult. In such cases, the number of in-
tergenic regions between the orthologous genes in conserved order is
different in both species. We applied a simple method to solve this
problem, splitting the single intergenic region on one genome into
equal sized regions of the same number as there are in the second
genome. If the number of intergenic regions to be mapped is differ-
ent yet higher than 1 in both species, we used a greedy approach and
mapped as many intergenic regions pairwise as possible following
the order along the chromosomes. For the remaining regions we per-
formed the same splitting procedure as above, mapping the larger
number of intergenic regions from one species to the last such region
in the other.

10 .1 .3 Implementation

SyntenyMapper is implemented in Java and integrated in the Galaxy
platform [62, 63, 17] as repository ‘synteny_mapper’, for easy use
and accessibility. It provides the option to download synteny regions
and orthologs directly from ENSEMBL or upload own data in a spe-
cific format. Additionally, pre-computed results and input data for
ENSEMBL Compara synteny regions can be downloaded from our
website1. SyntenyMapper computes micro-rearrangements fast, since
each region is treated separately and no all-vs-all comparison for two
whole genomes is necessary. It is able to analyse the human and
mouse genomes in under one minute on a standard Linux worksta-
tion.

Additionally included in the ‘synteny_mapper’ repository is a Cir-
cos-based [110] tool for visualization and TrackMapper, a tool for com-
parison of UCSC-style feature tracks for two species on basis of their
syntenic orthologs.

10 .2 circos visualization

Circos [110] is a visualization software that is suited well for ge-
nomic representations. It relies on the circular arrangement of ele-
ments, termed ideograms, which can be either genomic regions, chro-
mosomes, or other. In addition to that, it can add feature plots, e.g. a
graph that shows gene density, or rectangular elements such as tran-
scription factor binding sites or genes. The most striking feature that

1 http://webclu.bio.wzw.tum.de/syntenymapper

http://webclu.bio.wzw.tum.de/syntenymapper
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uses the circular arrangement is the possible addition of links or rib-
bons, which can connect any point in one genomic region or ideogram
to another.

These features make it a good visualization tool for our purposes.
We use Circos to visualize a synteny region in two genomes as ideo-
grams, add genes as feature elements and connect syntenic orthologs.
To easily identify rearrangements within a region, we apply different
colors to in-order ortholog pairs and rearranged genes. As a result,
the internal rearrangements are silhouetted against the remainder of
the synteny region.

If there is an external rearrangement in the region, our Circos adap-
tation also includes the second synteny region in a quarter of the
circle, and adds links between externally translocated genes. All of
this is achieved by feeding Circos a prepared configuration file that is
adapted for each synteny region based on SyntenyMapper’s output.

If the users prefers a linear visualization over Circos plots, our
Galaxy tool also provides this option. We have implemented this sec-
ond graph with R [166], again showing genes as coloured boxes with
lines representing orthology, and rearrangements marked as different
colors. Both Circos and R are automatically downloaded and installed
upon installation of the SyntenyMapper Galaxy tool.

10 .3 trackmapper

TrackMapper provides a direct application of SyntenyMapper’s re-
sults, allowing the user to directly compare so called feature tracks
from two species. A feature track can be provided in a BED format
file, containing a set of genomic elements and their genomic posi-
tions (chromosome number, start and end coordinates) as well as an
optional score in columns 1-4, respectively. Genomic features can be
anything from regulatory elements such as transcription factor bind-
ing sites, in which case the score could refer to the binding strength,
to sequence-inherent features like repeats.

Using SyntenyMapper’s one-to-one gene mapping, TrackMapper
can compare the overlap of the given feature with each gene, and
compare this number between species. It does this by calculating av-
erage coverage, i.e. the percentage of the gene’s base pairs overlap-
ping with the feature (e.g. a LINE repeat) if no signal weight in the
form of a score is given, or the average value of the feature if a signal
weight is given (e.g. values representing each base pair’s relative time
of replication).

TrackMapper normalizes the resulting list or vector of average cov-
erage values for each gene by conversion into z scores, through sub-
tracting the mean and dividing by standard deviation. Let zA and
zB be the vectors of feature z scores for syntenic one-to-one orthologs
found by SyntenyMapper in genomes A and B, respectively. The mea-
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sure of similarity between any two feature tracks, calculated as z =

|zA − zB|, can be downloaded or further analysed with other Galaxy
Tools, e.g. for the plotting of histograms. Additionally, TrackMapper
provides the vector mean as a compact similarity measure between
the two tracks over all genes.

Currently, a widely used tool for mapping of tracks between species
is LiftOver [83], which was not designed for this purpose and is also
asymmetrical, in that it converts a feature track from one reference
species to the other. By contrast, TrackMapper is able to directly com-
pare feature tracks from two species on the gene level without defin-
ing one genome as a source and the other as a target.

10 .4 integration of syntenymapper into galaxy

10 .4 .1 The Galaxy Platform

Galaxy is an (online) platform and framework for Bioinformatic tools
aimed at easy use and re-use. The user does not have to install the
platform to use common tools (e.g. liftOver, filtering, many NGS ap-
plications) through well-known HTML forms. For more specific soft-
ware that has been integrated into the platform or for more perfor-
mance-demanding tasks, a local Galaxy installation can be set up eas-
ily. Galaxy does not handle data in form of flat-files, but rather as
history objects. The user can upload a data object from a file on his
computer or directly load it from UCSC through Galaxy’s own inter-
face. The history window that is always at the right margin of the
browser window contains all data the user has loaded, as well as all
tools he has run on it. It is thus easy to recreate results from other
groups by rerunning their shared history objects, often combined into
a workflow.

Sharing is a very important concept within Galaxy, since users are
encouraged to share their experiments/workflows and data with the
community, making an effort in making Bioinformatic analyses more
reproducible than they are now. The users do not have to understand
every single step to be able to use a workflow on their own data, since
all they have to do is change the input.

Galaxy lets the user work with very large datasets, since there is a
lot of computer power behind the project. Loading of large data and
running of complex analyses takes its time, but the user can continue
working on other things while the history objects turn from ‘running’
(marked yellow) to ‘done’ (green) or ‘error’ (red). Every output and
input file can be viewed in the browser (see Figure 41) and down-
loaded.

From the developer’s side, Galaxy makes it fairly easy to integrate
a new tool into the platform. It demands a command line-ran tool
and an XML-file that contains all information on input, output, files



10.4 integration of syntenymapper into galaxy 147

Fi
gu

re
4

1
:T

he
G

al
ax

y
Br

ow
se

r.
Th

e
pa

ne
lo

n
th

e
le

ft
co

nt
ai

ns
av

ai
la

bl
e

to
ol

s,
th

e
pa

ne
lo

n
th

e
ri

gh
t

co
nt

ai
ns

hi
st

or
y

ob
je

ct
s.

In
th

e
m

ai
n

pa
ne

l,
da

ta
fr

om
on

e
of

th
es

e
ob

je
ct

s
ar

e
di

sp
la

ye
d.



148 material and methods

Figure 42: The SyntenyMapper tool integrated into Galaxy. In the tool panel (left),
the package containing its three sub tools is listed. In the main panel,
input options and detailed help information is given. The history panel is
not shown.

for testing and help. The latter is again very important, since Galaxy
targets biologists with poor knowledge of computer science, so it is
vital to explain well to the audience what the tool does and how it has
to be used. The XML format itself is very powerful and reaches from
simple text box-style input fields to conditional fields and input drop
down lists that are read from a column of an input file. Unfortunately,
the documentation relies mainly on examples, making it often hard
to understand how to achieve a certain result.

Before upload into the so-called tool shed that hosts all software de-
veloped for Galaxy, the user has to download a local version, which
works identically to the web server. Here one can try and test all tools,
going on to testing them in the online test toolshed before finally pub-
lishing them in the official tool shed, where users can access them. In
order for your software to become tested, you have to supply test files
and corresponding outputs, so that the platform can assess whether
your tool works correctly.

Altogether Galaxy is an online framework for easy access to tools
that enables (mostly) easy integration of newly developed tools. Syn-
tenyMapper is Java-based and integrated into Galaxy as a command
line runnable .jar package. Input and output files are defined as fol-
lows:

Input (Figure 42)

• Latin name of the first species
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• Latin name of the second species

• Option 1: Download input files from ENSEMBL directly

– Choose ENSEMBL version (default: current version 70)

• Option 2: Use already downloaded input files from the history
panel

– File containing ENSEMBL synteny regions in a certain syn-
tax, tabular

– File containing ENSEMBL orthologous genes in a certain
syntax, tabular

Option 2 requires files in a very specific format and is aimed at
users who have already downloaded the input files in a previous
step and want to reuse them. For more advanced users who want
to use their own synteny regions and orthologs, a detailed definition
of the files’ syntax is given in the help information below. If the user
wants to load the data from ENSEMBL, it is automatically put into
the correct format and will directly be used by the tool itself.

Output

• File containing redefined synteny regions, tabular

• File containing the one-to-one gene mapping, tabular

• When Option 1 was chosen:

– File containing ENSEMBL synteny regions, tabular

– File containing ENSEMBL orthologous genes, tabular

The first output file contains all ENSEMBL synteny regions in a
new format, adding those that were newly defined during the tool’s
runtime and a status that distinguishes them from original regions.
The second output file contains the one-to-one mapping of genes, list-
ing a reference identifier to the corresponding synteny region, name,
chromosome, start and end for both organisms, direction in the sec-
ond organism.).

Output files 3 and 4 are only generated if download from EN-
SEMBL was chosen and can be used to rerun the analysis very fast.

Performance

Overall runtime of the tool itself is very short and takes less than
a minute on a standard Linux workstation. Only download of data
from ENSEMBL takes longer, but this has to be done only once for
each species pair. It is not uncommon for Galaxy that loading of data
takes a long time, so this is not a real drawback.
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10 .4 .2 Visualization

The SyntenyMapper tool package not only contains the mapping tool
itself, but also the other earlier described tools. This section describes
the make-up of the visualization tool in Galaxy, which installs its own
Circos and R version upon installing. Usage is very easy after running
of SyntenyMapper.

