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Abstract

Miniaturized modern accelerometers offer the possibility to unobtrusively monitor the functional
mobility status of patients for prolonged periods of time, both in clinical settings and in uncon-
trolled environments. Monitoring of balance and gait quality is of special interest in applications
such as medical diagnostics, assessment of the risk of falling, and evaluating patient response
to specific rehabilitation programs. Another advantage of this technology is its ability to work
simultaneously as a fall detector.

The focus of this thesis is the development and validation of algorithms and methods for gait
and postural stability analysis, fall risk assessment, and fall detection using a single waist-worn
accelerometer. In this work, the analysis of gait consists of the automatic detection of steps and
their parameterization. The step detection algorithm is divided in three parts: recognition of
regions of interest, estimation of initial contacts, and template matching. The parameterization
of detected steps is carried out by identifying fiducial points. These points indicate relevant
changes in the gait phases with the potential to determine underlying walking dysfunctions. The
analysis of postural stability is based on the measurement of the center of mass displacement.
Here, two methods to transform the acceleration changes into displacement are discussed and
validated using gold standards.

For fall risk assessment, a data collection protocol and a prediction model were built. The
patient data contain clinical and functional test records of prospective fallers and non-fallers,
which are the labels for the classes used in the prediction. The model accounts for the challenge
of class imbalance, large class overlapping, and high dimensionality of the data. The results
show that prediction is considerably accurate, and that acceleration-derived features improve the
predictive value more than conventional features do.

Lastly, the fall detection algorithm of this work is based on detection of an impact and the
subsequent body orientation in relation to the ground. The algorithm was tested on simulated
falls, real falls, and real long-term physical activity records. The results show high sensitivity and
the lowest false alarm rate of the algorithms published to date.
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1. Introduction

1.1. Vision

The vision of this research is to provide an accelerometry-based integrated system for the assess-
ment and monitoring of physical functional status and detection of adverse events, particularly
in persons with impaired gait and frail elderly living alone. The major aims are:

• Assessment of the gait and balance quality,

• Early warning of an increase in the risk of falling,

• Outcome monitoring in exercise therapy programs or clinical interventions using functional
tests and long-term measurements of physical activity (in a clinic or at home), and

• Automatic fall detection with alarm generation.

A system of this nature is intended to promote a healthy lifestyle, improve healthcare quality,
and facilitate independent living by: giving feedback to the users about their functional status
and setting goals; faciliting the practice of evidence-based medicine for the clinicians by delivering
timely, objective patient-specific information; and providing peace of mind to people who live alone
as well as to their families.

The work contained in this thesis provides the foundations for attaining the aforenamed objec-
tives, including selection of monitor type, suitable sensor location, methodology, and, in particular,
algorithms for extracting significant clinical parameters and fall detection.

1.2. Motivation

1.2.1. Sustainability of the Health Care System

Healthcare costs associated with the elderly and people with common chronic diseases - including
cardiovascular disease, cancer, stroke, and diabetes - is a rising concern for the sustainability of
the healthcare system, especially in developed countries where life expectancy is estimated to
grow significantly in upcoming years [47] and where the top four causes of death are related to
cardiovascular disease [4].

The main economic costs in the case of the elderly are comprised of admission to a nursing
home or hospitalization and long-term rehabilitation as a result of injurious falls. Moreover, in
most cases the elderly never fully recover from the injury, which has profound consequences for
their independence, psychological health, and overall quality of life [9].

In persons with chronic disease, direct costs include payments for health services and medica-
tions, while indirect costs come from loss of productivity as a result of absenteeism and inability
to work as well as the cost of household members caring for those who are ill [144].

Some of the factors that put us at risk for these chronic diseases are beyond our control,
such the age and genetic make-up. But the risk factors irrespective of inherited conditions that
explain the vast majority of chronic disease deaths are indeed preventable and modifiable. These
common risks include: tobacco use, unhealthy diet, and physical inactivity. Experts agree that
changes towards a healthy dynamic lifestyle reduce the risk of disease and injury, and that in
order to sustain the current healthcare system there is an urgent need to shift the focus from
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1.2. Motivation

reactive hospital-based care to long-term, proactive, home-based care [8]. This new care model,
focused on promoting an independent and active life style, also demands new technologies that
will permit early identification and monitoring of populations at risk of functional decline and will
help persons with walking difficulties to live autonomously at home.

1.2.2. Limitations in Current Methods of Functional Assessment

Functional assessment (or functional mobility assessment) is an examination of an individual’s
mobility, transfer skills, and activities of daily living [1]. It is usually performed by a physiotherapist
for community-dwelling patients irrespective of medical diagnosis and consists of an evaluation
of some standardized gait and balance tests. Examples of common functional tests include the
10-meter walk test (time to cover 10 m in distance), Timed Up and Go test (time needed
to stand up from a chair, walk 3 meters, come back, and sit down in the chair), standing
on one leg for a specific number of seconds. In clinical settings, poor scores typically trigger
functional interventions like muscle strengthening, gait and balance training, or aerobic exercise
[150]. These tests have been shown to constitute a valuable instrument in identifying persons
at high risk of falling and evaluating therapeutic interventions [50, 135, 40]. However there are
some shortcomings in the traditional outcomes and methods used to conduct such tests:

Not objective In some cases, the assessment is self-reported, carried out via questionnaires. In
cases involving a large undifferentiated mid-range score in which most individuals are distributed,
a patient’s functional status must be subjectively judged by the clinician.

Floor and ceiling effects In clinical settings, balance tests are commonly judged according to a
binary outcome (“success” or “failure”), which merely identifies patients at very high or very low
risk of functional decline. Deterioration in a group with bad performance will not be detected,
nor will improvement in a group with good performance.

Impractical equipment Equipment used in the gait laboratory, like force plates or 3D infra-red
camera systems, are objective, precise, and overcome the aforementioned drawbacks, but due
to their complexity, non-portability, and high cost they become impractical for use as clinical
screening tools.

Time-consuming The duration of some tests is too long for the resource and time constraints
imposed in clinical settings, which does not allow for a comprehensive functional analysis.

Poor ecological validity Ecological validity refers to the extent to which the findings of a research
study can be generalized in real-life settings. Measurements in a clinic are usually affected by the
“white-coat effect,”a state of anxiety in response to the presence of a health provider, usually clad
in a white coat, which may alter various measurements. Long-term monitoring and functional
assessment at home would provide more reliable results.

No identification of underlying dysfunction The primary purpose of functional tests is to identify
the presence of gait or balance abnormalities, and not to establish the cause of the problem.
Assessment tools that differentiate among types and reasons of functional anomalies could help
to determine more effective treatment for a specific disorder.

11



1. Introduction

Burdensome data management In general, rehabilitation centers store and update patient in-
formation and test outcome monitoring using spreadsheets or non-standardized forms. In this
context, an integrated tool providing automatic data storage and simple management would
considerably decrease the workload for the clinicians.

1.2.3. Challenges of Fall Detection Monitors

Various methods for automatically detecting falls have been developed over past years, comprised
of video cameras [84, 11, 110], floor vibrations sensors [116, 204, 10], pressure mats [12], and
inertial sensors [111, 26, 95, 114]. Context-aware systems based on video analysis, floor vibration
recognition, or pressure sensors usually require installation work, they are costly and cumbersome,
raise concerns in users about being observed, must be placed at specific locations on the floor
to achieve acceptable accuracy, or they just do not work when the person is not at home.
In contrast, inertial sensors offer advantages in terms of cost, size, weight, unobtrusiveness,
and portability in particular. With wearable sensors, data collection is no longer confined to
a laboratory environment, thus leading to ubiquitous health monitoring [15]. Among wearable
sensors, waist-worn accelerometers seem to be the optimal option for monitoring falls [115, 6, 93].
Recently, Bagala et al. [15] examined real falls to determine the performance of 13 fall detection
algorithms for waist-worn monitors, and although the overall specificity and sensitivity turned
out to be worse than the results reported by the original authors using simulated falls, they
still presented a good trade-off, with up to 83% sensitivity and 97% specificity in the best-case
performance. However, the great weakness was found in the amount of false alarms. None of
the reviewed algorithms achieved a false alarm rate lower than 4 false alarms per day on average
for the various participants involved in the study. In summary, wearable sensors appear superior
to context-aware systems, but they still present some challenges:

Performance under real-life conditions Most of the research on fall detection has been performed
using data from simulated falls recreated by young people and according to distinct protocols [86].
This methodology does not appear to have high ecological validity in light of recent findings show-
ing that fall detection algorithms present lower accuracy values when run on real falls compared
to data generated in controlled settings [15]. However, this methodology is still in use, the main
reason being that although falls occurs very often - especially in elderly populations - capturing
real-world falls is extremely difficult [15]. One of the major challenges in this context is the cre-
ation of a standardized procedure and a public real falls database including subjects with different
ages and clinical history.

Reduction of False Alarm Rate Although several commercial products are available on the mar-
ket, the reality is that fall alarms are not widely used and they do not have an actual impact
on seniors’ lives yet [86]. In some cases, potential users are simply unaware of their existence,
while in other cases users reject wearing them after having tried the alarms. The major reason
for rejection, by the wearer and also by remote monitoring centers, is the high number of false
alarms, which result in inappropriate alerts [140, 86]. False alarms rate, although it seems to
be a good indicator of the performance of a fall detection algorithm, it is still not so widely
used in the literature as benchmark, but the specificity. The usefulness of this last parameter
is limited because it does not provide any information about the prevalence of false alarms. In
order to validate whether a specific algorithm would be applicable to a real scenario, it would be
recommendable to also provide the value of the false alarm rate under real-life conditions.

Improvement of Usability and Acceptance A key factor for success in a fall detection monitor
is the level of acceptance to wear it, which is closely linked to the usability of the sensors. Here,

12



1.3. System Requirements

usability means the extent to which the fall monitor can be used by a specific user to detect falls
with effectiveness, efficiency, and satisfaction [7]. It mainly depends on the characteristics and
position of the sensor. For example, a sensor placed on the back of the neck may detect falls
efficiently, but the obtrusiveness and the discomfort when wearing it limits the usability of the
device. Another aspect consists of battery life, i.e. the need to recharge the battery very often
may compromise the user’s satisfaction. And, lastly, the user interface, which needs to adapt to
user needs. Fall alarms are mainly intended for monitoring chronically ill patients and the elderly.
Thus, the user interface should be very simple and intuitive.

If the user is satisfied with a system’s usability, then the chances for acceptance will be very
high. Yet there are further factors that may still influence acceptance, like the high cost of some
monitors [90] or stigmatization of the fragility of the old person [140]. Making fall alarm systems
affordable and discrete would increase acceptance considerably.

1.3. System Requirements

To ensure the practical utility of the system, this one should be comprised of only a single monitor
and, depending on the application, a display device like a smart phone, smart watch, or tablet.
Naturally, placing more sensors across the body will generate more information, but it is highly
likely that doing so will increase complexity and cost significantly, and usability will suffer. As
far as the algorithmic aspect is concerned, there are no critical requirements in terms of response
time and memory capacity, except for the fall detector, in which case the algorithm should run
on the monitor’s microcontroller.

1.3.1. Monitor Requirements

In mobile healthcare systems, the most important part is the monitor, as it is the basis for clinical
diagnosis. In this case, the monitor consists of a wearable triaxial acceleration sensor. The
prerequisites that the sensor should fulfill for the proposed system are the following:

Unobtrusive and portable In pervasive sensing and monitoring, the appearance of the sensor is
an important factor. The presence of the system should be undetectable in order to avoid stigmas
or excessively draw attention from others. It should be also sufficiently small and lightweight to
be carried for prolonged periods of time, optionally beneath clothing.

Long battery life The battery should run for at least two to four weeks under continuous use
(24/7) during the day as well as during sleep, as frequent battery changes would likely hinder user
acceptance [104] or endanger the reliability of the system. High power batteries may be quite
large. Thus, to not compromise the size of the device, the sensor has to be extremely power
efficient.

Security The stored and transmitted acceleration data should be encrypted and/or hashed to
ensure user privacy and data integrity.

Sampling frequency and amplitude range In order to assess daily physical activity and detect
falls, the accelerometer must be able to measure accelerations up to ±6g when attached at waist
level, and frequencies between 0 and 20 Hz [25, 172].

Wireless communication The sensor should be equipped with an embedded wireless module that
allows connectivity with a smart phone or similar mobile technology to send an alert in case of
adverse events, such falls, and for transmission of raw data or relevant health status information.
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1. Introduction

Adequate computational capability and memory capacity The computational capabilities of the
sensor are linked to computational power, the price and, to some extent, to the size. If we
want to make the sensor accessible to as many people as possible, we will need to use low-cost,
low-power, miniaturized acceleration sensors. Although computational capability and memory
capacity are limited in this context, the device should at least support the execution of un-
demanding algorithms for fall detection applications. Internal storage should also be big enough
to store at least a weeklong acceleration recording.

Robust The sensor must endure everyday use in low(< 0 ◦C) and high (up to 45 ◦C) temper-
ature environments. Ideally, the device should also be waterproof so that it can be used during
showering, a time of high risk of falling.

Easy to use The sensor should be attached to the waist with a comfortable, hypoallergenic
attachment that non-irritating to the skin. The interface should be as simple and intuitive as
possible. The device must be easy to handle by elderly or persons with mobility impairment.

1.3.2. Algorithm Requirements

The prerequisites for the algorithms differ depending on the application:

Fall Detection

Fall detection algorithms usually consist of detecting an impact, checking body orientation for
a specific time and, depending on some threshold-based parameters, deciding whether the event
resembles a fall [15], in which case the activation of an alarm should be triggered. More sophis-
ticated algorithms may use pattern recognition techniques like support vector machines [159].
Regardless of the algorithm rules, the fall detection algorithm should satisfy the following:

Short response time It is not necessary for the algorithm to run in real-time, but as soon as all
necessary raw data for the decision-making are collected, the output should be processed in a
matter of milliseconds.

Efficient The algorithm will run in a low-cost, low-power consumption microcontroller with some
computational and memory constraints, thus, the computational load should be minimized.

Functional Assessment

For functional assessment purposes, the patient’s raw data are transmitted via wireless or USB
to a medical server where more computational power and storage capacity are available, which
means no big restrictions will be imposed in terms of resource efficiency. Although there are also
no tough restrictions as concerns response time, nested conditions and loops should be avoided,
in particular if we take into account that the input data may be considerably big (≈ 200 MBytes
for a weeklong record).

1.4. Related Work

This chapter presents the previous work done in the field of accelerometry-based clinical applicati-
ons for gait and balance analysis, fall risk assessment, and fall detection. Each section summarizes
state-of-the-art systems, algorithms, and models in terms of their capabilities and limitations.
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1.4.1. Functional Assessment Review

Functional mobility assessment comprises two main evaluations, the first being analysis of walking
quality, and the second being analysis of the subject’s balance skills.

The first thing to do in order to analyze walking is to develop the capacity to distinguish the
elemental units of the gait cycle, i.e. the steps. There have already been several studies that
have investigated the potential of inertial devices to recognize steps, but since this field is still
relatively new, there are no widespread standard algorithms or methods. Table 1.1 presents a list
with the most relevant studies on step detection using a single waist-worn accelerometer. These
publications have been retrieved through a systematic review explained in Appendix A. The major
critical remarks are indicated in red color.

Publication Reference Validation Metrics Remarks

Zijlstra, 2003 [207] treadmill with
force sensors

max(ε) = 0.103 s, min(ε) = 0.002 s -

Dijkstra, 2008 [49] video OA: ε̄ = 7.4± 3.1, PD: ε̄ = 6.9± 3.0 -

Umemura, 2008 [184] not specified max(η)= 5.6, min(η)= 0.0 no HS recognition

Marschollek, 2008 [122] video max(η)= 60.0, min(η)= 8.4 no HS recognition

Lee Hyo-Ki, 2009 [109] optical camera max(R)=0.99, min(R)=0.92 no HS recognition

Lee Hyo-Ki, 2010 [108] optical camera max(ε̄c)=0.27±0.24, min(ε̄c)=0.21±0.21 no HS recognition

Foglyano, 2011 [61] optical camera left D=99±56ms, right D=25±83ms only one patient

ε = |GRF − acceleration| is the absolute error of the foot contact instant

ε̄[%] = 1
n

∑ |video−acceleration|
video

∗ 100 is the mean absolute percentage error of number of steps

η[%] = |reference−acceleration|
reference

∗ 100 is the relative error of number of steps

R is the correlation coeficient of estimated step time and stride time with the reference
ε̄c is the mean cadence error measure in steps/minute
D is the mean delay in comparison to the true heel strike in miliseconds

Table 1.1.: Studies on step detection and postural stability using a single waist-worn triaxial accelerometer.

The principal limitations found in the aforenamed work concern the group of subjects employed
in algorithm development, the validation method, and the type of event detected by the algorithm.

Only two authors, Dijkstra [49] and Marschollek [122], included a reasonable minimum amount
of data from persons with impaired gait (e.g., frail seniors, Parkinsonian patients) in their study.
Lee et al. [109, 108] included data from hemiplegic patients and children with cerebral palsy,
however the amount of subjects was low (6 and 8 subjects, respectively). The same occurred
in Unemura’s [184] study with only 3 young subjects. Among the publications that have been
validated in an elderly population [122, 49], none reported suitable results for low speeds. The
relative errors in the number of steps detected for this population varied from 28.1% to 62.1%.
The more customized the algorithms were to specific walking patterns, the worse they performed
on different samples [122]. Another remark is that only Zijlstra [207] reported detailed information
about the accuracy of the algorithm relative to the walking speed, although as a negative aspect,
he restricted his study to healthy subjects.

With the exception of Dijkstra [49] (who employed the algorithm developed by Zijlstra), all
authors used autovalidation in their studies. This usually leads to an overestimation in algorithm
accuracy in those cases where an algorithm is tuned according to parameters derived from a
specific group of subjects, especially when the database is small.

Concerning the type of event detected by the algorithm, most of the publications included in
Table 1.1 detect steps by identifying a peak (usually a maximum) in the raw acceleration signal.
This is fine for counting steps, particularly for monitoring physical activity levels. However, to
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analyze gait quality in terms of gait asymmetry, for example, it is necessary to recognize a step
as such, i.e. from the moment in which the heel of one leg contacts the ground until the next
consecutive heel strike of the other leg. Zijlstra and Foglyano [207, 61] were the only ones who
developed algorithms to specifically detect these particular events.

Finally, the lack of standards is reflected by the variety of validation measures and reference
tools to quantify the performance of step detection algorithms. Naturally, the absence of a
benchmark makes the comparison of results exceptionally difficult.

1.4.2. Fall Risk Assessment Review

Fall risk assessment is an important tool for prevention. It helps to determine the most appropriate
interventions and to reduce or eliminate falls. Over the last decade, wearable sensors have been
used to capture and analyze objective mobility data with the aim of improving fall risk assessment.

Howcroft et al. [82] recently published a review of studies employing inertial sensors to assess
the risk of falling in geriatric populations. They provided a critical and comprehensive examination
about study methodologies, sensor locations, analyzed variables, and validation methods. In the
list of most relevant studies, some limitations have been identified and emphasized using red in
Table 1.2. In essence, these limitations consist of incorrectly labeled data, class imbalance, and
validation methods.

Concerning class labels, the main weakness found in the previous work is that most publications
classify “fallers” as persons at high risk of falling (identified using the traditional fall risk scores)
or persons who are retrospective fallers, as opposed to using prospective fallers. For example,
Giansanti [67] and Gietzelt [67] used the Tinetti and STRATIFY score respectively as the criterion
for dividing the dataset into“fallers”and“non-fallers.”Both achieved good prediction performance
because the outcome obtained with the acceleration-based data from the functional tests are
similar to the traditional functional scores. Thus, they did not predict actual falls, but rather the
respective scores. Another scale commonly used as a gold standard for identifying potential fallers
in clinical settings is the Tinetti score, even though it has been shown to have some limitations,
like possible ceiling effects [157].

Caby [31], Greene [69] and Kojima [99] used retrospective fallers to predict the risk of falling,
leading to fallacious results because what they “predict” is the likelihood that a person has fallen
and not the likelihood that a person will fall. Also, classifying retrospective fallers is easier
than classifying prospective ones since previous falls tend to deteriorate a subject’s functional
performance substantially, especially when the fall occurred within the recent past and when the
person suffered a fracture as a consequence of the fall.

Another limitation that may affect the accuracy of the fall risk assessment model is the imbal-
anced size of the classes. This is related to the fact that, given a similar group of individuals, the
number of subjects expected to fall is 3 times smaller than the non-fallers [59, 94, 143]. Tak-
ing that into consideration, Caby [31], König [100] and Marschollek [121] used rather balanced
datasets. Weiss et al. [190] even used more fallers than non-fallers. In their study, it seems
that the authors included a predefined quantity of healthy non-fallers after having collected a
sample of fallers. While this may improve predictability, it does so at the expense of distorting
the authenticity of the class sizes. Greene [69] included also more fallers than non-fallers. The
reason for this being that he and his colleagues looked at a 5-year falling history, exchanging
prediction accuracy for temporal accuracy in doing so.

Other remarks related to selection of the database are the following: Weiss [190] applied
multiple exclusion criteria to improve prediction at the cost of narrowing the generality of the
models, and Caby [31] edited 10% of class labels to line up with an expert’s opinion. Proceeding
in this manner can considerably improve results, especially when involving so few subjects (20
subjects).
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Publication Validation TPR TNR ACC Remarks

Caby, 2011 [31] LOOCV 1 1 1 only retrospective falls, 20 subjects,
hospital inpatients, edited class labels

Doi, 2013 [52] not specified 0.69 0.84 0.81 –

Giansanti, 2008 [67] fixed split 0.98 0.97 0.97 Class label: Tinetti score

Greene, 2010 [69] 10-fold CV 0.77 0.76 0.77 only retrospective 5-year fall history

Gietzelt, 2009 [68] not specified 0.89 0.91 0. 90 Class label: STRATIFY score

König, 2014 [100] not specified 0.74 0.76 0.75 –

Kojima, 2008 [99] not specified 0.61 0.68 0.62 only retrospective falls

Marschollek, 2011 [121] 10-fold CV 0.58 0.96 0.80 hospital inpatients

Weiss, 2011 [190] not specified 0.91 0.83 0.88 41 subjects, fallers are majority, mul-
tiple fallers, no p-value correction

TPR is the True Positive Rate
TNR is the True Negative Rate
ACC is the Accuracy

Table 1.2.: Best classification results of authors performing fall risk assessment with inertial sensors in
geriatric populations [14].

Finally, many authors do not state anything about their validation method, as seen in Table 1.2,
which leads us to assume that they simply used auto-validation. This validation does not show
overfitting and can therefore extremely overestimate the predictive power of a model. They also
do not always include p-value correction. When exploring the usefulness of a set of variables, the
family-wise error rate has to be taken into account and countered by a suitable control method,
like Bonferroni correction.

1.4.3. Fall Detection Review

Falls are the main cause of morbidity and mortality among elderly, also representing a major
concern among persons with mobility impairment. Automatic detection and communication of
falls may initiate prompt medical assistance, thus increasing the sense of security these persons
have and reducing some of the adverse consequences of falls. Several algorithms have been
developed to detect falls by analyzing the acceleration patterns of the individuals recorded with
a body-worn inertial sensor. Table 1.3 comprises the most relevant fall detection algorithms
published that have been independently evaluated under real-life conditions [15]. Main criticisms
have been marked in red.

These algorithms use the magnitude of the vector given by the three acceleration axes and
compare it to a certain threshold. Based on that comparison and on previous/later states, such
as changes in body orientation, they decide whether the event resembles a fall or not. All of
them performed worse in real-life conditions than in simulated falls. Nevertheless, one positive
aspect is that they have low computational cost and low complexity, which makes them suitable
for implementation in microcontrollers for real-time applications.

Chen’s algorithm [35] uses a high threshold for the comparison of the impact magnitude reduc-
ing the number of false positives at the cost of missing falls with low peak values. The authors did
not provide any value for the specific angle change that constitutes a change in body orientation.
In their independent evaluation, Bagalà et al. [15] set this angle to the value for which they
achieved the optimal specificity and sensitivity but the results did not discriminate well between
real-world falls and ADL.
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Publication SEN SPE FP [average
per day]

Remarks

Chen, 20016 [35] 0.76 0.94 8.3 fails with low magnitudes, high FP rate

Kangas, 2008 [92] 0.55 0.95 6.5 poor sensitivity, high FP rate

Bourke, 2007 [22] 1.00 0.19 60.8 poor specificity, very high FP rate

Bourke, 2008 [24] 0.72 0.87 19.8 high FP rate

Bourke, 2010 [23] 0.83 0.97 4.4 best result, fails with low magnitudes, still
high FP rate

Table 1.3.: Sensitivity (SEN), specificity (SPE), and false positives (FP) of relevant falls detection algo-
rithms using real-falls data from trunk-/waist-worn acceleration sensors.

Kangas et al. [92] investigated three different sets of algorithms with increasing complexity.
The threshold values for the impact were low, which allowed detection of most of impacts. Thus,
the real fall detection was made depending on the posture monitoring. They achieved high
specificity at the expense of a low sensitivity. Table 1.3 shows the best result for the set of
investigated algorithms.

Bourke’s first algorithm [22] uses two thresholds, set according to the database to achieve
100% of sensitivity. A fall is detected if the magnitude vector is outside the range between those
two values. However, the specificity obtained was considerably bad (SPE = 0.19). The reason for
the poor specificity is that many ADLs (e.g. sitting on a chair or bed) show values for magnitude
acceleration lower than the bottom threshold due to the phenomenon of weightlessness.

The second algorithm suggested by Bourke et al. [24] provides results comparable to Chen’s
algorithm. The difference with respect to their first algorithm is that this one provides posture
monitoring after fall. Adding information about posture after impact improves results in terms of
specificity. Yet the false alarm rate is still too high to turn the system into a commercial solution.

Finally, Bourke et al. [23] presented a third algorithm. This algorithm provides the best
trade-off in terms of sensitivity (83%) and specificity (97%), although the results still differ from
those obtained by the authors in their simulated fall database (100% SEN and SPE). Bagalà
reported that the algorithm mostly fails to detect falls with low impact magnitude (especially
forward falls, falling onto a bed/sofa, and against a wall).

