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Abstract

The thesis presents convex relaxation methods for image segmentation and
stereo reconstruction. Image segmentation aims at segmenting an image do-
main to meaningful regions which ideally correspond to the different objects
depicted in the scene. Stereo reconstruction aims at inferring 3D structures
from a set of images depicting a scene. Image segmentation and stereo re-
construction belong to the most studied problems in computer vision, with
diverse applications ranging from medical image analysis to autonomous navi-
gation of mobile robots and automated interpretation of aerial images. Con-
vex relaxation methods have been established as a powerful technique for
finding globally optimal solutions for numerous computer vision problems.
Convex formulations allow for finding these solutions independent of initial-
izations.

A contribution of the thesis is a convex formulation of image segmenta-
tion with moment constraints. The lower order constraints include the area,
centroid and covariance dimensions of a shape. Orthogonal projections onto
the respective constraint sets allow for efficient optimization. A quantitative
evaluation on a set of medical images has shown that the average segmen-
tation error can be reduced from 12% to 0.35%. It was further shown that
the moment constraints can make object tracking in image sequences more
robust, especially in the case of highly similar color distributions in fore-
ground and background regions. An extension to object tracking in RGB-D
images allows for scale-aware tracking in the absolute 3D space rather than
the projected image plane. This allows to impose shape constraints on the
size of an object in sequences with motion towards or away from the camera.
Efficient implementations on graphics processing units allow for interactive
applications.

Furthermore, the thesis presents edge-based regularization for stereo re-
construction. It will be shown how image edge information can be incor-
porated in convex relaxation methods for stereo reconstruction for finding
globally optimal solutions. In addition, a convex optimization method for
multi-view stereo reconstruction with octrees for high-resolution 3D models
is presented. Continuous formulations allow for memory-efficient implemen-
tations and avoid metrication errors. Experiments show that reconstruction
results can be substantially improved when image edges are considered. The
methods are applied to image-based plant phenotyping of grapevine and bar-
ley. Applications shown include computations of volumetric information for
fruit-to-leaf ratios and monitoring of grapevine growth.
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Chapter 1

Introduction

Research in the field of computer vision aims at enabling computers to un-
derstand visual impressions. At its core a digital image is merely a matrix
of intensity values representing the amount of incident light at the moment
of recording. Methods developed in computer vision interpret these images
and draw conclusions about the depicted scenes. These conclusions include
recognition and detection of known objects, segmentation of objects (from
each other) and understanding the 3D structure of the scene. In the case of
image series or videos additional information about the speed or change over
time of objects may be gathered.

The importance of computer vision is increasing in numerous diverse ar-
eas due to the growing automation of industrial and everyday life. About
a decade ago, computer vision methods were mainly dominant in industry
and research. Stationary robots in factories were able to automatically fulfil
specific tasks in a relatively static environment. Due to substantial advances
both in algorithms and the computational power of smaller and smaller com-
puters, computer vision has spread to diverse new fields of applications. Dur-
ing the recent years computer vision has entered the every day life. Today,
smartphones are able to recognize objects and people and can automatically
read text from photographs. Recently developed driver assistance systems
are able to detect obstacles, traffic signs, and pedestrians and warn the driver,
accordingly. Optical park distance control are becoming a standard in newly
manufactured cars. The first autonomously driving cars are tested in public
space and depend heavily on computer vision methods.

Since computer vision methods have entered the area of video game con-
soles, a new generation of low-cost consumer depth cameras is available,
which in return are also widely used in computer vision research. RGB-D
cameras like the Kinect capture colour images with additional depth infor-
mation from an infra-red sensor. Image-based video game control is used to
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(a) 2D image segmentation (b) 3D surface reconstruction

Figure 1.1: Examples for shape optimization: A shape can be represented
by (a) a contour in the case of 2D image segmentation or (b) a surface in the
case of 3D stereo reconstruction.

detect persons in camera images and track gestures and motion.
Computer vision is a fast-growing area of research. Novel applications

include augmented and virtual reality. The field of autonomously navigating
robots is increasing due to the advances of robust computer vision algorithms
for localization and 3D scene understanding. Both fields may change the
world we know today drastically.

A fundamental concept, which is one of the basics of the applications
mentioned above, is shape optimization. The idea is to find optimal shapes
describing the contours of objects in the 2D images or the 3D surface of
objects in the real world. This thesis will show advances in the area of shape
optimization, while the focus is on convex optimization methods for different
types of image segmentation and stereo reconstruction.

1.1 Shape Optimization
Shape optimization is the problem of finding a shape which is optimal with
regard to a certain cost function. It is a fundamental problem in computer
vision and has applications to image segmentation and dense 3D reconstruc-
tion. In the context of image segmentation the problem of shape optimization
can correspond to finding a contour surrounding the objects depicted in an
image. In the context of 3D reconstruction it can correspond to the surface
of the scene to reconstruct. Fig. 1.1 shows two examples where the optimal
shape is represented by a contour in an image (Fig. 1.1 a) and a reconstructed
3D surface (Fig. 1.1 b).

7



1.1.1 Image Segmentation

Image segmentation is the meaningful segmentation of an image domain into
pairwise disjoint regions. Ideally the regions fulfil a certain inner-regional
similarity and inter-regional dissimilarity, which can for example be based
on intensity or color values in the scene, or on texture, distance or motion.
Usually it is desired that the regions correspond to the objects depicted in the
scene. An additional constraint often used is that the contours of the regions
are aligned with the edges of the image because these often correspond to
the object contours. The task of image segmentation is usually an ill-posed
problem which means that the solution is not unique, and is not always
trivial, even for the human eye.

Image segmentation is a general concept that can be found in numer-
ous applications of diverse areas. One of the most common applications is
medical image analysis, where segmentation methods can be used amongst
others to segment organs or identify anomalies in MRI or CT images. Other
applications include the analysis of aerial images to distinguish vegetation
from urban areas and optical character recognition for text scanning.

Since image segmentation is a highly non-unique task, shape priors are an
established way to impose prior knowledge about the objects depicted in the
scene. Shape constraints can help to scale down the set of possible solutions
and help to reconstruct the desired shape. For example in the case of seg-
mentation of buildings a constraint on rectangular shapes can be imposed.
The most common assumption is the smoothness prior that demands that
contours should be short in order to prefer compact objects and avoid over-
fitting due to noise or color ambiguities. Applications of shape constrained
image segmentation include detection of known objects and object tracking
in image sequences. Object tracking is the problem of following the contour
of an object in a sequence of images. Usually the contour is given in the first
frame of the image sequence, e.g. from a segmentation method or user input.
The task of object tracking is then to follow the object in the subsequent
frames. Object tracking has applications in monitoring of moving objects
in video sequences including people tracking, car tracking, optimization of
camera control in sports games i.e. in order to follow the ball. In the case of
a moving camera, self-localization is an additional task.

1.1.2 Stereo Reconstruction

The goal of stereo reconstruction is the inference of the 3D scene structure
from a set of 2D images depicting the scene from different view points. At
least two images are needed for a stereo reconstruction, more images are used
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for multi-view stereo reconstruction. The aim of dense reconstruction is the
reconstruction of a dense surface of the object to reconstruct. Dense recon-
struction has the advantage that it yields not only 3D locations but addi-
tional volumetric and surface information. A dense surface can be computed
from a complete segmentation of a discretized volume into object voxels and
empty background voxels, whose contours form the surface of the object to
reconstruct.

The problem of inferring 3D structure from 2D projections is an ill-posed
problem. Due to the perspective projection in the camera capturing process,
one dimension is lost and re-projection is not unique.

A commonly used representation for dense stereo reconstruction is a depth
map. A depth map assigns to each pixel in an image the depth of the depicted
object point, i.e. the distance to the camera position. For depth map re-
construction at least two images are needed with overlapping viewing range.
For a full 3D reconstruction on the other hand, each object point must be
visible in at least two images.

Depth map reconstructions are essential for robotic applications. They
are used for mobile robots for localization and mapping and for stationary
robots in factory automation processes. Other applications include visual-
izations in 3D movies and driver assistance where they can help to estimate
distances to obstacles on the street. Newer applications include augmented
reality applications and camera-based gesture recognition for human-machine
interaction in video game consoles.

1.2 Related Work
Image segmentation and stereo reconstruction are well-studied problems in
computer vision. Variational methods are widely used to compute solutions
to these problems. They allow for one-step solutions with less free parame-
ters compared to multi-step methods. Continuous and discrete optimization
methods are two counterparts in variational optimization. For continuous
representations, convex relaxation methods are an established method for
finding global optima of continuous optimization problems. Advantages and
disadvantages of the methods will be briefly reviewed in this section.

1.2.1 Variational Methods for Shape Optimization

Variational methods aim at minimizing or maximizing real-valued function-
als. They provide a powerful tool for well-defined mathematical representa-
tions of image analysis problems, and have become an established formalism
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to compute single-step solutions to various computer vision problems in-
cluding shape optimization problems such as image segmentation and 3D
reconstruction.

The first variational methods for image segmentation were presented in
the late 1980’s with the edge-based Snakes functional in 1988 [77] and the
region-based Mumford-Shah functional in 1989 [107]. The Snakes model,
also called the active contours model, is an energy functional defined on the
contour of the shape which is optimized locally to draw an initial contour
to the image edges. The Mumford-Shah energy is defined on the regions
and assumes inner-regional similarity and inter-regional dissimilarity of the
intensity values of an image. The two different approaches have become
merged together, as various methods nowadays incorporate both edge-based
and regional terms [29].

While the Snakes and Mumford-Shah functionals were originally defined
for explicit contour representations, implicit contours are the dominant me-
thod today. Explicit contours are based on a parametrization with a fixed
number of control points that move through the image domain during opti-
mization. Thus, the contour has a fixed resolution and topology, furthermore
frequent regridding steps are necessary during the optimization to obtain
uniform spacings between the contour points. Implicit contours on the other
hand are based on an indicator or level set function that is defined on the
whole image domain. The contour is not stored explicitly but is represented
by a level set of the function. Implicit contour representations for image
segmentation were presented with the Geodesic active contours [30] in the
middle of the 1990s. They allow for topological changes of contours and ef-
ficient implementations. Furthermore implicit representations enable global
optimization of certain functionals. Respective optimization methods include
discrete optimization for example with graph cuts [26, 67] and continuous op-
timization with level sets [36, 113] and convex relaxations [31, 34].

1.2.2 Continuous and Discrete Representations

Continuous and discrete representations are two counterparts in variational
functional optimization. Digital images are a discrete representation of a
continuous scene. Graph cut methods are an established approach where the
optimization functional is formulated on a discrete domain. Efficient algo-
rithms for graph cut segmentations enable global optimization in polynomial
computation time [26]. However, it was shown that discrete formulations like
graph cut methods can yield contours that show a bias towards the orienta-
tions of the neighborhood connectivity of the underlying grid [5]. Continuous
representations can help to avoid these metrication errors. Early methods
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using a continuous representation include level set formulations while more
recent methods are based on convex relaxation of indicator functions. Level
sets were introduced to computer vision in the work of Osher and Sethian in
1988 [113]. Region-based image segmentation with level sets was presented
by Chan and Vese in 2001 [36]. Level set formulations have the advantage
that the continuous formulation and consistent discretizations can enable ar-
bitrarily accurate resolutions without discretization artefacts. However, opti-
mization is performed only locally. More recently, convex relaxation methods
based on the total variation norm have become popular since they enable con-
tinuous global optimization. Convex relaxation for image segmentation has
been presented in 2005 by Chan et. al. [34] and Chambolle [31].

1.2.3 Convex Relaxation Methods

Convexity is a favorable property of energy functionals, since the high-dimen-
sional functionals are usually optimized with local optimization techniques. If
the functional to be minimized is convex, a global optimum can be found with
local optimization, independent on initialization. For non-convex functionals
either a good initial estimation is necessary or the optimization gets stuck in
a local optimum.

Convex relaxation techniques have become a popular approach to a va-
riety of image segmentation problems as they allow to compute solutions
independent of initializations. Hence they are a step towards unsupervised
methods that can operate on fully automated systems.

The total variation (TV) norm was introduced to computer vision by
Rudin, Osher and Fatemi in 1992 in the context of image denoising [124]. A
binary image segmentation method based on the total variation norm was
published almost simultaneously in 2006 by Chan, Esedoglu and Nikolova [34]
and Chambolle [31]. The methods enable continuous globally optimization.

Since then, the total variation norm has become a dominant factor for
continuous variational methods in computer vision. The main reason is its
convexity that allows for global optimization in contrast to the local optimiza-
tion of level sets. Various computer vision problems can be solved globally
optimal using convex relaxation methods based on the total variation norm
– including image segmentation [34], disparity map reconstruction [120] and
multi-view 3D reconstruction [10].

Fig. 1.2 shows a comparison for image segmentations with level sets (con-
tinuous local optimization), total variation (continuous global optimization)
and graph cuts (discrete global optimization). The level set segmentation
(Fig. 1.2 (a)) is dependent on the initialization, hence the optimization can
get stuck in local optima. Starting from an initial contour, the contour is
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(a) Level Set (b) Total Variation (c) Graph Cut

Figure 1.2: Image segmentation with different types of implicit contour repre-
sentations. (a) Continuous optimization with level sets can get stuck in local
optima. (b) Total variation minimization enables continuous and global op-
timization due to convexity. (c) Discrete optimization with graph cuts yields
global optima but contours prefer the orientations of the underlying grid.

optimized until a local optimum is reached. In the case of Fig. 1.2 (a) this
results in a contour that stops the optimization at image regions that are
the best match in a local neighborhood. Total variation minimization (Fig.
1.2 (b)) on the other hand is independent on the initialization. Due to the
convexity of the functional, a global optimum can be found with local opti-
mization methods. Graph cut methods (Fig. 1.2 (c)) are able to compute
global optima without initialization. The discrete formulation can result in
metrication errors caused by the bias to the underlying grid, resulting in
a preference to contours that are parallel to the image axes. A more de-
tailed comparison of discrete and continuous optimization methods can also
be found in Chapter 3.

1.2.4 Image Segmentation

The convex formulation of the two-region image segmentation problem [31,
34] allows for continuous global optimization of binary segmentation prob-
lems. For multi-label segmentation the problem is no longer convex. Total
variation based methods for multi-label image segmentation have been pre-
sented in [119], [93] and [148] that approximate globally optimal solutions.
An overview of different optimization methods for multi-label image segmen-
tation has been presented in [112].

Shape priors are an established way to stabilize segmentation results. A
global optimization method for image segmentation with shape priors has
been presented in [128]. Most methods are based on a previous learning of
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reference shapes [68, 39, 52] and try to find the silhouette of the shape in
a new image. More general formulations include shape constraints based
on the low-level features of a shape. Graph cut based formulations have
been presented for segmentation of compact objects [41] and star-shaped
objects [143]. A shape prior for convexity was presented in [63], however
no guarantee can be made that the results are global optimal solutions. A
convex formulation for connectivity constraints has been presented in [135].

1.2.5 Stereo Reconstruction

Efficient algorithms for stereo reconstruction of depth maps include the semi-
global matching method presented in [71]. Global optimization for stereo re-
construction was first proposed for discrete optimization with Markov Ran-
dom Fields. In [72] it was shown that certain multi-label problems can be
solved globally optimal, if the labels can be ordered. This applies to stereo
reconstruction, because the labels can be ordered by depth. A convex re-
laxation method based on this work was presented in [120]. The multi-view
stereo reconstruction problem was formulated with convex relaxation in [9].
An extension that integrates surface normals based on anisotropy has been
presented in [83].

1.3 Contributions
This thesis is about the study of convex relaxation methods for shape op-
timization, focused on image segmentation and stereo reconstruction. The
main contributions are novel methods for image segmentation with moment
constraints, scale-aware object tracking, edge-based stereo reconstruction and
high-resolution volumetric multi-view reconstruction. The convex formula-
tions allow for continuous global optimization, independent of initializations.
Applications shown in this thesis include interactive segmentation, medical
image analysis, object tracking in RGB and RGB-D sequences and image-
based plant phenotyping for grapevine and barley. In the following, a short
overview of the contributions is given.

1.3.1 Experimental Comparison of Continuous and Dis-
crete Shape Optimization Methods

Continuous and discrete optimization are two diverse directions in optimiza-
tion methods used in computer vision. Both representations are popular and
widely used for shape optimization, including image segmentation, stereo
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(a) Input (b) Segmentation (c) with moment
Ellipse with color only constraints

Figure 1.3: Image segmentation with area, centroid and covariance con-
straints, for interactive segmentation (first row) and medical imaging (second
row). The shape constraints for the segmentation are derived from the in-
put ellipse as an intuitive user interface. The convex formulation allows for
globally optimal solutions.

reconstruction and multi-view reconstruction. In Chapter 3 a quantitative
experimental comparison of continuous optimization based on convex relax-
ation and discrete optimization with graph cuts is presented. The methods
are compared with respect to computation times, memory consumption and
accuracy, using the example of image segmentation and multi-view 3D re-
construction. This allows for an objective discussion of the strengths and
limitations of both approaches.

1.3.2 Convex Moment Constraints for Image Segmen-
tation and Object Tracking

Shape constraints for image segmentation are usually learned from a set
of reference shapes which makes a previous learning step necessary. More
general shape constraints based on the low-level features of a shape like com-
pactness, convexity or connectivity constraints avoid this preprocessing step.
In Chapter 4, a convex formulation for image segmentation with moment
constraints is presented. The proposed method allows to constrain the ap-
proximate dimensions of a segmentation like size (area constraints), location
(centroid constraints) and relation of width to height (covariance constraints)
(see Fig. 1.3). Experiments show that the convex moment constraints can
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stabilize results for interactive image segmentation, medical image analysis
and object tracking.

1.3.3 Scale-Aware Object Tracking in RGB-D Sequences

Constraining the area of a shape during object tracking in an image sequence
yields robust results for parallel motions. However, if the object moves to-
wards or away from the camera, the projected size of the object in the image
plane changes, although its absolute size remains constant. In Chapter 5, a
scale-aware method for object tracking with convex 3D shape constraints is
presented, that allows to robustly track objects in RGB-D image sequences
with motion towards or away from the camera.

1.3.4 Edge-Based Regularization for Stereo Reconstruc-
tion

Stereo reconstruction for depth map estimation is usually based on regional
information measuring point-wise matching costs, while image edges are usu-
ally neglected. Image edges can be computed from the image gradient and
can contain valuable information as they are often aligned with the bound-
aries of the objects depicted in the scene. In Chapter 6, a method for incorpo-
rating image edge information to stereo reconstruction based on anisotropic
regularization is presented. The convex formulation allows for accurate depth
map reconstructions compared to standard regularization.

1.3.5 Stereo Reconstruction for Plant Phenotyping

Since plant researchers are increasingly working on large numbers of samples,
manual measurements are not sufficient anymore. Image analysis has become
a popular method for phenotyping as it provides an efficient tool for auto-
mated plant measurements. However, as many methods are not completely
automated or not robust enough to be used on outdoor images captured
directly in the field, the so-called phenotypic bottleneck still prevents high-
throughput analysis on large data bases. In Chapter 6, a robust method for
phenotyping of grapevine is presented. The method uses convex formulations
for depth reconstruction and color based segmentation that enable estima-
tion of 3D leaf areas. The method was successfully applied to monitoring
of grapevine growth and computations of fruit-to-leaf ratios. Robustness is
shown for images taken from a moving platform directly in the field.
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Figure 1.4: Volumetric 3D reconstruction of a barley, computed from RGB
images. The dense surface is optimized in the leaf nodes of deepest level in
an octree.

1.3.6 High-Resolution Volumetric Multi-View
Reconstruction with Octrees

Sparse methods for 3D reconstruction enable representation of high-reso-
lution point clouds however provide no volumetric or surface information.
Dense methods on the other hand are usually defined on a uniformly dis-
cretized voxel grid, limiting resolutions drastically. In Chapter 7, a volumet-
ric approach for high-resolution dense surface reconstruction from images is
presented. High resolutions are achieved by using the octree data structure.
Based on a segmentation in the visual hull of the object, the optimization
problem can be formulated convex. Fig. 1.4 shows an example for a high-
resolution volumetric 3D reconstruction.

1.4 Outline
The remainder of the thesis is organized as follows:

Chapter 2 gives an overview of the relevant background, definitions and
fundamentals.

Chapter 3 gives an overview of related work on continuous and discrete
shape optimization methods. Furthermore it shows an experimental
comparison of the methods with respect to run-time, memory con-
sumption and accuracy.

Chapter 4 presents image segmentation with moment constraints. It shows
how segmentation results can be improved by imposing shape con-
straints on the lower order moments of a shape, integrated in a convex
formulation for variational shape optimization. Applications shown
include interactive image segmentation and medical image analysis.
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Furthermore, an extension of the method to object tracking in image
sequences is presented.

Chapter 5 shows an extension of the moment constraints tracking pre-
sented in Chapter 4 for scale-aware object tracking in 3D using RGB-D
image sequences. The chapter shows a robust method for object track-
ing based on convex shape constraints.

Chapter 6 describes convex relaxation methods for stereo reconstruction
for disparity map estimation. An extension to anisotropic regular-
ization is shown for improving reconstruction accuray especially at
the object boundaries. Furthermore, an application to phenotyping
of grapevine growth is presented where the method was successfully
employed on real world images.

Chapter 7 describes convex relaxation for multi-view stereo reconstruction
as well as a memory-efficient implementation in octrees allowing for
high-resolution volumetric 3D reconstructions.

Chapter 8 concludes the thesis with a summary of the main results and
contributions as well as an outlook to possible future work.
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Chapter 2

Background

Variational methods provide well-defined mathematical formulations for im-
age analysis. They are a powerful and versatile tool which have become
established in computer vision research. This chapter presents the basics
and early work on variational image segmentation in Sec. 2.1, Sec. 2.2 and
Sec. 2.3, as well as an introduction to total variation in Sec. 2.4, which pro-
vides a key concept for convex relaxation methods. The presentation of early
works in Sec. 2.3 will focus on two functionals: the Mumford-Shah functional
which is the basis of many segmentation methods today, and the Chan-Vese
functional which introduced a level set formulation of the Mumford-Shah
functional leading to the now widely used implicit contour representations in
shape optimization. Sec. 2.5 describes convexity as a favorable property in
energy minimization.

2.1 Introduction
Images and segmentations of images can be considered as continuous func-
tions. This section describes the representations for images, segmentations
and shapes that are used in this thesis.

2.1.1 Continuous Image Representation

A digital image is a matrix of vector-valued intensity values, called pixels.
In this thesis, two dimensional images will be considered. The dimension b
of a pixel corresponds to the number of channels in the image. For example,
an intensity image has b = 1 channel, a color image in RGB space has b = 3
channels, this corresponds to one channel each for red, green and blue. RGB-
D images have an additional depth channel with b = 4.
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The concept of pixels can be transfered to 3D space: Here a volume can
be discretized into a uniform grid of voxels. This is the representation used
for 3D volumes in this thesis.

Although digital images are discrete, they can be represented in a contin-
uous formulation. An image I can be interpreted as a continuous function I
defined on a continuous domain Ω ⊆ Rd:

I : Ω→ Rb, (2.1)

where both the spatial image domain Ω and the range of intensity values
Rb are represented in a continuous formulation. The continuous formulation
allows for mathematical analysis with well-studied numerical optimization
methods for continuous functions.

2.1.2 Image Segmentation

Image segmentation is the partitioning of the image domain into meaningful
regions. Hence, the segmentation of Ω ⊂ R2 into a set of n pairwise disjoint
regions Ωi can be defined as

Ω =
n⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ ∀i 6= j. (2.2)

Usually the regions should have a certain inner-regional similarity and inter-
regional dissimilarity, e.g. with respect to their intensity or color distribu-
tions. Various other constraints on the segmentation can be defined, for
example on the shape or size of the regions.

2.1.3 Shape Representation

A shape can be represented in 2D by a contour in an image, or by a surface
in 3D. The contour C of a segmentation is defined as the border of the seg-
mentation: C =

⋃n
i=1Ci where Ci = ∂Ωi is the contour of region Ωi. Contour

representations can be parametrized explicitly or represented implicitly with
a corresponding indicator or level set function.

A parameterized contour can be represented e.g., by splines and stored
explicitly by a set of n control points x1, ...xn. This representation is suitable
for fixed contours, however if the contour is optimized, regridding steps can
be necessary. An early work on image segmentation using an explicit contour
representation for variational image segmentation is the Snakes method [77].

For an implicit representation, the contour Ci of a region Ωi is repre-
sented with a higher dimensional auxiliary function. In the case of a level set
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representation this function is called a level set function which has positive
values inside the region it represents and negative values outside. The con-
tour Ci is then defined as the 0-level-set. A more detailed overview of level set
methods is given in Sec. 2.3.2. A binary indicator function ui : Ω → {0, 1}
representing the region is given by

ui(x) =

{
1 if x ∈ Ωi

0 otherwise.
(2.3)

The contour is defined as the transitions between 0 and 1. An implicit
contour representation allows for discretization with a fixed resolution due
to the underlying pixel grid, which avoids control point regridding. Implicit
contours are used in level set formulations [36] and convex relaxations [35].

In this thesis, implicit contour representations will be considered due to
their advantages over explicit contours with respect to optimization methods.

2.1.4 Image Derivatives and Discretizations

The gradient of an image measures the change of intensity values in an image.
It has typically high absolute values at image edges and corners and low
absolute values in relatively homogenous regions. Image edges and corners
contain important information about the scene depicted in the image, as they
typically coincide with the boundaries of the objects depicted in the scene.
The gradient ∇u of a function u : Rd → R is defined as the vector

∇u :=
d∑
i=1

∂u

∂xi
, (2.4)

where ∂u/∂xi is the partial derivative of u with respect to xi.
The gradient norm is the length of the gradient vector:

|∇u| =

√√√√ d∑
i=1

(
∂u

∂xi

)2

. (2.5)

The divergence div is an operator that maps a vector p ∈ Rn to a scalar:

div(p) :=
d∑
i=1

∂pi
∂xi

. (2.6)

The Laplace operator ∆ is defined as the divergence of the gradient and is
given by the sum of second derivatives of the components of u:

∆u := div(∇u) =
d∑
i=1

∂2u

∂x2
i

. (2.7)
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When image derivatives are discretized, it is important that the discretiza-
tions are consistent, especially when multiple derivatives are concatenated.
Otherwise discretization artefacts can appear.