Input

• Output file 1 from SyntenyMapper

• Output file 2 from SyntenyMapper

• A chosen synteny region from a drop down list of available
regions

• Linear version check box

Output

• A PDF graphic of the visualization

10 .4 .3 TrackMapper

Similar to the visualization tool, TrackMapper requires only the Syn-
tenyMapper output and a BED file containing a feature track. The
output is a tabular file identical to the input gene mapping with an
additional column for the similarity measure and a comment line in-
cluding the summarized measure.

10 .5 ensembl compara test data

We performed a whole-genome mapping with SyntenyMapper on
H. sapiens and M. musculus (assemblies hg19 and mm10, respectively),
using data on synteny regions and orthologs from ENSEMBL Com-
para [56, 211] version 73. A total of 356 synteny regions with a mean
length of 7.63 Mb and 6.89 Mb in human and mouse, respectively,
were obtained. The complete set of ENSEMBL protein-coding genes,
containing 23,618 and 22,796 unique genes in human and mouse with
mean lengths of 59.8 kb and 44.3 kb, respectively, was used to map
genomic coordinates to pairwise orthologs. ENSEMBL Compara pro-
vides 27,453 pairwise orthology relationships between protein-coding
genes. In human, 55.10 genes on average lie within each synteny re-
gion, while mouse synteny regions contain an average of 58.40 genes.
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10 .6 global comparison of 25 eukaryotic species pairs

ENSEMBL Compara offers synteny regions only for a limited set of
species pairs, most of them involving human. The complete list can
be found in Table 19. We downloaded synteny regions and orthologs
for all provided pairs, and performed a general comparison of these
eukaryotic species.

Table 19: List of species pairs for which ENSEMBL Compara synteny regions are
available.

C. familiaris (Dog) E. caballus (Horse)

G. gallus (Chicken) A. carolinensis (Lizard)
M. gallopavo (Wild turkey)

H. sapiens

B. taurus (Cow)
C. jacchus (Marmoset)
C. familiaris (Dog)
E. caballus (Horse)
F. catus (Cat)
G. gallus (Chicken)
G. gorilla (Gorilla)
M. macaca (Macaque)
M. domestica (Opossum)
M. musculus (Mouse)
O. anatinus (Platypus)
O. cuniculus (Rabbit)
P. troglodytes (Chimp)
P. abelii (Orang-Utan)
R. norvegicus (Rat)
S. scrofa (Pig)

M. musculus (Mouse)

B. taurus (Cow)
G. gallus (Chicken)
C. familiaris (Dog)
O. anatinus (Platypus)
S. scrofa (Pig)
R. norvegicus (Rat)

10 .6 .1 Calculation of sequence similarity between synteny regions

We calculated the sequence similarity of ENSEMBL Compara syn-
teny regions with our own implementation of the sequence compar-
ison algorithm proposed by Rieck and Laskov [171]. This trie-based
algorithm is able to compute in linear runtime. A trie is a tree struc-
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ture similar to a suffix tree, with the distinction that for a finite set of
strings or words, every string is represented in the path from the root
to one of the leaves, instead of the suffixes of a single string. Long
sequences such as synteny regions are converted into finite sets of
words by splitting into overlapping k-mers, in our case k = 6. These
are then inserted into a new trie by iterating over each 6-mers’ charac-
ters and, starting from the root of the trie, following the edge with the
corresponding character to the next node. If no such edge exists, one
or more new edges need to be inserted. This ensures that the building
of the trie happens in a runtime of O(k× n), with n being the length
of the sequence. The number of times a string exists in the sequence
can be counted for each node during runtime.

The algorithm then makes use of the trie’s maximum depth of k
by performing a parallel depth-first search on the tries of the two
sequences. A distance score is calculated for each node using the inner
function m, which compares the number of occurrences of the string
represented by that node in both sequences. The score is accumulated
over the whole trie using the outer function⊕. In our implementation,
we used the sum ∑ as outer function ⊕ and the Manhattan distance
as inner function m (Equation 19).

m = |φ(x)− φ(y)| (19)

x, y nodes in the trie

φ(x) returns number of occurrences of the string that is readable
from the root of the trie to node x in the sequence

10 .7 comparison of syntenymapper with cyntenator , i-
adhore and mcscanx

SyntenyMapper’s main objective to refine regions obtained by macro-
rearrangements through identification of conserved gene order blocks
is unique. However, similar results can be achieved by applying soft-
ware tools for the detection of collinear blocks, i.e. blocks of conserved
gene order, to ENSEMBL syntenic regions instead of whole genomes.
This way, they can identify micro-rearranged regions within the syn-
tenic regions and with a similar computation speed to SyntenyMap-
per. We thus compared our results for human and mouse, assemblies
hg19 and mm10, to those from CYNTENATOR [173], i-ADHoRe [164]
and MCScanX [216].

We applied the three methods to synteny regions of human and
mouse instead of the whole genomes, to achieve a comparability with
SyntenyMapper results. In all methods, genomes are represented by
ordered lists of genes, and (symmetrical) orthology information is
given in a table, including sequence identities if possible. CYNTENA-
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TOR was run with default parameters and the homology type option
‘BLAST’ to consider these sequence identities. The necessary guide
tree was simple ((human mouse)), since it only had to include two
species. i-ADHoRe contains a large amount of parameters that can
be set individually. We used values suggested in the documentation,
including gap size and cluster gap size of 15, probability cutoff 0.001,
q-value 0.9 and three anchor points. We ran MCScanX_h with default
parameters.

Unfortunately, there is no gold standard in this field of compar-
ative genomics, and genome simulation is fairly complex. We thus
performed a qualitative comparison of the three methods. As visual
guideline for the interpretation, we used the Circos visualization of
SyntenyMapper results. This tool draws all genes that are mapped to
each region and a subset of the orthology relationships, both down-
loaded from ENSEMBL. SyntenyMapper results are mainly visual-
ized through colouring. We thus believe that this visualization can
help us identify reasons for discrepancies and incorrect assignments
of all three methods, including SyntenyMapper itself. Additionally,
we performed manual comparison of result files in certain cases.

Additionally to qualitative comparisons, we applied an approach
recently suggested by Ghiurcuta and Moret [61] to measure the qual-
ity of the detected collinear blocks. In their publication they write up
a formal definition of syntenic blocks (SBs) to enable measurement of
concordance with this definition and, as such, quality of a set of syn-
tenic regions. They require of each set of SBs in multiple genomes,
or SB families (SBF) that they are connected by homology relation-
ships between markers such as genes. Collinearity or conserved gene
order is not required, but defined as well in subsequent definitions.
Genes without orthologs are excluded from the quality assessment.
For a detailed description of the formal definitions see the original
publication.

Using these definitions, Ghiurcuta and Moret are able to suggest a
number of measures that allow comparison between synteny detec-
tion methods and quality assessment. In the below described mea-
sures, markers are genes and those without any homologs are ig-
nored.

• SBFs gives the number of SBs (two organisms) or SBFs (more
than two organisms)

• w/o homologs in the SBF lists the number of SBFs that contain at
least one marker without a homolog in the SBF, but elsewhere

• Content overlap lists the number of SBFs that contain at least one
marker that also appears in another SBF

• Selective content gives the number of non-collinear blocks
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• Block incompleteness is denoted as E(X)
E′(X)

, with E(X) being the
number of markers lying in the SBF according to the used tool’s
output, and E′(X) being the total number of markers lying in
the SBF’s region

• Relaxed score counts the markers in an SBF that have at least
one homolog within the SBF, and divides it by total number of
markers in the SBF

We calculated these measures for SyntenyMapper’s, Cyntenator’s
and i-ADHoRe’s results for the collinear block detection between hu-
man and mouse (assemblies hg19 and mm10, respectively).

10 .8 mapping of feature composition in the human and

mouse genome

We applied TrackMapper to the following genomic features in hu-
man and mouse (assemblies hg19 and mm10, respectively): LADs,
LINE, LTR, SINE, Open chromatin, RTD and Single Nucleotide Poly-
morphism (SNP). For a detailed description of these features see sec-
tion 2.1. To match the assemblies, we used liftOver to update the coor-
dinates of the BED files before applying TrackMapper. Additionally,
we created randomized versions of all 14 human BED files by shuf-
fling the coordinates for each element, while maintaining the chro-
mosome. Using TrackMapper, we calculated difference measures for
all one-to-one orthologs as identified with SyntenyMapper, and for
the inferred orthologous intergenic regions, and compared observed
to randomized data with the Kolmogorov-Smirnov test [129] and the
Rank sum test [126].

kolmogorov-smirnov test is a statistical method to test if two
sample sets were drawn from the same distribution. It can be applied
either to two variates or a single variate which is compared to a pre-
viously defined probability distribution. In our case, we tested if the
distributions of difference measures in the observed and random data
were significantly different with respect to their shape.

rank sum test or Wilcoxon-Mann-Whitney test also investigates
the significance of two distributions’ difference. It’s null hypothesis is
that the two distributions are the same. Contrary to the T-test it works
well on non-normal distributions. While the Kolmogorov-Smirnov
test compares two distributions’ shape, the rank sum test compares
their location.
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11 .1 syntenymapper : a new tool for refining syntenic

orthologs

The previous chapter describes the algorithm of SyntenyMapper and
its associated tools. This section shows different applications of the
method in the field of evolutionary genomics. The main task of Syn-
tenyMapper is to identify so-called micro-rearrangements, i.e. small-
scale translocations or inversions of genes or groups of genes. Other
methods for the reconstruction of evolutionary history focus mainly
on large-scale developments. Many of these methods are available
so far and provide high-quality synteny regions, which mirror the
macro-rearrangements that happened after species separation. Syn-
tenyMapper uses these synteny regions and performs a refinement by
detecting small-scale evolutionary events within and between them.