1.5. Research Questions

The research questions that have guided this research are the following:

1 Can the use of a single waist-worn triaxial accelerometer overcome the limitations of the
current methods for physical functional assessment? Can the use of the accelerometer-
derived data improve fall risk assessment when compared to the results obtained using only
conventional fall risk indicators in a group of seniors with osteoporosis?

2 Can we detect falls with a high sensitivity and low false alarm rate using a single waist-worn
triaxial accelerometer?

1.6. Contributions

In this work, I have defined the constraints and requirements for an acceleration monitor and the
requisite algorithms for assessing functional mobility and detecting falls.
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I have collaborated with clinical partners to develop an original data acquisition protocol. As a
quality assurance method in data collection, I have developed a test detection algorithm integrated
on a dedicated server to give automatic feedback about correct administration of the test protocol
when a user uploads data onto the system.

I have developed and validated new algorithms to extract parameters from an acceleration
signal to provide relevant and comprehensible deductions about a subject’s mobility status.

For gait assessment, I have created an algorithm that detects steps with high accuracy in
healthy adults and seniors, even when walking at very low speeds, and with a considerably
low false detection rate. The lack of standard metrics has rendered direct comparison of this
work’s results with similar studies difficult. However, my study does take into account two main
limitations of previous works: the small size of the subject database and the validation methods. I
have made a new contribution to the field by providing the first instance of a detailed step pattern
analysis based on an acceleration signal recorded near the body’s center of mass. This analysis
includes parameterization of the signal by identifying fiducial points. Based on the characteristics
of these points, I was able to determine differences between normal and impaired walking, as well
as the potential underlying dysfunctions. For the assessment of balance, I created a specific type
of scatter plot to estimate a subject’s postural sway in a measurable manner, thus overcoming the
ceiling and floor effects afflicting current methods. I also validated the accelerometer’s capacity to
measure body trunk displacement, something not yet accomplished in previous published studies.

Using the data collected as well as the aforementioned algorithms, among other items, I have ex-
tracted parameters to build a model for fall prediction. This model has shown that accelerometer-
derived features improve fall prediction when compared to the results obtained using conventional
features from the same subject database. These results are useful in predicting a person’s risk of
falling and perform exceptionally well in doing so, especially when taking into account the flawed
characteristics of the data sets on which the model was set: large class overlap and imbalance.
In contrast to most previous studies, this model successfully overcomes those pitfalls.

I have developed a fall detection algorithm that, to date, delivers the best performance in
terms of false alarm rate when compared with other published algorithms tested on real data.
My algorithm also achieved 100% sensitivity with data recorded under laboratory conditions, as
well as successful detection of real-world falls.

I have been fully involved in the data collection employed for developing and validating the
algorithms presented here. No synthetic data have been used in this thesis.

1.7. Outline

In continuation, the structure of the thesis starts with an introduction to the acceleration monitor
and signal in Chapter 2. The order of the chapters to follow is congruent with the stages depicted
in Figure 1.1, which represent the main applications of the proposed system.

In the event of evidence suggesting a person may be at risk of falling, an assessment should
be performed regarding functional mobility status and other medical factors. Chapter 3 and
Chapter 4 explain how functional status can be evaluated according to a subject’s gait quality
and balance ability through accelerometer-derived parameters. The algorithms and methods for
extracting these parameters are presented in combination with the corresponding validation. The
next step is to leverage this information to estimate the risk of falling using real patient data. To
build a proper prediction model, an acquisition protocol of functional tests was set up for data
collection. Both the model and the protocol are described in Chapter 5. Following assessment,
the patients predicted as being at high risk of falling should ideally take part in a fall prevention
program. This part of the procedure has been indicated in gray in Figure 1.1 because it mainly
concerns physician work. Nevertheless, the system can still be used in this stage as an outcome
monitoring tool. Finally, in the event the prevention program does not achieve the expected
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results or the person suffers an adverse accident resulting in a fall, the system can automatically
call for help if the user is unable to do it by himself/herself. Chapter 6 presents a fall detection
algorithm and alarm system to that end. Finally, Chapter 7 lays out a summary of the principal
thesis findings.

Assessment

Prevention

Detection

Monitoring

Figure 1.1.: Main applications of the proposed accelerometry-based system.
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2. The Acceleration Sensor and Signal

2.1. Technical Characteristics

The acceleration sensor used in this thesis for the data collection and experimental set-up is the
actibelt® [43, 133], a triaxial accelerometer (ADXL 345 BCCZ Analog Devices) placed inside a
belt buckle. The sensor (Fig. 2.1) has been developed at the Sylvia Lawry Centre for Multiple
Sclerosis Research e.V. - The Human Motion Institute and Trium Analysis Online GmbH. The
design is unobtrusive and ensures that the device is located close to the subject’s center of mass.
The acceleration sensor measures up to ± 6 g (g = 9.81 m/s/s) with a resolution of 0,0024g and
sample frequency fs = 100Hz. The power supply is provided by a rechargeable LiPo battery that
lasts approximately one month and can be recharged via USB in 2 hours. The data are stored in
an internal flash memory with a capacity of 512 MB allowing to record uninterruptedly for about
10 days. Data are encrypted at the time of download.

Figure 2.1.: Photos of the actibelt® accelerometer used for the data acquisition. Courtesy of SLCMSR-
The Human Motion Institute and Trium Analysis Online GmbH.

The sensor records static acceleration of gravity and dynamic accelerations relative to the trunk
along the vertical, mediolateral, and anterioposterior directions. In anatomical position (see Fig.
2.2), the orientation of the accelerometer is the following: positive X values correspond to up
acceleration (in red), positive Y values correspond to left acceleration (in green), and positive Z
values correspond to anterior acceleration (in blue).

There is a wireless version of the sensor – the actibelt®-BLU – that includes a temperature
and barometric pressure sensor (Bosch BMP085), a bluetooth© module (LMX9838 National
Semiconductors), and a 125 KHz RFID module. The wireless device is equipped with a micro
USB port and a removable 8 GB micro SD card. The rest of technical characteristics are the
same ones like in the non-wireless version. The wireless functionality allows connection to smart
phones and tablets.

2.2. Sensor Position

The major factors that determine the ideal body location of activity monitors are the type of
movement being studied and the wearer compliance. According to Yang [201], most studies
adopted waist-placement for motion sensors because of the fact that the waist is close to the
Center of Mass (CoM) of the human body. This implies that the accelerations measured by a
single sensor at this location can better represent the major human motion. From an ergonomic
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Figure 2.2.: actibelt® axis. Image adapted from [5]

point of view, the torso can better bear extra weight when carrying wearable devices. Sensors or
devices can be easily attached to or detached from a belt around waist level. A range of basic daily
activities, and also falls, can be recognized using acceleration patterns measured with a waist-worn
accelerometer [95, 136, 51, 207]. Accelerometers can also be attached to the wrist, the thigh,
or the ankle. Accelerometers attached to the thigh or ankle have been used to study gait-related
parameters and leg movements [88, 62], and accelerometers attached to the wrist have been
used to measure tremors in patients with Alzheimer’s and Parkinson’s disease [185]. But overall,
the accuracy in activities recognition with accelerations sensors placed at these positions is lower
than with accelerometers placed at the waist, as shown in Table 2.1.

Activity Chest Lower Back Left Foot Left Hip Left Thigh Left Wrist

Lying 1 1 0.997 1 0.972 0.967
Running 1 1 1 1 1 1
Sitting 0.966 0.992 0.924 1 0.972 0.966
Stairs down 0.940 0.920 0.915 0.935 0.925 0.926
Stairs up 0.928 0.906 0.920 0.929 0.929 0.902
Standing 0.969 0.993 0.929 1 1 1
Walking 0.981 0.973 1 0.990 1 0.961

Average 0.969 0.968 0.955 0.978 0.971 0.965

Table 2.1.: Balanced F-measure for each location, detailed by class, when using Neural Networks and a
single 3-axial accelerometer, according to [201]. A higher F-measure value indicates improved detection
of the investigated activity.

2.3. Sensor Calibration

In order to guarantee the validity of the measured acceleration data, the sensor must be calibrated
regularly. This step is specially important when monitors are intended to be used over time, e.g.
in intervention studies [192]. The procedure to calibrate the actibelt® consists in placing the
sensor to a number of orientations with respect to gravity. In each position, only the gravitational
component is measured by the accelerometer. Afterwards, this information is used to estimate
the ± 1 g values rendering a ratio scale with 1 g as unity. This calibration procedure has been
semi-automated by means of a fine crafted metal cube (Fig. 2.3) and a Java based client-server
application. Each time the sensor is calibrated, the client sends a calibration log to the server via
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web with information useful for the creation of statistics, like for example, actibelt® and server
time at the calibration instant, device identifiers, and calibration quality metrics.

Figure 2.3.: Picture of the actibelt® calibrator cube and screenshot of the wizard software. Photos
courtesy of SLCMSR-The Human Motion Institute and Trium Analysis Online GmbH.

2.4. Acceleration Signal

The signal measured with the accelerometer can be decomposed in a gravitational component, a
movement component, and noise as

an = aGn + aMn + ηn, (2.1)

where an = (axn, a
y
n, azn) is the total acceleration vector in the vertical (x), mediolateral (y) and

sagittal (z) axis, aGn = (axGn, a
y
Gn, a

z
Gn) is the gravitational vector, aMn = (axMn, a

y
Mn, a

z
Mn) is

the movement acceleration vector and ηn the noise component.
The sources of accelerometer noise are mechanical thermal noise and electrical thermal noise

with the mechanical thermal noise being the dominant one above 10 kHz [113]. The high
frequency noise can be removed or significantly diminished by low pass filtering the signal at a
specific cut off frequency. Details about the denoising process are described in Section 4.2.4 and
Section 6.3.1.

The movement component mainly comprises the acceleration forces originated by the body
movements. Other extraneous signals, such as artifact due to soft tissue movement and vibrations
imposed on the body when travelling in a motor vehicle, may also be present in the signal, and
they can be minimized through careful instrument placement and signal filtering [125].

The gravitational component measures the inclination of the accelerometer. Assuming that
the sensor is attached tight to the waist, the inclination depends on the body orientation and
the body anatomy. The body orientation may change according to a particular physical activity
or body posture and it is of special interest in applications such as activity recognition and fall
detection. It can be estimated by filtering the gravitational component of the acceleration signal
(for more details about filtering techniques refer to Section 6.3.1 and Section 4.2.1). Anatomical
characteristics, such as body shape, can also produce an inclination of the sensor. In this case, we
called sensor tilt. The sensor tilt causes a constant drift in the acceleration signal, undesired in
certain situations, like for example, during the measurement of balance control in quiet standing
[130].
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2.4.1. Correction of Sensor Tilt

When standing upright or walking on a level surface, the accelerometer axis are pretty well aligned
to the body axis for most healthy young and adults. But in the elderly, overweight people, or
persons affected by spine curvature disorders, the difference between the body and the sensor
axis may be no longer negligible.

For clarity, I will refer from now on to the body axis as the longitudinal, sagittal and transverse
axes on a person’s body standing upright and with the trunk straight, as in Figure 2.4. The body
axes coincide with a horizontal-vertical coordinate system.
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Figure 2.4.: Body axis and planes.

The effect of a misaligned axis can be observed in the center of mass (CoM) acceleration by
looking to the signal offset. Usually for a healthy adult (Fig. 2.5a), the average value of the
acceleration near the CoM in the left-right and backward-forward axis is close to zero and in the
up-down axis it is near to -1 (without subtraction of gravity effect); whereas for a person with
abnormal body posture, the sensor axis are shifted. In Figure 2.5a the backward-forward and
the left-right axis are shifted upwards and downwards respectively, which indicates that the body
leans forwards and rights.

With the correction of sensor tilt (Fig. 2.5c), the data is normalized by transforming them
into a horizontal-vertical coordinate system. This correction is important to eliminate variability
caused by other sources than the phenomenon being studied [129]. In order to do this, I adapted
the formulas proposed by Moe-Nilssen [129] according to the direction of the acceleration along
the actibelt® axis as follows:

Anterior-posterior direction

aA = aa cos(arcsin(āa)) + avāa
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where aA is the estimated anterioposterior acceleration, aa the measured anterioposterior acce-
leration, and av the vertical measured acceleration.

Vertical direction
aV = −amām + aV

′ cos(arcsin(ām))

where aV is the estimated vertical acceleration and am is the measured mediolateral acceleration.
aV
′ is an estimated provisional vertical acceleration equal to:

aV
′ = −aaāa + av cos(arcsin(āa))

Mediolateral direction

aM = am cos(arcsin(ām)) + aV
′ām

When calculating the average of the measured accelerations it is important to use only the signal
intervals during which the person is standing or walking in an upright position.
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Figure 2.5.: 3D acceleration signal (in g units) recorded near the body’s COM of: (a) a healthy adult
and (b) an elderly female with spine curvature, both walking at self-selected speed. Subfigure (c) shows
the signal in b) after tilt correction. The unit of the horizontal coordinates are samples ( 100 samples =
1 second).
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3. Gait Analysis

3.1. Introduction

Gait ability is a primary outcome to assess functional mobility [166]. In clinical settings, gait is
typically assessed by a physiotherapist via visual observation of patients, while in gait laboratories
the assessment is done using sophisticated systems, such as infrared cameras and force plates.
Recently, waist-worn accelerometers have been presented as a portable and reliable alternative to
assess gait, as well as to monitor patients in rehabilitation therapy [165, 40, 135, 191]. They can be
used in clinical settings and to record long-term acceleration data in the free-living environment
for higher ecological validity. A fundamental measure of a person’s ambulatory ability using
accelerometers is step counting [102]. There exist numerous published studies using a waist-worn
accelerometer to detect steps [207, 184, 109, 108, 85, 122, 61], but none of them has thoroughly
investigated the performance of data from people with severely impaired gait; although it is
known that many algorithms present poor accuracy in detecting the steps of those persons [122].

In this chapter, the aim is to develop an algorithm that detects steps accurately, both in
healthy and in seniors with impaired walking, as well as to investigate the potential of the device
to distinguish between normal and impaired walking via gait pattern analysis.

3.2. Gait Analysis Principles

Walking is a complex task involving nervous, somatosensory and musculoskeletal systems and
most parts of the body. The contribution of each body segment is determined by the gait speed.
Normal walking speed primarily involves the lower extremities with the arms and trunk providing
stability and balance [168]. This limb movement produces acceleration changes near the Center of
Mass (CoM) of the body distinctive for normal and pathological gait. The gait cycle is comprised
of a complete stride, or equivalently a sequence of two steps. A step is defined as the interval
between two consecutive heel strikes and is the elementary periodic signal measurable with the
accelerometer near the CoM during walking. A step can be divided in the following gait phases
(Fig. 3.1):

Initial contact (or heel strike) The initial contact (IC) occurs in the first 0-2% period of the
gait cycle when the foot first contacts the ground [151]. In this instant the vertical component
of the ground reaction force (GRF), mainly responsible for the forces acting on the CoM, goes
to a maximum of 120-150% of the body weight (BW) [152, 138]. During running, these forces
can go even up to 500% of BW [83]. The position of the ankle joint at this instant determines
the force response and therefore the way this IC manifests itself in the acceleration signal.

Loading response The loading response at normal walking is a bipedal phase which occupies
about 10% of the gait cycle, from the IC to toe off of the opposite leg. During the loading
response, the foot comes into full contact with the floor, the knee flexes slightly absorbing some
power in order to reduce the IC on the floor and the body weight is transferred onto the stance
limb. A smooth correct transfer guarantees the stability of the upper body. It is in this phase
where a running step can be distinguished from a walking step. If there is no bipedal stance
the person no longer walks but runs. In the actibelt® acceleration signal, during running, the
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3. Gait Analysis

acceleration in the vertical direction crosses the 0g line (g: the gravitational acceleration, 9.81
m/s2) twice, once when the body accelerates upwards along the positive direction of the vertical
axis propelled by the calf muscle and again when it descends in free fall for a very short time
right before reaching the ground.

Single Limb Support During this phase (10-50%), the body is supported by one single leg and
the forces drop in average to about 60-80% of the BW. [151]. The body begins to move from
force absorption of impact – mid stance (10-30%)– to force propulsion forward – terminal stance
(30-50%) [168].

This brief summary of gait analysis theory in relation to the acceleration changes on the body
CoM while walking provide the basis for the step detection methodology and the interpretation
of the results from a biomechanics perspective.

0% Initial
Contact

10% Opposite
Toe-off

30% 
Foot flat

50% Opposite 
Initial Contact

Loading Mid Stance/Initial Swing Terminal Stance/Mid-Terminal Swing

Figure 3.1.: Important phases for the detection of steps using the actibelt® sensor. Image adapted from
[3]

3.3. Experimental Setup

3.3.1. Acceleration Sensor

The acceleration data was collected with the actibelt® sensor described in section 2.1

3.3.2. High Speed Video Camera

A high speed camera (Go Pro HERO3), configured to record at 100 Hz with the highest resolution
(1280x960 pixels), was used as the gold standard for acceleration data annotation. Synchroniza-
tion of camera and accelerometer was accomplished by filming a tap on the sensor and subse-
quently matching matching the peak acceleration value in the vertical acceleration component
with the frame that displays the instant of the impact.

3.3.3. Data Collection Protocol

Standardized walking tests of healthy adults from a wide age spectrum (range 22 to 64 years)
and elderly were included to produce a heterogeneous set of gait patterns. Adults were recruited
among relatives and university students, and seniors were recruited at a nursing home. An
experimenter supervised that the accelerometer was oriented correctly, firmly fastened around
the waist, and centered at the middle of the mediolateral axis before the participants started
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3.3. Experimental Setup

the test. The test consisted in walking a minimum distance of 10 meters at self-selected normal
speed along a straight path with marks on the floor to track the speed. The experimenter walked
slightly behind the test subjects, in order to influence their walking speed as little as possible,
and holding the camera attached to a metal rod at ground level to record the contacts of the
foot with the ground. Participants were allowed to use a walking frame, crutches or grab hold
of somebody’s arm for support. The local ethics committee approved the study and all subjects
signed the informed consent prior to participation.
The instants of the initial contacts for a series of 10 consecutive steps were identified using
the gold standard and annotated on the acceleration signal together with information about the
average speed. Although I can not exactly quantify the accuracy of the gait speed estimated from
the video data using the tracking marks on the floor, I assume that in average the maximum error
that can be made in the annotation of the data is ±3 frames (equal to ±0.03 seconds), since out
of this interval the foot tip has clearly crossed the mark on the floor, and therefore the potential
deviations from the real gait speed are assumed not to have a big impact in the final results.

3.3.4. Database

Training and Validation Data Set

For the main analysis, and in order to identify possible differences in the walking patterns of
healthy adults and seniors, I divided the data in two groups according to age ≤ 65 (n=10) and
> 65 years old (n=21) respectively. In general, the age of 65 is considered as the age of entering
old age [160, 189]. Afterwards, each group was separated randomly into a training part and a
validation part for testing and evaluation of the algorithm. Among the seniors, 11 were very frail
elderly who needed the use of walking frame to ambulate. A summary is presented in Table 3.1.

Training Validation

f:m Age [yrs] Speed [m/s] f:m Age [yrs] Speed [m/s]

Adults 3:2 35.2±17.6 1.30±0.19 3:2 39.4± 21.2 1.12±0.38

Seniors 8:2 82.0±6.9 0.54±0.21 10:1 82.5± 6.1 0.40±0.16

Table 3.1.: Gender of participants (f=female,m=male), mean (SD) age and walking speed

Data Subset for Exploratory Analysis

The purpose of this exploratory analysis was to gain understanding about how the walking acce-
leration pattern changes with age (or equivalently with gait speed) to determine the optimal
methodology for robust step detection, and as well as to examine the validity of the acceleration
data recorded at the body’s CoM and its consistency with the considerations made in Section 3.2
about the forces acting in the different gait phases.

I conducted the exploratory analysis on a random small data subset composed of a group of
adults (4f:1m; 26-40 years old), “active seniors” (3f;74-80 years old) and “functionally dependent
seniors”(2f:1m; 84-89 years old). The“active seniors”were those healthy seniors who can function
on their own and can complete their daily tasks independently, and the “functionally dependent
seniors” were those ones who depend on specific services due to declining health or diseases.

Walking-like Data

In addition, I recorded 9 so called“walking-like”activities or movements described in the Table 3.5
to estimate the upper limit of the false step rate. They are called walking-like movements because
their acceleration pattern is similar to the pattern generated while walking, in terms of signal
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3. Gait Analysis

amplitude and periodicity. Some of them involved physical exercise, like doing push-ups or sit-
ups, while others were included to challenge the capacity of the algorithm to distinguish between
real steps and patterns originated intentionally to “cheat” the step detector, as for example,
shaking the sensor to emulate a walking pattern. These activities were executed by the same
individual (a 30 year old female) and recorded in parallel with a high speed video camera.

3.3.5. Step Detection Methodology

As shown in the gait analysis section, the initial contact (IC) of the foot with the ground marks
the beginning of a step. According to the measurements obtained in previous clinical studies with
the use of force plates, the IC can generate ground reactions forces (GRF) in the vertical axis
up to 1.5 times the body weight (equivalent to 1.5 g-force units) when walking at normal speed
[138]. In the actibelt® signal this translates into an acceleration peak in the X axis at every
contact of the foot with the ground as shown in Fig. 3.2a. In the preliminary experiments in
healthy adults those peaks went from -1.4 g to -2.2 g for slow and fast walking respectively, and
down to around -5 g for running. At walking, this means a maximum net acceleration change
of 1.2 g (from -1 g to -2.2 g). This value is slightly lower than the 1.5 g but still consistent
with the results from the literature in particular if we take into account that GRFs are measured
at foot level whereas the actibelt® measures the acceleration near the CoM and therefore some
of the impact which propagates upwards is absorbed by the limb muscles before it reaches the
waist level. The initial contacts annotated using the video recordings may be shifted two to
three milliseconds with respect to the minima in the acceleration signal (see Fig. 3.2). This
may be caused by the propagation delay of the impact until reaching the waist and/or to a small
systematic error introduced by the experimenter when annotating the data. The data annotation
can be a subjective task depending on the quality of the image and the lighting conditions during
the recording.
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Figure 3.2.: Acceleration near the body’s CoM of (a) a healthy young male and (b) an elderly woman
(right) walking at normal self-selected speed.
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3.4. Step Parameterization

Hence, the first observations of data from healthy individuals were plausible and they suggested
a direct method to detect steps by determining the local minima along the vertical acceleration.
However, when the data from the elderly group was explored, I found that the amplitude of
those minima turned out much lower and noisy (Fig. 3.2b) making difficult to pinpoint the IC
peaks. These changes in the amplitude were associated with the reduction in gait speed and the
flat-footed landing usually caused by a decreased ankle plantarflexion in old walkers [198].

In order to find out whether the mediolateral or the anteroposterior axes could yield better
results in the identification of steps in a broad spectrum of gait patterns, I compared the low
frequency components of the average step among the group of adults,“active seniors”and“func-
tionally dependent seniors”belonging to the exploratory data set. I found that the patterns in the
mediolateral axis were very idiosyncratic for each individual, which confirmed the results from a
previous study [207]. In contrast, the sagittal accelerations were more consistent. The variability
increased with age but the graph still showed the existence of a common acceleration-deceleration
pattern in the anterioposterior axis for all groups, more regular than for the vertical axis and in
particular for the most functionally impaired group. In this axis the heel strikes produce a minima
followed by a sudden increase of the acceleration related to the propulsion of the body upwards
and forwards during the loading response phase. This acceleration is proportional to the amplitude
of the horizontal GRF but exerted in the opposite direction [137].

In short, the results of the exploratory analysis suggested that the most robust method to
detect steps could be achieved by identifying the local minima which precede the maximum
forward acceleration of the body in the anterioposterior axis of the actibelt®.

3.4. Step Parameterization

3.4.1. Characteristic Step Graph

The first task in the process of step Parameterization is to obtain a normalized waveform corres-
ponding to a standard representation of a step. To that effect, I used a so-called Characteristic
Step Graph (CSG) for normal walking and a Characteristic Step Graph for age-related impaired
walking. The CSG is calculated from a series of normalized Average Step Graphs.

Average Step Graph (ASG)

The Average Step Graph represents the average person’s step and displays the average and
standard deviation of each acceleration sample in a step interval for a series of single steps along
the vertical, anterioposterior and mediolateral axes (Fig. 3.3).

In the same manner that the time differences in step duration offer information about the
temporal variability, the ASG can be used to measure the spatial variability which has been
associated in the clinical literature to risk of falling, mobility function and pathological gait
[76, 27, 75]. Fig. 3.3 shows the differences in the average step for a healthy adult and a senior.
In the exploratory analysis the amplitude of the ASG acceleration in healthy adults was on average
more than twice as high as in the elderly group and the step variability increased up to three
times as much with age.

Normalization of ASG

To make all the steps comparable to each other they were normalized, first, in time via a linear
interpolation adjusting their length to the median value of all the step durations in the walking
series and, second, in amplitude between -1 and 1 by the maximum absolute value.
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Figure 3.3.: Comparison of the average step acceleration pattern and standard deviation in the an-
terioposterior axis for (a) a healthy young individual and (b) an elderly walking at normal self-selected
speed.

K-means Clustering

The exploratory analysis suggested the existence of slightly different patterns in the anteriopos-
terior acceleration for the adults and seniors, or equivalently for normal and slow gait speeds.
To corroborate this assumption, I applied K-means clustering [72] over the normalized ASGs and
grouped them in two clusters: cluster A, later identified with“age-related impaired walking”(from
now on, abbreviated as “impaired walking”) and cluster B, characteristic of “normal walking”.

From the total number of participants in the training data set (n=15, 22-90 years old), par-
ticipants with gait speed under 0.75 m/s (n=10, 77-90 years old) were assigned to group A and
the 80% of people with gait speed higher than 0.75 m/s (n=5, 22-36 years old) were assigned
to group B. Only one middle-aged adult (age 65 years old) with speed = 1.01 m/s was assigned
to the group A.

The Characteristic Step Graphs for impaired and for normal walking were chosen as the A and
B cluster means respectively. The estimation of CSG from the clustered data is age-independent,
and relies only in the acceleration step patterns which are directly associated to the gait speed.
The parametrized CSGs are shown in black in Fig. 3.4.

