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Abstract

Flow-sensory systems are widespread in the animal kingdom. Some species,
such as fish, primarily perceive their environment through the motion of the
surrounding fluid. A theory for the reconstruction of the environment from the
measured tangential velocities on the surface of a moving body is developed.
Furthermore, the design and development of an artificial flow-sensory system
is described. A model for the dynamics of an autonomous underwater vehicle
(Snookie), that is capable of utilizing a flow-sensory system, is established.

Zusammenfassung

Stromungssensorsysteme sind im Tierreich weit verbreitet. Manche Arten neh-
men ihre Umwelt hauptsichlich durch die Bewegung des sie umgebenden Flu-
ids wahr. Eine Theorie zur Rekonstruktion der Umwelt aus Stromungsdaten,
gemessen an der Oberfliche eines sich bewegenden Objektes, wird vorgestellt.
Der Entwurf und die Entwicklung eines kiinstlichen Stréomungssensorsystems
wird beschrieben. Es wird ein Modell der Dynamik eines autonomen Unter-
wasserfahrzeuges (Snookie) aufgestellt, das in der Lage ist, ein Strémungssen-
sorsystem sinnvoll zu nutzen.
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Chapter 1

Introduction

Fluid-flow perception is very common in the animal kingdom. Many water-
dwelling animals, e.g. fish [1], amphibians |2, 3], cephalopods [4, 5], and insects
[6, ch. 7] are equipped with some kind of flow-sensory system. Most land-
dwelling arthropods [7, 8] also possess flow sensors. It is known from behavioural
experiments that information transmitted through the motion of the surround-
ing fluid is used for communication [9], hunting [10], escape from a predator
[11], obstacle avoidance [12], object discrimination [13], map formation and self-
localisation [14, 15]. Fluid-flow perception obviously enables these animals to
cope with many vital tasks. One may ask the question, whether the ability of
these animals and the solutions found for important tasks can be advantageous
for technical applications.

This work considers the measurement, extraction, and analysis, summarised
by the term perception, of signals transmitted through incompressible poten-
tial flow onto the surface of a smooth body B. The questions addressed are:
which information about the location, the motion, and the shape of bodies is
transmitted by the fluid; which of the physical quantities related to the fluid
motion can be measured; what do these physical quantities actually tell about
the environment; how can fluid flow perception be used in technical systems;
and finally, how must a technical system be designed to be able to make use of
fluid flow perception?

The properties of the resulting flow fields on a flow-sensory system, induced
by the motion of an object in the fluid, its length and time scales, and the
physical quantities of fluid motion involved, are discussed with the help of simple
examples in ch. 2. The question of how to retrieve information from a flow field
measured on the surface of a body is covered in ch.3. The analysis of fluid-
flow perception is written in view of an application to an artificial flow-sensory
system mounted on an autonomous underwater robot called Snookie. Snookie
is specifically designed to be capable of sensing the fluid flow on its surface
to perceive its environment. A model for the dynamics of Snookie used for the
design and control of the robot is developed in ch. 4 and sec. 5.1.2. The hardware
of the robot, and the development, the construction and the calibration of a
flow-sensory system to be mounted on Snookie is described in sec. 5.2.

Although the discussion of the properties of fluid-flow perception and the
mathematical methods developed might serve as a basis for the understanding
of the neuronal information processing of a flow-sensory system, the analysis
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forgoes a comparison with the morphological and electrophysiological studies.
The purpose of the analysis of fluid-flow perception presented in this work is
the development of theory and methods, which can be applied to an artificial
flow-sensory system. It does not claim to explain the function or the neuronal
information processing of a biological flow-sensory system. Nevertheless, arti-
ficial and biological flow-sensory systems have to solve similar problems. It is
certainly worth thinking about how the results obtained in this works might af-
fect the understanding of the neuronal information processing of a flow-sensory
system. Where appropriate, it is marked during the course of the work, when-
ever a transfer of the acquired insight from theory back to the biological role
models is possible.

1.1 Biological flow-sensory systems

Even if completely blind fish are able to locate obstacles and avoid them un-
der poor visual conditions [16, 17]. Studies on the blind cave form of Astyanaz
mezicanus and the closely related Astyanaz jordani (previously known as Anop-
tichthys jordani) show that these fish are able to detect and also discriminate
objects, if gliding past or towards them at close distance. The objects are per-
ceived by means of the lateral-line system (LLS), which is distributed along the
body of the fish and responds to the movement of the water relative to the fish’s
skin [18, 19]. The term LLS, although originating from the visible line along
the fish body, which marks the course of the lateral canal, also called trunk
canal, is frequently used to denote the flow-sensory system (FSS) of fish as a
whole. Besides a superficial lateral-line system (SLS) consisting of flow sensors
on the surface of the body, many fish also possess flow sensors placed in canals,
thin long tubes under the skin with regular pore openings through the skin to
the surrounding fluid called canal lateral-line system (CLS). The presence of
objects leads to an alteration of the flow field around the fish, which creates a
“hydrodynamic image” [20] of the surroundings on the fish’s body.

On the basis of behavioural experiments, some of the tasks, in which the
lateral system is involved in, and some of the features of stimuli, which are re-
constructed by the lateral-line system, have been identified. At some distance
the flow field of most objects moving towards the lateral-line system may be
approximated by that of a dipole — a moving sphere [21, p. 24 ff.] — since higher
multipoles decrease much more rapidly with increasing distance. It has been
shown that goldfish and mottled sculpin are able to determine the position of
a dipole [22]. Moreover, mottled sculpins respond to the presentation of an os-
cillating sphere as the lowest-order representation of the flow field of prey with
hunting behaviour and a strike towards the dipole source [23-26]. Experiments
carried out on goldfish [27] suggest that fish are in principle also able to dis-
tinguish the direction of motion, speed, shape and size of solid objects. As an
example, schooling can be achieved solely by perception of the flow fields of the
neighbouring fish [28].

The blind cave form of Astyanazx mezicanus was found to be able to de-
tect, avoid, and also discriminate objects, when gliding past or towards them
at a close distance [29-31]. For the blind Mexican cave fish, on the basis of
behavioural experiments [12, 13, 30], there is no doubt about its elaborate ca-
pabilities in sensing its environment by means of the lateral-line system. The
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limits of the flow-sensory system become apparent through its failure in case of
a collision [31]. Teyke [29] explains a collision with a wall with tail movements
disturbing the flow-sensory system while approaching an obstacle.

Although it is not quite clear what the capabilities of the lateral-line system
really are and what tasks it can be used for, the example of the blind Mexican
cave fish shows that it is obviously possible to make vital decisions based solely
on information mediated by the surrounding fluid motion.

Flow sensing is usually split up in either the reception of a vortex structure
or the reception of irrotational flow. Major objects moving in water normally
produce a wake. In a large range of Reynolds numbers, the wake releases vortex
structures, also called a von Karméan vortex street. Especially the strokes of the
tail fin of fish leave behind prominent flow structures. These vortex structures
mark the trace of swimming fish for quite a while [32, 33]. Because of the low
viscosity and the high mass of water, vortices are quite stable and may remain
up to several minutes. Catfish were shown to sense the vortex street with the
lateral-line system during prey capture [34, 35]. Wake tracking can in principle
also be achieved by other flow-sensory systems such as the whiskers of harbour
seals [36, 37]. While the mapping of a vortex on the fish’s lateral-line system is
understood quite well [3], it is a non-trivial task to determine the properties of
the vortex-producing hydrodynamic object [38].

The flow field of these vortex structures — seen from the perspective of ex-
tracting information — is completely different from the flow field produced for
example by the blind Mexican cave fish [39-44] to sense its environment. The
flow field in front of and besides the blind Mexican cave fish may be treated as
irrotational as long as it is moving through nearly undisturbed water. The vor-
ticity produced by the action of viscosity at the surface of the fish is convected
to the rear with the incident flow. This is usually expressed by a high Reynolds
number in front of the fish resulting in an inviscid and irrotational region of flow
around the snout, well described by a velocity potential ® for the incompressible
Euler equations [45, 46]. Of course, the frequencies and the velocities involved
in the problem guarantee incompressibility at any time.

Any object in the near surroundings disturbs the flow field on the surface
of the fish, when compared to open water, resulting in a hydrodynamic image.
The properties of a hydrodynamic image of a moving body mapped through
an incompressible inviscid irrotational fluid are discussed in [47] by performing
a multipole expansion of the flow field of varying shapes. The flow field is
measured by a transparent artificial lateral line, meaning that the presence of
the artificial lateral line does not disturb the flow field of the moving body. Then,
from the estimated multipole moments basic information about the shape of the
moving body is extracted. The conclusions are that — given a realistic resolution
of the lateral-line sensors — the upper bounds for the range of localisation and
shape reconstruction are roughly the size of the lateral-line system and the
size of the moving object. The hydrodynamic image therefore only provides
information about the environment in a very close range.

As mentioned in the introduction, FSSs are not unique to fish. Flow sensory
systems are widespread in the land-dwelling arthropod world. Model systems for
the study of flow-sensory systems in air are cockroaches [48], crickets [49, 50],
and the wandering spider (Cupiennius salei) [8]. No matter if water or air,
the physical description of the medium is the same. The interesting frequency
range of the measured flow field produced by the motion of objects is in the
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Figure 1.1: The lateral line system of the blind form of Astyanax mexicanus.
Circles: pore openings of the canal lateral-line system (CLS). Dots: superficial
lateral-line system (SLS) neuromasts, spread all over the body. The geometry of
the canal neuromasts (CNs) as well as the number and location of the superficial
lateral-line system (SLS) neuromasts varies between fish species. Taken from
[62].

range below 10 Hz [51-53]. Even in the flow field of a flying fly [10, 54], mainly
produced by the motion of the wings, high frequencies are damped rapidly with
the distance to the fly.

1.1.1 The lateral-line system of fish

The actual flow sensor of the LLS, the neuromasts, consist of a jelly-like cupola
surrounding hair bundles. Through the action of drag on the cupola the hair
bundles are deflected and mechanically gate the conductivity of the non-spiking
sensory neurons. Details on the transduction mechanism from hair bundle de-
flection to a change of the membrane voltage of the sensory neuron of vertebrate
hair cells can be found in [55-57]. A review of the neuronal processing of the
SLS and the CLS in [58].

The neuromasts are distributed more or less regularly all over the surface of
the fish body, with an increased density on the head. Or, they are placed in a
canal, a fluid filled tube under the skin connected to the surface through a fairly
regular arrangement of openings, see fig. 2.1. The geometry and the distribution
of the superficial neuromasts (SNs) varies greatly among fish species [1, 59).
Large variations are also found for the CLS. Some fish do not even have a CLS.
Others have a highly branched CLS covering almost the complete fish body, but
only a few SNs. Differences exist in the diameter and the length of the pores, and
the arrangement of the pores [60]. Always one neuromast seems to be placed
between two openings as sketched in fig. 2.1. The morphological differences in
the FSss of fish correlate with the habitat and the fluid-flow conditions [61].
Fish living in running or perturbed water seem to have more canal pores than
fish living in still water. Conversely, fish in still water seem to possess more SNs
than fish inhabiting perturbed water. All fish have at least a few (50) SNs, some
have thousands, see [1] and the articles cited therein.

The segments of the canal between the openings have a high length to radius
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ratio L >> rg, which is why the viscous incompressible flow through an infinitely
long tube is applicable. This geometric condition seems to be fulfilled quite well
for all CLSs. Small errors are introduced at the openings of the pores due to
an overestimation of the viscous effects. The flow inside the pore is almost
translationally invariant along the midline, the z axis, of the pore. Besides the
well known stationary parabolic Hagen-Poiseuille flow

Ap

4Lu( —r?) (1.1)

V(1) =
with pressure difference Ap over the circular tube of length L, tube radius rg and
dynamic viscosity of the fluid pu, transient solutions also exist. The oscillating
flow [63, ch. 5.5.1] with pressure difference amplitude Ap through a circular

tube is solved by
Ap{%euaw.;}
Uz (r,t) = — R - el—iwt) 1.2
() pLw | J§ (—(1 —1)ro) (12)

with the Bessel function of zeroth order Jg, frequency w, v = r/§, vg = ro/9,
Stokes’ boundary layer thickness § = 1/2v/w and kinematic viscosity v, and
the complex conjugate is denoted by an asterisk. The flow in a circular tube
impulsively started by a pressure difference [63, ch. 5.5.1, p. 343] is given by

2 vt

A — 1 —y
un(r, ) = =47 - [r% EL PP . O‘"T/TO)e ] (13)

with the Bessel function of first order J; and «,, the real positive zeros of Jg.
The first few a,, are [2.40,5.52,8.65,11.80,14.93,...]. The oscillatory Poiseuille
flow (1.2) can be approximated by the stationary Poiseuille flow whenever the

Womersley number
VVo:rm/g (1.4)
v

is small. The impulsively started Poiseuille flow (1.3) is approximated well by

(1.1) if
S 7o
1> 10 (1.5)

14

The kinematic viscosity of water at 20° C is about 1-10~%m? /s, a typical radius
of a canal about 0.25 mm. The distance between two pores is in the range of
several millimetres. If the frequency of the external pressure difference applied
to the canal is smaller than 10 Hz, it is safe to assume that (1.1) holds. Plots of
the flow profile in a tube dependent on vt/r? are given in [63, fig. 5.5.1 |.

The properties of the canal neuromast have been studied with the help of
models. The results are briefly reviewed with the focus on frequencies below
10Hz, which is expected to be relevant for the perception of stationary and
moving solid objects, see sec.2.11. The cupola of the neuromast inside the
canal or on the surface of the fish is quite often described [57] as one half of a
sphere in viscous flow. Stoke’s drag force on a sphere in an oscillating external
spatially homogeneous flow is given by

Js = —6mrands | (1+ %) coswn) = 2 (1452 o) (16)
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with sphere radius rg, the amplitude of fluid motion A, frequency w, Stokes’
boundary layer thickness § = y/2v/w, and the dynamic viscosity p = vo. The
force approaches the quasi-stationary value

fs = —6mrgpuAw cos (wt) , (1.7)

if w < 21//7“%. The embedded hairs provide some stiffness to the cupola.
Together with the mass, with some additional damping through the mechan-
otransduction apparatus, with half of the drag on a sphere (1.7) for the fluid-
mechanical force on the cupola as driving force, and with an added mass of the
displaced fluid due to the acceleration of the cupola, a linear second-order dif-
ferential equation in time for the deflection of the cupola is obtained [57]. The
resonance frequency of the model for typical cupola parameters is about 100 Hz.
A frequency-response curve for the deflection of the cupola inside a canal in re-
sponse to an external pressure difference applied to the openings is obtained by
multiplication of the transfer function of the canal, computed from an oscillating
Hagen-Poiseuille flow, with the transfer function of the cupola deflection model.
Some quantitative errors are probably introduced by neglecting the interaction
of the cupola with the wall of the canal, since the cupola covers a significant
part of the cross section of the canal. The result is a relatively flat frequency
response curve up to 100 Hz to an applied pressure difference. The deflection
of the cupola follows the pressure without phase lag up to 10 Hz. Since the CN
covers a large part of the cross section of the canal, modelling the drag force on
a CN with the drag on one half of a sphere in a uniform Stokes flow introduces
some quantitative error.

A similar analysis trying to capture the tapering of the canal through the
presence of the cupola was given by [64]. It is argued that the drag on the
cupola is maximal, if the cupola radius is more than half of the canal radius.

In summary, the fluid velocity inside the canal and the deflection of the
cupola follow the externally applied pressure difference instantaneously without
phase lag up to 10Hz. Typical flow velocities inside the canal are small, the
deflection of the cupola is in the range of nanometres. A numerical study of
the viscous flow through a canal driven by an oscillating pressure difference
was given in [65, 66], confirming that the drag force on the cupola in a quasi-
stationary flow follows the applied pressure more or less instantaneously up to
10 Hz.

The size of the cupola of the SNs seems to be significantly smaller than that
of CNs (several 100 um). However, an enormous span of geometrical values for
SNs are reported. For example, for zebrafish larvae [18|, SNs with a width of 4.2-
25.1 pm and heights of 8.7 - 79.1 ym are measured. The blind cave fish, Astyanaz
hubbsi, possesses SNs of a typical height of 80 um and a width of 50 ym, although
some SNs on the head reach a height of 300 pm [67]. The SNs of sighted Astyanaz
mexicanus reach only half the size of the ones of its blind relative. Furthermore,
the SNs of Astyanar mexicanus are much stiffer than those of zebrafish larvae
[68] due to an increased number of hair bundles. In [69] a mechanical model of
the SN in the boundary layer of the fish is presented. It is used to estimate the
properties of the SN in response to the flow field outside the boundary layer,
especially in response to an oscillating sphere, which is usually used to stimulate
the LLS. In a modified version [70] for the zebrafish SNs, the model predicts a
relatively constant sensitivity up to only a few Herz. This frequency could be
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significantly higher for the SNs of the blind Mexican cave fish due to an increased
number of hair bundles in the cupola. It is reported from afferent recordings
that SNs of the goldfish measure the local flow velocity up to 150 Hz [71].

The model is also used to estimate the threshold sensitivity of the neuro-
masts. From the gating energies of the mechanotransduction, the Brownian
motion of the hair bundles, and the number of hair bundles in the cupola, a
minimal resolvable cupola displacement is estimated. A zebrafish SN with 20
hair bundles has an estimated resolution threshold of 1.5 mm/s. Due to the in-
creased number of hair cells and the existence of the canal [70], CNs seem to be
much more sensitive than SNs to the same absolute velocity applied. However,
large variations are expected in dependence of the number of hair bundles, the
size of the cupola, or the length and diameter of a canal pore.

The conclusions relevant for the further course of this work are that most
SNs as well as CNs probably measure the instantaneous local flow velocity (free
stream or inside the canal) at least up to a frequency of 10 Hz. The flow velocity
in a canal seems to follow immediately the pressure difference applied at the pore
openings up to 10 Hz.

The exact transfer from the hydrodynamic stimulus to the excitation of the
sensor [57, 69, 72-75], the resulting neuronal signals [76-78], and their processing
is still under investigation [58, 79-83]. Ricci et al. [84] succeeded in developing an
intracellular recording technique from a zebrafish neuromast. The channels and
currents identified (A-type inactivating outward K™ current, weak inward Ca., "
current for vesicle release) are, as expected, similar to many other vertebrate
hair cells.

1.1.2 The Mauthner cells of fish

Fish possess two specialized neurons, the Mauthner cells, one on each of its
sides, which are involved in eliciting the ultra fast escape reflex upon acoustic,
tactile, or visual stimuli [85], called C-start. What makes the Mauthner cell
interesting for this work is the fact that besides the input from the vestibular
system [86], also LLS afferents directly project onto the Mauthner cells [87, 88].
The Mauthner cells obviously integrate raw data of several sensory modalities
within an extraordinary short span of time [89] of less than 20 ms. The typical
spike firing rate of the LLS afferents of zebra fish is in the range of 30-50 Hz.
Although the firing rate of the afferents can reach more than 200 Hz during
stimulation, the typical stimuli to be resolved to perceive an approaching ob-
ject are rather small, see sec.2.1. The Mauthner cells are thus able to make a
decision on a time scale smaller than the typical interspike interval of the input.
Mirjany et al. [89] report having investigated the contribution of the LLS to the
decision made by the Mauthner cells of goldfish. The stimulation was presented
with a system of loudspeakers in push-pull configuration at opposite sides of a
circular aquarium of diameter 75 cm driven by amplified “single sinusoidal waves
of 200 Hz produced by a digital waveform generator. The stimulus, called an
“auditory stimulus* was simultaneously recorded with a hydrophone. It is im-
possible to judge from the description of the experiment, whether the stimulus
presented to the fish, although obviously eliciting a C-start, could have stimu-
lated the LLS of the goldfish at all. It would be interesting to see, if and how
fish make use of the connection between the LLS and the Mauthner cell, and
how selective the decisions are.
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Figure 1.2: Mediterranean field cricket (Gryllus bimaculatus) with the flow-
sensory system (cerci), covered with filiform hairs, protruding from the ab-
domen.

1.1.3 The cricket cercal system

Crickets possess a rather highly developed flow-sensory system, the cercal sys-
tem. It consists of two long thin cones, the cerci, protruding from the abdomen,
and covered with hundreds to thousands of long thin hairs. These hairs, called
filiform hairs, couple viscously to the motion of the surrounding air. Each hair
is innervated by one receptor neuron, mechanically coupled to the motion of
the hair [7, 90]. The cuticular structure at the hair base supports the motion
of the hair in a preferred direction. The mechanical parameters of filiform hairs
can be found in [91, 92]. Rough estimates on the sensitivity threshold of cricket
filiform hairs are published in [93]. The receptor neurons directly project onto
the so called “giant interneurons® [94] in the terminal abdominal ganglion. The
processing and analysis of the flow sensor readings is believed to take place in
the terminal abdominal ganglion. It was shown [95, 96], that an escape response
can be triggered solely by the flow field of an approaching predator.

1.2 Kinematics of rigid bodies

The next three chapters of this work deal with the generation and perception of
flow fields of moving objects or flow fields altered by the presence of stationary
objects. Chapter 5 is partly devoted to the dynamics and control of an un-
derwater robot. Throughout this work, all objects, stationary or moving, will
be approximated as rigid bodies. The reason is that in 3 dimensions (3D) the
position of a rigid body in space is described by just 6 variables, its location
and its orientation. In contrast, for a flexible body the motion of each point of
the body has to be specified. Furthermore, a volume or a surface integral over
a rigid body can be readily evaluated in the respective body-fixed frame.

A rigid body B, equipped with a FSS and an inertia based acceleration mea-
surement system, is supposed to move through the fluid domain D in an arbi-
trary fashion, meaning that it is allowed to accelerate in any of the 6 degrees of
freedom. Other objects, moving or stationary, will show up from time to time.
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The task of B is to extract relevant cues from available sensor readings from the
FSS and the inertia measurement system. All quantities measured and all action
performed by the B are with respect to the coordinate system of the B, the
body-fized system (BFS). However, for self-localisation, path planning and nav-
igation, the B also requires its own velocity and position, and the position and
velocity of surrounding objects in a global frame, the frame of reference (FOR).
It provides an inertial system with the fluid at rest, if it were not disturbed by
the motion of the B and further objects. It will be necessary to consider the
relations of the relevant dynamic quantities between an accelerated frame of
reference such as a BFS and a global and inertial frame of reference FOR. In the
following section both frames, the relevant kinematic and dynamic quantities,
and their transformations are exemplarily introduced for Snookie. The defini-
tion of the FOR and BFS is one to one transferable to any other moving object.
Usually the depth of a submerged object is chosen as positive z axis with the
origin placed on the undisturbed water surface. Objects moving in air usually
measure their height above ground in positive z direction. These conventions
do not affect the kinematics or dynamics.

1.2.1 Frames of reference

A suitable coordinate system for the description of the environment of Snookie
is the FOR {e,e,,e.}, which is fixed in space. It is an orthonormal inertial
system. Stationary objects like the walls of a basin, which enter the fluid me-
chanics as boundary conditions, are fixed in space and therefore independent of
time. The coordinate system is defined in such a way that the directions e, and
e, are in the plane of the undisturbed water surface and e, points downwards
into the fluid in positive direction.

The second coordinate system is the BFS, see fig. 1.3. It is prescribed by B,
a rigid body, carrying out arbitrary motion relative to the laboratory system.
The system is orthonormal. It is defined by the basis vectors {ex, ey, ez}. The
orientation of the basis vector ex of the BFS shall coincide with the longitudinal
axis of Snookie pointing to the bow, the ey direction points to the starboard
side, and ez is given by the cross product ex x ey. The natural choice for
the position of the origin O of the BFS, expressed in coordinates of the FOR by
the vector o, is the centre of mass of a rigid body, since no coupling between
rotational and translational degrees of freedom in the equations of motion (1.12)
occurs in this system, meaning that resultant forces only affect the translational
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momentum and resultant torques only the angular momentum. Whether such
a point exists in the presence of hydrodynamic forces acting on the surface of B
is a matter of discussion in sec. 5.1.2. For now, the real position of the centre of
mass of B is unknown. A good choice for O is in the centre of volume of the hull
of B. All quantities measured by devices on-board of Snookie are provided in
the BFS. The position in space of a rigid body is fully described by the location
and orientation of the BFS relative to the FOR. In order to clearly distinguish
between a quantity expressed in the FOR and the same quantity in the BFS, lower
symbols are used for coordinate vectors and matrices in the FOR {e,, ey, e.}
and capital symbols in the BFS {ex,ey,ez}.

The BFS may be rotated against the laboratory system, which is described
by a modified set ¢ = (¢,0,%) of implicit Euler angles (Tait—Bryan angles).
If the orientation of the body and the body-fixed basis vectors were initially
parallel to the ones of the FOR, the following procedure describes the rotation
of the body at a given instance of time: rotate around e, about the yaw angle i
onto {e;, ey, ez} with —7 < ¢ < 7; next, perform a rotation around e; about
the pitch angle 6 onto {eX, e;/, e’z} with —F < 6 < 7; and finally rotate around
ex about the roll angle ¢ onto {ex,ey,ez} with —m < ¢ < m. Then, the
rotation R of a vector from the FOR to the BFS is given by

1 0 0 cosf 0 —sind costyp siny 0
R=10 cos¢p sing 0 1 0 —siny  cosy 0 (1.8)
0 —sing cos¢ sinfd 0 cosé 0 0 1
cos 0 cos cos fsin vy —sinf

= | singsinfcosy — cos¢siny sin¢sinfsiny + cospcosy singcosh |
cos ¢psinf cosy + sin¢psiny cos@sinfsiny —singpcosy cos ¢ cos

and its inverse by & ~! = ®T. The definition of the Euler angles depends on the
order in which the transformation is carried out and finite rotations are therefore
not commutative. The angular velocities in BFS coordinates are computed from
the Euler angles [97] by

_ 1 0 —siné
Q=W(@P)¢p=|1 cos¢ singcosd
0 —sing cos¢cosf W

RS

(1.9a)

Its inverse is

) 1 singtanf cos¢tanf Qx
p=w1lp)2=|1 cos ¢ —sin¢ Qy | . (1.9b)
0 sing/cosf cos¢/cosb Oy

The total time derivative of a vector-valued quantity in an accelerated system
expressed in BFS coordinates is given by

D d
—_— = — Qx . 1.10
o dt (1.10)
The symbol 2 x denotes the totally anti-symmetric matrix representation
0 —C3 C2
cxX = c3 0 —a (1.11)

—C2 C1 0
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of the cross product ¢x. The additional term € x stems from the time derivative
of the basis vectors of the accelerated BFS.

1.2.2 Rigid-body motion

As will be seen in sec.4.3, the fluid-mechanical forces on a rigid body due to
acceleration in an ideal fluid can be formulated in the framework of rigid body
dynamics. Before the forces exerted on the robot by the fluid are treated in
depth in ch.4 and ch.5, the inertial forces of the rigid body due to its body
mass in the BFS shall be briefly introduced.

The velocity w of the origin O of the BFS expressed in coordinates of the
BFS is denoted by U, the angular velocity w of the BFS about O by €2, the
acceleration w of O by A, the angular acceleration by w and A4, the moments
of inertia i of the rigid body computed about its centre of mass by I, and the
position of the centre of body mass relative to O by p,,;. The mapping between
the two systems is given by o, ¢ = (¢,6,9)T, (1.8), and (1.9).

Instead of formulating the inertial force F! and inertial torque T? as a
sum or integral over the inertial forces acting on each particle, especially in
case of changing masses, it is easier to take the total time derivative of the
momentum M = m(V 4+ Q x p,,;) and the angular momentum L = IQ +
mpy X (w X pyr), where m is the body mass and I is the moment of inertia
computed about the centre of mass p,, relative to O, which results in

F! B ml —mp X A QAx mV
<TI> B (mpr I —mpyX pr) (ﬂ) + <Q X (I —mpyx pr)Q) ‘
(1.12)
Any other location for the choice of the origin of the BFS than the centre of
mass couples translational and angular motion. Equation (1.12) incorporates
Steiner’s theorem [98] — also called parallel axis theorem — through the trans-
formation of the moments of inertia I —m p,; X py,x. With shifted centre of
mass, an external force resultant not only changes the velocity of the BFS, but
also induces a change in the angular velocity. The coupling between rotation
and translation also occurs for an external torque resultant.

The equations of motion (1.12) describing the change of momentum and
angular momentum may be further unified to a single equation in a very compact
notation, which will be extended in ch.5.1.2 to incorporate fluid-mechanical
forces acting on B. With the definition of the 6 x 6 mass matrix

A= < ml P ) , (1.13)
mpy< I —mpyxX ppX

the definition of the anti-symmetric 6 x 6 matrix

Qx 0
wX = < 0 Qx) , (1.14)

where 2% denotes the anti-symmetric 3 x 3 matrix representation (1.11) of the
cross product, the the definition of the generalised 6-dimensional (6D) velocity
vector 4 = (U,€2) and the generalised 6D force vector §F = (F1.T7), the
equations of rigid body motion without external forces yield

D(AU)  dAM

%'I:T:T‘FWX(AL[):O. (1.15)
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Chapter 2

Potential Flow

As mentioned in ch. 1, this work focuses on the motion and perception of rigid
bodies in an ideal incompressible irrotational fluid, also termed incompressible
potential flow. The restriction to this limiting case of fluid motion is essen-
tially due to the assumptions required to arrive at statements on the motion
of the fluid within a certain domain D in dependence of the fluid motion on
the boundaries, see sec.2.2. In a real fluid, potential flow is found, e.g. around
a moving fish, or by proper design around the LLS of a vehicle [99, 100]. The
vorticity produced at the surface of the moving body is convected to the rear
with the incident flow. This is expressed by a high Reynolds number in front of
the moving observer, resulting in an inviscid and irrotational flow well described
by a single valued velocity potential ® [45, 101].