It was developed to use synteny regions from ENSEMBL Com-
para [56, 211], but can perform on any other method’s synteny re-
gions if they match the required format. SyntenyMapper comple-
ments the set of one-to-one orthologs from ENSEMBL by finding syn-
tenic one-to-one orthologs among one-to-many/many-to-many or-
thologous groups. It subsequently uses these to identify deletions,
inversions, local and distant translocations within ENSEMBL synteny
regions, further refining the definition of these regions. As a result,
SyntenyMapper provides the user with a set of evolutionary building
blocks with completely conserved gene order between two species.

This insight into the small-scale evolutionary history of two ge-
nomes can enhance the general knowledge in the field of evolutio-
nary genomics. Additionally, it can help to measure importance of
the immediate gene environment. An example for the importance of
gene neighbourhood are the Homeobox (Hox) genes, the expression
of which is determined by their order on the chromosome [158, 220].
SyntenyMapper allows the user to identify blocks of conserved gene
order, which he can then subject to GO enrichment analysis to detect
similar cases of neighbouring sets of genes with related functions. If
the order and/or neighbourhood of genes is vital for their function
and expression profile, there is a high selection pressure against the
disruption of this group of genes. There are also intergenic features
that influence gene expression, such as LADs which can control the
subnuclear localization of the entire genomic region. Using the blocks
of conserved order identified by SyntenyMapper, scientists can com-
pare the location of such elements in corresponding genomic regions
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not only confined to the neighbourhood of a single gene or a very
vague position within a synteny region.

Through the integration into the Galaxy platform the tool is eas-
ily accessible and can be used directly on data downloaded from
ENSEMBL Compara or user-supplied orthologs and synteny regions.
The resulting refined regions and their associated annotation tracks
can be visualized using Circos [110] and analysed with our own track-
comparison tool TrackMapper as described in the previous sections.
In the following sections we demonstrate the merits of our method
by applying it to pairs of eukaryotic genomes.

11 .2 detection of micro-rearrangements between the

human and mouse genomes

We applied SyntenyMapper to synteny regions and orthologs be-
tween the genomes of H. sapiens (hg19) and M. musculus (mm10),
using data obtained from the ENSEMBL Compara database. Human
and mouse, though not very closely related, share a similar genome.
Since species separation the genome has been rearranged in both
species, leading to a high number of synteny regions which are dis-
tributed differently in the two organisms’ genomes. As a result of the
high similarity within the regions, synteny region length is highly
correlated between the species (Figure 43).

Figure 43: Comparison of syntenic region length in human and mouse. The regres-
sion line is shown as dotted line (Pearson correlation coefficient 0.9932).
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Table 20 holds an overview of the frequency of different types of or-
thology relationships in human and mouse. The majority of protein-
coding ENSEMBL genes (70.07%) have exactly one ortholog within
their synteny regions, and are thus already one-to-one ortholog pairs.
The second largest subset (12.30%) is constituted by the genes that do
not have any orthologs and are therefore excluded by SyntenyMap-
per. Human and mouse

share 356
ENSEMBL synteny
regions of similar
length

Genes in many-to-many groups within a single synteny region
make up only 2.30% of all genes, and most of these groups are asym-
metric. Finally, genes that only have orthologs in other synteny re-
gions (external orthologs) make up a mere 1.27% of the data. All
other types of orthology relationships, such as genes with orthologs
in regions not covered by synteny regions, represent less than 2% of
all cases and are ignored by the current version of SyntenyMapper.

During the pre-processing step, SyntenyMapper converts (asym-
metric) many-to-many ortholog groups into syntenic ortholog pairs.
A total of 941 genes (2.1% of all human and mouse genes) are ex-
cluded due to this process as non-syntenic, and a total of 10,840 non-
syntenic relationships from the original set of 27,453 ENSEMBL Com-
para orthologs are eliminated with them. SyntenyMapper is left with
16,613 syntenic ortholog pairs between human and mouse, which it
uses to identify 2,898 new synteny regions. The resulting set of syn-
teny regions comprises the 356 original ENSEMBL Compara synteny
regions (10.94%) as well as the newly detected blocks of genes that
were subject to micro-rearrangements within (2,817, 86.57%) or be-
tween them (81, 2.49%).

Internal micro-rearrangement are thus much more frequent than
external ones or even the macro-rearrangements that formed the orig-
inal synteny regions. However, the latter are of course significantly
longer, containing 73.68% of all genes compared to blocks subject to
internal rearrangements, which harbour only 1.52 genes on average.
The order of genes in long synteny regions is thus mostly disturbed
by very short blocks of one or two genes. The majority of

micro-
rearrangements
occur within
synteny regions

Distant translocations of genes between different synteny regions
are rare and, in the specific case of the human/mouse comparison
presented here, almost always contain only a single gene. The rea-
son for the difference in frequency of distant and internal rearrange-
ments is probably the proximity itself. Within a single synteny re-
gions, genes lie within a linear distance of 7 to 8 Mb to each other,
making it easier for a genomic region that broke off to re-insert close-
by. It is also known that spatial proximity is one of the triggers for
rearrangements [125], which correlates with linear proximity [120].

Identification of these micro-rearrangements can greatly improve
our understanding of evolutionary events shaping extant genomes
and is instrumental for comparing the properties of regions of con-
served gene order between two species. The following examples il-
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Table 20: Frequency of different cases of orthologous relationships for a given gene
in a syntenic region, human vs. mouse. The first five cases are covered by
SyntenyMapper, the remainder of cases make up less than 2% of all genes.
Internal orthologs: Orthologous genes that lie in the same synteny region.
External orthologs: Orthologous genes that lie in different synteny regions
Synteny-block-free region: Genomic region that is not covered by ENSEMBL
synteny region.

Type of orthology relationship # Genes

No ortholog 5,705 (12.30%)
One internal ortholog 32,505 (70.07%)
Many internal orthologs 1,062 (2.29%)
One external ortholog 487 (1.05%)
Many external orthologs 105 (0.23%)

Many in- and external orthologs 204 (0.44%)
One ortholog in a synteny-block-free
region

99 (0.21%)

Many orthologs in a synteny-block-
free region

15 (0.03%)

Many orthologs: internal, external,
and in synteny-block-free regions

166 (0.36%)

lustrate how SyntenyMapper complements the pre-calculated EN-
SEMBL synteny regions, which are created in such a way that their
length is maximal, by identifying the previously ignored small rear-
rangements within them.

Figure 44 shows a medium sized synteny region that has the same
orientation in human and mouse. Most of the genes within share
one-to-one orthology relationships. However, the order of genes is
obviously disrupted by the translocation of a large block of seven
genes, which is located at the beginning of the region in human and
at the end in mouse. The order and direction of genes within this
block is preserved. Interestingly, there is a sizeable gap between syn-
tenic orthologs and translocated genes on the human chromosome,
which can imply that the translocation happened in H. sapiens after
human-mouse divergence. Discoveries like this are informative on
their own, since they shed light on the processes of evolutionary ge-
nomics within different organisms. Additionally, they can serve as
the basis for functional analyses, considering not only single genes
but their conserved neighbourhood as well.

This example illustrates how easy it is with SyntenyMapper and the
Circos-based visualization tool to identify recent genome rearrange-
ments that make any linear comparison impossible. The analysis is
not restricted to translocations within one region: Figure 45 shows
the relationship between two different synteny regions that harbour
an external ortholog pair. These rare external translocations (1.27% of
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(a)

(b)

Figure 44: Visualization of SyntenyMapper results for a syntenic region (ENSEMBL
identifier 44542) in human (dark grey ideogram, right) and mouse (light
grey ideogram, left). Ticks are placed at 100 kb distance and the num-
bers represent positions in Mb on the human and mouse chromosomes
15 and 7, respectively. The Circos circular plot illustrates the positions
of genes/intergenic regions for one syntenic region in both species and
the correspondence between them. Micro-rearrangements are illustrated
by color-coding, with syntenic orthologs and out-of-order genes shown
in light green and blue, respectively. A large block of seven genes (blue)
was translocated in either human or mouse. In the Galaxy version of the
plots, gene annotations are given as labels and as direct links to ENSEMBL
through clicks onto the gene track.
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all genes) almost always involve single genes in human and mouse.
We hypothesize that translocations of single genes over large linear
distances are favoured by short spatial distances between the chro-
mosomal regions involved, as has been shown for cancer cells [125].
As a consequence, these events could help infer knowledge about the
three-dimensional structure of the genome and the flexibility of the
chromosome regions involved in the external rearrangement. All mi-
cro-rearrangements illustrated in this section were not annotated by
ENSEMBL Compara and cannot be directly inferred from orthology
relationships, stressing the value of SyntenyMapper for comparative
genomics.

Figure 45: Translocation of a single gene from the human region 44801 to the mouse
region 44598, shown with red line. Ticks are placed at 100 kb distance and
the numbers show the positions in Mb on chromosomes X in human and
mouse (region 44801) as well as on chromosomes 19 in human and 7 in
mouse (region 44598). For colour legend see Figure 44 (b).
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11 .3 syntenymapper genome comparisons for 25 eukary-
otic species pairs

ENSEMBL Compara [56, 211] provides synteny regions and orthologs
for 25 pairs of eukaryotic species, 16 of them involving human. Us-
ing SyntenyMapper, we conducted a large-scale analysis of micro-re-
arrangements for these organisms. We performed research on correla-
tions between evolutionary distance and size and number of synteny
regions, internal and external micro-rearranged regions (see Table 21).

Table 21: Statistics of pre-computed synteny mapping for ENSEMBL Compara (ver-
sion 73).
SR: ENSEMBL Compara synteny regions.

Regular SR Internal SR External SR

Species
pair

# Or-
thologs
(total)

Nr. Avg.
gene
Nr.