3.4.2. Parametric Description

Five main fiducial points were identified in the anterioposterior direction of the normalized ASG,
each of them associated with a particular gait event. For their identification I inspected in parallel
to the acceleration data the video recordings in slow motion.

The C point (Contact) corresponds to the initial contact of the heel with the ground. In
that moment the ankle is dorsiflexed with toes pointing up and the foot begins to land on the
middle to outside of the heel. As the foot continues landing the ankle plantarflexes and finally
the forefoot comes down.

In normal walking, when the heel of one foot, for example the right foot, touches the ground
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the ankle of the left foot begins to plantarflex immediately bringing the left heel off the ground,
and by the time the right forefoot reaches the ground the arch of the opposite foot recoils
bringing the toes off. These actions push the body upwards and forwards bringing a peak on the
anterioposterior acceleration, the R-A (Rise and Advance) peak.

The interval between the C point and the R-A peak corresponds to the double support phase
described in the gait theory as the period in which both feet are in contact with the ground. In
this analysis I found that this phase occupies the 22% of the step time or equivalently, 11% of the
stride cycle for normal walking, what is in agreement with the results from the clinical literature
[151].

In the elderly, the duration of the double stance is usually bigger. Winter [198] reported a
difference of more than 6% with respect to young adults indicating that the elderly adapt toward
a safer and more stable gait pattern. I found that on average the time spent by the elderly
in double stance was in comparison with the healthy adults of around 11% bigger. The elderly
tended to wait until the forefoot lands on the ground to start moving the rear foot forwards, which
causes a drop in the forward acceleration followed by an increase again when the calf muscles of
the rear foot begin to bring the heel off. This discontinuity in the loading response split the R-A
peak in two, R and A. The R (Rise) point coincides with the instant at which the forefoot of
the stance leg comes down to the ground and the A (Advance) point marks the instant which
immediately precedes the toe off. I observed that for a few elderly the amplitude of the R peak,
∆, was higher than that of the A peak. This is indicated in figure 3.4 with gray dotted lines. I
also drew in semi-transparent text the R peak found in the pattern of several young adults that
was filtered out when averaging all step patterns. This fine R-A separation present sometimes
in the younger group is not related to any pathological gait pattern, since the loading response
appeared totally normal and smooth and the participants did not report any medical condition
affecting the walking ability. This fluctuation is also not necessarily present in all the steps taken
by the same individual. The minimum and maximum difference in acceleration within the 22%
first interval found in the training data was: min ∆ = 0.09 [g] for an elderly and max ∆ = 1.05
[g] for a young adult.

After the R-A/A instant, the acceleration begins to decrease until it reaches a point of In-
flection, I, which marks the beginning of the mid-swing phase. In that moment the hip is pulled
forward by the concentric hip flexor and the knee extends rapidly. The end of this phase coincides
with the end of the leg swinging towards a maximum extension, the so called S (Swing) peak in
the step graph.

Again, the possible variations on the mid-swing phase were depicted in gray in Fig. 3.4. The
smoothing caused by the average of the step graphs makes the I and S points to vanish. However,
when inspecting each single pattern the I and S peaks still exist for a minority of elderly without
reduced knee extension. The absence of I-S interval seemed to be closely related to the use of
walking aid, especially walking frame.

3.5. Step Detection Algorithm

The step detection algorithm is divided into three main parts: recognition of regions of interest,
estimation of ICs and template matching. Each of them is described in detail in the following
sections. The algorithm was implemented in R language [174]. The raw data was processed in
overlapped blocks of length equal to 1000 samples (empirically calculated as the optimal length
[63]) and although there were not constraints in terms of execution time the algorithm was written
to completely avoid the use of loops.

Mathematical notation The sensor measures the acceleration at a rate of 100 samples per
second in three orthogonal axes: vertical (X), mediolateral (Y ) and sagittal (Z). On this basis,
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Figure 3.4.: On the left the parametrized Characteristic Step Graph for normal walking (cluster B) and
on the right for impaired walking (cluster A). Dotted lines show possible variations of the pattern.

the acceleration signal is considered a discrete multivariate time series where each acceleration
measurement can be defined as an element of a three dimensional Euclidean space in Cartesian
coordinates as

an = (an
x, an

y, an
z) (3.1)

with n = 1, 2, . . . , N and an ∈ R3.

3.5.1. Recognition of Regions of Interest

Walking implies the realization of a certain level of physical activity and to maintain a more or
less upright standing posture. Using the capacity of the device as inclinometer and measuring
the magnitude of the accelerations near the CoM we can estimate which regions may contain
walking segments. To recognize the regions of interest, I first excluded from the analysis all those
intervals where the body orientation was not upright. We consider an upright posture when the
angle formed by the trunk with the sagittal axis (φB) is smaller than 45◦ (ignoring possible sensor
tilt).

Second, I used a threshold-based segmentation of activity levels in 2 zones. The activity level,
gn, is obtained by differentiation of the acceleration vector in the sagittal plane,

gn = |vn+1 − vn| (3.2)

where vn = ‖(anx, anz)‖ =
√

(anx)2 + (anz)2.

Before calculating the activity threshold, this signal gn was smoothed with a Gaussian filter
( 1
σ = 2.5) of length L = 400 samples to guarantee that adjacent regions with similar activity level

were merged together. The threshold was selected in such a manner that all walking segments
in the training data set were included inside the region of interest. Since some of the elderly had
a very impaired gait (in particular those using walking frame) their activity while walking was
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very low and likewise the threshold. All those values under the threshold were not considered for
further analysis.

Hence, the activity profile was divided in two zones, with one of them corresponding to very
low activity or motionless and/or non-upright orientation, and the other one to upright position
and medium-high activity levels. This procedure does not guarantee that the values over the
threshold correspond to walking phases but restricts the area to search for steps improving the
algorithm’s performance time and specificity.

3.5.2. Estimation of Initial Contacts

As explained in section 3.3.5, the step detection is based on the detection of the greatest lo-
cal minima in the anterioposterior axis which coincide with the instants of the initial contacts.
These local minima are sometimes difficult to discriminate due to undesired fluctuations in the
signal usually produced by abdominal fat oscillations or by the hip extension. To remove these
fluctuations, I applied a low pass Butterworth filter (n = 4, fc = 2Hz) to the anterioposterior
acceleration an

z. After that, I calculated the minima nmin

nmin = {n ∈ 1, 2, . . . , N | ãzn−1 − ãzn > 0∧
ãzn+1 − ãzn < 0}

(3.3)

in the filtered signal ãzn by differentiation.
Each local minima marks off the interval I

I = [nmin, nmin + Tmin) (3.4)

where to search for the initial contacts in the anterioposterior axis azn. The duration of the interval
is equal to the minimum step duration (Tmin) that I have estimated in 1/4.2 seconds, the inverse
of the usual maximum step frequency during running [20]. For healthy adults and elderly walking
faster this limit decreases down to 2.5 steps per second [205, 19].

The first approximation of the initial contacts, ĉi, are the minima of the acceleration signal in
the interval I along the anterioposterior axis, calculated again as in equation 3.3.

The next task was to verify whether each segment

ŝ = {azn | n ∈ [ĉi, ĉi+1)} (3.5)

between two consecutive estimations of the initial contacts fits in the parametric description of
a step.

The first condition that the vector ŝ needs to fulfill to be considered as a step is to present
a maximum of amplitude ∆ ≥ min ∆, with min ∆ = 0.09 [g], in the first 22% of the interval.
This maximum usually corresponds to the R-A/A point in normal walking and to the R point
in impaired walking (Fig. 3.5). The I and S fiducial peaks were not considered for the step
detection because they are not always present in the signal. The second condition is that the
length of the vector ŝ in seconds should not be bigger than a maximum step duration Tmax = 2
s. This value is approximately equal to the double of the biggest step duration measured in the
training data set (1.06 seconds).

The vectors that satisfy both conditions are the estimations of the real steps and they are
denoted as s.

3.5.3. Template Matching

One of the most challenging tasks in step detection under uncontrolled environment is the ability
of the algorithm to distinguish between real steps and activities with similar patterns. In digital
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Figure 3.5.: Initial Contacts (ICs) detected using the algorithm (in red). The blue line is the anteriopos-
terior acceleration (g units) and the black line is the low-pass filtered version. Vertical lines correspond to
the annotated ICs.

image processing a common technique to identify characteristic patterns is template matching. I
applied the same principle here in order to reduce the number of false positives by measuring the
similarity of every acceleration pattern s with a template t and depending on this value decide
whether the estimated step fits the shape of a standard step pattern or not. The normalized
cross-correlation between both signals, defined as

γs,t =
1

L

L∑
j=1

(sj − µs)(tj − µt)√
σsσt

, (3.6)

was used as the similarity measure. In the equation 3.6, the scalars µx and σx denote in general
the average and the standard deviation of any signal x, and L is the length of the template.

The Characteristic Step Graph for normal (t1) and for impaired walking (t2) were used as
templates. And the length of the estimated step signal s was adjusted to the length of the
template by linear interpolation.

The steps with a maximum normalized cross-correlation

max(γs,t1 , γs,t2) < 0.70 (3.7)

were considered not to fit the standard. The value 0.70 corresponds to the lowest value of the
normalized cross-correlation between the templates t1 and t2 and the steps annotated in the
training data set.

3.6. Validation

The annotated steps in the validation data set were again used to calculate a Characteristic Step
Graph for normal and impaired walking and to cross-check the fiducial points determined in the
first analysis.

To validate the step detection algorithm I measured the accuracy in the validation data set
and an estimation of the specificity using the walking-like data.

The accuracy of the step detector is determined by the average trueness T
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T :=
1

n

n∑
i=1

1−
|NAlg

i −NGold
i |

NGold
i

, (3.8)

where NAlg
i and NGold

i are equal to the number of steps detected with the algorithm and with
the gold standard for each person i, and by the average error E

E :=
1

n

n∑
i=1

(
1

l

l∑
j=1

|cAlgij − c
Gold
ij |), (3.9)

where cAlgij are the initial contacts detected with the algorithm and cGoldij are the ones annotated
with the gold standard for each step j and participant i.

The specificity was measured in terms of the maximum false step rate (max FS), as the number
of false steps per minute when running the algorithm over a sequence of walking-like activities.
The value for the specificity given here is considered an upper limit because in a realistic scenario
the rate at which these kind of activities occur over the time interval measured with the sensor
is very much lower than in the experimental walking-like sequences. To obtain an actual value
of the false step rate one should consider the relative frequency of occurrence of the walking-like
activities described in Table 3.5 for each age group or/and mobility status. For example, in
general the probability that a person affected by a severe functional impairment rides a bicycle
regularly may be smaller than for a healthy individual.

3.7. Results

3.7.1. CSG Cross-Check

The K-means clustering applied to the average anterioposterior accelerations to determine the
Characteristic Step Graph yielded good results when discriminating between groups with gait
speed v ≥ 0.75 m/s (labeled as “normal” walking) and those with v < 0.75 m/s (labeled as
“impaired” walking) in the training data set, as seen on the confusion matrix in Table 3.2.

impaired normal

impaired 9 0

normal 1 5

Table 3.2.: Confusion Matrix for the training data set

However, the quality of the clustering using the same criterion was not so accurate when applied
to the validation data (Table 3.3a), with 5 persons with“impaired”walking classified as“normal”.
Two of those five persons, presented the highest speed in the actual “impaired” group (0.62 m/s
and 0.66 m/s) and the three remaining presented extreme to very low speeds (between 0.12
m/s and 0.36 m/s), which evidenced their condition as outliers. This assumption was confirmed
when the three misclassified samples with low gait speed were grouped together in a new cluster
after applying again the K-means algorithm and setting the number of clusters k to 3. Table
3.3b shows the Confusion Matrix after removal of outliers. The still misclassification of the two
patterns corresponding to gait speeds in the range 0.6-0.7 m/s suggests that the step graph may
still present characteristics of a normal walking pattern at those speeds.

Combining the results of the training and validation analysis, 90% of acceleration patterns
belonging to healthy adults (n=10) were classified in the group “normal”, unlike only 9.5% of
step patterns of seniors (n=21) which were also assigned to this group.

The cluster means of the validation data set produced almost identical Characteristic Step
Graphs as the ones depicted in Fig. 3.4 for the training data set. The Average Step Graph of the
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impaired normal

impaired 7 5

normal 0 4

(a) k =2

impaired normal

impaired 7 2

normal 0 4

(b) k=3

Table 3.3.: Confusion Matrix for the validation data set

elderly who use a walking frame (Fig. 4.14b) in comparison with the elderly who do not use one
(Fig. 4.14a) revealed that for the first group the interval I-S tends to disappear due probably to
the reduced knee extension characteristic for this type of walk [13], and the R peak amplitude is
on average smaller than the one for the A peak.
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Figure 3.6.: The Average Step Graph of the elderly (a) without a walking frame (n=10) and (b) with a
walking frame (n=11)

3.7.2. Algorithm Performance

The accuracy of the step detection algorithm was dependent on walking speed. The spectrum
of gait speeds in the validation data set ranged from 0.12 m/s for the most functional impaired
elderly to 1.47 m/s. Without the use of template matching, the average trueness in this data
set was almost excellent (T ≈ 1) for speeds between 0.20-1.5 m/s but it reduced down to near
the 50% for gait speeds under 0.20 m/s. The minimum and maximum error in the IC detection
was of the order of 1 and 6 hundredths of a second respectively. The precision of this error E
may vary depending on the precision with which the experimenter synchronized the acceleration
data with the gold standard data and annotated the ICs and, as mentioned already in section
3.3.3, this difference should not be bigger than 0.03 seconds. On average, trueness was reduced
by 12.3% when using template matching. The detailed results of the algorithm performance are
illustrated in Table 3.4.
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Except for cycling, the false step rate of the algorithm without applying template matching was
very good for most of the eight activities presented in Table 3.5, with nearly zero false steps for
seven of the activities and 20 false steps/min detected in one of them. When applying template
matching the false step rate during cycling was reduced by 70% and went down to zero for all
the rest of activities.

Speed [m/s] n T E [s] TT

Normal 1.00 ≤ v < 1.50 3 1.00 0.01 0.97

Slow 0.50 ≤ v < 1.00 6 0.98 0.04 0.82

Vslow 0.20 ≤ v < 0.50 5 1.00 0.06 0.80

Xslow 0.10 ≤ v < 0.20 2 0.45 0.06 0.35

Table 3.4.: Average error (E) and trueness with (TT ) and without (T) template matching

Movement description maxFS
[steps/min]

maxFST

[steps/min]

1 Sitting and moving heel up-and-down 0.0 0.0

2 On tiptoes and lowering back down 20.0 0.0

3 Sit-ups 0.0 0.0

4 Push-ups 0.0 0.0

5 Standing toe-touch 3.2 0.0

6 Shaking sensor up-down 0.0 0.0

7 Shaking sensor backward-forward 0.0 0.0

8 Shaking sensor left-right 0.0 0.0

9 Cycling 96.0 26.0

Table 3.5.: False step rate in walking-like movements with (max FST ) and without (max FS) template
matching

A small ad-hoc analysis was done to test the algorithm performance with running data. The
exploratory results of the step detection algorithm without the use of template matching showed
a good performance (≈ 100% of steps detected) when applied on a set of running sequences
from 3 different young individuals. To use template matching, new templates for running steps
should be generated.

3.8. Summary of Findings

The results of the step pattern examination from the CoM accelerations were consistent with
the qualitative and quantitative description of the gait phases presented in the clinical literature
[151, 198] and with other previous studies using force plates [152, 138] and accelerometers [207].

I found that the axis with a more congruent pattern for all ages and speeds is the anterioposterior
axis and the minima along this direction coincide with the initial contacts.

The significant differences in the amplitude and the standard deviation of the Average Step
Graph between a random subset of elderly and adults suggest that the ASG could be a good mea-
sure to assess functional decline. The K-means algorithm misclassified only 3 out of 31 Average
Step Graphs (after removal of outliers in the validation data set) when they were categorized
in two groups, labeled as “impaired” and “normal” walking, according to walking speeds lower
and equal or greater than 0.75 m/s respectively. Among the step graphs classified as “normal”,
approximately the 82% belonged to the healthy adults and the rest to fit seniors. These results
evidence the correlation among the acceleration step pattern, the age and the gait speed.

Apart from the expected changes in the maximum amplitude of the acceleration with the
speed, the device was able to detect little fluctuations in the acceleration at the CoM level
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3. Gait Analysis

originated with the heel strike, the forefoot loading, the plantar flexion of the foot and the knee
extension. The Parameterization of these gait events and posterior analysis revealed differences
in the biomechanics of gait among healthy adults and elderly with and without walking frame.
The acceleration-deceleration pattern of the signal envelop was also coherent with the inverted
pendulum model of the CoM trajectory [206].

To what extent the variations in the acceleration step pattern may result from the effect of the
walking speeds or from other factors related to aging, like loss of strength and flexibility, should
be further investigated. Some gait movements, as for example the knee flexion, has been shown
to be related to walking speed [96], therefore it is essential that normal ranges for gait parameters
are defined with reference to walking speed.

The step detection algorithm can be reliably used for the study population when walking at
speeds higher than 0.20 m/s independently of the use of walking aid. At lower speeds approx-
imately only half of the steps taken can be detected. For high speeds the ad-hoc exploratory
analysis showed promising results with almost all steps detected, however, in order to assess the
validity of the algorithm at running speeds an additional analysis is required. In uncontrolled set-
tings, the utilization of template matching techniques to reduce potential false positives due to
walking-like activities, like cycling, may reduce the accuracy of the step counter. Therefore, the
decision between applying this additional data processing or not, depends in part on a trade-off
between the required accuracy and the specificity. This compromise should be assessed once the
frequency with which these kind of activities are performed has been estimated. Other factor to
take into account is the time performance of the algorithm, since the template matching may
increase considerably the time needed to process the data.

To the author’s knowledge, this is the first study using a single waist-worn accelerometer that
a) has developed a reliable algorithm for step detection in a healthy population of adults/youngs
and in seniors walking at very low speeds, and b) that identified fiducial points in the acceleration
pattern with clinical significance for the assessment and monitoring of age-related functional
decline.

Although varied step patterns and gait speeds have been used in this study for the algorithm
development, additional validations in bigger data sets and with different pathological gaits (e.g.
MS or Parkinson disease) would be needed, such as the assessment of the ecological validity of
the step detector in uncontrolled environments like in the community or at home, where walking
is not limited to a straight walk.

Systems using a single waist-worn 3D accelerometer are a promising technique for reliable
long-term evaluation of physical functioning and monitoring of exercise therapy or medication
interventions. In particular the placement of the sensor inside a belt buckle guarantees a limited
obtrusiveness and the fixed location near the center of mass of the body provides accurate
information about body orientation and other parameters such as gait symmetry or trunk sway,
as will be shown in the next chapter. Analogous to electrodes that measure the electrical activity
of the heart to produce an Electrocardiogram (ECG), waist-worn accelerometers could measure
the motions near the body’s center of mass to trace out an acceleration graph of the gait, an
“AcceleroCoMgraph” (ACG).
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4. Postural Stability Analysis

4.1. Introduction

Postural stability is typically assessed by measuring the body sway during the performance of some
standardized functional tests using force-sensing plates. Most of the parameters that measure
body sway are based on the excursion of the body Center of Pressure (CoP) in the transverse
plane, the most common being the area of the ellipse that contains the 95% of the samples in
this plane, the path length and the velocity [156, 158].

Winter [196] suggested that the displacement of the body Center of Mass (CoM) could be a
better indicator of body sway than the CoP. The disadvantage is that the estimation of the CoM
is laborious since the position of the CoM is not fixed but it changes depending on distribution
of the body segments. There exist complex models that estimate the CoM position based on
the location, magnitude and mass distribution of the body segments [73, 199, 106], but the
costly 3D infra-red technology required to obtain these data makes this procedure impractical in
clinical settings. Other approaches are based in the low-pass filtering of CoP data [106, 17, 33]
or tracking a point in the body surface near to where the CoM is estimated to be during the
performance of the balance test [21, 58, 97]. The last two mentioned methods do not estimate
the CoM displacement in such an accurate manner as the segmental approach [56] but they
present an important advantage, they simplify substantially the data collection procedure which
is a crucial factor for the management of time and resources in the clinical practice.

Winter [197] also showed that, in an inverse pendulum model, the difference between CoP
and CoM was proportional to the horizontal acceleration of CoM and that this difference could
be seen as an “error” signal in the balance control system which causes this CoM’s acceleration,
therefore of considerable importance to understand the biomechanics and muscular synergies of
human upright posture. Until the introduction of accelerometers in clinical research, the CoM was
usually estimated by double differentiation of CoP data, a procedure that introduces considerable
noise in the results, but in the last years with the growing advance in MEMS technology, numerous
groups have studied the feasibility of using miniaturized inertial sensors to measure body sway
[126, 130, 145, 183, 146, 123, 51, 48]. These studies have shown good results in the identification
of populations at risk of falling [145, 51] and to characterize early mild Parkinson’s Disease patients
[146]. Nevertheless, accelerometry is still not an standard tool for the assessment of postural
control, probably because of a limited validation and the lack of normal ranges for healthy subjects
and for patients suffering from specific balance disorders.

In this section, the purpose is to 1) estimate and validate the CoM displacement using a single
waist-worn accelerometer and 2) compare the parameters derived from the acceleration data and
the same parameters derived from the CoP excursions in order to investigate the validity of the
sensor as an alternative tool for the quantitative assessment of postural stability.

4.2. Estimation of the Center of Mass Displacement during
Standing

In this section two methods for the estimation of the Center of Mass displacement are presented.
The first method consists in the double integration of the movement component of the accelera-
tion and the second method is based on the inverted pendulum model. Both methods have been
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4. Postural Stability Analysis

used in previous works, but it is still open which one approximates the empirical results better.
This question will be treated in later sections.

4.2.1. Method 1: Double Integration of Pre-Detrended Acceleration Signal

Theoretically the center of mass displacement could be estimated by attaching an accelerometer
on the body waist near the body’s CoM and integrating the measured acceleration twice.

Mathematically, the calculation of displacement x(t) from a measured acceleration a(t) is

x(t) = d0 + v0t+

∫ t

0
dt

∫ τ

0
a(τ)dτ (4.1)

where d0 is the initial displacement and v0 the initial velocity. This formula is used for continuous
functions but nowadays almost all signals are discrete and therefore the integration must be
numerical. The numerical integration per se is not a complicated task and several methods exists
that minimize truncation errors [44]. When working with real sampled acceleration data the
main source of errors are given in general by the unknown initial conditions, bias, noise, and low
sampling resolution.

Initial conditions For the calculation of the CoM displacement during the performance of ba-
lance tests, the initial conditions, and the low sampling resolution did not pose a problem. The
initial velocity and position are assumed to be equal to zero since the patient should begin the
measurement in a steady state posture and the initial location of the trunk corresponds to the
origin of the coordinates system.

Sampling resolution We also consider that the error introduced by the discretization of the
analog signal does not affect the results significantly. We can make this assumption because the
sampling rate of the sensor (100Hz) is in this case much higher than the maximum expected
trunk sway frequency under quasi-static conditions (≈ 3Hz) [45, 154] guaranteeing a sufficiently
good approximation of the real acceleration.

Bias The integration of a biased signal adds a linear drift to the result, and a double integration
produces a parabolic drift. Figure 4.1 shows an example of double integration over a sinusoidal
acceleration to which a bias of 0.01 m/s2 was added. Although the sinusoid is still present, the
result is clearly overwhelmed by the parabolic drift. To minimize the bias error it is important to
detrend the measured acceleration, separating properly the movement-related acceleration from
the gravity component.

Noise The integration process acts as a low pass filter, thus in acceleration signals affected by
noise the double integration tends to smooth the irregularities in the estimated displacement.
However, the numerical double integration has an undesirable effect due to its cumulative nature,
it introduces a variable drift of the actual displacement, particularly in the regions where the
noise amplitude is larger in comparison to the signal amplitude, as it is shown in Figure 4.2.
This is most likely a result of the noise being more positive or negative in certain regions, which
essentially acts as a small DC bias in the signal after the first integration.

Numerical Integration Methods

Displacements from numerical integration of digital signals can be computed with different me-
thods [139]. Usually, all the available numerical techniques for integration calculate the area
under the graph of the discrete function over time. The simplest method to estimate that area
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Figure 4.1.: Sinusoidal acceleration with bias (left) and estimated and actual displacement (right)
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Figure 4.2.: Sinusoidal acceleration with noise (left) and estimated and actual displacement (right)

is the rectangular integration method. This method consists of summing up all past samples
and the current input and divide the result by the sampling rate. Rectangular integration can be
represented by the difference equation

y[n] =
1

fs

n∑
k=0

x[n− k] = y[n− 1] +
1

fs
x[n] (4.2)

where x[n] is the signal to integrate and fs the sampling frequency.
Another simple and more accurate method for integration uses the trapezoidal rule. The

output of the integrator using this method can be written as

y[n] = y[n− 1] +
1

2fs
(x[n] + x[n− 1]) (4.3)

where again x[n] is the integrand and fs the sampling frequency.
The Simpson’s rule approximates the integrand with a sequence of quadratic parabolic seg-

ments in contrast to the previous methods that use picewise linear approximations. The output
of the Simpson’s integrator can be defined as

y[n] = y[n− 2] +
1

3fs
(x[n] + 4x[n− 1] + x[n− 2]) (4.4)

with x[n] the signal to integrate and fs the sampling frequency.
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4. Postural Stability Analysis

Because it uses quadratic approximations, when the underlying function is smooth Simpson’s
rule is more accurate than the trapezoidal rule, specially for low sampling frequencies. Figure 4.3
illustrates the three mentioned methods.

(a) Rectangular (b) Trapezoidal (c) Simpson’s rule

Figure 4.3.: Illustration of the rectangular, trapezoidal and Simpson’s rule numerical integration. Rect-
angular rule acts as a zero-order hold, trapezoidal rule acts as a first-order hold and Simpson’s rule uses
quadratic interpolation to approximate the integrand. Image source: [2]

Under quasi-static conditions the bandwidth of the acceleration signal (0-3Hz, [45, 154]) is
much lower than the sampling frequency of the accelerometer (100Hz). Therefore, even the
worst of the approximations – the linear approximation – would be enough accurate for our
purpose.