Discretization of the partial derivatives ∂u
∂xi

can be formulated using for-
ward differences D+, backward differences D− or symmetric differences D0.
For a two-dimensional domain Ω the discretizations in x1 direction are de-
fined as

D+ux1 = 1
h

(u(x1 + h, x2)− u(x1, x2)) , (2.8)
D−ux1 = 1

h
(u(x1, x2)− u(x1 − h, x2)) , (2.9)

D0ux1 = 1
2h

(u(x1 + h, x2)− u(x1 − h, x2)) , (2.10)

where h is the width of a pixel. In a discrete implementation, it is usually h =
1. For h→ 0 the forward difference converges to the continuous definition of
derivatives. Discretizations in x2 direction are analogously defined.

Discretization of the Laplace operator ∆ (2.7) can be either achieved with
the second derivatives directly or by a concatenation of two first derivatives.
Using the latter version, it is important to use a consistent discretization of
the derivatives. A common consistent choice is the forward difference for the
gradient and backward difference for divergence:

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

≈ D−
(
D+ux1

)
+D−

(
D+ux2

)
. (2.11)

2.1.5 Diffusion

The diffusion equation describes a process that distributes intensities of the
function u spatially:

∂tu = div(g∇u), (2.12)

where t is a time step and g describes the speed of diffusion. g ∈ R is called
diffusivity. For g = 1 the right hand side of (2.12) corresponds to the Laplace
operator (2.7). Diffusion of an image yields a smoothed version of the image,
while the number of iterations t corresponds to the grade of smoothing. For
t → ∞ the diffusion process converges to the average intensity value of the
image.

The diffusion process is called linear if g is a constant scalar value for
all points. If g depends on location x, the process is called inhomogenous
diffusion. If g depends on u, it is called non-linear diffusion. If g is a matrix
it is called anisotropic diffusion, and g is called diffusion tensor.
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2.2 Energy Minimization
In this thesis functionals of the following form are considered

E(u) = EData(u) + λESmoothness(u), (2.13)

where E is an energy functional consisting of a data term EData(u) and a
regularizer term ESmoothness, weighted with a smoothness parameter λ ∈ R.
The minimum of E is a function u := (u1, . . . , un) that fulfils a data fidelity
implemented in the data term D and smoothness prior implemented in the
regularizing term R. In the following, the data and smoothness terms are
presented in more detail.

2.2.1 Data Term

The data term measures similarity to the input image by a data fidelity
model.

Data terms can be based on mean intensities or mean colors ci ∈ Rb where
b is the number of color channels, for example b = 1 for intensity images and
b = 3 for RGB images:

EData(u) =
n∑
i=1

∫
Ω

(I(x)− ci)2ui dx. (2.14)

Another way to compute color-based data terms is to use the color distri-
butions inside a region with histograms. A histogram pi : Rb → [0, 1] encodes
the distribution of intensity or color values while the range of intensities is
discretized to a fixed number of bins. Data terms can be computed using
b-dimensional histograms pi in the following way:

EData(u) =
n∑
i=1

∫
Ω

−log(pi(I(x)))ui dx. (2.15)

Fig. 2.1 shows a comparison of different methods for the data term for
an example image segmentation. The data terms for the regions are com-
puted from user seeds, i.e. pixels that were manually labelled by a user.
In the depicted example only the data term based on RGB histograms is
able to segment the bee from the background. The input image is from the
IcgBenchmark data set [125].

More advanced data terms include the incorporation of co-occurrence
statistics [89] or label costs [142]. In [110] the authors consider the location
of pixels marked by a user to compute higher dimensional histograms. This
allows for spatially dependent data terms, in addition to color distribution
based terms.
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(a) Image (b) Intensity (c) Intensity (d)RGB (e)RGB (f) Edge
with seeds means histograms means histograms weights

Figure 2.1: Segmentation from user seeds (a) for four different data terms
(b-e) and an edge weighting function (f).

2.2.2 Regularization Term

The regularization term ESmoothness(u) measures the smoothness of the con-
tour. Usually it is demanded that the contour should be smooth and short.
The balance of the data term and regularization term can be varied by choos-
ing the smoothness parameter λ accordingly.

Minimizing the contour length is a common choice for the regularization
term. Often it an additional requirement demands that the contour should
be aligned with the object boundaries. Image gradients indicate edges of
the depicted objects. This can be used to weight the contour length with
a function that has low values at regions where the image gradient norm
|∇I| is high, and high values where it is low. The edge detection function
g : Ω → [0, 1] should be monotonically decreasing to yield high values for
small image gradients, which indicate homogeneous regions in the image, and
small values for high image gradients which indicate object boundaries. The
following functions g1 and g2 are commonly used edge detectors:

g1(x) =
1

1 + β|∇Iσ(x)|2
(2.16)

with the parameters β ∈ R and σ ∈ R. Iσ is a Gaussian smoothed version of
the input image and σ is the standard deviation of the Gaussian.

g2(x) = exp(−γ|∇Iσ(x)|α) (2.17)

with parameters γ, α, σ ∈ R. An example of the edge weight function g2 is
shown in Fig. 2.1 (f). The parameters were set to γ = 5, α = 1 and σ = 3.

The regularization term can also be weighted with a tensor, yielding an
anisotropic regularization, as for example used in [145] for optical flow or in
[127] for image compression.
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2.3 Variational Methods for Image
Segmentation

The establishment of variational methods for image segmentation started
in 1988 with the Snakes functional [77] and 1989 with the Mumford-Shah
functional [107]. The Mumford-Shah functional is the basis for many image
segmentation methods today. Implicit contour representations were intro-
duced to image segmentation with the level set method [113, 36]. In the
following, the Mumford-Shah functional and its formulation with level sets
by Chan and Vese [36] will be discussed in more detail.

2.3.1 Region-based Segmentation by Mumford and
Shah

There exist different versions of the Mumford-Shah functional. The general
form describes a piecewise smooth approximation of an input image while a
specialization is the piecewise constant approximation.

The piecewise smooth Mumford-Shah functional was presented in 1989
[107] as

E(u,C) =

∫
Ω

(I − u)2 dx+ λ

∫
Ω\C
|∇u|2 dx+ ν |C| (2.18)

The energy depends on a piecewise smooth approximation u of the input
image I and a contour C. The minimum of (2.18) is a piecewise smooth ap-
proximation u : Ω→ [0, 1] of an input image I. Since functional (2.18) con-
tains both u and its derivative ∇u, it is a partial differential equation whose
minimum cannot be computed explicitly. Numerical methods are needed to
solve it, and furthermore convex formulations to obtain a global minimizer.

A special case of the Mumford-Shah functional is the piecewise constant
approximation with n regions Ω1, . . . ,Ωn minimizing

E(u,C) =
n∑
i=1

∫
Ωi

(I(x)− ui)2 dx+ ν |C| (2.19)

where ui is constant for all x ∈ Ωi.

2.3.2 Implicit Contour Representation with Level Sets

Level sets are an important prior work for convex relaxation methods. They
introduced the concept of an implicit contour representation by the use of a
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higher dimensional variable ψ into variational segmentation methods. Level
sets were originally introduced to computer vision and computer graphics by
Osher and Sethian in 1988 [113], and revived 1998 with a level set formulation
of the two-label piecewise constant Mumford-Shah functional by Chan and
Vese [36].

The Chan-Vese functional [36] is a level set formulation of the piecewise
constant Mumford-Shah functional (2.19) with two regions that correspond
to foreground and background, respectively. It uses an implicit contour rep-
resentation with a level set function ψ : Ω→ R:

E(c1, c2, ψ) =

∫
Ω

(I(x)− c1)2H(ψ) + (I(x)− c2)2(1−H(ψ)) dx

+ ν

∫
Ω

|∇H(ψ(x))| dx+ µ

∫
Ω

H(ψ(x)) dx. (2.20)

The level set function ψ has positive values in the foreground region and
negative values in the background. H : Ω → {0, 1} is called Heaviside
function, and indicates for each pixel x if it belongs to foreground (H(ψ(x)) =
1) or background (H(ψ(x)) = 0). In practice, a smoothed version Hε of
H can be used to avoid the non-differentiability of H. The function E in
(2.20) depends on two mean intensity values c1, c2 ∈ R of the foreground and
background region, respectively.

The contour C is implicitly represented in (2.20) by the zero level set of
ψ:

C = {x ∈ Ω | ψ(x) = 0}. (2.21)

The implicit representation also allows for topological changes of the contour.

2.4 Total Variation
The total variation norm (TV norm) plays an important role in continuous
convex optimization. It is a widely used regularizer for shape optimization
because of its convexity and edge-preserving property.

2.4.1 Total Variation Norm

The total variation norm (TV norm) of a function u : Ω → R with Ω ⊆ Rn

is defined as
TV (u) = sup

ϕ∈Φ

{∫
Ω

u(x) divϕ(x) dx

}
, (2.22)
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with Φ :=
{
ϕ ∈ C1(Ω,R) : |ϕ(x)| ≤ 1,∀x ∈ Ω

}
(2.23)

For continuous differentiable functions u the TV norm is given by

TV (u) =

∫
Ω

|∇u| dx (2.24)

A function u with TV (u) <∞ is called a function with bounded variation.
The space of functions with bounded variations is called BV.

2.4.2 Coarea Formula

The coarea formula [134] states that for functions u with bounded variation
the TV norm equals the integration of the contour lengths of all level sets Γµ
of u:

∫
Ω

|∇u| dx =

∫
R

(∫
Γµ

ds

)
dµ =

∫
R
Per(Ωµ) dµ (2.25)

where Per(Ωµ) =
∫

Γµ
ds is the perimeter of the contour of the level set Γµ,

Ωµ := {x ∈ Ω : u(x) > µ}, and Γµ is the boundary of Ωµ. The coarea formula
is especially important for the thresholding theorem that will be described
in Sec. 3.2.1.

2.4.3 Total Variation for Binary Functions

A special case occurs when u is a binary function. This case is interesting
because shape optimization methods are often a problem of binary or piece-
wise constant labellings. In these cases the TV norm provides the following
property: The TV norm for binary functions is a measure for the length of
the contour of a region, in 3D space it is a measure for the surface area of a
shape. A binary function u is the indicator function 1u of a set Ω1u defined
as

u(x) =

{
1 if x ∈ Ω1u

0 if x /∈ Ω1u .
(2.26)

The TV norm of a binary function u is a measure for the contour length
of the corresponding region Ω1u :∫

Ω

|∇u| =
∫

Ω

|∇1u| = Per(Ω1u). (2.27)
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This allows to measure dimensions of contours or, in the case of three dimen-
sional labelling functions, surface areas.

This property makes the total variation norm an appropriate candidate
for the regularizing term, since minimizing the TV norm of u yield short
contours C = ∂u, or small surface areas in 3D, respectively.

2.4.4 Weighted Total Variation

The weighted TV norm [29] includes an edge detection function g : Ω → R
as a weight to the contour length:

TV (u) =

∫
Ω

g(x)|∇u| dx. (2.28)

The function g can have the function as an edge-detector in the case of
image segmentation or a photo-consistency measure in the case of 3D shape
reconstruction.

2.5 Convexity
A set Ω ⊆ Rd is called convex, if

∀x, y ∈ Ω : ∀t ∈ [0, 1] : tx+ (1− t)y ∈ Ω. (2.29)

A function f : Ω→ R is called convex, if

∀x, y ∈ Ω : ∀t ∈ [0, 1] : f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (2.30)

Convexity is a favorable property in energy minimization. Minimization
problems in computer vision are often based on partial differential equations,
i.e. equations that contain unknown functions and their partial derivatives.
Therefore, they are often not explicitly solvable and numerical methods are
applied to find a solution. These numerical methods usually find a local op-
timum of the respective functional. In the case of a convex functional, every
local optimum is a global optimum. Hence, convex functionals defined on
convex sets can be minimized globally optimal and independent of initializa-
tions. An overview of different numerical methods for energy minimization
is given in Sec. 3.2.2.

2.6 Conclusion
This chapter gave an overview of basic concepts and early works that lead
to the development of convex relaxation methods which will be described in
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the subsequent chapter. The Mumford-Shah functional was introduced as an
early work for variational image segmentation, and its level set formulation,
the Chan-Vese functional using an implicit contour representation avoids the
limitations of parametrized curves such as regridding. The total variation
norm was described which is the key concept that enables convex optimiza-
tion of certain energy functionals including the Mumford-Shah functional.
The next chapter will show how it can be used to formulate globally optimal
optimization methods using convex relaxation, which is the basic concept for
this thesis.
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Chapter 3

Continuous and Discrete Shape
Optimization Methods

This chapter compares continuous and discrete shape optimization methods.
In Sec. 3.1 a short introduction to shape optimization is given. Sec. 3.2 and
Sec. 3.3 discuss the background and related work of continuous global opti-
mization using convex relaxation and discrete shape optimization methods
using graph cuts, respectively. In Sec. 3.4 a quantitative comparison of 2D
and 3D reconstruction accuracies, memory requirements and computation
times for 2D and 3D is presented. This allows for a discussion on strengths
and limitations of both techniques. The result of this comparison deter-
mined the choice of optimization method for the methods presented in the
subsequent chapters.

Parts of this chapter have been published in [5].

3.1 Introduction
Shape optimization occurs in numerous computer vision problems including
image segmentation and multi-view stereo reconstruction. Following a series
of seminal papers [77, 58, 20, 107, 49], functional minimization has become
the established paradigm for these problems. This chapter is focussed on a
certain class of labeling problems which can be globally optimized both in
a spatially continuous framework using convex relaxation methods and in a
spatially discrete setting. In the discrete setting the study of the correspond-
ing binary labeling problems goes back to the spin-glas models introduced in
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Input image Intensity-based One of 33 Reconstructed
segmentation input images object

Figure 3.1: Examples of shape optimization: Image segmentation and 3D
reconstruction.

the 1920’s [73]. This chapter is focussed on a class of functionals of the form:

E(S) =

∫
int(S)

f(x) dx + ν

∫
S

g(x) dS, (3.1)

where S denotes a hypersurface in Rn, i.e. a set of closed boundaries in
the case of 2D image segmentation or a set of closed surfaces in the case
of 3D segmentation and multi-view reconstruction. Here, int(S) denotes
the region enclosed by the hypersurface S. The functions f : Rn → R and
g : Rn → R+ are application dependent. In a statistical framework for image
segmentation, for example, f(x) = log pbg(I(x)) − log pob(I(x)) may denote
the log likelihood ratio for observing the intensity I(x) at any given point x
given that x is part of the background or the object, respectively.

The second term in (3.1) corresponds to an isotropic measure of area
(for n = 3) or boundary length (n = 2), measured by the function g. In the
context of image segmentation, g may be a measure of the local edge strength
– as in the geodesic active contours [30, 79] – which energetically favors
segmentation boundaries along strong intensity gradients. In the context of
multi-view reconstruction, g(x) is typically a measure of the inconsistency
among different views of the voxel x, where low values of g indicate a strong
agreement from different cameras on the observed patch intensity – see for
example [49]. Fig. 3.1 shows shape optimizations using the examples of image
segmentation and multi-view reconstruction.

Functionals of the form (3.1) can be globally optimized by reverting to
implicit representations of the hypersurface S using an indicator function
u : Rn → {0, 1}, where u=1 and u=0 denote the interior and exterior of S.
The functional (3.1) defined on the space of surfaces S is therefore equivalent
to the functional

E(u) =

∫
Rn
f(x)u(x) dx+ ν

∫
Rn
g(x) |∇u(x)| dx, (3.2)
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(a) Input (b) Data (c) Edge (d) Segmen- (e) Contour
image I term f weight g tation u S

Figure 3.2: Image segmentation with convex relaxation. The input image I
yields the regional data term f and edge weight function g. The segmentation
u prefers regions where f is small and contours are aligned with g. The
resulting contour S is the border of the segmentation u.

defined on the space of binary labelings u, where the second term in (3.2) is
the weighted total variation norm which can be extended to non-differentiable
functions in a weak sense. Note that the data term f can also take negative
values, hence the trivial solution u = 0 is usually not a global minimizer
of (3.2). Functional (3.2) is convex in u, even for non-convex data terms
f and edge weights g, since f and g are independent of the optimization
variable u. Hence, the first term in (3.2) is linear in u, and the second term
is a weighted gradient norm, which is also convex. Due to the convexity of
(3.2), a global optimum can be found with local optimization methods, using
convex relaxation. The concept of convex relaxation will be described in Sec.
3.2.

Fig. 3.2 shows a visualization of the different parameters of functional
(3.2). Here, the regional data term f is computed from the color values of
input image I, and the edge weight function g is computed from the image
gradient. Hence, the resulting segmentation u prefers small values of f and
contours which correlate with the image edges. In Fig. 3.2 (b)–(d), dark
regions indicate small function values and bright regions correspond to high
values. The resulting contour S is the border of the segmentation u.

This experimental comparison is focussed on functionals of the type (3.1)
since they allow for the efficient computation of globally optimal solutions
of region-based functionals. There exist numerous alternative functionals for
shape optimization, including ratio functionals [130, 74]. It was shown that
some region-based ratio functionals can be optimized globally [85].

The functional (3.2) can be globally optimized in a spatially discrete set-
ting: By mapping each labeling to a cut in a graph, the problem is reduced to
computing the minimal cut. First suggested in [67], it was later rediscovered
in [25] and has since become a popular framework for image segmentation
[123] and multi-view reconstruction [144]. More recently it was shown in
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[31, 34] that the same binary labeling problem (3.2) can be globally min-
imized in a spatially continuous setting as well. An alternative spatially
continuous formulation of graph cuts was developed in [14].

This chapter presents a quantitative experimental comparison of spatially
discrete and spatially continuous optimization methods for functionals of the
form (3.2). In particular, the focus is on the quality and efficiency of shape
optimization in discrete and continuous settings.

The outline of this chapter is as follows: In Sec. 3.2 continuous global op-
timization based on the total variation norm is presented. The thresholding
theorem will be shown which states that convex relaxation methods can be
used to obtain solutions to certain binary optimization problems. Further-
more, the section will present an overview of different numerical methods to
solve the respective energy functionals. Sec. 3.3 will describe a discrete op-
timization method with graph cuts. Different metrics for approximating the
length term will be discussed. These two concepts will be compared in Sec.
3.4 with regard to computation times, memory consumption and metrication
errors using the example of image segmentation and 3D reconstruction. The
section will show that continuous optimization based on the total variation
norm can converge to minimal surfaces. Finally, Sec. 3.5 will conclude with
a summary of the main results.

3.2 Continuous Optimization via Convex
Relaxation

It was shown that the class of functionals (3.2) can also be minimized in a
spatially continuous setting by reverting to convex relaxations [31, 34]. By
relaxing the binary constraint and allowing the function u to take on values in
the interval between 0 and 1, the optimization problem becomes minimizing
the convex functional (3.2) over the convex set

u : Rn → [0, 1]. (3.3)

Global minimizers u∗ of this relaxed problem can be computed for example
by gradient descent methods, or by more efficient numerical schemes such as
multi-grid methods, coarse-to-fine strategies or linearization and fixed point
iterations which will be detailed in Sec. 3.2.2.

3.2.1 Thresholding Theorem

The following theorem [134, 34] assures that thresholding the solution u∗ of
the relaxed problem provides a minimizer of the original binary labeling prob-
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lem (3.2). In other words, the convex relaxation preserves global optimality
for the original binary labeling problem.

Theorem 1. Let u∗ : Rn → [0, 1] be a global minimizer of the functional
(3.2). Then all upper level sets (i.e. thresholded versions)

Σµ,u∗ = {x ∈ Rn |u∗(x) > µ}, µ ∈ (0, 1), (3.4)

of u∗ are minimizers of the original binary labeling problem (3.1).

Proof. Using the layer cake representation of the function u∗ : Rn → [0, 1]:

u∗(x) =

∫ 1

0

1Σµ,u∗(x) dµ (3.5)

we can rewrite the first term in the functional (3.2) as∫
Rn
fu∗ dx =

∫
Rn
f

(∫ 1

0

1Σµ,x dµ

)
dx =

∫ 1

0

∫
Σµ,u∗

f(x) dx (3.6)

As a consequence, the functional (3.2) takes on the form:

E(u∗) =

∫ 1

0

{∫
Σµ,u∗

f dx +
∣∣∂Σµ,u∗

∣∣
g

}
dµ ≡

∫ 1

0

Ê
(
Σµ,u∗

)
dµ, (3.7)

where we have used the coarea formula to express the weighted total variation
norm in (3.2) as the integral over the length of all level lines of u measured in
the norm induced by g. Clearly the functional (3.7) is now merely an integral
of the original binary labeling problem Ê applied to the upper level sets of
u∗.

Assume that for some threshold value µ̃ ∈ (0, 1) theorem 1 was not true,
i.e. there exists a minimizer Σ∗ of the binary labeling problem with smaller
energy:

Ê(Σ∗) < Ê(Σµ̃,u∗). (3.8)

Then for the indicator function 1Σ∗ of the set Σ∗ we have:

E(1Σ∗) =

∫ 1

0

Ê(Σ∗) dµ <

∫ 1

0

Ê(Σµ,u∗) dµ = E(u∗), (3.9)

which contradicts the assumption that u∗ was a global minimizer of (3.2).

33



Convex Minimization

Minimizing (3.2) is a constrained optimization problem due to the condition
0 ≤ u ≤ 1. It can be transformed to an unconstrained one by dropping
the constraint and adding a convex penalizer θ(u) to the energy. A suitable
function for θ is [34]:

θ(u) = max
{

0, 2
∣∣u− 1

2

∣∣− 1
}
. (3.10)

This leads to the unconstrained convex minimization of the energy

E(u) =

∫ n

R
f(x)u(x) dx+ ν

∫ n

R
g(x) |∇u(x)| dx+ α

∫ n

R
θ(u(x)) dx (3.11)

which has the same set of minimizers as (3.2) for a sufficiently large weighting
parameter α.

In practice, the constraint 0 ≤ u ≤ 1 is usually enforced by a respective
projection (see Sec. 3.2.2).

Finding the Global Minimizer of the Original Binary Problem

Global minimizers of the functional (3.2) in a spatially continuous setting are
therefore calculated as follows:

1. Compute a minimizer u∗ of the energy (3.2) on the convex set of func-
tions u : Rn → R. Details are given in Sec. 3.2.2.

2. Threshold the minimizer u∗ at some value µ ∈ (0, 1) to obtain a binary
solution of the original shape optimization problem. Although these
solutions generally depend on µ, all of them are guaranteed to be global
minimizers of (3.2). In the experiments in this chapter it was set to
µ = 0.5.

3.2.2 Numerical Optimization

A minimizer of (3.2) must satisfy the Euler-Lagrange equation

0 = f(x)− ν div
(
g(x)

∇u(x)

|∇u(x)|

)
∀x ∈ Rn. (3.12)

Euler-Lagrange equations are used to compute a minimum of functionals of
the following form:

E(u) =

∫
L(u,∇u) dx. (3.13)
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The function L(u,∇u) is called Lagrange function. A necessary condition
for a minimum of E is that its corresponding Euler-Lagrange equation is
fulfilled:

∂E

∂u
=
∂L
∂u
− d

dx

∂L
∂∇u

= 0. (3.14)

Solutions to this system of equations can be obtained by a variety of
numerical solvers. Several popular methods of them will be discussed in the
following.

Gradient Descent

Gradient descent methods are suitable to find minima of functionals that
cannot be solved directly. They are based on a local optimization of an
initialization along the negative gradient of the functional E(u):

∂u

∂t
= −∂E

∂u
. (3.15)

The gradient descent scheme for functional (3.13) is given by

∂u

∂t
= −∂E

∂u
= −∂L

∂u
+

d

dx

∂L
∂∇u

. (3.16)

Iteration of the following update step yields a convergence of u to a local
minimum of E:

ut+1 = ut + dt

(
−∂E
∂ut

)
(3.17)

with time step dt. ut is the value of u at iteration step t. The iterations can
be stopped once the energy does not change any more. If the functional E
is convex, the corresponding gradient descent scheme converges to a globally
optimal solution.

The gradient descent scheme corresponding to (3.12) is derived from the
Euler-Lagrange equation and yields

ut+1 = ut + dt

(
−f(x) + ν div

(
g(x)

∇u(x)

|∇u(x)|

))
. (3.18)

The right hand side of (3.12) is the functional derivative of the energy (3.2)
and gives rise to the gradient descent scheme while the gradient norm |∇u(x)|
needs to be replaced by a smoothed differentiable version

|∇u(x)|ε :=

√(
∂u

∂x

)2

+

(
∂u

∂y

)2

+ ε2 (3.19)

35



for a small value for ε > 0.
In practice gradient descent methods are known to converge very slowly

to the minimal energy.

Linearized Fixed-Point Iteration with SOR

Discretization of the Euler-Lagrange equation (3.12) leads to a sparse non-
linear system of equations. This can be solved using a fixed point iteration
scheme that transforms the non-linear system into a sequence of linear sys-
tems. These can be efficiently solved with iterative solvers, such as Jacobi,
Gauss-Seidel, Successive over-relaxation (SOR), or multi-grid methods (also
called FAS for “full approximation schemes”).

Successive over-relaxation (SOR) is a generalization of the Gauss-Seidel
method. The additional over-relaxation step yields faster convergence:

ut+1 = ω · ut+1 + (1− ω) · ut, (3.20)

with the Gauss-Seidel value ut+1 and a suitable choice for the over-relaxation
parameter ω ∈ R. The method converges for ω ∈ (0, 2). The optimal value
of ω depends on the linear system to be solved.

The only source of non-linearity in (3.12) is the diffusivity d := g
|∇u| .

Starting with an (arbitrary) initialization, one alternates computing the dif-
fusivities and solving the linear system of equations with fixed diffusivities.
A corresponding SOR method as presented in [10] is given by the following
update scheme: An update step for u at pixel i and time step k yields

ul,k+1
i = (1− ω)ul,ki + ω

ν
∑

j∈N (i),j<i

g · gli∼ju
l,k+1
j + ν

∑
j∈N (i),j>i

g · gli∼ju
l,k
j − fi

ν
∑

j∈N (i)

g · gli∼j
,

(3.21)
where gli∼j is the diffusivity between pixel i and j, andN (i) is the 4-connected
neighborhood around i. Empirically the fastest convergence rate was ob-
tained for ω = 1.85.