Nr. Avg.
gene
Nr.

Nr. Avg.
gene
Nr.

Dog -
Horse

16,154 201 67.02 1,487 1.50 395 1.00

Chicken -
Lizard

5,875 261 18.94 456 1.94 43 1.16

Chicken
- Wild
Turkey

11,948 114 88.40 1,031 1.65 130 1.28

Human -
Cow

16,673 388 32.58 2,627 1.45 209 1.03

Human -
Marmoset

16,663 266 48.67 2,822 1.19 358 1.01

Human -
Dog

16,357 308 38.62 2,641 1.60 223 1.03

Human -
Horse

16,360 246 50.78 2,586 1.45 121 1.03

Human -
Cat

16,198 265 47.70 2,524 1.35 142 1.01

Human -
Chicken

10,926 423 17.92 1,605 1.94 191 1.18

Human -
Gorilla

17,582 84 173.99 2,689 1.03 195 1.0

Human -
Macaque

16,911 219 62.98 2,520 1.11 327 1.02

Human -
Opossum

12,280 496 19.09 2,113 1.25 173 1.01

Human -
Mouse

16,613 356 34.38 2,817 1.52 81 1.03

Continued on next page
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Statistics of synteny mapping for ENSEMBL Compara // continued

Regular SR Internal SR External SR

Species
pair

# Or-
thologs
(total)

Nr. Avg.
gene
Nr.

Nr. Avg.
gene
Nr.

Nr. Avg.
gene
Nr.

Human -
Platypus

1,910 210 7.24 293 1.30 7 1.14

Human -
Rabbit

11,501 229 37.35 1,749 1.60 156 1.02

Human -
Chimp

17,249 139 94.74 2,425 1.63 115 1.02

Human
- Orang-
Utan

16,778 150 91.36 2,617 1.13 113 1.02

Human -
Rat

16,314 546 21.64 2,577 1.64 264 1.05

Human -
Pig

16,314 357 25.33 3,655 1.44 115 1.08

Mouse -
Cow

16,427 439 31.01 1,967 1.33 195 1.02

Mouse -
Chicken

10,786 502 15.59 1,280 2.12 231 1.10

Mouse -
Dog

16,060 364 35.53 1,977 1.44 285 1.0

Mouse -
Platypus

1,860 235 6.63 223 1.31 9 1.0

Mouse -
Pig

14,045 397 22.81 3,180 1.52 137 1.04

Mouse -
Rat

18,741 554 26.74 2,205 1.49 616 1.03

To better understand relationships between evolutionary distance
and evolutionary events, we did a general analysis on the data from
ENSEMBL Compara. Among the most closely related species pairs
in the set are human vs chimp (P. troglodytes) and mouse vs rat (R.
norvegicus). Both of them share a high number of orthologs, however,
the number of ENSEMBL synteny regions differs vastly: while hu-
man and chimp share only 139 synteny regions, there are 554 between
mouse and rat. Because the average synteny region length between
human and chimp is about four times the size of synteny regions in
mouse and rat (22.0 Mb and 4.8 Mb, respectively), the percentage of
the genomes covered is similar (human vs chimp: 87.76%, mouse vs
rat: 94.64%).
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Using branch lengths of the UCSC species tree [133] (available for
all species pairs considered in this study except for those involving
gorilla, pig, orang-utan, common marmoset and turkey) we analysed
the correlation between the evolutionary distance and micro- and ma-
cro-rearrangement related genome features. In general, one would
expect more closely related species to share a low number of very
long synteny regions, and an increase in the number and decrease
in the average length of regions with growing evolutionary distance.
Indeed, for species pairs separated by short or medium evolutionary
distance, this expectation yields true and the average synteny region
length and their number exhibit a negative exponential correlation
(Figure 46).

Figure 46: Dependence of synteny features on the average synteny region length (x
axis) and evolutionary distance (circle size, inferred from branch lengths
in Miller et al [133], calculated as the average number of substitutions per
site).
Negative correlation between the number of synteny regions and their av-
erage length (Inset: logarithmic axis scales). Closely related species (small
circles) tend to have fewer, longer synteny regions. Distant species (large
circles) tend to have high numbers of very short syntenic regions. Crosses
correspond to the species pairs with no distance information available.

Closely related
species have few
long synteny regions

However, more distantly related species (e.g. human vs platypus)
share fewer synteny regions than would be expected based on this
exponential correlation pattern. The deviation is caused by very low
sequence similarity between species in the cases of human vs platy-
pus, mouse vs platypus and lizard vs chicken. The overall dissimilar-
ity of the genome caused by the large evolutionary distance leads to
a large portion of the genome that is not covered by synteny regions
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because the sequences have mutated too much. In the case of human
vs platypus, only 21% of the genome is covered by synteny regions
(see Table 22).

Table 22: Evolutionary distance and genome coverage by synteny regions for all
species pairs.

Species pair Evolutionary
distance

Percentage of longer ge-
nome covered by EN-
SEMBL synteny regions

Dog - Horse 0.25 94.84%
Chicken - Lizard 0.91 53.98%
Chicken - Wild Turkey - 94.48%
Human - Cow 0.36 88.66%
Human - Marmoset - 89.82%
Human - Dog 0.35 89.29%
Human - Horse 0.30 89.21%
Human - Cat 0.35 89.34%
Human - Chicken 1.10 77.82%
Human - Gorilla - 91.95%
Human - Macaque 0.07 90.77%
Human - Opossum 0.72 76.70%
Human - Mouse 0.46 87.52%
Human - Platypus 0.98 20.43%
Human - Rabbit 0.36 73.13%
Human - Chimp 0.02 85.35%
Human - Orang-Utan - 83.73%
Human - Rat 0.46 87.11%
Human - Pig - 87.85%
Mouse - Cow 0.53 88.42%
Mouse - Chicken 1.28 73.68%
Mouse - Dog 0.53 88.42%
Mouse - Platypus 1.16 19.91%
Mouse - Pig - 87.08%
Mouse - Rat 0.16 93.58%

Internal micro-
rearrangement:

Within a synteny
region

External micro-
rearrangement:

Between two
synteny regions

There are two other distant species pairs (human vs chicken, mouse
vs chicken) that do not deviate from the general trend as much, but
still show a low genome synteny coverage of the respective longer
genomes due to significant size differences (human genome 3.1 Gb,
mouse genome 2.7 Gb, chicken genome 1.1 Gb).

SyntenyMapper is a gene-based approach and as such dependent
on the number of orthologs, which is naturally higher for closely re-
lated species. Figure 48a shows that the number of internal micro-re-
arrangements per synteny region, ranging between 0 and 30, increases
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with the increasing average synteny region length and decreasing
evolutionary distance of pairs. The number of micro-rearrangements
within a region thus depends on the size of this region, which is in
turn correlated with the evolutionary distance, as illustrated in Fig-
ure 46.

Even though the total number of micro-rearrangements indirectly
depends on the degree of relationship between the genomes, there
is no correlation between the density of micro-rearrangements (in-
ternal or external) and evolutionary distance (Figure 48). From this
we can conclude that the driving factor for the formation of micro-
rearrangements is the harbouring region’s length, while they are not
directly dependent on the evolutionary relationship. Additionally, we
found only a slight positive correlation between sequence distance,
determined as described in section 10.6.1, and the number of internal
micro-rearrangements (Pearson correlation coefficient 0.22). In par-
ticular, low sequence similarity does not necessarily lead to a high
number of micro-rearrangements (see Supplementary Figure S13 in
the appendix). Number of internal

micro-
rearrangements
depends only on size
of the harbouring
region

Therefore, higher numbers of micro-rearranged regions per synteny
region in more closely related species are mainly due to the greater
length of their synteny regions. By contrast, the size of the rearranged
regions (i.e. the number of genes they contain) does not show any
dependence on the synteny region length or evolutionary distance
(Figure 48b), because the mechanisms of transposition, which is the
main cause of small-scale translocations, are the same in all species.

While complex processes involving double strand breaks of chro-
mosomes cause macro-rearrangements [125], smaller rearrangements
are most often caused by the cut-and-paste mechanism of DNA trans-
position [136]. Our results show that there are constraints that limit
the total length of the translocated genome region. In biotechnol-
ogy, DNA transposons are often used as vector elements, and it is
known that transposition efficiency decreases with increasing size of
the cargo [91, 44, 10]. We show that the average cargo of transposons
in higher eukaryotic genomes comprises between 1 and 2.5 genes for
translocations over short linear distances, and between 1 and 1.2 genes
for more distant translocations. This indicates that the length con-
straints of transposable elements also depend on the linear distance
between the source and the target position in the genome. This in-
sight could be valuable for biotechnology, where ways to overcome
the length limitations in transposons are needed [10, 234].

External translocations between different synteny regions are less
common than internal rearrangements, with an average number of 0

to 4 per synteny region. Overall there is only a slight tendency for
the longer synteny regions of more closely related species to con-
tain a higher number of such external micro-rearrangements (Fig-
ure 50a). In the majority of cases, only a single gene is subject to an
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(a)

(b)

Figure 47: a) The average number of internal micro-rearrangements per synteny re-
gion strongly correlates with synteny region length and evolutionary dis-
tance. Evolutionary distant pairs of species share short synteny regions
with few internal micro-rearrangements.
b) The size of the internal micro-rearrangement (average number of genes
involved) does not correlate with the synteny region length and evolutio-
nary distance.
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Figure 48: Average number of micro-rearrangements (internal and external) per
megabase of synteny regions versus evolutionary distance. No correlation
can be observed.

external translocation, regardless of the size of the harbouring region
or the evolutionary distance (Figure 50b). However, with the excep-
tion of mouse and platypus, which harbour only 1.0 external micro-
rearranged gene on average, all distantly related species pairs (mouse
vs chicken, human vs platypus, human vs chicken, chicken vs lizard)
have somewhat longer external translocations than other species pairs
(average > 1.05).