Acceleration Detrend in Quasi-Static Conditions

Most of the acceleration sensors, including the one used in this work, measure the gravity
acceleration and the acceleration due to body movements (see Equ. 2.1). In order to get only
the movement-related component, the measured acceleration should be detrended.
Under steady state conditions the gravity component manifests itself as an offset in one or more
sensor axes and it can be used to detect the sensor inclination with respect to the vertical plane
[186]. In this case, it is enough to subtract the average from the recorded data in order to obtain
the movement acceleration vector.
In the presence of rotational movements the frequency domains of the movement-related acce-
leration vector and the gravitational acceleration can overlap, thus making a perfect separation
of both components difficult [77].

Humans tend to rotate when swaying, so if the sensor is fixed to the human body, the device
which is designed to measure purely translational movements will also be subjected to rotations
that will severely distort the data if not accounted for. If the acceleration signal is not properly
detrended the residual gravity vector will act as a bias that after the double integration process
transforms into a drift on the displacement signal.

Using a Savitzky-Golay filter to detrend acceleration The Savitzky-Golay (S-G) filter is a smoo-
thing filter based on a local least-squares polynomial approximation method. It was originally
proposed by Savitzky and Golay [162] and used to smooth noisy data obtained from chemical
spectrum analyzers.
The S-G filter smoothes a given signal x[n] by fitting a polynomial

p(n) =
N∑
k=0

akn
k (4.5)

of a specified order N to a set of input samples of length 2M + 1. The coefficients of the chosen
polynomial should minimize the mean-squared approximation error for the group of input samples
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4.2. Estimation of the Center of Mass Displacement during Standing

Figure 4.4.: Frequency response of the Savitzky-Golay filter for a window of length M =16 and different
polynomial order N. Image source: [163]

centered on n = 0,

εN =
M∑

n=−M
(p(n)− x[n])2 =

M∑
n=−M

(
N∑
k=0

akn
k − x[n])2. (4.6)

Figure 4.4 shows the filter response for different polynomial orders. A reasonably accurate appro-
ximation for the 3dB cutoff frequency is this equation [163]

fc =
N + 1

3.2M − 4.6
M ≥ 25 and N ≤M. (4.7)

The advantage of using Savitzky-Golay filtering over simple digital filtering is the ability to
preserve higher order moments around inflection points, like local maxima and minima. Also,
unlike a moving average, in estimating the value of the fit at a certain point, it does not factor
in the values on the polynomial fit around it, therefore not introducing a bias at inflection points
[155].

Savitzky-Golay filters have been used in applications like electrocardiogram (ECG) analysis
[71] and in processing of ECG signals in combination with accelerometers to remove the slower
variations in motion-induced components of the signal and preserve the heart beats [29, 147].
Some publications in motion and balance analysis using accelerometers mention the use of S-G
filters or the basic concept of least-squares polynomial filtering for smoothing the acceleration
raw data [136, 58] and to separate the motion and gravitational components for the estimation
of trunk sway [130, 21, 51, 97]. However, none of them reported the accuracy in the estimations
using these type of filtering and there is still not a general rule for choosing the suitable values
for the window length and the filter order that reduce the error between the estimated trunk
sway and the real displacement.
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Figure 4.5.: Inverted pendulum model for standing posture in the sagittal (left) and frontal (right) planes
according to Winter et al.[199]

4.2.2. Method 2: Anthropometric Filter Based on the Inverted Pendulum
Model

The inverted pendulum model for standing posture originally proposed by Winter et al.[199]
relates the controlled variable, CoM, with the controlling variable, CoP. Such a model provides
an analytic relationship between these two commonly measured variables and the horizontal
acceleration of the CoM. This relationship shows that the difference CoP-CoM is proportional to
the horizontal acceleration of the CoM in both the sagittal (anterior/posterior direction, A/P)
and frontal (medial/lateral direction, M/L) planes. The equations that capture this relationship
are

px − x = (−Isa/Wh)ẍ (4.8)

where px and x are the CoP position and CoM position with respect to the ankle joint in the A/P
direction, ẍ is the CoM horizontal acceleration, Isa is the inertia of the body about the ankle
joint in the sagittal plane, W is the weight of the body (minus the weight of the feet), and h is
the CoM height above the ankle joint, and

pz − z = (−If/Wh)z̈ (4.9)

where z refers to displacements in the M/L direction and If is the inertia of the body about the
ankle joint in the frontal plane.

Winter et al. validated the proposed model (Fig. 4.5) by demonstrating a high correlation
between the CoP-CoM error signal and the respective horizontal accelerations of the CoM in
each plane. The correlation for large sways ranged between -0.96 and -0.99, whereas for small
amplitudes turned out to be slightly lower. This reduction was attributed to the decrease of the
precision of the CoM estimate at very low amplitudes.

Calculation of CoM displacement Based on the inverted pendulum model and under the assump-
tion that the sway angles are small in quiet standing conditions, Palmerini et al. [146] computed
the equation that relates the acceleration to sway angle and CoM height in the sagittal plane
(see Fig. 4.6)
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4.2. Estimation of the Center of Mass Displacement during Standing

a(t) = hθ̈(t)− g sin θ(t) ≈ hθ̈(t)− gθ(t) (4.10)

where g is the gravitational acceleration, a(t) is the acceleration near the CoM in the AP
direction, θ(t) is the sway angle with respect to vertical, and h is the height of the inertial sensor
(which is assumed to be the same height as the CoM estimate). The corresponding transfer
function is

H(s) =
θ(s)

a(s)
= − 1

g − hs2
(4.11)

Equation 4.11 can be written in the frequency domain as

H(jw) = − 1

g + hw2
= −1

g

1

1 + (w/wn)2
, wn =

√
g

h
. (4.12)

On average one can assume h approximately equal to 1 meter for an adult person (the ave-
rage leg length for adult male humans ranges between 0.88-0.92 m [128, 195]). Therefore the
displacement of the CoM on the AP direction (x = h sin θ) can be approximated as x = sin θ ≈ θ.

Based on equation 4.12 Palmerini et al. [146] used a low-pass filtering with a cut off frequency
of 0.5 Hz and static gain of −1/g in order to estimate x. They derived some features from the
calculated CoM displacement using this model although they did not validate it. They mentioned
that the intention was not to achieve a precise estimation of the CoM position but rather a signal
which approximates the characteristics of the CoM displacement. In their paper they did not
provide the type of filter used in the analysis.

Here, the purpose is to validate this model using different filter techniques and show how
precise it is in comparison with the double integration method.

x

h

a

θ

CoM

Figure 4.6.: Simplified inverted pendulum model for standing posture. Adapted from: [146]

4.2.3. Experimental Setup

Video Tracking System

The gold standard for the displacement of CoM in the mediolateral axis was obtained by tracking
the movement of the sensor over time using a high speed camera (Go Pro HERO3, 100 fps,
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1280x960 pixels resolution) and a video tracking software (Tracker v4.85 [28]) as shown in Figure
4.7.
Synchronization of camera and accelerometer was accomplished by filming a tap on the sensor
and subsequently matching the maximum in the acceleration signal with the frame that displays
the instant of the impact.

Figure 4.7.: Video tracking of estimated CoM displacement in the mediolateral direction during quiet
standing

Data Collection Protocol

Four standardized clinical tests: Romberg test (T1), Tandem test (T2), One-legged with Eyes
Open (T3) and One-legged test with Eyes Closed (T4), were performed during 10 seconds by
two healthy subjects, one 30-year-old female (S1) an one 31-year-old male (S2). Beginning and
end of each test was indicated by a single and a double tap on the sensor. The sensor was firmly
fastened around the waist and centered at the middle of the mediolateral axis near the center
of mass of the body. The high speed camera was fixed a few centimeters away in front of the
sensor.

4.2.4. Data Processing and Analysis

All video and acceleration data were annotated, synchronized and stored in single files corres-
ponding to each balance test. The duration of all tests was adjusted to 8 seconds, discarding
the first and last second to ensure that the participant was in a stable position and avoid unde-
sired effects, like for example in the one-legged test, the leg lifting movement at the beginning
of the test. In addition to that, the reference signal extracted from the video recording was
smoothed and the raw acceleration signals were corrected for sensor tilt (see section 2.4.1 for
more details) and denoised by applying a low-pass Butterworth filter (4th order). The cut fre-
quency of the filter, fcutoff = 4 Hz, was chosen to preserve the frequency spectrum of the trunk
sway, estimated to occupy the frequencies in the band 0-3.5 Hz [45, 154, 146], and get rid of
eventual electrical-thermal sensor noise [113] or muscle tremors typically present in patients with
neurological disorders like for example Parkinson’s disease [146]. The data analysis was entirely
done in R-2.14.1 [174] and two different types of data processing were performed depending on
the method used to calculate the CoM displacement. Both methodologies are described in the
following paragraphs:
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4.2. Estimation of the Center of Mass Displacement during Standing

Method 1: De-trend and double integration To estimate the CoM displacement according to
the first method – double integration of the movement-related acceleration – the raw data was
first detrended employing a Savitzky-Golay polynomial filter of high order (N = 6) by subtracting
the low-frequency trend to the raw data. Filters of lower and higher order were employed but
discarded from the final analysis since the CoM estimation was less accurate. After the filtering,
the de-trended acceleration was integrated twice using Simpson’s rule approximation, first to
obtain the velocity v(t) and a second time to calculate the displacement x(t). The flowchart in
Figure 4.8 shows the data processing performed on the raw data.

acceleration
data

a(t)

Detrend
Savitzky-Golay

a
m
(t)

First 
integration

v(t)

Second 
integration

Bias correction
v(t)-v(t)–

v'(t)

x(t)

Figure 4.8.: Estimation of CoM displacement using to the double integration method

In order to find the optimal 3dB cutoff frequency that maximizes the similarity between the
estimated displacement and the actual one, an exhaustive search was done for frequencies in
the interval [0.11, 0.25] Hz, in steps of 0.01 Hz. Frequencies out of this interval produced a
lower similarity and therefore they were excluded. The similarity was measured with the metrics
specified in table 4.1.

Similarity metric Definition

DP2P Absolute value of the difference between the maximum peak to peak amplitude of
the reference signal and the maximum peak to peak amplitude of the estimation.
Units: millimeters

MNCC Maximum value of the normalized cross correlation. Calculated for a lag of ± 1
second and normalized between 0 and 1

Table 4.1.: Similarity metrics calculated to compare the reference and the estimated CoM displacement
.

Method 2: Anthropometric low-pass filter based on the inverted pendulum The second method
to estimate the CoM displacement consists of performing low-pass filtering with a filter that
approximates the frequency response

H(jw) = −1

g

1

1 + (w/wn)2
, wn =

√
g

h
.

In order to do that, two different low-pass filters were used, a second order Butterworth and
an Elliptical filter. The filters were chosen for their different characteristics of the frequency
response, the Butterworth has a smooth response with a slow roll off whereas the Elliptical has
a near-instant cut off but it presents ripples in both the pass-band and the stop-band. The
frequency response of these filters can be seen in Table 4.2 and Figure 4.9.

For both filters the range of frequencies that best approximated the reference signal lay in the
interval [0.45, 1] Hz. The optimal frequency was found using the same procedure as in the first
method and the search was done in steps of 0.05 Hz.
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4. Postural Stability Analysis

Filter Frequency response

Butterworth

H(jw) =
1√

1 + (w/wc)2n

where n represents the filter order and wc is the cuttoff frequency at 3dB

Elliptical

H(jw) =
1√

1 + ε2R2
n(ξ, w/wc)

where Rn is the nth-order elliptic rational function, ε represents the ripple factor,
ξ is the selectivity factor and wc is the cuttoff frequency

Table 4.2.: Frequency response of a Butterworth and Elliptical filter.
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Figure 4.9.: Frequency response graph of a Butterworth and Elliptical filter.

4.2.5. Results

Optimal Cuttoff Frequency

To estimate the optimal cuttoff frequency (fc), I used the difference of maximum peak to peak
amplitudes (DP2P) and the maximum normalized cross correlation (MNCC) described in Table
4.1. Figure 4.12 shows the results for each frequency interval and methodology. Looking at the
graphs one can conclude that there is not a unique frequency that overall maximizes the similarity,
but the values along the different frequencies either present a increasing/decreasing step-like
response or an almost flat response. Table 4.3 presents the median values of the frequencies that
maximize the cross correlation and the median values that minimize the difference in peak to
peak amplitudes.

Based on these values and taking into consideration that to give a reliable assessment of
the postural stability the priority is to detect accurate changes in the amplitude of the CoM
displacement rather than to obtain the best waveform match, the optimal cut off frequencies
were estimated as 0.16 Hz for the Savitzky-Golay filter and 0.50 Hz for the Butterworth and
Elliptical filter (the average of the DP2P optimal fc of both filters).
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4.2. Estimation of the Center of Mass Displacement during Standing
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Figure 4.10.: Similarity measures between the estimated and measured CoM displacement for each
subject (S) and test (T) and for different cuttoff frequencies and methods.
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4. Postural Stability Analysis

Method median(
argmax

f
MNCC(f))

median(
argmin

f
DP2P (f))

Estimated optimal fcutoff

1 - Savitzky-Golay+integ. 0.18 Hz 0.16 Hz 0.16 Hz
2 - Butterworth 0.65 Hz 0.45 Hz 0.50 Hz
2 - Elliptical 0.55 Hz 0.55 Hz 0.50 Hz

Table 4.3.: Optimal cuttoff frequencies for the maximum normalized cross correlation and the peak to
peak difference between the estimated and the measured signal

Estimation Error

The error made in the estimation of the CoM displacement was measured using the DP2P and
the MNCC. The DP2P represents the error concerning the amount of trunk sway and the MNCC
measures the deviation of the estimated CoM trajectory with respect to the real one (ignoring the
differences of the offset between the estimated and the gold standard signal). Table 4.4 presents
the average and standard deviation of both parameters for the optimal frequencies determined in
the previous paragraph, fcutoff = 0.16 Hz and fcutoff = 0.50 Hz for Method 1 and Method 2
respectively.

To measure the level of difficulty of each test the maximum trunk sway has been calculated (i.e.
the peak to peak amplitude of the measured CoM displacement). The bigger this parameter is,
the more complicated to maintain the equilibrium. Figure 4.11 shows how the difficulty increases
with the test number.

Romberg
T1

Tandem
T2

One−leg EO
T3

One−leg EC
T4

m
m

0
10

20
30

40
50

60
70

●

●

●

●

Maximum body sway

Figure 4.11.: Average and standard deviation of the maximum trunk sway calculated using the gold
standard CoM displacement

In the diagram bar of Figure 4.12 one can see how the average error in the estimation of
the amount of sway increases exponentially with the difficulty of the test. This is equivalent to
say that the bigger the trunk sway is, the bigger the error made in the estimation (Fig. 4.13).
On average, the difference in the peak to peak amplitude between the real and the estimated
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4.3. Comparison of Accelerometer versus Pressure Plate

CoM displacement was in the range of 0.001-1 cm for the Romberg, Tandem, and One-legged
test with Eyes Open (EO) and in between 2 cm and 8.7 cm for the One-legged test with Eyes
Closed (EC). Overall the most accurate method to calculate the trunk sway was the Method 1
(double integration method) whereas for the Method 2 (anthropometric filtering) the Elliptical
filter performed better in general than the Butterworth filter.

The maximum normalized cross correlation (MNCC) between the estimated and the measured
signal was nearly constant for the three first balance tests with an average value of around 0.4
for the Method 1 and 0.55 for the Method 2. In the most difficult test, the One-legged EC, the
similarity decreased in average 0.25 units regardless of the method used.

Romberg (T1)
n=2

Tandem (T2)
n=2

One-legged EO (T3)
n=2

One-legged EC (T4)
n=2

Method DP2P
mean
±sd

MNCC DP2P
mean
±sd

MNCC DP2P
mean
±sd

MNCC DP2P
mean
±sd

MNCC

Method 1-Savitzky-Golay 0.8±0.2 0.5±0.4 3.7±5.0 0.3±0.1 6.4±7.3 0.4±0.2 20.3±15.20.1±0.2
Method 2-Butterworth 1.4±0.2 0.6±0.3 3.5±1.4 0.5±0.1 11.1±6.1 0.6±0.2 87.5±60.90.4±0.3
Method 2-Elliptical 1.7±0.9 0.6±0.3 2.5±3.0 0.5±0.1 8.3±2.7 0.6±0.2 65.1±47.60.4±0.3

DP2P and DMEAN are given in millimeters

MNCC is unitless

Table 4.4.: Similarity values between the estimated and the measured CoM displacement

The standard deviation measures the consistency of the results. In this experiment, the error
of the maximum trunk sway for the easier tests (Romberg, Tandem and One-legged EO) has a
relatively small standard deviation indicating that our estimation is consistent regardless of the
participant and as long as the trunk displacement is below approximately 2 cm, the maximum
trunk displacement for this set of tests. On the contrary, the trunk sway error for the most
complicated test (One-legged EC) presents a high standard deviation which means that the
precision of the estimation can vary considerably depending on the subject or trial. The same
occurs for the standard deviation of the cross correlation in all tests.

4.3. Comparison of Accelerometer versus Pressure Plate

4.3.1. Experimental Setup

Four participants, 3 males (34.7 ± 11.9 years old) and 1 female (29 years old) stood barefoot on a
pressure plate with both feet together and the accelerometer attached to the waist near the CoM.
In this position, they performed 5 balance tests simulating 5 increasing levels of difficulty during
approximately 10 seconds. Level 1 consisted on standing still (Romberg test) and level 5 consisted
of generating as much body movement as possible but still without losing balance or stepping
out of the base of support. The duration of the tests was determined by the maximum recording
time permited by the pressure plate (RSscan-0.5m Advanced footscan®) configured at 100Hz to
match the acceleration sensor sample frequency. To synchronize acceleration and pressure data,
the participants jumped on the pressure plate at the beginning of each test in order to generate
a maximum on the net force signal as well as in the vertical acceleration component with the
first contact of the feet with the floor. The first 1,5 seconds of recording after the maximum
peak where discarded of the analysis and both signals length was truncated to 6 seconds. All
participants gave written informed consent.
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Figure 4.12.: Graphs of the similarity values (means and standard deviation) between the estimated and
the measured CoM displacement

4.3.2. Extraction of Stabilo-Parameters

The parameters chosen for the comparison between the accelerometer and the pressure plate
are: a) the overall area covered by the CoP displacement and b) the distance travelled. These
parameters are among the major outcomes of the commercial force-sensing plates. The overall
area covered by the CoP is an area containing the 95% of the CoP samples lying in the transverse
plane, often reported in the clinical literature as predictor of the risk of falls [120, 175], and the
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Figure 4.13.: Estimated and measured CoM position (in milimeters) along the mediolateral axis for (a)
Romberg test and female subject and (b) one-legged EC test and male subject (right).

distance travelled is the length of the path described by the CoP. Both parameters are closely
linked to the stabilogram, an illustrative graph of the postural sway.
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4. Postural Stability Analysis

Stabilogram and Stabilo-Ellipse

The trajectory of the center of pressure along the transverse plane during a balance test is
commonly called a stabilogram (Fig. 4.14). Even without numerical analysis, the stabilogram
provides a wealth of information on postural sway. For example, the overall area covered by the
CoP indicates the ability of the subject to maintain a stable upright posture; the shape of the
stabilogram might suggest that sway is greater in either the medial-lateral or the anterior-posterior
direction, and long straight segments on the plot reflect sudden perturbations or corrections to
balance, whereas shorter segments indicate finer control, even if the overall plot covers a large
area [149].

The stabilo-ellipse is a new term employed in this work to refer to the stabilogram described by
the low frequency components of the CoM acceleration. For the calculation of the stabilo-ellipse
the acceleration data was low pass filtered with a fourth order Butterworth filter (fc = 2 Hz).
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Figure 4.14.: Examples of (a) stabilogram and (b) stabilo-ellipse during the performance of a balance
test (level 3) for the same individual. The orange line is the 95% Confidence Interval Ellipse.

Calculation of the 95% Confidence Interval Ellipse The calculation of the 95% Confidence In-
terval Ellipse is based on Principal Component Analysis. Given two random variables S1 and S2
with a bivariate normal distribution and means µ1 and µ2, the parametric form of the ellipse’s
equation can be calculated as [194, 112]

x(t) = x0 + F(
√
λ1 cos t cosφ−

√
λ2 sin t sinφ) and

y(t) = y0 + F(
√
λ1 cos t sinφ+

√
λ2 sin t cosφ),with

φ = arctan v21/v11.

(4.13)

Where (x0, y0) are the center of the ellipse, λ1 and λ2 are the eigenvalues of the covariance
matrix Σ = cov(s1 − µ1, s2 − µ2), φ = is the angle between the X-axis and the major axis of
the ellipse, F is a scale factor given by a chi-squared distribution with 2 degrees of freedom and
p-value equal to 0.95, and v21 and v11 are eigenvectors of the covariance matrix Σ.
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4.4. Summary of Findings

Area of ellipse The area of the 95% Confidence Interval Ellipse is equal to

A = F2π
√
λ1

√
λ2 . (4.14)

Path Length The Path Length (sometimes also called Travelled Way) is calculated as

L =
N∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 . (4.15)

with x the samples along the X-axis (mediolateral axis) and y the samples along the Y-axis
(anterio-posterior axis).

4.3.3. Results

As expected, the area of the ellipse and the Path Length increased with the difficulty level of the
test. However the increasing rate was different for each data set, for the acceleration data the
evolution was exponential whereas for the CoP data it followed a linear trend, as shown in figure
4.15.

A pearson’s correlation analysis showed that a statistically significant correlation exists among
the parameters extracted from accelerometer and pressure plate, with a correlation coefficient r
= 0.61 (p<0.01) for the 95% Confidence Interval Ellipse and r = 0.73 (p<0.001) for the Path
Length. Moreover, the accelerometer and pressure plate have both the capability to distinguish
between difficulty levels (Table 4.5).

Acceleration Center of Pressure

Area p<0.001 p<0.01
Path Length p<0.001 p<0.001

Table 4.5.: p-values of Anova test shows the capacity of accelerometer and pressure plate to distinguish
between test difficulty levels.

4.4. Summary of Findings

In the first section of this chapter, I have investigated the accuracy in the estimation of the lateral
CoM displacement using a single acceleration sensor attached to the waist and comparing two
different methods, the double integration method (Method 1) and the anthropometric filtering
(Method 2). Although these methods have been previously used in some studies to estimate the
CoM displacement [130, 21, 50, 97, 146], none of the existing publications have reported accuracy
values. In the second part of the chapter, I demonstrated the validity of the accelerometer to
distinguish among different amounts of body sway and compared it with a force-sensing plate,
the standard tool used in laboratory settings to quantify postural sway.

I have found that the error made in the estimation of the trunk sway increases with the
amplitude of the trunk movement or in an equivalent manner with the difficulty of the balance
test. This is most likely due to the fact that under these circumstances of higher instability the
person does not behave as an inverted pendulum anymore. When the amplitude of the body
movement is very small, like for example during double or tandem stance, most of the time the
body is in equilibrium controlled through an ankle strategy [80] and it can be assumed that the
person stays standing fairly straight as an inverted pendulum. However, in those more challenging
tests there is a need to adjust rapidly the CoM to a balanced position and this is done through a
hip strategy characterized by a large angular trunk acceleration [80]. This rotational movement
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Figure 4.15.: Comparison of pressure plate (right) and accelerometer-derived (left) balance parameters.

of the hip invalidates the inverted pendulum model reducing the accuracy of Method 2 and
introduces a strong unsteady gravitational component difficult to remove before integration in
Method 1. In quasi static conditions, the body sway estimation, regardless of the used method,
is quite accurate especially if we take into account that the trunk displacement is very small (just
of the order of 1-2 cm) and so it is the movement-related acceleration in comparison with the
noise.

In general, the double integration method estimated the maximum trunk sway better than
the method based on the inverted pendulum, but the waveshape similarity with the reference
signal using this first method was lower. A limitation of the first study was the small number
of participants, thus these results should be further investigated using more and varied data.
A possible way to improve the estimation could be to use a gyroscope in parallel with the 3D
acceleration sensor.

When comparing the accelerometer and the pressure plate results, I found that the graph
described by the accelerometer-derived parameters (area of the 95% Confidence Interval Ellipse

58



4.4. Summary of Findings

and the Path Length) followed an exponential curve for an increasing body sway, in contrast with
the linear tendency described by the same parameters extracted from the pressure plate data.
The assumption here is again that the stiffness control of balance in quiet standing [199], the
one which governs the inverted pendulum model, is not valid for big perturbations of the body
center of mass but a double-link model is needed [38]. Under situations of high instability, the
neuromuscular system activates the hip flexor muscles to bring the CoM to a balanced position.
The body sway measured by means of the CoP displacement does not account for the joint
torques of the hip as much as the accelerometer placed near the body CoM does. The additional
amount of sway registered by the accelerometer when the hip rotates as the difficulty of the test
increases, depicts the exponential curve.

Another interesting point is that the Path Length may be a better parameter to distinguish
among balance ability when the perturbation is very small. The results show how for the first two
tests the difference in the Ellipse’s area is, although statistically significant, very small, whereas
for the Path Length it increases (Fig. 4.15). This fact indicates that, although the body sway
covers the same area, the velocity with which the CoP and the CoM moves can be different.

Finally, the standard deviation increases overall with the difficulty of the test. This can be due
to a difference in the balance ability of the subjects or rather to a difference in the interpretation
of the “1-5 levels of difficulty”. Scales, especially number scales with no or less descriptors, like
the one employed in this study, are very subjective to the respondents [39].
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5. Falls Risk Assessment and Functional Tests

5.1. Introduction

Any well designed fall prevention program requires accurate evidence-based measurements to
identify persons at higher risk of falling. A correct screening is a first and crucial step for the
effectiveness of the intervention. At the most basic level, evidence-based questionnaires are avai-
lable but ideally more comprehensive clinical examinations including vision test, cognitive status,
medication and functional assessment (examination of an individual’s mobility and transfer skills)
should be adopted [9]. The selected screening tool will certain depend on several aspects, such
as, target population, time required to complete the tool, settings, resources and the expertise
of professionals available to execute the protocols. That is the reason why fall risk assessment is
usually not standardized within or across settings.