2.1 Potential flow

The fluid motion is fully described by a single valued velocity potential [101,
ch. 3, § 35]

AD =0 (2.1)
for the velocity field
v =V, (2.2)
derived from the Euler equations
0
av—i—('v-V)v:—% (2.3)

on a simply-connected domain D assuming an irrotational fluid flow
Vxv=0. (2.4)
In addition, the fluid is incompressible, if
V-v=0. (2.5)

A domain D is said to be simply-connected, if any loop inside D is reducible. A
loop is reducible, if it can be shrunk to a point without crossing the boundaries
of B. Any multiply connected domain {101, ch. 3, § 47-51] can be converted

13



14 CHAPTER 2. POTENTIAL FLOW

Figure 2.1: Schematic of a lateral line canal. The points A and B denote
canal openings, the dotted lines represent irreducible loops, the blue dots canal
neuromasts (CNs).

to a simply connected domain by introducing artificial boundaries, so that any
irreducible loop is split up. A domain D is said to be n-ply connected, if (n—1)
artificial boundaries X are necessary to render D simply connected. This is
equivalent to the existence of n—1 irreconcilable irreducible loops, meaning that
they cannot be converted into each other by continuous deformation. Stokes’
theorem guarantees that the circulation

ygvdl:/ VxvdS (2.6)
c s

along a closed loop L enclosing the surface S in a simply connected domain
vanishes, which is necessary to ensure a single valued potential ®. In a n-ply
connected domain with non-vanishing flux through an aperture, e.g. produced
by a line vortex placed outside the domain D, the line integral over an oriented
irreducible loop

- 7§£ vl 2.7)

does not vanish, but depends on the number of turns m of the loop and the
circulation x of a single turn. For the combination of n irreducible paths, the
circulation of each path times the number of turns is added up,

n
T'=> mi;. (2.8)
=1

The potential ® is thus determined only up to I' with arbitrary m;, as long as
the path of integration over the velocity is not specified. The potential difference
between the points A and B in fig. 2.1 is given by

Pap=T+Pp4. (2.9)



2.2. HELMHOLTZ’S DECOMPOSITION THEOREM 15

It can be seen from (2.9) by putting the points A and B on adjacent sides of
X; that the potential experiences a jump of +x; depending on the orientation
of the circulation and the direction in which X; is crossed. The potential is
uniquely determined if the circulation in any irreducible loop is specified in
addition to the boundary conditions of the multiply connected domain. The
potential becomes single valued by means of introducing artificial boundaries
X;. In addition, the circulation must be specified for every X;. The fluid velocity
is always single-valued, but closed streamlines may exist in multiply connected
source-free domains that do not end or start on boundaries. If in addition to
the boundary conditions on 9D the velocity is specified also on the artificial
boundaries X;, the fluid velocity is fully determined on a multiply connected
domain D.

Throughout this work, physical boundaries of D are given by the surfaces
of moving rigid objects. Following the naming convention of sec.1.2.1, capital
symbols denote quantities with respect to the BFS. No fluid can cross the surface
0B of an impermeable body B. In case B is rigid, the boundary condition is
simply given by the normal velocity of the boundary, see sec. 1.2.2. The velocity
of a point P at position p on the surface 9B of B defined with respect to the
origin of the FOR is given by the translational and rotational velocity u® and
wB of B,

VB(p) = uf +wB x (p—o°) . (2.10)
The boundary condition for the fluid on 9B, the no-penetration boundary con-
dition, is in the FOR given by

1 _ a@(p(t),t)
OO = i)

at any point p on the surface 9B of the rigid body. The surface point p and
the normal n are functions of time, since B moves. The surface normal n is
supposed to point outward D. The surface normal n’ outward of a body and
inward to the fluid is denoted with a prime. The time course of ® is solely given
by the right hand side of (2.11). The potential ® is a linear function of the
velocity of the boundaries.

Throughout this work, the FOR is chosen such that the velocity potential
and the velocity vanish at infinity, or alternatively the boundaries enclosing D
are at rest. Objects moving through D are totally immersed in D.

= [uB(t) +wP(t) x (p(t) = 0°(1))] - m(p(1)) (2.11)

2.2 Helmholtz’s decomposition theorem

At first glance, incompressible potential flow, i.e. the motion of an incompress-
ible inviscid irrotational fluid, appears to be a rather strong limitation leading to
a small class of special cases of flows occurring in real fluids. The following short
discussion of a generalised version of Helmholtz’s theorem shows that there are
good reasons to impose these limitations in order to be able to easily arrive at
relations between the motion of the boundaries and the motion of the fluid on
a simply connected domain D. Helmholtz’s decomposition theorem [102] states
that any sufficiently smooth vector field v defined on D decaying faster than 1/r
or being bounded in three dimensions can be decomposed into the sum of an
irrotational (curl-free) vector field V@ and a solenoidal (divergence-free) vector
field Vx A,
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v=VP+ VxA, (2.12a)
where
1 v (r')
I — ! 2.12b
R e e
and
V'xv(r 1 v (r')
d - ds’ 2.12
47r// |r—r’\ v 47 émnx |r — 7’| S (2.12¢)

with surface normal n outward D. If D extends to infinity, the respective
contributions of the surface integrals in (2.12) vanish. A quick look at (2.12)
reveals that v(r) is solely determined by the boundary conditions v - n|sp and
n X v|gp, if Vxv =0 and V - v = 0, meaning that D is irrotational and free of
sources. These are exactly the conditions required for incompressible potential
flow. Then, the flow field is governed by the velocities of the flow field on the
boundaries of D

o) = ~vdh n. 2W S——Vx# nx YW g5 (213
dr - Jlop |-yl 4w oD |z — y|

If one wants to acquire information about the boundaries of the fluid by analysing

the fluid motion, or vice versa, it is necessary that the dynamics of the fluid is

actually governed by the properties of the boundaries. The conditions V -v and

V xwv are sufficient conditions to allow fluid flow perception by measurement of

the velocity or any other quantity related to it on the boundaries.

2.3 Potential flow in accelerated frames

To develop a theory for the processing of flow sensory data on-board of moving
objects, no matter if fish, cricket, or an underwater robot, and to formulate the
dynamics of objects in a fluid, it is convenient to express the equations governing
potential flow in translationally and rotationally accelerated frames of reference.
It turns out that this can be done quite easily.

An inertial FOR shall be given by its basis vectors {e;, ey, e.}, and an ac-
celerated BFS by {ex(t),ey(t),ez(t)}. The transformation of a vector valued
quantity from FOR coordinates to the BFS coordinates was given in sec.1.2.1.
The dynamics of the fluid in a bounded or unbounded simply-connected fluid
domain D in a FOR is governed by A, ®(x,t) = 0 (2.1). The potential in the BFS
is identified by its argument ®(X, t) to avoid the introduction of additional sym-
bols. The Laplacian determining the potential of the flow field is form-invariant
under orthogonal coordinate transformations and thus under transformations in
an arbitrarily accelerated frame of reference, since

A@(z,t) =V, - V,@(x,t) = (VxRT) - (RVx) ®(X,t) =
Vx - Vx®(X,t) = AxP(X,1).
This result simply follows from the fact that no time derivative appears in

(2.1). The time dependence of the motion of the fluid enters ® solely via the
time dependence of the boundary conditions.
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To take full advantage of a BFS one would also like to express the velocity
with respect to the BFS of a moving body, since V' - N = 0 in the BFS. This will
turn out to be quite useful, since surface integrals containing the normal velocity
as a factor will vanish on B. It shall be reminded that upper case symbols are
used for quantities in the BFS, lower case symbols for quantities in the FOR. In
the FOR the boundary condition (2.11) for the fluid velocity defined with respect
to the FOR at a point p on a moving rigid body B is

22(p(0).0) _ ¢
In(p(t))
As already mentioned, the boundary condition for the same point P = K (¢)

(p(t) — 0F(t)) on OB in the BFS, where the flow velocity is defined with respect
to the origin OB of B, is given by

v (p(t),t) = u(t) + wh(t) x [p(t) — 0P ()] } - n(p(1)).

I (P, 1)

N

ViP,t) =
The flow field v(x, ) relating to the origin of the FOR in coordinates of a
BFS B defined with respect to the origin O(t) of B becomes

V(X,t) = R($()) {v(z,t) — [uP(t) + wB(t) x (z - °(t))]}

with the transformation matrix ®(¢) and the vector of Euler angles ¢(¢) as
defined in sec. 1.2.1. A flow field V(X ,t) is throughout this work defined with
respect to a BFS and expressed in coordinates of the BFS. Whenever it is neces-
sary to specify the systems to which the flow velocity relates to, it is indicated
by the respective superscript, e.g. \= (X,t). Lower case symbols are used for
flow fields v(x,t) defined with respect to and expressed in coordinates of the
FOR, recalling that the FOR is chosen such that the fluid domain D is either
bounded by stationary walls, or the potential and the velocity vanish at infinity,
see sec.2.1. It shall be reminded that this convention does not apply to the
velocity of a rigid body. Contrary to the velocity VZ(X,t) of the flow field, the
translational and rotational velocities U® and 27 of B are defined with respect
to the origin of the FOR and expressed in coordinates of B. To obtain the po-
tential corresponding to the velocity field defined with respect to B, just some
slight modification are required to match the transformed boundary conditions.
A correction ®¢ for the velocity potential resulting from a line integral

PB(X,t) = & (x,t) - /:c [uP(t) + wP(t) x (' — 0P(1))] - di()

_ o7 (X / di(z') — wB(t) /m (@' — oB(1)) x di(a)
= o7 (X, t) - (X, 1)

between, e.g., the origin of the FOR at 0 and the field point & or X must be
introduced, whereby the properties of the scalar triple product have been used.
To distinguish the velocity potentials of the flow fields defined with respect to
the FOR or the BFS the superscripts F and B are used were necessary. The shape
of the curve of integration C does not matter further, since ® is a conservative
potential. The curve integral starts at the origin 0 of the FOR and ends at
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X. Even the choice of the start point of C is irrelevant for the flow field, since
changing these points will just add a function of time C(t), which does not
affect V.= V®. However, C(¢) matters for the computation of the pressure of
transient flows, see sec. 2.9. The adapted potential fulfils A®Z = 0 and delivers
correct boundary values ®2 /9N |5.

2.4 Green’s identities

As discussed in sec. 2.2, the motion of an incompressible ideal irrotational fluid in
a source-free simply connected domain is governed by the boundary conditions
and a boundary representation of the flow field in terms of a given velocity on
the boundaries. An equivalent boundary representation for the flow potential is
given by Green’s third theorem, presented in this section.

Let the open domain D C R3 have a piecewise smooth boundary dD. For a
continuously differentiable vector field v defined on D and on a neighbourhood
of D outside D, the divergence theorem

///D (V-vjav=dp (w-mas (2.14)

with the outward normal n on 9D relates the generation or destruction of the
quantity v inside D with the flux of v through the surface 0D. Application
of (2.14) to the product UV® of an once continuously differentiable function ®
and a twice continuously differentiable function ®, both defined on D, leads to
Green’s first identity,

///D(\I/A<1>+V<I>-V\I/)dv:y%p\p(vq).n)ds. (2.15)

Green’s second identity

///D (VAD — AT) AV = %[é (q/gi - @Zi) ds (2.16)

is obtained by substitution of ¥V® — &V into (2.14), where ® and ¥ are both
twice continuously differentiable functions on D. The potential ® is supposed
to be a solution of A® = 0, and G is the fundamental solution

1
G = 2.17
F(way) 47T|$7y|7 ( )
i.e. the free-space Green’s function of the Laplace operator defined by
AGr(z,y) = S —vy). (2.18)

The open domain D shall either be bounded by 9D, or ® shall vanish at infinity.
Inserting (2.17) into Green’s second identity (2.16) delivers a singular integral
in the case of a field point x located inside D. This can be circumvented by
excluding « from D and introducing a spherical boundary with radius ¢ around
. The surface integral can then be computed in the limit ¢ — 0. This leads to
the boundary representation of potential flow [101, § 57-58]

b(x) =— Gp(w,y)a(g(y)dS—i—# @(y)WdS ifxeD. (2.19)
oD n 9D n
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The first integral in (2.19) describes the contribution of monopoles distributed
on 0D with monopole surface density 0®/0n, the second integral the contribu-
tion of dipoles with density ®. The potential ® vanishes, if the field point « is
located outside D,

0=— # G, 22 W s 4 # o) 292 Y) 45 ra gD, (220
oD on 8D on

since A® = 0 and AG = 0 when substituted in (2.16). It shall be noted that
0D does not necessarily have to consist of substantial boundaries. The surface
0D may enclose any arbitrary simply connected fluid domain D. Parts of 0D
may also extend to infinity with the consequence that, as long as ® decreases as
fast as or faster than 1/r, these parts do not contribute to ® up to an irrelevant
constant C. In case A® # 0, meaning that D contains sources,

oG

b(x) =— GF%dS—i-# @—FdS—F// GpAy®dy (2.21)
oD

for x € D, whereby the arguments of Gr(x,y) and ®(y) have been dropped for

brevity.

2.5 Boundary value problems of potential flow

The surface densities driving a given flow field with potential ® on D are not
unique, as the following discussion shows. For example, it is possible to choose
either a monopole or a dipole density such that the other source distribution
vanishes.

2.5.1 Monopole and dipole distributions on the bound-
aries

The open fluid domain D is supposed to be a subset of a larger domain, e.g.
D C R3. The domains D and R3\{D U D} share the same boundary dD. Let
@’ be a potential on R*\{D U 9D},

o (z) = — GF(x,y)a@/(y)ds+%[épcb'(y)wds (2.22)

9D on’ on’

for x € R3\D, represented by its values on the surface D. The potential &’
and its derivatives V®' vanish at infinity, thus no further boundaries than 9D
contribute to ® on R3. The surface normal n/ on 9D inward D and outward
R3\D is the negative of the outward surface normal n = —n’ of D. Addition of
(2.22) and (2.19) delivers

- 95 O en
B(x) = fﬁgDGF (8n+ an,>d5+9§ép(q> @) %4

for * € D, whereby the arguments of the potential as well as the arguments
of the Green’s function have been dropped for brevity. No constraints except
sufficient smoothness (continuously differentiable) are imposed on ®’ and %’1’

on 9D. The potential &' equals zero on D, and does not affect the potential ®
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on D. Therefore, 0®(y)/On = —0P'(y)/On’ on ID is a valid choice, and the

potential
o) = ff (@) - ¥) Y as (233)

is then represented by a distribution of dipole sources (®(y) — ®'(y)) only. Anal-
ogously, choosing ®(y) = ®'(y) on 9D yields the potential

O(z) = — %[é Gr(m,y) (aq(;ily) + 32;5}”) as (2.24)

represented by a distribution of monopole sources 0P (y)/On + 0P’ (y)/0n’ only.
Given a valid potential fulfilling the boundary conditions, the source densities
0% /0n|sp and ®|sp in (2.19) are identified as the flow velocity v normal to
0D and the value of the potential & on the boundary. Specifying Dirichlet
and Neumann boundary conditions on the whole boundary overdetermines the
problem. It is possible to choose 9®/9n|sp and ®|op so that no valid solution
for the specified boundary conditions exists. This redundancy is removed in
(2.24) and (2.23) by the adapted source densities 0®(y)/In + 0P’ (y)/On’ and
®(y) — ®'(y), which, however, cannot be easily related to the velocities of the
flow field on the boundaries. The boundary representations (2.24) and (2.23) are
nevertheless highly useful as they allow the easy computation of potential flow
given the motion of the boundaries, i.e. the solution of the forward problem:;
see sec. 2.8.

2.5.2 Dirichlet problem for the Laplacian

The redundancy in (2.19) may also be removed by replacing the free-space
Green’s function Gz by a Green’s function G p, which fulfils specified boundary
conditions on 9D. The solution of the Dirichlet problem

AP =0 for €D and P(x€dD)=0 (2.25)
can be formally written with the help of a Green’s function
GD(-'B, y) = GF(may) + HD(m7y) )

which requires the construction [103, p.24 ff.] of a corrector function H(x,y)
fulfilling
AyHp(x,y) =0 for yeD

and the boundary condition Gp(x,y) =0 by
Hp(z,y) = —Gp(x,y) for yedD (2.26)
on all boundaries for a given field point @ € D. By substitution of (2.26) into

(2.19) the boundary representation of the Dirichlet problem

O(x) = %[ép @(y)st for x € 0D (2.27)

is obtained. The problem is now to determine the correct Green’s function

Gp(z,y).
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2.5.3 Neumann problem for the Laplacian

In the same manner, one wishes to be able to write the solution of the Neumann
problem

AP =0 for €D and g—@ =vt for x€0D (2.28)
n

in terms of a Green’s function

GN(xvy) = GF(xvy) + HN(m7y)

€

and the normal velocities v— on the boundaries with the corrector function

Hy(z,y) fulfilling
AyHy(z,y) =0 for yeD. (2.29)

The naive choice for the boundary condition OGN (x,y)/On(Y)|zeD . yecop =0

OHN(z,y) 0Gr(x,y)
on(y) on(y) v

on all boundaries, however, violates the divergence theorem, since its application
on a domain x € D with closed boundary 0D yields

e asy) — [J] At i) -

The simplest choice [104, ch. 1.10] is

OHN (z,y) IGr(z,y) 1
=— + for € 0D, 2.30
on(y) only) o] Y (2.30)

whereby |0D| denotes the surface area of D. The representation of the potential
on D in terms of its normal derivative on 9D is thus given by

@(m):@o_ﬁépa‘gg)a (z,y) dS(y // A, (y) G (2, y) V()
(2.31)

with

Py = #)D@(y)d‘?(y) ,

where the volume integral in (2.31) accounts for possibly occurring sources in
D. The surface averaged potential automatically provides a correct choice for
the additive constant of the potential which is undetermined by the Neumann
boundary conditions.

2.5.4 Kelvin’s extension to Green’s third identity for mul-
tiply connected domains

In section sec. 2.1 it was argued that (n — 1) circulations k; along (n — 1) irre-
ducible loops with m; turns must be specified on a n-ply connected domain to
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guarantee an single valued potential on D. Kelvin’s extension [101, § 58| comple-
ments Green’s second identity by surface integrals over the artificial boundaries
X; necessary to split up D in a simply connected domain

B 0P 0Gr el
a)=—gp Grlds+ ﬁg@ a(y) 5+ ; e ﬁi Lras  (22)

oD n

for a field point @ in D. Equation (2.32) can be derived directly by application
of (2.19) to the boundaries of the domain D rendered simply connected by
the artificial boundaries X;. The normal component of the velocity must be
continuous on both sides of X; and thus the surface integrals over Gpd®/dn
on both sides of X; cancel due to opposite signs of the surface normal. The
potential ® experiences a jump x; when crossing X;. Only the contributions
k; OG p/On remain.

2.6 Decomposition of the velocity potential of rigid
bodies

Again, a domain D filled with an ideal incompressible and irrotational fluid
partially or fully bounded by 0D is considered. The domain D may extend to
infinity, and if it does so, the potential ® and the derivative V@ are supposed
to vanish at infinity. The boundary 0D consists of the disjoint smooth surfaces
0D = |J; 0T of a set of rigid objects Z, each of them moving in an arbitrary
fashion. In case D is fully enclosed by a solid boundary, the FOR is chosen such
that this part of the boundary is fixed in the FOR. Otherwise, the velocity and
the potential are supposed to vanish at infinity in the FOR. The boundary of
a rigid object is said to be stationary if the velocity of the object equals zero
in the FOR. The no-penetration boundary condition holds on all moving and
stationary solid boundaries OD. For the sake of simplicity, the symbol Z is used
at the same time for an element of the set of rigid bodies, the whole set, and
also as an index to iterate over all elements of the set.

The linearity of the Laplacian can be exploited to split the potential up into
the contributions of each moving rigid body. The normal component of the
velocity of the fluid at a point y” on the boundary Z of one of the rigid bodies
is given by the no-penetration boundary condition (2.11)

| = [T+ X (T )] 0Tt T (4 ) o]
on |y

with g7 the position of the BFS of Z, whereby the commutativity of the scalar
triple product was used for the last conversion. The solution of the potential
problem (2.31) given the normal velocities on the boundaries can be split up
into

x,t) = — ul(t) - x,y)n
P(x,t) = Po(t) XI: (t) al'(t)GN( Y)n(y)dS(y)

— wZ(t) - T T_g) xn .
> ﬁgm () [(4F - ¢°) x n(y)] dS(y)
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The Green’s function Gy for the Neumann problem with corrector function Hy
is chosen such that (2.30) holds for a fixed but arbitrary @ € D at the given
instant of time. The surfaces of integration OZ(t) are time-dependent, since
the bodies Z are allowed to move. The boundaries 9Z are fixed in the BFSs of
the respective body Z. The source points Y* = y(t)T — ¢%(t) and the surface
normal N7 defined with respect to the BFS are then independent of time, and
the surface integrals can be evaluated

O(w,t) = Do(t) — > u’ - R" # Gn(z,Y + Rg") NdAS(Y)
7 oz

+wh(t)-RT D Gn(x,Y +Rq") (Y x N(Y))dS(Y)
oz
with the rotation matrix ® T from BFS to FOR coordinates as defined in sec. 1.2.1.
The arguments of R = K(qﬁz (t)) and g% = q*(t) have been dropped for brevity.
The time-dependent ®(t) has no effect on the fluid motion. Thus, ®o(¢) = 0 is
a valid choice. The result is the decomposition

6
B(a,t) = 3> wF(t)pF (2. 1) (2.33a)

T i=1
with the property
0P T
— =, 2.33b
ouf =¥ (2.33b)

and using the 6D vector notion introduced in sec.1.2.2. Furthermore, the 6D
surface normal
n=(n,y x n)T ,

allows to write the boundary conditions of the potentials ¢7

0oL (x. t

9y (x,t) =n; for i€{1,2,3} and
on xcdT
T
. t

M =(xxmn),_, for i €{4,5,6},
on xcdT

which fulfil Ap? = 0 in 6D vector notation

A7 (,1)
on

¢t (x,1)

= 2.
o 0 (2.33¢)

xeJ#T

=n; and
x€0T

for any point « located on any surface [J other than Z. The decomposi-
tion (2.33a) is remarkable in a number of aspects. The harmonic functions
@i(x,q*(t)) do not depend on the velocity of the boundaries, but on the cur-
rent shape and position of the boundaries.

If only one body B exists in an otherwise unbounded fluid domain at rest,
the potential is of the form ®(x,t) = @(x — 08) - (V(t),Q(t))" with o the
origin of the BFS of B and ¢ = (..., ¢;,...)T. The potential is stationary in
the BFS of the moving body, if V' and € are constant in time, and no other
boundaries are moving relative to 5.

On the other hand, the potential ® is not necessarily stationary, if  and V'
are constant. The potential ® can also vary in time due to changes of the ¢;
resulting from the relative motion of other boundaries.
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2.7 The hydrodynamic image

The term hydrodynamic image was introduced in [20] in the context of the LLS
of fish, to express the fact that the water flow velocity on the surface of a body
is altered by the presence of other objects. The restriction to water is somewhat
artificial. The term fluid-dynamical image could be considered to be a more
suitable generalisation actually meaning the same, but is emphasising that the
physics of inviscid incompressible fluids are independent of the medium, e.g. for
air and water, apart from the density.

The definition of the term hydrodynamic image lacks a definition of the
term object. The term hydrodynamic object is often implicitly defined through
its contribution to the hydrodynamic image [47, 105], which is a somehow re-
cursive alternating definition of hydrodynamic image and hydrodynamic object.
In the framework of potential flow (2.21), a fluid-dynamical object can be de-
fined as an isolated continuous distribution of mono- or dipoles. A single point
source is incorporated in the definition, since it can always be represented by a
corresponding distribution of mono- or dipoles on a surface enclosing the point
source. An artificial boundary enclosing a fluid domain carrying a distribution
of mono- or dipole sources generating the potential is not covered by the defini-
tion of a fluid-dynamical object, since it is not isolated. The question, whether
a distribution of sources representing an object or the potential created by it
is unique, and if it is possible to uniquely conclude to the presence and distri-
bution of mono- or dipoles driving the flow field from the hydrodynamic image
is addressed in ch.3. An answer to this question is implicitly given in the last
sentences, in sec. 2.5, and in sec. 2.8: any closed boundary, physical or artificially
drawn, can be used to find a mono- or dipole source distribution generating the
observed flow field.

In more mathematical terms, the hydrodynamic image of the potential re-
lates the potential on the observer B to the potential on the rest of the boundary
0D of the domain D, whereby 0B C 90D.

The potential on the domain D is represented by the surface integral (2.19)

®(z) = y][ép (1) Gr(@y)dS — b o(y)2GE®:Y)

dS forxeD (2.34
oD on(y) ( )

over a monopole distribution p and a dipole distribution ¢ on 9D, identified in
the case of potential flow as the Cauchy data 90®/0n and ® on 9D.

As « approaches the boundary, the integral kernels obviously become sin-
gular. Which value is to be assigned to ® when © € 9D? The integral kernels
K € {Gr,0GFr/On} in the improper integrals of (2.34) are weakly singular
kernels in the sense

K@, y)| < clz—y|™

with the two constants ¢ and d < N — 1 and the number of dimensions N.
(2.34) is thus locally integrable except in the point @ = y, [106, ch. 1.2]. Tt is
convenient to define the integral operators V and K,

V(e € 9D) = # Gr(z,y)p(y)dS(y),

yedD\x

Ko(x € 0D) = # %r(z y)

) e () o(y)dS(y).
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The normal derivative 0®/0n on 0D becomes

ov(z) 9 N 9 ol 2CF (@ Y)
an(m)—an(m)ﬁémp(y)%( ,y)ds an(m)#ap (y) on(y) s,

whereby the first integral is weakly singular, and the integral operator

yedD\z on(z)

p(y) dS(y)

is obtained. The second integral is hypersingular, and can be expressed in 3D
by the integral operator

Do(z) = — (n(z) XVx)~# " Gr(z,y) (n(y) x Vyo(y))dS(y)  (2.35)
yeS\x

after some cumbersome computations [106, ch. 1.2] in terms of the tangential
derivative n(y) x Vyo(y). Formulated by the just defined integral operators,
the Cauchy data on 0D are related through the Calderén projector

(g) B (éﬂl;K ;1ZK'> (E) (2.36)

with identity 1. These overdetermined relations between the Cauchy data
may be used to recover incomplete boundary values, e.g. to express the fluid-
mechanical image ®(x € JB) on B through the Cauchy data given on the rest of
the boundary. This results in Fredholm integral equations of the first and second
kind that relate the Neumann 0®/9n and Dirichlet ® data on the boundary.
Or conversely, if the location of the boundaries is known, (2.36) can be used to
compute the values of ® and the normal derivative 0®/0n(zx) on the remaining
part of the boundary from the measured fluid-mechanical image. However, the
solution of the resulting boundary integral equations is not trivial and numeri-
cally tricky. A short overview on the methods used to complete Cauchy data is
given in [107].

2.8 Boundary element method

In ch. 3, numerical solutions of potential flow are computed as input to a LLS
in order to demonstrate 2-dimensional (2D) versions of flow field reconstruction
methods, see e.g. fig.3.5. The numerical method used is closely related to
the boundary representations of potential flow discussed in the previous section
2.5.1.

The setting is given by solid objects moving through an inviscid incompress-
ible irrotational fluid, which is otherwise at rest. Neumann boundary conditions
are imposed on all boundaries. The potential on D can be represented according
to (2.24) by a continuous distribution p(y) of monopoles

O(x)=—-P Gr(z,y)p(y)dS(y) (2.37)
oD

on the whole boundary 9D, whereby

1
Gr(x,y) = gln(\m -yl
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is the two dimensional fundamental solution for the Laplace operator.

The basic idea of the boundary-element method (BEM) is to determine the
source density p(y) on the boundaries such that the resulting potential (2.37)
satisfies all boundary conditions. In general, it will not be possible to find an
explicit solution for p. Thus, the problem must be solved numerically, [108].

For this purpose the boundary 9D shall be discretised into N line segments
Ly, Lo, ..., Ly of equal length I. The density p is taken to be constant over each
line segment. Hence, the monopole source density on the boundary is given by
the vector p with N elements, whereby the element p; specifies the monopole
source density on the line segment L;. The substitution of this discretisation
into (2.37) yields

N
o) =~ > p, / Gl y)dify). (2.38)

i

The monopole source densities p are determined by the minimum of the squared

difference )
_ oo 1
E = 553@ (871/ (y)—v > di(y) (2.39)

between the prescribed boundary conditions (2.11) and the normal fluid velocity
0P /0n’ obtained from (2.38), where n’ is the surface normal pointing inward
the fluid and v* = v (y) is the velocity of motion of the respective surface
element at y normal to the boundary along n'.

With 0D discretised in line segments, the error in the boundary condition
(2.39) turns into a sum over all line segments. To be precise, the error E over a
line segment is approximated by its value at the centre point p, of the respective
line segment L;, which means that v and 9®/0n’ are evaluated at p,. By virtue
of the boundary discretisation (2.38) and

(x —y) n'(y)

F(z,y) = V,Gr(z,y) -n'(y) = — o (x — y)?

(2.40)

the error (2.39) thus becomes

N N
Ezzll lej/LF(pi,y)dl(y)vil (2.41)

1= J

with v = v1(p;) and v+ the vector of all v;- of length N. The simple source

densities p are thus determined by the solution of
Lp =vt, (2.42)

where
Lij = —/L F(p;,y)di(y) (2.43)

is the contribution of the flow field generated by a line element L; to the normal
velocity v at the centre point p; of the line element L;. It shall be noted
that the potential and the flow field are linear in all source strengths p;, and
thus, F is convex in all p;. The equation system (2.42) will not have an exact
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solution, since the boundary value problem is approximated by a discretised
boundary . Thus, E has exactly one minimum, and it is numerically easy to
find this minimum even for a high number of p;, or alternatively to determine
the pseudo-inverse of £. The potential obtained from substituting the p; into
(2.38) fulfils the boundary conditions on 9D in the least-squares sense.

Furthermore, to avoid numerically costly computations due to the singular-
ities occurring in F(x,y) (2.40) if * = y on the diagonal of £, a second surface
C is introduced lying exterior to D at close distance to the actual boundary 0D,
which carries the source distribution p. A speed-up in the computation of L
and the flow field is accomplished by analytical solution [109] of the line integral
(2.43), and the respective geometric transformations to apply this expression to
any line segment [109]. The method described is one of the simplest implemen-
tations of a BEM. More efficient, elaborate, and versatile version of BEMs can
be found in the already mentioned book of Liu [108].

2.9 Pressure

So far, only the flow potential and the flow field of an ideal incompressible
irrotational fluid have been considered. The second quantity that is related
to the dynamics of the incompressible Newtonian fluid is the pressure. All
other quantities such as temperature, energy, or density are decoupled from
the equations of motion of the incompressible Newtonian fluid governed by the
incompressible Navier-Stokes equations [45, ch. 10].