Such larger external micro-rearrangements are especially common
between chicken (G. gallus) and wild turkey (M. gallopavo). In par-
ticular, SyntenyMapper was able to detect a group of six consecutive
genes that was translocated from one synteny region to another since
species separation (see Figure 50). As the only closely related species
pair with common larger external translocations, chicken and turkey
genomes behave very differently from the others in this aspect. Fur-
ther research could be able to identify what triggers these differences
and gather more knowledge on evolutionary mechanisms.
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(a)

(b)

Figure 49: a) No clear correlation between synteny region length and rearrangement
number can be observed for external micro-rearrangements.
b) Similarly, the number of genes involved in external translocations is
generally independent of the syntenic region length. However, with the
exception of mouse and platypus (average number of genes in externally
translocated regions: 1.0), distant species pairs (large circles) tend to have
somewhat longer externally translocated regions (average > 1.05).
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Figure 50: A translocation involving six consecutive genes between two synteny re-
gions in chicken (G. gallus, dark grey) and wild turkey (M. gallopavo,
light grey), marked by red lines. Ticks are placed at 100 kb distance and
the numbers show the positions in Mb on chromosomes 6 in chicken and
8 in turkey (region 47198) as well as on chromosomes 17 in chicken and
19 in turkey (region 47135). For colour legend see Figure 44 (b).
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11 .4 comparison of syntenymapper with cyntenator , i-
adhore and mcscanx

As described in section 10.7, we applied three widely used collinear
block detection tools termed Cyntenator, i-ADHoRe and MCScanX
as well as our own to ENSEMBL synteny regions and compared the
results both qualitatively and quantitatively according to measures
proposed by Ghiurcuta and Moret [61]. SyntenyMapper is the only
tool developed to regard the hierarchical structure of synteny regions
in eukaryotic genomes and detect all minor rearrangements in macro-
rearranged regions. However, tools for collinear block detection such
as Cyntenator [173], i-ADHoRe [164] or MCScanX [216] can also be
applied to synteny regions instead of whole genomes to achieve a
similar effect. While this approach misses rearrangements between
synteny regions, these are very rare. We discarded single-gene rear-
rangements from SyntenyMapper’s results to obtain better compara-
bility between the methods.

11 .4 .1 Cyntenator is unable to detect inversions

Cyntenator uses the Smith-Waterman Algorithm usually applied to
genomic sequences, and applies it to genomes which are represented
as sequences of genes. Homology relationships can be obtained pre-
viously with BLASTP [4]. Through this easy and straightforward ap-
proach it is able to identify local alignments of genes. These local
alignments represent blocks of conserved gene order in both species.
In contrast to our method, Cyntenator can handle multiple genomes
when provided with a phylogenetic guide tree that can be obtained
from other sources. Starting with pairwise alignments for neighbour-
ing leaves, it uses a progressive alignment procedure to integrate
other species. A phylogenetic distance-dependent penalty is used to
ensure that homologous genes from closely related species are in-
cluded with priority over those from distantly related species. For a
genome with n genes, Cyntenator performs with a runtime complex-
ity of O(n3) and space complexity of O(n2) [173].

We have identified a set of reasons for discrepancies between re-
sults from Cyntenator and SyntenyMapper. All examples given are
taken from the human and mouse comparison. Due to design of the
experiment, Cyntenator cannot detect external micro-rearrangements,
leading to different numbers of identified collinear blocks in only 8 of
356 synteny regions (2.25%). While this small discrepancy can be ne-
glected, another methodological difference leads to a larger number
of missed collinear blocks: Cyntenator is, in contrast to our method,
unable to detect inversed regions of conserved gene order of any size.
Such inversions are common and occur in 170 out of 356 (47.75%) of
all synteny regions. There are also cases where the complete region
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is inversed in the second species (see Figure 51). Since these cases are
apparently not accounted for in the Cyntenator method, it is unable
to detect any of them as collinear blocks.

Figure 51: Example of a completely inversed synteny region. Cyntenator does not
detect any collinear block for this region (ENSEMBL identifier 44661).
Light grey blocks are genes, connecting ribbons illustrate orthology re-
lationships.

In contrast, we have identified only one synteny region where our
method does not detect a collinear block of four genes that is found
by Cyntenator, because two genes in this block overlap and are con-
sequently excluded.

Other minor differences in the number of detected collinear blocks
are caused by SyntenyMapper’s hierarchical definition. If an EN-
SEMBL syntenic region contains one rearranged region, SyntenyMap-
per will define this one region as embedded in the original region.
Other tools, however, will define three consecutive collinear blocks.
Besides this, methodological differences also lead to minor length dif-
ferences in block definition. Cyntenator applies the Smith-Waterman
alignment algorithm and thus can mismatch non-orthologous genes
and include gaps when genes cannot be mapped to an ortholog.
While SyntenyMapper also allows for the presence of genes without
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orthologs, it will fragment a collinear block that is disrupted by a pair
of non-orthologs into two blocks. Additionally, overlapping genes are
excluded by our method. When we compare results from Cyntena-
tor and SyntenyMapper, we thus often find apparently shorter but
equivalent collinear blocks in the results from our method.

We have also identified some cases where we could find no rea-
son for Cyntenator’s decision to fragment two consecutive collinear
blocks (Supplementary Figure S14). In conclusion, SyntenyMapper is
better suited for the identification of all collinear blocks in a synteny
region, including inversions.

11 .4 .2 i-ADHoRe allows mismatches of orthologs

Similar to Cyntenator, i-ADHoRe creates a gene alignment with ei-
ther the Needleman-Wunsch Algorithm, a greedy graph algorithm or
a new algorithm named GG2, using a gene homology matrix as basis.
The columns of this matrix correspond to genes from one organism,
and rows to genes from the other. The cells contain binary values
that indicate presence of an orthology relationship. Like Cyntenator,
i-ADHoRe also includes gaps and/or mismatches to create a colli-
near block with as many orthology pairs as possible. A progressive
approach is implemented to allow for multi-species comparison.

i-ADHoRe is another common tool for the detection of collinear
blocks. The main difference between our method and this approach
is the usage of gaps and mismatches to create longer alignments in
i-ADHoRe. SyntenyMapper, on the other hand, ignores only genes
without orthologs and does not allow mismatches, but instead dis-
rupts a collinear block if it is interrupted by non-orthologous genes. In
general, both methods largely agree on the number of collinear blocks
present in a synteny region, even though the sizes differ due to mis-
matches and gaps. For 222 (62.36%) synteny regions, both tools detect
the same number of blocks. The majority of the remaining regions (68,
19.10%) contain less such blocks according to i-ADHoRe than to Syn-
tenyMapper, caused mainly by mismatches and gaps which lead to
disruption in SyntenyMapper. An example is shown in Supplemen-
tary Figure S15, where SyntenyMapper correctly identifies a micro-
rearrangement of three genes within a block of conserved order of
eight genes, while i-ADHoRe detects only one block with all eleven
genes.Because i-ADHoRe

allows mismatches,
it produces less

exact results

The remainder of cases (43, 12.08%) are synteny regions where Syn-
tenyMapper identifies less collinear blocks than the other method. We
have already described in the comparison to Cyntenator that the hi-
erarchical definition, where a set of genes is defined as the conserved
order backbone of the synteny region and micro-rearrangements are
defined as embedded within this set, leads to smaller numbers of
detected blocks in some cases. Additionally, we have discovered that
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longer stretches of genes without orthologs cause disruption of blocks
in i-ADHoRe results. Our tool, however, discards any genes without
orthologs in a very early step and disregards them later. Since they
have no equivalent in the other genome, we do not consider them to
disrupt conserved gene order blocks.

In general, we can conclude that i-ADHoRe, similar to Cyntena-
tor, is a good tool for a less exact detection of micro-rearrangements.
However, the effort to create long collinear blocks leads to mismatch
pairing of non-orthologous genes, and, consequently, to ill-defined
blocks. SyntenyMapper is thus better suited if a comprehensive anal-
ysis of all exact micro-rearrangements is to be conducted. Another
advantage is the hierarchical approach for which it was designed,
setting micro-rearrangements within the context of large synteny re-
gions. While other methods can also be used for this purpose, Syn-
tenyMapper simplifies the usage by downloading the necessary syn-
teny regions itself, and also regards the hierarchy in the definition of
micro-rearrangements. i-ADHoRe and Cyntenator, on the other hand,
are applicable to more than two genomes and can thus be used for
more complex evolutionary analyses.

11 .4 .3 MCScanX applies no pre-processing to take care of many-to-many
ortholog groups

We also aimed to compare our results with MCScanX, a software
package that includes not only methods for the identification of colli-
near blocks, but also many tools for downstream analysis and visual-
ization. Like Cyntenator, it is based on a list of orthologous genes, for
example obtained by BLASTP [4], and uses a dynamic programming
approach to find chains of collinear gene pairs in the two genomes. Its
main advantage is the large set of downstream analysis tools, which
includes four different visualizations of the results, classification of
duplicated genes into specific classes or detection of Whole Genome
Duplication (WGD) events.

However, during comparison between SyntenyMapper and MC-
ScanX it became apparent that this program fails to handle duplicates
correctly. We have found many cases where MCSCanX splits a one-
to-many ortholog group into multiple overlapping collinear blocks,
leading to a single gene appearing in more than one such block and
being paired with different orthologs. The reason for this is proba-
bly a lack of pre-processing to filter one-to-many and many-to-many
ortholog groups, so that for these genes more than one orthology rela-
tionship is registered. SyntenyMapper transforms these relationships
into one-to-one gene pairs before applying its collinear block detec-
tion method, thereby effectively taking care of duplicates. As MC-
ScanX does not do this, a gene with more than one ortholog can end
up in more than one collinear block.
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Per definition, a single gene cannot be part of two collinear blocks
unless it sits at the very edge, and never of more than two. From these
results we conclude that MCScanX cannot provide the same func-
tionality as SyntenyMapper or Cyntenator, as this behaviour leads to
significant overlapping of the detected collinear blocks.