In this chapter we are interested in testing the potential of a single waist-worn accelerometer
to enhance the outcome of the current functional mobility tests with the aim to improve the
accuracy of the fall risk assessment. For that purpose, different prediction models were trained and
validated based on classification and regression analysis on clinical and functional accelerometer
data from a group of elderly prospective fallers and non-fallers. Participants were recruited in a
multicenter study as part of the VPHOP EU-Project [176].

Throughout the chapter I will refer to“fall prediction”as the actual probability of presenting a
fall, estimated using our existing data set, and to“falls risk assessment”as the holistic evaluation
of the the risk of falling. The aim here is to improve the fall risk assessment by providing valuable
tools, methods and results, among them, new validated functional parameters and the outcome
of the fall prediction in a specific cohort of patients.

5.2. Fall Definition and Questionnaires

Since the creation of the first report on prevention of falls (the Kellogg report, 1987) until the
last Global Report on Falls Prevention in older Age of the WHO (2007), many researchers have
sought to describe what they mean by fall with the aim of: a) determining which events could
be included as a fall and which not and b) classifying different types of falls in order to allow for
comparability between research results. As shown in Table 5.1, over almost 20 years no consensus
has been reached and there is still not universally accepted definition for a fall. Since researchers
often provide definitions for falls that reflect the needs of their particular studies [203] and each
fall can be presented as a unique chronological episode of occurrences comprising not only the
fall itself but its antecedents and consequences, such universal definition may not be possible or
even necessary.

In addition to a comprehensive fall definition, questionnaires should include information about
non-injurious falls such as slips, trips and stumbles since these occurrences may constitute a
very valuable early warning for rapid intervention [107]. Details about where, when and the
circumstances associated with the fall should also be reported. Lamentably, self-reporting of falls
is notoriously inaccurate [119], frequently subject to recall and response bias. In particular, the
elderly subjects tend to forget falls that occurred during specific periods of time over the preceding
3 to 12 months [41] while others are often afraid to report falls or have home evaluations because
they fear being sent to a nursing home [182].
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5.3. Fall Risk Factors

Author Year Selected Fall Definitions

Kellogg Group 1987 “A fall is an event which results in a person coming to rest inadvertently
on the ground or other lower level and other than as a consequence of
the following: Sustaining a violent blow, Loss of consciousness, Sudden
onset of paralysis, as in a stroke, An epileptic seizure.” (p. 4)

Lach et al. 1991 “... an unexpected loss of balance resulting in coming to rest on the
floor, the ground, or an object below knee level.” (p. 198)

Buchner et al. 1993 “Unintentionally coming to rest on ground, floor, or other lower level;
excludes coming to rest against furniture, wall, or other structure.” (p.
301)

Means et al. 1996 “... any involuntarily change from a position of bipedal support (standing,
walking, bending, reaching, etc.) to a position of no longer being support
by both feet, accompanied, by (partial or full) contact with the ground
or floor.” (p. 1032)

Berg, Alessio,
Mills, & Tong

1997 “... losing your balance such that your hands, arms, knees, buttocks or
body touch or hit the ground or floor.” (p. 262)

Canadian Institute
for Health Infor-
mation

2002 “... an unintentional change in position where the elder ends up on the
floor or ground.”

Carter et al. 2002 “... inadvertently coming to rest on the ground or other lower level
with or without loss of consciousness and other than as the consequence
of sudden onset of paralysis, epileptic seizure, excess alcohol intake or
overwhelming external force.” (p. 999)

Cesari et al. 2002 “... a sudden loss of gait causing the hit of any part of the body to the
floor .. .” (p. M723)

Tideiksaar 2002 “... any event in which a person inadvertently or intentionally comes to
rest on the ground or another lower level such as a chair, toilet or bed.”
(p. 15)

Table 5.1.: Most diverse fall definitions from research and prevention literature published between 1987
and 2005. Adapted from Zecevic, Aleksandra A., et al. [203]

.

VPHOP Falls Questionnaire

The falls questionnaire used in the VPHOP project did not include any specific definition for a fall.
However, details about date, place or circumstances associated with the fall were reported. This
information was used to exclude from the list of fallers those patients whose falls were related to
extrinsic or accidental factors, like for example, slipping on an icy surface, and just to take into
account those who fell due to functional deficits. The diagram 5.1 presents all the information
reported in the questionnaire of fall monitoring.

5.3. Fall Risk Factors

Risk factors for falls have been classified into two main categories: intrinsic or patient-related
factors and extrinsic or environment-related factors [181]. Falls often result from multifactorial
events, sometimes from a combination of environmental and patient-related factors, from cor-
relation of intrinsic factors (that in some cases may contribute to confounding, e.g., age and
sex) or occasionally from reverse causality, where some elements are consequences as well as risk
factors for falls – for example, fear of falling may yield a decrease in physical activity levels that
can reduce muscle strength and consequently lead to a fall, arising fear of falling even more.

A fall risk assessment is often based on a weighted combination of the most important fall risk
factors (Fig. 5.2) and it typically employs specific screening forms, e.g., Morse Fall Scale [132],
STRATIFY [142], Fall Risk Assessment Tool [118] or Hendrich Fall Risk Model [78]. These tools
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5. Falls Risk Assessment and Functional Tests

Did you suffer a fall in the last 12 
months?

end
no

yes

How often did you fall in the last 
12 months?

Please indicate the exact date of 
your last fall 

Were there any special circumstances 
leading to the fall? 

yes

Which?

no

How did the fall happen? 

Did you lose consciousness 
directly prior to the fall? 

Did you experience vertigo directly 
prior to the fall? 

If anything else, please specify 

which kind of fall is it? 

comments

end

locomotive
syncopal
mixed
accident
non classificable 
not at all

Please select

Figure 5.1.: VPHOP questionnaire for retrospective and prospective fall monitoring.

are periodically updated (e.g., per shift, daily or weekly) and take account of intrinsic and medical
characteristics of the patients, like psychological and sensory status or mobility dysfunction. Poor
scores tend to trigger either further assessment or anticipatory nursing interventions.

5.3.1. Intrinsic Factors

Intrinsic risk factors have been reported to play a dominant role in case of recurrent falls, with
the most significant ones those related with mobility problems [171].
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5.3. Fall Risk Factors

Instrinsic factors
Medical History

● History of falls
● Muscle weakness
● Age
● Body Mass Index
● Arthritis
● Depression
● Sleep disturbance
● Visual impairment
● Hyperthension
● Rheuma
● Fear of falling
● Foot pain
● Cognitive impairment

Extrinsic factors

● Medication 
● Home hazards
● Footware
● Living alone
● Floor
● Lighting 
● Clothing
● House exterior

● Gait deficit
● Balance deficit
● Assistive devices
● Level of activity
● Walking aids

Instrinsic factors
Functional Status

Clinical fall 
risk score

Functional fall 
risk score

Extrinsic fall 
risk score

Total fall risk 
score

Figure 5.2.: Main fall risk factors reported by the American Geriatrics Society (AGS). Factors included
in our fall risk assessment model are in black.

Age In general, the risk of falling increases with age [181, 46]. However, investigations indicate
that superimposed to the decreased postural and gait stability due to the age alone (“presbyas-
tasis”) is the increased probability in the elderly of developing specific pathologies which lead
to accelerated degeneration in neural and/or musculoskeletal systems that eventually may result
in a fall [81, 65, 200]. Age-associated impairments of vision, hearing and memory also tend to
increase the number of trips and stumbles [161].

Gender Most of the reviewed studies found an increased risk for women, both for all fallers and
recurrent fallers [46]. Women are also far more likely to incur fractures when they fall [181].

History of falls History of falls was found to be one of the factors strongest associated with
falling, in particular for multiple fallers [170, 32, 46].

Fear of falling Fear of falling is a consequence as well as a powerful predictor of falls [64, 164, 46].
Up to 85% of recent fallers and up to 50% of those not reporting recent falls acknowledge fear of
falling, with the prevalence higher in women than in men. Other consequences of fear of falling
include less physical activity, depression, poor postural performance, slower walking speed and
muscle weakness [181, 164].

Musculoskeletal condition Muscle weakness and gait/balance problems are together with history
of falls the strongest predictors for falls [32, 161, 170, 46]. Weakness and postural instability stem
from age-related degeneration as well as from specific dysfunctions of the nervous, muscular,
skeletal, circulatory, and respiratory systems (e.g., Stroke, Multiple Sclerosis, Osteoporosis) or
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5. Falls Risk Assessment and Functional Tests

from simple deconditioning due to inactivity. Plantarflexor and dorsiflexor weakness is a common
cause of gait disorders, which affect up to 50% of the elderly population. Case-control studies
reported that over two thirds of individuals who have fallen have substantial gait disorders,
considerably higher than control subjects who have not experienced a fall [161]. When strength,
endurance, muscle power and hence function declines sufficiently, one is unable to prevent a slip,
trip or stumble becoming a fall. Difficulty in rising from a chair is also associated with increased
risk [181].

Cognitive and dual sensory impairment Visual acuity, contrast sensitivity and depth perception
are the most relevant functions to help maintaining postural control and avoiding a fall [181,
170, 32]. Cataract, glaucoma and macular degeneration are risk factors for falls since they can
affect the correct functioning of these visual functions [181] as well as bifocal glasses which impair
depth perception and edge-contrast sensitivity hampering the person to focus on their feet and the
ground surface to stabilize themselves in case of lost of balance [181, 170]. Hearing impairment
negatively affects the ability of a person to orientate in space, hence rising the probability to
fall. More than 50% of the elderly have some degree of hearing loss [161, 170]. Dementia and
cognitive impairment are also risk factors for falls due to several intrinsic and extrinsic factors
including impaired visuospatial perception, neurocardiovascular instability and medication use
[161, 170]. Low scores on a short mental status questionnaire is associated with increased risk
[181]. Residents in institutional care with diagnosed dementia fall twice as often as those with
normal cognition [181]. Fall prevention programs in this population have not shown reduction
in falls [89, 167] probably due to the inability to learn and remember new information and/or
comply with prolonged exercise regimens.

Medical conditions Neurological disorders –e.g., Parkison, Multiple Sclerosis –, bone and joint
disease like Osteoporosis or Osteoathritis and cerebrovascular accidents, increase the likelihood of
a fall through multiple causes including pain, muscle weakness and stiffness, infection, metabolic
disorders or decreased proprioception [170]. Diziness and vertigo is common in fallers. However,
diziness is a non-specific symptom and may reflect problems as diverse as cardiovascular disorders,
hyperventilation, orthostasis, drug side-effect, anxiety or depression. Circulatory disease, chronic
obstructive pulmonary disease, depression and arthritis are each associated with an increased risk
of 32%. Thyroid dysfunction, diabetes and arthritis leading to loss of peripheral sensation also
increases risk. The prevalence of falling increases with rising chronic disease burden. Incontinence
is also frequently present in populations of fallers [181, 161].

Sedentary behaviour Sedentary lifestyle may cause atrophy of muscle and an unstable joint
through disuse. Inactive elderly fall more than those who are moderately active or very active in
a safe environment [70]. Those subjects cutting back on normal activities because of a health
problem in at most 4 weeks previous to fall are at increased risk [143].

Walking aids Use of walking aids was associated with up to a 3-fold risk of falling [46].

5.3.2. Extrinsic Factors

Previous studies have found that extrinsic precipitating causes are responsible for up to 55% of
the falls in the elderly [105, 30]. Extrinsic risks include:

Medication Use of sedatives, antihypertensives, and, in particular, antiepileptics are directly
associated with risk of falling, as well as the number of medications used [46]. The use of four or
more medications is associated with a nine-fold increased risk of cognitive impairment and fear
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Physical
activity

Fall risk

low medium high

low

high

Figure 5.3.: U-shaped graph for activity versus fall risk [14]

of falling [181]. Drugs frequently have side effects that result in impaired mentation, stability,
and gait [161].

Home hazards Environmental hazards such as slippery floors, uneven surfaces and unstable
furniture may challenge the subjects’s ability to maintain postural stability. Many of those hazards
are modifiable through the adoption of some specific environmental improvements like adequate
lighting, bathroom grab rails and raised toilet seat, secure stairway banisters, raising or lowering
bed and an easily accessible alarm system [161].

Footware and Clothing Walking indoors barefoot or in socks and walking indoors or outdoors in
high-heel shoes have been shown to increase the risk of falls in older people [127]. Baggy clothes
which bunch up or drag on the ground can also contribute to risk of falling.

Living alone Living alone has been shown to be a risk factor for falls, although in the studies
which investigated this factor it was reported that when age and gender were controlled for, the
association became much weaker [55] and also part of this effect appeared to be related to certain
types of housing older people may occupy [181]. An important consequence of living alone is
that the result of the injuries can be fateful, in particular if the person is not able to rise from
the floor or summon help.

5.3.3. Exposure to Risk

Some studies revealed a U-shaped association between physical activity and risk of fall [143, 131],
i.e., those individuals at higher risk of falling are those most inactive and those most active, as
shown in Figure 5.3. Individuals who remain inactive fall more than the ones who are moderately
active since their balance, flexibility and muscle strength required to counteract postural instability
deteriorates. Paradoxically, too high levels of activity increases risk by increasing the exposure to
opportunities to fall.

5.4. Functional Clinical Tests

Screening tools for falls risk assessment usually include a battery of functional tests that are
typically performed in a clinical environment and administered by qualified care givers. These
tests attempt to identify functional limitations in gait and balance and consist of a series of
somewhat demanding physical activities, like for example, standing from a chair and sitting down
a specific number of times or tandem walking along a line. Examples of functional assessment
scales are: Tinetti Performance Oriented Mobility Assessment [178], Berg Balance Test [18],
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Functional Reach [54], Dynamic Gait Index [193] or Short Physical Performance Battery (SPPB)
[187].
In some cases, these tools can be too time-consuming for the practitioner and burdensome for
frail patients. However, when administered in an effective manner and to the right populations
they have shown to constitute a very important instrument to recognize those persons at high
risk of falling and consequently to trigger tailored interventions for fall prevention (e.g., muscle
strengthening, gait/balance training, or aerobic exercise).

5.4.1. Acceleration-Data Collection Protocol

One of the first challenges faced when we introduced the use of the accelerometer in the VPHOP
functional tests battery was the creation of a data collection protocol that allowed the identifica-
tion in the raw acceleration data of each test of the sequence. The protocol had to account also
for unexpected events during the test performance, like for example, consecutive repetitions of
the same test. In order to accomplish that task, we created a protocol (Appendix B) consisting
of a sorted list of eleven gait and balance tests, each of them indicated by tapping on the sensor
once at the begining of the test and twice at the end.

Tap detection A tap produces a high peak in the backward-forward axis of the acceleration
signal, which is detected by a peak detection algorithm as long as there is a phase before and after
the tap where the deviation of the signal is very low. The peak detection algorithm I developed
to detect the start and the end of the individual tests was based on the DMW algorithm [42]
and it was integrated in a server so that when then clinicians uploaded the acceleration data the
algorithm could be run automatically over this data and give immediate feedback to the user
about the numbers of tests detected, as shown in Figure 5.4. The peak detection algorithm
was tested over 387 taps obtaining the following results: precision=99.59%, recall=86.96%, F-
measure=95%. Moreover, I inspected each file to ensure that every test had been identified
correctly.

Along with the description of the test performance, the protocol included an evaluation form and
a registration form with certain demographic and anthropometric patient data. The protocol was
checked by the members of the VPHOP consortium responsible for the execution and instruction
of the clinical functional tests in a training session taken place at Charité - Julius Wolff Institut
with a test subject (Fig.5.5).

5.4.2. Tests Battery

The tests included in the protocol (Table 5.2) were selected by an expert group of clinicians
from a list of standardized functional tests that evaluate different characteristic of the patient’s
muscular strength, coordination and postural control and that are known to be indicators of risk
of falling.

5.4.3. Extracted Features

The outcome measures of the functional test comprise a manual record of time and distances
annotated by the clinician with the help of a stopwatch and a tape measure (called “classi-
cal outcome” in Table 5.2) and some novel features extracted from the acceleration data (
“accelerometer-derived outcome”). For the extraction of features I have created specific algo-
rithms in R language, including the step detection algorithm and the code for the calculation of
the stabilo-ellipse described in the previous chapters, as well as R-scripts to automate the process.
The following lists contain a detailed description of these accelerometer-derived features for each
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5. Falls Risk Assessment and Functional Tests

Figure 5.4.: Acceleration signal containing recodings of functional tests. Every test is determined by a
single peak in the signal at the beginning of test and two peaks at the end. Tests marked in yellow were
detected with a peak detection algorithm.

Figure 5.5.: A clinician instructs the test subject on the performance of the Tandem Walk test at the
VPHOP training session for the acquisition of functional tests data with the acceleration sensor.

test or group of tests. For clarity, the X is the axis in the vertical direction, Y is the left-right
direction and Z is the direction in the forward-backward axis.

Tests 1, 2 and 3: 10 meter Walk test with/without cognitive task
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Number of steps: the number of steps a person took to complete a test computed by the
step detection algorithm.

Asymmetry index [%] and standard deviation in X-, Y- and Z-direction : the asymmetry
index is calculated based on the mean of the maximum cross-correlation value for pairs of
consecutive steps. The minimum number of steps required is 6, and steps detected at the
beginning and end of the path are not considered since the irregular walking pattern due
to boundary effects could introduce undesired perturbations to the index. The standard
deviation of this series of correlation coefficients is also included.

Duration [s]: time needed to complete the test. It is counted from the initiation of
movement until the patient stops at the end line by comparison of the body acceleration
with an activity threshold.

Mean speed [km/h]: the mean walking speed in Km per hour. It is calculated dividing
the distance travelled (10 meters) by the time needed to complete the test.

Step length [m]: average step length, calculated dividing the distance (10 m) by the
number of steps.

Cadence [steps/min]: the number of steps per minute, calculated dividing the number
of steps by the duration.

Tests 4: Tanden Walk test

Peak to peak difference [g] in acceleration in X-, Y- and Z-direction: difference between
the highest negative and positive acceleration value in each of the three dimensions.

Standard deviation [g] of the acceleration in X-, Y- and Z-direction: the standard devia-
tion of the acceleration values over the test time along each axis.

Balance Count (BC) [%] in X-, Y- and Z-direction : the percentage of samples that go
over a given threshold. High values indicates difficulty in mantaining the balance during
the tandem walk.

Test 5 and 6: Timed Up and Go test and Chair Rise test

Duration [cs]: time needed to complete the test, measured in hundreths of seconds.

Test 7, 8, 9, 10 and 11: Romberg, Semi-tandem, Tandem and One-legged test

Stabilo-ellipse or“acceleration stabilogram”: ellipse comprising the 95% of the acceleration
values in the transversal plane. For this ellipse two parameters are computed: the area
[BU] and the eccentricity. High values of the ellipse’s area indicate posture instability and
high values of the eccentricity means that the body tends to sway in a specific direction. For
more details about the calculation of the stabilo-ellipse see section 4.3.2. 1 BU (Balance
Units) = 0.096 m2/s4
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5. Falls Risk Assessment and Functional Tests

Figure 5.6.: Example of acceleration records of functional tests. Y axis is in g units

5.4.4. Android Application for Functional Mobility Tests

We have implemented a prototype of an Android application that allows the user to select among
different balance and gait tests (Fig.5.7), record them, and automatically get a visualization
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and the values of the extracted parameters. The connection of the smart phone/tablet and
the actibelt® is via Bluetooth©. The raw data were recorded in the smart device, and sent
automatically through an internet connection to a dedicated server, where they were analyzed.
The algorithms that extract the parameters are written in R. The results are sent back to the
phone or tablet instantaneously, as long as the internet connection is available.

This prototype is intended to facilitate the functional mobility assessment also outside of the
clinic, like for example at home.

Figure 5.7.: Screenshot of the Android Application Prototype for Functional Mobility Assessment.

5.5. Data Sets

Among all data collected in the study, those variables related to the risk of falling were selected
and divided into two data sets: set A and set B.

Set A includes only questionnaire information reported by the participants and the classic
outcomes of a few functional tests whereas set B includes also the variables extracted from
the functional tests with the use of the acceleration sensor. Figure 5.8 shows the number of
participants (including fallers and non fallers) in each data set.

The data were divided into these two groups because we were interested in investigating whether
the use of acceleration data in set B could improve the accuracy of a fall risk assessment model
based on questionnare data and a traditional outcomes of functional tests (data set A).

5.5.1. Set A: Clinical Data

This data set contains 17 variables or risk factors for each of the 277 female seniors included in
the group. Among those 277 patients, 45 were fallers and 232 non fallers. These variables are
specified in Table 5.3 together with the descriptive statistics. Most of them had been identified
by the American Geriatrics Society (AGS) [169] as risk factors for falling.

The variables No. 3 to 11 are dichotomous variables, that is, they can take two values, “yes”
or “no” ([y/n]). The fall risk factors related to gait and balance deficits are represented by the
variables No. 12 - time a subject needs to walk 10 meters -, No. 13 - self-estimation of balance
skills -, and variables related to Activities of Daily Living (ADL) - No. 14 to 17. The ADL
variables are ternary, they can take the values: “without difficulty”, “with some difficulty”, or
“unable or able only with help” and they are encoded in this table as 0, 5, and 10 respectively.
Balance rating can take a value among 10 levels, 10 meaning perfect balance and 0 no balance
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224 participants (female seniors)
2464 functional tests

4 European centers: CHA, INSERM, IOR, UGE

53 participants

Excluded 
(incomplete clinical or functional test data) 

Data set B
Clinical and Functional Test Data

171 participants 
1881 tests

Processed

Fallers Non fallers

30 participants 141 participants 

277 participants (female seniors)

4 European centers: CHA, INSERM, IOR, UGE

Data set A
Clinical  Data 

277 participants 

Processed

Fallers Non fallers

45 participants 232 participants 

Figure 5.8.: Data sets and number of participants (fallers, non fallers) included in the data base

No. Variable Fallers
n=45 (16.25%)

Non fallers
n=232 (83.75%)

All
n=277 (100%)

1 age [years] 69.2 ± 5.5 68.7 ± 5.1 68.8 ± 5.2
2 Body Mass Index [kg/m2] 24.6 ± 3.7 25.4 ± 3.6 25.2 ± 3.6
3 history of falls [y/n] 18 (40.0%) 84 (36.0%) 102 (36.8%)
4 hypertension [y/n] 18 (40.0%) 38 (16.4%) 56 (20.2%)
5 arthritis [y/n] 6 (13.3%) 28 (12.1%) 34 (12.3%)
6 visual deficits (cataracts) [y/n] 13 (28.9%) 34 (14.7%) 47 (17.0%)
7 fear of falling [y/n] 24 (53.3%) 90 (38.8%) 114 (41.2%)
8 foot pain [y/n] 14 (31.1%) 53 (22.8%) 67 (24.2%)
9 sleep disturbances [y/n] 11 (24.4%) 71 (30.6%) 82 (29.6%)
10 depression [y/n] 8 (17.8%) 32 (13.81%) 40 (14.4%)
11 assistive devices [y/n] 2 (4.4%) 10 (4.3%) 12 (4.3%)
12 time for 10 meters walk [sec] 9.8 ± 2.0 9.9 ± 2.4 9.9 ± 2.3
13 balance [0-10] 6.8 ± 2.3 7.1 ± 2.3 7.1 ± 2.3
ADL’s self-rating [0,5,10], capacity of:
14 reaching 1.0 ± 2.3 0.7 ± 1.8 0.8 ± 1.9
15 lifting/carrying 3.1 ± 3.5 2.6 ± 3.4 2.7 ± 3.5
16 washing herself 0.3 ± 1.2 0.2 ± 1.0 0.2 ± 1.0
17 bending 1.1 ± 2.1 0.8 ± 1.9 0.8 ± 2.0

Table 5.3.: Fall risk variables included in the data set A.

at all. For non-dichotomous variables, the mean and standard deviation are given in the specified
unit. In the case of dichotomous variables, the number and percentage of “yes” answers is given.

Noise Measurements

The noise present in the data, or equivalently the degree of overlap, was measured with a weighted
version, η [14], of the standard measure proposed by Murphey et al.[134], which takes into account
the data imbalance. The value calculated on data set A is η = 78.41%, that can described as a
high noise level.

To give a graphical idea of the amount of noise present in the data set, we used the Multidi-
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Figure 5.9.: MDS map of dataset A

mensional Scaling [103] (MDS). Multidimensional Scaling provides with a visual representation
of the noise by projecting the samples onto a low-dimensional space while trying to approximate
the distances between the samples as well as possible. The result of the projection onto a two-
dimensional space is shown in Figure 5.9, where the blue crosses represent the majority class.
As can be seen in the figure, the classes seem to have a large overlap, although this is only an
approximation. Actually, the Mardia fit measure [53] is equal to 48.62%, which indicates that
the algorithm has omitted more than half of the information during this projection. A value
equal to 100% would indicate perfect representation, in which case the samples would lie in a
two-dimensional subspace.

5.5.2. Set B: Mixed-Acceleration data

In total, set B contains 66 variables for each of the 171 patients who have used the accelerom-
eter during the functional assessment. These variables consists of the first 11 parameters in-
cluded in set A plus 55 variables extracted from the acceleration data (see section 5.4.3). These
acceleration-derived parameters replace the simple functional variables in set A - duration of 10
meter walk and self-rating of ADLs - and they are expected to have a higher predictive value.

The number of subjects here (171 subjects) are far less than the 277 subjects from data set A.
One has to keep in mind that having so few samples (subjects) with so many variables hampers
building a proper falls risk model. Due to the large number of variables, Table 5.4 presents only
the descriptive statistics for the first 11 clinical variables. More detailed information concerning
the acceleration-derived parameters is shown in Table 5.6.