The additional constraint is fulfilled by projecting the current value of u
to the set [0, 1] after each iteration:

πC(u) =


1 if u > 1

u if 0 ≤ u ≤ 1

0 if u < 0

(3.22)

which corresponds to a clipping of u to the range [0, 1].
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First Order Primal-Dual Optimization

Primal-dual optimization methods have established as an effective method for
finding minimizers of functionals of the type of (3.2), because they typically
yield fast convergence rates. The corresponding primal dual formulation [31]
yields the following update steps for u:

pt+1 = πD(pt + τp∇ut) (3.23)
ut+1 = ut + τu(div(pt+1)− f) (3.24)

with time steps τp, τu ∈ R. A dual variable p : Ω → Rd is introduced which
splits the optimization into a projected gradient descent of the primal variable
u and a projected gradient ascent in the dual variable p.

The projection πD is given by:

πD(p) =
p

max
{

1, |p|
g

} . (3.25)

Convergence Criteria

The numerical schemes above consist of update steps for u converging to a
solution of the energy functional. Hence, appropriate conditions are needed
to determine when the optimization should be stopped. Using a fixed number
of iterations is the most simple way, however choosing too many or too few
iterations can unnecessarily increase the run time or yield solutions that are
not sufficiently converged. Iterations usually can be stopped as soon as the
energy decay in an iteration is lower than a given threshold. The convergence
of the primal-dual optimization scheme can be estimated by its corresponding
primal-dual gap, the difference between the primal and the dual energy.

3.2.3 Parallelization on Graphics Processing Units

PDE-based approaches are generally suitable for parallel computing on graph-
ics cards: The gradient descent and primal-dual schemes are straightforward
to parallelize. This does not hold for the standard Gauss-Seidel scheme as it
requires sequential processing of the image. However, in its Red-Black vari-
ant the Gauss Seidel scheme is parallelizable. The same holds for its various
derivates such as SOR and FAS. In this thesis, implementations were made
using the GPU computing language Cuda.
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Segm. u1 u2 u3 u4 u5

Figure 3.3: Image segmentation with five regions. Each region is assigned
a labeling function u1, . . . , u5, whose values converge to binary, although
optimized in [0, 1]. Results are shown before thresholding.

3.2.4 Multi-Label Segmentation

The more general formulation of the binary functional is the multi-label
segmentation given by [119]:

min
u∈BV

{
n∑
i=1

(∫
Ω

fi(I(x))ui dx+ ν

∫
Ω

|∇ui| dx
)}

, s.t.
n∑
i=1

ui = 1. (3.26)

The additional constraint enforces u(x) to lie on a simplex and implements
the constraint that each pixels gets assigned exactly one label.

Primal-Dual Optimization

The following update scheme converges to an approximation of the minimum
of (3.26) [119]:

pt+1 = πD(pt + τp∇vt) (3.27)
ut+1 = πB(ut + τu(div(pt+1)− f)) (3.28)
vt+1 = 2ut+1 − ut (3.29)

The projection πD is equivalent to (3.25):

πD(p) =
p

max {1, |∇p|)}
. (3.30)

The projection onto the simplex πB can be computed by the projection algo-
rithm described in [106]. It ensures that the constraint that the labels should
be disjunct is fulfilled, i.e.

∑n
i=1 ui = 1. In this thesis the step sizes were set

to τ = σ = 0.3.
Fig. 3.3 shows an example image segmentation into five regions, as well

as the five layers of u after convergence. As can be seen in the figure, the
values of u converge to binary. The input image from Fig. 3.3 is from the
IcgBenchmark [125]. A review of discrete and continuous methods for multi-
label image segmentation methods can be found in [112].
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3.3 Discrete Optimization with Graph Cuts
To solve the binary labeling problem (3.2) in a discrete setting, the input
data is converted into a directed graph in form of a regular lattice: Each
pixel (or voxel) in the input data corresponds to a node in the lattice. To
approximate the metric g measuring the boundary size of the hypersurface
S, neighboring nodes are connected. The degree of connectivity depends on
the application. Details will be given in Sec. 3.3.2.

Additionally a source node s and a sink node t are introduced. They
allow to include the unary terms f(x)u(x) for the pixels x: If f(x) ≥ 0, an
edge to the source is introduced, weighted with f(x). Otherwise an edge to
the sink weighted with −f(x) is created.

The optimal binary labeling u corresponds to the minimal s/t - cut in the
graph. An s/t - cut is a partitioning of the nodes in the graph into two sets
S and T , where S contains the source s and T the sink t. Nodes x ∈ S are
assigned the label u(x) = 0, nodes x ∈ T the label u(x) = 1. The weight of
such a cut is the sum of the weights of all edges starting in S and ending in
T .

It was shown that an energy function E can be solved with graph cuts if
it fulfills the submodularity condition [86] :

E(s, s) + E(t, t) ≤ E(s, t) + E(t, s). (3.31)

3.3.1 Computing Minimal Cuts in Graphs

Efficient solvers of the minimal s/t - cut problem are based on computing
the maximal flow in the graph [51]. Such methods are divided into three
major categories: those based on augmenting paths [51, 47, 24], blocking
flows [46, 60] and the push-relabel method [59]. Some of these methods do
not guarantee a polynomial running time [24] or require integral edge weights
[60]. To solve 2-dimensional problems of form (3.2) usually the algorithm of
Boykov and Kolmogorov performs best [24]. For highly connected three-
dimensional grids the performance of this algorithm breaks down [24] and
push-relabel methods become competitive. Recently efforts were made to
parallelize push-relabel-based approaches [43].

3.3.2 Approximating Metrics using Graph Cuts

The question of how to approximate continuous metrics of the boundary size
in a discrete setting has received significant attention by researchers. Boykov
and Kolmogorov [23] show how to approximate any Riemannian metric, in-
cluding anisotropic ones. In [84] they discuss how to integrate flux. A similar
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gradient
mask

u(x) u(y) u(z) |∇u|
0 0 0 0
0 0 1 1
0 1 0 1

0 1 1
√

2

u(x) u(y) u(z) |∇u|
1 0 0

√
2

1 0 1 1
1 1 0 1
1 1 1 0

Figure 3.4: The L2-norm of the 2D gradient as a ternary term. One easily
verifies that this term is submodular.

construction can be derived from the divergence theorem. In the following
the discussion is limited to the isotropic case.

The section starts with a review of the method in [23] which replaces the
L2-norm of the gradient in (3.2) by its L1-norm. For the Euclidean metric
(g(x) = 1 ∀x ∈ Rn) then a novel discretization scheme is presented which
allows to use the L2-norm of the gradient based on higher order terms [5].

Approximation using Pairwise Terms

Based on the Cauchy-Crofton formula of integral geometry, Boykov and Kol-
mogorov [23] showed that the metric given by g can be approximated by
connecting pixels to all pixels in a given neighborhood. The respective neigh-
borhood systems can be expressed as

NR(x) =

{
x+

(
a
b

) ∣∣∣∣∣a, b ∈ Z,
√
a2 + b2 ≤ R, gcd(|a|, |b|) = 1

}
.

The constraint on the greatest common divisor avoids duplicate directions.
The edge corresponding to (a b)> is given a weight of g(x)/

√
a2 + b2. For

R = 1 the obtained 4-connected lattice reflects the L1-norm of the gradient.
With increasing R and decreasing grid spacing the measure converges to the
continuous measure. This is not true when fixing the connectivity (i.e. when
keeping R constant).

Length Approximation using Higher Order Terms

This section presents a method to approximate length regularity in a graph
cut based framework: Instead of using pairwise terms higher order terms are
introduced. These allow to represent a more accurate discretization of the
L2-norm in the length term.

The energy (3.2) involves the L2-norm of the generalized gradient of the
{0, 1}-function u. With the pairwise terms discussed above a large connec-
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tivity is needed to approximate this norm. In the following, it will be shown
that a more accurate approximation of the L2-norm can be integrated in a
graph cut framework, without increasing the connectivity. A central contri-
bution of this chapter is to show how a more accurate approximation of the
L2-norm can be integrated in a graph cut framework. The key observation
is that in a two-dimensional space a consistent calculation of the gradient is
obtained by taking the differences to the upper and left neighbor in the grid
– see Fig. 3.4.

Fig. 3.4 also shows the arising term. One easily verifies that this term
satisfies the submodularity condition [86]. For a third order term as this one,
this condition implies that the term can be minimized using graph cuts.

The corresponding term in 3D space where each pixel is connected to
three neighbors was also considered. The arising fourth order term – with
values in {0, 1,

√
2,
√

3} – is submodular. However it is not clear whether it
can be minimized via graph cuts: It does not satisfy the sufficient conditions
pointed out by Freedman [53]. From a practical point of view, in 2D the
novel terms do not perfom well: The length discretization only compares a
pixel to those pixels in the direction of the upper left quadrant. Performance
is boosted when adding the respective terms for the other three quadrants
as well.

3.4 Comparison of Continuous and Discrete
Shape Optimization

This section provides a quantitative comparison of spatially discrete and spa-
tially continuous shape optimization schemes as presented in the previous two
sections. While both approaches aim at minimizing the same functional, the
following three important differences were identified in [5]:

Termination Criterion The spatially discrete approach has an exact ter-
mination criterion and a guaranteed polynomial running time (for a
number of maximum-flow algorithms). On the other hand, the spa-
tially continuous approach is based on the iterative minimization of a
non-linear convex functional. While the required number of iterations
is typically size-independent (leading to a computation time which is
linear in the number of pixels/voxels), one cannot speak of a guaran-
teed polynomial time complexity. A termination criterion is needed to
determine when the solution is converged.

Optimization Domain The spatially discrete approach is based on dis-
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cretizing the cost functional on a lattice and minimizing the resulting
submodular problem by means of graph cuts. The spatially continu-
ous approach, on the other hand is based on minimizing the relaxed
problem in a continuous setting where the resulting Euler-Lagrange
equations are solved on a discrete lattice. This difference gives rise
to metrication errors of the spatially discrete approach which will be
discussed in Sec. 3.4.3.

Optimization Method The optimization of the spatially discrete approach
is based on solving a maximum flow problem, whereas the spatially con-
tinuous approach is performed by solving a partial differential equation.
This fundamental difference in the underlying computational machin-
ery leads to differences in computation time, memory consumption and
parallelization properties.

3.4.1 Computation Times

Numerous methods exist to solve either the discrete or the continuous opti-
mization tasks. A comparison of all these methods is outside the scope of this
chapter. Instead a few solvers are chosen that were considered competetive.
For all graph cut methods the algorithm of [24] is used, which is arguably
the most frequently used in Computer Vision. All discretizations mentioned
above were tested.

For the TV segmentation sequential methods were implemented on the
CPU and parallel solvers on a Geforce GTX 8800 graphics card using the
CUDA framework. Both implementations are based on the SOR method.
On the CPU the usual sequential order of pixels was used, and on the GPU
the corresponding parallelizable Red-Black scheme where the image is divided
according to a checkerboard pattern. A termination criterion is necessary as
the number of required iterations depends on the length weight ν. We com-
pare the segmentations every 50 iterations and stop as soon as the maximal
absolute difference between two values of u drops below a value of 0.000125.

Computation Times for 2D Shape Optimization

Table 3.1 shows run-times for the mentioned methods. The task is image seg-
mentation using the two-label piecewise constant Mumford-Shah with fixed
mean values 0 and 1 on an intensity image with range [0, 1]. The main
conclusions are summarized as follows:

• The TV segmentation profits significantly from parallel architectures.
According to the results this is roughly a factor of 5. It should be noted
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Cameraman Image Berkeley Arc Image
ν = 1 ν = 3 ν = 5 ν = 1 ν = 3 ν = 5

GC-4 0.02 s 0.1 s 0.33 s 0.06 s 0.16 s 0.53 s
GC-8 0.05 s 0.15 s 0.4 s 0.1 s 0.27 s 0.93 s
GC-16 0.2 s 0.35 s 0.95 s 0.33 s 0.85 s 2.7 s
TV-GD-CPU 111.38 s 251.97 s 259.87 s 409.08 s 636.28 s 157.64 s
TV-SOR-CPU 10.9 s 13.26 s 10.2 s 35.89 s 103.5 s 39.26 s
TV-SOR-GPU 2 s 2.7 s 2 s 7.6 s 28.3 s 8.6 s
Acc. factor 5.45 4.91 5.1 4.72 3.66 4.57

Table 3.1: 2D image segmentation: Run-times for the different optimization
methods on two different images. The following methods were compared:
Graph Cuts 4-connected (GC-4), Graph Cuts 8-connected (GC-8), Graph
Cuts 16-connected (GC-16), TV with gradient descent on CPU (TV-GD-
CPU), TV with SOR on CPU (TV-SOR-CPU) and TV with red-black SOR
on GPU (TV-SOR-GPU). The last row shows the acceleration factor of Red-
black TV-SOR on a GPU compared to TV-SOR on a CPU.

Graph cuts 6-connected 13 s
Graph cuts 26-connected 12 min 35 s
TV with SOR (CPU) 9 min 36 s
TV with red-black SOR (GPU) 30 s

Table 3.2: Run-times for the 3D catenoid example shown in Fig. 3.8.

that the GPU-implementation usually requires more iterations because
the Red-Black order is used.

• The graph cut based methods clearly outperform the TV segmentation,
even on the GPU.

• While for the graph cut methods the 16-connected pairwise terms give
generally the best results (they are largely free from grid bias), they
also use up the most run-time.

Computation Times for 3D Shape Optimization

For 3D shape optimization the connectivity of the graph in discrete formu-
lations plays a more important role. While the 4-connected pixel grid in
2D corresponds to a 6-connected voxel grid, the inclusion of diagonal edges
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Two of 33 Graph Cuts Convex TV Convex TV
input images (108×144×162) (108×144×162) (216×288×324)

Figure 3.5: Comparison of discrete and continuous optimization for multiview
3D reconstruction (presented in [10]): Due to the dominant data fidelity term,
the discrete and continuous reconstructions are similar for the same volume
resolution. However, for increasing resolution more accurate results can be
achieved with the continuous formulation, while graph cuts rapidly come
across memory limitations.

corresponds to an 8-connected grid in 2D and already a 26-connected grid in
3D and has thus a much higher impact on the computation times.

Table 3.2 shows run-times of the different optimization methods for the
3D catenoid example shown in Fig. 3.8. Three main conclusions were de-
tected:

• The 6-connected graph cuts method is the fastest, however it computes
the wrong solution (see Fig. 3.8).

• The run-time of the graph cut method changes for the worse with
higher connectivity, and gets slower than the TV optimization, both
on CPU and GPU. Note that this limitation is due to the fact that
the Boykov-Kolmogorov algorithm [24] is optimized for sparse graph
structures. For denser (3D) graphs alternative push-relabel algorithms
might be faster.

• The parallel implementation of the TV method allows for a speed up
factor of about 20 compared to the CPU version.

3.4.2 Memory Consumption

With respect to the memory consumption the TV segmentation is the clear
winner: It requires only one floating point value for each pixel in the image.
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In contrast, graph cut methods require an explicit storage of edges as well
as one flow value for each edge. The number of edges is here dependent
on the connectivity. This difference becomes especially important for high
resolutions in 3D, as can be seen in the experiment in Fig. 3.5. Increasing
the volume resolution to 216×288×324 yields more accurate results for the
continuous TV formulation, while a graph cut solution for this resolution
was not feasible to compute because of memory limitations, even on the
6-connected grid.

3.4.3 Metrication Errors and Consistency

Although both approches minimize the same function, the discrete approach
tends to prefer the directions of the underlying grids while the continuous
TV segmentation shows no such preference. The continuous formulation
allows for a consistent discretization. This means that the solutions converge
to the continuous solution for increasing grid resolutions. The continuous
formulation of the relaxed problem allows for arbitrarily accurate results in
the range of subpixels. Therefore the continuous approach does not suffer
from discretization artefacts like the discrete graph cuts approach, which is
based on a discretization of the energy.

Accuracy Comparison in 2D for Image Segmentation

Fig. 3.6 shows a comparison of graph cut approaches with the continuous
total variation (TV) segmentation. It shows several ways to deal with the
discretization of the metric for graph cuts are shown. None of the graph cut
approaches produces such a smooth curve as the TV segmentation, although
the 16-connected grid gets quite close to it. This inspired us to investigate
the source for the metrication errors arising in graph cut methods.

On the 4-connected grid in R2, for example, graph cuts usually approxi-
mate the Euclidean boundary length of the interface S as

|S| =
∫
S

dS ≈ 1

2

∑
i

∑
j∈N (i)

|ui − uj|, (3.32)

where N (i) denotes the four neighbors of pixel i. This implies that the
boundary length is measured in an L1-norm rather than the L2-norm corre-
sponding to the Euclidean length. The L1 norm clearly depends on the choice
of the underlying grid and is not rotationally invariant. Points of constant
distance in this norm form a diamond rather than a circle (see Fig. 3.7).
This leads to a preference of boundaries along the axes (see Fig. 3.6(a)).
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(a) 4-conn. (b) 8-conn. (c) 16-conn. (d) 4-conn. (e) 4-conn. (f) TV seg-
graph cuts graph cuts graph cuts graph cuts (3rd order) mentation

(3rd order) (symmetric) (cont. L2)

(g) 4-conn. (h) 8-conn. (i) 16-conn.
grid grid grid

Figure 3.6: Comparison of different norms and neighborhood connectivities
for discrete (a-e) and continuous (f) optimization for image segmentation. For
the discrete solution a 16-connected graph (c) is necessary to obtain similiar
results to the continuous solution (f). Increasing the connectivity of the grid
(g)–(i) reduces metrication errors but can lead to memory limitations.
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L1 L2

Figure 3.7: 2D visualization of the L1-norm and the L2-norm for points of
constant distance: Unlike the L1-norm, the L2-norm is rotationally invariant.

This dependency on the underlying grid can be reduced by increasing the
neighborhood connectivity. By reverting to larger and larger neighborhoods
one can gradually eliminate the metrication error [23]. Increasing the con-
nectivity leads in fact to better and better approximations of the Euclidean
L2-norm (see Fig. 3.6(b) and 3.6(c)).

Yet, a computationally efficient solution to the labeling problem requires
to fix a choice of connectivity. And for any such choice, one can show that
the metrication error persists, that the numerical scheme is not consistent
in the sense that a certain residual reconstruction error (with respect to the
ground truth) remains and cannot be eliminated by increasing the resolution.

Since the spatially continuous formulation is based on a representation of
the boundary length by the L2-norm:

|S| =
∫
S

dS =

∫
Ω

|∇u| dx =

∫
Ω

√
u2
x + u2

y dx, (3.33)

the resulting continuous numerical scheme does not exhibit such metrication
errors (see Fig. 3.6(f)). The TV segmentation performs optimization in the
convex set of functions with range in [0, 1]. It hence allows intermediate
values where the graph cut only allows binary values.

The third order graph cuts discretization of the L2-norm (see Fig. 3.6(d)
and 3.6(e)) computes the same discretization of the L2-norm, however allow-
ing only for binary values. Hence, in this discretized version, the Euclidean
length is computed for angles of 45◦ and 90◦ to the grid, by using only a
4-connected grid. Therefore the third order L2-norm leads to similar results
on a 4-connected grid as second order terms on an 8-connected grid.

Accuracy Comparison in 3D for a Catenoid

Fig. 3.8 shows a synthetic experiment of solving a minimal surface problem
with given boundary constraints using the example of a bounded catenoid. As
the true solution of this problem can be computed analytically, it is suitable
for a comparison of different solvers. The experiment compares graph cuts
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Figure 3.8: Comparison of discrete and continuous optimization methods
for the reconstruction of a catenoid: While the discrete graph cut algorithm
exhibits prominent metrication errors (polyhedral structures), the continu-
ous method does not show these. The plot shows the accuracy of the 26-
connected graph cuts and the continuous TV method in dependence of the
volume resolution. The consistency of the continuous solution is validated
experimentically in the sense that the reconstruction error goes to zero with
increasing resolution.

and continuous TV minimization. It demonstrates that the 6-neighborhood
graph cuts method completely fails to reconstruct the correct surface topol-
ogy – in contrast to the full 26-neighborhood which approximates the Eu-
clidean metric in a better way. However, discretization artifacts are still
visible in terms of polyhedral blocky structures. Fig. 3.8 also shows the de-
viation of the computed catenoid solutions from the analytic ground-truth for
increasing volume resolution. It shows that for a fixed connectivity structure
the computed graph cut solution is not consistent with respect to the volume
resolution. In contrast, for the solution of the continuous TV minimization
the discretization error decays to zero.

The experiment demonstrates that graph cut solutions can indeed be
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improved by reverting to larger neighborhood connectivity (26 instead of 6
neighbors). Yet, for any connectivity there is a metrication error, which
persists with increasing resolution. The continuous TV optimization, on the
other hand, is consistent as the discretization error decays to zero.

Fig. 3.5 shows an experiment for real image data. In this multiview
reconstruction problem the data fidelity term is dominant, therefore the dis-
crete and the continuous solutions are similar for the same volume resolution
(108×144×162).

3.5 Conclusion
A certain class of shape optimization functionals can be globally minimized
both in a spatially discrete and in a spatially continuous setting. This chapter
reviewed these recent developments and presented an experimental compar-
ison of the two approaches regarding the accuracy of reconstructed shapes
and computational speed and memory requirements.

This chapter described how convex relaxation methods allow for global
optimization of the two-label piecewise constant Mumford-Shah functional,
in addition to its discrete formulation with graph cuts.

A detailed quantitative analysis of the presented continuous and discrete
shape optimization methods confirmed the following differences:

• Spatially discrete approaches generally suffer from metrication errors in
the approximation of geometric quantities such as boundary length or
surface area. These arise due to the binary optimization on a discrete
lattice. These errors can be alleviated by reverting to larger connec-
tivity. Alternatively, it was shown that higher-order terms allow to
implement an L2-norm of the gradient, thereby providing better spa-
tial consistency without extending the neighborhood connectivity. As
the spatially continuous formulation is not based on a discretization of
the cost functional but rather a discretization of the numerical opti-
mization (using real-valued variables), it does not exhibit metrication
errors in the sense that the reconstruction errors decay to zero as the
resolution is increased.

• The spatially continuous formulation allows for a straight-forward par-
allelization of the partial differential equation. As a consequence, one
may obtain lower computation times compared to respective graph cut
methods, in particular for the denser graph structures prevalent in 3D
shape optimization.
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• While the discrete graph cut optimization can be performed in guaran-
teed polynomial time, this is not the case for the analogous continuous
shape optimization. While respective termination criteria for the con-
vex optimization work well in practice, defining termination criteria
that apply to any shape optimization problem remains an open prob-
lem.

For the methods in the subsequent chapters, continuous formulations were
chosen because of their better performance concerning memory requirement,
the ability of parallelization, and the avoidance of metrication errors.
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Chapter 4

Image Segmentation with
Moment Constraints

Prior knowledge about objects can be helpful especially in difficult segmen-
tation tasks. This chapter shows how convex shape constraints based on
the lower order moments of a shape can be integrated into convex relaxation
methods. Shape priors in terms of moment constraints can be imposed within
the convex optimization framework, since they give rise to convex constraints
and therefore allow for global optimization. The chapter will focus on the
lower order moments of shapes, which correspond to the area or volume,
the centroid, and the variance or covariance. Constraints on these lower or-
der moments can be intuitively imposed in an interactive user interface or
deduced from arbitrary shapes. Respective constraints can be imposed as
hard constraints or soft constraints. Quantitative experiments on a variety
of images demonstrate that the user can impose such constraints with a few
mouse clicks, leading to substantial improvements of the resulting segmen-
tation, and reducing the average segmentation error from 12% to 0.35%.
GPU-based computation times of around 1 second allow for interactive ap-
plications. Furthermore, an extension of the method to object tracking in
image sequences based on moment constraints will be shown.

Parts of this chapter have been published in [3] and [6].

4.1 Introduction
Imposing shape constraints for image segmentation is an established method
to incorporate prior knowlege about the objects to segment into the opti-
mization.
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(a) User input (b) Color only (c) with Moment
Segmentation Constraints

Figure 4.1: Interactive image segmentation with constraints on the lower or-
der moments of a shape. Constraints on the area, centroid and covariance
are easily transmitted through mouse interaction (left). They allow to stabi-
lize the segmentation process while preserving fine-scale details of the shape
(right).

This chapter is focussed on functionals of the form:

E(S) =

∫
int(S)

f(x) dx +

∫
S

g(x) dA, (4.1)

where S denotes a hyper surface in Rd, i.e. a set of closed boundaries in the
case of 2D image segmentation or a set of closed surfaces in the case of 3D
segmentation and multi view reconstruction. The functions f : Rd → R and
g : Rd → R+ are application dependent. In a statistical framework for image
segmentation, for example,

f(x) = log pbg(I(x))− log pob(I(x)), (4.2)

may denote the log likelihood ratio for observing the color I(x) at a point x
given that x is part of the background or the object, respectively.

The second term in (4.1) corresponds to the area (for d = 3) or the
boundary length (for d = 2), measured in a metric given by the function g.
In the context of image segmentation, g may be a measure of the local edge
strength – as in the geodesic active contours [30, 79] – which energetically fa-
vors segmentation boundaries along strong intensity gradients. In the context
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of multi view reconstruction, g(x) typically measures the photo-consistency
among different views of the voxel x, where low values of g indicate a strong
agreement from different cameras on the observed patch intensity.

This chapter shows that one can impose moment constraints of arbitrary
order in the framework of convex shape optimization, thereby generalizing
from the zeroth order moment (area/volume) to higher order moments (cen-
troid, scale, covariance, etc). In particular, all moment constraints – both
soft and hard – correspond to convex constraints. As a consequence we can
compute moment-constrained shapes which are independent of initialization
and lie within a bound of the optimum.

The outline of this chapter is as follows. Sec. 4.2 briefly reviews re-
lated work on shape priors for segmentation. Sec. 4.3 shows that moment
constraints can be imposed as convex constraints within convex relaxation
optimization. Sec. 4.4 shows how the arising optimization problem can be
minimized using efficient GPU-accelerated PDE solving. Furthermore it is
shown that computing projections onto the moment constraint sets can be
efficiently computed by solving systems of linear equations. Sec. 4.5 presents
a variant of the proposed method using ratio constraints. Sec. 4.6 presents
experimental results and a quantitative evaluation showing that interactive
segmentation results can be drastically improved using moment constraints.
Sec. 4.7 shows how the presented method for image segmentation with mo-
ment constraints can be extended to a method for object tracking in videos.

4.2 Related Work
There has been much research on imposing prior shape knowledge into image
segmentation. It was shown that segmentation results can be substantially
improved by imposing shape priors [68, 39, 52].