11 .4 .4 Quantitative comparison of SyntenyMapper, i-ADHoRe and Cyn-
tenator

Besides the above described qualitative comparison of results, we ap-
plied quality measures proposed by Ghiurcuta and Moret [61] to as-
sess the overall performance of both methods. These measures are
based off a formal definition of syntenic blocks (SB), and the concor-
dance of method results with this definition. Table 23 summarizes the
measures for SyntenyMapper, i-ADHoRe and Cyntenator. Though
SyntenyMapper also includes original synteny regions in the output,
we calculated measures only for the set of rearranged collinear blocks
detected by it.

Table 23: Measures and properties for evaluation of syntenic block detection meth-
ods, and results for SyntenyMapper, i-ADHoRe and Cyntenator. For details
on the measures see methods section 10.7. Maximum relaxed score is 1.0.

Measure SyntenyMapper
micro-
rearrangements

i-ADHoRe Cyntenator

SBFs 2,898 722 466

Content overlap 19 361 40

w/o homologs in
the SBF

0 361 40

Selective content 0 0 0

Mean relaxed score 0.83 0.30 0.02

Median relaxed
score

1.0 0.04 0.009

As all methods compared here are tools for detection of collinear
blocks, the selective content which measures the number of non-col-
linear blocks is 0 for all. The number of SBFs or syntenic block fam-
ilies is significantly higher in SyntenyMapper’s output, due to it’s
exact approach. Still, the number of SBFs that contain genes that are
also part of other families, or content overlap, is much lower in Syn-
tenyMapper’s micro-rearrangements compared to Cyntenator’s colli-
near blocks (0.7% vs. 8.6%) and caused by overlapping ENSEMBL
synteny regions. In fact, SyntenyMapper identifies all overlapping
genes by design and excludes them from the current block. In i-
ADHoRe even half of all SBFs overlap.
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More important than content overlap in terms of SB quality is the
number of SBF with at least one marker that has no homologs in
the SBF. These markers basically represent externally translocated
genes, since genes without homologs are excluded for the analysis.
SyntenyMapper not only treats these separately, but it also disrupts
internal rearrangements when such a case appears. As a consequence,
the measure is 0, while for Cyntenator 8.6% and for i-ADHore 50%
of SBFs contain such cases. So far we can conclude that through its
exact treatment of many exceptional cases and lack of size limitation,
SyntenyMapper adheres better to the formal description of SBs than
other methods.

(a) Cyntenator (b) i-ADHoRe

(c) SyntenyMapper

Figure 52: Relaxed scores of collinearity detection for three methods applied to the
human and mouse genomes. The relaxed score is a measure proposed
by Ghiurcuta and Moret [61] that quantifies the percentage of genes in
a collinear block that have no orthologs aside from this block. The best
score is 1.0.

This can also be seen in the distribution of the proposed relaxed
scoring for all SBs, as shown in Figure 52. Since we are evaluating
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all tools only for pairwise genome comparison, the weighted scor-
ing does not provide additional information. Additionally, the block
incompleteness measure is identical to the relaxed scoring for Syn-
tenyMapper, as all markers available in the SB according to the out-
put also have homologs within the SB. We thus focus on the relaxed
score alone for comparison. An ideal relaxed score equals 1.0 and sig-
nifies that all genes in the region also have a homolog in the the same
region, disregarding genes without homologs.SyntenyMapper

outperforms
Cyntenator and

i-ADHoRe
according to
quantitative

measures

For Cyntenator and i-ADHoRe, the majority of SBs has a low re-
laxed score, with a median of 0.009 and 0.04, respectively. Our own
tool, on the other hand, has a median relaxed score of 1.0 and clearly
shows a distribution heavily skewed to the right. In fact, only re-
moved overlapping genes cause deviances from the perfect score of
1.0. From these results we can clearly see that SyntenyMapper pre-
serves the formal definition of SBs much better when detecting col-
linear blocks than Cyntenator or i-ADHoRe. The reason for this lies
in the implementation of SyntenyMapper, which strives to consider
every possible exception to create perfect collinear blocks.

Ghiurcuta and Moret mention the hierarchical structure of SBs in
the genome that is often ignored in synteny region detection tools.
While SyntenyMapper is not scalable to output different granular-
ity levels, it accounts for the existence of both macro- and micro-
rearrangements, which Cyntenator and i-ADHoRe do not. With stan-
dard use, both methods find small collinear blocks along the entire
genome. SyntenyMapper’s hierarchical approach thus is another ad-
vantage over the other methods.

11 .5 comparison of feature composition in the human

and mouse genome

SyntenyMapper was first developed with the goal of creating a map-
ping of genes and intergenic regions that lie at equivalent positions in
the human and mouse genome. When comparing the feature compo-
sition of these two species’ genomes on a megabase-scale level, using
ENSEMBL synteny regions as guide (see section 3.2), we felt that a
gene-based mapping would be more appropriate. The main problem
with comparing regions of a fixed length between two genomes is
the lack of selection pressure on large portions of intergenic regions.
These regions can be subject to copy number variations or other in-
sertions/deletions that strongly influence their length.

If we consider a genome as a sequence of functional elements, fixed
length regions at seemingly equivalent genomic positions might con-
tain a long intergenic region in one species and many genes in an-
other, caused by for example copy number variations. We thus de-
cided to develop a mapping software that identified pairs of genes
and pairs of intergenic regions that lie at equivalent genomic posi-
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tions, by detection blocks of conserved gene order. While the main
application of SyntenyMapper as it evolved is the comparison of syn-
teny regions and the micro-rearrangements that accumulated since
species separation, it serves well in creating such a mapping.

We applied it to the genomes of human and mouse, generating
one-to-one gene pairs and one-to-one intergenic region pairs deter-
mined as described in section 10.1.2. This scaffold was then used to
calculate difference measures for ten genomic features (LINE, SINE,
LTR, LADs, RTD, SNPs, open chromatin and histone modifications
H3k4me1, H3k4me3, H3k9ac) using TrackMapper. Figure 53 shows
the distributions for observed and randomized feature coverage dif-
ferences.

Figure 53: Distributions of difference measures for ten genomic features between all
equivalent gene and intergenic region pairs for human and mouse, iden-
tified by SyntenyMapper. Light coloured boxplots (right side of each fea-
ture) are results for randomized features. Stars mark features where the
difference between observed and random results is significant according
to Kolmogorov-Smirnov and Rank sum test. Y axis is to log scale.

Kolmogorov-Smirnov tests and Rank sum tests were performed,
revealing that all distributions are significantly different from those
based on randomized features (all p-values < 2.2 · 10−16). For all
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repeats (LINE, SINE, LTR), LADs, SNPs, histone modifications and
open chromatin tracks, the difference between genes and intergenic
regions in human and mouse is lower than for the random set. We can
conclude from this that these features are conserved in the equivalent
genome positions. Our previous analysis (section 3.2) also showed
weak conservation for repeats, LADs and also RTD on a megabase-
scale. Gene density and GC content are naturally correlated between
genes and are not shown here.

The largest difference between medians of real and random distri-
butions, implying the strongest conservation, can be observed for Hi-
stone modifications (median differences ranging from 0.21, H3k4me1,
to 0.48, H3k4me3). Since these modifications mark active or inactive
chromatin, it is not surprising that they are conserved for genes and
intergenic regions, respectively. Interestingly, RTD density is not con-
served between genes and intergenic regions in human and mouse.
Instead, the difference measures are lower for randomized RTDs, in-
dicating that RTDs are less conserved than expected by chance. RTDs
are domains along the genome that are replicated at similar time
points. Conservation that is lower than expected at random could
indicate that, through genome reorganization in the form of macro-
rearrangements, this structure was disrupted and had to be reformed
independently on both species’ genomes. However, replication time
is partially linked with gene expression, e.g. housekeeping genes are
replicated first, and replication domains represent the starting regions
around replication origins. If only genes are considered, RTDs are in
fact conserved (data not shown), implying a lack of conservation only
for intergenic regions.Feature

distributions in
human and mouse

are significantly less
different than

expected by chance

With the exception of RTDs, all reviewed features show evidence
of conservation between equivalent genes and intergenic regions in
mouse. Not only sequence features were reviewed, but also structural
ones such as location at the nuclear periphery and accessibility of
chromatin. Thus, we can conclude that there is some degree of struc-
ture conservation between human and mouse. Combined with the
results from the previous part, we show that the human and mouse
genomes are similar in many structural and sequence aspects, even
though the three-dimensional folds are different as a result of macro-
rearrangements during evolution.
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SyntenyMapper is a new fast comparative genomics tool for the detec-
tion of micro-rearrangements, positional orthology, and direct com-
parison of genomic features between two species. Most existing meth-
ods in comparative genomics focus on finding regions caused by ei-
ther macro- or micro-rearrangements on a whole-genome scale, us-
ing only whole-genome alignments or homologous elements for their
definition. By contrast, our method integrates both types of approaches
and detects micro-rearrangements within large synteny regions by
identifying blocks of conserved gene order, which can be seen as the
smallest evolutionary building blocks within largely conserved re-
gions. Though there are other collinearity detection methods which
are comparable to SyntenyMapper, we show that they perform in-
ferior to our method and lead to less exact results. SyntenyMapper
provides a set of high quality exact collinear blocks, which can be
used to gather insights into evolutionary history.

We have applied our method to 25 eukaryotic species pairs based
on synteny regions and ortholog sets from ENSEMBL Compara [56,
211]. As expected, evolutionary distance and synteny region number
and length are proportional, in the sense that closely related species
contain few but long synteny regions, compared to a high number
of short regions in distant pairs. The number of internal micro-re-
arrangements is correlated to the size of the harbouring synteny re-
gion, which in turn depends on the evolutionary distance between
the genomes. However, the density of micro-rearrangements, i.e. the
number of micro-rearrangements per Mb, shows no correlation with
evolutionary distance. In general, regions with high sequence simi-
larity tend to have fewer micro-rearrangements, but the correlation is
weak. The main factor determining the number of micro-rearrange-
ments in a synteny region is thus length of this region.