Noise Measurements

The weighted noise measure [14] for data set B gives again a high noise level with η = 71.33%.
Thus, both data sets A and B are similarly noisy.
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No. Variable Fallers
n=30 (17.5%)

Non fallers
n=141(82.5%)

All
n=171 (100%)

1 age [years] 68.7 ± 4.7 67.9 ± 4.6 68.0 ± 4.6
2 Body Mass Index [kg/m2] 24.8 ± 4.1 25.1 ± 3.6 25.1 ± 3.7
3 history of falls [y/n] 14 (46.7%) 60 (42.6%) 74 (43.3%)
4 hypertension [y/n] 12 (40.0%) 20 (14.2%) 32 (18.7%)
5 arthritis [y/n] 5 (16.7%) 22 (15.6%) 27 (15.8%)
6 visual deficits (cataracts)[y/n] 8 (26.7%) 21 (14.9%) 29 (17.0%)
7 fear of falling [y/n] 14 (46.7%) 49 (34.8%) 63 (36.8%)
8 foot pain [y/n] 11 (36.7%) 33 (23.4%) 44 (25.7%)
9 sleep disturbances [y/n] 7 (23.3%) 51 (36.2%) 58 (33.9%)
10 depression [y/n] 5 (16.7%) 21 (14.9%) 26 (15.2%)
11 assistive devices [y/n] 2 (6.7%) 9 (6.4%) 11 (6.4%)
acceleration data
12-65 number of steps, asymmetry, test duration, mean walking speed, step length, cadence, peak to

peak difference, standard deviation, balance count, stabilo-ellipse

Table 5.4.: Fall risk variables included in the data set B.

Once more, the Multidimensional Scaling method was used to visually represent the noise, this
time on data B. Figure 5.10 confirm the results of a large overlap of the class distributions. The
Mardia fit measure is in this case equal to 33.36%.

Criterion Validity and Plausability of Acceleration-Derived Parameters

The criterion validity examines to what extent a measure provides results that are consistent with
a gold standard. For a new tool to be accepted, specially in the medical community, the criterion
validity must be proved. In our case, the accelerometer should at least provide with the same or
comparable results than the current tool used to assess the functional ability of the patients (the
stopwatch) and ideally with an added value, like for example, dispense novel predictors for falls
risk, reduce the test administration time or automate the data collection. To check the validity
of the accelerometer-derived parameters we compared them with the classical outcomes of the
functional tests using the Pearson correlation coefficient. To interpret the results we assume that
a correlation is strong if the Pearson correlation coefficient r is greater than 0.5, moderate if 0.5
≤ r ≤ 0.3, small for 0.3 < r ≤ 0.1 and insubstantial for r < 0.1 [37].

In a strict sense, we can only validate the acceleration parameters by comparing them with
a gold standard measure that estimates exactly the same attribute, for example accelerometer-
derived gait speed vs. gold standard gait speed or accelerometer-derived time vs. gold standard
time. In this case, the only functional attribute we can take as reference or gold standard is the
time needed to perform a specific test measured with the stopwatch. However, the comparison
was not only done time versus time but the correlation coefficients were calculated between all
the gait parameters extracted from the acceleration signal and the gold standard test duration as
plausibility check to confirm that the time is inversely proportional to the mean speed as well as
to the step length [57, 141]. Moreover, step cadence and number of steps should be inversely and
directly correlated to the time due to their obvious dependence upon time and step length. As
expected, the results presented in Table 5.5 show a strong correlation between the gold standard
time and the time measured with the acceleration sensor, and to a less extent but also in a strong
way with the rest of acceleration-derived parameters.

Other plausibility tests were performed to demonstrate comprehensible connections between
the acceleration-derived variables and the age of participants since it is well known that functional
ability tends to deteriorate with age [74, 91, 117, 141]. Kruskal–Wallis rank sum non-parametric
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Figure 5.10.: MDS map of dataset B

Gold standard
variable

Acceleration-derived
variable

Pearson’s
correlation (r)

p-value

time to walk 10 meters
measured with stopwatch

duration of test 0.86

< 0.001
number of steps 0.75
mean speed -0.79
step length -0.73
step cadence -0.64

Table 5.5.: Correlation between the outcomes obtained from the gait test with the use of the stopwatch
(classical outcome) and those one extracted from the accelerometer.

tests were used to assess the association. Table 5.6 presents the parameters for which the
difference is statistically significant (p-value ≤ 0.05). The data were divided according to age in
three groups; younger: 60 ≤ age < 65 years , middle group: 65 ≤ age ≤ 71 years, and older:
71 < age ≤ 80 years.

As shown in Table 5.6, age is significantly associated to the number of steps, speed and step
length for test 1, 2 and 3. For test 4 (Tandem Walk Test) the Balance Count (BC) across the
vertical and lateral axis was higher for the older group compared to the younger and middle
group, as well as the test duration in the Timed Up and Go test. All balance test are significantly
associated with age, with the area of the stabilo-ellipse bigger as the age of the patient increases.
The deviation between subjects in balance tests 8-11 is large, indicating that individuals within the
groups may vary considerably across a “stability spectrum” when the difficulty of the test grows.
It was also found that the asymmetry index tends to increase in the oldest group compared to
the other ones.
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Mean value ± SD

Variable Test Younger
n=40

Middle
n=90

Older
n=41

p-value

number of
steps

1 16.0 ± 1.9 16.5 ± 1.7 18.0 ± 3.0 0.0011
2 15.8 ± 1.6 16.4 ± 1.7 17.8 ± 2.2 0.0001
3 17.5 ± 2.4 17.5 ± 2.2 19.3 ± 3.9 0.0064

speed [m/s]
1 1.22 ± 0.20 1.19 ± 0.17 1.04 ± 0.23 0.0005
2 1.25 ± 0.17 1.22 ± 0.18 1.09 ± 0.22 0.0015
3 1.03 ± 0.18 1.02 ± 0.24 0.88 ± 0.24 0.0016

step length
[m]

1 0.64 ± 0.07 0.61 ± 0.06 0.58 ± 0.07 0.0009
2 0.64 ± 0.06 0.62 ± 0.06 0.57 ± 0.07 0.0001
3 0.58 ± 0.08 0.58 ± 0.07 0.54± 0.06 0.0010

BC vertical [%] 4 1.35 ± 0.40 1.32 ± 0.45 1.58 ± 0.56 0.0178

BC lateral [%] 4 1.00 ± 0.38 0.99 ± 0.45 1.28 ± 0.55 0.0118

Duration [s] 5 10.05 ± 1.56 10.75 ± 2.14 12.47 ± 4.25 0.0127

Ellipse’s area
[10xBU]

7 0.04 ± 0.03 0.04 ± 0.03 0.06 ± 0.04 0.0000
8 0.06 ± 0.04 0.07 ± 0.06 0.16 ± 0.24 0.0000
9 0.17 ± 0.25 0.22 ± 0.26 0.44 ± 0.47 0.0001
10 0.34 ± 0.48 0.55 ± 1.30 0.71 ± 0.87 0.0044
11 0.33 ± 0.35 0.37 ± 0.47 0.87 ± 0.96 0.0003

Table 5.6.: Correlation between accelerometer-derived parameters and patients’ age by groups

5.6. Fall Prediction Model

In this chapter the aim is to estimate the risk of presenting a fall based on two different data
sets: A (only clinical data) and B (clinical and sensor data). Thereby, we want to confirm that
the accelerometer data can improve the fall risk assessment, at least in the existing cohort of
subjects.

As already mentioned, the available data for our prediction model was retrieved from the
EU-Project VPHOP. The process of data collection is depicted in figure 5.11. The collected
data contain information about retrospective falls, clinical and questionnaire data (like age, BMI,
diseases, etc), actibelt® functional data, and prospective falls. The prospective falls constitute
the class label for the prediction model, that is, we try to predict if a subject is a faller or non-faller
in the year after the main assessment.

The methodology used to build the model for fall prediction is presented in Figure 5.12. Each
of the steps depicted in the diagram are explained in detail in the next sections.

5.6.1. Preprocessing

This section introduces the methods which must be applied prior to use dimension reduction or
feature selection techniques on a data set.

Completion of Missing Values

On both data sets, a few entries are missing due to errors in the data collection process. In set
A there is 1 missing value (0.27 h of all entries) and in set B, 53 missing entries (4.72 h).
One alternative to deal with this problem would be the exclusion of the missing entries, but this
would mean either to exclude subjects or variables, and since our data set is already small the
decision was to apply low-rank matrix completion instead. The method approximates the given,
non-complete matrix with a low-rank matrix assuming normally distributed variables. Afterwards,
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Data:
 - Retrospective Falls
 - Clinical Questionnaire
 - Actibelt Protocol Tests
 - Prospective Falls

Figure 5.11.: Timeline of data collection [14].

it replaces the empty cells of the original matrix with the corresponding cells from the low-rank
matrix.

Standardization

Principal Component Analysis (PCA) and distance-based classifiers (e.g., k-nearest-neighbors or
support vector machines), both used for the construction of this prediction model, need the input
variables to be rescaled when they have different units so that they do not erroneously place
too much importance on a variable with high variance when the magnitude of the variance is
just caused by the unit of the measurement. Furthermore, in case of PCA, the mean of each
feature must be equal to zero, because non-zero mean variables would distort the singular value
decomposition.

There are many different methods of scaling a data set, the most widely used are normalization
and standardization. Standardization sets the mean of every variable to zero and the respective
standard deviation to one. To conduct this, every feature xorig,i is transformed into

xstd,i ←
xorig,i − µi

σi
, (5.1)

with µi the mean of xorig,i and σi the standard deviation. The drawback of this method is that it
assumes a normal distribution of the variable, which is certainly not the case for the dichotomous
features. For normalization, the following formula,

xnorm,i ←
xorig,i −min(xorig,i)

max(xorig,i)−min(xorig,i)
, (5.2)

is used. Normalization projects the variables to [0,1]. In addition to that, we need to mean-
center the data by subtracting the mean from every variable. The problem here is that, after this
scaling, the standard deviations are not comparable and this misrepresents the variables when
applying PCA. In our case, there exists a difference among the variables with the highest and
lowest standard deviation of a factor over 10 after applying normalization and mean subtraction to
data set B. This difference cannot be tolerated, therefore, standardization was used, accepting
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Figure 5.12.: Methodology of the fall risk assessment model [14].
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that we violate the normality assumption for binary variables. We assume that this has no
considerable impact in the accuracy of the prediction.

Class Imbalance

Most machine learning algorithms work best when the number of instances of each classes are
roughly equal. When the number of instances of one class exceeds the other, the classes are
unbalanced. In a two-class problem, the class with more samples is called majority class and the
smaller class is the minority class. The ratio of the class sizes in our case is 1:5.15 for set A, and
1:4.70 for set B, with the group of non-fallers as the majority class. Building a model on such an
unbalanced set works fine as long as the classes are clearly separated by the distributions of their
samples, which is not the case for our data as it could be proved in the noise analysis section. If
the classes overlap, building good classification models becomes very difficult, since models tend
to classify everything as being part of the majority class.

There are several methods to deal with class imbalance [101]. Those mainly investigated are the
sampling methods and algorithmic level schemes. As sampling method, SMOTE [34] was used in
connection with Logistic Regression. SMOTE performs under- and oversampling simultaneously.
The parameters were set to achieve a 2:1 class size ratio in favor of the majority class. This ratio
has been chosen because we desire to mitigate the class imbalance, but still having a reliable
representation of the original classes. Algorithmic level schemes, which have proven to be much
more useful with kNN and SVM, were also used.

5.6.2. Dimentionality Reduction and Feature Selection

When the number of features (variables) increases, or equivalently the dimentionality of the data,
the volume of the space increases so fast that the available data become sparse. This sparsity
is problematic for any method that requires statistical significance like for the classification and
regression algorithms which implicitly estimate the underlying distribution of the samples. This
phenomenon is related to the called “curse of dimentionality”.

One property derived of this phenomenon, is that with high-dimensional data all samples tend
to be equidistant in infinite dimensions. That leads to less meaningful or even meaningless
models when using distance-based classification, like kNN or SVN. The question is, from how
many dimensions upwards the effect of this phenomenon significantly influences the classification
process. We investigated this question with the highest dimensional data set, B, and found that
the highest distance is roughly twice as big as the minimum distance [14]. Therefore, although
the distances appear to be still useful, they have lost some of their meaning.

In order to get a lower dimensional data set the number of features was reduced using Principal
Components Analysis (PCA), sparse Partial Least Squares (sPLS) and Elastic Nets (EN). The
following sections contain a short introduction to these methods (for more details, see [14]). As
target for our reduction was set to have approximately 5, 10 or 30 times the number of samples
as variables, as suggested by Murphey et al. [134].

Principal Component Analysis

Principal components analysis (PCA) looks at the columns of a data set X (in our case, the
features) and tries to find an orthogonal projection W to a subspace, in which most of the
information is kept, so that

min
W
||X−XW||22. (5.3)

A way to solve this equation is to apply singular value decomposition (SVD). PCA may be
problematic because it considers as information simply the variance in the data set X without
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taking into account the relations to one or more dependent variables Y. Therefore, PCA may
extract irrelevant information for the prediction from matrix X only based on their amount of
variance.

Sparse Partial Least Squares

Classical Partial Least Squares (PLS) tries to maximize correlation between the matrix of features
X and the class labels Y by finding the multidimensional direction in the SX space that explains
the maximum multidimensional variance direction in the SY space. Thus, every direction vector
tries to maximize the covariance as

ŵk = arg max
wk

wT
kX

TYYTXwk

such that wT
kwk = 1 and wT

kSXXwj = 0 for j = 1, ..., k− 1.
(5.4)

Sparse Partial Least Squares (sPLS), in addition, makes the direction vector to be sparse
[36]. In order to get as many components of the direction vector as possible equal to zero, the
maximization term for every direction vector w,

TYYTXw such that, wTw = 1, ||w||1 < t, (5.5)

is constrained by an `1-penalization. By setting the parameter t we control the maximum cor-
relation and consequently the number of w zero entries. The non-zero entries are the features
given aftwerwards to the classifier.

Elastic Nets

Elastic Nets [208] is a regularized regression method that linearly combines the LASSO [177] and
the Ridge Regression [79] penalties to obtain sparsity and still work with data sets that contain
more variables than samples. Elastic Nets tries to find a regression model y = Xβ + η based on
generalized linear regression models and the combined penalty. The solution are the regression
coefficientes β that minimize the expresion

min
β
||y − βX|| such that (1− α)||β||1 + α||β||22 ≤ t. (5.6)

The penalty is a weighted sum governed by the parameter α ∈ [0, 1[. By adjusting α we decide
the number of non-zero entries or features. EN are particularly useful for situations with few
samples, even with less samples than features.

5.6.3. Classification and Regression Models

The models employed for the prediction are classification and regression models. Regression
models are traditionally used in the clinical field whereas classification methods have been recently
presented as an alternative approach showing good results in falls risk assessment [82].

The following algorithms were chosen to investigate the predictive performance when applied
to the data sets A and B: Logistic Regression (LR), k-nearest-neighbors (kNN), and Support
Vector Machines (SVM). Logistic Regression is broadly used in the falls risk prediction field
[69, 100, 121, 190], the kNN algorithm is among the simplest of all machine learning algorithms
but nontheless considered to be very effective [87], and SVM is viewed as a very powerful classifier.
The detailed mathematical description of all those algorithms can be found in [14]. Next, I
summarize some properties and important considerations to take into account when using these
models.
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(b) Strongly differing results

Figure 5.13.: Regression curves of linear (orange) and logistic (black) regression for two different data
sets [14].

Logistic Regression

Logistic Regression measures the relationship between a categorical dependent variable x and
one or more independent variables y, which are usually (but not necessarily) continuous. In the
following formula, P gives the logistic function for multidimensional predictive variables,

P =
ea+bx

1 + ea+bx
=

1

1 + e−(a+bx)
. (5.7)

Where b contains the regression coefficients. For example, in the scalar case, the function
looks like depicted in figure 5.13. The intercept a allows shifting the entire graph to the left or
right, b defines the slope of the linear part. The class label y can be retrieved by rounding P ,
y = f(x) = round(P ).

Logistic Regression deals with some pitfalls present in linear regression. First, linear regression
assume homoscedasticity. This means that the variance of y, and therefore the variance of the
error, are approximately constant over all values of the predicting variable x, which is not the case
for a binary y. And second, linear regression assumes linear dependencies between the variables.
This is also not the case for a mixture of binary y and continuous variables x and it can lead to
severe errors in prediction.

When the classes are unbalanced and do not have similar variances, like in the example of Figure
5.13b, the function of linear regression (in orange) is erroneously shifted along the coordinates
axis. In contrast, the Logistic Regression function (in black) still draws a correct decision function.
In this example, the classes are defined by the dependent variable y ∈ {0, 1}, which stands for
blue and red class respectively. The variable x ∈ R predicts the class and the horizontal, dashed
line at y = 0.5 indicates the decision boundary.

k-Nearest-Neighbors

The k-Nearest-Neighbors (kNN) algorithm [153] is a simple non-parametric method used for
classification (and also for regression). The general approach of classification is to find relations
between features contained in a sample vector x and its corresponding class y. The data set to
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(c) k = 50

Figure 5.14.: Examples for kNN classification areas on one data set [14]

analyze is typically divided into two sets: the training set, used for building the classifier model,
and the test set, for validating the model on new, uncorrelated data.

In k-NN classification the input consists of the k nearest neighbors of x, formally described
as Nk(x) = {xi}i=1,...,k. And the output is approximated by the average of the classes of the k
nearest neighbors of x rounded to the closest integer value (which represents a class) such as in

ŷ(x) = int

1

k

∑
xi∈Nk(x)

yi

 . (5.8)

This formula is only valid for two-class data sets, for more classes a voting scheme has to be
applied, because averaging a sum would then probably give faulty results if there is no linear
dependency between the classes. To enable kNN to deal with imbalanced classes, class weighted
votes were used.

The k-NN can use different measures to calculate the distance between a new sample and the
the k nearest neighbors. Three conventional distances were tested: the Euclidean, the Manhattan,
and the Maximum Distance, and found that prediction using the Maximum Distance was worse
than the other two whereas the classification with the Euclidean and Manhattan was comparable.
The Euclidean distance was chosen for the final analysis because is more widespread.

The parameter k defines the number of nearest neighbors used for choosing a class for a
new sample. A small k will produce a complex decision border, whereas a larger k produces
a smoother border. Figure 5.14 shows the graphic result after applying kNN over two normal
distributed classes marked with blue and red color for different k values. In case that a simple
distribution can be assumed for each class (for example, a normal distribution), it is recommended
to choose a large k such that the decision boundary will reflect the true simple boundary as well
as possible. Using a small k is incorrect for simple distributions because it may cause overfitting.
For complex distributions, a small k should be used to avoid overgeneralization. If no assumptions
about the distributions can be made, k should be found via cross-validation [14].

Support Vector Machines

The last classification method investigated was Support Vector Machines [173] (SVM). SVM’s are
a potentially powerful classifier, but the effectiveness depends on the selection of the parameters.

SVM models are based on hyperplanes in a space with many more dimensions than the original
feature space. These hyperplanes act as decision borders. They are defined by a transformation
function Φ(·) and its orthonormal vector w combined with an offset b from the lower dimensional
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x1
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(a) Class separation via different hyper-
planes

x1
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1
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(b) Margin-maximizing hyperplane and
margin borders

Figure 5.15.: Example of hyperplanes in SVM [14].

space. The class y ∈ {−1, 1} of a sample x is given by

y = sgn(〈Φ(w),Φ(x)〉+ b). (5.9)

To illustrate how SVM works, let us assume a simple classification problem with a data set in
the 2D-space linearly separable so that no transform to high-dimensional space is needed. In this
case, the two classes can be separated by different hyperplanes. The criterion for the optimal
hyperplane (in green) is that it has to maximize the distance, also called margin, between itself
and the closest point of each class, as seen in Figure 5.15. This is equivalent to minimize the
error probability when classifying a new sample. The points closest to the hyperplane are defining
w and b, thus the hyperplane itself. These so-called support vectors, are indicated in dotted lines
in figure 5.15b.

A transformation to many dimensions makes the classification problem to likely become linearly
separable in the new space. However, this transformation is computationally expensive, this is
why in the practice the function Φ(·) and the scalar product in the high-dimensional space are
replaced by a kernel. To what transformation and which inner product the kernel is equivalent, is
something difficult to comprehend. Hence, the so called “black box” behaviour of the SVM that
makes almost impossible to choose the model parameters intuitively. To overcome this problem
a method widely adopted for the search of the optimal parameters is the grid search. More
information on types of kernels and their parameters can be found in [14].

5.6.4. Cross-validation

Cross-validation (CV) is a model validation technique for assessing how the results of a statistical
analysis will generalize to an independent data set. The different prediction methods were vali-
dated using a type of CV called k-fold cross validation that is well-suited for those cases where
there are not a big number of samples, like in our data set. In every experiment, a new set of n/k
samples from the entire data set was defined as validation set, where n was the number of all
samples (Fig. 5.16). The remaining data are the training set. In this way we use every sample as
a training and a validation sample, and the size of the training set, n− (n/k), is always relatively
high. In particular, k = 10 was chosen, being guided by the recommendation of some authors
[98].
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Experiment 1

Experiment 2

Experiment 3

Experiment k

Total number of samples

Testing subset

Training subset

. . .

. . .

Figure 5.16.: k-fold cross validation

Validation metrics

To quantitatively compare the performance of the different classification methods and our results
with those from other authors, it is necessary the use of some metrics. Typically in clinical studies,
participants suffering a certain disease or responding to a medication are called positives. In our
case, the fallers are called positives and, in consequence, the non-fallers are called negatives.
Table 5.7 shows the naming of correct and incorrect classifications.

Accuracy A common metric is the accuracy (Acc), which is calculated by dividing all correct
classifications by the number of samples classified. However, in situations where the minority class
is more important and with skewed class imbalance, it is better to avoid the accuracy metric.

Acc =

∑
True Positive +

∑
True Negative∑

All Samples
∈ [0, 1]. (5.10)

Sensitivity The sensitivity, also called true positive rate (TPR), is the ratio of individuals pre-
dicted as positives divided by the total number of actual positives. Sensitivity is the measure
used to report how reliable the prediction model is in identifying individuals with the positive
condition, in our case, in identifying fallers.

TPR =

∑
True Positive∑

Actual Positive
=

∑
True Positive∑

True Positive +
∑

False Negative
∈ [0, 1]. (5.11)

Specificity The specificity or true negative rate (TNR) is the ratio of individuals predicted as
negatives divided by the total number of actual negatives. Analogous to the previous metric,
the specificity is the measure used to report how reliable the prediction model is in identifying
individuals with the negative condition or equivalently, in our study, how good the model is at
identifying non-fallers.

TNR =

∑
True Negative∑

Actual Negative
=

∑
True Negative∑

True Negative +
∑

False Positive
∈ [0, 1]. (5.12)

In real-world classification problems, typically a trade-off between TPR and TNR has to be
made. Usually when one classifier becomes very sensitive, it looses specificity and vice versa. For
us, it is more important to classify accurately the future fallers than the non-fallers because the
consequences of wrongly identifying a non-faller as a faller are not so critical as the contrary.
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Actual Positive
(Faller)

Actual Negative
(Non-faller)

Predicted
Positive

True Positive False Positive

Predicted
Negative

False Negative True Negative

Table 5.7.: Confusion Matrix

Youden Index Youden’s J [202], also called the Youden Index, is the difference between the true
positive rate and the false positive rate. Its value ranges from -1 to 1. A value J equal to zero
means that the classification gives the same proportion of positive results for groups with and
without the condition, i.e the classification is useless. Values of J < 0 may indicate a systematic
error in the prediction that makes the classification results to be assigned to the opposite class.
Finally a J value equal to one indicates that there are no false positives or false negatives, i.e.
the classification is perfect. Therefore, a good classifier will present a Youden Index near to one.

J = TPR + TNR− 1 ∈ [−1, 1]. (5.13)

F1 - score The F1 - score is the harmonic mean of precision (Prec) and sensitivity. With the
precision as the number of correct positive predictions divided by the number of all the individuals
with the positive condition (fallers). An advantage of F1 over Youden’s J is that it takes the
relation of the class sizes into account by using the precision.

F1 = 2
TPR · Prec

TPR + Prec
∈ [0, 1]. (5.14)

Regression Performance

In regression approaches to classification it is common to draw receiver operator characteristic
curves (ROC) in order to choose the threshold that optimizes the prediction performance. This
is necessary because regression methods do not automatically compute the class of a sample,
but a certain value, which is presumably close to the true class value. Therefore, in a two-class
problem, all values below this threshold will be assigned to one class and all values above that
threshold to the opposite class.

Figure 5.17 is an example of a ROC curve, where the coordinates axis represents sensitivity
(TPR) and the horizontal axis the false positive rate (FPR). The FPR is calculated from the
specificity (TNR) as FPR = 1− TNR. The blue and red lines are examples originated from two
different prediction models for a specific range of thresholds. For the lowest threshold, all the
samples are classified as belonging to the positive class. This would mean TPR = FPR = 1
(top right corner). Increasing the threshold will lower the false positive rate and the true positive
rate. For a good classifier the TPR would decrease slightly. Thus, in our example the blue curve
represents a better classifier than the red one. When the threshold equals the highest value, all
samples will be classified as negative, yielding to TPR = FPR = 0 (lower left corner). If the ROC
curve lies near the dotted line, the prediction is useless because the regression values would be
distributed similarly. A good threshold is one lying near the top left corner.

An alternative to the visual interpretation is computing the area under the curve (AUC). An
AUC value close to 1 corresponds to a good prediction. An AUC close 0.5 means that the curve
is close to the dotted line in figure 5.17 and therefore useless.
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FPR

TPR

0 1

1

Figure 5.17.: Two receiver operator characteristic curves

5.6.5. Results

This section presents the results of classifiers applied to both data sets, statistical analysis of
chosen features, and two alternative approaches via multiple fallers and balanced data sets. The
principal metric employed to interpret the performance of the different classification methods is
the Youden Index. Eventually, the rest of validation metrics (TPR, TNR, Acc and F1-score) were
included to allow comparability with other studies. For simplicity, to examine the properties of
each single classifier only the results obtained with the data set B were depicted because, as it
will be shown in later sections, the prediction using the acceleration-enhanced data set B is more
useful than the classification obtained with data set A.

k-Nearest-Neighbor

The results of applying k-Nearest-Neighbor (kNN) after Elastic Nets (EN) and Principal Com-
ponent Analysis (PCA) for different numbers of features are shown in Figure 5.18. The Youden
Index was also calculated for kNN with sPLS but it was not depicted because the results were very
similar to EN, which is always the case for the three investigated classifiers. For every number of
chosen features a boxplot was depicted, since the results of feature selection methods are variable
(but still quite consistent).