Recent approaches are able to compute globally optimal solutions for seg-
mentation problems with shape priors. In [128] a combinatorial solution for
imposing shape priors to image segmentation based on the product graph
was presented. An interesting property of the method is the rotational in-
variance in addition to the translational invariance which is achieved by a
sampling of the rotation space. However, the method is based on learning of
reference shape making it less general.

Approaches for shape constraints without a previous learning of reference
shapes include convex formulations for connectivity constraints [135] and
graph cut segmentation of compact objects [41] and star-shaped objects [143].
A graph based approach for shape constraints on sizes in segmentation was
presented in [96]. In [63] a shape prior for convexity in shapes for image
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segmentation was presented, however no guarantee can be made that the
results are global optmimal solutions.

Many shape priors have a rather fine granularity in the sense that they
impose the object silhouette to be consistent with those silhouettes observed
in a training set [39, 48]. The degree of abstraction is typically rather small.
In particular, deviations of the observed shape from the training shapes are
(elastically) suppressed by the shape prior. This is particularly undesirable
in medical image segmentation where malformations of organs (that make
it deviate from the training shapes of healthy organs) should be detected
rather than ignored. Other examples include natural objects where differ-
ent specimen inherently do not have exactly the same shape, like leaves or
animals. It may therefore be of interest to merely impose some coarse-level
shape information rather that imposing the exact form of the object.

An alternative approach that may provide a remedy for the above prob-
lems is to impose moment constraints. In particular, the lower-order mo-
ments allow to constrain the area/volume, the centroid and the size or co-
variance of objects without imposing any constraints on their local shape.
A related idea of using Legendre moments (albeit in a local optimization
scheme) was developed in [52].

In a convex formulation of multiple view 3D reconstruction, it was shown
that one can impose additional convex constraints which assure that the
computed minimal surfaces are silhouette-consistent [82]. Essentially this
constraint can be seen as a volume constraint: The volume along any ray from
the camera center must be at least 1 if that ray passes through the silhouette
and zero otherwise. In the two-dimensional case, a related constraint was
proposed as a bounding box prior for image segmentation [95].

4.3 Moment Constraints for Image
Segmentation

Functionals of the form (4.1) can be globally optimized in a spatially con-
tinuous setting by means of convex relaxation and thresholding [34]. To this
end, one reverts to an implicit representation of the hyper surface S using
an indicator function u ∈ BV (Rd; {0, 1}) on the space of binary functions of
bounded variation, where u = 1 and u = 0 denote the interior and exterior
of S. The functional (4.1) defined on the space of surfaces S is therefore
equivalent to the functional

E(u) =

∫
Ω

f(x)u(x) dx +

∫
Ω

g(x)|Du(x)|, (4.3)
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Figure 4.2: 2D central moments of a shape. With increasing order of the
moment more details of the shape can be described.

where the second term in (4.3) is the weighted total variation. Here Du de-
notes the distributional derivative which for differentiable functions u boils
down to Du(x) = ∇u(x)dx. By relaxing the binary constraint and allowing
the function u to take on values in the interval between 0 and 1, the optimiza-
tion problem becomes that of minimizing the convex functional (4.3) over the
convex set BV (Rd; [0, 1]). Global minimizers u∗ of this relaxed problem can
therefore be computed, for example by a gradient descent procedure.

The thresholding theorem [34] assures that thresholding the solution u∗
of the relaxed problem preserves global optimality for the original binary
labelling problem.

In the following it will be shown that the moments of a segmentation can
be successively constrained. These constraints give rise to nested convex sets.
To this end shapes in d dimensions will be represented as binary indicator
functions u ∈ BV (Ω; {0, 1}) of bounded variation on the domain Ω ⊂ Rd.
We will denote the convex hull of this set by B = BV (Ω; [0, 1]).

Fig. 4.2 shows examples for the first five 2D central moments of a shape.
The first order moment describes the centroid of a shape, the second describes
the covariance, i.e. the relation between width and height of an object. The
lower order moments are intuitively the area, centroid and covariance dimen-
sions of a shape. While egg-shapes of shapes can be described with the third
order moment, for the fourth order moments the effect on the shape already
becomes less intuitive. The figure shows that the higher the order of a mo-
ment, the more sophisticated properties can be imposed on the corresponding
shape.

The following sections will show how these moments can be used to con-
strain properties of shapes for segmentation in a convex framework, and how
especially the lower order moments can constrain shape optimization in an
intuitive way.
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4.3.1 Area Constraint

The area constraint arises from the 0th order moment is a measure for the
mass of a shape. The area of the shape u can be constrained to be bounded
by a constant c ∈ R+ by constraining u to lie in the set:

C0 =

{
u ∈ B

∣∣∣ ∫
Ω

u dx = c

}
. (4.4)

In the case of a 3 dimensional domain Ω the constant c constrains the volume
of a shape.

Proposition 1. For any constant c ≥ 0, the set C0 is convex.

Proof. Let u1, u2 ∈ C0 be two elements from this set. Then for any α ∈ [0, 1]
the following holds:∫

Ω

αu1 + (1− α)u2 dx = α

∫
Ω

u1 dx+ (1− α)

∫
Ω

u2 dx. (4.5)

As a consequence the convex combination uα := αu1 +(1−α)u2 has the area∫
Ω
uα dx = c such that uα ∈ C0.

In practice, we can either impose an exact area or we can impose upper
and lower bounds on the area with two constants c1 ≤ c2 and constrain the
area to lie in the range [c1, c2].

Alternatively, one can impose a soft area constraint by enhancing the
functional (4.3) as follows:

E0(u, λ0) = E(u) + λ0

(∫
Ω

u dx− c
)2

, (4.6)

which imposes a soft constraint with a weight λ0 > 0 favoring the area of the
estimated shape to be near c ≥ 0. The functional (4.6) is also convex.

4.3.2 Centroid Constraint

The first order moment gives rise to the centroid constraint. In statistical
measurement the first order moment corresponds to the mean of a probability
density. Given the bounds about the centroid (center of gravity) for the
object to be reconstructed, the centroid of the shape can be constrained by
constraining the solution u to the set C1:

C1 =

{
u ∈ B

∣∣∣ ∫Ω
xu dx∫

Ω
u dx

= µ

}
, (4.7)
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where equality is to be taken point wise and µ ∈ Rd. Alternatively, we can
impose the centroid to lie between two constants µ1, µ2 ∈ Rd. For µ1 = µ2,
the centroid is fixed. C1 contains all shapes whose first order moment is µ. In
probability theory the first order moment is also called the expected value.

Note that the centroid does not necessarily need to be located inside the
object, since no connectivity or topological constraints are imposed on the
segmentation. This can be seen in the ring shape and the two region shape
depicted in Fig. 4.3 (b) and (c). Of the three shown examples, only the
centroid of the convex shape (Fig. 4.3 (a)) is inside the object.

(a) Convex (b) Non-convex (c) Two parts

Figure 4.3: The centroid of a shape is not necessarily part of the object itself
(b) and (c). Here, this only holds for the convex shape (a).

Proposition 2. For any constant µ ≥ 0, the set C1 is convex.

Proof. The equality constraint in (4.7) is equivalent to∫
Ω

xu dx = µ

∫
Ω

u dx, (4.8)

which is clearly a linear constraint.

Reformulating the constraint equation in (4.7) yields the linear equation∫
Ω

(µ− x)u dx = 0. (4.9)

This allows to impose the centroid as a soft constraint by minimizing the
energy:

E1(u, λ1) = E(u) + λ1

(∫
Ω

(µ− x)u dx

)2

. (4.10)

Proposition 3. Energy (4.10) is also convex in u.
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Proof. The first term in (4.10), E(u) is convex, therefore the following will
prove the convexity of the second term in (4.10), denoted as Ẽ1. The con-
vexity of Ẽ1 can be shown using the definition of convex functions. For
any u1, u2 ∈ C1 that fulfill the centroid constraint the following holds for all
α ∈ [0, 1]:

Ẽ1(αu1 + (1− α)u2, λ1)

= λ1

(∫
Ω

(µ− x)(αu1 + (1− α)u2) dx

)2

= λ1

(
α

∫
Ω

(µ− x)u1 dx+ (1− α)

∫
Ω

(µ− x)u2 dx

)2

≤ αλ1

(∫
Ω

(µ− x)u1 dx

)2

+ (1− α)λ1

(∫
Ω

(µ− x)u2 dx

)2

= αẼ1(u1, λ1) + (1− α)Ẽ1(u2, λ1)

4.3.3 Covariance Constraint

In the following, the concept will be generalized to moments of successively
higher order, while the focus is the central moments, i.e. moments with
respect to a specified centroid. In particular, the respective constraint struc-
tures are tensors of a dimension corresponding to the order of the moment.

The covariance structure is given by the second order moment. It can be
imposed by constraining u to lie in the following convex set:

C2 =

{
u ∈ B

∣∣∣ ∫Ω
(x− µ)(x− µ)>u dx∫

Ω
u dx

= A

}
, (4.11)

where the equality constraint should be taken element wise. Here µ ∈ Rd

denotes the center and A ∈ Rd×d denotes a symmetric matrix whose elements
are the constraint parameters. Alternatively, we can impose the covariance
to lie in a range between two symmetric matrices A1, A2 ∈ Rd×d such that
A1 ≤ A2 element-wise. Constraining the covariance, i.e. the second order
moment, we are able to constrain the relation between width and height
of an object. This constraint is particularly meaningful if one additionally
constrains the centroid to be µ, i.e. considers the intersection of the set C2

(4.11) with a set of the form C1 (4.7).

Proposition 4. For any constant A ≥ 0, the set C2 is convex.
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Proof. The proof is analogous to that of proposition 2.

We can derive the corresponding soft constraint on the covariance matrix
by adding a respective term to the original energy:

E2(u, λ2) = E(u) + λ2

(∫
Ω

(
A− (x− µ)(x− µ)>

)
u dx

)2

. (4.12)

This functional is also convex, which can be proved analogously to the proof
of Proposition 3.

Note that this allows, in particular, to constrain the scale σ of the object,
because:

σ2 =

∫
Ω
|x− µ|2u dx∫

Ω
u dx

= tr
∫

Ω
(x− µ)(x− µ)>u dx∫

Ω
u dx

. (4.13)

From the constraint in (4.11) it follows that:

tr(A1) ≤ σ2 ≤ tr(A2), (4.14)

where tr denotes the trace of a matrix.

4.3.4 Higher Order Moment Constraints

In more general terms, the respective constraint set for moments of any order
k ∈ N is given by:

Ck =

{
u ∈ B

∣∣∣ ∫Ω
(x1 − µ1)i1 · · · (xd − µd)idu dx∫

Ω
u dx

= ai1..id

}
, (4.15)

where i1 + · · · + id = k and ai1..id can be chosen appropriately to constrain
the moment tensor of order k. Here xi and µi denotes the i-th component of
x and µ respectively.

Proposition 5. For all i1, . . . , id ∈ N and for any constants ai1..id ≤ bi1..id,
the set Ci1...id is convex.

Proof. The proof is analogous to that of proposition 2.

A Hierarchy of Shape Details

The above properties allow to impose various constraints on the shape asso-
ciated with the indicator function u. Imposing more and more constraints of
increasingly higher order leads to a decreasing intersection of the associated
convex sets as a feasible domain of the shape and a corresponding hierarchy
of shape details in segmentations. How much shape detail can one impose in
this manner?
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(a) (b) (c) (d) (e) (f) (g) (h)
Input no 0th up to up to up to up to up to
Shape constr. order 1st 2nd 3rd 6th 12th

Figure 4.4: Segmentation results with higher order moment constraints: By
imposing constraints of increasing order (up to 12th order) more and more
fine scale details of the shape are restored. For higher order moments the
shape constraints can be derived either from reference shapes (first row) or
user scribbles (second row).

Proposition 6. Similarity to any given shape can be imposed at arbitrary
detail by imposing convex moment constraints of increasingly higher order.

Proof. According to the uniqueness theorem of moments [114], the function
u is uniquely defined by its moment sequence.

Fig. 4.4 shows an example of segmentations with high order moment con-
straints: While the higher-order moments allow to recover fine-scale shape
details, the shape improvements due to higher order constraints are fairly
small. Furthermore imposing moments of higher order is not very practical:
Firstly, the user cannot estimate these moments visually. Secondly, the user
cannot transmit respective higher-order tensors through a simple mouse in-
teraction. Instead, having the image data determine the shape’s fine scale
structure turns out to be far more useful. Fig. 4.4 (a) shows the manu-
ally segmented input shape which is used to compute color histograms for
foreground and background, as well as the moments that constrain the sub-
sequent image segmentation. For this image the segmentation based on color
histograms for foreground and background only is not sufficient to segment
the red pepper from the other ones (Fig. 4.4 (b)). The first three moment
constraints – area, centroid and covariance – are able to substantially im-
prove segmentations (Fig. 4.4 (c)-(e)). With increasing order of moments
more and more fine scale details of the shape can be reconstructed (Fig. 4.4
(f)-(h)). Even the 12th order moment constraint still results in an improve-
ment of segmentation (Fig. 4.4 (h)). In the first row of the example shown
in Fig. 4.4 the respective higher order moment constraints have been learned
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from a reference shape. For interactive applications however the higher order
moments are too less intuitive to be applicable. The second row shows mo-
ment constraints derived from manually marked user scribbles. The resulting
segmentations are less accurate compared to learning the constraints from
reference shape. Again, segmentations improve with increasing order of the
moments. In this example, the constraint parameters were derived from the
user scribble except the area constraint which was estimated additionally.

4.4 Optimization with Moment Constraints
Shape optimization and image segmentation with respective moment con-
straints can now be done by minimizing convex energies under respective
convex constraints.

Let C be a specific convex set containing knowledge about respective
moments of the desired shape – given by an intersection of the above convex
sets. Then we can compute segmentations by solving the convex optimization
problem

min
u∈C

E(u), (4.16)

with E(u) given in (4.3). The respective Euler-Lagrange equation is given
by:

0 = div
(
g
∇u
|∇u|

)
− f. (4.17)

The equation system can be solved using gradient descent, or the lagged
diffusivity approach that was presented in [9]. We use the latter because in
our experiments it achieves a speed up of computation times of a factor of
∼5.

In the case of segmentation without moment constraints, u has to fulfill
the constraint that u ∈ B. It can be enforced by clipping u to the range
[0, 1] after each iteration of the optimization. The respective projection is
given in (3.22). In the case of segmentation with moment constraints, the
respective constraints can either be fulfilled via the soft constraints or the
hard constraints described in Sec. 4.3.

4.4.1 Minimization with Soft Constraints

Soft constraints are implemented by adding additional terms to the cost
function, as has been done in (4.6), (4.10) and (4.12). Minimization is then
performed by computing the corresponding Euler-Lagrange equations with
the additional terms, weighted by the parameters λki. Depending on the
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choice of the λki this can lead to solutions that prefer shapes that fulfill
the constraints, but do not necessarily exactly fulfill them. For higher order
constraints the number of additional parameters λk1, . . . , λkd which have to
be optimized increases, with k being the order of the respective moment.
This makes an experimental estimation of the values for the λki elaborate. An
alternative way is to compute optimal values via a gradient ascent procedure.

Area Soft Constraint

For the area constraint the corresponding Euler-Lagrange equation is calcu-
lated by derivation of (4.6). The constraint parameter c can be formulated
in the integral via division by the size of the image domain

∫
Ω

dx = |Ω|. The
resulting equation system is given by:

0 = −2λ0

(∫
Ω

u− c

|Ω|
dx

)
. (4.18)

The area update term for u is equal for all points in Ω because the respective
term in (4.18) is independent of a single point x. The constraint parameter
c is equally distributed to the update values of all points. The update value
is positive if the area of the current segmentation is smaller than the desired
area constraint, and negative if it is greater. The update value is zero if the
constraint is exactly fulfilled.

The parameter λ0 can be chosen manually to determine how large the
influence of the area constraint should be on the solution. Another option
would be to perform a gradient ascent in λ0. This would be corresponding
to a Lagrange multiplier.

Centroid Soft Constraint

Derivation of the centroid soft constraint (4.10) yields the Euler-Lagrange
equation

0 = −2
d∑
i=1

λ1i

(∫
Ω

(µi − xi)u dx (µi − xi)
)
, (4.19)

where µi and xi denote the i-th elements of vectors µ and x. The update term
for the centroid constraint is dependent on the location of the point x with
respect to the constraint centroid µ. The centroid soft constraint yields d
additional terms to the equation system, as well as d additional optimization
parameters λ11, . . . , λ1d.
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Covariance Soft Constraint

For the covariance constraint the following term arises:

0 = −2
d∑
i=1

d∑
j=1

λ2ij

(∫
Ω

ξij(x)u dx ξij(x)

)
(4.20)

with ξij(x) = aij − (µi − xi)(µj − xj). The term contains double entries
because aij = aji which is due to the symmetry of the covariance matrix.
Therefore, instead of d2 terms, only d(d+ 1)/2 additional terms are needed.

Higher Order Soft Constraints

Similar functions can be derived for the higher order moment constraints.
The corresponding Euler-Lagrange term for an arbitrary moment of order k
yields the more general formulation:

0 = −2
d∑

i1=1

· · ·
d∑

ik=1

λki1...ik

(∫
Ω

ξi1...iku dx ξi1...ik

)
, (4.21)

with ξi1...ik = ai1...ik −
k∏
l=1

(µil − xil) . (4.22)

In this formulation some terms appear multiple times, similar to the co-
variance constraint. Because of the symmetry of the constraint tensors, all
permutations σ of i1 . . . ik have ai1...ik = aσ(i1)...σ(ik).

4.4.2 Projection to the Moment Constraint Sets

An alternative to the soft constraints are hard constraints where respective
constraints are enforced by projection. The moment hard constraints pre-
sented in Sec. 4.3 can be implemented by projection onto the constraint sets
during the optimization process. The projection method has the advantage
over soft constraints, that no additional parameters need to be optimized. In
the case of moment hard constraints the constraints can be enforced during
the optimization by back-projecting the current segmentation u to the inter-
section of the respective constraint sets after every iteration. The respective
orthogonal projection is the nearest û that has a minimum distance to the
current u and fulfills the following two types of convex sets

1. the convex set B, i.e. u ∈ [0, 1] and
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2. the intersection of the respective moment constraints.

Because all moment constraints presented in this chapter are linear in u, an
orthogonal projection can be directly computed for all combinations of mo-
ment constraints. Hence, iterative projections are needed between two sets
only – independent of the order or the number of the moment constraints.
The following will show how these projections can be computed and imple-
mented. A special case arises in the case of the area constraint, because the
projection to the intersection of the area and the range constraint can be
computed in a single step. In the other cases the Dykstra projection algo-
rithm [28] is used to iteratively project onto the intersection of the convex
sets.

Projection to Area Constraint

The projection onto the range [0, 1] and the area constraint in (4.4) can be
combined in one step.
For any u0 ∈ B, the projection u onto those constraints has to solve the
convex program

u = arg min
v∈B

1

2
‖v − u0‖2

2

s.t. v(x)− 1 ≤ 0 ∀x
−v(x) ≤ 0 ∀x
‖v‖1 − c = 0.

By means of the Karush-Kuhn-Tucker conditions for convex problems, u is
the orthogonal projection if the functions u, ξ0, ξ1 : Ω → R and a scalar
ν ∈ R fulfill the conditions

u(x)− u0(x) + ξ1(x)− ξ0(x) + ν = 0 ∀x (4.23)
u(x) ≤ 1 ∧ ξ1(x) ≥ 0 ∀x (4.24)
u(x) ≥ 0 ∧ ξ0(x) ≥ 0 ∀x (4.25)
ξ1(x) = 0 ∨ u(x) = 1 ∀x (4.26)
ξ0(x) = 0 ∨ u(x) = 0 ∀x (4.27)

‖u‖1 = c. (4.28)

With the following method a solution for the conditions (4.23)–(4.28) be
found:
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1. Initialize u := u0, ξ1 := 0, ξ0 := 0, ν := 0.

2. For all x ∈ Ω with u(x) > 1, set u(x) := 1, ξ1(x) := u0(x)− 1.

3. For all x ∈ Ω with u(x) < 0, set u(x) := 0, ξ0(x) := −u0(x).

All constraints except the area constraint (4.28) are now fulfilled.
Without loss of generality, let the projection of u0 to [0, 1] have a smaller

norm than c. If not, set u2(x) := 1− u(x) and c2 := ‖Ω‖ − c, switch ξ0 and
ξ1, perform the projection onto the volume c2 as described in the following,
and afterwards again reflect u2 at 1 and switch ξ0 and ξ1.

To fulfill the area constraint (4.28), we can now raise the sum u(x) +
ξ1(x)−ξ0(x) by the same amount in all pixels, and adjust ν such that equation
(4.23) is fulfilled. If 0 < u(x) < 1, raise u(x), if u(x) = 1, raise ξ1(x), if
ξ0(x) > 0, lower ξ0(x) by the respective values.

Unfortunately, the difference ν is non-trivial, because the area constraint
(4.28) depends on u, not on u + ξ1 − ξ0. Therefore, we have to employ
Algorithm 4.4.1: Afterwards, we have to adjust the last iteration, if ∆c < 0.

Algorithm 4.4.1 Simple Projection Algorithm
ν ← 0
∆c ← c− ‖u‖
while ∆c > 0 do

∆u ← min
{

min{x∈Ω|ξ0(x)>0} {ξ0(x)} ,min{x∈Ω|u(x)<1} {1− u(x)}
}

∆k ← 0
for all x ∈ Ω do
if ξ0(x) > 0 then
ξ0(x)← ξ0(x)−∆u

else if u(x) < 1 then
u(x)← u(x) + ∆u

∆k ← ∆k + ∆u

else
ξ1(x)← ξ1(x) + ∆u

end if
ν ← ν + ∆u

end for
∆c ← ∆c −∆k

end while

This algorithm computes the desired projection and it does not require to
explicitly store ξ0 and ξ1, as the sum in (4.23) can be stored in one field
u and the checks in the algorithm above can be performed on u as well.
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Unfortunately though, the algorithm requires several O(n) computations in
the regression to find the minima and in the update steps.

However, if we sort the discrete pixel positions by their value u0, and
remap them after the projection, the projection can be performed very easily
with Algorithm 4.4.2. Let us assume now, that u0 is stacked to a vector and
monotonically decreasing in x from pixel x = 1 to pixel x = |Ω|.

Algorithm 4.4.2 Projection Algorithm with Sorting
ν ← 0
∆c ← c− ‖u0‖
x1 ← min {x|u0(x) < 1}
x2 ← min {x|u0(x) < 0}
while ∆c > 0 do

∆1 ← 1− u0(x1) + ν
∆2 ← −u0(x2) + ν
if ∆1 > ∆2 then
ν ← ν −min

{
∆2,

∆c

x2−x1

}
∆c ← ∆c −min {(x2 − x1)∆2,∆c}
x2 ← min {x|u0(x)− ν < 0}

else
ν ← ν −min

{
∆1,

∆c

x2−x1

}
∆c ← ∆c −min {(x2 − x1)∆1,∆c}
x1 ← min {x|u0(x)− ν < 1}

end if
end while

Fig. 4.5 demonstrates the input and output of Algorithm 4.4.2, assuming
that u0 and u are sorted in decreasing order. The optimal update step ν that
needs to be added to u0 in order to fulfill both the area constraint

∫
u dx = c

and the constraint u ∈ [0, 1], is computed in two steps of Algorithm 4.4.2.
Note that the output of Algorithm 4.4.2 is the scalar value ν that is afterwards
added to the original u0 before sorting. Hence the sorting step does not need
to be reversed.

After Algorithm 4.4.2 terminates, ν is subtracted from u0(x) in every pixel
to get u, u is clamped to [0, 1] and the difference put into the (virtual) ξ0

and ξ1. Now all KKT conditions are fulfilled and u is the desired projection.
Note that every assignment in the algorithm is performed at most 2n times
and the algorithm only requires constant memory. Therefore, its complexity
is dominated by the sorting algorithm, for example O(n log n).
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Figure 4.5: Area of u before and after applying Algorithm 4.4.2. The gray
area denotes the area before the projection: neither the area constraint∫
u dx = c nor the constraint u ∈ [0, 1] is fulfilled. The shaded area shows

the area of u after projection: both constraints are fulfilled after two steps
of the algorithm.

Projection to Centroid, Covariance and Higher Order Moment
Constraints

The projections to any number of moment constraints can be summarized
in one step because the moment constraints give rise to linear sets. Hence,
projections are computed between the convex set [0, 1] and the intersection
of the moment constraints.

Dykstra’s Projection Algorithm For moments of an order higher than
0 the orthogonal projection to the intersection of the set [0, 1] and the respec-
tive moment constraints can be computed using the projection algorithm of
Dykstra [28]. The algorithm projects to the intersection of convex sets by
alternatingly projecting to the respective sets. In this case u is projected
to the intersection of the set [0, 1] and the linear moment constraint sets.
The solution is found by back-projecting the previous projection for each
step. This leads to an algorithm that converges to the solution, although
slow compared to a simple iterative projection. Fig. 4.6 shows a comparison
of iterative projection and Dykstra’s projection algorithm using the example
of projecting a point to the intersection of two disks.

Centroid Constraint In the following the projection formula for the cen-
troid constraint will be shown. An equivalent formulation of (4.7) is the
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(a) Iterative (b) Dykstra (c) Dykstra back
projection projection projection steps

Figure 4.6: Comparison of iterative projection (a) and Dykstra’s projection
algorithm (b). The blue dot is projected to the intersection of two disks,
indicated by the yellow area. Intermediate steps are depicted in red. In this
example, both algorithms converge to the nearest point in the set, indicated
by the green dot while the Dykstra algorithm needs more iterations due to
the back projection steps (c).

constraint set

C1 =

{
u ∈ B

∣∣ ∫
Ω

(µi − xi)u dx = 0,∀1 ≤ i ≤ d

}
. (4.29)

The orthogonal projection m̂ that projects u to the nearest û in C1 is then
given by û = u+ m̂. Because C1 is linear in u this projection is unique and

m̂ = arg min
m∈M
‖m‖ (4.30)

with M =

{
m ∈ B

∣∣ ∫
Ω

(µi − xi)m dx = −
∫

Ω

(µi − xi)u dx,∀1 ≤ i ≤ d

}
.

(4.31)
The left-hand sides of the constraint equations inM are linear in m, while
the right-hand sides are independent of m.