The first part of the following discussion of the pressure is carried out for an
incompressible Newtonian fluid, which does not affect the applicability of the
obtained statements to potential flow. In incompressible flow the pressure p is
an explicit function of the flow field, which can be seen simply from reordering
the incompressible Navier-Stokes equations

Vp=—p [g’t’ +(v-V) v] + A (2.44)

The following redefinition of the pressure

p(x,t) = ﬁ(:li,t) —0g-T

is implicitly used throughout this work, which is the actual pressure p corrected
by the static pressure og - . The static pressure has no effect on the dynamics
of the incompressible fluid or on the motion of a rigid body. Application of the
divergence to (2.44) with (2.5) yields the so called pressure Poisson equation

Ap=—oV -[(v- V)],
which can be solved in three dimensions using the fundamental solution of the

Laplacian (2.17)

up to an additive harmonic function p = p’ + p fulfilling

Ap'(z,t) =0. (2.46)
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The arguments v = v(y, t) have been dropped for brevity. The harmonic part of
the pressure p(x,t) is determined by suitable boundary conditions. But, what
are appropriate boundary conditions for the pressure? This question shall be
put aside for the moment, and picked up again after expressing (2.45) in terms
of the flow velocity on the boundaries of an ideal incompressible and irrotational
fluid domain. Using the vector calculus identity

V. (VA) =UV-A+ V- A

with scalar valued differentiable ¥ and vector valued differentiable A, (2.45)
can be rewritten by virtue of the divergence theorem (2.14) as

ﬁ(w,t)zﬁ#w (Tw V; dS——/// v-V,) | |dD. (2.47)

Further assuming Vxv =0 and V - v, i.e. an ideal irrotational incompressible
fluid, and applying the vector calculus identity

Viu-v)=ux (Vxv)+vx (Vxu)+ (u-V)vo+ (v-V)u

and Green’s first identity (2.15), the volume integral in (2.47) becomes

AV”V ”V% ﬁy‘7"% "
= /I
= —— v Vi'ndSJr— v Aid'D
- MJ' e 5o T Ay

which leads to the pressure boundary integral

« Y (v-Vy)v 1 1 0 2
pm,t:——# |:+’U Vy— | -ndS + = |v(a,t
(2.1) b A 2 Jo(a, 1)

47 |z — y
(2.48)
Now, the question of appropriate boundary conditions for the pressure on
0D shall be picked up briefly. Utilising the same construction as is was used to
justify Green’s representation formula (2.19), the pressure on the boundary is
given by

pl@ e dD.t) = zeDlggeaDp(z’t) '

However, to obtain a boundary condition for the pressure, the limit

Viep(x € 0D, t) = zeDIHBeaD V.p(z,t)
for the gradient of the pressure appearing in (2.3) or (2.44) must be computed,
which involves a hypersingular integral kernel. A proper discussion and deriva-
tion of suitable boundary conditions for p can be found in [63, ch. 13.3.3] and
the articles cited therein, showing that for the more general case of a Newtonian
incompressible fluid, it is sufficient to demand

0
n- Vp——g{a’:—k( V)v}-n—i—uAv-n (2.49)
on 0D, which can be easily adapted to the inviscid case by setting pu = 0.
Alternatively, the pressure on the boundary can be specified. Both conditions
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determine the homogeneous part p’. An additive constant in the pressure does
not affect the incompressible fluid.

At this point several statements can be already made about the usefulness
of measuring the pressure on the surface of a body, without further discussing
in detail how to recover the pressure from measurements of the flow velocity,
or the possibility of removing the dependence of the pressure upon the location
of unknown boundaries and its value on them. First, equation (2.45) or (2.48)
suggest that in general the pressure on D and thus the information about the
boundaries carried by the pressure can not be determined from pressure mea-
surements on 0D without the knowledge of v at the boundary for potential flow
or everywhere for viscid incompressible flow. It is possible to relate the pressure
with the motion of the boundaries, but the pressure also contains the velocity
of the flow field at the field point « of interest. In summary, without mak-
ing further assumptions, it is not possible to treat the forward problem of the
pressure without knowledge of the velocity field, and, conversely, it is not pos-
sible to reconstruct the pressure field or any information transmitted through
the pressure without knowledge of the velocity field, or without making further
assumptions.

It follows from (2.46), (2.48) and (2.49) that in principle it should also be
possible to reconstruct the pressure field from the velocity measured on the
boundaries of an ideal incompressible irrotational fluid. Then, the next ques-
tion is how to interpret the reconstructed pressure field with respect to the
boundaries driving the flow field. Contrary to the pressure, it will be shown
in ch.3 that it is possible to reconstruct the velocity field on a domain with
ideal incompressible irrotational fluid from measurements of the tangential ve-
locity and no-penetration boundary condition on a subset of the boundary of
the domain, independent of the knowledge of further boundaries. Nevertheless,
as discussed in the next section, the measurement of the pressure can contribute
to the perception of objects, or might be used to determine the hydrodynamic
forces acting on a body.

In an ideal incompressible fluid the pressure p(x,t) can be calculated from
the flow field v(z,t) = V®(x,t) up to an arbitrary function of time C(t) by
Bernoulli’s equation

o0 1
p=-—0 (at + §V<I> -V — C(t)) , (2.50)

which is valid along a streamline or everywhere in an irrotational fluid domain,
whereby 0,® is the local time derivative of the velocity potential in Eulerian
coordinates, i.e. the change of ® in time at a fixed position in space.

The function C(t) in (2.50) has no effect on the dynamics of the incompress-
ible fluid, since the pressure acts on the fluid by its gradient (2.3). It also has
no effect on closed rigid boundaries, since C(t) drops out of the force

fB(t):# pndS:—Q# a—q’+1vq>-v¢> ndsS (2.51a)
oB o \ Ot 2

and torque

B _ — 87(1) 1 . TrXn
¢ (t)—%Bp(mxn)dS— Q%B<6t+2v¢ ch)( xn)dS (2.51b)
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on a body B given by the surface integral over the pressure on the surface 0B
with surface normal n outward of the fluid.

2.10 Some rough estimates on flow sensing

The next chapter of this thesis deals with the question of how to reconstruct
information about the environment from measurements of the flow velocity of
an ideal incompressible irrotational fluid on the boundary of an object. In the
previous sections it was shown that the potential flow on a domain is uniquely
determined by the normal velocity on the boundaries. Furthermore, the knowl-
edge of the pressure on the boundaries is not sufficient to determine the fluid
motion. The purpose of this section is to obtain some rough estimates for the
quantities of interest, and the characteristic scales involved in the motion and
perception of potential flow caused by the motion of solid objects. The second
question addressed is the possible contribution of pressure to the perception of
moving objects. The characteristic scales of the forward problem, i.e. the flow
field generated by the environment, already provides essential insights in the
nature of flow sensing.

2.10.1 Detection of a moving sphere by velocity sensing

The simplest flow field generated by a moving object is that of a sphere S with
radius bg in an undisturbed unbounded fluid otherwise at rest. The centre of
the sphere is located at =°(t) at time ¢. The sphere S is supposed to move with
velocity u”(t) and acceleration du®(t)/dt = a®(t). The velocity potential of
the moving sphere at the field point x at time ¢ is given by

x—z5(t))-d(t bir - u’
( 47T|:1:_(33)S(t)|3( - - o (2:52)

Cbs(wﬂf) = —
with the dipole moment
s 4 302 3\ s

consisting of the volume of the sphere, the additionally displaced fluid volume,
see sec. 4.3, and the velocity u® of the sphere. The velocity v(zx,t) = Vo(x,t)
of the fluid due to the motion of S with r = x — °(¢) and r = |z — x°(¢)|
derived from (2.52) becomes

b%us Bbg (7' . uS) r
o3 2r5 '

v (2, 1) = (2.54)
A quick look at (2.54) reveals that the flow velocity vs = |v¥| scales with
o b, o ug, and o< 1/r3 with distance r to the sphere, whereby ug = lu®|. To
mention some numbers, the velocity in the flow field drops to about 1/8 from
its maximum value on the surface of the moving sphere at a distance 2bg to
the centre of the sphere, and to about a factor 1/27 at a distance of 3bg. If
one wants to draw any conclusion about the moving sphere from measurements
of the velocity field, this measurements must thus be made within a distance
of few sphere radii. Velocity sensing in an incompressible irrotational fluid is
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limited to a relatively close range of very few object diameters around a flow
sensory system.

As an example, a transparent velocity-sensing system B in the sense that it
does not disturb the flow field of the sphere is considered. It shall be placed
at r in the direction of motion of S on a line through the centre of S, which is
moving with velocity ug towards r. In this example, (2.54) becomes

b3 us
'US(Ta t) = i3

Due to the short range of the flow field of S, B would like to detect the sphere
as soon as possible to initiate an evasive motion to, e.g. avoid a collision. Thus,
the critical quantity to optimise for B is the time ¢, available for an escape upon
the detection of S until the collision occurs at r = bg. The sphere S is detected
when the flow field of S at the transparent flow sensory system B crosses the
sensory threshold v; of B. The threshold v; expresses the fact that from some
time on when S has reached a distance to B smaller than rg, the signal of S
is strong enough, so that the sensory system B obtains sufficient certainty to
make a decision. The sensing distance 7 is given by the solution of

bsug
Ve =

3 (2.55)

with the velocity ug at the point in time when (2.55) is fulfilled. The escape
time t, for B in case S moving at constant speed ug is

v 3 b?é'
telus=const. = \/; (2.56)

It is remarkable that it is more effective to reduce the time necessary for a
reaction than to increase the sensitivity of the flow sensing system in order to
increase the chance to escape.

Maximal speeds of fish are in the range of 1.6m/s for herring, and up to
27m /s for sword fish!. Typical speeds seem to be much smaller [110], depending
of course on the size of the fish. A rough estimate for the size of fish is 10 cm/s
for the radius, 1m/s for the typical speed of B, and 10m/s for the maximum
speed of S. The flow velocity sensing system B is supposed to measure the
flow velocity with a precision of vy = 1cm/s, which corresponds to a relative
precision of approximately 1% of the typical speed expected due to its own
motion. One of the fastest known reactions upon the sensation of strike of a
predator is the C-start of fish, an escape reflex, with a latency of less than 20 ms
[85, 89]. To be useful for escape, a flow sensory system must provide an escape
time t, of at least 20 ms upon the detection of the predator. The predator with
a radius 10 cm is supposed to move at a maximum speed of 10m/s towards B.
The corresponding escape time ¢, = 100 ms resulting from (2.56) should provide
B with enough time to react.

Similar values are obtained for animals equipped with flow sensory systems
for air, e.g. crickets. The typical radius of an animal or the head of an animal
hunting for insects is of the order of 1cm. The typical speed of insects is about
10 cm/s, resulting in a sensory threshold of v; = 1mm/s for a flow velocity

Isee e.g. http://www.nmri.go.jp/eng/khirata/fish/general/speed/speede.htm


http://www.nmri.go.jp/eng/khirata/fish/general/speed/speede.htm

32 CHAPTER 2. POTENTIAL FLOW

sensing system with 1% accuracy. The fastest running speed known for insects
is 1.5 m/s for cockroaches (Periplaneta Americana) [111]. Digger wasps hunting
for crickets run at 50 cm/s [95]. For the head of lizards catching a grasshopper
velocities of 10m/s [112] are reported. The chance of the cricket to escape from
the strike of a lizard, if the cricket hasn’t already detected the lizard, before the
lizard aims for the cricket, is almost zero [113]. The escape time for an object
of radius 1 cm moving steadily at 1 m/s with vy = lmm/s is ¢, = 0.1s.

A common strategy of hunting in the animal kingdom is to ambush or to
slowly and unnoticeably sneak up the prey to reduce the distance, and then
accelerate as fast as possible. The fastest known acceleration of a water-dwelling
animal is 250 m/ s? observed for pike during a strike. Trout accelerate with up
to 100m/s” [114]. The time to capture for S starting from rest at the distance
ro with constant acceleration is given by t. = /2rg/as. The escape time in
case S constantly accelerates with ag is determined by the solution of

re =10 — %as(tc —t.)?, (2.57)
and rs by (2.55). The resulting algebraic equation of sixth order determines
the escape time t.. No simple analytic solution of this equation is obtainable.
Numerical solution of (2.57) with the parameters bg = 0.1m, ry = 2bg, and
as = 250 m/s2 delivers an escape time of about ¢, = 39.5ms and time to
capture of t. = 40ms. From a distance of rg = 1m with all other parameters
unchanged, the escape time is about t. = 60 ms and the time to capture about
t. = 90ms. The larger the distance rg, the bigger is the difference between t,
and ..

The examples considered suggest that fish equipped with an ultra-fast escape
system like the Mauthner cells always succeed to escape. Three essential aspects
are missing in this considerations so far. First, it was assumed that any signal
stronger than the sensory threshold must be attributed to a predator. The
actual task of an escape system, however, is to reliably filter out uncritical
events. Second, the considerations were carried out without any background
motion in an ideal irrotational fluid at rest. And third, all predatory fish are
more or less suction feeders [115], meaning that the actual flow field generated
by the predator is a superposition of the flow field of the motion of its body
and the flow field of the suction while opening the mouth. Both contributions
effectively counteract each other, resulting in a flow field of reduced strength.

2.10.2 Detection of a moving sphere by pressure sensing

By inspection of (2.50) one would assume that the acceleration term in 0;®
decaying with 1/r% and the squared velocity of motion UQS of a dipole provide
a strong and outreaching pressure signal in cases of strongly accelerating or
fast moving objects. As before, the example of a moving sphere perceived by
a transparent sensory system, now measuring the pressure, is considered. The
change of the potential 0;®g at a fixed position x consists of a change of the
dipole 0®g/ od® - dd® /dt caused by the acceleration ag of the sphere and a
geometric contribution 0®g/0xg(t) - dxg(t)/dt due to the motion of the sphere
relative to x,

d Wor-aS obd [uS]P 3003 (r-ud)’
pe(@,t) = —0—b(z,t) = 2254 _ obg [’ ob% ( )
ot 273 23 25

(2.58)
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This contribution p. to the total pressure is called external pressure, since it re-
sults from a change of the boundary conditions, namely the motion of the sphere.
The external pressure may further be split up in the already mentioned spatially
inhomogeneous contribution of the acceleration of the boundaries, the first term
in (2.58), here denoted as acceleration pressure p,(x,t), and the spatially inho-
mogeneous acceleration of the fluid caused by geometrical changes of the fluid
domain denoted as geometric pressure py(x,t), and given by the second and third
term in (2.58). The dynamic pressure pqa(x,t) = —1/20 (Vo(z,t) - Vo(z,t)) of a
moving dipole is given by the local kinetic energy density

Qb%|u5|2 30b% (us-r)2
876 B 8r8

pala,t) = — (2.59)
The pressure p = p. + pg consists of a linear combination of terms proportional
to the acceleration o b¥ag/r? and to o« b¥u?/r® resulting from the external
pressure p., and terms proportional to bgu% /7% resulting from the dynamic
pressure pg. The acceleration ag and the velocity ug denote the absolute values
of ag = |a®| and us = |u”|. For most points in the fluid domain r > bg holds
for not too elongated convex bodies, thus bg/r < 1.

Whether the pressure at a certain field point x is governed by the acceleration
as or by the velocity ug of S depends on the dimensionless ratio A = rag/u%,
the ratio of acceleration and geometric pressure. A good criterion for the use-
fulness of pressure sensing compared to flow velocity sensing is obtained by
introducing the dimensionless ratio P of the absolute values of external and dy-
namic pressure. The dynamic pressure is just a constant times the square of
the flow velocity. Thus, a small disturbance in the flow velocity on B due to the
motion of S will result in an even smaller disturbance in the pressure. If the
dynamic pressure exceeds the external pressure, pressure sensing is compared
to flow velocity sensing not useful at all. A criterion can be constructed by

B— pe/pt
v/vy

(2.60)

applied to a sphere moving straight towards the transparent pressure sensing
system, as in the examples before. The external pressure simplifies to

_ obdas | obdud

t) =
pe(2,t) = —"5= + =5,
the dynamic pressure to
o b}
T, t) = — .
pd( ) 2T6

Then, P becomes
p_ 2000 rtag 213
Ve -Ve  bluy by

and criterion (2.60)

Dt \ 2ug
In dependence of the sensory thresholds v; and p;, pressure sensing will exceed
flow velocity sensing, B > 1, as assumed at larger distances and high accelera-
tions, A >> 1, or high velocities. But the relative changes of the absolute values

B=" <‘Qasr + gus> . (2.61)
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of the pressure that have to be resolved are typically very small. The examples
in the following demonstrate that pressure sensing is superior to velocity sensing
only in some extreme cases.

The two terms in the external pressure of the example can be investigated
independently by choosing A = oo, which occurs e.g. immediately at the start
of the motion of S from rest, or by A = 0 during the motion of S with constant
velocity. The pressure field will vary on a characteristic scale p. = pagbs/2 or
pe = ou% given by its maximal value on the surface of S in the two extreme
cases A = oo and A = 0.

The properties of a pressure sensing system shall be compared with the
properties of flow velocity sensing previously discussed in sec.2.10.1. To be able
to initiate an evasive reaction from the accelerating pike starting from rest at
to = 0 from a distance of 2bg with P = co and A = oo, B must identify S from
a signal of 3kPa in an ambient pressure on the scale of one or several hundred
kPa, which corresponds to a relative precision of about 3%. The gain in ¢,
however, is less than half a millisecond, compared to the flow sensory system.
Pressure sensing should pay off at larger distances since P increases with r. At a
distance of rg = 1 m, the pike produces a pressure at the position of B of 125 Pa
at the start from rest, which requires the pressure sensing system to detect a
signal 1000 times smaller than the ambient pressure for an gain in ¢, of 30 ms
compared to the escape time of the flow sensory system with relative precision
of 1% of its speed of motion of 1m/s. After 30ms, which corresponds to the
detection time of the flow sensory system, the pressure, which is now composed
of dynamic pressure and both terms of the external pressure, amounts to about
230 Pa.

It shall be reminded that these are values obtained by assuming an incom-
pressible fluid and thus upper bounds. The real pressure disturbance induced
by the high acceleration of an object in a compressible fluid is expected to be
smaller and flattened in time. A solution of the motion of a sphere in a com-
pressible fluid can be found in [116].

It is interesting to consider the pressure difference measurable over the vir-
tual pressure sensing system of B. The pressure difference would provide B
with directional information. It would eliminate the need to measure a small
disturbance of the absolute pressure governed mostly by the ambient pressure.
The pike starting from a distance of 1 m from rest produces a pressure differ-
ence between the front and back side of B of 50 Pa. Multiplied with the area
of the cross section of B, the force exerted on B is about 1.5 N, resulting in an
acceleration of about 0.35m/s”, which fish might be able to detect [117].

2.10.3 Length scales of velocity and pressure

The characteristic length scale x of the fluid velocity for the example of the
moving sphere S discussed in the previous subsections at a distance r to the
centre of S is given by a¥(r,t) = |v(x,t)|/|Vo(z,t)| = r/3. In other words,
significant changes of the flow velocity around a point at distance r to the
sphere occur on a length scale z¥ = r/3.

The characteristic length scales for the acceleration pressure is z% = r/2,
29 = r/3 for the geometric pressure, and x¢ = r/6 for the dynamic pressure.
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2.10.4 Time scales of velocity and pressure

In the examples discussed so far, the precision of the sensory systems was chosen
to be a fraction of the ambient signal. One may inject that most sensory systems,
no matter whether they are artificial or biological, are tuned to detect and
measure relative changes of a physical quantity. The principle is based on the
assumption that changes of the background occur on other time scales than
the signal to be detected. For flow sensing this assumption is, however, not
generally applicable.

The characteristic time scale t2(r,t) of the observed velocity at = can be
constructed by |v(r,t)|/|d/dt v(r,t)|, resulting in
v usTr
ty = asr + 308 (2.62)
The time scale of the flow velocity generated on B by a moving object increases
with the distance to the moving object. To obtain short transients in the signals
measured by B, either a strong acceleration of the fluid by S is required, S must
be close to B, or S has to move very fast.

Essentially the same properties are found for the characteristic time scales
of the pressure. The characteristic time scale for the acceleration pressure is
given by

a 2asT

c =

e 2.63
asr + 2asug ’ ( )

whereby a dot denotes the total time derivative. The characteristic time scale
for the geometric pressure becomes

usT

tI(r,t) = ——————, 2.64
o) 2as7 + 3u? (2:64)
and the characteristic time scale for the dynamic pressure
usr
tdrt) = —2—. 2.65
) = 5o (2.65)

To obtain a fast transient in the pressure at some distance to S, a strong change
of the acceleration such as produced by a starting pike from rest, a strong
acceleration, a high velocity, or a short distance is required.

Slowly varying pressure signals can be overlaid by a variety of sources. In
the presence of a free surface, the surface elevation of deep water waves induces
pressure changes, which are exponentially damped with the depth. For example,
an elevation of the water surface of about 1 mm introduces a pressure change
of 10 Pa close to it. The same happens when there is a change of depth of B of
1mm. Considering the unstable configuration of the pectoral fins of fish in front
of the centre of hydrodynamic forces, Munk’s moment about the pitch axis, see
sec. 5.1.2; and the permanent necessity to control the pitch via the pectoral fins,
depth and pitch changes occur, which lead to pressure fluctuations with the
time scale of the control of the motion.

Some land-dwelling insects accelerate even faster than pikes. The froghop-
per bug (Prosapia bicincta) accelerates with 400 g over a distance of 2 mm when
jumping. Froghopper bugs are, however, not able to produce a significant pres-
sure signal at all. Due to the small density of air g4 ~ 1.4kg/ mg, the pressure
to be resolved at an ambient pressure of about 100 kPa is about a factor of 700
smaller than the pressure in water.
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2.10.5 Conclusion

In summary, the pressure signal of fast accelerating objects in water provides an
advantage in the escape time at larger distances. Short transients are measured
in the pressure signal of strongly accelerated bodies, which could be extracted
with high precision through a separation of the time scales of the background
and the signal. At larger distances the gradients of the pressure field along
the sensory system of B decrease with increasing characteristic length and thus
become small. It might be difficult to resolve the precise course of the pressure
over B. It is thus probably impossible to extract more than just the presence
and maybe the direction of an object, in cases where pressure sensing promises
and advantage over sensing the flow field. Both features are in principle also
provided by a point measurement of p and the acceleration of B resulting from
a pressure difference over B induced by P.

Fish possess a inertia measurement organ, the vestibular system, also called
the otolithic organ, providing information about translational and angular ac-
celeration [118]. It seems that the behaviour of dace (Leuciscus leuciscus) can
be influenced by acceleration [117] larger than 15cm/ 52, which approximately
matches the acceleration of B in the example of the starting pike.

It is also known that fish communicate by quasi-periodic pressure distur-
bances at frequencies in the range from infrasound (< 20 Hz) up to ultra sound
(> 20kHz) [9] caused by a muscular contraction of the swimbladder, the reso-
nant vibration of bones [118], or less sophisticated methods [119, 120]. The We-
berian apparatus attached to the swimbladder of some teleost fish mechanically
couples the swimbladder with the vestibular system. The Weberian apparatus is
said to transfer the volume change of the swimbladder to the mechanoreceptive
otoliths. Other fish lack a direct connection between the swimbladder on the
vestibular system indicating that only the acceleration is perceived.

Likewise sound, the signal produced by the accelerating pike would lead to
a contraction of the swimbladder. It is known that the Mauthner cells, see
sec. 1.1.2, receive input from the vestibular system. It appears plausible that
pressure sensing contributes to the perception of accelerating objects. It is,
however, extremely hard to conclude to the presence of slowly moving objects
from measurements of the acceleration or the pressure, as sec. 2.12 will show.

The acceleration as well as the pressure are not independent from a velocity
measurement. If the velocity measured is flawed by some reason, so that it is
not possible to extract any reasonable information, the same holds true for the
pressure and the acceleration, since they are coupled through the fluid motion.
Pressure or acceleration do not provide an independent modality.

The investigation of the characteristic quantities of flow sensing in the pre-
vious subsection revealed that there is no advantage of measuring the pressure
compared to measuring the velocity of the fluid motion caused by the moder-
ately accelerated motion of a sphere at moderate speeds.

The discussion of the pressure in sec. 2.9 showed that the flow field on the
whole domain is defined by its values on the boundaries. It is, however, im-
possible to reconstruct the pressure on D from the pressure on the boundaries
without knowledge of the fluid velocity. Gaining full information of the flow
field and the boundaries driving the flow field from measurements on a subset
of the boundary, e.g. on the surface of B, is only possible by measurement of
the velocity. Except for some extreme cases, no disadvantages are expected by
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disregarding the pressure for typical tasks an autonomous robot is set to solve
by flow sensing such as the detection of objects and the reconstruction of their
shape.

If the perception of an object by a flow sensory system is possible, the
distance of that object to the flow sensory is in the same order of magnitude
as the size of the flow sensory system. Furthermore, the flow velocity varies
significantly over the flow sensory system. The time scale of the variation of the
flow velocity at a specific sensor is also small. Thus, the signal of single flow
sensors should provide a deterministic and precise measurement of the local
fluid velocity at any instant of time. In general, it is not feasible to combine the
signal of several sensors to improve the signal to noise ratio, e.g. by averaging
over nearby sensors. This simply excludes certain types of flow fields from the
analysis. Through the action of filtering over nearby sensors, objects producing
a steep gradient on B can not be distinguished from objects producing a flatter
gradient. Integrating the signal of one sensor in time makes it impossible to
analyse the signal in the available time, or to capture relevant changes in the
flow field. An object with radius bg moving with velocity ug within the range
of a flow sensory system induces a flow velocity of typically v. = b3ug/r3, with
a typical characteristic length of . = r/3 and a characteristic time in case
of small acceleration, agr < 3u%, of t. = r/3ug. Thus, the fluid-mechanical
image of the moving object perceived by a flow sensory system of similar size
varies significantly over the flow sensory system. Depending on the speed ug
of the moving object, the fluid-mechanical image varies on relatively short time
scales. As an example, the flow-velocity signal of a digger wasp with 2cm in
size running towards a cricket, see sec.2.10.1, with a speed of 80cm/s from a
distance of 10cm changes significantly on a time scale of less than 40 ms, see
fig. 2.2.

2.11 Some analytic potential flows

In this section some analytic potential flows around moving and stationary bod-
ies of simple geometric shape are presented. Idealized analytic test cases are
constructed, which will be used later in this work for the demonstration and
assessment of flow sensory data processing methods, see ch. 3.

2.11.1 Dipole approximation

The line of argumentation of this section to arrive at basic conclusions on flow
sensing is based on the flow field produced by a dipole representing a moving
object. In general the potential flow around a moving body can be represented
[47] by a multipole expansion. The first non-vanishing term in this expansion
with the smallest negative exponent of the distance is the dipole term. The
monopole vanishes for any body of constant volume. An explicit expression of
the dipole moment of a rigid body B of arbitrary shape [63, p. 530] is given by

dB = VBB 31][[% on’ ds+§§é (@ — 25) {[(x - &®) x n'] - w5} dS (2.66)
B B

with outward surface normal n’ on 98, volume V5 of B, translational speed u?,
angular speed w?, and geometric centre ®. The flow field obtained from the
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Figure 2.2: The flow field generated by an approaching predator around the
cercal system of a cricket. The fluid simulation includes viscous effects in the
boundary layer on the cricket.
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dipole moment d® is usually denoted as far field of B, since higher multipoles
hardly contribute to the flow field at larger distances due to their faster decay.
To give a rough estimate, the flow field of bodies with similar spatial extent
in any direction is governed by the dipole moment if field points at a distance
larger than the object size are considered. Considering the time required for
perception, decision making and reaction, the measurements of a flow sensory
system will be dominated by the dipole moment of an approaching body.

2.11.2 Monopole and dipole close to wall

So far the potential (2.52), velocity (2.54), and pressure, (2.58) and (2.59),
of a moving dipole in an unbounded domain were discussed. The dipole can
be identified with a moving sphere with radius bg, since the no-penetration
boundary condition (2.11) is fulfilled at » = bg. However, the solution loses its
validity as soon as other boundaries are present.

The image charge method is commonly used in electrodynamics to construct
the solution, for an example, of an electric potential problem in the presence of
a conducting flat wall or a sphere. This construction makes use of the reflection
principle [121, ch. IV § 2.3]:

“If a function is harmonic in a domain and continuous up to the
boundary, and if it vanishes on a spherical or plane part of the
boundary, then it can be continued (analytically) by reflection as a
harmonic function across that part of the boundary.”

Obviously the flow potential ® is not constant on a boundary with no-penetration
boundary condition in any non-trivial case, since otherwise the tangential flow
velocity would vanish. Fortunately, the image charge method can be adapted
to construct solutions for potential flow. The examples given in this and the
following subsections are a monopole and a dipole close to a wall and close to a
sphere S with no-penetration boundary condition on the sphere.

The point monopole

m(t)

Py (1) = Cdrle —xp ()]

(2.67)
with monopole moment m(¢) can be identified with a radially symmetric in-
let /outlet or an inflating/shrinking sphere m(t) = 47b%(t)v*(t) with normal
velocity v*(t) on the boundary of the sphere. The flow field of a monopole
source in an unbounded fluid otherwise at rest is given by

m(t) (® -z (1))
=

UM(:B7 t) =

47 |.’13 — .’Bju(t)|

Recalling (2.52), the potential of a dipole with dipole strength dp = 27b3,up(t),

source point & p(t), and translational velocity up(t), evaluated at the field point
x, is described by

_bp(@—ap(t) - up(t)

Pp(x,t) = 2|e —xp(t))?

The solution for the potential of a monopole or a dipole close to a wall W with
no-penetration boundary condition can be constructed by introducing an image
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monopole m = m or an image dipole d = (dg, dy, fdz)T at the image-source
point &g = (zg,ys, —zS)T. The corresponding potentials are <i>M and i)D. The
no-penetration boundary condition on W is fulfilled for an arbitrary arrange-
ment of dipoles and monopoles complemented by the respective image charges.
This simple construction is possible, since there are no boundary conditions to be
fulfilled on the point sources. When the monopole or the dipole in the presence
of the wall or the sphere are identified with an inflating / shrinking or mov-
ing sphere, the solution is not exact any more. The additional no-penetration
boundary condition on the surface of the sphere represented by the monopole
or dipole source is violated by the image sources introduced by the wall or the
sphere. The error in the boundary condition on the sphere can be corrected by
an additional source inside the sphere, see sec. 2.11.4, which in turn needs to be
compensated by the corresponding image source mirrored on the wall, in order
to fulfil the boundary conditions on the wall, and so forth [122, ch. 16-31]. The
result is an infinite but converging series of decreasing contributions to the po-
tential. The speed of convergence of this series depends on the distance between
sphere and wall [123]. For a distance from the centre of the sphere to the wall
larger than two sphere radii good approximations are already obtained using
just the dipole inside the sphere and one mirror charge.

2.11.3 Monopole and dipole close to a sphere

The solution of a monopole or a dipole close to a sphere S with radius bg requires
much more efforts than the case of a flat wall, leading to a distribution of sources
on a line between the centre of the sphere and the dipole inside the sphere. By
means of Weiss’ sphere theorem [63, ch. 7.5.15]

bs o - bs
Bof@.t) = Lo0as) )~ 5 [ (@@ ndn. (269

it is possible to construct the disturbance potential ®; around a stationary
sphere S with radius bg located at g from the undisturbed external potential
®y, the potential that would arise if the sphere S was absent. The external
potential &3 must not have singularities inside S. Each field point & has an
inverse point &(n) mirrored on the surface of a sphere with radius 7 concentric

with S,
2

5@(77):5854-%(50—135)7

where r = |z — xg|. Instead of having one mirror source placed at the cor-
responding inverse point inside the sphere, as in case of a conducting sphere
close to an electric point charge, a source distribution inside the sphere on a
line connecting the source and the centre of the sphere is required to fulfil the
no-penetration boundary condition on the sphere. With Weiss’ sphere theorem
(2.68), the disturbance potential introduced by S in the vicinity of a monopole
source is given by

m(tbs , m(t) /bs g
dmraiiar - 2mbsrar Joo ()
with 7y = |xy — xg| the distance between the monopole and the centre of S,
and 7yr(a) = | — Tar(a)l-

iy —— (2.69)
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Without loss of generality one may choose the sphere S to be located at
xs = (0,0,0). The disturbance potential according to (2.68) introduced by S
in the presence of a dipole at p with dipole strength (2.53) dp = 27Tb?buD
becomes

bsb3, (i—%w — wD) “UD 3 p bs (Z—z:c - :BD> i
o / d
0

q)dD(ﬂj,t) == ‘3 bS?"

b2
2r|3x —xp

The integral can be solved explicitly yielding

b2
bsb (T%w—wD) "Up  phr e — (x-xp)xp] - up

’3 2bs7p [7’27"]23 — (- a:D)Z]

CDdD(:B,t) = —

b2
2r|fx—xp

B b3, [r*ri@ —r? (x-xp)xp + r’bixp — b3 (T -xp) x| - up

Vs =202z - xp + 122 {7‘27% — (- mD)Q}

. (2.70)

where rp = |xp — xg| the distance between the point dipole and the centre of
S. The potential of the dipole close to the sphere is in total given by

@Ds(a},t) = @D(m,t) + (I)dD(.’B,t) . (271)

The velocity v(x,t) = V®(x,t) and the pressure p(x,t) = —p(0; P+ 1/2VP -
V®) are quite cumbersome to compute by hand. An analytic expression for
the velocity and the pressure field can be computed by any computer algebra
program such as Sage?. An example for the potential, the velocity, and the
pressure of a dipole moving towards a stationary sphere is depicted in fig. 2.3.