The features obtained after applying PCA are a linear combination of the original variables,
which makes it harder to interpret. Other consideration is that EN can sometimes not choose a
certain number of features. For example, in Figure 5.18a the results corresponding to a number
of features from 12 to 15 is similar because the next higher number of features that EN is able
to select is 16.

The results show that Elastic Nets are in comparison to PCA a better feature selection method,
in particular if the goal is to get few features. For many features, the curse of dimensionality,
begins to influence the results negatively. The effect of this curse makes the predictive value of
kNN fade if we use more than 30 variables. The best result achieved by kNN with EN feature
selection is for five selected features with J = 0.43, representing TPR=0.6 and TNR=0.83.
Taking into account that the minority class of fallers is defined as positive, this is a relatively
sensitive result. The high TPR is a consequence of the class-specific vote weights, which are set
to the reciprocal of the number of samples within the respective class.

The changing trajectory of the Youden Index curve for PCA is due to the fact that PCA does
not consider the usefulness of the features, only their variance. Useful features come in by chance
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Figure 5.18.: Performance of 20-NN Classification on data set B with 10-fold cross validation [14]

when more dimensions are chosen. The best median performance of kNN after PCA is achieved
with J=0.09 corresponding to TPR=0.50 and TNR=0.59.

The parameter k was selected assuming that the classes follow simple distributions, since
almost all dependencies between predictive features and the dependent variable ”faller/nonfaller”
are linear or generalized linear. Therefore, we expect better prediction performance for higher
k-values. In effect, the values k=1,2,...,50 were tested and k=20 was found to be the optimal
value.

Logistic Regression

The advantage of Logistic Regression (LR) is the absence of tunable parameters except the
decision threshold needed for classification. However, the threshold can be simply set to 0.5,
given that the regressed values express probabilities.

As can be seen in Figure 5.19, also in combination with Logistic Regression, EN is superior again
over PCA. The highest median J=0.45 is in this case obtained for 12 features and corresponds
to TPR=0.5 and TNR=0.95. This means that the probability of correctly classifying a faller is
only 0.5, but because of the high specificity, the algorithm is much more reliable when classifying
a person as non-faller. Another remark is that, Logistic Regression can deal better with an
increasing number of features when compared to kNN, since the performance beyond 30 features
is notably better.

The results of regression are not directly classes but regression values expressing the probability
to belong to one or another class. For the optimum outcome (EN, 12 features), the histogram
of these values for fallers and non-fallers are depicted together with the receiver-operator charac-
teristic curve (ROC) in Figure 5.20. From the histograms one can see that non-fallers clearly get
lower regression values on average, confirming the plausibility of the method. The ROC showed
the usefulness of the prediction. The area under this curve is AUC = 0.80. By inspecting the
ROC it would now be possible to adjust the decision boundary for either higher specificity or
sensitivity.
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Figure 5.19.: Performance of classification via Logistic Regression on data set B with 10-fold cross
validation [14].

Support Vector Machines

Again for Support Vector Machines the feature selection method EN shows a better performance
than PCA. Figure 5.21 also shows that SVM with EN can handle many features without affecting
too negatively the prediction. From 50 onwards, most of the information is passed to the feature
selectors and the performances using EN and PCA are approximately equal. Youden’s J does
not decrease as quickly as in the previous methods for many features. SVM achieves the highest
J=0.56 of all our experiments on 36 variables chosen by EN using a linear kernel with cost C = 10,
obtained through an extensive grid search. The classes were custom weighted with the reciprocal
of the number of samples within the respective class [16]. Using the reciprocal of the class size
has shown to be a fair choice, with the resulting classifier favoring none of the classes too much.
This is reflected in the relation of TPR and TNR. Both are for most tests close to each other,
for example Youden’s J=0.51 for SVM on 30 features chosen by EN results from TPR=0.73 and
TNR=0.78.

Comparison of Classifiers and Feature Selection Methods

The most representative results of the F1 scores together with the conventional metrics for both
data sets are shown in Table 5.8 and Table 5.9. More details can be found in [14]. The first
column indicates the type of feature selector, the number of features used (in between brackets),
and the classifier. The target numbers of features or dimensions are 5, 15 and 30. In case that EN
could not return an specific number of features, the algorithm will look for the closest available
number below that value. For example, for a target of 15 features, the EN algorithm provides
with 12. In the first three rows of each table, the classifier performance is presented without any
feature selection, i.e., all features were given to the classifier. When using Logistic Regression no
method to handle imbalance was used, that is why in Table 5.9 the true positive rates (TPR) in
few dimensions are low. On the contrary, SVM and kNN can deal with imbalanced classes in the
form of per-class defined cost or weight, which explains the much better true positive rates.

Although the accuracy is a widely used metric to present prediction results, specially in the
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Figure 5.20.: Results of Logistic Regression on 12 features chosen by Elastic Nets [14].
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Figure 5.21.: Performance of Support Vector Machines on data set B with 10-fold cross validation [14].
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clinical field, we can see in both tables that the results with the higher accuracy are usually the
ones showing the worst performance. For example, in the first row in Table 5.8 we see an accuracy
of 0.81, which can lead us to think that the classifier makes a good prediction. However, when
we look to the true positive rate, the prediction becomes useless, since the TPR is so small that
in most of the cases the classifier predicts a person as non-faller. A low TPR does not affect
the accuracy too strongly since the majority of samples are non-fallers. In contrast, the F1 score
reflects this condition, making it a more reliable metric.

TPR TNR Accuracy F1 score
NF*(17), LR 0.04 0.96 0.81 0.07
NF*(17), SVM 0.37 0.65 0.61 0.24
NF*(17), 20-NN 0.24 0.73 0.65 0.18
EN(5), SVM 0.42 0.80 0.74 0.35
EN(15), SVM 0.38 0.64 0.60 0.23
PCA(5), SVM 0.40 0.65 0.61 0.25
sPLS(13), LR 0.04 0.97 0.82 0.07
sPLS(13), SVM 0.36 0.66 0.61 0.23
sPLS(13), 20-NN 0.31 0.75 0.68 0.24

*NF: No Feature Selection

Table 5.8.: Metrics for different feature selection methods, classifiers and number of features on set A

Comparing the F1-scores of equivalent methods in both tables, one can see that the fall
prediction obtained with data set B surpass the prediction of data set A. For example, SVM
using data set A with 15 dimensions selected by EN achieves F1 = 0.23 , whereas with the
equivalent dimensions using set B achieves F1 = 0.5 , which is a considerable difference. Overall,
SVM in combination with EN yields the best prediction.

In addition to the variables automatically chosen by the different feature selection methods, the
last 3 rows of Table 5.9 contain the so-called ”13-Set”. This set comprises 13 variables selected
manually by an expert (marked in bold in the Table C.2 of Appendix C) . Thereby, the purpose was
to investigate the plausibility of the automatically selected features by comparing their predictive
value with the one derived from well-known fall risk factors in the clinical field. As seen in the
table, the thirteen “hand-picked” variables with SVM produced a comparable prediction in terms
of F1-scores than the 12 features chosen by EN again in combination with SVM. In this example,
the TPR of the ”13-Set” was a little worse than for EN, but the TNR was slightly better.

Feature Analysis

The five first features chosen by the EN, the optimal feature selector in our case, and their
correlation with the dependent variable (faller/non-faller) are described in Table 5.10. Correlations
are only indicated for those statistically significant variables. All p-values are again Bonferroni-
corrected.

It is remarkable the few number of statistically significant variables, in particular for data set A,
and their low correlation with the class label. This could be a consequence of the multifactorial
nature of the risk of falling or also could be caused by the small size of our cohort. Other clinical
studies have a couple of hundred or even thousands of test subjects.

A list with the rest of variables selected by EN for a target number equal to 15 (eventually 12)
and 30 can be found in the Appendix C.
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5.6. Fall Prediction Model

TPR TNR Accuracy F1 score
NF*(66), LR 0.37 0.79 0.72 0.29
NF*(66) SVM 0.50 0.82 0.77 0.40
NF*(66), 20-NN 0.47 0.57 0.55 0.27
EN(5), LR 0.23 0.97 0.84 0.34
EN(5), SVM 0.53 0.82 0.77 0.45
EN(5), 20-NN 0.53 0.82 0.77 0.44
EN(12), LR 0.50 0.92 0.85 0.54
EN(12), SVM 0.67 0.79 0.77 0.50
EN(12), 20-NN 0.43 0.84 0.77 0.40
EN(30), LR 0.53 0.91 0.84 0.54
EN(30), SVM 0.73 0.78 0.77 0.53
EN(30), 20-NN 0.37 0.74 0.67 0.28
PCA(5), SVM 0.50 0.65 0.62 0.32
PCA(30), SVM 0.43 0.65 0.61 0.28
sPLS(30), LR 0.33 0.88 0.78 0.35
sPLS(30), SVM 0.53 0.74 0.70 0.39
sPLS(30), 20-NN 0.37 0.77 0.70 0.30
13-Set, LR 0.30 0.92 0.81 0.36
13-Set, SVM 0.60 0.81 0.77 0.48
13-Set, 20-NN 0.53 0.74 0.70 0.39

*NF: No Feature Selection

Table 5.9.: Metrics for different feature selection methods, classifiers and number of features on set B

Feature
No.

Set A Correlation
Coef.

p-value Set B Correlation
Coef.

p-value

1 Hypertension 0.23 <0.05 Hypertension 0.26 <0.05
2 Fear of Falling - - Test9: Area 0.34 <0.05
3 BMI - - Test6: Duration 0.26 <0.05
4 Foot Pain - - Test2: SD Asymmetry

in X-Direction
- -

5 Reaching - - Test4: SD Accelera-
tion in Y-Direction

- -

Table 5.10.: Order of the first five features, as selected by Elastic Nets on the sets A and B. Significant
features are in bold letters.

Balanced Classes

As already mentioned, distance-based classifiers are able to handle the class imbalance by applying
different weights. In contrast, regression methods, like LR, work better when the data which are
given to them is balanced. In order to accomplish the balancing of the class sizes in set B, we
used two methods. The first method consist in applying SMOTE, and the second method in
randomly subsample the majority class.

SMOTE decreases the imbalance via under- and oversampling of the majority and minority
class, respectively. The parameters were chosen such that the class ratio on the training set
after SMOTE were 2:1 in favor of the original majority class, the non-fallers. With the balanced
classes, the LR classifier trained on five features selected by EN, achieved an improvement in the
prediction. The Youden Index J increased from 0.20 to 0.31 and the F1-score from 0.34 to 0.42.
The TPR improved from 0.23 to 0.47 at cost of TNR (from 0.97 to 0.84).

The second approach is to randomly sub-sample the majority class such that both classes are
of equal size. With this method, the best classification was achieved for SVM with 19 features
selected by EN, obtaining TPR=0.77 and TNR=0.73 (Youden’s J=0.5). Although SVM was
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already tuned to handle the class imbalance, a data balancing prior to classification shows still
an improvement.

5.7. Summary of Findings

In this chapter, we demonstrated the feasibility of introducing the use of accelerometers in a big
multicenter clinical study by creation of a data collection protocol, a back-end“tap detection”al-
gorithm, and other specific algorithms to automatically extract relevant parameters for functional
analysis from the raw data. The plausibility and construct validity of the acceleration-derived
parameters was confirmed using statistical analysis. These parameters constitute some of the
features used to predict the risk of falling.

A model for fall prediction was set that deals with the main limitations encountered in the
exploratory analysis of the real data collected in the study. These limitations include the class im-
balance and the high dimensionality. To deal with class imbalance data-level methods like SMOTE
can improve the results when used with classifiers that do not include algorithmic methods, ho-
wever, algorithm-level methods have shown to be superior. To handle the high dimensionality
problem, the best feature selection method resulted to be Elastic Nets (EN). Principal Compo-
nents Analysis (PCA) is not feasible for dimension reduction when not knowing if features are
useful for classification.

Youden’s J and the F1-score are more valuable validation metrics than the accuracy when
working with unbalanced classes, despite the later metric is widely used in the clinical field.

Support Vector Machines (SVM) are on average the best method for classifying our data. They
present less specificity, than for example Logistic Regression, but they are more sensitive. In our
case, sensitivity is preferred over specificity because the consequences of classifying a non-faller
as faller are not harmful. On the contrary, misclassifying potential fallers may exclude them from
taking part in beneficial intervention programs for fall risk prevention.

The best fall prediction result achieved with our model (TPR=0.73, TNR = 0.78) is comparable
to results from other authors, with the difference being that the presented model takes into
account critical aspects, like validation methodology or class imbalance, not considered in previous
work (see Table 1.2). Nevertheless, this comparison should be made carefully considering the
different characteristics of the subjects databases employed in the different studies. It is also
worthy to mention that the achieved prediction is considerably accurate taking into account the
high overlap of the class distributions (fallers/non-fallers), the strong imbalance, and the fact
that the study group consisted in very young seniors (the average age was 68 years).

From the clinical point of view, the most important finding of this study is that the use of
accelerometers has shown to be useful to improve falls risk prediction over conventional methods
based in patient clinical history and basic functional measures.

92



6. Fall Detection and Alarm

6.1. Introduction

Falls are the major source of morbidity and mortality among the older people. According to
several studies, about one in three adults aged 65 or more fall each year and one in four of those
who fall end up with serious injuries [180, 124]. One major problem is that many of the elderly
who fall at home become helpless and require assistance to get up. Tinetti and colleagues [179]
conducted a study with 313 noninjured fallers living in the community, aged 72 years and older,
of which 47% reported inability to get up after at least one fall. Fleming et al. [60] found that
the 80% (53/66) of the elderly fallers in their 90’s were unable to get up after a fall, and 30%
had lain on the floor for an hour or more. Of those who were alone when they fell, 80% did
not activate their alarms. In this context, user-friendly automatic or semiautomatic emergency
response and monitoring systems can extend the length of time that seniors are able to live in
their own homes.

The focus of this chapter lies in a critical part of such alarm system: the sensitivity and false
alarm rate of the fall detection algorithm. Together with the usability aspect of the activity
monitor these are known to be the key success factors for fall detection systems. To satisfy the
condition that the algorithm runs in real-time for an extended period of time in the microcontroller
of the monitoring device and to guarantee a high user acceptance the actibelt®, is used as key
part of the study.

6.2. Experimental Setup

6.2.1. Acceleration Sensor

The acceleration data was collected with the actibelt® sensor described in section 2.1.

6.2.2. Subject Database

Historical Database

In order to validate the upper limit of the realistic false alarm rate of the algorithm I selected
3 subsamples from the Sylvia Lawry Center database according to age criteria: adolescents,
middle-age and elderly people. Despite the fact that the fall detection system is thought to be
used mainly among the elderly the study was designed to include subjects of a wide age range to
confirm the assumption about the potential decrease of false alarm rate with age.

In total, 2,415.9 hours (100.7 days) of continuous weekly acceleration measurements corres-
ponding to ADLs (Activities of Daily Living) in free living conditions were used for the validation.
The subsamples are distributed as follows: the first cohort is comprised of 3 diabetic adolescents
(10.5yr), the second cohort is formed by 6 healthy individuals (6 male, 32.3 yrs) and the third by
5 elderly women (70.2 yrs) diagnosed with osteoporosis but without mobility limitations.

Prospective Data Collection

For the development and improvement of the fall detection algorithm, a series of fall-like activities
and simulated fall events (Table 6.1) were performed by two healthy individuals (2 male; age:
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46 and 79 yrs; height: 1.84 and 1.74 m) in a controlled laboratory setting at the Sylvia Lawry
Center for Multiple Sclerosis Research (Munich, Germany). Both subjects were informed about
the aims of the activity measurement and had given written informed consent.

Real-World Falls

Real-world falls of two persons (54.5 ±2.1 yrs) who accidentally fell while being monitored with
the accelerometer were included in the data base. One of the falls resulted in a fracture of the
neck of femur. These unfortunate accidents provided with an extremely valuable data for two
main reasons: 1) the difficulty that in itself entails to get a real fall. As an example, to capture
100 real-world falls it would be necessary to record approximately 100,000 days of physical activity
(300 person years) [15]. And 2), the detailed documentation about the real-world falls and the
physical activity in the previous weeks to the fall; in addition to the self-reported information,
there exist 24-hour accelerometer recordings and, for one of the falls, clinical functional test
measurements (Timed Up and Go test, 10 meter test and 6 minute walking test).

6.2.3. Trial Protocol

The trial protocol consists of a series of 16 real falls in laboratory conditions and 7 fall-like
activities which should not trigger an alarm. The experiments were performed on a sofa and on
a crash pad 8 cm thick (see Table 6.1 and Figure 6.1). Falls were performed in three directions:
backwards, forwards and sideways, starting from a walking and a standing position and were
selected to mimic typical real world situations. E.g., sequence 17 and 18 reflect situations where
the subject stumbles before falling down. Sequence 12, 13 and 14 imitate the everyday scenario
of a person lying down on the bed and, occasionally, tossing and turning. The last task (number
23) simulates someone who sits down and loses consciousness resulting in a fall.

All participants performed the sequence once and were instructed about how to execute the
specific task at the beginning of each activity. All activities start with a pause of five seconds,
followed by a tap on the belt and other five-second pause. All activities were video recorded.

6.3. Fall Detection Algorithm

6.3.1. Feature Extraction

The preprocessing of the raw data was performed according the filtering methods described by
Karantonis et al. in [95]. First, the acceleration raw data are denoised using a median filter (n =
3). Then, in order to get the gravity acceleration component (GA) the output is low pass filtered,
whereby a custom third-order elliptical infinite impulse response (IIR) filter with cut-off frequency
at 0.25 Hz. The acceleration forces originated by the body movements (BA) are extracted by
subtracting the gravity acceleration to the denoised signal. After that, both components, GA and
BA, are transformed into spherical coordinates.

By comparing the magnitude of the acceleration vector produced by the body movement, ρBA,
with a certain threshold I determine a possible impact against the ground. This magnitude can
be calculated as following:

ρBA[i] =
√
x2[i] + y2[i] + z2[i] (6.1)

where x[i] is the ith sample along the x axis (likewise for y[i] and z[i]).
The θ coordinate of the gravitational component, θGA, is used to differentiate between stand-

ing/sitting position and lying orientation. The value θGA (equation 6.2) estimates the angle
formed by the vertical axis of the upper body and the ground.

θGA[i] = cos−1(z[i]/ρBA[i]) (6.2)
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6. Fall Detection and Alarm

Figure 6.1.: Sequence of photos taken during the performance of the experiment simulating falls in
differen positions.

where z[i] is the ith sample along the vertical axis.
To distinguish between rest and activity phases, the sum of the windowed standard deviation,

SWSD (equation 6.3), of the ρBA signal was calculated for a window length L = 50 samples.

SWSD =

n∑
i=1

σi (6.3)

where

σi =

√√√√√ iL−1∑
j=(i−1)L

(ρBA[j]− ρ̄BAi)
2

L
(6.4)

with

ρ̄BAi =

iL−1∑
j=(i−1)L

ρBA[j]

L
(6.5)

6.3.2. Threshold Calculation

To find the optimal thresholds for the identification of the fall impacts and the relative body
position, the controlled fall data set (30 simulated falls; Table 6.1) was divided randomly in two
equal groups, one selected as the training group. The thresholds were calculated using only data
from this data set.

The threshold for ρBA was chosen such that we achieve 100% sensitivity when the algorithm
is run over the training data and it was selected as the minimum rounded down value of the
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acceleration peaks produced by the fall impacts in the signal ρBA. This number, thmag, is equal
to 1.9 g. The tilt angle threshold, thang, was selected as the minimum average value of θGA
during the next 13 seconds after the fall, and its value is 49.8 degrees. The three seconds
immediately after the fall were ignored due to potential residual movement relating to the knock
into the crash pad. To identify periods of inactivity the SWSD of the magnitude vector signal
should be under the threshold, thact = 3.0 g.

6.3.3. The Algorithm

The fall detection algorithm is based on the detection of an impact by the comparison of the
magnitude of the acceleration vector produced by the body movement to a preset threshold and
on the body orientation after the impact.

The ρBA samples which surpass thmag are grouped together in a block provided that the
sample difference in between them is not more than 15 samples and the length of the block is
maximum 1 second duration (100 samples). Each of these blocks is classified as a potential fall.
In a second step, the relative position of the trunk in respect of the perpendicular vector to the
ground’s plane is calculated along the 10 seconds interval within the 3rd and 13th second after
the first sample of the block. It has been empirically found that an interval of 3 seconds after
the fall is enough for the tilt signal to stabilize in case a fall occurs. If the trunk tilt given by θGA
within this period goes over the threshold thang, the person is considered to be in a non-standing
position. An alarm is then only activated if the person was in a standing position before the
impact and the quantity of movement after it does not go over the threshold thact.

Initially the algorithm was developed and validated in R [174] and later implemented in C
language so that it could run in the microcontroller of the actibelt®.

6.3.4. Validation Method

In order to evaluate the performance of the fall detector, the algorithm was run, first over the
whole test battery of activities and simulated fall events (Table 6.1); second, over the continuous
acceleration data set of ADLs recorded in a free-living environment and then over the real-world
falls data.

The output of the first analysis yields an estimation for the sensitivity of the algorithm on
the basis that the fall scenarios covered in the experiment protocol are highly representative of
a real fall, whereas the free-living activity recordings give an upper limit for the false alarm rate
(it is unknown whether some real alarms were within the ones detected as such) in an entirely
realistic scenario. Finally, the two real-world falls were useful to test the ecological validity of the
test protocol. The fall-like activities included in the protocol were intended to be used for the
refinement of the algorithm or in event of troubleshooting in case that the false alarm rate were
much higher than the expected one but never to serve as an estimation for the specificity. The
ecological validity of the specificity calculated as such is void due to the absence of a prevalence
value.

6.4. The Alarm System

A prototype of an Android application was developed such that when a fall is detected by the
sensor, an alarm is sent via Bluetooth© to the smart phone where the application is running and
automatically an emergency phone call is activated. The application can be programmed to call
different phone numbers, for example, those ones from relatives or caregivers.
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6. Fall Detection and Alarm

6.5. Results

In total, 2,416 hours of uncontrolled ADL activities, 46 simulated falls and fall-like events as well
as two real-world falls were analyzed in R retrospectively. The overall sensitivity measures the
percentage of positives (alarms) in the prospective data collection which are correctly identified
as such. In this study the sensitivity obtained with the validation data reached the 100%.

The algorithm detected two fall-like impacts (see Fig.6.2) when ran over the files which con-
tained the real-world falls at around the same time when it was reported that they happened.
1,835 000 samples per axis × 3 axis (approx. 5 hours recording) were analyzed and the results
did not show any false alarm.
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Figure 6.2.: Real fall detected by the algorithm. Red line is the vertical axis, green is the mediolateral
axis and blue is the anterioposterior axis (g = 9.81 m/s/s)

The upper limit for the false alarm rate was calculated separately for each cohort in a two-
step evaluation. The results are shown in Table 6.2. The UL-cure refers to the results obtained
after eliminating the false positives due to the act of removing the device from the belt. The
assumption about false alarm rate decreases with age was confirmed.

Mean age (yrs) Recorded hours UL-raw UL-cure

Cohort 1 10.5 688.1 135 127.7
Cohort 2 32.3 732.1 26.6 11.8
Cohort 3 70.2 995.7 17.4 2.9

Table 6.2.: UL-raw/UL-cure: upper limit false alarm rate without/with data curation (falls per months)

6.6. Summary of Findings

I have developed a promising methodology to detect falls in the elderly using a body worn sensor
that has high sensitivity and an acceptable rate of false alarms – 0.56 false alarms per day with the
potential of being reduced to 0.09. In comparison with the similar studies cited in the literature

98



6.6. Summary of Findings

review presented in Section 1.4.3, the algorithm presents the lowest false alarm rate and the
highest sensitivity under laboratory conditions. In relation to systems using ambient devices –
like video camera systems or floor pressure sensors – the sensitivity, despite the different nature
of the data base, is comparable in some cases to the results presented here [148], but the lack of
information about the false alarm rate did not allow to fairly check the differences in the number
of false positives per day. Although video cameras can provide sufficient information for falls
detection, lighting conditions, field-of-view constraints, installation of cameras, coverage range
and privacy issues are still major limitations [148].

A particular strength of the current study is to have provided a strict upper limit for the realistic
false alarm rate using historical accelerometry data. One should note that the specificity of an
algorithm using fall data generated in laboratory settings is meaningless in a real world scenario
due to the absence of a prevalence value, although it is still widely used as a measure for algorithm
performance.

The success detecting real falls evidence that the simulation protocol chosen for the algorithm
development covered at minimum two real falls scenario. The lack of more and various types of
real falls restricts the ecologic validity of the result of 100% sensitivity. An open accelerometry
database including real world-falls would be of considerable importance for a continuous and
independent refinement and validation of fall detection algorithms, as well as for benchmarking.
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7. Conclusion

This work has demonstrated the usefulness and added value of a single waist-worn accelerometer
to evaluate the functional mobility status of a person, to assess the risk of falling, and to detect
falls.

First, I overcame the limitations of the current methods via integration of a customized inertial
sensor into the functional assessment routine by:

• procuring objective measurable outcomes with a large resolution that permit the classifica-
tion of patients lying in the mid-range mobility spectrum and the identification of underlying
dysfunctions via analysis of walking pattern,

• offering a portable, continuous, and inexpensive solution for recording functional tests both
inside and outside the clinic,

• and potentially reducing the time needed for test administration and data management by
using an inertial sensor wirelessly connected to a smart phone/tablet and a medical server.

Second, the feasibility of this technology for fall risk assessment in real clinical practice was
proven with a well set-up data collection protocol in a European multicenter study. I developed and
validated new algorithms to extract gait and balance features and automated signal processing
of the data collected. The statistical analysis of the features was used to develop a new fall
prediction model that takes into account important aspects overlooked in previous studies of a
similar nature, such as:

• the imbalance between the classes fallers/non-fallers,

• the large overlap of the classes,

• and the high-dimensional data.