Then the following projection theorem holds [100]:

Theorem 2. The orthogonal projection m̂ (projection of minimum norm) to
the set of constraints (m, yi) = ci,∀1 ≤ i ≤ d is given by

m̂ =
d∑
i=1

βiyi (4.32)
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where the coefficients βi ∈ R are the solution to the linear equation system

(y1, yi)β1 + · · ·+ (yd, yi)βd = ci (4.33)

Proof. A proof can be found in [100].

For the centroid constraint set the yi and ci are given by

yi = µi − xi, ci = −
∫

Ω

(µi − xi)u dx, 1 ≤ i ≤ d, (4.34)

reducing the problem to solving a linear system of equations of the size d×d to
obtain the coefficients β1, . . . , βd. Applying Theorem 2 yields the orthogonal
projection

m̂ =
d∑
i=1

βi(µi − xi). (4.35)

This means in particular that points that have a high distance to the con-
straint centroid µ, get assigned a higher value to change. The reason is the
orthogonal projection that finds a projection where the smallest change in
u is achieved that fulfills the constraint. Points with a high distance to µ
contribute higher values to the sum (4.35).

Covariance Constraint Similarly, the orthogonal projection m̂ to the co-
variance constraint can be computed:

m̂ =
d∑
i=1

d∑
j=1

βij (aij − (µi − xi)(µj − xj)) , (4.36)

where aij are the entries of constraint matrix A. Here we solve a d2 × d2

system of linear equations to obtain the coefficients βij. If we exploit the
symmetry of A and merge terms that appear duplicate times in the sum, the
number of coeffiences reduces to

d′ =
d∑
i=1

d∑
j=i

1 =
1

2
d(d+ 1), (4.37)

which is still in the same complexity class O(d2), however reduces the number
of coefficients that need to be computed by a factor of almost 2.
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Moment Constraints of Arbitrary Order Higher order moment con-
straints and combinations of different order moment constraints can be com-
puted in an analogous way. The general projection for a moment of order k
can be computed by

m̂ =
d∑

i1=1

· · ·
d∑

ik=1

βi1...ik

(
ai1...ik −

k∏
l=1

(µil − xil)

)
. (4.38)

The corresponding linear equation system has dk unknowns βi1...ik .

Orthogonal Projections in a Two-Dimensional Domain

For image segmentation the domain Ω usually is two dimensional, i.e. Ω ⊂ R2

and d = 2. The projection onto the centroid constraint C1 is then given by

m̂ = β1 · (µ1 − x1) + β2 · (µ2 − x2), (4.39)

and the coeffients β1, β2 ∈ R are the solution of the 2 × 2 linear equation
system

(µ1 − x1)2β1 + (µ2 − x2)(µ1 − x1)β2 = −
∫

Ω

(µ1 − x1)u dx

(µ1 − x1)(µ2 − x2)β1 + (µ2 − x2)2β2 = −
∫

Ω

(µ2 − x2)u dx. (4.40)

The orthogonal projection to the covariance constraint C2 is given by

m̂ = β11(a11−(µ1−x1)2)+2β12(a12−(µ1−x1)(µ2−x2))+β22(a22−(µ2−x2)2)
(4.41)

and the coeffients β11, β12, β22 ∈ R are the solution of a 3× 3 linear equation
system (4.33) with the parameters

y1 = a11 − (µ1 − x1)2

y2 = a12 − (µ1 − x1)(µ2 − x2)

y3 = a22 − (µ2 − x2)2.

(4.42)

Fig. 4.7 shows visualizations of the first four moment constraint projec-
tions m̂ in a two dimensional domain while the projection for the nth order
moment constraint yields a nth order polynomial: m̂ =

∑n
i=1 aix

iyn−i with
coefficients ai ∈ R.
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(a) Area (b) Centroid (c) Covariance (d) Skewness
Projection Projection Projection Projection

Figure 4.7: Update steps for the first four two-dimensional moment constraint
projections.

4.4.3 Optimality Bound

Unfortunately, the threshold theorem [34] guaranteeing optimality for the un-
constrained binary labeling problem does not generalize to the constrained
optimization problems considered here. Nevertheless, we can prove the fol-
lowing optimality bound:

Proposition 7. Let u∗ = arg minu∈C E(u) be a minimizer of the relaxed
problem and Eopt the (unknown) minimum of the corresponding binary prob-
lem. Then any thresholded version û of the relaxed solution u∗ is within a
computable bound of the optimum Eopt.

Proof. Since Eopt lies energetically in between the minimum of the relaxed
problem and the energy of the thresholded version, we have:

E(û)− Eopt ≤ E(û)− E(u∗). (4.43)

For the experiments on interactive image segmentation that are shown
in this chapter this bound was measured on average around 5%. How to
assure that the binarized version still exactly fulfills the moment constraints
remains an open challenge.

4.5 Ratio Constraints
Variants of the moment constraints give rise to other possibilities to impose
shape constraints. In [111] an extension of the area constraint to multi-label
image segmentation was presented. Another example is the generalization
of the covariance constraint to scale-invariant ratio constraints imposing a
constraint on the relation of width to height of a shape. This concept will
be presented in the following.
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4.5.1 Constraining the Ratio of Shape Dimensions

The covariance of a two dimensional shape can be applied to impose con-
straints on the ratio of width and height of a shape, yielding a scale-invariant
prior for segmentation. We can impose the ratio of a shape to be constrained
by a given σ ∈ R by constraining u to lie in the set

R =

{
u ∈ B

∣∣∣ ∫Ω
(x1 − µ1)2u dx∫

Ω
(x2 − µ2)2u dx

= σ

}
(4.44)

A linear formulation of the constraint in (4.44) is given by∫
Ω

(
(x1 − µ1)2 − σ(x2 − µ2)2

)
u dx = 0 (4.45)

The set R is also convex, which can be seen in analogy to Proposition 3. Fig.
4.8 shows an example for image segmentation with ratio constraint.

Figure 4.8: Image segmentation with different values for the ratio constraint
parameter σ.

4.5.2 Projection to Ratio Constraints

The projection of a segmentation u to the ratio constraint set R yields:

m̂ = β
(
(x1 − µ1)2 − σ(x2 − µ2)2

)
, (4.46)

with β = −
∫

Ω
αu dx∫

Ω
α2 dx

and α = (x1 − µ1)2 − σ(x2 − µ2)2. (4.47)

The projection derives from Theorem 2.
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4.6 Interactive Image Segmentation with Area,
Centroid and Covariance Constraints

For the application of interactive image segmentation the experiments are
limited to moments up to 2nd order, i.e. area, centroid and covariance,
because they can be intuitively transmitted via mouse interaction.

In this section a qualitative and quantitative evaluation of the proposed
method on medical imagery and other real-world images is presented. For
all experiments the edge weight function was set to g(x) = 1 and the data
term to f(x) = log (pbg(I(x)))− log (pobj(I(x))) for an input image I : Ω→ R
for gray value images and I : Ω → R3 for color images. The likelihoods pobj
and pbg are computed using color or gray-scale histograms, respectively, from
inside and outside regions defined by the user input. Respective moment
constraints on centroid, area or covariance structure are imposed by mouse
interactions. In all experiments shown moment constraints are enforced by
iteratively projecting solutions to the respective constraint sets after each
iteration of the optimization process. Typical run-times on the GPU are
around 1 second for an image of the size 300× 400.

4.6.1 Shape Priors from Ellipses

The constraint parameters for the moment contraints can be imposed in dif-
ferent ways. One way to impose the parameters of the lower order moments
area, centroid and covariance is to transmit them via a two-click mouse in-
teraction in an intuitive way: by drawing an ellipse around the object of
interest. The area and centroid constraint can be directly computed as the
ellipse’s area and center point. The covariance constraint entries correspond
to the ellipse’s radius and axis orientations. In particular, the eigenvalues
σ1, σ2 ∈ R of the covariance constraint matrix A ∈ R2×2 can be computed
from the major and minor radius r1, r2 ∈ R of the ellipse with

σi =
1

2
r2
i , i = 1, 2. (4.48)

The covariance constraint is then given by its eigendecomposition

A = V

(
σ1 0
0 σ2

)
V −1, (4.49)

where the matrix V ∈ R2×2 is a rotation according to the respective orienta-
tion of the semi-axes of the ellipse.
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4.6.2 Image Segmentation Results

Fig. 4.9 shows how moment constraints can improve segmentation of real-
world images. The data term is based on RGB histograms. The purely
color-based segmentations without moment constraints shown in the second
column demonstrate that the color distributions of respective objects are not
sufficiently different to discriminate the objects of interest. The third column
of the figure shows the segmentation results with constraints on area, centroid
and covariance. All moment constraints are extracted from the user-specified
ellipse, allowing a deviation of 10% for each constraint to handle imprecise
user input. The moment constraints allow to quickly disambiguate the color
information leading to substantial improvements of the segmentation.

4.6.3 Comparison to Scribble Based Segmentation

Many interactive image segmentation methods that use manual input from
the user implement scribbles to obtain initial values for the histograms that
generate the data term f . Scribbles in this context are selected pixels marked
by the user as foreground and background. Segmentations are be imple-
mented in discrete settings [123], or continuous settings [141]. In this section
a comparison to a segmentation method similar to [141] is presented.

Fig. 4.10 shows a comparison of two segmentation methods with priors on
color and location from user input. The first two columns show the presented
method with moment constraints and the third and fourth columns a seg-
mentation method based on user scribbles. The purpose of this experiment
was to compare the effort that needs to be brought in by the user in order
to sufficiently segment the respective object of interest from the background.
For the scribble segmentation the user draws mouse strokes in two different
colors: blue for foreground and green for background. Histograms for the
data term f are computed from these selected pixels. Segmentation results
with user scribbles were computed by minimizing functional (4.3), using the
same method and same parameters as in the case of the moment constraints,
except that the moment constraints were replaced by local constraints, which
means that all pixels that were marked by the user as foreground belong to
the segmented region, and the background pixels are not contained by the
segmented region.

The figure shows that segmentations with user scribbles need significantly
more mouse interaction compared to segmentation with moment constraints.
This implies that moment constraints are able to substantially simplify the
task of image segmentation for the user.
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(a) User Input (b) No Constraint (c) Moment Constraint

Figure 4.9: Image segmentation without and with moment constraints.
(a): The ellipse is placed at the approximate size and location of the object.
(b): Segmentation results without constraints using only the histograms.
(c): Segmentation results with constraints on area, centroid and covariance.
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(a) User (b) Moment (c) User (d) Scribbles
Ellipse Constraints Scribbles Segmentation

Figure 4.10: Comparison of segmentation with moment constraints and user
scribbles: Segmentation with user scribbles needs more mouse interaction
to obtain similar results, since the implementation with moment constraints
needs just two mouse clicks for drawing the respective ellipse.

4.6.4 Quantitative Evaluation on Medical Images

This section presents an evaluation of segmentations with and without mo-
ment constraints on a set of medical images, and a quantitative comparison
of the results to manually labelled ground truths.
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Area and Centroid Constraints

(17.8% error) (0.24% error)

(15.58% error) (0.14% error)

(7.36% error) (0.23% error)

User input without constraints area and centroid const.

Figure 4.11: Segmentation of a CT image with kidneys and spine. The cen-
troid and area constraints enable to specify the approximate location and
size of the desired object that should be segmented. Imposing these mo-
ment constraints during optimization leads to drastic improvements in the
segmentation.

Fig. 4.11 shows a comparison of segmentation with and without a constraint
on the area and centroid for a CT image of kidneys and spine: without
constraints no shape information is taken into account for the segmentation,
resulting in a segmentation that includes many different regions. Enabling
the area and centroid constraints leads to segmentations that prefer the center
and the size of the circle that was clicked by the user. This leads to substantial
improvements of the segmentations without affecting the fine-scale boundary
estimation.
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(6.93% error) (0.76% error)

(8.24% error) (0.26% error)

User input No Constraints Moment Constr. Ground Truth

Figure 4.12: Tumor extraction in brain MR images using segmentation with
and without constraints on covariance and area. While the algorithm does
not require local boundary information, constraining its second order mo-
ments by a simple user interaction suffices to generate the desired segmenta-
tion.

Including Covariance Constraints

More sophisticated structures can be specified when including second order
moments. Since covariance matrices can be represented by ellipsoids, an
intuitive user input is achieved by clicking an ellipse with the mouse. The axes
of the ellipse define the entries of the corresponding covariance matrix, while
the center and area of the ellipse define the centroid and area constraints.
Fig. 4.12 and 4.13 show segmentations with and without constraints resulting
from user defined ellipses describing the approximated size, location and
shape of the desired object.

Quantitative Performance Evaluation

The previous experiments have shown that the user-specified moment con-
straints allow to visibly improve the segmentation. To quantify this im-
provement, Table 4.1 shows average relative errors (i.e. the percentage of
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(6.14% error) (1.41% error) (1.04% error)

User input without
constraints

with area
constraint

covariance and
area constraint

Figure 4.13: Segmentation without and with constraints for a CT image of
the neck. Constraining the area yields a segmentation which prefers the size
of the ellipse that was clicked by the user, resulting in less incorrectly labeled
pixels, compared to the segmentation without constraints. The covariance
constraint additionally considers the dimensions of the ellipse yielding an
even more accurate segmentation.

incorrectly labeled pixels per image) with standard deviations for an evalu-
ation of the segmentation without constraint, with area constraint only, and
with area, centroid and covariance constraint, respectively. Some of the im-
ages that were used for the tests and their segmentations are shown in Fig.
4.11, 4.12 and 4.13. The table shows that the use of these rather simple and
easy to transmit constraints yield a reduction of incorrectly classified pixels
by a factor of about 10.

4.6.5 Performance Evaluation of Constraint Projections

Fig. 4.14 shows run times in seconds for projections onto the presented mo-
ment hard constraints. It shows a measurement of the number of seconds

Average relative error

Segmentation without constraint 12.02 % ± 0.89%

with 0th order moment constraint 2.36 % ± 0.11%

with 0th–1st order moment constraint 0.41 % ± 0.05%

with 0th–2nd order moment constraint 0.35 % ± 0.09%

Table 4.1: Average relative errors with standard deviations for segmentation
without and with moment constraints.
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Figure 4.14: Run time (in seconds) vs. number of moment constraints k
in projection. The plot shows the number of seconds needed to compute a
projection onto the moments of order 0 to k. While lower order moment
constraints are computed in a few milliseconds, computation times grow ex-
ponentially for increasing numbers of constraints. Fortunately, for interactive
segmentation applications one is mostly interested in constraining the low-
order moments only, leaving the fine-scale details to be determined by the
image data.

that were needed on a 3.4 GHz Intel Core i7-2600 CPU to compute one pro-
jection onto all moment constraints of order 0 to k for k ∈ {0, . . . , 30} using
the projection formula (4.38) for projection onto moment constraint sets of
arbitrary order. The constraint parameters were obtained by computing the
moments of the manually segmented reference shape shown in the upper row
of Fig. 4.4 (a). While projections onto the lower order moment constraints
are computed in just a few milliseconds, the figure shows the exponentially
growing run time for an increasing number of constraints.

The experiment implies that segmentation with moment constraints is
applicable to real-time tasks for the lower order moments, whereas higher or-
der moments that can theoretically constrain arbitrary shapes, are applicable
merely to off-line segmentations.

4.6.6 Optimality Bounds

The threshold theorem [34] states that in the unconstrained case the thresh-
olded version is a globally optimal solution of the binary energy (4.3). How-
ever this is not the case when additional moment constraints are imposed
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on the segmentation. This sections analyses the difference of the continu-
ous result to the thresholded version. For a continuous solution u∗ and a
thresholded solution û the difference was computed as the relative energy
bound

e =
E(û)− E(u∗)

E(u∗)
. (4.50)

Fig. 4.15 shows segmentation results for u before thresholding, computed
with constraints on area, centroid and covariance. The values below the
images refers to the energy bound (4.50). In all four experiments that are
shown in the figure the solutions converge to binary values and the distance
to the thresholded version is below 1%. This implies that segmentations
with moment constraints are robust to the chosen threshold. In the experi-
ments, we furthermore observed that the more constraints are imposed on a
segmentation, the larger the distance to the thresholded version increases.

4.7 Moment Constraints for Object Tracking
Object tracking over a sequence of images is the problem of finding the shape
of an object that was given in the first frame in the subsequent frames of the
sequence. This section shows how segmentation with moment constraints
can be generalized with a few modifications to a method for object tracking.
Constraining the moments of a shape during a sequence of images leads –
in combination with the presented method for image segmentation – to a
method for object tracking. Given the moments of the shape in the first
frame, these moments can be constrained for all subsequent frames as well.
u is now a function defined on the image plane Ω evolving over time T ⊆ R+,
i.e. u : Ω× T → [0, 1].

4.7.1 Permanency Constraints

The area constraint can be used to track an object over time: Assuming
that the area of the shape does not change over time, the area of a shape
is constrained at time t to being equal to the area ct−1 of the shape in the
previous frame t− 1:

min
u∈B

E(u) s.t.
∣∣∣∣∫

Ω

u(x, t) dx− ct−1

∣∣∣∣ = 0, ∀t ∈ T. (4.51)

Here c0 is defined as the area of the ellipse drawn by the user in the first
frame.
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0.0061

0.0031

0.0017

0.0014
(a) Input Image (b) Ellipse as (c) Seg. after (d) u before

(Close-up) User Input Thresholding Thresholding

Figure 4.15: Segmentation with the convex moment constraints converges
to nearly binary solutions, making the method robust to the chosen thresh-
old. The values below the images in (d) refers to the distance between the
continuous result and its corresponding thresholded version.
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Alternatively, a small change of the area constraint can be allowed by
replacing the = 0 in equation (4.51) by ≤ v with a constant value v ∈ R This
enables to model motion of the object towards or away from the camera, or
motion of the camera towards/away from the object. Here, v corresponds
to the the amount that the area of the shape is allowed to change from one
frame to the next, i.e. depends on the velocity of the motion.

4.7.2 Velocity Constraints

Similarly, a constraint can be imposed that the object should not move too
far from one frame to the other, which means that the centroid of the shape
does not change more than a given value v:

min
u∈B

E(u) s.t.
∣∣∣∣
∫

Ω
xu(x, t) dx∫

Ω
u(x, t) dx

− µt−1

∣∣∣∣ ≤ v, ∀t ∈ T. (4.52)

v corresponds to the maximum length of the vector between the centroid in
one frame and the centroid in the next frame, and µt−1 is the centroid of u in
the previous frame. Again, we define µ−1 as the centroid of the ellipse drawn
by the user in the first frame in order to obtain an initialization for t = 0.

4.7.3 Rotational Constraints

Similar constraints can be imposed on the covariance and higher order mo-
ment constraints. For the covariance constraint, for example, rotation of the
object can be constrained by assuming that the covariance matrix should not
change more than a given value.

Optimization is performed with the same method as explained in Sec. 4.4
while the respective moment constraints are updated in each frame.

Figure 4.16: Moment constraints for object tracking. Tracking is initialized
with an ellipse in the first frame, the moments of which constrain the segmen-
tation in subsequent images. A small deviation of the centroid is allowed to
track the moving object. Note that this approach is generic, as no reference
shapes have to be previously learned.
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Figure 4.17: Moment constraints for object tracking. Tracking is initialized
in form of an ellipse in the first frame (left), from which histograms and
constraint parameters are derived. The first row shows results with moment
constraints, while a deviation of the centroid is allowed from each frame to
the next one to account for the object’s motion. The second row shows results
of a histogram based tracking without constraints. This comparison shows
that moment constraints can realize acceptable real-world object tracking
with no previous learning of reference shapes.

4.7.4 Experiments

Fig. 4.16 and 4.17 show how the proposed method can be applied to tracking
objects in videos. As can be seen in Fig. 4.17, the purely color-based seg-
mentation does not suffice to correctly segment object from background in
the case of non-unique color distributions.

We impose shape information by constraining the low order moments
(area, centroid and covariance) throughout the entire image sequence. As
can be seen in the first image of each sequence, tracking is initialized with an
ellipse of the approximate size and location of the object which is drawn on
the first frame of the sequence. This is sufficient user input, since histograms
and moment constraint parameters are derived from the ellipse: again, his-
tograms for foreground and background are computed from the inside and
outside of the ellipse, respectively, and the constraint parameters for area,
centroid and covariance are derived from the ellipse’s area, center point and
principal axes. The subsequent frames of the video use the histograms and
moment constraints from the first frame, allowing a small deviation of the
centroid from each frame to the next, which corresponds to a constraint on
the maximum velocity. Since no previous learning of shapes is necessary, the
approach naturally applies to arbitrary object shapes.
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4.8 Conclusion
In this chapter, moment constraints in a convex shape optimization frame-
work were presented. In particular, it was shown that for an entire fam-
ily of constraints on the area, the centroid, the covariance structure of the
shape and respective higher-order moments, the feasible constraint sets are
all convex. While global optimality of the resulting segmentations cannot
be guaranteed, the computed solutions are independent of initializations and
within a known bound of the optimum.

Both qualitative and quantitative experiments on interactive image seg-
mentation using medical and real-world images demonstrated that respective
moment constraints can be easily imposed by the user. The application of
moment constraints lead to significant improvements of the segmentation
results, reducing the average segmentation error from 12% to 0.35%. In con-
trast to existing works on shape priors in segmentation the use of low-order
moment constraints does not require shape learning and is easily applied to
arbitrary shapes since the recovery of fine scale shape details is not affected
through the moment constraints. Efficient GPU-accelerated PDE solvers al-
low for computation times of about one second for images of size 300× 400,
making this a practical tool for interactive image segmentation.

In the last section the applicability of lower order moment constraints to
object tracking in image sequences was shown. The following chapter de-
scribes an extension of the presented approach to scale-aware object tracking
in 3D space using RGB-D images.
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Chapter 5

Scale-Aware Object Tracking in
RGB-D Sequences

This chapter shows how the moment constraints presented in Chapter 4 can
be extended to the 3D space, which allows for scale-invariant object track-
ing in RGB-D. It presents a novel technique for the segmentation of RGB-D
images using convex function optimization. The minimization of the pro-
posed function finds optimal segmentations by considering both the color
and the depth information. The objective function is extended by moment
constraints, which allow to include prior knowledge on the 3D center, surface
area or volume of the object in an elementary way. As will be shown in
this chapter, the relaxed optimization problem is convex, and thus can be
minimized in a globally optimal way leading to high-quality solutions inde-
pendent of initializations. The approach is validated experimentally on five
different datasets. Experiments show that using both color and depth sub-
stantially improves segmentations compared to color or depth segmentations
only. Furthermore, 3D moment constraints significantly robustify segmenta-
tions which proves in particular useful for object tracking.

Parts of this chapter have been published in [7].

5.1 Introduction
Image segmentation and tracking are of central importance in image anal-
ysis. Many successful approaches to image segmentation from monochrome
or color images have been proposed in the past [22, 141]. Unfortunately,
in many real-world applications object and background share similar colors
such that purely 2D color-based segmentation methods invariably fail.

With the rise of novel RGB-D cameras like the Microsoft Kinect, inex-
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Figure 5.1: Tracking with area constraints: RGB area constraints (first row)
are not capable to handle camera motion, whereas the RGB-D area con-
straints (second row) are scale-invariant.

pensive sensors became available that provide both color images and depth
maps synchronized and at high resolution. While depth alone is usually not
sufficient to achieve good segmentation results (different objects may share
the same depth), it is well-known that the combination of depth and color
information outperforms purely color-based segmentation [61] and allows for
significant speed-ups of the segmentation process [136]. Moreover, it will be
shown in this chapter, that when prior knowledge about the object is avail-
able – like for example, its surface area, centroid, or shape covariance matrix
– this knowledge can be exploited during object segmentation.

This chapter shows how the convex framework for color image segmen-
tation introduced in Chapter 4 can be extended to RGB-D image data. It
contains two main contributions:

• The first contribution is the extension of the data term of respective
segmentation energies to incorporate local depth information. As a
consequence, the respective algorithm favors a separation of object and
background based on both color and depth information: It is there-
fore able to distinguish structures of the same color but with different
depths. As a consequence objects that would be difficult to separate
by color or depth alone can be segmented.

• The second contribution is the generalization of the moment constraints
introduced in Chapter 4 to scale-awareness using the information of
the object’s distance from the camera. More specifically, the depth
maps enable to impose constraints on the object’s absolute shape in
3D, whereas purely color based tracking methods can only impose con-
straints on the object’s projected shape in the 2D image plane. These
constraints can either be specified manually by user input, or auto-
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matically extracted from an initial segmentation for example for object
tracking. Experiments show that the approach allows to reliably seg-
ment and track humans and plants in RGB-D images. Further, it is
shown that respective moment constraints can be generalized to the
RGB-D setting thereby assuring that – for example – the surface area
in 3D space is preserved. In tracking experiments beyond constraining
the object’s sideways motion we can thus also constrain the motion of
the object along the camera axis.

The outline of this chapter is as follows: Sec. 5.2 will give a brief overview
of related work on shape priors for RGB-D image segmentation and object
tracking. In Sec. 5.3 a scale-aware object tracking method based on convex
3D moment constraints is presented. Sec. 5.4 will show experimental results
for object tracking and image segmentation in RGB-D. Sec. 5.5 will conclude
with a summary of the main results.

5.2 Related Work
Image segmentation is among the most studied problems in image analysis.
Popular algorithms to solve the arising shape optimization problems include
level set methods [113], graph cuts [67] or convex relaxation [34], with re-
spective extensions to the multi-region case [37, 27, 148, 94, 32].

Segmentations can be improved using both color and depth information
[109] obtained by RGB-D cameras like the kinect.

While it was shown that segmentation results can be substantially im-
proved by imposing shape priors [68, 39, 52], existing approaches have sev-
eral limitations: Firstly, apart from a few exceptions such as [143, 128],
computable solutions are only locally optimal thus requiring appropriate ini-
tializations and leading to often suboptimal solutions. Secondly, many shape
priors require an entire training set of familiar shapes [39, 48], making them
impractical for generic interactive image segmentation where the user may
have a good idea of what he/she wants but will be hard pressed to construct
an entire training set of shapes.

As a remedy it was recently proposed [3] to interactively impose con-
straints on the lower-order moments of the shape in a convex relaxation
framework for image segmentation. The aim of this paper is to generalize
these concepts to the problem of RGB-D image segmentation.
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5.3 Tracking in RGB-D Sequences with Scale-
Aware Shape Constraints

This section will show how moment constraints can be incorporated for RGB-
D image segmentation and applied to object tracking in RGB-D sequences.