2.11.4 Wall close to a sphere

The potential of a dipole close to a sphere composed of (2.52) and (2.70) can
be directly used to construct an approximative solution of the flow field of a
sphere S close to a solid wall W with exactly fulfilled no-penetration boundary
conditions on the sphere and approximately fulfilled no-penetration boundary
condition on the wall.

The BFS located in the centre of S is chosen as the frame of reference.
In a FOR with fixed wall, the sphere is supposed to move with velocity ug
towards W with the wall surface being perpendicular to e, and located at
zw. For simplicity, the basis vectors and the origins of both systems, the FOR
{es, ey, e.} and the BFS {ex, ey, ez}, shall coincide. In the BFS of the sphere
all object velocities and the flow field refer to the origin of the BFS. In this
system the wall moves relative to the sphere with velocity ~U”?, whereby only
the component along ex matters, since the no-penetration boundary condition
imposed on the flat wall is invariant in y and z direction. This construction is
possible, independent of the state of motion of S or W, due to the invariance
of the governing equations under transformation in an accelerated system, see
sec. 2.3.

2http://www.sagemath.org/
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Figure 2.3: Flow potential (top) with equi-potential surfaces, flow velocity (mid-
dle) with equi-velocity surfaces and streamlines, and normalised pressure (bot-
tom) with isobaric surfaces of a dipole with dipole moment d = (—2m,0,0)T
moving at constant velocity u, = —1 towards a sphere of radius 1 with no-
penetration boundary condition on its surface. All quantities are defined with
respect to the origin of the BFS located in the centre of the sphere.
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Figure 2.4: Flow potential (top) with equi-potential surface, flow velocity (mid-
dle) with equi-velocity surfaces and streamlines, and pressure (bottom) with
isobaric surfaces in the BFS of a sphere of radius 1 with no-penetration bound-
ary condition on its surface close to a wall at distance 3. The potential of the
image source on the opposite side of the wall is constructed by means of Weiss’
sphere theorem to fulfil the no-penetration boundary condition on the sphere.
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At infinite distance the wall produces an uniform flow past the sphere. The
potential including the disturbance of the sphere [63, p. 547| is given by

b3
Pws(X,t)=—(1+ R%) U°. X

with R = |X|. This results in the velocity field

ws s b s 3 s
VY= Ut - [U = (U -X)X} .
In sec.2.11.2 an image dipole was introduced to fulfil the boundary condition on
the wall in the presence of a dipole. If the potential of the image dipole in the
mirror-source method is supplemented by the respective disturbance potential
®ps (2.71) of a dipole close to the sphere, the no-penetration boundary con-
dition on S is exactly maintained. The no-penetration boundary condition on
W is only approximated. In the BFS of S, with all velocities referring to the
origin of the BFS, and the wall moving towards S with —U S, the mirror dipole
strength located at X' = (2xy,0,0)" is given by D' = 2ra®(—2U%, U, US)T.
The velocity potential in the BFS of the sphere is thus given by

(X, 1) = Dys(X,1) + Bps(X,1). (2.72)

An example of the potential, the velocity, and the pressure for a sphere close to
a wall is depicted in fig. 2.4.

To summarise the essential properties of this approximation, it shall be men-
tioned again that the no-penetration boundary condition on S is exactly fulfilled.
The no-penetration boundary condition on 9V is fulfilled only approximately.
The additional sources inside S introduced by Weiss’ sphere theorem lack an
appropriate counteracting source, i.e. an image, on the opposite side of the wall.
The quality of the approximation deteriorates with decreasing distance between
S and W. The opposite situation is obtained with the image source method
described in sec.2.11.2. The boundary condition on the wall is precisely ful-
filled, but the sphere moving towards the wall represented by the dipole suffers
a net influx through its boundary, effectively reducing the velocity of the flow
field between the wall and the sphere. Which one of the approximations of the
motion of a sphere close to a wall is to be preferred depends on the application.
If one is interested in physical quantities related to the flow field on the sur-
face of S, the error introduced by disturbed boundary conditions on the wall is
smaller than the error due to unfulfilled boundary conditions on S, noting that
the error decreases with increasing distance between sphere and wall.

A further generalisation of the problem of a dipole and a wall close to a
sphere as used in ch. 3 can be easily obtained by virtue of the linearity of the
problem. Starting with the sphere close to a wall, the potential of a dipole
close to the sphere and its image source mirrored on the wall can be simply
added, maintaining the no-penetration boundary condition on the sphere and
approximatively the no-penetration boundary condition on the wall.

2.12 Forces of fluid-mechanical interaction

Astonishingly simple expressions [63, ch. 7.3.2] for the force and torque on a
body close to stationary point sources of constant strength at a constant distance
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are found. The force and torque on a body B close to a stationary monopole
located at @) is given by

£8 = omug (&™) — oVisg 273)

t5 = om (2™ — ") x v5(@™) — oVp (2% — ") x g .
with buoyancy force —pVgg, which is compensated in case of a buoyancy neutral
body by the gravitational force, the volume Vg of B, the monopole moment m,
the disturbance field vdB(wM ) of the body B at the position of the monopole,
a” the pivot point of B, and the geometric centre ® of B. As in sec.2.11.2,
the disturbance field is defined as the contribution vdB of B to the external flow
field introduced to fulfil the no-penetration boundary condition on the surface
of the body B. The force and torque on B in the vicinity of a stationary dipole
are

fP = od- WP (x”) — oVsg

2.74
tf = od x v8(z”) — oV (2® —2") x g. (2.74)

By linear superposition of the respective forces (2.73) and (2.74) of mono- and
dipoles, the force and torque exerted on B by an arbitrary stationary source
distribution can be obtained. Equations (2.73) and (2.74) are derived from the
surface integral over the pressure (2.51) on B with 9;® = 0. To obtain the force
on B close to a transient monopole with time-dependent monopole strength
m(t) and location @y (t), or close to a transient dipole with d(t) and xp(t), it
is necessary to add the expressions

_ Q# MndS and _ Q# M (x x n) dS (2.75)
B at B 375

which considerably complicate the simple stationary expressions.

2.12.1 Numerical treatment of fluid-mechanical interac-
tion

To obtain values for the pressure generated by a dipole and a wall close to
a sphere with no-penetration boundary condition fulfilled on the surface of the
sphere, an analytic expression was computed for the pressure from the potentials
(2.70) and (2.72) with a computer algebra program (Sage). The functions were
exported as C-code and used by means of SciPy Weave? as the kernel function for
a numerical integration over the surface of a sphere with SciPy’s standard double
quadrature method with default (10~%) absolute and relative error bounds. The
result for the force on a sphere with radius bg = 1 m located at (0,0,0) moving
along the x axis with velocity 1 m/s perpendicular towards a wall at xyy = 3m,
see fig. 2.4, is —43.5 N, which is really small compared to the mass of 4190 kg of
the buoyancy neutral sphere in water. The result for the force on a stationary
sphere of radius bg = 1 m in the presence of a dipole with bp = 1 m moving at
a constant speed of 1m/s towards the sphere at a distance of 3m, see fig. 2.3, is
approximately —109N. Scaling arguments allow to estimate the force on objects
of different size and speed.

Shttp://scipy.org/
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2.12.2 Analytical treatment of fluid-mechanical interac-
tion

As mentioned in sec.2.11.2, a lower bound of the kinetic energy of the fluid
around a sphere S approaching a flat wall W can be obtained by approximating
the potential or the flow field with a dipole of suitable strength placed in the
centre of the sphere and the respective image dipole mirrored on the wall. The
kinetic energy stored in the motion of an ideal incompressible and irrotational
fluid [122, ch. 16, sec. 31] around a sphere moving perpendicular to W with
velocity vg at distance h is given by

1 303
T = Lntho (1 + Shg) 2.

The kinetic energy of the buoyancy neutral sphere is given by Tg = %nggv%.
In total, the kinetic energy becomes

_ b3 5 b% 2
T =mnbjo <6+16h3> vg = const. .

In the absence of external forces the kinetic energy of the ideal fluid remains
constant during the motion of the sphere. Without anticipating ch. 4, the total
mass consisting of the mass of the sphere and the mass of the displaced fluid
depends on the distance of the sphere to the wall. Thus, with decreasing h the
added mass increases, which in turn must be compensated by a reduction of
vg, and thus causes an acceleration ag. An ordinary differential equation is ob-
tained for the acceleration of the buoyancy neutral sphere moving perpendicular
towards a stationary wall,

LN,
3 8n3) "% 1604 S’

in dependence of the velocity v% of the sphere and the distance h to the wall. A
sphere with radius bg = 12.5cm (the snout of Snookie) moving perpendicular
to a flat wall with a velocity of 10 cm/s velocity at a distance of 2bg experiences
an acceleration of < 10’3m/52, which is rather small.

Similar results are obtained for a sphere moving at constant speed parallel
to a flat wall. The kinetic energy of the potential flow [122, ch. 16, sec. 31] and
the sphere is given by

s (5 b
T =nblo <6 + 32h3> v% = const. (2.76)
and a force perpendicular to the direction of motion of the sphere towards the
wall exists,

3 mobl ,

fr=g5=1 s (2.77)

which is also quite small. At short distances, at which the interaction with the
wall becomes important, other fluid-dynamical effects related to the viscosity of

the fluid may significantly contribute to the hydrodynamic interaction with the
wall [124].
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2.13 Conclusion

The properties of the measurement of the pressure and the fluid velocity of
a moving sphere in an unbounded undisturbed fluid by a transparent sensory
system, although artificial at first glance, are worth to consider, as they allow
an easy assessment of the essential scaling properties. The hydrodynamic dipole
moment (2.66) represents the main effect of a body on the motion of the fluid
quite well at distances larger than one object radius. The monopole moment
vanishes as long as no sources or sinks are present, which produce or annihilate
fluid. The flow field of a dipole is thus the first non-vanishing contribution in a
multipole expansion of the flow field of a moving body [21, p. 24 ff.].

Pressure sensing has been considered as an alternative to the measurement
of the flow field, [125, 126]. Bouffanais et al. [105] proposed a method to re-
construct the 2D pressure field of the stationary flow potential around one body
from the measurements of the pressure on its surface. The pressure is succes-
sively approximated by substituting the leading terms of a Laurent series for
the complex velocity potential in the stationary Bernoulli equation. This allows
to discuss the dependence of the pressure on the distance and the shape of the
moving object, and provides an estimate of the position and orientation of the
object independent of its shape. There is a catch: the potential is stationary, if
nothing moves relative to the object. Except for the case of strongly accelerating
or fast moving objects, no advantage of pressure sensing compared to flow ve-
locity sensing was found, see sec.2.10.5. In an incompressible fluid the pressure
is an explicit function of the flow velocity, see sec. 2.9, but not vice-versa. Thus,
pressure sensing cannot provide full or universal information about the fluid
and the enclosing unknown boundaries. The analysis in sec. 2.9 and sec. 2.10.2
shows that pressure sensing must be combined with flow velocity sensing to be
universally applicable without further assumptions.

Recently pressure sensing has been considered as a means to stabilize the con-
trol of underwater vehicles [127, 128|. If one is interested in the fluid-mechanical
forces acting upon a body, the advantage of directly measuring the pressure is
evident from a quick look at (2.51).

The method of choice for an artificial lateral-line system (ALL) to be uni-
versally applicable is thus to measure the tangential velocity to make use of the
information provided by the flow field. In ch.3 it will be shown that knowl-
edge of the tangential velocity on a subset of a boundary with no-penetration
boundary condition is sufficient to determine the velocity field on a source-free
potential flow domain.

The conclusion relevant for the dynamics of an object moving in potential
flow in the presence of further boundaries is that the equations of motion of the
object moving in unbounded potential flow will be excellent approximations, as
long as the distance to other boundaries is larger than one object radius, see
sec. 2.12.
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Chapter 3

Flow Field Reconstruction

In ch. 2 some important results for the design of an artificial lateral line system
and the closely related problem of extracting information from the sensory data
were obtained through simple examples and from basic considerations of the
underlying equations of motion of the fluid.

First, the flow field of an ideal irrotational incompressible fluid in a simply
connected domain D, also called potential flow, is solely governed by the velocity
of motion of its boundaries, see sec. 2.2. This work confines itself to continuously
differentiable boundaries, which allow an easy computation of the limit of the
singular integrals appearing, whenever the gradient of the 3D Green’s function
in (2.19) is evaluated at a point on a boundary, although relatively simple gen-
eralisations to Lipschitz continuous boundaries are possible. The potential &
and the flow field v = V& are uniquely determined by the specification of V& -n
or ® on 0D. However, V& - nn or ® can also be specified on any smooth simply
connected manifold O enclosing the domain of interest £ C D, resulting in the
same potential and flow field on £.

Second, it is possible to reconstruct the pressure from the velocity field, see
sec.2.9. The reversal of this statement is, however, in general wrong. The
simplest and most universal FSS for a rigid body B with boundary 9B, trying to
gather information from physical quantities transmitted through fluid motion
consists of flow velocity sensors distributed over the surface of 5. A measurement
of the pressure can expediently contribute to perception of strongly accelerating
or fast moving objects. Assuming comparable resolution, pressure sensing is not
expected to be advantageous in any other case of object perception.

Third, the range of view of that FSS will be limited to at most a few object
sizes, depending on the shape and velocity of motion of B and the rest of the
boundaries, denoted in the following as the environment.

Fourth, B may move in an arbitrary fashion as long as the conditions for
potential flow are preserved around its FSS, since the governing equations of fluid
motion are invariant under transformations in an accelerated frame of reference,
see sec. 2.3.

Finally, a simply connected domain D in 3D as opposed to 2D does not neces-
sarily mean that D may not include holes, see sec. 2.5.4. And thus, incompress-
ible and irrotational flow on the 3D domain D does not mean that no sources
or vortices exist, which are driving the flow field. An oblique arrangement of
sources may be placed in the closed holes outside D, e.g. a closed line of point
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Figure 3.1: A body B with surface 0B equipped with a flow-sensory system (FSS)
on S, surrounded by a domain of interest £ bounded by 9€, point sources @;
on 0Q, fluid domain D, field point @, wall W, and a moving body OP.

vortices [101, ch. VII, §150], producing a ring vortex. The resulting flow field
on D is an ideal irrotational vortex. The outer regions of real vortices, which
are flattened after some time by the action of viscosity, are well represented by
ideal irrotational vortices, e.g. the Oseen vortex [63, ch. 3.13.1]. The basis of
this statement is the fact that any flow potential and the corresponding pressure
computed via the Bernoulli equation solve the Navier-Stokes equation incorpo-
rating viscous forces, but not the no-slip boundary conditions [63, ch.7.1]. As
long as the outer regions of a vortex are not dominated by viscous interaction
with a no-slip boundary condition, irrotational potential-flow is an acceptable
approximation of vortex structures. But, the irrotational ring vortex can also be
produced by a distribution of dipoles on a surface enclosed by the closed vortex
line. Thus, the alternative representation by dipoles could also be interpreted
as the normal velocity on a surface with no-penetration condition. This directly
leads to the question of how to interpret potential flow, discussed in sec. 3.3. At
some distance to the vortex line, the vortex can further be approximated simply
by a point vortex [3].

Studies focused on the Mexican cave fish usually only consider the forward
problem, modelling the stimulus that occurs from the hydrodynamic interference
with objects on the fish’s body [41-44, 129, 130]. To utilise data gathered from
the sensors of Snookie and to obtain information about the environment the
inverse problem has to be solved. Attempts to reconstruct the environment
from the hydrodynamic image so far are limited to special cases with strong
assumptions or prior knowledge about the environment.

The previously mentioned estimation of multipole moments of a 3D moving
body requires exactly one body moving though an unbounded inviscid incom-
pressible fluid initially at rest. The flow velocities are measured by a transparent
— or more accurately, virtual — FSS, which may not disturb the flow field of the
moving body by its presence. Position and multipole moments up to order
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three are estimated simultaneously by means of a maximum-likelihood estima-
tor given the flow velocities measured by the virtual lateral-line system. The
generalisation to further incorporate an estimate of the velocity of the moving
object is straightforward. The moving object may move in an arbitrary fashion.

Quite often, the shape of one object — usually a sphere — moving relative
to the FSS is assumed to be known. The position of the dipole can then be
extracted easily from its hydrodynamic image [74, 75, 131-133]. The theory
presented in this chapter allows to reconstruct arbitrary potential flow. First,
the 2D reconstruction from simple geometries like a plate, a circle, and an airfoil
is presented. Then, a 3D reconstruction method from arbitrarily shaped smooth
object is presented, which is applied to a sphere. The CLS is incorporated.
Methods for the interpretation of the reconstructed flow fields are presented.

Before starting with the flow reconstruction theory, basic results obtained
by Hadamard at the beginning of the 19th century are summarised that relate
the existence, uniqueness and posedness of the flow potential on D with the
knowledge of ® and 9®/0n on S, the FSS of B. Then, explicit formulas and
regularisation techniques for the 3D reconstruction of the potential and the flow
field given boundary data on S for an arbitrarily shaped smooth body B are
derived, and 2D special cases are presented, followed by a discussion of wall and
vortex extraction methods.

The underlying assumption is that within a simply connected domain D
partially bounded by the surface of the FSS S C 9D, the real incompressible
viscous flow shall be closely approximated by the potential flow ® produced by
an arbitrary distribution of sources outside D.

To summarise, the statement of the problem of flow field reconstruction is:
Given the tangential velocity VI on a subset S of the surface 9B of a moving
rigid body B totally immersed in an incompressible potential flow in the domain
D and the no-penetration boundary condition VL =0 on 9B, what can be said
about the flow field V' on D and the boundaries 9D\0B of the environment?

3.1 The nature of the problem

For the aforementioned conditions the flow field around the sensory system S
of the moving body is well described by a velocity potential v(x,t) = V®(x,t)
that suffices the Laplace equation

AP =0 (3.1)

on the fluid domain D with respect to a FOR. The domain is bounded by the
surface of the moving body 9B and eventually by other moving bodies P with
boundaries 0P or stationary solid walls W with surfaces 0W. B with boundary
0B is equipped with a FSS on § C 9B and moves through the fluid with arbitrary,
but known, translational U® and rotational Q7 velocity. The shape of B shall
also be known. The conventions of sec.1.2.1 are used to distinguish between
quantities in the FOR and in the BFS. The velocity V of the flow field refers
to the origin of the BFS of B, the velocity $1° = (U, Q25)T of the BFS to the
origin of the FOR, in which W is stationary. On B the no-penetration boundary
condition V* = 0 holds. The sensory system S measures the tangential flow
velocity vil= N x (N x V@) at discrete points on & with a certain precision
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and some finite error. The essential properties of the hydrodynamic image can
be discussed with the help of a simple 2D example.

3.1.1 Potential low between a curved wall and a flat ob-
server

The 2D potential flow between a flat observer (plate) with surface S at y = 0
and an arbitrary shaped wall W, see fig. 3.2a, both fixed in a FOR, allows direct
insight into the properties of the hydrodynamic image and its inversion. A
segment of the contoured wall W shall be described by y = d+w(z), x € [0, L]
using the wall function w(x) with w(0) = w(L) = 0 and the distance d > 0
between W and §. The conduit is flat everywhere else. Fluid enters and leaves
the area D at x = 0 and = = L through cross sections of equal size with

'U:c(ovy) = Ux(Lvy) = Yo,

vy(0,y) = v, (L,y) =0 fory € [0,d]. (82)

The no-penetration conditions vy (z,0) = 0 and n - v(z,d + w(z)) = 0 with
surface normal n hold on § and W. The flow potential ®(z,y) fulfilling these
boundary conditions is

D(z,y) =2 i A cosh(%ay) cos(%az) + v (3.3)
a=1

with spatial frequency . The free-slip and no-penetration boundary conditions
on W imply that the stream function

U(z,y) = —2 i Aq sinh(%ay) sin(%aw) + voy (3.4)
a=1

must be constant along the wall surface ¥(z,d + w(z)) = ¥(0,d). The stream
function is determined only up to a constant, since v, = 0¥/dzr and v, =
-0V /0y, thus ¥(y = 0) = 0 is a valid choice. This determines A, for every
«. For computational purposes the harmonic series (3.3) is truncated at « = N
and the wall w(z) is discretised by D nodes (x;, w; := w(x;)), i = 1,2,...,D.
This yields the linear system

HA = —vqw

with the matrix # € RP*Y defined by

o . ro(d+w;)\ . [rax;
Hip = 251nh< 7 )sm( 7 ) .

The best solution (in the least-squares sense) for the coefficients A is given by
A=—vH w,

where H* is the Moore-Penrose pseudoinverse of .
In order to distinguish the influence of shape and distance, the approximation

sinh(ra(d + w;)/L) =~ exp(ra(d + w;)/L)/2
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is applied, which is valid for mad/L > 1, to factorize # into
H ~ Hdiag, [exp(mad/L)]
where H is given by
j‘éa = —exp(n/Law;) sin(w/Lax;) ,

which solely depends on the shape of the wall w(z). Thus, the dependence of
the coefficients A, on the distance d between the wall and S is

A ~ —vg diag, [exp(—mad/L)] Htw.

For may/L > 1 the spatial frequency components of the hydrodynamic image
vz (x,0) are dampened exponentially with increasing distance d and increasing
spatial frequency a/L. This resembles the results of Sichert et al. [47], which
state that higher multipole moments hardly contribute to the hydrodynamic
image of objects at a distance larger than the size of the object.

The solution of the flow field over the infinite flat wall is directly applicable
to a flat observer of finite size and suitable geometry moving with velocity Uy
parallel to the wall as long as the boundary conditions for v at the entrance and
exit of the investigated domain are sufficiently well satisfied (fig. 3.2b).

3.1.2 Existence and uniqueness of the inversion

Given VI measured on S , what can be said about the flow field V' on D and
the presence and shape of further objects W and P?

For the moment, an idealised FSS shall be assumed in the sense that viis
known precisely at every point on & meaning that it is a continuous function
on S, and that valid boundary conditions are granted. Starting from some
fixed reference point Py on S the tangential velocity vl may be integrated to
obtain the potential ®|g on S up to an irrelevant time-dependent function ®
which disappears when computing V' = V®. Then, together with the Neumann
boundary condition V+ =0 in the BFS given by the no-penetration condition
on S, Cauchy boundary conditions

| and g—;} B =0 (3.5)
are obtained on S. As opposed to sec.2.5.3 and sec. 2.5.2, where ® or V® on
D is uniquely defined by specifying either ® or 9®/9n on the whole boundary
0D, now ® and 9P/ON are simultaneously specified on the subset S of the
boundary, and the existence and location of the rest of the boundary 0D\9B is
unknown.

The Cauchy-Kowalevski theorem guarantees the existence and uniqueness of
the solution of the Cauchy problem in some neighbourhood of S. The solution
of the potential problem (3.1) is a harmonic and analytic function on D. There-
fore, the analytic continuation of the potential to the whole fluid domain on D
[121, p. 505 ff.] and even beyond is possible. Given the exact knowledge of the
potential and the normal derivative of the potential on S, the reconstruction
of the potential on D exists and is unique. But, similar to many other inverse
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Figure 3.2: a) A conduit formed by a stationary wall and a flat plate with
flow-sensory system (FsS) S and flow velocity vy at the inlet and outlet of D.
b) The velocity field in the conduit as obtained by means of a boundary-element
method (BEM) simulation, see sec. 2.8, with the plate moving parallel to the wall.
Inlet in the plate: Comparison of the flow velocity on the surface S of the plate
S from 1000 equally spaced sensors as predicted by the model (3.3) (dashed red)
and obtained by means of the BEM simulation (solid blue) with moving plate.
¢) Reconstruction of the velocity field between plate and wall from the velocities
on S as shown in the inlet of fig. b) using the regularisation factor v = 0.004.
White Gaussian noise (o2 = 4-10~%, SNR & 21) has been superimposed on the
velocities on S for the reconstruction.
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problems, the problem is ill-posed in the sense that any small error in determin-
ing the boundary values on S is amplified exponentially with the distance to S
and therefore needs regularisation; see [134] or sec. 3.2.1 for an example.

Given a finite number of sensors (or a discretised boundary), in the pres-
ence of noise, it is even unlikely to obtain consistent boundary values so that
an inverse exists. And if it exists, it is always possible to find an additional
potential with zero velocity at the measurement points, which destroys unique-
ness. Applied to the inversion of measured (or computed) boundary values,
properly chosen regularisation also restricts possible solutions so that existence
and uniqueness are preserved [134].

3.1.3 The source and the domain problem

So far, the existence, the uniqueness and the stability of the flow potential and
the flow field given the measurement V'l on S were discussed. One might assume
that fish, crickets, or any FSS carrying animal is more interested in the sources
and the boundaries of objects driving the fluid motion than the fluid motion
itself. Since the 1960s a plethora of inverse source [134] or domain problems have
been studied such as inverse gravimetry where one wishes to find the density
distribution inside a domain from measurement of the gravitational force on its
boundary. Under certain assumptions the inhomogeneity of the Laplacian, i.e.
the source term and in this case the density, can be reconstructed.

In inverse domain problems one seeks to find the shape of the domain, i.e. the
location of the boundaries from measurement of the boundary conditions on a
subset of the boundary. An example of a domain problem is given by electrical
impedance tomography with known conductivities, see e.g. [135], where one
wishes to determine the shape of domains with a certain conductivities within
a body by the application and measurement of the electric field on the surface
of the body.

However, the knowledge of the velocity of the fluid on a subset of the bound-
ary is not sufficient to solve the source or the domain problem of potential flow.
The example of the sphere close to a wall (2.11.2) demonstrates that an infinite
series of dipoles inside the centre of the sphere and a continuous distribution
of dipoles on the wall, as well as an infinite series of dipoles in the centre of
the sphere and in the image sphere on the adjacent side of the wall solve the
boundary conditions on the wall and the sphere. The inverse source problem
is thus not unique. Regularisation, which restricts the space of admissible solu-
tions, does not help either, since both possible source distributions are highly
relevant to the sphere. The sphere certainly wants to distinguish between both
cases, since the reaction due to the appearance of the wall would certainly be
different from the reaction to another object moving towards the sphere. An-
other example was already given by the ring vortex in the introduction of this
chapter.

Contrary to inverse gravimetry or to electrical impedance tomography the
no-penetration boundary condition for the flow potential over a solid surface
only specifies one component of the flow field, the normal component. Since no
negative mass exists, the gravitational force always points towards the centre of
total mass. The normal component of the electric field is discontinuous on the
boundary between domains of different conductivity, whereby the jump is given
by the quotient of the conductivities. Its tangential component is continuous.
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In contrast, any solenoidal and irrotational flow field with correct normal com-
ponent on the boundaries is a valid solution of potential flow. Accordingly, since
no restrictions are imposed on the tangential velocity component, any stream
surface of the flow field might be a boundary with a no-penetration condition. It
is thus impossible to solve the domain as well as the source problem of potential
flow.

The flow field, as shown in the previous section, is uniquely defined by its
values on parts of the boundary. So, the measurements of the tangential flow
velocity on S are reasonably used for a reconstruction of the flow field in some
domain chosen around S. The size of the chosen domain will in general depend
on the precision of the measurement of V“7 the shape of &, the precision of
the reconstruction required, and the regularisation. The existence, shape and
motion of other objects must then be inferred from analysis of the flow field
with suitable heuristic or additional information such as its evolution in time,
see sec. 3.3.

There is plenty of literature on the Cauchy problem of the Laplacian, and
it receives ongoing interest due to its importance in many applications such as
image inpainting [136], corrosion detection [137], and many other fields. A brief
overview of methods to numerically solve the Cauchy problem can be found in
[107]. Most methods found in the literature are dedicated to a specific task. This
is partly due to the fact that the knowledge of the resolution of the sensors, the
geometry of the sensory system, and the characteristics of the noise are the basis
for a reasonable assessment, which is missing for biological as well as technical
FSSs. Usually additive Gaussian white noise such as in fig. 3.2 and fig. 3.4 is
used to demonstrate the dependence of a method upon measurement errors.
The largest contribution to what is usually referred to as noise, does not stem
from the measurement electronics itself, termed sensor noise, but is introduced
by deviations from potential flow, see sec. 5.2.3, caused by initial disturbances
and vorticity in the fluid, by the action of viscosity in the vicinity to boundaries,
or separation of the flow from boundaries. This disturbance simply cannot be
treated as identically independently distributed (1ID) Gaussian white noise, since
fluid dynamics will propagate the disturbance to some extend depending on the
geometry of the sensory system to all other sensors. At present, no experience
and experiments with FSSs in real fluid is available that allow such an assessment.

The second big issue of a transfer of specific methods is that the quality of a
solution depends on a well chosen and tuned regularisation, which is effectively
a restriction of the solutions allowed to occur. This in turn implies that given
some prior knowledge, one is interested in certain types of solutions, which are
specific to a certain task.

Suitable methods for the present state of flow sensing have to be simple,
easy implementable and universally applicable, which on the one hand offer easy
access and insight to the essential properties of flow-field reconstruction. On the
other hand, such a method should allow to analyse and interpret data provided
from prototypes of FSSs, see sec. 5.2. In the following section, methods suitable
for the application to FSSs are presented. A comparison of these methods with
the biological role model is expected to provide further hints and insights for
the development of FSSs.