In line with this is the observation that more distant species pairs
tend to have short to medium synteny regions harbouring between
0 and 10 internal micro-rearrangements, while more closely related
organisms with long synteny regions (over 10 Mb length) contain be-
tween 10 and 25 micro-rearrangements. External rearrangements, i.e.
regions translocating between synteny regions, are rare, with only 0

to 4 such translocations per synteny region in all genome pairs, and
show only a slight trend for a higher number in longer regions.

The size of internal translocations is not correlated to synteny re-
gion length or evolutionary distance, implying that the transposition
mechanism acts regardless of evolutionary history. It is known that
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transposition efficiency decreases with the length of the translocated
sequence. Our results confirm this and show that internal transloca-
tions are in general longer than external translocations, implying that
long-distance translocations have stricter length constraints. External
translocations are also not dependent on synteny region length or
evolutionary relationship, though longer externally translocated re-
gions appear to occur only in distant species pairs.

The following enumeration summarizes the main discoveries made
in the global genome comparison of 25 eukaryotic species pairs.

a. Closely related species share few long synteny regions

b. Distant species share many short synteny regions

c. Density of micro-rearrangements is independent of evolutio-
nary distance

d. The number of internal micro-rearrangements is mainly influ-
enced by length of the harbouring region

e. Size of micro-rearrangements (internal and external) is indepen-
dent on synteny region size and evolutionary distance

f. External translocations are rare and small

While most of these results can be expected, SyntenyMapper con-
structed a detailed summary of the relationships of macro/micro-
rearrangement length, number and evolutionary distance, and con-
firmed for the first time that these expected correlations are indeed
true.

Additionally, we show that our tool TrackMapper, which is based
on the syntenic one-to-one mapping of genes created by SyntenyMap-
per, can directly compare quantitative genomic features between two
species. We apply it to 10 genomic features, comprising repeats, his-
tone modifications and others, and show that all these are more simi-
lar than expected between human and mouse genes and intergenic re-
gions, with the exception of RTD. These results imply that the feature
structure of both genomes is largely conserved, in line with results
from the previous parts.
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S U M M A RY

This dissertation examines the structural properties of mammalian
genomes on different levels, focusing on the human genome and its
evolutionary development. It covers the sequential and structural fea-
tures, the three-dimensional structure, and the linear structure in the
course of evolution.

In the first part of this work we discuss multiple, often inter-de-
pendent, genomic features that are distributed along mammalian ge-
nomes and influence many processes, from gene expression to three-
dimensional folding. Together, these linear features make up a com-
plex structure that can allow us to better understand cellular pro-
cesses.

We compiled a database of many different genomic features, in-
cluding sequence-based properties such as repeats (LINE, LTR, SINE)
or SNPs, epigenetic (histone acetylations and methylations, regions of
open chromatin), structural (Hi-C compartments, lamina associated
domains, DNase I hypersensitivity sites), and other features (repli-
cation timing domains). Since these often domain-like features can
be clustered into euchromatic features which mark active genome re-
gions and heterochromatic, inactive markers (mainly LADs and long
repeats), we are able to classify new, experimentally determined fea-
tures with respect to their genomic distribution.

For this purpose we have developed a pipeline that determines the
correlation between a new feature’s distribution along each chromo-
some and our database features. On top of that, visualization of the
chromosomal domains where it is enriched and depleted allow for
easy interpretation of preferential locations. For example, we were
able to prove that lncRNAs HOTAIR and TERC preferentially bind
in regions which are characterized as euchromatic or active due to
their abundance of genes and lack of long repeats. We also show that
mitochondrial sequences tend to integrate into the human genome at
locations that are highly accessible, as marked by DNase I hypersen-
sitivity sites. Altogether our results show that the genome consists
of a complex net of properties that are inter-dependent and can help
understand new features.

In fact, when investigating the feature distribution on human and
mouse chromosomes and comparing them using ENSEMBL Com-
para [56, 211] synteny regions, they are weakly conserved. Human
and mouse are considerably distant species in the phylogenetic tree
of life, and have accumulated many so-called macro-rearrangements
where large regions relocate in the genome due to double strand
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breaks. As a consequence, their sequential structure differs, but the
genome of one species can be reorganized according to synteny re-
gions to make it comparable to the other. Using this approach we
were able to show the strongest correlation for GC content per 1 Mb
segment, but gene density, SINE, LINE and RTD coverage are also
slightly conserved. The heterochromatic features LTR and LADs are
only very weakly correlated.

As this thesis focuses on chromosome structures, we additionally
investigated lamina-associated domains (LADs) and the behaviour of
other features at the borders of these repressive environments. Con-
firming previous research [69] we show that gene density decreases at
LAD borders, not only in human but also in mouse. Similarly, replica-
tion timing domains show a comparable profile in both species. How-
ever, other features behave species-specific: SINE and LTR appear to
rarely overlap with LAD border regions in human, while showing no
such distinction in mouse.

Genome-wide we were able to show a positive correlation between
LADs and LINE as well as LTR, and negative correlations with eu-
chromatic features SINE, gene density and RTD. Though these rela-
tionships are the same for both species, their strength varies. Together,
these results imply that the relationship between different genomic el-
ements and the borders of LADs is not entirely conserved, though the
overall trends are similar.

In summary, we have confirmed the inter-dependency and domain-
like structures of many genomic features, sequence-based as well as
structural. We make use of these relationships by classifying new fea-
tures as eu- or heterochromatic based on their correlation with known
features. Additionally, we show that the positions of repeats, RTD, GC
content, LADs and gene density are weakly conserved in the genomes
of human and mouse.

The second part of this work focuses mainly on the three-dimen-
sional structure of human and mouse genomes as derived by Hi-C
experiments. These structures do not exist independently of linear
features and overall processes. For example, chromosome loops can
be formed to bring together genes with similar functions to be co-
expressed in transcription factories. It is thus of great importance to
fully understand the chromosome interactome and its relevance for
biological processes.

While previous research focuses mainly on intra-chromosomal in-
teractions, we complement it by concentrating on inter-chromosomal
contacts in human and mouse embryonic stem cells. Using published
data from Dixon et al. [45] and normalizing it, we constructed a high-
confidence contact network for 500 kb segments.

Similar to other biological networks, segment interaction networks
(SIN) have a scale-free topology in both species. Other similarities in-
clude an increased contact density for short, gene-rich chromosomes,
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which are located centrally in the nucleus, enabling them to form
more contacts. The repeat-rich and only partially determinable by
sequencing Y chromosomes have a high number of interactions in
both species, though this effect is much more pronounced in mouse.
We assume that a less fixed position due to its low gene content en-
ables the Y chromosomes to move around more freely. This flexibility
would allow it to form contacts with many different genome regions
in the millions of cells over which Hi-C data is collected.

The mouse genome also shows evidence of centromere-co-locali-
zation, with a central position of chromosome 11 in the centromere
cluster. We can only faintly observe a similar trend in human, show-
ing that there are further structural differences than those observed in
part ii. However, investigating the correlation between inter-chromo-
somal spatial proximity and functional aspects, we show that in both
species spatial proximity correlates with GO term similarity, though
this trend is obscured by noise. In line with this result is the posi-
tive correlation between proximity and co-expression in human. For
mouse, no comparable data set was available.

While these results show that there are functional similarities in the
inter-chromosomal genome structures of human and mouse, there are
also properties that strongly differ. In human, interactive segments
are enriched in active histone marks and euchromatic features. This
enrichment can not be observed in mouse, possibly caused by dif-
ferences in the differentiation stages of the underlying cells, or by
differing feature compositions in human and mouse.

Previous research has shown that intra-chromosomal contacts are
conserved between human and mouse [45]. This is not the case for
the inter-chromosomal networks, which share no more contacts than
expected by chance. We believe that the disruption of chromosomes
through large macro-rearrangements caused the three-dimensional
structure to reform, while contacts over short linear distances could
be maintained. Subsequently, new inter-chromosomal contacts would
form to uphold the functional purposes of the interactome. As a
consequence we can observe the previously described correlation be-
tween LADs in both species, and the correlation between spatial prox-
imity and functional similarity.

Regarding the formation and maintenance of the three-dimensional
structure, we confirm the important role of CTCF and RAD21 using
ENCODE [8] data on human. Binding sites of both these transcription
factors are enriched in trans-interacting segments.

Currently, Hi-C data is associated with a complex experimental
procedure. As a consequence, new data becomes only slowly avail-
able. We investigated whether the relationship between linear fea-
tures as described above and contact propensity is strong enough to
allow prediction of inter-chromosomal interactions. We trained and
tested a random forest classifier on a set of 36 features from two seg-
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ments, employing data preparation methods to deal with the extreme
class imbalance that is caused by the high number of non-contacting
segment pairs. We show that the success of this method is highly
species-dependent, with promising results only achieved for mouse.
We thus conclude that at the current state of research no species-
independent classification method can be developed to predict Hi-C
data.

Altogether the network-based analysis shows that the human and
mouse inter-chromosomal interactomes have mainly functional and
structural similarities, and that individual contacts are not conserved.

While the first two parts of this thesis focus on linear and three-
dimensional structural features, we investigate the evolutionary his-
tory of the linear genome in the last part. Two- and three-dimensional
structures are obviously highly connected, so it is necessary to un-
derstand both in order to draw conclusions from either one. During
mammalian evolution, large chromosome rearrangements were com-
mon, thereby disrupting both the linear and higher-order structures.
Besides these, a large amount of smaller rearrangements was able to
accumulate if they did not cause deleterious effects. We have devel-
oped a new tool, SyntenyMapper, to investigate the history of small
scale rearrangements between two genomes in regions of large scale
rearrangements, thus regarding the hierarchical structure. This tool
outperforms comparable software and is thus a valuable addition to
comparative genomics.