The prediction model of this work uses as label classes prospective fallers/non-fallers, unlike
most of the studies in this field, which provide a prediction based on retrospective fallers, and
are therefore of limited usefulness. From a clinical point of view, the most remarkable finding
is that accelerometer-derived features improved fall prediction when compared to the results
obtained using conventional features. Moreover, the prediction was considerably accurate taking
into account the unbalanced, noisy dataset.

The third and last remark concerns fall detection. In this research, I have developed a fall
detection algorithm and a new method to estimate the real upper limit of the false alarm rate,
such that:

• to date, this fall detection algorithm, validated using real acceleration data from various
subject groups, presents the best performance in terms of false alarm rate when compared
with other published algorithms,

• the algorithm achieved 100% sensitivity using data recorded under laboratory conditions as
well as the successful detection of real-world falls.

The sensor’s capacity to be used as an automatic fall alarm has been proven via exemplary
implementation of a fall detection algorithm in the device microcontroller and an android-based
application that activates an emergency phone call immediately upon receiving the alarm signal
emitted by the device.
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A. Literature Review on Step Detection using
Waist-Worn Accelerometers

A.1. Search Strategy and Study Selection

To identify eligible publications on human step detection using accelerometers I conducted a
systematic search of 3 databases: ACMDL, IEEExplore and Google Scholar, on 25th October
2013 (Table A.1). The search strategy comprised a combination of terms for acceleration sensors
and human step analysis.

Name Discipline Provider #Results

ACMDL Computer Science, Engineering Association for Comput-
ing Machinery

148

IEEE Xplore Computer Science, Engineering,
Electronics

IEEE 64

Google Scholar Multidisciplinary Google 67

Table A.1.: Consulted databases and number of results returned

General Rules for Searching. Search restricted to Abstract (or Title in case that restricting to
Abstract was not possible).
Search terms for ”acceleration sensors”:

1. ”acceleration sensor”

2. ”accelerometer”

3. 1 OR 2

Search terms for ”human step analysis”:

4. ”step”

5. ”stride”

6. 4 OR 5

Combination of search terms:

7. 3 AND 6 AND (”human” NOT ”animal”)

The terms presented above were adapted to include phrases and subject headings specific to
each database. Searches covered all type of publications from databases’s inception to October
2013 and no language restrictions were imposed. I screened the title and abstract of all identified
citations and subsequently assessed full text versions of potentially eligible studies for inclusion
according to the selection criteria outlined below. I also screened the references of the eligible
studies for identification of additional articles (Figure A.1).
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A. Literature Review on Step Detection using Waist-Worn Accelerometers

Figure A.1.: Flow-diagram depicting the selection process of studies involving the development of algo-
rithms for step detection using accelerometers.

A.2. Eligibility criteria

To be included in the review, studies must have defined and validated a method for human step
detection using a single acceleration sensor attached to the body trunk or head. I did not consider
sensors placed on the limbs nor in uncontrolled positions, as for example in pockets, because the
accelerations patterns recorded at those positions differ so much than the ones recorded at a
near point of the body’s COM that a direct comparison among models and algorithm accuracies
would be inapplicable.
Only studies published in the English language were considered for inclusion.

A.3. Outcomes of Interest and Assessment of Data Quality

In addition to the primary outcome of interest – performance of the step detector –, other
important information extracted from the selected studies comprise the type of study subjects
included in the validation (healthy young/adult individuals, elderly, or persons suffering from some
motor disorder). To assess the quality of the reported outcome I considered the ecological validity
of the test data (i.e., data recorded while walking on treadmill or during overground walking),
the validation of the detector at different gait speeds, number of study subjects included, and
whether the step detector is able to identify points of interest like for example the heel strike or
just count steps based on detection of abrupt changes.
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B. VPHOP Data Collection Protocol for
Functional Tests

Version 1.0 Jan 20th 2010 VPHOP Patient Actibelt Clinical Report 
Form

____________________________________________________________________________________________________________________________

VPHOP Patient Actibelt Clinical Report Form
(To be completed by clinician/experimenter)

Date of testing (dd/mm/yyyy): _____________________

Initials of observer: _______________________

Participant ID-Code: __________________ (consistent with VPHOP 
WP8 code)

Age: __________________ Years

Weight: _____________________ kg

Height: _____________________ cm
 
Shoe size (European, e.g. 42): __________________

Leg length (Right leg, from greater trochanter to the floor, with 
flat shoes, approx): ____________________ cm

Time at which Actibelt is turned on: ____________________ 
(hh:mm)

Time at which Actibelt is turned off: ____________________ 
(hh:mm)

Actibelt Filename: (Patient ID_Actibelt ID number): 
_______________________

Do walking tests require a walking aid? (y/n) ____________

Comments (specifically any changes or errors in the data collection e.g. 

incorrect  tapping.  Please  include  test  number): 

____________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

____________________________________________

Figure B.1.: Patient clinical form for functional assessment (page 1/2)
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B. VPHOP Data Collection Protocol for Functional Tests

Version 1.0 Jan 20th 2010 VPHOP Patient Actibelt Clinical Report 
Form

____________________________________________________________________________________________________________________________

1. Normal walking

Record time to walk 10m: __________________s
2. Repeat of test (1). Normal walking

Record time to walk 10m: __________________s
3. Normal walking with patients counting backwards from 100 subtracting 7

Record time to walk 10m: __________________s

4. Tandem walk along a line

Record distance if < 5 m (nearest 0.5 m): _____________________________m
5. Timed up and go test

Record time: ___________________________s

6. Chair rise test

Record time to final standing position: __________________________s

7. Romberg stance  

Record time if < 10 sec: __________________s

8. Semi-Tandem stance

Record time if < 10 sec: __________________s

9. Tandem stance

Record time if < 10 sec: __________________s

10. One-legged stance (standing on right leg)

Record time if < 10 sec: __________________s

11. One-legged stance (standing on left leg)

Record time if < 10 sec: __________________s

Number of tapped events (attempts) indicates the number of start (single tap) 
stop (double tap) events recorded. The last of these events will be evaluated. In  
the case of a non-attempted task, a cross should be indicated in the “failed / did  
not attempt box). No task will be evaluated. For all tasks, 0 attempts indicates  
that the patient did not attempt the task, 1 attempt is normal for a single task  
recording. 2 and above attempts indicates repetitions of the same task.

____________________________________________

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

                Failed / did not attempt    Number of tapped 
events (attempts)

Figure B.2.: Patient clinical form for functional assessment (page 2/2)
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Version 1.0 Jan 20th 2010 VPHOP Patient Actibelt Testing 
Protocol

____________________________________________________________________________________________________________________________

CLINICAL AND VPHOP RAPID STABILITY TEST CHECKLIST

Protocol for patient testing

1. All  patients  should  wear  comfortable  flat  soled  shoes  for  all  tests  (or 
orthopaedic shoes if normally used).

2. Tapping on the belt is used to indicate the start and stop of a test recording. 
The person in charge of the performance of the test should be the one who 
taps the belt.

3. For  tapping  on  the  belt,  a  pen  or  a  similar  instrument  should  be  used  to 
provide a firm, sharp tap. 

4. All tests are automatically recognised by a single tap on the belt to start the 
test and a double tap to complete the test. If the patient does not or cannot 
finish a test (e.g. looses their balance before the end of the test), ensure 
that the test measurement is completed by remaining still, tapping twice on 
the belt and remaining still once again. 

5. An Actibelt and tap test check can be performed by recording a single test trial  
(pause, single tap, pause, activity, pause, double tap, pause), uploaded to 
the  website,  and  viewed to  ensure  that  the  tap  has  been automatically 
recognised. 

6. For dynamic (e.g. walking) tests (i.e. test numbers 1-6), a 5 second pause is 
required (documented in blue) both at the beginning (after the single tap) 
and at the end of the test activity (before the double tap that indicates the 
measurement is complete).

7. For  static  balance  tests  (i.e.  test  number  7  onwards),  the  activity  can  be 
commenced directly after the single tap to initiate the test. 

8. Once a patient is unable to complete the 10 seconds of balance testing (test 
number 7 onwards), further testing is not required.

9. All  data  should  be  uploaded  to  the  VPHOP  website: 
http://www.vphop.eu/OpenClinica

(1) Normal walking – self selected speed, 10 m walk (use space with an additional 
2 m tolerance in walk distance; patient start position with toes behind start 
line. Patients should stop when the leading foot touches or crosses the 10m 
end line)

a. Remain still for 5 seconds
b. Tap once on the buckle to start
c. Remain still for 5 seconds
d. Perform 10 m walk, normal speed, stop at end line. Record time.
e. Remain still for 5 seconds
f. Tap twice on the belt to stop
g. Remain still for 5 seconds

(2) Repeat of test (1). Normal walking – self selected speed, 10 m walk (use space 
with an additional 2 m tolerance in walk distance; patient start position with 
toes behind start line)

a. Remain still for 5 seconds
b. Tap once on the buckle to start
c. Remain still for 5 seconds
d. Perform 10 m walk, normal speed, stop at end line. Record time.
e. Remain still for 5 seconds
f. Tap twice on the belt to stop
g. Remain still for 5 seconds

____________________________________________

1

Figure B.3.: List of functional tests and protocol for patient testing (page 1/4)
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B. VPHOP Data Collection Protocol for Functional Tests

Version 1.0 Jan 20th 2010 VPHOP Patient Actibelt Testing 
Protocol

____________________________________________________________________________________________________________________________

(3) Normal  walking  –  self  selected  speed,  10  m  walk  with  patients  counting 
backwards from 100 subtracting 7 and stating the numbers out aloud (use 
space with an additional 2 m tolerance in walk distance; patient start position 
with toes behind start line)

a. Remain still for 5 seconds
b. Tap once on the buckle to start
c. Remain still for 5 seconds
d. Perform 10 m walk, normal speed, stop at end line. Record time.
e. Remain still for 5 seconds
f. Tap twice on the belt to stop
g. Remain still for 5 seconds

(4) Tandem walk along a line. Arms folded across chest. 5m walk, 
self selected speed

a. Remain still for 5 seconds
b. Tap once on the buckle to start
c. Remain still for 5 seconds
d. 5 m walk in one line with one foot leading the other
e. Record distance if < 5 m (nearest 0.5 m)
f. Remain still for 5 seconds
g. Tap twice on the belt to stop
h. Remain still for 5 seconds

(5) Timed up and go test (TUG) at self-selected speed (hard surfaced chair with 
arm and back supports, 42 cm in seating height)

a. Remain still for 5 seconds
b. Tap once on the buckle to start
c. Remain still for 5 seconds
d. Sit to stand (patients may use arm supports or walking aid)
e. 3 m walk
f. Turn around
g. 3 m walk back
h. Stand to sit
i. Record time (start clock when patient moves from back support, 

stop clock when patient returns to back support)
j. Remain still for 5 seconds
k. Tap twice on the belt to stop
l. Remain still for 5 seconds

(6) Chair rise test. Arms folded across chest (hard surfaced chair with arm and 
back supports, 42 cm in seating height)

a. Remain still for 5 seconds
b. Tap once on the buckle to start
c. Remain still for 5 seconds
d. Stand up from a sitting position (no arm support allowed) and sit 

down five times as quickly as possible. Count repetitions aloud to 
encourage patient.

e. Record time from intial movement to final standing position
f. Remain still for 5 seconds
g. Tap twice on the belt to stop

(7) Romberg (quiet-standing) stance  (10 sec, focussing on point on wall at eye 
height, patients may move arms to control balance, feet together, ankles 
touching)

a. Remain still for  5 seconds

____________________________________________
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Figure B.4.: List of functional tests and protocol for patient testing (page 2/4)
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Version 1.0 Jan 20th 2010 VPHOP Patient Actibelt Testing 
Protocol

____________________________________________________________________________________________________________________________

b. Ask the patient to adopt the Quiet Stance posture (stand with 
ankles touching each other, holding a support)

c. Immediately tap once on the buckle to start, patient releases 
support hold.

d. Perform 10 seconds of quiet stance. Patient to remain as still as 
possible

e. Record time if < 10 sec (start clock when patient releases 
support, stop clock when patient looses balance/holds support)

f. Tap twice on the buckle to end (patient still in Quiet Stance 
posture)

g. Remain still for 5 seconds (it's not necessary to remain in Quiet 
Stance posture)

(8) Semi-Tandem stance (max. 10 sec, focussing on point on wall at eye height, 
patients may move arms to control balance, chosen leg in front)

a. Remain still for 5 seconds
b. Ask the patient to adopt the Semi-Tandem posture (heel of one 

foot alongside the big toe of the other foot, holding a support)
c. Tap once on the buckle to start, patient releases support hold.
d. Perform 10 seconds of Semi-Tandem stance. Patient to remain as 

still as possible
e. Record time if < 10 sec (start clock when patient releases 

support, stop clock when patient looses balance/holds support)
f. Tap twice on the buckle to end (patient still in Semi-Tandem 

posture)
g. Remain still for 5 seconds (not necessary for patient to remain in 

Semi-Tandem posture)

(9) Tandem stance (max. 10 sec, focussing on point on wall at eye height, 
patients may move arms to control balance, chosen leg in front)

a. Remain still for 5 seconds
b. Ask the patient to adopt the Tandem posture (stand with one foot 

directly in front of the other , holding a support)
c. Tap once on the buckle to start, patient releases support hold.
d. Perform 10 sec of tandem stance. Patient to remain as still as 

possible
e. Record time if < 10 sec (start clock when patient releases 

support, stop clock when patient looses balance/holds support)
f. Tap twice on the buckle to end (patient still in Tandem posture)
g. Remain still for 5 seconds (it's not necessary to remain in 

Tandem posture)

(10) One-legged stance (max. 10 sec, focussing on point on wall at eye height, 
patients may move arms to control balance, standing on right leg)

a. Remain still for 5 seconds
b. Ask the patient to adopt the one-legged posture, holding a 

support
c. Tap once on the buckle to start, patient releases support hold.
d. Perform 10 seconds of one-legged stance on right leg. Patient to 

remain as still as possible
e. Record time if < 10 sec (start clock when patient releases 

support, stop clock when patient looses balance/holds support)
f. Tap twice on the buckle to end (patient still in one-legged 

posture)
g. Remain still for 5 seconds (not necessary to remain in one-legged 

posture)

____________________________________________
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Figure B.5.: List of functional tests and protocol for patient testing (page 3/4)
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B. VPHOP Data Collection Protocol for Functional Tests

Version 1.0 Jan 20th 2010 VPHOP Patient Actibelt Testing 
Protocol

____________________________________________________________________________________________________________________________

(11) One-legged stance (max. 10 sec, focussing on point on wall at eye height, 
patients may move arms to control balance, standing on left leg)

a. Remain still for 5 seconds
b. Ask the patient to adopt the one-legged posture, holding a 

support
c. Tap once on the buckle to start, patient releases support hold.
d. Perform 10 seconds of one-legged stance on left leg. Patient to 

remain as still as possible
e. Record time if < 10 sec (start clock when patient releases 

support, stop clock when patient looses balance/holds support)
f. Tap twice on the buckle to end (patient still in one-legged 

posture)
g. Remain still for 5 seconds (not necessary to remain in one-legged 

posture)

____________________________________________
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Figure B.6.: List of functional tests and protocol for patient testing (page 4/4)
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C. Data Sets Variables

C.1. Dataset A

Variable Unit Scale Reference
History of Falls yes/no nominal AGS [169]
Age years ratio AGS [169]
Depression yes/no nominal AGS [169]
Sleep Disturbance yes/no nominal AGS [169]
Assistive Devices yes/no nominal AGS [169]
Arthritis yes/no nominal AGS [169]
Visual Deficits yes/no nominal AGS [169]
BMI kg/m2 ratio Volpato et al. [188]
Hypertension yes/no nominal Gangavati et al. [66]
Fear of Falling yes/no nominal Scheffer et al. [164]
Foot Pain yes/no nominal Todd et al. [181]
Time 10 Meters seconds ratio AGS [169]
Balance levels 1 - 10 ordinal AGS [169]
Reaching levels 1 - 3 ordinal AGS [169]
Carrying levels 1 - 3 ordinal AGS [169]
Washing levels 1 - 3 ordinal AGS [169]
Bending levels 1 - 3 ordinal AGS [169]

Table C.1.: Variables of data set A [14]

C.2. Dataset B

Table C.2 presents a list of the variables included in data set B. Information about units and
scales can be found in section 5.5.2. Variables in bold letters are variables selected by an expert
for the prediction of falls. See section 5.6.5 for more information.

C.3. Variables Chosen by Elastic Nets

This section provides variables from dataset B chosen by EN for a reduction target to 12 and 30
features.
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C. Data Sets Variables

History of Falls Test 1: Step cadence Test 3: Step cadence

Age Test 2: Number of Steps Test 4: Peak to Peak in X

Depression Test 2: X-Asymmetry Test 4: Peak to Peak in Y

Sleep Disturbance Test 2: Y-Asymmetry Test 4: Peak to Peak in Z

Assistive Devices Test 2: Z-Asymmetry Test 4: SD of X-Acceleration

Arthritis Test 2: SD of X-Asymmetry Test 4: SD of Y-Acceleration

Visual Deficits Test 2: SD of Y-Asymmetry Test 4: SD of Z-Acceleration

BMI Test 2: SD of Z-Asymmetry Test 4: Balance Count X

Hypertension Test 2: Mean Speed Test 4: Balance Count Y

Fear of Falling Test 2: Duration Test 4: Balance Count Z

Foot Pain Test 2: Step Length Test 5: Duration

Balance Test 2: Step cadence Test 6: Duration

Test 1: Number of Steps Test 3: Number of Steps Test 7: Eccentricity

Test 1: X-Asymmetry Test 3: X-Asymmetry Test 7: Area

Test 1: Y-Asymmetry Test 3: Y-Asymmetry Test 8: Eccentricity

Test 1: Z-Asymmetry Test 3: Z-Asymmetry Test 8: Area

Test 1: SD of X-Asymmetry Test 3: SD of X-Asymmetry Test 9: Eccentricity

Test 1: SD of Y-Asymmetry Test 3: SD of Y-Asymmetry Test 9: Area

Test 1: SD of Z-Asymmetry Test 3: SD of Z-Asymmetry Test 10: Eccentricity

Test 1: Mean Speed Test 3: Mean Speed Test 10: Area

Test 1: Duration Test 3: Duration Test 11: Eccentricity

Test 1: Step Length Test 3: Step Length Test 11: Area

Table C.2.: Variables of Dataset B[14]

Visual Deficits Hypertension Foot Pain

Test 1: SD of Z-Asymmetry Test 2: SD of X-asymmetry Test 3: Z-Asymmetry

Test 4: SD of Y-Asymmetry Test 5: Duration Test 6: Duration

Test 8: Eccentricity Test 9: Area Test 11: Area

Table C.3.: 12 Variables of Dataset B, chosen by EN [14]
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C.3. Variables Chosen by Elastic Nets

Age Sleep Disturbance Arthritis

Visual Deficits Hypertension Fear of Falling

Foot Pain Balance BMI

Test 1: SD of Y-Asymmetry Test 1: SD of Z-Asymmetry Test 1: Step Cadence

Test 2: SD of X-Asymmetry Test 2: Y-Asymmetry Test 3: Number of Steps

Test 3: Z-Asymmetry Test 3: Mean Speed Test 4: SD of Y-Acceleration

Test 4: Balance Count X Test 4: Balance Count Z Test 5: Duration

Test 6: Duration Test 7: Eccentricity Test 7: Area

Test 8: Eccentricity Test 8: Area Test 9: Area

Test 10: Eccentricity Test 10: Area Test 11: Area

Table C.4.: 30 Variables of Dataset B, chosen by EN [14]
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hochaulösenden 3D-Akzelerometer actibelt aufgezeichnet werden. In Bachelorarbeit in In-
formatik. Technische Universität München, 2009.

64. S.M. Friedman, B. Munoz, S.K. West, G.S. Rubin, and L.P. Fried. Falls and fear of falling:
which comes first? A longitudinal prediction model suggests strategies for primary and
secondary prevention. In Journal of the American Geriatrics Society, 50(8), pp. 1329–1335,
2002.

65. A. Gabell and U. Nayak. The effect of age on variability in gait. In Journal of Gerontology,
39(6), pp. 662–666, 1984.

66. A. Gangavati, I. Hajjar, L. Quach, R.N. Jones, D.K. Kiely, P. Gagnon, and L.A. Lipsitz.
Hypertension, Orthostatic Hypotension, and the Risk of Falls in a Community-Dwelling
Elderly Population: The Maintenance of Balance, Independent Living, Intellect, and Zest
in the Elderly of Boston Study. In Journal of the American Geriatrics Society, 59(3), pp.
383–389, 2011.

67. D. Giansanti, V. Macellari, and G. Maccioni. New neural network classifier of fall-risk based
on the Mahalanobis distance and kinematic parameters assessed by a wearable device. In
Physiological measurement, 29(3), p. N11, 2008.

68. M. Gietzelt, G. Nemitz, K.H. Wolf, H. Meyer Zu Schwabedissen, R. Haux, and
M. Marschollek. A clinical study to assess fall risk using a single waist accelerometer.
In Informatics for health and social care, 34(4), pp. 181–188, 2009.

69. B.R. Greene, A.O. Donovan, R. Romero-Ortuno, L. Cogan, C.N. Scanaill, and R.A. Kenny.
Quantitative falls risk assessment using the timed up and go test. In Biomedical Engineering,
IEEE Transactions on, 57(12), pp. 2918–2926, 2010.

70. E.W. Gregg, M.A. Pereira, and C.J. Caspersen. Physical activity, falls, and fractures among
older adults: a review of the epidemiologic evidence. In Journal of the American Geriatrics
Society, 48(8), pp. 883–893, 2000.

71. S. Hargittai. Savitzky-Golay least-squares polynomial filters in ECG signal processing. In
Computers in Cardiology, 2005, pp. 763–766. IEEE, 2005.

72. J.A. Hartigan and M.A. Wong. Algorithm AS 136: A k-means clustering algorithm. In
Applied statistics, pp. 100–108, 1979.

122



Bibliography

73. S.S. Hasan, D.W. Robin, D.C. Szurkus, D.H. Ashmead, S.W. Peterson, and R.G. Shiavi.
Simultaneous measurement of body center of pressure and center of gravity during upright
stance. Part I: Methods. In Gait & posture, 4(1), pp. 1–10, 1996.

74. M.R. Haug and S.J. Folmar. Longevity, gender, and life quality. In Journal of Health and
Social Behavior, pp. 332–345, 1986.

75. J.M. Hausdorff, M.E. Cudkowicz, R. Firtion, J.Y. Wei, and A.L. Goldberger. Gait variability
and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in parkinson’s
disease and Huntington’s disease. In Movement disorders, 13(3), pp. 428–437, 1998.

76. J.M. Hausdorff, D.A. Rios, and H.K. Edelberg. Gait variability and fall risk in community-
living older adults: a 1-year prospective study. In Archives of physical medicine and reha-
bilitation, 82(8), pp. 1050–1056, 2001.

77. V.T. van Hees, L. Gorzelniak, E.C.D. Leon, M. Eder, M. Pias, S. Taherian, U. Ekelund,
F. Renström, P.W. Franks, A. Horsch et al.. Separating movement and gravity components
in an acceleration signal and implications for the assessment of human daily physical activity.
In PloS one, 8(4), p. e61691, 2013.

78. A. Hendrich, A. Nyhuis, T. Kippenbrock, and M.E. Soja. Hospital falls: Development of
a predictive model for clinical practice. In Applied Nursing Research, 8(3), pp. 129–139,
1995.

79. A.E. Hoerl and R.W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. In Technometrics, 12(1), pp. 55–67, 1970.

80. F.B. Horak, S.M. Henry, and A. Shumway-Cook. Postural perturbations: new insights for
treatment of balance disorders. In Physical therapy, 77(5), pp. 517–533, 1997.

81. F.B. Horak, C.L. Shupert, and A. Mirka. Components of postural dyscontrol in the elderly:
a review. In Neurobiology of aging, 10(6), pp. 727–738, 1989.

82. J. Howcroft, J. Kofman, and E.D. Lemaire. Review of fall risk assessment in geriatric
populations using inertial sensors. In J Neuroeng Rehabil, 10, p. 91, 2013.

83. A. Hreljac. Impact and overuse injuries in runners. In Medicine and Science in Sports and
Exercise, 36(5), pp. 845–849, 2004.

84. B. Huang, G. Tian, and X. Li. A method for fast fall detection. In Intelligent Control and
Automation, 2008. WCICA 2008. 7th World Congress on, pp. 3619–3623. IEEE, 2008.

85. Y. Huang, H. Zheng, C. Nugent, P. McCullagh, S.M. McDonough, M.A. Tully, and S.O.
Connor. Activity monitoring using an intelligent mobile phone: a validation study. In Pro-
ceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive
Environments, p. 10. ACM, 2010.

86. R. Igual, C. Medrano, and I. Plaza. Challenges, issues and trends in fall detection systems.
In Biomedical engineering online, 12(1), p. 66, 2013.

87. S.R. Jacob Goldberger and R.S. Geoff Hinton. Neighbourhood components analysis. In
NIPS’04, 2004.

88. W.G. Janssen, J.B. Bussmann, H.L. Horemans, and H.J. Stam. Analysis and decomposition
of accelerometric signals of trunk and thigh obtained during the sit-to-stand movement. In
Medical and Biological Engineering and Computing, 43(2), pp. 265–272, 2005.

123



Bibliography

89. J. Jensen, L. Nyberg, Y. Gustafson, and L. Lundin-Olsson. Fall and injury prevention in
residential care—effects in residents with higher and lower levels of cognition. In Journal of
the American geriatrics society, 51(5), pp. 627–635, 2003.

90. K. Johnston, K. Grimmer-Somers, and M. Sutherland. Perspectives on use of personal
alarms by older fallers. In International journal of general medicine, 3, p. 231, 2010.

91. R.L. Kane, M.G. Saslow, and T. Brundage. Using ADLs to establish eligibility for long-term
care among the cognitively impaired. In The Gerontologist, 31(1), pp. 60–66, 1991.

92. M. Kangas, A. Konttila, P. Lindgren, I. Winblad, and T. Jämsä. Comparison of low-
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