As just described, the quality of a reconstruction depends on several factors,
namely the deviation from potential flow around the FSS, the sensitivity of
the flow sensors, the geometry of the FSS, and prior knowledge about possibly
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Figure 3.3: Reconstruction of the flow field around a circle. The flow velocity
is colour coded in units of the speed of the sphere, lengths are scaled by the
size of the sphere. Left: A circular disk with 1000 sensors equally distributed
on its surface moves towards a wall at a 20° angle. The flow field, computed by
means of a boundary-element method (BEM) simulation, see sec. 2.8, is plotted
with respect to the FOR. Middle: The tangential velocities on the surface
of the circle are used to determine the coefficients A,. The measured flow
velocities are shown in the body-fized system (BFS) (pink line) and the frame
of reference (FOR) (blue line). The middle part illustrates the mapping of the
measured velocity from Cartesian coordinates to the surface of the circle. Right:
The wall can be deduced from the parallel streamlines in the reconstructed flow
field in front of the circle.

occurring solutions. But as the rest of this section will show, the quality also
depends on the requirements and restrictions on the solution such as demanded
precision, the range of view, the time and computational power available to
compute a solution, and the consequences of a possible failure of a method.
These questions need to be addressed in the view of a specific application. The
following discussion of flow reconstruction methods deliberately ignores these
questions.

3.2 Flow-field reconstruction

In sec.3.1.2 it was shown that given consistent Cauchy data on S a solution
exists and is unique. The purpose of this section is to introduce simple methods
to express the flow field on a source-free domain of interest £ surrounding S as
a function of the measured tangential velocities Vlions.

3.2.1 Matching a homogeneous solution

The flow potential on £ can be expressed by explicit representations of the
homogeneous solution around a 3D or 2D body B, e.g. in terms of a Fourier
series or a multipole series. The coefficients of such a series can be matched
to the measured surface velocities, and the resulting series can be evaluated at
any point in &£. If the surface of B can be described by a coordinate line or a
coordinate surface of a coordinate system in which the solution of the Laplacian
factorises, one may hope to find a good approximation of the flow field through
the first few elements of the corresponding series. Here, the 2D inverse problem
of determining the flow field on a rectangular domain from measurement of the
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tangential velocity on one side of the domain and the reconstruction from a
circle are described.

In sec. 3.1.1, the solution of the forward problem of the potential over a flat
plate was given. Dropping constraint (3.2) and replacing the Fourier series by
a Fourier transform, the potential (3.3) becomes

O(z,y) = / C(a) cosh (2ray) e*™o% da, (3.6)

with i = v/—1, and the flow field v with redefinition of C(a) := 2raC/(a)
v(z,y) = / C(a) > (icosh(2rya), sinh(2rya)) " da. (3.7)

In order to obtain a reconstruction of the flow field on a rectangular domain,
the coefficients C'(«v) have to be determined by inverse Fourier transform

Cla) = %/HI(I,O)efzmamda

from the measured velocities vl = v,(x,0) on S. Since (3.6) and (3.7) do not
converge for arbitrary C () the reconstruction can only approximate the true
potential flow by setting C'(a) = 0 for || > @umax to obtain convergence. Small
errors in C’(a) are amplified exponentially with frequency « and distance y.
Omitting frequency components above a certain amax (frequency regularisation)
helps to globally stabilize the flow field v reconstructed through determination
of C(a) to some extent.

A second example is the flow field reconstruction from a circle. The origin of
the polar coordinate system (R, ©) shall be placed in the centre of the circular
FSS with radius Ry. The surface of a moving circle is a streamline and the flow
velocity component normal to the circle is zero in a BFS of the circle. Then, the
Laplace equation (3.1) on a region of interest £ around the circle is solved in
polar coordinates (R, ©)T with

(X,Y)" = (Rcos©, Rsin®)"

by the Ansatz

- R~ R\ |
®(R,0) = Ay —— + By ——— | *® 3.8
&)= 3 (e g + B i) (33
with complex A, and B,, and furthermore A_, = A} and B_, = B}. In
the BFS the no-penetration condition (3.5) on the surface of the circle requires
A, = B,, and the radial Ui and angular Ug velocities of the reconstructed

flow field on £ are given by

8<I> [e'e) R a—1 R —a—1 w
V(R 0) = 5w = Y Asa <R0> - (Ro> 1 el@® (3.9a)
1 99 = R\“" (RN .
Q]@(R,@)_E%:1 Z AaOé (Ro) +(.Ro> ]e 6. (39b)
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The complex coefficients A, have to be determined from the measured tangential
velocities

VI(Ry,©) =2i> ad.e'*®

on the surface of the circle by the Fourier transform,

1

a — N
4rice

A

27
/ VI(Ry,©)e79®dO
0

or in case of a finite number of flow sensors, by a Fourier series. As for the
plate, disregarding terms with higher frequencies in the computation of (3.9)
automatically provides frequency regularisation. How strong the reconstruction
W = (Vgr,Ve)7 is affected by an error in the estimation of the coefficients
A, depends largely on the spatial frequency «. The reconstruction is unstable
for any non-trivial flow field o > 1 due to the positive exponents of (R/Rg)*~*
amplifying any error with the distance to the circle. Omitting higher frequencies
improves the stability due to the smaller amplification of errors. Given an
acceptable error in the reconstruction, one has to find a trade off between range
of view and the level of detail. Figure 3.3 shows the flow field around a circle
moving towards a wall at an angle of 20°. The flow-field reconstruction is
extensible to other 2D geometries by the application of conformal mapping — see
sec. 3.2.3.

An investigation of the number of terms in the series and thus, the number
of sensors necessary to perform obstacle detection and wall extraction from
the reconstructed flow field measured on a circle in 2D potential flow using
the method, can be found in [138, 139]. Given a desired range of view of one
circle radius, the first five terms of the series already deliver sufficient detail
to detect and extract wall shapes with sufficient resolution to carry out tasks
like self-localisation and map formation of the environment. The procedure is
transferable to, e.g. a 3D sphere using a multipole expansion.

The representation of the solution as an infinite sum of terms diverging with
distance makes it impossible to control the error at larger distances, and leads
to physically implausible solutions.

3.2.2 Regularised statistical inversion

The drawbacks of the method of estimating a finite number of coefficients of the
series solution of the Laplacian inspired a Bayesian approach described in this
section. Quite often inverse problems are regularised by minimizing

|4z — b + |Tz|? (3.10)

including a Tikhonov regularising functional with Tikhonov matrix I', frequently
chosen as I' = v1. Here, one wishes to identify x, e.g. with the flow field on the
boundaries of the domain of interest d€, b with the tangential velocities mea-
sured on S, and 4 with an operator that relates the flow field on the boundaries
OE with the velocities measured on S, e.g. by taking the limit of (2.13) similar to
(2.36) as « approaches the boundary. The regularizing functional is interpreted
as the kinetic energy of the flow field on the boundary. Having determined the
regularised velocity on the boundary, the flow field on £ is given by (2.13). Fol-
lowing such an approach, it is impossible to obtain an explicit solution of the



60 CHAPTER 3. FLOW FIELD RECONSTRUCTION

flow field as a function of the measured velocities, since A effectively represents
singular boundary integrals similar to those in (2.36).

In addition, the quality of the reconstruction and eventually the range of view
could be further improved, if it were possible to formulate the reconstruction by
including a distance dependent regularisation such that the rapid increase of the
error of the reconstruction with distance to the FSS is limited. This goal shall
be pursued by a discussion of the previous examples with a slightly different
method.

The velocities v(x, y) occurring on € over the flat plate of sec. 3.2.1 carrying
the FSS S are assumed to be normally IID a priori with Vy(z,y), Vy(x,y) ~
N(0,02). For the moment, the question, as to whether this is a valid and
reasonable choice for the velocities, shall be deferred.

Let H,,[v¥°] be a functional that calculates the velocities v2 := v, (z,0) on
S resulting from a given velocity v¥°(z) := v, (x,yo) at a fixed, but oblique,
coordinate line yo. A comparison with (3.7) shows that the Fourier transform
of H,, is given by

H,, [v2°)(a) = 9% () / cosh(2may) . (3.11)

The measurement v/l of v¥ mapped on S through (3.11) introduces additional
noise, which is assumed to be also normally TID with zero mean and variance
o2. Interpreted as random variables, the measured velocities v/l (2) are therefore
conditionally normally distributed by

(@) | VI ~ N (Hy[VE°)(2),0%) .
The log likelihood
L :=log P(vll|vye)

of vl on S assuming V¥ after application of Parseval’s theorem and (3.11) is
up to a constant given by

1

oo R 2
557 ol(a) = V¥ (a)/ COSh(Qﬂyoa)‘ da,

oo

whereby o/l and f);{o denote the Fourier transformations of v/l and V¥ . Analo-

gously, the log prior Q = log(P(V¥)) is
L[, 2
QVY) = —— VYo (a)‘ da.

2
202 J_

oo

Bayes’ theorem allows to compute the a-posteriori logarithmic probability

VY (o)

2
Yo | ol L= ol L 1w ?

2/)_o|o

(3.12)

The maximum-a-posteriori estimator 9%° for each Fourier component of v, at
Yy = yo is given by the maximum of the integrand in (3.12),

_ ill(a)
1/ cosh(2mypa) + v cosh(2mypar) ’

0Y° () (3.13a)
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with v = 02 /02, and after an analogous derivation for v,,

—i 0l ()
1/ sinh(2myoa) + v sinh(2ryoa) ’

0l (o) = (3.13Db)
see fig. 3.2c. Higher velocities have been a priori chosen to be less likely than
smaller velocities. Solving for the flow field with the highest probability effec-
tively realises an energy regularisation in the Tikhonov sense.

Turning back to the question of whether normally distributed flow velocities
as prior are a valid flow field. Therefore, the flow model allows non-harmonic
solutions to occur, which approximate a valid physical solution. The trade-off
between reconstruction accuracy and regularisation is tuned by the regularisa-
tion factor ~ which is adjusted according to the expected measurement noise.
For v = 0 the reconstruction may diverge. However, if it exists, the recon-
structed velocity field v is a valid potential flow in the sense that it satisfies the
Laplace equation. For v > 0 the second terms in the denominators of (3.13)
ensure convergence and, since the influence of the regularisation increases with
ayo, higher frequencies are more suppressed with increasing distance.

The same line of argumentation used to arrive at (3.13) for a flat FSS can
be used to obtain the flow field by a regularised inversion from VIl on a circle
with radius Ry. As before, a BFS is used with the origin placed in the centre
of the sphere. The homogeneous solution of A® = 0 fulfilling the boundary
condition V14 (Ry,0) = 0 on S was given in (3.8), and the velocities in (3.9).
Again, a functional can be constructed that maps a Fourier component of the
flow field on a fixed but oblique coordinate line R = Ry of the polar coordinate
system onto the surface R = Ry of the circle. The angular component of the
reconstructed velocity ‘Bgl field at R, is then obtained by minimization of

o0

Vu) -y

a=—00

. 2V

vl Yo | L p;m 2
Koz—l _|_R—o¢—1 v (C]

log P(Vgl

with respect to Vgl and the substitution ® = R;/Ro.

Following the derivation of (3.13), the Fourier components of the radial
m%(n) and the angular iUg regularised reconstructed velocity field at & given
VI measured on S are given by

- . 2Ka+1 (1 _ KQOL)

Rl = R 2R (3~ 2R7)
cR, 2R (14 R2) -
o) = ki ek (1 2k7) | Y

Vi),

where « is the regularisation factor. An example for the reconstruction of the
velocity field using this method is shown in Fig. 3.4. Conformal mapping then
allows the transfer to further 2D shapes.

3.2.3 Flow field reconstruction from a fish-like shape

The method proposed in (3.2.2) for the regularised flow field reconstruction
from a circle can be adapted by conformal mapping to, e.g. a fish like shape,
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€
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Figure 3.4: A circular disk moving towards a wall at an angle of 20°. a) The
actual velocity field is obtained by means of a boundary-element method (BEM)
simulation, see sec.2.8. b) Radial plot of the velocities on the surface of the
circular disk with (blue line) and without (dashed red line) the presence of the
wall. ¢) Reconstruction of the velocity field with 1000 sensors equally distributed
on the circle using a regularisation factor of v = 0.002. d) Gaussian white
noise (02 = 0.0016, SNR ~ 25) was superimposed on the velocities used for
reconstruction with v = 0.004.
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often described by a Joukowski airfoil. Two BFSs will be used. The first system
is a polar system (r,6) placed in the centre of a circle S¢ with radius rg, no-
penetration boundary condition v; = d®/9n = 0, and surface normal n. The
second system, (R,©), is placed in a fish like shape Sp, an airfoil, which is
obtained from (r, 8) by Joukowski transformation (3.15). An exception is made
from the convention used throughout the rest of the work in which lower-case
symbols are used for quantities in FOR coordinates and upper case symbols
for quantities in BFS coordinates. In this section, lower case symbols are used
for quantities in the circle frame, and upper case symbols for quantities in the
fish frame. A Fourier component with angular frequency « of the regularised
flow field reconstructed from a circle, see sec. 3.2.2, written in quantities of the
redefined circle system is

2e L (14 ¢%7)
6 - 5l
b (t,a) = , 3.14
6 (t Oé) v ¥ ’)/t4n ¥+ 221 ('Y ¥+ 2t2)v (O[) ( a)
2en L (1 —o27)

v 4 yedn — 2620 (y — 2t2)

b, (t,0) =i (o), (3.14b)

with the Fourier component 9/l (a) calculated from the measured tangential ve-
locity vl on S¢, v = 7/rg, and the regularisation factor v = 02 /o2. The standard
deviation of possibly occurring velocities components in the flow field is o, and
the standard deviation of noise of the flow velocity measurement o,..

A circle with radius ry centred at the origin of a complex plane z = x + iy
is transformed into an airfoil by the Joukowski transformation [140],

C2

Z(z)=a+z+ , (3.15)

a—+z

with Z = X +iY. Its inverse is denoted by Z~!. The parameters rq = 1.26,
a = 0.16, and ¢ = 1.26, were chosen to closely approximate the form of the
blind Mexican cave fish [41]. Accordingly, the velocity field v(x,y) around the
circle and the velocity field V(X,Y") around the airfoil [63, ch. 7.11.5, p.596]
are related by

g o vr(mvy)_ivy(xay)
dz  Vx(X,Y)—-iW(X,Y)"

(3.16)

The procedure of reconstructing the flow field from the airfoil now consists of
the following steps: first, transform the measured velocities VI to the circle;
second, compute the Fourier transform of vll; third, perform the reconstruction
from the circle for each frequency; fourth, compose the Fourier components
of the reconstruction; and finally, transform the reconstructed velocity field v
around the circle back into the system of the airfoil to obtain 2. An example
for the reconstruction is shown in fig.3.5. A boundary element method as
described in sec. 2.8 was used to calculate the potential flow given the boundary
condition and the tangential velocities VIl on the airfoil. An application of the
Joukowski transform to obtain the reconstruction from a fish-like shape based
on the frequency regularised matching of the homogeneous solution in polar
coordinates as described in sec. 3.2.1 can be found in [141].



64 CHAPTER 3. FLOW FIELD RECONSTRUCTION

T s ——— 120
— No obs.
08F| with obs.

>

1.00

0.80

‘\\\\\\\\\\"’,é 0 \\\\\\\\\\\\\\\w\\\||-nrr/W///////////

////////////////////////llllllnm\\\\\\\\\\\\\\\\\\\\\\\\

0.60

Ny Ay

=

"

a

Figure 3.5: A fish gliding towards a wall at an angle of 20°. Top left: The ac-
tual potential flow is obtained by means of a boundary-element method (BEM)
simulation, see sec. 2.8, with colour coded velocity normed by the velocity of
the fish in a frame of reference with the wall fixed. Top right: Velocities on the
surface of the fish (red line) due to the presence of the wall and for comparison
without wall (blue line). Bottom left: Reconstruction of the velocity field from
the velocities on the surface of the fish measured by 1000 sensors using a regu-
larisation factor of v = 0.004. The wall is indicated by the black line. Bottom
right: Reconstruction with Gaussian white noise (02 = 3.24 - 1074, SNR ~ 18)
superimposed on the measured velocities.
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Figure 3.6: Flow field (top) with equi-velocity surfaces and streamlines of a
dipole located at (3,0, 0) with radius 1 and velocity (—1, —1,0) close to a sphere
with radius 1 at (0,0,0) with no-penetration boundary condition on its surface.
The 3D flow field reconstruction (bottom) is carried out with the source-term reg-
ularisation method with 20 dipoles directing towards the sphere equally spaced
on a circle with radius 6 in the equatorial z-y plane of the sphere. The dipole
strengths of the artificial sources driving the flow field is matched to the mea-
surements of the tangential velocity of 256 equally spaced flow sensors on the
surface of the sphere. The velocity of the flow field is defined with respect to
the BFS of the sphere.
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Figure 3.7: Flow field (top) with equi-velocity surfaces and streamlines of a
dipole located at (—3,3,0) with radius 1 and velocity (3,0, 0) close to a sphere
with radius 1 at (0,0, 0) with no-penetration boundary condition on its surface
moving with velocity (1,1,0) towards a flat wall at « = 3. The 3D flow field
reconstruction is carried out with the source-term regularisation method, with
40 dipoles directing towards the sphere equally spaced on a circle with radius 6
in the equatorial y-y plane of the sphere. The dipole strengths of the artificial
sources driving the flow field are matched to the measurements of the tangential
velocity of 256 equally spaced flow sensors on the surface of the sphere. The
velocity of the flow field is defined with respect to the BFS of the sphere.
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3.2.4 Source-term regularised flow-field reconstruction

The goal of the previous sections was to find expressions for the flow velocity at
a point in the 2D fluid domain D as an explicit function of the tangential velocity
measured on the FSS. In a way, the idea behind the method proposed in this
section is the opposite. The Neumann representation (2.31) of the potential in
terms of the normal velocities states that it is possible to express the potential
and the flow field by its normal derivative on the boundary on a domain of
interest £ enclosed by the FSS S and the remaining boundary d€. The normal
velocity V' = 0 on S vanishes by choice of a BFS prescribed in the rigid
body B carrying the FSS. In the sense of (2.31), the normal velocities on 9€
are the sources driving the flow field on €. The simplest approximation for a
source distribution driving the flow field is a finite number m of point-monopole
sources at fixed positions Y; with ¢ = 1...m. The sources are however not
placed on 9&, but on a second surface 9Q outside &, see fig. 3.1. The additional
artificial boundary 0Q is introduced since the reconstructed flow field close to
a source point Y; will be dominated by the singularity of that source point. A
single source will, in general, not be a suitable approximation of the flow field,
and thus the error is expected to be large. By putting the source distribution
outside the domain of interest £ on dQ at some distance to 9&, the flow field
at a point X inside £ can be influenced by several sources, which promises a
much better approximation. At the end of the section a possibility how to avoid
the peculiarities involved in a distribution of discrete sources is outlined. The
strengths @Q; of the sources have to be determined by the tangential velocities
Vl} with j = 1...n on &, measured by a finite number n of sensors located at
at Xj .

The sensory system S is part of the boundary of the rigid body B with
the no-penetration boundary condition on its surface. The domain of interest
£ is chosen to be fixed with respect to B, and thus moving with B as well
as the point sources @; at Y ;. Thereby, the geometry of the sources and &
is fixed. B assumes that the fluid domain D', differently from D, extends to
infinity. According to (2.31), the potential of the point sources located in D’ on
&, approximating the normal velocity component on 0Q is given by

B(X,1) =) QiGN (X.Y7) . (3.17)

The actual task is to find the corrector function Hy for Gy = Gg+ Hy fulfilling
Ay Hy(X,Y) and the boundary condition
0HN(X,Y) 0Gr(X,Y)
= — for 'Y €0B 3.18

an(Y) any) O ’ (3.18)
which guarantees that the no-penetration condition on B is fulfilled. The term
1/|6D’| in (2.31) vanishes, since the surface area of D', which extends to infinity
is infinitely large. Hpy is harmonic on & by virtue of Green’s representation
formula (2.19)

Hy(X,Y)=-— GF(Y,Z)w

dsS
o€ ON(Z)

+ HN(X,Z)iaGF(Y’Z)

b N ds  (3.19)
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for Y € D'. After taking the limit Y — OB a weakly singular boundary integral
[106, ch. 1.4.2] is obtained, similar to the first component of Calderon’s projector
(2.36). Using (3.18) the result is a Fredholm integral equation of the second kind

1 B 0Gr(Y, Z)
SHN(X,Y) = y%g\y HN(X7Z)76N(Z) s

9Gr(X, Z)
+ _%[ég\y Gr(Y, 2) =557 48, (320)

which possesses an unique solution for Hy(X,Y). Analytic expressions for G
are available in only a few cases, such as the monopole close to a sphere, (2.67)
and (2.69), with no-penetration condition on its surface obtained by virtue of
Weiss’ sphere theorem (2.68). Taking the gradient of (3.17)

V=Y Qi VxGn(X,Y))|x_x, (3.21)
=1

to obtain the flow velocity at the sensor S; will in general not reproduce the
measured velocities exactly, since the finite number of sources @); is not able to
capture any detail of the flow field and the measured value will be superimposed
by measurement noise. The system of linear equations connecting the measured
velocities Vy and the source strengths

Vj‘} = M;Q; (3.22)
with the j x¢ x3 matrix

W[jil = alXGN (X»Yi)X:Xj ’

‘j! of sensor 7,

will not have an exact solution. The pseudo-inverse M T of M delivers the best

where [ denotes the spatial component of the velocity vector V'

approximation for ); = W[Jl lel‘ in the least squares sense.
It shall be noted that M is determined solely by the geometry of B, the
position of the sensors X ; on 0B, and the location Y'; of sources driving the
flow field on £. Since Y; as well as the shape of B are chosen to be constant
in time, M has to be computed only once and is known for all times. The
actual regularisation happens through the choice of the number and the location
of the source points. The reconstruction produces only flow fields that can be
represented by the chosen source distribution.
The reconstructed velocity 2 at a point X € & is nothing more but a
weighted sum over the measured tangential velocities
V(X 1) =Y ¥ Gy (X, Y ) MV (1) (3.23)
K3
To arrive at (3.23) it was assumed that D’ extends to infinity and is free of
further boundaries and sources other than @;, which is clearly not the case for
D. B wishes to gather knowledge about the flow field on &, which is a subset
of £ C D as well as £ C D’. As discussed in sec. 3.1.3, the source problem is
not uniquely solvable. For B there is no difference between a flow field driven
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by additional boundaries or sources on D and the flow field of the artificial
sources (; in D’, as long as the same measured tangential velocities Vl; on S
are obtained, provided the sources @; at suitably chosen source points Y; are
capable to closely approximate the VL-‘.

Figures 3.6 and 3.7 show examples for the method of the source-term reg-
ularised flow-reconstruction in 3D. Instead of monopole sources, which repre-
sent the generation and extinction of fluid, which is not expected to happen
in incompressible flow without inlets or outlets, dipole sources are used, since
their strength can be adapted independently while preserving the fluid volume.
The potential of a dipole source QF is constructed from the potential of two

1
monopole sources at infinitely small distance by

P = — // QP WGaN(X, Y)Y —YP)dV,

see e.g. [21, ch. 2.7]. The orientation of the dipoles is supposed to be normal to
0Q, as required by (2.19), the normal component of the dipole i is denoted by
QP. The potential of a single dipole source QP is given by

P = QP 96N (X, Y) : (3.24)
ON(Y) Y=YP

The same considerations used to arrive at the explicit representation of the flow

field (3.23) given the VL! on S can be carried out with (3.24) replacing the

monopole potential.

Improvements of the method, especially in vicinity of the source points Q;,
can be achieved by using techniques described in sec.2.8. Instead of approxi-
mating the flow field by a small discrete number of point sources, the boundary
0Q could be discretised, e.g. in triangles with constant source strength on each
triangle. To capture the influence of one triangle 7; on a field point X, the
Green’s function of a point source must then be replaced by the surface integral
of Gy over Y € 7T;. This surface integral over a triangle with constant source
strength can be in principal also carried out analytically in 3D [142, 143]. With
modified M, the problem to be solved (3.22) remains the same.

3.3 Object extraction

Having reconstructed the flow field around B, the question arises how to extract
other objects altering the flow field. Potential theory, [101], states that on a
source-free domain streamlines start and end on boundaries, streamlines do not
intersect, a streamline might be a wall, and the extrema of the potential occur
on boundaries. A similar statement regarding the extrema of the absolute value
of the flow field can be made, [63, ch. 2.4, p. 137]. In the absence of singularities
the absolute value of the flow velocity has its maximum on the boundaries.

It is convenient to transform the reconstructed flow field in the FOR with
the fluid D or the boundary enclosing D at rest at infinity, which requires the
knowledge of the translational u? and rotational speed w? of S. A straight-
forward heuristic approach to extract the walls of a stationary environment is:
first, search for local zeros of the velocity in the reconstructed flow field in the
inertial frame; then compute a set of streamlines starting in the neighbourhood
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Figure 3.8: Directional variances of the reconstructed velocity field over time
computed as a circular FSS with radius 0.5 moves on the x-axis along a stationary
solid wall. The wall is indicated by the black line. The directional variance is
minimal along the wall.

of the stagnation points; finally remove all streamlines from the set that start or
end on dB. The method presented here is based on the fact that the boundary
of a solid object is a streamline and no flow through the boundary may exist
under all possible motions occurring within the fluid. The remaining stream-
lines deliver estimates for the contours of stationary objects. A solid boundary
separates the flow field and its analytic continuation due to the no-penetration
boundary condition in an admissible fluid domain and a wall domain, see fig. 3.4.
Therefore, the area filled with streamlines starting on the surface of B represents
the fluid. After the elimination of the streamlines starting on B the remaining
streamlines in the range of view of the sensory system represent walls.

In case the environment is moving, this heuristic will avoid collisions since it
delivers at least an admissible area within the fluid. The correct interpretation
of the flow field of moving bodies requires the analysis of the temporal evolution
of the streamlines or streamsurfaces. A criterion for the detection of a moving
rigid boundary is that the surface of a rigid body and thus the streamsurface on
the body maintains its shape during motion. The flow field is always tangential
to the surface of a solid object. This fact can also be exploited quite easily for a
method to extract stationary objects. Consider a point » somewhere in the fluid
at some time close to the FSS of B. As B moves relative to 7, the flow at r will
change in speed and direction. For a point 7’ located on a solid boundary, less
degrees of freedom are possible since the flow direction is limited to its tangential
component on the surface independent of the position of B. Thus, the variance
of the directions of the flow field is expected to be minimal on boundaries. A
strategy is to find regions of minimal variance of direction in the reconstructed
flow field over time. With the knowledge of its current velocity and acceleration,
B can record the reconstructed directions of motions in the flow field at sample
points on D in the FOR at each instant of time in a global map. Since the
accuracy of the reconstruction rapidly decreases with the distance to S, an
additional distance dependent weighting (~ 1/r) of the calculated direction is
used, and the variance for each point in space is computed over time from the
weighted sum of directions. The weighted variances of the reconstructed angular
velocities around a circular B moving parallel to a stationary wall can be seen
in fig. 3.8. As expected, the variance is minimal on the boundary of the wall.

The considerations just presented lead back to the question raised in the
introduction of this chapter: How is it then possible to distinguish the flow field
of a vortex structure from the flow field of a moving solid object? The shape
of a solid object, rigid or not, will be hardly influenced by the hydrodynamic
interaction with B. Vorticity, however, is a physical quantity associated with
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the fluid itself, a material quantity, and thus can be convected. When moving
relative to S, the vortex structure will be deformed under the influence of B. A
streamsurface or streamline with constant shape in time can be attributed to a
solid boundary.

3.4 Incorporating a canal

For the moment disregarding the action of viscosity, the existence of a canal, see
fig. 2.1, turns the simply connected domain of fluid D into a multiply connected
domain. Without the knowledge of the circulation through each canal, the
flow potential is not a single valued function, see sec.2.1 or [101, ch. 3, §49-
51]. Conversely, without a canal, the flow potential is always single valued.
However, viscosity will damp any cyclic motion of the fluid through the canal.
But, the question remains: Why do fish possess a lateral-line canal at all?
The answers given so far are, different filter properties and surprisingly, despite
an increased moving mass inside the canal, an increased sensitivity to higher
stimulus frequencies [70] compared to SN at least for ruffe.

Assuming quasi-stationary laminar viscous flow through the CLS, which is
expected to occur for low frequencies in the exterior flow field, see sec. 1.1.1, the
shape of the flow velocity profile inside the canal is independent of the stimulus.
With the measurement of the flux or the velocity inside the canal by the CN
the pressure difference between two pores Ap is known. In this flow regime,
the details of how the flow inside the canal is precisely measured do not matter
further. The flow velocity measured at some fixed radial position within the
canal is proportional to the total flux of the fluid through the canal, and the
flow velocity at some radial position is proportional to the pressure difference
between entrance and exit of the canal pore. The opening of the canal pores is
small compared to the typical length scales in the flow field. In summary, it is
a good approximation to assume that the exterior flow field is not affected by
the flow through the canal, and that the precise shape of the flow field in the
canal or at the pore openings does not further matter.

As in sec. 3.2.4, the potential on the domain of interest £, which is assumed
to be unaffected by the flow through the canal, is generated by m monopole
sources placed on 0Q

m

o(X,t) = Z Qi(t)GN (X, Y) .

i=1

The pressure on & by virtue of Bernoulli’s equation is

p(X,t) o= 0Q(t) _
, _—; o Gn(X,Y))

m

f% > QiQ;()VxGN(X,Y,) - VxGn(X,Y ).

ij=1
It is convenient to define the symmetric m xm tensor

Hj(X) = VxGn(X,Y,)  VxGn(X,Y ),
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the vector
G(X)=(...Gy(X.Y;),..)"

of length m, and the source strength vector
T
Q=(..,Qi),...)" .
also of length m. Using these substitutions, the pressure becomes

p(X,t) _ 9Q(t) 1
T = -G(X)—§G(X)T}[(X)G(X).

The pressure difference A°Pp(t) = p(X°,t) — p(XP?,t) between two adjacent

pore openings X° and X? with o,p = 0...] and the number of pore openings

I with [ — 1 CNs delivers a non-linear ordinary differential system of equations
A7) QT ()

0 B ot

CAPG — %QT(t)A"p}[Q(t) (3.25)

for the temporal evolution of the source strengths Q(¢), with the definitions
APH = H(X) — H(XP)

and
APG = G(X°) - G(XP).

It is in principle possible to solve (3.25), and then to compute the flow field on
& analogously to sec.3.2.4. The initial values for Q(¢) must be obtained from
additional measurement, e.g. from the SLS. Due to the integration over A%p(t)
measured with finite precision and biased by the properties of the canal, the
solution Q(t) will suffer an increasing error over time. A large improvement
of the flow field reconstructed from the SLS incorporating the CLS thus cannot
be expected. An obvious advantage of (3.25) is that it delivers an explicit
expression for the change of the source strengths at the given instant of time. It
could serve to highlight fast and urgent changes in the ambient flow field. Then,
it will be probably necessary to remove the assumption of quasi-stationary flow
through the canal.

3.5 Conclusion

To the knowledge of the authors not much has been published yet on inverse
problems in fluid-mechanics [144-146]. The nature of the the fluid-mechanical
image and it inversion was presented. It was argued that information on the
boundaries in the environment must be extracted from the reconstructed flow
field, since neither the source nor the domain problem are reasonably solvable.
Regularised reconstruction methods for 2D and 3D were presented and the CLS
was incorporated.