5.3.1 RGB-D Image Segmentation with Convex Relax-
ation

With additional depth information d : Ω → R from RGB-D images, the
boundary length can be measured in absolute values instead of the image
domain. Functional (4.3) can be generalized to

E(u) =

∫
Ω

f(x)u(x) dx +

∫
Ω

d(x)|Du(x)|. (5.1)

This formulation compensates the fact that objects that are far away to the
camera appear smaller in the image due to perspective projection. Weighting
with d(x) allows regularization on the absolute size of the boundary – in
contrast to assuming a uniform pixel size as in (4.3).

5.3.2 Moment Constraints for RGB-D Images

In the following, the moments of the segmentation will be successively con-
strained with depth information. It will be shown how these constraints give
rise to nested convex sets. Again, the set B = BV (Ω; [0, 1]) denotes the con-
vex hull of the set of binary indicator functions u ∈ BV (Ω; {0, 1}) of bounded
variation on the domain Ω ⊂ Rd.

Area Constraint

The 0-th order moment corresponds to the area of the shape u. In RGB-D
the 3D surface area can be computed by

Area(u) :=

∫
Ω

d2(x)u(x) dx, (5.2)

where d(x) gives the depth of pixel x. Here, we assume that d(x) = Kd̃(x),
with K being the focal length of the camera and d̃(x) being the depth of
the pixel measured in meters. Note that d2(x) corresponds to the size of a
back-projected pixel in 3D space, and thus the integral measures the absolute
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surface area (scaled by K2) instead of the projected area in the image. This
is in contrast to Sec. 4.3.1, where all pixels are treated equally.

The absolute area of the shape u can be imposed to be bounded by
constants c1 ≤ c2 by constraining u to lie in the set:

C ′0 =
{
u ∈ B

∣∣ c1 ≤ Area(u) ≤ c2

}
. (5.3)

The set C ′0 is linearly dependent on u and therefore convex for any constants
c2 ≥ c1 ≥ 0.

In practice, the area constraint can be imposed exactly by setting c1 = c2,
or it can be imposed by upper and lower bounds on the area. Alternatively,
a soft area constraint can be formulated by enhancing the functional (4.3) as
follows:

E ′0(u, λ0) = E(u) + λ0

(∫
d2u dx− c

)2

, (5.4)

which imposes a soft constraint with a weight λ0 > 0 favoring the area of
the estimated shape to be near c ≥ 0. Note that the functional (5.4) is also
convex.

Centroid Constraint

The first order moment corresponds to the center of gravity (or centroid) of
the shape. In RGB-D it can be computed by integrating over all 3D positions
of the visible part of the shape, i.e.,

µ(u) :=

(
x

d

)
=

∫
Ω

(
x
d

)
u dx∫

Ω
d2u dx

, (5.5)

where x ∈ R2 is the centroid in pixel coordinates and d ∈ R is the centroid
in depth. Together, µ ∈ R3 corresponds to the centroid of the shape in 3D.

Now bounds on the centroid for the object we want to segment can be
imposed by constraining the solution u to the set C ′1:

C ′1 =
{
u ∈ B

∣∣ µ1 ≤ µ(u) ≤ µ2

}
, (5.6)

where all inequalities are to be taken point-wise and µ1, µ2 ∈ R3. This
imposes the centroid to lie between the two constants µ1 ≤ µ2. In particular,
for µ1 = µ2, the centroid is fixed.

Proposition 8. For any constants µ2 ≥ µ1 ≥ 0, the set C ′1 is convex.
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The proof is analogous to proof 2 in Chapter 4.
Alternatively, the centroid constraint can be formulated as a soft con-

straint by minimizing the energy:

E ′1(u, λ1) = E(u) + λ1

∣∣∣∣∫
Ω

(
µd2 −

(
x
d

))
u dx

∣∣∣∣2 , (5.7)

which is also convex in u.

Covariance Constraint

The proposed concept can be generalized to central moments of second order.
The 3D covariance of a shape u with respect to a specified centroid µ in RGB-
D is given by

Cov(u) :=

∫
Ω

((
x
d

)
− µ

) ((
x
d

)
− µ

)>
u dx∫

Ω
d2u dx

. (5.8)

The covariance structure can be considered by the following convex set:

C ′2 =
{
u ∈ B

∣∣ A1 ≤ Cov(u) ≤ A2

}
(5.9)

where the inequality constraint should be taken element wise. Here µ ∈ R3

denotes the centroid and A1, A2 ∈ R3×3 denote symmetric matrices such
that A1 ≤ A2 element wise. This constraint is particularly meaningful if one
additionally constrains the centroid to be µ, i.e. considers the intersection of
the set (5.9) with a set of the form (5.6).

Optimization with Moment Constraints

Shape optimization and image segmentation with respective moment con-
straints can now be done by minimizing convex energies under respective
convex constraints. The optimization was implemented using the projection
approach as described in Sec 4.4.

5.3.3 Object Tracking with 3D Constraints

The 3D moments of a shape can be used for tracking objects in a sequence of
images. Given the moments of the shape in the first frame, constraints can
be imposed on segmentations in all subsequent frames. Here, the moments
of a shape are computed directly in the 3D space, not in the projection to
the image plane. This makes the method independent of the projected size
of the object in the image. Without the need of defining a window in which
subsequent shapes should be found, the proposed method simply applies the
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moment constraints of the current frame to the subsequent. The centroid
is allowed to change inside a small range to handle motion of the camera
and/or the object. The area and covariance are supposed to stay constant
in the 3D space over all time frames.

5.3.4 Segmentation Priors from User Input

The data term used throughout the experiments has the form

f(x) = log
pbg(I(x))

pobj(I(x))
. (5.10)

Here, I : Ω → Rn refers to an image with n channels. For example, n =
1 for depth or gray-scale images, n = 3 for color images and n = 4 for
RGB-D images. The data priors pobj and pbg assign probabilities to each
pixel belonging to the object or the background, respectively, and satisfy
pobj + pbg = 1. They were computed from histograms for foreground and
background. The moment constraints that are considered in the experiments
include the centroid, area and covariance of the shapes.

Both the data prior as well as the moment constraints can be specified by
the user. The user can use an intuitive interface to mark the object of interest
with an ellipse (see Fig. 5.1). From the pixels within and outside the ellipse,
the n-dimensional color/depth/RGB-D histograms were trained correspond-
ing to the probability distributions pobj and pbg, respectively. Furthermore,
the surface area, 3D centroid and 3D covariance matrix are extracted from
the projection of the ellipse into 3D space, with the information of the depth
image that are used as moment constraints during segmentation.

5.4 Experimental Results
This section presents an evaluation of the approach for RGB-D image seg-
mentation with moment constraints. The goal of the experiments was to
verify that (1) segmentation on RGB-D data is more reliable than segmen-
tation of color or depth images alone, and that (2) object tracking with 3D
moment constraints is more robust than 2D moment constraints.

All images and videos shown in this chapter were captured using the
Microsoft Kinect sensor. Run-times on a GPU implementation are less than
1 second per image, making the method useful for interactive applications.

92



Figure 5.2: Comparison of tracking an object with and without area con-
straint of a scene captured from a flying quadrocopter. First row: Color-
only tracking. Second row: RGB-D tracking: The surface area is con-
strained on the absolute dimension via additional information from the depth
images.

5.4.1 Tracking in RGB-D with Moment Constraints

Fig. 5.1 shows results on moment-consistent tracking in 2D and 3D with large
camera motion. In the top row we see the results for color-only tracking:
The area constraint is imposed on the projected shape of the object. The
method cannot cope with increasing and decreasing appearance in the image
domain, although the absolute size of the object stays the same. The bottom
row shows RGB-D tracking: The area constraint is imposed on the absolute
dimension via additional information from the depth images. The method
enables area-consistent tracking with arbitrary camera motion. The figure
shows images of a plant in an office scene with a hand-held Kinect sensor from
different view points. Of course, the basic properties of the 3D shape – and
thus the surface area and covariance structure – of the selected object remains
the same during the sequence. However, the projection of the object’s shape
in 2D changes its size due to object and/or camera motion. As a result,
simple 2D moment tracking fails, as it tries to keep the area in image space
constant. In contrast, 3D moment constraints are scale-aware and are thus
more robust against camera and/or object motion. From these examples, we
conclude that in the case of arbitrary camera motion 3D moment constraints
are better suited for object tracking than 2D moment constraints.

The image sequence in Fig. 5.2 was captured by a flying quadrocopter
with a Kinect camera mounted on top of it. The towel’s shape and color
distribution vary over time due to camera motion and wind caused by the
quadrocopter’s rotors. The figure shows that color-only segmentation (first
row) is not sufficient to track the object, whereas additional information from
the depth images allow 3D moment constraints to track the exact surface area
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Figure 5.3: Comparison of tracking a person moving towards the camera
with moment constraints in 2D and in 3D. The surface area is increased in
the 2D image plane while the absolute area in 3D stays constant. First row:
RGB tracking: Moment constraints are imposed on the projected shape in
the 2D image plane. Second row: RGB-D tracking: The surface area, cen-
troid and covariance are constrained on the absolute dimension via additional
information from the depth images and can thus be imposed scale-aware.

(second row).
The image sequence in Fig. 5.3 shows a scene with a moving person and

a fixed Kinect camera. Constraints on the first three moment constraints,
i.e. the area, the centroid and the covariance are compared in 2D and in 3D.
The figure shows that constraining the moments in the image plane only is
not sufficient since the area the person occupies in the image changes due to
the camera projection. Additional information from the depth map allows to
impose the moment constraints in 3D and hence to track the absolute surface
area (second row).

5.4.2 Segmentation with Color, Depth, and RGB-D

The segmentation method was tested with moment constraints in several
scenes to demonstrate that RGB-D segmentation can outperform segmenta-
tion based on color or depth alone. To demonstrate this, different objects in
the color, depth, and the (combined) RGB-D image were segmented.

The first example is shown in Fig. 5.4 where individual persons were
to be segmented from the crowd. The figure shows that neither color nor
depth information are sufficient to uniquely separate a single person in the
image, see Fig. 5.4 (b+c). In more detail, the person in the first row is hard to
segment in the color image because of the blue jeans in front of the blue door.
The person in the second row wears a black shirt and is partially occluded
by the wardrobe, and the person in the third row overlaps with the person
in the background, having similar histograms which makes the segmentation
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1.64% error 1.30% error 0.87% error

3.96% error 2.18% error 1.57% error

3.71% error 1.05% error 1.27% error
(a) Input (b) RGB Segm. (c) Depth Segm. (d) RGB-D Segm.

Figure 5.4: Segmentation of images with ambiguous color and depth informa-
tion. Moment constraint parameters are derived from user input (a). Purely
color (b) and depth (c) images alone do not provide enough information to
uniquely segment one person. The combination (d) allows for segmenta-
tion of one single person in all three examples. Segmentation errors can be
reduced by combining depth and color information.

task hard. Depth segmentation alone has shortcomings in other regions of
the image. There are often pixels in an image with similar depth values
as the foreground object – with the exception of the person sitting on the
chair, where no other pixels had the same depth values. In the first two rows
of Fig. 5.4, the segmentation problems are resolved when RGB and depth
information is jointly considered. To conclude, all persons could be separated
well in the RGB-D case.

Another interesting example is depicted in Fig. 5.5 which shows that even
the absence of information in the depth image can be exploited to successfully
segment an image. Here, a water glass is located on a table. In the color
image, the glass is difficult to see because of its transparency. Moreover, the
depth of the glass pixels cannot be estimated due to the material’s reflective
property. By considering both the color and the depth image, the glass is
well separable. Note that the glass is not captured correctly by the depth
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(a) Input Color (b) Input Depth (c) User Input (d) Color-only (e) RGB-D
Image Image Segmentation Segmentation

Figure 5.5: Segmentation of reflective material with moment constraints.
(a+b) Input image and (c) user input. (d) When only the color image is
considered, the glass is indistinguishable from the background due to its
transparency. (e) When the depth image is taken into account, the glass
becomes separable.

sensor due to its reflectance. The segmentation becomes feasible due to the
missing information in that area.

5.4.3 Quantitative Analysis

The quantitative analysis of the presented method shows measurements of
the amount of pixels that differ from a manually segmented ground truth for
segmentation with and without constraints, as well as segmentations using
color, depth, and their combination. Segmentation errors were computed for
the images in Fig. 5.4.

Table 5.1 shows average segmentation errors compared to the ground
truths. The table also shows a comparison for segmentations without mo-
ment constraints, where segmentations were computed using only the color

Average Segmentation Error
Without Constraints: Color only 29.25%

Depth only 16.99%
RGB-D 17.93%

With Constraints: Color only 3.10%
Depth only 1.51%
RGB-D 1.24%

Table 5.1: Average segmentation errors with and without moment con-
straints, compared to ground truth. The combination of color and depth
leads to better results, even more improvement is achieved by additionally
constraining the moments of the segmentation.
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information of the histograms inside and outside the ellipse drawn by the
user. The table clearly shows that the amount of misclassified pixels can
be reduced by combining depth and color information for segmentation with
moment constraints. Interestingly, segmentation with depth only yields sig-
nificantly better results than color only.

5.5 Conclusion
In this chapter a convex framework for interactive RGB-D image segmenta-
tion and tracking was presented. Building on state-of-the-art approaches for
color segmentation, it was shown that depth information can be integrated
in the data terms for image segmentation so as to favor segmentations of
coherent depth. In particular, objects of similar color but different depth
can be discriminated. Moreover, it was shown that the availability of depth
allows to impose constraints on the absolute shape rather than the projected
shape. One can impose moment constraints in 3D space – thereby exploiting
the fact that the 3D motion of a tracked object is constrained over time. The
results demonstrate that combining color and depth can drastically enhance
the possibilities of variational segmentation methods. In particular, it allows
to generalize respective constraints from the image plane to the physical 3D
space. Experiments show that with a minimal amount of user input fast in-
teractive segmentations of good quality in a variety of challenging real-world
scenarios can be obtained.
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Chapter 6

Stereo Reconstruction for
Phenotyping of Grapevines

This chapter describes how convex relaxation methods can be employed to
compute globally optimal disparity maps. It will present a generalization of
the convex formulation based on functional lifting presented in [120] with
regularization based on image edge information. Image edges are an indi-
cator for object boundaries, which is of special importance for objects with
fine scaled structures as often occur in plant geometry. The chapter presents
a novel method for plant phenotyping based on a convex formulation of
anisotropic stereo reconstruction. The method was applied to the computa-
tion of fruit-to-leaf ratios and monitoring of grapevine growth. The growth
analysis allows to identify phenotypic characteristics of a novel breeding line
compared to traditional cultivars. The chapter presents a robust method for
depth estimation from images that are captured directly in the field from a
moving platform in a vineyard.

6.1 Introduction
Stereo reconstruction, i.e. the inference of 3D geometry from two or more
2D images, has been intensively studied in the field of computer vision. For
stereo reconstruction two or more images are used that depict the same
object. Respective methods can be divided in two main categories: Sparse
reconstruction, as used in [69], aim at estimating single 3D points, while
dense reconstruction aims at computing a surface. Sparse reconstruction
methods include methods that aim to find distinctive points [99] that are
easy to find in both images [132]. This leads to sparse 3D information, and
especially little information in homogeneous image regions.
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(a) Image 1 (b) Image 2 (c) Disparity Map

Figure 6.1: Disparity map reconstruction of a vineyard scene. In the disparity
map the foreground plant is clearly distinguished from the background. This
task would be impossible if only the color information of one image alone is
used, even for a human.

In the context of field phenotyping, dense 3D surfaces are essential for a
reliable reconstruction of the foreground plant. The background can contain
the field as well as other plants that are farther away and have similar color
distributions. Fig. 6.1 shows an example of a vineyard scene where it is hard
to distinguish the foreground plant from the background using only the color
information of one image. Even for the human eye a reliable segmentation
of the plant is not trivial.

A representation of dense 3D information is a depth map, where each pixel
of a reference image is assigned a distance to the depicted object point in 3D.
A widely used approach for computing dense depth maps is the semi-global
matching method [71]. This chapter however will focus on global optimiza-
tion methods, i.e. methods that compute optimal solutions of a given energy
model. Implementations include discrete optimization [72] and continuous
methods [120]. Applications of stereo methods include the reconstruction
of aerial images [88], driver assistance systems [121], and plant phenotyping
[19, 69].

The outline of this chapter is as follows: Sec. 6.2 will describe related work
on convex optimization methods for stereo reconstruction. Sec. 6.3 presents a
method to integrate image edge information into the reconstruction process.
In Sec. 6.4 an application of the edge-based stereo estimation method is
presented for phenotyping of grapevine growth. Sec. 6.5 will give a summary
of the main results.
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6.2 Related Work
This section presents related work on reconstruction of depth maps. A special
focus will be on the convex formulation presented in [120] which will be
generalized in the subsequent section, and on different methods to compute
point correspondences.

6.2.1 Convex Relaxation for Stereo Reconstruction

Dense disparity maps v : Ω → R can be computed from a pair of rectified
images I1, I2 : Ω → R. The disparity is the displacement of image locations
for an object point visible in both images. Both the disparity map and the
input images are defined on the same domain Ω ⊆ R2. It is known from
projective geometry that for a given point in one image the corresponding
point in the second image lies along a line, the so called epipolar line. Hence
the search space reduces to one dimension. For rectified images, the epipolar
lines are parallel and axis-aligned.

A variational model for estimating a dense disparity map v is given by
the functional

E(v) =

∫
Ω

|∇v| dx+

∫
Ω

ρ(v(x), x) dx, (6.1)

The second term in (6.1), which is based on the data matching cost ρ(v(x), x),
is usually not convex. A globally optimal formulation for arbitrary choices of
ρ, based on functional lifting, was introduced in [72] in a discrete framework
and its continuous formulation in [120]. The convex method presented in
[120] will be described in the following.

A Convex Formulation with Functional Lifting

Given two images I1, I2 : Ω→ R the disparity map v : Ω→ Γ := [0, γmax] is
computed in [120] by minimizing a higher dimensional variable φ : Ω× Γ→
[0, 1]. A thresholded version of φ can be considered as an indicator function
of the region enclosed by the surface to reconstruct. A detailed explanation
of this concept, also called functional lifting, is given in [72]. The resulting
disparity map v is then computed by integration over φ:

v(x) =

∫
Γ

φ dγ, (6.2)

and φ is a minimizer of

min
φ∈C

{∫
Ω×Γ

ρ(x, γ)|∂γφ| dxdγ + λ

∫
Ω×Γ

|∇φ| dxdγ

}
, (6.3)
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C = {φ : Ω× Γ→ [0, 1] : φ(x, 0) = 1, φ(x, γmax) = 0} , (6.4)

where ρ : Ω×Γ→ R is the data fidelity term measuring the point-wise color
differences between the two images. The second term is the regularizer term,
weighted by a free parameter λ ∈ R. The total variation norm as regularizer
yields piecewise smooth solutions while preserving edges. Furthermore it is
convex which allows for global optimization of the functional. The constraint
set C ensures that the global minimum of (6.3) is not the trivial solution.
This is ensured by constraining φ = 0 in the disparity layer closest to the
camera optical center and φ = 1 in the last layer. Optimization is carried
out in the three-dimensional space Ω×Γ which enables convexity also in the
data term. The optimization problem (6.3) can be globally optimized using
a primal-dual optimization scheme [120].

The maximum disparity γmax ∈ R depends on the prevailing setup of the
scene, i.e. the camera parameters and the distance of the camera capturing
positions to each other and to the scene. When these distances are roughly
known, a reliable estimate for γmax can be determined.

Detection of Occlusions

Occlusions can be detected with a forward-backward-check [54]. This means
that disparity maps are computed in both directions, i.e. a second disparity
map is computed with the left and right image I1 and I2 exchanged. Compar-
ing the results provides additional information on the confidence how reliable
the disparity estimate is at a given point, and allows for the detection of in-
consistencies. Thresholding detects pixels where the discrepancy between the
left and right disparity map is large, and assigns them the minimum disparity
value v = 0. In the experiments shown in this chapter, the threshold was set
to 20 pixels for the difference of disparities.

6.2.2 Matching Costs for Point Correspondence

In order to deduce depth information from the rectified images, pixel pairs
that show the same object point have to be identified. The data term ρ in
(6.3) measures color or intensity similarities between two pixels. This section
will describe two of the most commonly used methods for estimating point
correspondences.

Absolute Differences

The absolute difference matching cost is based on the brightness constancy
assumption (BCA) which is also a basic assumption for optical flow. The
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(a) Input Image (b) BCA, point-wise (c) NCC, patch-based

Figure 6.2: Disparity map reconstruction using different data terms. A patch
size of 3×3 was chosen for the NCC.

BCA assumes that surfaces are lambertian, which implies that an object
point has the same pixel color in both images. Examples for non-lambertian
surfaces are shiny, transparent and reflecting surfaces.

The similarity between two intensities is measured by

ρ(x, γ) = |I1(x)− I2(x+ γ)|. (6.5)

The absolute difference is a pixel-wise matching cost that is based on the
difference of color values or intensity values. If I1(x) and I2(x+γ) depict the
same object point, the difference (6.5) should be minimal.

Normalized Cross Correlation

The normalized cross correlation (NCC) is a similarity measure for patches.
It is widely used for computing matching costs in stereo reconstruction [70].
The NCC measures the similarity of the structure in a local neighborhood
N around a point x1 in image I1 and a point x2 in image I2:

NCC(x1, x2) =

∫
N (I1(x)− Ī1)(I2(x)− Ī2) dx√∫

N (I1(x)− Ī1)2 dx
∫
N (I2(x)− Ī2)2 dx

, (6.6)

where Ī1 and Ī2 are the mean intensities in the region N . The NCC is
invariant to additive and multiplicative intensity changes. Robustness can
be increased by considering patch distortions [21] according to an estimate
of the local surface geometry.

Fig. 6.2 shows a comparison of disparity maps computed with the BCA
dataterm (6.5) to NCC (6.6), using an example image pair from the mid-
dlebury data set [126]. Other methods for computing the matching costs in-
clude the patch-based census and rank transform [147] or point-wise matching
based on mutual information [71].
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(a) Total variation (b) Edge weight D1 (c) Edge weight D2

Figure 6.3: Disparity map reconstruction using different total variation based
regularization terms. Including image edges to the regularizer (b,c) yields
more accurate reconstructions than non-weighted total variation (a).

6.3 Edge-Based Regularization for Stereo Re-
construction

The reconstructed disparity maps can have inaccurate shapes at object bound-
aries, because the region-based matching costs are defined point-wise or
patch-wise. However, the edges of the input images can yield a reliable
indicator for object boundaries. Incorporating image edges to disparity map
estimation can be formulated using weighted and anisotropic regularizations.

Anisotropic regularization is a weighted regularization where weights are
different for different directions. Applications for anisotropic regularization
include data compression [127], object tracking [139] and optic flow [145].

6.3.1 Edge-Enhancing Diffusivity

The weighted total variation norm was introduced in [29] for a convex relax-
ation method of edge-based image segmentation. The authors suggested to
weight the regularizing term with an edge detection function g : Ω → R. A
common choice for g in edge-based image segmentation is

g(x) = exp(−α|∇I1(x)|) (6.7)

with the free parameter α ∈ R. It yields segmentation results where the
contour lines prefer the edges of the input image. In the following, a trans-
formation of this concept to total variation based stereo reconstruction is
presented.

The following variational minimization problem for stereo reconstruction
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weights the regularization term in x direction according to the image edges:

min
φ∈C

{∫
Ω×Γ

ρ(x, γ)|∂γφ| dxdγ + λ

∫
Ω×Γ

(g(x)|∇xφ|+ |∇γφ|) dxdγ

}
. (6.8)

A similar energy model was presented in [139] for object tracking.

6.3.2 Anisotropic Diffusion Tensor

Using anisotropic regularization for functional (6.3) yields the functional

min
φ∈C

{∫
Ω×Γ

ρ(x, γ)|∂γφ| dxdγ + λ

∫
Ω×Γ

∇φ>D∇φ dxdγ

}
, (6.9)

where the total variation norm is weighted with a diffusion tensorD : Ω×Γ→
R3×3 [66] and the constraint set C is defined as in (6.4).

The disparity map v is defined in the image domain Ω while the diffusion
tensor in (6.9) is defined on Ω×Γ. The following diffusion tensor corresponds
to the weighted regularization in (6.8):

D1 = diag(g(|∇I1|), g(|∇I1|), 1). (6.10)

A 2 × 2 diffusion tensor based on the image edges is given by D = g nn> +
mm>, where n = ∇I1

|∇I1| and m = n⊥ a normal vector to n. A similar diffusion
tensor was presented in [145] for optical flow.

Based on these Application to stereo reconstruction yields the diffusion
tensor

D2 =

 gn2
1 + n2

2 (g − 1)n1n2 0
(g − 1)n1n2 gn2

2 + n2
1 0

0 0 1

 , (6.11)

where n1 and n2 are the components of n.
Fig. 6.3 shows a comparison of disparity map estimation with three dif-

ferent total variation based regularizations, using the same input image as
in Fig. 6.2(a): a) non-weighted regularization, b) regularization weighted
with diffusion tensor D1 (6.10) and c) regularization with diffusion tensor D2

(6.11). For the diffusivity g the term in (6.7) was used. The figure shows
how the incorporation of image edge information can improve reconstruction
results compared to uniformly weighted TV.
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6.4 Stereo Reconstruction for Phenotyping of
Grapevines

The demand for high throughput phenotyping in plant research has been
increasing during the last years due to large experimental sites. Hence, time-
efficient and automated processes are essential for improved field phenotyp-
ing. A major challenge for sensor based phenotyping in vineyards is the
distinction between foreground (grapevine) and background (field). This
section presents a method for image-based phenotyping of grapevine using
RGB images captured from a moving platform in a vineyard. The method
combines stereo reconstruction and image segmentation based on color and
depth. The convex formulation allows for global optimization and solutions
independent of initializations. The algorithms are implemented on graphics
processing units (GPU) for time-efficient parallel processing.

The presented approach enables non-invasive, fast and objective estima-
tion of plant growth. Robustness of the method is shown on images taken
from a single camera directly in the field without preparing the scene. Re-
sults show efficient and robust reconstructions of surface areas. Furthermore,
the images are segmented to classes corresponding to ’leaf’, ’stem’, ’grape’
and ’background’ using depth and color information. These classification
facilitates determination of phenotypic indicators including the 3D leaf sur-
face area and leaf-to-fruit ratios. The visible leaf areas of two breeding lines
of grapevine were monitored during a season and used for identification of
unknown growth habits and detection of differences in growth rates.