We applied SyntenyMapper to 25 eukaryotic species pairs and con-
firm that the number and length of large-scale rearrangements or syn-
teny regions is dependent on evolutionary distance. Closely related
species tend to share a small number of very long such regions. The
number and size of small-scale rearrangements within synteny re-
gions, however, is only dependent on the embedding region’s size.

We show that SyntenyMapper is superior to other methods for colli-
near block detection using a newly proposed quantitative comparison
by Ghiurcuta and Moret [61]. Additionally, it creates a visualization
that is easy to interpret and facilitates the analysis of linear genome
evolution, and provides a tool for the comparison of feature tracks
termed TrackMapper.

Using feature data compiled in part ii, we applied TrackMapper
to the human and mouse genome for a gene- and intergenic-region-
based conservation analysis. We have already shown that these fea-
tures are weakly conserved over segments of 1 Mb. In this part we
confirm this conservation at the level of genes.

To sum up these results, we show that genome organization, be it
linear or higher-order, has many similarities between eukaryotic or-
ganisms, mainly human and mouse. Though many rearrangements
have occurred in these genomes since species separation, distribution
of linear sequence and structural features is conserved to some ex-
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tent. Similarly, the three-dimensional inter-chromosomal interactome
exhibits structural similarities between both species, even though no
conservation of individual contacts can be observed.

Altogether, this thesis provides a view at different aspects of ge-
nome organization, two- and three-dimensional, and highlights its
evolutionary development.





Part VI

A P P E N D I X
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S U P P L E M E N TA RY F I G U R E S

Figure S1: Simple visualization of feature tracks for human chromosome 3, imple-
mented by Daniel Nasseh.
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Figure S2: Heatmaps illustrating correlation of LAD distribution to other genomic
features in human.
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(a) Mouse, strict

(b) Mouse, greedy

Figure S3: Heatmaps illustrating correlation of LAD distribution to other genomic
features in mouse. Strict refers to the set of constitutive LADs which are
consistent across cell types, while the greedy set also includes all faculta-
tive LADs.
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Figure S4: Profiles of genomic and chromatin features around LAD borders, taken
from Guelen et al. [69]

Figure S5: Heatmap of Pearson correlation coefficient between HOTAIR binding site
motifs with substitutions on the genome and other genomic tracks. No
clear correlation pattern is emerging.
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Figure S6: Heatmap of correlation coefficient values (Pearson) between NUMTS dis-
tribution and other genomic features. NUMTS coverage per 1 Mb slice
was compared to human LAD coverage, LINE and SINE coverage, GC
content, gene density, DNase hypersensitivity sites as well as RTD data
for two cell lines and Hi-C domains. There are only very weak correla-
tions, which are often negligible.
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Figure S7: Illustration of inter-chromosomal contacts in the randomized mouse seg-
ment interaction network. Banded ideograms represent chromosomes 1

to Y, black lines connecting them are spatial contacts at confidence level
cutoff 1e− 6.
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(a) RMSIN

(b) MSIN

Figure S8: Distribution of shortest path lengths in the RMSIN and MSIN (cutoff 1e−
6), plotted with Cytoscape [184].
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(a) RHSIN

(b) HSIN

Figure S9: Distribution of shortest path lengths in the RHSIN and HSIN (cutoff 1e−
3), plotted with Cytoscape [184].
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Figure S10: Illustration of inter-chromosomal contacts in the randomized human
segment interaction network. Banded ideograms represent chromosomes
1 to Y, black lines connecting them are spatial contacts at confidence level
cutoff 1e− 3.
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(a) H. sapiens

(b) M. musculus

Figure S11: Validation of correlation between spatial proximity and GO term simi-
larity through comparison with randomized data (section 6.2.5). p-value
was assessed with the cumulative distribution function and is 0.
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Figure S12: Validation of correlation between spatial proximity and co-expression
in human through comparison with randomized data (section 6.2.5). p-
value was assessed with the cumulative distribution function and is 0.

Figure S13: Synteny regions (SR) with low sequence similarity (high distance
score) show a trend to contain more internal micro-rearrangements per
megabase (Pearson correlation coefficient 0.22). Outliers with extremely
high sequence distance are not shown.
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Figure S14: Example of a synteny region where Cyntenator fragments a collinear
block for no apparent reason (ENSEMBL identifier 44490) at the indi-
cated black lines. Grey boxes represent genes, connecting ribbons are
orthology relationships.
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Figure S15: Illustration of a synteny region (ENSEMBL identifier 44459) where
SyntenyMapper correctly identifies a micro-rearrangement containing
three genes (marked in black). i-ADHoRe fails to recognize this micro-
rearrangement due to gaps and mismatches and instead defines a single
collinear block of eleven genes. Grey boxes represent genes, connecting
ribbons are orthology relationships.





B
S U P P L E M E N TA RY TA B L E S

Table S1: Overlap of genomic features with trans-interacting segments and other seg-
ments in human and mouse.

Total overlap with
trans-interacting
segments (%)

Total overlap with
not trans-interacting
segments (%)

H. sapiens

H3k4me1 12.01 8.75

H3k4me3 15.60 12.64

H3k9ac 3.68 3.21

H3k27ac 3.39 2.66

H3k36me3 13.34 10.75

LADs 18.72 15.85

DNase I sites 9.31 8.00

LINE repeats 19.25 21.40

LTR repeats 7.98 8.74

Open chromatin 2.86 2.18

RTD 4.55 4.51

SINE repeats 15.41 12.49

M. musculus

H3k4me1 5.45 5.89

H3k4me3 1.77 1.76

H3k9ac 2.01 2.02

H3k27ac 1.91 1.90

H3k36me3 3.99 4.14

LADs 14.27 12.80

DNase I sites 0.86 0.89

LINE repeats 15.82 15.64

LTR repeats 8.84 8.60

Open chromatin 1.09 1.14

RTD 0.65 0.64

SINE repeats 6.34 6.71
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Table S2: A total list of all transcription factors from the ENCODE [8] transcription
factor binding site set and their respective sources. The dataset can be ac-
cessed on UCSC [102] as the ENCODE TFBS uniform track for hg19, cell
line hESC.

Transcription factor Source

ATF2 HudsonAlpha

ATF3 HudsonAlpha

BACH1 Stanford

BCL11A HudsonAlpha

BRCA1 Stanford

CEBPB Stanford

CHD1 Stanford

CHD2 Stanford

CTBP2 USC

CTCF HudsonAlpha

EGR1 HudsonAlpha

EP300 HudsonAlpha

EZH2 Broad Institute

FOSL1 HudsonAlpha

GABPA HudsonAlpha

GTF2F1 Stanford

HDAC2 HudsonAlpha

JUN Stanford

JUND HudsonAlpha

KDM5A Broad Institute

MAFK Stanford

MAX USC

MXI1 Stanford

MYC Stanford

NANOG HudsonAlpha

NRF1 Stanford

POLR2A HudsonAlpha

POU5F1 HudsonAlpha

RAD21 HudsonAlpha

RBBP5 Broad Institute

REST HudsonAlpha

RFX5 Stanford

RXRA HudsonAlpha

SIN3A Stanford

SIN3AK20 HudsonAlpha

Continued on next page



supplementary tables 207

Transcription factors in ENCODE TFBS set // continued

Transcription factor Source

SIX5 HudsonAlpha

SP1 HudsonAlpha

SP2 HudsonAlpha

SP4 HudsonAlpha

SRF HudsonAlpha

SUY12 USC

TAF1 HudsonAlpha

TAF7 HudsonAlpha

TBP Stanford

TCF12 HudsonAlpha

TEAD4 HudsonAlpha

USF1 HudsonAlpha

USF2 Stanford

YY1 HudsonAlpha

YNF143 Stanford
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Table S3: Average percentage of genes in a spatial cluster with at least one TFBS of
the given transcription factor. Highest percentage is reached for CTCF and
RAD21.

ATF2 ATF3 BACH1 BCL11A BRCA1

8.10% 8.60% 21.54% 2.97% 2.31%
CEBPB CHD1 CHD2 CTBP2 CTFC
23.13% 16.62% 9.05% 55.73%
EGR1 EP300 EZH2 FOSL1 GABPA
21.01% 16.15% 3.16% 0.70% 11.49%
GTF2F1 HDAC2 JUN JUND KDM5A
7.32% 9.18% 2.51% 17.00% 2.41%
MAFK MAX MXI1 MYC NANOG
15.04% 21.84% 15.53% 8.65% 8.16%
NRF1 POLR2A POU5F1 RAD21 RBBP5

9.77% 50.56% 5.65% 63.33% 45.27%
REST RFX5 RXRA SIN3A SIN3AK20

19.98% 2.17% 1.62% 53.05% 23.16%
SIX5 SP1 SP2 SP4 SRF
5.94% 34.67% 3.39% 14.52% 6.16%
SUY12 TAF1 TAF7 TBP TCF12

3.12% 57.41% 30.94% 51.22% 10.92%
TEAD4 USF1 USF2 YY1 YNF143

27.17% 41.98% 11.98% 40.59% 50.80%
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Table S4: Highly connected segments in the yeast segment interaction network at a
cutoff of 1E− 6. These segments have a degree of over 90 and are thus the
hubs of the network.

Chromosome From To

1 146,576 149,006

2 225,664 228,417

2 238,487 239,853

7 493,253 497,799

7 517,092 519,491

5 140,892 142,508

8 97,163 112,845

12 132,031 136,188

12 142,649 143,562

13 266,152 273,100

13 283,061 285,477

13 278,976 279,474

14 612,371 614,754

15 340,020 343,385

16 541,718 542,314

16 551,910 553,022

16 567,874 572,852

16 572,853 573,737
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