The results obtained in this chapter can be summarised in view of an ap-
plication to an artificial lateral line system as follows. The measurement of the
tangential velocity at discrete points on a body allows to reconstruct the flow
field on some domain of interest in the vicinity of the FSS. The reconstruction
is ill-posed and not unique for a finite number of sensors and thus needs regu-
larisation. The number of sensors required for an ALL capable of perceiving a
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stationary environment with suitable resolution is about 20 in 2D. Each sensor
must instantaneously deliver a reliable representation of the flow velocity at its
position. This is imposed by the gradients in the flow field over the FSS, the small
range of view, and hence the short time available for a reaction. Then spatial
resolution of the reconstruction deteriorates with the range of view. Boundaries
and vortices can be identified by the temporal evolution of the reconstructed
streamsurfaces or streamlines. The CLS promises advantages in the perception
of rapidly changing or fast moving environments.
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Chapter 4

Forces in Potential Flow

The obvious reason to consider the hydrodynamic forces acting on a body B
moving in an ideal incompressible fluid is to account for this forces in the control
of the movement of B. The presence of other objects, the release of wakes,
free surfaces, instabilities in the flow field over B, and so forth, may cause
inhomogeneities in the flow around B leading to additional forces on it. These
forces could be detected and estimated by measuring the pressure on 5 or other
quantities related to it.

A less obvious motivation to examine fluid-dynamical forces on a body is the
information provided by the forces about the immediate environment. By means
of the simple example of a sphere close to a wall in sec. 2.12, it was demonstrated
that the hydrodynamic interaction in incompressible inviscid irrotational flow is
only important in the very close vicinity to other objects, say within less than
one object radius. But, it strongly increases with further decreasing distance.
Considering the short range and typical speed of the object, there is only a
very limited span of time available for perception, evaluation, decision making,
and to change the state of motion in an appropriate way. The measurement of
the fluid flow velocity with the exception of highly accelerated flow provides in
principle a larger range of view than the resulting fluid-mechanical forces or the
acceleration, see sec.2.10.2. The question arises, whether it is feasible for B,
equipped with a FSS, to use one of the flow reconstruction methods developed
in ch. 3 as a basis for urgent and immediate behavioural decisions, which have
to be taken facing an event such as the appearance of objects in the range of a
FSS.

Starting from the fluid-mechanical force on a rigid body B, a heuristic is
developed in the course of this chapter that relates the tangential velocities on
the surface of B with the existence of further boundaries.

4.1 Some thoughts on flow sensing heuristic

The flow field reconstruction in combination with wall and wake extraction
methods introduced in the previous chapter promises to solve quite complex
tasks, such as self-localisation, map formation, and wake tracking [3, 139]. To
be useful for collision avoidance or the escape from a predator, the reconstruction
method and the wall extraction must be carried out permanently with only a

(6]
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few milliseconds of latency. It is not impossible to realize such a system. A 2D
simulation [139] with potential flow computed by a BEM around a cylindrical
FSS and a flow field reconstruction based on the homogeneous solution of the
Laplacian in polar coordinates followed by a computation of the streamlines and
the extraction of the walls only took about 10 ms on desktop computer hardware
of the year 2011. The execution was accelerated by massive parallelisation and
execution on a graphics card. The power consumption was about 300 W. The
extension of the reconstruction to 3D will further increase the computation time
for each time step by more than a factor of three. The power consumption for
such a emergency or warning system, which must be running permanently at
full power is rather high. Although not completely impossible, such a solutions
seems hardly feasible.

Are there possibly simpler solutions with similar effectiveness as suggested
by the Mauthner cells of fish, see sec. 1.1.2, which are capable of making decision
in a few milliseconds? It is certainly worth thinking about alternative methods,
which are faster and more efficient. Such a method should rely on as weak
assumptions and restrictions of the environment as possible. It will not be
possible to provide full information on the environment, such as the flow-field
reconstruction does. Any heuristic must be selective and robust enough to filter
the important events with a high reliability of positive detected true events and
only a few false positives, as any well working warning device.

Due to the short range of view of a FSS, the situations that have to be resolved
cannot be very complex. The space available in the immediate surroundings
monitored by a FSS is limited to only a few objects. The objects can be either
moving with B such as during schooling, move away from B, be at rest such as
a stationary wall W, or move towards B such as a predator P. The latter two
cases enforce an appropriate reaction.

The essential requirement for an escape or collision avoidance system is to
signal immediately the appearance of a moving object P and its direction of
relative motion. Neither the precise shape nor the exact size of an object mat-
ters. The estimate of the direction provides the first information to initiate an
appropriate evasive movement.

The objective for a flow-sensory warning device is therefore to reliably de-
tect the motion of one object relative to B from measurable physical quantities
onboard of B mediated by the ideal incompressible irrotational fluid within a
few milliseconds in a robust way. The physical quantities available on-board are
the tangential velocity of the fluid on the surface of B and the translational and
angular acceleration obtained from inertia measurements systems, see sec. 5.1.1,
which in principle can be used to obtain the current velocity of B (5.12) up to
some error, which slowly increases due to drifts in the integration.

Some of the methods discussed in the literature are already ruled out by the
objectives. It is obviously true that changes in the velocity distribution on the
surface of B due to the presence of P will be detected. A change of the measured
velocities v; averaged over all N sensors

W (1) =3 gwilpi) (a.1)

placed at positions p; eventually weighted by some g;, e.g. to correct the in-
fluence of the shape of B on the external flow field, signals a change in the
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boundary conditions of the fluid. To be useful at all, additional, more specific,
information is required. The possible contribution of (4.1) as any estimate of
the direction of a flow field [147-151] to the certainty of a decision is rather
small. Unfortunately, such an estimator is not even capable to differentiate be-
tween the approach of an object from one direction and the striding away in
the opposite direction. The same arguments hold true for the resulting pres-
sure distribution on 9B and the acceleration due to the fluid-mechanical force
and torque acting on B with the additional disadvantage of a smaller range, see
sec.2.12. Thus, using the acceleration of B as a source of information on an
imminent collision, provides more or less the same limited information as an
averaged weighted velocity (4.1).

To lead over to what follows in this chapter, a simple thought experiment
shall be conducted. Imagine a dipole placed somewhere on the positive = axis
moving towards B, which is fixed at z = 0, see fig.2.3. B would experience a
slightly higher velocity in = direction than in —z direction. The conclusion of
B in an otherwise undisturbed fluid at rest using (4.1) would be that something
either approaches from =z > 0 in —z direction or strived away from z < 0 in
—x direction. If B measures the pressure, it could realise that the pressure is
slightly lager on the side towards > 0 than at the opposite side towards x < 0.
The flow field on the surface of B is obviously asymmetric, and for some reason
the absolute value of the flow velocity is larger at x > 0. B could interpret
this as an object of finite size at £ > 0 moving towards it. By comparing the
pressure with the velocity B has obtained better information on the direction
of one moving object.

The purpose of the second part of this chapter is to formulate this consider-
ations in a more general way. First, a framework for the fluid-mechanical forces
on a moving body, used for the dynamical model of Snookie, see sec.5.1.2, is
developed.

4.2 Fluid forces in terms of the pressure

A body B shall be totally immersed in a fluid domain D. As in the previous
chapter, the fluid in D shall be ideal, irrotational and incompressible. As in-
troduced in sec. 2.1 the surface normal n on 9D points out of the fluid volume
into a body. The corresponding surface normal on the boundary 907 of a body
7 pointing out of a body and into the fluid is denoted by n’ = —n. The force
f,B:, and torque t5 on B exerted by the pressure acting normal onto the surface
0B are given by

fg:Q# pndS and tg:g# p(y xn)dS,
a8 o8

or in 6D vector notation

ffi:g# pnds,
oB

see sec. 1.2.2. By virtue of Bernoulli’s equation with potential flow on D

fizfg# <8£+;V¢.Vq>>nds. (4.2)
oB
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oP

Figure 4.1: Two moving bodies B and P totally immersed in an ideal incompress-
ible irrotational fluid in the presence of a solid wall W. An artificial stationary
control surface dC is drawn around B enclosing the control volume C.

The pressure integrals over B deliver another possible explanation for the exis-
tence of the CLS. By a suitable distribution of pores over the surface of a fish it
would be possible to sample the pressure differences and to obtain an estimate of
the hydrodynamic force acting on the fish by integration over the surface includ-
ing the fluid-mechanical interaction with the environment. A time-dependent
constant in the pressure is not covered by the sampling of the pressure differ-
ences, but will drop out of the surface integration over any closed surface. The
plausibility of this proposition not only depends on the concrete design of the
CLS and the number of pores, but also on the accuracy required and the concrete
method [108] used, to carry out the surface integration.

The following considerations will be carried out mostly in the FOR, since this
will allow to easily incorporate arbitrary shaped stationary walls. The integral

identities
/// VfdD = fndS (4.3a)
D oD

///Dy xVfdD=(p f(yxmn)dS (4.3b)

oD

and

are used to relate Vf integrated over the domain D with f integrated over the
boundary 0D. Another important relation between surface and volume integrals
is given by Reynolds’ transport theorem [152, ch. 3.3]

% // D(t) = ///D(t> % v #ﬁmw i om) a8 oy

with u®? the velocity of the boundary dD(t) at the respective point of integra-
tion. Application of (4.3) and (4.4) to ® on the surface 9B and to a control
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surface OC around B, which is fixed in space, yields the rate of change of mo-
mentum

Qg dndS = gg///wbdv
dt JJacuos
= g///V—dV—i—g# Vo (uP-n)dS  (4.5)
ocuoB

=0 —dS + # V@f ds
ﬁgwazs ot o On

on the volume C enclosed by the control surface OC and by 9B. For the last
step the fact was used that the boundary velocity w”(y,t) of the fixed surface
OC is zero, and that the normal component of boundary velocity of OB equals
0®/0n. The result of (4.5) is unaffected by the choice of OC and thus can be
split up into the contributions of each surface. Therefore

0P 0P
thﬁgs@ndS—Q%B(at V@a )dS. (4.6)

A similar relation can be derived for the rate of change of angular momentum
on C using (4.3) and (4.4),

d ®(yxn)dS= —Q% //C Vx (dy) dV (4.7)

o—
dt JTacuan
0P oo
=—p V x <y) dV—g# V x <y> ug-n)dS
//c ot acuaB ot (uz - m)

0P 0P
— 0 —yxnd8+9# y x VB2 .
%CUE)B ot ( ) oB on

By the same arguments used to arrive at (4.6),

d 0P 0P
o 8B<I>(y><n) dS—Q#?Byx(at +V<I>8) ds. (4.8)

With (4.6) and (4.8) the pressure force and torque (4.2) on B become

d o
B _
= —0— (0] P — — Vb - VI 4.
=0 nds+g§1;ég(v — v v n) ds, (4.9)
d 0P 1
B— _o— L) p— — —V - VP .
th = og (yxn)dS—i—gﬁéByx(V o 2V Ve n) ds
Furthermore, the relation [152, p. 143]
oo 1
P— — — (VO - VO = 4.1
y][ép{v (v V)n}ds 0 (4.10)

holds, which is proven by application of the integral identity (4.3) and the
divergence theorem (2.14) to (4.10),

# l:@ (Dnjaé—;@ﬂ)@j@m} dS =

///{ (00 0,P) — 1ai(ajq>aj¢>)} dV =

D



80 CHAPTER 4. FORCES IN POTENTIAL FLOW

whereby 0; denotes the partial derivative d/0x; and doubly appearing indices
are to be added up. Analogous calculations are used to show

0 1

# Yy x {V@—(V@-V@)n dS =0. (4.11)
8D on 2

Equations (4.2), (4.9), (4.10), and (4.11) will proof their usefulness later in this

chapter. They relate fluid forces exerted on a body with the flow field velocities

V@ on the surface of the body measured by the FSS.

4.3 Fluid forces in terms of added masses

Under certain assumptions, the pressure forces acting on a body can be ex-
pressed in terms of additional masses and the acceleration of an object. D’Alam-
bert’s paradox states that no fluid-mechanical forces act on a body steadily
moving in an ideal irrotational incompressible and otherwise unbounded fluid.
However, as it accelerates, the body not only has to accelerate it’s own body
mass, but also the mass of the displaced fluid, the so called added masses. The
additional inertia forces of the fluid are mediated through the pressure on the
surface of B. Simple equations of motion will be obtained for a body moving
in unbounded potential flow. To be able to study the fluid-mechanical forces of
potential flow in the presence of further objects, the added masses are treated
in a more complex environment consisting of an arbitrarily shaped smooth solid
stationary wall W, a moving rigid object of arbitrary smooth shape P, and the
moving body B equipped with a FSS. The fluid domain D shall be bounded by
0D = 0BUJP UIW consisting of the disjoint surfaces 9B, 0P, W of the rigid
bodies B, P, W. The convention of ch.2 that W is fixed in the FOR is chosen.
The flow potential ® and the flow velocity V& shall vanish at infinity, if D is not
fully bounded by OW. The bodies B and P are allowed to move in an arbitrary
fashion in the presence of W. The motion of B and P and the motion of the fluid
in D, which is governed by the motion of its boundaries, is fully described by
the 6D generalised coordinates q% = (g?, (;bB)T and q7 = (g¥,¢")T, and the 6D
velocities u® = (u?,w?)T and u” = (q7,w”)T. The generalised coordinates
consist of the 3D vectors ¢ = (27,y5, 28)T and q¥ = (27,47, 2"7)T denoting
the position of the origins of the BFSs of B and P in the FOR. The 3D orientation
vectors ¢F = (¢8,08 BT and ¢” = (¢7,67,¢P)T define the rotation of the
BFSs of B and P relative to the FOR according to the definition of the modified
Euler angles in sec. 1.2.2. The translational velocity w in the 6D velocity vectors
is a generalised velocity in the sense that w = d/dtg. The angular velocity is,
however, not. It is a quasi-velocity [98, p. 157], since w = RT(®)W(p)d/dt ¢b.

For simplicity, the same symbols B, P and W are used for both, the set of
points belonging to the respective bodies, and the BFSs prescribed in the bodies.
The position and orientation coordinates of B and P are functions of time, and
so are the generalised coordinates q® and q% and the velocities u? and u”.

4.3.1 Added masses of rigid body motion
The kinetic energy stored in the flow field V® in D

T = g///m Vo(z)[* dV
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can be expressed by application of Green’s first identity (2.15) as an integral
over all closed surfaces 9D(t) of all boundaries

0 0P
7=2 # 222 4s, 412
2 aD(t) on ( )

whereby D(t) may extend to infinity. Recalling sec. 2.6, the flow potential of
moving rigid bodies in the presence of a wall Z € {B, P, W} can be decomposed
into

6
a,t) = 3 3wl (t)pF (. 0) (4.13)
Z =1

and the boundary conditions to be fulfilled are

A (x,1)

A
=n; and a@z (.’I},t)
on

=0 (4.14)
xcdl on

xEDTAIT

with 07,07 € {0BUOPUIW}. Substitution of (4.13) into (4.12) and exploiting
(4.14) leads to a sum of surface integrals

J
0 T, T # 7 Oy (z,1)

T=2) u(tu(t i () —F——dS 4.15

QZE,j (t)u5 (t) D ? (1) — (4.15)

for the kinetic energy of the fluid induced by the motion of the rigid bodies with
Z,J € {B,P}. The contribution of the wall vanishes since 9®/9n = 0 on OW.

The surface integrals can be evaluated in the respective BFSs by choosing
z(t) = X + p’(t) for a point on Z. The surface of integration 0Z of the
rigid body Z is fixed in time in the BFS. For two bodies B and P moving in
the presence of a stationary wall W four 6 x 6 matrices in the respective BFS
coordinates

9B (X + qB(1),
A5(t) = Qﬁg@wf(?{+q8(t),t) e (8]\;2;)(]5) Y dS(X),

0oB(X +qB (1),
By;(t) = Q#ggsof(X+qB(t)»t) 4! (aNjI;)(t) ) dS(X),

P P
G =offp x0T g50x),

007 (X + 47 (1),
Dij(t) = Qﬁép oF (X +q7(t),1) = (8]\;2;)(” ! dS(X)

(4.16)

are obtained. The transformation back to coordinates of the FOR is given by

a(t) = R"(¢")A(t) R(4°) ,
_ T B B
b(t) = KT(ch)@(t) K(qbp), (4.17)
c(t)=R"(¢")C(t) R(9"7),
4(t)=R"(¢7)D(t) R(¢7)

The decomposition of the velocity potential by (4.13) is possible, since the flow
potential is a linear function of the velocities of the rigid bodies. The potentials
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©F and ¢ are solely determined by the location and orientation q®(t) and q” (t)
of the rigid bodies, which are functions of time. It is therefore legitimate to write
o(x,q%(t),q7(t)). The same holds true for the added masses, which can be
witten as a(q®(t), a7 (1)), 6(aB(t), a7 (1)), c(aB(t), a” (1)), and (a5 (2), 4 (1)),
In the formulation of the kinetic energy of the fluid,

T =< (au? u + bjjul u + cijus f—&— céjufu})) , (4.18)

w\»—*

these 6 x6 matrices fulfil the role of masses, which is why they are called added
masses [153], or sometimes also virtual masses. The arguments of the velocities
and the added masses have been dropped for brevity. In addition to the physical
mass of a body, additional inertia appear due to the motion of the body in the
fluid. As already mentioned, the body displaces a certain amount of fluid,
which is related to its size and shape, and eventually also to the size and shape
of further boundaries in its surroundings. During acceleration, not only its own
body mass, but also the displaced fluid streaming around the body must be
accelerated, resulting in additional inertia. Fluid must also be accelerated at
motion relative to another boundary, resulting in a change of the added masses.
The added masses represent the additional inertia of rigid body motion in an
ideal incompressible and irrotational fluid. Application of Green’s first identity
(2.15) to (4.17) shows that the added-mass matrices 4 and D are symmetric,
ie. 4; = Aj; and D;; = D;;. Furthermore, B;; = C;; which can be also shown
by application of Green’s first identity (2.15)

Q;ij:Q# SD’L [/ Pi % ds
oB
zg// Vil ~V<p§3dV:Cji.
D

The added mass matrices B and C are called the added masses of interaction
[154, p. 114 f.] of B and P, since they depend on the position and orientation
of both moving rigid bodies B and P.

So far, the formulation of fluid-mechanical interaction in terms of added
masses does not provide any advantage over the conventional formulation in
terms of a pressure integral, since the potential must be solved at any instant of
time, and a surface integral must be computed to obtain the added masses. The
presence of purely stationary objects like the wall W enters the added masses
only indirectly via the boundary condition dpZ /dn|gy = 0 and directly via the
dependence of the added masses on the positions q% and q7 of B and P. The
kinetic energy of the fluid for B moving in presence of a stationary wall W only
is given by

T = Sul(t)ay (@O (1)

In the special case of B moving through an unbounded ideal incompressible
irrotational fluid at rest without any further boundaries than 0B, the added
masses of B, now denoted as A in the BFS of B, become independent of g%, and
are constant in time. The fluid-mechanical forces of free motion in an ideal fluid
are fully accounted for by one-time computation of the 6x6 added mass matrix
A, and the kinetic energy of the fluid is solely determined by the velocity and
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the shape of B, which in body-fixed coordinates becomes
1
T = iuiB(t)AijU?(ﬂ. (4.19)

The contribution of the fluid to the dynamics of a body moving in unbounded
potential flow is fully described by increased inertia.

4.3.2 Transformation of the added mass matrix

For the sake of simplicity, the added mass matrix A of free motion of one body
is usually computed with respect to the point of maximum symmetry in body
fixed coordinates. It is then often necessary to adapt A to a given geometry,
e.g. shift the axis of rotation, since other constraints such as the choice of the
origin of the BFS force the body to rotate around a different point than that
assumed for the computation of the added masses.

The idea behind the derivation of a transformation formula for the added
masses is that the kinetic energy of the flow field around the body must be
invariant under a change of the coordinate system in which the added masses
are computed in. All summands in the expression for the kinetic energy of the
fluid are quadratic forms of the velocities of the rigid body. The transformation
formulas for the added masses are determined by expressing the kinetic energy
of the flow field in a new coordinate system and collect all terms of a certain
product ;4L;. The coefficients represent the added masses in the new system.

In the most general case the new system {ex,ey,ez} is shifted by the
vector £, translates with velocity u relative to the original system {e,, e, e.},
and rotates with the original system about the origin of the original system
with angular velocity w . Due to the analogy to the transformation between a
FOR and a BFS, the same notation as in sec.1.2.2 is used. The added masses
shall be known in the system {e,,e,,e.}, and are supposed to be determined in
{ex,ey,ez}. The velocity expressed in coordinates of the new system is given
by U = R(¢)(u + w x &) with rotation matrix R as defined in (1.8). Again, 6D
vectors are used to express the velocity of the new system in coordinates of the
original u = (u,w) and the new U = (U, Q) system. Written component-wise,
the transformation of the velocity and angular velocity is given by

3 3
Uji—1.3 = Z U Ry — €i5pwi&e and  uzq,; = Z Uz pm By for i =1,2,3
m=1 m=1
(4.20)
with the Levi-Civita symbol €;;1, and the transformation matrix R, = en,- e,
where m € {z,y,2} and n € {X,Y, Z}.
Substitution of (4.20) in (4.19) leads to the coordinate transformation rules
for added masses [154, p. 5 fI.], consisting of the added inertia for m,n = 1,2, 3,

3 3
Apn = Z Z)\zjﬂmiﬂm ; (4.21a)
i=1 j=1
the coupling between translational and angular motion for m = 1,2,3 and

n=4,5,6 orm=4,56and n=1,2,3,

3
Amn = E
=17

6 3 3
Aijgimi%j-FZZ)\inmi (Roj+28i+1 — Ru,j+185+2) » (4.21b)
1

i=1 j=1
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and the added inertia for rotational motion with m = 4,5,6 and n = 4,5, 6,

6

6
A = > XijReniRaj + (4.21c)
i=4 j=4

Z Z Xij Renj (Ruit2€it1 — Ruiv1€it2) +

w
[}

i=1 j=4
36
Z Z Xij Ruj (Renit2bit1 — Runiv1&ita) +
i=1 j=4
3 3
DD N (Renivabivs — Renitr&ine) (Rujr2&ii1 — Rujiaiea)
i=1 j—1
where
Rij = Rij+s, Rij =Rivs; and & =&igs. (4.21d)

In case the new coordinate system is just shifted against the original frame by
the vector £, and not rotated, the transformation formulas significantly simplify
to the added inertia for m,n =1, 2, 3,

Amn = Amn ) (4223')
the coupling between translational and angular motion for m = 1,2,3 and
n=4,56orm=4,5,6and n=1,2,3,

Mg = Mg+ A28 — Misée, Ais = Mis 4+ Ai3& — A&z,
Aog = oy + A2z — Aa3éa, Aos = a5 + Aa3&s — A1 &3,
Azy = A3g + A3263 — A33&a, Azs = Azs + A3z — X313, (4.22b)
Mg = Mg + A1ée — Ai2&1, Ao = Agg + X218 — A22&1,

Asg = 36 + A3162 — 3261,

and the rotational motion m = 4,5,6 and n = 4,5, 6,

Asg = Aag + 200485 — 2034€0 + 225 — 2X036380 + A3363
Aus = Aas 4+ Masét — Mars + Aas€s — Assa + Aas&i&s — Maés — Asséilo + Aislols,
Aug = Mg + Aaa — A2al + Aoes — Azela + A122s — Aa2&1és — Mis&d + Aas&i&a,
Ass = Ass 4 2A3581 — 21583 + Ass&t — 2M36185 + Ané3,
Asg = Asg + A1s€2 — Aas€r + Aze€z — Mes + A13&1&e — Aas&i — AM1&els + A21&s,
Ags = Ao6 + 2M 1662 — 2Xo6&1 + M165 — 2M1261€0 + Aokl . (4.22¢)
The transformation of the added masses turns out to be quite simple, if the
coordinate transformation consists of just a shift &, i.e. a shift of the axis of
rotation by —&, and if the added mass matrix to be transformed has diagonal
shape. This means that the original mass matrix is computed about the centre of
the fluid-mechanical forces acting on the body and the axes of the BFS coincide

with the principal axes of the moment of inertia submatrix of the added mass
tensor. The transformation directive the becomes

Amn = A for m,n € {1,2,3}, (4.23a)
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Ais = =&z, Aoy = A22&3, Azq = —A3382, (4.23b)
Ass = A331, Ats = Aiée, Aog = A2261
for m € {1,2,3} and n € {4,5,6} or m € {4,5,6} and n € {1,2,3}, and
Ags = Mag + A28 + A33&3 Ays = —A336162, (4.23c)
Ase = —A228183, Ass = Ass + As3&f + &3,
Ase = —A116283, Ags = Aes + A11&5 + A2l

for m € {4,5,6} and n € {4,5,6}. Any entry not covered by the symmetry of
A and thus not listed vanishes. A careful comparison of the transformed added
masses with the inertia of a rigid body (1.12) shows that the added masses
behave like body masses in every way.

In sec. 5.1.2 the total inertia of Snookie is composed from the body mass and
inertia and the added masses of independent geometrical primitives, resembling
the fluid-mechanically active parts of the robot, and using these transformation
directives to obtain the added masses.

4.3.3 Lagrangian formulation of the fluid forces in poten-
tial flow

It was shown in sec. 4.3.1 that the kinetic energy of the fluid due to the motion
of two rigid bodies B and P in the presence of a stationary wall W can be easily
expressed in terms of added masses (4.18), and the translational and angular
velocities u® and u” of B and P,

1
T=3 (aiulu? + biul b + ufu? + gl

As already mentioned, the angular velocities w are sometimes called quasi-
velocities [98, p.156], since the respective generalised coordinate cannot be ob-
tained by integration over time such as the translational velocities u = dq/dt.
They are obtained from the respective generalised coordinates ¢ by

w=R"(p)W(P)d, (4.24)

see (1.9). No external potential for a conservative force on B and P exists,
since the bodies are supposed to be buoyancy neutral. No dissipative drag
forces occur in an ideal incompressible fluid. No vorticity may exist and thus
no velocity dependent lifting forces act on a body perpendicular to the incident
flow. Under this conditions, the total energy of the fluid is given by the kinetic
energy of the fluid, which in turn is a function of the position and the velocity
of B and P. The Euler-Lagrange equations deliver the forces fB and §* exerted
by the bodies B and P onto the fluid resulting from their acceleration, velocity,
and position. Thus, fB = —fIBJ, see sec. 4.2. But, special care has to be taken to
correctly deal with the quasi-velocities w? and w?.

A derivation of the Euler-Lagrange equations for quasi-velocities can be
found in [98, ch. 4.12]. For the force on the rigid body B exerted by the fluid
the standard Euler-Lagrange equation

15 = doT  oT
i dtauz 6qi

(4.25)
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is obtained. The torque on B experiences some significant modifications

d oT or oT
B
ti dt a + EijkWj 3 a K]ka¢

with ® and W' as defined in sec. 1.2.2. The Euler angles ¢ express the rota-
tions about no-orthogonal axes of rotation, whose orientations in turn depend
on the Euler angels. The angular velocities appearing in the kinetic energy T
are defined with respect to the orthogonal axis of the BFS, and thus are not
generalised velocities. The relation (4.24) between w and ¢ significantly com-
plicates the equations of motion. In addition, the 6 x 6 added mass matrices
will couple angular and translational motion, see sec.5.1.2. Furthermore, the
added masses of interaction deliver terms in the resulting equations of motions,
depending on the generalised coordinates, the velocities and the acceleration of
B and P. Unpleasant and longish expressions are obtained for the force and
torque exerted by the rigid bodies. Thus, the discussion of the force and torque
exerted by B and P on the fluid in terms of added masses is carried out for the
force only, and assuming w? = 0 and w” = 0. The bodies B and P are only
allowed to translate, but not to rotate. This reduces the degrees of freedom of
the problem from 12 dimensions, q® and q*, to the 6 dimensions, ¢ and ¢%,
of the translation of B and P in D. The notation w;a;;u; with the 3D vector u
is used to indicate that only the first three indices, ¢ = 1,2,3 and j = 1,2, 3,
of an added masses a shall be included in the sum over ¢ and j, as opposed to
u;au;, wherei=1,...,6 and j =1,...,6.

In the presence of one moving rigid object P and an arbitrarily shaped solid
stationary wall W, the force on B in terms of added masses (4.18) in coordinates
of the FOR, using the symmetry of a4, becomes

(4.26)

1= % (uf @) +%(uf51k) (4.27)
—5 (G + ff22+ PO s )
a2
l
‘i(“BUfg%é+ ; ngkgm 5 ;)84)

with ¢ = 1,2,3, j = 1,2,3, and k£ = 1,2,3. If the environment is stationary,
meaning u” = 0, (4.27) simplifies to

g0ai 1 g pda;
% =aPay +ub ula——guzuag. (4.28)

Another easily treatable special case is the force and torque on a moving rigid
body B in an undisturbed unbounded ideal fluid in BFS coordinates

o (Au)  d(au®)
ot dt
which can be derived from (4.19) using (4.25) and (4.26), with A being the

added mass matrix of B otherwise denoted as 4 to clearly distinguish the case
of free motion, 3 = (U, )T, U = Ru, and w as defined in sec. 1.2.2.

g5 = + 1w X (AM8> , (4.29)



4.4. OBJECT PERCEPTION 87

4.4 Object perception

The fluid forces acting on a boundary B not only originate from the motion of
B, but also from the flow field induced by the environment. One may ask the
question, which conclusions can be drawn about the environment by analysing
the forces exerted on B. In water, the forces resulting from the fluid-mechanical
interaction of bodies are relevant only at a distance, which is usually too small
to provide sufficient time for a reaction. The situation is even worse for objects
in air due to its small density, see sec. 2.12. By virtue of Bernoulli’s equation the
fluid-mechanical interaction forces, (4.2) or (4.9), can be partly computed from
measurements of the fluid flow velocity on the surface of a body. The fluid flow
velocity induced on B by a moving object promises to be easier measurable than
the resulting fluid-mechanical force or torque, except for cases of fast motion or
high acceleration in water, see sec. 2.10.

The setting investigated in this section is, like in earlier sections, a body B
equipped with a FSS moving with known velocity u? relative to a FOR in a fluid
domain D described by potential flow. The domain D is bounded by B, moving
with w5, an arbitrarily shaped wall W, which is stationary in the FOR, and by
a second rigid body P moving with w”. The goal of this section is to relate the
forces on a rigid body B obtained from measurement of the tangential velocity
on its surface, its velocity of motion, and the knowledge about its shape, with
the relative motion of the environment through the integrals

E Vo - VdndS
2 oB
and 00 00
Vo —dS or # y x V@) —dS
o8 87'L o8 ( ) 371

appearing in the fluid-mechanical force and torque (4.9) on B. The means of
choice to associate the surface velocity integrals with the motion of the rigid
bodies B and P are the Euler-Lagrange equations. When applied to the kinetic
energy of the fluid expressed in terms of added masses and velocities (4.27) of
the rigid bodies B and P, the force and the torque exerted by B onto the fluid,
see sec. 4.3.3, are obtained. The angular velocities w? = 0 and w? = 0 of B and
P shall vanish to avoid the computation of rather complicated expressions for
the force and the torque. The discussion of the torque t® on B is disregarded.