The main contribution of this section is the combination of convex relax-
ation methods for stereo reconstruction and image segmentation to a robust
method for field phenotyping. Precise depth reconstruction and robust back-
ground subtraction enable fast image acquisition without the necessity of
artificial backgrounds. Depth and color segmentations further enable objec-
tive estimation of plant growth. This advance provides a promising tool for
high-throughput, fully automated image acquisition, e.g. for field robots.

6.4.1 Non-Invasive Methods for Plant Phenotyping

Grapevines (Vitis vinifera L ssp. vinifera) are highly susceptible to several
fungal diseases (e.g. powdery mildew and downy mildew) and require sub-
stantial effort in the area of plant protection. This is the major reason for
extended grapevine breeding activities aiming at selection of new cultivars
with both high disease resistance and high quality characteristics [138]. Due
to its properties as a perennial woody crop plant, analysis of growth habits

105



and yield traits of grapevine can only be evaluated in the field. The aim
of analyzing growth habits of grapevine is to improve grape yield and wine
quality [131]. Important indicators for grape quality include the geometric
dimensions of canopy [101], and the ratio between vegetative (shoots and
leaves) and fruit growth [131].

For the analysis of grapevine foliage directly in vineyards indirect and
non-invasive methods are essential. Related methods have been presented
using 3D scanners [101], ultrasonic sensors [102], LiDAR scanners [15], Green-
seeker [16], plant canopy analyzer LAI-2000 [16, 40, 75] or model based strate-
gies [98]. Other methods require destructive sampling from direct measure-
ments with a leaf area meter [17, 76]. Active optical sensors like laser scanners
directly obtain 3D point clouds of a scene, however provide no volumetric
information. High-precision laser scanners as have been used in [116] are one
of the most important sensors to obtain precise 3D point clouds under con-
trolled laboratory conditions. Laser scanners for field applications are less
often used because most are expensive, bulky and the data acquisition pro-
cess is slow. New generation laser scanners, e.g. the Leica P20 enable a much
faster acquisition of high-resolution 3D point clouds with one million points
per second and a precision of up to 3 mm. However, the opportunity of scan-
ning from a movable platform in the field is difficult due to the susceptibility
against concussions. RGB-D or structured light sensors like Kinect are fast
data capturing methods for both color and depth images. They are special-
ized for indoor environments, and can fail in scenes with bright illuminations
or large distances [12], making them unsuitable for a usage in the field. Time-
of-Flight (ToF) cameras usually have similar difficulties with sunlight [78].
For applications under controlled laboratory or greenhouse conditions these
sensors are a practical tool for accurate phenotyping experiments.

Standard RGB cameras for automated analysis of grapevine growth are
less commonly used. Respective methods are based on single images, which
requires the application of artificial backgrounds [45], or reconstruction of
sparse 3D information [122, 69].

The aim of this section is to develop a method that uses inexpensive
consumer cameras capturing RGB images for reconstruction of dense depth
maps. Dense 3D information can help to reduce size distortions in images
when parts of the plant are closer to the camera than others. The use of a
standard consumer camera enables fast data acquisition from large amounts
of grapevine, and yields high-resolution color images. Being a passive op-
tical sensor, bright sunlight does not interfere with the data capturing pro-
cess, providing a practical candidate for a robust, fast and portable sen-
sor employed directly in the field. In the following, a novel approach for
non-invasive, fast and objective field phenotyping of grapevine canopy di-
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(a) Input image (b) Disparity map (c) Segmentation

Figure 6.4: Image segmentation to ’leaf’, ’stem’ and ’background’. Depth
maps are computed from pairs of RGB images, and are used in combination
with color for a segmentation of the image domain. The segmentations enable
objective analysis of phenotypic indicators like the visible leaf area which can
be applied to growth analysis or computation of fruit-to-leaf ratios.

mensions is introduced. A simple setup for stereo image acquisition using
a standard consumer camera is used for stereo reconstruction. The recon-
struction of dense depth maps enables automated detection of grapevine in
the foreground. Furthermore, image segmentation using depth and color in-
formation allows for objective quantification of visible canopy dimensions.
This includes quantification of the visible leaf area, monitoring of grapevine
growth and estimation of fruit-to-leaf ratios.

6.4.2 Segmentation of Grapevine using Color and
Depth

90 images of grapevine plants were captured using a standard RGB camera
from a moving platform at five different dates during a season. Two images
of each plant were captured per date for the stereo reconstruction. The
choice of ’Riesling’, ’Villard Blanc’ and two breeding lines was based on the
similar phenology of genotypes, which implies similar time of bud burst and
flowering.

Depth maps for each image pair were computed using the method de-
scribed in Sec. 6.3.2. Optimization in the 3D space Ω × Γ requires the re-
spective amount of memory and run-time. The shown examples were com-
puted on an Nvidia GeForce GTX Titan GPU using the Cuda programming
language.

To compute the image segmentation, each pixel in the image domain Ω
is assigned a label l ∈ L = {1, . . . , n}. The segmentation is computed using
information from both the color images and corresponding depth maps. The
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(a) One of two (b)Reconstructed (c) Green-blue (d) RGB-D
input images depth map color channel segmentation

Figure 6.5: (a): Input images are taken from a moving platform in the field.
(b): Disparity maps are computed from the rectified input images. (c):
Subtracting the blue from the green color channel yields a robust classifier
for vegetation. (d): Segmentation based on color and depth.

following minimization problem computes a segmentation u : Ω×L→ {0, 1}
of the RGB and depth image to n regions:

min
u∈B

{
n∑
i=1

(∫
Ω

fi(I
green
1 − Iblue

1 , d)ui dx+ ν

∫
Ω

|∇ui| dx
)}

, s.t.
n∑
i=1

ui = 1.

(6.12)
A convex minimization problem is obtained when u is relaxed to continuous
functions and can then be solved globally optimal [119]. The data terms
fi : Ω × L → R are computed using the depth map d(x) and color image
I1(x) (the reference image of the stereo pair). It is based on the assumption
that the background is farther away from the camera capturing position than
the foreground plant. The foreground is further divided to ’leaf’ and ’stem’.
Subtracting the blue from the green color channel has been shown to be a
robust classifier for vegetation, since it enhances green regions [105]. For an
example of a green-blue color channel see Fig. 6.5 (c).

The experiments showed that a two step approach yields more accurate
results than combining the background subtraction and segmentation of plant
components. The data terms are based on two parameters cdepth ∈ R and
ccolor ∈ R that are related to the maximal distance of the plant to the camera
and the saturation of the green of the leaves, respectively. First, the image
domain is segmented using the reconstructed depth map d. The function

f1(x) = d(x)− cdepth (6.13)

implements the assumption that the background is farther away from the
camera capturing position than the foreground plant. The parameter cdepth

should be set to the maximum depth that the foreground plant can obtain.
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(a) Input image (b) Segmentation (c)Ground truth (d)Confusion matrix

Figure 6.6: Evaluation of classification results. (a): Input image (b): Com-
puted segmentation (c): Reference segmentation from a manually labeled im-
age (d): Confusion matrix for comparing both types of classification results.
Computed segmentations are shown in rows and reference segmentations in
columns. Lv - ’Leaf’; St - ’Stem’; Bg - ’Background’.

It can be assumed constant for standardized image capturing processes, or if
distances of the camera capturing positions and plants vary only in a specified
range.

Second, the foreground is segmented to ’leaf’ and ’stem’ based on the
difference of the green and blue color channel:

f2(x) = Igreen
1 (x)− Iblue

1 (x)− ccolor. (6.14)

The parameter ccolor is mainly dependent on illumination and weather con-
ditions of the scene. In the experiments shown in this chapter, ccolor = 0.08
was determined as a suitable value, when RGB values range from 0 to 1.

6.4.3 Evaluation and Error Analysis

The major aims of this study were 1) a background subtraction from field
images using the reconstructed disparity maps, 2) a segmentation of the
visible leaf area, and 3) a quantification of leaf areas to enable objective
phenotyping of grapevine growth.

Ten images and 32 randomly selected image sections were analyzed to
compare the segmentation results to manually segmented ground truths. Fig.
6.6 shows an example for an input image (a), the computed segmentation
(b) and a manually segmented ground truth (c). The confusion matrix (d)
shows that the major percentage of the three regions was correctly classified,
while best results were obtained for the background subtraction with 97 %
of correct classifications.

For the monitoring experiment, standard deviations of leaf areas of the
reference cultivars ’Riesling’ and ’Villard Blanc’ were computed. From the
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(a) Linear regression analysis (b) RMSE

Figure 6.7: Error analysis of the reconstructions. (a): Linear regression anal-
ysis (segmentation results versus ground truth). (b): Frequency distribution
of the observed residue and Root-Mean-Squared-Error (RMSE) (residuum
versus frequency in %).

breeding lines only one plant per genotype was available and thus, no geno-
type specific variations are examinable at a time point. The regression anal-
ysis showed an R2 coefficient of determination R2=0.93 (Fig. 6.7 (a)). This
implies that the regression line approximately represents the reference data.
As shown in Fig. 6.7 (b), the residue has a normal frequency distribution
and a Root-Mean-Squared-Error of RMSE = 5.5 %. The figure shows that
50 % of the predicted data shows a residuum between -2.5 and 2.5 %. 17 %
of the data points shows a residuum greater than -/+7.5 %.

6.4.4 Reconstruction of the Visible Leaf Surface Area

Visible leaf surface areas are used to objectively evaluate yield efficiency.
The segmented images can be used to compute surface areas of the respec-
tive regions. With additional 3D information, absolute surface areas can be
computed. This allows for a scaling of pixel sizes according to their depths.
This can balance out the fact that some parts of the scene are closer to the
camera and thus receive a disproportionally larger area in the projected 2D
plane than the grapes that are farther away.

The 3D visible leaf surface area is estimated from the classified images and
the dense depth maps. It is computed by weighting the pixel sizes according
to their depth. Using the depth maps, the projection effect can be compen-
sated by computing the relative sizes of the depicted object parts to each
other. The 3D surface area of region Ωi is computed from the segmentation
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(a) Input Image (b) Segmentation (c) 3D Surface

Figure 6.8: Segmentation of grapes for estimation of fruit-to-leaf ratios. The
input image (a) is segmented to regions corresponding to ’grape’, ’leaf’ and
’background’ (b). The actual ratio of grapes per leaf can be determined using
either the 2D image domain or the computed 3D surface (c).

u and depth map d by integrating the point-wise areas in Ωi:

Area(Ωi) =

∫
Ω

d(x)2ui(x) dx, (6.15)

where the size of a pixel is computed as d(x)2, normed by the focal length
f of the camera, as shown in Sec. 5.3.2. If a reference measurement like the
baseline is given, the absolute area can be computed, otherwise it can be
computed up to a constant factor. For applications where relations between
areas are computed like fruit-to-leaf-ratios, the absolute scale has no effect
on the result because it gets factored out.

6.4.5 Estimation of Fruit-to-Leaf Ratios

The phenotypic class ’grape’ was implemented to estimate fruit areas. The
area of the ’grape’ and the ’leaf’ regions were computed in two different
domains: 1) in the two-dimensional image plane (Fig. 6.8 (b)), and 2) in
the three-dimensional space, using 3D information from the computed depth
maps (Fig. 6.8 (c)). For 3D estimation, a baseline of 1 m was assumed. For
computations in 3D, actual sizes were estimated for each class in cm2. Both
2D and 3D data were used for the computation of fruit-to-leaf ratios. Tab.
6.1 shows a comparison of the grapes-to-leaf ratio in 2D (%) and 3D (cm2).
In comparison to the results computed in 2D the leaf area is increased by 10
% when additional 3D information is considered. Accordingly, this results in
a 10 % decreased fruit-to-leaf ratio.
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Area in 2D: 42.61 % leaves
26.07 % grapes Grape-to-leaf ratio in 2D: 0.61

Area in 3D: 1725.45 cm2 leaves
878.02 cm2 grapes Grape-to-leaf ratio in 3D: 0.51

Table 6.1: Computation of fruit-to-leaf ratios in 2D and 3D. The depth
weighted 3D space allows for more accurate results than the 2D image plane.

6.4.6 Monitoring of Grapevine Growth for Improved
Field Phenotyping

An important application of the presented method is the monitoring of
growth habits of breeding material with unknown properties in compari-
son to traditional cultivars used as a reference. Fig. 6.9 shows some of the
images that were used for monitoring. They show two cultivars at different
time points during a season. Fig. 6.10 shows the progression of leaf area
per breeding line and average leaf areas of the traditional cultivars. For all
genotypes, an increasing leaf area was measured between the 90th day and
the end of the experiment on day 160. These differences in leaf areas were
used for objectively scoring the plant growth. As also shown in Fig. 6.10, the
genotypes offer the major differences in plant growth at day 120, although
’Villard Blanc’ showed only a minor increase in leaf area. Another two weeks
later two groups were observed: group 1 (’Riesling’ and Breeding line 1) and
group 2 (’Villard Blanc’ and Breeding Line 2). At day 160, breeding line 1
almost displayed the maximum feasible leaf area of 100 %. This genotype
also exhibited the fastest growth during the entire experiment. The second
breeding line grew at a slower rate and had a smaller leaf area at day 160
and thus seems to be more related to ’Villard Blanc’. Furthermore, the data
was used for a comparison of growth rates. The figure shows that the aver-
age leaf area of ’Riesling’ rises rapidly from 0 % (104th day) to 26 % (119th
day). In contrast, ’Villard Blanc’ shows a growth rate of only 2 % in average
at the same time. Approximately 40 days later, average leaf areas of 89 %
for ’Riesling’ and 67 % for ’Villard Blanc’ were determined. Both cultivars
showed an increase of the average leaf area of approximately 65 %.

’Riesling’ shows a ten times faster growth compared to the cultivar ’Vil-
lard Blanc’. In addition, two groups of growth habits can be observed, which
enable an objective evaluation of the investigated breeding lines. Thus, the
presented method provides a promising tool for the identification of e.g. geno-
type specific differences in growth rates or for the investigation of the effi-
ciency of plant protection efforts. This kind of fast, objective and compar-
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April (119 DOY) May (136 DOY) June (160 DOY)

26% leaves 56% leaves 86% leaves

2% leaves 30% leaves 72% leaves

Figure 6.9: Image-based monitoring of grapevine growth. First and second
row: Increasing leaf area of a ’Riesling’ (medium shoot growth) from April
(26 %) to June (86 %). Third and fourth row: Increasing leaf area of a
’Villard Blanc’ (weak shoot growth) from April (2 %) to June (72 %).
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Figure 6.10: Visible leaf areas for different grapevine cultivars (day of the
year versus computed leaf area in %). Differences in leaf area allow for
monitoring of vegetative growth. Arrows denote the day of the year when
bud burst and begin of flowering was scored (reference evaluations). Mean
values and standard deviations are shown for ’Riesling’ and ’Villard Blanc’.
Two breeding lines with unknown growth characteristics were compared to
traditional cultivars.

ative monitoring of plant development further enables the study of growing
dynamics with regard to climatic influences or soil properties.

6.5 Conclusion
This chapter has described how convex relaxation techniques can be used for
stereo reconstruction using functional lifting. An extension of the method to
anisotropic regularization was presented, which results in depth reconstruc-
tions whose discontinuities are better aligned with the image edges compared
to total variation regularization. It was shown that the consideration of image
edges indicated by the gradient norm can significantly improve reconstruc-
tion results. Anisotropic weighting in image direction by an edge detector
was shown as an efficient way to obtain more accurate disparity maps.

Furthermore an image-based approach for field phenotyping of grapevine
growth was presented. The method uses RGB image pairs captured in un-
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prepared outdoor environments using a standard consumer camera. Images
of the same plants were captured at different dates during a season and
were processed for growth analysis. The ability to accurately and quickly
monitor phenotypic plant growth, particularly after bud burst, facilitates an
improvement to vineyard management, and the early detection of growth de-
fects. The method provides a notable advance and a promising tool for high-
throughput, fully automated image acquisition, e.g. by using field robots.

The next chapter describes a method for multi-view stereo reconstruction
which also can be applied to plant phenotyping. Whereas in this chapter a
high-throughput method for reconstruction of depth maps in difficult outdoor
situations was presented, the next chapter focuses on highly detailed, full 3D
models.
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Chapter 7

Multi-View Stereo Reconstruction
with Convex Relaxation

This chapter presents a globally optimal 3D geometry reconstruction method
based on the convex relaxation method for image segmentation described
in Chapter 3. Furthermore this chapter presents a run-time and memory-
efficient implementation with octrees that is specialized to high-resolutions
and is thus suitable to reconstruct objects with thin structures. Volumetric
3D models are computed in a convex optimization framework from a set of
RGB input images depicting the object to reconstruct from different view
points. Results show accurate 3D models, while an increase in resolution
of a factor of up to 2000 is achieved in comparison to the use of a uniform
voxel based data structure, making the choice of data structure crucial for
feasible resolutions. Since thin structures typically occur in plant geome-
try, an application of the presented method to plant shape reconstruction is
presented.

Parts of this chapter have been published in [4, 8, 9, 10].

7.1 Introduction
Reconstructing the 3D geometry of a scene from a set of images is one of
the most studied problems in computer vision. The general formulation has
attracted a variety of researchers to tackle the problem. The problem of
estimating the 3D structure of a scene from a collection of 2D projections in
images is a so-called ill-posed problem. Ill-posed in this context means that
the solution is not unique. This is due to the fact that the projection process
during the image capturing reduces the dimension by 1.

Variational methods have been established as the preferred method be-
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(a) 4 of 25 (b) Camera (c) Reconstructed
Input Images Positions 3D Model

Figure 7.1: Volumetric 3D reconstruction using an octree data structure. The
reconstructed 3D model was computed from 25 input images and consists of
∼12 million octree nodes.

cause they provide a well defined mathematical concept with provable op-
timization and convergence guarantees. Efforts have been made using level
sets [49, 57], triangle meshes [42], graph cuts [90] and convex formulations
[9, 64]. Some of these concepts will be discussed in Sec. 7.2.

This chapter presents a convex optimization method for volumetric 3D
reconstruction from a set of RGB images, as well as an extension specialized
on accuracy and high-resolution. The method is implemented in a convex
framework allowing for global optimization of the chosen model which makes
it independent of initializations. The underlying data structure is based on
octrees, which enable a fast and memory-efficient implementation, making
high resolutions possible. The experiments show that the choice of data
structure is not only beneficial for reducing run-time and memory require-
ments, but crucial to make high-resolutions possible.

Fig. 7.1 shows results of the proposed method for a 3D reconstruction
from 25 images. The use of octrees enables a more than 2000 times higher
resolution compared to a uniformly spaced voxel grid using the same amount
of memory. Especially in the case of thin structures, the data structure is
critical to avoid memory limitations.

The outline of this chapter is as follows: Sec. 7.2 will give a short overview
of related work in the field of multi-view stereo reconstruction from images as
well as memory-efficient implementations. In Sec. 7.3 a convex formulation
for multi-view stereo reconstruction is described that allows for continuous
global optimization. Sec. 7.4 presents a memory-efficient implementation
for volumetric reconstruction of thin structures based on the octree data
structure. Sec. 7.5 will describe how the method can be useful for plant
phenotyping, using the example of barley. Sec. 7.6 will give a summary of
the main results.
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7.2 Related Work
Convex optimization methods provide a powerful technique for inferring the
3D structure of an object from a set of images in a globally optimal way
[9]. Volumetric methods as used in [9, 64] allow for reconstructions of dense
surfaces, at limited resolution due to large memory requirements of the un-
derlying data structures. Point cloud reconstructions from images as used in
[55] require less memory while neglecting density. 3D reconstruction based
on minimizing the reprojection error has been presented for triangle meshes
in [42] and for level sets in [57]. An early work on variational methods for
3D stereo reconstruction is the stereoscopic segmentation presented in [146].

3D reconstruction of thin structures requires special consideration to the
fine scaled features. The usual assumption that the object to reconstruct is
compact does not apply. Reconstruction of thin structures based on silhou-
ette constraints as proposed in [38] allows to preserve fine structures while
the uniform voxel based data structure still limits the resolution. For thin
objects volumetric approaches yield large amounts of empty space, implying
the need for more efficient non-uniform data structures.

Originally introduced for computer graphics, octrees [103] provide a me-
mory-efficient data structure for large scale 3D objects. Large-scale recon-
structions for fusion of RGB-D images into a volumetric model have shown
that an octree based data structure avoids memory limitations in 3D recon-
structions [133].

A non-hierarchical memory-efficient approach for volumetric representa-
tions is the narrow band method. The narrow band method was introduced
in 1995 for volumetric 3D reconstruction with level sets [13]. Narrow band
methods allow for run time improvements by optimizing the model inside
a narrow band of a current estimate of the surface, instead of the whole
volume. Depending on the implementation, a memory reduction can also
be achieved. Narrow bands for 3D reconstruction in graph cuts have been
presented in [90].

7.3 A Convex Formulation for Multi-View
Stereo Reconstruction

This section presents a volumetric method for 3D reconstruction from a set
of images. Volumetric methods optimize an implicit representation of the
surface to reconstruct inside a partitioning of a bounding box into a grid of
voxels. A voxel is a small volumetric element and can be considered as the
three dimensional extension of an pixel. Volumetric methods try to estimate
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(a) (b) (c) (d)

Figure 7.2: Volumetric 3D reconstruction of a rabbit figure, computed from
33 input images. The resolution of the model is 216× 288× 324.

for each voxel if it belong to an object or the empty background space.
The surface to recover is then defined as the boundary of the set of voxels
belonging to an object. For an example see Fig. 7.2.

We consider a continuous image domain Ω ⊂ R2. Given a set of m input
images I1, . . . , Im : Ω→ R depicting the object from different view points, a
surface Σ ⊂ R3 is computed that gives rise to the images. To reconstruct a
full 3D model, each object point must be visible in at least two images. Fig.
7.1 (b) shows an example for 25 camera positions, computed with software
of [99] and [132].

7.3.1 Variational Surface Reconstruction

A variational method for 3D reconstruction in level sets was presented in
[49]. Minimizing the energy model

E(Σ) =

∫
Σ

g(s) dA (7.1)

yields a weighted minimal surface problem. Here g : V → R+ measures
a photoconsistency of the 3D object point. Photoconsistency measures the
similiarity of the object point projected to the input images. It can be
computed using one of the methods described in Sec. 6.2.2.

7.3.2 Convex Relaxation

For global optimization, functional (7.1) needs an additional regional data
term, because the global minimum of (7.1) is the empty set. The following
non-convex minimization problem is based on the surface Σ and regional data
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terms for the inside and outside regions:

min
Σ

{∫
Σ

g(s) dA− ν
∫
int(Σ)

fobj(x) dx− ν
∫
ext(Σ)

fbck(x) dx

}
. (7.2)

It consists of a surface based data term g and regional data terms fobj and fbck.
The first term integrates the surface Σ, weighted with a photoconsistency
measure g : V → R.

A global optimization method for volumetric multi-view stereo recon-
struction was presented in [9]. Convex relaxations of (7.2) are achieved by
introducing an implicit representation of the surface Σ with u : V → [0, 1],
defined on a volume V ⊆ R3. The surface Σ is represented implicitly by an
indicator function 1Σ : V → {0, 1} that defines a segmentation of the volume
V to object, i.e. 1Σ(x) = 1, and background, i.e. 1Σ(x) = 0. Relaxing
the range to the continuous range [0, 1] allows for convex optimization of
the corresponding segmentation u : V → [0, 1]. The following minimization
problem is a convex formulation of (7.2):

min
u∈B

{∫
V

g(x) |∇u|+ ν

∫
V

f(x)u(x) dx

}
, (7.3)

where f is the data term measures the regional terms for the foreground and
background region:

f(x) = fobj(x)− fbck(x). (7.4)

The thresholding theorem that was shown in [34] for a convex formulation
of image segmentation, applies here as well, as has been shown in [9].

7.3.3 Surface Optimization

The global minimium of (7.3) can be computed via a gradient descent or
SOR scheme as shown in [9]. The Euler-Lagrange equation is a necessary
condition for a minimum of (7.3) and gives rise to the gradient descent update
scheme:

0 = ν div
(
g
∇u
|∇u|

)
− f. (7.5)

Fig. 7.3 shows reconstruction results for the dino from the middlebury
data set [126].
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(a) (b) (c) (d)

Figure 7.3: Volumetric 3D reconstruction of a dino figure, computed from 48
input images of the middlebury data set.

7.4 Multi-View Stereo Reconstruction with
Octrees

For reconstruction of thin structures, the volumetric approach reaches its lim-
its due to the limited resolution of the voxel grids. Increasing the resolution
reaches the feasible amount of memory even for relatively low resolutions as
will be shown in Sec. 7.4.3. Furthermore a large set of empty voxels is wasted
in the background, that can be merged to larger blocks of voxels needing less
memory. This implies the advantage of hierarchical data structures for the
volumetric approach. In this section, octrees as the underlying data struc-
ture are proposed for accurate reconstructions of thin structures.

7.4.1 Surface Optimization with Volume Constraints

The surface is optimized inside the visual hull [92] H ⊂ R3 which is de-
termined by silhouette images. The silhouette images Si : Ω → {0, 1}, i =
1, . . .m are defined as Si(p) = 1 at points p ∈ Ω that depict the plant and
Si(p) = 0 otherwise, i.e. at points that depict background. The silhouette
images can be computed using an interactive image segmentation method
like the one presented in [140]. The visual hull is the smallest volume whose
projections to the input images cover the silhouettes of the object.

Additional volume constraints ensure a stable substance of the recon-
structed object. Volume constraints have been used for example in single
view reconstruction [137] and image segmentation [3, 62].

The surface Σ is represented implicitly by an indicator function 1Σ : H →
{0, 1} that defines a segmentation of the volume enclosed by the visual hull
H. Relaxation to the continuous range [0, 1] allows for convex optimization
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of the corresponding segmentation u : H → [0, 1].
We consider the following convex optimization problem

min
u

{∫
H
g(x) |∇u|+ ν

∫
H
f(x)u(x) dx

}
, s.t. V(u) ≥ c, (7.6)

where V refers to the volume of the object, i.e.