4.4.1 Forces applied to the fluid

Given the knowledge of the fluid velocity VI on the surface of B , 1t is difficult —
but in principle not impossible — to recover the precise course of the potential
on B from a line integral on 0B. However, a proper distribution of the flow
sensors to sample the velocity on 0B is not only determined by the curvature of
B but also by the a priori unknown fluid-mechanical image of the environment.
The potential is determined only up to a time-dependent ®q(t) at some reference
point on B, which is cancelled by integration over a closed surface. It is therefore
in general not a promising strategy to calculate the contribution

d

0o— dndS
dt JTanw)
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to the fluid force from the measurements of VI on 9B. The other two integrals
appearing in the fluid force (4.9) on B,

[} 1
M= w2 4s and A =1 (VO -Vd)ndS  (4.30)
aB()  On 2 JJaBw)

can be computed from the tangential fluid velocity VI measured in BFS coor-
dinates relative to B. The translational velocity w?, and the geometry of B
shall be known. The fluid velocity v = V® at the respective point on y” on the
surface B of B relative to the FOR is given by

v=R"(@ V! +u"

with ¢® the location of B in the FOR. To easily relate M and N with the
motion of objects in the environment, one wishes to identify M and N with
the corresponding terms appearing in (4.27).
According to (4.9), the force exerted by B on D is given by
d 0P 1
fB:g—# dndS —p V&—dS + o V& -VdndS. (4.31)
dt Jfan a8 On oB 2
The momentum of the fluid on D is determined by the position and the velocities
of the rigid bodies B and P, thus

d 0 0 0 0
— PndS = aB~+aP-+uB-+uP~># ®ndS.
dt B(t) ( a’LLB OuP an 8q7’ aD(t)

After substitution of (4.13), the surface integral and total time derivative are
evaluated,

d
—g# ®nydS = dPay +al by + (4.32)
dt™ JTanw)
B, B B, P P BYY p pUl
Ul —5 + U U] — + U, + u; ,
u’L ul 6ql8 u’L ul anD U‘Z ul 6qlB ul ul anD

in terms of the added masses, the velocities, and the accelerations of B and P.
By comparison of (4.32) with (4.27)

1 Oa;; 0b;; Ocij 0d;j
M-N) == |uBuB=2 4 (PB4 By P04 Py PR 4.33
Q( ) 2 uL u_] aq? ul u] aq]l: uz u_] 8(]}? uz u] aqkl:g ( )

is obtained.

4.4.2 Object perception with velocity surface integrals

In special cases, M and N readily provide direct knowledge about the environ-
ment. Supposing B is at rest u® = 0. Then obviously M = 0 and N = 0 if
u” = 0. The same is true for B moving through an otherwise undisturbed flow
field, or B placed at fixed position in a homogeneous flow field. The surface in-
tegrals M = 0 and N = 0 vanish, since the added masses of B are independent
of the location of B and the partial derivatives of the added masses with respect
to % or g7 vanish. The example can be transferred to the motion of B over a
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flat plate at z = const., or the homogeneous flow over B on a flat plate. The
components parallel to the plate of M and N are zero. This situation occurs
for an insect with a flow sensory system placed in a stationary environment and
exposed to the flow field of loudspeakers [155]. B could conclude that probably
nothing critical happens since N, = N, = 0. Thus, (4.33) is capable of filtering
any background motion with large characteristic length scales compared to the
size of B. Or conversely, (4.33) is not affected by the motion of B in a spatially
homogeneous fluid.

When B is moving in a more complex environment consisting of objects
stationary in the FOR and P moving, the interpretation of (4.33) becomes tricky.
In this situation, the integrals M and IN signal the existence of one or more
objects. However, the resulting direction cannot be attributed to one object.
The presence of a moving object cannot be detected and discerned from the
stationary background, unless additional knowledge is provided or assumptions
are made.

4.5 Conclusion

In this chapter, the added mass formalism was developed, which will be used in
the next section to formulate the dynamical model of the autonomous under-
water robot Snookie. Furthermore, starting with the fluid-mechanical forces on
a rigid body B in an ideal, incompressible, and irrotational fluid, a method was
developed to perceive the presence of another object from the tangential veloc-
ity on B. The method ignores any background motion in the fluid with typical
length scales larger than the size of the flow sensory system. It just consists of
sums over velocities and squared velocities on the surface of B weighted with
the velocity of motion and the surface normal at a sensor to account for the
geometry of B. It can be computed easily in a stable fashion at any instant of
time over any subset of randomly chosen sensors readings. Due to its property
as a sum over the signal of the sensors distributed over the surface of B, sensor
noise or local hydrodynamic instabilities on a subset of the sensors can be partly
averaged away. It signals the appearance of an object in the range of the FSS
and therefore can serve as a collision warning system.
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Chapter 5

Snookie

As already mentioned in the introduction to this thesis, Snookie is an au-
tonomous underwater vehicle (AUV) to be equipped with an ALL. The term
artificial lateral-line system is commonly used as a synonym for FSS, empha-
sising that it is tried to mimic the function and capabilities of the LLS of fish.
Snookie started as a small student project, and triggered several research ac-
tivities concerning different aspects of how to realize and how to make use of a
FSS. Now, the project Snookie actually consists of three sub-projects. The first
part is to design and build an underwater vehicle that can be equipped with an
ALL. The second part is the development of flow sensors and the arrangement
of these sensors to an ALL. Chapters 3 and 4.4 already dealt with the third
part, the mathematical methods to analyse the flow sensory readings from the
ALL.

Transferring the capabilities of the LLS to a robotic system would be ben-
eficial in a number of ways. It would complement existing established sensor
technology. For instance, sonar sensors require a minimum distance to an object
to be measured, with a blind zone in the immediate environment. In geomet-
rically complex environments and narrow spaces reflections impair the sonar
sensor readings. Camera- or laser-based systems depend on visual conditions.
The function of a FSS is passive in the sense that it uses information that is
present anyway due to the physics of bodies moving in water. There is no need
for data exchange to control the motion of a group of vehicles equipped with
flow sensory systems.

From the constraints of the hydrodynamic image severe requirements follow
for the implementation of an ALL on a moving robot. The lateral-line sensors
must be capable of detecting small, often slowly varying [53] changes in the
comparably strong flow field caused by the motion of the robot. The information
processing must be very fast to enable the robot to react on detected changes
in the immediate environment, and the robot must be highly manoeuvrable in
order to change its state of motion appropriately within this narrow range.

In the course of this chapter, the hardware of the robot is briefly described,
followed by the development of its dynamical model used to control the motion
of the robot. Finally, the current state of the development of Snookie and the
ALL including the calibration of sensors is summarised.
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Figure 5.1: Snookie, an autonomous underwater vehicle with an artificial lateral-
line system.

5.1 The autonomous underwater vehicle Snookie

The submarine Snookie is an AUV specifically designed as a test bed for an ALL.
In this section, the concept of the robot is presented and a brief overview of its
structure is given.

Special care has to be taken of the dynamics due the limited range of view
of the lateral-line system. The robot must be capable of precise motion in the
close vicinity of other objects at a distance of typically the diameter of the snout.
Therefore, high manoeuvring capabilities are crucial. It must also be able to
react on the sudden appearance of other objects in the range of view. A careful
design of the hull, the fins, and the thruster arrangement, driven by an accurate
physical model of its dynamics is required, which also serves the tuning of the
controllers of motion.

One of the most important design considerations concerns the shape of the
robot. Not only must the components of the robot fit inside, but the outline has
direct influence on the functionality of the ALL. The expected sensing quality
depends on the shape of the robot, which determines the properties of the flow
field of the surrounding fluid. A good compromise between ease of realisation,
a simple mathematical treatise, and the quality of the hydrodynamic image is
a cylindrical shape with hemispheres as caps on both ends.

The sensors of the ALL are intended to be placed in a cross in allocated
mountings in the frontal sphere. They extend 2 — 3mm above the surface to
avoid boundary layer effects introduced by the surface of the hull. The spherical
shape of the sensory system allows to perform analytic calculations, see ch. 3.
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5.1.1 The robot

The robot consists of a cylindrical watertight main compartment, in which all of
the electronics is encapsulated, two half-spheres at the end of the cylinder, and
six thrusters. It has a total length of L = 74 cm and a diameter of 2R = 25 cm.
The overall physical mass is 32.234 kg including the flooded bow and stern,
which can be fine tuned to match the water displacement of the robot for neutral
buoyancy.

To achieve high manoeuvrability, a helicopter-like multi-propeller propul-
sion system is adapted from the AMOUR V robot [156]. The basic layout
incorporates four thrusters arranged in a symmetric cross in the stern point-
ing in forward direction — see fig. 5.2. This allows direct control over the for-
ward /backward movement along the robot’s longitudinal axis, the pitch angle
and the yaw angle. All four motors work in combination for the accelera-
tion/deceleration. Additionally two vertically mounted thrusters control the
depth and the roll angle. Since motors are a source of vibrations and the pro-
pellers induce vorticity to produce thrust, the thrusters have to be mounted at
the stern, as far away as possible from the flow sensors. Each thruster on the
robot is coupled with a motor controller. The controllers receive thrust and
direction commands from the low-level controller.

A low-level control unit, based on an autopilot board by Ascending Tech-
nologies, is the central hub for the embedded systems and controls the 6D
motion. It consists of two 60 MHz ARMY RISC processors. One of them is
freely programmable. The other one combines three micro-electro-mechanical
systems (MEMS) gyroscopes, a three-axis acceleration sensor, a three-axis mag-
netometer, and a pressure sensor to an inertia-force measurement unit and pre-
processes the data of these sensors. The command unit can utilize this angular
and translational data over a direct on-board link. Decoupling the translational
and rotational movements of the robot allows to control each of the five accessi-
ble degrees of freedom of the robot with a proportional-integral-derivative (PID)
controller. Sidewards motion is not supported by the thruster layout. The
structure of the controller is explained in subsection 5.1.3.

The command unit of the high-level control can utilise the angular and
translational data from the inertia measurement unit over a direct on-board link
(CAN bus). The high-level control is done on a standard PC in a small form factor
integrated in the robot. The Robot Operating System (ROS) infrastructure
running on the PC allows an easy implementation of typical high level tasks
such as to decide on the desired speed and direction, the processing of the
sensor data, object recognition and avoidance, data logging, and interfacing to
command and control.

A land-based station can be used to monitor the status of the robot and to
give new commands. Direct control of the movement of the robot is also possible
via either a wiiMote, Joystick or keyboard. The robot can operate tethered
via an Ethernet cable for a high bandwidth communication. Alternatively for
untethered operation the link between command and control and the robot can
be established via an acoustic modem by Tritech. The Micron Data Modem
sends and receives with 40 bits per second in simplex mode over a specified
range up to 500 m. If considering the working range and the speed of sound in
water, the delay between sending and receiving can be up to 337 ms.

The ALL is described in detail in sec.5.2. The flow sensors are arranged in
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two arrays to a cross on the frontal hemisphere with 17 sensors in total. A
National Instruments USB data acquisition (DAQ) Card (NI USB-6218) is used
for the acquisition and conversion to digital of the analogue sensor readings
of the FSs. It provides 32 single-ended channels at 16 Bit resolution with a
sensitivity of up to 91.6uV. The sample rate used is 10kS/s per channel. Data
readings are buffered and polled from the connected high-level control PC over
USB 2.0. A custom ROS node logs the raw data and pipes it to the flow-field
reconstruction and object detection algorithms.

5.1.2 Model of the dynamics of Snookie

As mentioned in the introduction to this section, for a proper design and control
of the robot capable of manoeuvring on the basis of flow perception, a careful
description and analysis of the dynamics is crucial. Estimating the forces acting
on a body in a fluid is a non-trivial problem. The traditional approach to
describe the dynamics of bodies moving in fluids is an approximative analytic
one. Such an approach delivers good estimates of the relevant forces.

To avoid both, additional contributions due to the wave drag and complica-
tions in the calculation of the flow field due to a nonlinear boundary condition
at the force-free surface, the robot is assumed to dive sufficiently deep. This
condition is met in good approximation at a depth larger than five times the
diameter of the robot [157, Sec. 3.8] below an undisturbed water surface. The
forces acting on the body are empirically split up into contributions of viscous
drag, pressure drag (also called form drag), lift, and increased inertia expressed
in terms of added masses as a consequence of the acceleration of displaced fluid.
The viscous and pressure drag contributions may be considered as corrections
due to viscosity of the stationary motion of a body in an ideal fluid, which oth-
erwise would not experience any forces. The lift contribution stems from lifting
surfaces with sharp trailing edges, the fins. In general, the drag as well as fluid
inertia depend on the current and previous velocity and acceleration [158]. Also
effects like Basset forces, and drag and lift forces, arising from the shedding of
vortices, which in principle can be accounted for by a semi-analytic model, are
ignored throughout this work, to obtain a treatable model.

Forces on the hull

As discussed in sec. 4.3.1, the favourable system to compute the added masses is
a body-fixed frame of reference using all available symmetries. For the purpose
of computational simplicity the trunk of Snookie shall be approximated by a
prolate spheroid with long axis 2a g and short axis 2by, whose axis of revolution
lies along the X-axis, with ay being the semi-length of the axis and by the
radius in the Y-Z plane at X = 0. Then, the added masses with respect to the
geometric centre of the ellipsoid are given by [152, p. 144 ff]

g 4 BH
myq :AlHl — gﬂQaHb%{?_aH s Mo = A£{2 :Agg = gﬂ'Qa/Hb%I2_6H )
4 et (B — am)
=AL =2 b2 (a2 + b2
LH 55 = gT@AHYH (afr + bir) (2—e2)[2e2— (2—¢€2) (By —an)]’

AL = AL A =0, and Al =0 for i#j, (5.1a)
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Figure 5.2: Left: Frame of reference {e,,e,, e.} and body-fixed system
{ex, ey, ez} with origin O at the geometric centre of the hull. Right: Geom-
etry of the fluid-mechanically active parts of the robot with equivalent fin and
equivalent hull without the thrusters. Bottom: Arrangement of the 6 thrusters
in the body-fixed system of the robot.

where

2(1—¢?) 1 1+e 1 1—e? 1+e
=T {2111(1—6)6}’ BH62(263 In l—e)’
2 bu ’
e2=1-(2) | (5.1b)

aH

The parameters ay and by are chosen so that, first, the volume Vg = 4/3a Hb%I
of the prolate spheroid is equal to the volume of the trunk of Snookie consisting
of the water tight cylinder and the two semi-spheres at the bow and the stern.
And second, the surface of the ellipsoid

2rapb b?
Sp = 27b3 + ZHOHOH resin ( 1- g)
b2 agr
11—

G

has to be equal to the surface of Snookie Sy = 4w R? 42w R(L —2R). Numerical
solution of these two conditions yields ay = 41.484 cm and by = 13.620 cm.
The added masses are my; = 5.922kg and myo = 23.573 kg, the added mo-
ment of inertia 1y = 1.822kgm?.

The viscosity induced drag on the surface of the moving body is hard to deter-
mine analytically and usually described by empirical drag coeflicients [45]. The
main drag on Snookie stems from the separation of the boundary layer around
the hull and the breaking of the symmetry of the flow field, which finally leads
to a wake with reduced pressure at the stern. A different drag force is expected
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for the forward and sidewards motion of Snookie,

_ 1 __1 Vy 2 2
Ffd—_iQCfdAH‘VX|VY7 Fg = 2QCsdBH( Vy )\/Vy-i-VZ, (5.2)

where Crq and Cyq are the forward and sidewards drag coefficients and Ay =
7R? and Ap = T7R?+ 2R (L — 2R) the respective cross-sections with L = 74 cm
being the overall length and R = 12.5cm the radius of the robot. The total
pressure drag is approximated by a linear composition [152, p. 13 ff.] of forward
and sidewards drag. It acts on the geometric centre of the hull, the origin O of
the BFS. The drag coefficient is a non-trivial function of the Reynolds number.
It varies e.g. for a circular cylinder between C =~ 20at Re=1and C =~ 1.1...1.3
at Re = 1000. In absence of measured data and better assumptions, the forward
and sidewards drag coefficients are set to Crq = Csq = 0.3. For the Reynolds
numbers considered here, this value is a safe estimate of the lower bound of
the pressure drag coefficient of a sphere [46, p. 161 ff.]. Overestimation of the
pressure drag would lead to underestimated thruster forces required to stop the
robot when an obstacle appears. The drag on the robot due to a rotation is
neglected, since high angular velocities are not intended to occur. The drag
force on the hull Dy = (Ffd,Fsd)T acts opposite to the direction of motion
with the force resultant attacking at the geometric centre of the hull. It does
not produce a torque. Thus, the resultant drag force vector of the hull is given
T

Forces on the fins

The motion of an elongated blunt body like Snookie in the direction of its
main axes, even if it were perfectly symmetric with respect to the main axis
and the fluid were perfectly at rest, is unstable. Any small disturbance in
pitch or yaw causes torque about the centre of mass, called Munk’s moment
[97, p. 39 f.], throwing the body out of the desired trajectory. The yaw and
pitch instability of forward motion is balanced by a vertical and a horizontal
fin at the stern of Snookie. The fins consist of thin plates of length 20.2 cm and
height bp = 2R = 25cm equal to the diameter of the robot, with a cut-out
for the spherical stern. This results in an effective surface of 260 cm? per fin
with a mean effective length ap = 10.4 cm of a fin. The geometric centre of the
rectangular equivalent fin is located [, = 39.3 cm behind the geometric centre
of the hull. The vertical and horizontal fin are arranged to form a symmetric
cross like shape.

The incident flow to the fins is taken to be spatially homogeneous, and it
is assumed that it is not affected by the presence of the hull or the thrusters.
The relative velocity between fin and undisturbed fluid is approximated by the
velocity Vp = —U — Q X pp of the geometric centre of the fin. Analytic
expressions are available for the lift on a 2D cross section of a plate of zero
thickness and cord length [ in a homogeneous free stream and an angle of attack
a [159, p. 66 ff.]. The circulation around a cross section of the fin according
to the 2D theory is given by I'r = mapVp sin «, which results in the lift Fp =
WQAFVI% sin« on the fin with fin area Ar = arpbp. In 3D the lift on a plate of
finite length h is overestimated depending on the ratio i/l. Due to the absence
of analytic expressions for the full 3D case, the 2D expression is widely used for
hydrofoils. The plate also experiences a torque 1/4mpA% sin o per unit length
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about the centre of pressure forces at the so called quarter-cord point, located
halfway between the leading edge and the centre line of the fin. The quarter-cord
point of the fins is located at pgy = (—36.7,0,O)T cm behind the geometrical
centre O of the hull on the long axis of the robot. The occurring torques on the
fin are balanced by the mounting and do not affect the dynamics.

The Z (Y) component of the incident flow due to the presence of the
horizontal (vertical) fin does not significantly contribute to the lift produced
by the vertical (horizontal) fin. The incident flow Vg is therefore decom-
posed into the lift producing components Vi, = Vy — (Vg -ez) for the ver-
tical and Vg = Vg — (Vp-ey) for the horizontal fin. With the angles
sinay = (Vy-ey)/||Vv] and sinag = (Vg -ez)/||Vu| between the fin
and the lift producing components of the incident flow an estimate of the lift on
the vertical and horizontal fin, acting on the quarter-cord point pg, is given by

~ Wy R —Vhuz
LV:AFSiHOéV ||VvH VVX and LH:AFsinaH ||VH|| 0
Vux
with Ap = —moapbp. These results are applicable within a range of a =

—10°...10° [152, pp 20|, provided the plate has a smooth surface. The break-
down of the lift at higher angles of attack due to stall is accounted for by an
additional factor of ©(ay — o) O(ag + «) for the respective force components
with © being the Heaviside step function and «q the critical angle. The lift
forces on the quarter cord-point have the force and torque resultants

Fr,=Ly+ Ly and TL:(L\/+LH)X/)Q (53)

about O, which may be combined for a compact notation to the 6D force vector
L = (F L,TL)T. As mentioned previously, the effective lift of hydrofoils or
wings of finite length is reduced in 3D contrary to the 2D results due to the flow
over the tip of the wing. The lift therefore enters the equations of motion in
the dynamical model with an additional safety margin of 1/2 to ensure that the
stabilising effects of the fins are not overestimated.

Viscosity induced pressure drag on the fins in X direction is modelled due
to the absence of better alternatives by the drag coefficient C'p = 1.28 of a flat
plate perpendicular to the incident flow Fp = %Cpg ApU?, corrected by the
net frontal area Ap = apbp sin(a) exposed to the incident flow, which is also
taken as as a rough estimate for the lift induced drag for || < 10°.

Correct estimates of the drag on the fins due to sidewards motion or rotations
are challenging. Since lift and drag scale with V2, an error in the estimates of
these forces does not cause large effects on the dynamics, since the rotational
velocity of the robot is supposed to be small. Drag coefficients of similar shapes,
e.g. a cube, a cube at an angle of 45°, and a circular cylinder, are in the range of
0.8...1.3 for Reynolds numbers Re =~ 1000. A safe estimate of the lower bound
of the drag forces of the fins at sidewards or vertical motion is therefore given
by the drag coefficient C'r =~ 1 of a cylinder with the net frontal area of the fin
Ap with mathematically convenient independence of the roll angle. The drag
of the fin acts upon the geometric centre of the fin located at pr. The incident
flow U is decomposed in the X component and the components perpendicular
to the fins Vpy = ey -V and Vpz = ez -V i, and the drag on the fins is given
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by
1 0
Dp = _§QCFAF\/ V2, +VE, | Viy
Vrz

The resulting force and torque Fp = (Fr,Tp)" on the origin O of the BFS are
Fpr=Fpex + Dp and Tr=Fp X pp. (5.4)

The fins stabilise the forward motion. Their disadvantage are increased
added masses constraining the manoeuvrability. The added masses of the per-
pendicular arrangement of the vertical and horizontal fin is approximated by the
2D result of a cross-shaped section of two perpendicular plates of zero thickness.
Both plates have a length of ap = 10.4cm and a width of bp = 25cm. The
added masses per unit length of the cross-shaped arrangement [152, p. 144 ff]
are given by A11 = 0, A22 = A33 =T (l/?)z, A44 = 2/7Tg (h/2)4, and A55 =
Ags = 1/8mp (1/2)*, which results in the added masses

an2 b4 ap
mF:Angggzﬂg F» LF1:A54:QF )
AF AF ﬂ-a%bF
L = = =
F2 55 66 — @ 198
of the cross shaped fins computed about their common geometric centre. Their
numerical values are mp = 5.105kg, tp1 = 16.16 - 10 3 kg m?, and tpy =

0.718 - 10~% kg m*.

Vertical motion remains unstable since the motion in ez-direction cannot
be stabilised by fixed fins without affecting motions in ex-direction. During
submerging and descending Munk’s moment appears due to both, the round
shape of the bow and the large angle of an attack at the tip of the fin. Since the
vertical speed is usually small, the thrust needed for balancing is also small.

Combination of mass, moment of inertia and added masses

Snookie is buoyancy neutral, meaning that its mass is equal to the equivalent
volume of water. But the mass is not distributed homogeneously. Counter-
weights are mounted below the longitudinal axis so that the robot is balanced
about the pitch axis including fins and thrusters, and stable about the roll axis.
The symmetry with respect to the vertical plane is preserved. The mass of
Snookie including balancing weights and the flooded bow and stern is equal to
its water displacement, m = 32.324kg. The actual centre of mass is shifted
below the origin O of the BFS by the vector p,, = (0,0, pas). Integration over
the mass distribution carried out by the computer aided design (CAD) program
SolidWorks leads to a centre of mass p,; = (0,0, 1.5)" ¢m and moments of

inertia
1 =023, 5Ly=168, I;3=170, and I;; =0 for i#j

in units of kgm? computed in body-fixed coordinates about the centre of mass.
Accordingly, the axis of rotation must be shifted by —p,,,

AM — m1 —m pyx
S \mpyx I —mpyxpyx)’
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which has been already incorporated in the inertia of the rigid body in sec. 1.2.2.

The added mass matrices have been determined with respect to the geomet-
ric centre of each shape independently and now have to be transformed and
combined according to their location in the BFS relative to O — see sec.4.3.2.
The added mass matrix of the hull (5.1a) is already computed about the origin
of the BFS and does not need any further treatment. The coordinate systems of
the added mass matrix of the fin (5.5) has to be shifted by —pp. The resulting
total mass matrix of the robot is given by

A =AM 4 AT L AF (5.6)
with the entries
At =m+mm, Ao =m+mpys +mp,
Asz = Ao, Ais = As1 = —Aoy = —Ayo = —mpur,
Aog = Ago = —A35 = —As3 = —mppr, Ag= L1 +mpi; + tr1,
Ass = Iz + mppr +tg + tpa, Ago = Doy +mpi; +mpph + iy + Lro .

The remaining entries of A vanish.

A closer look at the combined added masses reveals that the added mass,
depends on the direction of motion. The net frontal area for forward motion is
much smaller than the net frontal area for sidewards motion, and accordingly
the amount of displaced fluid. The centre of total mass for pure forward motion
is for example given by

m T
SF = (0705 p]\/I) )
m+ mg1

the centre of total mass for pure sidewards or vertical motion by

T

T mgpr mpnr
Sv—(SVx,O,SVZ) _(m+mH2+mF’0’m+mH2+mF> .
Obviously, the centre of total mass has its own dynamics coupled to the motion
of the robot. The position of each mass contribution, i.e. the added masses of
the hull, the added mass of the fin, and body mass, is fixed in the BFS. The
centre of total mass moves, since the quantities of the added masses — their
relative weights in the barycentre — change with the direction of motion. With
the origin of the BFS fixed in an arbitrary point on the rigid body, e.g. O, the
location of each mass is fixed, and the equations of motion of a rigid body can be
used, keeping in mind that the total mass depends on the direction of motion.

Thrusters

The thrusters are neglected in the computation of the added masses, the drag,
and the lift. They provide the robot with acceleration in forward/backward
and vertical direction, and also angular momentum about pitch, roll, and yaw.
The thrusters enter the equations of motions via the force generated by the
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propellers. The four horizontal thrusters are placed at

T"H T"H

TH TH
pT1<lHa\/§7ﬁ> ) PT2(1H7ﬂ7ﬂ> )
TH TH TH TH
pT5:<lHa_\/§a\/§) ) pT6:(lH7_\/§7_\/§> )

symmetrically in a plane [z = 22.0 cm behind the geometric centre of the hull
parallel to the ey-ez plane in ex direction at a distance of ri = 18.5cm to the
longitudinal axis of the hull, see fig. 5.2. The two vertical thruster are located at
prs = (svx,rv,0) and ppr, = (syx, —ry,0) symmetrically in a plane parallel
to the ey — ez plane at py, = (syx = —6.2, £ry = £19.0,0) cm in ez direction.
The added masses of the hull and the fins depend of the direction of motion,
therefore the total centre of mass also depends on the direction of motion —
see sec. 5.1.2. Any other arrangement of the vertical thrusters would effectively
cause angular momentum about the Y axis at pure vertical motion.

The thrust, the force in the direction of the axle of a propeller, is generated
by the blades moving relative to the surrounding fluid. The essential geometrical
parameters influencing the performance of a propeller are its diameter d, the
span s, the cord length [, the latter both determining the planform area S of
the blade, and the pitch angle a,,. Imagine, the blades were extruded to form a
screw. The pitch ratio P is defined as the ratio of the pitch p and the diameter
d = 2s of the screw. For simple propellers the blade is twisted from its mounting
on the axle to its tip such that a relatively homogeneous flow profile over the
propeller is obtained. This is expressed by the notion of the local pitch angle
arcsin(p/27r) at radial position r relative to the axle. The advance ratio

(5.7)

J=V/vd (5.8)

consisting of the relative axial velocity V between thruster and fluid, the number
of rotations v of the propeller per second, and the diameter of the propeller
expresses how far the propeller actually moves through the fluid during one
rotation.

For a propeller with similar performance desired for forward and backward
thrust, blades with symmetrical cross section are used. At an advance ratio
J = P the propeller is moving with the incident flow at zero angle of attack.
No thrust is produced by a symmetric blade under this condition. In case the
advance ratio is smaller than the pitch ratio, the propeller produces forward
thrust, and backward thrust in the opposite case.

Since the lift on a blade acts perpendicularly to the local relative flow, the
force generated by a blade is composed of the thrust and the torque balanced
by the motor. The total thrust and torque are approximated by the sum of the
respective quantities over the single blades. Then, the thrust T’

T = Kr(J)ov?d* (5.9a)

and the torque
Q= Kq(J)ov’d® (5.9b)

of the propeller can be expressed in terms of non-dimensional parameters, the
thrust coeflicient K7, and torque coefficient K¢, both functions of the advance
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ratio J, and in terms of d and v [152, 159]. The efficiency of the propeller is
given by the ratio
vT J Krp

"= 50 T Ky

The essential scaling properties of force, torque, and efficiency obtained from
the actuator disc essentially remain the same [159, ch. 9], no matter which
theory is used to describe the propeller. The thrust and torque coefficients have
been measured for various blade shapes, which allows to roughly estimate the
properties of a given propeller design. Elaborate methods and big efforts have
been devoted [159] to the design of blades to optimise the thrust, maximum
speed, and efficiency of propellers because of their great impact on the cost
efficiency of the propulsion system of ships, which go far beyond the simple
model just described.

Nevertheless, the model is highly useful to control the forces generated by the
thrusters to maintain a desired state of motion as the following considerations
show. The thrusters are equipped with brushed pulse-width-modulated (PWM)
direct current (DC) motors. The question at hand is now how to choose the
correct pulse width to generate a certain thrust. As (5.9) shows, given the
geometry of a propeller with fixed pitch, the thrust depends on the current
revolution number of the propeller and the relative velocity between the thruster
and the fluid. The pulse width itself is in general a useless measure. The power
delivered to the motor does not directly depend on the pulse width, since the
impedance of the thrusters not only depends on the properties of the motor
itself, but also on the relative flow velocity and the current speed of revolution.
For example, if the advance ratio equals the pitch ratio, which means that the
blades are moving with the fluid without exerting any forces, also called “wind
milling”, the torque is zero independently of the pulse width. If the relative
velocity is increased further, the flow over the propeller even drives the motor,
now acting as a generator.

In general, additional information about the state of the thruster must there-
fore be used to control the generated forces. The thrust and torque coefficient
are strictly monotonically decreasing functions of .J [159]. The voltage delivered
to the motor is chosen to be constant. Measuring the current I provided to the
thruster, delivers the advance ratio, as the torque coefficient (5.9b) is invertible.
Given the advance ratio, the measurement of the revolution number of the mo-
tor delivers the relative velocity using (5.8). The advance ratio together with
revolution number delivers the current thrust (5.9a). Now the pulse width can
be adapted accordingly. But, this requires the knowledge of the current deliv-
ered to each motor and the rotation number of each axle. So far, due to missing
feedback from the motors of the thrusters, a fairly simple thruster model is used.

The thrust and torque coefficient have their maximum and their smallest
slope at zero advance ratio. The focus of the robot is put on slow motion and
high acceleration. Accordingly, the thrust coefficients were taken to be constant.
It was further assumed that a unique relation between pulse width and thrust
force in the regime of 0...2m/s incident flow velocity exists. This is acceptable
for small advance ratios.

Figure 5.3 shows the measured non-linear characteristic line of the thrust
force in both directions for a thruster with a three-blade 50 mm diameter pro-
peller. Measurements were carried out with a thruster mounted on a JR3 six-
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Figure 5.3: Solid line: Measured forward (left) and reverse (right)) thrust.
Dashed line: 2nd order polynomial approximation.

axis force-torque sensor. It automatically sweeps through the PWM of the motor
driver, which results approximately in a current control of the motor for low ad-
vance ratios. The resulting characteristic line for forward and backward thrust
is fitted with a 2nd-order polynomial function. The forward Ty and backward
Ty thrust are given by

1Ty =2-10"*2% + 1.11- 10?2 — 1.186 - 10! (5.10)
and
T, =10"%2% +3.4-107%2z — 3.5-1072
with z € [0,100] for the PWM duty cycle. The resultant external force and

torque acting on the total centre of mass given the current thrust 7; of the
thrusters ¢ = 1...6 are given by

Fr= Y Tex—- Y Teg (5.11)
1€{1,2,5,6} i€{3,4}
and

Tr = Z Tiex X pp; — Z Tiez X pr;.
i€{1,2,5,6} i€{3,4}

The respective 6D force vector is denoted by §Fr = (Fr, TT)T.

Rigid-body motion with drag, lift and thrust

The inertial forces (4.29) of the rigid body (1.15) complemented by the added
masses (5.6) with the origin of the BFS at the geometric centre of hull

D (ALL)
= 5.12
ot Q (5.12)

must be balanced by the external forces
N=FL+Fr+8u+371), (5.13)

consisting of lift, drag, and thrust, which results in equations similar to the
standard equations of submarine motion [152, 160, 161]. It shall be noted that
contrary to the convention used in analytical mechanics, where £Q denotes the
forces acting along a generalized coordinate, the first three entries denote the
force acting along the respective BFS axes, and the last three components the
torques around the axes of the BFS system. These equations can be solved easily
by numerical integration in real-time on recent hardware [99]. The transforma-
tion of all dynamical quantities to the FOR is given in sec.1.2.1.
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Validity and benefit of the model of the dynamics

Numerous assumptions and simplifications have been made to arrive at equation
(5.12). The most important ones shall be briefly reviewed and discussed. The
assumptions and approximation were necessary to obtain a treatable model of
the dynamics of the robot. The model is far from being perfect since there is
no easy solution for the forces exerted on the robot by the surrounding fluid.
However, it provides reasonable estimates of the dynamics at low computational
efforts.

As briefly discussed in the introduction to sec.5.1.2; the model is restricted
to the motion of the robot in an unbounded inviscid irrotational fluid at rest.
No location dependent fluid-mechanical forces like additional pressure forces
due to the presence of a wall [154] on the robot exist. The state of motion is
fully determined by the translational and rotational velocity. In case additional
boundaries were present, the added masses of Snookie, if computable at all,
had to be adapted by an expression depending on the current position of the
robot relative to the surrounding boundaries [154, ch. 4-5]. The effects of a free
surface are negligible at sufficiently large distances, typically larger than 5 times
the radius of the robot. Significant forces resulting from the interaction with a
wall appear at distances smaller than the half of snout radius of Snookie, see
sec.2.12.

While the inertia due to the physical mass of the robot are obtained directly
from CAD, the estimates of the added masses are composed from the fluid-
mechanical inertia of simple shapes resembling the shape of the robot. Each
element is treated independently of the others including the thrusters, which
means that in the model disturbances of the fluid caused by the elements do
not interfere. The conditions for non-viscous estimates of the inertia are strictly
only met e.g. at Reynolds numbers up to 10 or 15 or during the early stages of
rapid acceleration from rest [152, p. 34 fL.].

Furthermore, it is assumed that the disturbance of the flow field of the robot
due to the action of the thrusters is negligible. This assumption is justified for
small thrust values and large distances between the thruster and the hull, which
is not fulfilled very well for Snookie. If one wanted to take the interactions
of the thrusters with the hull and the fin into account, one had to deal with
added masses depending on the state of all six thrusters in the equations of
motions. The added masses could be estimated by 3D BEM simulations or tow
car experiments, with the robot attached to a force meter as a function of the
six thrust values.

Nevertheless, as soon as additional boundaries like a free surface or a solid
wall in close vicinity are present, possibly significant errors are made in the es-
timation of the added masses as well as in the estimates of forces generated by
the thrusters and forces that result from changing added masses. The estimates
of the thrust forces required to stop the robot due to the appearance of an ob-
stacle in the range of the ALL, however, remains the same. The added masses
are indeed increased in the vicinity of a stationary obstacle. But, without fur-
ther external forces, the total kinetic energy of the robot and the surrounding
fluid remains constant, since the added masses result from the motion of the
incompressible, inviscid and irrotational fluid. The robot and the fluid moving
with the robot are decelerated to the same extent to which the added mass is
increased while approaching the stationary object. The power necessary to re-
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duce the kinetic energy within a certain distance remains unchanged, no matter
if the robot moves close to a wall or in open water. Due to the presence of a wall
not only decelerating forces, but also torque might be exerted onto the robot.
Therefore, it should be taken care of sufficient thrust reserve. The current strat-
egy to deal with the appearance of an object is to use all available thrusters to
decelerate.

Viscosity is accounted for by quasi-stationary semi-empirical drag coeffi-
cients. This approximation breaks down at high accelerations. Furthermore,
the assumption that viscous drag forces just add linearly to inertial forces and
that viscous forces can be decomposed into forward and sidewards forces is only
an approximation. The decomposition is correct in the special cases that the
vehicle moves forward, sidewards, upward, or downward.

Even if the model of the dynamics of the robot would be perfect, due to the a
priori unknown environment of the robot, the motion controller must be flexible
enough, react fast enough, and have enough power available to compensate for
external effects such as changing boundary conditions like the presence of a wall.

5.1.3 Motor control

The equations of motion (5.12) are the basis to set up a control strategy for
the robot. The equations are independent of the position and the orientation of
the robot, but couple the velocities of all degrees of freedom. For conventional
submarines with a main propeller and steering fins, the equations of motion are
usually modelled as decoupled in longitudinal, lateral, and angular motion [161].
For the control of Snookie a similar approximation is used. Each degree of free-
dom is treated independently, since by design the state of motion for basic
operation can be reduced to a much lower number of degrees of freedom. The
decoupling is achieved simply by restricting the motion, by adding passive sta-
bilising forces due to the lift of the fins, and by shifting the centre of body mass
below the centre of buoyancy.

Snookie is supposed to always maintain a horizontal orientation, which
means that pitch and roll and the respective angular velocities are small. A
change in depth is supposed to happen in pure vertical motion. Snookie shall
move mainly forward. The yaw angle during forward motion is kept small except
for turns in place.

As already mentioned, the centre of mass p,, is shifted below the centre
of buoyancy. A deflection in roll angle ¢ leads to a restoring force and a
slowly damped oscillation about ¢g. This oscillation must be damped by a
proportional-derivative (PD) controller in ¢. The lowered centre of mass also
leads to a self-stabilisation with a small stability margin about the pitch angle
f. Pitch 6 and yaw 1 are stabilised by the fins counteracting Munk’s moment —
see sec. 5.1.2 — to reduce thrust forces necessary to maintain the orientation with
the PD controllers. The angular velocity w is implicitly given by the derivative
part of the PD controllers for 6 and .

At pure forward motion the robot is self-stabilising in the horizontal plane
aiding the desired horizontal orientation. The shift of the centre of mass below
the geometric centre would lead to a roll motion induced for an acceleration
Ay # 01in Y direction and a change in pitch for A, # 0, which is counteracted
by the fins, as described in sec. 5.1.2. With the robot being kept horizontal, Az is
decoupled for ¢ =~ 0 and 0 = 0, as depth change happens solely through vertical
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motion. Depth control is achieved by a proportional-derivative (PD) controller
in Z. Finally, forward velocity Vx is controlled by a proportional-integral (PI)
controller to counteract a steady-state error.

5.2 The artificial lateral-line system

Research on ALLs, the processing of the sensory data and the transfer to tech-
nical systems is not a completely new idea, but faces some inherent challenges,
which are still to be solved.

The basic functionality and morphology of the lateral-line system is well
known [1, 58, 74]. However, the exact transfer from the hydrodynamic stimulus
to the excitation of the sensor [57, 69, 72, 73, 75|, the resulting neuronal signals
[76-78]|, and their processing is still under investigation [58, 79-83]. This means
that attempts to rebuild the lateral-line system can only lead to an approxima-
tion or abstraction of the biological counterpart.

Some groups try to directly mimic the working principle of cricket of fish flow
sensors. For air, building biomimetic flow sensors is significantly simpler due to
the properties of the medium, especially due to its viscosity and conductivity.
Research in biomimetic flow sensing is, e.g. driven by the upcoming interest in
insect-like microflight. A review on different technologies in this sector is given
by Motamed and Yan [162] highlighting sensor design and experiments. The fo-
cus is on the determination of forces acting on the microrobot as a feedback for
control. One step further in terms of object/stimulus localisation are projects
utilising arrays of biomimetic hair cells (cilia) as sensors. Work by Izadi et al.
[163] and Dagamseh et al. [164] show the localisation of a dipole source — a vi-
brating sphere — in air by measuring the deflection of artificial hair sensors. The
deflection of the hair induces a capacitive change in the hair base of the sensor,
which can be related to the flow velocity. Other artificial cilia are based on
the piezoelectric effect, for example with polyvinylidene fluoride fibers (PVDF)
[165]. The sensors are either used as surface neuromasts [166-168], or integrated
in a canal [60, 169-171]. In principle, both approaches can be used for dipole
localisation [169, 172]. An extension of the cilia approach is encapsulating them
with a hydrogel cupula [68]. While biomimetic cilia might come close to the
biological source of inspiration, the robustness, manufacturing complexity and
signal-to-noise ratio are still challenges that prevent the application in an AUV.

A different approach for underwater sensing is to use thermal transport as
a means for measuring the flow velocity. Hot-wire anemometers have been
used for measuring flow velocities in gases and fluids [173] for a long time, but
advances in the miniaturisation make them applicable to ALLs. First trial runs
were done by Coombs et al. [174], as a means of “measuring water motions
used in stimulating the mechanosensory lateral-line system of a teleost fish”.
Micromachined arrays of hot-wire elements show the ability of localising dipole
sources as good as biomimetic cilia [175-178|.

Only recently, there have been some works on the integration of ALLs or
comparable sensors on underwater robots. A general overview on the state of
underwater robotics is given by Kinsey et al. [179] and Nicholson and Healey
[180]. Hsieh et al. [167] describe the implementation of PVDF sensors on a
robotic fish, in which the robot is supposed to sense pressure deviations due to
the presence of a wall. The modelling of the wall presence is done with an image
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charge method that is similar to the method proposed in [99].

5.2.1 Physics of hot thermistor velocimetry

The temperature of the heated element is given by T' = T, + Ty with T}, being
the ambient temperature of the fluid and Ty the over-temperature. The heat
dissipation in a fluid from a small element P ~ (A 4+ Bv™) Ty is a function of
the fluid’s relative velocity v, where n = 0.5 and the constants A and B depend
on the geometry and the properties of fluid [173, 181-188]. For a sphere with
diameter d [183, 187] the dissipated power can be approximated by

Ve \ 03 (v 0.5 d 2ﬁ
2 +0.55 (T ) (V 1 (5) =T (5.14)

with specific heat capacity c,, heat conductivity k, and kinematic viscosity v.
Constant temperature anemometer sense the velocity of a fluid or gas by mea-
suring the power P necessary to keep a heated element at an over-temperature
Thy.

P =

5.2.2 The artificial lateral-line system of Snookie

As summarised in the introduction to this section, several groups have already
used different types of sensor concepts to realise an ALL. At present none of these
sensors are commercially available yet. Flow sensors available on the market,
which would promise acceptable accuracy and stability, can hardly be integrated
to an ALL and mounted on a robot. For several reasons, a conservative design
decision in favour of hot thermistor velocimetry was made for the ALL of Snookie.

There is plenty of theory and experience with a very similar sensor concept,
the hot wire. Hot wires were shown to in principle provide the necessary ac-
curacy and temporal resolution [100, 174]. The electronics and the sensors are
relatively easy to develop and fabricate. The energy dissipation of the small-
est commercially available thermistors allows high integration densities and low
energy consumption. A small thermistor can be embedded in solid material
providing the robustness necessary for operation on a moving robot.

Thermistors are semiconductors with a non-linear negative dependency of
the electrical resistance upon the temperature. In previous versions of the
flow sensors, as described in [141], glass-coated thermistors with a diameter
of 0.36 mm from the Honeywell 111 series were used as heated elements for the
artificial lateral-line sensors of Snookie, see fig. 5.4. The resistance Ry ~ 2402
of a thermistor at working temperature 7'~ 80° C with an over-temperature Ty
of approximately 60° C is

Ry = Roeﬂﬁ(l/To—l/T) , (5.15)

given the resistance 1400 < Ry < 2.4k at room temperature Ty and the
constant 2000 °K < By < 5000°K. To sustain a constant thermistor temper-
ature the supplied electrical power P = P, = UI = U?/Ry must equal the
dissipated energy, if all energy is converted to heat and no leakage currents,
e.g. due to deficient isolation appear. The voltage to keep the thermistor at
a constant resistance — and thus at constant temperature — is provided by
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specially designed boards, which incorporate a Wheatstone bridge and a two-
stage amplifier. A cooling of the sensor due to changed flow conditions leads
to an imbalance of the resistances in the branches of the Wheatstone bridge,
which in turn leads to a potential difference across the bridge. The potential
difference is amplified with an instrumental amplifier (INA103-KU low-noise,
low-distortion instrumental amplifier) and filtered in a RLC low-pass filter with
a cut-off frequency of fc = 65kHz. The filter is employed to prevent spikes and
high frequency electromagnetic interference. The signal is recorded by a DAQ
card providing a measure for the fluid velocity. The amplified and filtered po-
tential difference is also fed back to a second instrumental amplifier, which acts
as a supply for the Wheatstone bridge. Adjusting the voltage over the bridge
compensates any resistance (or temperature) deviation of the thermistor. The
thermistor is placed at the tip of a bullet shaped casing, see fig. 5.4 and fig. 5.5
that provides the thermistor with mechanical stability, shields the wiring from
the water, and allows to easily mount the sensors.

The following rough estimates show that it is entirely legitimate to treat the
thermistor adiabatically in the sense that it immediately adapts its temperature
and thereby its resistance to changes in the transport of heat, as it has been
implicitly assumed in the thermistor model. The voltage necessary to maintain
a stable resistance of about 240 2 of the thermistor in water at rest is approxi-
mately 1.5V, though the properties of the individual sensors are scattered. This
results in a dissipated power of approximately 9mW. For comparison, the to-
tal heat stored in a sphere of the size of the thermistor with over-temperature
60° C made of silicon or glass is only less than a factor of three larger than the
heat dissipated per second. Within a temperature range of 60° the thermis-
tor changes its resistance by approximately a factor of five. A change of the
heat transport due to changing flow conditions must be therefore immediately
compensated by a change in the voltage supplied to the thermistor to hold a
constant temperature. The voltage

U? =~ Ry(A + Bv™)T, (5.16)

over the sensor is therefore an adiabatic measure for the fluid velocity. The
application of the calibration function to obtain the actual fluid velocity is im-
plemented in software.

The properties of the thermistor regarding the time constant, the power
consumption, and the sensitivity perfectly meet the requirements of an ALL.
The thermistor itself consists of a glass-coated spherical semi-conductor and
two thin platinum-iridium wires protruding from the thermistor at opposite
sides. However, it turned out to be very difficult to, on the one hand, isolate
the thin wires from the water and to mount the thermistor thermally and me-
chanically stable, and, on the other hand, to maintain good thermal contact
to the water. Many tests with different materials to embed the sensors were
carried out. After ongoing stability and manufacturing problems, and after a
series of tests of alternatives, it was decided to switch to thermistors of the
General Electric FP07 series (FP07TDA802N). Although specified with a slightly
larger time constant of 7ms, the great advantage of these thermistors is that
the glass-coated thermistor sits on top of a thin glass rod, see fig. 5.5, with the
wires shielded inside the glass rod for several millimetres. The isolation of the
wires by the glass rod solves the mechanical stability, the electrical shielding,
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and the problem of high temperature differences leading to mechanical stresses
around the thermistor between the on and off state. The essential properties
of the new thermistors are as already mentioned an increased specified time
constant of 7ms, a reduced power dissipation of 0.25 mW /C° at 25C°, leading
to a power dissipation of 15mW /C° at an overtemperature of 60 C°. At this
overtemperature an estimated heat energy of approximately 25 mJ is stored in
the thermistor. The resistance at a temperature of 25 C° is about 8k + 25%
and changes about a factor of 12 over a temperature difference of 60 C°. Not
only the electric properties vary greatly between the single thermistors, but also
the precise shape of the glass coating and the position of the thermistor on the
glass rod, which affects the transport of heat to the fluid. To be useful for flow
sensing at all, each sensor needs a careful calibration. The large differences in
the resistance compared to the previously used Honeywell thermistors enforced
changes in the layout of the Wheatstone bridge of the amplifier boards and the
power supply.

This, however, induced severe complications with the INA103-KU amplifiers.
Although the amplifiers were able to provide the thermistor with sufficient volt-
age during operation, the high resistance of the thermistors at switch-on time
and the high voltage demanded from the amplifiers lead to uncontrolled and
indeterministic behaviour of the amplifiers, also mentioned in their manual,
including an inversion of the signal provided to the DAQ and an additional un-
controlled offset. As soon as the thermistors are heated, the behaviour of the
amplifiers is perfectly deterministic, except from strong temperature drifts of
the amplifiers with a timescale of approximately 5s, which can be controlled by
cooling, see the white fans in fig. 5.6. Together with the requirements for a un-
necessarily complicated power supply (3 voltage levels), these were the deciding
factors to push the development of new thermistor control boards based on a
only recently available instrumentation amplifier by Analog Devices (AD8220).
First test runs with a prototype promise to solve the problems mentioned. The
development and the fabrication of the boards did not proceed fast enough for
being able to present a calibration and tests of the flow field reconstruction and
the collision warning methods described in ch. 3 and sec. 4.4 in this work. The
calibration of four sensors shown in the next subsection was carried out with
an adapted old thermistor control board and the new flow sensors. Due to the
uncontrolled behaviour of the amplifiers at switch-on the calibration shown in
the next section may be seen as a proof of the sensor concept.

5.2.3 Flow-sensor calibration

The flow sensor calibration was realised with a tow car. A linear motor (Thrust-
Tube, motor 2504 from Copley Controls, encoder resolution 10 ym) pulled the
sensor through a swimming pool of a diameter of 5m and a depth of 1.20m,
see fig. 5.6. With constant acceleration from rest all velocities from 0 to 70 cm/s
were present in one measurement. The flow sensors were mounted perpendicu-
lar to the direction of motion on a flat plate of thickness 3 mm oriented parallel
to the direction of motion, with the thermistors pointing downwards into the
fluid. The fitting of the sensors, the cables, and the rod connecting the plate
with the linear axis were located on the upper side of the plate and thus not
disturbing the homogeneous flow over the sensor at the bottom side of the plate.
Furthermore, due to the size of the plate, vibrations in the vertical direction of
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100

Figure 5.4: Left: Hull integration. Middle: Close-up view of the artificial lateral-
line sensor. Right: Power dissipated by a thermistor (Ry = 1523 at Ty =~
293 K, mounted on a PCB board and coated) in water vs. over-temperature
Ty. Black dots: Measurement of dissipated power P. Red line: Linear fit.
The relation between energy dissipation and over-temperature is perfectly linear
(1.8mW/K) as predicted by theory.

Figure 5.5: Left: Artificial lateral-line sensor consisting of a thermistor (GE
FP07), the tiny black dot on the glass tip, in an aluminium casing. Right: An
aluminium body with a diameter of 15cm and a height of 35cm with sensor
mountings (partly equipped with flow sensors), used as dummy for Snookie
dragged past, e.g. stationary obstacles, to test the artificial lateral-line system
and the flow reconstruction methods.
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Figure 5.6: Left: An aluminium plate dragged by a linear axis used as car-
rier for the flow-sensor calibration. Four flow sensors mounted in the white
plastic holders point downwards into fluid, placed close to the bottom surface
of the aluminium plate. Additionally, for comparison, a constant-temperature
hot-wire probe by Dantec records the flow field in parallel, protruding approxi-
mately 3 cm from the surface of the aluminium plate downwards into the fluid.
Right: The aluminium body of fig. 5.5, used as dummy for Snookie, dragged
past stationary obstacles by a linear axis to test the artificial lateral-line and
the flow reconstruction.
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the bridge spanning the pool and carrying the linear axis and the electronics
hardly affected the flow field around the thermistors, since they were placed
at the stagnation point of the plate for motion in vertical direction. The flow
velocity at the tip of the sensors was thus very accurately approximated by the
velocity of the linear axis. The fitting of the sensor through the plate were the
same as the fittings in the snout of Snookie, see fig. 5.4, and thus the location of
the thermistor at the tip of the sensors relative to the surface were the same as
if they were mounted on the robot. Consistent initial conditions with the fluid
at rest in the pool were obtained simply by waiting for the water to settle in
between tests.

The voltage applied to the sensors was sampled with 10 kHz and recorded
with a DAQ card. A low pass filter with a smooth transition (3rd order polyno-
mial) from total transmission at 75 Hz to total filtering at 500 Hz was applied to
the sensor readings. The processing of the position data provided by the linear
axis is discussed further below in this subsection. The voltages of each sensors
were sorted on the corresponding velocity, see fig. 5.7. To obtain the calibration
function, the calibrations curves were fitted with

v=\/AU2 + B, (5.17)

which would be expected by inversion of (5.16), which in turn results from
(5.14). Surprisingly, a power law of the suggested form only applies for high
fluid velocities, but with different parameters than expected for a sphere (5.14).
Throughout all calibrations, independent of the acceleration of the linear axis,
a piecewise fit function of the form

a+bUY2 4 cU32 +4U>/? ifU <UL
v(U)=QaU’ +bU* +cU +dU? +eU+ f ifU,<U<Uyg  (5.18)
a (U —b)° if U> Uy

with suitably chosen bounds Uy, and Uy, separating the low, the middle, and
the high velocity regime, excellently describes the velocity as a function of the
thermistor voltage. Calibration curves for four sensors, all recorded on the same
run, can be seen in fig.5.7. Larger deviations from the calibration curve can
be seen only in the velocity range around 15cm/s. These variations coincide
well with a short decrease of the linear axis velocity at a certain linear axis
position and are closely related to the difficulties to control the motion of the
calibration holder and therefore the flow velocity at the sensors by control of
the linear axis velocity. It seems that induced by the unsteady motion some
transition in the flow field over the sensors occurs. The velocity of the linear
axis was computed from the derivative of a 3rd order spline least square fitted
to the position data provided by the linear axis. The fitting parameters (essen-
tially the number of position data used to compute one segment of the spline)
were chosen by inspection in a series of test runs such that the variance of the
calibration curve became minimal. The reason for this procedure was that no
precise independent direct observation of the relative flow velocity between the
thermistor and the fluid at the thermistor tip is possible. The precise control
of the velocity of the linear axis is difficult for several reasons. A resolution
of the position of 10 um is sufficient for most positioning tasks, but it is not
sufficient to obtain a good estimate of the current velocity at a rate of 1000 Hz
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Figure 5.7: Calibration curves of four sensors obtained from a calibration run as
depicted in fig. 5.6. The linear axis velocity closely approximates the local fluid
flow velocity by design of the calibration holding. For comparison a constant-
temperature hot-wire velocimeter by Dantec was simultaneously recorded.

required by the linear-axis controller. Second, the control of a constant velocity
is complicated by the fact that position dependent forces such as a changing
friction are usually not foreseen in the control of a linear axes. And finally, the
probe holder does not immediately follow the linear motor due to its inertia and
due to finite tolerances. In summary, it is impossible to improve the calibration
of the linear axis by filtering, except for the high frequency noise introduced
by the activity of the controller. Nevertheless, the calibration curves perfectly
match the sensor readings, except for the velocity range between 15 cm/s and
30cm/s. The resolution of the sensors will sufficient to demonstrate the fluid
flow reconstruction developed in ch.3 in a suitable designed experiment, see
fig. 5.6.

5.3 Conclusion

In this chapter, the design and the hardware of the robot were briefly described.
The control of the motion of the robot is based on a linearisation of the dy-
namical model. The model accurately reflects the dynamics of the robot as long
as the robot does not approach other objects closer than approximately half of
its snout radius. The largest improvement of the dynamics of the robot can be
achieved by stronger thrusters with an improved model based thrust control.
This requires a thruster model based on the voltage and current provided to a
motor, the rotation number of the propeller axle, and eventually the speed of
the fluid relative to the thruster. The model based thruster control could be
verified during operation, if the force generated by each thruster was monitored
by direct measurement. The force measurement could also be used to account
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for hydrodynamic interactions of the thrusters with the hull of the robot and
the environment.

The progress in the development of the flow sensors and the improvements
of the experimental situation is evident by a comparison with the results ob-
tained with the previous sensor generation [141]. The major contributions to an
improved experimental situation are the large swimming pool placed on a solid
foundation and the fluid-mechanical design of the calibration holder. The stabil-
ity and endurance of the new thermistors allowed to systematically identify and
remove sources of distortions on the recorded sensors readings, particularly the
thermal drifts of the amplifiers and the power supply. A prototype of the cur-
rently developed new thermistor control board showed an even better electronic
noise level. The stability problems occurring due to the operation of the new
thermistors on the adapted old thermistor control boards seem to be solved. A
discussion of the noise introduced by the electronics can be found in [138]. It is
negligible compared to deviations in the flow field from the expected fluid flow
velocity at the tip of the sensor, e.g. introduced by passing a region of vorticity
present in the otherwise quiescent fluid during of a calibration run. Accordingly,
the largest improvements of the calibration can be achieved by a better control
of the movement of the linear axis, e.g. by incorporating acceleration sensors
on the linear axis and the calibration mounting.
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Chapter 6

Summary

In this work the knowledge about the flow-sensory systems of fish and crickets
has been used as source of inspiration for the development of an ALL. The
ALL is supposed to be mounted on an autonomous underwater vehicle called
Snookie. To be able to utilize the perception of the environment through a
flow-sensory system on a moving robot, severe requirements due to its limited
range of view follow for the dynamics of the robot. A dynamical model of the
robot, see ch. 5, including added masses, drag, lift generated from the fins, and
the thrusters, has been developed. The model incorporates the dependence of
the total mass, composed of the physical mass and the added masses, and the
dependence of the centre of the total mass on the direction of motion. These
effects are usually neglected for streamlined underwater vehicles moving mainly
straight ahead. The model captures the essential effects of the dynamics of
Snookie in all degrees of freedom and can serve as the basis to extend the
currently used simple motion controller to motion in further degrees of freedom.
The added mass formalism introduced for the dynamics of the robot, see
sec. 4.3, inspired a heuristics for the detection of objects appearing in the range
of the Fss. This heuristic, see sec. 4.4, requires little computational effort, and
is able to filter background fluid motion on length scales larger than the size of
the FSS. Due to its efficiency and speed, it will be implemented as a ROS node
in parallel to the flow-field reconstruction, acting as collision warning system.
The biological source of inspiration [15, 29, 189, 190] of Snookie is known
to solve quite complex tasks on the basis of fluid-flow perception, e.g. map
formation of the environment and self-localisation. The flow-field reconstruction
methods described in ch. 3 can serve as the basis for such high level tasks. To
the knowledge of the author, no theory for an inversion of the hydrodynamic
image or on inverse problems in fluid-mechanics exists so far. The flow-field
reconstruction introduced in ch. 3 is the indispensable basis to take advantage of
flow sensing for high level tasks. It allows to extract the location, size and shape
of solid objects from the reconstructed flow field, and it is in principle capable of
discerning them from vortex structures. Using the simple frequency-regularised
version of a 2D flow reconstruction from a circle, is was shown in simulations, that
similar capabilities can be implemented on Snookie. Snookie is equipped with an
inertia sensor system, see sec.5.1.1, enabling the robot to estimate the current
acceleration and by integration the current speed and relative position. Based on
its own position, Snookie can use the extracted shape of stationary solid objects
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to build up a map of the boundaries of the fluid. One challenge is that the quality
of a map generated during motion depends on the accuracy of the position
estimate, which is subject to drift. To counteract this drift, usually external
references such as GPS are used, which is unavailable underwater. A method
without external signals is called simultaneous localisation and mapping (SLAM)
[191]. It builds a map of the environment on the fly, which can then be used for
matches to verify the position. Although the reconstruction of the environment
around the robot is due to its mathematical nature restricted to a close range,
the matching of the reconstructed wall against the existing continuously refined
map allows to compensate for the drifts of the inertial sensory system [138, 139].

To be widely applicable and useful under variable environmental conditions,
several problems had to be solved in the development of an ALL. First, the
reconstruction due to the nature of the problem is very sensitive against small
errors in the flow velocity measurement. This requires a precise and carefully
calibrated set of flow sensors. Furthermore, the sensors must be robust and
stable enough to be mounted on a moving robot. The energy consumption of
the sensors and the disturbances introduced into the fluid by the sensors must
be small enough, so that they can be reasonably integrated to an ALL. The
sensors and the electronics developed for the ALL of Snookie, see sec. 5.2, meet
this requirement.

Potential flow is assumed for the flow-field reconstruction as well as for the
object detection heuristics, see sec.2.2. In real fluids, potential flow around
the FSS can be expected during motion in an otherwise quiescent fluid. At
present, no theory is available to estimate the errors introduced by deviations
from potential flow, or how to deal with the complete break down of potential
flow.

The next step in the development of the ALL is the experimental demonstra-
tion of a successful reconstruction of a stationary environment from a moving
object under ideal potential flow conditions, see fig. 5.6.



Acronyms

2D 2-dimensional

3D 3 dimensions

6D 6-dimensional

ALL artificial lateral-line system

AUV autonomous underwater vehicle
BEM boundary-element method

BFS body-fixed system

CAD computer aided design

CAN controller area network

CLS canal lateral-line system

CN canal neuromast

DAQ data acquisition

DC direct current

FSS flow-sensory system

GPS Global Positioning System

11D identically independently distributed
FOR frame of reference

LLS lateral-line system

MEMS micro-electro-mechanical systems
PC Personal Computer

PD proportional-derivative

PI proportional-integral

PID proportional-integral-derivative
PVDF polyvinylidene fluoride fibers
PWM pulse-width modulation

RLC resistance-inductance-capacitance
ROS Robot Operating System

SLAM simultaneous localisation and mapping
SLS superficial lateral-line system

SN superficial neuromast

SNR signal-to-noise ratio
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