V(u) =

∫
H
u(x) dx. (7.7)

and c ∈ R is the minimum volume. In the experiments shown in this chapter,
the volume constraint parameter was set to c = 0.9 · |H| which implies that
the volume of the segmented object should be at least 90% of the volume
enclosed by the visual hull. The data term f : H → R, weighted with ν ∈ R,
implements the assumption that the visual hull is a rough estimator for the
object and is based on the distance of a point to the border ∂H of the domain:

f(x) = 1− min
x̂∈∂H

‖ x− x̂ ‖ . (7.8)

For the m input images I1, . . . , Im : Ω → R the photoconsistency g is
computed as the intensity difference of the best matching image pair:

g(x) = min
i,j∈{1,...,m},i 6=j

|Ii(Πi(x))− Ij(Πj(x))|, (7.9)

where Πi : R3 → Ω is the projection of a 3D point x to image Ii. The
photoconsistency term g(x) is used as a weighting function for the gradient
norm |∇u| to direct the surface through points whose projections to the im-
ages have similar intensity values. This formulation of the photoconsistency
assumes that the surface to reconstruct is Lambertian, i.e. not reflecting or
translucent.

A minimizer of (7.6) is computed using a primal-dual optimization [33]
scheme with gradient descent in the primal variable u and gradient ascent in
the dual variable p : H → R3

pt+1 = πC
(
pt + τp∇ut

)
(7.10)

ut+1 = πV
(
ut + τu(div(pt+1)− νf)

)
(7.11)

and the projections are given by

πC(p) =
p

max
{

1, |p|
g

} (7.12)
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Depth 7 Depth 8 Depth 9 Depth 10 Depth 11 Depth 13

Figure 7.4: Octree data structure for increasing resolution, i.e. depth of the
tree. The figures show the bounding boxes of all leaf nodes in the deepest
level of the octree. The data structure is built in a top-down method where
each level is complete in itself but can be refined for higher resolution.

πV(u) = u+ max

{
1

|H|

(
c−

∫
H
u(x) dx

)
, 0

}
. (7.13)

The time steps τp and τu were set to τp = τu = 0.3. The projection πC was
presented in [31]. The projection πV projects the current u to the volume
constraint V(u) ≥ c, and is computed analogue to the area constraint in
[3]. The boundary conditions are Dirichlet conditions for the gradient, i.e.
∇u|∂H = 0, and Neumann conditions for the divergence, i.e. div(p)|∂H = p.

7.4.2 A Memory-Efficient Data Structure using Octrees

An octree is a tree data structure whose nodes have either eight or no sub
nodes. Nodes with eight sub nodes are denoted as inner nodes and nodes
without sub nodes as leaf nodes . Octrees provide a memory-efficient data
structure for 3D volumes.

Building the Octree

The octree data structure is computed from the silhouette images in a top-
down approach starting at a root node enclosing the whole scene depicted in
the images. Subsequently, nodes are subdivided depending on the structure
of the visual hull. Fig. 7.4 shows an example octree at different steps of the
iteration.

Each node gets a assigned a bounding cuboid with coordinates C := (xmin,
ymin, zmin, xmax, ymax, zmax) that define the volume enclosed by the node. The
camera positions and viewing angles define a bounding cuboid which define
the respective coordinates of the root node. The nodes are subsequently di-
vided into eight sub-nodes of equal size if the visual hull passes the bounding
cuboid of the node. The visual hull passes the cuboid if the projection of the
cuboid’s faces to the images contains both plant and background for at least
one of the m input images. The nodes are refined until a predefined maximal
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Figure 7.5: Volumetric 3D Reconstruction of a barley, computed from 25
RGB images. The dense surface is optimized in the leaf nodes of deepest
level in an octree of depth 14.

depth is reached that corresponds to the desired resolution. In each iteration
the octree contains the visual hull in the leaves of the deepest level. Note
that it is not necessary that the bounding cuboid is as small as possible since
the subsequent subdivision of the data structure will prevent the allocation
of too many nodes.

Neighborhood Connectivity of Nodes

To compute the derivatives for the gradient and divergence operators in the
optimization update steps (7.10) and (7.11) each leaf node in the octree re-
quires access to the function values of its neighboring nodes. Each node
stores a reference to its parent node, and the inner nodes also to the eight
sub nodes. Storing additional references to the six neighboring nodes respec-
tively saves run-time while needing more memory. The neighboring nodes
are computed for each node every time when access to it is needed. We
chose not to precompute them, because experiments showed that the run-
time improvement is not significant. Due to the bounding cuboid each node
has defined, neighboring nodes can be found by its coordinates via traversing
one path of the tree from the root to the node. The respective run-time is
in O(log(n)), where n is the number of nodes in the octree and log(n) is the
maximal depth.

7.4.3 Performance Evaluation

The method is evaluated with respect to accuracy and memory requirements
for 3D reconstructions of barley.

High-Resolution Volumetric 3D Reconstruction

Fig. 7.5 shows reconstruction results for barley for the input images shown
in Fig. 7.1(a). The images were captured with a standard consumer camera
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(a) Silhouette (b) Close-up (c) Close-up (d) Close-up
projection view 1 view 2 view 3

Figure 7.6: The high-resolution data structure allows for accurate 3D recon-
struction. (a): The silhouette of the reconstructed 3D model is projected to
one of the input images. (b-d): Close-up views visualize the accuracy of the
reconstruction. The similarity of the projected silhouette compared to the
ground truth is 0.96.

at a resolution of 5184 × 3456 pixels. The camera capturing positions were
computed using the software of [99] and [132]. The octree that was computed
to reconstruct the 3D model has a depth of 14 and its computation took
around 30 minutes, making the method suitable for off-line reconstructions.
For a plant of 10 cm height a resolution of 1.8 · 10−6 mm3 is achieved by the
use of the octree data structure.

Accuracy of the Reconstruction

The accuracy of the reconstructed 3D model is measured by projecting its
silhouette to the input images and computing the difference to manually
segmented ground truth images. Since an objective ground truth in 3D is
not available, the projection error is measured in the image domain. Fig.
7.6 shows that the proposed 3D reconstruction with octrees enables accurate
3D reconstruction of fine-scaled structures of the plant. The figure shows
a projection of the reconstructed object to one of the original images. The
similarity of the projected silhouette compared to the manually segmented
ground truth is 0.96. As similarity measurement the dice coefficient was
used, where a value of 1 corresponds to a perfect overlap and 0 to no overlap.
The close-up view in Fig. 7.6 (c) shows an example where the reconstructed
model is inaccurate: the reconstruction does not contain the whole leaf in
the middle of the image. In this case this is due to the fact that the leaf
is not visible in some of the images and the region is hence segmented as
background in 3D.
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Uniform Grid: Octree:
Octree Number of Memory Number of Memory Comparison
Depth Voxels Requirement Nodes Requirement Factor

7 643 1 MB 103 85 KB 12
8 1283 8 MB 3 · 103 240 KB 34
9 2563 64 MB 9 · 103 650 KB 101

10 5123 512 MB 27 · 103 1.9 MB 269
11 10243 4 GB 96 · 103 6.6 MB 621
12 20483 32 GB 413 · 103 29 MB 1129
13 40963 256 GB 2 · 106 172 MB 1524
14 81923 2 TB 15 · 106 1 GB 2048

Table 7.1: Comparison of memory requirements (approximate values) for 3D
reconstruction of the barley depicted in Fig. 7.5 in a uniformely spaced voxel
grid versus octree. Memory limits of a current consumer PC are reached for
the regular grid already at a resolution of 10243, while an octree of depth 14
fits. This makes the octree a suitable data structure for 3D reconstruction
of thin structures.

Performance Analysis

The memory requirements and resolution of the proposed method are com-
pared to a standard volumetric approach using regular grids. A regular grid
is a subdivision of a 3D volume into uniformely sized cuboids, also denoted
as voxels. This yields a data volume with large amounts of empty voxels – in
contrast to the octree with nodes of different sizes depending on the structure
of the shape.

Tab. 7.1 shows a comparison of memory requirements for the octree data
structure and the alternative representation using a regular grid. The values
for the uniform grid were computed for each resolution while the values for
the octree were measured experimentally for the example 3D model shown
in Fig. 7.5. In each row of the table the actual size of a voxel is the same
as the size of an octree node. Due to the connectivity of nodes the memory
requirement for a single octree node is higher than the requirement for a single
voxel, however the overall memory consumption is significantly reduced. For
the uniform grid a resolution of 10243 reaches the limit of a current consumer
PC with 4 GB RAM. The octree of depth 14 requires 1 GB, corresponding
to a voxel volume of 81923. For a plant of 10 cm height, an octree node
inside the visual hull covers a volume of 1.8 ·10−6 mm3, yielding a 2048 times
higher resolution than a voxel of the regular grid fitting in the same memory,
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which covers a volume of 0.0037 mm3. The experiment shows that the choice
of data structure is crucial to make high-resolutions feasible for volumetric
reconstructions.

7.5 High-Resolution 3D Shape Reconstruction
for Plant Phenotyping

Accurate high-resolution 3D models are essential for a non-invasive analysis
of phenotypic characteristics of plants. Leaf surface areas, fruit volumes and
leaf inclination angles are typically of interest. This section shows how the
presented method for 3D multi-view reconstruction method in octrees can
be applied to phenotyping of plants. The thin structures typically occuring
in the geometry of plants can be accurately reconstructed due to the high
resolutions enabled by the use of octrees.

Plant phenotyping increasingly relies on precise 3D models of plants, de-
manding for automated and accurate reconstruction methods specialized for
plant geometry. Applications include the determination of volume and sur-
face dimensions, leaf quantification, and leaf inclination angles [118]. These
applications share the benefit from accurate high-resolution 3D plant mod-
els. Since manual examination of phenotypic characteristics is usually time
consuming and destructive, non-invasive and automated methods are needed
for high-throughput applications and monitoring of specimen over time.

Full 3D models of plants allow for phenoypic analysis including the com-
putation of volumes and surface areas or leaf inclination angles. Further
analysis like monitoring of plant growth is possible since the plants are not
destroyed during the process of reconstruction.

However, phenotyping is a major bottleneck in crop plant research [81],
which strongly benefits of automated approaches especially when dealing
with large datasets. A special importance lies on high-resolution reconstruc-
tion of plant shapes for a better comprehension of phenotypes [44]. Laser
scanners are a capable tool for the aquisition of high-precision 3D point clouds
of plants [97], however provide no volumetric and surface area information.
Time-of-flight cameras and RGB-D sensors like the Kinect capture 3D infor-
mation at a lower resolution. They are also used in agriculture however are
known to be less robust to bright illumination than stereo vision [12, 78].
In the last years, image analysis has become a widely used technique for
non-invasive methods for plant phenotyping [50]. Applications include the
monitoring of growth rates which can be used as a measure for drought tol-
erance of wheat and barley [108], classification of leaves and stems [115],
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or computation of leaf inclination angles [19]. Volumetric information is an
advantage when monitoring volumes and surface areas of plant canopies or
fruits. An image-based interpretation tool for the estimation of the dimen-
sion of grapevine berries has been presented in [80]. In [129] an image based
method for 4D reconstruction of plants based on optical flow is introduced.
Another application is the determination of the leaf canopy area from images
[91], an ecological indicator variable whose estimation usuallly is laborious
[87].

7.5.1 Measuring Volumes and Surface Areas

The volume and surface area of a plant are fundamental indicators for growth
analysis [117]. Volumetric models have the advantage that precise informa-
tion on these features can be directly extracted from the shape.

The volume V(u) measured in voxels can be computed from the segmented
surface u using equation (7.7). To obtain absolute measurements in cm3, a
reference measurement is necessary, for example the overall height h of the
plant in cm, or in case of fixed cameras the baselines between the camera
optical centers. The absolute volume V (u) of the plant model can then be
computed by a respective scaling of V(u), i.e. with h3/23d, where d is the
depth of the octree. If no reference measurement is given, the volume can be
computed up to a constant scalar factor.

The surface area A(u) corresponds to the boundary size of the recon-
structed shape and can be computed from u with

A(u) =

∫
H
|∇u| dx. (7.14)

For the barley shown in Fig. 7.5 we measured a volume of V (u) ≈ 3.101 cm3

and a surface area of A(u) ≈ 106.1 cm2 for a plant height of 10 cm.

7.5.2 Quantification of Leaves

The total leaf number of a plant is an important trait used to monitor vege-
tative development. It can be used as an indicator to measure influences of
drought [65] or to determine flowering times [104].

Full 3D models of plant shapes allow for automated quantification of
leaves as the experiment in Fig. 7.7 shows for a barley. The reconstructed
3D model (Fig. 7.7 (a)) is segmented into two regions according to the
eigenvalues of the second-moments tensor of the surface (Fig. 7.7 (b)). The
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(a) 3D Model (b) Segmented (c) Connected
of a Barley Surface Components

Figure 7.7: Segmentation of the 3D surface, based on the eigenvalues of
the second-moments tensor. The connected components of the segmentation
yield quantitative information like the number of leaves in the plant.

3D second-moments tensor [18] of a shape u is defined as

M(u) =

∫
H
Gσ ∗ ∇u∇u> dx (7.15)

where Gσ is a gaussian convolution with standard deviation σ. The eigenval-
ues of M represent the distribution of gradient directions of the shape, and
thus provide a robust classifier for a segmentation based on local geometric
structures, see Fig. 7.8. Due to the high resolution of the 3D model the
eigenvalues can be computed precisely. The connected components (Fig. 7.7
(c)) of the resulting segmentation allow for an automated quantification of
leaves.

7.6 Conclusion
In this chapter a convex formulation for reconstruction of high-resolution vol-
umetric 3D models from a set of RGB images was described. It was shown
that the octree data structure is especially suitable for volumetric reconstruc-
tion of thin features. Moreover, it was shown that the choice of a suitable
data structure is essential to make high-resolution 3D model reconstruction
possible. Compared to standard data structures, like regular grids, up to
2000 times higher resolutions are feasible.

Thin structures typically occur in plant geometry. The reconstructed full
3D models allow for accurate phenotypic analysis of the geometric properties
of plants including volume and surface areas or quantification of leaves. Pos-
sible future work includes a space-time reconstruction of plant growth. The
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Figure 7.8: Unsupervised segmentation of surfaces based on the second mo-
ments tensor. The data terms were initialized using a k-means clustering
algorithm.

non-invasiveness of the method allows for a monitoring of specimen over a
time period.
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Chapter 8

Conclusion

Starting from object identification in mobiles phones, movement tracking
of game consoles to visual sensing in autonomous robots and self driving
cars, not to mention the multitude of industrial and agricultural applications:
Computer Vision methods have been established in many areas of every day
life and are becoming ever more important. This thesis presented advances
in several important fields of computer vision: image segmentation, object
tracking, 3D stereo reconstruction for depth map estimation and full 3D
multi-view reconstruction. The basic method applied in this thesis to all
these fields is convex relaxation. The following briefly summarizes the main
results and contributions of the thesis. Afterwards, an outlook to possible
future work will be discussed.

8.1 Summary
Energy minimization has been established as one of the most successful ba-
sic techniques for many computer vision methods. This is due to the fact
that they allow for an elegant mathematical description of the underlying
computer vision problems. In addition, convex frameworks allow for global
optimization, disposing of the need for finding good initial estimates first.

As a basis for the work in the further chapters, in Chapter 3 an experi-
mental comparison of two of the most popular, but fundamentally different
approaches to global optimization in computer vision was presented: discrete
optimization with graph cuts was compared to continuous optimization with
convex relaxation regarding run-time, memory consumption and accuracy.
The experimental comparison revealed that graph cuts perform better with
respect to run-times, while convex relaxation method yield better results
with respect to memory consumption and accuracy. Based on these results,
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convex relaxation was chosen for the work presented in this thesis.
Image segmentation is an important problem in computer vision since it

is a basis for many applications like object detection and recognition as well
as medical image analysis. The task of image segmentation is easier to solve
if the depicted objects are known a priori. An approach to apply a priori
knowledge is to constrain the shape of the segmentation. Most approaches
in this area rely on relatively strict shapes and are therefore only applicable
to pre-learned reference shapes which allows for small deviations only. This
thesis however presents a more generalized approach in a convex framework
in Chapter 4. By applying constraints based on the central moments of
a shape, basic properties of the desired shape can be enforced while also
allowing for a certain deviation. This is especially important in the domain
of medical imaging, where the object to segment may differ from the optimal
shape. The presented method for image segmentation using convex moment
constraints allows for visible and measurable improvements of segmentation
results. On a quantitative evaluation on medical images it was shown that the
segmentation error could be reduced from 12% to 0.35%. Efficient parallel
implementations on the GPU allow for interactive applications. Furthermore,
an extension of the method to object tracking in image sequences was shown.

Sensors that are able to directly generate color images with additional
depth information (RGB-D) are a relatively new phenomenon. In Chapter
5 extensions of the moment constraints segmentation and object tracking
method for 3D shape constraints in RGB-D data was shown. The scale-
aware formulation allows for tracking an object’s absolute dimensions rather
than its projected dimensions in the image plane. This allows for robust
object tracking with camera motion towards or away from the scene.

Despite their undisputed usefulness in certain well defined situations (es-
pecially in narrow indoor environments) RGB-D sensors are, due to their
physical constraints, not especially suited for other situations, e.g., in out-
door environments. Stereo reconstruction methods applied to images taken
with standard consumer cameras allow for relatively cheap and reliable meth-
ods to reconstruct the 3D geometry of a scene. Chapter 6 showed convex
relaxation methods for stereo reconstruction. Due to the fact that image
edges often correspond to object boundaries, an inclusion of this knowledge
into the reconstruction process is of interest. Therefore, a convex method for
edge-based disparity map reconstruction based on anisotropic regularization
was presented. Experiments have shown that including image edges to stereo
reconstruction can substantially improve reconstruction results.

A challenging real-world application of stereo reconstruction is the phe-
notyping of grapevine growth using images directly captured in the field from
a mobile platform. The proposed stereo reconstruction method showed ro-
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bust results for this application. Using this method, monitoring of grapevine
growth for objective comparison of cultivars and estimation of fruit-to-leaf
ratios was carried out with promising results.

While in high-throughput phenotyping of plants in the field, color and
depth images can be sufficient, other applications require highly detailed full
3D reconstructions. In contrast to sparse reconstruction methods resulting in
point clouds, dense reconstructions allow for direct deduction of shape prop-
erties like surface area and volume. Since explicit shape representations suffer
from complex regridding problems during the optimization process, implicit
representations allow for more elegant formulations. Chapter 7 presents a
convex formulation of volumetric multi-view stereo reconstruction. The con-
vex relaxation approach enables globally optimal solutions with a continuous
representation.

The drawback of using an implicit representation is the high memory con-
sumption, especially when highly detailed structures are to be reconstructed.
Chapter 7 demonstrates that despite the implicit volumetric representation
high-resolutions of up to 1.8 · 10−6 mm3 can be achieved due to the use of
the memory-efficient octree data structure.

8.2 Future Work
While this thesis has shown advances in several fields of computer vision,
many opportunities for extending the presented methods exist. In the fol-
lowing some of these opportunities are discussed.

Moment constraints are able to substantially improve image segmenta-
tion results with little user input. This thesis has shown some general forms
of shape constraints for image segmentation, but it would be interesting to
extend the presented method to other low-order properties of shapes, like
planarity, convexity, thin structures, orientation, object’s locations with re-
spect to each other, etc. In particular, respective methods with continuous
convex formulations are sparse. Furthermore, the method can be extended
to the learning of class-specific covariance or ratio priors. By using soft con-
straints one could allow for classes to consist of objects that differ in the
shape details, however share the same low-level properties. The respective
shape constraints can help to improve segmentation results and object track-
ing. Another interesting research question is how the respective moment
constraints can be learned from classes of reference shapes.

The presented scale-aware object tracking method is able to robustly
track objects with 3D moment constraints. To allow for arbitrary movement
of the tracked object, further research has to be done. An extension for
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different kinds of sensors, e.g. time of flight (ToF) cameras, would widen the
applicability of the presented method. It would be interesting to investigate
if it is possible to generalize the method to 4D space-time reconstruction with
volume constraints and respective higher order constraints.

The stereo and segmentation for phenotyping of grapevine has shown that
the presented method has a high potential for automated image analysis of
large data bases. It can be generalized to other kinds of classes and other
types of plants. Furthermore, the utilized algorithms can be fused into one,
computing disparities and classifications simultaneously. This can enable
high-throughput analysis of crop. The approach is furthermore generalizable
to space-time reconstruction with temporal smoothness.

The functional lifting approach for stereo reconstruction used in this the-
sis converges very slow, due to the optimization of the disparity maps in
higher dimensional space. Run-time improvements in form of efficient algo-
rithms and implementations would be necessary to enable real-time applica-
tions.

Improving the maximal possible resolution of a volumetric space represen-
tation using subdivision schemes like octrees is possible only up to a certain
point due to memory limitations. Especially for larger scenes like whole
fields of plants or 3D reconstruction on a city scale it would be interesting
how to overcome these limitations. One possible research direction could be
the combination of recent developments from the field of massive point cloud
management with the reconstruction methods. Another approach, which
could be researched would be a combination of volumetric space representa-
tions with less memory consuming explicit representations.
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Notation

Ω ⊆ Rd Image domain of dimension d
I : Ω→ Rb Input image with b color channels
x Point, i.e. a pixel in an image or a voxel in a volume
Ωi ith region of a segmentation
Ci = ∂Ωi Contour of region Ωi

C =
⋃n
i=1Ci Contour of a segmentation

u : Ω→ [0, 1] Implicit contour representation
∇ Gradient operator mapping a scalar field to a vector field
|∇u| Gradient norm mapping a vector field to a scalar field
div Divergence operator mapping a vector field to a scalar field
∆ Laplace operator
Du Distributional derivative
ux := ∂u

∂x
, uy := ∂u

∂y
Derivative in x and y direction, respectively

Gσ Gaussian convolution with standard deviation σ
Iσ : Ω→ Rb Input image smoothed with Gaussian convolution
g : Ω→ [0, 1] Weighting function of a regularizer term
f : Ω→ R Regional data term measuring point-wise data fidelity
S ⊆ Rd Hypersurface in Rd

BV (Ω; {0, 1}) Set of binary functions of bounded variation on Ω
B = BV (Ω; [0, 1]) Convex hull of BV (Ω; {0, 1})
p Dual variable
τ, τp, τu ∈ R Time step of a numerical optimization scheme
N (x) Neighborhood of a pixel x
µ ∈ Rd Centroid of a shape
x> Transpose of a vector x
d : Ω→ R Depth map
v : Ω→ R Disparity map
γ ∈ [0, γmax] Disparity
ρ(x, γ) Stereo matching cost for pixel x in image I1 and x+ γ in I2

Πi Projection matrix to image Ii
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Appendix A

Camera Calibration

Intrinsic and extrinsic calibration of the used cameras are necessary pre-
processing steps when 3D geometry is to be reconstructed. Intrinsic calibra-
tion aims at removing unwanted artifacts like lens distortion stemming from
the inherent properties of the camera and can be applied to single images.
Extrinsic calibration aims at estimating the camera position in 3D space,
either the absolute position or the relative poses of multiple camera captur-
ing positions to each other. Especially when dealing with two input images,
rectification is usually the method of choice to transform the images to the
stereo normal case. In the following, a short overview of intrinsic calibration,
the image rectification process and computation of depth from disparity is
given.

A.1 Lens Distortion and Intrinsic Calibration
Calibrating the intrinsic parameters of a camera is usually done with a chess-
board or another previously measured pattern. It aims at inverting the dis-
tortion artifacts caused during the image capturing process stemming from
the inherent properties of the camera. Estimated parameters usually include
the focal length, a skew coefficient between the x and y axes, the principal
point of the camera, and parameters of non-linear functions that model lens
distortion. Except for the lens distortion, the parameters are constant for
each pixel and can be represented in the intrinsic camera matrix

K =

fmx s ox
0 fmy oy
0 0 1

 , (A.1)

where f is the focal length, mx and my are scale factors to represent f in
pixels, s is the skew coefficient between the x and y axes and ox and oy are
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(a) Original Image Pair (b) Rectified Image Pair

Figure A.1: Example for Image Rectification. In the rectified image pair,
epipolar lines are parallel, simplifying subsequent computations of disparities.
Rectifications were computed using software of [56] and [99].

the coefficients of the principal point.

A.2 Pose Estimation with Epipolar Geometry
For the estimation of relative poses of camera positions to each other, it is
necessary to identify pixels in both images depicting the same object point.
Since relatively few data points are sufficient for a reliable reconstruction,
most methods are based on sparse feature points, e.g. SIFT [99]. Matching
the description vectors between these feature points yields the projection
matrices P = (R, T ) with rotation matrix R ∈ SO(3) and translation vector
T ∈ R3. Methods for camera pose estimation include [56, 132]. Most methods
try to reconstruct the fundamental matrix F ∈ R3×3 which maps a pixel x1

in image I1 to its corresponding pixel x2 in image I2. F is determined up to
a scalar factor and satisfies the epipolar constraint:

x>2 Fx1 = 0. (A.2)

A.3 Image Rectification
Image rectification is a pre-processing step for disparity map estimation. In
rectified images, epipolar lines are parallel which simplifies the subsequent
computation of disparity maps. Rectification implies a reprojection of both
images, so that both projected images lie in the same plane and geometrical
distortions are corrected. A rectified image pair is also denoted as stereo
normal case. To rectify an image pair, the camera parameters are calibrated,
i.e. intrinsic parameters and relative camera positions are estimated. With
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these parameters homographies are computed that facilitate the image trans-
formation. The homography matrices H1, H2 ∈ R3×3 satisfy

x>2 F̃ x1 = 0, s.t. F̃ = H>2 FH1 =

0 0 0
0 0 −1
0 1 0

 , (A.3)

which corresponds to a translation of 1 along the x axis and no rotation. Fig.
A.1 shows an example of an input image pair and the corresponding rectified
image pair, computed with software of [99] for the SIFT feature extraction
and [56] for the rectification from point correspondences.

A.4 Depth from Disparity
Depth maps can be computed from disparity maps. A disparity map assigns
to each pixel in a reference image I1 the displacement v (also denoted by the
disparity) of image locations of an object point seen in both images I1 and
I2. The depth d is proportional to the inverse of the disparity v and can be
computed by

d(x) =
bf

v(x)
. (A.4)

Here f is the focal length of the camera and b is the baseline, i.e. the
distance between the two camera capturing positions. Disparity maps give
measurements in pixel units. However, if the camera parameters are known,
absolute distances can be computed using (A.4). In particular, the baseline
is proportional to the depth. If no reference measurement is given, depth
maps can be computed up to a constant scalar factor, corresponding to the
unknown baseline.
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